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Abstract
Listeria monocytogenes is a major foodborne pathogen causing increased morbidity worldwide. It forms resistant biofilm

structures in food processing facilities after sanitization, consequently creating a public health concern. Many studies on

the metabolism and transmission of L. monocytogenes has provided insights into its intracellular infection process, however

there is limited understanding on the substrate utilization of the bacteria. Therefore, the main objective of this study was to

investigate the carbon and nitrogen substrate catabolism and the biofilm forming potential of 3 Malaysian L. monocyto-

genes strains (LM41, LM92 and LM115) previously isolated from ready-to-eat foods. Biolog Phenotype Microarray (PM)

system was used to study the catabolic activity of the foodborne strains in 190 carbon and 380 nitrogen sources. PM

analysis showed that the carbon and nitrogen catabolic activity of L. monocytogenes strains were considerably limited and

these strains utilised Tween 40 and Tween 80, which are commonly used for the sanitation in food and meat processing

industries. Furthermore, all 3 strains showed strong biofilm forming potential in nutrient-rich and nutrient-limited media,

irrespective of the serogroups. The data generated could be utilised to develop alternative measure to inhibit biofilm

formation in L. monocytogenes in the food processing environment.
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1 Introduction

Listeria monocytogenes is a facultative anaerobic, non-

sporulating, Gram-positive rod shaped bacterium that is

commonly found in the soil, plant material and raw and

processed food products. It can survive and grow over a

wide range of environmental conditions such as refrigera-

tion temperatures (0–4 �C), low pH (2–4) and high salt

concentration (10% NaCl), thus making them very hard to

control (Doijad et al. 2015; Zhou et al. 2012). It is an

emerging foodborne pathogen and the causative agent of

human listeriosis. Infection is typically acquired through

the ingestion of contaminated food products and the

common site of infection is the intestinal epithelium. L.

monocytogenes infection has several clinical conditions,

including meningitis, encephalitis, gastroenteritis, sep-

ticemia, abortions, convulsions and causes high mortality

(20–30%) rates among pregnant women, neonates, elderly

and immune-compromised patients (Lomonaco et al.

2015). Listeria monocytogenes is accountable for the

majority of deaths caused by food-borne epidemics in

Europe and USA (Lomonaco et al. 2015). The largest lis-

teriosis outbreak in U.S. history occurred in 2011, due to

the consumption of cantaloupe from a single farm that

caused 147 illnesses, 33 deaths, and 1 miscarriage in 28

states (CDC 2012). In Malaysia, foodborne L. monocyto-

genes had been detected in raw and ready-to-eat (RTE)

foods and the majority of incidences resulted from the

contamination of L. monocytogenes in various street-side

foods, salads, vegetables, raw and processed deli meats and

fish products (Jamali et al. 2013; Jeyaletchumi et al. 2012;

Marian et al. 2012; Ponniah et al. 2010; Wong et al. 2011).

Listeriosis is not a notifiable disease in Malaysia, hence

official report on foodborne listeriosis is lacking.
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Listeria monocytogenes has 4 evolutionary lineages (I,

II, III and IV) containing 13 serotypes based on the sub-

typing of the somatic O and flagellar H antigens (Orsi et al.

2011). Lineage I consists of serotypes 1/2b, 3b, 4b, 4d and

4e (Liu 2008; Orsi et al. 2011). Lineage II contains ser-

otypes 1/2a, 1/2c, 3a and 3c; and Lineage III includes

serotypes 4a and 4c and some strains from serotype 4b

(Kathariou 2002; Liu 2006, 2008). Both sporadic (serotype

1/2a, 1/2b and 4b) and outbreak cases (serotype 1/2a and

4b) of human listeriosis are mainly caused by L. monocy-

togenes strains belonging to Lineage I and II (Buchanan

et al. 2017; Lomonaco et al. 2015; Orsi et al. 2011).

Listeria monocytogenes is one of the leading foodborne

pathogens in both developed and developing countries and

able to form resistant biofilm structures in food processing

environment (Kadam et al. 2013; Lomonaco et al. 2015).

Biofilms are bacterial communities which are surrounded

by extracellular polymeric substances attached to biotic or

abiotic surfaces (Zhou et al. 2012). Listeria monocytogenes

biofilms have been found to show increased resistance to

cleaning, disinfectants, desiccation and UV exposure,

leading to enhanced persistence to processing plants

(Gandhi and Chikindas 2007). Biofilm structures can dis-

perse and contaminate the food products during processing

and packaging, thus making them a food safety concern

(O’Toole et al. 2000; Zhou et al. 2012). Industrially pro-

cessed foods, such as cheese and meats have often been

reported to be contaminated with L. monocytogenes

(Alonso et al. 2014; Doijad et al. 2015; Hain et al. 2007).

Previous studies have shown that serotype 1/2a, 1/2b and

4b are responsible for 95% of the clinical cases of liste-

riosis worldwide (Kadam et al. 2013; Lomonaco et al.

2015). In the current study, 3 Malaysian foodborne L.

monocytogenes strains belonging to the pathogenic ser-

ogroups were studied for their biofilm forming ability.

Phenotype Microarray is a well-established platform to

determine the cellular phenotypes of various microorgan-

isms under different growth conditions (Bochner 2001).

Studies with other bacteria have successfully determined

their metabolic activity in a variety of substrates (Chelvam

et al. 2015; Chong et al. 2017; Farrugia et al. 2013; Tang

et al. 2010). Although there is a relatively high incidence of

foodborne L. monocytogenes in raw and RTE foods in

Malaysia (Jamali et al. 2013; Kuan et al. 2013; Marian

et al. 2012; Ponniah et al. 2010; Wong et al. 2011), studies

regarding the catabolic activity of L. monocytogenes are

lacking. Furthermore, biofilm formation is a major issue in

the food industry since microbial biofilms are resistant to

industrial chemicals and cleaning processes (Da Silva and

De Martinis 2013; Kadam et al. 2013). While previous

studies have shown the formation of different biofilm

structures between different serotypes of this pathogen

(Doijad et al. 2015; Stepanović et al. 2000), there are no

reports about the importance of substrate utilization in

biofilm formation. Therefore, the present study focuses on

the carbon and nitrogen substrate utilization of 3 patho-

genic L. monocytogenes strains using Biolog Phenotype

Microarray system and their biofilm forming ability in

different substrates.

2 Materials and methods

2.1 Background of bacterial strains

Malaysian L. monocytogenes strains isolated from RTE

food samples (Jamali et al. 2013) were selected for this

study. The strains belong to serogroups 1/2a, 3a (LM92),

1/2c, 3c (LM41) and 4b, 4d, 4e (LM115). Among them was

LM115, a multiple-drug resistant strain (Jamali et al.

2013). The strains were maintained in LB broth with 50%

glycerol stock and revived in LB broth to perform the

individual assays.

The Phenotype MicroArray (PM) assay included

6 9 96-well PM panels (PM1, PM2A, PM3B, PM6, PM7

and PM8), which determined the ability of 3 L. monocy-

togenes strains to show responses in 190 carbon sources

and 380 nitrogen compounds (Table S1). The principle of

the test relies on the reduction of tetrazolium violet dye to

detect respiration (NADH formation) in various com-

pounds (Bochner 2001).

2.2 Analysis of phenotype microarray data

PM data of plates PM1, PM2A, PM3B, PM6, PM7 and

PM8 were recorded using OmniLog OL_FM_12 kinetic

software (Biolog, USA) and analyzed using Microsoft

Excel. The OmniLog PM Software generated a time course

curve for tetrazolium color development for 48 h. For each

well, the average area under growth (AUG) and the average

slope of time course data were used to measure the

threshold value (maximum 100 OmniLog Biolog unit, OU)

for growth in the PM plates. Phenotypes were determined

based on the difference in average area under growth curve

(AUG). The well was considered positive if the standard-

ized average area is equal or exceeded the threshold value.

Wells with a high average area value but with a slope close

to zero were considered as less significant than wells with a

smaller area but increasing signal over time. During data

processing, the option of A1 zero (negative control) was

selected to subtract the background from each wells. Plates

were analyzed in duplicates and errors were excluded from

the analysis (Kalai Chelvam et al. 2014).
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2.3 Validation test for PM data

To confirm the data obtained in the PM analysis, the L.

monocytogenes strains (LM41, LM92 and LM115) were

grown in minimal medium supplemented with individual

carbon and nitrogen substrates. Overnight cell cultures of

L. monocytogenes strains were harvested at 6000 rpm for

5 min, washed with 19 phosphate buffered saline (PBS).

Cellular turbidity was adjusted to McFarland standard No.5

which corresponds to 108 CFU-mL-1. Serial dilutions were

carried out to ensure that the final concentration of cells in

each well was standardized to 103 CFU-mL-1. An aliquot

of 200 lL inoculum (M9 minimal medium) with individual

carbon and nitrogen substrates were added into the wells of

sterile 96-well microtiter plates and incubated at 37 �C for

24 h. After incubation, cellular turbidity was measured at

O.D.600 nm wavelength using a microplate reader (Epoch,

Germany). Negative control contained minimal medium

and the substrates. This experiment was repeated 3 times

and the results were averaged.

2.4 Biofilm assay

The biofilm assay was carried out according to the method

described by Stepanović et al. (2000). The cell density of

an overnight cell cultures of 3 L. monocytogenes strains

(LM41, LM92 and LM115) were adjusted. An aliquot of

200 lL bacterial culture was added into the wells of

microtiter plates and incubated at 37 �C for 24 and 48 h.

After incubation, the unbound cells were removed and

washed with 1x PBS. The adhered cells were heat-fixed at

80 �C for 30 min. Quantification of biofilm cells was per-

formed by staining of adhered cells with Crystal Violet

(0.5%), followed by washing and de-staining using

Ethanol:Acetone (80:20%) solution. The absorption of the

eluted stain was measured at O.D.590 nm wavelength.

Based the O.D590nm readings and calculation of cut-off

O.D. (O.D.c), strains were classified as non-biofilm pro-

ducer, weak, moderate and strong biofilm producer. The

cut-off O.D. is defined as 3 standard deviations above the

mean O.D. of negative control (Kalai Chelvam et al. 2014;

Stepanović et al. 2000). Strains were:

• non-biofilm producer (0), if O.D. B O.D.c,

• weak biofilm producer (?), if O.D.c\O.D. B

(2 9 O.D.c),

• moderate biofilm producer (? ?), if (2 9 O.D.c)\
O.D. B (4 9 O.D.c) and,

• strong biofilm producer (? ? ?), if O.D.[
(4 9 O.D.c).

Negative control contained sterile LB broth, and the

value of negative control was deducted from the

background and the experiment was performed in tripli-

cates to ensure the reproducibility of the results.

Overnight cell cultures of 3 L. monocytogenes strains

were harvested at 6000 rpm and washed with 19 PBS. The

cell density of bacterial cultures was adjusted. Aliquots of

200 lL bacterial cultures in minimal medium were added

to the wells of microtiter plates and incubated at 37 �C for

24 and 48 h. The adhered cells were heat-fixed, followed

by staining, washing and de-staining. The absorbance

(O.D.590 nm) was measured. Negative control contained

minimal medium only. The results were averaged and the

standard deviation of negative control was calculated for

the biofilm classification (Stepanović et al. 2000).

Carbon and nitrogen substrates were selected and added

to M9 minimal medium to induce biofilm formation in L.

monocytogenes strains. 20 mM solutions of each carbon

and nitrogen substrates were aseptically prepared. Aliquots

of 200 lL bacterial cultures were added into the wells of

microtiter plates containing 20 mM carbon or nitrogen

substrates and then incubated at 37 �C for 24 and 48 h.

Unbound cells were removed and washed with sterile

dH2O. The adhered cells were heat-fixed, followed by

staining, washing and destaining. Absorbance was mea-

sured at O.D.590 nm. Negative control contained minimal

medium and the substrates. This assay was performed in

triplicates and the results were averaged.

3 Results

The tested L. monocytogenes strains were able to catabolize

different carbon and nitrogen sources. The preferred carbon

substrates were: carbohydrates, polymers, nucleosides and

the preferred nitrogen substrates were: amino acids, ami-

nes, nucleosides and dipeptide sources (Table 1).

Among the 190 carbon substrates tested, only 38 (20%)

were catabolized by the strains. The carbon substrates were

classified into carbohydrates (n = 26), nucleosides (n = 5),

polymers (n = 4), amino acids (n = 2) and amide (n = 1)

(Fig. 1). Out of 38 carbon substrates, only 29 (15.3%) were

catabolized by all 3 strains (Fig. 2). However, alcohol,

carboxylic acid, fatty acid and esters were not catabolized

by any of the 3 strains.

A total of 380 nitrogen substrates were tested in PM3B,

PM6, PM7 and PM8 microplates. Only 61 (16%) nitrogen

substrates were catabolized by the strains. The substrates

were categorized into amino acids (n = 6), amines (n = 5),

nucleosides (n = 7), heterocyclic organic compounds

(n = 3) and peptides (n = 10). Among them, only 7 sub-

strates were actively metabolized by all 3 strains (Fig. 3).

The substrates were: D-glucosamine, D-mannosamine, N-

acetyl-D-glucosamine, cytidine, uridine, xanthosine and

uric acid. Strain LM115 utilized only 5 peptide nitrogen
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sources, whereas strain LM92 utilized only 1 peptide in

plate PM3B. Strain LM41 showed a higher respiration rate

(10.5%) in plates PM6, PM7 and PM8, while strains LM92

and LM115 did not utilise in any of them (Figs. 1, 3).

To validate the PM analysis, 24 carbon and nitrogen

substrates were selected based on the PM catabolic profile

(Table 1). The validation experiment supported the PM

analysis, with the exception of L-cysteine, D-xylose, ribo-

flavin, thiamine, D-biotin, Tween 40 and L-glutamic acid.

These substrates were not utilized in PM growth condi-

tions; however they supported bacterial growth when added

to the minimal medium (Table S2).

All 3 strains were able to produce strong biofilm in both

LB broth and minimal medium after 24 and 48 h

incubation. To induce biofilm formation in the studied

strains, 23 carbon and nitrogen substrates were chosen

based on the PM catabolic profile (Table 1). Out of 23

substrates tested, only 15 substrates induced biofilm for-

mation in M9 medium. The substrates were: adenosine,

cytidine, uridine, glutamic acid, rhamnose, Tween 40,

riboflavin, thiamine, biotin, salicin, fructose, maltose,

galactose, trehalose and xylose (Table 2). All 3 strains

formed weak biofilm in threonine and glycerol. Strain

LM92 formed moderate biofilm in glycine, lysine, cysteine

and glucose; whereas LM41 and LM115 formed weaker

biofilm. Moreover, glucose did not induce strong biofilm

formation in any of the strains, instead it produced mod-

erate to weak biofilms. All 3 strains formed strong biofilm

Table 1 Catabolism of carbon and nitrogen substrates by Listeria monocytogenes strains

Number of

substrates tested

Number of substrates

catabolized by all three strains

Strain-specific substrate

catabolism

Number of substrates

catabolized by at least two

strains

Number of

substrates

not

catabolizedLM41 LM92 LM115

Carbon substrates

Sugar and derivatives

Monosaccharide 20 8 (40) 1 0 1 2 (10) 10 (50)

Disaccharide 9 4 (44) – – – – 5 (56)

Oligosaccharide 10 1 (10) – – – – 9 (90)

Polysaccharide 6 1 (17) – – – – 5 (83)

Sugar alcohol 18 3 (17) – – – – 15 (83)

Amino sugar 8 2 (25) – – – – 6 (75)

Deoxy sugar 4 – – – – – 4 (100)

Aldaric acid 4 – – – – – 4 (100)

Aldonic acid 2 – – – – – 2 (100)

Uronic acid 8 – – – – – 8 (100)

Glycosides 9 2 (22) – 7 (78)

Other 1 1 (100) – – – – –

Polymers 11 4 (36) – – – – 7 (64)

Amide 3 – 1 0 0 – 2 (67)

Amine 5 – – – – – 5 (100)

Amino acid 30 – 2 0 0 – 25 (83)

Nucleic acid

Nucleosides 5 4 (80) – – – 1 (20) –

Nitrogen substrates

Amino acid 33 – 1 0 5 – 27 (82)

Other 1 – 0 0 1 – –

Amine 17 3 (18) 0 0 1 1 (6) 12 (71)

Amide 4 – – – – – 4 (100)

Nucleic Acid 13 3 (23) 1 0 0 3 (23) 6 (46)

Heterocyclic

organic

compounds

10 1 (10) 0 0 0 2 (20) 7 (70)

Peptide nitrogen

sources

294 – 34 1 3 2 (1) 254 (86)
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Fig. 1 The catabolic phenome

of Listeria monocytogenes

strains. Strengths of carbon and

nitrogen utilization phenotypes

of L. monocytogenes strains

LM41, LM92 and LM115 are

determined using BiologTM

Phenotype Microarray plates

PM1, PM2A, PM3B, PM6, PM7

and PM8. The maximal kinetic

curve height is expressed as a

color-scale ranging from 0

(green) to 200 (red) area under

the curve (AUC) units.

Substrates are considered as

‘strongly utilized’ if

AUC C 180, ‘weakly utilized’

if AUC B 50, and ‘not utilized’

if AUC\ 10 (color

figure online)
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in minimal medium when supplemented with Tween 40

and Tween 80, although, they did not use them as sole

carbon sources in PM growth conditions (Table 2). On the

contrary, none of the strains formed biofilm when thymi-

dine was added to the medium. The PM analysis indicated

growth of three strains in thymidine, yet it failed to initiate

biofilm formation in minimal medium.

4 Discussion

According to the PM analysis, the carbon catabolism

capacity of the L. monocytogenes strains was extremely

low, only 29–38% out of 190 carbon substrates tested

(Fig. 1). Compared to other pathogenic bacteria, i.e.

Acinetobacter baumannii, Bacillus subtilis and Escherichia

coli were able to catabolize a variety of carbon and nitro-

gen sources (Bren et al. 2016; Farrugia et al. 2013), thus

signifying that L. monocytogenes strains are metabolically

less competent. The foodborne strains mainly utilized

carbohydrates, polymers and nucleotides and the catabo-

lism rate and choice of carbon sources were rather similar

between the 3 strains (Fig. 2). Moreover, the nitrogen

substrate catabolism was even lower than carbon catabo-

lism. The strains utilized only 16% out of 380 nitrogen

substrates tested, wherein 13% was utilized by strain LM41

only (Fig. 3). All 3 strains catabolized a higher number of

nitrogen substrates individually and their preference for

nitrogen sources were relatively extensive. For example, 7

(2%) out of 380 nitrogen sources were utilized by 3 strains,

while strain LM41 utilized 10% of the dipeptide nitrogen

sources and other 2 strains were unable to utilize peptides

(Figs. 1, 3). The genomic analysis of two L. monocytoge-

nes strains (Lim et al. 2016) showed that the strains carry a

number of carbohydrate, amino acid, fatty acid and

nucleotide metabolizing genes and therefore, this food-

borne pathogen should be able to metabolize a wide range

of carbohydrate and amino acid compounds. The strains

were unable to utilize alcohol, carboxylic acid, ester and

fatty acid sources and the limited carbon and nitrogen

catabolic activity of the strains indicates an incomplete or

restrictive metabolic pathway involved in their

metabolism.

Fig. 2 Venn diagram showing the carbon catabolic activity of three L.

monocytogenes strains. A total of 190 carbon substrates are tested.

They are categorized as: A: Alcohol, B: Amide, C: Amine, D: Amino

acid, E: Carbohydrate, F: Carboxylic acid, G: Ester, H: Fatty acid, I:

Nucleotide and J: Polymer. Y-axis indicates the percentage of carbon

utilised. X-axis shows the carbon category for each carbon substrate

tested. The Venn diagram was obtained based on average growth

curve area and the numerals indicate the carbon substrates utilized by

three strains, utilized by two strains and each strain individually
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Furthermore, L. monocytogenes strains showed limited

growth activity in D-glucose, while an increased growth

rate was observed in L-glutamic acid, fructose, maltose,

galactose, salicin and plant-derived carbon sources, arbu-

tin, D-xylose and sorbitol (Fig. 1). Conceivably, glucose is

not the sole carbon source for their optimum growth. L.

monocytogenes has a complex phosphotransferase system

mediated glucose transport system, where it catabolizes

fructose, mannose, cellobiose as sole carbon sources when

grown in a defined minimal liquid medium and were able

to utilize branched-chain amino acids (Tsai and Hodgson

2003). In this study, none of the strains were able to grow

on ammonia, nitrate, nitrite and urea since they lack the

genes for nitrate and nitrite reductases (Haber et al. 2017);

as a result, they only catabolized organic nitrogen sources

(Fig. 1). Additionally, glycine, xylose, riboflavin, thiamine,

biotin and Tween 40 supported bacterial growth in the

validation experiment, while they did not represent growth

in PM analysis (Table S2). This could be due to the low

concentration of substrates in the Biolog PM plates.

Moreover, riboflavin, biotin and thiamine may act as

cofactors in minimal medium since they did not require

them for growth.

Biofilm formation is a major nuisance in food manu-

facturing environment. Foodborne pathogens, namely Lis-

teria monocytogenes, Salmonella spp., pathogenic

Escherichia coli, Bacillus cereus, Campylobacter spp.,

Staphylococcus aureus have the capability to adhere and

create biofilms on various surfaces in food processing

industries (Giaouris and Simões 2018). Previous studies

have shown that the foodborne L. monocytogenes strains

are resistant to cleaning and sanitization and can survive

after the disinfection process (Gandhi and Chikindas 2007;

Mertins et al. 2007). Studies by Møretrø et al. (2017) and

Dutta et al. (2013) demonstrated that L. monocytogenes

showed increased resistance towards quaternary ammo-

nium compounds (QAC), such as Benzalkonium chloride

due to the presence of QAC resistance genes, qacH and

bcrABC cassettes in their genome. Polysorbates are non-

ionic surfactants often emulsified in the sanitizers to clean

food and meat processing plants. Møretrø et al. (2017)

demonstrated that L. monocytogenes can survive as bio-

films in the surface water residues containing residual QAC

Fig. 3 Venn diagram showing the nitrogen catabolic activity of three

L. monocytogenes strains. A total of 380 nitrogen substrates are

tested. They are categorized as: A: Amino acid, B: Amine, C:

Nucleoside, D: Heterocyclic Organic Compound and E: Dipeptide.

Y-axis indicates the percentage of nitrogen utilised. X-axis shows the

nitrogen category for each nitrogen substrate tested. The Venn

diagram was obtained based on average growth curve area and the

numerals indicate the nitrogen substrates utilized by three strains,

utilized by two strains and each strain individually
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after disinfection, therefore conferring growth advantage to

the bacteria. In this study, both Tween 40 and Tween 80

induced strong biofilm formation in the selected strains in

nutrient limited conditions.

Many studies indicated that L. monocytogenes strains

produce more biofilm in nutrient limited medium; while

they have increased growth rate in nutrient-rich medium

(Doijad et al. 2015; Zhou et al. 2012). In this study, all 3

strains showed enhanced growth activity and formed strong

biofilms in both LB and minimal media (Table 2), sug-

gesting that this foodborne pathogen employs an alterna-

tive mechanism to proliferate and produce biofilm in

nutrient-starved conditions. This study also showed that the

L. monocytogenes strains were able to attach and form

biofilm on polystyrene microtiter plates. Polystyrene is one

of the most widely used plastics, especially in commercial

food packaging and the equipment used in food production

facility. Several studies reported that persistent biofilm

structures are readily formed on plastic surfaces and niches

that are difficult to clean (Borucki et al. 2003; Doijad et al.

2015). On the contrary, thymidine did not induce biofilm

formation in any of the strains, although increased growth

rate was observed when supplemented in minimal medium

(Table 2). Therefore, thymidine may not be the ideal car-

bon source to initiate the biofilm formation in L. monocy-

togenes, since it inhibited the biofilm-forming process in a

nutrient limited condition. Further experimental analysis

should be taken into consideration regarding the impact of

thymidine in biofilm control and prevention.

5 Conclusion

In conclusion, this study revealed that the foodborne L.

monocytogenes strains were strong biofilm producers even

in the absence of nutrients. The biofilm-forming strains

Table 2 The biofilm forming

potential of L. monocytogenes

strains

Media and Substrates Substrate utilization in PM Biofilm Classification

LM41 LM92 LM115 LM41 LM92 LM115

LB broth N/A N/A N/A ??? ??? ???

M9 medium only N/A N/A N/A ??? ??? ???

Adenosine (?) (-) (?) ??? ??? ???

Thymidine (?) (?) (?) – – –

Cytidine (?) (?) (?) ??? ??? ???

Uridine (?) (?) (?) ??? ??? ???

L-Glutamic Acid (-) (-) (?) ??? ??? ???

L-Rhamnose (?) (?) (?) ??? ??? ???

Tween 40 (-) (-) (-) ??? ??? ???

Riboflavin (-) (-) (-) ??? ??? ???

Thiamine (-) (-) (-) ??? ??? ???

Biotin (-) (-) (-) ??? ??? ???

Salicin (?) (?) (?) ??? ??? ???

D-Fructose (?) (?) (?) ??? ??? ???

Maltose (?) (?) (?) ??? ??? ???

D-Galactose (?) (?) (?) ??? ??? ???

D-Trehalose (?) (?) (?) ??? ??? ???

D-Xylose (-) (-) (-) ??? ??? ???

Glycine (-) (-) (?) ? ? ? ?

L-Lysine (-) (-) (-) ? ? ? ?

L-Cysteine (-) (-) (?) ? ? ? ?

L-Threonine (-) (-) (-) ? ? ?

Glycerol (?) (?) (?) ? ? ?

Tween 80 (-) (-) (-) ? ? ? ? ???

D-Glucose (?) (?) (?) ? ? ? ? ?

a (?) = positive for growth, (-) = negative for growth, N/A = not applicable
bInterpretation based on cut-off O.D. (O.D.c); O.D. B O.D.c = non biofilm producer, [-]; O.D.c\O.D.

B (2 9 O.D.c) = weak biofilm producer, [?]; (2 9 O.D.c)\O.D. B (4 9 O.D.c) = moderate biofilm

producer, [? ?]; (4 9 O.D.c)\O.D. = strong biofilm producer, [? ? ?] (Stepanović et al. 2000)
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thus facilitate their survival and persistence in food pro-

cessing environment which may lead to the subsequent

contamination of food products. Additionally, the pheno-

typic analysis showed that the carbon and nitrogen cata-

bolic activity of three strains were considerably limited.

Further genomic analysis is required to investigate the

biosynthetic pathways involved in their metabolism and

identify the genes for the enzymes responsible for the

catabolism of various substrates. Lastly, alternative

approaches must be implemented to prevent biofilm for-

mation in food processing environment to improve the food

quality and ensure the welfare of human health.
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