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Abstract
This paper describes a revision of so-called Monge surfaces through using digital 
graphic tools, based on the synthetic conception exposed by Gaspard Monge in the 
18th and 19th centuries, through their geometric relation with polar surface. As a 
starting point, we propose a graphical system that integrally solves the generation 
of these kind of surfaces, their rationalization and discretization, with the objec-
tive of their specific application in architecture. The geometric system described 
allows the generation of a type of surface in which the pair of curves -generatrix 
and directrix- give rise to the network of principal lines of curvature (LCP) of the 
final surface. In this way, we propose a process that follows a bottom-up generative 
system based on Monge surfaces, which offers wide possibilities of formal explo-
ration, while imposing geometrical-constructive properties that are very useful in 
fabrication and assembly processes.

Keywords Monge surfaces · Carved surfaces · Moulding surfaces · Developable 
surfaces · Rotation-minimizing frame
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Introduction

There has been a boom in the construction of architectural forms based on double 
curvature surfaces in recent years. This has produced both theoretical advances from 
a geometrical point of view and interesting built examples. These developments have 
led to the rationalisation of the geometries used, especially in terms of constructabil-
ity. In these developments we can distinguish the use of shapes obtained by using two 
types of systems, known as bottom-up and top-down. This classification can both be 
applied in the case of obtaining a global shape and when approaching the resolution 
of an architectural form.

In terms of the general shape and approaches to the global form, on the one hand 
we can speak of imposed shapes, which are the result of a purely aesthetic and formal 
intention. In these cases, questions of optimization are left aside. Alternatively, forms 
are rationally adapted to a function by applying form finding processes. This mainly 
relates to optimised structural functioning in response to the external forces to which 
the final architectural form will be subjected. One example is the application of the 
principle of funicularity, which has been extensively used since it was developed in 
the 19th century as a system of graphic statics. This was used to generate forms that 
solve the issues in transmitting a structure’s own weight. Another application is the 
use of minimal surfaces, where the tension is uniform, for generating surfaces that 
work mainly in traction.

When working at a more detailed scale, the approach is similar. Thus, in top-down 
processes, questions of optimization for construction are left aside in favour of a 
faithful reproduction of the global shape. This can lead, in certain cases, to very com-
plex constructive processes which demand the application of highly sophisticated 
technical means. These constitute their own fields of research and development. On 
the other hand, in bottom-up processes, geometrical fundamentals are considered 
from the first phases of the design process with the intention of simplifying construc-
tion and optimising material usage. Some examples of this include the application of 
systems based on geodesic curves as the basis for the use of flexible linear elements 
for the resolution of gridshell-type shells, and enclosures constructed with panelling 
based on flat quadrilaterals built with rigid materials or developable strips that allow 
the use of materials, which mainly bend in one direction.

A bottom-up process clearly imposes greater limits on the generation of built 
forms than top-down processes. This is highly relevant from an architectural point 
of view. However, in a top-down process fidelity to form can, in certain cases, give 
rise to problems with constructive resolution. This can lead to a costly building pro-
cess which may also involve certain compromises with respect to the original design 
proposal.

The above trade-off in the resolution of shapes is an important issue. In response, 
this paper demonstrates a process that offers a high degree of flexibility for formal 
exploration, while also maintaining some invariable geometric principles that facili-
tate the constructive resolution of double curvature shapes in a rationalised way. The 
approach described remains bottom-up throughout its development. This is true in 
terms of obtaining both the global form and when taking advantage of the geometric 
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properties that underlie the different stages involved in the constructive resolution of 
the projected form.

Monge Surfaces. Geometric Foundations

The term ‘Monge surface’ refers to the form described as follows by the French 
mathematician and geometrician Gaspard Monge in his classic text Application de 
l’Analyse a la Geometrie par G. Monge (1807):

XXV. - De la surface courbe dont toutes les normals sont tangentes à une même 
surface développable quelconque.
[Of a curved surface where all the normals are tangent to a unique single devel-
opable surface.]

Monge did not, of course, name the surface after himself, but he did describe it and 
demonstrate its geometric properties. Darboux (1893) and Raffy (1901) subsequently 
carried out further exploration. Returning to Monge’s original text, two different 
approaches to the system of ‘génération’ of this surface can be identified. We focus 
specifically on the first form of generation, which is described as follows:

…the proposed surface can be understood to have been generated by the motion 
of an arbitrary plane curve, constant in shape and size, whose plane rotates 
without slipping over a developable surface (Monge 1849) (Fig. 1).

A Monge surface is thus defined by the movement of a plane curve generatrix along 
a directrix curve, in such a way that the generatrix remains contained in a plane 
normal to the directrix and is displaced without torsion (Fig. 2). Defining the surface 
by means of the generatrix and the directrix provides indisputable advantages, as in 
this way the surface can be characterised by only two curves. From a mathematical 
approach, the condition of zero torsion between consecutive generatrices is linked to 
the concept of ‘rotation minimising frame’, which will be discussed later.

Fig. 1 A Monge surface generated by moving a curve contained in a plane, which rotates without slip-
ping over a developable surface
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It is important to point out that the developable surface referred to in Monge’s text, 
formed by the envelope of the planes whose intersection defines the generatrices, 
is specifically the polar surface of the directrix (Fig. 3). This relationship demands 
some attention since the polar surface of a curve is easily definable (Izquierdo Asensi 
1996).

A polar surface is any one of the three developable surfaces which, together with 
the tangential and rectifying surfaces, are generated from a curved directrix -planar 
or not- in space, by means of the movement of the Frenet frame along it. In the case 
of the tangential surface, it is the movement of the osculating plane for rectifying the 
surface of the binormal plane. In the particular case of the polar surface, the surface 
is generated by the movement of a plane normal to the curve. The consecutive inter-
sections of these infinitely close normal planes form the ruled generatrices of this 
continuous developable surface, which is called the polar surface.

A polar surface is also generated by the movement of a straight line parallel to 
the binormal of the curve at a point, through the centre of the osculating circle of the 
curve, corresponding to that same point. These binormals coincide with the tangential 
lines of the polar surface (Fig. 4).

Fig. 3 Polar surface (orange) 
formed by the planes normal to 
the directrix curve (blue) and to 
which the normals of the Monge 
surface are tangent

 

Fig. 2 Monge surface generated by the torsion-free movement of a generatrix along a directrix per-
pendicular to it (left). The zero-torsion movement is evident when the generatrix is a straight line, as it 
generates a developable ruled surface (right)

 



Monge Surfaces. Generation, Discretisation and Application in…

Among the applications of the polar surface of a curve, we highlight the gen-
eration of curves parallel with respect to this initial curve. Based on this property, a 
Monge surface can be defined as that generated by any set of parallel curves in space 
(Martín-Pastor González-Quintial 2024).

Objectives

It is important to keep the purely applied character of Monge’s geometrical work in 
mind. There is a clear link with the concept of ‘constructive geometry’ (Sakarov-
itch 2019) which remains relevant today when considering the intimate relationship 
between geometric processes and digital fabrication. Monge surfaces share, amongst 
others which are discussed below, one basic characteristic identified in the original 
description:

VII.…Through each point of any curved surface there always pass two lines of 
curvature which intersect at right angles on the surface,… From this it follows, 
first, that the generatrix, in all its positions, is the line of one of the curvatures of 
the surface generated; secondly, that this line of curvature is always flat (Monge 
1849).

These two families of curves on the surface have a direct relationship with the origi-
nating curves, generatrix and directrix, and are families of conjugate curves, specifi-
cally, they form a PCL network, with all the advantages that this entails (Sotomayor 
2007; Schiftner et al. 2013). The generating curve and all its rotations in space con-
stitute one of the families of curves and its conjugate, the trajectory curve, and any of 
its parallels to the surface derive from the other.

The approach we describe in this paper takes advantage of the geometric-construc-
tive properties underlying the PCL of Monge surfaces to generate them systemati-
cally, with a view to their application in architecture.

From a morphological point of view, a Monge surface is strongly conditioned by 
whether the directrix is a flat or a warped curve (Fig. 5). In the system we present 
here, however, there are no differences between the two at a generative level.

Fig. 4 Given a non-planar curve 
(blue) and its associated polar 
surface (orange), we can draw 
its binormal lines. If we make 
lines parallel to the binormal 
lines pass through the centres 
of the osculating circles cor-
responding to the discrete point 
of the curve through which we 
have obtained the binormal, 
the developable surface that 
forms the sweep of these lines 
coincides with the same polar 
surface
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The digital graphic tools intimately related with these processes of generation open 
up very promising avenues for the formal exploration of these surfaces. ‘Augmented 
graphic thinking’, a concept discussed in depth by (Martín-Pastor, Vargas-Peña 2024) 
articulates the theoretical and methodological foundations on which we have based 
our own approach to the problem.

Monge and Polar Surfaces. Contextualisation

The current literature includes a number of references to Monge surfaces. Some 
sources name them explicitly, while others refer to the same geometrical concept 
under a different name.

In texts that refer to generation defined as ‘sweeping a profile along a curved 
path’ (Pottmann et al. 2010) we identify a direct allusion to the geometrical concept 
of the Monge surface. Pottmann calls Monge surfaces with flat directrix ‘moulding 
surfaces’ and those with warped directrix ‘generalised moulding surfaces’. In the 
latter case, Pottman uses the concept of ‘rotation minimising frame’ to explain the 
generation of these surfaces.

Fig. 5 Different surfaces obtained through the procedure described by Monge
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In the Encyclopedia of Analytical Surfaces, Krivoshapko and Ivanov (2015) 
describe Monge surfaces as ‘carved surfaces of general type’. They classify them into 
a series of types and describe their mathematical formulation. Finally, they specify 
that “carved surfaces of general type and Monge surfaces are the same surfaces” 
(Krivoshapko and Ivanov 2015: 199). However, they always use a plane curve as a 
directrix. This limits the geometric repertoire which is actually possible with Monge 
development. Krivoshapko and Ivanov describe a ‘kinematic model’, which we iden-
tify as an iteration of Monge’s first formulation. Their work includes an extensive list 
of references to the use of these surfaces for the construction of shells.

Mesnil et al. (2015) also identify Monge surfaces as ‘generalised moulding sur-
faces’ and work with both the idea of the kinematic model and the synthetic concept 
of the ‘rotation minimising frame’. These two concepts are also found in Brander and 
Gravesen (2018).

There are also some theoretical proposals for concrete uses of this type of surface 
in architecture (Filipova and Rynkovskaya 2017). Recently, Gil-Oulbe and Ndomilep 
(2020a; 2020b) have engaged in mathematical research on Monge surfaces, and they 
use a set of terms related to ‘carved surfaces’, similar to those which appears in the 
Encyclopedia of Analytical Surfaces.

The term ‘polar surface’’ appears in Monge’s own work, Mémoire sur les dévelop-
pées, les rayons de courbure et les différents genres d’inflexions des courbes a double 
courbure, a text written in 1771 and published in 1785. This text also contains the 
earliest known graphic representation of this surface (Fig. 6).

Very little literature addresses polar surfaces, including the texts Geometry and 
its Applications in Arts, Nature and Technology (Glaeser 2012) and the abovemen-

Fig. 6 Monge Surfaces. Image: Monge 1785: Pl. XI, XII
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tioned Encyclopedia of Analytical Surfaces (Krivoshapko and Ivanov 2015). Nor are 
they explicitly mentioned in major reference texts on developable surfaces includ-
ing Developable Surfaces: Their History and Application (Lawrence 2011), Para-
metric Geometry of Curves and Surfaces (Lastra 2021) or Architectural Geometry 
(Pottmann et al. 2010). Krivoshapko and Ivanov do not use the term ‘polar surface’ 
for purely terminological reasons, employing instead the terms ‘evolute surfaces’, 
‘directix surfaces’ and ‘fixed axoid’. Gil-Oulbé and Ndomilep use the terms ‘fixed 
axoid’ and ‘fixed directrix torso’ implicit in Carved Surfaces (2020a; 2020b).

Beyond the significant variation in the terminology used, it is clear that, in the 
absence of a unifying concept of the polar surface, Monge surfaces have been 
approached from different perspectives. It is also evident that Monge surfaces with 
warped directrix have not been studied in depth, nor is there a significant volume of 
work on the morphological or constructive possibilities for the application of these 
surfaces in architecture.

Generating Monge Surfaces through Graphical Models

Through the direct transcription of the system described by Monge, we can decon-
struct the process of generating this surface and rebuild it following a graphical 
procedure.

A plane R normal to a non-planar curve c not straight at a point A1, intersects with 
another consecutive plane N, normal to the curve c at B1, along a line that we can 
define as the axis of rotation e1 of the plane R with respect to the immediately follow-
ing N. Between the planes R and N there is only one rotation, there is no torsion, and 
there is no rotation of the binormal around the tangent between these two consecutive 
positions. Thus, a point A1 defined in the plane R, rotates around the axis e1, intersec-
tion of the planes R and N, up to the position B1 without any torsion (Fig. 7).

As has been stated already, the intersection of successive planes normal to a curve 
generates a ruled developable surface called a polar surface. Described in another 
way, the Monge surface is generated by the movement, or more properly the rota-

Fig. 7 Successive normal planes to a curve c intersect in lines e1, e2 (left). The axes act as rotation axes 
of the points contained in the normal planes (centre). A Monge surface is generated by the successive 
movement of the infinite number of generatrix curves contained in the consecutive planes normal to 
the directrix (right)
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tion, of the plane tangent to the polar developable surface on which we can place any 
planar curve.

We can now return to the two-by-two consecutive normal planes R, N, S along a 
curve C that we name the directrix. If we define a curve contained in the first of the 
plans that we name the generatrix, we obtain a second curve as a product of the rota-
tion of the generatrix in the consecutive plane. This curve is analogous to the move-
ment of the point we rotate around, taking the intersection of the contiguous planes 
or, in other words, the ruling of the developable, as the axis of rotation. The infinite 
number of successive generatrix curves contained in the consecutive planes normal 
to the directrix finally determine the Monge surface.

The surface obtained in its continuous form is a double curvature surface. With 
a view to application in architecture, it is useful to look for a way to discretise this 
surface. If we discretise the original generatrix curve at a given number of points and 
repeat the procedure iteratively, we obtain a discrete surface formed by semi-discrete 
developable strips (Fig. 8).

We literally transcribed this system of geometric generation into a graphic algo-
rithm through Grasshopper. This algorithm systematised the entire process of gen-
eration and the different discretization systems. Starting from two curves, generatrix 
and directrix, this algorithm can generate three-dimensional models and their flat 
development, with a focus on the production of physical models (Fig. 9).

Applications for Constructing Architectural Forms

As stated, the process begins with two curves, one necessarily planar, generatrix, and 
the other directrix, which can be planar or not. First, if both generating and directrix 
curves are continuous curves, or alternatively, if we use infinite normal planes in the 

Fig. 8 Discretization of the generating curve. The result is a series of developable semi-discrete sur-
faces or strips
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definition of the polar surface and we make the rotation of the generating curve along 
the directrix continuous, the surface obtained will be of double curvature (Fig. 10a).

Depending on the degree of discretisation of the curves on the surface generated, 
we can distinguish different cases of discretisation of the continuous surface.

If the generatrix is polygonal, we obtain a surface that discretises the Monge sur-
face by means of developable strips parallel to the directrix curve, which can be 
referred to as the meridians of the Monge surface (Fig. 10b).

Note that the parallel curves generated by sweeping the generatrices discretise the 
directrix curve into arcs of circumference, since the surface generated between nor-
mal planes is a surface of revolution. The greater the number of normal planes in the 
discretisation, the closer this surface will be to the Monge surface.

A second case is produced when the generating curve is continuous and the num-
ber of normal planes used in the generation of the surface is discrete. This results in a 
series of semi-discrete developable sections determined by the parallels of the Monge 
surface (Fig. 10c).

The third case consists of a discrete directrix curve as well as a discrete number of 
normal planes. In other words, the parallels on the Monge surface are also discretised 
as polygonals (Fig. 10d). From this generation we directly obtain a network of flat 
quadrilaterals, due to the fact that the sections normal to the directrix are spindles of 
a surface of revolution.

Fig. 9 Generating an algorithm-based Monge surface. Starting from a generatrix (red) following a 
non-planar directrix (blue)
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Building Systems Based on Monge Surfaces

When generating a Monge surface, we control the surface PCL from the earliest 
stages of generation. While the process for determining the PCL for any free surface 
is already well understood, for a bottom-up process it is nevertheless important to 
generate a surface by starting with control over the curves, and not the other way 
round.

PCL have a number of properties in relation to each other and with respect to the 
surface. Firstly, the two conjugate families intersect orthogonally, and the normals to 
the surface along the PCL form the ruled surfaces of a developable surface.

It is possible to discretise a surface using developable strips between two PCL of 
the same family. This said, there are other procedures for discretisation using devel-
opable strips based on networks of conjugate curves (González-Quintial et al. 2015).

We can discretise the surface using planar quadrilateral mesh (PQmeshes). This 
point needs some clarification. In general, the four points of intersection of four PCL 
of any surface are not coplanar. This includes Monge surfaces in their continuous 
form, even if the resulting quadrilateral mesh on the surface has been considered 
‘almost flat’. If we want to discretise a surface into PQmeshes from the intersection 
points of its PCL, a prior rationalisation of the initial surface is necessary. The above 
procedure, as we have seen, automatically generates a mesh of flat quadrilaterals 
contained between the discrete generatrices (Fig. 10d).

PCL allows for a discretisation into PQmeshes, which give rise to conicalPQ or 
circularPQ meshes. These two meshes make it possible to work with special meshes 
such as ‘mesh with exact offset’, which are very important for the generation of mul-
tilayer systems (Pottmann et al. 2007 a).

Fig. 10 Different surfaces obtained by the geometric procedure described. From right to left, (a) a 
double curvature Monge surface (b) a surface discretized by longitudinal semi-discrete strips, (c) a 
surface discretized by transverse semi-discrete strips, (d) a surface discretized by flat quadrilaterals
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For Monge surfaces, one of the two PCL families, namely the generatrices, are 
surface geodesics and plane curves. This gives them remarkably valuable properties 
for use in construction, including the possibility of placing rectangular strips circum-
scribed to the surface on the geodesics (Brander and Gravesen 2018).

The geometric properties described above have enormous potential for applica-
tion in construction. The following is a very succinct description of some of the 
ways in which Monge surfaces can be applied in structural systems and architectural 
envelopes.

First, one possible procedure is to generate a straight bar model following the 
PQMesh discretisation of a Monge surface. This facilitates the use of multilayer sys-
tems on the PCL, an issue that has been researched extensively in relation to the pos-
sibility of generating meshes with exact offset (Liu et al. 2006; Pottmann et al. 2007a, 
b, 2008; Mesnil et al. 2018; Jiang et al. 2022; Dellinger et al. 2023). As these are dis-
cretised in polygonals, the offset of each PCL generates a PQ strip. These intersect in 
torsion-free nodes. The disadvantage of these grids is that the bars join nodes forming 
different angles, which complicates buildability except in some special cases, such as 
those studied by Mesnil et al. (2015). This bar model does not allow the mechanisa-
tion of the node using a 3-axis CNC machine, as the bars are not perpendicular in the 
node (Fig. 11).

Another interesting application is based on the generation of curved beam-like ele-
ments following both PCL families of the surface, perpendicular to the surface. This 
is a specific solution within the wider field of only bending curved support (Tang et 
al. 2016). Placing the beams on PCL offers the advantage that all the main planes of 
the beams intersect at 90° at a single type of joint and this, in turn, ensures that the 
joint can be machined by a 3-axis CNC milling machine (Fig. 12).

For this type of structural element, the main plane of the beam is perpendicular 
to the surface, so the edge of the beam is parallel to the surface. All the nodes are 
orthogonal and identical: the main planes of the beams can be cut at 90° and, in addi-
tion, there is only one type of node which can be machined by a 3-axis CNC machine.

A third application can be found in the resolution of architectural envelopes. 
The generative system described here can produce a wide range of solutions, either 

Fig. 11 Discretisation of a Monge surface (left) as a double-layer straight bars model (right)
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Fig. 12 Digital and physical models of a discretised Monge surface. Developable elements follow the 
PCL. Image: Piedro Nícolas Paduan Zahernski
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by means of strips of developable surfaces, or panelling using flat quadrilaterals 
(Fig. 13). In this way, a complete construction solution can be produced based on the 
original generated form, including design, manufacture and assembly.

The ‘Rotation Minimising Frame’

Much of the current literature adopts a different approach to the synthetic concept of 
Monge surfaces to that used in this paper and by Monge himself. In many cases, the 
concept of ‘rotation minimising frame’ is used within a mathematical approach. We 
understand that this issue needs to be clarified, opening a parallel discussion to the 
primary focus of this article.

The term ‘rotation minimising frame’ is used in Isogonal Moulding Surfaces 
(Mesnil et al. 2015), where it is key to holding the movement of the generatrix within 
this ‘rotation minimising frame’. A mathematical approach to defining the ‘rotation 
minimising frame’ has received special attention from a computational and math-
ematical point of view (Farouki 2016; Wang 2008) in the field of Computer Aided 
Design (CAD).

From a purely geometric point of view, the reference plane on which the generat-
ing curve sits, is a plane normal to the directrix, independently of the orientation of 
the axes that determine it. In general, the plane normal to a curve is the one defined by 
the line or normal vector and the binormal to the curve, i.e., the normal plane defined 
in Frenet frame. However, the torsion of the normal plane depends on the relative 
position of the generatrix curve in its spatial movement along the directrix. If we use 
the normal plane defined by this Frenet frame:

For a 3D trajectory y(s), and a 2D contour c(u), the Frenet frame sweep and the 
rotation minimising sweep yield the same result if and only if y is a plane curve 
with non-vanishing curvature (Klok 1986).

This definition seems to be a better description of the logic behind the concept of 
moulding surfaces. Thus, this tracing limits the validity of the use of the normal plane 
defined by a Frenet frame for obtaining Monge surfaces by means of the use of planar 
guiding curves. If we wish to obtain a surface, which is not just developable, but also 
a surface with no torsion, the use of the normal plane according to the Frenet frame is 
not valid, unless the directrix curve is planar. However, as has already been pointed 
out, ‘there are various ways of defining the plane normal to a curve’ (Bishop 1975).

In the development of the synthetic method presented by Monge, this idea of rota-
tion is completely extraneous, since there is no reference to the Frenet trihedron when 
characterising the normal plane. The condition of producing torsion-free movement 
is implicit in the movement of the normal plane that moves tangentially without slip-
ping on the polar surface of the directrix, since any segment contained in this plane 
generates a developable–that is, torsion-free– strip between consecutive ruled lines. 
In a way, a polar surface can be understood as the graphical equivalent of this reason-
ing, and this allows us to impose exactly and directly the condition of zero torsion 
between consecutive generatrices.
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Fig. 13 Different approaches to an envelope system based on semidiscretised strips, parallel (above) 
meridian (middle) and discretized planar quads (below). Image: Piedro Nícolas Paduan Zahernski
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Conclusion

This article highlights the value of Monge’s work in defining the surface that now 
bears his name. It clarifies the geometric processes involved in generating them, and 
shows the link with polar surfaces. Through the geometric mechanism of generation 
and its application by means of an algorithm, the paper demonstrates a solution for 
obtaining the discretization of a double curvature surface, which is directly relevant 
to questions of buildability in architecture.

We have also shown the important role that polar surfaces can play in the graphi-
cal generation of Monge surfaces, and how this represents a graphical alternative to 
mathematical resolutions which use the so-called ‘rotation minimising frame’. This 
vindicates the importance of these surfaces, which are very rarely included in refer-
ence material on geometry in general. Monge surfaces are representative of develop-
able surfaces but, perhaps because no direct practical application has been recognized 
until now, they have been largely ignored.

This paper, more than anything, offers a starting point. The subject remains open 
and several related lines of research are currently being investigated. The work of cat-
aloguing the types of Monge surfaces that can be generated in greater depth remains 
to be done. This includes identifying those which show promise in terms of facilitat-
ing construction, and describing their specific properties from the point of view of 
their application in architecture. The formal exploration of the use of this kind of 
surface is yet to be carried out.
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