
Chapter 8
Advanced State Space Methods

This chapter gives an overview and some concrete examples of state space reduction
methods. The main limitation of using state spaces to verify behavioural properties
of systems is the state explosion problem [106], i.e., that state spaces of systems
may have an astronomical number of reachable states, which means that they are
too large to be handled with the available computing power (memory and CPU
speed). Methods for alleviating this inherent complexity problem are an active area
of research, which has led to the development of a large collection of state space
reduction methods. These methods have significantly broadened the class of systems
that can be verified, and state spaces can now be used to verify systems of industrial
size. Some of these methods [18, 61, 62, 108] have been developed in the context
of the CPN modelling language. Other methods (e.g., [55, 87, 104, 110]) have been
developed outside the context of the CPN modelling language. Most state space
reduction methods are independent of the concrete modelling language used and
hence are applicable to a large class of such languages.

Section 8.1 briefly introduces some representative classes of state space reduction
methods and the associated paradigms. Section 8.2 presents the sweep-line method
[18], which exploits a certain notion of progress in systems to delete states dur-
ing state space exploration and thereby reduce the peak memory usage. Section 8.3
presents the symmetry method [62], which exploits inherent symmetries in systems
to compute a condensed state space where each node represents an equivalence class
of markings and each arc represents an equivalence class of binding elements. Fi-
nally, Sect. 8.4 presents the equivalence method [61], which is a generalisation of the
symmetry method. The three advanced state space method presented in Sects. 8.2–
8.4 have been used in the industrial application described in Sect. 14.3.

8.1 State Space Reduction Methods

State space reduction methods typically exploit certain characteristics of the system
under analysis, and hence no single reduction method works well on all kinds of sys-

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 8, 189
c© Springer-Verlag Berlin Heidelberg 2009

190 8 Advanced State Space Methods

tems. Furthermore, the methods often limit the verification questions that can be an-
swered. When verifying a concrete system one must therefore choose a method that
exploits characteristics present in the system and preserves the behavioural prop-
erties to be verified. In many cases it is possible to use two or more state space
reduction methods simultaneously, which typically leads to more reduction in CPU
time and memory usage than when each method is used in isolation.

Many reduction methods are based on the paradigm of on-the-fly verification,
which means that the verification question is stated before the exploration of the
state space starts, and the state space exploration is done relative to the verification
question provided. This makes it possible to ignore irrelevant parts of the state space
and terminate the state space exploration as soon as the answer to the verification
question has been obtained. Many advanced state space reduction methods uses
linear-time temporal logic (LTL) [107] or computation tree temporal logic (CTL)
[22] for stating the verification questions [37].

One class of methods aims at exploring only a subset of the state space. The
stubborn-set [104], ample-set [87], and persistent-set [49] methods exploit the in-
dependence between transitions to construct a reduced state space which is a subset
of the full state space. Many variants of these methods have been developed for dif-
ferent classes of behavioural properties, ranging from simple deadlock properties
[104] to LTL [105] and CTL [47] model checking. A good survey of these vari-
ants can be found in [106]. It is also possible to use search heuristics known from
the domain of artificial intelligence to guide the exploration of the state space such
that only a subset of the state space is explored and the answer to the verification
question is computed as soon as possible. An orthogonal approach is to delete states
from memory during state space exploration. The sweep-line method [18] (to be
discussed in Sect. 8.2) and the state caching method [58] delete states from memory
during state space exploration to reduce the peak memory usage. These methods
explore the full state space and may explore the same state several times. Belonging
to this class of method is also the to-store or not-to-store method [5] which uses
heuristics to decide whether a visited state must be stored in memory or not.

Another class of methods is based on computing a condensed state space, where
each node represents an equivalence class of states (markings) and where each arc
represents an equivalence class of events (binding elements). The idea is then to
store only one representative for each such equivalence class and in this way con-
sume less memory and obtain a faster construction of the state space. This class
includes the symmetry method the [62], equivalence method [61], and the use of
time condensed-state spaces [19]. Many reduction methods are also based on stor-
ing states in a compact manner in memory using special data structures. These in-
clude the bit-state hashing method [55], the hash compaction method [98, 110], and
the comback method [108]. Belonging to this class are also methods [82] based on
binary-decision diagrams (BDDs) [13] and the methods presented in [44, 55]. A
related class of methods uses external storage to store the set of visited states [99].

A computer tool supporting state spaces must implement a wide range of state
space reduction methods, since no single method works well on all systems. CPN

8.2 Sweep-Line Method 191

Tools supports a number of reduction methods, and the set of supported methods is
continuously being expanded as new methods are developed and implemented.

8.2 Sweep-Line Method

The amount of main memory available is often the limiting factor in the practical use
of state spaces. During construction of the state space, the set of markings encoun-
tered is kept in memory in order to recognise already visited markings and thereby
ensure that the state space exploration terminates. The basic idea of the sweep-line
method [18] is to exploit a certain kind of progress exhibited by many systems.
Exploiting progress makes it possible to explore all of the reachable markings of a
CPN model while storing only small fragments of the state space in main memory
at any given time. This means that the peak memory usage is significantly reduced.
The sweep-line method is aimed at on-the-fly verification of safety properties, such
as verifying that all reachable states satisfy a given predicate on states or determin-
ing whether a reachable marking exists that satisfies a given predicate. Below, we
illustrate the use of the sweep-line method using a variant of the CPN model of the
protocol system described in Sect. 7.1, shown in Fig. 8.1. The difference compared
with the model considered in Chap. 7 is that we have modified the arc expression
on the arc from ReceiveAck to NextSend such that the sender never decreases the
sequence number on NextSend. Furthermore, we are considering a configuration of
the protocol where the network has a limit of six data packets.

For the protocol system, one source of progress is the sequence number of the
receiver, i.e., the colour of the token on the place NextRec. The basic observation is
that the receiver sequence number, modelled by the place NextRec has the property

if success
then empty
else 1`()

if success
then empty
else 1`()

()

()

k

if n=k
then k+1
else k

k

data

if n > k
then n
else k

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

Limit

6`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

Fig. 8.1 CPN model used to illustrate the sweep-line method

192 8 Advanced State Space Methods

that as the protocol executes, the value of this counter is increased and never de-
creased. This means that we can quantify how far the protocol system has progressed
by considering the sequence number of the data packet expected by the receiver.
This progress is also reflected in the state space of the protocol system. Figure 8.2
shows an initial fragment of the state space for the protocol system, where node 1
represents the initial marking. To simplify the drawing, we have omitted the detailed
information about the markings corresponding to each node and the arc labels de-
scribing the binding elements. We have organised the nodes into layers (separated
by thick horizontal lines) according to the value of the receiver sequence number on
NextRec. Layer 1 contains the markings in which the receiver sequence number has
the value 1, and layer 2 contains markings where the receiver sequence number is 2.
This means that markings in higher-numbered layers are markings where the system
has progressed further (in terms of receiver sequence number) than in markings in
lower-numbered layers.

The progress present in the protocol system manifests itself in the state space in
that a marking in a given layer has successor markings either in the same layer or in
layers that represent further progress, but never in layers that represent less progress.
Markings in layer 1 can thus never be reached from markings in layer 2 (because the
value of the token on NextRec is never decremented). If we process the markings
(i.e., calculate successor markings) one layer at a time, moving from one layer to
the next when all markings in the first layer have been processed and not before,
we can think of a ‘sweep-line’ moving through the state space. At any given point
during state space exploration, the sweep-line corresponds to a single layer – all of
the markings in the layer are ‘on’ the sweep-line – and all new markings calculated
are either on the sweep-line or in front of the sweep-line.

The progress in the protocol system can be captured by a progress measure which
is a function that maps each marking into a progress value. In this case the function

28
3:3

7
4:3

NextRec: 1`2NextRec: 1`2

15
5:4

20
4:5

2
2:3

19
1:1

13
2:3

8
2:3

9
2:2

5
1:2

6
3:4

3
2:3

4
2:2

1
1:1NextRec: 1`1NextRec: 1`1

14
3:4

Layer 2:

10
5:5

Layer 1:

Fig. 8.2 Initial fragment of state space, arranged by progress

8.2 Sweep-Line Method 193

maps a marking into the receiver sequence number. This progress measure can be
implemented as the following CPN ML function, where the structure Mark is used
to obtain the marking of the place NextRec:

fun ProtocolPM n =
ms_to_col (Mark.Protocol’NextRec 1 n);

The fundamental property that the sweep-line method requires from a progress mea-
sure is that for a given marking M, the progress value of any successor marking M′
of M must be greater than or equal to the progress value of M. This property can be
checked during state space exploration by simply checking that the property holds
for all markings encountered.

Table 8.1 gives statistics for the application of the sweep-line method to the pro-
tocol system using the receiver sequence number as the progress measure. The col-
umn ‘Limit’ specifies the capacity of the network, and the column ‘Packets’ speci-
fies the number of data packets to be sent. The column ‘Nodes’ gives the number of
nodes in the ordinary state space, and the column ‘Arcs’ column gives the number
of arcs. The column ‘Sweep-line peak’ gives the peak number of nodes stored si-
multaneously in main memory during state space exploration using the sweep-line
method. The column ‘Node ratio’ specifies the number of nodes in the state space
divided by the peak number of nodes stored when the sweep-line method is used,
and hence specifies the reduction in memory usage obtained using the sweep-line
method. There is no reduction factor for arcs, since the sweep-line method does not
store any arcs during exploration of the state space. The column ‘Time ratio’ speci-
fies the CPU time used to generate the state space using ordinary state space explo-
ration divided by the CPU time used to explore the state space using the sweep-line
method, and hence specifies the reduction in time usage obtained using the sweep-
line method. The time ratio of 1.0 for the first three configurations (the three small-
est) is due to the fact that the CPU times become identical for the two methods when
rounded to two digits.

Table 8.1 Statistics for application of the sweep-line method

State space Sweep-line Node Time
Limit Packets Nodes Arcs peak ratio ratio

1 4 33 44 33 1.00 1.00
2 4 293 764 134 2.19 1.00
3 4 1 829 6 860 758 2.41 1.00
4 4 9 025 43 124 4 449 2.03 1.78
5 4 37 477 213 902 20 826 1.80 1.65
6 4 136 107 891 830 82 586 1.65 1.51

4 5 20 016 99 355 8 521 2.35 1.95
4 6 38 885 198 150 14 545 2.67 2.19
4 7 68 720 356 965 22 905 3.00 2.27
4 8 113 121 596 264 33 985 3.33 2.41

194 8 Advanced State Space Methods

It can be seen that the sweep-line method yields a reduction in both space and
time. The former is expected, since markings are deleted during state space explo-
ration. The saving in time is because the deletion of states implies that there are
fewer markings to be compared during state space exploration when determining
whether a marking has already been encountered.

In the above, we have introduced the basic sweep-line method, which relies on
the use of a monotonic progress measure, i.e., a progress measure for which the
successor markings of a given marking M have progress values which are always
greater than or equal to the progress value of M. This property ensures that it is safe
to delete markings and that the sweep-line method terminates after all reachable
markings have been processed once. A generalised version of the sweep-line method
[70] also exists, which can deal with progress measures that are not monotonic.
The basic idea of the generalised sweep-line method is to perform multiple sweeps
of the state space and to make certain markings persistent, which means that they
cannot be deleted from memory. In addition, the basic sweep-line method has been
extended with respect to the properties that can be verified with it [81]. It has also
been extended [72] to use external storage such that counterexamples and diagnostic
information can be obtained, which is not possible with the basic method, since it
deletes the markings from memory.

For timed CP-nets the global clock can be used as a progress measure. We shall
give further examples of the use of the basic and generalised sweep-line methods in
Sect. 14.3.

8.3 Symmetry Method

Many concurrent systems possess a certain degree of symmetry. For example, many
concurrent systems are composed of similar components whose identities are in-
terchangeable from the point of view of verification. This symmetry is also re-
flected in the state spaces of such systems. The basic idea in the symmetry method
[23, 39, 57, 62] is to represent symmetric markings and symmetric binding ele-
ments using equivalence classes. State spaces can be condensed by factoring out
this symmetry, and the symmetry-condensed state space is typically orders of mag-
nitude smaller than the full state space. A symmetry-condensed state space can be
constructed directly without first constructing the full state space and then grouping
nodes and arcs into equivalence classes. Furthermore, behavioural properties can be
verified directly using symmetry-condensed state spaces without unfolding to the
full state space. Below we explain the use of the symmetry method using a vari-
ant of the hierarchical CPN model of the protocol system with multiple receivers
described in Sect. 5.4. Figure 8.3 shows the Protocol module of the CPN model.
Compared with the CPN model presented in Sect. 5.4, we have added a place Limit
to obtain a finite state space in a way similar to what was done in Sect. 7.1.

It can be observed that the receivers in the protocol system are symmetric, in
the sense that they behave in the same way. They are distinguishable only by their

8.3 Symmetry Method 195

Network

Network

Receiver

Receiver

Sender

Sender

Limit

2`()

UNIT

Packets
To Send

AllPackets

PACKET

C

RECVxPACKET

D

RECVxPACKET

A

RECVxPACKET

Data
Received

AllRecvs ""

RECVxDATA

B

RECVxPACKET

Sender ReceiverNetwork

Fig. 8.3 Protocol module for protocol, used to illustrate the symmetry method

identities. This symmetry is also reflected in the state space. Figure 8.4 shows an
initial fragment of the state space for the CPN model shown in Fig. 8.3, with two
receivers. We have used the same notation in the arc labels as in Chap. 7 and have
additionally appended the identity of the receiver which a given binding element
corresponds to. As an example, the arc label TP1+ (Recv(2)) on the arc from node

TP1+ (Recv(2))

TP1- (Recv(2))

RP1 (Recv(1)) RP1 (Recv(2))

TP1+ (Recv(1))

TP1- (Recv(1))

TP1+ (Recv(1))TP1- (Recv(1)) TP1- (Recv(2))

SP1

9
2:4

3
1:3

NextSend: 1`1
A: 1`(Recv(2),Data((1,"COL")))
B: 1`(Recv(1),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")

NextSend: 1`1
A: 1`(Recv(2),Data((1,"COL")))
B: 1`(Recv(1),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")

4
1:2

5
1:3

NextSend: 1`1
A: 1`(Recv(1),Data((1,"COL")))
B: 1`(Recv(2),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")

NextSend: 1`1
A: 1`(Recv(1),Data((1,"COL")))
B: 1`(Recv(2),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")

6
1:2

2
1:4

NextSend: 1`1
A: 1`(Recv(1),Data((1,"COL")))++1`(Recv(2),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")

NextSend: 1`1
A: 1`(Recv(1),Data((1,"COL")))++1`(Recv(2),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")

1
2:1

NextSend: 1`1
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")
Limit: 2`()

NextSend: 1`1
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")
Limit: 2`()

8
2:1

NextSend: 1`1
B: 1`(Recv(1),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")
Limit: 1`()

NextSend: 1`1
B: 1`(Recv(1),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")
Limit: 1`() 7

2:2

NextSend: 1`1
B: 1`(Recv(1),Data((1,"COL")))++1`(Recv(2),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")

NextSend: 1`1
B: 1`(Recv(1),Data((1,"COL")))++1`(Recv(2),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")

TP1+ (Recv(2))

10
2:1

NextSend: 1`1
B: 1`(Recv(2),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")
Limit: 1`()

NextSend: 1`1
B: 1`(Recv(2),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")
Limit: 1`()

11
2:4

Fig. 8.4 Initial fragment of state space

196 8 Advanced State Space Methods

2 to node 5 specifies that this arc represents an occurrence of TransmitPacket with
a binding corresponding to a successful transmission of data packet 1, intended for
receiver 2.

Consider now the two nodes 3 and 5, which correspond to markings in which
exactly one of the two data packets has been transmitted successfully across the net-
work. These two markings are symmetric in the sense that the marking represented
by node 3 can be obtained from the marking represented by node 5 by swapping
the identities of receivers 1 and 2. Similarly, the two markings represented by nodes
4 and 6 can be obtained from each other by interchanging the identities of the re-
ceivers. Nodes 4 and 6 correspond to markings in which one of the two data packets
was lost on the network. It can also be observed that two symmetric markings such
as marking 3 and marking 5 have symmetric sets of enabled binding elements, and
symmetric sets of successor markings. As an example, markings 7, 8, and 9, which
are successor markings of marking 3, are symmetric to markings 7, 10, and 11,
respectively, which are successor markings of marking 5. This property can be ex-
tended to finite and infinite occurrence sequences, i.e., for any occurrence sequence
starting in a marking M and for all markings M′ symmetric with M, there exists a
symmetric occurrence sequence starting in M′.

Figure 8.5 shows an initial fragment of the symmetry-condensed state space for
the protocol system obtained by considering two markings equivalent if one of them
can be obtained from the other by a permutation of the identities of the receivers. The
nodes and arcs now represent equivalence classes of markings and binding elements,
respectively. The equivalence class of markings represented by a node is listed in
curly brackets in the inscription of the node; for example, node 3 represents nodes
3 and 5 in Fig. 8.4. A similar notation is used for binding elements.

Symmetry-condensed state spaces can be represented by storing a representative
marking (or binding element) for each equivalence class of markings (or binding
elements), and the calculation of the condensed state space is typically based on

{TP1+ (Recv(2)),
 TP1+ (Recv(1))}{TP1- (Recv(2)),

 TP1- (Recv(1))}

{RP1 (Recv(1)),
 RP1 (Recv(2))}

{TP1+ (Recv(1)),
 TP1+ (Recv(2))}

{TP1- (Recv(1)),
 TP1- (Recv(2))}

{SP1}

8
2:1

3
1:3

4
1:2

2
1:4

1
2:1

{8,10}

{3,5}

7
2:2

9
2:4{9,11} {7}

{4,6}

{2}

{1}

Fig. 8.5 Initial fragment of symmetry-condensed state space

8.3 Symmetry Method 197

calculating canonical representatives of each equivalence class [79]. This means that
whenever a new marking is generated during state space exploration, this marking
is transformed into a canonical representative of its equivalence class. It is then
checked whether this canonical representative is already included in the state space.
A similar processing is done for binding elements.

The symmetries used to reduce the state space are required to be symmetries
actually present in the CPN model. This amounts to checking the following three
properties:

• All initial marking inscriptions must be symmetric, i.e., applying a permutation
to the initial marking does not change the initial marking.

• All guard expressions must be symmetric, i.e., evaluating the guard in a binding
must give the same result as first permuting the binding and then evaluating the
guard.

• All arc expressions must be symmetric, i.e., evaluating the arc expression in a
binding and then applying a permutation must give the same result as first per-
muting the binding and then evaluating the arc expression.

These requirements can be checked prior to state space exploration by examining
the inscriptions of the CPN model one at a time. This means that they can be checked
statically without considering occurrence sequences. The specification of the sym-
metries themselves is done by associating an algebraic group of permutations with
each atomic colour set of the CPN model. The atomic colour sets are those colour
sets defined without reference to other colour sets, i.e., those colour sets defined
without using colour set constructors such as unions, products, and records. Exam-
ples of permutation groups are the set of all permutations of colours in the colour
set, the set of all rotations for an ordered colour set, and the set that consists of just
the identity element, i.e., the group that allows no permutation of the colours in the
colour set. For the present protocol system, we associate the set of all permutations
with the atomic colour set RECV, which models the identities of receivers. For the
other atomic colour sets (such as NO, modelling the sequence numbers), we assign
the trivial permutation group consisting of the identity element only, since we do
not allow permutation of colours in these colour sets.

Table 8.2 shows some statistics obtained using the symmetry method on the pro-
tocol system for different configurations. The column L lists the capacity of the
network, the column P lists the number of data packets, and the column R lists the
number of receivers in the configuration. The table gives the numbers of nodes and
arcs in the full and in the symmetry-condensed state spaces. The columns ‘Node
ratio’, ‘Arc ratio’, and ‘Time ratio’ give the reduction obtained in terms of nodes,
arcs, and CPU time, respectively. The column R! lists the factorial of the number of
receivers in the configuration. When there are R receivers in the configuration, there
are R! possible permutations of the receivers. Hence, R! is the theoretical upper limit
on the reduction factor that can be obtained for a configuration with R receivers. For
the configurations with five and six receivers, it was not possible to compute the full
state space; its size was instead computed by computing the sizes of the equivalence

198 8 Advanced State Space Methods

Table 8.2 Statistics for application of the symmetry method

State space Symmetry Node Arc Time
L P R Nodes Arcs Nodes Arcs ratio ratio ratio R!

2 3 2 921 1 832 477 924 1.93 1.98 0.7 2
3 3 3 22 371 64 684 4 195 11 280 5.33 5.73 2.0 6
4 3 4 172 581 671 948 9 888 32 963 17.45 20.38 23.9 24
5 2 5 486 767 2 392 458 8 387 31 110 58.04 76.90 – 120
6 2 6 5 917 145 35 068 448 24 122 101 240 245.30 346.39 – 720

classes represented by the nodes and arcs in the condensed state space. This is why
no time reduction ratio has been provided for these configurations.

The advantage of the symmetry method is that significant reductions can be ob-
tained, as was illustrated above, and that the method can be used to check all be-
havioural properties that are invariant under symmetry. The main limitation of the
symmetry method is that computing the canonical representations of markings and
binding elements is computationally expensive. It has been shown [20] that comput-
ing canonical representatives for equivalence classes is at least as hard as the graph
isomorphism problem, for which no polynomial-time algorithm is known. The cur-
rent available algorithms for computing canonical representatives, which exploit a
number of advanced algebraic techniques, can, however, in practice deal efficiently
with systems where the number of permutation symmetries is below 10! [79].

8.4 Equivalence Method

The symmetry method presented in the previous section is based on symmetries in
the system inducing an equivalence relation on the markings and binding elements.
The equivalence method is a generalisation of the symmetry method, where the con-
straint that the equivalence relations are induced by symmetries is removed. Instead,
arbitrary equivalence relations on the markings and binding elements can be used
provided that they are consistent, i.e., equivalent markings must have equivalent sets
of enabled binding elements and equivalent sets of successor markings. Below, we
illustrate the use of the equivalence method using the CPN model from Fig. 8.1.

The equivalence relation for this protocol system is based on the observation
that certain packets on the network become similar (equivalent) as the protocol ex-
ecutes. As an example, consider the marking M1 in Fig. 8.6 and the arrival of the
retransmitted data packet with sequence number 2 at the receiver. The arrival of this
data packet does not change the state of the receiver. The sequence number is smaller
than the expected number, and the data packet is said to be old. The arrival of this old
data packet has the effect that an acknowledgement asking for data packet number 3
is sent. Generalising this, the arrival of any old data packet (with a sequence number

8.4 Equivalence Method 199

if success
then empty
else 1`()

if success
then empty
else 1`()

()

()

k

if n=k
then k+1
else k

k

data

if n > k
then n
else k

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

Limit

6`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`3

3
2`2++
1`3

1 1`3

11`"COLOUR"

3

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 8.6 Example marking M1 for the equivalence method

less than the one expected) has the effect that an acknowledgement is sent indicating
which packet is actually expected. For instance, reception of an old data packet with
sequence number 1 on place A has exactly the same effect as the reception of an old
data packet with sequence number 2. Similar observations and terminology apply to
acknowledgements arriving at the sender, as we have changed the CPN model such
that the sender never decreases its sequence number when an old acknowledgement
is received.

The intuition behind the equivalence relation for the transport protocol is that it
captures that old data packets are equivalent, and, similarly, old acknowledgements.
The equivalence relation considers two markings to be equivalent if three conditions
hold:

• The markings of the places PacketsToSend, NextSend, Limit, NextRec, and
DataReceived must be identical.

• The markings of the network places A, B, C, and D must be identical when only
non-old packets are considered.

• The markings of the network places A, B, C, and D must have the same numbers
of old packets.

As an example, the marking M1 shown in Fig. 8.6 is equivalent to the marking M2

shown in Fig. 8.7. The markings of places B and D are different in the two markings,
but there is the same number of old data packets on B and the same number of old
acknowledgements on D in the two markings. Furthermore, the non-old data packets
and non-old acknowledgements on B and D are identical in the two markings.

Two bindings of a transition are considered equivalent if they both involve old
data packets (or old acknowledgements), whereas bindings involving non-old data

200 8 Advanced State Space Methods

if success
then empty
else 1`()

if success
then empty
else 1`()

()

()

k

if n=k
then k+1
else k

k

data

if n > k
then n
else k

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

Limit

6`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`3

3

1`1++
1`2++
1`3

1 1`3

11`"COLOUR"

3

2`(2,"OUR")++
1`(3,"ED ")

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 8.7 Example marking M2 for the equivalence method

packets (or acknowledgements) are equivalent only to themselves. The specification
of the equivalence relations is provided to CPN Tools by implementing two predi-
cates in CPN ML. The predicate on markings takes two markings and returns true if
and only if the two markings are equivalent. Analogously, the predicate on binding
elements takes two binding elements and returns true if and only if the two binding
elements are equivalent. A formalisation of the above equivalence relation can be
found in [65], including a proof that it is consistent. Table 8.3 gives some statistics
obtained using the equivalence method on the protocol system for several different
limits on the network.

The advantage of the equivalence method is that it allows a more general notion
of equivalence compared with the symmetry method. The disadvantage is that the
proof of consistency of the equivalence relation must be done manually, and this can
be a difficult task for complex CPN models, Furthermore, it is often cumbersome
to write the CPN ML code specifying the two equivalence relations. These are the

Table 8.3 Statistics for application of the equivalence method

State space Equivalence Node Arc Time
Limit Packets Nodes Arcs Nodes Arcs ratio ratio ratio

1 4 33 44 33 44 1.00 1.00 1.00
2 4 293 764 155 383 1.89 1.99 1.00
3 4 1 829 6 860 492 1 632 3.72 4.20 0.90
4 4 9 025 43 124 1 260 5 019 7.16 8.59 1.56
5 4 37 477 213 902 2 803 12 685 13.37 16.86 4.09
6 4 136 107 891 830 5 635 28 044 24.15 31.80 13.58

8.4 Equivalence Method 201

main reasons why the equivalence method in its full generality has not been used
very much in practice.

Section 10.4 presents a special version of the equivalence method that can be
used to obtain a finite state space for any timed CPN model where the underlying
untimed CPN model has a finite state space. This special version is fully automatic
to use, as it requires no manual consistency proof and manual implementation of the
equivalence predicates.

	Advanced State Space Methods
	State Space Reduction Methods
	Sweep-Line Method
	Symmetry Method
	Equivalence Method

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

