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Abstract The golden ratio and the plastic number are both so-called morphic

numbers that have been studied in the past in various scientific domains, in par-

ticular in architecture. Based on the golden ratio, the concept of a golden angle has

been defined for a circle in two-dimensional Euclidean space. However, at present,

there exists no three-dimensional analog based on the plastic number. In this paper,

the concept of morphic angles will be introduced, based on morphic numbers. New

definitions will be proposed for these angles that are applicable for nondegenerated

quadratic curves and surfaces of revolution, respectively.

Keywords Golden ratio � Plastic number � Golden morphic angle � Plastic

angle � Plastic morphic angle

Introduction

The golden ratio u ¼ 1 þ
ffiffiffi

5
p

2
� 1:618 and the plastic (or van der Laan’s) number

w � 1:3251 are the only two so-called morphic numbers p 2 R greater than 1 that

satisfy the following equations (Aarts et al. 2001):

pþ 1 ¼ pk ð1Þ
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p� 1 ¼ p�l ð2Þ

with k and l 2 N. While the golden ratio is already known to mankind since

antiquity and still is a subject of study in art, architecture (Xu et al. 2012; Huyle-

brouck and Labarque 2002) and various scientific domains such as mathematics,

physics, biology and chemistry (Gonzlez 2010; Tung 2007; Yu et al. 2006;

Swartzendruber et al. 1985; Boeyens and Thackeray 2014), the plastic number w
was first defined and studied mathematically in 1924 by the engineer Gerard

Codonnier. The first publication about this number, however, dates from 1960. That

year, Dom Hans van der Laan2 presented the plastic number through a new mea-

surement scale of architectural proportions that is solely based on an empirical

relation between the plastic number and the human capacity to visually perceive,

distinguish and relate dimensions in threedimensional architectural space (Padovan

2002). As opposed to Le Corbusier’s well known Modulor, van der Laan’s mea-

surement scale of architectural proportions does not take into account human

dimensions, nor does it focus on the convenience of architectural spaces.

The main goal of this paper is to introduce the concept of so-called morphic

angles, i.e. angles defined based on the morphic numbers. First, it will be explained

how, based on the golden ratio, a morphic angle can be defined for all types of

bivariate nondegenerated quadratic curves in two-dimensional Euclidean space.

Subsequently, the concept of a morphic angle based on the plastic number will be

introduced, defined and extensively discussed. Finally, it will be shown that through

the concept of a morphic angle, a formula can be derived based on the plastic

number that approaches the number p with good accuracy.

The Circle-Based Definition of a Golden Angle

From a geometrical point of view, the golden ratio emerges from the following

relation between the dimensions of a so-called golden rectangle in two-dimensional

Euclidean space:

u ¼ b

a
¼ aþ b

b
ð3Þ

with a and b the length and the width of the golden rectangle, respectively. From the

above relation, it can be derived that the golden ratio satisfies the following

equations:

uþ 1 ¼ u2 ð4Þ

u� 1 ¼ 1

u
ð5Þ

Now, consider the total circumference Cc of a circle with radius r that is sectioned

according to the golden ratio (in literature this is often denoted as a golden section).

2 Architect and member of the Benedictine order.
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This results in a so-called golden arc with length Cu and an arc with length C
0 ¼

uCu (see Fig. 1). Using Eq. (4), it can be determined that

Cu ¼ Cc

u2
¼ 2pr

u2
� 2:400r ð6Þ

A golden angle has been defined in two-dimensional Euclidean space as the

central angle subtended by a golden arc and has a value of approximately 137.508�

(Prusinkiewicz and Lindenmayer 1990). To date, a golden angle has been studied in

various scientific domains such as physics (Livio 2003) and medicine (Henein et al.

2011).

Towards a Definition of a Golden Morphic Angle

Introduction

A circle can be regarded as the simplest type of a conic section, i.e. a bivariate

nondegenerated quadratic curve (BNQC) in two-dimensional Euclidean space. It is

therefore worthwhile investigating whether or not a golden morphic angle can be

defined that is based on the golden ratio and is applicable for any BNQC type, more

specifically a circle, ellipse, hyperbola, and parabola. Therefore, consider the

general polar equation of a BNQC with origin at a focus point Pi of a BNQC:3

r ¼ ep

1 þ e cos mi
ð7Þ

with e the eccentricity and p the focal parameter of a BNQC (see Table 1). The focal

radius with length r is the line segment between the considered focus point and a

point on a BNQC. The true anomaly mi at focus point Pi of a point P on a BNQC is

the angle measured between its focal radius and the minimal focal radius with

length rmin corresponding to a point Pmin on the BNQC closest to the focus point

(see Fig. 2).

For a circle, both focus points coincide with the center of the circle, implying

that the central angle in the circle-based definition of a golden angle can be

3 For an ellipse, a circle and a hyperbola i 2 f1; 2g, for a parabola i ¼ 1.

137.508◦

Fig. 1 A golden angle defined
on a circle
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regarded as the difference Dm between the true anomalies corresponding with the

end and starting point of a golden arc, respectively. Therefore, Dm at a certain

focus point of a BNQC will be considered in the search for a definition of a

golden morphic angle.

Limitations of the Circle-Based Definition

If a golden morphic angle of a BNQC would be defined as the Dm related to a

golden arc resulting from a golden section of the total circumference of a

BNQC, three major problems would arise. Firstly, hyperbolas and parabolas are

non-closed BNQCs, meaning that they do not have a finite circumference.

Secondly, for ellipses, hyperbolas and parabolas, there is no exact formula to

calculate the length of an arc segment, implying that the value of the

corresponding Dm cannot be exactly determined. Finally, the value of Dm depends

on the location of an arc segment with fixed length along the BNQC, implying

that Dm does not have a unique value. It is thus clear that the circle-based

definition of a golden angle cannot be applied for all BNQC types to define a

golden morphic angle.

Table 1 Eccentricity e, focal parameter p and minimum focal radius rmin for each BNQC type

BNQC type Eccentricity e Focal parameter p rmin

Circle 0 1 a

Ellipse ]0, 1[ að1 � e2Þ=e að1 � eÞ
Parabola 1 2a/e a

Hyperbola �1;1½ aðe2 � 1Þ=e að1 þ eÞ

Pi
rmin

P

Pmin

r

νi

Fig. 2 Characteristics of a
BNQC
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Proposal of a New Definition

In the circle-based definition, a golden angle is defined based on a ratio of two

lengths equal to the golden ratio. A similar approach will be pursued in the search

for a definition of a golden morphic angle. For that reason, consider two cross-

sections perpendicular to the minimal focal radius at a focus point Pi of a BNQC

(see Fig. 3). Each cross-section intersects the BNQC in two points. For the first

cross-section, the perpendicular distance between the points of intersection P0
1 and

P0
2 on the BNQC and the minimal focal radius is equal to the focal radius r0 for

which mi ¼ 90�. The second cross-section (from now on denoted as the golden cross

section) is chosen such that the perpendicular distance ru between the points of

intersection P
u
1 and P

u
2 on the BNQC and the minimum focal radius relates to r0 as

r0

ru
¼ u ð8Þ

The above expression clearly respresents a golden ratio of two lengths. A golden

morphic angle hu at a focus point Pi of a BNQC can now be defined as the apex

angle 2mu\180� of the isosceles triangle formed by the focus point and the points

of intersection resulting from the golden cross-section (see Fig. 3). From Eqs. (7)

and (8) it can be derived that

ru ¼ ep

u
¼ ep sin mu

1 þ e cos mu
ð9Þ

This results in the following quadratic equation for mu

ðe2 þ u2Þ cos2 mu þ 2e cos mu þ 1 � u2 ¼ 0 ð10Þ

Since by definition mu\90�, only the root resulting in a positive value of cos mu is

considered. It can be derived that the value of hu is determined through the fol-

lowing formula:

P ′
2

P ′
1

Pϕ
2

Pϕ
1

Pi Pmin

r
r′

rϕ
νϕ

Fig. 3 A golden morphic angle
defined on a BNQC
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hu ¼ 2 arccos
�eþ u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uþ e2
p

e2 þ u2

 !

ð11Þ

With the proposed definition, a golden morphic angle is exactly and uniquely

defined for all BNQC types. The approximate (range of) value(s) of a golden

morphic angle for each BNQC type are listed in Table 2.

For completeness, it is important to mention here that the cancellation of the

factors ep in Eq. (9) is not allowed for a circle because e ¼ 0 and p ¼ 1, implying

that Eq. (11) cannot be mathematically derived for this particular BNQC. However,

it can be easily verified that the value of the golden morphic angle obtained by

applying basic goniometry (r0 ¼ r, implying that sinmu ¼ 1
u) is equal to the value

obtained through Eq. (11) for e ¼ 0. Moreover, it can be noticed that the morphic

golden angle for a circle is part of a class of angles related to the concept of a golden

triangle (i.e., an isosceles triangle with sides u, u, and 1). In this particular case, the

angle is related to a so-called golden morphic triangle with sides u, u, and 2.

A Sphere-Based Definition of a Plastic Angle

The plastic number w is the real solution of the equation x3 � x� 1 ¼ 0. It can be

considered as the golden number’s analogon in three-dimensional Euclidean space.

It emerges from the following relation between the dimensions of a so-called plastic

rectangular cuboid (also denoted with the terms plastic box or w-box (de Spinadel

and Buitrago 2009):

w ¼ b

a
¼ c

b
¼ aþ b

c
ð12Þ

with a, b, and c the length, the width, and the height of the rectangular cuboid,

respectively. From the above relation, it can be derived that the plastic number

satisfies the following equation:

wþ 1 ¼ w3 ð13Þ

From the equality x5 � x4 � 1 ¼ ðx3 � x� 1Þðx2 � xþ 1Þ it follows that w is also a

solution of the equation x5 � x4 � 1 ¼ 0, implying that:

Table 2 Approximate (range of) values of a golden morphic angle hu for each BNQC type

BNQC type Golden morphic angle hu

Circle &76.346�
Ellipse [76.346� and\126.871�
Parabola &126.871�
Hyperbola [126.871� and\180�
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w� 1 ¼ 1

w4 ð14Þ

The plastic number is thus a morphic number.

Analogously to the circle-based definition of a golden angle, it is quite

straightforward to define a plastic angle in three-dimensional Euclidean space.

Consider a sphere with radius R and section its total area As in two areas Aw and A
0

[see Eq. (4)] such that

A
0

Aw
¼ w ð15Þ

Using Eq. (13), it can be determined that

Aw ¼ As

w3
¼ 4pR2

w3
� 5:406R2 ð16Þ

A spherical surface having an area equal to Aw will from now on be referred to as a

plastic surface Sw. Since any solid angle X at the center of a sphere is related to the

area AX of a surface on a sphere that subtends it (AX ¼ XR2), a plastic angle Xw can

now be defined as the solid angle subtended at the center of a sphere by the area of a

plastic surface Sw (see Fig. 4). The proposed sphere-based definition of a plastic

angle Xw can thus be considered as the three-dimensional analogon of the circle-

based definition of a golden angle. In spherical coordinates, this can be written as:

Xw ¼
ZZ

Sw

sin hdh d/ � 5:406 ð17Þ

with h 2 ½0; p� the colatitude and / 2 ½0; 2p� the longitude. The previous equation

can be rewritten as

Xw ¼
Z h2

h1

sin hdh
Z /2

/1

d/ ¼ ð/2 � /1Þðcos h1 � cos h2Þ ð18Þ

with (h1,h2) and (/1, /2) the boundary values of h and /, respectively. For a plastic

angle, these values need to satisfy the following conditions:

/2 � /1 2 2p

w3
; 2p

� �

ð19Þ

cos h1 � cos h2 2 2

w3
; 2

� �

ð20Þ

Because each set of boundary values satisfying the above conditions corresponds to

a plastic angle with different shape and/or location, Xw is not uniquely defined in

terms of the latter properties. Assuming that angle location is a relative property

(just like in the circle-based definition of a golden angle), Xw can be uniquely

defined by constraining the shape of a plastic surface to a specific spherical surface.

In the appendix, plastic surfaces and related volumes are discussed based on the
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following spherical surfaces: zone, cap, lune, and polygon. Because the considered

spherical surfaces are extensively described in various handbooks of spherical

geometry (Bronshtein et al. 2004), they will only be briefly introduced.

Towards a Definition of a Plastic Morphic Angle

Introduction

A sphere can be considered as the simplest type of a nondegenerated real quadratic

surface in three-dimensional Euclidean space that results from revolving a BNQC

around an axis of symmetry going through the focus point(s). These surfaces will

from now on be denoted as quadratic surfaces of revolution (QSR). There are four

types of such surfaces: spheres, spheroids, paraboloids, and two-sheet hyper-

boloids.4 For each QSR, the cross-section perpendicular to the axis of symmetry

results in a circle. Similar to the circle-based definition of golden angle, the solid

angle considered in the sphere-based definition of a plastic angle can be regarded as

the solid angle at the coinciding focus points of the revolved circle. Therefore, a

solid angle at a focus point of the revolved BNQC will be considered in the search

for a definition of a plastic morphic angle of a QSR.

Limitations of the Proposed Sphere-Based Definition

If the proposed sphere-based definition of a plastic angle would be applied for each

QSR type, a similar problem would arise as in the case of a golden angle (see Sect.

3.2): for paraboloids and two-sheet hyperboloids, the total area of the surface is

infinite, meaning that it is impossible to realize a section based on the plastic

number. It is thus clear that the sphere-based definition is not generally applicable.

O

Aψ
Ωψ

Fig. 4 A plastic angle defined
on a sphere

4 One-sheet hyperboloids will not be considered in this section, because their axis of symmetry is

perpendicular to the axis of symmetry going through the focus points.
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Proposal of a New Definition

In the proposed sphere-based definition, a plastic angle is defined based on a ratio of

two areas equal to the plastic number [see Eq. (15)]. A similar approach will be

pursued in the search for a definition of a plastic morphic angle. Therefore, consider

two cross-sections of a QSR perpendicular to the axis of symmetry (see Fig. 5). The

first cross-section goes through a focus point Pi. The radius r0 of the resulting circle

C0 is equal to the focal radius in Eq. (7) with mi ¼ 90�. The second cross-section is

chosen such that the radius rw of the resulting circle Cw (from now on referred to as

a plastic circle) relates to r0 as

r0

rw

� �2

¼ w ð21Þ

The above expression respresents a ratio of two areas of surfaces equal to the plastic

number. A plastic morphic angle Xw of a QSR is now defined as the solid angle at a

focus point of the revolved BNQC subtended by a plastic circle. This corresponds to

the solid angle subtended by a cone with apex angle 2mw\180� (see Fig. 5). From

Eqs. (21) and (7) it can be derived that

rw ¼ ep
ffiffiffiffi

w
p ¼ ep sin mw

1 þ e cos mw
ð22Þ

This results in the following quadratic equation for mw

ðe2 þ wÞ cos m2
w þ 2e cos mw þ 1 � w ¼ 0 ð23Þ

Since by definition mw\90�, only the root resulting in a positive value of cos mw is

considered. It can be derived that the value of mw is determined through the

following formula:

Pi

r′

rψ

Ωψ

Pmin

C ′

Cψ

Fig. 5 A plastic angle defined on a QSR
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mw ¼ arccos
�eþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wðwþ e2 � 1Þ
p

e2 þ w

 !

ð24Þ

The plastic morphic angle of a QSR can then be calculated through the following

formula for the solid angle subtended by a cone;

Xw ¼ 2pð1 � cos mwÞ ð25Þ

The approximate (range of) values of mw and Xw are listed in Table 3 for all QSR

types. It is immediately apparent that the plastic morphic angle for a paraboloid

obtained with the general definition is equal to the plastic angle obtained through the

sphere-based definition. Analog to the golden morphic angle, the cancellation of the

factors ep in Eq. (22) is not allowed for a circle, implying that Eq. (24) cannot be

mathematically derived for the related revolved BNQC. Again, it can be easily

verified that the value of mw obtained by applying basic goniometry (r0 ¼ r,

implying that sin mw ¼ 1
ffiffiffiffi

w
p ) is equal to the value obtained through Eq. (24) for

e ¼ 0.

A Plastic Approximation of p

The total area Abox
w of the surface of a plastic box equals

Abox
w ¼ 2 w3 þ w2 þ w

� �

a2 � 10:808a2 ð26Þ

with a being the length of the smallest dimension of the plastic box. When com-

paring this with the area Aw of a plastic surface on a sphere with radius R [see

Eq. (16)], it can be seen that if a ¼ R ¼ 1, it holds that

Abox
w

Aw
¼ w6 þ w5 þ w4

2p
� 2 ð27Þ

with an accuracy of 2:10�6. This means that p can be approximated with the same

accuracy by a sum of powers of w as follows:

p � pw ¼ w6 þ w5 þ w4

4
¼ 3:140876. . . ð28Þ

with pw the plastic approximation of p. Using Eq. (13), pw can be rewritten as

Table 3 Approximate (range of) values of mw and Xw for each QSR type

QSR type mw Xw

Sphere &60.344� &3.174

Spheroid [60.344� and\81.971� [3.174 and\5.406

Paraboloid &81.971� &5.406

2-Sheet hyperboloid [81.971� and\90� [5.406 and\2p
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p � pw ¼ w9

4
ð29Þ

The difference between the real value of p and pw amounts to 0.0007166.... When

comparing this difference with the area A
0 ¼ As � Aw ¼ 4p=w2 of the surface

considered in Sect. 4, it can be noticed that p� pw is approximately 10�4A
0
. The

plastic approximation of p can thus be significantly improved by taking into account

the latter in Eq. (29), resulting in

p � pw ¼ 7w2 þ 9wþ 5

4 þ 3:9984w
¼ 3:141592. . . ð30Þ

This improved plastic approximation of p has an accuracy of 1:10�9. The difference

between the real value of p and pw is now reduced to 0:0000003643. . .:

Conclusion

In this paper, the concept of morphic angles was introduced. Morphic angles were

defined based on the morphic numbers for nondegenerated quadratic curves and

surfaces of revolution. Notwithstanding that these angles were presented as new

theoretical concepts, the author of this paper considers it possible that they have a

deeper meaning in various scientific domains, especially in physics were the

considered curves and surfaces are often encountered (particle motion, force fields,

astrophysics, ...). Moreover, the author believes that the morphic angles defined in

this paper may be of practical use in architectural design and construction.
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Appendix 1: Plastic Surfaces with a Specific Shape

Plastic Zone and Plastic Cap

A plastic zone (see Fig. 6a) is a plastic surface comprised between two parallel

planes cutting a sphere. It can determined that the height hz;w of a plastic zone equals

2R=w3, implying that the boundaries in Eq. (18) satisfy the following relations

/2 � /1 ¼ 2p ð31Þ

cos h1 � cos h2 ¼ 2

w3 ð32Þ

If one of the cutting planes is tangent to the surface of the sphere, the resulting

plastic zone is a plastic cap (see Fig. 6b). The area Abase;w of the base circle of a

plastic cap relates to Aw and As as follows:
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Abase
w ¼ Aw

w2
¼ As

w5 ð33Þ

The volume enclosed by a plastic cap and its base circle relates to a sphere’s volume

as

V
cap
w ¼ Vsð3wþ 1Þ

w9 ð34Þ

Plastic Cone and Plastic Sector

A plastic cone is a circular cone with plastic apex angle dw at the center of a sphere

and a base circle equal to that of a plastic cap. It can be derived that dw equals

dw ¼ arccos
1

w7

� �

� 81:971� ð35Þ

A plastic sector is a spherical sector obtained by composing a plastic cap and its

corresponding plastic cone. This is an example of a spherical volume element

constructed by connecting the contour of a certain spherical surface with the

sphere’s center. The volume VX of such an element can be directly calculated from

the solid angle X subtended by the spherical surface:

VX ¼ XR3

3
¼ AXR

3
ð36Þ

This implies that the volume Vsector
w of a plastic sector relates to a sphere’s volume

as

Vsector
w ¼ Vs

w3 ð37Þ

The relation described in Eq. (16) for the area of a plastic surface thus also holds for

the volume of a plastic sector, and by extension all the plastic volumes that will be

discussed hereafter. For completeness, the area of the surface of a plastic sector is

given:

Zone

(a)

Cap

(b)

Lune

(c)

Fig. 6 Plastic surfaces
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Asector
w ¼ Aw þ pR

ffiffiffiffiffiffiffiffiffiffi

Abase
w

p

s

¼ pR2 ð4 þ 2
ffiffiffiffi

w
p

Þ
w3

ð38Þ

Plastic Lune and Plastic Wedge

A plastic lune is a plastic surface comprised between two planes cutting a sphere

and intersecting each other in a line through the sphere’s center (see Fig. 6c) and

rotated relative to each other by a dihedral angle5 ww 2 �0; 2p½. It can be determined

that the plastic dihedral angle ww of plastic lune equals approximately 2p=ð1 þ wÞ
rad or 154,857�. This means that the boundaries in Eq. (18) satisfy the following

relations:

/2 � /1 ¼ 2p

w3 ð39Þ

h2 � h1 ¼ p ð40Þ

A plastic wedge is the volume enclosed by two great6 semicircles and a plastic lune.

The area of its surface equals

A
wedge
w ¼ Aw þ pR2 ð41Þ

Plastic Polygon

A plastic polygon is a plastic surface comprised between n planes cutting a sphere

and going through the sphere’s center. Its so-called spherical angles correspond with

the dihedral angles between the cutting planes. To verify whether or not it is

possible to construct a plastic polygon, the general formula for the area Apoly of a

spherical polygon can be used (Calladine 1989):

Apoly ¼ r� ðn� 2Þpð ÞR2 ð42Þ

with r 2 �ðn� 2Þp; np½ the sum of all radian spherical angles wi 2 �0; p½ with

i 2 ½1; n�. From this formula, it can be derived that the sum of the radian spherical

angles rw in a plastic polygon equals

rw ¼ np� 2p

w7
\np for any n 2 N ð43Þ

implying that a plastic polygon can always be constructed. From Eq. (43) it can be

derived that for any regular plastic polygon7 the magnitude of each spherical angle

wreg
w is

5 A dihedral angle is an angle created by two intersecting planes.
6 A great circle is the intersection of a sphere and a plane going through the sphere’s center.
7 A regular plastic polygon has n sides of equal length and n spherical angles of equal magnitude.
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wreg
w ¼ p� 2p

nw7 ð44Þ

If n ! 1, the magnitude of wreg
w will approach p. The length a

reg
w of the sides of a

regular plastic polygon can be determined through the following equation (Rajpoot

2015):

a
reg
w ¼ 2R arccos

cos
p
n

cos
wreg
w

2

0

B

B

@

1

C

C

A

ð45Þ

In the specific case of a plastic triangle, it is important to mention here that some

plastic triangles cannot be constructed. For example, right-angled plastic triangles

(i.e., plastic triangles with one, two or three right spherical angles) cannot be

constructed because they do not meet the conditions for the spherical angles.

Oblique plastic triangles8 can only be constructed if the smallest spherical angle is

greater than approximately 0:721p rad or 129,715�. Such oblique plastic triangles

can be equilateral (or regular), isosceles or scalene.

Plastic Pyramid

A plastic pyramid is as a pyramid with apex at the center of a sphere and a plastic

polygon as a base. It can be derived that the total area A
pyramid
w of a plastic pyramid

equals

A
pyramid
w ¼ Aw þ

X

n

i¼1

Aside
i ¼ Aw þ R

2

X

n

i¼1

ai ð46Þ

with Aside
i ¼ Rai=2 the area of a circular sector related to the length ai of a side of

the plastic polygon.
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