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Abstract
Understanding the adaptive immune response is an area of research critically important in medicine. Several positive regu-
lators of B- and T-cell activation exist to eliminate pathogens, in which CD40 ligand (CD154) plays a fundamental role. It is
well documented that CD154 expressed by CD4 T helper cells can be critical in the proper activation of dendritic cells for
the productive stimulation of CD8 T cells and is required for proper T-dependent B-cell immunity. However, platelets are
an abundant and systemic source of CD154. While classically known to be important for hemostasis and inflammation, sev-
eral lines of evidence suggest that platelet-derived ligands can modulate the adaptive immune compartment. 
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INTRODUCTION

Understanding how the immune system protects the
host from pathogens while avoiding anti-self responses
arising from immune dysregulation has been the focus
of decades of research (Klinger 1997). At the center of
both issues is the context of how the immune response
encounters antigen. The innate immune response is the
first line of defense that reacts generically to pathogens
and will respond in the same manner to subsequent
challenges without adaptation or the formation of mem-
ory. Adaptive immunity, which is achieved by B and
T lymphocytes, is the delayed second line of defense
that shows remarkable specificity and the ability to form
lasting heightened recall responses against the same
antigen. The nature and efficiency of the adaptive
response depends almost wholly on the conditions
under which antigen is captured and presented to lym-
phocytes. The triggering of Toll-like receptors (TLRs)
on the antigen-presenting cell (APC) via repeated mol-
ecular structures common to microorganisms in con-
junction with inflammatory signals mediated by
chemokines and cytokines is the foundation for forming
a robust adaptive response (Iwasaki and Medzhitov
2004). However, if antigen is acquired under non-
-inflammatory conditions, the adaptive compartment is

usually tolerized or regulated through the nonproduc-
tive activation of T cells (Redmond and Sherman 2005).
A critical control point of this is the activation of den-
dritic cells (DCs), which are thought to be the only
APCs capable of efficiently activating naïve lympho-
cytes. DCs modulate immunity largely because of their
ability to express high levels of major histocompatibility
complex (MHC) and costimulatory molecules required
to compel resting T lymphocytes to undergo cell cycle
progression resulting in productive activation and pro-
liferation (Banchereau and Steinman 1998). Conditions
also exist whereby ongoing adaptive immune responses
can be shut down by myeloid-derived suppressor cells or
T regulatory cells (Nagaraj and Gabrilovich 2007;
Vignali et al. 2008). 

In addition to inflammatory signals, CD154 is cen-
tral to the activation of the adaptive immune response
(Banchereau et al. 2000; Caux et al. 1994; Renshaw et
al. 1994; van Kooten and Banchereau 2000; Yang et al.
1996). Upon activation, CD4 T cells express CD154,
which ligates its cognate receptor, CD40, on DCs. CD40
ligation promotes DC maturation and prompts the ele-
vation of costimulatory/adhesion molecule expression
and cytokine production, both of which are associated
with enhanced antigen presentation to T cells (Caux et
al. 1994). Functionally significant CD154 expression was
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thought to be restricted to activated CD4 T cells until it
was reported that activated platelets also express CD154
(Henn et al. 1998). This raised the possibility that
platelet CD154 could influence the adaptive immune
response, given the well-known role of platelets in
inflammation. Using murine models, we have reported
that this is indeed true in B- and T-cell responses (Elzey
et al. 2005a; Elzey et al. 2008; Elzey et al. 2003). We
found platelets were able to activate DCs in vitro and
several of our observations have been corroborated in
vitro using human cells (Czapiga et al. 2004; Kaneider
2003; Martinson et al. 2004; Solanilla et al. 2005).
Additionally, other groups have reported an influence
of platelets on human DCs that is independent of
CD154 (Danese et al. 2004; Hamzeh-Cognasse et al.
2008; Hilf et al. 2002; Kissel K 2006).

PLATELET−DERIVED PRODUCTS 
AND FUNCTION IN HOST DEFENSE

The classical function of platelets is hemostasis
(George 2000). Platelets are abundant in the circulation,
with up to 1.5–4×1011 cells per liter of human blood,
and circulate in an inactivated state. To exert their
haemostatic effects, platelets must become activated at
the site of injury. Vascular trauma exposes collagen and
other extracellular matrix proteins activate platelets as
they pass by at high sheer rates and initially tether in
a monolayer. Next, stable adhesion and activation cause
the release of soluble mediators from platelet intercel-
lular stores, leading to further platelet recruitment and
activation, creating a thrombus intended to prevent
blood loss (Gresele et al. 2008; Nieswandt and Watson
2003). 

In addition to hemostasis, a role for platelets in
innate host defense has been known for decades. Only
recently has their influence on adaptive T- and B-cell
responses been considered. Platelets contain many
bioactive molecules important for inflammation and
modulation of the innate immune system. Platelets
secrete a number of molecules important for the recruit-
ment of leukocytes, such as interleukin (IL)-8, regulated
upon activation normal T-cell expressed and secreted
(RANTES), CD62P, platelet factor 4 (PF4), macro-
phage inflammatory protein-1α, and transforming
growth factor-β. Other platelet-derived products are
vasoactive to allow the entry of inflammatory cells into
tissue, such as serotonin, histamine, prostaglandin E2,
and prostaglandin D2, among others, as reviewed in
Elzey et al. (Elzey et al. 2005b). 

Platelets are also reported to possess direct activity
against pathogens such as bacteria, viruses, fungi, and
helminths. Platelets can engulf viruses and bacteria
(Youssefian et al. 2002) and also aggregate in response
to whole bacteria (Boukour and Cramer 2005; Byrne et
al. 2003; Kalvegren et al. 2003; Mirlashari et al. 2002).
Platelets express TLR2, 4, and 9 (Aslam et al. 2006;
Clark et al. 2007). TLR4 activation by lipopolysaccha-

ride (LPS) releases tumor necrosis factor (TNF)-α
(Aslam et al. 2006) and soluble CD154 (Cognasse et al.
2008) from platelets, which could enhance APC migra-
tion and/or function. In other studies, LPS was shown to
inhibit thrombin-mediated activation of platelets (Bucki
and Pastore 2006). Because TLR signals are important
in the activation of the innate immune compartment
and these signals have direct effects on the adaptive
immune compartment, it will be interesting to deter-
mine the extent to which platelet-TLR signaling and
direct activation of platelets by microbes ultimately
influence adaptive immunity. 

Platelets also produce molecules directly important
to the adaptive immune response, i.e. FasL, TNF-relat-
ed apoptosis-inducing ligand (TRAIL), IL-7, and
CD154 (Ahmad et al. 2001; Crist et al. 2004; Elzey et al.
2005b; Soslau et al. 1997). The roles of platelet-derived
FasL, TRAIL, and IL-7 have not been studied directly;
however, FasL and TRAIL are potent inducers of apop-
tosis in cancer and virally infected cells (Ahmad et al.
2001; Brincks et al. 2008; Pitti et al. 1996), and local pro-
duction via platelet activation may be an important
immunological regulator. Functional IL-7 has been
found in platelets, is released upon platelet activation,
and may increase serum concentrations (Damas et al.
2003; Soslau et al. 1997). Since IL-7 is important for the
homeostatic proliferation of T cells, platelet activation
may contribute to this process. 

PLATELET CD154 
AND B−LYMPHOCYTE RESPONSES

B cells are responsible for antibody production in
the primary and memory responses during infection and
immunization. Regarding T-dependent humoral immu-
nity, CD4 T-cell – B-cell communication via CD154 is
perhaps the most critical event in normal B-cell mobi-
lization and antibody production. In its absence, germi-
nal centers (GCs) do not form in the spleen or lymph
nodes. These are areas of B cells undergoing intense
proliferation and are required for isotype switching,
somatic hypermutation, and the generation of memory
and plasma cells (Caux et al. 1994; Han et al. 1995; Held
et al. 1993; Miller et al. 1995; Renshaw et al. 1994). As
a result, transgenic mice deficient in either CD40 or
CD154 are incapable of producing T-dependent iso-
type-switched antibodies and do not generate B-cell
memory; however, immunoglobulin (Ig) M responses
are normal (Renshaw et al. 1994). Clinically, CD40 or
CD154 functional deficiencies are referred to as “hyper-
-IgM syndrome” due to depressed serum levels of IgG,
IgA, and IgE but normal or elevated levels of IgM.
These patients suffer from recurrent infections of
encapsulated bacteria, among several others, which can
be fatal (Lougaris et al. 2005).

In choosing a model to assess the role of platelet
CD154 in classical B- and T-cell responses, the murine
CD154 gene knockout mouse has proven to be an excel-
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lent resource. Since they are incapable of producing
appreciable levels of T-dependent isotype-switched
antibodies, the impact of platelet CD154 on B-cell anti-
body production is easily detectable by increased plasma
levels of IgG. Studies from our laboratory showed that
normal platelets adoptively transferred into CD154-
-deficient hosts could transiently augment antigen-spe-
cific IgG production after adenovirus immunization in
a GC-independent manner (Elzey et al. 2003). When
adoptively transferred to CD154-deficient mice, rela-
tively low numbers of normal CD4 T cells are unable to
generate a significant GC response to adenovirus.
However, when normal platelets were co-transferred
with the CD4 T cells, sustained IgG production and sig-
nificantly increased GC formation were detected (Elzey
et al. 2005a). Alternatively, when high numbers of nor-
mal CD4 T cells were adoptively transferred, platelets
did not further augment B-cell responses, indicating
that platelet CD154 can indeed contribute to B-cell
responses but may not be necessary when CD4 T cell-
-derived CD154 is abundant, which is the experimental
setting of many antigen-specific adoptive transfer mod-
els. Although a recent report details the ability of
platelets from immune thrombocytopenic purpura
patients to prompt autologous self-reactive B cells
directly to release antibodies against platelet GPIIbIIIa
in a CD154-specific manner (Solanilla et al. 2005), it is
unknown exactly how platelets in our model are signal-
ing the B cells in vivo. It could be through direct contact
with B cells, other cells such as follicular DCs that in
turn stimulate B cells, or by particulate/soluble media-
tors released by the platelets.

Upon activation, platelets discharge microparticles
and exosomes, collectively termed platelet-derived
microvesicles (PDMVs) (Heijnen et al. 1999). These
PDMVs bud off from the platelet and contain compo-
nents of the platelet, including the CD154 protein (Baj-
-Krzyworzeka et al. 2002; Otterdal et al. 2004). We
hypothesized that PDMVs are sufficient to deliver the
platelet-derived CD154 signal. To test this, we devel-
oped a novel assay to determine the bioactivity of
CD154 in the products of platelet activation. It is known
that CD154 and TNF-α induce monocyte chemotactic
protein (MCP)-1 production in the murine MS-1
endothelial cell line. By using the different platelet frac-
tions in conjunction with anti-TNF-α, the specific activ-
ity of CD154 from the different platelet preparations
could be determined by measuring MCP-1 mRNA lev-
els using quantitative real time PCR. Like intact
platelets, isolated PDMVs increased the MCP-1 mes-
sage specifically through CD154 activity. Intriguingly,
the PDMVs from activated platelets were able to induce
MCP-1 mRNA despite extremely low levels of total pro-
tein, but true soluble CD154 did not, suggesting that
CD154 in PDMVs may be the biologically active form.
Subsequently, we determined that CD154-sufficient
PDMVs were able to induce proliferation of primary
B cells in vitro. When PDMVs were the singular source
of CD154, IgG production was augmented and GC for-

mation was re-established in vivo (Sprague et al. 2008).
Physiologically, this implicates a possible role for
PDMVs as mediators of disease states in which platelets
are major contributors, including heart disease.
Clinically, this could have significance for acute transfu-
sion reactions arising from platelet transfusion that is
attributed to platelet CD154 (Cognasse et al. 2008). 

PLATELET CD154 
AND T−LYMPHOCYTE RESPONSES

In addition to the important role of CD154 in B-cell
function, CD154 is important in T cell-mediated
responses. In the absence of CD40-CD154 interaction,
primary T-cell responses are depressed and memory
responses are compromised (Bennett et al. 1998;
Borrow et al. 1996; Schoenberger et al. 1998).

CD4 T cells and platelets have recently been shown
to be co-involved in hepatic ischemia/reperfusion injury
with some involvement of CD154, although in an anti-
gen-independent fashion (Khandoga et al. 2006). CD3+

T cells have been shown to activate platelets through
CD40/CD154 interactions to secrete RANTES to fur-
ther mediate T-cell recruitment (Danese et al. 2004).
PF4, solely produced by platelets in the circulation, can
inhibit human T-cell activation in vitro (Fleischer et al.
2002) as well as inhibit human regulatory T-cell activity
(Liu et al. 2005). Because platelet-associated CD154
and circulating soluble CD154 are increased in many
autoimmune diseases (Bigalke et al. 2006; Cabeza et al.
2004; Danese et al. 2006; Danese et al. 2007; Zietkowski
et al. 2008), further investigation in the ability of
platelets to modulate CD4 T-cell responses may have
clinical significance. The mechanism of this impact is
unknown, but since platelets do not express requisite
costimulatory molecules for activating naïve CD4
T cells, a reasonable hypothesis is that this modulation
is accomplished via effects on DCs, not by direct contact
with T lymphocytes.

Several lines of evidence point to a role for platelets
in CD8 T-cell responses. We were the first to show that
depletion of platelets lowers the generation of aden-
ovirus-specific cytotoxic T lymphocytes (CTLs) and that
CD154 on platelets plays a role in intravenous or subcu-
taneous adenoviral immunization (Elzey et al. 2008;
Elzey et al. 2003). When mice were immunized with low
doses of a recombinant replication-deficient adenovirus
expressing the ovalbumin transgene (Ad5-mOVA) in
the presence of collagen (a strong platelet agonist), CD8
T-cell frequency and lytic function were augmented.
Moreover, only the mice immunized in the presence of
collagen were protected from OVA-recombinant viru-
lent Listeria monocytogenes challenge. Administration of
blocking antibodies against the platelet-specific collagen
receptor GPVI before immunization with adeno-
virus/collagen significantly inhibited the generation of
antigen-specific CD8 T cells. This indicates that platelet
responsiveness to collagen is the key factor in CTL gen-
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eration to subcutaneous antigen and not enhanced
transgene expression, as is possible with delivery of the
vector in collagen. Additionally it was found that
platelet CD154 was also required for collagen-mediated
CTL augmentation (Elzey et al. 2008). How platelet
CD154 affects the T-cell response is currently unknown,
although it is easy to hypothesize that it is through con-
ditioning of DCs and not direct T-cell contact since
platelets lack costimulatory molecules, and it has been
reported that human platelets are unable to induce allo-
geneic CD8 T-cell responses in vitro (Gouttefangeas et
al. 2000). After our initial report that platelet CD154
could mature DCs in vitro, several others have corrobo-
rated those findings, although there are studies that
report platelets can inhibit DC function, as noted above.
However, it is difficult to envision how intact platelets
could contact DCs in the draining lymph nodes respon-
sible for T-cell clonal expansion. One possibility is the
release of PDMVs that could be transported to the
draining lymph nodes via transmigrating Langerhans
cells. A recent report details the in vitro ability of neu-
trophil transmigration across epithelial cells, which
enables platelet transmigration as well and could
explain how intact platelets could gain entry to the sub-
cutaneous space to be activated by the injected collagen
(Weissmüller et al. 2008).

In two different models of hepatitis, CD8 T cells
mediate viral clearance but are also the pathogenic
effectors leading to critical organ damage (Iannacone et
al. 2005). In the hepatitis B virus (HBV) transgenic
model of acute viral hepatitis it was found that platelet
depletion with anti-GPIbα diminished lesion severity
and decreased the infiltration of adoptively transferred
HBV-specific CTLs in the liver. Importantly, CTLs iso-
lated from normal or thrombocytopenic mice retained
function in vitro. Similar results were also seen in a lacZ
model of acute viral hepatitis, which involves endoge-
nous CTL generation with recombinant adenovirus
instead of CTL adoptive transfer. In mice that were
reconstituted with prostaglandin E1-inhibited platelets
(Iannacone et al. 2005) or administered aspirin/clopido-
grel to inhibit platelet function (Iannacone et al. 2007),
hepatic accumulation of CTLs was also reduced. These
studies suggest that platelet activation is important for
CTL migration into the liver but not for effector func-
tion, although CTL frequency in secondary lymphoid
organs and in vivo CTL function were not addressed.

Other studies demonstrated that platelets play a role
in CTL responses to lymphocytic choriomeningitis virus
(LCMV). LCMV-infected mice show a decrease in
platelet numbers and reduced aggregation to collagen
and ADP. Mice depleted of platelets and infected with
LCMV generate approximately 80% fewer CTLs and
have higher viral titers than un-depleted mice but have
equal in vivo lytic capacity by eight days after infection.
Reconstitution of platelet-depleted mice with platelets
three days after LCMV infection have increased CTL
numbers in the spleen and liver, suggesting that platelets
are important for the expansion of antigen-specific

CTLs. This group also investigated the role of platelet-
-derived CD154 in this system. Adoptive transfer of
CD154–/– platelets three days after LCMV infection was
indeed able to partially increase CTL numbers in
platelet-depleted mice, suggesting that other platelet-
-derived molecules are also important in this process
(Iannacone et al. 2008). 

Conversely, platelet-derived products have recently
been shown to modulate CD8 T-cell migration and CD8
T cell-mediated disease. The role of vasoactive sero-
tonin has been investigated in the LCMV model. Mice
that were devoid of CD8 T cells had reduced platelet
aggregation in the liver upon LCMV infection, suggest-
ing that CD8 T cells recruit platelets. Thp1–/– mice,
which cannot synthesize serotonin, had reduced hepato-
cyte injury and fibrosis compared with wild-type (WT)
controls upon LCMV infection. WT and serotonin-defi-
cient mice develop similar numbers of interferon-γ-pro-
ducing CD8 T cells in the spleen and liver, but fewer
CD8 T cells migrated into the intralobular region of the
liver in Thp1–/– mice. WT mice treated with exogenous
serotonin had delayed CTL responses, decreased hepat-
ic damage, and increased viral titers. This suggests that
platelets, via serotonin release, hinder CD8 T-cell infil-
tration of the liver, allowing increased viral replication,
and may ultimately cause chronic hepatitis (Lang et al.
2008), although acute pathology is less severe. 

There are also conflicting data regarding the role
platelets and platelet-associated products play in allo-
graft rejection. Xu et al. found that soluble and platelet-
-derived CD154 contribute to allograft rejection by an
unknown mechanism (Xu et al. 2006). Given that CD8
T cells are important in this process (Clarkson and
Sayegh 2005), it is likely that platelets could be modu-
lating the activation or generation of these cells. On the
other hand, there is evidence that platelets may suppress
CD8 T-cell function in a murine model of transfusion-
-related immunomodulation. Transfusion of MHC class
I-bearing platelets allows for prolonged allograft sur-
vival (Aslam et al. 2008), although specific CD8 T-cell
function and the involvement of CD154 were not
addressed in this study. These reports indicate that
platelets could have a tremendous clinical role in trans-
plantation.

PLATELETS AND CLINICAL DISEASE

Due to their ubiquity in the circulation and very high
numbers, platelets and their inflammatory/immune medi-
ators are well suited to participate in the formation of
many biologic responses. Several autoimmune inflamma-
tory diseases with T- and B-cell components, including
inflammatory bowel disease, arteriosclerosis (Mach et al.
1998; Schonbeck and Libby 2001), diabetes (Danese and
Fiocchi 2005; Varo et al. 2005), immune thrombocytope-
nia (Solanilla et al. 2005), Kawasaki disease (Wang et al.
2003), and systemic lupus erythematosus (Delmas et al.
2005; Sidiropoulos and Boumpas 2004), have been linked
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with increased platelet activation and surface expression
of CD154. Elevated plasma CD154 is also detected and is
considered a marker for many diseases of which platelets
are thought to be the source. Currently it is unknown
whether increased platelet CD154 is a result or a cause of
these conditions. The connection between human disease
and platelet influence on autoimmune T and B cell activ-
ity is speculative, but an intriguing hypothesis nonethe-
less. Should this hypothesis prove to be correct, it will be
important to determine how to modulate CD154 expres-
sion on platelets.

Our group has begun to study the regulation of
CD154 in the platelet progenitor cell, the megakaryocyte.
In studying the regulation of CD154 expression in
platelets, the megakaryocyte becomes an important con-
sideration. Platelets have very limited transcriptional abil-
ity. Although known to take up and sequester a limited
number of proteins from the serum, such as fibrinogen
and immunoglobulin (Klinger 1997), the fact that the pre-
dominant form of CD154 in the inactivated platelet is the
full-length membrane-bound form provides strong evi-
dence that CD154 is expressed in megakaryocytes and
subsequently packaged into proplatelets during thrombo-
cytogenesis (Otterdal et al. 2004). Furthermore, in
immune thrombocytopenic purpura, in which CD154 is
up-regulated in megakaryocytes, CD154 mRNA was
detected by in situ hybridization (Solanilla et al. 2005).
We recently reported that megakaryocytes do indeed
express CD154 during differentiation and maturation as
they progress from an early hematopoietic progenitor cell
to a mature megakaryocyte phenotype (Crist et al. 2008).
It was further demonstrated that, like transient CD154
expression in activated T cells, calcium mobilization and
protein kinase C activation mediated both differentia-
tion-dependent and extracellular agonist-mediated
CD154 expression in megakaryocytes (Crist et al. 2008).
Overall, these studies were the first to show a regulatory
pathway in megakaryocytes that potentially could alter
the inflammatory and immunomodulatory activity of
platelets. When these data are considered along with the
observations that levels of circulating soluble and
platelet-associated CD154 are elevated in several autoim-
mune and chronic inflammatory diseases, the potential of
systemic feedback on the immunomodulatory and pro-
-inflammatory activity of platelets becomes evident. 

CONCLUSION

In addition to supporting thrombosis, platelets
release a significant array of immunologic and inflam-
matory mediators. Their high number in the blood-
stream enables them to efficiently respond at the initia-
tion of chronic or acute circulatory perturbations and
inflammation. While this appears detrimental in the
case of cardiovascular disease, it may have tremendous
significance in the area of host defense. Platelets can
assist the innate immune response by releasing chemo-
tactic and vasoactive substances which attract and facil-

itate leukocyte extravasation into surrounding tissues
and by activating the endothelium to do the same.
Additionally, in vitro and in vivo evidence suggest
platelets also enhance antigen presentation, resulting in
a more robust adaptive immune response. Because of
animal studies indicating that platelets can influence T-
and B-cell responses, and inflammatory clinical diseases
that appear to be autoimmune in nature, it becomes
important to determine what, if any, role platelets may
have in activating lymphocytes against self antigens.
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