
Adv. appl. Clifford alg. 20 (2010), 121–140
c© 2008 Birkhäuser Verlag Basel/Switzerland
0188-7009/010121-20, published online December 11, 2008
DOI 10.1007/s00006-008-0143-2

Advances in
Applied Clifford Algebras

Reductions in Computational Complexity
Using Clifford Algebras

René Schott and G. Stacey Staples

Abstract. A number of combinatorial problems are treated using properties of
abelian null-square-generated and idempotent-generated subalgebras of Clif-
ford algebras. For example, the problem of deciding whether or not a graph
contains a Hamiltonian cycle is known to be NP-complete. By considering
entries of Λk, where Λ is an appropriate nilpotent adjacency matrix, the k-
cycles in any finite graph are recovered. Within the algebra context (i.e., con-
sidering the number of multiplications performed within the algebra), these
problems are reduced to matrix multiplication, which is in complexity class P.
The Hamiltonian cycle problem is one of many problems moved from classes
NP-complete and �P-complete to class P in this context. Other problems
considered include the set covering problem, counting the edge-disjoint cycle
decompositions of a finite graph, computing the permanent of an arbitrary
matrix, computing the girth and circumference of a graph, and finding the
longest path in a graph1.

Mathematics Subject Classification (2000). 68Q15, 05C50, 05C38, 60B99,
81P68.

Keywords. Hamiltonian cycles, travelling salesman problem, longest path, NP-
hard, NP-complete, cycle cover, set packing problem, set covering problem,
matrix permanent, quantum computing.

1. Introduction

Clifford methods have already been applied to problems in computer vision [1] and
automated geometry theorem proving [2]. In work having applications to computer
vision, Clifford algebra methods have been employed to estimate points, lines,
circles, and spheres from uncertain data while keeping track of the uncertainty [3].

1 A preliminary version of this paper has been presented at AGACSE 2008 (3rd International
Conference on Applied Geometric Algebras in Computer Science and Engineering).

122 R. Schott and G.S. Staples AACA

Extending Clifford-algebraic methods to graph theory (cf. [4], [5], [6], [7])
opens the door to applications in theoretical computer science, symbolic dynamics,
and coding theory. The methods can be applied to a graph-theoretic construction
of multiple stochastic integrals from which stochastic integrals are recovered from
the limit in mean of a sequence of Berezin integrals in an ascending chain of Clifford
algebras [8].

Clifford algebras have well-known connections with quantum physics and
quantum probability [9], [10], [11]. Aerts and Czachor have shown that quantum-
like computations can be performed within Clifford algebras without the associated
problem of noise and need for error-correction [12].

While Clifford algebra computations can be performed on general purpose
processors through the use of software libraries like CLU [13], GluCat [14],
GAIGEN [15], and the Maple package CLIFFORD [16], direct hardware implemen-
tations of data types and operators is the best way to exploit the computational
power of Clifford algebras. To this end, a number of hardware implementations
have been developed.

Perhaps the first such hardware implementation was a Clifford co-processor
design developed by Perwass, Gebken, and Sommer [17]. Implemented on a Field
Programmable Gate Array, the design is scalable in both the dimension of the
Clifford algebra and the bit width of the numerical factors.

To our knowledge, the second hardware design was the color edge detection
hardware developed by Mishra and Wilson [18], [19]. This focus of their work
was the introduction of a hardware architecture for applications involving image
processing.

More recently, Gentile, Segreto, Sorbello, Vassallo, Vitabile, and Vullo have
developed a parallel embedded coprocessing core that directly supports Clifford
algebra operators (cf. [20], [21], [22]). The prototype was implemented on a Field
Programmable Gate Array and initial tests showed a 4× speedup for Clifford
products over the analogous operations in GAIGEN.

Given a computing architecture based on Clifford algebras, the natural con-
text for determining an algorithm’s time complexity is in terms of the number of
geometric (Clifford) operations required. This paper assumes the existence of such
a processor and examines a number of combinatorial problems known to be of NP
time complexity.

For example, the problem of determining whether or not a graph contains a
Hamiltonian cycle is known to be NP-complete. By considering entries of Λk, where
Λ is an appropriate nilpotent adjacency matrix associated with a finite graph on
n vertices, the k-cycles in the graph are recovered.

The nilpotent adjacency matrix of a graph on n vertices is defined using
elements of an abelian algebra generated by the collection {ζi}, 1 ≤ i ≤ n satisfying
ζi

2 = 0. In terms of the number of multiplications performed within the algebra,
the cycle enumeration problem is reduced to matrix multiplication. While the

Vol. 20 (2010) Reductions in Computational Complexity 123

algebras used here are not Clifford algebras themselves, they are constructed within
Clifford algebras of appropriate signature.

1.1. Notational Preliminaries

Given positive integer n, the n-set {1, 2, . . . , n} will be denoted by [n]. The power
set of the n-set is the set of all subsets of [n] and is denoted by 2[n].

Definition 1.1 (Clifford algebra of signature (p, q)). For fixed n ≥ 1, the 2n-
dimensional algebra C�p,q (p+q = n) is defined as the associative algebra generated
by the collection {ei} (1 ≤ i ≤ n) along with the unit scalar e0 = e∅ = 1 ∈ R,
subject to the following multiplication rules:

ei ej = −ej ei for i �= j, (1.1)

ei
2 =

{
1 1 ≤ i ≤ p, and
−1 p + 1 ≤ i ≤ n.

(1.2)

Products are multi-indexed by subsets of [n] = {1, . . . , n} in canonical (lexi-
cographical) order according to

ei =
∏
ι∈i

eι, (1.3)

where i is an element of the power set 2[n]. When the generating vectors {eι} are
orthonormal, ei is called a blade.

Define fi = (ei − e2n+i) ∈ C�2n,2n for each 1 ≤ i ≤ 2n. Then letting ζi =
f2i−1 f2i for 1 ≤ i ≤ n, the following useful algebra is obtained.

Definition 1.2. Let C�n
nil denote the real abelian algebra generated by the col-

lection {ζi} (1 ≤ i ≤ n) along with the scalar 1 = ζ0 subject to the following
multiplication rules:

ζi ζj = ζj ζi for i �= j, and (1.4)

ζi
2 = 0 for 1 ≤ i ≤ n. (1.5)

It is evident that a general element u ∈ C�n
nil can be expanded as

u =
∑

i∈2[n]

ui ζi , (1.6)

where i ∈ 2[n] is a subset of [n] = {1, 2, . . . , n} used as a multi-index, ui ∈ R, and
ζi =

∏
ι∈i

ζι.

It is worth noting that the algebra C�n
nil can be constructed in a number of

ways. For example, recalling the Clifford algebra C�p,q,r as defined by Porteous [23],
in which r of the vectors square to zero, one could define ζi = e2i−1e2i ∈ C�0,0,2n

for each 1 ≤ i ≤ n. Equivalently, one could consider pairwise disjoint bivectors in
the Grassmann algebra.

124 R. Schott and G.S. Staples AACA

Letting εi =
1
2

(1 + eien+i) ∈ C�n,n for each 1 ≤ i ≤ n gives the following
algebra.

Definition 1.3. Let C�n
idem denote the real abelian algebra generated by the col-

lection {εi} (1 ≤ i ≤ n) along with the scalar 1 = ε0 subject to the following
multiplication rules:

εi εj = εj εi for i �= j, and (1.7)

εi
2 = εi for 1 ≤ i ≤ n. (1.8)

An element β ∈ C�n
idem can also be expanded as in (1.6); that is,

β =
∑

i∈2[n]

βi εi. (1.9)

Both algebras admit an inner product of the form〈 ∑
i∈2[n]

ui ζi,
∑

j∈2[n]

vj ζj

〉
=
∑

�∈2[n]

u� v�. (1.10)

The grade-k part of u ∈ C�n
nil will be defined by

〈u〉k =
∑

i∈2[n]

|i|=k

ui ζi. (1.11)

Here |i| denotes the number of elements in the multi-index i.
Letting u denote an arbitrary element of C�n

nil, the scalar sum of coefficients
will be denoted by

〈〈u〉〉 =
∑

i∈2[n]

〈
u, ζi

〉
=
∑

i∈2[n]

ui. (1.12)

The definitions of scalar sum and grade-k part extend naturally to C�n
idem.

A number of norms can be defined on C�n
nil. One that will be used later is

the infinity norm, defined by∣∣∣∣∣∣
∣∣∣∣∣∣
∑

i∈2[n]

ui ζi

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

= max
i∈2[n]

∣∣ui

∣∣ . (1.13)

Remark 1.4. The algebra C�n,n is canonically isomorphic to the fermion algebra
of quantum physics [9].

An algorithm’s time complexity is typically determined by counting the num-
ber of operations required to process a data set of size n in worst-, average-, and
best-case scenarios. The operation of multiplying two integers is typical. Multi-
plying a pair of integers in classical computing is assumed to require a constant
interval of time, independent of the integers. The architecture of a classical com-
puter makes this assumption natural.

Vol. 20 (2010) Reductions in Computational Complexity 125

The existence of a processor whose registers accommodate storage and ma-
nipulation of elements of C�n

♦ is assumed through the remainder of this paper.
The C� complexity of an algorithm will be determined by the required number

of C�n
♦ operations, or Clops required by the algorithm. In other words, multiplying

(or adding) a pair of elements u, v ∈ C�n
♦ will require one Clop, where ♦ can be

replaced by either “nil” or “idem.”
Evaluation of the infinity norm is another matter. In one possible model of

such an evaluation, the scalar coefficients in the expansion of u ∈ C�n
♦ are first

paired off and all pairs are then compared in parallel. In this way, evaluation of
the infinity norm has complexity
O(log 2n) = O(n).

Let u ∈ C�p,q where p + q = n, and consider the following set of operations.

u‡ =

∑

i∈2[n]

uiei

‡

:=
∑

i∈2[n]

ui e[n]\i , (1.14)

ι

∑

i∈2[n]

ui ei

 :=

∑
ui>0

ei , (1.15)

u � v :=
∑

i∈2[n]

〈
u, ei

〉 〈
v, ei

〉
ei =

∑
i∈2[n]

ui vi ei , (1.16)

〈u〉⊕ := u � ι(u) , (1.17)

πk

∑

i∈2[n]

ui ei

 :=

∑
i∈2[k]

ui ei. (1.18)

Also, define the element

1[n] :=
∑

i∈2[n]

ei. (1.19)

Note that u‡ is similar to the Hodge dual, but is not.
Using these operations, an algorithm of C� complexity O(n) can now be

written for computing the infinity norm.

procedure InfNorm(u: u ∈ C�p,q)
{Replace all scalar coefficients of u with their absolute values.}

u := 〈u〉⊕ + 〈−u〉⊕
for j := 1 to n
begin
{Get multi-vectors ei corresponding to ui ≥ u[n]\i}

x := 1[n−j+1] − ι
(〈

u‡ − u
〉
⊕
)

u := u � x

126 R. Schott and G.S. Staples AACA

{Now u has only half as many nonzero coefficients. Project down onto subalgebra
of dimension 2n−j.}

u := πn−j (u) + πn−j

(
u‡)

{Note that in each case, either ei or e[n]\i is in the subalgebra, exclusively. Hence,
ui ≥ u[n]\i implies ui is assigned as the coefficient of the appropriate multivector
in the subalgebra.}
end
return[u]

Given a processor capable of natively performing the operations defined in
(1.14)-(1.18), construction of this algorithm establishes the following results.

Lemma 1.5. The C� complexity of evaluating the infinity norm in C�n
♦ is O(n).

Lemma 1.6. The C� complexity of finding the maximum or minimum real number
in a list of size k is O(log k).

Proof. Using the algorithm, the complexity of finding the maximum or minimum
value in a list of size 2n is O(n). �

Well-known classical sorting algorithms include bubble, insertion, selection,
shell, heap, merge, and quick sorts. These algorithms can be divided into two
classes based on their algorithmic complexity: those of complexity O(n2), which
includes the bubble, insertion, selection, and shell sorts; and those of complexity
O(n log n) which includes the heap, merge, and quick sorts. Quick sort has a best-
case complexity O(n log n) and worst-case complexity O(n2).

The next result follows from Lemma 1.6.

Corollary 1.7. The C� complexity of sorting a list of size k is O((log k)2).

Proof. Given a list of size 2n, a sorted list is created by repeatedly locating and
removing the largest element of the original list. In light of Lemma 1.6, the com-
plexity is

O

(
n∑

k=1

k

)
= O

(
n2 + n

2

)
= O(n2). (1.20)

Hence, the result. �

2. Graph Problems

A graph G = (V, E) is a collection of vertices V and a set E of unordered pairs of
vertices called edges. Two vertices vi, vj ∈ V are adjacent if there exists an edge
{vi, vj} ∈ E.

Given a graph G, it will sometimes be convenient to use the notation VG and
EG to denote, respectively, the vertices and the edges of G.

Vol. 20 (2010) Reductions in Computational Complexity 127

A k-walk (v0, . . . , vk) in a graph G is a sequence of vertices in G with initial
vertex v0 and terminal vertex vk such that there exists an edge {vj , vj+1} ∈ E for
each 0 ≤ j ≤ k − 1. Note that a k-walk contains k edges. A k-path is a k-walk in
which no vertex appears more than once. A closed k-walk is a k-walk whose initial
vertex is also its terminal vertex. A k-cycle (k ≥ 3) is a closed k-path with v0 = vk.
A Hamiltonian cycle is an n-cycle in a graph on n vertices; i.e., it contains V.

The circumference of a graph is the length of the longest cycle contained
in the graph. The girth of a graph is defined as the length of the shortest cycle
contained in the graph.

When working with a graph G on n vertices, one often utilizes the adjacency
matrix A associated with G. If the vertices are labeled {1, . . . , n}, one defines A
by

Aij =

{
1 if vi, vj are adjacent
0 otherwise.

(2.1)

The following simple but useful result of this definition, which can also be
generalized to directed graphs, is given here without proof.

Proposition 2.1. Let G be a graph on n vertices with associated adjacency matrix
A. Then for any positive integer k, the (i, j)th entry of Ak is the number of k-walks
i → j. In particular, the entries along the main diagonal of Ak are the numbers of
closed k-walks in G.

Note that although the adjacency matrix can be used to count walks, it does
not provide a method of counting paths and cycles. For that, a “new” type of
adjacency matrix is needed.

2.1. Nilpotent Adjacency Matrices

Definition 2.2. Let G be a graph on n vertices, either simple or directed with no
multiple edges, and let {ζi}, 1 ≤ i ≤ n denote the null-square generators of C�n

nil.
Define the nilpotent adjacency matrix associated with G by

Λij =

{
ζj , if {vi, vj} ∈ EG

0, otherwise.
(2.2)

It should be clear that Λ defined over C�n
nil implies Λk is the n × n zero

matrix for all k > n. Therefore (I − tΛ)−1 =
n∑

k=0

tk Λk exists as a finite sum, and

one can recover

tr Λk = tr (I − tΛ)−1

∣∣∣∣
tk

. (2.3)

In other words, the trace of the coefficient of tk in the power series expansion of
(I − tΛ)−1 is the trace of Λk.

Theorem 2.3. Let Λ be the nilpotent adjacency matrix of an n-vertex graph G. For
any m ≥ 3 and 1 ≤ i ≤ n, summing the coefficients of (Λm)ii yields the number
of m-cycles based at vi occurring in G.

128 R. Schott and G.S. Staples AACA

Proof. The proof is by induction on m. First it will be shown that matrix entry
(Λm)ij corresponds to a sum of blades indexed by vertex sets on which there exist
m-step walks from vi to vj that revisit no vertex except possibly vi itself. When
m = 1, this is true by definition of Λ.

Now assuming the proposition holds for m and considering the case m + 1,

(
Λm+1

)
ij

= (Λm × Λ)ij =
n∑

�=1

(Λm)i� Λ�j. (2.4)

Considering a general term of the sum,

(Λm)i� =
∑

m-paths wm:vi→v�

wm, and (2.5)

Λ�i =
∑

1-paths w1:v�→vj

w1. (2.6)

Because the vertices are labeled with the null-square generators of C�n
nil, any

repeated vertex yields 0.
It should then be clear that terms of the product

(Λm)i� Λ�j (2.7)

are nonzero if and only if they correspond to (m + 1)-paths vi → v� → vj , with
the possible exception that if i �= j, then vi could be revisited once. Summing over
all vertices v� gives the sum of all (m + 1)-walks based at vi that revisit no vertex
with only the specified exception possible.

Finally, when i = j, the null-square generator associated with vi appears as
the last factor in each product over the (m +1)-walks. As a result, any walks that
revisit vi in an intermediate step are removed from (Λm+1)ii, leaving only the
(m + 1)-cycles based at vi. �

In an undirected graph, two orientations are possible for each cycle. As a
result, each m-cycle is represented with multiplicity two along the diagonal of Λm.
Throughout the remainder of this paper, two cycles in an undirected graph will
be considered the “same” if they differ only by orientation or choice of base point.

Remark 2.4. The nilpotent adjacency matrix associated with a finite graph can
be considered a quantum random variable whose mth moment corresponds to the
number of m-cycles occurring in the graph [5].

The next two corollaries follow immediately from Theorem 2.3

Corollary 2.5. Let Λ be the nilpotent adjacency matrix of an n-vertex graph G. Let
Xm (m ≥ 3), denote the number of m-cycles appearing in the graph G. Then

〈〈tr (Λm)〉〉 = 2m Xm. (2.8)

Notation. To simplify notation, tr (Λm) is replaced by τm in the remainder of the
paper.

Vol. 20 (2010) Reductions in Computational Complexity 129

Corollary 2.6. Let Λ be the nilpotent adjacency matrix of an n-vertex graph G. Let
Hn denote the number of Hamiltonian cycles appearing in the graph G. Then

〈〈τn〉〉 = 2n Hn. (2.9)

Recall the stated assumption that addition of two arbitrary elements of C�n
nil

requires 1 Clop. It follows that computing tr(A), where A is an n×n matrix having
entries in C�n

nil, has C� complexity O(n).
Using the Coppersmith-Winograd algorithm, multiplying two n×n matrices

can be done in O(n2.376) time [24]. It is not clear that the same asymptotic speedup
can be accomplished for the C� case. However, in the remainder of the paper, β will
represent the exponent associated with matrix multiplication. In the worst case,
multiplication of n×n matrices with entries in C�n

nil has C� complexity O(n3), so
that β ≤ 3.

The following corollaries are immediate consequences of Theorem 2.3 and the
complexity of matrix multiplication.

Corollary 2.7. Enumerating the k-cycles in a finite graph on n vertices requires
O(nβ log k) Clops.

Corollary 2.8. Enumerating the Hamiltonian cycles in a finite graph on n vertices
requires O(nβ log n) Clops.

Corollary 2.9. Let Λ be the nilpotent adjacency matrix of an n-vertex graph G. Let
Xm,� denote the number of �-tuples of pairwise disjoint m-cycles appearing in the
graph G, where m ≥ 3 and 1 ≤ � ≤ 	n/m
. Then〈〈

(τm)�
〉〉

= (2m)��!Xm,�. (2.10)

Proof. Note that
τm

2m
is a sum of nilpotent multivectors associated with m-cycles in

the graph. By nilpotency, the nonzero terms of
(τm

2m

)�

represent pairwise disjoint
m-cycles, and each term occurs �! times. �
Corollary 2.10. Counting the �-tuples of pairwise disjoint m-cycles in a finite graph
on n vertices requires O(nβ log m) Clops.

Proof. As already seen, computing τm requires O(nβ log m) Clops. Computing
τm

� then requires O(log �) additional Clops. Hence, counting �-tuples of m-cycles
requires O(max{log �, nβ log m}), where � is never larger than n/m. �

Recall that the circumference of a graph is defined as the length of the longest
cycle contained in the graph. The following proposition is an immediate conse-
quence of Theorem 2.3.

Proposition 2.11 (Graph circumference). Let G be a graph on n vertices with
nilpotent adjacency matrix Λ. The length of the longest cycle in G is the largest
integer k such that

τk �= 0. (2.11)

130 R. Schott and G.S. Staples AACA

Corollary 2.12. Computing the circumference of a graph on n vertices requires
O(nβ+1 log n) Clops.

Proof. Cycles of length k must be counted for 3 ≤ k ≤ n, requiring O
(
nβ log k

)
for each 3 ≤ k ≤ n. Then,

n∑
k=3

nβ log k = nβ log(n!/2) ≤ nβ log(nn) = nβ+1 log n. (2.12)

�

Recall that the girth of a graph G is defined as the length of the smallest
nontrivial cycle in G.

Corollary 2.13 (Graph girth). Let G be a graph on n vertices with nilpotent adja-
cency matrix Λ. The length of the shortest cycle in G is the smallest integer k ≥ 3
such that

τk �= 0. (2.13)

Corollary 2.14. Computing the girth of a graph on n vertices requires
O(nβ+1 log n) Clops.

Proof. The proof is similar to that of Corollary 2.12. �

In the next proposition, C denotes the diagonal matrix Diag(ζ1, . . . , ζn). It is
used to account for the initial vertices of paths in G.

Proposition 2.15 (Longest path). Let G be a graph on n vertices with nilpotent
adjacency matrix Λ. The length of the longest path in G is the largest integer k
such that

CΛk �= 0. (2.14)
Here, 0 denotes the n × n zero matrix.

Proof. This is a corollary of Theorem 2.3. Cycles are disregarded by removing the
diagonal entries of CΛk. Left multiplication by the matrix C is used to “sieve” out
k-walks that revisit their initial vertices. �

Corollary 2.16. Computing the length of the longest path in a graph on n vertices
requires O(nβ log n log n) Clops.

Proof. The maximum possible path length is n. For each 1 ≤ k ≤ n, computing
CΛk requires O(nβ log k + n2) = O(nβ log n) Clops. Using binary search then
requires testing O(log n) values of k in Proposition 2.15. �

Consider a directed, edge-weighted graph G on n vertices. When {vi, vj} is an
edge of G, let wij denote the weight or “cost” of the edge. The goal is to compute
the total additive weight of all k-cycles in G.

The infinity norm in the following theorem is the natural extension of that
found in (1.13).

Vol. 20 (2010) Reductions in Computational Complexity 131

Theorem 2.17 (Minimum cost of all k-cycles). Let G be a finite graph on n vertices
with m edges of weights w1, w2, . . . , wm. Let f : VG × VG → N be a labeling of
the edges of G with natural numbers. Label the vertices of G with the null-square
generators of C�n

nil and let edges of G be labeled with exp(−wij)γf(i,j), where {γi}
is the collection of null-square generators of C�|EG|

nil. The nilpotent adjacency
matrix then has entries in C�n

nil ⊗ C�|EG|
nil. The minimum cost k-cycle in G has

cost

Wmin = − ln
(∣∣∣∣
∣∣∣∣ 1
2k

τk

∣∣∣∣
∣∣∣∣
∞

)
. (2.15)

Proof. Analogous to the proof of Theorem 2.3, the trace of Λk consists of elements
of the form

n∑
i=1

∑
k-cycles ξ based at vi

exp

−

∑
v�∈ξ

w�

 ζi(ξ) γj(ξ). (2.16)

Here, i(ξ) denotes the subset of the n-set that corresponds to the vertices in cycle
ξ. Similarly, j(ξ) is a subset of {1, 2, . . . , |EG|} representing the edges contained in
cycle ξ. As seen previously, each cycle is represented with multiplicity 2k in the
trace of Λk.

Clearly the maximum coefficient in the expansion of the trace corresponds to
the minimum sum of weights in the argument of the exponential function. �

Two more results follow immediately from this theorem.

Corollary 2.18. The problem of determining the minimum cost associated with a
k-cycle in G has C� complexity O(nβ log k).

Corollary 2.19 (Minimum cost Hamiltonian cycle). The problem of determining
the minimum cost associated with a Hamiltonian cycle in G has C� complexity
O(nβ log n).

2.2. Edge-disjoint Cycle Decompositions of Graphs

Consider the algebra R[s1, . . . , sn] of polynomials in commutative variables
s1, . . . , sn. Allowing these polynomials to have coefficients in C�n

nil ⊗ C�m
nil gen-

erates the abelian algebra C�n
nil ⊗ C�m

nil[s1, . . . , sn].
Define the projection ϑ : C�n

nil ⊗ C�m
nil[s1, . . . , sn] → C�m

nil[s1, . . . , sn] by
linear extension of

ϑ
(
α ζj γi sj1

1 · · · sjn
n

)
= α γi sj1

1 · · · sjn
n , (2.17)

and define the evaluation 〈〈·〉〉 : C�m
nil[s1, . . . , sn] → R[s1, . . . , sn] by linear exten-

sion of 〈〈
α γi sj1

1 · · · sjn
n

〉〉
= α sj1

1 · · · sjn
n , (2.18)

where α ∈ R.
The projection ϑ and the evaluation 〈〈·〉〉 will be assumed to have C� com-

plexity O(1).

132 R. Schott and G.S. Staples AACA

Definition 2.20. A finite graph G on n vertices will be said to have a cycle decom-
position if for some positive integer m there exists a collection of cycles {Ci}1≤i≤m

such that

VG =
m⋃

i=1

VCi (2.19)

EG =
m⋃

i=1

ECi (2.20)

ECi ∩ ECj = ∅ if i �= j. (2.21)

Here, VG and EG denote the sets of vertices and edges of the graph G, respectively.
The collection {Ci}1≤i≤m is called the cycle decomposition of G.

Every undirected graph has a trivial cycle decomposition consisting of |EG|
two-cycles. For purposes of this paper, only cycles of length greater than two are
considered here.

Theorem 2.21. Let G be a simple graph on n vertices and |E| edges with nilpotent
adjacency matrix over C�n

nil ⊗ C�|E|
nil. Then G has a cycle decomposition G =

Cj1 ∪ · · · ∪ Cjm ,
∑

i ji = |E| if and only if the degree-m monomial α sj1 · · · sjm is
a term in the expansion of〈〈〈(

ϑ

(
n∑

k=3

sk
τk

2k

))m〉
|E|

〉〉
(2.22)

where
α

m!
∈ N indicates the multiplicity of the decomposition.

Proof. Begin by letting Λ be the edge-labeled nilpotent adjacency matrix of an
n-vertex graph G = (V, E). From Theorem 2.3, it follows that for any k ≥ 3 and
1 ≤ i ≤ n, summing the coefficients of (Λk)ii yields the number of k-cycles based
at vi occurring in G.

Hence,
τk

2k
corresponds to the collection of k-cycles in G in one-to-one corre-

spondence.

It is now clear that
n∑

k=3

sk
τk

2k
denotes the algebraic sum of all the cycles

contained in G. Projecting down onto C�|E|
nil leaves each k-cycle represented by

a grade-k multivector γi, corresponding to the edges comprising the cycle.

By nilpotency, the nonzero terms of ϑ

(
n∑

k=3

sk
τk

2k

)m

represent the collec-

tion of all m-ensembles of pairwise edge-disjoint cycles, and each term occurs m!
times in the expansion. By considering only those terms of grade |E| in C�|E|

nil,
one ensures that only cycle decompositions of G are obtained since all edges are
represented. �

Vol. 20 (2010) Reductions in Computational Complexity 133

Corollary 2.22. Let G be a simple graph on n vertices and |E| edges with nilpotent
adjacency matrix over C�n

nil ⊗ C�|E|
nil. Then, for any fixed m ≥ 1, determining

the decomposition of G into m edge-disjoint cycles requires O(nβ+1 log n) Clops.

Proof. As in the proof of Corollary 2.12, computing
n∑

k=3

sk
τk

2k
has C� complexity

O(nβ+1 log n). Then computing

(
ϑ

(
n∑

k=3

sk
τk

2k

))m

has C� complexity

O(nβ+1 log n + log m) = O(nβ+1 log n). �

Example 2.23. The cycle decompositions of the complete graph K5 are recovered.

•ζ1

•ζ2

•
ζ3

•
ζ4

•ζ5

..

γ1

..

γ2

..

γ3

..

γ4

...

γ5

..

γ6

...
γ7

..
γ8

...............
................

................
...............

................
................

...............
................

................
...............

................
................

...............
................

................
...............

................
................

...............
................

................
...............

................
..

γ9

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
......

γ10

The nilpotent adjacency matrix is

Λ =

0 ζ2γ1 ζ3γ2 ζ4γ3 ζ5γ4

ζ1γ1 0 ζ3γ5 ζ4γ6 ζ5γ7

ζ1γ2 ζ2γ5 0 ζ4γ8 ζ5γ9

ζ1γ3 ζ2γ6 ζ3γ8 0 ζ5γ10

ζ1γ4 ζ2γ7 ζ3γ9 ζ4γ10 0

 . (2.23)

Let Dt denote the operator of differentiation with respect to t, and denote the
mth order differentiation operator by D

(m)
t . Terms of the power series expansion of〈

exp

(
tϑ

(
5∑

k=3

sk
τk

2k

))〉
10

can be extracted with Mathematica to recover powers

134 R. Schott and G.S. Staples AACA

of ϑ

(
5∑

k=3

sk
τk

2k

)
. Mathematica calculations yield the following:

〈〈
D

(1)
t

〈
exp

(
tϑ

(
5∑

k=3

sk
τk

2k

))〉
10

∣∣∣∣
t=0

〉〉
= 0 (2.24)

〈〈
D

(2)
t

〈
exp

(
tϑ

(
5∑

k=3

sk
τk

2k

))〉
10

∣∣∣∣
t=0

〉〉
= 12s5

2 (2.25)

〈〈
D

(3)
t

〈
exp

(
tϑ

(
5∑

k=3

sk
τk

2k

))〉
10

∣∣∣∣
t=0

〉〉
= 90s3

2s4 (2.26)

〈〈
D

(4)
t

〈
exp

(
tϑ

(
5∑

k=3

sk
τk

2k

))〉
10

∣∣∣∣
t=0

〉〉
= 0. (2.27)

The results are now interpreted:
K5 itself is not a cycle, so the first expression yields zero.
The only decompositions of K5 into pairs of cycles are 6 = 12/(2!) decompo-

sitions into pairs of five-cycles. That is, K5 = C5 ∪ C5 with multiplicity six.
The only decompositions into triples of cycles are 15 = 90/(3!) decomposi-

tions of the form K5 = C3 ∪ C3 ∪ C4, i.e., a pair of three-cycles and a four-cycle.
There are no decompositions of K5 into four or more disjoint cycles.

Similar to a cycle decomposition of a graph, which is a partitioning of the
graph’s edges, a cycle cover of a graph is a partitioning of the graph’s vertices such
that each vertex is contained in exactly one cycle.

Definition 2.24. A cycle cover of a graph G is defined as a pairwise disjoint collec-
tion of cycles {Cj} such that each vertex of G is contained in exactly one of the
cycles.

Theorem 2.25. Let Λ be the nilpotent adjacency matrix of a finite graph G on n
vertices. Then, letting C denote the number of cycle covers of G,〈�n/3	∑

�=1

1
�!

ϑ

(
n∑

m=3

τm

2 m

)�

 , γ[|E|]

〉
= C. (2.28)

Proof. For each 3 ≤ m ≤ n, τm

2 m denotes the algebraic sum of multivectors rep-
resenting m-cycles in G. Computing the �th power of the sum of these reveals
pairwise disjoint �-tuples of cycles of all lengths, each appearing with multiplicity
�! Because G has n edges, the maximum number of �-tuples of disjoint cycles in G
is 	n/3
. Summing over all admissible values of � and considering the coefficient
of γ[|E|] to ensure that all edges of G are covered, the number of cycle covers of G
is recovered. �

Vol. 20 (2010) Reductions in Computational Complexity 135

For each m = 3, . . . , n, computing τm requires O(nβ log m) Clops. Hence,

computing
n∑

m=3

τm

2 m
requires O(nβ+1 log n) Clops. For each � = 1, . . . , 	n/3
, com-

puting

(
n∑

m=3

τm

2 m

)�

then requires O(nβ+1 log n log �) Clops. Finally, summing over

�,
�n/3	∑
�=1

1
�!

(
n∑

m=3

τm

2 m

)�

requires O(nβ+2 log n logn) Clops. It therefore follows from

the results obtained thus far that counting the disjoint cycle covers of a graph on
n vertices requires O(nβ+2 log n log n) Clops. In the next section, this result is
improved by another method.

3. Other Problems

In addition to graph problems, properties of C�n
nil and C�n

idem make them useful
for other types of combinatorial problems.

3.1. Computing the Permanent

The problem of computing the permanent of a matrix is known to be �P-complete
[25], [26]. Methods of approximating the permanent using Clifford algebras have
also been discussed [27].

The current authors’ methods allow one to directly compute the permanent
of a matrix with C� computational complexity O(n).

Let M = (mij)n×n be an arbitrary matrix. Let {γi} and {ζj}, 1 ≤ i, j ≤ n

denote commutative null-square generators of C�n
nil and define

a =
n∑

i,j=1

mij γi ζj ∈ C�n
nil ⊗ C�n

nil. (3.1)

Proposition 3.1. Let M , n, and a be defined as above. Then,〈
an, γ[n] ζ[n]

〉
= n! Perm(M). (3.2)

Proof. Let M be an n × n matrix and consider the following definition of the
permanent:

Perm(M) =
∑

σ∈Sn

n∏
i=1

mi σ(i), (3.3)

where Sn is the symmetric group of order n!

136 R. Schott and G.S. Staples AACA

Now,

an =

 n∑

i,j=1

mij γi ζj

n

=

 n∑

i=1

n∑
j=1

mij γi ζj

n

=
∑

k1+···+kn=n

(
n

k1, . . . , kn

) n∏
i=1

γi

n∑
j=1

mij ζj

ki

=
(

n

1, 1, . . . , 1

) n∏
i=1

 n∑

j=1

mij γi ζj

= n!
∑

π∈Sn

n∏
i=1

mi π(i) γi ζπ(i) = n! Perm(M) γ[n] ζ[n]. (3.4)

�

Corollary 3.2. Computing the permanent of an n × n matrix is of C� complexity
O(n).

Given a graph G = (V, E) on n vertices, a cycle cover of G is a collection
of cycles {C1, . . . , Ck} contained as subgraphs of G such that each vertex of G is
contained in exactly one of the cycles.

Recall the definition (3.3) of the permanent of an n × n matrix. Each cyclic
permutation in Sn corresponds to a unique cycle in the graph via the adjacency
matrix. Since every σ ∈ Sn can be written uniquely as a disjoint product of cycles,
it follows immediately that the permanent of the adjacency matrix counts the
number of cycle covers of the graph.

Corollary 3.3 (Complexity of cycle covers). Counting the cycle covers of a finite
graph on n vertices is of C� complexity O(n).

Given a graph G = (V, E), a matching of G is a subset E1 ⊂ E of the edges
of G having the property that no pair of edges in E1 shares a common vertex. The
largest possible matching on a graph with n vertices consists of n/2 edges, and
such a matching is called a perfect matching.

A graph G = (V, E) is said to be bipartite if its vertex set V can be partitioned
into a pair of disjoint sets V1, V2 such that u, w ∈ V� ⇒ {u, w} /∈ E for � = 1, 2
(cf. Figure 1).

It follows from definitions that only graphs with even numbers of vertices have
perfect matchings and that bipartite graphs contain only cycles of even length.

It is well-known and not difficult to see that the permanent of the adjacency
matrix of a bipartite graph counts the perfect matchings of the graph. Given a
cycle of even length, a perfect matching for the cycle is obtained by choosing
alternating edges.

Vol. 20 (2010) Reductions in Computational Complexity 137

•v1 •v2 •v3 •v4

•
v5

•
v6

•
v7

•
v8

..

...

...

..

..

...

...

...

...

Figure 1. A bipartite graph on 8 vertices.

Corollary 3.4. Counting the perfect matchings of a bipartite graph is of C� com-
plexity O(n).

3.2. The Set Packing and Set Covering Problems

The following two problems are among the original 21 NP-complete problems of
Karp [28]. They are moved to class P in the C� context.

Theorem 3.5 (Set covering problem). Let S = {S1, . . . , Sm} be a collection of
subsets of the n-set {1, 2, . . . , n}. In the C� context, the problem of determining
the minimum value of k for which there exists a collection {Sj1 , . . . , Sjk

} ⊆ S

satisfying
k⋃

�=1

Sj�
= {1, 2, . . . , n} has C� complexity O(m log k).

Proof. Let α =
m∑

j=1

εSj ∈ C�n
idem. That is, α is a sum of basis blades of C�n

idem

indexed by the sets Sj . Then there exists a collection {Sj1 , . . . , Sjk
} ⊆ S such that

k⋃
�=1

Sj�
= {1, 2, . . . , n} if and only if

〈
αk, ε[n]

〉 �= 0. Checking each k = 1, 2, . . . , m

requires at most m iterations. �

Theorem 3.6 (Set packing problem). Let S = {S1, . . . , Sm} be a collection of
subsets of the n set {1, 2, . . . , n}. In the C� context, the problem of determining
whether there exists a pairwise disjoint collection {Sj1 , . . . , Sjk

} ⊆ S such that
k⋃

�=1

Sj�
= {1, 2, . . . , n} has C� complexity O(log k).

138 R. Schott and G.S. Staples AACA

Proof. Let α =
m∑

j=1

ζSj ∈ C�n
nil. In other words, α is a sum of basis blades of

C�n
nil indexed by the sets Sj . Then there exists a pairwise disjoint collection

{Sj1 , . . . , Sjk
} ⊆ S if and only if αk �= 0. �

4. Conclusion

Given the existence of a computer architecture capable of dealing naturally with
geometric objects, a natural measure of algorithmic complexity is the number of
Clifford operations (C�ops) required by the algorithm. A number of combinatorial
problems of complexity class NP are of polynomial complexity in terms of C�ops
required. We assert that a Clifford computer would have natural advantages for
solving an assortment of combinatorial and graph-theoretic problems.

In addition, as Aerts and Czachor have shown [12], a Clifford computer would
be able to implement quantum computing algorithms while avoiding the noise and
error-correcting concerns associated with quantum systems.

References

[1] J. Lasenby, W. J. Fitzgerald, C. J. L. Doran, A.N. Lasenby, New geometric methods
for computer vision. Int. J. Comp. Vision, 36 (1998), 191-213.

[2] H. Li, Clifford algebra approaches to automated geometry theorem proving. Mathe-
matics Mechanization and Applications, X.-S. Gao and D. Wang (eds.), Academic
Press, London, 2000, pp. 205-230.

[3] C. Perwass, C. Gebken, G. Sommer, Estimation of geometric entities and operators
from uncertain data. Lecture Notes in Computer Science 3363, Springer, Berlin, 2005.

[4] R. Schott, G.S. Staples, Nilpotent adjacency matrices and random graphs. Ars Com-
binatoria, To appear.

[5] R. Schott, G.S. Staples, Nilpotent adjacency matrices, random graphs, and quantum
random variables. J. Phys. A: Math. Theor., 41 (2008), 155205.

[6] G.S. Staples, Clifford-algebraic random walks on the hypercube. Advances in Applied
Clifford Algebras, 15 (2) (2005), 213-232.

[7] G.S. Staples, Norms and generating functions in Clifford algebras. Advances in Ap-
plied Clifford Algebras, 18 (1) (2008), 75-92.

[8] G.S. Staples, Graph-theoretic approach to stochastic integrals with Clifford algebras.
J. Theor. Prob., 20 (2007), 257-274.

[9] D. Applebaum, Fermion stochastic calculus in Dirac-Fock space. J. Phys. A: Math.
Theor., 28 (1995), 257-270.

[10] D. Applebaum, R. Hudson, Fermion Itô’s formula and stochastic evolutions. Com-
mun. Math. Phys., 96 (1984), 473-96.

[11] C. Barnett, R. Streater, I. Wilde, The Itô-Clifford integral I. J. Functional Analysis.
48 (1982), 172-212.

Vol. 20 (2010) Reductions in Computational Complexity 139

[12] D. Aerts, M. Czachor, Cartoon computation: quantum-like computing without quan-
tum mechanics. J. Phys. A: Math. Theor. 40 (2007), F259-F263.

[13] C. Perwass, The CLU Project web page. http://www.perwass.de/cbup/clu.html

[14] P. Leopardi, The GluCat Home Page. http://glucat.sourceforge.net/

[15] D. Fontijne, T. Bouma, L. Dorst, GAIGEN: a geometric algebra implementation
generator. University of Amsterdam, NL, July 2002. http://www.science.uva.nl/
ga/gaigen

[16] R. Ab�lamowicz, B. Fauser, CLIFFORD - A Maple Package for Clifford Algebra
Computations. http://math.tntech.edu/rafal/

[17] C. Perwass, C. Gebken, G. Sommer, Implementation of a Clifford algebra co-
processor design on a field programmable gate array. Clifford Algebras Applications
to Mathematics, Physics, and Engineering, Progress in Mathematical Physics 34,
Birkhäuser, Boston, 2004.

[18] B. Mishra, P. Wilson, Color edge detection hardware based on geometric algebra.
http://eprints.ecs.soton.ac.uk/13188/

[19] B. Mishra, P. Wilson, Hardware implementation of a geometric algebra processor
core. Proceedings of ACA 2005, IMACS, Int. Conf. on Advancement of Computer
Algebra, Nara, Japan, 2005. http://eprints.ecs.soton.ac.uk/10957/

[20] S. Franchini, A. Gentile, M. Grimaudo, C.A. Hung, S. Impastato, F. Sorbello, G.
Vassallo, S. Vitabile, A sliced coprocessor for native Clifford algebra operations. Pro-
ceedings of the 10th Euromicro Conference on Digital System Design Architectures,
Methods and Tools (DSD 2007), (2007), 436-439.

[21] A. Gentile, S. Segreto, F. Sorbello, G. Vassallo, S. Vitabile, V. Vuollo, CliffoSor,
an innovative FPGA-based architecture for geometric algebra. Proceedings of the
International Conference on Engineering of Reconfigurable Systems and Algorithms
(ERSA 2005), 211-217.

[22] A. Gentile, S. Segreto, F. Sorbello, G. Vassallo, S. Vitabile, V. Vuollo, CliffoSor:
a parallel embedded architecture for geometric algebra and computer graphics. Pro-
ceedings of the IEEE International Workshop on Computer Architecture for Machine
Perception (CAMP 2005), 90-95, IEEE Computer Society Press.

[23] I. Porteous, Lecture 2: Mathematical structure of Clifford algebras. Lectures on Clif-
ford (Geometric) Algebras and Applications, R. Ab�lamowicz, G. Sobczyk, Eds.,
Birkhäuser, Boston, 2003.

[24] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation 9 (1990), 251280.

[25] A. Ben-Dor, S. Halevi, Zero-one permanent is �P-complete, a simpler proof. Proceed-
ings of the 2nd Israel Symposium on the Theory and Computing Systems, (1993),
108-117.

[26] L. Valiant, The complexity of computing the permanent. Theoretical Computer Sci-
ence 8 (1979), 189-201.

[27] S. Chien, L. Rasmussen, A. Sinclair, Clifford algebras and approximating the perma-
nent. Journal of Computer and System Sciences 67 (2003), 263-290.

[28] R. M. Karp, Reducibility among combinatorial problems. Complexity of Computer
Computations, Plenum, New York 1972, 85-103.

140 R. Schott and G.S. Staples AACA

Acknowledgment

The authors are grateful to the anonymous referee for a number of helpful sugges-
tions. The second author thanks Philip Feinsilver for useful discussion about the
matrix permanent.

René Schott
IECN and LORIA Université Henri Poincaré-Nancy I
BP 239
54506 Vandoeuvre-lès-Nancy
France
e-mail: schott@loria.fr

G. Stacey Staples
Department of Mathematics and Statistics
Southern Illinois University at Edwardsville
Edwardsville, IL 62026-1653
USA
e-mail: sstaple@siue.edu

Received: July 4, 2008.

Accepted: October 1, 2008.

	Reductions in Computational Complexity Using Clifford Algebras
	Abstract
	1. Introduction
	1.1. Notational Preliminaries

	2. Graph Problems
	2.1. Nilpotent Adjacency Matrices
	2.2. Edge-disjoint Cycle Decompositions of Graphs

	3. Other Problems
	3.1. Computing the Permanent
	3.2. The Set Packing and Set Covering Problems

	4. Conclusion
	References

