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Abstract

We show that Brieskorn manifolds with their standard contact struc-
tures are contact branched coverings of spheres. This covering maps a contact
open book decomposition of the Brieskorn manifold onto a Milnor open book
of the sphere.

1. Introduction

Brieskorn manifolds have been an interesting source of examples. In the field of
topology many exotic spheres can be realized as such manifolds, but also in contact
geometry they have provided a rich family of examples. The most prominent ones
are the exotic contact structures on (4n + 1)-spheres ([Ust]).

It has been known for a long time that a Brieskorn manifold ¥(ayg, ..., a,) C
C"*! is an ag-fold cyclic covering of the unit sphere S?*~! C C” branched along
the (2n — 3)-dimensional Brieskorn manifold ¥(aq, ..., a,). In this article, we show
that this is not only true as smooth manifolds but also in the contact category.

Furthermore, given a (2n — 3)-dimensional Brieskorn manifold B :=
Y(ai,...,a,) there exists a natural (so-called) Milnor open book on S?*"~! that
has B as its binding. This open book decomposition can be pulled back by the
cyclic branched covering to the Brieskorn manifold X(ao, ..., a,). In this way it is
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possible to show that the open book of a Brieskorn manifold can be described in an
abstract way by using a Milnor open book and taking a power of its monodromy
map. One of the goals of this article is to show that the canonical contact structure
on a Brieskorn manifold is supported by that open book.

In Section 2, we will state what a contact branched covering is. In Section 3,
we recall first the basic definitions regarding open books, and then we show that
given an open book decomposition of a contact manifold M, one can easily construct
a contact branched covering, with branching locus given by the binding of the open
book, such that the covering manifold inherits a natural open book decomposition
from the base space M. These notions are applied in Section 4 to Brieskorn man-
ifolds: Theorem 7 proves that there is a contact structure isotopic to the standard
one on S 1 S$?»~1 with binding a
Brieskorn manifold ¥(ay, ..., a,). Finally, Theorem 6 shows that the contact struc-
ture of the ag-fold contact branched covering of S>*~! as in Lemma 2 is isotopic to

which is supported by the Milnor open book of

the standard contact structure on the Brieskorn manifold ¥(ag, a1, ..., an).

We would like to note the following general result ([CNP, Theorem 3.9]). Sup-
pose that X is a complex analytic variety with an isolated singularity at x and f
is a complex valued holomorphic function with an isolated singularity at x. Then
the Milnor open book determined by f on the boundary of a sufficiently small neigh-
borhood of = carries the canonical contact structure on the boundary. Although
our result is a special case, our proof contains detailed calculations in coordinates
which also describe explicitly the monodromy map in terms of the monodromy map
of the Milnor open book on a standard sphere. Since our approach involves the use
of contact branched coverings, a similar approach can be employed to determine the
monodromy of arbitrary branched coverings explicitly.

2. Contact branched coverings

Branched coverings for contact 3-manifolds were first considered by Gonzalo
in [Gon]. He used them to reprove the existence of a contact structure on any
oriented 3-manifold. His methods used local charts and were adapted to his special
situation. Geiges showed later that a branched covering of a contact manifold of any
dimension admits under very natural conditions a contact structure [Gei]. Below
we will give a definition of contact branched covers, which coincides essentially with
Geiges’ construction, and show that up to isotopy it is independent of any choices.

Let (N, a) be a contact manifold, and let f: M — N be a branched covering.
The pull-back form f*« fails to be contact on M, because by definition dim(ker df) =
2 along the branching locus. This problem can be fixed though by perturbing f*«
slightly.
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LEMMA 1. Let f: M — N be a covering branched along B C N such that
(N,a) and (B, a|pp) are contact manifolds. There exists a 1-form ~ on M with
AV ior a >0 along B (ker df is naturally oriented, because f*a gives an orientation
both for M and f~'(B)) such that

ffa+ey

s a contact form on M for any sufficiently small € > 0.

Any contact form By on M is isotopic to f*a—+ey if it lies in a smooth family
of 1-forms B with t € [0,1] such that By = f*«, and for which B; is contact for all
0 <t <1, and for which d¥|erqf > 0, where we have set 7 = Bt\tzo.

DEFINITION.  f: M — N together with the contact structure given above is
called the contact branched covering of (N, «) along (B, o).

PROOF. The existence of such a form « was proved in [Gei], and the unique-
ness of the contact structure can be shown in a similar way. For completeness
though, here is the argument: Consider the Taylor expansion of §; at ¢t = 0:

B = ffra+ty+O(t?) .

We will use this 1-form at time tg = ¢ > 0, where £ will be chosen below. We
can form the linear interpolation between (. and f*a + e+ to define the family of
1-forms

s = ffate(sy+(1—35)7) +(1—-s)0(?) forsel0,1].
The contact condition for this family becomes

as A (dag)™ = f* (A (da)™)+e(sy+ (L —s)7) A f*(da)"+
+enf* (A (da)" 1) A (sdy + (1 — s)d7) + O(?).

On the branching locus, the first two terms vanish; the third one is positive for
all s € [0,1] by our assumptions, and by choosing £ > 0 small enough it dominates
the O(g?) part. By continuity there is an open neighborhood U of f~!(B) where
the sum of all terms containing an e factor is positive for any sufficiently small
e > 0. The pull-back f*(a A (da)™) is positive on the compact set M — U, and is
thus always larger than C Vol for some C' > 0. We can achieve that the € terms
(by choosing ¢ still smaller if necessary) are never smaller than —C' Vol,,. For any
sufficiently small ¢ > 0, it follows that as A da? > 0, and thus the corresponding

contact structures are isotopic by Gray stability.
O
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Note that the definition of a contact branched covering is in analogy with the
definition of a symplectic branched covering [Aur]. Furthermore, there is the concept
of canonicity of the structure in the symplectic setting too (see [Aur, Proposition 3]).

3. Open books and contact structures

The following definitions are taken from [Gir].

DEFINITION. An open book on a closed manifold M is given by a
codimension-2 submanifold B < M with trivial normal bundle, and a bundle
9¥: (M — B) — S!. The neighborhood of B should have a trivialization D? x B,
where the angle coordinate on the disk agrees with the map .

The manifold B is called the binding of the open book and a fiber P = 9~ ()
is called a page.

REMARK 1. The open set M — B is a bundle over S!, hence it is diffeomorphic
to the mapping torus Py := R x P/ ~, where ~ identifies (¢,p) ~ (¢t + 1, ®(p))
for some diffeomorphism ® of P. Since the neighborhood of the binding has the
standard form described above, we can assume that ® is equal to the identity in
some small neighborhood of the binding. By glueing D? x B = D? x 9P onto Py in
the obvious way, we obtain a manifold diffeomorphic to M.

DEFINITION. A contact structure £ on M is said to be supported by an open
book (B,0) of M, if there is a contact form « with £ = ker v such that

(1) (B, alrp) is a contact manifold.

(2) The Reeb field Xgee, of a is transverse to all pages and d¥(Xgeeb) > 0.
For every s € S, the page P := 97 !(s) is then a symplectic manifold with
symplectic form da.

(3) Denote the closure of a page P in M by P. The orientation of B induced by
its contact form «a|rp should coincide with its orientation as the boundary of
(P,da).

Such a contact form is said to be adapted to (B,).

REMARK 2. Note that if the binding is connected, point (3) of the definition
above holds automatically, because

0</P(da)n :/BaA(da)nfl,

by Stokes’ theorem. Hence the orientation of B as boundary of P agrees with the
one given by the contact form.
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LEMMA 2. Let (N,a) be a contact manifold that has an open book decomn-
position (B,9) supporting «. The k-fold cyclic covering f: M — N branched
over B exists, and is a contact manifold adapted to the open book decomposition

(f~H(B), VI f).

ProoF. Note that N — B can be written by the remark above as Py =
R x P/ ~, where ~ identifies (¢,p) with (¢ + 1, ®(p)) for some diffeomorphism & of
the page P that is the identity in a small neighborhood of dP.

Construct M as the mapping torus Pgr = Rx P/ ~, where ~, identifies (¢, p)
with (t + 1, ®*(p)) for the diffeomorphism ® on P. At the boundary the mapping
torus is still diffeomorphic to S' x (—¢,0] x OP such that we can glue in D? x B to
obtain a closed manifold M.

Define the projection f: M — N of the branched covering piecewise:

Il

M Pyr  Usigap D? x B

fl LA L f2
N = Pq;. Usixap ID)QXB

The map fi: Pgr — Py is given by f1([t,p]) = [kt, p], and the map fo: D?x B — D?x
B is given by fa(re’?,p) = (g(r)e*?, p), where g(r) is a smooth strictly increasing
function on R>( that is equal to 7* close to zero and equal to r for r > § with § > 0
very small. Then it is clear that f defines a branched covering.

It is clear by Lemma 1 that M supports a contact structure compatible with
f. The contact form on M is obtained by taking the pull-back f*a and adding a
small 1-form v such that dv|,, g > 0. This v can be chosen to be of the form
v =¢er?p(r)dyp on D? x B.

It is also clear that (f~1(B), {/¥ o f) is an open book decomposition of M.
Since dy vanishes, when restricted to any page, it follows that « + - is supported

by this open book.
O

4. Brieskorn manifolds
and their canonical contact structures

Before talking about Brieskorn manifolds, we will briefly collect some facts
about the sphere: Assume S?"~! to be embedded in the standard way in C"*. We
will denote the points of C" by z = (21, ..., 2,). The standard contact form on the
sphere is
i o
5 Z(ZJ de — Zj dZ]) .

Jj=1

Qstd =
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LEMMA 3. The 1-form
7: n
0= 5 Zaj(zj d,?j —Zj dzj) s
j=1
with a; € N, is isotopic to the standard contact form on S*"~! C C".

PROOF. The proof works by taking the linear interpolation between 3 and
astd, and checking that all forms in the family are contact. This allows us to use

Gray stability.
O

Now, we will explain what a Brieskorn manifold is. Let f:C"t! — C be a
polynomial of the form

f(2’07217~-~72n):ZSOJF"'JerL"7

with fixed numbers ao, . .., a,, € N. It is easy to see that the variety Vy := f~1(0) has

a single isolated singularity at (0,...,0). Outside the origin, the equation describes
a smooth submanifold of codimension 2, because the matrix

of Of\ _ [aoz*™" - apzin! 0 0

of of ) 0 0 aoig‘)_l S A

has full rank.

DEFINITION. The Brieskorn manifold X(ag, . .., ay,) is defined as the inter-
section
Y(ag, ..., a,) = V; NS

This set is, as its name suggests, a manifold. This can be easily seen by noting
that V; is transverse to S?"*1. Since the sphere has codimension 1, it is enough
to find a vector field Z on V¢, which is everywhere transverse to the sphere. The

R-action
R x (Cn+1 N (Cn—i-l

(20, 2n) — (%2, ..., et/ % 2,)

restricts to the variety V;, and its infinitesimal generator

Z<0><o )

) 3
ag Gnp

is always transverse to the sphere, because

1 1
Lz(lzol + -+ |zl = 1) = —eol + -+ e’ £0.
aop Qp,
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(z15-+-y2n)

FIGURE 1. The manifolds ¥(ag,...,a,) and i(ao, ceeyGp)
are obtained by intersecting Vy with different hypersurfaces.

In the rest of the article, we make extensive use of a related manifold: Instead
of taking the intersection between V; and a sphere, define

i(ao,...,an) =V;nCy,
where C is the spherical cylinder given by

Co:=Cx S ={(20,21,...,20) | (21,...,20) €SI},

As above it is easy to check that this set is a manifold, because for the defining
equation of Cy, we obtain

1 1
Lol +-+ el = 1) = Tl o4 ozl 20
1 n

The Brieskorn manifold is of course diffeomorphic to %(ag,...,an) (see
Figure 1). In fact, let

Ry:=slaol +]af + -+ |zl
then we can define a family of submanifolds ¥ with s € [0, 1] by
Ys =V R,
where ¥ is equal to X(ao, ..., a,) and ¥ is equal to i(ao, ceeyQp).

LEMMA 4. There is an isotopy ®s in Vy between 3(ao, ..., an) and X;.
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PRroOOF. Consider the R-flow above, but let the time-parameter depend on
the point that is being mapped, i.e. consider the map

(I)s: (207 SR Zn) = (eT/a0207 R eT/anZn) )
where T = T(z0,...,2,;5) is a function with the following properties: For a point
(z0,---,2n) € Z(aog, .. .,a,), we want its image to lie in 3, hence the equation

l=s \eT/“020|2 + \eT/‘“zl|2 +- 4 |eT/“”Zn|2
— S€2T/a0|210|2 + e2T/a1 ‘21|2 NI 62T/an‘zn|2
needs to hold. For any point (zg, . .., z,) there is a unique solution T'(zo, . . . , 25; 8) >
0, because the right-hand side of the equation is a strictly increasing continuous
function in T that takes a value less than 1 for 7" = 0.

To prove that the map @ is a bijection, construct a map <T>S analogously to
the one above, which maps Y5 into ¥(ao, . ..,a,). It is easy to see that these maps
are mutually inverse.

That @, is smooth follows from the fact that 7T is, and this is proved by
checking the inequality:

% (SGQT/(/L()'ZOlQ +€2T/a1|2’1|2+"' +€2T/an|zn|2 o 1) > 07

which allows us to apply the implicit function theorem. The map &, is a bijective

local diffeomorphism between closed manifolds, hence it is a diffeomorphism.
O

LEMMA 5. For every Xs with s € (0,1], the corresponding 1-form
o 1= % (sao (20dZo — Zodzo) + a1 (21dZy — Z1dz1) + -+ + apn (20 dZn — Zn dzn))

is a contact form, and by Gray stability it follows that every ¥, (with the exception

of ¥o = X(ag, ..., an)) is contactomorphic to ¥(ag,...,an).

PROOF. A long but trivial calculation yields
as ANda" P NdRg A df Ndf

n n n
= (sfz ajzy’ + szajE?j — 2Ry |20[20 ™Y — 2R, Z aj|zj\2(aj_1)) Q,
=0 =0 j=1

with Q :=i"/2(n — 1)'ag---a,dzo ANdZg A --- Adz, ANdZ,. On X, we have f = f
=0 and Rs = 1, and hence the term is equal to

-2 (ao|Zo|2(a°71) +5 Zaj\zjlg(arl)) Q,
J=1

which only vanishes, if both s = 0 and 2z = 0, i.e. at points (0,21,...,2,) € Xp =
Y(ag, ..., an).
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REMARK 3. Note that by Lemmas 3 and 5 it follows that (3(ay, ..., an), a1)
is a contact submanifold of (S?*~1, 3), and the 1-form ag on i(ao, ..., ap) 18 equal
to the pull-back 7jaspq of the standard structure on the sphere under the projection
7o: C"M — C" (20, ..., 2n) — (21, -+, 2n)-

THEOREM 6. The Brieskorn manifold (X(ao,...,an),01) is a contact
branched cover of the standard sphere (S?"~! agq). More precisely, the map
m0:C" — C™, (20,...,2n) — (21,...,2n) induces an ag-fold cyclic branched
contact covering

To: E(a07 ceey a’n) - (S2n7176)
with branching locus ¥(ay, . .., a,) C S?71.

Note that the latter statement justifies the former, because (S*"~1, agq) =
(S?7=1 B), and (X(ag,...,a,),a1) is contactomorphic to X(ag,...,a,) with the
contact structure induced by the branched covering.

PROOF. It has been known for a long time that 7y restricted to f)(am ceeyQp)
is a branched covering over the sphere. This can be easily seen by noting that
70(2(ao, - .., an)) C S2"~1, and that this map is surjective follows because a point
(21, -, 2n) € S 1is covered by (20, 21,.-.,2n) € i(ao, ...,a1), where zq is one of
the roots “§/—(2{* + -+ + z3"). Every point of the sphere is covered by ag points

with the exception of the points on the branching locus X(ay,...,a,) C S>*~ 1.

As remarked above, the 1-form ag on i(ao, ...,ay) is equal to ©5B. By
adding a small 1-form e to ag such that dv|,, dmy > 0, We obtain a contact form.
A possible choice for such a form is

7
T=75 (20 dzo — Zo dzp)

for sufficiently small ¢ > 0, because the kernel of dmy is only non-trivial at
(0,21,...,2,) € i(ao, ...,ap), and the kernel lies in the zp-plane.

The only thing left to show is that (i(ao, ...y Qp), 0o +e7y) is contactomorphic
to (X(ag,...,an),a1). This is most easily seen by using the contact forms oy =
(CI{,jl)* g on X(ag, ..., an) for s € (0,1]. This is a smooth family of forms that
connects to ag, and the derivative

d B .
% Y Qg = % (Zo dzo — Zp dZO)

has the properties needed to apply Lemma 1.
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REMARK 4. It is interesting to consider, whether

i o " o
a- =g (—Cao (20 dzp — Zo dzp) + z:l a; (z; dZ; — Z; dzj))
=

for very large C' > 0 also gives a contact form. The rationale is that the open book
decomposition of such a manifold would have the same pages, but the monodromy
map would be inverted.

To check that a_ is a contact form, the following term should not vanish:

a_ A(da)""PANdRy ANdf Ndf

= D g (= 2a0leo™ 0 420 Y gl
j=1
n n
—(C—=1)(ag—1) (280 Z a;z;’ + 25° Zaﬂ}”)) dzo A\ -+ Ndzy,.
Jj=1 J=1
It is easy to see that this is the case for ag = —1, i.e. one gets a large set of

potentially different contact structures on the sphere. For all Brieskorn manifolds
Y(ag,ai,...,a1), it is also easy to check that a_ is a contact form. In particular
on X(k,2,...,2), it can be shown by an explicit computation like the one in [KN]
that the open book decomposition uses a k-fold left-handed Dehn twist for the
monodromy map, which is indeed the inverse of the standard monodromy.

Unfortunately, for general combinations of integers a; € N, it is quite easy to
find examples where the contact condition breaks down.

Finally, the following theorem describes a Milnor open book on S?”~! which
supports the contact structure 3.

THEOREM 7. Define the polynomial f(z1,...,2n) = 2" + -+ + 2% on C"
with a; € N. The sphere Sl can be given an open book with binding B :=
Y(ay,...,a,) :=S?""1 N f7Y0), and page fibration

_ f(z)
9:8" 1 - B St 72—
’ |f(z)]

with z = (21,...,2,). The contact form 3 on S*~1 is supported by this open book.

PRrROOF. Milnor showed in [Mil] that the structure defined in the lemma is an
open book. Hence it only remains to show that (B, ) supports the contact form f3.

The binding B is a Brieskorn manifold and g is a contact form for such a
manifold as proved in Lemma 5.
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To show that d3 is a symplectic form on a page Py, = 9~ (), note that the
map
e (z1,...,20) = (eit/alzl, .. ,e“/“"zn)
is a diffeomorphism from a page Py, to Py,++, and at the same time it is the flow
of the Reeb field Xgeep of G:

_ d it/aq it/an _ . 1 6 a
XReeb—%(e / Z1y---456€ / Z,L)—Jz_;%(xj%—y]%)
One computes that tx, ., d3 = —2d (Z?Zl \zj|2>, and B(XReeb) = 27—y ;17 = 1.
The Reeb field points in positive direction transversely through any page Py,, and
hence dg \P% is non-degenerate.

Finally if the binding B is connected, the orientation of B as boundary of
the page Py, and as contact manifold (B, 3) is compatible by Remark 2. If B is
non-connected (which is only the case for dim B = 1, because (2n + 1)-dimensional
Brieskorn manifolds are (n — 1)-connected) each component of B = ¥(ag,a1) can
be written in the form

{(eicp/ao’Aeiq’/al) ’ p e [0,27r1cm(ao,a1)]} 5

where A; is an a;-th root of —1. The p-parametrization gives the correct orientation,
and it follows that the integral of o over any of the N components of B has the
same value C. In particular, it follows

0</da:/a:NC,
P B

and hence C > 0.

5. Topological description of the monodromy
of the open book of ¥(ay,...,an)

In [Mil] Milnor worked out the topology of the page of the above open book
(B,9) of X(ay,...,a,) and described the monodromy v by its action on H;(B).
Let €, denote the finite cyclic group consisting of all a-th roots of unity and let J
denote all linear combinations (tjws, ..., thwy) where w; € Qq,, t; >0 (1 < i < n)
and t; +--- +t, = 1. Then J is a deformation retract of the fiber P, = 9~1(1)
(op.cit., Lemma 9.2). Here the dimension of P; is 2n. Furthermore, the free Abelian
group H,(Py;Z) has rank p = (ag —1)---(a, — 1) (op.cit., Theorem 9.1).

It is straightforward to prove the following fact which appears in a more
general setting in [A’C, Theorem 3] for n = 2.
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LEMMA 8. There is a basis for H,_1(J) in which the p x p matriz U for the
monodromy v of the open book of (a1, as,...,a,) (n>1, ged(a,as, -+, a,) = 1)
18

U=Ay 1 QA 1@ @ Aqg, 1

where A, is the p X p matriz given by

11 1 1
-1 0 0

A,=| 0 -1 0 0
0 0 - -10

As the last goal, we want to express this monodromy as a product of Dehn
twists along Lagrangian spheres. In dimension 3 (i.e. n = 2), each circle is La-
grangian on the 2-dimensional pages. Furthermore, in a rational homology sphere
the binding determines the open book decomposition up to isotopy (we learned
this from [CP]). Hence given the binding in a Brieskorn sphere, any corresponding
description of the monodromy in terms of Dehn twists is the solution. This has
been described in a purely topological manner, for example, in [AO, Theorem 1].
The question remaining is the relation between the cycles of Dehn twists in these
descriptions and the generators of Hi(J) that appear in Lemma 8.

For higher dimensions the problem is more complicated. The skeleton given
by Milnor can be made piecewise smooth, and the smooth segments are Lagrangian
submanifolds. Unfortunately, we do not yet know how to find proper Lagrangian
embeddings of the spheres that constitute the skeleton of a page as a bouquet.
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