
JJoosséé NNuunnoo BBeeiirrããoo
Faculty of Architecture

Delft University of Technology
Julianalaan 134
2628 BL Delft

THE NETHERLANDS

J.N.Beirao@tudelft.nl

JJoosséé PPiinnttoo DDuuaarrttee*

*Corresponding author

Faculdade de Arquitectura
Universidade Técnica de Lisboa

Rua Sá Nogueira
Pólo Universitário, Alto da Ajuda

1349-055 Lisbon PORTUGAL

jduarte@fa.utl.pt

RRuuuRuddii SSttoouuffffffffffffff sfsffsfsfsff
Faculty of Architecture

Delft University of Technology
Julianalaan 134
2628 BL Delft

THE NETHERLANDS

r.m.f.stouffs@tudelft.nl

Keywords: Urban design, shape
grammars, urban patterns

Research

CCrreeaattiinngg SSppeecciiffiffiffifffffiffiffiff cc GGrraammmmaarrss wwiitthh
GGeenneerriicc GGrraammmmaarrss:: TToowwaarrddss FFlleexxiibbllee
UUrrbbaann DDeessiiggnn
Presented at Nexus 2010: Relationships Between
Architecture and Mathematics, Porto, 13-15 June 2010.

AAbbssttrraacctt.. The aim of the City Induction project is to
develop an urban design tool consisting of 3 parts: an urban
programme formulation module, a generation module and
an evaluation module. The generation module relies on a
very generic Urban Grammar composed of several generic
grammars called Urban Induction Patterns (UIPs)
corresponding to typical urban design moves. Specific
grammars, such as the analytical grammars inferred from
our case studies, can be obtained by defining specific
arrangements of Urban Induction Patterns and specific
constraints on the rule parameters. We show that variations
on the UIP arrangements or rule parameters can provide
design variations and specific grammars to be synthesised
through design exploration. It is therefore seen as a process
for synthesizing a specific design grammar within the field
of urban design and has two main features: (1) it allows for
the synthesis of specific grammars during the design process
and (2) it allows for the customization of a personal design
language within the broad scope of the generic grammar.

A formal definition of Urban Grammars is presented and
its application in the production of customized urban
designs is demonstrated by customizing design languages
using a specific compound grammar defined by a specific
arrangement of generic grammars.

IInnttrroodduuccttiioonn
11 TThhee CCiittyyyttyy IInndduuccttiioonn PPrroojjeecctt

This paper presents a detailed description of the generation module for the City
Induction project. The City Induction project aims to develop an urban design tool
which is defined by linking three operative modules through a common ontology,
integrating knowledge structures and representations of cities.

The three modules are:

a formulation module, which reads data on a site’s context and formulates the
urban programme specifications for that site (produces the urban programme)
[Montenegro and Duarte 2008];
a generation module, which generates alternative urban design solutions for the
same site (produces design solutions);
an evaluation module, which guides the generation to meet the programme’s
goals (guides the generation towards satisfactory designs) [Gil and Duarte 2008].ff

Nexus Network Journal 13 (2011) 73–111 Nexus Network Journal – Vol.13, No. 1, 2011 73
DOI 10.1007/s00004-011-0059-3; published online 25 February 2011
© 2011 Kim Williams Books, Turin

74 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

The formulation module provides its output by means of goal patterns encoded into
a description grammar [Stiny 1981]. The generation module uses arrangements of
generic discursive grammars [Duarte 2001] to generate urban designs, and the evaluation
module uses several evaluation techniques to guide generation towards the specified
requirements. In this paper we show how a set of generic discursive grammars can be
used to design specific grammars for urban design.

2 Defining the problem

Uncertainty and complexity seem to be dominant paradigms in the growth of cities.
The main problem is that, even when planned, the development of cities is difficult to
predict. Designing cities involves the ability to deal with many simultaneous and
complex city development behaviours and all their components, and predict desirable
and controllable city developments. This has been proved virtually impossible to achieve,
at least by traditional means [Portugali 1999]. In addition, the constantly changing city
dynamics in contemporary society has led to the growing inefficiency of the traditional
layout planning approach. Flexibility and adaptability have become imperative [Archer
2001].

In order to progress towards more efficient design systems we need to develop very
flexible and interactive platforms that are able to assess the complexity of urban systems
without interfering with the typical indeterminate design exploration procedures that
designers adopt. Previous work [Beirão and Duarte 2009] has shown that designing
urban plans with shape grammars [Stiny and Gips 1972] establishes planning systems
containing explicit and implicit flexibility that can be used as adaptive features in a real-
world implementation where such features become extremely important. The idea is that
it is possible to define design systems that establish an embedded order through a set of
design rules whilst still retaining the adaptive features that can accommodate
uncertainties. In practical terms, the aim is to develop an urban design platform that can
shift from the rigid layout paradigm to a new concept, the concept of city information
modelling (CIM), and eventually extend the term modelling to monitoring by
incorporating the analysis and evaluation tools provided by the evaluation module.

However, the implementation of shape grammars contains problems of its own. The
problem of shape recognition [Yue et al 2009] has been pointed out many times as its
main technical restriction, whilst it is claimed that the mathematical definitions, being
founded on visual reasoning, support the type of visual ambiguity found in design
[Knight 2003; Stiny 2005]. Moreover, ambiguity conflicts with design control, whilst the
definition of a very detailed and complete grammar conflicts with design freedom. The
latter problem arises from the fact that a shape grammar, even if parametric, always
embeds some kind of design language, imposing the inherent language on the designs
generated. The problem that concerns us and led to this research is that design languages
are the result of design synthesis and not the reverse, meaning that exploring design
languages is not an aim of design, whereas the synthesis of a design language is.
Exploration of the language is only an extension of the design capacities, not the purpose
of design itself. As such, the main question therefore is how to define a shape grammar
during the exploratory design process.

Therefore, the research questions are, firstly, how to design using shape grammars,
given that a designer’s language is usually synthesized together with the design process
itself and, secondly, how to apply shape grammars in urban design in order to obtain a
more flexible and efficient urban design process. Solving the first problem provides a

Nexus Network Journal – Vol.13, No. 1, 2011 75

response to the second, as it forms the basis for the development of a supporting design
tool. However, the second question involves complex features of the urban environment
that make it much more difficult to answer. This research falls within the framework of
urban design.

To address these problems the research used the following methodology. First, the
main characteristics of the existing urban design and assessment tools were assessed, in
order to figure out how shape grammars should be used in conjunction with these
systems. A survey was also carried out of the supporting literature capable of providing
guidance in specifying the aims of the design tool – i.e., what it should do and what it
does not need to do. The following section presents the theoretical background to the
research. In the third section, we propose the use of arrangements of generic grammars as
a means of enabling specific design grammars to be developed. Section 4 shows the
technical definitions of this concept, the structure of the generation module and how it
works within the City Induction concept. Section 5 contextualises the research design
space within the framework of four case studies, in order to simplify the prototype
implementation, starting from the assumption that the natural approach in this case is to
progress from simple to complex implementations. In this section we present some
grammar examples extracted from the case studies to demonstrate that generic grammars
correspond to urban induction patterns and that specific arrangements of generic
grammars produce specific grammars. We may therefore call generic grammars designing aa
grammars. The discussion section engages the reader in a critical review of the
achievements of the research and the scope for future work, establishing some new
hypotheses for future research. The final section draws conclusions on the achievements
of the research.

3 Background and theoretical support

Architecture, urban design and urban planning are three different scales of design
activity that merge within the context of the city. It is already established in literature on
the subject that these scales range from local to global (or vice versa) alongside several
complex interactive systems, namely social, economic, environmental and political, all of
which contribute towards generating uncertainty and complexity in cities and their
development [Archer 2001; Batty 2005; Portugali 1999]. In this environment, urban
design becomes a rather difficult and unpredictable task.

In the current state of the art, it is impossible to find fully integrated tools that enable
us to assess the many aspects relating to the task of urban design. There are several tools
for urban analysis, tools for evaluation and tools for designing but no single tool seems
adequate to assess all the demands of urban design. The basic distinction that is
important to this paper is the distinction between GIS and CAD tools. The former are
extremely powerful assessment tools for evaluating urban data and performing many
analytical tasks which may inform urban design, but they are not design tools. GIS
interfaces share the characteristic of gathering geo-referenced information and
representations of existing components or concept-components1 in our environment.
Data and shape-files (i.e., representations) are linked by a geographical reference. GIS
platforms provide many different tools that allow us to run several types of analysis.
There are also other types of software or plug-ins that add other analytical functions to
these platforms, space syntax [Hillier and Hanson 1989; Hillier 1998] being probably
one of the most widely-used tools of this kind. Although some of these types of software

76 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

might contain some editing tools, none of them are drawing or modelling tools and for
this reason, GIS platforms are very unfriendly tools for design purposes.

On the other hand, CAD tools are essentially drawing or modelling tools that do not
assess data, nor do they allow for the complete topological integration of representations
and data. However, most of the CAD software is already very powerful and versatile in
terms of design purposes, although communication between the different platforms is
difficult and implies loss of data. Nevertheless, it is clear that urban design methodologies
are strongly supported by intensive analytical methods during the pre-design phases,
therefore indicating the enormous potential and desirability of linking GIS and CAD to
allow for analysis-design-analysis data flow cycles. Establishing the foundations of a tool
for this purpose is one of the main goals of City Induction. On an urban scale, this is
actually a direct translation of what Schön [1983] would call a see-move-see cycle in
architectural design.

A shape grammar [Stiny and Gips 1972] is a set of shape transformation rules that are
applied recursively to generate a set of designs. These are type rules in which and

are labelled shapes from a finite set of shapes S and a finite set of labels S L. The rule L
finds the occurrence of a transformation of the labelled shape in a design and
replaces it with a transformation of the labelled shape as defined in the equation

, where is the resulting design after the rule iteration and – and +
are the Boolean difference and union operations [Stiny 1980]. As Stiny has pointed out,
shape recognition is an ambiguous task [2005] and needs correctly supported artificial
intelligence to be effective in a computer-based implementation of shape grammars.
Finding can prove a very complex task when new shapes emerge during design
generation. In addition, extending shape grammars to the space of parametric grammars,
which are in fact used in most design situations, makes this even more difficult, as the
recognition of a shape becomes the recognition of any assignment g of parameter values g
to a parametric labelled shape , i.e., finding g in a design to apply the rule
schemata g .

Shape grammars have successively demonstrated a capacity to encode the design rules
embedded in design languages with a rigorous technical formalism. However, the
semantic discourse in urban design is not only provided by shape transformations but
also political, social and territorial contexts which are informed by features other rather
than those of form. To solve this semantic problem previously pointed out by Fleisher
[1992], Duarte [2001] proposed the concept of discursive grammars, a combination of
description grammars [Stiny 1981] and shape grammars, as a way of providing
descriptions of designs that are appropriate for a particular context.

Previous work using shape grammars and patterns [Alexander et al 1977] as an
approach to solving urban design problems has been carried out in recent years in design
studios at the Technical University of Lisbon [Beirão and Duarte 2009]. This work still
remains the main motivation for the City Induction research project, since it has
demonstrated the potential of using shape grammars in urban design. Although the
design studio was run with current tools, shape grammars were applied informally using
current CAD functionalities and the analytical tasks were performed without the support
of GIS-based tools, the idea of integrating analysis, generation and evaluation into a
single working platform has been our main focus since then.

Nexus Network Journal – Vol.13, No. 1, 2011 77

4 Designing grammars for urban design s

As previously mentioned, the implementation of shape grammars implies specific
technical problems. Basically, two main problems concerning shape grammars are
addressed in this research: firstly, the shape recognition problem and secondly, the
problem of defining the grammar during the design process. The linking of GIS and
CAD representations into a compatible format defines the third problem under
investigation.

Our current work focuses on the implementation of the generation module for City
Induction. It proposes two devices as a means of solving the three said problems. The
first problem is partially solved by the introduction of a City ontology. The third
problem is entirely solved by the same device. The second problem is solved through the
introduction of Urban Induction Patterns (UIPs), small generic grammars encoding
urban design moves.

The City ontology defines and organizes significant relationships between the various
types of objects or components found in the urban space that will be used in the urban
design process. It is structured into object classes, each containing object types and
attributes. At top level the City ontology contains 5 different classes – networks, blocks,
zones, landscape and focal points. The ontology was defined to support communication
between the three modules of City Induction, but also provides a structure that can
create layered representations of city features. This layered structure is envisaged as a
means of establishing the direct export of design generations to a GIS platform. It is also
seen as a way of structuring urban grammars into parallel generic grammars, basing the
definition of the shape sets of these grammars on the object classes of the ontology.
Details on the ontology can be found in a recent paper [Beirão, Montenegro et al 2009]. t

In this paper we show how design moves [Schön 1983] can be encoded into small
generic grammars and combined in different ways to form customized designing
grammars that can therefore be used to synthesize a personal design language during the
design process. Such a system may be used to improve design procedures and design
exploration, as it enables the advantages of the generative properties of shape grammars
to be used, whilst also allowing a personal design language to be explored in the design.

 Encoding design moves into generic grammars: Urban Induction Patterns (UIP)

Donald Schön says that designs evolve through a series of see-move-see cycles. It is a
reflective process that is performed continuously throughout the design process by the
designer until s/he comes up with a proposed final solution. The design rules are the
result of such a process. Only when the process is considered finished, is the designer able
to talk about the design process and replicate the procedure. Only then, is the design
capable of providing a specific grammar, a set of shape rules that can translate the design
language of the architect, i.e., a consistent design expression translated into a shape
grammar.

What this research intends to develop is a way to simultaneously provide the
exploratory design process whilst also developing a consistent design grammar encoded
into the algebraic formalism of shape grammars, so that by the end of the design process
the designer can obtain a complete customized shape grammar that enables him to
further explore the design space defined by the grammar. In the case of urban design,
what this process provides is the possibility of designing, not a final layout, but a set of

78 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

rules that can produce any layout within the design space defined by the grammar. A
design language is therefore provided without enforcing a specific layout.

The main idea underlying this work is that we can “break down” the complete design
process into a particular arrangement of independent design moves. Each design move is
encoded into a very generic shape grammar independent of context that can be applied to
different contexts and customized by constraining the available parameters.

Generic grammars are very simple, customizable, context-independent shape
grammars corresponding to generic design moves. They can be defined because what is
encoded is not a complete design sequence but short recurrent design moves common to
most designers. Expressions such as “defining the main axis”, “placing a landmark” or
“setting the grid” are understood by any urban designer, although each individual might
have a specific interpretation of their meaning. These design moves are set as design
patterns [Gamma et al 1995], defining a short and very generic piece of code that
generates this specific design move. Specific designs are the result of composing an
arrangement of such design moves and setting specific values for the available parameters.
A specific grammar is therefore the result of setting a specific arrangement of generic f
grammars and constraining the available parameters to the ones that express the
designer’s thought language. In order to simplify the text which follows, a generic
grammar encoding a recurrent urban design move will be called an Urban Induction
Pattern or simply UIP.

Generic grammars for designing Urban Grammars

Another important aspect to consider is that design moves are a designer’s response to
specific stimuli found in the design context. In other words, certain elements found in
the context provide referential support for design decisions. These elements or references
are the ones that provide the initial shapes to which a generic grammar can be applied.
The references are elements that the designer selects in the design context or referential
elements generated by previously applied grammars. There are therefore two ways of
providing referential elements or initial shapes in order to apply a UIP: firstly, the
designer selects elements in the design context and gives them the attribute Ref (for f
referential element); alternatively, a previous grammar generates an element that is then
used by another generic grammar as an initial shape.

The City Induction generation module is a design generation system based on an
extremely generic Urban Grammar defined by the available UIPs and rule parameters. A
specific Urban Grammar is customized through the selection of a specific arrangement of
UIPs and specific constraints on the rule parameters. A specific design is instantiated for
a specific selection of references (R((ef elements) by instantiating f specific values within the
constraints defined for the rule parameters. In terms of the design decision process, a
specific design is obtained through three kinds of design decisions: selecting or defining
references in the design context, selecting a specific arrangement of UIPs, and
constraining the available parameters within the pattern rules.

These options depend on the decision taken by the formulation module or the
designer. Therefore, the design process is a reflective process, responds to contextual
features including regulations and quality standards, and is rule-based.

Nexus Network Journal – Vol.13, No. 1, 2011 79

The various meanings of the term “pattern”

A brief digression is necessary here in order to explain and identify the meaning of the
word “pattern” in Urban Induction Patterns. The basis of the word “pattern” as used
here was first coined by Alexander et al in the book A Pattern Language [1977] and was e
defined as a recurrent problem occurring in the environment that can be clearly
identified and provided with a generic solution. This concept was later extended by
Gamma et al [1995] so that it could be applied in object oriented programming. The
underlying idea was to identify recurrent problems in object oriented programming and
to provide a detailed solution with a sample code for generic application. This extended
concept was called “design pattern”, although the word “design” here means software
design. An Urban Induction Pattern is a compound version of both concepts applied to
urban design, i.e., an UIP is a recurrent urban design move provided with a generic
grammar that replicates this design move and can be applied in many different contexts.
In every sense in this context these are design patterns.

The next sub-section details this definition in terms of grammar formalisms.

Urban Induction Patterns and Urban Grammars: definitions

The top level of the City ontology defines 5 object classes, namely Networks, Blocks,
Zones, Landscapes and Focal Points (fig. 1). Each object class is a set of object types
divided into two major subsets: geometry (shapes, parameterized shapes) and attributes
(labels). The ontology provides a dependency structure for all the shape and label sets y
that comprise an urban plan, allowing grammars to accept them as parameterized shapes
and labels for the application of rules used to generate urban designs.

Fig. 1. City ontology – schematic approachy

To simplify the notation, each set of parameterized shapes in the ontology is
annotated as Si where the index i defines the position of the set in the ontology from 1, 2, i
…, n where n is the total number of shape sets in the ontology.

80 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

As defined above, an Urban Induction Pattern is a recurrent urban design move
provided with a generic grammar that replicates this design move and can be applied
independently of context. An Urban Grammar is a specific arrangement of generic
grammars encoding urban design moves, i.e., it is an arrangement of UIPs.

The City Induction generation module was conceived of as an urban design tool or
urban design system. In order to generate designs it contains a very generic urban
grammar which is the set of all urban grammars that can be defined using the
system. Although our model is a simplified version of a possible theoretical universal
model restricted to the domain defined by four case studies (see section 5), it can, in
principle, be extended by (1) extending the ontology, and (2) extending the set of
available UIPs.

An Urban Grammar is a Cartesian product of parallel grammars
nn321 that use a set of parameterized shapes from the City ontology,

nSSSS ,,,, 321 respectively, to design a layer of an urban plan. Each design phase
outputs a sub-design composed of several layers or, more accurately, each design phase
uses some of the grammars, 1 to n, in the urban grammar nn to generate the various
layers that define the sub-design produced in that design phase. Label sets

nLLLL ,,,, 321 , are the label sets in the corresponding grammars nn,,,, 321 , and
also correspond to the attribute classes in the ontology.

Generation begins with the definition of the existing elements to be used in the
design. E0 is the set of existing representations (shapes) of the working context and0

contains all the existing representations (shapes) regardless of the many-layered structure
it may have. I0II is the set of initial features (shapes and labels) that will be used to start the
design and contains only IsII and Ref objects, that is, the shape f IsII , a closed polyline that
represents the intervention site limit, the labels IsII and Ref, and ff Ref shapes, which are the f
shapes representing the selected elements in the site and context that will be used as
referential guiding elements to support design rules. Ref labels are attributes of the f Ref
shapes that were selected by the designer to guide a certain stage of the design. Ref shapes
in fact represent the elements that guide the design decisions.

A grammar is built up from a sequence of UIPs (a sequence of design decisions)
which in the end will reflect the design language of the urban plan. The same urban
grammar can be used to generate different alternative designs by running the same
UIP sequence again to produce different instantiations. This allows design
implementations to be explored or monitored [Beirao, Duarte, Montenegro, Gil 2009].
The whole concept is, in fact, close to what could be a real algorithmic implementation
of a complete Pattern Language as conceived of by Alexander [1977], but in such a way
as to allow the designer to define his own pattern language.

A UIP is therefore a sub-grammar of . A UIP uses only some of the parallel
grammars in , a subset of , namely some components of nn,,,, 321 . Each

grammar i follows the definition of a discursive grammar [Duarte 2001]. Each UIP is a i

compound grammar composed of a set of parallel discursive grammars i of the form i

ii where SiS is the set of parameterized shapes

corresponding to the ith shape object class in the ontology, Li is the set of labelsLi

corresponding to the ith attribute object class in the ontology and IiII is the initial shape.

Nexus Network Journal – Vol.13, No. 1, 2011 81

The initial shape IiII is always a shape in SiS generated by a previous UIP or a shape in I0II in
the case of initial UIPs. Each UIP addresses a goal G to be achieved through set of
description rules D starting from an initial description U. A set of heuristics UU H decidesH
which of the rules in the set of rules R to apply. W is a set of weights andW F a set of F
functions used to constrain generation so that it respects regulations and quality
standards.

5 Generating designs with Urban Induction Patterns

In this section we intend to demonstrate that the concept described above can be
used to design urban plans and explore design spaces. Since it would be impossible to
start with the aim of defining all possible urban design moves, we used the following
approach. The work was framed by capturing UIPs only within the design space defined
by four case studies, attempting to define them in such generic terms that each UIP
could be used as broadly as possible regardless of context. We also tried to break down
the UIP into the smallest design moves possible so that most of the large design moves
would already be a composition of smaller UIPs. In fact, the analysis of the case studies
demonstrated that although all the grids were quite different in terms of final results,
most of them were actually obtained through different arrangements of minimum UIPs
designed for this purpose.

As a general approach, this section presents the four case studies, explains the
approach used to infer UIPs, provides a summary of the UIPs inferred from the analysis
and shows how these UIPs can be used (1) to replicate the urban plans, and (2) to
generate alternative solutions by applying different instantiations of rule parameters.

The four case studies

This work began with the assumption that urban designs can be broken down into
very small generic design procedures or design moves which, when combined in different
ways, can be used to define different design languages. In order to define such design
moves in the form of UIPs as defined in the previous section, we used four urban plans as
case studies.

The four urban plans are: 1) Extension plan for Cidade da Praia in Cabo Verde by
Chuva Gomes; 2) Qta da Fonte da Prata (QFP), in Moita, Portugal by Chuva Gomes; 3)
Ijburg/Haveneiland by Frits van Dongen, Felix Claus and Ton Schaap from a larger plan
by Palmbout; and 4) Ypenburg, also by Palmbout (Palmboom and van den Bout) (fig.
2). The case studies were used to frame the work within the range of their design space.
Furthermore, we assumed that to produce complete urban designs we would have to
define at least four sets of rules (UIPs) relating to four different levels of design:

A. rules to define the compositional guidelines of the plan;
B. rules to define grids or the main street structure;
C. rules to define urban units including squares and other public spaces;
D. rules for designing details, such as the detailed design of street profiles and

materiality [Beirão and Duarte 2009].

This paper focuses on the level (B) rules.

82 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

Fig. 2. Plans for (1) Praia, (2) Quinta da Fonte da Prata (both by Chuva Gomes), (3) Ijburg (by
van Dongen, Claus and Schaap from a master plan by Palmbout), (4) Ypenburg (by Palmbout)

As a basic methodology we started by analysing the first case study, inferring the
design rules used by the architect and defining them as Urban Induction Patterns. In
interviews he has given, Chuva Gomes clearly states his design moves for both plans. He
even states which moves were common and which were different in the two plans. We
tried to formulate basic definitions of the UIPs in such a way that they would be valid for
the four case studies or even other well known paradigmatic urban plans. Due to its
simplicity, Case Study 1 provides very basic rules for designing an orthogonal grid-based
plan. We tried to devise them so that, in order to obtain results like the ones in Case
Study 2 the same rules (UIPs) could simply be applied with a different sequential
arrangement and different values for the parameter variables. Roughly speaking, it can
easily be seen that Plan 2 uses similar rules to those in Plan 1 but applies them several
times in four different areas with four different orientations. Introducing more
complexity into plans is therefore the result of combining basic UIPs in more complex
ways. However, the two Dutch plans introduce new features suitable for encoding into
other UIPs. For example, Plan 3 introduces a lot of variety into the definition of the
urban block and a set of additional rules can therefore be defined from this case study.
Case Study 4 introduces an even more complex variety of design transformations in
comparison to the previous, less complex, case study. In this instance, not only can more
variety be seen in terms of urban unit definition, but distortions in the orthogonal grid
also become evident, implying the definition of rules to deal with grid distortions or
irregular grids.

As a general approach, considering that our purpose is the definition of a design tool,
the line of reasoning always followed was that rules to explain the simpler case study
would be defined first and valid variations of these rules would then be explored as a
means of obtaining the design exploration potential. This task proved hard, since it was
possible to lose direction when considering valid variations simply due to the fact that
design possibilities are, in principle, infinite. To avoid this, we tried to remain focused

Nexus Network Journal – Vol.13, No. 1, 2011 83

within the scope of the case studies, aiming only to prove that: (1) a minimum set of g
UIPs can be used to generate the four case studies; (2) the same UIPs can produce new
designs in different contexts with similar rules in any language that can be composed
from the UIPs available or, in other words, within the design space defined by the case
studies. The additional capacities of the defined set of UIPs outside this design space
were considered only as additional qualities to support the concept, but were not
established as a research goal.

Defining UIPs

All the Urban Induction Patterns defined in this paper refer only to the generation of
designs of urban plans in typical plan representations. 3D representations were left for
future research developments and are considered here as consequence of the design
generation results that might be obtained by simple extrusion of the layouts. Aspectsy
related to topography are not detailed here, only clarified in the discussion.

As previously stated, the first UIPs applied are the ones that take the intervention site
limit Is and elements selected as references, s Ref, as their initial shapes. The first UIP ff

within the framework of our case studies was suggested by the explanation given by Frits
Palmboom, the author of the Ypenburg plan, concerning his design methods. Regarding
his first move in the design of an urban plan, in a 2008 interview made in the context of
this present research, he said, “I always look for the longer line in the territory”. Taking
this sentence as our motto, we called the first UIP MainAxisistheLongerLine. The e
algorithm generates all the lines that can be generated after considering the referential
elements and selects the longest one. It is applied in all the case studies and takes the
particular form of the Cardus in the case of Plan 1, selecting from the proposed long lines s
the one that has the closest north-south orientation. The term cardus already s
demonstrates the possibility of applications in a wider design space than the one defined
by the case studies, as it is a well-known feature of classic urban planning. Following the
first UIP, we devised OrthogonalAxis, or s Decumanus if perpendicular to s Cardus, ass
another typical design move. In Plan 2 it can be seen that these two sequential UIPs are
used differently in four different areas of the site. All of these are particular cases of
CompositionalAxis, a UIP that uses two references to draw a compositional axis, and s
they are all related to the first design level (A). A detailed description of the rules for
Cardus and s Decumanus is shown in Beirão et al [2009a]. s

At the second design level (B) we basically considered two Urban Induction Patterns
to generate the grids and a few others corresponding to complementary tasks that adapt
the grid to predefined conditions, adjusting the results along the intervention boundaries
or any other already existing element. The two UIPs generate grids by AddingAxes
[Beirão, Duarte, Stouffs 2009b] or by AddingBlockCells [Beirão, Duarte, Montenegro, s
Gil 2009] and have been used to reproduce the design of Plan 1. The rules for each UIP
are reproduced here to facilitate comprehension of this paper. However, some rules were
added to the later UIP in order to deal with the use of varying parameters. During the
derivation with AddingBlockCells, third hierarchy axes were adjusted using
AdjustingAxistoCells. At the end of the grid derivation, two more UIPs were used – s
AddBlocktoCells and s AdjustingBlockCells – to create the block structures and adjust to
the boundary conditions of the design respectively.

As the architect Chuva Gomes used constant parameters to define the dimensions of
the blocks in the Praia plan, the results of applying any of the two UIPs are the same.
However, if the parameters were to vary, for instance, within a fixed interval, the results

84 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

obtained from applying each of the algorithms would differ. Considering the goal of
defining City Induction as a design tool, we view this difference as an extremely positive
quality of the two UIPs, which can be used for design exploration.

Applying UIPs to generate designs

Exploring design possibilities is a task based on freely sketching many different ways
of applying basic design moves to selected references within a given context. Both
references and design moves may vary, as may the parameters or variables in each design
move. Although the designer pursues a specific goal there are many possible solutions,ff
even many optimum solutions, and the design exploration simply needs to find a way
towards a solution space. Bearing this in mind, our aim is not necessarily to demonstrate
the tool’s capacity to find optimum solutions, although this may be achieved later when
the three City Induction modules are connected, but to demonstrate the versatility of the
design tool in exploring different design formalizations. In this sense, it is more
important to show that, apart from being able to reproduce Chuva Gomes’ plan, the
same UIPs that were previously developed also enable many different solutions to be
designed. In particular, it has to be demonstrated that different results can be obtained
by: 1) selecting different references Ref,; 2) applying different sequences of UIPs; 3) ff
assigning different values to the parameters.

Although some automated ways of developing suggestions for defining references can
be found, until now this first step has simply been considered a manual one. The
designer selects elements of the available representations to define as references for the
design. References (R((ef) can be focal points (e.g., a hill ff top), lines or polylines (e.g., an
existing street, a ridge, a water line) and polygons (e.g., a building). The concept of focal
point is defined as a geometrical position with a tolerance corresponding to the tolerance
designers use when sketching ideas in pencil or using any freehand tool. This means that
the rules are structured to accept a certain flexibility with regard to the geometric position
of the focal point. A building selected as a referential element (e.g., a historical building)
can be treated by the rules as a focal point corresponding to its geometrical centre or as a
polygon where the longer line is used either as an alignment or as the basis for
establishing a perpendicular axis from its middle point. Different selections as well as
different interpretations of the options will obviously produce different results.

Three initial UIPs are referred to in this paper – MainAxisistheLongerLine,
CompositionalAxis ands Cardus. Initial UIPs are those able to recognize the available s
initial shapes, which are the Ref elements and the intervention site limit f Is. The basic s

algorithm for these three UIPs is the same and only the last step changes. They take all
the selected Ref elements and draw all the possible axes based on these elements. These
axes are trimmed outside IsII . The longer axis defines the length laxl , the longer axial length.
From the whole set of axes only those 10% shorter than the longer axial length will be
used in the next generation steps. However, this percentage is a variable that can be
manipulated by the designer by changing the amount of proposed axes.
MainAxisistheLongerLine selects the longest available axis from the set of proposed axes. e
Cardus selects the one closest to a north-south direction.s CompositionalAxis randomly s
selects one of the available axes.2 References, Ref labels, used by the selected axes are f
erased so that a second coinciding axis cannot be generated. MainAxisistheLongerLine
and Cardus can be applied only once.s CompositionalAxis can be applied as long as there s
are references to be used.

Nexus Network Journal – Vol.13, No. 1, 2011 85

OrthogonalAxis and s Decumanus correspond to a second stage in UIP applications.s
They are applicable only if there is a main axis a1 available or a cardus. Decumanus
applies only if a cardus has been generated and onlys once in the whole design. y
OrthogonalAxis can be applied several times until there are no more references. s

The first level representations generated by these UIPs are axial representations of y
streets belonging to the AANNNAN (Network) object class in the ontology and they basically
represent four types of axes a1, a2, a3 and a4 corresponding to four distinct hierarchies.
Other classifications can be added to the streets, detailing the street characteristics
throughout the generation by adding attributes that change their configuration. In Plan 1
the architect decides to define the decumanus as a promenade and this feature is applieds
to all the a2 axes in the plan, i.e., three times.

The UIPs AddingBlockCells and s AddingAxes can be applied as soon as there are two s
orthogonal axes in the design. The parameters h and h w correspond to the length and w
width of the urban block respectively. These parameters can be set as a fixed value, as
Chuva Gomes does in Praia (h=80m and w=50m), but can also be set as an admissible
range (for instance: mhm 12060 and mwm 10040). In this case the results of
applying these UIPs are different and their purpose becomes different in terms of design
intentions.

Exploring variations in designs

At the beginning of the generation process the designer is prompted to define a
minimum set of values that are used by the generation module as input values for specific
parameters in the Urban Induction Patterns. In terms of the generation module these
parameters can be set directly by the designer, although the formulation module is
supposed to fill a table of specifications with such parameters as input data for the
generation. In the next generation steps, in particular the exploration of grids, a few
parameters must be defined, to be used by the rules in AddingAxes and s
AddingBlockCells. These parameters are the block length s h and width w, and the street
width defined for the hierarchy of compositional axes, a1, a2, a3 and a4. The latter widths
can be altered during generation if an axis is transformed into a specific street type, for
instance a Promenade, such as the three promenades found in Plan 1. However, the
street widths are set as fixed values, while h and w can be set as a range of values. It is this
permitted variability that makes the grid generator UIPs so interesting to explore.

We will look first at AddingAxes, as this is an easier example. [Beirão, Duarte, Stouffs
2009b] show the rules and the derivation for generating the Praia plan. The rules are
reproduced here (fig. 4), showing a different derivation (fig. 3). The original derivation
applies an exact sequence of UIPs and a fixed value for the block parameters, (mh 80
and mw 50), to reproduce the design of Praia plan – Plan 1. However, if we consider
an admissible range for the parameters h and h w, such as the ones suggested above,
variations will start to appear in the grid whilst maintaining the typical orthogonal grid
appearance and street continuity. The derivation in fig. 3 shows one possible solution
resulting from the use of different values assigned to h and w randomly chosen from the
stated range of values. No other function constrains the rule application in this example.
At the end of the generation sequence, squares are applied following different algorithms
for the generation of public space. The last Urban Induction Patterns apply two different
building typologies to the block. These rules are not explained but their application is
shown because it improves the legibility of the resulting urban plan.

86 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

Fig. 3 (this page and facing page). Derivation of the plan for Praia using AddingAxes. The
derivation is simplified to the essential steps

Nexus Network Journal – Vol.13, No. 1, 2011 87

88 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

Fig. 4 (this page and facing page). Rules for AddingAxes (Rules 1, 2 and 7 are omitted)

Nexus Network Journal – Vol.13, No. 1, 2011 89

90 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

Apart from the fact that we let the rules randomly assign the h and w parameters, all
the other steps in the design attempt to produce a fair replication of the Praia plan, so
that the result underlines the difference in applying fixed or variable parameters to the
block size. The derivation in fig. 3 was simplified to the essential steps.

AddingAxes is a sub-grammar s of the generic urban grammar that we are using.
is composed of two parallel grammars, 1 and 0 – { 1, 0} – in which S1S , L1 are the

shape and label sets in 1 respectively and both are objects of the AN class in the
ontology. S0SS , L0 are the shape and label sets in 0 respectively and they are both objects
from set E0.

The first step in the derivation already demonstrates the result of applying Cardus,
Decumanus and a s Promenade and shows all the e Ref points still to be erased. These Ref
points will be used to attribute a higher level of hierarchy to some of the axes generated.
The second step starts the application of AddingAxes. Steps 4-5, 9-10, 15-16 and 18-19 s
show the steps where the Ref points change the hierarchy of the axis to a higher level.
Steps 4-5 and 9-10 apply a new Promenade to the axes passing through the first two of e
these referential points. Due to space restrictions, some of the repetitive steps were
condensed. The last steps apply the generic blocks (UIP - AddBlocktoCells, step 20), s
adjust the blocks to the site boundaries (UIP - AdjustingBlockCells, step 21), create s
squares by subtracting some of the blocks (step 22), create the main plaza (step 23),
create smaller squares by shrinking the block and reducing one of its parameters (step 24)
or by subtracting some corners on a crossroad (step 25), and, finally, replace the generic
blocks with two different types of building occupation, the closed block, composed of
buildings surrounding the entire block, and a spine-like building occupation with the
continuous side facing the main streets (step 26).

Fig. 4 shows the UIP AddingAxes with the rules 3a, 4a, 4c, 5a, 6a, 6c and 8. Some s
rules are omitted because they are symmetrical to others, namely rules 3b, 4b, 4d, 5b, 6b
and 6d, which are symmetrical to rules 3a, 4a, 4c, 5a, 6a, and 6c respectively.
AddBlocktoCells and s AdjustingBlockCells are not shown in this paper but they can bes
found in an incomplete format in [Beirão, Duarte, Montenegro, Gil 2009].

Rule 1 of the UIP AddingAxes maps a temporary coordinate system, s x0y0 , into two
perpendicular axes an and an . In this case, the axes are the ones generated by the patterns
Cardus and s Decumanus. Rule 2 extracts the maximum and minimum coordinate values s
from IsII taking the new coordinate system into account. The points are:

maxxx = maximum x value of IsII in x0y0 ;
maxyx = maximum y value of IsII in x0y0 ;
minx = minimum x value of IsII in x0y0 ; and
minyn = minimum y value of IsII in x0y0 .

These values will be used to frame the generation within the space defined by these
coordinates.

Rule 3a adds a street axis – a4 – parallel to a1 or to the cardus. Labels s and are
used to define the recursive application of rule 4 (a, b, c and/or d) and indicate the
direction in which to apply the next rule. Rule 3b is symmetrical to rule 3a and is applied
in the negative y coordinate direction. Rule 4a adds a street axis – y a4 – parallel to an a4

axis labelled with , erases the label on the original a4 axis and creates a new label on

Nexus Network Journal – Vol.13, No. 1, 2011 91

the new a4 axis. The rule applies recursively until it falls outside the intervention site, i.e.,
while y<maxyx where y is the new a4 y coordinate referred to by y x0y0 . Rule 4b is
symmetrical to rule 4a and is applied recursively in a similar fashion. If a selected Ref
point or element is within the region of a new axis, the designer is prompted to decide
whether he wants to apply a new level of hierarchy to this new axis. This application is
optional but if the designer does choose to use it, the axis is transformed into a higher
level of hierarchy axis. Rule 4c exists for this purpose and rule 4d is symmetrical to it.
Steps 2-11 in the derivation show the application of these rules.

Similar rules apply to the orthogonal axis a2 or the2 decumanus to generate an array of s
perpendicular axes along the x coordinate. Rules 5a, 5b, 6a, 6b, 6c and 6d are used to x
generate these axes. Steps 12-19 in the derivation show the application of these rules.

The rules shown here are exactly the same as those used to generate the Praia plan,
except that the values given to the parameters h andh w are different in each iteration. Thew
parameter values were defined randomly merely to explore design variations. However,
this input could be informed through the formulation module, with specific values
taking contextual data extracted from the site into account.

Rules 7a, 7b, 7c and 7d erase the , , and labels, respectively if they fall
outside the framed area. Rule 8 trims the axes outside the Is limit and rule 9 returns tos

the original coordinate system.

AddingAxes works with variable parameters in more or less the same way as it does s
with fixed values. On the other hand, AddingBlockCells behaves in an entirely differents
way. Defining each cell in the generation with different parameters creates a huge range
of possible variations and a lot of unpredictability throughout the different steps of the
derivation. In order to deal with this complexity, the set of rules in this UIP had to be
expanded in comparison with the ones previously shown in [Beirão, Duarte,
Montenegro, Gil 2009], in which the goal of the grammar was the replication of Praia f
plan.

Let us again assume that the generation will use an admissible interval for setting the
values for the length h and widthh w of the block (again:w mhm 12060 and

mwm 10040). The block cell is defined by the block parameters plus the streets
confining the block, which may be all different in some extreme cases (see fig. 5).

Fig. 5. The block cell – parameters and labels

Since each iteration can have different h and w values, the configurations of the
design may contain many different variations, making recognition of the left hand side of
the rules extremely difficult to manage.

92 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

Fig. 6 (this page and facing page). UIP AddingBlockCells – main rules

Nexus Network Journal – Vol.13, No. 1, 2011 93

Liew points out three main problems in the use of shape grammars: “(1) controlling
rule selection and sequencing in a grammar; (2) filtering out information in a drawing for
rule application; and (3) specifying contextual requirements of a schema” [Liew 2004:
14]. He provides seven descriptors to be used in the rule application process to solve
some of these problems. Specifically, with regard to contextual requirements he proposes
the use of a descriptor “zone” which associates an area in a schema with a predicate
function. He gives the example of a void function which states that a certain area must be d
empty of all shapes or specific shapes for the rule to apply. Because of the
unpredictability of the AddingBlockCells grammar a similar descriptor needs to be used s
in its rules. The rule checks the context locally every time it is applied. The main rules for y
AddingBlockCells are basically the same six main rules as in [Beirão, Duarte, s
Montenegro, Gil 2009] but the descriptor zone was added to three of them (see fig. 6).

Rule 1 (fig. 6) places 4 labels in the intersection of an a1 and an a2 axis, or in the
intersection of a cardus and a s decumanus. Rule 2 starts the cell derivation, erasing one of s
the labels and adding two orthogonal a4 axes. The cell width v and cell length u are
defined by the values randomly chosen for w and h respectively, added to half the width
of the streets that flank them. Rule 3 is applied recursively until the void predicate is nod
longer satisfied. The values for w and h are randomly chosen from the admissible range

94 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

in each iteration. To ensure the recursive behaviour, rule 3 erases the original label and
places another label next to the new a4 axis on the right-hand side of the cell so that it
can be used by the same rule in the following iteration. The rule creates a second label g
in the left top corner of the cell above the new a4 axis, to be used later by Rule 5. Labels 4

are only recognized by Rule 5 and their adjustment variations (as shown in fig. 7). To
summarise, Rule 3 creates cells along the a1 axis or any 1 an axis parallel to the n x coordinate x
where n , until a vertical axis an is found in the area checked by the void zone.d
There are 4 different situations that can occur if the void predicate is false. These 4d
situations are the adjustment rules 3A_1, 3A_2, 3A_3 and 3A_4 (fig. 7). Rules 3A_1 and
3A_2 adapt the size of the new cell or the previous cell to meet the an axis and create a
new label on the right-hand side of an to allow a new generation sequence to start.
Conversely, Rules 3A_3 and 3A_4 move the an axis until it fits the length u of the cell.
These rules can be applied only if an is the main axis in the design or, in other words, if
an was generated by Cardus ors MainAxisistheLongerLine. This guarantees that an e an axis
will not be moved more than once. Once again, a new label is placed on the right-hand
side of an .

Type A rules are all the adjustment rules that detect the presence of axes (objects from
the AN object class) inside the void zone. Other types of adjustment rules react, for d
instance, to existing constructions, elements of set E0, which are either streets or
buildings. However, these rules are not shown here as there are no existing buildings in
the Praia site.

Like the 3A rules, Rules 4A_1 and 4A_2 adapt the width v of the cell to meet the v
detected axis an parallel to the main axis or the cardus. A label s is created on the top of
an to allow another generation sequence to start in another area of the plan (see
derivation in fig. 8). If an is a decumanus or the first orthogonal axis applied in the s
derivation, Rules 4A_3 and 4A_4 can be applied alternatively to adjust the position of an
to the cell size v. Like Rules 3A_3 and 3A_4, Rules 4A_3 and 4A_4 can be applied only
once per axis.

While applying Rule 5 several occurrences may be detected inside the void zone. They d
are:

Rule 5A_1 and Rule 5A_4 detect the presence of one a4 axis.

Rule 5A_2 and Rule 5A_3 detect the presence of one an axis.

Rule 5A_5 detects the presence of two an axes.

Rule 5A_6 and 5A_9 detect the presence of one a4 axis and one an axis.

Rule 5A_7 detects the presence of one a4 axis and two an axes.

Rule 5A_8 detects the presence of two a4 axes and one an axis.

Rule 5A_1 detects the x length of penetration of a4 axis inside the4 void zone and, d
depending on the value of x, produces two separate results. If 2/uxxx , Rule 5A_1a
generates a new cell creating two axes reducing the cell length u to u so that xuu xx .
This rule creates a new label in the top left-hand corner of the cell. If 2/uxxx , Rule
5A_1b simply erases the existing label and creates a new one above it at a v distance in v
order to allow continuity of cell generation.

Nexus Network Journal – Vol.13, No. 1, 2011 95

Fig. 7 (this page and following 4 pages). UIP AddingBlockCells (continuation) – adjustment rules.
When the void predicate is not satisfied, the main rules adjust to the conditions of the context

96 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

Nexus Network Journal – Vol.13, No. 1, 2011 97

98 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

Nexus Network Journal – Vol.13, No. 1, 2011 99

100 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

Fig. 8 (this page and facing page). AddingBlockCells – derivation including adjustment rules

Nexus Network Journal – Vol.13, No. 1, 2011 101

102 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

Rule 5A_2 reduces the cell size u to u so that 42 d4d2xuu xx creates an a4 axis 4

closing the cell and a new label in the top left-hand corner. The cell dimensions
become vu . Rule 5A_3 produces a similar result in the y coordinate direction, y
creating a cell with dimensions vu in which 32 d3d2yvv yy . Note that this rule

simply erases label and does not create a new one.

Rule 5A_4 is similar to 5A_1 but it generates the reduced cell leaning against the
right side of the void zone instead of the left side. In fact, it is using the free space in the e
void zone. d u is reduced to u through the relationship xuu xx .

Rules 5A_5 and 5A_7 simply erase the label . They are termination rules. Rules
5A_6 and 5A_8 generate a new cell, shortening both parameters u and v to v u and v
respectively. They both create an a4 axis and do not recreate new labels.

Rule 5A_9 reduces the cell length u to u following the equation

1 2 2 4u u x x d d1 2 2 42 2' u x x du x x d1 2 222 2 , producing a cell with dimensions 'u v' .

The derivation in fig. 8 shows the generation of an urban plan using
AddingBlockCells as the main algorithm for grid generas tion. The derivation starts in step
1, already demonstrating the result of applying Cardus + s Decumanus + 4 ×s
OrthogonalAxis + 3 × s Promenade. Step 2 applies Rule 1 by placing 4 e labels. Step 3
applies Rule 2, generating the first cell, erasing one of the labels and creating two more,
associated with each of the newly created a4 axes. Steps 4-6 apply Rule 3. Rule 3A_3 is 4

applied in step 7. Note that a new label is created on the right-hand side of the an axis.
Step 8 applies Rule 4 and step 9 applies Rule 4A_1, adapting the cell size v to thev
available circumstances. Steps 10 to 17 apply Rules 5 and 5A until all the labels are
erased. Generation is then terminated in this section of the plan. The other sections are
generated in a similar fashion using the available labels, starting with Rule 2 and
ending with the exhaustion of labels and . Note that every label falling outside Is is s

erased. Step 23 is the last cell creation step.

The whole set of rules allows the urban grid to be generated without conflicts but the
final results still need adjustments, namely aligning or connecting a few streets and
placing blocks within cells. However, these adjustments are produced by other UIPs. The
derivation in fig. 8 clearly shows some of these problems in steps 23 to 26.

In step 24 the UIP AlignStreets is applied. The result of the generation using s
AddingBlockCells can produce several situations where s a4 axes connect to 4 an axes that are n

very close to each other but not actually aligned. AlignStreets takes two axes connecting a
higher level of hierarchy axis at points closer than three halves of their width and moves
one of the axes to align with the other, creating a crossroads instead of a T junction. The
choice of whether to move one or other of the a4 axes depends only on the degree of 4

connectivity of the axes. The axis with the least connectivity is chosen as the one to be
moved. The criteria and degrees of connectivity used in this UIP are as follows,
increasing from (1) to (3): (1) a4 connects with another a4 street, (2) a4 has a corner
connection with another a4 and (3) a4 aligns with another a4 segment (see fig. 9).

Nexus Network Journal – Vol.13, No. 1, 2011 103

Fig. 9 (this page and following 2 pages). UIP AlignStreets – Aligns two a4 streets when connecting
to a higher hierarchy street. Moves the street with less connections or alignments in the street

network

104 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

Nexus Network Journal – Vol.13, No. 1, 2011 105

In steps 25-26 all the axes falling outside IsII are either trimmed (step 25) or erased
(step 26). Very small bits of a4 axes are left from step 25. All the bits smaller than half of 4

the lower value defined for h are erased (step 27). In this step it can be seen that some of
the streets are still not connected and do not contribute towards the consistency of the
street network. ConnectStreets is used to correct some of these inconsistencies in the grid s
generation (fig. 10). Step 28 shows the result of applying this UIP. In step 29 the cells aref
filled with abstract blocks using AddBlocktoCells [Beirão, Duarte, Montenegro, Gil s
2009]. Step 30 adjusts or erases the blocks on the borders of the plan. Every block falling
outside the IsII area is erased. In step 31 we can see the final result of applying several UIPs
to square or public space generation. Steps 32-33 replace the abstract block with a few
different block types showing the different possibilities for building occupation within
the block. The last steps and UIPs are not detailed or discussed in this paper. However,
the block types used in these rules are the same as the rules used by architect Chuva
Gomes in Plan 1.

It is important to stress that it is not the intrinsic qualities or weaknesses of the final
plan that are the goal in the given generation, but rather a demonstration of the
versatility of the UIP AddingBlockCells in the generation of plans. This is accomplisheds
simply by showing the results of randomly changing the h and h w parameters for each w
iteration. The application of these parameters could be informed through other means
such as the formulation module, in order to generate solutions following specific criteria.

Finally, we need to point out that the different UIPs only use objects from specific
classes in the ontology. Likewise, the elements generated also belong to specific classes in
the ontology and constitute different layered representations in the drawing. This
structure is prepared for direct export to a GIS platform so that an integrated analysis can
be performed within the context of the plan. In very general terms, all the axes belong to
the AANNNANN object class, all the generic blocks belong to the BBLL object class and all , and

 labels belong to the AANNNANN attribute class.

106 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

Fig. 10. UIP ConnectingStreets – Connects a4 streets left unconnected after the4 AddingBlockCells
and AlignStreets sequence s

Nexus Network Journal – Vol.13, No. 1, 2011 107

6 Discussion

The purpose of this paper is to show the versatility of design defined within the scope
of the City Induction generation module by using an approach based on shape grammar.
This is obtained at the level of grid generation simply by manipulating the range of
admissible values for two parameters: the block length h and the block width h w. The plan w
generation mechanisms are shape grammars encoding typical urban design moves. These
grammars were called Urban Induction Patterns and designs are generated through the
application of different arrangements of these UIPs. In this paper we show that the same
rules used to generate one of the case studies – Plan 1 – can actually be used to generate
other results, depending on how the available options in the system are manipulated,
namely (1) to define a specific (sequential) arrangement of UIPs and (2) to manipulate
the available rule parameters.

Current research is engaged in showing that a rather small set of UIPs can be used to
generate a large amount of variety in design, including the scope of the four case studies.
This paper already envisages that by using specific values for the parameters h and w for w
each iteration of AddingAxes, the grid of the Ijburg plan can be obtained (see plan 3 in
fig. 2). In addition, a close look at Plan 2 shows that it uses approximately the same UIPs
as Plan 1. This should not seem strange considering that the plans come from the same
author but, nevertheless, careful examination shows that Plan 2 is divided into four
sectors and each sector uses similar rule sequences. Only the parameters have
considerably more variation. In each sector one main axis can clearly be seen with at least
one orthogonal axis, a promenade and an orthogonal grid in which even some of the
block types are similar. Hardly any new UIPs or new rules need to be added.

The interest of AddingBlockCells seems less evident in terms of grid generation, s
particularly since the example shown in fig. 8 looks a little unusual and maybe even a
little messy. However, if we consider that instead of applying this UIP to highly
structured top-down approaches such as the classic cardus and s decumanus urban plans, s
the same or similar rules could be used to apply a bottom-up approach, i.e., generation
starting from some focal point in an open area that progressively grows by adding cells
step by step. This approach would definitely increase the interest of such an UIP, y
particularly if combined with different definitions for the urban units occupying the cells.
Although some work is already being developed in this area, it certainly appears to be a
promising research field in which there is still a lot to explore. Another important aspect
is that it is evident that each grid generator UIP has a character of its own. AddingAxes
generates a typical iron grid plan while AddingBlockCells generates a more informals
urban fabric leaving some small public spaces with spatial characteristics that resemble
certain areas in traditional cities. Furthermore, it can even be envisaged that both UIPs
could be applied to different sectors of the plan, enabling a plan to be composed by
developing areas with different characters.

The exploration of rules for block types is also clearly an interesting domain for
further research. The last steps in the derivations shown here were not detailed but the
rules are, in fact, very simple and can be roughly described as variations on the simplified
rules shown in Figure 6 in Beirão et al [2008]. Pedro [1999] also suggests that most
block occupations are variations or compositions based on only 3 types of block
occupation: a closed block with a peripherical occupation, a linear block composed of
parallel building blocks or an individual block composed of isolated buildings. The
combination of these 3 types may show that most block compositions are actually based

108 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

on very simple rules and the composition of very few basic elements. However, the
Dutch case studies clearly show that block types can be very complex urban units and
may give rise to the development of a few more UIPs to generate more complexity in the
design at local level.

The main interest of this discussion is to support the hypothesis that a generation
system based on the principles described in this paper can in fact be much simpler than
initial examination may suggest. Future research will aim to prove this hypothesis, i.e.,
that a small set of UIPs with some available open parameters may be sufficient to provide
a highly versatile design tool with generative capacities that can be easily integrated into
GIS platforms. Furthermore, considering that design languages are personal expressions
of designers, we would like to extend the goals of City Induction to provide ways of easily
defining new UIPs or customizing existing ones in order to make not only an extremely
generic, but also a highly customizable urban grammar available.

One of the most promising aspects of the use of the ontology which needs further
exploration is the use of the relationships between the spatial components of the ontology
through clear definitions of inheritance relations between object classes, relating these
inheritance relationships to the UIPs in order to provide an automated means of
reducing the set of available UIPs to be applied during the consecutive steps of the
derivation without the need to establish a specific algorithm for this purpose. This is alsoff
related to the concept of a methodological approach to urban design which it is part of
the task of this research to clarify. A future paper will address this subject.

3D representations have not been mentioned so far, but have not been forgotten.
There are two different aspects to this subject. One simply concerns giving volume to the
construction, which may easily be achieved by simply extruding the building polygons.
This later needs to be linked to the generation process as the construction volume is
directly related to urban parameters such as density, which is likely to be taken as a
generation goal. The second aspect concerns topography and in this regard several
cumulative issues might need to be taken into account. Two main categories of problem
definitely emerge: (1) a methodological one, which may define a procedure to select the
areas to be planned and urbanized by restricting the intervention area to a smaller zone or
zones subject to distinct rules depending on slope, and (2) a rule-based approach to deal
with topography and the design of streets and buildings in steep areas.

Finally, we need to remember that this paper focuses exclusively on the structure of
the generation module. We should not forget that this is simply the design mechanism of
a larger tool aimed at integrating programme formulation and evaluation techniques
within the generation of designs. Additional functions emerging from the other two
modules will improve the accuracy and credibility of the designs generated, as they may
guide generation towards better solutions. It is planned to integrate the three modules
supported by the said spatial ontology. However, this ontology still needs further
detailing in order to integrate relationships between the morphological structures and the
social and economical concepts used in formulation and evaluation processes. In
addition, even at the morphological level further detailing is envisaged in order to
approach the lower scale detailing of the plans.

Nexus Network Journal – Vol.13, No. 1, 2011 109

7 Conclusions

Although it may be said that a design is the result of a sequence of design moves, it is
not desirable to develop systems that impose a specific sequence for the simple reason
that such decisions are context dependent. Urban Grammars, being an arrangement of
generic grammars, allow for greater design flexibility in the sense that the sequence of
procedures is not predefined but is instead defined by the designer during the design
process. This paper demonstrates how a design tool is defined using generic grammars for
the creation of customized urban designs produced by a customizable design language, a
specific compound grammar defined by an arrangement of generic grammars.

The generation module for City Induction provides a very generic Urban Grammar
composed of several generic grammars called Urban Induction Patterns corresponding to
typical urban design moves. Specific grammars, such as the Praia grammar or the Ijburg
grammar can be obtained by defining specific arrangements of Urff ban Induction Patterns
and specific constraints on the rule parameters. As demonstrated in this paper, variations
on the UIP arrangements or the rule parameters can provide design variations and allow
for design exploration.

Acknowledgments

The City Induction project is funded by the Fundação para a Ciência e Tecnologia (FCT),
Portugal (PTDC/AUR/64384/2006), hosted by ICIST at TU Lisbon, and coordinated by José P.
Duarte. J.N. Beirão is also funded by the FCT by grant SFRH/BD/39034/2007. Beirão, J. Gil,
and N. Montenegro are responsible for the generation, the evaluation, and the formulation
modules, respectively. We would like to thank Henco Bekkering, Sevil Sariyildiz and Frank van der
Hoeven for their readings, comments and support. Thank you to George Stiny and Terry Knight.

Notes

1. Zones indicating areas with specific features are represented in shape-files, as well as
representations of real objects, but they are conceptual representations of our environment.

2. The use of weighted references has been considered as another possible way of selecting the axis
instead of a random decision and it is closer to the real reasoning of a designer. The set of
weights W is already considered for this purpose in the formal definition of a UIP. This W
principle is already being implemented in the software prototype.

References

ALEXANDER, Christopher, Sara ISHIKAWA and Murray SA ILVERSTEIN. 1977. A Pattern Language:
Towns, Buildings, Construction. New York: Oxford University Press.n

ASCHER, F. 2001. Les nouveaux principes de l’urbanisme. La fin des villes n’est pas à l’ordre du
jour. La Tour d’Aigues: Éditions de l’Aube. r

BATTY, M. 2005. Cities and Complexity: Understanding Cities with Cellular Automata,
AgentBased Models, and Fractals. Cambridge, MA: MIT Press. s

BEIRÃO, José Nuno and José Pinto DUARTE. 2009. Urban Design with Patterns and Shape Rules.
Pp. 148-165 in Model Town: Using Urban Simulation in New Town Planning, EH Stolk and
M Brömmelstroet, eds. 2nd International Seminar, 2007, Almere. Almere, The Netherlands:
Martien de Vletter.

BEIRÃO, José; José Pinto DUARTE and Rudi STOUFFS. 2008. Structuring a Generative Model for
Urban Design: Linking GIS to Shape Grammars. Pp. 929-938 in Architecture ‘in Computro’
(Proceedings of the 26th eCAADe Conference, Antwerp, 17-20 September 2008), Marc
Muylle, ed. Antwerp.

———. 2009a. Grammars of designs and grammars for designing. In Joining Languages, Cultures
and Visions: CAADFutures 2009, T. Tidafi and T. Dorta, ed9 s. Montreal: University of
Montreal.

110 José Nuno Beirão – Creating Specifi c Grammars with Generic Grammars: Towards Flexible Urban Design

http://cumincad.scix.net/cgi-bin/works/Show?cf2009_890
———. 2009b. An Urban Grammar for Praia: Towards Generic Shape Grammars for Urban

Design. Pp. 575-584 in Computation: The New Realm of Architectural Design [Proceedings n
of the 27th eCAADe Conference, Istanbul, 16-19 September 2009. Istanbul: eCAADe, YTU,
ITU.

BEIRÃO, José N., José Pinto DUARTE, Nuno MONTENEGRO and Jorge GIL. 2009. Monitoring
urban design through generative design support tools: a generative grammar for Praia. Pp.
1223-1252 in Proceedings of the 15th55 APDR Congress on Networks and Regional
Development. Cidade da Praia Cape Verde: APDR. t

BEIRÃO, José Nuno; Nuno MONTENEGRO; Jorge GIL; José P. DUARTE; Rudi STOUFFS. 2009. The
city as a street system: A street description for a city ontology. Pp. 132-134 in SIGraDi 2009 -
Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, s
Brazil, November 16-18, 2009. São Paulo: eCAADe, Universidade Presbiteriana MacKenzie.

BROWN, F. E. and JOHNSON J. H. 1984. An interactive computer model of urban development:
the rules governing the morphology of mediaeval London. Environment and Planning B:
Planning and Design 1122, 4: 377-400.

DUARTE, José Pinto 2001. Customizing Mass Housing: a discursive grammar for Siza´s Malagueira
house. Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge.

DUARTE, José Pinto, J. ROCHA, G. DUCLA-SOARES. 2007. Unveiling the structure of the
Marrakech Medina: A Shape Grammar and an Interpreter for Generating Urban Form. AI
EDAM Artificial Intelligence for Engineering Design, Analysis and Manufacturing 2211: 1-33.

FLEISCHER, A. 1992. Grammatical architecture? Environment and Planning B: Planning and
Design 1199, 2: 221-226.

FRIEDMAN, A. 1997. Design for Change: Flexible Planning Strategies for the 1990s and Beyond.
Journal of Urban Design 22, 3: 277-295.

GAMMA, Erich, Richard HELM, Ralph JOHNSON and John VLISSIDES. 1995, Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley. e

GIL, Jorge. and DUARTE, José Pinto. 2008. Towards an Urban Design Evaluation Framework. Pp.
257-264 in Architecture ‘in Computro’ (Proceedings of the 26th eCAADe Conference,
Antwerp, 17-20 September 2008), Marc Muylle, ed. Antwerp.

HILLIER, Bill. 1998. Space is the Machine : A Configurational Theory of Architecture, Cambridge
University Press.

HILLIER, Bill and Julienne HANSON. 1989. The Social Logic of Space. Cambridge: Cambridgee
University Press.

KNIGHTKK , Terry Weissman. 2003. Computing with ambiguity. Environment and Planning B:
Planning and Design 3300, 2: 165-180

LIEW, Haldane. 2004. SGML: A Meta-Language for Shape Grammars.. Ph.D. Dissertation,
Massachusetts Institute of Technology.

MAYALL, Kevin and G. Brent HALL. 2005. Landscape grammar 1: spatial grammar theory and
landscape planning. Environment and Planning B: Planning and Design 3322, 6: 895-920.

MONTENEGRO, Nuno C. and José Pinto DUARTE. 2008. Towards a Computational Description of
Urban Patterns. Pp. 239-248 in Architecture ‘in Computro’ (Proceedings of the 26th eCAADe
Conference, Antwerp, 17-20 September 2008), Marc Muylle, ed. Antwerp.

PARISH, Yoav I. H. and Pascal MÜLLER. 2001, Procedural modeling of cities. Pp. 301–308 in g
Proceedings of ACM SIGGRAPH 2001, E. Fiume, ed. New York: ACM Siggraph. 1

PEDRO, J. Branco. 1999. Vizinhança Próxima (Housing program. Neighbourhood). Lisbon: a
LNEC. (Collection Architecture Technical Information, n.º 7).

PORTUGALI, Juval. 1999. Self Organization and the City. Heidelberg: Springer. y
SCHÖN, Donald A. 1983. The Reflective Practitioner: How Professionals Think in Actionw . New n

York: Basic Books.
STINY, George. 1980a. Introduction to shape and shape grammars. Environment and Planning B:

Planning and Design 77, 3: 343-351.
———. 1980b. Kindergarten grammars: designing with Froebel's building gifts. Environment and

Planning B: Planning and Design 77,, 4: 409-462.

Nexus Network Journal – Vol.13, No. 1, 2011 111

———. 1981. A note on the description of designs. Environment and Planning B: Planning and
Design 88,, 3: pp. 257-267.

———. 2005. Shape, talking about seeing and doing, Cambridge, MA: MIT Press.
STINY, George and James GIPS. 1972. Shape Grammars and the Generative Specification of

Painting and Sculpture. Information Processing 7711: 1460-1465.
TEELING, Catherine. 1996. Algorithmic Design: Generating Urban Form. Urban Design Studies 2:s

89-100.
YUEYY , K., R. KRISHNAMURTI and F. GROBLER. 2009. Computation-friendly shape grammars:

Detailed by a sub-framework over parametric 2D rectangular shapes. Pp. 757-770 in Joining
Languages, Cultures and Visions: CAADFutures 2009, T. Tidafi and T. Do9 rta, eds. Montreal:
Les Presses de l’Université de Montreal.

About the authors
José Nuno Beirão was awarded a professional degree in architecture from the Faculty of
Architecture of the Technical University of Lisbon in 1989. He has practiced architecture and
urban design since then. After working at the Falcão de Campos and Gonçalo Byrne Offices, he
started the architectural firm B Quadrado Arquitectos with Miguel S. Braz in 1998. Their work
and portfolio is available at www.bquadrado.com. José Nuno Beirão is now working towards his
PhD dissertation at the TU Delft Faculty of Architecture. The research follows the subject of his
Master’s thesis (“Urban Grammars: Towards Flexible Urban Design,” ISCTE - Instituto Superior
das Ciências do Trabalho e da Empresa, Lisbon, 2005) and is part of a larger research project called
City Induction hosted at the TU Lisbon. His research interests are the development of
customizable and flexible design systems, and have focused on housing since 1998 and more
intensively on urban design since 2001. His current interests are focused on the development of
shape grammars for urban design and on the use of the generative capabilities of shape grammars to
support the urban design process and foster design exploration.

José Pinto Duarte holds a B.Arch. (1987) in architecture from the Technical University of Lisbon
and an S.M.Arch.S. (1993) and a Ph.D. (2001) in Design and Computation from MIT. He is
currently Visiting Scientist at MIT, Associate Professor at the Technical University of Lisbon
Faculty of Architecture, and a researcher at the Instituto Superior Técnico, where he founded the
ISTAR Labs - IST Architecture Research Laboratories. He is the co-author of Collaborative Design
and Learning (with J. Bento, M. Heitor and g W. J. Mitchell, Praeger 2004), and Personalizar a
Habitação em Série: Uma Gramática Discursiva para as Casas da Malagueira (Fundação Calouste a
Gulbenkian, 2007). He was awarded the Santander/TU Lisbon Prize for Outstanding Research in
Architecture by the Technical University of Lisbon in 2008. His main research interests are mass
customization with a special focus on housing, and the application of new technologies to
architecture and urban design in general.

Rudi Stouffs is Associate Professor of Design Informatics and leader of the Computation &
Performance research group and programme at the Faculty of Architecture, Delft University of
Technology. He holds an MSc in architectural engineering from the Vrije Universiteit Brussel, an
MSc in computational design and a Ph.D. in architecture from the Carnegie Mellon University
(CMU). He has been an Assistant Professor in the Department of Architecture at the CMU and
Research Coordinator of the Architecture and CAAD course at ETH Zurich. His research interestsAA
include computational issues in description, modelling, and representation for design in the areas
of information exchange, collaboration, shape recognition and generation, geometric modelling,
and visualization.

	Creating Specific Grammars with Generic Grammars: Towards Flexible Urban Design
	Abstract
	Introduction
	1 The City Induction Project
	2 Defining the problem
	3 Background and theoretical support
	4 Designing grammars for urban design
	Encoding design moves into generic grammars: Urban Induction Patterns (UIP)
	Generic grammars for designing Urban Grammars
	The various meanings of the term “pattern”
	Urban Induction Patterns and Urban Grammars: definitions

	5 Generating designs with Urban Induction Patterns
	The four case studies
	Defining UIPs
	Applying UIPs to generate designs
	Exploring variations in designs

	6 Discussion
	7 Conclusions
	Acknowledgments
	Notes
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

