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Abstract
This paper analyzes the basic geometric and kinematic characteristics of auxetic 
structures. The geometric principles are then transferred to a family of new possible 
forms. We investigate and elaborate auxetic behavior in a purely geometric way 
which is based on the kinematic movement of different frameworks. We then 
demonstrate its usefulness by analyzing the involved geometry with computer 
software but without computer simulations or numerical approximations. Instead, 
using cut flat material and, depending on the cuts and the material used, we enable 
the kinematical movement of the structures. We also analyze monostable auxetic 
structures whose movements can be described as geometrically precise, as well as 
bistable ones. Based on geometric considerations, we combine rigid materials and 
composites and select appropriate joint connections to allow the application of this 
system in an architectural scale in, for example, facades, screens or shading systems.

Keywords  Auxetics · Kinematics · Fabrication

Introduction

When elastic material is stretched, it becomes longer in the direction of stretching 
and is typically thinner in the orthogonal direction. The behavior of material under 
such a deformation is described by one of the fundamental mechanical terms—
Poisson’s ratio (Evans et  al. 2000). Poisson’s ratio (µ) defines how a material 
expands (or contracts) transversely when being compressed longitudinally. Most 
natural materials have a positive µ indicative of our intuitive understanding that 
material becomes thinner when it is stretched. Auxetic materials however, can 
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exhibit a negative Poisson’s ratio. Such materials undergo lateral expansion when 
stretched longitudinally and become thinner when compressed (Ellul et al. 2009).

The behavior of auxetic materials is of great interest for material sciences and 
most auxetic research is done on microscale and mesoscale. The application of such 
materials includes medical implants of expandable stents (Gatt et al. 2015; Najabat 
et al. 2014; Tan et al. 2011) through to applications in sports fabrics (Sanami et al. 
2014) to programmable materials that can form different shapes autonomously by 
folding (Hawkes et al. 2010). Such material concepts are experimentally realized by 
perforating various cut motifs into a sheet of material creating a network of solids 
and voids. Thin parts of material that connect solids act as hinges and allow auxetic 
behavior of the whole system. Furthermore, we can distinguish between monostable 
and bistable auxetic mechanical materials. The main mechanical properties of a 
monostable material is that such auxetics cannot maintain the transformed shape 
upon load removal whereas bistable auxetic materials have two stable positions—
exhibiting a switchable expandability (Rafsanjani and Pasisi 2016).

The existing research in the material sciences is strongly based on experiments, 
computer simulations and numerical approximations of auxetic capabilities. Only 
a small number of research studies give a precise geometric description of auxetic 
structures (Borcea and Streinu 2015; Elipe and Lantada 2012) or describe possible 
applications for design purposes (Konakovic et al. 2016; Mesa 2016). For example, 
the research of Borcea and Streinu (2015) presents purely geometric notions of 
auxetic one-parameter deformations of periodic 2D and 3D frameworks. But 
from a design point of view, this gives no framework for further development or 
a hint of how to find new auxetic designs with one-parameter deformations. Elipe 
and Lantada (2012) records the results of a comparative study of planar auxetic 
geometries by means of computer-aided design and engineering. They develop a 
library of existing different auxetic structures and simulate the behavior of different 
auxetic geometries and elaborate properties of the auxetic structures.

Our work will go further because we will analyze the geometry of auxetic 
structures in order to define classes of possible auxetic patterns. Based on the 
seventeen wall paper groups—especially on Platonic and Archimedean patterns 
and the associated Euclidian transformations—we will analyze periodical patterns 
and develop additional a-periodical patterns in order to construct a network with 
a continuous change of the auxetic volume. Our parametric approach will enable 
generation of such patterns performed in an appropriate CAD system. With a series 
of parametric design studies and physical prototypes we will demonstrate that our 
approach encompasses a rich class of periodical and a-periodical patterns that, 
apart from potential use in material science, can be applied as kinematic systems in 
engineering and design for performative architecture.

Auxetics

Figure 1 shows the typical behavior of elastic material. When forces F1 and F2 are 
applied in two opposite (longitudinal) directions on the material, it is compressed 
in the transverse direction. The new volume V1 usually becomes smaller or at most 
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the same as V which means V1 ≤ V. The ratio between the negative transverse strain 
divided by the longitudinal one is called Poisson’s ratio. Since typical materials 
contract in transverse direction, when stretched in longitudinal one, Poisson’s ratio is 
positive and approximately between 0 and 0.5 (Lakes 1987).

Lakes (1987) was the first to develop research about auxetics in science. 
Auxetics are forms whose geometric structure is not completely rigid. The 
deformation means a change of geometry, whereby the structure changes from 
a relative stable state into a moveable kinematic state. Auxetic materials show 
a completely opposite behavior compared to general elastic material, since 
it is also stretched in the transverse direction of the applied forces and so the 
volume increases and Poisson’s ratio becomes negative, due to its definition. 
But in reality, the material’s volume is not really increasing. Namely, the whole 
structure is composed of different smaller parts which rotate against each other 
when forces are applied. So “only” the overall volume—which means the 
volume of the bounding box—becomes larger (Fig. 2). Hence, the whole system 
is considered as a combination of materialized solid parts and the space (gap or 

Fig. 1   Typical elastic material with volume V has positive Poisson’s ratio which means that it contracts 
lateral to the direction of applied forces F1 and F2. The contracted volume V1 usually gets smaller, so 
V1 ≤ V

Fig. 2   An auxetic structure which is composed by smaller solid parts increases its overall volume by 
rotating the parts against each other. This leads to bigger bounding boxes B1 < B2 < B3
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void) in between. A detailed discussion of the basic geometrical principles of 
such rigid structures is contained in the work of Mesa et al. (2017). In current 
paper one also can find architectural design made of elastic polyurethane foam.

From a designer’s point of view it is very important to have variations of 
geometric forms, since design tasks are always different and the nature of design 
is to be unique. So our approach is to take simple geometric patterns—like the 
one in Fig. 2—and check it for auxetic behavior. In a second step we vary the 
design of the pattern based on the input geometry. One result of this can be seen 
in Fig. 3.

A well known auxetic structure is shown in Fig. 4, since it is one of the oldest 
investigated forms. From a geometric point of view, it consists “only” of box-
shaped solid side parts that are connected by revolute joints. All the axes of 
the joints in the figure are parallel and vertical. It deforms from a smaller form 
consisting of “butterfly” shaped hexagon prisms on the left side to rectangular 
boxes.

Fig. 3   A variation of the simple pattern in Fig. 2 yields the pattern p4

Fig. 4   A famous auxetic structure. Created when applying the shown forces, the structure increases its 
overall volume
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Monostable and Bistable Auxetics

From our geometric point of view it is important to distinguish between two auxetic 
forms, since we want to describe the motion of the structure in a precise kinematic 
way (Bottema and Roth 1979).

Monostable Auxetics

A “monostable auxetic” is a moveable structure, which allows a continuous, planar 
(or spatial), one degree of freedom motion (Bottema and Roth 1979). It changes 
its overall size (or volume) when it is moved. Since we concentrate on the three 
regular Platonic and eight semi-regular Archimedean patterns and generally on the 
seventeen wallpaper-groups (Pottmann et  al. 2007) we investigate the ones which 
show monostable auxetic behavior. Some of the groups can be used to design one-
parametrical planar one degree of freedom motions. There are also ornamental 
patterns which allow us to implement parallel or even diamond-shaped four-bar 
linkages in between the pattern parts. The pattern in Fig. 2 can be used to implement 
parallel four-bar linkages (diamond-shaped). Figure 5 shows different positions of 
the pattern and one of its parallel four-bar linkages. A four-bar linkage describes 
a planar kinematic motion with a one parameter degree of freedom (Bottema 
and Roth 1979). The shown system is a combination of four-bar linkages that are 
interdependently linked. Due to the symmetric configuration the systems stays 
movable and keeps its one degree of freedom.

One of the drawbacks of the system in Fig.  5 is that the hinges collide in the 
closed position. Therefore, a practical implementation is restricted to open positions 
of the systems or it must be realized by means of special hinges (see later section on 
hinges, and Fig. 14) or a design shown in Fig. 7.

Another version of this system is demonstrated in Figs. 6 and 7. In this case we 
use a parallel four-bar linkage instead of a diamond-shaped one. This allows us to 
construct a system where we start from a closed version of the pattern and end in a 
closed one and the hinges do not collide.

In order to enable the system to close, we have to ensure that the short edge of 
the parallelogram is half of the length of the longer one. For practical purposes, 
we have to cut gaps into the pattern parts in order to create an empty place for 

Fig. 5   Planar moveable ornamental pattern with one marked parallel four-bar linkage and its revolute 
hinges hi
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the hinges (Fig. 7). Depending on the material used and the pattern design, this 
scheme has to be adapted accordingly.

In order to find and create new and interesting patterns for auxetic purposes, 
we suggest concentrating first on basic geometric tilings of the plane and to 
develop them further. Figure  8 shows three of the Archimedean patterns in 
opened positions. These patterns allow a precise kinematic one degree of 
freedom motion and throughout the movement the whole system stays flat.

A much bigger variety for design purposes are given using the whole 
wallpaper group. But it is still an open question, which of the patterns allow a 
precise planar geometric motion and therefore represent monostable auxetics. 
Figure 9 shows examples of the wallpaper groups p1 and p6 in different opened 
positions.

Fig. 6   The well-known herringbone pattern (wallpaper group “pg”) which is moveable by use of parallel 
four-bar linkages

Fig. 7   This moveable system 
can be closed

Fig. 8   One Euclidian and two Archimedean patterns with monostable auxetic behavior. Each system has 
a mobility with one degree of freedom
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Bistable Auxetics

The term bistable auxetics is used to describe systems of linked elements which are 
not moveable as long as rigid parts are used. In order to make the system moveable, 
elastic or bendable materials are used. The system always has a start position where 
all the parts are in one plane. If forces are applied the elements are bent and move 
out of the plane until they reach a stable end position, again in the plane. Due to the 
two stable positions, the name bistable is used.

No parallel four-bar linkages can be used as they are in the monostable cases. 
Instead, we could use general four-bar linkages to connect our ornamental parts. 
However, in this case we lose the symmetry of the motion and there is no chance 
to setup a closed system and connect several parts of the pattern. Additionally the 
motion of the parts interferes with itself. One example is shown in Figs. 10, 11 and 
12. This wallpaper pattern, named p31 m, consists of triangular and arrow-shaped 
parts.

One solution could be to continue the motion out of plane as is shown in Fig. 11. 
The triangular parts rotate around horizontal axes and their edges describe cones of 
revolution. This configuration however, works only for parts aligned in one row. 
The elements of the next rows cannot be added because they do not meet the length 
constraint. In order to make this system work, bistable auxetics use a backdoor and take 
material which is bendable like paper or sheet metal. When this system is moved and 

Fig. 9   Examples of the wallpaper groups p1 (left side) and p6 (right side) show auxetic behavior

Fig. 10   A general four-bar mechanism hinders the motion of the ornamental parts and loses the 
symmetric configuration. No parallel four-bar linkage can be incorporated
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the parts are not rigid they are bent into the three-dimensional space and we get three-
dimensional forms. The drawback in this situation is that we cannot longer describe the 
process exactly in a kinematic way, since kinematic always describes the geometry and 
movement of rigid parts. The next figures demonstrates this situation. Figure 12 shows 
a schematic view of the pattern. On the very left and right side the system is plane and 
geometrically precise. In the two positions in-between, the triangles are smaller and so 
the pattern cannot be flat any longer. Figure 13 there is a paper version of this auxetic 
where we can see how the pattern parts are bent and move three-dimensionally out of 
the plane.

Fig. 11   For pattern parts aligned in one direction the motion can be continued into three space. The 
edges of the triangles describe cones of revolution with horizontal axes

Fig. 12   The pattern p31 m in different opened and closed positions. But only in the very left and right 
position the triangles are equilateral

Fig. 13   The pattern p31 m in a more artistic design made out of paper
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Joints

In order to fabricate an auxetic structure, revolute and spherical joints can be 
used, especially for mechanical purposes. Figure 14 shows a version with revolute 
joints. One challenge of this is always to find a feasible solution, so that the 
joints enable a motion to the closed positions. A alternative choice, especially 
for designer’s purposes, is the use of so called “auxetic meta-material” which is 
a composite of two different materials. A rigid one keeps the form of the pattern 
parts and a flexible one allows the rotations and acts like a hinge (Fig. 15). The 
parts consists of three layers. On top and bottom the rigid material is used and 
in between the flexible one is incorporated and connects the different parts with 
each other.

From Kinematic Structure to Parametric Design

In the first step, for the design of a variety of auxetic structures we choose a 
“simple” kinematic system which is moveable with at least one degree of freedom. 
Simple means that the system usually consists of one or two types of congruent 

Fig. 14   A planar moveable ornamental pattern

Fig. 15   One auxetic pattern built with meta-material. The different parts consist of three layers. On top 
and bottom of each part there is rigid cardboard which encloses flexible fabric in between. The fabric 
acts like a hinge (right)
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polygons, not necessarily regular. The polygons are connected by congruent 
parallel (diamond-shaped) four-bar linkages. Figures  2 and 5 show quadrangles 
and diamond-shaped four-bar linkages. Figure  6 shows rectangles and parallel 
four-bar linkages. The patterns in Fig. 8 include triangles, quadrangles, hexagons 
and octagons.

In a second step, the polygon-outlines are replaced by curves; in most cases 
these are NURBS curves (Farin 2001). This can be done arbitrarily in a certain 
range, whereby it must be ensured that the individual elements fit together and the 
mechanism can be opened and closed. This can be done by means of the theory of 
the wallpaper groups. In order to vary the curved outlines, the control points of the 
NURBS curves should be defined parametrically. This leads to examples like those 
in Figs. 3 and 9. So the underlying kinematic system of such an auxetic structure 
always stays the same, only the outline shape of the individual forms change.

As long as the underlying kinematic system is moveable and planar, we get 
moveable and planar auxetic forms. Conversely, the geometric pattern in the 
Figs. 10, 11, 12 and 13, is not moveable in a kinematic sense, since kinematic always 
deals with rigid bodies. The way out for this situation is use flexible materials and to 
bend the individual parts.

Design Examples

Figure 16 shows an auxetic pattern which is based on the kinematic system shown 
in Fig. 5. This means that linked and congruent diamond-shaped four-bar linkages 
define the movement. The geometric basic form—that is a quadrangle—is replaced 
by arbitrary polygons. The special thing about this form is that every quadrangle 
is replaced by another polygon. There is a kind of evolution visible in this, from 
the original quadrangle to the arbitrary polygon shape, from the left to the right 
and from the bottom to the top (Fig. 16). Such patterns are also called a-periodical 
auxetic structures.

In order to make the system moveable we did not cut the whole border of each 
element but left a small amount of material in place of the connections. Since these 
connections are very small they can act like revolute joins (Fig. 16, right side).

Fig. 16   A monostable a-periodical auxetic structure based on the wallpaper pattern p4 like in Fig. 2
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Conclusion

Auxetic materials and auxetic behavior is very effective not just for practical use 
but also for design purposes in architecture, such as façade elements, screens or 
shading systems. Since our approach to the matter is a geometric one we have 
explained the structure of such materials in a precise way, without computer 
simulation or approximation. This works most of all for monostable auxetics, 
whose behavior can be descripted in a precisely geometric way. As a base we 
used Platonic and Archimedean patterns as well as the wallpaper groups. The 
examples shown in this paper, which can be described precisely in a geometric 
way, can be scaled to any size. This is the great advantage compared to auxetic 
structures used in material sciences, which use elastic material properties which 
they explore in a more experimental way. For application purposes in a bigger 
scale, the joint system has to be considered and solved, since adjacent parts often 
interfere. Finally, there is still an open question as to which of the wallpaper 
groups can be used to construct an efficient auxetic structure, either monostable 
or bistable. Also three-dimensional auxetic structures, which are not discussed in 
this paper, could be a valuable subject for further research. There already exist 
examples of such structures and a deeper analysis would be worthwhile. Future 
work will be to investigate applications for architectural design, especially in 
shading systems and façade elements.
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