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Abstract Currently, there is a significant rise in the

development and clinical use of a unique class of pharma-

ceuticals termed as Biopharmaceuticals or Biologics, in the

management of a range of disease conditions with, remark-

able therapeutic benefits. However, there is an equally

growing concern regarding development of adverse effects

like immunogenicity in the form of anti-drug antibodies

(ADA) production and hypersensitivity. Immunogenicity to

biologics represents a significant hurdle in the continuing

therapy of patients in a number of disease settings. Efforts

focussed on the identification of factors that contribute

towards the onset of immunogenic response to biologics

have led to reductions in the incidence of immunogenicity.

An in-depth understanding of the cellular and molecular

mechanism underpinning immunogenic responses will

likely improve the safety profile of biologics. This review

addresses the mechanistic basis of ADA generation to biol-

ogics, with emphasis on the role of antigen processing and

presentation in this process. The article also addresses the

potential contribution of complement system in augmenting

or modulating this response. Identifying specific factors that

influences processing and presentation of biologic-derived

antigens in different genotype and disease background may

offer additional options for intervention in the immunogenic

process and consequently, the management of immunoge-

nicity to biologics.
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Abbreviations

ADA Anti-drug antibody

APC Antigen-presenting cells

BAb Binding antibody

BCR B cell receptor

BMP7 Bone morphogenetic protein-7

C1q Complement component 1q

C3a Complement factor 3a

C3aR Complement 3a receptor

C3d Complement factor 3d

C5a Complement factor 5a

CD Cluster of differentiation

CpG Deoxy-cytidylate-phosphate-deoxy-guanylate

DCs Dendritic cells

EGFR Epidermal growth factor receptor

FccR Fc gamma receptor

GH Growth hormone

GHRH Growth-hormone-releasing hormone

GM-CSF Granulocyte macrophage colony stimulating

factor

GnRH Gonadotrophin-releasing hormone

HIV Human immunodeficiency virus

HLA Human leukocyte antigen

HPV Human papilloma virus

IFN Interferon

Ig Immunoglobulin

IL Interleukin

LFA Lymphocyte function-associated antigen

LPS Lipopolysaccharides

mAb Monoclonal antibody

MHC Major histocompatibility complex

NAb Neutralizing antibody
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PDGF Platelet-derived growth factor

PEG Polyethylene glycol

PSA Prostate-specific antigen

Rh Rhesus factor

Td T cell-dependent

Th T helper cells

Ti T cell-independent

TAG-72 Tumor-associated glycoprotein 72

TLR Toll-like receptor

TNFa Tumor necrosis factor alpha

Tregs T regulatory cells

VEGF Vascular endothelial growth factor

Introduction

The last few decades has witnessed a significant expansion in

the development by the pharmaceutical industry of a unique

class of drugs, termed as Biopharmaceuticals or Biologics.

Biologics are substances whose active component is derived

from a biological source by being produced in microorgan-

isms and cells (humans and animals) using biotechnology

(Giezen et al. 2008; Rader 2008) and represents more than

30 % of licensed pharmaceutical products (DiMasi et al.

2010; Swinney and Anthony 2011). Biologics have expan-

ded the range of options available for the treatment and

management of complex diseases such as diabetes, cancer

and autoimmune diseases (Schellekens 2008). Biologics

consist of hormones (e.g. insulin, growth hormone,

somatotropin), growth factors (e.g. erythropoietin), cyto-

kines (e.g. interferons (IFNs), interleukin (IL)-2, granulo

cyte macrophage colony stimulating factor (GM-CSF),

vaccines, enzymes, antibodies (e.g. monoclonal antibodies

(mAbs) against tumor necrosis factor (TNF)a, IL-2 receptor,

lymphocyte function-associated antigen 1, epidermal growth

factor receptor), fusion proteins (soluble receptors and cel-

lular ligands) and hybrid proteins (e.g. diphtheria toxin: IL-

2) (Giezen et al. 2008; L Revers 2010; Scherer et al. 2010).

Based on their pharmacological action and therapeutic

application, biologics have been categorized by Leader et al.

(2008) into those with regulating activity (e.g. recombinant

proteins, cytokines), specific targeting capability (e.g.

mAbs), vaccines and diagnostics (Table 1).

Adverse Effects of Biologics: The Problem

of Immunogenicity

Despite its therapeutic success, the incidence of adverse

drug reactions to biologics is becoming increasingly evi-

dent (Weber 2004). These reactions can be grouped into

those arising from either pharmacological or from non-

pharmacological effects. The pharmacological associated

adverse reactions are those which arise due to the inter-

action of the biologics with the intended target and are

most often predictable, whereas the non-pharmacological

are those which are not associated with the pharmacolog-

ical action of the biologics (Clarke 2010). The latter

includes immunotoxicity which comprises both immune

Table 1 Classification of biologics

Categories Examplesa

Group I: Biologics with enzymatic or regulatory activity

Ia: Replacing a protein that is deficient or abnormal Insulin, GH/Somatotropin, factor VIII, factor IX, protein C,

b-glucocerbrosidase, a-1-protienase, adenosine deaminase, human albumin

Ib: Augmenting an existing pathway Erythropoietin, IL-11, IFNs, factor VIIa, BMP7, GnRH, PDGF

Ic: Providing a novel function or activity Botulinum toxin, Collagenase, Hyaluroindase, L-asparaginase, Streptokinase

Group II: Biologics with special targeting activity

IIa: Interfering with a molecule or organism mAb targeting VEGF, EGFR, CD3, CD52, TNFa, IL-2R, IL-1R, C5. Fusion

proteins that bind to CD2 and blocks the interaction of lymphocytes with LFA

IIb: Delivering other compounds or proteins Diphtheria toxin conjugated with IL-2, anti-CD33 conjugated to calicheamicin

Group III: Vaccines

IIIa: Protecting against a deleterious foreign agent Vaccines against hepatitis B virus, HPV

IIIb: Treating an autoimmune disease anti-Rh IgG

IIIc: Treating cancer Vaccine for B cell Non-Hodgkins lymphoma

Group IV: Diagnostic biologics

Glucagon, GHRH, Secretin

Imaging agent labelled anti-PSA, anti-TAG-72, GPIIb/IIIa receptors

Antibodies against HIV and hepatitis C virus

Table adapted from Leader et al. (2008)
a Only few examples have been stated. More detailed information on the examples for each group has been discussed by Leader et al. (2008)
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response-mediated (immunogenicity, hypersensitivity and

autoimmunity) and non immune response-mediated reac-

tions like acute phase reactions (Clarke 2010). Adverse

immunological reactions to Group I and II types (refer

Table 1 for groups) of biologics are predominantly asso-

ciated with long-term treatment regimens, and represent a

growing concern to both regulatory bodies and the phar-

maceutical industry. The immunotoxicity spectrum

includes biologic-induced or biologic-associated infectious

complications (Bongartz et al. 2006; Rychly and DiPiro

2005), unwanted immunostimulation (Suntharalingam

et al. 2006), anti-drug antibody (ADA) generation (Aar-

skog et al. 2009; Li et al. 2001; Sorensen et al. 2003) and

hypersensitivity reactions (Corona et al. 1999; Shopnick

et al. 1996). To better understand, predict and manage

immunotoxicity, an immunological classification of these

reactions based on the pathologic mechanism was proposed

(Pichler 2006; Scherer et al. 2010) and is listed in Table 2.

In this article, we will be focussing on immunogenicity—

Type b reaction which includes the production of ADA and

subsequent neutralization and hypersensitivity reactions to

Group I and II types of (non vaccine based) biologics. In

particular, we emphasise the role of antigen processing and

presentation in this misdirected immune response and

consider approaches to predict and reduce such responses.

Anti-Drug Antibodies: Types, Subclasses and Clinical

Outcomes

The development of ADA against biologics like IFNs

(Janson et al. 1992; Kivisakk et al. 2000; Ronnblom et al.

1992; Scagnolari et al. 2002; Steis et al. 1991), erythro-

poietin (Casadevall et al. 2002; Weber et al. 2002), factor

VIII (Hay et al. 2006b), factor IX (Warrier et al. 1997),

insulin (Hirsch 2005), GM-CSF (Wadhwa et al. 2000) and

anti-TNFa (Radstake et al. 2009; Svenson et al. 2007)

results in compromised therapeutic efficacy and safety. An

overt immune reaction to an exogenous version of an

endogenous human protein or the failure of immune tol-

erance to self antigens could be the underlying triggers for

ADA development (Goodnow 2001; Schellekens 2003).

ADAs can be either binding antibodies (BAb) or neutral-

izing antibodies (NAb) and can alter pharmacokinetics,

decrease the efficacy of the biologic and in some instances

induce allergic reactions (Pedotti et al. 2001; Rosenberg

2003, 2006). BAb can either expedite the clearance of the

biologic, termed clearing antibodies or they can prolong

bioavailability, called sustaining antibodies (Ponce et al.

2009). The difference in effects between BAb and NAb is

attributable to sites or epitopes on the therapeutic protein to

which they bind. BAbs bind to epitopes that lie within

regions of the biologic that do not participate in the

interaction between the biologic and its respective receptor/

target, whereas NAbs interact with the biologic by binding

to epitope(s) that are functionally relevant for ligand–

receptor interaction thus rendering the biologic inactive

and compromising therapeutic efficacy (Bertolotto et al.

2002, 2004). As seen in response to IFNb therapy, BAb

titres are higher than Nab titres, tend to be produced much

earlier during treatment (Scagnolari et al. 2002) and persist

longer than NAbs (Bellomi et al. 2003). Based on a few

studies, in approximately 40–75 % of positive cases, the

NAb tends to disappear or is markedly reduced on con-

tinued and prolonged treatment (Hegen et al. 2012; Pungor

et al. 1998; Rice et al. 1999). The generation of NAb,

primarily of immunoglobulin (Ig)G isotype can cause life-

threatening conditions as in the case of pure red cell aplasia

by ADAs against erythropoietin (Casadevall et al. 2002)

and thrombocytopenia by ADAs against thrombopoietin

(Li et al. 2001). ADAs consist of low titre, transient IgM;

high titre, persistent IgG (IgG1–IgG4) or IgE immuno-

globulin isotypes (Baker et al. 2010; Baker and Jones 2007;

Jefferis 2007; Singh 2011). Protein antigens predominantly

trigger IgG1 and IgG3, whereas IgG2 antibodies are

induced by carbohydrate-based antigens (Jefferis 2007).

IgG4 is usually in response to chronic antigen stimulation

(Jefferis 2007), and hence is commonly observed in

response to long-term treatment with biologics. It is

reported that the neutralizing property of IgG4 is higher

compared to IgG1 and IgG2 ADA (Baker et al. 2010;

Reding et al. 2002; Reding 2006). IgG-ADAs can also

induce IgE-independent anaphylactic reactions (Finkelman

2007; Weber et al. 2002) and can include the activation of

the complement system (Vultaggio et al. 2011). It is well

known that IgE mediates lethal hypersensitivity reactions

(Purcell and Lockey 2008). Despite the rarity of the inci-

dence, IgE ADA-mediated anaphylactic response with

recombinant human insulin (Chng et al. 1995; Kumar

1997) and various therapeutic mAbs (Stubenrauch et al.

2010; Vultaggio et al. 2010) clearly indicates its clinical

significance. Previous exposure to substances within bio-

logic formulations has also been reported to contribute to

IgE-mediated immune reactions (Price and Hamilton 2007;

Steele et al. 2005). IgM-based ADAs have also been

reported with anti-TNFa mAbs (Vultaggio et al. 2010) and

possibly during IFNa therapy (von Wussow et al. 1989).

Table 2 Classification of immunotoxicity

Type a Immunostimulation

Type b Immunogenicity (ADA ? neutralization

or hypersensitivity reactions)

Type c Immune deviation

Type d Cross reactivity

Type e Non immunological based reactions

Arch. Immunol. Ther. Exp. (2012) 60:331–344 333

123



IgM antibodies are of low affinity, high avidity, transient,

induced by multivalent antigens (Boyer et al. 1977; Minuk

et al. 1983) and are capable of activating the complement

system (Richard and Prang 2010). While the evidence

regarding IgM-ADAs is rather limited, IgM antibodies

against polyethylene glycol (PEG)—a multivalent modi-

fying agent tagged to biologics to improve bioavailability

has been reported (Richter and Akerblom 1984).

Immunological Processes that Underlie Development

of ADAs

Anti-drug antibodies can be generated by both T cell-

dependent (Td) and T cell-independent (Ti) pathways,

which involves the production of antibodies by B cells with

and without the assistance of T cells (De Groot and Scott

2007). In the Td pathway, T cells are activated by the rec-

ognition of the antigenic peptides derived from the biologic

and presented by antigen-presenting cells (APCs) via the

major histocompatibility complex (MHC) II complex.

Activated T cells then stimulate B cells to generate anti-

bodies against the biologic. An immune response to a

biologic can involve rapid induction of a Td response

leading to expansion of epitope-specific B cells (Bachmann

et al. 1994). The Td pathway of antibody production results

in a long lasting, high antibody titre response to foreign or

exogenous therapeutic proteins. T cell subset polarization

also determines therapeutic outcome to the ADA generated,

where a Th2 response drives neutralizing IgG4 ADA

compared to Th1 which mounts an IgG1 and IgG2-based

ADA, which may in some instances be non-neutralizing in

nature (Baker et al. 2010; Reding et al. 2002; Reding 2006).

The production of ADAs through the Ti pathway

involves polyvalent antigens that bind to B cell receptors

(BCRs) and induce receptor clustering (Vos et al. 2000). It

is conceivable that an aggregated biologic that displays

repeating epitopes can cluster BCRs, cause B cell activa-

tion and result in a Ti response (Batista and Harwood 2009;

Depoil et al. 2009). Biologics can also be engulfed by

blood-borne peripheral dendritic cells (DCs) which then

migrate to the spleen. Here, these DCs present biologic-

derived antigens to B cells in the splenic marginal zone

(Balazs et al. 2002). Since, there is no T cell help in this

mechanism, ADAs generated by this process will be of

IgM isotype or low-affinity IgGs. The presence of addi-

tional signals either from danger signals (Toll-like

receptors: TLRs) or antigen-specific T helper (Th) cells can

lead to affinity maturation, class switching and a more

potent IgG response (Bachmann and Zinkernagel 1997;

Batista and Harwood 2009). This second signal or danger

signal can be provided by impurities in the biologic for-

mulations and inflammatory milieu associated with the

disease condition. While each pathway is distinct, there is

crosstalk or interactions between the pathways as illus-

trated in Fig. 1. Antigen laden marginal zone B cells (from

the Ti pathway) can also function as APCs by presenting

the biologic to T cells (Fehr et al. 1998), and is an example

of how the Td and Ti pathways interact and synergise.

Another event which can represent interaction between the

pathways is B cell epitope spreading, which may play a

role in the evolution of the specificity of the ADA during

the treatment period. It is known that the presence of ADA-

biologic immune complex (the ADAs generated from pri-

mary immune response to the biologic) can activate naive

B cells to mount a secondary response (Goins et al. 2010).

Improved uptake of the biologic by B cells due to the

formation of ADA-biologic complex may induce potent Td

antibody production directed against epitopes different

from those of the primary response.

A body of evidence accrued over recent years has

clearly implicated a variety of factors in ADA generation

(either singly or in combination) and is listed in Table 3

(Kromminga and Schellekens 2005; Pichler 2006;

Schellekens 2002). While it is generally accepted that the

immune system selectively determines, predisposes and

plays a pivotal role in initiating and propagating an

immunogenic response to various biologics, the role of

antigen processing and presentation processes as critical

drivers of immunogenicity has not been fully appreciated

and merits consideration.

Antigen Processing and Presentation as Key Events

in Immunogenicity

Antigen processing and presentation of biologics are per-

formed by professional APCs such as DCs, macrophages

and B cells. Antigen processing and presentation involves

two key events: (1) antigen capture that delivers antigens to

the cellular antigen processing machinery and (2) antigen

processing and presentation that generates antigenic pep-

tides bound to MHC molecules for presentation to adaptive

immune cells. The various factors associated with immu-

nogenicity as listed in Table 3 could potentially exercise

their influence by modulating antigen processing and pre-

sentation as shown schematically in Fig. 2.

Antigen Uptake

The first step in antigen processing is the acquisition of

extracellular antigens. APCs internalise antigen through

phagocytosis, macropinocytosis and receptor-mediated

endocytosis (Conner and Schmid 2003; Lanzavecchia

1990). Injection site of the biologic will determine the APC

type that will be involved in antigen capture. Following
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subcutaneous injection of biologics, immature DCs in the

epidermis phagocytose and process the protein via the

MHC class II processing pathway. Antigens can be cap-

tured by a number of receptors such as Fc receptors (FccR

and FceR), TLRs, members of the C-type lectin family

(DEC-205, DCIR), Ig superfamily and heat shock protein

receptors. The presence of pre-existing antibodies and

circulating IgM or IgG facilitates uptake of therapeutic

Plasma 
cell

IgG ADA

Peptide:MHC II

TCR

IgM & IgG ADA

T cell-dependent pathway T cell- independent pathway 

Naive 
B cell

BCR

Biologic

iDC

mDC

Activated 
T cell

Ag primed 
B cell

Marginal 
B cell

bbDC

Naive
B cell

Biologic

+

Co-stimulation

2nd signal
TLR / Th cells

Fig. 1 T cell-dependent and independent pathway involved in an

immunogenic response. T cell-dependent pathway involves the

uptake of biologics by antigen-presenting cells like immature

dendritic cells (iDCs) and B cells. DCs process the biologic into

peptides, mature and migrate to the T cell zone of the draining lymph

nodes where they present the antigenic peptides to naive T cells

expressing antigen-specific T cell receptors. This leads to T cell

activation and proliferation. B cells can also take up biologic through

their B cell receptor, process and present biologic-derived peptides to

activated T cells that have migrated to the B cell zones. Activated T

cells stimulate B cells resulting in the generation of antigen-specific

antibody secreting plasma cells. T cell-independent pathway involves

the direct stimulation of B cells by aggregated form of biologic.

Marginal zone B cells can be stimulated by biologic bearing blood

borne peripheral DCs. This pathway leads to generation of plasma

cells that predominantly secrete IgM antibodies. Cross talk between

these pathways contributes significantly towards the immunogenic

response. ADA anti-drug antibodies, Ag antigen, bbDC – blood-borne

peripheral dendritic cells, mDC mature dendritic cell, TCR T cell

receptor, Th cell T helper cell, TLR Toll-like receptor

Table 3 Factors contributing to immunogenicity of biologics

Biologic specific Patient specific

Molecular structure or amino acid sequence differences between

native and therapeutic protein (degree of humanization)

Protein aggregation

Protein degradation-oxidation, deamidation, glycosylation

Impurities/cofactors/adjuvants

Formulation

Subclass of therapeutic IgGs

Nature of target protein (endogenous/redundant/unique)

Manufacturing process

Age

Other concurrent medication

Dose

Frequency of therapy

Route of administration

Genetic predisposition (HLA class and gene defects)

Immune status and competence

Disease status (acute/chronic)

Disease type (immune mediated/non-immune mediated disorders)
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protein antigen by FccRs. Furthermore, complement

receptors might also enhance such endocytic processes

(Bajtay et al. 2006). The binding of antibody–antigen

complex to receptors on DCs or macrophages will also aid

in antigen processing and presentation (Regnault et al.

1999). Engagement of receptors like TLRs enhance inter-

nalization of the complex thus facilitating antigen

processing (Hayashi et al. 2001; Lankar et al. 2002). For-

mulation buffers can affect protein conformation of the

biologic and thereby predisposing it to be internalised and

processed by DCs (Jaber and Baker 2007; Jaber et al.

2007).

Physical modification/degradation including misfolding,

unfolding, aggregation, oxidation and deamidation of

biologics caused during purification, production, storage or

formulation can predispose to immunogenic response by

facilitating increased antigen uptake. It is clear that

aggregates are a significant factor for immunogenic

response as it is associated with increases in the incidence

of immunogenicity (Antonelli and Dianzani 1999; Her-

meling et al. 2004). This is probably due to their multiple

epitopes attribute and/or changes to the structural confor-

mation of the individual aggregated protein molecule

(Kumar et al. 2011; Medzhitov and Janeway 2002;

Rosenberg 2006; van Beers et al. 2010). The presence of

antigenic epitopes in aggregates but not in monomer mol-

ecules (Kumar et al. 2011; Robbins et al. 1987) can directly

stimulate B cells or can enhance its uptake by APCs (Jones

et al. 2011). Aggregated biologics with multimeric

structures can be also captured by blood-borne DCs and

presented to marginal B cells (Fehr et al. 1997; Martin

et al. 2001). Though the mechanism behind the predispo-

sition of aggregated protein for capture is not completely

defined, it is likely to be due to the presentation of B cell

epitopes in a repetitive manner by the aggregated proteins.

Aggregates could also induce immunogenicity through

breaking existing immune tolerance towards monomeric

version of the biologic (Braun et al. 1997; Moore and

Leppert 1980). Oxidation contributes to immunogenicity

by facilitating aggregate formation (Wang 2005). Several

studies have shown that the oxidised form of the biologic

was more immunogenic than non-oxidized form (Hochuli

1997; van Beers et al. 2011). The route of administration

(in the case of an injected biologic) has been shown to have

a profound effect on the onset of immunogenicity. Sub-

cutaneous route was found to cause immunogenic response

more frequently than other routes (Mohanan et al. 2010;

Peng et al. 2009; Perini et al. 2001; Ross et al. 2000).

Localization, prolonged presence, increased concentration

and proximity to APCs when the biologic is delivered by

the subcutaneous route could enable enhanced capture,

processing and presentation of biologic-derived antigens by

APCs thus leading to immunogenicity.

Antigen Processing and Presentation

Antigen uptake is followed by antigen processing and the

formation of peptide–MHC complexes. Antigens that have

Immunogenicity

Formulations
Aggregations

Altered APC 
maturation

Disease Type/Status
Age

Epitope 
provision

Molecular structure 
of the biologic

 Antigen
uptake

maturation

Degradation 
products

Excipients

uptake

Epitope 
compatibility HLA type

Dose, Route
Frequency

Antigen

APC 

Fig. 2 Antigen processing and

presentation central to

immunogenic response. A

variety of biologic-specific and

patient-specific factors are

associated with the onset and

progression of immunogenicity

to biologics. These factors exert

their influence by modulating

antigen processing and

presentation events through

altering antigen uptake,

co-stimulatory molecule

expression, maturation status

and provision of immunogenic

epitopes by APCs. APC antigen-

presenting cell, HLA human

leukocyte antigen
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been captured and internalised are trafficked into endo-

somal compartments, and processed into peptides and are

presented by APCs for T cell recognition. Based on studies

in vaccine technology, it is emerging that aggregated forms

of antigens can increase antigen processing thereby con-

tributing to a more potent immunogenic response (Jones

et al. 2011). The quality of the antigen presentation

depends on the quality of the peptide-MHC complexes and

there is a direct relationship between peptide-MHC com-

plex stability and the immunogenic response (Lazarski

et al. 2005). Human leukocyte antigen (HLA) haplotype

and T cell epitopes are among the major contributors

towards an immunogenic response against biologics. Spe-

cific HLA types have been found to be implicated in an

ADA immunogenic response to biologics as listed in

Table 4 (Barbosa et al. 2006; Buck et al. 2011; Ettinger

et al. 2010; Hay et al. 1997; Hoffmann et al. 2008; Ohta

et al. 1999; Praditpornsilpa et al. 2009; Simonney et al.

1985; Stickler et al. 2004). This suggests that there may be

particular MHCs that are more able to complex with bio-

logic-derived antigenic peptides. The contribution by the T

cell epitopes within the biologic is equally pivotal to the

immunogenic response. T cell epitope profiling studies

have identified specific sequences of amino acids in various

biologics which contribute towards immunogenicity (Jones

et al. 2005; Parker et al. 2011; Stickler et al. 2004; van

Haren et al. 2011). Hence, the potency of the peptide-MHC

II complex on the surface of the APC to activate the T cells

to initiate an immunogenic response is determined by a

combination of the type of HLA and a compatible antigenic

peptide that provides the T cell epitope.

Antigen presentation to initiate a T cell response by

APCs is influenced by external stimuli and signals.

Immature DCs which are highly endocytic but not very

efficient at processing and presenting antigens undergo a

maturation process in response to external signals or

‘‘danger signals’’ like TLR ligands (LPS, CPG motifs),

inflammatory cytokines and complement (De Smedt et al.

1996; Sparwasser et al. 1998). These signals increase their

efficiency for sustained processing and presentation of

antigens. APCs activate naı̈ve T cells by the recognition of

antigenic peptide:MHC class II complex on their cell sur-

face by T cell receptors and by the ligation of co-

stimulatory receptor, CD28 on the T cell surface to the B7

co-stimulatory molecule on the APCs. The expression of

co-stimulatory molecules on APCs can be induced by

various factors present in the formulation (like excipients)

of the biologics. Degradation products of excipients present

in the formulation can increase co-stimulatory molecule

expression on the surface of DCs (Mueller et al. 2009). The

presence of reactive oxygen species either due to degra-

dation products in the formulation or disease-associated

inflammation can also provide the danger signals and up-

regulate co-stimulatory molecules on the DCs (Rutault

et al. 1999). Patients being treated with a biologic for

immune disorders like autoimmunity or inflammatory dis-

order may be prone for developing immunogenicity.

Increased expression of co-stimulatory molecules on APCs

in patients with immune-mediated diseases may underlie

such a predisposition (Anderson 2005). Altered co-stimu-

latory molecule expression and function of APCs have

been reported in the elderly and hence, an immunogenic

response towards the biologic might vary with age (Guy

2010; Pereira et al. 2011; Rafi et al. 2003; Shurin et al.

2007).

Break in Tolerance Underlies Immunogenicity

Tolerance is a mechanism by which immune cells are

prevented from mounting a response against self antigens.

Response against biologics which are considered to be

similar to their endogenous counterparts could be due to

the breaking of such immune tolerance. The presence of

impurities such as endotoxins or microbial DNA in the

biologic may act as danger signals and activate autoreac-

tive B cells to self-antigens. The presence of foreign T cell

epitopes coupled with self-antigens can also break toler-

ance towards the self antigen. Another important mode by

which tolerance is broken is by repeated presentation of

Table 4 HLA type implicated

in immunogenic response to

biologics

Biologics HLA type Study

IFNb HLA-DRB1*0401, HLA-DRB1*0408 Buck et al. (2011), Hoffmann et al. (2008)

HLA-DRB1*1601 Buck et al. (2011)

HLA-DRB1*0701 Barbosa et al. (2006)

HLA-DR2, HLA-DQ6, DQB1*0602

and HLA-DR15

Stickler et al. (2004)

Factor VIII HLA-DQA1*0102 Hay et al. (1997)

HLA-DR4.1, DQ4 and DQA1*0301 Ohta et al. (1999), Simonney et al. (1985)

HLA-DRA-DRB1*1104 Ettinger et al. (2010)

Erythropoietin HLA-DRB1*09-DQB1*0309 Praditpornsilpa et al. (2009)
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self-antigens (Chackerian et al. 2002) as is the case during

biologic therapy. Aggregated antigens are also efficient

in activating anergic B cells on repeated exposure

(Kromminga and Schellekens 2005). In vivo experiments

in transgenic mouse models have also indicated that the

immunogenic response to aggregated proteins is due to the

breaking of tolerance (Braun et al. 1997).

Does Complement Play a Role in Processing

and Presentation of Biologic-Derived Antigens?

Complement—a group of plasma proteins can be activated

by three pathways—classical, alternative and lectin path-

ways. Immune complexes are known to activate

complement by the classical pathway. One of the primary

effector responses following complement activation is the

mediation of adaptive immune responses by anaphylatoxins

(C3a and C5a). Activation of complement could occur as a

result of the characteristics of the biologic such as the

structure, aggregation ability and impurities in the formu-

lation and the isotypes of the therapeutic antibody. Since,

antibody–antigen complexes are known to activate the

complement system by the classical pathway; the presence

of ADA-biologic immune complexes may also activate

complement pathways. Of all the immunoglobulins, only

IgM and IgG can activate complement (Bindon et al. 1988).

Immune complexes consisting of pentameric IgM are potent

activators of complement and even low levels of IgM—as

would be in the case of patients receiving their first doses of

biologic—can bind to aggregated biologic and trigger

complement activation. Of the IgG subclasses, IgG1 and

IgG3 are potent activators of complement whereas IgG2 and

IgG4 are weak activators (Bindon et al. 1988; Woof and

Burton 2004). However, the presence of IgG4 along with

IgG1 was reported to have amplified the immune complex-

mediated complement activation response (Bergamaschini

et al. 1996). IgG3 complexes can also activate complement

potently by binding to C1q following spontaneous multi-

merization (Greenspan and Cooper 1992). Due to the

potency of these isotypes, suboptimal levels of the biologic-

immune complex aggregate can be sufficient to activate

complement system. As ADAs are predominantly of the IgG

isotype, it becomes increasingly relevant to explore the role

of ADA immune complex-mediated complement activation

and the role of the complement in the onset and propagation

of immunogenicity. Our preliminary results suggest that

such ADA-biologic immune complexes induce complement

activation (manuscript in preparation). The presence of

impurities of bacterial origin in the biologic can also activate

complement system via the alternative pathway.

Activated complement factors such as C3a, C5a and

C3d are potent factors that influence antibody responses by

modulating DC, T cell and B cell function. APCs express a

wide range of complement receptors, complement-regula-

tory proteins and complement are essential for optimal

maturation and T cell activation by APCs (Hashimoto et al.

2010; Kerekes et al. 2001; Weaver et al. 2010; Zhou et al.

2006). Cyclic adenosine monophosphate production which

is important for DC maturation, antigen presentation and

cytokine synthesis is mediated by C3aR activation (Li et al.

2008). Complement also influences T cell responses by

direct or indirect modulation of Th1/Th2 immunity

(Kemper and Atkinson 2007). Local constitutive produc-

tion of complement and its activated components are

necessary for T cell viability, generation of IL-2 and for

antigen-specific T cell priming (Kopf et al. 2002; Lalli

et al. 2008; Strainic et al. 2008). Activated complement

also has an immunomodulatory role in B cells by mediating

antigen retention for B cell activation, antibody production

and memory B cell formation (Carroll 2004; Fischer and

Hugli 1997; Fleming et al. 2002; Ottonello et al. 1999;

Reid et al. 2002). Complement system has also been

implicated in the resolution of an immune response to

prevent tissue damage and autoimmunity, and its role in T

regulatory cells (Tregs) has also been described (O’Garra

and Vieira 2004) further reiterating the potential role of

complement in breaking tolerance. Owing to its multiple

roles in adaptive immune response, it would be necessary

to define the contribution of complement to the develop-

ment of high affinity ADAs.

Predicting Immunogenicity by Exploring Factors

Influencing Antigen Processing and Presentation

Characterisation and screening for physico-chemical

determinants or formulation-based factors like impurities,

heterogeneity, aggregate formation, oxidation and deami-

dation in the biologics will aid both in the prediction of

immunogenicity and in the development of less immuno-

genic therapeutic agents. Moreover, predicting potential

immunogenic epitopes in biologics will be an important

and effective strategy to improve their safety and efficacy.

A variety of preclinical immunogenicity screening strate-

gies are being used during biologic development as listed

in Table 5.

It is now well established that T cell epitopes within the

protein sequence of the biologics contribute towards

immunogenicity. Therefore, predicting the potential

immunogenic T cell epitopes will lead to reductions in the

incidence of immunogenicity. Prediction strategies used for

designing effective vaccines and determining T cell epi-

topes in autoimmunity (De Groot and Berzofsky 2004;

Inaba et al. 2006; Khan et al. 2006) can be adopted to

predict immunogenicity to biologics. Screening for T cell
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epitopes in biologics early in drug development is being

increasingly used by the pharmaceutical industry. A variety

of in silico methods or computational tools to identify

potential T cell epitopes within the biologic that have a

higher propensity to bind to particular HLAs are being

developed (De Groot and Moise 2007; De Groot and

Martin 2009; Koren et al. 2007). An extensive discussion

by Lafuente and Reche (2009) on various strategies prac-

tised in the prediction of peptide-MHC interaction clearly

showcases the importance of T cell epitope mapping in

predicting immunogenicity. Recently, a screening strategy

aimed at harnessing the concept of neutral drift also shows

promise for improved T cell epitope prediction (Cantor et al.

2011). A potential limitation of in silico prediction of

immunogenic T cell epitopes is the lack of input from aspects

of APC function such as antigen processing and eventual

presentation of biologic-derived peptides to T cells. There-

fore, in vitro/ex vivo assays with primary human cells that

can integrate both APC function and T cell responses may

uncover immunogenic epitopes more accurately and will be

most relevant in predicting immunogenicity to biologics in

humans. It is therefore crucial to integrate in silico predictive

tools with in vitro and ex vivo testing using T cells and APCs

from both primed and non-primed individuals across rele-

vant MHC-II allotype cohorts to identify biologically

meaningful epitopes and thereby improving prediction of

immunogenicity to biologics.

Prediction of B cell epitopes has been very useful in the

success of vaccine technology. This can be harnessed to

identify B cell epitopes of biologics that represent targets

for ADA. There are two types of B cell epitopes, linear and

conformational. The latter type is of greater relevance

constituting the majority of the B cell epitopes. Confor-

mational epitopes consist of amino acids that are not

contiguous in primary sequence, but are arranged together

as an epitope by proximity arising through secondary/

tertiary protein structure. In silico tools to predict B cell

antigenic epitopes are available but are currently under-

exploited in immunogenicity prediction (El-Manzalawy

et al. 2008; Kulkarni-Kale et al. 2005; Larsen et al. 2006;

Saha et al. 2005; Schreiber et al. 2005; Sollner et al. 2008;

Wang et al. 2011). Furthermore, antibody-specific epitope

prediction methods with improved accuracy and biological

relevance are becoming available (Zhao et al. 2011). A

detailed report by El-Manzalawy and Honavar (2010) on B

cell epitope prediction methods describes the technical

nuances involved in this technology aimed at reducing

immunogenic response to biologics.

HLA binding assay is another reliable in vitro validation

system for predicting immunogenic epitopes as there is a

close association between HLA binding and immunogenic

profiles (McMurry et al. 2005). This assay uses peptides

from biologics to measure the binding affinity of epitopes

to the various MHC II molecules (McMurry et al. 2007;

Reijonen et al. 2002; Steere et al. 2006). The predicted

epitopes can also be validated by measuring T cell

responses, especially when blood samples are available

from patients already exposed to the biologic (Barbosa

et al. 2006; Hobeika et al. 2005; Jaber and Baker 2007;

Kamate et al. 2007).

Reducing Immunogenicity: Intervening in Antigen

Processing and Presentation

A variety of strategies designed to reduce immunogenicity

have been tested and are listed in Table 5. Humanization

is a process by which biologics of non-human origin are

re-engineered to minimize the non-human component

which can reduce immunogenicity. Modifications in the

amino acid sequence of protein, and changes to the constant

and variable regions of therapeutic antibodies have led to a

marked decrease in the immunogenicity of biologics. The

development of chimeric and humanized antibodies has

helped in achieving decreased immunogenicity. The need to

eliminate physico-chemical determinants that favour

immunogenicity is extensively discussed in a recent review

(Singh 2011). Deimmunization by depletion of potential

immunogenic T cell epitopes through protein sequence

modification is another effective strategy in reducing

immunogenicity (De Groot et al. 2005; Hay et al. 2006a;

Parker et al. 2011; Tangri et al. 2005; Yeung et al. 2004).

This technique led to the development of many deimmu-

nized biologics, especially mAbs which are in various

stages of clinical trials with encouraging results. However,

caution needs to be exercised in using this strategy as it

could lead to the generation of new potentially immuno-

genic epitopes. Recently, a report utilizing a strategy with

improved prediction methods along with saturation

Table 5 Strategies in predicting and reducing immunogenicity to

therapeutic proteins

Prediction Reduction

Physiochemical characterization Deimmunization (epitope

modifications)

In silico Humanization

T cell epitope predictions

B cell epitope predictions

Tregitopes predictions

In vitro/ex vivo Purity and formulations

T cell responses Modifications

HLA binding assays Fusion proteins

In vivo models Combination biologics

or combination therapy
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mutagenesis was able to achieve protein sequences with

decreased MHC II binding without compromising the

function of the biologics (Cantor et al. 2011) represents a

way forward in achieving improved safety in biologics. T

cell epitopes associated with Tregs termed Tregitopes are

being explored as a potential strategy to suppress immu-

nogenicity (De Groot et al. 2008; De Groot and Martin

2009). Ex vivo and in vivo experiments using peptides

with Tregitopes decreased the resulting immunogenic

response to antigens (De Groot et al. 2008). Inclusion of

Tregitopes can induce natural Tregs into a suppressive

immune response to the biologic. This strategy paves a

way for the generation of biologics with a less immuno-

genic adverse response. However, differentiating epitopes

that are specific for Tregs from T helper cell epitopes may

pose a significant hurdle and extensive studies in this

developing area is warranted. Induction of tolerance can be

another strategy to minimise immunogenicity. Adminis-

tration of high concentration of biologics (antibodies), use

of alternative routes like via the mucosal surfaces rather

than subcutaneous route can decrease immunogenicity by

the induction of peripheral tolerance through tolerizing

DCs and expanding Tregs (Meritet et al. 2001a, b; Nagler-

Anderson et al. 2001).

PEGylation and glycosylation are the two most com-

mon forms of modifications incorporated into the

structure of biologics to reduce immunogenicity and

improve therapeutic efficacy. The immunogenicity of

large molecules like biologics can be minimized by

modifying the therapeutic agent with PEG polymers. It is

known that covalent attachment of PEG to biologics can

reduce immunogenicity by interfering with processing and

presentation and by masking immunogenic epitopes (Basu

et al. 2006). Though PEG is generally non-immunogenic,

there are reports which suggest that this is not always the

case (Singh 2011). Anti-PEG antibodies have been

detected in patients treated with PEGylated therapeutic

enzymes (Armstrong et al. 2007; Ganson et al. 2006) and

indicate the need to investigate the immunogenic mech-

anism triggered by PEG. There is growing evidence that

such modification of biologics does not decrease the

immunogenic potential (Jevsevar et al. 2010). Glycosyl-

ation is the most common form of post translation

modification seen in half of all human proteins. Glyco-

sylation of selective amino acid residues of the biologic

interferes with MHC II restricted T cell recognition and

through disrupting antigen processing by APCs (von

Delwig et al. 2006). However, it can possibly increase

immunogenicity by the generation of neopeptides as well

(Singh 2011). There is a clear need for more detailed

studies to validate these strategies and to develop new

approaches that can target antigen processing/presentation

for reduction of immunogenicity.

Concluding Remarks

The problem of immunogenicity has been under intense

study but the contribution of antigen processing and pre-

sentation processes has not received enough attention. It is

becoming clear that many of biologic-specific and patient-

specific characteristics that are associated with higher

incidence of immunogenicity have an impact on antigen

processing and presentation mechanisms. Factors such as

aggregate formation (either in vivo or in the formulation)

or the presence of adjuvants in the formulation can enhance

antigen capture, APC activation and lead to breaking of

immune tolerance. The role of complement in augmenting

or modulating immunogenicity through its effects on

antigen processing is unexplored and merits detailed

investigation. Much progress has been made in predicting

and eliminating immunogenic epitopes contained within

biologics. However, identifying factors that influence the

processing and presentation of biologic-derived antigens

including complement may offer additional options for

intervention in the immunogenic process and consequently

in the management of immunogenicity to biologics.
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