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Abstract
The purpose of this paper is to develop the Islamic geometric patterns from 
planar coordinates to three or higher dimensions through their repeat units. We 
use historical plane methods, polygons in contact (PIC) and point-joined, in our 
deductive approaches. The mentioned approach makes use of a novel method 
of tessellation that generates 3D Islamic patterns called “interior polyhedral 
stellations”. The outputs showed that both the PIC and point-joined methods have 
strengths and weaknesses. Point-joined stellations are more efficient for regular 
repeat units and PIC is suitable for complex designs. These two methods can 
produce a large range of patterns and can be employed simultaneously. This study 
effectively answers the question regarding the gap between planar design from 
Muslim achievements and contemporary demands in modern art and architecture. 
We also propose techniques for constructing aperiodic three-dimension Islamic 
geometric patterns tessellation and two-point family.

Keywords Islamic ornaments · Geometric algorithm · Space tessellation · 
Dimensions · Symmetry

Introduction

The studies of Islamic arts and design have shown that Muslim artists had a vision for 
developing their design consistency. They developed their design from simple cross-
star (grid) patterns to complex dual-level designs. In Fig. 1b, there is an example of 
an Islamic pattern projected into an octahedron, one of the Archimedean solids. This 
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example in the Eşrefoğlu Mosque demonstrates knowledge about geometric solids 
and geometrical projection in the thirteenth century. The other example of plane 
pattern development is the geometric projection on domes shown in Fig. 1a. Bonner 
(2017b) introduced two historical repetitive stratagems for applying geometric 
designs onto the surfaces of domical structures: polyhedral symmetry and radial 
gore segments. It is essential to mention here that existing historical and traditional 
examples are either planar patterns or the projection of a three-dimensional plane on 
polyhedra or curve slices. Therefore, the output in both methods is the surface. The 
surface has various definitions regarding the field of study as Peter Firby and Cyril 
Gardiner described: “the space models of many of the surfaces which concern us sit 
naturally in 3 (or higher)-dimensional space. But soon we shall meet surfaces that 
do not sit usually in 3-dimensional space. They appear to be unduly restricted and 
cry out to be represented in a higher-dimensional space” (2001: 18). Simply stated, 
a surface is basically a 2D face and identifies an area, whilst the part that surrounds 
it is 3D and has a volume. For example, the surface of a vertical plane or sphere 
divides the region of one side from another or the interior from the exterior.

Islamic art and ornament feature muqarnas, which have a unique structure and 
design. Muqarnas, or stalactite vaulting, is a three-dimensional ornament that 
extrudes a horizontal layer of patterns and connects them with vaults (Fig.  2). 
Bloom (1987) describes them as an ornament that gives the ability to distinguish 
between the main parts of a building and serves as a transition from the walls of 
a room into a domed ceiling. Muqarnas is a system of projecting niches used for 
zones of transition and architectural decoration (Necipoğlu and Leal 2010).

It seems muqarnas lie in the pathway of planar expansion to higher space. Even 
though in plan muqarnas share some similar motifs with girih (for example, star 
motifs), Islamic scholars do not group them as the 3D patterns. Other structures 
in Islamic architecture such as karbandi and kase-sazi (Mohammadi et al. 2018), 
an intersection of several vaults, that have similar characteristics are also not 
considered to be three-dimensional patterns.

Fig. 1  Historical developments of planar pattern; a Islamic pattern projection on the inner dome of 
Jameh Mosque of Saveh, Iran, Photo: Tasnim News Agency, licensed under the CC BY 4.0 b Projected 
obtuse pattern on octahedron in the Mehrab of Eşrefoğlu Mosque, Konya, Turkey, Photo: Arash 
Mohamadi, reproduced by kind permission
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After this introduction, the question that we face is: that would muqarnas be a 
3D Islamic geometric pattern (girih) with our perspective? Before answering the 
question, let us first review the rules of Islamic geometric tessellation:

1. They must tessellate the plane infinitely.
2. Repeat units must not create overlaps or gaps in tiling.

By comparing the rules for muqarnas with those for girih, we can conclude 
that muqarnas is not a 3D girih. Muqarnas cannot tessellate the space entirely and 
historically their usage has always been different. There is a controversy among 
the muqarnas and girih scholars regarding the origin of each ornament. Some 
believe that the muqarnas form was derived from girih, while others believe that 
muqarnas developed independently. For these reasons, we are looking to fill the 
gap between 2D patterns and 3D ornament. We are concentrating on plane patterns 
and transforming them into 3D separately thanks to the use of mathematics and 
geometry. This paper aims to develop 2D designs for contemporary usage in both 
architecture and art. In our contemporary era and with our tools, what would our 
answer be? How can we employ this new type of form in our architectural space? 
We are trying to answer this kind of question.

A few comments on the subject and terminology. Geometric design in Farsi 
has the specific word, girih, meaning “knot”; therefore, we have chosen to employ 
the phrase “Islamic geometric pattern” for the sake of clarity of scientific content. 
We use “repeat unit” as a generic term for a template that is repeated using three 
types of symmetries: rotational, reflection and point symmetry. For other tiling and 
substitution tiling phrases, we refer to the terminology in Grünbaum and Shephard 
(1987).

Related Works

In this section, we survey the researches and their approaches that expanded 
Islamic geometric patterns, both mathematically and geometrically. After visiting 
the Alhambra M. C. Escher had a great impact by taking the idea of abstract 
patterns and ornaments. He did not use the Islamic patterns directly, but took the 

Fig. 2  The four steps of creating Muqarnas vault from plan: a specifying components; b defining the 
levels of vaults; c creating vaults; d primary vaults in 3D view
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symmetry and arrangement of the patterns and applied them in his works of art. 
“The regular division of a plane is the richest source of inspiration that I ever 
struck; nor has it yet dried up” (Escher 2000). He also described the symmetry 
operations on the figures and following pages show how a surface can be 
regularly divided into or filled with similar shaped figures which are contiguous 
to one another, without leaving any gaps (2000; Schattschneider 1990).

Dunham (2001) extended the process by exhibiting repeating Islamic patterns 
in hyperbolic geometry, the third classical geometry. He has advanced a 
theoretical framework that makes it possible to create hyperbolic Islamic patterns 
that are related to Euclidean patterns. At the end of his research, Dunham 
suggested creating a hyperbolic version of other families of Islamic patterns. 
He also suggested a method consisting of his and Kaplan’s (2000) algorithm to 
generate hyperbolic star patterns.

A more recent example is the work of Craig Kaplan, who successfully applied 
computer science and wrote an applet for developing Islamic patterns (Kaplan 
2003). He also designed Islamic patterns on a non-Euclidian sphere and even 
on the Stanford Bunny. His works have presented a construction technique for 
creating a broad set of traditional Islamic star patterns, along with interesting 
original designs. They have also shown how these patterns can be constructed 
in a way that is independent of Euclid’s parallel postulate, allowing them to be 
adapted to the sphere or the hyperbolic plane in addition to the Euclidean plane 
(Kaplan 2005; Kaplan and Salesin 2004; Bonner and Kaplan 2017).

Riether and Baerlecken (2012) use Grasshopper for scripting an algorithm 
based on the polygon in contact (PIC) method for manipulating the girih surface. 
Their Digital Girih project was built based on the research of Lu and Steinhardt 
(2007) and their findings on aperiodic patterns in medieval Islamic architecture. 
The Girih Project is a quasi-crystalline system that intensifies the relation of 
pattern and volume. The volume in their project emerges from changing matching 
rules within a pattern. In that way, it is a bottom-up process that depends on the 
matching rules used for the pattern generation. However, they have not achieved 
the exact 3D girih since they retouched the plane patterns and produced a surface. 
As we mentioned earlier, surfaces have area, but they can create a form, so they 
called their algorithm 2.5-dimensional pattern generator.

Jay Bonner has done many excellent works. In his latest book, Islamic 
Geometric Patterns (Bonner 2017b) he also contributed several methods for 
mathematically expanding upon the traditional practices and design types 
associated with Islamic geometric patterns. These include fivefold aperiodic 
patterns that employ Sir Roger Penrose’s matching rules; sevenfold patterns with 
scale-invariant self-similarity; and recursive quasi-periodic fivefold patterns 
with diminishing scale. In separate research, he used Buckminster Fuller’s 
Jitterbug method for projecting Islamic patterns, and the result is very similar 
to the historical polyhedron projection in Konya, Turkey (see Fig. 1b). These 3D 
jitterbug transformations have 2D corollaries that are instructive in understanding 
this design process. As he writes, “this expands upon the historical use among 
some Muslim cultures of polyhedral geometry as an organizing principle for 
placing geometric patterns onto the surfaces of domes and domical niches and 
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provides contemporary artists with a new approach to applying the geometric 
design onto spherical surfaces” (Bonner 2018).

One article very close to our approach is that of Reitebuch et  al. (2018). They 
created shapes based on the construction of 2D girih patterns, which provided a 
corresponding procedure to construct 3D girih patterns covering ℝ3 completely. 
They have achieved five different tilings of space: the first consists of octagon 
prisms and truncated cuboctahedra, the second contains truncated octahedra, the 
third uses cubes, truncated cuboctahedra, and truncated octahedra, the fourth is 
built of octagon prisms and cubes, and the fifth is made of cubes only. We elaborate 
and improve upon their (Reitebuch et  al. 2018) work in several ways. First, we 
provide two systematic methods—interior polyhedral stellations and point-joined—
to generate 3D motifs and more useful parameterizations for Islamic geometric 
patterns. Second, these algorithms can tessellate through periodic and aperiodic 
space, also in higher dimensions. Finally, and most significantly, we suggest 
and discuss the application of these solids and shapes in contemporary art and 
architecture.

Mathematical Background

There is an agreement among scholars about the great mathematics behind medieval 
Islamic pattern and ornaments. Jan Hogendijk (2012) clarifies the relation between 
mathematician-astronomers and craftsmen-artist, concluding that mathematician-
astronomers worked with geometric proofs in the style of Euclid’s Elements. 
Craftsmen were familiar with the Euclidean way of drawing figures, using letters as 
labels of points. However, he believes that craftsmen did not use geometric proofs 
and were not trained in the methods of Euclid’s Elements. Abu’l-Wafa participated 
in solving the problems in artisans and craftsmen’s designs. Alpay Özdural says that 
he seems to have enjoyed being involved with architecture and architectural arts, 
the two rewarding fields for the applications of geometry (Özdural 2000; Necipoğlu 
2017). Thus we can emphasize the importance of mathematics in medieval designs 
and arts. For this reason, in this section, we will review the required applied 
mathematics materials that we will use for transforming Islamic geometric patterns.

To present a comprehensive method to expand the idea, we provide a technical 
introduction to the modern mathematical concepts and materials in this part. More 
information and technical details about the relations between Islamic geometric 
patterns, mathematics, and geometry can be found in some of the excellent texts 
(Abas and Salman 1995, p. 232; Wichmann and Wade 2017; Thomas and Hann 
2007; Horne 2000; Bonner 2017a).

As we mentioned earlier, there are two fundamental rules for Islamic geometric 
patterns (girih). First, the repeat units have a specified ornament that is defined 
under separate families (acute, media, obtuse, and two-point) (Bonner 2017b). 
Second, repeat units can tessellate infinitely with the condition of no overlaps and 
no gaps. By knowing these rules, we can determine the mathematics required for 
geometric transformation. For adding higher dimensions to the planar repeat unit, 
we will describe dimensions in mathematics first. Due to the comprehensiveness of 
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the PIC method, we have chosen this specific technique as the primary method. For 
this reason, we will explain polyhedra and polygons in the next section. And finally, 
because of the second rule, we will study the types of tessellations and tilings.

Dimensions

The term “dimension” generally defines a measure, parameter or properties of an 
object, for example, length, width, height, and depth. In classical physics, for a point 
in space, three physical dimensions are considered, the fundamental aspects of this 
structure being expressed in terms of forward and backward, right, left and up and 
down. However, in differential geometry dimension can take a different meaning. In 
Fig. 3, we show an example of changes in dimensions.

In mathematics, the dimension of an object represents the number of degrees 
of freedom of a point that shifts on that object. In simple words, the number of 
dimensions defines independent parameters or coordinates that are needed for 
determining the location of that specified coordinates on an object. For example, 
a point has zero dimensions because a point can only have one independent 
parameter; a line is one dimensional due to the movement of a point on the line 
in just one direction. Sommerville (1958) describes n dimensions as a topological 
space, meaning that there is possibly a higher dimension in mathematics, although 
the human cannot process them. For example, in the superstring theory, eleven 
dimensions are required for the base equation. Below we will exam the possibility of 
Islamic geometric pattern transformation into 4D space.

The 2D design in 3D space considers a plane; the equation for that is Eq. (1) and 
the normal of the plane is defined by ��⃗N = (a, b, c) . A random point on the plane has 
the coordinate of A(x1, y1, z1) and for our purpose, we should project the point to 
space by manipulating the Z-axis. This new point, by having z value, can represent 
the three dimensions. Now by solving the Eq. (1) we can project every planar point 
into space, and finally, a solid will form in the space.

As we described earlier, by going to higher dimensions, there is a higher 
degree of freedom, meaning a different angular situation in the objects. In the PIC 
method, the plane angle (�) on a segment line can have variables of 0◦ to 180◦ . 
Technically these two angles are impossible as inputs because the result equals 

(1)ax + by + cz + d = 0
x2 − x1

a
=

y2 − y1

b
=

Z − z1

c
= k

Fig. 3  Geometric dimension transformation from 2D into 4D; an equilateral triangle, into tetrahedron 
and tetrahedron into regular 5-cell or pentachoron
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zero in the equation. In three dimensions, we have a solid angle instead of the 
plane angle. Solid angle (Ω) measures how large an object is and makes a cone of 
view from a particular viewing point. The unit for the solid angle is steradian or 
square radian (sr).

Equation  (2) is the planar and space converter tool for transmuting our four 
plane design families (acute, median, obtuse and two-point) into space angle.

Polyhedra and Polygons

Polygons are 2D (plane) figures that are built from line segments. Polyhedra 
are 3D solids which consist of polygons forming faces, edges, and vertices. 
A polyhedron is not the exact 3D polygon, although sometimes polyhedra 
are created by regular polygon faces, like the cube created by squares and 
the tetrahedron created by equilateral triangles. We can operate geometric 
transformations of polygons to polyhedra and polygons to polygons. In operating 
from a higher dimension to a lower one, there is a partial loss of symmetry. For 
example, in the transformation of a cube into a network square, depth or edges are 
projected into lower dimensions.

Truncation is one of the operations that cut polyhedron vertices; the result is 
the new face in place of each vertex (Fig. 4). The actual vertex figures of a regular 
polygon (p) are the sides of another (p) which we may call a truncation of the first 
(Coxeter 1973). This operation can be used as a secondary method for 3D Islamic 
geometric patterns after they are transformed from 2D.

Leonard Euler discovered the formula V − E + F = 2 describing the number 
of vertices, edges, and faces of a convex polyhedron (Cromwell 1999). This 
formula works with all of the polyhedra except those with a hole running through 
them, which are called non-simple polyhedra. Euler’s formula discloses the fact 
that there is no simple polyhedron that has ten faces and seventeen vertices. The 
real usage of this formula in our method is the evaluation of the polyhedra after 
transformation into 3D. If the number of each relative variable is correct, that 
means we have the right result.

(2)� = 2 × arccos

(

1 −
Ω

(2�)

)

Ω = 2� ×

(

1 − cos
(

�

2

))

Fig. 4  Progressive truncation of the cube into truncated cube, cuboctahedron, truncated octahedron, and 
octahedron
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Tessellation and Tiling

If we tile a plane using one or more geometric shapes (polygons) without gaps or 
overlaps, it is called tessellation. Different geometric shapes (the so-called repeat 
unit) result in various kinds of tessellation. An n-uniform tessellation is an edge-to-
edge configuration of tiling of regular polygon faces with the condition of distinct 
transitive vertices that n defines the distinctively.

Regular convex polygons that have equal sides and inside angles produce regular 
tessellations which are squares, equilateral triangles and hexagons. Semi-regular 
or Archimedean tessellations are the other convex polygons that have all vertices 
belonging to the same transitivity class. Still, their repeat units are a combination 
of regular shapes that make eight possibilities for this type of tiling. Each vertex 
or intersection point has the same pattern of geometric shapes. As Bonner (2017b) 
described, regular, semi-regular, two-uniform, and three-uniform tilings were used 
historically as underlying tessellations to generate Islamic geometric patterns.

Tiling the space or 3D close packing tessellation, also called honeycomb, is 
mathematically possible with polyhedra (Coxeter 1973). However, there is no 
unanimous agreement about the number of conditional possibilities with polyhedra 
or polytopes that tessellate the space. In Table 1, we have summarized some of the 
mathematicians’ theories about space-filling tessellation.

As with n-uniform plane tessellation, there is n-uniform honeycomb in which 
n defines the number of dimensions. In our approach, we are working with three-
uniform honeycombs which consist of uniform polyhedron units having the same 
vertices groups. In three dimensions, there is just one regular honeycomb, which has 
eight cubes at each polyhedron vertex. Similarly, in three dimensions, there is only 

Table 1  Space filling tessellation summarization

Scholar Description

(Gardner 1971, pp. 183–184) The cube is the only Platonic solid possessing this property
(Steinhaus 1999, p. 210; 

Wells 1991, p. 232)
The cube and a combination of tetrahedra and octahedra do fill space, 

The rhombic dodecahedron, elongated dodecahedron, trapezo-rhombic 
dodecahedron

(Wells 1991, p. 235) In addition, octahedra, truncated octahedron, and cubes, combined in the 
ratio 1:1:3, can also fill space

(Wells 1991,p. 234) In 1914, Föppl discovered a space-filling compound of tetrahedra and 
truncated tetrahedra

(Steinhaus 1999, pp. 
185–190; Wells 1991, pp. 
233–234)

There are only five space-filling convex polyhedra with regular faces: the 
triangular prism, hexagonal prism, cube, truncated octahedron

(Johnson 1966) Gyrobifastigium, the triangular prism, hexagonal prism, cube, truncated 
octahedron

(Coxeter 1973, p. 29) The cube, hexagonal prism, rhombic dodecahedron, elongated 
dodecahedron, and truncated octahedron

(Grünbaum 1994) Cube (the only Platonic polyhedron to do so), the rhombic dodecahedron, 
the truncated octahedron, triangular, quadrilateral, and hexagonal 
prisms
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one quasiregular honeycomb, which has eight tetrahedra and six octahedra at each 
polyhedron vertex (Sherk et al. 1995). Similar to Archimedean tiling, two or more 
different polyhedrons can combine to tessellate the space. We are calling them semi-
regular space-filling polyhedra due to their characteristics.

Approach

This paper answers the questions with two approach methods. In the deductive 
approaches, we extend the results by going from theories to data. In our cases, 
theories will be the construction methods in planar or in general Islamic geometric 
pattern methodologies, which Bonner has described in detail (2017b) and which 
were historically employed to generate patterns. In our 3D projection, the theories 
will be the same methodologies in the past transformed into higher dimensions, 
and data are original patterns due to the absence of such ornaments in the past. In 
the theory of Islamic geometric patterns, PIC is a comprehensive method that has 
a broad range of applications, from simple patterns to complex dual-level designs. 
For technical details, analyzed history and methodology, we recommend (Bonner 
2003, 2017b; Makovicky 1992; Cromwell 2009; Hankin 1925). The PIC and point-
joined methods are the two main methods in our deductive approach that employs 
historical theories in order to produce data (Fig. 5).

However, in the inductive approach, we are going from data to theories. The data, 
in this case, will be the same as in the deductive approach, but the studies on them 
are theoretically different. In our inductive approach, we demonstrate original data 
that does not have the same planar pattern, although it has the same property as 2D 
patterns. In the second approach, we are not transforming patterns from 2 to 3D, but 
ornaments forming from polyhedra directly. Therefore, the results for the method 
and data will be both original and theories in this approach are no longer historical. 
The operation of truncation in geometry is an example of a method that does not 
have a historical basis and can be employed for creating Islamic geometric pattern 
forms.

In Islamic geometric patterns, colors and graphics are added after the completion 
of the design. As a result, designs are the combination of intersected lines that color, 
define the area and induct a surface among the lines, which Castera (2016) called 
positive and negative spaces. In three dimensions, we can truly form a space among 
the intersected lines. This feature can create more possibilities for creating form. 

Fig. 5  Ten-pointed star construction using decagon bases and PIC method as one of the theories in 
deductive approaches
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For example, in Fig. 6, we show how two different surfaces with the same structure 
can be created. We have chosen to select the simplest intersection, which generates 
a less complex design. In both approaches, all the surfaces on each part meet on a 
point, not an edge.

Construction Method

Polyhedra in Contact

In this section, we use the mathematics that were introduced in the previous section 
for transforming geometric patterns from the plane to a higher dimension. We show 
a step-by-step method for transformation by an example and describe every stage. 
The process for every repeat unit will be the same. In Table 2, we have chosen a 
square as the repeat unit. In Step 1, in the center of the repeat unit in the square, 
there are four line segments that surround the plane and create a polygon. This 
centroid point, in 3D, should have the same characteristic. In the cube, we have four 
faces in each direction that surrounds the space. This feature can assist us with a 
complex transformation from 2 to 3D.

Steps 2 and 3 are the transition of intersected lines. The points from the center 
of lines converge to the center of faces in 3D. Also, angles change from planar to 
spatial or degree to steradian, described before. Although there is a range of 0° to 
180° for angles, we have selected conventional angles that exist in medieval Islamic 
designs: acute, median and obtuse. The fourth family, two-point, will be described 
separately below.

Step 4 is the intersection of cross lines from the centroid faces that create the final 
shape. These lines form the solid edges. Further, to complete the shape, the faces 
will be drawn. These faces have the same roles as the color had on the plane: they 
separate the space for a better understanding of the designs.

Point‑Joined‑Grid

Since the 1970s, the point-joining technique has been advanced by a number of 
proponents, causing it to gain support as the dominant historical design methodology 
(Bonner 2017b). There is no comprehensive definition of the point-joined method; 

Fig. 6  Two possibilities for the intersection of faces with the same four-pointed star pattern
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as Bonner describes it, this method involves the use of a compass and straight edge. 
Every scholar developed the method in their own style, and there are differences 
in every technique. Broug (2008, 2013) is among those who expanded the point-
joined method and demonstrated the process in his books. What’s more, he manages 
the School of Islamic Geometric Design, where his ideas and methodology are 

Table 2  Step-by-step operation for geometry transformation from 2 to 3D Islamic geometric patterns
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developed. In Fig. 7, we demonstrate a common eight-pointed star pattern that starts 
with a circle in a square, divided into eight equal sections.

First, two squares are drawn inside the circle. In later steps, the design will be 
completed by tracing parts of the lines in previous steps. The greatest difference 
between the point-joined and PIC methods is that the point-joined method employs 
circles, arches, and rays. To project this method from the plane to three dimensions, 
we are transforming the same item from 2D to the next dimension. In the early 
stages, the circle transforms into the sphere and square to the cube. After preparing 
the work template, two squares transform to the eight cubes that rotate on the 
centroid of the main cube (repeat unit) (Fig. 8).

As Bonner (2017b) described, in addition to the polygonal technique, many of the 
less complex Islamic geometric patterns can also be produced from the point-jointed 
method. We have presented this method to show the possibility of a different method 
for creating 3D Islamic geometric patterns as a deductive approach. Although this 
method has an excellent ability for producing patterns, PIC is a more technical 
method for our goals, and the transformation of polygons into 3D is less complicated 
than curved surfaces like spheres. For this reason, we are producing and analyzing 
the results based on PIC as the primary method.

Results

In this section, we will gather the results of our proposed method, interior polyhedral 
stellations, for generating 3D Islamic patterns. We categorize the results based 
on the symmetries of the repeat unit: regular, semi-regular, and irregular, all of 
which tessellate with three-uniform honeycomb in Euclidean space. The two-point 
type is a specific repeat unit that is produced with the PIC method. The results 
are summarized using both the inductive and deductive approaches. This method 

Fig. 7  Eight-pointed star pattern with the point-joint technique, described as fourfold patterns in Broug 
(2013, 2008)

Fig. 8  Transformation of the same pattern in Fig. 7 into 3D, using spatial point-joined method
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can apply to any n-uniform honeycomb polyhedra and, with that said, there are 
various polyhedra for generating 3D patterns. It is interesting to note that historical 
regular, semi-regular, two-uniform, and three-uniform tessellation patterns, after 
transformation to the 3D shapes, can create both the same and an original design 
depending on their viewpoints (Table 3).

Regular

According to Table 1 and based on the conclusion of geometrical mathematicians, 
we have considered cube, truncated octahedron, elongated dodecahedron, rhombic 
dodecahedron, and hexagonal prism as the polyhedra that fill space periodically. 

Table 3  Tessellation of cube, truncated octahedron, elongated dodecahedron, rhombic dodecahedron, 
and hexagonal prism to produce Islamic geometric patterns repeat unit in 3D
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Therefore, by using the steps shown in Table 2 for these solids, Table 3 shows the 
3D Islamic geometric patterns that result from regular repeat units.

Semi‑regular

This family is the combination of two or more regular repeat units and is named 
based on the Archimedean polyhedra, semi-regular shapes. Regular shapes can 
produce two plane patterns, parallel and diagonal sections. This category, however, 
can generate more 2D plane patterns due to the more complexity in repeat units and 
tessellation.

Irregular

Irregular repeat units are cells that have unequal angles and unequal sides, as 
opposed to regular repeat units. Irregular polygons mostly fill the space between 
regular unit cells in Islamic geometric pattern design. The resulting group has a 
more historical characteristic, due to the combination of regular and irregular unit 
cells which was similar in traditional patterns (Table 5).

Two‑Point Type

Bonner (2003) introduced a new family alongside the acute, obtuse and median 
angles for generating patterns with the PIC method. This type of design is essentially 
based on the polygonal methodology rather than a historically-based method (Fig. 9). 
Two-point patterns have been seen and applied in the past; however, there are no 
historical documents or scrolls that show the two-point underlays of the patterns. 
Also, these types of patterns in other methodologies (for example point-joined or 
grid methods) have no specific classifications and are mainly sub-categorized within 
the three mentioned families. Nevertheless, due to our having selected PIC as the 
main technique for this present article, we are projecting a two-point plane design to 
the three dimensions likewise.

The name of the two-point comes from the two parameters on each segment line 
of the polygons. Therefore, according to our interior polyhedral stellations, we have 
four parameters (points) on every face. These extra variables on faces create more 

Fig. 9  Two-point pattern repeat unit and their tessellations: two-point with reflected 22.5° angles (left), 
two-point with 60° angles (right)
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engaging parameters in unit cells in comparison with other types, in which only one 
point connects the repeat units.

In Fig. 10, we show the results of the new patterns. This family has a different 
composition with other repeat units for creating motives. Because of the four 
variables on each face, there is no situation for the creation of one-point faces as a 
structure.

Aperiodic

In periodic tilling, repeat units tessellate through general symmetry groups. In a 
plane, there are seventeen repetitive patterns composing a symmetry group called 
the Wallpaper Group. Syed Jan Abas and Amer Shaker Salman (1995) reviewed the 
wallpaper group that was employed in Islamic geometric patterns in detail. Covering 
a surface with 5, 8, 10, and 12 axes of symmetry with only translational symmetry 
is impossible and result in gaps in the tiling. One of the most famous aperiodic 
tilings is the Penrose tiling. Penrose tilings feature a finite number of shapes known 
as prototiles, which can tile the plane in fulfilment of the rules of no gaps and no 
overlaps (Gardner 1977).

Whereas our goal is to produce 3D Islamic geometric patterns, the problem in 
this section is that a Penrose tiling is planar and has 2D characteristics. We are 
looking for polyhedra that can tessellate and fill the space aperiodically without 
any transitional symmetry. The gyrobifastigium (Fig.  11a) is a solid consisting 
of two conjoined triangular prisms that can fill space. In 1993 J. H. Conway 
introduced a polyhedron that has aperiodic and later, through a collaboration with 

Fig. 10  The pattern in Fig. 9 transformed: using PIC method and tessellated through cube repeat unit

Fig. 11  a The gyrobifastigium; b Islamic geometric patterns pattern with gyrobifastigium repeat unit; c 
Schmitt–Conway–Danzer biprism; d Islamic geometric patterns with Schmitt–Conway–Danzer biprism 
repeat unit
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others, called it Schmitt–Conway–Danzer biprism (Fig.  11c) (Danzer 1995). The 
Schmitt–Conway–Danzer biprism is a polyhedron topologically equivalent to the 
gyrobifastigium, but with parallelogram and irregular triangle faces instead of 
squares and equilateral triangles. Like the gyrobifastigium, it can fill space, but only 
aperiodically or with a screw symmetry, not with a full 3D group of symmetries 
(Senechal 1996).

As we described in the inductive approach, by applying the same PIC method 
in polyhedron and without historical samples, we can achieve aperiodic 3D Islamic 
geometric patterns (Fig. 11b, d). Because Schmitt–Conway–Danzer biprism is the 
gyrobifastigium deformation solid, we can parametrize patterns by shifting from one 
shape to another. This script can create hybrid periodic-aperiodic Islamic geometric 
patterns and in a variable situation (Fig. 12).

Discussion

In this section, we discuss the application of the results obtained in the previous 
section. According to our goals, the results can develop along a certain path in order 
to employ them in architecture and art. Although some of these operations have 
been used before in plane design and by other researchers, we also have developed 
their ideas here.

Parquet Deformation

Parquet, generally speaking, is a type of floor covering, typically of wooden tiles of 
different shapes. William Huff, an American architecture professor, used the term 
“parquet deformation” in the 1960s and later Douglas Hofstadter developed this idea 
(Hofstadter 2008). This method is a transformation in regular tile patterns that keeps 
the regularity of tilings and simultaneously changes form. Huff was mostly interested 
in the method of attraction that deforms the pattern from one side to another. M. C. 
Escher used this technique with abstract and original patterns in his Metamorphosis 
collections. Craig Kaplan was among the first to connect this technique with Islamic 

Fig. 12  The Islamic geometric patterns with Schmitt–Conway–Danzer biprism repeat unit tessellation, 
results in aperiodic tiling
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geometric patterns. He also generated Islamic geometric patterns in non-Euclidian 
space (Kaplan 2005).

The principles in parquet deformation are one-directional transformation 
and regularity of tiles. Due to our method, which develops the design in three 
dimensions, we can modify the rule in parquet deformation by adding dimensions 
in the direction of transformation (Fig.  13). Attracting operations in parametric 
design act like magnets that affect the objects. By combining the attraction method 
and parquet deformation, we shall consider one of the pattern sides as an attractor 
and finally, we can parametrize this method in the Grasshopper plugin. Because 
attractors can adjust the position, rotation or scale of the patterns, they can create 
more designs in the way of developing the deformation method (Fig. 14).

We can use this method in space tessellation as well, by modifying the patterns 
in the z-axis. If the repeat unit (the cube, for example) moves toward one axis, the 
results are similar to plane patterns. However, in 3D transformation, the result is 
different and employs a parametric method.

Architecture and Design

Islamic geometric patterns had a great influence in architectural forms, especially 
façades and ornaments. Islamic decoration and architecture are bound together and 
can’t be separated from each other. That means that in developing Islamic ornaments, 

Fig. 13  Modified parquet deformation; attraction method: a side attracting; b middle attraction point; c 
attraction curve

Fig. 14  3D Islamic geometric patterns parquet deformation in elevation view with unit cells
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we should also consider the application of this design in architecture. The Masdar 
City project in Abu Dhabi is an example of the projects representing traditional 
design alongside modern tools such as sustainability and zero-energy buildings. 
For the balconies of the residential buildings, they used Islamic patterns, under the 
supervision of Jean-Marc Castera. The result was a contemporary reinterpretation of 
the mashrabiya screen, which protected the second inner layer, including windows 
(Palmer 2011).

Here we do not review or criticize the project elements but create some alternate 
examples for the design with the same ideology. We are showing samples that follow 
the project concepts, which are sustainable developments alongside establishing the 
traditional design. As we introduced the attracting operation in the previous part, 
our proposed design can attach to the sunlight path as a parameter and can respond 
to the sky lighting in real-time to control the lighting of the building (Fig. 15a–c). 
The idea of developing the traditional planar patterns retains the 2D specifications in 
the façade of the building and also can associate with contemporary needs, design, 
growth and facilities.

4D Space

Now we will briefly discuss the geometrical transformation of the patterns into 
the next dimensions, a 4D Islamic geometric space pattern here. 4D space is a 
mathematical abstract and imaginary concept stemming from the generalization 
of the law of 3D space. Philosophers and mathematicians have studied this topic 
for almost three hundred years. The ideology and geometric concepts behind four 
dimensions are complicated, and opening this topic is very detailed; however, 
Florian Cajori (1926) described the origin and concept very well. The human cannot 
perceive four dimensions spatially and for that reason, we are using the shadows 
of 4D that are projected into lower dimensions for understanding the situation of 
forms in space. The process of geometric transformation is the same as that shown 
in Table 2, which starts with the repeat unit. The cube in the 4D space is called a 
tesseract, octachoron, octahedron, or eight-cell, which is a hypercube in ℝ4.

Fig. 15  A proposed façade for balcony in residential buildings; a 3D Islamic geometric pattern modules 
with full close mode, in summer b the modules that track sunlight as the parameter for controlling the 
lighting; c the modules with full open mode, in winter
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The tesseract can be constructed in several ways. For example, with 
hyperoctahedral symmetry, it can be made with three cubes folded together. The 
hypercube made up of eight hyperplanes that consist of eight cubes, twenty-four 
squares, thirty-two edges, and sixteen vertices. These eight cubes can form the 
Islamic geometric pattern repeat unit induvial, as shown in Table  2. Finally, by 
constructing the tesseract, using transformed cubes, we can produce a 4D Islamic 
geometric pattern (Fig. 16, GIF 1 and 2). The usage of this dimension projecting is 
more a fundamental knowledge rather than applied design and art. We can mention 
here that the 4D space pattern defaults to a demonstration and employment as an 
ornament or art design. The purpose of this section was to show the capability of this 
method for constructing patterns in higher dimensions rather than the application of 
them.

Conclusion

In the construction section, we described methods for creating 3D Islamic geometric 
patterns. We gave a brief introduction to modern mathematics that we required for 
our method to produce periodic and aperiodic tessellation with our repeat units. 
We showed that it is possible to construct 3D Islamic geometric patterns with a 
deductive approach, a geometric transformation from 2D design to 3D that employ 
historical (studied) methods, and an inductive approach, which uses operations such 
as truncation to produce new solids and higher dimensions like tesseract Islamic 
geometric patterns.

Although there is no evidence that Islamic artists used matching rules for creating 
quasiperiodic patterns (Cromwell 2009), here we introduced an Islamic geometric 
pattern construction for creating aperiodic tilings in three dimensions that can fill 
the space. We have not discussed Muslims’ awareness of quasiperiodic order but 
demonstrated that how we can make an effort on their works by advancing their way 
of thinking and ideas.

Islamic geometric patterns in three dimensions have different behavior than 
their planar origins. The first challenging difference is the coloring process of 
the patterns in 3D shapes. Most of the historical examples are colored regions 

Fig. 16  The 4D (tesseract) repeat unit of Islamic geometric patterns in different captured shadows
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bounded by interlaced strands (Kaplan and Salesin 2004); therefore coloring 
the pattern in a higher dimension is a decorated and symmetrical stage as well 
as a productive one. Grünbaum and Shephard (1987) discussed the concept of 
“colored patterns and tilings” and described how monochrome or chromatic 
coloring can create variant symmetry in the tiles. In our result, we showed 
the foreground with the blue color and left the background transparent as 
the monochrome tiling. However, this is the simplest method for coloring and 
generating patterns. By coloring primitive patterns in chromatic or multi-color 
(Tables 4 and 5), we can create the same designs but with different tessellation 

Table 4  Semi-regular Islamic geometric patterns tessellation: cubes, truncated octahedra, and truncated 
cuboctahedra

Table 5  Regular and irregular Islamic geometric pattern repeat units and their tessellation: ten-pointed 
star, barrel-shaped hexagonal and five-pointed star
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symmetry. These new coloring patterns generate a whole new color group model 
that can proceed in a separate study.

The final goal in our process of study is to employ the outputs in contemporary 
utilization for the continuation of the Muslim heritage. We believe that the 
application of historical patterns and ornaments alongside newly developed patterns 
can create suitable spaces in Islamic contents. Conceptual designs, products, and 
buildings are appropriate targets for our proposed method and results. To us, it 
seems most likely that the Islamic artists and mathematicians were interested in 
advancing their knowledge and arts. All that we have done was an extension of their 
knowledge by using modern mathematics and geometry to pursue our goal.
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