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Abstract
The trend towards functional foods and healthy diets encourages researchers to produce new probiotic food products with 
improved probiotic delivery methods. Recently, edible films have been applied as carriers for probiotics, improving their 
survival in the foods and the gastrointestinal tract. This article is structured as follows: a description of edible films as 
probiotic carriers is followed by an introduction of the materials used as edible films in three main chapters (1) hydrocol-
loids (polysaccharides and proteins), (2) lipids and (3) composites. Then, probiotic viability in all mentioned edible films is 
discussed in detail and the impact of prebiotic incorporation is mentioned. Microbial, physicochemical, and sensory proper-
ties of edible film containing probiotics in food matrices are reviewed. Finally, the application of probiotic edible films in 
different food products is described.
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1  Introduction

Probiotics can play a beneficial role in the human intestinal 
tract ecosystem (Abd El-Salam and El-Shibiny 2015). Today, 
increasing knowledge about the influence of diet on health 
leads to a continuous increase in the consumers’ demand for 
functional food products, which exhibit minimum changes 
in organoleptic properties (Lusk 2019). This fact leads to 
an increasing attention of researchers to investigate certain 
characteristics of functional food products.

During industrial food processing and products’ shelf 
life, probiotics are exposed to many challenges such as tem-
perature, oxidative, acute toxic factors (e.g. hydrogen per-
oxide), water vapor, osmotic and mechanical stresses, and 
acid–base changes (Iaconelli et al. 2015). Also, probiotics 

are adversely affected by low pH of the stomach, enzymatic 
action of pepsin, protease-rich conditions of the intestine, 
and contact with bile salts during their passage through the 
gastrointestinal tract (GIT) (Tripathi and Giri 2014). To 
provide health benefits, probiotics must be able to survive 
until their consumption and then successfully proliferate 
in the gut (Farnworth and Champagne 2010). The cell sur-
vival in probiotic food products is still challenging (Haffner 
et al. 2016; Maciel et al. 2014). Anhydrobiotics technology 
i.e. the encapsulation of viable cells via extrusion, spray-
drying, emulsion, coacervation, and electrospraying, is the 
most popular method to maintain maximum viability of 
probiotics (Foroutan et al. 2017; Prasanna and Charalam-
popoulos 2018). One of the newest techniques to improve 
the survivability of probiotics is to use edible films, that 
are plasticized thin layered biopolymer structures and that 
protect them, besides having the potential to favor consumer 
health (Gialamas et al. 2010; Kanmani and Lim 2013; López 
de Lacey et al. 2012, 2014; Romano et al. 2014; Soukoulis 
et al. 2016).

It is possible to improve the functionalities of food prod-
ucts with edible films, such as incorporating nutrients, anti-
oxidants, and antimicrobial agents. On the other hand, most 
of the edible films include high amounts of fiber, which 
are recommended in a healthy diet to weight control. In 
addition, probiotics can be incorporated into edible poly-
mer matrices (via spray, freeze or fluidized bed drying) to 

Journal of Consumer Protection and Food Safety
Journal für Verbraucherschutz und Lebensmittelsicherheit

 *	 Kianoush Khosravi‑Darani 
	 k.khosravi@sbmu.ac.ir; kiankh@yahoo.com

1	 Department of Food Sciences and Technology, National 
Nutrition and Food Technology Research Institute, Faculty 
of Nutrition Sciences and Food Technology, Shahid Beheshti 
University of Medical Science, P. O. Box 193954741, 
Tehran, Iran

2	 Department of Food Science and Technology, School 
of Nutrition Sciences and Food Technology, Research Center 
for Environmental Determinants of Health, Health Institute, 
Kermanshah University of Medical Sciences, Kermanshah, 
Iran

http://orcid.org/0000-0002-0269-6385
http://crossmark.crossref.org/dialog/?doi=10.1007/s00003-020-01286-x&domain=pdf


308	 A. Zoghi et al.

1 3

improve food stability, functionality, and safety. Probiotic 
edible films are easier to prepare than encapsulated probiot-
ics and are produced at lower cost because of lower equip-
ment requirements (Altamirano-Fortoul et al. 2012). The 
application of edible films in the food industry can affect 
shelf life by reducing harmful reactions (Falguera et al. 
2011). Furthermore, probiotic edible films can avoid gas 
exchange, moisture loss, photodegradation, oxidation, and 
growth of pathogenic microorganisms (Altamirano-Fortoul 
et al. 2012). Moreover, probiotic edible films could improve 
probiotic survival rates during storage and consumption and 
control probiotic dosage (Soukoulis et al. 2016).

The terms edible films and edible coatings represent dif-
ferent concepts. Edible films are thin solid layers that can be 
applied as a wrapping for foodstuff, while the edible coatings 
are formed directly on the surface of the food products (such 
as fruits), usually by immersing the products in a solution 
of structural matrix-forming materials (Silva-Weiss et al. 
2013). Edible films can be applied to all kinds of food prod-
ucts like a cover, but usually, they are used for foods that 
cannot be immersed in the film-forming solution such as 
bakery products. However, probiotic edible films could not 
be a replacement for common packaging materials because 
these films are eaten with foods; therefore the products need 
an external packaging (such as paper packaging) to prevent 
external contamination. The difference between the probiotic 
edible coating and the probiotic edible film is demonstrated 
in Fig. 1. Since edible films are eaten with the products, 
nutritional and organoleptic characteristics of edible films 

can be improved by inserting several components such as 
organic acids, essential oils, and chitosan (Rojas-Graü et al. 
2009).

In recent years, probiotic immobilization in edible 
films has become considerably valuable (Guimaraes et al. 
2018; Kanmani and Lim 2013; López de Lacey et al. 2014; 
Romano et al. 2014; Soukoulis et al. 2016). There are a few 
review articles about probiotic edible films (Espitia et al. 
2016; Guimaraes et al. 2018; Pandhi et al. 2019; Pavli et al. 
2018), but this study is a comprehensive review about pro-
biotic edible films in foodstuff. It highlights the scientific 
investigations about probiotic incorporation in edible films 
and summarizes the materials used for edible films and pro-
biotic applications in edible food packaging. In addition, the 
physicochemical and organoleptic properties of probiotic-
containing edible films and probiotic viability in edible films 
are discussed. For this purpose, all recent and important 
published studies are reviewed comprehensively.

2 � General aspects of probiotics: importance 
and application

Probiotics are defined as “viable microorganisms that, 
while ingested in sufficient amounts, exert health benefits 
on the host” (Huq et al. 2013). The main properties of pro-
biotic strains are resistance to gastrointestinal conditions, 
adhesion to human epithelial cells or mucus, antimicrobial 
effects against pathogenic bacteria via the production of 

Fig. 1   The difference between the probiotic edible coating and probiotic edible film in foodstuff
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antimicrobial agents or competition for growth factors or 
nutrients and binding sites (FAO/WHO 2002). Some of the 
reported health effects include improvement of GIT health 
(Thushara et al. 2016), reduction of serum cholesterol levels 
(Choi and Chang 2015), and biosorption of toxins (Zoghi 
et al. 2014, 2017) and heavy metals (Hadiani et al. 2018a, 
b) from foodstuff. To get the beneficial effects of probiotics, 
a daily intake of 107–109 Colony Forming Units (CFU)/g of 
probiotic viable cells per person for humans is recommended 
(Haffner et al. 2016).

3 � Edible films as probiotic carriers

Although edible films are not a replacement for an external 
packaging, they enhance food protection by reducing the 
moisture loss and gas transfer between food and environ-
ment (Soukoulis et al. 2014a, b). Nowadays, edible films are 
applied as a carrier as well as a controlled release system for 
some drugs, antioxidants, antimicrobial agents. Since edible 
films act as water and oxygen barriers, enhancement of qual-
ity and shelf life of food products is the main result. Edible 
films are a “green” replacement for petroleum-based films 
and can be consumed with the food products (Soukoulis 
et al. 2014a, b). Immobilization of viable cells in biopolymer 
networks is a well-known technique to enhance microbial 
stability. Edible films have appropriate chemical and physi-
cal properties, and due to their sustainable nature they are 
proposed as bioactive compounds carriers (Falguera et al. 
2011).

Edible films have the potential to create bespoke struc-
tures to enhance mechanical properties, increase shelf-life, 
and maintain structural integrity. Furthermore, they could be 
versatile and feasible carriers for the delivery of probiotics 
(Soukoulis et al. 2014b).

4 � Incorporation of probiotics in edible films

Two major processes provide edible films:

1.	 In the wet process, biopolymers (such as methylcellu-
lose) and other additives (such as plasticizers) are dis-
solved in distilled water, the film-forming solution is 
provided after homogenization, and then the solvent is 
evaporated.

2.	 The dry process is based on the thermoplastic behavior 
that some proteins and polysaccharides show at low 
moisture levels in pressing molding and extrusion (Gui-
maraes et al. 2018).

Tapia et al. (2007) first investigated the entrapment of 
probiotics into edible films. Since then, several studies 

have evaluated the probiotic incorporation in edible films 
via the direct method, where the probiotic cells are added 
into the film-forming solution and the probiotic edible film 
is obtained by a casting method in a forced-air oven, and 
allowed to dry at room temperature (Kanmani and Lim 
2013). Table 1 summarizes previous studies about edible 
films that have been used for probiotic incorporation in 
food products. Different parameters such as the presence of 
oxygen scavenging agents, the biopolymer and plasticizer 
type and amount, and adding prebiotics have recently been 
evaluated (Gialamas et al. 2010; López de Lacey et al. 2014; 
Romano et al. 2014; Soukoulis et al. 2013; Soukoulis et al. 
2014b; Soukoulis et al. 2016).

5 � Materials used for probiotic edible films

The materials used for the preparation of edible films can 
be categorized into three classes: hydrocolloids, lipids, and 
composites (Rojas-Graü et al. 2009). Some other materials 
such as plasticizers are also added to the film-forming solu-
tions to enhance their stability or to improve the mechanical 
properties (Valencia-Chamorro et al. 2011).

5.1 � Hydrocolloids

The hydrocolloids consist of proteins and polysaccharides. 
Proteins that are used for probiotic edible films include 
gelatin, wheat gluten, corn zein, soy protein, casein, and 
collagen. Protein-based probiotic edible films are prepared 
from protein solutions as the solvent (ethanol, water or their 
mixture) evaporates. It is reported that using protein could 
improve probiotic survival in edible films via scavenging 
free radicals and conveying nutrients (Burgain et al. 2013). 
In addition, applying proteins could lead to the formation of 
less porous and more compact structures (Soukoulis et al. 
2016). Polysaccharides for probiotic edible films include cel-
lulose derivatives, inulin, dextrans, alginate, starch deriva-
tives, carrageenan, pectin derivatives, seaweed extracts, chi-
tosan, and galactomannans. Polysaccharide-based probiotic 
edible films have good mechanical properties and form good 
odor, oxygen, and oil barriers, but their major disadvantage 
is their moisture permeability, due to their hydrophilic prop-
erties (Ramos et al. 2012). Protein edible films have better 
mechanical and barrier properties than polysaccharide edible 
films, but they present poor water resistance (Suput et al. 
2015).

Alginates have good film-forming features and can pro-
vide crystalline and water-soluble edible films as probiotic 
carriers. Alginate is a common term for the alginic acid 
salts. Since alginate can eliminate lipid oxidation and delay 
dehydration, it has been applied mainly for meat products 
(Nayik et al. 2015).
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Several investigations have studied pectin as a material 
for probiotic edible films (Espitia et al. 2016; Soukoulis et al. 
2017). Pectins are structural constituents of plant cell walls 
and they are a common type of gelling agent.

Starch made edible films are usually tasteless, odorless, 
colorless, and transparent with low oxygen permeability. 
Starch edible films have good barrier properties to CO2. 
Physicochemical and functional properties of starch-based 
probiotic edible films depend on the amylose/amylopectin 
ratio (Basiak et al. 2017). Additionally, cross-linked, oxi-
dized, substituted, and acid-hydrolyzed starches are provided 
as a result of chemical modifications that have an impact on 
the edible film properties as probiotic carrier. Acid hydroly-
sis of starches decreases swelling power and increases solu-
bility compared to native starches (Shah et al. 2016).

Gelatin-based probiotic edible films have poor water 
vapor barrier properties and are applied to meats, due to 
their ability in reducing oxygen, oil and moisture transpor-
tation (López de Lacey et al. 2012; Soukoulis et al. 2016). 
Gelatin has antimicrobial and antioxidant activities.

5.2 � Lipids

Lipids used for probiotic edible films include vegetable oils, 
natural waxes, acetoglycerides, resins, and fatty acids. These 
compounds present some disadvantages such as chemical 
and mechanical instabilities and organoleptic quality reduc-
tion (Pavli et al. 2018). Therefore, lipids are commonly com-
bined with other materials such as proteins or polysaccha-
rides to improve specific characteristics of lipid-based edible 
films (Suput et al. 2015). Lipid-based edible films are good 
barriers to moisture transfer, but they have weak gas perme-
ability and mechanical properties compared to polysaccha-
rides and protein-based edible films (Guimaraes et al. 2018).

5.3 � Composites

Composites are defined as probiotic edible films containing 
a blend of polysaccharides, proteins, and lipids. The pur-
pose of providing composite edible films is to modify the 
properties of the edible film for specific applications such as 
carrying probiotics (Soukoulis et al. 2014a). A combination 
of materials can give more efficient properties to probiotic 
edible films because each material has its unique and limited 
functions (Rojas-Graü et al. 2009).

5.4 � Plasticizers

Plasticizers are low molecular weight components, usu-
ally hydrophilic compounds, that decrease the glass tran-
sition temperature, increase toughness, flexibility and the 
tear resistance of the edible films. The plasticizers increase 
the intermolecular spacing, the mobility of polar polymer Ta
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chains, and decrease congested intermolecular forces and 
polymer chain gumminess. The most frequently used plas-
ticizers include glycerol, sucrose, sorbitol, and polyethylene 
glycol (Ramos et al. 2012). Using plasticizers is essential 
for the formation of edible films, especially when polysac-
charides or proteins are used as materials. However, it may 
increase the lethality of the embedded probiotic cells, due 
to osmolysis and increasing exposure to oxygen. To con-
trol this, some approaches including the incorporation of 
free radical scavenger compounds, promoting probiotic cell 
adhesion properties and suppression of matrix glass transi-
tion temperature are used (Burgain et al. 2013). Selecting 
a plasticizer for an edible film is based on the adaptability 
and persistence of the plasticizer, and the required physical 
characteristics of the films. Using sorbitol in the films leads 
to thermal stability, high thickness, and density. Applying 
glycerol increases moisture content. Moreover, edible films 
including glycerol show higher gas permeability in com-
parison to edible films including sorbitol (Pérez and Dufour 
2017).

Rompothi et al. (2017) postulated that glycerol supplied 
better plasticizer efficiency than sorbitol. They also have 
concluded that enhancing plasticizer concentration led to 
increasing solubility, elongation, water vapor permeability, 
and seal strength, but decrease oxygen permeability, ten-
sile strength, and elastic modulus. However, Krogars et al. 
(2003) have found that applying an equal amount of glycerol 
and sorbitol as a plasticizer was more effective than applying 
sorbitol or glycerol alone.

6 � Probiotic viability in edible films

The edible films can maintain probiotic viability in the GIT 
(Soukoulis et al. 2014b). The survival of many probiotic 
strains have been widely evaluated under various conditions, 
whilst only a few investigations are accessible dealing with 
the viability of probiotics in edible films to evaluate their 
suitability as probiotic carriers (Guimaraes et al. 2018). 
Since the film-forming procedure and the chemistry of the 
edible films affect the probiotic viability (both post-process-
ing and post-ingestion), they are critical factors (Soukoulis 
et al. 2017). While a complete mechanistic understanding 
of probiotic stability in edible film matrices during storage 
is not available, it is reported that steric hindrance of sol-
utes and the interaction via hydrogen bonding with the polar 
head groups of membrane phospholipids, the presence of 
free radical scavenging agents and nutrients can be possi-
ble factors (Kanmani and Lim 2013; Soukoulis et al. 2013). 
Furthermore, the molecular mobility of solutes driven by the 
structural state of the immobilizing matrix can also affect the 
viability of probiotics. Therefore, obtaining low water matri-
ces with low permeability to gases consisting of free radical 

scavenging agents is an effective procedure for improving 
probiotics’ survival in food products (Soukoulis et al. 2013).

The type of material used for probiotic-containing edi-
ble films might also cause considerable injuries because of 
osmotic stress (Bustos and Bórquez 2013). For instance, 
polysaccharides influence the viability of probiotics during 
the drying process and the storage period (Yonekura et al. 
2013). In addition, the presence of high amounts of solutes, 
as well as the rubbery physical state (solutes’ increased 
molecular mobility) in the edible films, simplifies the occur-
rence of chemical and enzymatic reactions that injure cel-
lular structures such as phospholipid membrane bilayers (Fu 
and Chen 2011).

The viability of Lactobacillus (L.) casei in sodium 
caseinate films with sorbitol as a plasticizer was studied 
by Gialamas et al. (2010). Direct entrapment of probiotics 
into the film-forming solution led to increased viability at 
both selected temperatures (4 °C and 25 °C). In addition, 
they stated that adding sorbitol increased viability due to its 
action as a protective agent for probiotics during drying or 
low water activity storage. The mechanism by which sorbi-
tol and related polyols exert this protective impact could 
be due to the interaction between phospholipid membranes 
and sugars, helping to retain their fluidity (López de Lacey 
et al. 2012). Kanmani and Lim (2013) investigated probiotic 
viability in pullulan and starch-based edible films. L. rham-
nosus GG, L. reuteri and L. acidophilus were entrapped into 
films of starches, pullulan, and their combination and were 
stored at 4 °C and 25 °C. Maximum probiotic viability was 
observed in pullulan films at 25 °C up to 30 days. Inserting 
starch to the pullulan films has a negative impact on cell via-
bility. After 60 days of storage at 25 °C, no viable probiotic 
cells were observed, probably because of increased bacterial 
metabolism. In contrast, the pullulan and the pullulan-starch 
films maintained probiotic viability > 80% at 4 °C after 
30 days, maybe because of decreased bacterial metabolism.

Concha-Meyer et al. (2011) incorporated lactic acid bac-
teria (LAB) into alginate films and used it to pack salmon. 
They reported that the LAB strain growth and viability in 
the edible film was improved after getting in touch with 
the salmon, maybe due to nutrient diffusion. They also 
claimed that the water activity of the edible film after dry-
ing (aw = 0.91) affected probiotic viability because a low 
enhancement of this value (aw = 0.92) was observed at the 
contact time with the salmon. Consequently, a decrease in 
water activity (or increase in osmotic stress) can impact 
the probiotic viability (Prasad et al. 2003). As stated previ-
ously, whey protein can partially decrease osmotic stress and 
increase adhesion that can lead to an improved survival rate 
(Soukoulis et al. 2017). Edible films without probiotics were 
applied as control samples in all studies.

Pavli et al. (2017) studied the viability of L. plantarum 
and L. pentosus in sodium alginate edible films. The storage 
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temperature had no impact on the survival of the probiotic 
cells. The viability was reduced after contact of edible films 
with ham slices at all temperatures, maybe because of the dry-
ing process and the subsequent stress. The viability of Bifi-
dobacterium (B.) animalis Bb-12 and L. casei-01 in edible 
films were investigated by Pereira et al. (2016). They stated 
that whey protein had a positive impact on the viability of the 
probiotic strain during storage, due to its nutritional value and 
by increasing the buffering capacity.

In general, adding plasticizers into edible films enhances 
the molecular mobility of water and accelerates fatal enzy-
matic and chemical reactions. Low molecular mobility is 
obtained at low storage temperature and low water content 
(Tymczyszyn et al. 2012). Moreover, the permeability of the 
film to gases such as water vapor and oxygen can also affect 
adversely the viability of probiotic cells. Edible film compo-
sition (protein and polysaccharides type, type and amount of 
plasticizers, presence of prebiotics) and storage temperature 
play a key role in probiotics stability (Kanmani and Lim 2013; 
Soukoulis et al. 2014b).

6.1 � Effect of incorporation of prebiotics

Prebiotics are mostly consisting of nonstarch polysaccharides 
and oligosaccharides that beneficially influence the host by 
selectively stimulating the activity or growth of one or a lim-
ited number of probiotic bacterial species in the colon, and 
therefore enhance their survivability for host health (Gallego 
and Salminen 2016). Although inserting prebiotics is a favora-
ble strategy for probiotic protection, only a few researchers 
have investigated the use of prebiotics in probiotic-contain-
ing edible films to maintain stability and functionality of the 
entrapped probiotics.

The interaction of phosphate groups of lipid membranes 
with fructooligosaccharides reduces the phase transition 
temperatures. In addition, the dynamic mechanical analysis 
showed that the addition of fructooligosaccharides into edi-
ble films changes the hydrogen bonds in polymer molecules, 
decreases the glass transition temperature, thus indicating the 
plasticizer effect of fructooligosaccharides.

Therefore, the incorporation of fructooligosaccharides into 
the probiotic-containing edible films contributes to protect-
ing probiotics during dehydration and storage (Romano et al. 
2014). Moreover, inserting prebiotics into gelatin edible films 
led to a uniform and more compact structure, with no detect-
able interspaces, thus prebiotics could act as fillers in gelatin-
based edible films (Soukoulis et al. 2014a).

7 � Inhibitory effects of probiotic edible films 
against other microbial species

In addition to probiotic delivery to the consumers, probi-
otic edible films are important for increasing food stability 
and safety as the probiotics control the growth of spoilage 
microorganisms via competition or produce antimicrobial 
substances. It is well established that LAB show antimi-
crobial activity by the production of antifungal peptides, 
acids, and bacteriocins. Therefore, the incorporation of 
LAB into edible films also exhibits antimicrobial features 
(Cizeikiene et al. 2013) and reinsures the microbiological 
safety of the food products (García-Argueta et al. 2013).

Gialamas et al. (2010) stated that edible films contain-
ing L. sakei caused a significant reduction of Listeria 
monocytogenes in beef in comparison to the control. 
The inhibitory effect of L. sakei against Listeria mono-
cytogenes has been related to direct competition for 
nutrients or to lactic acid production. The application of 
edible films containing LAB for chilled fish inhibited the 
growth of Photobacterium phosphoreum (López de Lacey 
et al. 2012). Sánchez-González et al. (2013) evaluated the 
inhibitory effect of L. plantarum incorporated in differ-
ent edible films against Listeria innocua. They stated that 
polysaccharide-based edible films had significant activ-
ity against Listeria innocua, while protein-based edible 
films did not show this activity, may be due to the delay in 
bacteriocin production. They concluded that the material 
of the edible film and the time of bacteriocin production 
are the major parameters. Sánchez-González et al. (2014) 
confirmed the inhibitory impact of L. reuteri and L. aci-
dophilus incorporated in sodium caseinate and methyl-
cellulose against Listeria innocua for a week. Both film 
formulations have led to a decrease of approximately 1.5 
log cycles of Listeria innocua growth at the end of stor-
age. Thus, it can be concluded that the inhibitory activity 
is attributed to bacteriocin production, not to competitive 
growth, and the nature of the edible film matrix influences 
the bacteriocin production. In another study, L. paracasei 
and B. lactis embedded in the agar-based edible film into 
hake fillets caused a reduction of H2S-producing microor-
ganism counts during the storage period (López de Lacey 
et al. 2014). Edible films without incorporating probiotics 
were applied as control samples in all studies. Thus, pro-
biotic edible films could be used as an alternative method 
of food preservation.
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8 � Probiotic‑containing edible film 
characterization

8.1 � Physicochemical properties

The physical and chemical properties of edible films should 
be analyzed simultaneously for the design of appropriate 
edible films with suitable plasticization properties provid-
ing a suitable environment that guarantees the viability of 
the probiotic.

8.2 � Mechanical properties

Edible films, as probiotic carriers, should have appropriate 
mechanical strength and extensibility to resist food process-
ing, packaging, and storage stress (Garavand et al. 2017). 
The presence of structural deficiencies, the structural adap-
tation of the major components of edible films, the distribu-
tion and density of the intra- and intermolecular interac-
tions between the polymer chains, and the type and amount 
of plasticizers have been reported to affect the mechanical 
profile of edible films as probiotic carriers (Falguera et al. 
2011).

The plasticizer glycerol is an effective parameter that 
determines the mechanical properties of edible films as pro-
biotic carriers. It reduces the intermolecular forces between 
polymers, reducing the tensile strength and increasing the 
elongation at break (Rouhi et al. 2017). Moreover, the pres-
ence of cavities and holes could decrease the edible film 
flexibility and tensile strength. Therefore, edible films must 
have good mechanical properties to protect probiotics, resist 
food processing, handling, and storage stresses. Gialamas 
et al. (2010) demonstrated that no significant changes were 
observed in tensile strength, elongation at break, and modu-
lus of elasticity of sodium caseinate edible films containing 
probiotics, because of the relatively low mass of the added 
probiotics with little impact on the mechanical properties 
of protein-based edible films. Consequently, the cellulose-
based edible films, with greater mechanical resistance, are 
a little more sensitive to the incorporation of the probiotic 
cells.

8.3 � Thickness

Thickness is a crucial parameter that affects the water vapor 
permeability, transparency, and mechanical features of the 
edible films to improve the film’s ability to carry probiotics 
and to increase the mechanical integrity of foods (Ghan-
barzadeh and Almasi 2011). The thickness of edible films 
depends on the preparation technique and drying conditions 
(Galus and Lenart 2012). Soukoulis et al. (2014a) stated that 

no significant impact on thickness was observed by the addi-
tion of L. rhamnosus GG cells into the probiotic-containing 
edible film. Conversely, Soukoulis et al. (2014b) in another 
study demonstrated that the inclusion of probiotics in film-
forming solutions changed the film thickness.

8.4 � Moisture content

Since edible films consist of hygroscopic materials, and a 
high water content is harmful for probiotic preservation, the 
control of the moisture content during food processing and 
storage is important (Soukoulis et al. 2014b). The moisture 
content after drying influences the rate of probiotic viability 
during long storage periods and simplifies the melting of 
edible films in the mouth (Kanmani and Lim 2013). Glyc-
erol can retain the water content in the edible films and thus 
prevent water evaporation (Thakhiew et al. 2010).

8.5 � Water vapor permeability

Water vapor permeability is one of the most critical proper-
ties of edible films as probiotic carriers, that can be influ-
enced by parameters such as solubility coefficient, diffusion 
rate, hydrophobic ratio, the integrity of the film, interactions 
between the functional groups of the polymers, crystalline 
ratio, thickness, and amorphous ratio (Kanmani and Lim 
2013).Water vapor permeability of the edible films is influ-
enced by the mobility of polymer chains (Su et al. 2010). 
The probiotic cells, as discontinuous particles, might inhibit 
the chain mobility of the polymers in the film matrix (Gui-
maraes et al. 2018). Moreover, increased water vapor perme-
ability may improve edible film solubility, which is one of 
the main advantages to releasing probiotics (Kanmani and 
Lim 2013).

8.6 � Sensory properties

Acceptable sensory properties of probiotic products are 
required for achieving commercial success in the market. 
Therefore, sensory assessment is essential before starting 
a new production. It is well established that inserting free 
probiotics into food products can significantly alter their sen-
sory properties. Entrapment of probiotics into edible films 
can control undesirable modifications in sensory properties 
(Corona-Hernandez et al. 2013). Although there are some 
studies regarding the sensory properties of edible coating 
containing probiotics, there is a gap of knowledge dealing 
with edible films containing probiotics.

The color and optical properties of edible films are impor-
tant because they directly affect the appearance of food prod-
ucts and consumers’ preferences. Transparency is one of the 
usual optical properties of edible films. Inserting probiotics 
into the edible films may influence the light that passes through 
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the edible film, perhaps because of the increasing dispersion 
of light (Kanmani and Lim 2013). According to Martins 
et al. (2012), the moisture content of probiotic-containing 
edible films can affect the light reflections on the film sur-
face. Moreover, Ghanbarzadeh and Almasi (2011) observed an 
improvement in optical properties and yellowness reduction by 
inserting carboxymethyl cellulose to starch-based films. The 
shine of the edible films depends on the surface morphology 
achieved during film drying. Generally, the smoother the sur-
face of the edible films, the higher the brightness (Ward and 
Nussinovitch 1996).

Due to the difference between the density of cells and the 
polymer solution during the drying stage, probiotics are pre-
sent on the surface of the edible films and form a continuous 
layer. The number of probiotic cells accumulated on the edible 
film surface depends on the viscosity of the film-forming dis-
persion (Ly et al. 2008). The surface charge of the probiotics is 
essential because of the determination of electrostatic interac-
tions with charged polymers. Generally, parameters such as the 
crystallites’ mean size and crystallinity, the amount of plasti-
cizer and its type as well as structural conformation, the refrac-
tive index, and compatibility of the film compounds affect the 
opacity of edible films (Fakhouri et al. 2013).

Tavera-Quiroz et  al. (2015), applied edible films of 
methylcellulose containing L. plantarum to green apple 
baked snacks. The analyzed sensory attributes included 
taste, color, texture, appearance, and overall acceptability. 
The snacks’ taste score rating with the probiotic-containing 
edible film was considerably lower than that of the control 
without the probiotic edible film. In addition, the color-
related findings were nearly identical, but the texture val-
ues of control samples were slightly higher than that of the 
snacks with probiotic edible film, perhaps because of their 
higher moisture content. Similarly, Alvarez (2012) stated 
that edible film with a specified composition (milk whey, 
inulin, and glycerol) can maintain the textural properties 
of the broccoli during 15 days of storage. Sodium alginate 
edible films containing probiotics significantly influenced 
the aroma and taste attributes of ham slices and the total 
organoleptic scores. The researchers demonstrated that 
these disadvantages were partially controlled when a high-
pressure processing treatment was applied before using the 
probiotic-containing edible films, probably due to a lower 
level of probiotic cells number in the ham slices (Pavli et al. 
2017).

9 � Application of probiotic edible films 
in food products

Compared to conventional dehydrated microcarriers, probiotic 
edible films could provide significant benefits, e g. increasing 
the shelf life period, for intermediate moisture foods, because 

of their ability to maintain their physical state and biological 
activity during food storage. Therefore, several applications 
for probiotic edible films such as fruits and vegetables, bak-
ery and confectionery products, olives, dairy products, fishery 
products, cereal bars, and meat products have been studied 
(Altamirano-Fortoul et al. 2012; De Prisco and Mauriello 
2016; Espitia et al. 2016; López de Lacey et al. 2012; Souk-
oulis et al. 2017; Tavera-Quiroz et al. 2015).

The first application of probiotic edible films was evaluated 
for fresh fruits (Tapia et al. 2007). After that, probiotic edible 
films were applied to carrots (Shigematsu et al. 2019), cherry 
tomatoes, and Thompson grapes (Dianin et al. 2019). Probiotic 
edible films for fresh fruits and vegetables could control ripe-
ness by decreasing oxygen diffusion and inhibiting the growth 
of spoilage microorganisms, so that metabolic activity and sof-
tening changes will be reduced. Therefore, the freshness of the 
fruits, the quality characteristics such as color, acid, sugar and 
flavor and the nutritional factors can be maintained for a longer 
time (Pandhi et al. 2019).

Although there are some investigations (Concha-Meyer 
et al. 2011; Gialamas et al. 2010; López de Lacey et al. 2012, 
2014) about using probiotic edible films in meat and fish-
ery products, further studies are needed. The efficiency of 
sodium-alginate edible films as the probiotic carrier, was 
evaluated for application in sliced ham with or without high-
pressure processing pretreatment. The results of the study 
demonstrated that probiotic strains were successfully car-
ried by edible films in the meat products irrespective of the 
high-pressure processing treatment (Pavli et al. 2017). In 
another study, L. acidophilus and B. bifidum were inoculated 
into edible gelatin films for preserving hake fish (Merluccius 
merluccius) (López de Lacey et al. 2012). Adding green tea 
extract into probiotic edible films (containing L. paracasei 
and B. lactis) resulted in better chemical and microbial sta-
bilities and prolonged the shelf-life of hake fillets for at least 
one week (López de Lacey et al. 2014).

Some researchers focused on the effect of the application 
of probiotic edible films on the shelf-life and quality factors 
in bakery and confectionery products (Altamirano-Fortoul 
et al. 2012; Soukoulis et al. 2014b, 2017; Tavera-Quiroz 
et al. 2015). The outward appearance of baked products is 
the main quality factor that influences the visual sense of the 
consumers. Soukoulis et al. (2017) found that no significant 
difference was observed in sensory and thermo-physical 
characteristics of bread samples in bread conventional pack-
ages and bread with the probiotic edible film.

10 � Conclusions

In this article, the probiotic incorporation into edible films 
to improve probiotic viability during the storage period 
and processing of the food product has been reviewed. 
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Application of edible films as a carrier of probiotics has 
several benefits. Indeed, many of these films contain high 
amounts of fiber, which are recommended in a healthy diet. 
Fibers can also stimulate satiation signals in the colon which 
may be useful for weight control.

A wide variety of edible film materials with different 
properties can be applied which may influence the prop-
erties of the final products. Although the physicochemical 
properties of edible films can be influenced by the incorpora-
tion of probiotics, using edible films containing probiotics 
does not alter the sensory characteristics of the food products 
significantly. In general, the application of the edible film is 
a promising strategy to enhance probiotics’ survival during 
storage time.

Although the incorporation of probiotic bacteria into 
many different edible materials is reported and survival 
and properties of films have been studied, there is a lack of 
in vivo studies and investigation of survival and coloniza-
tion properties of such entrapped probiotics in the human 
body. In addition, there is no report on the inhibitory effects 
of probiotic films against pathogens in vivo. What is still 
mystifying scientists in the field of probiotic-containing 
edible films, is that how an entrapped microorganism can 
be released from the film, activated and localized during the 
short time of passage (on average a few hours) in the GIT.

Moreover, many technological and economic aspects of 
manufacturing processes need to be streamlined. Further 
studies must be carried out to apply different probiotics 
and prebiotics in new edible films and apply them to foods 
familiar for the consumer. Each geographic region should 
provide edible films with their localized and accessible pro-
biotics, prebiotics and film materials to apply in their local-
ized foods to increase the efficacy and health benefits of 
functional foods.
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