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Abstract. This paper is intended to investigate Grassmann and Clifford al-
gebras over Peano spaces, introducing their respective associated extended
algebras, and to explore these concepts also from the counterspace viewpoint.
The presented formalism explains how the concept of chirality stems from
the bracket, as defined by Rota et all [1]. The exterior (regressive) algebra is
shown to share the exterior (progressive) algebra in the direct sum of chiral
and achiral subspaces. The duality between scalars and volume elements, re-
spectively under the progressive and the regressive products is shown to have
chirality, in the case when the dimension n of the Peano space is even. In other
words, the counterspace volume element is shown to be a scalar or a pseu-
doscalar, depending on the dimension of the vector space to be respectively
odd or even. The de Rham cochain associated with the differential operator
is constituted by a sequence of exterior algebra homogeneous subspaces sub-
sequently chiral and achiral. Thus we prove that the exterior algebra over
the space and the exterior algebra constructed on the counterspace are only
pseudoduals each other, if we introduce chirality. The extended Clifford alge-
bra is introduced in the light of the periodicity theorem of Clifford algebras
context, wherein the Clifford and extended Clifford algebras C�p,q can be
embedded in C�p+1,q+1, which is shown to be exactly the extended Clifford
algebra. We present the essential character of the Rota’s bracket, relating it
to the formalism exposed by Conradt [25], introducing the regressive product
and subsequently the counterspace. Clifford algebras are constructed over the
counterspace, and the duality between progressive and regressive products is
presented using the dual Hodge star operator. The differential and codiffer-
ential operators are also defined for the extended exterior algebras from the
regressive product viewpoint, and it is shown they uniquely tumble right out
progressive and regressive exterior products of 1-forms.
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Introduction

Grassmann1 and Clifford algebras have played an essential role in modern physics
(see, e.g., [2, 3, 4]) since their discovery [15]. This work is intended to give a precise
mathematical formulation of the concept of chirality associated with these alge-
bras, which is defined as a multiplication by a pseudoscalar2 ε that satisfies ε2 = 1.
The mathematical description of chirality has fundamental importance, particu-
larly in the context of the extended Clifford algebras to be presented here, and it
may bring a deep understanding of Nature. Our viewpoint shed some new light
on these old fundamental concepts, and can be applied immediately to physics.
In particular the formulation of electromagnetic theory [2, 14] in this formalism
is more natural, correct, precise and geometrically sensible if differential forms
intrinsically endowed with chirality are used. The metric-free formulation of elec-
trodynamics brings a geometric character and a clear physical interpretation, and
the formalism exhibited in some manuscripts [5] motivates the formulation using
the Rota’s bracket. The (Rota’s) bracket, a pseudoscalar that gives chirality to
differential forms and multivectors in the Grassmann and Clifford algebras over a
Peano space, is presented. Although the extended Grassmann algebra formalism
has a didactic explanation for instance in Jancewicz’s paper [5], in the light of the
Rota’s bracket this formalism can be alternatively explored, by introducing the re-
gressive product [15, 25]. After defining chiral differential forms, which changes sign
under orientation change, the extended exterior algebra is defined and discussed,
constructed as a direct sum of two copies (chiral and achiral) of exterior algebras.
We present the quasi-Hodge dual star operators and their chiral partners. After
introducing a metric in the Peano space, the extended Grassmann and Clifford
algebras are introduced together with the chiral dual Hodge star operators. The
regressive product is defined together with the concept of counterspace, preserving
the principle of duality [25, 6]. An analogue of the Morgan law to the Grassmann-
Cayley algebra, defined to be the Grassmann extended algebra endowed with the
regressive product, is also investigated, and the counterspace volume element is
shown to be scalar or pseudoscalar, depending on the space dimension to be, re-
spectively, odd or even. The de Rham cochain, generated by the codifferential
operator related to the regressive product, is composed by a sequence of exterior
algebra homogeneous subspaces that are subsequently chiral and achiral. This is
an astonishing character of the formalism to be presented, since the duality be-
tween exterior algebras associated respectively with the space and counterspace is
irregular, in the sense that if we take the exterior algebra duality associated with
the space, we obtain the exterior algebra associated with the counterspace, but
the converse produces the space exterior algebra, which homogeneous even [odd]
subspaces are chiral [achiral], depending on the original vector space dimension

1Grassmann algebras are defined as exterior algebras endowed with a metric structure. In this
sense exterior algebras are vector spaces (endowed with the wedge product) devoid of a metric.
2Pseudoscalars are scalars that change sign under orientation change, and this denomination is
not to be confused with pseudoscalars as elements of Λn(V ).



Vol. 16 (2006) Extended Grassmann and Clifford Algebras 105

(see eq.(7.6) below). The present formalism explains how the concept of chirality
stems from the bracket defined by G.-C. Rota [1].

Denoting
o

V the chiral vector space associated with V , the embedding of a

vector space V in the vector space V ⊕
o

V is necessary in order to be possible to
correctly introduce extended Clifford algebras. The units respectively associated

with the field R and
o

R, over which V and
o

V are constructed, are considered to be

distinct, as the metrics in each one of these spaces. Besides, the metric in V ⊕
o

V

that takes values in distinct subspaces of V ⊕
o

V is defined to be identically null,
otherwise it can be shown several inconsistencies in the formulation. In a natural
manner, the metric in V ⊕

o

V is the (direct) sum of the metrics in V and
o

V . The

unit of V ⊕
o

V is the sum of the units of V and
o

V . As V � R
p,q, each of the objects

acting on V ⊕
o

V are shown to be elements of the Clifford algebra C�p+1,q+1, which
is essentially the extended Clifford algebra.

The regressive product is introduced together with the counterspace, provid-
ing a formal pre-requisite to define Clifford algebras over the counterspace [25],
illustrating in this way the counterspace dual character. Dualities and codualities
are defined in space and counterspace, from the use of the dual Hodge star operator.
The dual character of contraction operators, defined in space and counterspace,
is also established, following Conradt’s route [25]. The codifferential operator is
uniquely defined in terms of the regressive and progressive exterior products.

This paper is organized as follows: after presenting algebraic preliminaries
in Section 1, in Section 2 the Rota’s bracket and Peano spaces are introduced.
In Section 3 we present the extended exterior algebra and the chiral quasi-Hodge
star operators. In Section 4 the extended Grassmann and Clifford algebras, in the
context of the Periodicity Theorem, are defined, and in Section 5 the embedding
of a vector space in the extended vector space is considered, after which in Sec-
tion 6 the regressive product is introduced. In Section 7 the chiral counterspace
is defined and investigated together with its constituents, the differential coforms.
Besides, the counterspace volume element with respect to the regressive product is
undefined to be a scalar or a pseudoscalar until we specify whether the dimension
of the Peano space is respectively odd or even, by showing that the volume ele-
ment constructed from a cobasis of the counterspace is a scalar or a pseudoscalar,
depending on the vector (Peano) space dimension. In Section 8 Clifford algebras
over the counterspace are constructed, and in Section 9 the duality and coduality
principles are introduced in space and counterspace, showing a close relation in-
volving the regressive and progressive products, and the dual Hodge star operator.
Also, the contraction in counterspace, after defined, is investigated in the light of
the duality and coduality. Finally in Section 10 the differential and codifferential
operators are introduced in the counterspace context, in an alternative extended
formalism.
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1. Preliminaries

Let V be a finite n-dimensional real vector space. We consider the tensor algebra⊕∞
i=0 T

i(V ) from which we restrict our attention to the space Λ(V ) =
⊕n

k=0 Λk(V )
of multicovectors over V . Λk(V ) denotes the space of the antisymmetric k-tensors,
the k-forms. Given ψ ∈ Λ(V ), ψ̃ denotes the reversion, an algebra antiautomor-
phism given by ψ̃ = (−1)[k/2]ψ ([k] denotes the integer part of k). ψ̂ denotes the
main automorphism or graded involution, given by ψ̂ = (−1)kψ. The conjugation
is defined as the reversion followed by the main automorphism. If V is endowed
with a non-degenerate, symmetric, bilinear map g : V × V → R, it is possible to
extend g to Λ(V ). Given ψ = u1 ∧ · · · ∧ uk and φ = v1 ∧ · · · ∧ vl, ui,vj ∈ V ,
one defines g(ψ, φ) = det(g(ui,vj)) if k = l and g(ψ, φ) = 0 if k �= l. Finally, the
projection of a multivector ψ = ψ0 + ψ1 + · · · + ψn, ψk ∈ Λk(V ), on its p-vector
part is given by 〈ψ〉p = ψp. The Clifford product between w ∈ V and ψ ∈ Λ(V )
is given by wψ = w ∧ ψ + w · ψ. The Grassmann algebra (Λ(V ), g) endowed with
this product is denoted by C�(V, g) or C�p,q, the Clifford algebra associated with
V � R

p,q, p+ q = n.

2. Peano Spaces

Let V be an n-dimensional vector space over a field3
R. A basis {ei} of V is chosen,

and V ∗ denotes the dual space associated with V , which has a basis {ei} satisfying
ei(ej) = δij . Since dim V ∗ = dim V , there exists a non-canonical isomorphism
between V and V ∗. A Peano space is a pair (V, [ ]), where [ ] is an alternate
n-linear form over R, the bracket, defined as the map [ ] : V × V × · · · × V

︸ ︷︷ ︸
n times

→ R

with the properties:
1. For all w1,w2 ∈ V and µ, ν ∈ R,

[v1, . . . ,vi−1, µw1 + νw2,vi+1, . . . ,vn] = µ[v1, . . . ,vi−1,w1,vi+1, . . . ,vn]
+ ν[v1, . . . ,vi−1,w2,vi+1, . . . ,vn];

2. [v1,v2, . . . ,vn] = sign(σ)[vσ(1) ,vσ(2), . . . ,vσ(n)], where σ is a permutation of
the set {1, 2, . . . , n}.
Indeed, the bracket is an element of Λn(V ). A Peano space is called stan-

dard if there exists a basis {ui} of vectors in V such that [u1,u2, . . . ,un] �= 0
[16]. Unless otherwise stated we assume standard Peano spaces and they shall be
denoted uniquely by V . The vectors w1 and w2 are linearly independent if there
exists n − 2 vectors u3, . . . ,un such that [w1,w2,u3, . . . ,un] �= 0. If another ba-
sis {vi} of V is taken, its bracket in terms of the bracket computed at the basis
{ei} is given by [v1,v2, . . . ,vn] = det(vji ) [e1, e2, . . . , en], where vi = vji ej . The
number det(vji ) is positive [negative] if the bases {ei} and {vi} have the same

3Here we shall consider any field F with characteristic different of two. In particular the complex
field C could be used, but we prefer to use R in order to clarify the concepts to be introduced.
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[opposite] orientation, where the orientation in V is defined as a choice in Z2 of
an equivalence class of a basis in V , i.e., two basis are equivalent if they have the
same orientation. Any space V has only two possible orientations, according to
the sign of det(vji ) and any even permutation of basis elements induces the same
orientation. A basis {ei} can be transformed as ei 	→ Aei, where A ∈ Hom(V ) is
a preserving orientation homomorphism, and it still represents the same orienta-
tion, since the bracket is non-null. The basis {ei} is denominated a unimodular
basis if [e1, e2, . . . , en] = 1. But as Rota pointed out [1], the orientation can be
equivalently defined by an ordered sequence of vectors entering the bracket, and for
instance [e2, e1, . . . , en] = −1 (following from the 2nd property of bracket definition
above). Then the value assumed by the bracket on an ordered sequence of [unit]
vectors can assume negative and positive values [±1], defining two equivalence
classes, immediately related to the two possible values for orientation. Hereafter
we denote ε = [e1, e2, . . . , en]. The term ε2 does not change sign under orienta-
tion change and ε2 = 1. The map ε 	→ −ε corresponds to a orientation change
in V and it is clear that ε = [e1, e2, . . . , en] = (−1)i−1[ei, e1, e2, . . . , ěi, . . . , en],
where ěi means that ei is absent from the bracket. Since there is always a natu-
ral correspondence between a vector space V and its dual V ∗, all considerations
above can be asserted mutatis mutandis for V ∗, and hereon Rota’s bracket, now
defined as taking values at the dual space, by abuse of notation is also denoted by
[ ] : V ∗ × V ∗ × · · · × V ∗

︸ ︷︷ ︸
n times

→ R.

Consider now a canonically isomorphic copy of V ∗, denoted by
o

V ∗, with a
basis {oei}. This new basis maps vectors in pseudoscalars, according to the defini-
tion:

o
ei(ej) = (−1)i−1[ej , e1, e2, . . . , ěi, . . . , en] = εδij = εei(ej). (2.1)

We can write
o
ei = εei. (2.2)

Covectors of
o

V ∗ change sign under orientation change4. Multiplication by ε is

clearly an isomorphism between V ∗ and
o

V ∗.

3. The Extended Exterior Algebra

In this section we establish the notion of an extended exterior algebra, using the
pseudoscalar ε, and also chiral quasi-Hodge star operators are introduced.

4A chiral covector
o
ei is defined directly from its action on a vector of V and

o
ei( · ) = (−1)i−1[ · , e1, e2, . . . , ěi, . . . , en].
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3.1. The wedge product from the bracket

From a Peano (dual) space V ∗ an exterior algebra can be constructed, by intro-
ducing equivalence classes of ordered vector sequences, using the bracket [16].
Given ai,bi ∈ V ∗, two sequences are said to be equivalent, and denoted by
a1, . . . ,ak ∼ b1, . . . ,bk, if for any choice of covectors vk+1, . . . ,vn ∈ V ∗ it follows
that [a1, . . . ,ak,vk+1, . . . ,vn] = [b1, . . . ,bk,vk+1, . . . ,vn]. The wedge5 product
between two covectors ei, ej ∈ V ∗ is defined as the elements of the quotient space
T (V ∗)/J , where J denotes the bilateral ideal generated by elements of the form
a⊗ x⊗ x⊗ b, where x ∈ V and a, b ∈ T (V ). In what follows we write [16]

ei ∧ ej = ei ⊗ ej mod ∼ (3.1)

where ei ⊗ ej ∈ V ∗ ⊗ V ∗. For more details see [1, 16]. A k-covector is defined
inductively by the wedge product of k covectors, and each k-covector lives in
Λk(V ). The exterior algebra is naturally defined as being Λ(V ) =

⊕n
k=0 Λk(V ).

Analogously chiral k-covectors, elements of
o

Λk(V ), are defined as the wedge prod-

uct of elements in V ∗ and an odd number of elements in
o

V ∗. We also define
the chiral exterior algebra, which elements change sign under orientation change,

as
o

Λ(V ) :=
⊕n

k=0

o

Λk(V ). We denote Λ0(V ) = R (scalars),
o

Λ0(V ) = εR (pseu-

doscalars), Λ1(V ) = V ∗ and
o

Λ1(V ) =
o

V ∗. The extended exterior algebra is defined
as

Λ̆(V ) = Λ(V )⊕
o

Λ(V ). (3.2)

Such an algebra is Z2 × Z2-graded, where the first Z2-grading is related to the
differential forms6 chirality and the second one is related to the subspaces Λp(V ),
where p is either even or odd. The inclusions

Λk(V ) ∧ Λl(V ) ↪→ Λk+l(V ),
o

Λk(V ) ∧
o

Λl(V ) ↪→ Λk+l(V ),
o

Λk(V ) ∧ Λl(V ) ↪→
o

Λk+l(V )

hold. A differential form is said to be chiral if it is multiplied by ε, and conse-
quently every chiral form changes sign under orientation change. Obviously the

exterior algebra
o

Λ(V ) is chiral by construction. From eq.(2.2), multiplication by

the pseudoscalar ε gives a natural isomorphism between Λ(V ) and
o

Λ(V ). Achirla
forms are mapped in chiral forms through multiplication by ε in such a way that
o

Λk(V ) = εΛk(V ). From the relation ε2 = 1, the set {1, ε} generates the real alge-
bra D = R ⊕ R of hyperbolic (or perplex, or pseudocomplex, or Study) numbers
[4, 17, 18]. An element of D can be written as a + bε, a, b ∈ R. So the extended

5Grassmann [15] in his original work called this product the progressive product.
6Hereon it will be implicit that when we refer to differential forms, there is considered a manifold
M and its associated tangent space [cotangent space] TxM � V [Tx

∗M � V ∗] at a point x ∈M .
Then a differential form is an element of a section sec Λ(T ∗M) of the cotangent exterior bundle.
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exterior algebra

Λ̆(V ) = Λ(V )⊕
o

Λ(V ) = Λ(V )⊕ εΛ(V )

can be written as Λ̆(V ) = D⊗ Λ(V ). If a 2n-dimensional dual space is considered
(n achirla forms and n chiral forms), then only the exterior algebra generated by
the n achirla forms is needed, since the other (chiral) forms can be generated from
multiplication by ε.

Given an arbitrary basis {ei} of V , a chiral vector space
o

V is defined to be
the vector space spanned by vectors

o
ei := εei. In this sense, the same formulation

is valid both for vector fields and for differential forms.

3.2. Dual chiral quasi-Hodge isomorphisms

Consider an n-vector Θ = ae1 ∧ · · · ∧ en and an n-covector Υ = a′e1 ∧ · · · ∧ en,
where a and a′ are scalars. Denoting � the (left) contraction, we have the relation7:

Υ̃�Θ = aa′(en ∧ · · · ∧ e1)�(e1 ∧ · · · ∧ en) = aa′, (3.3)

such that

0 �= Υ̃�Θ =

{
> 0 if a > 0 and a′ > 0, or a < 0 and a′ < 0,
< 0 if a > 0 and a′ < 0, or a < 0 and a′ > 0.

The orientation of V can be related to the orientation of the dual V ∗. Both orien-
tations of V and V ∗, which are respectively determined by Θ and Υ, are said to be
compatible, if Υ̃�Θ > 0. Assuming the orientations of V and V ∗ to be compatible,
if we choose an orientation for one of these spaces, the orientation of the other one
is completely defined. In this case Υ is chosen such that Υ̃�Θ = 1.

Denoting Λk(V ) = Λk(V ∗) the space of k-vectors, the dual quasi-Hodge star
operators are defined as

	 : Λk(V ) → Λn−k(V )

ψk 	→ 	ψk = ψ̃k�Υ (3.4)

(	1 = Υ) and

	 : Λk(V ) → Λn−k(V )

ψk 	→ 	(ψk) = ψ̃k�Θ (3.5)

(	1 = Θ). It follows that 	 	 = 	 	 = (−1)k(n−k)1. Analogously we define the dual
chiral quasi-Hodge star operators

	ε : Λk(V ) →
o

Λn−k(V )

ψk 	→ 	ε(ψk) = εψ̃k�Υ (3.6)

7Hereafter we denote ψ̃ the main anti-automorphism of exterior algebras acting on a form ψ.
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(	ε1 = εΥ) and

	ε :
o

Λk(V ) → Λn−k(V )

εψk 	→ 	ε(εψk) = ψ̃k�Θ (3.7)

(	εε = Θ). Obviously 	ε = ε	 and 	ε = ε	.

4. The Extended Grassmann Algebra

By considering an isomorphism V � V ∗ a correlation is defined to be a linear map8

τ : V → V ∗, which induces a (bilinear, symmetric, non-degenerate) metric g :
V ∗ × V ∗ → R as g(ei, ej) = τ−1(ei)(ej) = gikek(ej) = gikδjk = gij . The extended
Grassmann algebra is defined to be the extended exterior algebra endowed with

the induced metric. Taking two copies of V ∗ (V ∗ and
o

V ∗), a correlation for each
one of these copies is defined:

τ : V → V ∗ o
τ : V →

o

V ∗

ei 	→ τ(ei) = gijej ei 	→ τ(ei) =
o
gij

o
ej = ε

o
gije

j

and the associated metrics are given by:

g : V ∗ × V ∗ → R
o
g :

o

V ∗ ×
o

V ∗ → R

(ei, ej) 	→ g(ei, ej) = gij (
o
ei,

o
ej) 	→ o

g(
o
ei,

o
ej) =

o
gij

The metrics
ε
g :

o

V ∗ × V ∗ → R and
�

g : V ∗ ×
o

V ∗ → R are defined to be
identically null, in such a way that

ε
g(εei, ej) = 0 =

�

g(ei, εej). (4.1)

Otherwise some inconsistencies arise.
Now, considering V � R

p,q the operators Υ : Λ̆(V ) → Λ̆(V ) admit a funda-
mental representation

ρ(Υ) =
(

Υ1 Υ2

Υ3 Υ4

)

, (4.2)

acting on elements
(
ψ
φ

)
, where ψ ∈ Λ(V ) and φ ∈

o

Λ(V ). The operators Υd (d =
1, . . . , 4) are elements of C�p,q defined by the maps

Υ1 : Λ(V )→ Λ(V ), Υ2 :
o

Λ(V )→ Λ(V ),

Υ3 : Λ(V )→
o

Λ(V ), Υ4 : Λ(V )→
o

Λ(V ). (4.3)

Using the periodicity theorem of Clifford algebras [3], that asserts C�p+1,q+1

� C�p,q ⊗ C�1,1 � C�p,q ⊗M(2,C), it is immediate that Υ ∈ M(2,R)⊗ C�p,q �
C�1,1 ⊗ C�p,q � C�p+1,q+1, and since it is well known that algebraic spinors as-
sociated with C�p+1,q+1 define twistors [7, 18], ideals of Λ̆(V ) are also useful to

8Indeed it is a non-canonical isomorphism.
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describe twistors, at least when dim V = 1, 2, 4, and consequently to investigate
their profound applications in physical theories [7, 8, 18, 9, 10, 11, 12, 13].

We obtain a representation ρ :
o

Λ(V ) → End Λ̆(V ) of the pseudoscalar ε ∈
o

Λ0(V ), as

ρ(ε) =
(

0 1
1 0

)

(4.4)

since ε changes the chirality of differential forms. Indeed, given ψ ∈ Λ(V ) and

φ ∈
o

Λ(V ),

ρ(ε)
(
ψ

φ

)

=
(

0 1
1 0

) (
ψ

φ

)

=
(
φ

ψ

)

∈ Λ(V )⊕
o

Λ(V ) � Λ̆(V ). (4.5)

Denoting the unit of R by 1 and the unit of
o

R by
o
1, they are to be represented

respectively by

ρ(1) =
(

1 0
0 0

)

, ρ(
o
1) =

(
0 0
0 1

)

, (4.6)

where each matrix is an element of C�p+1,q+1 with entries in C�p,q. The unit

associated with R⊕
o

R (the field over which V ⊕
o

V � D⊗V is construted) is given

by 1̆ = 1+
o
1, and can be represented by ρ(1̆) =

(
1 0
0 1

)

. Basis elements of V ∗ and
o

V ∗ are respectively represented as9

ρ(ei) =
(
ei 0
0 0

)

, ρ(
o
ei) =

(
0 0
0 ei

)

. (4.7)

When the pseudoscalar ε is represented as in eq.(4.4), some properties defining the
extended Clifford algebras are verified. The Clifford product is defined in V ∗ by

eiej + ejei = ρ−1

[(
ei 0
0 0

) (
ej 0
0 0

)

+
(
ej 0
0 0

) (
ei 0
0 0

)]

= ρ−1

(
eiej + ejei 0

0 0

)

= ρ−1

(
2g(ei, ej) 0

0 0

)

= 2g(ei, ej) 1, (4.8)

9Here we transit from V [
o
V ] to V ∗ [

o
V ∗], since there is a (non-canonical) isomorphism between

V and V ∗.
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and in
o

V by

o
ei
o
ej +

o
ej
o
ei = ρ−1

[(
0 0
0 ei

) (
0 0
0 ej

)

+
(

0 0
0 ej

) (
0 0
0 ei

)]

= ρ−1

(
0 0
0 eiej + ejei

)

= ρ−1

(
0 0
0 2g(ei, ej)

)

= 2g(ei, ej)
o
1, (4.9)

where the metrics in V ∗ and in
o

V ∗ can be respectively represented by

ρ(g) =
(
g 0
0 0

)

, ρ(
o
g) =

(
0 0
0 g

)

. (4.10)

The representations of g and
o
g are related by

ρ(g) =
(
g 0
0 0

)

=
(

0 1
1 0

) (
0 0
0 g

) (
0 1
1 0

)

= ρ(ε)ρ(
o
g)ρ(ε)−1, (4.11)

what shows that, analogously to conformal transformations in R
p,q [6, 19, 20, 21,

22], the metrics associated with spaces of different chirality are related by adjoint

representations. The extended metric ğ = g +
o
g in V ∗ ⊕

o

V ∗ is given by

ρ(ğ) =
(
g 0
0 g

)

. (4.12)

Chiral and achiral Clifford algebras are then introduced, in the context of the
periodicity theorem of Clifford algebras, from relations (4.8, 4.9) as

eiej + ejei = 2gij 1,
o
ei
o
ej +

o
ej
o
ei = 2

o
gij

o
1, (4.13)

ei
o
ej +

o
ejei = 0, (4.14)

where this last relation denotes definition given by eq.(4.1).
The algebra D ⊗ C�p,q can be shown not to be a Clifford algebra. Indeed,

considering C�1,0 � D � R ⊕ R, then D ⊗ C�1,0 � R ⊕ R ⊕ R ⊕ R, which is not
a Clifford algebra. It can be shown that all subalgebras of a Clifford algebra are
either Clifford algebras, or algebras of type D⊗C�r,s, or of type (D⊗D)⊗C�r,s [24].
It follows the importance of defining and investigating algebras of type D⊗C�p,q,
allowing us completely to classify all subalgebras of a Clifford algebra. Even though
D ⊗ C�p,q is not a Clifford algebra, as Clifford algebras were also defined in the
context given by eqs.(4.8, 4.9), it is possible to define a hyperbolic Clifford algebra,

over the vector space V ⊕
o

V � D ⊗ V , in the light of the formalism presented in
Sec. 5. For more details, see, e.g., [23].
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4.1. (Chiral) Hodge star operators

The vector spaces Λk(V ) [
o

Λk(V )] and Λn−k(V ) [
o

Λn−k(V )] have the same dimen-
sion, but it does not exist any canonical isomorphism between these spaces. Let Θ
be the volume element in V defined by Θ = |det τ |1/2e1 ∧ · · · ∧ en, where det τ is
given10 implicitly by

τ(e1∧e2∧· · ·∧en) = τ(e1)∧τ(e2)∧· · ·∧τ(en) = (det τ) e1∧e2∧· · ·∧en. (4.15)

The isomorphism given by the dual Hodge star operator 	 : Λk(V ) →
Λn−k(V ) [	 :

o

Λk(V ) →
o

Λn−k(V )] is defined from the quasi-Hodge star operators.

Since a correlation is defined as an isomorphism τ : Λk(V )→ Λk(V ) [τ :
o

Λk(V )→
o

Λk(V )], it follows that 	 ◦ τ−1 : Λk(V )→ Λn−k(V ) [	 ◦ τ−1 :
o

Λk(V )→
o

Λn−k(V )]

and 	 ◦ τ : Λk(V )→ Λn−k(V ) [	 ◦ τ :
o

Λk(V )→
o

Λn−k(V )]. Demand that

	 ◦ τ−1 = 	 ◦ τ, (4.16)

which occurs only when Θ is unitary. The Hodge star operator is defined as

	 = 	 ◦ τ−1 = 	 ◦ τ (4.17)

and more explicitly,

	1 = η, 	ψ = τ−1(ψ̃)�η, (4.18)

where ψ ∈ Λ̆(V ). The dual Hodge star operator 	 does not change the chirality

of forms. We define the chiral Hodge star operator as 	ε : Λk(V ) →
o

Λn−k(V )

[	ε :
o

Λk(V )→ Λn−k(V )], given by

	ε1 = εη, 	εψ = ετ−1(ψ̃)�η. (4.19)

We observe that 	ε = ε	 and 	ε naturally changes the chirality of forms.

5. Subspaces Embedding and Witt Bases

Consider the metric vector space (V ⊕
o

V , g), and denote u = u +
o
u, v = v +

o
v ∈

V ⊕
o

V . The metric g : (V ⊕
o

V )× (V ⊕
o

V )→
o

R is given by

g(u, v) = g(
o
u,v) + g(

o
v,u). (5.1)

Using the notation introduced in Sec. 4, the metric g can be represented as
(

0 g
g 0

)

.

10The notation τ is used to describe the map τ : V → V ∗ and its natural extension τ : Λk(V ) →
Λk(V ), without any distinction. It will be implicit which is each one of them in the text.
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Under the inclusion maps

iV : V → V ⊕
o

V i o
V

:
o

V → V ⊕
o

V

v 	→ v + 0
o
v 	→ 0 +

o
v

since V and
o

V are vector subspaces of V ⊕
o

V , it follows that

g(u + 0, 0 +
o
v) = g(u,

o
v), g(0 +

o
u,v + 0) = g(

o
u,v),

g(u + 0,v + 0) = g(0 +
o
u, 0 +

o
v) = 0,

and then V and
o

V are maximal totally isotropic subspaces of V ⊕
o

V . There exists

a basis {ei}ni=1 of V and a basis {oej}nj=1 of
o

V , satisfying

g(ei,
o
ej) = δij , g(ei, ej) = g(

o
ei,

o
ej) = 0. (5.2)

Motivated by the results in [23], asserting that

ξi = (
o
ei + ei)/

√
2, ξi+n = (

o
ei − ei)/

√
2, (5.3)

it is easy to see that the vectors {ξk}2nk=1 span
o

R
n,n, since for i, j = 1, . . . , n the

relations
g(ξi, ξj) = −g(ξi+n, ξj+n) = δij . (5.4)

hold. It is worthwhile to emphasize that g(ξi, ξk+n) = 0, 1 ≤ i, j ≤ n.

6. The Regressive Product

Given a representation of a k-covector ψ = a1 ∧ · · · ∧ ak, and {h1, h2, . . . , hr}
a set of non-negative integers such that h1 + h2 + · · · + hr = k, a split of class
(h1, h2, . . . , hr) of ψ is defined as a set of multicovectors {ψ1, . . . , ψr} such that
[1]

1. ψi = 1 if hi = 0 and ψi = ai1 ∧ · · · ∧ aihi , i1 < · · · < ihi , if hi �= 0;
2. ψi ∧ ψj �= 0;
3. ψ1 ∧ ψ2 ∧ · · · ∧ ψr = ±ψ.

(ψ) denotes the finite set of all the possible splits of the k-covector ψ. The regressive
product

∨ : Λk(V )× Λl(V ) → Λk+l−n(V )

(ψk, φl) 	→ ψk ∨ φl (6.1)

is defined as [1]

ψk ∨ φl =
∑

(ψ)

[ψk(1), φ
l] ψk(2) =

∑

(φ)

[ψk, φl(2)] φ
l
(1), if k + l ≥ n. (6.2)
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When k + l < n we have the trivial case ψk ∨ φl = 0. The bracket calculated
between two k-coforms is defined to be [1]

[a1 ∧ · · · ∧ ak,b1 ∧ · · · ∧ bk] = [a1, . . . ,ak,b1, . . . ,bk], if k + l = n, (6.3)

which is identically null when k + l �= n. Given ψ, φ, ζ ∈ Λ̆(V ) the following
properties are immediately verified:

1. (ψ ∨ φ) ∨ ζ = ψ ∨ (φ ∨ ζ),
2. ψ[k] ∨ φ[l] = (−1)[k][l]φ[l] ∨ ψ[k], [i] := n− i,
3. (ψ + φ) ∨ ζ = ψ ∨ ζ + φ ∨ ζ, ψ ∨ (φ+ ζ) = ψ ∨ φ+ ψ ∨ ζ,
4. ψ ∨ (aφ) = (aψ) ∨ φ = a(ψ ∨ φ), a ∈ R.

The following relations

ei ∨ (e1 ∧ · · · ∧ en) = [1, e1 ∧ · · · ∧ en]ei = [e1, . . . , en]ei = εei, (6.4)

(ei ∧ ej) ∨ (e1 ∧ · · · ∧ en) = [1, e1 ∧ · · · ∧ en](ei ∧ ej)

= [e1, . . . , en](ei ∧ ej) = ε(ei ∧ ej), (6.5)

and

(ei1 ∧ ei2 ∧ · · · ∧ eik) ∨ (e1 ∧ · · · ∧ en) = [1, e1 ∧ · · · ∧ en] ei1 ∧ ei2 ∧ · · · ∧ eik

= [e1, . . . , en] ei1 ∧ ei2 ∧ · · · ∧ eik

= εei1 ∧ ei2 ∧ · · · ∧ eik . (6.6)

hold. From the above expressions it can be proved, proceeding by induction, and
from the linearity of ψ ∈ Λ̆(V ), that:

ψ ∨ (e1 ∧ · · · ∧ en) = εψ. (6.7)

Using the relation

ei ∨ (e1 ∧ · · · ∧ ěj ∧ · · · ∧ en) = [ei, e1, . . . , ěj , . . . , en] = δij(−1)i−1ε,

when i = j, the pseudoscalar is represented as ε by

ε = (−1)i−1 ei ∨ (e1 ∧ · · · ∧ ěi ∧ · · · ∧ en). (6.8)

7. Differential Coforms and the Chiral Counterspace

From the definition of the regressive product, it is immediate that

Λn−[k](V ) ∨ Λn−[l](V ) ↪→ Λn−([k]+[l])(V ), (7.1)

[i] := n− i. The k-counterspace
∨k is defined [25] as being
k∨

= Λn−k(V ) (7.2)
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and under the regressive product it can define a (regressive) exterior algebra.
Indeed, it follows from eq.(7.1) that

∨r ∨∨s ↪→ ∨r+s . The coexterior algebra is
then defined as

∨
=

0∨
⊕

1∨
⊕ · · · ⊕

n∨
=

n⊕

j=0

j∨
(7.3)

which is an exterior algebra with respect to the regressive product. From definition
given by eq.(7.2) we see that

∨1 = Λn−1(V ), and (n − 1)-forms can be seen as
1-forms associated with the counterspace

∨1. A basis for
∨1, denominated cobasis,

is defined as the set {ei} whose elements are defined as [1, 26]

ei = (−1)i−1e1 ∧ · · · ∧ ěi ∧ · · · ∧ en (7.4)

Elements of
∨1 are called 1-coforms. Rota [1] denominated the algebra

(Λ(V ),∧,∨) by dialgebra or double algebra. This concept is extended by con-
sidering the algebra (Λ̆(V ),∧,∨). From the definition above it can be seen that
ei ∧ ei = e1 ∧ e2 ∧ · · · ∧ en. Analogously to eq.(2.2), a chiral cobasis {oei}, whose
elements are defined by the identity

o
ei = εei, can be introduced. The unit of the as-

sociative algebra generated by 1-coforms is the volume element e1∧e2∧· · ·∧en. The
following proposition is a straightforward generalization of the Grassmann-Rota
one, yielding information about the chirality of differential forms and coforms.

Proposition 1. � e1 ∨ e2 ∨ · · · ∨ ei = εi+1ei+1 ∧ · · · ∧ en �.

Proof. Let e1 = e2 ∧ e3 ∧ · · · ∧ en and e2 = −e1 ∧ e3 ∧ · · · ∧ en be two 1-coforms.
It follows that

e1 ∨ e2 = −(e2 ∧ e3 ∧ · · · ∧ en) ∨ (e1 ∧ e3 ∧ · · · ∧ en)
= −[e2, e1, e3, . . . , en]e3 ∧ · · · ∧ en

= εe3 ∧ · · · ∧ en.

We now proceed by induction:

e1 ∨ e2 ∨ · · · ∨ ei ∨ ei+1 =
= (εi+1ei+1 ∧ · · · ∧ en) ∨ ei+1

= εi+1(ei+1 ∧ · · · ∧ en) ∨ ((−1)ie1 ∧ · · · ∧ ˇei+1 ∧ · · · ∧ en)

= (−1)iεi+1[ei+1, e1 ∧ · · · ∧ ěi ∧ · · · ∧ en] ei+2 ∧ · · · ∧ en

= εi+1[ei+1, e1, . . . , ěi, . . . , en] ei+2 ∧ · · · ∧ en

= εi+1εei+2 ∧ · · · ∧ en

= εi+2ei+2 ∧ · · · ∧ en �
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Depending on the number (i) of elements of the product e1 ∨ e2 ∨ · · · ∨ ei, the
RHS of Prop. 1 changes or does not change sign under orientation change. As a
corollary, when i = n, we obtain

e1 ∨ e2 ∨ · · · ∨ en = εn+1 ∈
{

Λ0(V ), if n = 2k + 1,
o

Λ0(V ), if n = 2k.
(7.5)

So the volume element (under the regressive product) e1 ∨ e2 ∨ · · · ∨ en ∈ ∨n is a
scalar or a pseudoscalar, depending on the dimension n of V . We conclude from
these considerations that

0∨
⊕

1∨
⊕

2∨
⊕ · · · ⊕

n∨
= Λn(V )⊕

o

Λn−1(V )⊕
o

Λn−2 ⊕ · · · ⊕ Λ0[
o

Λ0](V ), (7.6)

where the last term of the direct sum above denotes the two possibilities, depending
on the even or odd value of n. From Prop. 1 and the properties of the dual Hodge
star operator, the relation

	(e1 ∧ e2 ∧ · · · ∧ ek) = εk+1e1 ∨ · · · ∨ ek (7.7)

follows. The Hodge star operator applied on (2k)-forms gives chiral (2k)-coforms,
and when it is applied on (2k+1)-forms, its respective (2k+1)-coforms have no
chirality (2k + 1 ≤ n).

8. Clifford Algebras Over the Counterspace

In this section the formulation given by Conradt [25] is reinterpreted, and his
definitions are slightly modified in order to encompass the present formalism. It is
well known that given a volume element η ∈ Λn(V ), the dual Hodge star operator
acting on a multivector ψ can be defined as 	ψ = ψ̃η and 	1 = η. The Clifford
product ∗ : C�p,q × C�p,q → C�p,q, related to the counterspace is defined as:

ψ ∗ φ := 	−1[(	ψ)(	φ)] ψ, φ ∈ C�p,q. (8.1)

Such a product is immediately shown to satisfy a Clifford algebra. First of all the
associativity is verified [25]. Indeed, given ψ, φ, ζ ∈ C�p,q, we have:

(ψ ∗ φ) ∗ ζ = {	−1[(	ψ)(	φ)]} ∗ ζ
= 	−1{	 	−1 [(	ψ)(	φ)](	ζ)}
= 	−1{[(	ψ)(	φ)](	ζ)}
= 	−1{(	ψ)[(	φ)(	ζ)]}
= 	−1{(	ψ) 	 [	−1((	φ)(	ζ))]}
= ψ ∗ [	−1((	φ)(	ζ))]
= ψ ∗ (φ ∗ ζ). (8.2)
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The additive distributivity,

ψ ∗ (φ + ζ) = ψ ∗ φ+ ψ ∗ ζ (8.3)
(ψ + φ) ∗ ζ = ψ ∗ ζ + φ ∗ ζ, (8.4)

can be also verified. Indeed:

ψ ∗ (φ+ ζ) = 	[(	ψ) 	 (φ+ ζ)]
= 	−1[(	ψ)(	φ+ 	ζ)]
= 	−1[(	ψ)(	φ)] + 	−1[(	ψ)(	ζ)]
= ψ ∗ φ+ ψ ∗ ζ. (8.5)

Eq.(8.4) is shown in an analogous way.
The volume element η acts as a unit in relation to the product ∗. In fact, η

is the left unit

η ∗ ψ = 	−1[(	η)(	ψ)]
= 	−1(1 	 ψ) = 	−1(	ψ)
= ψ (8.6)

and analogously η is also the right unit related to the product ∗, since

ψ ∗ η = 	−1[(	ψ)(	η)]
= 	−1(	ψ1) = 	−1(	ψ)
= ψ. (8.7)

It is worthwhile to emphasize that both the usual Clifford product, denoted by jux-
taposition, and the other Clifford product ∗ : C�p,q ×C�p,q → C�p,q, related itself
to the counterspace, act on the underlying vector space of C�p,q. Since the Clifford
algebra, constructed from the usual Clifford product is denoted by C�(Λ1(V ), g),
the ‘other’ Clifford algebra is denoted by C�(

∨1
, g) when interpreted as being

constructed from the ∗-product. Indeed, the Clifford relation, computed from the
product given by eq.(8.1) between two coforms ei, ej ∈

∨1 is given by

ei ∗ ej + ej ∗ ei = 	−1[(	ei)(	ej)] + 	−1[(	ej)(	ei)]
= 	−1(eiej) + 	−1(ejei)

= 	−1(eiej + ejei)

= 	−1(2g(ei, ej))

= 2g(ei, ej) η, (8.8)

from eq.(4.18). As η is the unit related to the product ∗, the product ∗ indeed
defines a Clifford algebra.

Given v ∈ V, ψ ∈ C�p,q, the regressive product defined in Sec. 6 can now be
written in terms of the Clifford product ∗, as:

ei ∨ ψ =
1
2
(ei ∗ ψ + ψ̂ ∗ ei). (8.9)
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The right contraction of a vector v by an element ψ ∈ C�p,q, associated to the
product ∗ is defined by [25]

v�ψ :=
1
2
(v ∗ ψ − ψ̂ ∗ v), (8.10)

while the left contraction is introduced by the expression

ψ�v :=
1
2
(ψ ∗ v − v ∗ ψ̂). (8.11)

9. Duality and Coduality

Consider two differential forms ξ ∈ Λi(V ) and ω ∈ Λj(V ). The relations 	(ξ∧ω) =
(	 ξ) ∨ (	 ω), 	(ξ ∨ ω) = (	 ξ) ∧ (	 ω), and the same assertions to the operator 	
are easily shown [1]. If we work with a Grassmann algebra, where a metric is
introduced, instead of a Grassmann-Cayley algebra, it is possible to prove that

	(ξ ∧ ω) = (	 ξ) ∨ (	 ω), 	(ξ ∨ ω) = (	 ξ) ∧ (	 ω). (9.1)

Such relations given by eqs.(9.1), besides being shown inside a formalism devoid
of indices and/or components, have origin in the definition of the Clifford product
∗ associated with counterspace. Indeed,

ξ ∨ ω = 〈ξ ∗ ω〉n−(i+j)

= 〈ξ ∗ ωη−1η〉n−(i+j)

= 〈	−1[(	ξ)(	ω)]η−1 〉i+j η
= 〈	−1{	[ ˜(	ξ)(	ω)]}ηη−1 〉i+j η
= 〈 ˜(	ξ)(	ω)〉i+j η
= (	̃ω) ∧ (	̃ξ)η

= ˜(	ξ) ∧ (	ω)η
= 	−1[(	ξ) ∧ (	ω)] (9.2)

and it follows by linearity that

	(ξ ∨ ω) = (	ξ) ∧ (	ω) ∀ξ, ω ∈ Λ(V ), (9.3)

which is exactly eq.(9.1). Using the same procedure it is possible to derive eq.(9.1)
as an identity involving the Clifford product ∗. Therefore the duality between
Clifford algebras over

∨1 and Λ1(V ) reflects the duality between the spaces
∨1

and Λ1(V ). Besides there is also a duality related to the contraction between
differential forms and differential coforms, where the last was defined by eq.(8.10).
This duality is presented by the following proposition:

Proposition 2. � 	(ξ�ω) = (	ξ)�(	ω) ∀ξ, ω ∈ Λ(V ). �
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Proof. The definition of the product ξ�ω is valid only when ω has degree great or
equal to ξ. Then,

ξ�ω = 〈ξ ∗ ω〉n−|i−j|
= 〈ξ ∗ ω (η−1η)〉n−|i−j|
= 〈	−1[(	ξ)(	ω)]η−1 〉|i−j| η
= 〈	−1{	[ ˜(	ξ)(	ω)]}ηη−1 〉|i−j| η
= 〈 ˜(	ξ)(	ω)〉|i−j| η
= (	̃ω)�(	̃ξ)η

= ˜(	ξ)�(	ω)η
= 	−1[(	ξ)�(	ω)] (9.4)

Therefore 	(ξ�ω) = (	ξ)�(	ω). �

Analogously it can be asserted the following proposition:

Proposition 3. � 	(ξ�ω) = (	ξ)�(	ω) ∀ξ, ω ∈ Λ(V ) �

This proposition is valid in the case when ω has degree less or equal to ξ. The
proof is analogous to the Prop. 2. See [25].

10. Differential and Codifferential Operators

In this section the spaces Λ(V ) are to be viewed as Λ(T ∗
xM).

10.1. Differential operator

The differential operator d : sec Λk(T ∗M)→ secΛk+1(T ∗M) acts on a multivector
ψ as ψ 	→ dψ = (∂ijψi1···ik)dxij ∧ (dxi1 ∧ · · · ∧ dxik ) where M is a manifold which
cotangent space T ∗

xM , at x ∈M , is isomorphic to V ∗.
We have seen that, in order to map an achiral k-form to a chiral k-form, it

is needed the multiplication by ε. Given ψ ∈ sec Λk(T ∗M), since d is defined to
be “D-linear”, i.e., d(εψk) = εdψk, and that dψk ∈ sec Λk+1(T ∗M), then εdψk ∈
sec

o

Λk+1(T ∗M). It follows that d : sec
o

Λk(T ∗M)→ sec
o

Λk+1(T ∗M). Motivated by
these considerations the exterior derivative is defined as the unique set of operators

d : secΛk(T ∗M) → sec Λk+1(T ∗M) and d : sec
o

Λk(T ∗M) → sec
o

Λk+1(T ∗M) that
satisfy the following properties:

1. d(ζ + ω) = dζ + dω, and d(cω) = c dω, ∀ζ, ω ∈ sec Λ̆(T ∗M), c ∈ R,

2. d(ω ∧ ζ) = dω ∧ ζ + (−1)kω ∧ dζ,
∀ω ∈ sec Λk(T ∗M ⊕

o

T ∗M), ζ ∈ sec Λ̆(T ∗M),

3. d(dω) = 0, ∀ω ∈ sec Λ̆(T ∗M).
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By linearity it is possible to extend the definition of d to the extended exterior
algebra d : sec Λ̆(T ∗M)→ sec Λ̆(T ∗M).

10.2. Codifferential operator

Considering l = n− 1 in eq.(7.1), it can be seen that

secΛk(T ∗M) ∨ sec Λn−1(T ∗M) ↪→ sec Λk−1(T ∗M), k ≥ 1, (10.1)

which motivates us to define the codifferential operator from the regressive product
as

δ : secΛk(T ∗M) → sec Λk−1(T ∗M)
ψ 	→ δψ = (gikij∂

ikψi1···ik)(dxi1 ∧ · · · ∧ dxik) ∨
[
(dx1 ∧ · · · ∧ ˇdxij ∧ · · · ∧ dxn)

]
.

From the regressive product associativity it follows that

δ(ψ ∨ φ) = δψ ∨ φ+ (−1)[ψ]ψ ∨ δφ (10.2)

where ψ, φ ∈ Λ̆(T ∗M), and [ψ] = k if ψ ∈ Λk(T ∗M) or ψ ∈ sec
o

Λk(T ∗M) .
The counterspace has the codifferential operator δ acting as its associated

differential operator. This can be illustrated by the following de Rham sequences:

Λ0(T ∗M) d−→ Λ1(T ∗M) d−→ Λ2(T ∗M) d−→ · · · d−→ Λn−1(T ∗M) d−→ Λn(T ∗M) d−→ 0,
(10.3)

0 d←−
0∨

d←−
1∨

d←−
2∨

d←− · · · d←−
n−1∨

d←−
n∨

(10.4)

0∨
δ−→

1∨
δ−→

2∨
δ−→ · · · δ−→

n−1∨
δ−→

n∨
δ−→ 0, (10.5)

0 d←− Λ0(T ∗M) δ←− Λ1(T ∗M) δ←− Λ2(T ∗M) δ←− · · · δ←− Λn−1(T ∗M) δ←− Λn(T ∗M).
(10.6)

10.3. The Hodge-de Rham Laplacian

The Laplacian ∆ is naturally defined as

∆ = dδ + δd (10.7)

We exhibit a simple example:

Example. Consider ψ ∈ sec Λ2(T ∗
R

3), given ψ = f(x1, x2, x3)dx1 ∧ dx2, where f
is a scalar field f : R

3 → R. It follows that

dψ =
∂f

∂x3
dx1 ∧ dx2 ∧ dx3. (10.8)
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Therefore,

δdψ =
∂2f

∂x1∂x3
(dx1 ∧ dx2 ∧ dx3) ∨ (dx2 ∧ dx3)

+
∂2f

∂x2∂x3
(dx1 ∧ dx2 ∧ dx3) ∨ (dx1 ∧ dx3)

+
∂2f

∂(x3)2
(dx1 ∧ dx2 ∧ dx3) ∨ (dx1 ∧ dx1)

=
∂2f

∂x1∂x3
(dx2 ∧ dx3) +

∂2f

∂x2∂x3
(dx3 ∧ dx1) +

∂2f

∂(x3)2
(dx1 ∧ dx2)

(10.9)

On the other hand,

δψ =
∂f

∂x1
(dx1 ∧ dx2) ∨ (dx2 ∧ dx3) +

∂f

∂x2
(dx1 ∧ dx2) ∨ (dx1 ∧ dx3)

+
∂f

∂x3
(dx1 ∧ dx2) ∨ (dx1 ∧ dx2)

=
∂f

∂x1
dx2 +

∂f

∂x2
(−dx1) + 0. (10.10)

It follows that

dδψ =
∂2f

∂(x1)2
(dx1 ∧ dx2) +

∂2f

∂(x2)2
(−dx2 ∧ dx1) +

∂2f

∂x1∂x3
dx3 ∧ dx2

+
∂2f

∂x2∂x3
dx3 ∧ dx1. (10.11)

From eqs.(10.9), (10.11) we have:

(dδ + δd)ψ =
∂2f

∂(x1)2
+

∂2f

∂(x2)2
+

∂2f

∂(x3)2

= ∆ψ. (10.12)

It can be shown by induction that eq. (10.7) is valid for all ψ ∈ secΛ(T ∗M).

Concluding Remarks

Peano spaces are the natural arena to introduce extended exterior, Grassmann,
and subsequently Clifford algebras in the light of the regressive product. Besides
endowing exterior algebras with chirality, Rota’s bracket is suitable to define ex-
tended exterior, Grassmann, and Clifford algebras, naturally presenting a Z2×Z2-
graded structure. The introduction of different units providing the construction
of respectively achiral and chiral algebras foresees us to use the periodicity the-
orem of Clifford algebras, asserting that C�p+1,q+1 � C�p,q ⊗ C�1,1, in order to
immerge both achiral and chiral Clifford algebras C�p,q into C�p+1,q+1. It gives
rise to various possibilities of applications in physical theories, like e.g. twistor
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theory and conformal field theory. In such embedding, the extended Clifford al-
gebra associated with C�p,q is shown to be C�p+1,q+1, wherein the formulation is
more simple and natural. Moreover, Proposition 1 describes a chiral relationship
between differential coforms under the regressive product and forms under the
progressive product. When the regressive product is used, the dual Hodge star
operator acts on k-forms, resulting in a k-coform intrinsically endowed with chi-
rality only if k is an even integer, otherwise its action results in an achiral form.
Moreover, the counterspace volume element with respect to the regressive prod-
uct is scalar or pseudoscalar until we specify whether the dimension of the Peano
space is respectively odd or even. The ∗-Clifford product [25] completes the dual
characterization of the counterspace. We also introduced pseudoduality between
space and counterspace, since the de Rham cochain, generated by the codifferential
operator related to the regressive product, is composed by a sequence of exterior
algebra homogeneous subspaces that are subsequently chiral and achiral. This is
an astonishing character of the formalism to be presented, since the duality be-
tween exterior algebras associated respectively with the space and counterspace is
irregular, in the sense that if we take the exterior algebra duality associated with
the space, we obtain the exterior algebra associated with the counterspace, but
the converse produces the space exterior algebra, which homogeneous even [odd]
subspaces are chiral [achiral], depending on the original vector space dimension
(see eq.(7.6)). Then, duality between space and counterspace is deduced to be a
pseudoduality if the exterior algebra is endowed with chirality.
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