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Abstract
A graphic conjecture is presented based on a singular property stated by Archimedes 
[287–212 B.C.] in his work On Conoids and Spheroids. This ancient text constitutes 
the starting argument for graphic research that has revealed an unknown property 
regarding the intersection of rotational quadratic surfaces which they share one of 
their foci. This article shows the heuristic-geometric reasoning carried out stemming 
from Archimedes’ text transcriptions and a conjecture that can be deduced when 
the initial property is generalised for the rest of the quadratic surfaces. Moreover, 
an explanation is offered for the possibilities of this property to be used for the 
discretisation of architectural surfaces through the use of parametric design and 
digital fabrication. 

The property discovered in this research is summarised as follows: “If two 
rotational quadratic surfaces share the position of one of their foci at the same 
point, then the intersection curves between the two surfaces are always planar” 
(The oblate ellipsoid and one-sheeted hyperboloid are excluded.).

This new property, which currently remains only a conjecture, has been formulated 
from purely graphic thinking. However, its validity has been fully tested through a 
heuristic method which involves checking the planarity on all possible combinations 
of quadric intersections in a necessary and sufficient number of cases. For this 
purpose, the power of CAD tools has been used as a true geometric research 
laboratory where the validity of the theoretical approaches is subject to trial and 
error.
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Introduction

Graphic sketches have always been linked to Mankind’s way of reasoning. 
Mathematical-logic abstraction is a human skill that interweaves with the innate 
capacity of expressing symbols and concepts with graphics. However, it must be 
borne in mind that the great majority of illustrations of the Greek and Latin texts 
were created during the Renaissance period by means of several translations 
and transcriptions of the original surviving texts. The Renaissance opened new 
possibilities for coded graphical language with a new visual and procedural 
configuration that would continue to be refined during the XVII century. The 
art-science merger from that period, and the proliferation of specific treatises in 
collaboration with printing, also helped towards the development of a graphic tool 
that was useful for mathematicians, painters, and architects alike.

The multiview parallel projection system, already used by Piero della Francesca 
[c. 1412–1492] and Albrecht Dürer [1471–1528], and the codification of central 
projection, and perspective, proposed by Filippo Brunelleschi [1377–1446] remained 
practically untouched until the early XIX century. The codification of perspective 
was slow, and although the conceptual basis had already been established in the 
XV century, issues of significant controversy arose in the XVI and XVII centuries. 
For such codification, the contribution by great mathematicians is undeniable, 
among whom Federico Comandino [1509–1575] and Guidobaldo Burbon del 
Monte [1545–1607] deserve special mention. Commadino’s work was graphically 
interpreted and translated by Daniele Barbaro [1513–1570]. Guidobaldo’s work was 
eventually interpreted by Jean François Niçeron [1613–1646], who carried out the 
objective representation of the shadow cast by the sun. With this contribution, the 
definition of perspective was concluded, almost fifty years after the problem had 
been proposed by Guidobaldo. Girard Desargues [1591–1661] also contributed with 
the first theorems regarding projective geometry and his speculations about infinity 
within the perspective system itself.1

It can be appreciated that the history of graphic thinking is full of complexities 
and contradictions and that it neither follows a linear course nor is it associated in 
parallel with rigorously mathematical thinking in all cases (Raynaud, 2018: 245). 
Gaspard Monge [1746–1818], a professor in the École Polytechnique of Paris, 
combines the previous graphical thinking Géométrie Descriptive (1798) with the 
most innovative mathematical development of the time applied to the study of 
surfaces: Application de l’Analyse à la Géométrie (1809). Several of the most well-
known theorems regarding the intersection of quadratic surfaces are due to Monge 
and to many of his successors, as shown in the following paragraphs.

Since the appearance of Monge’s work, the discipline of Descriptive Geometry—
Geometry from graphics—has held special prominence in engineering degrees, and 
later in that of architecture. From that moment onwards, the importance of graphic 
thinking would remain consolidated as a structural aspect for the training in these 

1 For in-depth information regarding the mathematical controversies on the representation of the solar 
shadow in 17th century, see Martín-Pastor et al. (2017).
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disciplines and Descriptive Geometry would be present in the syllabi of the most 
prestigious schools.

Currently, in the post digital era in which we live, CAD tools are no longer 
considered ‘new technology’, but as everyday instruments. We refer to ‘graphic 
thinking’ as a way of reasoning in which the construction of the drawing takes an 
active part in the development of the reasoning. This is performed in such a way 
that the internal coherence of the graphic construction implies the veracity of said 
reasoning, unlike other disciplines such as mathematics that use other demonstrative 
techniques.

The power of digital graphic tools, which are full of automatisms to speed up the 
intermediate operations and which offer, for the first time, unlimited precision in 
practical terms, make it possible for enhanced graphic thinking hitherto regarded as 
inconceivable by architects and engineers. With the help of this enhanced graphic 
thinking, we have addressed the reinterpretation of the inherited geometrical 
knowledge, in this case Archimedes’ work, in order to go beyond his achievement 
and find a general law for one of his statements with potential applicability for the 
generation of architectural structures.

The Classic Theorems on Intersections of Quadratic Surfaces

The importance of the theoretical knowledge of geometrical surfaces and the 
properties of their intersections led to the detailed study of said surfaces in the field 
of applied mathematics for engineering and architecture, where quadratic surfaces 
held a privileged position. Quadratic surfaces are also called quadrics, of which 
there are 17 standard-form types, including the cone, cylinder, ellipsoid, elliptic 
cone, elliptic cylinder, elliptic hyperboloid, elliptic paraboloid, hyperbolic cylinder, 
hyperbolic paraboloid, paraboloid, sphere, and spheroid.

Since the publication of Géométrie Descriptive (1798), and with the support of 
algebra, a series of approximately nineteen theorems were developed concerning 
the intersection of quadratic surfaces.2 The best-known theorem (Fig.  1), named 
Monge’s Theorem, states:

“If two quadratic surfaces C1 and C2 are circumscribed about a third C3 along 
their contact curves c1 and c2, then their intersection curve decomposes into 
two planar curves i1 and i2, which pass through the points A and B, which are 
common to the contact curves c1 and c2” (Taibo-Fernández 1983: 375).

In work of a more contemporary nature by Spanish lecturers of engineering and 
architecture, such as Geometría Descriptiva by Taibo-Fernández (1983: 371–382), 
eighteen theorems are listed. In Geometría Descriptiva Superior by Izquierdo-
Asensi (1985: 549–564), without actually referring to them as ‘theorems’, a list 

2 ‘Theorems on the intersections of quadratic surfaces —quadrics— have been studied on technical 
degree courses within the discipline of Descriptive Geometry. In the Spanish context, these are covered 
by the work of Taibo-Fernández (1983) and Izquierdo-Asensi (1985).
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of nineteen statements about the properties of quadric intersections is provided, 
all formulated in a very similar way to that of Taibo’s work. The statements are 
structured in terms of generalities, tangent quadrics, homothetic quadrics, quadrics 
with a general plane in common, and intersection of rotational quadrics.3 A list of all 
the theorems provided by Taibo-Fernandez (1983) is listed below:

Theorem 1 The projection of the intersection between two quadratic surfaces is, in 
general, a curve of the fourth degree.

Theorem  2 If any two intersecting quadratic surfaces have a conic curve in 
common, then their intersection is completed with another conic curve. In other 
words, if two intersecting quadratic surfaces have a planar curve in common, then 
they also have another planar curve in common.

Theorem 3 If a quadratic Surface C and a sphere E have a circle c1 in common, 
then whole intersection is composed of another circle c2, in addition to the first 
circle.

Theorem 4 The contact curve between two quadratic surfaces, which are tangent to 
each other, is planar.

Theorem  5 Two quadratic surfaces, tangent at any two points, intersect at two 
planar curves.

Theorem 6 If two quadratic surfaces C1 and C2 are circumscribed about a third 
C3 along their contact curves c1 and c2, then their intersection curve decomposes 
into two planar curves i1 and i2, which pass through the points A and B, which are 
common to the contact curves c1 and c2.

Fig. 1  Examples of two quadratic surfaces circumscribed about another quadratic surface such that the 
intersection is composed of planar curves

3 This last classification was used as the basis for the publication Apuntes de Geometría Descriptiva, by 
the Higher Technical School of Architecture of Seville, Spain, whereby seventeen of these statements 
were rearranged into fifteen ‘Theorems on intersection of quadratic surfaces’, and organised into three 
groups: Fundamental Theorems, Theorems on the Kind of Projected Conic Curve, and Theorems on 
Ruled Quadrics.



179New Properties About the Intersection of Rotational Quadratic…

Theorem 7 Two homothetic quadratic surfaces intersect at a planar curve.

Theorem 8 When a plane sections two intersecting quadratic surfaces at homothetic 
curves, then any quadratic surface that passes through the intersection of the 
surfaces is sectioned by the same plane at a curve which is homothetic with the 
previous curves.

Theorem 9 When two intersecting quadratic surfaces have a main plane in common, 
the orthogonal projection of their intersection onto said main plane is a conic curve.4

Theorem 10 When two quadratic surfaces intersect at two planar curves and have 
a main plane in common, the orthogonal projection of their intersection onto said 
main plane is reduced to two straight-line segments.

Theorem 11 If two homothetic quadratic surfaces that have the same main plane are 
intersected by a third quadratic surface that has the same main plane in common, 
then the orthogonal projections of the intersection curves onto the main plane are 
homothetic.

Theorem 12 If two rotational quadratic surfaces with parallel axes intersect, then 
the orthogonal projection of their intersection curve onto the plane containing the 
two axes is an arc of parabola.

Theorem  13 The intersection of two ruled quadratic surfaces with a ruling in 
common is composed of a straight line and a curve of the third degree.

Theorem  14 When two ruled quadratic surfaces have two converging rulings in 
common, the intersection is completed either with another two converging rulings or 
with a conic curve.

Theorem 15 When two warped ruled quadratic surfaces have two rulings from the 
same system in common, the rest of the intersection is composed of another two 
rulings from the other system.

Theorem 16 If two rotational quadratic surfaces with parallel axes, whose centres 
are on a line perpendicular to both axes, intersect, then the projection of the 
intersection onto a plane perpendicular to their axes is always an arc of a circle.

Theorem  17 When two intersecting quadratic surfaces have a tangent plane in 
common, then a cone whose apex is situated at one of the tangency points and whose 
directrix is the intersection curve between the two surfaces, is of the second degree.

4 ‘Main plane’ indicates a symmetry plane for the quadratic surface.
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Theorem  18 Two rotational quadratic surfaces whose axes intersect, produce an 
intersection curve, which is orthogonally projected, onto the plane containing the 
axis, as an arc of hyperbola, except for the case when one of the two quadrics is an 
oblate ellipsoid, whereby it is projected as an arc of an ellipse. Taibo-Fernández 
(1983: 371–382).

More recently, Professor Gentil Baldrich has added a new theorem5 to the list: 
The Theorem of the intruder Sphere, which states:

“A sphere, which is easily determined, can always be traced through the 
intersection of two rotational cones with parallel axes” (Gentil 2016: 46–55).

It is difficult to elucidate the origin of each of these theorems, since a large 
number of contributions studying those surfaces occurred throughout the first half of 
the nineteenth century thanks to work by Monge, his contemporary colleagues, and 
disciples: Hachette (1817), Brianchon (1817), Dupin (1819, 1822), Chasles (1837, 
1852, 1870), La Gournerie (1860–64) and Poncelet (1862, 1864), and many other 
geometers during that century.

Related to the same topic, there is also Frèzier’s work (1737–1739), which can 
be found in Prodromes of Descriptive Geometry in the Traité de stéréotomie by 
Amédée François Frèzier:

“Frèzier’s work, published a few years before Monge’s Géométrie descriptive, 
summarizes the state-of-the-art of descriptive geometry in that period. Notably 
in the first book, Frèzier publishes an original study about the intersections 
between quadratic surfaces and the projective-geometrical properties of the 
fourth-order curves derived from them” (Salvatore 2011: 271)

The so-called ‘confocal’ quadratic surfaces have been studied by a number of 
mathematicians.6 However, these confocal surfaces, due to their own definition, 
differ from those studied in this article, since confocal quadratic surfaces share 
the two foci instead of only one, as is our case. Our study is limited to a group of 
rotational quadratic surfaces, whereas in classic studies about confocal quadratic 
surfaces, no distinctions are made between rotational and non-rotational surfaces.

6 Dinca (2014), in Thread Configurations for Ellipsoids, carries out a review of the historic contributions 
in confocal surfaces, and highlights the contributions by Ivory (1809), Chasles (1870), Chasles and 
Graves (1841), Darboux (1887–1896), and Staude (1883), among others. Within the group of academics 
that have recently studied these surfaces from different approaches to ours, work by Shene and Johnstone 
(1994), Miller and Goldman (1995), Lazard et al. (2006), and Bobenko et al. (2015, 2017) all deserve 
mention.

5 The Theorem of the Intruder Sphere is included for the first time in Gentil (1997: 20).
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A Theme to be Analysed: On Conoids and Spheroids by Archimedes

Closely related to the topic in hand, and going back more than two thousand two 
hundred years, Archimedes of Syracuse, in proposition XII of On Conoids and 
Spheroids, states an interesting property of rotational paraboloids.7 Professor Gentil 
Baldrich referred to this property when he directly deduced from that proposition 
that “Any elliptical section of a rotational paraboloid is normally projected onto the 
plane perpendicular to the axis as a circumference” (Gentil 1997: 26).

In Proposition XII by Archimedes,8 we can read:

“Proposition XII: If through the extreme of the major axis, of the ellipse 
formed on a [paraboloid]…, a perpendicular line is traced until meeting 
the line parallel to the axis of the solid through the centre of the ellipse, 
the perpendicular segment traced is equal to the minor semi-axis of the 
aforementioned ellipse./[…] It is thereby proved that AK is equal to PF, in this 
manner.” [Free translation by the authors from the Latin work by Archimedes-
Maurolico (1685: 256)].

Fig. 2  Archimedes-Maurolico. 
De conoidibus et sphaeroidibus 
figuris Inventorum. Liber 
secundus, Proposition XII. 
Palermo 1685

7 The referred text by Archimedes is included in several propositions according to its various 
translations. The first edition of Basel includes it in Proposition XIII (Archimedes-Gechauff 1544: 63). 
Commandino’s Venetian version appears in Proposition XIII (Archimedes-Commandino 1558: 35). That 
of Maurolico, from Palermo, is in Proposition XII (Archimedes-Maurolico 1685: 255–256). Heiberg’s 
edition, the most rigorously commented, also includes it in Proposition XII, (Archimedes-Heiberg 1880: 
345).
8 We have chosen Maurolico’s version of 1685 since it explains the nature of the problem in a more 
direct way, and since it is the only translation which concludes the proposition with the equivalence in 
length between the two semi-axes.
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If the segment AK [normal projection of the semi-axis AF] is equal in length 
to the segment FP [semi-axis normally projected in its true size], then the ellipse 
AE [planar section of the paraboloid] is projected as a circumference onto the 

Fig. 3  Proposition XII by Archimedes. Source: Authors’ own

Fig. 4  Three-dimensional 
extrapolation. Any right 
rotational cylinder, with its 
axis parallel to the axis of the 
paraboloid, produces a planar 
curve (ellipse) at its intersection 
with the paraboloid. Source: 
Authors’ own
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plane perpendicular to the axis of the paraboloid (Fig.  2). This property holds 
true for any oblique planar section of the paraboloid (Fig. 3).

If this property is generalised into three dimensions, and the problem is 
approached as a matter of quadric intersections, then the relationship between the 
paraboloid and the rotational cylinder generated from the aforementioned projected 
circle can be appreciated (Fig. 4).

Reformulating Rotational Quadratic Surfaces from the Two Foci, 
Either Real or at Infinity

Henceforth, for the sake of convenience in this article, the terms quadratic surfaces 
or quadrics will always mean rotational quadratic surfaces.

By analysing the ‘Theorems on Quadratic Surface Intersections’, it can be 
verified that none of the classic theorems regarding quadric intersections establishes 
any relationship between the foci. From the position of traditional Descriptive 
Geometry, whose drafting tools consisted of pencil and paper, it was not practical to 
define a quadric in terms of its foci, and the accuracy of the drawings also failed to 
help in this task. The problem first posed by Archimedes, on the cylinder-paraboloid 
intersection, hints at how to understand the link between the foci, although for that 
purpose we would need to extend the affine space to understand how the foci are 
coupled with every quadric from the point of view of the projective space. Every 
quadratic surface might be understood as a ‘transition surface’ from a general 
surface with two foci (the ellipsoid) that evolves with the motion of one of these foci 
until infinity, or, alternatively, until both foci join at a single point.

A rotational ellipsoid has two ‘real’ foci, which determine the main axis of 
revolution. However, if the position of one of the two foci is preserved by linking 
it to a ‘real’ set point, while the other focus is taken away along the direction of 
the axis until it approaches infinity (let us suppose positive infinity) then the result 
is an ellipsoid whose shape around the set focus would be very similar to that of 
a paraboloid. If the mobile focus was eventually moved to infinity, then the result 
would be a real paraboloid (Fig. 5). Therefore, the paraboloid can be understood as 
containing two foci, one ‘real’ and another ‘ideal’, placed at infinity, defined by the 
extension of one of the extremes of its main axis.

Fig. 5   Source: Authors’ own
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From that paraboloid (with a focus already located at positive infinity), the ‘real’ 
focus can also be moved in the opposite direction, until it approaches negative 
infinity, thus obtaining a rotational cylinder (Fig. 6). Hence, the cylinder is a quadric 
with two foci at infinity: one at positive infinity and the other at negative infinity.

Fig. 7   Source: Authors’ own

Fig. 6   Source: Authors’ own
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The remaining quadrics can be understood in the same way; a cone, for instance, 
stems from a rotational hyperboloid of two sheets whose foci have approached each 
other until their positions have coincided at the same ‘real’ point, which is the apex 
of the cone (Fig.  7). Therefore, the apex of the cone can also be understood as a 
focal condition. In the same way, a sphere can be considered as a particular case of 
an ellipsoid where the two foci coincide at the same ‘real’ point; this case is more 
familiar, but retains the same nature as the previous cases.

Nonetheless, according to this approach, not all quadratic surfaces can be defined 
by two foci. Oblate ellipsoids and one-sheeted hyperboloids are excluded. For these 
two surfaces the foci are not contained on the rotational axis that defines them, 
thus the focus produces a focal circumference when it is rotated together with the 
generation of the surface. For this reason, these two surfaces are excluded from this 
conjecture.

Approach for a General Hypothesis

By applying this definition of quadrics, or quadratic surfaces, to the case of 
Archimedes, both paraboloids and cylinders share one of their foci at the same 
point of infinity. This is of great significance, as will be shown later, because 
this is exactly the focal relationship we were seeking. However, is the cylinder-
paraboloid intersection planar since it is a special case, or it is due to the fact that 
it shares a focus? With this hypothesis left open, the planar intersection curve of 
the Archimedean interpretation could be understood as a general consequence that 
always occurs between two rotational quadrics as long as they share the position of 
one of their foci at the same point, and thus it could be the case of a general property.

Once this new hypothesis is declared, it should be verified as a general rule 
applicable to the remaining combinations of intersections of rotational quadratic 
surfaces. To this end, we have made use of Computer Aided Design tools to 
model the problem and verify the planarity of the intersections for all possible 
combinations.

Table 1  Summary of the 
rotational quadratic surfaces 
considered and nature of their 
foci

Rotational surface Focus 1 Focus 2

Ellipsoid [prolate spheroid] Real Real
Paraboloid Real Inf
Two-sheeted hyperboloid Real Real
Cone Real Real & coincident
Cylinder Inf Inf
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Five different rotational quadratic surfaces have been considered: the ellipsoid 
[prolate spheroid], paraboloid, two-sheeted hyperboloid, cone, and cylinder.9

From Table 1, the existence of 15 possible combinations can be deduced if each 
quadratic surface is combined with the other surfaces and with itself. In addition, 
there is a second combination of the paraboloid with itself, in order to take into 
account the coincidence at both the real focus and the ideal focus. Therefore, there 
are a total number of 16 combinations. In this way, not only do the combinations 
take into account the kind of surface involved, but also the nature of their foci (real 
or ideal).

From the 16 combinations, 11 produce conic curves at their intersections, 2 
produce straight lines degenerated from conic curves, and 3 produce impossible 
combinations, since it was impossible to make a real focus and an ideal focus 
coincide.

For each of the 11 combinations that produce conical curves, according to 
the graphic nature of our methodological approach, it is necessary to verify the 
condition of planarity. To this end, it is necessary to consider different cases with 
dimensional and positional variations within each combination. From the infinite 
number of possible cases, a considerable number of samples have been selected. 
Some of these samples have been produced by randomly changing dimensional and 
positional values of each surface. For instance, for a cone, the conical angle and 
the axis direction are random. In addition, deterministic combinations have been 
employed to ensure that all possible particular situations are handled. For example, 
when the intersection between two hyperboloids sharing the position of a focus was 
studied, different cases were produced depending on the number of the sheets of the 
hyperboloids involved in the intersection.

For each and every combination and case, it has been empirically tested that when 
the quadrics share the position of one of their foci, then the intersections obtained 
are planar curves (conics), thereby validating the initial hypothesis to finally state 
our conjecture.

Fig. 8  Ellipsoid-Ellipsoid intersection. The intersection between two ellipsoids sharing the position of 
a focus at the same “real” point is a planar curve, and, in general, an ellipse. This supports the initial 
hypothesis. Source: Authors’ own

9 The sphere is included as a particular case of the ellipsoid. This simplification is justified because 
there are no doubts about the planarity of the intersections with a sphere, since “any rotational surface 
intersects the surface of a sphere at one or two circumferences, as long as the axis of that surface passes 
through the centre of the sphere.”.
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Verification

Combination 1 Ellipsoid-Ellipsoid intersection sharing the position of a focus at the 
same ‘real’ point (Fig. 8).

Combination 2 Ellipsoid-Paraboloid intersection sharing the position of a focus at 
the same ‘real’ point (Fig. 9).

Combination 3 Ellipsoid-Hyperboloid intersection sharing the position of a focus at 
the same ‘real’ point (Fig. 10).

Combination 4 Ellipsoid-Cone intersection sharing the position of a focus and the 
apex at the same ‘real’ point (Fig. 11).

Fig. 9  Ellipsoid-Paraboloid intersection. The intersection between an ellipsoid and a paraboloid sharing 
the position of a focus at the same “real” point is a planar curve, and, in general, an ellipse. This supports 
the initial hypothesis. Source: Authors’ own

Fig. 10  Ellipsoid-Hyperboloid intersection. The intersection between an ellipsoid and a two-sheeted 
hyperboloid sharing the position of a focus at the same “real” point is two planar curves, and, in general, 
two ellipses. This supports the initial hypothesis. Source: Authors’ own
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Combination 5 Paraboloid-Cylinder intersection sharing the position of a focus at 
the same ‘ideal’ point (Fig. 12). The two surfaces have parallel axes that meet at a 
point of infinity.

Combination 6 Paraboloid-Paraboloid intersection sharing the position of a focus at 
the same ‘ideal’ point (Fig. 13). The two surfaces have parallel axes that meet at a 
point of infinity.

Combination 7 Paraboloid-Paraboloid intersection sharing the position of a focus at 
the same ‘real’ point (Fig. 14).

Fig. 11  Ellipsoid-Cone intersection. The intersection between an ellipsoid and a cone sharing the 
position of a focus (as the apex in the cone) at the same “real” point is two planar curves, and, in general, 
two ellipses, each of which are on a different sheet of the cone. This supports the initial hypothesis. 
Source: Authors’ own

Fig. 12  Paraboloid-Cylinder intersection. This is exactly the case analysed by Archimedes. As shown in 
the figure, the intersection between a paraboloid and a cylinder sharing the position of a focus at the 
same “ideal” point (the two surfaces have parallel axes that meet at a point of infinity) is a planar curve, 
and, in general, an ellipse. This supports the initial hypothesis. Source: Authors’ own
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Fig. 13  Paraboloid-Paraboloid intersection. The intersection between two paraboloids sharing the 
position of a focus at the same “ideal” point (the two surfaces have parallel axes that meet at a point 
of infinity) is a planar curve, and, in general, an ellipse, which would degenerate into a parabola if both 
paraboloids had the same scale. This supports the initial hypothesis. Source: Authors’ own

Fig. 14  Paraboloid-Paraboloid intersection. The intersection between two paraboloids sharing the 
position of a focus at the same “real” point is a planar curve, and, in general, an ellipse. This supports the 
initial hypothesis. Source: Authors’ own

Fig. 15  Paraboloid-Hyperboloid intersection. The intersection between a paraboloid and a hyperboloid 
sharing the position of a focus at the same “real” point is two planar curves, and, in general, two ellipses, 
which would degenerate into a parabola if the plane containing these curves were parallel to the axis of 
the paraboloid. This supports the initial hypothesis. Source: Authors’ own
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Combination 8 Paraboloid-(Two-sheeted) hyperboloid intersection sharing the 
position of a focus at the same ‘real’ point (Fig. 15).

Combination 9 Paraboloid-Cone intersection sharing the position of a focus and the 
apex at the same ‘real’ point (Fig. 16).

Combination 10 Intersection of two two-sheeted hyperboloids sharing the position 
of a focus at the same ‘real’ point (Fig. 17).

Fig. 16  Paraboloid-Cone intersection. The intersection between a paraboloid and a cone sharing the 
position of a focus (as the apex in the cone) at the same “real” point is two planar curves, and, in general, 
two ellipses, each of which are on a different sheet of the cone. This supports the initial hypothesis. 
Source: Authors’ own

Fig. 17  Hyperboloid-Hyperboloid intersection. The intersection between two hyperboloids sharing the 
position of a focus at the same “real” point is a planar curve, and, in general, a hyperbola. This supports 
the initial hypothesis. Source: Authors’ own
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Combination 11 Two-sheeted hyperboloid-Cone intersection sharing the position of 
a focus and the apex at the same ‘real’ point (Fig. 18).

Note 1 In the Combination of the intersection of two cylinders with parallel axes, 
the intersection is a pair of parallel straight lines: common generatrices of both 
surfaces which can be considered as the degenerated case of a conic.

Note 2 In the Combination of the intersection of two cones sharing the same apex, 
the intersection is a pair of straight lines: common generatrices of both surfaces 
which can be considered as the degenerated case of a conic.

Note 3 The Ellipsoid-Cylinder combination. In accordance with the general rule 
stated, the ellipsoid has the two foci within the affine space, whereas the cylinder has 
the two foci at infinity, and therefore it is impossible for these two surfaces to share 
any of the foci at the same position.

Note 4 The Hyperboloid-Cylinder combination. In accordance with the general rule 
stated, the hyperboloid has the two foci within the affine space whereas the cylinder 
has the two foci at infinity, thus it is impossible for these two surfaces to share any of 
the foci at the same position.

Note 5 The Cone-Cylinder combination. In accordance with the general rule stated, 
the cone has the two foci coincident at its apex and the cylinder has the two foci at 
infinity, thus it is impossible for these two surfaces to share any of the foci at the 
same position.

Fig. 18  Hyperboloid-Cone intersection. The intersection between a hyperboloid and a cone sharing the 
position of a focus (as the apex in the cone) at the same “real” point is two planar curves, and, in general, 
a hyperbola (with the two branches) and an ellipse. This supports the initial hypothesis. Source: Authors’ 
own
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Applications in Architecture and Engineering

The usefulness of the initial Archimedean property has already been proved 
for the generation of algorithms in architectural computational design. The 
aforementioned projective interpretation (Gentil 1997: 26) can be used to 
produce planar compositions of circles, or circular arcs, located on a base 
plane perpendicular to the axis of a rotational parabolic dome. Therefore, the 
projection of these compositions onto the parabolic surface results in planar 
ellipsis, or elliptical arcs, which provides an appropriate geometric framework for 
both discretising the surface with planar elements and translating the projected 
composition into material elements for architectural purposes.

This is the case of the Archimedean Pavilion, a full-scale prototype developed 
with algorithms stemming from this property. The starting point is a composition 
of an architectural space composed of various inclined rotational parabolic domes. 
Each dome is discretised by using a composition based on the circle packing 
of the boundary of the parabolic fraction projected onto the base plane. Once 
this composition is projected onto the dome, the parabolic surface is substituted 
with the set of ellipses obtained. Finally, these ellipses are materialised by 
three fractions of conical surfaces that provide sufficient rigidity to form a 
self-supporting structural system applicable to any parabolic dome through the 
use of digital fabrication techniques. This is an efficient lightweight system, 
which, combined with the structural strengths of the general shape of rotational 
paraboloids with vertical axes, is especially appropriate for the materialisation of 
wide-span roofs, and includes the possibilities of glazing or panelling, as can be 
consulted in Narvaez-Rodriguez and Barrera-Vera (2016), (Fig. 19).

Fig. 19  Photographs of the Archimedean Pavilion (by Roberto Narvaez-Rodriguez), 2016, composed 
of four inclined rotational paraboloids which were discretised with an algorithm based on the initial 
property stated by Archimedes. Source: Authors’ own
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The conjecture stated in this article opens more possibilities for the materialisation 
of not only parabolic domes, but also for domes or architectural surfaces based 
on the use of any rotational quadratic surface as described previously, since the 
planarity achieved for the intersection curves is always a property that facilitates 
its translation into constructive components through digital fabrication techniques. 
On the one hand, the new projective properties stemming from the combinations of 
cones and cylinders with the other quadratic surfaces can be employed to generate 
planar intersection curves that populate and discretise these surfaces. On the other 
hand, new algorithms can also be developed for the discretisation and panelling of 
quadratic surfaces based on the variety of possibilities that the intersection of these 
rotational quadrics provides.

A simple example, one of the wide range of potential applications, is given by 
the discretisation of a rotational ellipsoid shown in (Fig. 20). Using the conjecture 
stated in this document and with the aim of populating the elliptical surface with 
planar curves [ellipses in this case], the following operations, generally described, 
have been implemented in an algorithm:

• Draw the target ellipsoid and identify the two foci.
• Draw a sphere whose centre coincides with one of the foci of the ellipsoid and 

with an arbitrary radius.
• Draw any composition of circles on the surface of the sphere. In this case, circle 

packing, combined with some special circles [not tangent to their neighbours] to 
fill gaps, has been used.

• Project the composition of circles from the centre of the sphere, one of the 
ellipsoid’s foci, onto the ellipsoid’s surface. This operation implies two 
important conditions. The first condition is that the projection of every circle 
can be understood as the intersection of a rotational cone with the ellipsoid. This 
rotational cone has its apex in the centre of the sphere, one of the ellipsoid’s 
foci, and its base is the circle on the sphere’s surface. This ensures that the 
cones remain rotational and hold the position of their apex [degenerated foci] 
at the ellipsoid’s focus, thus accomplishing the conditions of the conjecture. 
The second condition is derived from the conjecture itself, in that it requires 

Fig. 20  Discretisation of an ellipsoid using an algorithm based on the conjecture. Left: Target ellipsoid 
and sphere whose centre coincides with one the ellipsoid’s foci. Middle: composition of circles on the 
sphere to define the rotational cones. Right: Planar curves, ellipses, obtained from the Intersection of the 
cones with the ellipsoid’s surface. Source: Authors’ own
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the planarity of all intersection curves obtained on the ellipsoid’s surface. 
These planar curves populating the elliptical surface can be used as a geometric 
structure to materialise a construction system, such as that performed in the 
Archimedean Pavilion.

Conclusion

After carrying out the relevant verifications, all the indications are that our approach, 
deduced from the particular case of Archimedes, holds true for all combinations 
and cases. This group also includes the combination of a rotational cylinder and 
paraboloid, both considered with one of their foci at infinity and that of a rotational 
cone and sphere, both considered with the two foci coinciding at a single point. 
Therefore, a new general conjecture on the intersection of rotational quadrics can be 
stated:

“If two rotational quadratic surfaces share the position of one of their two foci, 
the intersection curves between the two surfaces are always planar”.

The use of CAD systems combined with the algorithmic design possibilities 
provide a powerful tool, not only for the generation of new geometries, but also for 
the reinterpretation of classic geometric properties and concepts. This approach can 
provide both new insights and discoveries which have never been considered with 
classic tools, and new geometric structures for known surfaces whose widespread 
applicability in architecture still provides appropriate solutions.
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