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Abstract. Meson algebras are involved in the wave equation of meson particles
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of electrons. Here we improve and generalize the information already obtained
about their structure and their representations, when the symmetric bilinear
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The existence of meson particles (also called π-mesons or pions) was first
predicted by Yukawa (see [Y]); he calculated their mass, which amounted to ap-
proximatively 200 times the mass of an electron, therefore much less than the mass
of a proton. At that time (in 1935) the presence of particles with a similar mass had
already been observed in cosmic rays; their average life was about 2 microseconds;
but experiments showed that they could not be Yukawa’s mesons; they were called
mesotrons, and they were supposed to come from the disintegration of mesons; to-
day they are also called muons or Proca particles. The experimental evidence of
the existence of Yukawa’s mesons was established 12 years later (in 1947) by the
“group of Bristol” (so named after the English town where it worked); it was
formed by the English physicists Cecil F. Powel and Hugh Muirhead, the Italian
Giuseppe Occhialini and the Brazilian Cesar Lattes; but only Powel received the
Nobel prize in 1950.

The mathematical treatment of Yukawa’s mesons began with articles of Pro-
ca, Duffin, Kemmer and Schrödinger (see [P], [D], [K1], [K2], [Sch]). The equations
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imagined by Proca suggested to Duffin an equation for the wave function ψ of a
meson; it looked like the Dirac equation for an electron, and was soon accepted by
Kemmer, and later confirmed by Schrödinger; here it is, with somewhat different
notations:
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of course x, y, z, t are the usual space and time coordinates, i =
√−1 , and c, m, �

are the usual physical constants; yet instead of Dirac’s relations, the four matrices
βj satisfy these relations (where the δj,k are Kronecker’s symbols):

βjβkβl + βlβkβj = δj,kβl + δl,kβj .

Let M be the vector space spanned by the four matrices βj over C and let f :
M ×M → C be the symmetric bilinear form such that f(βj , βk) = δj,k ; the above
relations are equivalent to this equality involving three arbitrary elements β, β′

and β′′ of M :

ββ′β′′ + β′′β′β = f(β, β′)β′′ + f(β′′, β′) β .

It was known that the universal algebra for Dirac’s relations was a Clifford
algebra of dimension 16, and it was sensible to associate a universal algebra with
Duffin’s relations too. This new universal algebra had dimension 126, it was the
direct sum of three ideals of dimensions respectively 1, 25 and 100, and each ideal
was isomorphic to an algebra of matrices of order 1, 5 and 10 respectively.

In the same way as a Clifford algebra is associated with every quadratic form,
a (universal) meson algebra is associated with every symmetric bilinear form, as it
is now explained. Already Kemmer and Littlewood supplied valuable information
about the meson algebras associated with all nondegenerate symmetric bilinear
forms over C.

1. Introduction

In this paper we give a precise description of the meson algebra B(M, f) associated
with any nondegenerate symmetric bilinear form f : M × M → K over any
ring K (associative, commutative, with unit). The word “nondegenerate” must
be understood in the strongest sense: M must be a finitely generated projective
module (a vector space of finite dimension if K is a field), and f must induce a
linear bijection df from M onto the dual module M∗.

Nevertheless we can define a meson algebra B(M, f) for any module M pro-
vided with any symmetric bilinear form f ; it is the quotient of the tensor algebra
T(M) by the ideal J(M, f) generated by all elements a⊗ b⊗ a− f(a, b) a with a,
b ∈M . Below it is explained that the canonical mappings K → T(M)→ B(M, f)
and M → T(M) → B(M, f) are injective, and allow us to identify every element
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of K or M with its image in B(M, f). Thus we can say that B(M, f) is the al-
gebra over K generated by M with the only relations aba = f(a, b)a and their
consequences. By a well known argument these relations imply

abc+ cba = f(a, b) c+ f(c, b) a

for all a, b, c ∈M ; and conversely, when 2 is invertible in K, we come back to the
initial relations by setting c = a.

Of course a universal property can be immediately derived from this defini-
tion: any linear mapping ϕ from M into any algebra A, such that ϕ(a)ϕ(b)ϕ(a) =
f(a, b)ϕ(a) for all a, b ∈ M , extends in a unique way to an algebra morphism
B(M, f) → A. As in the case of Clifford algebras, this universal property implies
that every meson algebra B(M, f) is provided with a reversion ρ, that is an involu-
tive linear transformation of B(M, f) such that ρ(1) = 1, ρ(a) = a for all a ∈M ,
and ρ(xy) = ρ(y)ρ(x) for all x, y ∈ B(M, f).

The assumption that K is any ring (not necessarily a field) does not really
complicate the present study, and our text can be read by people that are only
concerned with meson algebras over fields; they must simply skip some arguments
and translate some expressions; when they read “projective module of constant
rank n”, they must understand “vector space of dimension n”, and so on. . .

Unless otherwise specified, every grading is a parity grading, in other words,
a grading over the group Z/2Z. For instance the tensor algebra T(M) is the direct
sum of the even subalgebra T0(M) =

⊕
k T2k(M) and the odd subspace T1(M) =⊕

k T2k+1(M) ; and since the ideal J(M, f) is generated by odd elements, the
parity grading of T(M) is inherited by B(M, f) which consequently is the direct
sum of an even subalgebra B0(M, f) and an odd submodule B1(M, f). An element
x ∈ B(M, f) is said to be homogeneous if it belongs to B0(M, f) or B1(M, f),
and its degree, or parity (either 0 or 1), is denoted by ∂x. The parity grading of
B(M, f) is sometimes called the Green decomposition.

The algebra B(M, f) also inherits an increasing filtration from T(M); the
subspace B≤k(M, f) is the image of T≤k(M) =

⊕k
j=0 Tj(M). Thus B≤k(M, f) =

0 if k < 0, B≤0(M, f) = K, B≤1(M, f) = K ⊕ M and so on. . . An algebra
GrB(M, f) graded over Z (over N if you prefer it) is associated with this filtration
in the usual way; Gr0B(M, f) and Gr1B(M, f) are respectively isomorphic to K
and M .

Exceptionally the Z-grading of T(M) is inherited by the meson algebra when
f = 0, because the generators a ⊗ b ⊗ a of the ideal J(M) are homogeneous of
degree 3 for the Z-grading. When f = 0, the meson algebra, simply denoted by
B(M), is called the meson algebra of the module M ; among the other meson
algebras B(M, f) it plays the same role as the exterior algebra

∧
(M) among

the other Clifford algebras C�(M, q). For instance there is a canonical surjec-
tive algebra morphism B(M)→ Gr B(M, f) analogous to the canonical morphism∧

(M)→ Gr C�(M, q) . Indeed, if a′ and b′ are the images of a and b in Gr1B(M, f),
then a′b′a′ is the image of aba in Gr3B(M, f) (the quotient of B≤3(M, f) by
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B≤2(M, f)), and this image vanishes because aba = f(a, b)a ∈ B≤1(M, f) ; thus
a′b′a′ = 0 and the universal property of B(M) implies the existence of the mor-
phism B(M)→ Gr B(M, f). We say that B(M, f) satisfies the PBW-property (the
Poincaré-Birkhoff-Witt property) if this morphism is injective (therefore bijective).
It follows from Theorem (1.1) below that the PBW-property holds when M is a
free module (a module admitting bases).

The following theorem is proved in [AM1,2].

Theorem 1.1. If M is a free module with a basis (ej)j∈J indexed by a totally ordered
set J , then B0(M, f) and B1(M, f) too are free modules. The products

ej1ek1ej2ek2 . . . ejrekr (resp. ej1ek1ej2ek2 . . . ejrekrejr+1 )

where r ≥ 0, j1 < j2 < . . . < jr
(
< jr+1

)
and k1 < k2 < . . . < kr,

constitute a basis of B0(M, f) (resp. B1(M, f)).

Corollary 1.2. If M is a free module provided with two bases (ej)j∈J and (e′k)k∈J′

indexed by totally ordered sets, then the products

ej1e
′
k1
ej2e

′
k2
. . . ejre

′
kr

(resp. ej1e
′
k1
ej2e

′
k2
. . . ejre

′
kr
ejr+1)

where r ≥ 0 , j1 < j2 < . . . < jr
(
< jr+1

)
and k1 < k2 < . . . < kr ,

constitute a basis of B0(M, f) (resp. B1(M, f)).

Corollary 1.3. If M is a free module of rank n, then the ranks of the free modules
B0(M, f), B1(M, f) and B(M, f) are respectively (2n

n ) , ( 2n
n−1) and (2n+1

n ) .

The proof of (1.3) involves the identities
∑n

r=0 (n
r )2 = (2n

n ) and
∑n−1

r=0 (n
r ) ( n

r+1) =
( 2n
n−1) .

The terms (n
r )2 and (n

r ) ( n
r+1) are the ranks of the Z-homogeneous components

B2r(M) and B2r+1(M) of B(M).
When several basic rings are involved the more precise notation BK(M, f)

may become necessary. If K → K ′ is a ring morphism, with the K-module M
we can associate the K ′-extension M ′ = K ′ ⊗K M , and with f its K ′-extension
f ′ : M ′ ×M ′ → K ′. By a classical argument we can prove the bijectiveness of the
natural algebra morphism K ′⊗K BK(M, f)→ BK′(M ′, f ′). Because of this prop-
erty, all concerned physicists have started their inquiry with the field extension
R → C, so that the bilinear module (M, f) under consideration admits orthonor-
mal bases. This property also allows us to study B(M, f) by means of localizations
when K is not a field, andM not a free module, since every localization of a finitely
generated projective module is free. Thus we reach the next corollary.

Corollary 1.4. If M is a finitely generated projective module of constant rank n,
then B(M, f) too is a finitely generated projective module; the ranks of B0(M, f),
B1(M, f) and B(M, f) are constant and equal to the values given in the previous
corollary. Moreover the PBW-property holds true.
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Obviously the quotient mapping T(M) → B(M) induces a bijective map-
ping T≤2(M) → B≤2(M); consequently, when the PBW-property holds true, the
canonical mappings K → B0(M, f) and M → B1(M, f) are injective; thus their
injectiveness is ensured for all modules here under consideration. Besides, another
paper (see [H]) proves that the PBW-property holds for all meson algebras. It is
worth recalling that it does not hold for all Clifford algebras.

The universal property of meson algebras allows us to define a functor B from
the category of all K-bilinear modules like (M, f) to the category of all graded
K-algebras. A morphism ϕ : (M, f)→ (M ′′, f ′′) is a linear mapping ϕ : M →M ′′

such that f ′′(ϕ(a), ϕ(b)) = f(a, b) for all a, b ∈ M . Such a morphism ϕ extends
to a graded algebra morphism B(ϕ) : B(M, f)→ B(M ′′, f ′′). It is clear that B(ϕ)
is surjective when ϕ is surjective. But it is not always true that B(ϕ) is injective
when ϕ is injective; because of Theorem (1.1) this assertion is true at least in these
two cases: if K is a field, or if M ′′ is a finitely generated projective module, and
ϕ(M) a direct summand of M ′′.

After this purely mathematical presentation, let us recall how meson algebras
were treated in the physicist’s works. They always started with a vector space of
finite dimension n over C, provided with an orthonormal basis (ek) (such that
f(ej, ek) = δj,k), and it was admitted that the derived meson algebra B(M, f)
was semi-simple. In [K1] (page 104) we read this assertion: provided an algebra
satisfies a certain regularity condition, which has been verified in the present case,
the knowledge of the number of independent elements and of the number of elements
commuting with all others is sufficient to determine the irreducible representations
of the algebra. This assertion certainly raised critical reactions, because Kemmer
added a footnote to explain that the algebra must be “halbeinfach” (or semi-
simple) according to v. d. Waerden’s definition, and that Pauli found in a work
of Artin a general criterion of semi-simplicity, that is the non-vanishing of some
determinant. Yet in the case under consideration (when n = 4), it is a determinant
of order 126, and consequently no serious proof of semi-simplicity has ever been
supplied at that time. Thus we may both admire the work achieved by physicists at
that time, and claim that it must still be improved. Kemmer gave the dimensions of
all irreducible representations of B(M, f) for all n in [K2]. But for mathematicians
the paper [L] is more satisfying; we were informed of its existence after all main
results of the present paper had been discovered, and we were surprized to realize
that 60 years after Littlewood we followed the same path: first, since Kemmer
mentioned the dimension of the center of B(M, f) without any justification, we
wanted a simple and effectice method to calculate this center; secondly the precise
description of this center suggested to let B(M, f) act in the direct sums

∧k(M)⊕
∧k−1(M). It is fair to acknowledge that (when K = C) Littlewood reached results
almost equivalent to our theorems (3.1), (3.4), (7.1), (7.5). But our theorems (3.2),
(3.3), (3.5), (6.6) are quite probably new.

After the physicists, some mathematicians concerned themselves with meson
algebras. Jacobson met them because they were associative hulls of some Jordan
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algebras (see [J]); more details about his work are given at the end of §8. By the
instigation of Duffin, Shimpuku wrote a great mathematical work involving meson
algebras (see [Sh]); despite of noticeable advances, in his preface he acknowledges
not always to respect mathematical rigour: we sometimes suggest a general result
by using an extrapolation or by inference without an exact proof. In this case the
result is not given in a form of a theorem. In [OK] the relations between meson
algebras and Physics are developped again.

Our work distinguishes itself by the following four features. It emphasizes
the parity grading; for instance the calculation of the center of B0(M, f) in §6 is a
helpful step before the calculation of the center of B(M, f) in §7. Like Jacobson’s
work, it completely ignores Matrix Calculus, but unlike Jacobson’s work (moti-
vated by Jordan algebras), it priviledges geometrical methods involving exterior
algebras; the little amount of necessary Grassmann Calculus is presented in §2.
It respects mathematical rigour, and accepts the most general hypotheses that
are compatible with the expected results; by accepting that K is not necessarily
a field, we have been led to select the most effective methods. As in the study
of Clifford algebras over fields, the automorphisms of (M, f) have been related
to twisted inner automorphisms of B(M, f); with nondegenerate meson algebras
over fields, the result is even simpler than with Clifford algebras, since the algebra
B0(M, f) contains a group G exactly isomorphic to the group Aut(M, f).

Our main results can be classified into three subsets. The first subset (in §3
and §4) contains the main theorem, that is Theorem (3.3), which soon reveals the
graded structure of nondegenerate meson algebras. The calculation of the centers
of B0(M, f) and B(M, f) follows (in §6 and §7); although this calculation was the
very beginning of our research (as in Littlewood’s work), it is now postponed afer
the main theorem; indeed our concern about effective methods has yielded a proof
of the main theorem that no longer uses the center of B(M, f), whereas the main
theorem allows an easy and rigorous validation of the results of §6. The group G
which is isomorphic to the group of automorphisms of (M, f) is presented in §9
when K is a field of characteristic �= 2, in §10 when K is a field of characteristic 2.

In an appendix (in §11) we come back to the physical motivation of meson
algebras, and we show how geometrical methods (instead of matrix calculations)
can solve the problems raised by the meson wave equation.

2. Interior Multiplications with Exterior Algebras

If M ′ and M are two modules over K, every bilinear mapping θ : M ′ ×M → K
induces an interior multiplication

∧
(M ′) ×∧

(M) → ∧
(M) on the left side, and

an interior multiplication
∧

(M ′) × ∧
(M) → ∧

(M ′) on the right side; interior
products on the left side (resp. right side) are denoted by u′ �u (resp. u′ 	u). These
interior multiplications are characterized by these four properties which hold for
all a′ ∈M ′ and all a ∈M , for all u′, v′ ∈ ∧

(M ′) and all u, v ∈ ∧
(M) :
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(a) 1 �u = u and u′ 	 1 = u′ ;

(b) a′ � a = a′ 	 a = θ(a′, a) ;

(c) a′ � (u ∧ v) = (a′ �u) ∧ v + (−1)∂uu ∧ (a′ � v)
and (u′ ∧ v′) 	 a = u′ ∧ (v′ 	 a) + (−1)∂v′

(u′ 	 a) ∧ v′ ;

(d) u′ � (v′ �u) = (u′ ∧ v′) �u and (u′ 	u) 	 v = u′ 	 (u ∧ v) .

Such interior multiplications have appeared in many publications, yet sometimes
with other twisting signs; the above formulas have been preferred because they
respect this very simple rule: a twisting sign ± appears whenever two factors are
reversed; for instance the twisting sign (−1)∂u in the first formula (c) comes from
the reversion of the factors a′ and u, and the twisting sign (−1)∂v′

in the second
formula (c) comes from the reversion of a and v′. Whenever we write ∂u or ∂v′,
we silently assume u or v′ to be even or odd.

It is clear that the formulas (a), (b), (c), (d) determine the interior multipli-
cations in a unique way. To prove their existence, we can use the comultiplications∧

(M ′)→ ∧
(M ′)⊗∧

(M ′) and
∧

(M)→ ∧
(M)⊗∧

(M) as it is done (with other
twisting signs) in [B]. But there is an easier and direct proof which merely verifies
that these formulas are compatible with the relations a′ ∧ a′ = 0 and a ∧ a = 0
for which

∧
(M ′) and

∧
(M) are universal algebras.

Let us suppose that u′ and u belong respectively to
∧j(M ′) and

∧k(M). The
above formulas imply that u′ �u and u′ 	u belong respectively to

∧k−j(M) and
∧j−k(M ′). This means u′ �u = 0 when j > k, and u′ 	u = 0 when j < k. When
j = k, then u′ �u and u′ 	u are the same element of K =

∧0(M) =
∧0(M ′); if

u′ = a′k ∧ . . . a′2 ∧ a′1 (with a′1, a
′
2, . . . , a′k ∈ M ′), and if u = a1 ∧ a2 ∧ . . . ∧ ak

(with a1, a2, . . . , ak ∈ M), then u′ �u = u′ 	u is the determinant of the matrix
composed of all θ(a′i, ah) with i, h = 1, 2, . . . , k.

Here we only use interior multiplications in this situation: M is a finitely
generated projective module of constant rank n, M ′ is the dual module M∗,
and the bilinear mapping θ is the canonical mapping M∗ ×M → K defined by
(ξ, a) �−→ ξ(a). The assumption that M has a constant rank n is not essential; if its
rank were not constant, we had just to replace

∧n(M) with
∧max(M) which is by

definition the submodule of all u ∈ ∧
(M) such that a∧u = 0 for all a ∈M ; indeed∧max(M) is a projective module of constant rank 1 which coincides with

∧n(M)
when the rank of M is everywhere n ; and similarly we had to replace

∧n(M∗)
with

∧max(M∗) which can be identified with the dual module of
∧max(M).

Moreover we assume that there is a bilinear form f : M ×M → K which
determines a linear mapping df : M → M∗ defined by df (a)(b) = f(a, b) for all
a, b ∈ M . The extension of df to an algebra morphism

∧
(M) → ∧

(M∗) is still
denoted by df ; we are especially interested in its restriction

∧n(M) → ∧n(M∗)
because it allows us to give a structure of graded algebra to Ω =

∧0(M)⊕∧n(M) .
By definition the even subalgebra Ω0 is

∧0(M) ⊕ 0 (identified with K), and the
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odd submodule Ω1 is 0⊕∧n(M) (whatever the parity of n may be). By definition
the product of two elements (0, ω) and (0, ω′) of Ω1 is (df (ω) �ω′, 0). Since

∧n(M)
is a module of constant rank 1, every bilinear mapping η :

∧n(M)×∧n(M)→ K
satisfies the equalities

η(ω, ω′) = η(ω′, ω) and η(ω, ω′)ω′′ = η(ω′′, ω)ω′ = η(ω′, ω′′)ω

which here imply that Ω is a graded commutative and associative algebra with
unit element.

If M is a free module with basis (e1, e2, . . . , en), then
∧n(M) is the free

module generated by ω = e1 ∧ e2 ∧ . . . en , and

(0, ω)2 = (−1)n(n−1)/2 det
(
f(ei, ej)

)
1≤i, j≤n

.

It follows (after localization if M is not a free module) that the multiplication in
Ω determines a bijective mapping Ω1 ⊗Ω1 → K if and only if f is nondegenerate.

All this is more or less known; only the following two lemmas might require
a proof.

Lemma 2.1. For all ϕ ∈ ∧
(M∗), u ∈ ∧

(M) and ω ∈ ∧n(M) we can write

(ϕ 	u) �ω = (−1)(1−∂ϕ)∂u u ∧ (ϕ �ω) .

Proof. Let U be the submodule of all u ∈ ∧
(M) such that this formula holds for

all ϕ and ω. It is clear that U contains 1, and we first prove that U contains u∧u′
whenever it contains u and u′. Indeed

(ϕ 	 (u ∧ u′)) �ω = ((ϕ 	u) 	u′) �ω = (−1)(1−∂ϕ−∂u)∂u′
u′ ∧ ((ϕ 	u) �ω)

= (−1)(1−∂ϕ−∂u)∂u′+(1−∂ϕ)∂uu′ ∧ u ∧ (ϕ �ω)

= (−1)(1−∂ϕ)(∂u+∂u′)u ∧ u′ ∧ (ϕ �ω) .

Thus it remains to prove that U contains every element a of M . We prove by
induction on k that (ϕ 	 a) �ω = (−1)k−1a ∧ (ϕ �ω) for all ϕ ∈ ∧k(M∗). This is
true for k = 0 because 1 	 a = 0 and a ∧ ω = 0 . We suppose that the induction
has reached k, and we consider ξ ∧ ϕ with ξ ∈M∗ and ϕ ∈ ∧k(M):

((ξ ∧ ϕ) 	 a) �ω
= (ξ ∧ (ϕ 	 a)) �ω + (−1)kξ(a)ϕ �ω = ξ � ((ϕ 	 a) �ω) + (−1)kξ(a)ϕ �ω
= (−1)k−1ξ � (a ∧ (ϕ �ω)) + (−1)kξ(a)ϕ �ω = (−1)k a ∧ (ξ � (ϕ �ω)) ;

since ξ � (ϕ �ω) = (ξ ∧ ϕ) �ω , the proof is ended. �

Lemma 2.2. If g : M ×M → K is the bilinear form defined by g(a, b) = −f(b, a),
the following formula holds for all u, v ∈ ∧

(M) :

df (dg(u) � v) = (−1)∂u∂v df (v) 	u .
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Proof. Let U be the submodule of all u ∈ ∧
(M) such that this formula holds

for all v. It is clear that U contains 1, and we first prove that U contains u ∧ u′
whenever it contains u and u′. Indeed

df (dg(u ∧ u′) � v) = df (dg(u) � (dg(u′) � v)) = (−1)∂u(∂u′+∂v)df (dg(u′) � v) 	u
= (−1)∂u(∂u′+∂v)+∂u′∂v(df (v) 	u′) 	u = (−1)(∂u+∂u′)∂vdf (v) 	 (u ∧ u′) .

Thus it remains to prove that U contains every element a of M . We prove the
equality df (dg(a) � v) = (−1)k df (v) 	 a by induction on k for all v ∈ ∧k(M).
This is true for k = 0. We suppose that the induction has reached k, and we
consider v ∧ b with b ∈M and v ∈ ∧k(M) :

df (dg(a) � (v ∧ b)) = df ((dg(a) � v) ∧ df (b) + (−1)kg(a, b) df(v)

= (−1)k(df (v) 	 a) ∧ df (b) + (−1)k−1f(b, a) df (v) = (−1)k+1(df (v) ∧ df (b)) 	 a;
since df (v) ∧ df (b) = df (v ∧ b) , the proof is ended. �

In all following sections f is a symmetric bilinear form; therefore g = −f and
dg(u) = (−1)∂udf (u) ; thus Lemma (2.2) gives the following corollary in which
we meet a twisting exponent (1 − ∂v)∂u quite similar to the twisting exponent
(1− ∂ϕ)∂u in Lemma (2.1).

Lemma 2.3. When f is symmetric, for all u, v ∈ ∧
(M) we can write

df (df (u) � v) = (−1)(1−∂v)∂u df (v) 	u .

3. The Main Theorem

From now on, M is a finitely generated projective module provided with a
symmetric bilinear form f . The main theorem, that is Theorem (3.3), requires f to
be nondegenerate, and the equivalent theorems (3.4) and (3.5) too. Nevertheless in
the preliminary theorems (3.1) and (3.2) the nondegeneracy of f is not necessary.
In this section there is no proof of the main theorem, it is only explained why the
theorems (3.3), (3.4) and (3.5) are equivalent; then the section §4 begins with the
proof of Theorem (3.5), which implies the main theorem (3.3).

Our purpose is to reveal the structure of the meson algebra B(M, f) by means
of a suitable graded representation of B(M, f) in some graded moduleE = E0⊕E1 ;
such a representation follows from every linear mapping a �−→ Fa which associates
an odd endomorphism Fa (such that Fa(Ei) ⊂ E1−i for i = 0, 1) with every
a ∈ M , in such a way that FaFbFa = f(a, b)Fa for all a, b ∈ M . The following
module E and operators Fa have been suggested by the calculation of the primitive
central idempotents, which is here presented in §6 although this calculation has
been performed before the developments that are exposed in this section.

The module E (or E(M) to be more precise) is
∧

(M) ⊕ ∧
(M) , and its

homogeneous components areE0 =
∧

(M)⊕0 andE1 = 0⊕∧
(M) ; thus

∧k(M)⊕0
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and 0 ⊕∧k(M) are respectively even and odd whatever the parity of k may be.
For every a ∈M , and for all u, v ∈ ∧

(M), we set

Fa(u, v) = ( a ∧ v , df (a) �u ) .

Let us calculate

FaFbFa(u, v) =
(
a ∧ (df (b) � (a ∧ v)) , df (a) � (b ∧ (df (a) �u))

)

where df (b) � (a ∧ v) = f(b, a) v − a ∧ (df (b) � v) ,
df (a) � (b ∧ (df (a) �u)) = f(a, b) df (a) �u − b ∧ (df (a) � (df (a) �u)) ;

since a ∧ a = 0 and df (a) ∧ df (a) = 0 , we reach the awaited result FaFbFa =
f(a, b)Fa .
Theorem 3.1. The above mapping a �−→ Fa extends to a graded algebra morphism
x �−→ Fx from the meson algebra B(M, f) into End(E).

Now we set Ek =
∧k(M) ⊕ ∧k−1(M) for every integer k ; it is clear that

Fa(Ek) ⊂ Ek, and consequently Fx(Ek) ⊂ Ek for every x ∈ B(M, f). To get an
easy description of this B(M, f)-module E, we suppose thatM has a constant rank
n ; thus Ek �= 0 only if 0 ≤ k ≤ n+ 1 ; the component E0 = K ⊕ 0 contains only
even elements, and the component En+1 = 0 ⊕ ∧n(M) only odd elements. The
other nontrivial components Ek contain both an even component Ek

0
∼= ∧k(M)

and an odd component Ek
1
∼= ∧k−1(M).

It is impossible that the image of the algebra morphism B(M, f)→ End(E)
be the subalgebra of all endomorphisms of E leaving invariant all components
Ek; indeed the rank of B(M, f) is (2n+1

n ), whereas the rank of this subalgebra of
End(E) is

∑

k

( (n
k ) + ( n

k−1) )2 =
∑

k

(n+1
k )2 = (2n+2

n+1 ) = 2 (2n+1
n ) .

The fact that we get twice the rank of B(M, f), and the examination of the prim-
itive central idempotents (now postponed until §6) suggest the intervention of the
commutative algebra Ω =

∧0(M)⊕∧n(M) already defined in §2. All people well
acquainted with Clifford algebras know that Ω acts in the module

∧
(M) at least

when 2 is invertible in K ; yet the invertibility of 2 is not necessary, and more-
over we need a graded action of Ω in E. Therefore we consider the multiplication
Ω× E → E defined by

(λ, ω) (u, v) = (λu+ df (v) �ω , λv + df (u) �ω )

for all λ ∈ K, all ω ∈ ∧n(M), and all u, v ∈ ∧
(M). Observe that (0, ω) maps

∧k(M)⊕∧j(M) into
∧n−j(M)⊕∧n−k(M) , and consequently Ek into En+1−k;

this agrees with the fact that in Lemma (6.3) a central idempotent εk + εn+1−k

is associated with every k such that k �= n + 1 − k . When k = n + 1 − k, (or
equivalently when n = 2k − 1), we get a multiplication Ω× Ek → Ek.
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Theorem 3.2. The above multiplication Ω × E → E turns E into a graded Ω-
module, and for every x ∈ B(M, f) the operation Fx of x in E is Ω-linear.

Proof. Let ω and ω′ be elements of
∧n(M); to prove that the algebra Ω acts in E,

it suffices to verify that the composition of the operations of (0, ω) and (0, ω′) is
the multiplication by the element df (ω′) �ω of K. In other words we must verify
that df (df (u) �ω′) �ω is equal to (df (ω′) �ω)u for all u ∈ ∧

(M). This follows
from the lemmas (2.3) and (2.1):

df (df (u) �ω′) �ω = (−1)(n−1)∂u(df (ω′) 	u) �ω = u ∧ (df (ω′) �ω) .

To prove that all Fx are Ω-linear, it suffices to prove that, for every a ∈ M , Fa

commutes with the operation of every (0, ω) ∈ Ω1 ; this means that, for all u,
v ∈ ∧

(M),

( a ∧ (df (u) �ω), df (a) � (df (v) �ω) ) = ( df (df (a) �u) �ω , df (a ∧ v) �ω ) .

Thus we must verify two equalities, one involving u alone, and another in-
volving v alone; the latter is trivial, and the former again follows from the lemmas
(2.3) and (2.1):

df (df (a) �u) �ω = (−1)1−∂u(df (u) 	 a) �ω = a ∧ (df (u) �ω). �

Now we can state the main theorem.

Theorem 3.3. When f is nondegenerate, the algebra morphism B(M, f)→ End(E)
induces an isomorphism from B(M, f) onto the subalgebra of all Ω-linear endo-
morphisms of E that leave Ek invariant for k = 0, 1, 2, . . . , n+ 1.

This theorem is proved in the next section; here we only prove that it is
equivalent to the following two theorems, in which f is still assumed to be nonde-
generate.

Theorem 3.4. When n is even (in other words, when n = 2m), by restricting all
Fx to the direct sum of E0, E1, . . . , Em, we get a graded algebra isomorphism

B(M, f) −→
m∏

k=0

End(Ek) .

When n is odd (in other words, when n = 2m− 1), by restricting all Fx to E0 ⊕
E1 ⊕ . . .⊕ Em, we get a graded algebra isomorphism

B(M, f) −→ ( m−1∏

k=0

End(Ek)
)× EndΩ(Em) ;

moreover the canonical mapping Ω⊗Em
0 → Em is bijective and induces a graded

algebra isomorphism Ω⊗ End(Em
0 )→ EndΩ(Em) .

Proof of (3.3)⇔(3.4). When f is nondegenerate, the multiplication in Ω determines
a bijective mapping Ω1 ⊗ Ω1 → K ; in other words, there is a finite sequence
(µ1, ν1, µ2, ν2, . . . , µ�, ν�) of elements of Ω1 such that

∑�
j=1 µjνj = 1 ; here � may
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be the minimal number of elements spanning
∧n(M) (whence � = 1 if it is a

free module). The action of an element of Ω1 in E maps each component Ek

into En−k+1; consequently Em is an Ω-module if n = 2m − 1 . Let B be the
subalgebra of all Ω-linear endomorphisms of E that leave invariant all components
Ek (with k = 0, 1, . . . , n + 1), and let B′ be the algebra of all endomorphisms of
E0 ⊕ E1 ⊕ . . . ⊕ Em that leave invariant all Ek (with k = 0, 1, . . . ,m), and that
are Ω-linear on Em when n = 2m − 1. We must prove that by restriction we get
an isomorphism B → B′. If ϕ′ is the restriction of an element ϕ of B, then for
every w ∈ Em+1 ⊕ Em+2 ⊕ . . .⊕ En+1 we can write

ϕ(w) =
∑

j

µjνj ϕ(w) =
∑

j

µj ϕ
′(νjw) ;

this proves that ϕ is determined by its restriction ϕ′, and that the mapping B →
B′ is injective. If ϕ′ is any element of B′, the equality ϕ(w) =

∑
j µjϕ

′(νjw)
is meaningful when w belongs to some Ek with k > m, and thus we get an
endomorphism ϕ of E leaving each Ek invariant; it is easy to prove that ϕ is
Ω-linear; therefore the mapping B → B′ is also surjective.

When n = 2m − 1, the canonical mapping Ω1 ⊗ Em
0 → Em

1 (defined by
λ⊗ w �−→ λw) is bijective because there is a reciprocal mapping w �−→∑

j µj ⊗
νjw ; therefore the canonical mapping Ω ⊗ Em

0 → Em is bijective. It induces an
isomorphism Ω ⊗ End(Em

0 ) → EndΩ(Em) because the ring extension K → Ω
is faithfully flat; as a graded algebra, End(Em

0 ) is isomorphic to End(
∧m(M))

provided with the trivial grading (for which all elements are even). �
Theorem 3.5. By restricting all Fx associated with an even x to the even component
E0, we get an algebra isomorphism

B0(M, f) −→
n∏

k=0

End(
k∧

(M)) .

And by considering the mappings E0 → E1 induced by all Fx associated with an
odd x, we get a linear bijection

B1(M, f) −→
n∏

k=1

Hom(
k∧

(M),
k−1∧

(M)) .

Proof of (3.3)⇔(3.5). Let B0 andB1 be the even and odd components of the algebra
B defined in the previous proof; let C0 be the algebra of all endomorphisms of E0

that leave invariant each component Ek
0 (with k = 0, 1, . . . , n since En+1

0 = 0),
and C1 the submodule of all linear mappings E0 → E1 that map each Ek

0 into
Ek

1 . We must prove that by restriction to E0 (at the source) we get two bijections
B0 → C0 and B1 → C1 . We write 1 =

∑
j µjνj as in the previous proof. If ϕ is

an element of B0 or B1, and if ψ is its restriction to E0, for every w ∈ E1 we can
write

ϕ(w) =
∑

j

µjνj ϕ(w) =
∑

j

µj ψ(νjw) ;
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this proves that ϕ is determined by ψ and that both mappings Bi → Ci are
injective. They are also surjective; indeed when ψ belongs to C0 or C1, the formula
ϕ(w) =

∑
j µjψ(νjw) is meaningful for every w ∈ E1 , and thus from ψ we derive

an endomorphism ϕ of E leaving each Ek invariant; it is easy to prove that ϕ is
Ω-linear, and the conclusion follows. �

4. Proof of the Main Theorem, and Complements

We actually prove the theorem (3.5) which is equivalent to (3.3).
Proof of (3.5). It states the bijectiveness of two mappings Bi(M, f) → Ci (with
i = 0, 1); we can identify C0 with the algebra of all endomorphisms of

∧
(M)

leaving invariant each component
∧k(M) (with k = 0, 1, . . . , n), and C1 with the

submodule of all endomorphisms of
∧

(M) that map each
∧k(M) into

∧k−1(M).
Each target Ci is a finitely generated projective module which has the same rank
as Bi(M, f); this rank is

∑n
k=0 (n

k )2 = (2n
n ) if i = 0, and

∑n
k=1 (n

k ) ( n
k−1) = ( 2n

n−1)
if i = 1. Therefore it suffices to prove that both mappings Bi(M, f) → Ci are
surjective. Indeed if they are surjective onto projective targets, their kernels are
direct summands, the ranks of these kernels vanish, and the injectiveness of these
mappings follows.

Now we consider the module M∗ ⊕ M provided with its usual hyperbolic
quadratic form (ξ, a) �−→ ξ(a), and its Clifford algebra C�(M∗ ⊕M). It is well
known that there is a graded algebra isomorphism C�(M∗ ⊕M) → End(

∧
(M))

that maps every a ∈ M to the exterior multiplication u �−→ a ∧ u, and every
ξ ∈ M∗ to the interior multiplication u �−→ ξ �u. Here an element of

∧k(M) has
the parity of k.

Consequently if an element x of B0(M, f) is a product a1b1a2b2 . . . arbr of
2r elements of M , by restricting Fx to E0 we get the endomorphism of

∧
(M) that

is also the image of the following element of C�0(M∗⊕M) : a1 df (b1) a2 df (b2) . . .
ar df (br) . Similarly if an element y of B1(M, f) is a product b0a1b1a2 . . . arbr of
2r+1 elements ofM , the mapping E0 → E1 induced by Fy gives the endomorphism
of

∧
(M) that is also the image of this Clifford product:

df (b0) a1 df (b1) a2 . . . ar df (br) .
Thus we have reduced the problem to the proof of the following statement

in which B(M, f) is no longer involved: by the isomorphism C�(M∗ ⊕ M) →
End(

∧
(M), the subalgebra C0 is the image of the submodule C′′

0 spanned by all
Clifford products a1ξ1a2ξ2 . . . arξr (with r ≥ 0), and the submodule C1 is the
image of the submodule C′′

1 spanned by all Clifford products ξ0a1ξ1a2 . . . arξr
(with r ≥ 0).

As a module, C�(M∗ ⊕M) is spanned by products of elements of M∗ and
M . If in such a product the numbers of factors in M and M∗ are respectively h
and j, the associated endomorphism of

∧
(M) maps each component

∧k(M) into
∧k+h−j(M); when this endomorphism does not vanish, it belongs to C0 (resp. C1)
if and only if j = h (resp. j = h + 1). Thus we must prove that the submodule
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A2h (resp. A2h+1) spanned by all products of h elements of M and h (resp. h+ 1)
elements of M∗ is contained in C′′

0 (resp. C′′
1 ).

This can be proved by induction on h. It is trivial if h = 0. Let us suppose
that all factors c1, c2, . . . , ck (with k = 2h or k = 2h + 1) belong to M or M∗

and that c1c2 . . . ck belongs to Ak ; if s is any permutation of {1, 2, . . . , k}, and if
(−1)s is its signature, then

c1c2 . . . ck − (−1)s cs(1)cs(2) . . . cs(k) ∈ Ak−2 ;

it suffices to prove this property when s is the permutation of two consecutive
factors; when one factor is an element a of M , and the other an element ξ of M∗,
we remember that the equality aξ + ξa = ξ(a) holds in C�(M∗ ⊕M), and the
announced property follows; when both factors belong to M , or both to M∗, they
anticommute in C�(M∗⊕M), and the conclusion is trivial. If we suppose that Ak−2

is contained in C′′
0 or C′′

1 (according to the parity of k), by means of a suitable
permutation s we realize that every element c1c2 . . . ck of Ak too is contained in
it. This completes the proof of Theorem (3.5). �

The main theorem leads us directly to the description of the modules S over
B(M, f) in the next section; yet Quantum Mechanics also needs bilinear forms
g : S × S → K such that g(as, t) = ±g(s, at) for all a ∈M and all s, t ∈ S. Such
bilinear forms can be derived from the next proposition.

First we extend f to a symmetric bilinear form
∧

(M)×∧
(M)→ K ; several

extensions can be proposed; our choice fρ is defined below. For every u ∈ ∧
(M) we

denote by Scal(u) its component in K =
∧0(M). The algebra

∧
(M) is provided

with a reversion ρ such that ρ(u) = (−1)k(k−1)/2u for all u ∈ ∧k(M); we also write
ρ(λ, ω) = (λ, ρ(ω)) for every (λ, ω) ∈ Ω. With every parity grading is associated
a grade automorphism σ such that σ(t) = (−1)∂tt for every homogeneous t ; for
instance σ(u) = (−1)ku for every u ∈ ∧k(M). But σ(u, v) = (u,−v) in the graded
module E, and similarly σ(λ, ω) = (λ,−ω) in Ω. With these notations we set, for
all u, v ∈ ∧

(M),

fρ(u, v) = Scal( df (u) � ρ(v) ) .

Obviously
∧j(M) and

∧k(M) are orthogonal for fρ when j �= k. When u and v

are both in
∧k(M), the equality fρ(u, v) = fρ(v, u) can be derived from Lemma

(2.3):

fρ(u, v) = (−1)k(k−1)/2df (u) � v = (−1)k(k−1)/2df (df (u) � v)
= (−1)k(k−1)/2(−1)(1−∂v)∂udf (v) 	u = (−1)k(k−1)/2df (v) �u = fρ(v, u) .

All this allows us to derive a symmetric bilinear form fE : E × E → K from f :

fE( (u, v), (u′, v′) ) = fρ(u, u′) + fρ(v, v′) .

Obviously fρ and fE are nondegenerate if and only if f is nondegenerate; yet the
next proposition does not require f to be nondegenerate.
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Proposition 4.1. For all s, t ∈ E we can write fE(σ(s), t) = fE(s, σ(t)) . For all
x ∈ B(M, f), and for all µ ∈ Ω, we can also write

fE(Fx(s), t) = fE(s, Fρ(x)(t)) and fE(σ(Fx(s)), t) = fE(σ(s), Fρσ(x)(t)) ;

fE(µs, t) = fE(s, ρ(µ)t) and fE(σ(µs), t) = fE(σ(s), ρσ(µ)t) .

Proof. The first equality involving σ is trivial. For the equalities involving x, it
suffices to prove that

fE(Fa(u, v), (u′, v′)) = fE((u, v), Fa(u′, v′))

for all a ∈ M , all u, u′ ∈ ∧k(M), and all v, v′ ∈ ∧k−1(M) ; this can be reduced
to an equality involving (u, v′), and another one involving (u′, v); but since they
are equivalent, it suffices to consider the first one:

fρ(a ∧ v′, u) = fρ(v′, df (a) �u) ;

it follows from a straightforward calculation:

df (ρ(a ∧ v′)) �u = df (ρ(v′) ∧ a) �u = df (ρ(v′)) � (df (a) �u) .

To prove the equalities involving Ω, it suffices to prove that

fρ(df (u) �ω, v′) = (−1)n(n−1)/2 fρ(u, df (v′) �ω)

for all ω ∈ ∧n(M), all u ∈ ∧k(M) and all v′ ∈ ∧n−k(M); let us notice these two
equalities:

fρ(df (u)) �ω, v′) = df (ρ(v′)) � (df (u) �ω) = df (ρ(v′) ∧ u) �ω ;

ρ(v′) ∧ u = (−1)n(n−1)/2 ρ(ρ(v′) ∧ u) = (−1)n(n−1)/2 ρ(u) ∧ v′ ;

they complete the proof of (4.1). �

5. Graded Modules Over B(M, f)

We only consider modules on the left side. Since meson algebras are provided with
a reversion ρ, every right module can be turned into a left module.

Let A be a graded algebra A0 ⊕ A1 ; an A-module S provided with a parity
grading S = S0 ⊕ S1 is called a graded module over A if the equality ∂(xs) =
∂x+∂s holds for all homogeneous x ∈ A and s ∈ S. An A-linear mapping S → S′

is called a graded morphism (or an even morphism) if it maps Si into S′
i for

i = 0, 1. With every graded module S is associated a shifted module S† which
coincides with S as an A-module, but in which the even (resp. odd) elements
are the elements of S1 (resp. S0); in general S and S† are not isomorphic as
graded modules; nevertheless if A1 contains an invertible and central element x,
the multiplication by x is always an isomorphism S → S†. Often physicists prefer
the word “chirality” to “parity” when they consider modules over graded algebras:
the elements of S0 (resp. S1) are left-hand (resp. right-hand) elements; but here we
maintain the word “parity”. By mentioning that a shifted module S† is associated



212 J. Helmstetter and A. Micali AACA

with every graded module S, we well enough evince that the grading of a module
is not of the same nature as the grading of an algebra.

Let us consider the mapping A1 ⊗ A1 → A0 defined by x ⊗ y �−→ xy ; its
image is an ideal of A0 . We say that the grading of A is regular if this mapping
is surjective onto A0 . The importance of this concept of regularity is explained in
the next theorem, which has already been applied to Clifford algebras.

Theorem 5.1. If the algebra A = A0⊕A1 is provided with a regular parity grading,
the category of graded A-modules is equivalent to the category of A0-modules.

Indeed if S is a graded A-module, S0 is an A0-module, and conversely with ev-
ery A0-module S0 is associated a graded A-module A ⊗A0 S0 , the even compo-
nent of which is canonically isomorphic to S0 as an A0-module. Every graded
morphism S → S′ induces a morphism S0 → S′

0 and conversely every (A0-
linear) morphism ϕ0 : S0 → S′

0 extends to a graded morphism ϕ : S → S′; if
(µ1, ν1, µ2, ν2, . . . , µk, νk) is a sequence of elements of A1 such that

∑
j µjνj = 1,

then, for every s ∈ S1,

ϕ(s) =
∑

j

ϕ(µjνjs) =
∑

j

µj ϕ0(νjs) ;

thus we realize that ϕ is determined by ϕ0 in a unique way; and when ϕ0 is given,
it is easy to prove that the graded extension ϕ resulting from the above equality
is actually A-linear. Moreover ϕ is injective (resp. surjective) if and only if ϕ0 is
injective (resp. surjective).

Even without any assumptions on M and f , it is clear that B(M, f) is the
direct sum of K (the subalgebra generated by its unit element 1) and the ideal
M B(M, f) = B(M, f)M generated byM ; indeed B(M, f) is the quotient of T(M)
by some ideal J(M, f) contained in the ideal

⊕
k>0 Tk(M). Since B1(M, f) ⊂

M B(M, f), there is no invertible elements in B1(M, f), and the grading of B(M, f)
is never regular.

Let us suppose that P is a finitely generated and projective K-module. It is
known that every module over End(P ) is isomorphic to P ⊗V for some K-module
V ; you must understand that ϕ(x⊗ v) = ϕ(x)⊗ v for all ϕ ∈ End(P ), x ∈ P and
v ∈ V . WhenK is a field, this means that every module over End(P ) is a direct sum
of irreducible modules all isomorphic to P . When P is a graded module P0 ⊕ P1 ,
there is a parity grading on End(P ) such that the formula ∂(ϕ(x)) = ∂ϕ + ∂x
holds for all homogeneous ϕ ∈ End(P ) and x ∈ P ; thus End0(P ) is isomorphic to
End(P0) × End(P1). The grading of End(P ) is regular if and only if the ranks of
P0 and P1 are both ≥ 1. If it is regular, from Theorem (5.1) we can deduce that
every graded module over End(P ) is isomorphic to (P ⊗U)⊕ (P † ⊗ V ) for some
pair (U, V ) of trivially graded K-modules (such that ∂u = ∂v = 0 for all u ∈ U
and v ∈ V ); we could also write P ⊗ (U ⊕V †). Here P and P † are not isomorphic
as graded modules, and the correspondence (U, V ) ←→ (P ⊗ U) ⊕ (P † ⊗ V ) is
an equivalence between the category of pairs of K-modules and the category of
graded End(P )-modules.
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After these preliminaries we assume that f is a nondegenerate symmetric
bilinear form on a finitely generated projective module M of constant rank n, with
n = 2m or n = 2m− 1 according to its parity. Theorem (3.4) states that B(M, f)
is a direct sum of m+ 1 graded ideals isomorphic to End(Ek) for k = 0, 1, . . . ,m
when n = 2m, isomorphic to End(Ek) for k = 0, 1, . . . ,m− 1 and exceptionally to
Ω⊗ End(Em

0 ) when n = 2m− 1. Since E0 = K ⊕ 0, the first ideal is isomorphic
to K, and its grading is trivial. But all the other ideals have regular gradings. The
bijectiveness of the mapping Ω1 ⊗ Ω1 → K ensures the regularity of the grading
of Ω ⊗ End(Em

0 ), and from Theorem (5.1) we deduce that every graded module
over this algebra is isomorphic to Em ⊗ V for some (trivially graded) K-module
V . The bijectiveness of Ω1⊗Ω1 → K shows that the mapping Ω1⊗Ek → En+1−k

defined by µ⊗w �−→ µw is bijective; since the action of B(M, f) in E is Ω-linear,
it follows that the graded module (Ek)† ⊗∧n(M) (with a trivially graded factor∧n(M)) is isomorphic to En+1−k. When

∧n(M) is a free module, in particular
when K is a field (or a local ring), the graded modules (Ek)† and En+1−k are
isomorphic; yet Ek and En+1−k are never isomorphic when n+ 1− k �= k.

Only one of the m+ 1 ideals mentioned above is not provided with a regular
grading; let ε be the projection of 1 in this ideal; this means that Fε operates on
E0⊕En+1 as the identity, but annihilates all Ek with 1 ≤ k ≤ n. This idempotent
ε coincides with the idempotent ε0 that shall be calculated in the next section
when M is a free module,

Lemma 5.2. Among the idempotents of B(M, f), ε is characterized by these two
properties: first εa = aε = 0 for all a ∈ M ; secondly every equality λε = 0 with
λ ∈ K implies λ = 0. The complementary idempotent 1 − ε generates the ideal
M B(M, f); therefore this ideal can be treated as an algebra with unit element 1−ε,
provided with a regular grading. Every module S over B(M, f) is the direct sum of
the submodules εS and (1 − ε)S ; εS is the subset of all s ∈ S such that as = 0
for all a ∈M , and (1− ε)S is the K-submodule spanned by all as .

Proof. It is clear that Fa (with a ∈ M) annihilates E0 ⊕ En+1; consequently
Faε = Fεa = 0, whence aε = εa = 0. It is also clear that the mapping λ �−→ λε is a
bijection from K onto the ideal generated by ε. Conversely let ε′ be an idempotent
such that aε′ = ε′a = 0 for all a ∈ M . Since (1 − ε′)a = a, it follows that
M ⊂ (1−ε′)B(M, f) . Since B(M, f) = K⊕M B(M, f), we can write 1−ε′ = λ+x
with λ ∈ K and x ∈ M B(M, f); the equalities ε′(1 − ε′) = 0 and ε′M = 0 imply
λε′ = 0, and if this last equality implies λ = 0, we realize that 1−ε′ ∈M B(M, f).
We conclude that M B(M, f) = (1− ε′)B(M, f) . Now the equality ε = ε′ follows
from the fact that 1−ε and 1−ε′ are both equal to the unit element of the algebra
M B(M, f). The remainder of (5.2) is evident. �

It is clear that every graded module S over B(M, f) is a direct sum of m+ 1
graded modules over the m + 1 ideals mentioned above. We already know the
modules over the m regularly graded ideals. A graded module over the ideal Kε is
merely a graded K-module; since E0 (resp. En+1) is a module of constant rank 1
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in which all elements are even (resp. odd), a graded module over Kε is isomorphic
to (E0 ⊗ U) ⊕ (En+1 ⊗ V ) for some pair (U, V ) of trivially graded K-modules,
which is determined by this graded Kε-module up to isomorphy. Thus we have
proved this theorem.

Theorem 5.3. Every graded module S over B(M, f) is isomorphic to

n+1⊕

k=0

(Ek ⊗ Vk)

for some sequence (V0, V1, . . . , Vn+1) of trivially graded K-modules. The correspon-
dence (V0, V1, . . . , Vn+1)←→ S is an equivalence of categories.

When K is field, this means that every graded module over B(M, f) is a direct sum
of graded irreducible submodules, which are all isomorphic to one (and only one) of
the n+2 graded modules Ek. In particular B(M, f) is a graded semi-simple algebra.
Nevertheless B(M, f) is not a semi-simple algebra (in the non-graded sense) when
these three conditions are fulfilled: K is a field of characteristic 2, the dimension
n is odd, and the determinant of f is any basis of M has a square root in K ; thus
Ω1 contains an element µ such that µ2 = 1, whence (1 + µ)2 = 0 ; this prevents
the ideal isomorphic to Ω⊗ End(Em

0 ) from being semi-simple. Nevertheless since
1 +µ is neither even nor odd, this is not an obstruction to graded semi-simplicity.

Although our methods lead us naturally to graded modules, we can also tackle
the description of non-graded modules over B(M, f). If n = 2m, every module is
isomorphic to a direct sum

⊕m
k=0(E

k⊗Vk) of only m+1 direct summands. When
n = 2m − 1, the last summand (with k = m) must be replaced with Em

0 ⊗Wm

where Wm is a module over Ω. All these summands can receive a parity grading,
except Em

0 ⊗Wm which admits a parity grading if and only if Wm admits one as
an Ω-module.

When K is the field C of complex numbers, Ω is isomorphic to C × C if
we forget its grading; consequently there are two isomorphy classes of irreducible
modules over the ideal isomorphic to Ω ⊗ End(Em

0 ) ; these exceptional modules
(which cannot be graded, and which only exist when n is odd) were discovered
by Schrödinger before Kemmer managed to construct the ordinary irreducible
modules.

In the next proposition, K can be again an arbitrary ring.

Proposition 5.4. When 1 ≤ k ≤ n, the algebra morphism B(M, f) → End(Ek)
induces an injective mapping M → End(Ek).

Indeed for every v ∈ ∧k−1(M) we can write Fa(0, v) = (a∧ v, 0) ; when a �= 0, by
means of a basis of M (after localization if necessary) we can prove the existence
of some v ∈ ∧k−1(M) such that a ∧ v �= 0. �



Vol. 18 (2008) The Graded Structure of Nondegenerate Meson Algebras 215

6. The Center of B0(M, f)

The purpose of the sections §6 and §7 is to calculate the centers of the algebras
B0(M, f) and B(M, f) when M is a free module and f a nondegenerate symmetric
bilinear form. By localization we can always reduce the problem to the case of a
free module, and even to the case of a module provided with orthogonal bases
if 2 is invertible, or if n is odd. Nevertheless we begin with an arbitrary basis
(e1, e2, . . . , en) of M , and we assume it to be orthogonal only at the end (in §7),
when we look for the odd component of the center of B(M, f), since this odd
component is �= 0 only if n is odd. The nondegeneracy of f is equivalent to the ex-
istence of an adjoint basis (e′1, e

′
2, . . . , e

′
n) such that f(ei, e

′
i) = 1 for i = 1, 2, . . . , n,

and f(ei, e
′
j) = 0 whenever i �= j.

Lemma 6.1. The n products eie
′
i are idempotents which commute with one an-

other; similarly the n products e′iei are pairwise commuting idempotents. These
idempotents (and the complementary idempotents 1 − eie

′
i and 1 − e′iei ) satisfy

all these properties:

(a) ei (e′iei) = (eie
′
i) ei = ei , ei (1 − e′iei) = (1− eie

′
i) ei = 0 ,

e′i (eie
′
i) = (e′iei) e′i = e′i , e′i (1 − eie

′
i) = (1− e′iei) e′i = 0 ,

and when i �= j ,

(b) ei (e′jej) = (1− eje
′
j) ei , ei (1 − e′jej) = (eje

′
j) ei ,

e′i (eje
′
j) = (1− e′jej) e′i , e′i (1 − eje

′
j) = (e′jej) e′i .

Proof. The formulas (a) are direct consequences of aba = f(a, b) a ; they imply
that each eie

′
i or e′iei is an idempotent. The formulas (b) are direct consequences

of abc + cba = f(a, b)c + f(c, b)a ; they imply that the n idempotents eie
′
i are

pairwise commuting:

eie
′
i eje

′
j = ei (1 − e′jej) e′i = eje

′
j eie

′
i ;

similarly the n idempotents e′iei commute with one another. �

It follows from Lemma (6.1) that the n idempotents eie
′
i (resp. e′iei) generate

a commutative subalgebra C (resp. C′) in B0(M, f); by our definition of the word
“subalgebra”, the unit element 1 belongs to C and C′. If the basis (e1, . . . , en) is
orthogonal, then e′i = ei f(ei, ei)−1 and consequently C = C′. When n is even and f
is hyperbolic, we can use a hyperbolic basis (e1, . . . , en) such that f(ei, en+1−i) = 1
for i = 1, 2, . . . , n, and f(ei, ej) = 0 if i+ j �= n+ 1 ; then e′i = en+1−i and again
C = C′. But in general C �= C′.

Let us set N = {1, 2, 3, . . . , n} ; with every subset P of N we associate an
idempotent ε(P ) in C and an idempotent ε′(P ) in C′ :

ε(P ) =
∏

i∈P

eie
′
i

∏

j /∈P

(1− eje
′
j) , ε′(P ) =

∏

i∈P

e′iei

∏

j /∈P

(1− e′jej).
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Lemma 6.2. The subalgebra C (resp. C′) is a free module of rank 2n which admits
the family of all idempotents ε(P ) (resp. ε′(P )) as a basis. If P and Q are different
subsets of N , then

ε(P ) ε(Q) = ε′(P ) ε′(Q) = 0 .
Moreover when i /∈ P , then

ei ε
′(P ) = ε(P ) ei = e′i ε(P ) = ε′(P ) e′i = 0 ;

and when i ∈ P , then we consider Q = (N \ P ) ∪ {i} (whence conversely P =
(N \Q) ∪ {i} ) and thus we can write these commutation formulas:

ei ε
′(P ) = ε(Q) ei ε(P ) ei = ei ε

′(Q) ,

e′i ε(P ) = ε′(Q) e′i ε′(P ) e′i = e′i ε(Q) .

Proof. For each subset P of N , let α(P ) be the product of all eie
′
i with i ∈ P ;

in particular α(∅) = 1 and α(N) = ε(N) ; it is clear that C is spanned (as a
submodule) by the 2n idempotents α(P ). Because of Corollary (1.2) the elements
α(P ) belong to a basis of B(M, f), and consequently they constitute a basis of
C. Each ε(P ) is the sum of α(P ) and other terms ±α(Q) in which Q contains P
strictly; this implies that the 2n elements ε(P ) also constitute a basis of C. Similarly
the idempotents ε′(P ) constitute a basis of C′. When P �= Q, there is an integer
i ∈ N that belongs either to P or to Q, but not to P and Q, and the vanishing
of ε(P )ε(Q) follows from eie

′
i(1 − eie

′
i) = 0 ; similarly ε′(P )ε′(Q) = 0 . The other

formulas mentioned in Lemma (6.2) are direct consequences of the formulas (a)
and (b) of Lemma (6.1). �

For p = 0, 1, 2, . . . , n, we define an idempotent εp in C and an idempotent ε′p
in C′:

εp =
∑

card(P )=p

ε(P ) , ε′p =
∑

card(P )=p

ε′(P ) ;

it is also convenient to set εn+1 = ε′n+1 = 0 .

Lemma 6.3. The idempotents εp and ε′p belong to the center of B0(M, f), and for
all a ∈M ,

a ε′p = εn+1−p a , εp a = a ε′n+1−p ,

a εp = ε′n+1−p a , ε′p a = a εn+1−p .

When p �= n+1− p (resp. p = n+1− p ), the idempotent εp + εn+1−p (resp. εp)
belongs to the center of B(M, f) provided that ε′p = εp and ε′n+1−p = εn+1−p .

When p = 0, this last assertion means that ε0 belongs to the center of B(M, f) and
that aε0 = ε0 a = 0 ; but this already follows from Lemma (6.2) since ε0 = ε(∅).
Proof. Let us first derive the formula eiε

′
p = εn+1−pei from Lemma (6.2). Each

product eiε
′(P ) (with card(P ) = p) either vanishes if i /∈ P , or is equal to some

ε(Q)ei (with card(Q) = n+1− p ) if i ∈ P ; and similarly ε(Q)ei either vanishes if
i /∈ Q, or is equal to some eiε

′(P ) if i ∈ Q. The correspondence between the subsets
P and Q can be explained in this way: P \ {i} and Q \ {i} are complementary
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subsets of N \ {i} ; thus we get a bijection between the subsets P of N that have
cardinal p and contain i, and the subsets Q that have cardinal n + 1 − p and
contain i. This proves the first announced formula, and the other three ones are
quite similar. Since the algebra B0(M, f) is generated by all products eie

′
j (with

i, j ∈ N), it follows that each εp belongs to its center:

eie
′
j εp = ei ε

′
n+1−p e

′
j = εp eie

′
j .

The final assertion involving the center of B(M, f) is also clear. �
The previous lemmas have suggested the theorems stated in §3, under the

conjecture that these lemmas precisely revealed the center of B0(M, f) and the
even component of the center of B(M, f). When later the main theorem was estab-
lished, it showed that this conjecture was actually true, by means of the argument
that is now presented. In particular it confirmed that εp and ε′p were always equal,
and did not depend on the choice of the basis (e1, e2, . . . , en).

Now we continue the study of the idempotents under consideration with the
help of the algebra morphism B(M, f)→ End(E) (or x �−→ Fx) defined in §3. For
every subset P of N , we denote by êP (resp. ê′P ) the exterior product of all ei (resp.
e′i) with i ∈ P ; the order of the factors is (for instance) the increasing order of the
indices. Let us assume that x belongs to C ; when we calculate its operation Fx in
E0 =

∧
(M)⊕0, it is convenient to use the basis of

∧
(M) composed of all products

êP ; and when we calculate its operation in E1 = 0⊕∧
(M), it is convenient to use

the basis composed of all products ê′P . Of course if we calculated Fx with x ∈ C′,
we should get the same results after due modifications. The next lemma follows
from a straightforward calculation that does not deserve to be written up here;
and its corollary too is evident.

Lemma 6.4. When i belongs to P (a subset of N), the operation of eie
′
i in E maps

(êP , 0) to itself, and (0, ê′P ) to 0. When i does not belong to P , it maps (êP , 0) to
0, and (0, ê′P ) to itself.

Corollary 6.5. The operation of ε(P ) in E maps (êP , 0) and (0, ê′N\P ) to them-
selves, and annihilates all other (êQ , 0) and (0, ê′Q). The operation of εp is the
projection onto Ep

0 ⊕ En+1−p
1 that annihilates all Ek

0 such that k �= p, and all Ek
1

such that k �= n+ 1− p . When p �= n+ 1− p (resp. p = n+ 1− p ), the operation
of εp + εn+1−p (resp. εp) is the projection onto Ep ⊕ En+1−p (resp. Ep) that
annihilates all other components Ek.

From Theorem (3.5) we know that the center of B0(M, f) is a free module
that admits a basis composed of n + 1 idempotents; by the injective morphism
x �−→ Fx these idempotents give the operators on E0 that project E0 onto its
components Ek

0 . If we compare this information with Corollary (6.5), we reach
the next theorem.

Theorem 6.6. The idempotents εp (with p = 0, 1, 2, . . . , n) do not depend on the
choice of the basis (e1, e2, . . . , en), and they constitute a basis of the center of
B0(M, f).
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The reversion ρ maps each idempotent eie
′
i to e′iei , and consequently ρ(εp) =

ε′p for p = 0, 1, . . . , n. Since the bases (e1, . . . , en) and (e′1, . . . , e
′
n) give the same

idempotent εp = ε′p , we can add this corollary in which M may be more generally
a finitely generated projective module.

Corollary 6.7. The reversion ρ leaves invariant every element of the center of
B0(M, f).

7. The Center of B(M, f)

The even component of the center of B(M, f) immediately follows from Lemma
(6.3) and Theorem (3.4); yet we must separate two cases according to the parity
of n. When n is even, we write n = 2m, an we already know the center of B(M, f)
since all its elements are even. When n is odd, we write n = 2m− 1, and we have
still to calculate the odd component of the center of B(M, f) which is a module of
constant rank 1. In all cases, ε0 is a central idempotent that generates an ideal of
dimension 1, and the supplementary ideal (1− ε0)B(M, f) is the ideal M B(M, f)
generated by M .

Theorem 7.1. When n = 2m, the center of B(M, f) is a free module of rank m+1
with basis

( ε0 , ε1 + εn , ε2 + εn−1 , . . . , εm + εm+1 ) .
When n = 2m− 1, the even component of the center of B(M, f) is a free module
of rank m+ 1 with basis

( ε0 , ε1 + εn , ε2 + εn−1 , . . . , εm−1 + εm+1 , εm ) .

Before studying the odd central component when n = 2m− 1, we add some
results that are valid whatever the parity of n may be. We still consider a basis
(e1, . . . , en) of M , the adjoint basis (e′1, . . . , e′n), and the associated elements êN

and ê′N of
∧n(M). Let δ be the determinant of the matrix ( f(ei, ej)i, j∈N ); it

is clear that df (êN ) � ρ(êN) = δ and df (ê′N ) � ρ(êN ) = 1 ; we also know that
ρ(x) = (−1)k(k−1)/2x for all x ∈ ∧k(M), and consequently:

df (êN ) � êN = (−1)n(n−1)/2δ and êN = δ ê′N .

Since Ω1 is spanned by (0, êN) or (0, ê′N ), these formulas describe the algebra Ω. It
is also useful to know how these elements of Ω1 operate in E, and their operations
can be deduced from the next lemma. If P is a subset of N , if (i1, i2, . . . , ip) is the
increasing sequence of its elements, and (j1, j2, . . . , jn−p) the increasing sequence
of the elements ofN \P , then the signature of P is the signature of the permutation
(i1, i2, . . . , ip, j1, j2, . . . , jn−p). It is clear that sgn(N \ P ) = (−1)p(n−p)sgn(P ) .

Lemma 7.2. If P is a subset of N , and card(P ) = p, then

df (ê′P ) � êN = (−1)p(p−1)/2sgn(P ) êN\P and

df (êP ) � ê′N = (−1)p(p−1)/2sgn(P ) ê′N\P .
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This lemma follows from a straightforward calculation. We still recall the lemma
that allows us to suppose that the basis (e1, . . . , en) is orthogonal when n is odd
(and f always nondegenerate).

Lemma 7.3. If K is a local ring (or a field), and if M contains an element a such
that f(a, a) is invertible, then M admits orthogonal bases. When n is odd, or when
the image of 2 in K is invertible, such an element a always exists.

Proof. If such an element a does not exist, then f induces a symplectic form
over the residue field; consequently n is even and 2 is not invertible in K. When
such an element a exists, Lemma (7.3) follows from a classical induction on n.
Nevertheless when 2 is not invertible (and n > 2), it may happen that f(b, b) is
never invertible when b is orthogonal to a ; in this case there are two elements b
and c orthogonal to a such that f(b, c) = −f(a, a), and thus a+ b and a+ c are
orthogonal elements such that f(a+b, a+b) and f(a+c, a+c) are both invertible;
therefore the induction hypothesis holds for the hyperplane orthogonal to a + b
(instead of a). �

Now we suppose that n = 2m−1 and that (e1, . . . , en) is an orthogonal basis
of M .

If (a1, a2, . . . , ak) is a sequence of pairwise orthogonal elements of M , the
product a1a2 . . . ak is changed into the opposite element of B(M, f) if we permute
two factors ai and aj such that j − i is even. In particular, when k is odd, then
ak . . . a2a1 = (−1)(k−1)/2a1a2 . . . ak .

Up to the end of this section, P is a subset ofN of cardinalm. If (i1, i2, . . . , im)
is the sequence of the elements of P , and (j1, j2, . . . , jm−1) the sequence of the el-
ements of N \ P , we set

η(P ) = sgn(i1, j1, i2, j2, . . . , jm−1, im) ei1ej1ei2ej2 . . . ejm−1eim ;

because of the signature of the permutation (i1, j1, . . . , jm−1, im), this product does
not depend on the order of the elements of P or N \P in the sequence (i1, . . . , im)
or (j1, . . . , jm−1) ; when these sequences are both increasing, this signature is equal
to (−1)m(m−1)/2sgn(P ) , if sgn(P ) is defined as it is before (7.2).

Lemma 7.4. When i is an element of P , and Q = (N \ P ) ∪ {i} , then

ei η(P ) = η(Q) ei and η(P ) ei = ei η(Q) .

When j does not belong to P , then

ej η(P ) = η(P ) ej = 0 .

The idempotent ε(P ) and η(P ) span an algebra isomorphic to Ω :

ε(P ) η(P ) = η(P ) ε(P ) = η(P ) and η(P )2 = (−1)m−1δ ε(P ) .

But when Q is any subset of N other than P , then

ε(Q) η(P ) = η(P ) ε(Q) = 0 , and

η(Q) η(P ) = η(P ) η(Q) = 0 if card(Q) = m.
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Proof. When j does not belong to P , we can assume that j is the element j1 of
N \P , and the equality ej η(P ) = 0 follows from ejei1ej = 0 . We can also assume
that j = jm−1 ; thus we prove that η(P ) ej = 0 because ejeimej = 0 . When i
belongs to P , we can assume that i = i1 . Let us remember that

e2i ek = ek (f(ei, ei)− e2i ) and (f(ei, ei)− e2i ) ek = eke
2
i if k �= i ;

these equalities are the equalities (b) of Lemma (6.1) since ei = f(ei, ei) e′i . Thus
we realize that

e2i ej1ei2ej2 . . . ejm−1eim = ej1ei2ej2 . . . ejm−1eim e2i ,

and this is exactly the announced equality eiη(P ) = η(Q)ei . To prove that
η(P )ei = eiη(Q) , we would assume that i = im . The equalities ε(P )η(P ) = η(P )
and η(P )ε(P ) = η(P ) follow from the formulas (a) and (b) in Lemma (6.1). To
prove η(P )2 = (−1)m−1δ ε(P ) , we notice that δ is the product of the n factors
f(ei, ei), and we begin in this way:

η(P )2 = (−1)m−1 eimejm−1 . . . ej2ei2ej1ei1 ei1ej1ei2ej2 . . . ejm−1eim

= (−1)m−1δ eime
′
jm−1

. . . e′j2ei2e
′
j1 ei1e

′
i1 ej1e

′
i2ej2 . . . ejm−1e

′
im

= (−1)m−1δ (ei1e
′
i1) eime

′
jm−1

. . . e′j2ei2 e
′
j1ej1 e

′
i2ej2 . . . ejm−1e

′
im

= (−1)m−1δ (ei1e
′
i1)(1 − ej1e

′
j1) eime

′
jm−1

. . . e′j2 ei2e
′
i2 ej2 . . . ejm−1e

′
im

and so forth. . . ; by applying many times the formulas (b) in Lemma (6.1) we let
the factor ε(P ) appear after (−1)m−1δ . Now the last formulas in (7.4) are evident
since ε(P )ε(Q) = 0 whenever P �= Q ; indeed we can always replace η(P ) with
ε(P )η(P ) or η(P )ε(P ) . �

Now it is clear that we get an odd central element if we set

η =
∑

card(P )=m

η(P ) .

Theorem 7.5. When n = 2m − 1, the odd component of the center of B(M, f)
is spanned by η which belongs to the ideal generated by the idempotent εm . This
idempotent and η span an algebra isomorphic to Ω since η2 = (−1)m−1δ εm .
Besides, ρ(η) = (−1)m−1η .

This theorem, which is an immediate consequence of Lemma (7.4), does not
yet satisfy all our curiosity, since we may still wish to know the image of η by the
algebra morphism B(M, f)→ End(E).

Lemma 7.6. The endomorphism Fη of E maps all components other that Em to
0, and it operates in Em is the same way as the element (0, êN) of Ω.

Proof. If card(P ) = m, from Lemma (7.2) we deduce that the operation of (0, êN)
in E maps (ê′P , 0) to (−1)m(m−1)/2sgn(P )(0, êN\P ) . Since η(P ) = η(P )ε(P ), we
know that Fη(P ) annihilates all (ê′Q, 0) such that Q �= P (remember Corollary
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(6.5)). Consequently it suffices to verify that Fη(P ) maps (ê′P , 0) to the same el-
ement as (0, êN); this proves that the operations of η and (0, êN) coincides on
Em

0 and consequently on Em too, since they are both Ω-linear. If (i1, . . . , im) and
(j1, . . . , jm−1) are the increasing sequences of the elements of P and N \ P , the
signature of the permutation (im, jm−1, . . . , j2, i2, j1, i1) is (−1)m−1(−1)m(m−1)/2 ·
sgn(P ) . Let us set Fk = Fek

for every k ∈ N ; thus

(−1)m−1(−1)m(m−1)/2 sgn(P ) Fη(P )(ê′P , 0)

= FimFjm−1 . . . Fj2Fi2Fj1Fi1 (e′i1 ∧ e′i2 ∧ . . . ∧ e′im
, 0)

= Fim(ej1 ∧ ej2 ∧ . . . ∧ ejm−1 ∧ e′im
, 0)

= (−1)m−1 (0, ej1 ∧ ej2 ∧ . . . ∧ ejm−1).

between the second and third lines of this calculation, the identity FjFi(e′i∧v, 0) =
(ej ∧ v, 0) (which holds if df (ei) � v = 0) has been used (m − 1) times. The final
result confirms (7.6). �

8. Some Applications of the Previous Results

How can we recognize whether an algebra morphism H from B(M, f) into some
algebra A is injective? We still suppose that M is a projective module of constant
rank n provided with a nondegenerate symmetric bilinear form f , so that B(M, f)
is the direct sum of m+ 1 ideals isomorphic to End(Ek) for k = 0, 1, . . . ,m when
n = 2m, or isomorphic to End(Ek) for k = 0, 1, . . . ,m− 1, and to Ω ⊗ End(Em

0 )
when n = 2m− 1. Thus H is injective if its restriction to the center of B(M, f) is
injective. When n is even, this center contains only even elements, and if M is a
free module, it is contained in the algebra C defined just after Lemma (6.1). When
n is odd, we also assume that A is a graded algebra A0⊕A1 and that H is a graded
algebra morphism; thus the graded ideals of Ω⊗ End(Em

0 ) correspond bijectively
to the ideals of End(Em

0 ) (see Theorem (5.1)), which correspond bijectively to
the ideals of K. Consequently the injectiveness of H can be tested on the even
component of the center of B(M, f), which is still a subalgebra of C.
Proposition 8.1. When n is even, an algebra morphism H : B(M, f) → A is
injective if its restriction to the subalgebra C (defined in §6) is injective. When n
is odd, the same assertion holds true if H is a graded algebra morphism.

Let us apply this criterium of injectiveness to the well-known algebra mor-
phism D from B(M, f) into C�(M, f) ⊗ C�(M, f) which maps every a ∈ M to
(a⊗1+1⊗a)/2 . The definition of D requires 2 to be invertible in K ; the Clifford
algebra C�(M, f) is characterized by the relations a2 = f(a, a) for all a ∈M , and
the target of D is an ordinary tensor product, in which the product of x⊗ y and
x′ ⊗ y′ is xx′ ⊗ yy′ even if y and x′ are odd. The existence of D follows from the
identity

(a⊗ 1 + 1⊗ a) (b⊗ 1 + 1⊗ b) (a⊗ 1 + 1⊗ a) = 4f(a, b) (a⊗ 1 + 1⊗ a)
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and the universal property of B(M, f); besides, D is a graded algebra morphism.
These two formulas (with a, b ∈M) are often useful:
(a) D(2a2 − f(a, a)) = a⊗ a ;
(b) 4D(ab− ba) = (ab− ba)⊗ 1 + 1⊗ (ab− ba) .

The next theorem does not require f to be nondegenerate.

Theorem 8.2. If 2 is invertible in K, and if M is a finitely generated projective
module, the algebra morphism D from B(M, f) into C�(M, f)⊗C�(M, f) is injec-
tive.

Proof. If this theorem is true when f is nondegenerate, it holds for all symmetric
bilinear forms f . Indeed if f is degenerate, we can always embed (M, f) in a
larger object (M ′, f ′) such that f ′ is nondegenerate, and M ′ still projective and
finitely generated; we can choose for instance M ′ = M ⊕M∗. The injectiveness
of D′ (defined by means of (M ′, f ′)) implies the injectiveness of D. When f is
nondegenerate, by localization we can reduce the problem to the case of a module
M provided with an orthogonal basis (e1, e2, . . . , en). Thus C is the subalgebra
generated by all squares e2i , or equivalently by all 2e2i − f(ei, ei) ; these elements
satisfy the relations (2e2i − f(ei, ei))2 = f(ei, ei)2 , yet even without this piece of
information it is already clear that we get a basis of C if with every subset P of N
we associate the product of all 2e2i − f(ei, ei) with i ∈ P . By means of the above
formula (a) it is easy to realize that the elements of this basis of C are mapped to
linearly independent elements of C�(M, f)⊗ C�(M, f). �

Since C�(M, f)⊗ C�(M, f) is the tensor product of two graded algebras, its
even subalgebra may receive a parity subgrading for which the sub-even subalgebra
and the sub-odd submodule are respectively

C�0(M, f)⊗ C�0(M, f) and C�1(M, f)⊗ C�1(M, f) .

As an algebra, B0(M, f) is generated by the elements 2a2−f(a, a) and ab−ba ; the
above formulas (a) and (b) show that their images are respectively in C�1(M, f)⊗
C�1(M, f) and C�0(M, f) ⊗ C�0(M, f) . Because of the injectiveness of D, there
is also a parity subgrading on B0(M, f) ; it is the direct sum of a subalgebra
B0,0(M, f) that contains all elements ab − ba, and a submodule B0,1(M, f) that
contains all elements 2a2 − f(a, a). If an element x of B0(M, f) is homogeneous
for this parity subgrading, its subparity is denoted by ℘x.

Since each element in the image of D is invariant by the automorphism u⊗
v �−→ v⊗ u , the image of B1(M, f) by D is not the direct sum of its intersections
with C�0(M, f) ⊗ C�1(M, f) and C�1(M, f) ⊗ C�0(M, f) . Consequently it is not
sensible to look for a parity subgrading in B1(M, f).

Comments. (1) The first reliable proof of the injectiveness of D probably stems
from Jacobson, who considered the case of a module M provided with a finite
orthogonal basis. In his work about meson algebras, the injectiveness of D was the
starting point of almost all his main results; therefore his proof was much longer
and more arduous. After having proved its injectiveness, Jacobson considered the
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algebra morphism B(M, f) → C�(M, f) ⊗ C�(M, f) → End(C�(M, f)) in which
the second arrow maps every x ⊗ y to the operator z �−→ xz ρ(y) . Since 2 is
invertible in K, there is a canonical linear isomorphism

∧
(M) → C�(M, f) that

maps every a1 ∧ a2 ∧ . . . ∧ ak to a1a2 . . . ak when the vectors a1, . . . , ak are
pairwise orthogonal; thus we can derive from his method an algebra morphism
B(M, f) → End(

∧
(M)), and then our Theorem (3.4) can be deduced from his

results after some manipulations.
(2) The concept of “parity subgrading” in B0(M, f) appears here probably

for the first time. Despite initial hesitations, its relevance has been confirmed by
its usefulness in the next section, and by its usefulness in the subsequent work [H].
Among the first results of this work, it is stated that every ξ ∈ M∗ determines a
“twisted semi-derivation” of the algebra B(M, f), which is denoted by x �−→ ξ �x,
and which is characterized by these properties: ξ � a = ξ(a) , ξ � (ab) = ξ(a)b and

∀x ∈ B0,0(M, f)∪B0,1(M, f), ∀y ∈ B(M, f), ξ � (xy) = (ξ �x) y+(−1)℘x x (ξ � y).
There is no similar formula involving ξ � (xy) when x belongs to B1(M, f); this is
corroborated by the calculation of ξ � (abc) = ξ(a)bc+ ξ(c)(f(a, b)− ba) .

9. The Group Aut(M, f) in Characteristic �= 2

In all cases Aut(M, f) is the group of all linear transformations ϕ of M such that
f(ϕ(a), ϕ(b)) = f(a, b) for all a and b ∈M . HereM is a vector space of dimension n
over a field K of characteristic �= 2, and f is always nondegenerate; thus Aut(M, f)
is the classical orthogonal group of the quadratic form a �−→ f(a, a). The Cartan-
Dieudonné Theorem states that this group is generated by the reflections. Each
nonisotropic vector d ∈ M determines a reflection that maps every vector a to
a − 2f(a, d) d f(d, d)−1 .

Lemma 9.1. Let d be an element of M such that f(d, d) is invertible, and let us
set

z =
2 d2

f(d, d)
− 1 ∈ B0,1(M, f) ;

then z2 = 1 , ρ(z) = z , and for every a ∈M ,

a − 2f(a, d) d
f(d, d)

= −z a z .

Proof. The formula (a) in §8 shows that z belongs to B0,1(M, f). There is an
orthogonal basis (e1, e2, . . . , en) such that e1 = d, whence e′1 = d f(d, d)−1. This
implies that z = e1e

′
1 − (1 − e1e′1). Since e1e′1 is an idempotent, it follows that

z2 = 1. The equality ρ(z) = z is trivial. From the equalities (a) in Lemma (6.1)
we deduce that zdz = d, and from the subsequent equalities (b) we deduce that
zeiz = −ei for i = 2, 3, . . . , n ; therefore the mapping a �−→ −zaz is actually the
reflection with respect to the hyperplane orthogonal to d. �
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Theorem 9.2. Let G be the multiplicative subgroup of B0(M, f) generated by the
elements 2d2f(d, d)−1 − 1 mentioned in Lemma (9.1). Each element x ∈ G is
homogeneous for the parity subgrading of B0(M, f) defined after Theorem (8.2),
and satisfies these properties:

x−1 = ρ(x) and x− (−1)℘x ∈M B(M, f) .

Moreover we obtain a group isomorphism G → Aut(M, f) if we map every x ∈ G
to the linear transformation a �−→ (−1)℘xxax−1 .

Proof. Everything in (9.2) is an immediate consequence of (9.1), except the injec-
tiveness of the group morphism G → Aut(M, f). Even its surjectiveness is evident
since the orthogonal group Aut(M, f) is generated by the reflections. The injective-
ness of this group morphism follows from the injectiveness of the algebra morphism
D in Theorem (8.2). To understand this, we introduce two other groups G′ and
GLip(M, f) and three other group morphisms, which constitute this diagram:

G −→ Aut(M, f)
↓ ↑
G′ ←− GLip(M, f)

The group G′ is the image by D of the group G ; according to the formula (a) in §8,
it is the multiplicative subgroup of C�(M, f)⊗C�(M, f) generated by the elements

D

(
2d2

f(d, d)
− 1

)

=
d⊗ d
f(d, d)

.

Because of Theorem (8.2), the morphism G → G′ induced by D is an isomorphism.
Several definitions may be proposed for the Clifford-Lipschitz group GLip(M, f);
here we say that it is the multiplicative subgroup of C�(M, f) generated by the
elements d ∈ M such that f(d, d) is invertible. There is a group morphism from
GLip(M, f) into the group K× of invertible scalars that maps every w to wρ(w) =
ρ(w)w ; therefore there is a group morphism that maps every w ∈ GLip(M, f) to
the element w⊗w (wρ(w))−1 of C�(M, f)⊗C�(M, f) ; since it maps every generator
d of GLip(M, f) to d ⊗ d f(d, d)−1, it induces the surjective group morphism
GLip(M, f) → G′ mentioned in the diagram above. Finally there is a surjective
group morphism GLip(M, f)→ Aut(M, f) which maps every w ∈ GLip(M, f) to
the orthogonal transformation a �−→ (−1)∂wwaw−1; the image of every generator
d is the reflexion with respect to the hyperplane orthogonal to d, and this piece
of information shows that the above diagram becomes a commutative diagram
if we replace the morphism G → G′ with the reciprocal morphism G ← G′. The
injectiveness of the surjective morphism G → Aut(M, f) follows from the fact that
both surjective morphisms GLip(M, f) → Aut(M, f) and GLip(M, f) → G′ have
the same kernel, namely K×; this is a classical result for the first morphism, and
an easy assertion for the second morphism. �

It follows immediately from (9.1) and (9.2) that G is the union of its inter-
sections G0 and G1 with B0,0(M, f) and B0,1(M, f), and that the elements of Gi
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(with i = 0, 1) are mapped to orthogonal transformations with determinant (−1)i.
It is also clear that every ϕ ∈ Aut(M, f) extends to an automorphism of the alge-
bra B(M, f); if x is the associated element in G, this automorphism of B(M, f) is
precisely y �−→ (−1)℘x ∂y xyx−1.

Let us find the element ζ ∈ G that is mapped to −idM by the isomorphism
G → Aut(M, f). If (e1, e2, . . . , en) is an orthogonal basis of M , then −idM is the
product of the n reflections determined by the n vectors ei ; therefore ζ is the
(commutative) product of the n factors 2e2i f(ei, ei)−1 − 1 . Since each factor is
equal to eie

′
i− (1−eie

′
i) , the calculation of this product takes place in the algebra

C defined in §6, and lets soon appear the central idempotents εk of B0(M, f) :

ζ =
n∑

k=0

(−1)n−k εk .

When n is even, then ζaζ−1 = −a for all a ∈ M . Consequently, if ϕ is an
orthogonal transformation of determinant −1, there is an element x′ ∈ G1 (exactly
x′ = xζ ) such that ϕ(a) = x′ax′−1 for all a ∈M .

When n is odd, ζ belongs to the even component of the center of B(M, f),
which also contains an odd component spanned by the element η calculated in
§7. Let x be some element of G, and ϕ the associated orthogonal transformation.
The automorphism y �−→ (−1)℘x ∂yxyx−1 that extends ϕ, leaves η invariant when
℘x = 0 (whence det(ϕ) = +1 ), but maps η to −η if ℘x = 1 (whence det(ϕ) = −1 ).
Therefore ϕ is not the restriction to M of an inner automorphism y �−→ x′yx′−1

if det(ϕ) = −1.
Let us consider the Lie algebra aut(M, f) derived from the group Aut(M, f).

There is a linear bijection
∧2(M) → aut(M, f) that maps every bivector c ∧ d

to the skew symmetric operator a �−→ f(d, a)c − f(c, a)d . There is also a linear
mapping

∧2(M)→ B(M, f) that maps every c∧d to [c, d] = cd− dc ; let L be its
image. The following formula (the double bracket formula) soon appeared in the
physicist’s works, and to-day it is sometimes attributed to Green:

[ [c, d], a] = f(d, a) c− f(c, a) d ;
it easily follows from two applications of the formula abc+cba = f(a, b)c+f(c, b)a .
It leads to the following two propositions.

Proposition 9.3. The subspace L spanned by all [c, d] is a Lie subalgebra of B(M, f),
and there is a Lie algebra isomorphism L → aut(M, f) that maps every u ∈ L to
the skew symmetric operator a �−→ [u, a] .

Proof. The above double bracket formula shows that [u, a] belongs to M for all
u ∈ L and all a ∈ M . The classical formulas [u, [c, d]] = [[u, c], d] + [c, [u, d]] and
[[u, v], a] = [u, [v, a]] − [v, [u, a]] show that L is a Lie algebra, and that we have
defined a Lie algebra morphism from L into aut(M, f). Since the composition of
the surjective mappings

∧2(M)→ L and L → aut(M, f) is the classical bijection
∧2(M)→ aut(M, f), both mappings are even bijective. �
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Proposition 9.4. The Lie algebra L is the Lie algebra derived from the group G
defined in Theorem (9.2), and the Lie algebra isomorphism L → aut(M, f) is the
isomorphism derived from the group isomorphism G → Aut(M, f).

Proof. Let K ⊕ tK the quotient of the polynomial algebra K[t] by the ideal gen-
erated by t2. With every vector space V over K we also associate its extension
V ⊕ tV over this algebra K ⊕ tK ; an element of V ⊕ tV is denoted by a + tb
(with a, b ∈ V ) or even by a+ tb+O(t2) to recall that it is an expansion limited
to the order 1. The space L is spanned by all brackets [c, d] such that f(d, d) is
invertible. Let ϕ be the orthogonal transformation of M ⊕ tM that is the product
of the reflexions determined by d+ tc and d ; it maps every a ∈M to

a − 2f(a, d)
f(d, d)

d − 2f(a, d+ tc)
f(d+ tc, d+ tc)

(d+ tc) +
4f(a, d) f(d, d+ tc)

f(d, d) f(d+ tc, d+ tc)
(d+ tc) .

The automorphism of B(M, f)⊕tB(M, f) induced by ϕ is the inner automorphism
determined by

x =
(

2 (d+ tc)2

f(d+ tc, d+ tc)
− 1

) (
2 d2

f(d, d)
− 1

)

.

To simplify the expressions of ϕ(a) and x, we remember that

1
f(d+ tc, d+ tc)

=
1

f(d, d)
− 2t f(d, c)

f(d, d)2
+O(t2) ;

to simplify the expression of x we also remember that d3 = f(d, d)d and dcd =
f(d, c)d ; and for the expression of ϕ(a) we also need the double bracket formula
written before (9.3). After some calcultations we find that

x = 1 +
2t

f(d, d)
[c, d] +O(t2) and ϕ(a) = a+

2t
f(d, d)

[ [c, d], a] +O(t2) .

The conclusions follow. �

10. The Group Aut(M, f) in Characteristic 2

When K is a field of characteristic 2, the group of automorphisms of a nonde-
generate symmetric bilinear form f does not at all look like the orthogonal group
of a nondegenerate quadratic form; it seems that such a group Aut(M, f) has
never been seriously studied except when f is a symplectic form (a nondegenerate
alternate bilinear form), and when Aut(M, f) is one of the classical symplectic
groups. When f is symplectic, the dimension n of M is even, and the dimension
of Aut(M, f) is n(n+ 1)/2 .

In all cases we first look at the quadratic form a �−→ f(a, a) which is always
degenerate. It is a semi-linear function M → K, in other words,

f(a+ b, a+ b) = f(a, a) + f(b, b) and f(λa, λa) = λ2f(a, a) ;

consequently the subset M0 of all isotropic vectors a (such that f(a, a) = 0) is a
vector subspace of M . Let n0 be its dimension. When n0 = n, then f is alternate.
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When f is not alternate, the equality n0 = n − 1 means that f(a, a) f(b, b) has
a square root in K for all a, b ∈ M . When n0 = 0, then f is called anisotropic,
the mapping a �−→ f(a, a) is injective, and consequently the group Aut(M, f)
is reduced to the only element idM . The dimension of Aut(M, f) (which can be
defined at least if K is infinite) depends only on n0 according to this theorem.

Theorem 10.1. When K is a field of characteristic 2, the group Aut(M, f) (with
a nondegenerate f) is generated by the transformations derived from all couples
(λ, d) ∈ K ×M0 in this way:

a �−→ a + λ f(a, d) d .

The dimension of Aut(M, f) is n0(n0 + 1)/2 .

Before proving this theorem, we look at its consequences for the algebra B(M, f):
again this algebra contains a multiplicative group G isomorphic to Aut(M, f) by
an isomorphism involving the inner automorphisms associated with the elements
of G; moreover x− 1 belongs to the ideal M B(M, f) for every x ∈ G.
Theorem 10.2. Let G be the multiplicative group in B0(M, f) generated by all
1 + λd2 with d ∈ M0 and λ ∈ K. The equality ρ(x) = x−1 holds for every x ∈ G,
and we get a group isomorphism G → Aut(M, f) if we map every x ∈ G to the
linear transformation a �−→ xax−1.

Proof. When f(d, d) = 0, the equality d3 = 0 implies that the mapping λ �−→
1 + λd2 is a morphism from the additive group K into the multiplicative group of
invertible elements of B0(M, f); in particular (1 + λd2)−1 = 1 + λd2 = ρ(1 +λd2),
and consequently the equality x−1 = ρ(x) holds for every x ∈ G. It is easy to verify
that

a+ λf(a, d) d = (1 + λd2) a (1 + λd2) ;
because of Theorem (10.1), it follows that we get a surjective group morphism
G → Aut(M, f) if we map every x ∈ G to the transformation a �−→ xax−1. If an
element x of G belongs to the kernel of this morphism, it belongs to the center
of B0(M, f) which is spanned by the idempotents εi (with i = 0, 1, 2, . . . , n) such
that ρ(εi) = εi . Therefore x =

∑n
i=0 λiεi for some λi ∈ K, and the equality

ρ(x) = x−1 implies λi = λ−1
i for i = 0, 1, . . . , n, whence λi = 1 and x = 1. �

To prove Theorem (10.1), we consider the subspace M⊥
0 orthogonal to M0

and we choose a subspace P4 supplementary to M0 +M⊥
0 so that M becomes the

direct sum of

P1 = M0 ∩ P⊥
4 , P2 = M0 ∩M⊥

0 , P3 = M⊥
0 ∩ P⊥

4 and P4 ;

thus M0 = P1 ⊕ P2 and M⊥
0 = P2 ⊕ P3 . The subspaces P1, P3 and P2 ⊕ P4

are pairwise orthogonal. The restriction of f to P1 is a symplectic form f1 which
allows us to define a symplectic group Sp(P1, f1). The restriction of f to P3 ⊕ P4

is anisotropic, and its restriction to P2 is null. Yet f determines a duality between
P2 and P4.
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Proposition 10.3. If ψ is an automorphism of (M, f), then ψ(M0) = M0 , ψ(a) =
a for every a ∈M⊥

0 and ψ(a)−a ∈M0 for every a ∈M . Therefore there are four
linear mappings

ψ1 : P1 → P1 , ψ3 : P4 → P1 ,

ψ2 : P1 → P2 , ψ4 : P4 → P2

such that, for every (a1, a2, a3, a4) ∈ P1 × P2 × P3 × P4 ,

(a) ψ(a1 +a2+a3+a4) = (ψ1(a1)+ψ3(a4)) +(a2+ψ2(a1)+ψ4(a4)) +a3 +a4 .

Conversely a quartet of four mappings (ψ1, ψ2, ψ3, ψ4) like the previous ones de-
termines an automorphism ψ of (M, f) by means of the formula (a) if and only if
these three conditions are fulfilled, for all a1, b1 ∈ P1 and for all a4, b4 ∈ P4 :

(b) f(ψ1(a1), ψ1(b1)) = f(a1, b1) ;

(c) f(ψ1(a1), ψ3(b4)) = f(ψ2(a1), b4) ;

(d) f(ψ3(a4), ψ3(b4)) = f(ψ4(a4), b4) + f(a4, ψ4(b4)) .

Proof. If ψ is an automorphism of (M, f), the following assertions are clear:
ψ(M0) = M0 , ψ(M⊥

0 ) = M⊥
0 , ψ(P2) = P2 and ψ(a) − a ∈ M0 for every a ∈ M .

Since ψ induces the identity transformation on P4 modulo M0 and since f de-
termines a duality between P4 and P2 (which is orthogonal to M0), we realize
that ψ induces the identity transformation on P2. Since ψ(M⊥

0 ) = M⊥
0 , we know

that ψ(a3) − a3 ∈ P2 for every a3 ∈ P3 . Moreover both a3 and ψ(a3) are or-
thogonal to P4 because f(ψ(a3), ψ(a4)) = f(a3, a4) = 0 (for all a4 ∈ P4) and
f(ψ(a3), ψ(a4) − a4) = 0 (indeed ψ(a3) ∈ M⊥

0 and ψ(a4) − a4 ∈ M0). Since
ψ(a3)− a3 is an element of P2 that is orthogonal to P4, it vanishes. Thus we know
that ψ(a) = a for all a ∈ P2 ⊕ P3 = M⊥

0 . All this proves the first part of (10.3),
and the second part follows from straightforward calculations. �

Proof of (10.1). Let us set n1 = dim(P1) and n2 = dim(P2) = dim(P4). From
the conditions (b), (c), (d) in (10.3) we can immediately deduce the dimension of
Aut(M, f). Indeed (b) means that ψ1 belongs to the symplectic group Sp(P1, f1);
the dimension of this group is n1(n1 + 1)/2 . Then ψ3 is any element in the space
of linear mappings P4 → P1 ; the dimension of this space is n1n2 . When ψ1 and
ψ3 are chosen, (c) determines ψ2 in a unique way. Since f1 is an alternate form, for
every ψ3 we can find some ψ4 satisfying (d), but in general this ψ4 is not unique,
since to it we can add any ψ′

4 : P4 → P2 such that

∀a4, b4 ∈ P4, f(ψ′
4(a4), b4) + f(a4, ψ

′
4(b4)) = 0 ;

this condition lets ψ′
4 run through a space of dimension n2(n2 + 1)/2 . Thus the

dimension of Aut(M, f) is

1
2
n1(n1 + 1) +

1
2
n2(n2 + 1) + n1n2 =

1
2
n0(n0 + 1) since n0 = n1 + n2.
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Now let ϕ and ψ be two automorphisms of (M, f) which we represent as
(ϕ1, ϕ2, ϕ3, ϕ4) and (ψ1, ψ2, ψ3, ψ4) as it is explained in (10.3). Then ϕ ◦ ψ is
represented by

ϕψ = ( ϕ1ψ1 , ϕ2ψ1 + ψ2 , ϕ1ψ3 + ϕ3 , ϕ4 + ψ4 + ϕ2ψ3 ) .

With this piece of information we can prove this assertion: the group Aut(M, f)
is generated by the union of three families (ψα)α∈A , (ψβ)β∈B and (ψγ)γ∈Γ such
that

ψα = (ψ1,α , 0, 0, 0), ψβ = (id , 0, 0, ψ4,β), ψγ = (ψ1,γ , ψ2,γ , ψ3,γ , ψ4,γ),

provided that the family (ψ1,α)α∈A generates the group Sp(P1, f1), that the family
(ψ4,β)β∈B generates the additive group of all ψ′

4 : P4 → P2 satisfying the condition
written above, and that the family (ψ3,γ)γ∈Γ generates the additive group of all
linear mappings P4 → P1 .

All the mappings a �−→ a+λf(a, d) d are automorphisms of (M, f) if f(d, d) =
0 . First we consider all those automorphisms in which d is an element d1 of P1 ;
thus we get automorphisms (ψ1, 0, 0, 0) such that ψ1(a1) = a1 + λf(a1, d1) d1 ;
a classical result of Symplectic Geometry says that all these symplectic trans-
formations of (P1, f1) generate its symplectic group. Secondly we suppose that
d is an element d2 of P2 ; then we get automorphisms (id, 0, 0, ψ4) such that
ψ4(a4) = λf(a4, d2) d2 ; it is not difficult to prove that all these ψ4 generate the
additive group of all ψ′

4 : P4 → P2 satisfying the condition written above. Thirdly
we suppose that d = d1 + d2 , and thus we get automorphisms (ψ1, ψ2, ψ3, ψ4)
such that ψ3(a4) = λf(a4, d2) d1 ; it is clear that all these ψ3 generate the additive
group of all linear mappings P4 → P1 . �
Remark. Let us assume that n0 = n − 1, because this assumption is always true
when the mapping λ → λ2 is surjective (therefore bijective) from K onto itself,
and when f is not symplectic. We still use the notations explained just before
Proposition (10.3). When n is odd, then M = P1 ⊕P3, and by restriction to P1 =
M0 we get an isomorphism from Aut(M, f) onto the symplectic group Sp(P1, f1).
When n is even, the situation is more sophisticated because M = P1 ⊕ P2 ⊕ P4 ;
here P2 and P4 are vector lines spanned by two vectors e2 and e4 to which we can
impose the relation f(e2, e4) = 1 . Let ψ = (ψ1, ψ2, ψ3, ψ4) be an automorphism
of (M, f), and let us set ψ(e4) = β + µe2 + e4 with β ∈ P1 and µ ∈ K ; thus ψ is
determined by (ψ1, β, µ) which can be any element of Sp(P1, f1)×P1×K ; indeed β
and µ determine ψ3 and ψ4, and then ψ2(a1) = f(ψ1(a1), β) e2 . If ϕ is determined
in the same way by (ϕ1, α, λ) (another arbitrary element of Sp(P1, f1)×P1×K ),
then ϕψ is determined by

(
ϕ1ψ1 , α+ ϕ1(β) , λ+ µ+ f(α, ϕ1(β))

)
.

11. Some Physical Considerations

Here M is a real vector space of dimension n =4, and f is positive definite (resp.
negative definite) on some subspaces of dimension 1 (resp. 3). Thus

∧4(M) con-
tains an element ω such that df (ω) �ω = −1, and Ω is isomorphic to C. The
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canonical bijection
∧

(M) → C�(M, f) allows us to identify ω with an element
of C�(M, f), and it is well known that the center of C�0(M, f) is the subalgebra
R⊕ Rω canonically isomorphic to Ω (if we forget the parity grading).

The usual Dirac equation involves functions ψ : M → S with values in a
module S over C�(M, f). If S is a graded module S0 ⊕ S1 , then S is determined
(up to isomorphy) by the module S0 over C�0(M, f) (see Theorem (5.1)). Since
the multiplication by ω in S0 is C�0(M, f)-linear, it extends to a C�(M, f)-linear
endomorphism i of S such that i2 = −1 (again Theorem (5.1)). Since ωµ = −µω
for all µ ∈ C�1(M, f), ω is not in the center of C�(M, f), and to calculate the
operation of i in S1 we use a sequence (µ1, ν1, . . . , µk, νk) of elements of C�1(M, f)
such that

∑
j µjνj = 1 ; for every s ∈ S1 we write

is =
∑

j

i(µjνjs) =
∑

j

µj(iνjs) =
∑

j

µj(ωνjs) =
∑

j

−ω(µjνjs) = −ωs ;

thus we come to this formula, valid for all s ∈ S0 ∪ S1 :

(a) is = (−1)∂s ωs .

Unfortunately the usual presentation by physicists is quite different: they intrude
an action of C in S with the pretext that anyhow such an action shall be necessary;
and much later they also pay some attention to Weyl spinors s which are either
“left-hand” (when ωs = is) or “right-hand” (when ωs = −is); but they do not
realize that this “chirality” is the parity grading of S that determines the intruded
complex structure according to the above formula (a). Here we prefer to define
S as a graded module over C�(M, f), and to avoid the perplexing intrusion of
imaginary numbers.

Now let us consider the wave equation corresponding to meson particles; it
involves a function ψ : M → S with values in a module S over B(M, f). Since the
presence of an electromagnetic potential raises no specific problem, we will forget
it. Here (e1, e2, e3, e4) is any basis of M , (e′1, e

′
2, e

′
3, e

′
4) is the adjoint basis defined

in §6, and ∂j (with j = 1, 2, 3, 4) is the partial derivative along ej ; since the tensor
∑4

j=1 e
′
j ⊗ ej does not depend on the choice of the basis of M , the differential

operator
∑4

j=1 e
′
j∂j (in which the factor e′j means the operation of e′j in S) does

not depend on it. Duffin proposed a wave equation quite similar to the usual Dirac
equation:

(b)
4∑

j=1

e′j∂jψ + κψ = 0 ;

the physical constant κ belongs to R or iR ; this point shall be discussed later.
We assume S to be a graded module over B(M, f); anyhow every module

over B(M, f) can be provided with a parity grading (see §5). Besides, when S is
provided with a grade automorphism σ (defined at the end of §4), the sign of κ
has no importance; indeed if ψ is a solution of the equation (b), then σ(ψ) is a
solution of the analogous equation in which κ is replaced with −κ . Theorem (5.3)
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here means that S is isomorphic to a direct sum of irreducible modules which are
each one isomorphic to one of the modules Ek (with k = 0, 1, 2, 3, 4, 5). There is
no natural action of C on any one of these irreducible modules; indeed B0(M, f)
and B(M, f) are direct sums of ideals in which the center is always isomorphic to
R (see (3.4) and (3.5)). But the action of B(M, f) in E is Ω-linear (see Theorem
(3.2)); thus we obtain modules provided with complex structures if we consider
E0 ⊕ E5 or E1 ⊕E4 or E2 ⊕ E3. Consequently we assume that S is a direct sum
of components which are each one isomorphic to one of these three modules. The
equation (b) splits into as many equations as there are such components in S ; thus
we can assume that S is one of these three modules. If S = E0⊕E5, the equation
(b) means that ψ = 0 (because κ �= 0); therefore we can assume that S is either
E1⊕E4 or E2⊕E3, with a parity grading that shall soon be discussed. Again no
intrusion of imaginary numbers is necessary, since the wanted complex structures
appear spontaneously by purely real geometrical constructions; nevertheless here
we can identify C with Ω, whereas such an identification is forbidden by the above
formula (a) in the usual Dirac case.

In physical applications every parity grading of S is equivalent to the shifted
grading (see §5 for the definition of the shifted module S†). Whereas in the usual
Dirac case we can hesitate only between one grading and the shifted grading, in the
meson case we can hesitate between two non equivalent gradings, which we call the
σ-grading and the στ -grading by referring to the associated grade automorphisms.
Beside σ (the same grade automorphism as in (4.1)) we also consider another
involutive transformation τ of E which here is interesting because the dimension
n of M is even; it is defined by the equality τ(s) = (−1)k s which is valid for all
s ∈ Ek. Since σ and τ commute, στ is also an involutive transformation.

Proposition 11.1. The three involutive transformations σ, τ and στ satisfy these
properties, for all s ∈ E and for all a ∈M :

σ(is) = −iσ(s) , τ(is) = −iτ(s) , στ(is) = iστ(s) ;

σ(as) = −aσ(s) , τ(as) = aτ(s) , στ(as) = −aστ(s) .
When S is E1⊕E4 or E2⊕E3, every involutive transformation of S that satisfies
the same properties as σ (resp. τ , resp. στ), is equal to ±σ (resp. ±τ , resp. ±στ).
Proof. All the six equalities are evident; the equality τ(is) = −iτ(s) follows from
iEk = En+1−k because here n is even, and the equality στ(as) = −aστ(s) shows
that E is a graded module over B(M, f) for the στ -grading too. Now let σ′ be an
involutive transformation of S that satisfies the same properties as σ (for instance).
The equalities σ′(is) = −iσ′(s) and σ′(as) = −aσ′(s) are equivalent to σσ′(is) =
iσσ′(s) and σσ′(as) = aσσ′(s) ; this means that σσ′ commutes whith the operation
of i in S, and with the operations of all a ∈ M . The subalgebra of EndR(S)
generated by all these operations is equal to EndC(S). Consequently σσ′ is the
multiplication by some λ ∈ C, and σ′(s) = λσ(s) (for all s). Since σ′2 = id, we
conclude that λ = ±1. �
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We continue to use the σ-grading as long as we have no serious reason to
prefer the στ -grading. The following features differentiate these gradings. When S
is provided with the σ-grading, it is isomorphic to the shifted module S†; indeed
each graded module Ek is isomorphic to (En+1−k)† by means of the operation
of any invertible odd element of Ω. When S is provided with the στ -grading, it
is equal to (E1)† ⊕ E4 or to E2 ⊕ (E3)†, therefore isomorphic to E4 ⊕ E4 or to
E2 ⊕ E2 ; moreover the operation of i becomes even as in the usual Dirac case.

For the equation (b) to be sensible for physicists, at least two problems must
be immediately settled. The first problem is the invariance of the equation (b) by
the action of the orthogonal group Aut(M, f). Let θ be an element of this group;
is there a linear transformation η of S that allows us to claim that a function
ψ : M → S is a solution of the wave equation (b) if and only if η ◦ ψ ◦ θ−1 is
a solution? The answer is exactly the same as in the usual Dirac case: if there is
an invertible x ∈ B(M, f) such that θ(a) = xax−1 for all a ∈ M , this property
holds if η is the operation of x in S. From §9 we know that such an x exists
for every θ ∈ Aut(M, f). Truly Theorem (9.2) contains a twisting factor (−1)℘x,
but after the proof of this theorem it is explained that we can omit it when the
dimension of M is even. To prove the invariance of the meson wave equation (b),
the physicists undertook infinitesimal calculations which were finally successful
after an intervention of the double bracket formula (written just before (9.3)); but
such an argument only reaches the neutral connected component of Aut(M, f),
and not the three other ones. Moreover Theorem (9.2) associates exactly one x
with every θ ∈ Aut(M, f), whereas in the usual Dirac case the situation is not
so easy: with every θ are associated two elements x in C�(M, f) if we impose the
extra condition x−1 = ±ρ(x) that confines x to the spin group.

Let us tackle the second problem: from every solution ψ of the equation (b)
we must derive a vector field V : M → M that satisfies this conservation law: its
divergence must vanish. This means:

(c)
4∑

j=1

∂j f(e′j , V ) = 0 .

As in the usual Dirac case we derive V from ψ by means of a quadratic mapping
S → M determined by some bilinear form g : S × S → R satisfying these three
properties: first it is symmetric; secondly g(is, t) = −g(s, it) for all s, t ∈ S ; thirdly
for all a ∈ M (and all s and t) either g(as, t) = g(s, at) (and then we set g = g1)
or g(as, t) = −g(s, at) (and then we set g = g2). Although the physicists prefer
the sesqui-linear form S × S → C defined by (s, t) �−→ g(s, t) + ig(is, t), the real
form g is quite sufficient.

Proposition 11.2. Let g1 and g2 be two bilinear forms S × S → R satisfying the
three conditions written above, let ψ be a function M → S, and V1 and V2 the
vector fields M →M defined in this way:

∀a ∈M, f(a, V1) = g1(aψ, ψ) and f(a, V2) = g2(aψ, iψ) .
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If ψ satisfies a wave equation (b) in which the constant κ is purely imaginary,
then V1 satisfies the conservation equation (c). If ψ satisfies a wave equation (b)
in which the constant κ is real, then V2 satisfies the conservation equation (c).

This statement can be verified by straightforward calculations; let us consider
the case of V1 :

∑

j

∂jf(e′j , V1) =
∑

j

∂jg1(e′jψ, ψ) =
∑

j

g1(e′j∂jψ, ψ) +
∑

j

g1(ψ, e′j∂jψ)

= −g1(κψ, ψ)− g1(ψ, κψ) = 0 if κ ∈ iR .

If you object that the vector field V defined by the identity f(a, V ) =
g1(aψ, iψ) also satisfies (c) when ψ satisfies (b) with κ ∈ R, we will remind you
that this definition of V implies V = −V , whence V = 0. Similarly the definition
f(a, V ) = g2(aψ, ψ) implies V = 0.

Now we must find bilinear forms g1 and g2 satisfying the required proper-
ties. In Proposition (4.1) we immediately recognize that (s, t) �−→ fE(σ(s), t) is
an example of a bilinear form g2 ; and from Proposition (11.1) we deduce that
(s, t) �−→ fE(τ(s), t) is an example of a bilinear form g1 .

Proposition 11.3. When S is equal to E1 ⊕ E4 or E2 ⊕ E3, the bilinear forms
g1 : S × S → R satisfying the three required properties constitute a vector space of
dimension 1 over R. The same assertion is true for the bilinear forms g2 .

Proof. We have already found a bilinear form g1 that satisfies the required proper-
ties, and that is nondegenerate; therefore if g′1 is another bilinear form S×S → R,
there is a R-linear mapping u : S → S such that g′1(s, t) = g1(u(s), t) (for all s and
t). The condition g′1(is, t) = −g′1(s, it) is equivalent to u(is) = iu(s) ; the condition
g′1(as, t) = g′1(s, at) is equivalent to u(as) = au(s) ; as we did in the proof of (11.1),
here we realize that u is the multiplication by some constant λ ∈ C. Finally the
condition g′1(s, t) = g′1(t, s) implies λ ∈ R. For the bilinear forms g2 the proof is
the same. �

It is not difficult to calculate V1 and V2 when g1 and g2 are the bilinear forms
proposed just before (11.3) When S = E1 ⊕ E4, there are two vector fields b and
c (M → M) and two functions λ and µ (M → R) such that ψ = (b, λ; iµ, ic) ; in
other words, b, λ, iµ, ic are the components of ψ in E1

0 , E1
1 , E4

0 , E4
1 . From the

equalities f(a, V1) = fE(τ(aψ), ψ) and f(a, V2) = fE(σ(aψ), iψ) we deduce:

V1 = −2λb− 2µc and V2 = 2µb− 2λc .

When S = E2 ⊕ E3, there are two vector fields b and c and two functions u
and v with values in

∧2(M) such that ψ = (u, b; ic, iv) ; this implies aψ = (a ∧
b , df (a) �u ; i(df (a) � v), i(a ∧ c)) , and after some calculations we find:

V1 = −2df (b) �u− 2df (c) � v and V2 = 2df (b) � v − 2df (c) �u .
In both cases there is no obvious relation between the vector fields V1 and

V2 ; nevertheless in the usual Dirac case there are important relations between
them. Let us remember that the propositions (11.2) and (11.3) hold true in this
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usual case too; with every (nondegenerate) bilinear form g1 (satisfying the three
required properties) is associated a bilinear form g2 defined by g2(s, t) = g1(ωs, t) ;
indeed the equality ωa = −aω holds in C�(M, f), and the operations of ω and i
in S commute. From the Fierz relations (which hold even if ψ does not satisfy the
Dirac equation) we can extract these relations involving the resulting vector fields
V1 and V2 :

f(V1, V1) = −f(V2, V2) ≥ 0 and f(V1, V2) = 0 .

The vector V1 is a Time-like vector that keeps a constant orientation; for a suitable
choice of g1 it is always oriented toward Future; this explains why the physicists
impose the conservation equation (c) to V1 . With every observer is associated a
unit vector e oriented toward Future, and with every function ψ : M → S this
observer associates a density function M → R that is equal to f(e, V1); since e and
V1 are both Time-like vectors oriented toward Future, this density is always ≥ 0.

The physicists well realized that in the meson case they could not derive from
ψ (a solution of the meson wave equation (b)) a vector field V that both satisfied
the equation (c) and allowed the definition of a nonnegative density. Since discus-
sions about the density are beyond our competence, we merely recall this piece
of information extracted from [K1] : “the density . . . is, of course, not necessarily
positive, but the discussion by Pauli and Weisskopf (1934) has proved that this is
in fact not a necessary requirement in the relativistic region”.

A last question deserves a discussion, especially since Duffin used the bilinear
form −f whereas here we prefer f like most physicists to-day: what happens
when f is replaced with −f ? Since we use modules S provided with a parity
grading, we use a category that is equivalent to the category of modules over
the even subalgebra (see Theorem (5.1)), provided that we refuse trivial modules
like E0 or E5 in the meson case (see Lemma (5.2)); thus there is no problem
since C�0(M,−f) (resp. B0(M,−f)) is canonically isomorphic to C�0(M, f) (resp.
B0(M, f)) by an isomorphism that maps every product ab of two vectors to −ab .
Every module over C�(M, f) or B(M, f) that is provided with a complex structure,
is naturally a module over C�(M,−f) or B(M,−f) too; indeed the operators s �−→
ias satisfy the condition that allows them to induce a representation of C�(M,−f)
or B(M,−f). Now every solution ψ of (b) is also a solution of

∑
j ie

′
j∂jψ+(iκ)ψ =

0 ; this shows that the constant κ in the wave equation (b) must be multiplied by
±i when f is replaced with −f . Because of Proposition (11.2) the vector field V1

must be replaced with V2 (or conversely), and g1 must be replaced with g2 (or
conversely). This conclusion is corroborated by this observation: since g2(ias, t) =
g2(s, iat), the behaviour of g2 with respect to the operators s �−→ ias is the same
as the behaviour of g1 with respect to the operators s �−→ as . Besides, in the
meson case we deduce from Proposition (11.1) that τ behaves with respect to the
operators s �−→ ias like σ with respect to the operators s �−→ as, and it is clear
that g1 is related to τ in the same way as g2 to σ. Without any reference to the
operators s �−→ ias, it is also known that in the usual Dirac case, which requires a
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Time-like vector field V oriented toward Future, this property is satisfied by ±V2

when f is replaced with −f .
Duffin used −f and proposed a meson wave equation (b) with a real con-

stant κ, and his choice was based on the physical argument presented by Proca;
consequently here we must write a wave equation (b) with a constant κ in iR, and
we must choose the vector field V1 as in the usual Dirac case.
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[F] H. Frölich, Ch. Terreaux, Isobaric spin algebra. Nuclear Physics 42 (1963), 21-26.

[H] J. Helmstetter, Interior Multiplications and Deformations with Meson Algebras.
Advances in Applied Clifford Algebras 18 (2008), 153-196.

[J] N. Jacobson, Structure and representations of Jordan algebras. Amer. Math. Soc.,
Colloquium Publications 39, Providence RT, 1968.

[K1] N. Kemmer, The particle aspect of meson matrices. Proc. Royal Soc. London,
Serie A, 173 (1939), 91-116.

[K2] N. Kemmer, The algebra of meson matrices. Proc. Cambridge Phil. Soc. 39 (1943),
189-196.

[L] D.E. Littlewood, An equation of Quantum Mechanics. Proc. Cambridge Phil. Soc.
43 (1947), 406-413.

[MR] A. Micali, M. Rachidi, On meson algebras. In Proceedings of ICCA7 (Toulouse,
May 2005), Advances in Applied Clifford Algebras, (2008).

[OK] Y. Ohnuki, S. Kamefuchi, Quantum field theory and Parastatistics. University of
Tokyo Press, Springer-Verlag 1982.

[PP] D.N. Poenaru, Alexandru Proca, the great physicist. arXiv:physics/0508195v1
[physics.hist-ph] 26 Aug. 2005.
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Université Grenoble I
Institut Fourier (Mathématiques)
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