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Abstract. In [16] Stolfi developed a complete theory of Oriented Projective
Geometry. He showed that assigning meaning to the sign of an otherwise ho-
mogeneous representation of geometry could provide a multitude of benefits.
This paper extends his work by applying the same approach to Conformal
Geometric Algebra. Oriented Conformal Geometric Algebra allows intuitive
manipulation of such concepts as half-spaces, inclusion within geometric enti-
ties and ordered intersections. It also illustrates the non-commutative nature
of the meet. The paper concludes with some examples of applications in which
Oriented Conformal Geometric Algebra is already providing benefits.
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1. Introduction

1.1. Oriented Projected Geometry

Stolfi [16] observed that many of the algorithms in common use in computer
graphics and computer vision, made use of the sign of the 4th component of the
supposedly homogeneous coordinates of projective geometry. He therefore cre-
ated a complete theory of Oriented Projective Geometry in which the sign of
the previously homogeneous vectors is used to give a concept of direction. Thus
(x, y, z, ω) �= (−x,−y,−z,−ω) but instead is defined as a point of opposite ori-
entation. Whilst this abstract concept of orientation of a point does not provide
many advantages, the orientation of higher dimensional entities reflects their di-
rection e.g. two concurrent lines of opposite orientation can be considered to point
in opposite directions.

This paper replicates and extends the results of Stolfi’s work by giving mean-
ing to the sign of a blade in Conformal Geometric Algebra (CGA) [8, 14, 12].
To maintain consistency with the terminology selected by Stolfi, this extension of
CGA utilizing directed / signed entities will be termed Oriented CGA or OCGA.
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Some elements of OCGA have previously been presented within the litera-
ture [15, 6, 9].

1.2. Conformal Geometric Algebra

There is insufficient space here to provide a comprehensive introduction to Con-
formal Geometric Algebra. We refer the reader to [12, 5].

In this paper we have elected to use the following formulation and notation.
Let us augment the 3 spatial basis vectors e1,2,3 defined such that (ei)

2 = 1 with
an additional pair e4,5 where (e4)

2 = 1 and (e5)
2 = −1. We can now define a pair

of useful null vectors

n = e4 + e5 n̄ = e4 − e5 (1.1)

n can be shown to correspond to the point at infinity whilst n̄ corresponds to the
origin1.

The Hestenes’ transform applied to a 3D spatial vector x is given by

X = H(x) =
1
2

(
x2n + 2x − n̄

)
(1.2)

so as to give us a null vector representation of points in space. Note that throughout
this paper, spatial vectors are indicated via lower case non-bold letters, whilst their
Hestenes’ transforms are denoted by capital letters.

We also adopt the notation, eabcd to denote higher grade basis elements

eabcd = ea ∧ eb ∧ ec ∧ ed (1.3)

and []∗ to indicate multiplication by the positively oriented pseudo-scalar, com-
monly referred to as the dual operator.

2. Blades in OCGA

As with unoriented CGA, blades are defined as the outer product of a number of
null vectors and provide representations of various geometric elements.

2.1. 1-blade – vector

In this paper it will be assumed that all null-vectors, X , are defined such that
X · n = −1 unless otherwise stated. Note that an equivalent set of results can be
built up with the default orientation being negative such that X · n = 1.

1Strictly speaking − 1
2
n̄ corresponds to the origin.
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2.2. 2-blade – oriented point pair

As noted in [12](Sec. 4.1.1.) and elsewhere, it is possible to factorize a 2-blade into
a pair of null vectors that are unique up to a scale. This result holds equally well
for OCGA but consideration must be given to the various 2-blades which will give
the same pair of null vectors after separation as they are effectively identical. Note
that there is no need to make use of Stolfi’s notation, ¬, to represent the operation
of reversing the orientation of a blade as in OCGA this negation operator simply
corresponds to multiplying the blade in question by −1.

A ∧ B = −(B ∧ A) = −B ∧ A = B ∧ −A (2.1)

Of the above forms, the first is the most useful, consisting as it does, of a pair
of ‘positively’ oriented null vectors. In CGA these 2-blades represent unordered
pairs of points. However, the use of projectors in the standard separation method
[12](Sec. 4.1.1.) ensures that one projector P will always return the first point, and
the second P∼ will return the second. As a result, we can assign an orientation to
these two points, considering one to occur before the other. The usefulness of this
result will become apparent when intersections are considered.

2.3. 3-blade – oriented lines

Define the line with direction from A to B as

L = A ∧ B ∧ n

= B ∧ n ∧ A

= n ∧ A ∧ B

Algebraically it can be trivially shown that these 3 orderings give the same blade.
OCGA also provides a geometric justification for this cyclic reordering property.
Consider a ray passing through the 3 points in space, a, b, and n, in the order
given. As all straight lines can be considered as circles passing through infinity, it
is readily apparent that these 3 lines must be both concurrent and pointing in the
same direction. Hence, they all have the same orientation.

Due to the anti-commuting nature of the outer product of vectors, L′ =
B∧A∧n = −L would give the line in the opposite direction differing only in sign.
In CGA these two lines are considered to be different representations of the same
entity, but as we shall see this results in a loss of representational power.

Half space of line defined by a point
A half-space is simply the set of points within an n-dimensional geometric entity
that lie on one side of an n − 1 dimensional geometric entity. In the case of the
half space of a line L, the separating entity is simply an oriented point with null
representation A, lying on the line. The oriented line and point in combination
allow the definition of an inclusion test t1 for a point with null representation P .

t1 = (P ∧ A ∧ n)L (2.2)
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where the point is defined as inside the half-space if the orientation of the line
P ∧ A ∧ n is the same as L and outside if it has the opposite orientation. These
conditions correspond to inclusion for t1 > 0 and exclusion for t1 < 0. The case
of t1 = 0 indicates that the test point is coincident with the boundary of the
half-space. Clearly, the result of this test is dependent on both the orientation
of the null-vector A and that of the embedding space, in this case the line L.
The dependence on the orientation of the embedding space is always the case for
operations in OCGA. This point was also made by Stolfi [16] (Chap. 7) and any
algorithm must carefully define the containing space or problems may occur.

Many of the results that follow rely on generalizing this half-space concept
to higher dimensions.

Inclusion of a point in a line segment
To illustrate the usefulness of the half-space test given above, consider developing
an inclusion test for a point within a line segment. This is easily accomplished
via a pair of half-space tests. The line through a then b is given by the blade
L = A∧B ∧n. To identify whether a point p lies between a and b we simply need
to check the orientations of the lines from a to p and p to b. If these orientations
are the same as that of a to b then inclusion has been established.

The two tests are

t1 = (A ∧ P ∧ n)L

t2 = (P ∧ B ∧ n)L (2.3)

If both signs are positive then the orientations of the lines created are all the same
and the point is indeed within the segment a → b. If either of the tests equals
0, then the point is coincident with the relevant segment end point. If either is
negative, then the point lies outside the segment. Thus we can rapidly check all
possible options. As observed by Stolfi, it is often useful to separate the coincident
point cases, as naturally occurs within these tests.

It is possible and entirely valid to generalize these results to define segments
passing through infinity and in figure 1 the various possible oriented line segments
between a and b are illustrated. Note that, to perform an inclusion test, simply
replace, in turn, the two end points in the definition with the test point and take
the geometric product with the original line as with the example tests in equation
2.3.

2.4. 3-blade – oriented circle

An analogous set of results exist for the concept of the oriented circle, with n, the
point at infinity, replaced by a third point on the circle.

Half-space defined by point pair
In order to separate the set of points on a circle into a pair of regions, defined as
outside and inside, we clearly need a pair of end points. In fact, if the point n is
considered to be on the same footing as any other then the half-space test for a line
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a

b

a ∧ b ∧ n

a

b

b ∧ a ∧ n

a

b

a ∧ n ∧ b

a

b

b ∧ n ∧ a

Figure 1. The 4 possible oriented line segments between a and b

can be more properly considered to be a segment inclusion test for the segment
between the point in question and the point at infinity as approached from one
side along the line.

Now for the half-space test, on the point p, for a segment bounded by a and
b on a circle Γ = A ∧ B ∧ C, a pair of test functions must be evaluated

t1 = (P ∧ B ∧ C)Γ

t2 = (A ∧ P ∧ C)Γ (2.4)

Yet again, these are simply half-space tests and as such are dependent not only
on the orientation of the point pair, but also on the orientation of the embedding
circle Γ as illustrated in figure 2. Again included points are defined as those for
which the two circles P ∧ B ∧ C and A ∧ P ∧ C have the same orientation as Γ
and hence t1, t2 > 0.

b

a

c t1, t2 > 0

(a) Γ = A ∧ B ∧ C

a

b

c t1, t2 > 0

(b) Γ = B ∧ A ∧ C

Figure 2. Circular arc definition for inclusion tests – endpoints
a and b
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2.5. 4-blade – planes

The results for lines given above generalize directly to include all hyperplanes. As
in non-oriented CGA a plane can be defined from any three points on its surface.

Half-space of plane defined by oriented 3-blade

Having now introduced the 4-blade, we have a suitable embedding entity in which
to consider the concept of half-spaces as defined by lines or circles lying in any
plane.

Any line L lying on a given plane Φ, inherently divides the plane into two
separate regions. These can be considered to be the left and the right of the line
although that particular terminology is slightly misleading given the dependence
on which side the plane is being viewed from. One way of discovering whether a
point, null representation P , on the plane, Φ, lies on one side of the line, L, or the
other is to consider the sign of

t1 = (P ∧ L)Φ (2.5)

Yet again the inclusion test is dependent both on the orientation of the entity
defining the edge of the half-space and on the orientation of the embedding space.
If t1 < 0, then the plane formed by P ∧ L is concurrent with Φ and has the same
orientation and thus the point is contained within the half-space.

Note, that the above definition is still entirely valid if the half space is defined
by a circle instead of a line.

Triangular facet inclusion
Inclusion within a triangular facet can be considered as a set of 3 half-space tests
as illustrated in figure 3.

This method is considerably more intuitive than the reciprocal vector based
method given in [12].

Accelerating the facet inclusion test

In applications such as ray-tracing it is often desirable to perform a lot of ray–facet
intersection tests for a given facet. These tests can be considerably accelerated
through some precomputation. Consider the form of the 3 half-space inclusion
tests. Each can be expressed in the form:

(P ∧ L) · ±Φ < 0 (2.6)

if we express L and Φ as

L = L1e123 + L2e124 + L3e125 + L4e134 + L5e135

+ L6e145 + L7e234 + L8e235 + L9e245 + L10e345 (2.7)

Φ = Φ1e1234 + Φ2e1235 + Φ3e1245 + Φ4e1345 + Φ5e2345 (2.8)
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c
A ∧ B ∧ C ∧ n

a

b

c
p

P ∧ B ∧ C ∧ n

A ∧ P ∧ C ∧ n

A ∧ B ∧ P ∧ n

a

b

c

p

P ∧ B ∧ C ∧ n

A ∧ P ∧ C ∧ n

A ∧ B ∧ P ∧ n

Figure 3. Facet containment test: note how for an internal point
all the test planes formed have same orientation as that defined
by the original facet, whereas with an external point at least one
will have opposite orientation (e.g. A ∧ P ∧ C ∧ n)

Then we can form a new non-null vector D such that the (P ∧L) ·Φ = P ·D where
D is given by

D = (L7Φ1 − L8Φ2 − L9Φ3 − L10Φ4) e1

+ (L5Φ2 − L4Φ1 + L6Φ3 − L10Φ5) e2

+ (L2Φ1 − L3Φ2 + L6Φ4 + L9Φ5) e3

− (L1Φ1 + L3Φ3 + L5Φ4 + L8Φ5) e4

− (L1Φ2 + L2Φ3 + L4Φ4 + L7Φ5) e5 (2.9)

Thus a triangular facet intersection test can be reduced down to 3 5D dot
products and 3 comparisons with 0. It is worth noting here, that at no stage does
this derivation assume a particular form for either of L or Φ and so is equally appli-
cable to performing half-space tests on the surface of a sphere with the boundaries
defined by either great or small circles.

The general approach used above to accelerate the facet inclusion test can be
applied to many of the results of OCGA and can lead to very efficient implemen-
tations, whilst retaining the intuitive derivation of the algorithms. More examples
can be found in [4].

Line–line intersection
Figure 4 illustrates the operation of intersecting a pair of lines, lying in a common
plane using the meet operator given in [12]. The meet of 2 entities defined by
blades Dm and Eo of grades m and o, lying within an embedding entity of grade



530 J. Cameron and J. Lasenby AACA

p is given by

D ∨ E =
[
〈DE〉2p−m−o

]∗
(2.10)

From the line–line intersection example it is clear that the meet operation is
not always a commuting operator in OCGA. (e.g. A∨B �= B∨A in general). In fact,
it turns out that the commutativity of a given meet operation can be trivially found
by considering what Stolfi terms the co-rank of the geometric entities involved. In
this more general treatment this co-rank is perhaps more accurately termed the
co-grade as it is simply the grade of the embedding space minus that of the entity
in question. So if we have the meet of two blades D and E, embedded in blade F
then the sign of the meet is given by

D ∨F E = (−1)co-gradeF (D)co-gradeF (E)(E ∨F D)

= (−1)(grade(F )−grade(D))(grade(F )−grade(E))(E ∨F D) (2.11)

M

(a) L1 ∨ L2 = M ∧ n

M

(b) L2 ∨ L1 = n ∧ M

Figure 4. Illustration of a non-commuting case of the meet –
two lines within an embedding space in one of two possible orien-
tations

2.6. 4-blade – spheres

As in CGA a sphere can be defined as the outer product of 4 null vectors speci-
fying a non-degenerate set of points on its surface. The concept of direction gets
marginally more confusing for a set of 4 points. To avoid confusion it is often easier
to simply form the sphere then negate as necessary to ensure n is inside or outside
as desired.
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2.7. 5-blade – the pseudo-scalar (positive universe)

As with any other entity within OCGA the pseudo-scalar I can have two orienta-
tions and these correspond to Stolfi’s concept of a oriented universe. Clearly many
of the above algorithms are dependent on the sign of the enclosing space and this
is equally true when that space is the pseudo-scalar. To simplify algorithm deriva-
tion, here I will be defined as e12345 and right multiplying by it will be termed the
dual operation. Thus we also have a concept of an inverse dual as I2 = −1. To keep
in line with the formulation of Stolfi [16], it is useful to connect this pseudo-scalar
to his concept of a positive universe.

2.8. Universe half-spaces

In this case the half-space of the universe or pseudo-scalar can be defined by a
plane or sphere.

Hence, we can simply use

t1 = (P ∧ A4)I (2.12)

to define the inclusion in the half-space defined by the 4-blade A4. If t1 < 0 then
the P is inside the half-space and this test is sufficient for both planes and spheres.

Using this half-space concept we can now consider testing for tetrahedron
inclusion.

Tetrahedron inclusion

The previously described ideas for facet and line segment inclusion tests extend
to the full dimensionality of the space and thus provide a concise and easily un-
derstood set of 4 inclusion tests for a point, P , and a tetrahedron defined by the
4 null vectors A, B, C and D.

T = A ∧ B ∧ C ∧ D ∧ n

t1 = (P ∧ B ∧ C ∧ D ∧ n)T

t2 = (A ∧ P ∧ C ∧ D ∧ n)T

t3 = (A ∧ B ∧ P ∧ D ∧ n)T

t4 = (A ∧ B ∧ C ∧ P ∧ n)T

iff t1, t2, t3, t4 < 0 does point p lie within T (2.13)

Clearly, this approach generalizes to any convex object defined in terms of
facets. It is also possible to use spherical surfaces to define the faces, although in
this case additional constraints may be necessary to avoid having other areas of the
space defined as included within the object. Using boolean object definitions any
object with spherical or flat facets can be defined and an inclusion test performed
in a simple and logical fashion. Clearly the tests above also lend themselves to the
acceleration method previously described for facet inclusion.
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Line–sphere intersection

As with the case of line–circle intersection, described above, the bivector returned
by a line–sphere intersection gives the ordered pair of intersection points of the
Line with the Sphere. Here however, the meet operation commutes as the co-grade
of the line within the embedding in the Universe is 2 and hence even. The bivector
can be split into two null vectors and the ordering of these gives the intersection
ordering.

Line–plane intersection

This proceeds in a similar fashion to that for the line-line intersection considered
above, with the two intersection points (one at infinity) being ordered as one would
expect. However it is not possible to utilize the standard 2-blade projector-based
separation method, as one of the points is n. One approach to get round this
problem is suggested in [12](Sec. 5.3) and with minor corrections it will serve us
here. The meet formula [〈LΦ〉3]∗ gives a bivector B. Note the presence of the []∗

operator. Thus the orientation of the result is again dependent on the embedding
space. The embedding space used here is the positive universe defined in Section
2.7.

a =
1
2
(B ∧ n̄) · N ⇐⇒ B = n ∧ A

a =
1
2
(n̄ ∧ B) · N ⇐⇒ B = A ∧ n

where N = e4 ∧ e5.
Note that a is the spatial vector representing the intersection point, rather

than the null vector representation, A. As a result the approach in [12] will only
work if the bivector resulting from the meet formula is of form A∧n and not n∧A,
where it will flip the sign of all components.

As with line–line intersections, this ordering result allows us the option of
extracting only the first point of contact (or entry point) of the directed ray with
the plane rather than having to pick from the two points returned by the meet
operation in standard CGA. This could lead to simplification of some algorithms,
involving different operations being applied for front face / back face intersections.
Care is needed with ensuring the desired orientation of the facets is achieved, but
this is no more than required by many conventional methods.

Line–facet intersection

Using the above result for line–plane intersection we can extract the point of
intersection of a ray (directed or otherwise) with a plane. For many applications
we now want to check whether this intersection point lies inside the triangular
facet from which the plane was defined. This can be easily checked using the facet
inclusion test given above.
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2.9. Relationship to perceptron classification

This concept of oriented halfspaces has been used extensively within the multilayer
perceptron literature, where it is referred to a sidedness, as it provides a means of
defining a hyperplane decision boundary between two different classes. The clas-
sification tests based on the learnt decision boundaries may be written in OCGA
as

t1 = P · Φ∗

= (P ∧ Φ)In (2.14)

where Φ∗ is the dual in the containing space In, of the hyperplane (or sphere)
representing the classification boundary. A recent paper by Perwass et al. [15]
extended this treatment to include hypersphere decision boundaries, improving the
performance for little computational cost. This treatment is effectively applying
the half space concepts of OCGA to generalize a result of oriented projective
geometry.

3. Object to Object Interpolation

A recent result from A. Lasenby [13] gave a very simple method for interpolating
between spheres and planes. The result was used in [6] within a method for gen-
erating circle splines. OCGA provides us with additional tools which prove useful
in analysis of this result when used to interpolate between pairs of spheres.

For the purposes of this paper the following slightly different form of the
interpolation rotor Rλ generating a sphere Σλ between the spheres Σ2 to Σ1 will
be used:

Rλ =
√

Σ1
2Σ2

2 − λΣ2Σ1 0 ≤ λ ≤ 1

Σλ = RλΣ1R̃λ

= Σ1
2Σ2

2
(
1 − λ2

)
Σ1 − 2λΣ1

2

(√
Σ2

2Σ1
2 − λ 〈Σ1Σ2〉0

)
Σ2 (3.1)

Note that the normalization condition on the rotor has been relaxed. The deriva-
tion of equation 3.1 relies on the identity

Σ2Σ1Σ2 = − (Σ2)
2 Σ1 + 2 〈Σ1Σ2〉0 Σ2. (3.2)

3.1. Validity of end points

As for any interpolation method, the first thing to verify is that it gives the correct
entities at the end points of the interpolation.

λ = 0 Σλ =
(
Σ1

2Σ2
2
)
Σ1

λ = 1 Σλ = −2Σ1
2

(√
Σ1

2Σ2
2 − 〈Σ1Σ2〉0

)
Σ2. (3.3)
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Now, as Σ1
2 is always negative, the orientation of the interpolate is the same as

Σ2 iff
√

Σ1
2Σ2

2 − 〈Σ1Σ2〉0 > 0. (3.4)

Making use of the dual form of the sphere [12]

Σ∗
i = H(ci) − 1

2
ρ2

i n (3.5)

with the useful properties

(Σ∗
i )

2 = ρ2
i 〈Σ1Σ2〉0 =

1
2

(
c2
1 + c2

2 − ρ2
1 − ρ2

2

) − c1 · c2

and assuming that both source spheres are of the same orientation (3.4) can be
expressed as

(ρ1 + ρ2)
2 − (c1 − c2)

2
> 0 (3.6)

that is to say when the two source spheres overlap. If the two source spheres are
of opposite orientation then clearly the interpolate end points will have the same
orientation only when they do not overlap.

However, the above conditions for orientation at the end points are not suf-
ficient to ensure that the interpolate remains of the same orientation throughout
the interpolation.

Interpolation between two intersecting spheres
Consider the intersection of the two sources spheres. Assuming such an intersection
exists, it will consist of points where

P ∧ Σ1 = 0 and P ∧ Σ2 = 0. (3.7)

From equation 3.1 it is clear that the interpolate can always be expressed as a
weighted sum of the two source spheres. Thus

P ∧ Σλ = P ∧ (αΣ1 + βΣ2) = 0. (3.8)

Hence the interpolate always remains in contact with the intersection of the two
source spheres.

Finally, in order to show no inversions occur for this special case, consider
the position of the centre of the interpolate, easily found by reflecting the point at
infinity in the sphere

cλ = H−1
(
ΣλnΣλ

)

= c2 + (c1 − c2)
ρ2

2
(
1 − λ2

)

ρ2
2 + 2λρ1ρ2 − λ2 (c1 − c2)

2 + λ2ρ1
2

= c2 + (c1 − c2)F (λ). (3.9)

Clearly the centre of the interpolate moves along the vector from the centre of
one source sphere to the centre of the other. All that remains is to show that the
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(a) λ = 0.05 (b) λ = 0.2 (c) λ = 0.95

Figure 5. An example of sphere to sphere interpolation for in-
tersecting spheres. The wire frame spheres are Σ1 and Σ2 and the
solid sphere is Σλ.

centre of the interpolate remains between the two centres of the source spheres. If
so, then the interpolate remains a finite radius sphere.

Consider the values of λ for which the interpolate centre is coincident with the
source sphere centres. These correspond to the conditions F (λ) = 0 and F (λ) = 1.

Taking the first condition

F (λ) = 0

(1 − λ2) = 0

λ = ±1 (3.10)

for the second condition

F (λ) = 1

λ
(
λ

(
ρ2
1 + ρ2

2 − (c1 − c2)2
)

+ 2ρ1ρ2

)
= 0

λ = 0 or λ
(
ρ2
1 + ρ2

2 − (c1 − c2)2
)

+ 2ρ1ρ2 = 0. (3.11)

Iff λ
(
ρ2
1 + ρ2

2 − (c1 − c2)2
)

+ 2ρ1ρ2 �= 0 in the range of λ, the centre never
passes those of the source spheres. As this is a linear equation, establishing that
there is no zero crossing in this range may be done by considering end points.
If λ = 0 this condition corresponds to

2ρ1ρ2 > 0 (3.12)

which holds for all ρ1, ρ2.
If λ = 1 the condition corresponds to

(ρ1 + ρ2)
2 − (c1 − c2)

2
> 0 (3.13)

which is true for all intersecting source spheres.
Figure 5 shows an example interpolation between a pair of intersecting spheres.

Clearly, the case of non-intersecting source spheres has not been considered here.
A fuller treatment of the interpolation formula can be found in [4].
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4. Applications

4.1. Ray-tracing

In [7] a number of different representations of geometry including Oriented Pro-
jective Geometry and CGA were compared for implementing a simple Ray-Tracer.
In order to investigate possible advantages of the addition of orientation informa-
tion to CGA, a simple ray-tracer was also implemented. The areas where most
advantage was seen involved intersection ordering for front / back-face detection,
and the ability to represent directed line segments. Subsequent discussion with D.
Fontijne indicated that the implementation of [7] had made internal use of some
of the elements of OCGA but the theory had not been formally presented. Figure
6 shows an example image from the OCGA ray-tracer.

Figure 6. An example of the output from a simple OCGA ray-
tracer of a scene containing infinite planes, spheres and triangular
facets.

4.2. Catadioptric camera geometry

A number of recent papers (for example [1]) related to modeling of Catadioptric
Cameras have made use of Stolfi’s Oriented Projective Geometry to allow for
the separation of rays intersecting the image plane back-face and front-face. In
combination with recent CGA based representations of such cameras [2, 17], it
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should be possible to simplify the development of algorithms and generalize the
models used.

4.3. Physical simulations

The testing of containment is a crucial operation in many physical simulations (see
for example [10]) and the clear framework provided by OCGA for containment tests
for any object whose surface can be formed from spherical patches (including flat
facets), should allow for rapid implementation of algorithms for collision detection
and response. OCGA may also facilitate the development of a hybrid k-DOP2 /
sphere tree3 based bounding volume hierarchy for rapid collision detection. The
resulting combination of flat and curved size bounding volumes should reduce the
number of elements needed to bound the object to a given accuracy.

5. Conclusions

Clearly, taking account of the sign of the multivectors in CGA provides us with a
number of improvements in both understanding (such as the projection operators
for splitting vectors), and in new methods (such as the tetrahedron inclusion tests).
Hopefully this increased representative power will provide advantages in algorithm
development within many areas of computer graphics and computer vision.
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