Chapter S
Hierarchical Coloured Petri Nets

This chapter shows how a CPN model can be organised as a set of modules, in a
way similar to that in which programs are organised into modules. There are several
reasons why modules are needed. Firstly, it is impractical to draw a CPN model of
a large system as a single net, since it would become very large and inconvenient.
Although the net can be printed on a set of separate sheets and glued together, it
would be difficult to get an overview and it would be time-consuming to produce a
nice layout. Secondly, the human modeller needs abstractions that make it possible
to concentrate on only a few details at a time. CPN modules can be seen as black
boxes, where modellers, when they desire, can forget about the details within mod-
ules. This makes it possible to work at different abstraction levels, and hence we
shall also refer to CPN models with modules as hierarchical CPN models. Thirdly,
there are often system components that are used repeatedly. It would be inefficient
to model these components several times. Instead, a module can be defined once and
used repeatedly. In this way there is only one description to read, and one description
to modify when changes are necessary.

Section 5.1 introduces the concept of modules and their interfaces, and explains
how to compose modules using substitution transitions. Section 5.2 introduces mod-
ule instances, and Sect. 5.3 shows how modules can be parameterised. Section 5.4
shows how to parameterise a CPN model to make it easy to consider different con-
figurations of the modelled system. Section 5.5 introduces the concept of fusion
sets, and Sect. 5.6 shows how a hierarchical CPN model can be unfolded into a
non-hierarchical CPN model.

5.1 Modules and Interfaces

To illustrate the use of modules, we revisit the CPN model of the protocol given
in Sect. 2.4 and develop a hierarchical CPN model for this example protocol. A
straightforward idea is to create a module for the sender, a module for the network,
and a module for the receiver. These three modules could look as shown in Figs 5.1—

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112_5, 95
© Springer-Verlag Berlin Heidelberg 2009



96 5 Hierarchical Coloured Petri Nets

AllPackets

Packets

To Send
NOxDATA

(n,d)
Send (n,d)
t
Packet ou
NOXDATA

Receive ¢ ( : )
Ack n

Fig. 5.1 Sender module

Data

Received
DATA
e (n,d)
NOXDATA
if n=k
then data~d
11 ‘ else data
@ Receive )
- Packet
NO if n=k
then k+1 .
else k if n=k
then k+1
else k
NO

Fig. 5.2 Receiver module

5.3. Intuitively, the protocol has been cut into three separate parts, where each part
is identical to a subnet of Fig. 2.10.

The Sender module contains two transitions and four places. Place D is an input
port, place A is an output port, and the place PacketsToSend is an input/output port.
This means that A, D, and PacketsToSend constitute the inferface through which
the Sender module exchanges tokens with its environment (i.e., the other modules).
The Sender module will import tokens via the input port D and export tokens via
the output port A. An input/output port is a port through which a module can both
import and export tokens. Port places can be recognised by rectangular port tags



5.1 Modules and Interfaces 97

if success
then 1" (n,d)

(n,d) Transmit | else empty o]
[Out]
n] Packet e

NOxDATA NOxDATA

Transmit
@4_ 4_© ]
if success Ack n

NO then1l'n NO
else empty

Fig. 5.3 Network module

positioned next to them specifying whether the port place is an input, output, or
input/output port. The place NextSend is an internal place, which is relevant only to
the Sender module itself.

The Receiver module has an input port B, an output port C, an input/output port
DataReceived, and an internal place NextRec. The Network module has two input
ports, A and C, together with two output ports, B and D. The Network module has
no internal places.

To tie the three modules together, we create the Protocol module, shown in
Fig. 5.4. This represents a more abstract view of the entire protocol system. In the
Protocol module, we can see that the Sender, Network, and Receiver exchange to-
kens with each other, via the places A, B, C, and D — but we cannot see the details of
what the Sender, Network, and Receiver do.

The rectangular boxes with double-line borders in the Protocol module are sub-
stitution transitions. Each of them has a rectangular substitution tag positioned next
to it. The substitution tag contains the name of a submodule which is related to the
substitution transition. Intuitively, this means that the submodule presents a more
detailed view of the behaviour represented by the substitution transition, in a way

Data
Received

DATA

AllPackets

Packets
To Send

NOxDATA

NOXDATA NOxDATA

Receiver

Fig. 5.4 Protocol module: top-level module of the hierarchical protocol model



98 5 Hierarchical Coloured Petri Nets

similar to that in which the implementation of a procedure provides a more detailed
view of the effect of a procedure call. In Fig. 5.4, each substitution transition has the
same name as its submodule, but this is not required in general.

The input places of substitution transitions are called input sockets, and the output
places are called output sockets. This means that A is an output socket for the substi-
tution transition Sender, and an input socket for the substitution transition Network.
The place PacketsToSend is an input/output socket for the substitution transition
Sender.

The socket places of a substitution transition constitute the interface of the sub-
stitution transition. To obtain a complete hierarchical model, it must be specified
how the interface of each submodule is related to the interface of its substitution
transition. This is done by means of a port—socket relation, which relates the port
places of the submodule to the socket places of the substitution transition. Input
ports are related to input sockets, output ports to output sockets, and input/output
ports to input/output sockets. In Figs 5.1-5.4, each port has the same name as the
socket to which it is related, but this is not required in general.

When a port and a socket are related, the two places constitute two different
views of a single place. This means that related port and socket places always share
the same marking and hence conceptually become a single compound place. Fig-
ures 5.5-5.7 show the marking of the Protocol, Sender, and Network modules after
an occurrence of the transition SendPacket in the initial marking.

When the transition SendPacket occurs, it creates a token at the output port A in
the Sender module (see Fig. 5.6). This port place is related to the output socket A
of the substitution transition Sender in the Protocol module (see Fig. 5.5). Hence,
the new token will also appear at place A in the Protocol module. This place is also

1°(1,"CoL")++
1°(2,"0UR")++
1°(3,"ED ")+ +
1°(4,"PET")++
1°(5,"RI ")++
1°(6,"NET")

Packets
To Send

Data
Received

NOxDATA DATA

NOxDATA

Sender Receiver

Receiver

Fig. 5.5 Marking of Protocol module, after occurrence of SendPacket



5.1 Modules and Interfaces 99

1°(1,"COL")++
1°(2,"0UR")++
1°(3,"ED ")++
(6)|1(4,"PET")++
1°(5,"RI_")++
1°(6,"NET")

AllPackets
NOXDATA

Packets
To Send

1°(1,"CoL")

Receive < ( : )
Ack n (In]

NO

Fig. 5.6 Marking of Sender module, after occurrence of SendPacket

an input socket for the substitution transition Network and has the port place A in
the Network module (see Fig. 5.7) related to it. Hence, the new token also becomes
available at the port place A of the Network module. In other words, the three places
A in the Protocol, Sender, and Network modules are three different views of a sin-
gle compound place, through which the modules can interchange tokens with each
other. Similar remarks can be made about the places B, C, and D. The place D ap-
pears in the Protocol, Sender, and Network modules, while B and C appear in the
Protocol, Network, and Receiver modules.

We have seen above that two related port and socket places constitute different
views of a single place, and that this means that they always have the same marking.
Obviously, this implies that they also need to have identical colour sets, and their
initial marking expressions must evaluate to the same multiset of tokens. The only
exception is that if a port place does not have an initial marking expression, then it

1°(1,"coL") if success
e then 1" (n,d)
(n,d) Transmit [|_else empty o]
ut
w () Ok
NOxDATA NOXDATA
Transmit n
@ if success Ack n @
NO then1l'n NO
else empty

Fig. 5.7 Marking of Network module, after occurrence of SendPacket



100 5 Hierarchical Coloured Petri Nets

obtains its initial marking from the related socket place. We shall show later how this
can be used to parameterise modules. It should be noted that substitution transitions
do not have arc expressions or guards. It does not make sense to talk about the en-
abling and occurrence of a substitution transition. Instead, the substitution transition
represents the compound behaviour of its submodule.

In the hierarchical model presented above there are only two levels of abstraction.
The highest abstraction level is the Protocol module, and the lowest abstraction level
is the Sender, Network, and Receiver modules. In general, there can be an arbitrary
number of abstraction levels. As an example, a more detailed model of the protocol
could be obtained by turning the transition SendPacket into a substitution transition
having a submodule where the send operation is defined by a number of separate
transitions, for example, one for the ordinary send operation and another for the
resend operation. A larger system could also be envisioned in which the Protocol
module is a submodule of one or more substitution transitions. CPN models of larger
systems typically have up to 10 abstraction levels.

5.2 Module Instances and Hierarchy

Next let us take a closer look at the Network module in Fig. 5.3. It contains two
transitions that have a very similar behaviour. However, the token colours involved
are slightly different. The transition TransmitPacket deals with data packets of type
NOxDATA, whereas the transition TransmitAck deals with acknowledgements of
type NO. This means that we cannot immediately use the same submodule to rep-
resent the behaviour of TransmitPacket and TransmitAck, because a socket and its
related port must have the same colour set. To overcome this problem, we use a
union colour set in a way similar to that in Sect. 3.2. It can contain values from
NOxDATA and values from NO, and is defined as follows:

colset PACKET = union Data:NOxDATA + Ack:NO;

This colour set is a union, and it uses two constructors Data and Ack to tell
whether a data value of this colour set represents a data packet (such as Data
(1,"COL")) or an acknowledgement packet (such as Ack(2)). Using the
PACKET colour set, we can construct a modified version of the hierarchical
protocol model consisting of the five modules shown in Figs 5.8-5.12.

As before, there are modules called Protocol, Sender, Network, and Receiver.
For the Protocol, Sender, and Receiver modules no changes are made, except for
those implied by the use of the colour set PACKET instead of NOxDATA and NO.
The Network module now has two substitution transitions, each related to the new
Transmit module shown in Fig. 5.12. The transition Transmit of the Transmit module
transmits packets of type PACKET, i.e., both data packets and acknowledgements.
The variable p is a variable of the colour set PACKET.



5.2 Module Instances and Hierarchy 101

Data
Received

DATA

AllPackets

Packets
To Send

PACKET

PACKET

Sender Network Receiver

PACKET PACKET

Fig. 5.8 Modified Protocol module

AllPackets

Packets

To Send

PACKET
Data(n,d)

Send Data(n,d)
Send _.®

PACKET

Receive
Ack Ack(n) ( )

PACKET

Fig. 5.9 Modified Sender module

The Transmit module is used as a submodule of the substitution transitions Trans-
mitData and TransmitAck in the Network module. This means that there will be two
separate instances of the Transmit module — one for each of the two substitution
transitions. For the instance of the Transmit module which is a submodule of the
substitution transition TransmitData in Fig. 5.11 the port place IN is related to the
socket place A, and the port place OUT is related to the socket place B. For the
instance of the Transmit module which is a submodule of the substitution transi-
tion TransmitAck in Fig. 5.11, the port place IN is related to the socket place C, and



102 5 Hierarchical Coloured Petri Nets

Data
Received

A DATA

Data(n,d)

PACKET
if n=k
then data~d
. else data
11 K
Receive J
Packet
NO if n=k
then k+1
else k if n=k
then Ack(k+1)
else Ack(k)
PACKET
Fig. 5.10 Modified Receiver module
w () ®
PACKET PACKET
® Ow
PACKET PACKET
Fig. 5.11 Modified Network module
if success
then 1'p
p ) else empty
Transmit
PACKET PACKET

Fig. 5.12 New Transmit module

the port place OUT is related to the socket place D. The places and transitions in a
module instance are referred to as place instances and transition instances.

Each instance of a module has its own marking. This means that the marking
of the instance of the Transmit module corresponding to the substitution transition
TransmitData is independent of the marking of the instance corresponding to the
substitution transition TransmitAck. Figure 5.13 shows a marking of the Protocol
module with data packets on each of the socket places A and B, and acknowledge-
ments on each of the places C and D. Figures 5.14 and 5.15 show the markings of
the two instances of the Transmit module. It can be seen that each instance has its



5.2 Module Instances and Hierarchy 103

“Data((1,"COL"))++
*Data((2,"OUR"))++
‘Data((3,"ED "))++
*Data((4,"PET"))++
*Data((5,"RI "))++

“Data((6,"NET")) 1T "COLOUR"

A
2 Data((3."ED ")) 1 Data((2,"OUR"))

PACKET

o Data
Received

DATA

S

(&)

Packets
To Send

PACKET

PACKET

Network Receiver

PACKET PACKET

Fig. 5.13 Example marking of the modified Protocol module

1" Data((2,"OUR"))++ .
2 Data((3,"ED ")) if success 1" Data((2,"OUR™)
9 then 1'p 0
p else empty
PACKET PACKET

Fig. 5.14 Marking of the Transmit module instance corresponding to TransmitData

3 Ack(3) if success 2" Ack(3)
9 then 1°p e
p ) else empty
PACKET PACKET

Fig. 5.15 Marking of the Transmit module instance corresponding to TransmitAck

private marking, matching the tokens present on the socket places of the associated
substitution transition.

The relationship between modules in a hierarchical model can be represented as
a directed graph which has a node for each module and an arc for each substitu-
tion transition. For the CPN model in Figs 5.8-5.12, the module hierarchy looks as
shown in Fig. 5.16. The names of the modules have been written inside the nodes,
and the arcs have been labelled with the names of the substitution transitions. The
node representing the Protocol module has no incoming arcs, it is a root of the mod-
ule hierarchy and is called a prime module. This node has three outgoing arcs, cor-
responding to the three substitution transitions in the Protocol module (see Fig. 5.8).
The arc from Protocol to Sender, labelled Sender, specifies that the substitution



104 5 Hierarchical Coloured Petri Nets

Protocol

Sender Network Receiver

A 4

o)
TransmitData TransmitAck
\ 4 \ 4

l Transmit l

Fig. 5.16 Module hierarchy for the hierarchical protocol model in Figs 5.8-5.12

transition Sender in the Protocol module has the Sender module as its related mod-
ule. The modules that can be reached by following the arcs starting from a given
module are said to be submodules of the latter module. The module hierarchy is
required to be acyclic and hence it is not possible for a module to be a submodule of
itself. This is required to ensure that there are only finitely many instances of each
module when the modules are instantiated.

Before simulation of a hierarchical model is possible, the appropriate number
of instances of each module must be instantiated and associated with substitution
transitions. This means that the module hierarchy is unfolded into a directed tree
called the instance hierarchy, where each node represents an instance of a mod-
ule and the arcs represent substitution transitions. A tree is a directed graph where
each node has at most one predecessor. Figure 5.17 shows the instance hierarchy
obtained from the module hierarchy in Fig. 5.16. For the Transmit module which is
the only module with more than one instance, we have written the instance number
in parentheses following the module name. The first instance of the Transmit module
is associated with the substitution transition TransmitData and the second instance is
associated with the substitution transition TransmitAck. Instantiation of modules is
handled fully automatically by CPN Tools, and the user is able to access the instance
hierarchy via the index. Figure 5.18 shows how the module instances are organised
in the index for the CPN model shown in Figs 5.8-5.12. A small triangle to the
left of a module name indicates that it has submodules, and the submodules of the
module are listed below it, and indented to the right. Each indentation level hence
corresponds to a level in the instance hierarchy. A number in parentheses after a
module name indicates that there are multiple instances, whereas a missing number
indicates that there is only one instance of that module. The user can hide/show the
submodules of a module in the index by clicking on the small triangle, and hence
for large models it is possible to show only parts of the instance hierarchy.



5.3 Instance Folding and Module Parameterisation 105

Protocol

Sender Network Receiver

TransmitData

Network

Receiver

TransmitAck

Transmit(1) Transmit(2)

Fig. 5.17 Instance hierarchy for the hierarchical protocol model in Figs 5.8-5.12

¥ Protocol
Sender
Receiver
¥ Network
Transmit (2)
Transmit (1)

Fig. 5.18 Index in CPN Tools for accessing module instances

It should be noted that instantiation of modules is done as the model is being con-
structed, i.e., prior to simulation of the CPN model. Hence, the number of instances
of modules is fixed throughout the simulation of a hierarchical model, and it is not
possible to dynamically instantiate new modules during the simulation.

5.3 Instance Folding and Module Parameterisation

As another example of a hierarchical model we shall consider a variant of the pro-
tocol model, with two receivers. This will be used to illustrate two modelling tech-
niques that are often used in practice: a technique that allows us to achieve parame-
terisation of modules, and a technique that allows multiple instances of a module to
be folded into a single instance of a module.

Figures 5.19-5.23 show a first hierarchical model (and a representative marking)
of the protocol with two receivers; these receivers will be referred to as Receiver1
and Receiver2. The Transmit module is not shown, since it is identical to the one
shown in Fig. 5.12. The model with two receivers was obtained by splitting the net-
work places A, B, C, and D of the original model into eight places using A1, B1,



106 5 Hierarchical Coloured Petri Nets

‘Data((1,"COL"))++
‘Data((2,"OUR"))++
Data((3,"ED "))++
Data((4,"PET"))++

e

Packets .Data((5,"R ++
To Send 1" Data((6,"NET"))
PACKET ~\ (2)]2" Data((1,"coL"))
»{ AL B1 ~
PACKET PACKET
(1)1 Data((1,"cOL"))
PACKET PACKET
L 4 O
i"coL" w E "
P pat Dat:
ata " " ata
Sender Network Receiver2 Receiverl
DATA DATA
ender & ANetwork | Receiver Receiver
1" Ack(2) J
\ 2 )e
PACKET PACKET
\. ’c1\: J
PACKET PACKET

Fig. 5.19 Protocol module for protocol with two receivers

1" Data((1,"COL"))++
AllPackets 1 Bazagg,"ggRB)H
ata((3," "N++
$§cst<§r:3 1" Data((4,"PET"))++
1’ Data((5,"RI "))++
PACKET 1" Data((6."NET"))
Data(n,d
(n,d) @
PACKET
®
PACKET

) In)

Receive
Ack

Ack(n) @

Fig. 5.20 Sender module for protocol with two receivers

C1, and D1 for communication with Receiver1 and A2, B2, C2, and D2 for com-
munication with Receiver2 (see Fig. 5.19). Furthermore, the substitution transitions
Receiver1 and Receiver2 have been introduced, representing the two receivers and
linked accordingly to the network places. The data received by Receiver is put
on the place DataReceivedi, and the data received by Receiver2 is put on place
DataReceived2. The Network module (see Fig. 5.21) has been modified to take the



5.3 Instance Folding and Module Parameterisation 107

2 Data((1,"COL"))

) (out]

PACKET PACKET
1" Data((1,"COL"))
Ti it
Dataz ) Out]
PACKET PACKET

1" Ack(2)

D2 ) ]
PACKET PACKET

(c1)
PACKET PACKET

Fig. 5.21 Network module for protocol with two receivers

eight network places into account. The Sender module (see Fig. 5.20) has been
modified so that it sends (broadcasts) each data packet to both of the receivers. The
transition ReceiveAck can only occur when the input places contain two identical
acknowledgements — one from each of the two receivers. The Receiver module has
not been modified. In the first instance of the Receiver module (corresponding to Re-
ceiver1), the port place B is related to the socket place B1, and in the second instance
of the Receiver module (corresponding to Receiver2), the port place B is related to
the socket place B2. The port place C is related to C1 and C2 in a similar fashion.
Finally, the port place DataReceived is related to the socket places DataReceived1
and DataReceived2. This time there will be one instance of the Protocol, Sender,
and Network modules, four instances of the Transmit module, and two instances of
the Receiver module.

In the CPN model above, we have chosen to split the network places A, B, C, and
D of the original model into eight places, using A1, B1, C1, and D1 for communi-
cation with Receiver1 and the places A2, B2, C2, and D2 for communication with
Receiver2. This was done to be able to send data packets to both of the receivers
and receive acknowledgements from both of the receivers. A similar effect can also
be achieved by not splitting the network places, but instead revising the colour set
used for packets to include a component specifying the intended receiver of the data
packet and the receiver from which the acknowledgement originated. The modified
colour set definitions are

colset RECV index Recv with 1..2;
colset RECVXPACKET = product RECV x PACKET;



108 5 Hierarchical Coloured Petri Nets

if n=k
then data~d
else data

Receive
Packet

if n=k
then k+1
else k

if n=k
then Ack(k+1)
else Ack(k)

PACKET
Fig. 5.22 Receiver module instance for substitution transition Receiver1

“n m Data
1 L
(1 Received
DATA
1" Data((1,"COL"))
Data(n,d)
if n=k
then data~d
|
11 else data
< Receive
Packet
NO if n=k
then k+1
else k
1" Ack(2) if n=k
then Ack(k+1)
out else Ack(k)
PACKET

Fig. 5.23 Receiver module instance for substitution transition Receiver2

The index colour set RECV is used for modelling the identity of the two receivers.
This colour set contains two colours: Recv (1), identifying the first receiver, and
Recv (2) identifying the second receiver. The colour set RECVXPACKET is used
to model the packets on the network. An example of a colour in this colour set
is (Recv(1l),Data(l, "COL") ), specifying a data packet Data (1, "COL")
intended for the first receiver. Another example is (Recv (2) ,Ack(2)) repre-
senting an acknowledgement Ack (2) originating from the second receiver. The
modified Protocol module is shown in Fig. 5.24 with a representative marking.



5.3 Instance Folding and Module Parameterisation 109

Data((1,"COL"))++
"OUR'

Data((5,"RI "))++
Data((6,"NET"))

[y

Packets

To Send 1" (Recv(2),Data((1,"COL")))

PACKET ﬁ
f_—’(f} 5

.@

lz‘ (Recv(1),Data((1,"COL")))++

RECVXPACKET RECVXPACKET
1 (Recv(2),"COL") 1" (Recv(1),"")
(Recv(2),"") (Recv(l),"")
Data " " Data
Sender Network Received2 Receiver2 Receiver1
RECVxDATA RECVXDATA
Sender ANetwork X Receiver Receiver x
2" (Recv(2),Ack(2))| 1 (Recv(2),Ack(2))|
\  C )<
RECVXPACKET RECVXPACKET

Fig. 5.24 Protocol module for modified protocol with two receivers

The places A and B are used for sending data packets to the two receivers, and
the places C and D are used for sending acknowledgement from the receivers. The
place B has the marking

2'(Recv(1l),Data((1,"COL"))) ++
1'(Recv(2),Data((1,"COL")))

which represents two identical data packets Data (1, "COL") in transit to the first
receiver and one data packet Data (1, "COL") in transit to the second receiver.
The first component of the pair specifies the receiver of the data packet. The identity
of the receiver sending an acknowledgement is represented in a similar way in the
tokens on the places C and D. Hence, by adding an extra component to the colour
set of the network places, we have effectively folded the network places A1 and A2
into a single place A, and similarly for the other network places. Furthermore, we
have modified the colour set of the places DataReceived1 and DataReceived2 to
RECVxDATA, which is defined as

colset RECVXDATA = product RECV x DATA;

The idea is that the first component will specify the receiver identity and the
second component will specify the data received. The initial marking of the two
places has also been modified such that the initial marking of DataReceived1 is
(Recv (1), "") and the initial marking of DataReceived2 is (Recv (2),"").
The purpose of this modification will be explained when the Receiver module is
presented.

Figure 5.25 shows the modified Sender module. The expression on the arc from
SendPacket to A now produces two tokens whenever the transition SendPacket oc-
curs — one copy for each receiver. The expression on the arc from D to ReceiveAck
requires two tokens to be present on D for ReceiveAck to be enabled — one from
each receiver.



110 5 Hierarchical Coloured Petri Nets

“Data((1,"COL"))++
“Data((2,"OUR"))++
*Data((3,"ED "))++
“Data((4,"PET"))++
‘Data((5,"RI "))++
*Data((6,"NET"))

AllPackets
PACKET

Packet:
To Send

A

Data(n,d)

—

*(Recv(1),Data(n,d))++
Send 1" (Recv(2),Data(n,d))
Packet

:{ A )
RECVXPACKET

2" (Recv(2),Ack(2))

M [ b
1 (Recv(1),Ack(n)) ++
1 (Recv(2),Ack(n)) RECVXPACKET

Fig. 5.25 Sender module for modified protocol with two receivers

Figure 5.26 shows the modified Network module, where there are now only two
substitution transitions: TransmitData, representing transmission of data packets to
the two receivers, and TransmitAck, representing transmission of acknowledgements
from both receivers. Both substitution transitions have the Transmit module shown
in Fig 5.27 as an associated submodule. The Transmit module has been modified
to take into account the modified colour sets of the port places IN and OUT. When
the transition TransmitPacket occurs, the variable pack, of colour set PACKET, is
bound to the packet (data packet or acknowledgement), and the variable recv, of
colour set RECV, is bound to the identity of the receiver. Before, we had two in-
stances of the Transmit module for transmission of data packets — now, there is just
a single instance. The two instances have effectively been folded into a single in-
stance of Transmit, and it is now the value bound to the variable recv that specifies
whether the transmission is concerned with the first or the second receiver.

|z‘ (Recv(1),Data((1,"COL")))++
1" (Recv(2),Data((1,"COL")))

Transmit > ‘
RECVXPACKET

1" (Recv(2),Ack(2)

RECVXPACKET

Fig. 5.26 Network module for modified protocol with two receivers



5.3 Instance Folding and Module Parameterisation 111

if success
then 1° (recv,pack)

(recv,pack) Transmit | €/se empty
®—’ Packet @

RECVXPACKET RECVXPACKET

Fig. 5.27 Transmit module for modified protocol with two receivers

Figures 5.28 and 5.29 show the two instances of the new Receiver module, where
we have modified the colour set of the place DataReceived to RECVxDATA. For
the substitution transition Receiver1 we relate the port place DataReceived to the
socket place DataReceived1, and for the substitution transition Receiver2 we relate
this port place to the socket place DataReceived2. The port place DataReceived
does not have an initial marking expression, and therefore obtains its initial marking
from the related socket place. The initial marking of the compound place consisting
of the socket place DataReceived1 (see Fig. 5.24) and the port place DataReceived
(see Fig. 5.28) is therefore determined by the initial marking expression of DataRe-
ceivedl1. Analogously, the initial marking of the compound place consisting of the
socket place DataReceived2 (see Fig. 5.24) and the port place DataReceived (see
Fig. 5.29) is determined by the initial marking expression of DataReceived2. This
means that when the modules are instantiated, the module instance corresponding
to the substitution transition Receiver1 will have a (Recv (1), "") token on the
place DataReceived and the instance corresponding to the substitution transition
Receiver2 will have a (Recv (2), " ") token on the place DataReceived.

By using the variable recv on the arc from DataReceived to ReceivePacket,
it is ensured that the first component in the token consumed from B matches the
identity of the receiver. This ensures that it is only the ReceivePacket transition in
the instance corresponding to Receiver1 that can consume the tokens with colour
(Recv(1l),Data((1,"COL"))) and, similarly, it is only the ReceivePacket
transition in the instance corresponding to Receiver2 that is able to consume the
token (Recv(2),Data( (1, "COL")) ). The variable recv is also used on the
output arc to C. This ensures that the acknowledgement is labelled with the correct
receiver.

The above example demonstrates how a degree of parameterisation can be
achieved by using port and socket places and then using the initial marking of the
socket places to transfer parameters to the submodule (in this case the identity of the
receiver). The example above has also demonstrated that it is possible to fold places
and transitions in a CPN model and obtain a more compact model with fewer places
and transitions. It should be noted that the two models presented in this section are
behaviourally equivalent. The additional component in the tokens on the network
places specifying the receiver in the second model effectively tells us whether the
token was present on, for example, the place A1 or A2 in the original model. A
similar observation applies to the other network places. It is now the binding of the
variable recv of the transition TransmitPacket that specifies which earlier instance
the token corresponds to.



112 5 Hierarchical Coloured Petri Nets

1" (Recv(1),"™)

Data
Received

RECVXDATA

2 (Recv(1),Data((1,"COL")))++|
1" (Recv(2),Data((1,"COL")))

(recv,data) if n=k
then (recv,data”~d)
else (recv,data)

T Receive
Packet
if n=k
then k+1
else k

1" (Recv(2),Ack(2)) if n=k

then (recv,Ack(k+1))
else (recv,Ack(k))

RECVXPACKET

Fig. 5.28 Receiver module instance for Receiver1 in modified protocol with two receivers

1" (Recv(2),"COLN| (1)

Data
Received

RECVXDATA

2" (Recv(1),Data((1,"COL")))++|
1" (Recv(2),Data((1,"COL")))

if n=k
then (recv,data”™d)
else (recv,data)

(recv,data)

then k+1
else k

1" (Recv(2),Ack(2)) if n=k
then (recv,Ack(k+1))

else (recv,Ack(k))

RECVXPACKET

Fig. 5.29 Receiver module instance for Receiver2 in modified protocol with two receivers

5.4 Model Parameterisation

The model presented in Figs 5.24-5.29 in the previous section is more compact than
the first model with two receivers. A weakness of both models, however, is that it is
cumbersome to add additional receivers. As an example, if a third receiver is to be
added then we need to add a substitution transition Receiver3 in the Protocol module
(see Fig. 5.24) and associate a third instance of the Receiver module with this new
substitution transition. Also, the Sender module (see Fig. 5.25) must be modified



5.4 Model Parameterisation 113

such that it now produces three tokens on place A and consumes three appropriate
acknowledgements from place D.

We shall now present a model with multiple receivers where it is not required to
make changes to the net structure and inscriptions when the number of receivers is
changed. The basic idea is to fold the instances of the Receiver module in a way
similar to that for the network places and the Transmit instances in the previous
section. To achieve this, we revise the definition of the colour set RECV and add one
new colour set RECVxNO as follows:

val NoRecvs = 3;
colset RECV = index Recv with 1..NoRecvs;
colset RECVXNO = product RECV x NO;

We have introduced a symbolic constant NoRecvs, which determines the num-
ber of receivers. This constant is used in the definition of the colour set RECV such
that the colours in this colour set match the number of receivers. In the above case,
RECYV contains the colours Recv (1), Recv (2), and Recv (3).

Figure 5.30 shows the Protocol module in the initial marking. There is now a
single substitution transition Receiver representing the receivers. The initial marking
of DataReceived is given by the expression

AllRecvs ""
which evaluates to the following multiset of tokens:
1' (Recv(1l),"") ++ 1'(Recv(2),"") ++ 1'(Recv(3),"")

This marking specifies that all receivers have initially received the empty string
" " The function A11Recvs is defined as follows (the functions RECV.all and
List .map will be explained shortly):

1'Data((1,"COL"))++ < I
1 Data((2,"0UR"))++ 1 (Recv(1), ")+
1 Data((3,"ED "))+ + 1 (Recv(2), ")+
1'Data((4,"PET"))++ 1" (Recv(3),"")
1'Data((5,"RI "))++ AllRecvs "" 9

Packets 1" Data((6,"NET")) Data

To Send Received

PACKET RECVXDATA

RECVXPACKET RECVXPACKET

Sender Network Receiver

RECVXPACKET RECVXPACKET

Fig. 5.30 Protocol module for protocol with multiple receivers



114 5 Hierarchical Coloured Petri Nets

fun AllRecvs v = List.map
(fn recv => (recv,v)) (RECV.all());

We have used the predefined colour set function RECV.all, which takes a unit
() as an argument and returns the list representation of a multiset containing one
appearance of each of the colours in the colour set RECV, i.e., it returns the multiset

1'‘Recv(l) ++ 1‘'Recv(2) ++ 1‘Recv(3)
represented as the following list:
[Recv (1) ,Recv(2),Recv(3)]

We have also used the the curried predefined Standard ML function List .map,
which takes a function and a list as arguments and applies the function to each
element of the list. In this case, the function is fn recv => (recv,v), which,
given a receiver recv constructs the pair (recv,v) where v is the argument
provided to the function A11Recvs. In this case it results in the list

[(Recv(1l),""), (Recv(2),""), (Recv(3),"")]

representing the following multiset, which becomes the initial marking of the place
PacketsToSend:

1'(Recv(1l),"") ++ 1'(Recv(2),"") ++ 1'(Recv(3),"")

If the value of NoRecwv is changed to 4, the initial marking expression of DataRe-
ceived will evaluate to the following multiset:

1'(Recv(l),"") ++ 1'(Recv(2),"") ++
1'(Recv(3),"") ++ 1‘'(Recv(4),"")

hence the initialisation expression of DataReceived does not have to be modified
when the number of receivers is changed. It is sufficient to change the declaration
of NoRecwv.

In the above definition of the function A11Recvs, we have exploited the fact
that multisets in CPN Tools are represented using lists, i.e., a multiset is represented
as a list of the elements in the multiset where an element appears as many times in
the list as its coefficient in the multiset specifies. This means that we can apply list
operations (such as List .map) directly to the elements of a multiset and there is
no need to convert between list and multiset representations.

The Network and Transmit modules do not need to be changed, so we shall present
only the Sender and Receiver modules below. The Receiver module is shown in
Fig. 5.31. The colour set of the place NextRec has been changed to RECVxNO,
and the idea is to use the first component to identify the receiver, and the second
component to specify the data packet expected next by the receiver identified in
the first component. The initial marking expression of NextRec uses the function
AllRecvs with the argument 1 to obtain the initial marking

1'(Recv(l),1) ++ 1'(Recv(2),1) ++ 1'(Recv(3),1)



5.4 Model Parameterisation 115

1" (Recv(1),")++
1' (Recv(2),"")++
1" (Recv(3),"")

Data
Received

RECVXDATA

e (recv,Data(n,d))

1 (Recv(1), 1)+ RECVXPACKET
1" (Recv(2),1)++H
1" (Recv(3),1)

if n=k

(recv,data)
then (recv,data”d)

AllRecvs 1 (3) (recv,k) = else (recv,data)
eceive )
@ Packet

RECVXNO if n=k
then (recv,k+1)
else (recv,k)

if n=k
then (recv,Ack(k+1))
else (recv,Ack(k))

RECVXPACKET

Fig. 5.31 Receiver module for protocol with multiple receivers

which specifies that all receivers initially expect the data packet with sequence num-
ber 1. The variable recv is used on all input and output arcs of ReceivePacket to
ensure that the update of the expected sequence number on the place NextRec, the
update of the data on the place DataReceived, and the acknowledgement produced
on place C all correspond to the intended receiver of the data packet removed from
place B.

Figure 5.32 shows the Sender module. The expressions on the arcs connected to
the two network places A and D have been modified to use the function A11Recvs,
which, for a given packet, produces a multiset over RECVxPACKET with a packet
for each receiver. As an example, the expression

AllRecvs (Data(l,"COL"))
evaluates to the multiset

1'(Recv (1) ,Data(l,"COL")) ++
1'(Recv(2),Data(l, "COL")) ++
1'(Recv(3),Data(l,"COL"))

and the expression
AllRecvs (Ack(2))
evaluates to the multiset

1'(Recv(l),Ack(2)) ++
1'(Recv(2),Ack(2)) ++
1'(Recv(3),Ack(2))



116 5 Hierarchical Coloured Petri Nets

“Data((1,"COL"))++
“Data((2,"OUR"))++
“Data((3,"ED "))++
*Data((4,"PET"))++
*Data((5,"RI "))++
*Data((6,"NET"))

PACKET

®)

Packets
To Send

S

Data(n,d)

AllRecvs (Data(n,d))

»( A ) Out]

RECVXPACKET
1" Ack(2)++ *
1" Ack(3)++ T
17 Ack(4)++
1" Ack(5)++
1" Ack(6)++
1" Ack(7)
e AllAcks
Receive |4
< D
b lAck(n)I Ack AllRecvs (Ack(n)) O-
PACKET RECVXPACKET

Fig. 5.32 Sender module for protocol with multiple receivers

The place Acks contains the set of possible acknowledgements that can be re-
ceived. The constant used as the initial marking of this place is defined as

val AllAcks = List.map
(fn Data(n,_) => Ack(n+l)) AllPackets;

The definition of A11Acks uses the function Liist .map. In this case the first
argument is the function fn Data(n,-) => Ack(n+1), which, for a given data
packet with sequence number n, constructs the corresponding acknowledgement,
which has sequence number n+1. The second argument is the list of data packets to
be transmitted.

The place Acks has been introduced to make it possible to bind the variable n
of the transition ReceiveAck. The variable n can no longer be bound from the arc
expression on the input arc from D, since the arc expression now uses a function,
which means that it no longer qualifies as a pattern. Note that ReceiveAck is only
enabled for a given value bound to n when place D contains an acknowledgement
with sequence number n from all receivers.

5.5 Fusion Sets

It has been shown above how modules can exchange tokens via port and socket
places. It is also possible for modules to exchange tokens via fusion sets. Fusion
sets allow places in different modules to be glued together into one compound place
across the hierarchical structure of the model. Fusion sets are in some sense similar



5.5 Fusion Sets 117

to the global variables known in many programming languages and should there-
fore be used with care. However, there are many cases where fusion sets can be
convenient and below we give three typical examples of how fusion sets are used.

As a first example, consider the hierarchical model of the protocol with multiple
receivers created in the previous section. Suppose now that we are interested in
collecting the lost data packets and acknowledgements on a single place in the CPN
model. The first step is to add a place PacketsLost to the Transmit module as shown
in Fig. 5.33, and collect the tokens corresponding to the lost packets on this place.

As explained above, there are two instances of the Transmit module, and a sepa-
rate marking for each of these instances. This implies that there are two instances of
the place PacketsLost and that each of these has its own marking. To fold these two
place instances into a single place, we use a fusion set. The places that are members
of a fusion set are called fusion places and represent a single compound place, in a
way similar to that for a related port and socket place. This means that all instances
of all places in a fusion set always share the same marking and that they must have
identical colour sets and initial markings. In Fig. 5.34, PacketsLost belongs to a fu-
sion set called Lost. This can be seen from the rectangular fusion tag positioned next
to the place.

Figures 5.35 and 5.36 show the two instances of Transmit in a representative
marking. It can be seen that the two instances of the port place IN have different
markings and the same is the case for the two instances of the port place OUT.

Packets
Lost

RECVXPACKET

if success
then empty
else 1" (recv,pack)

if success
then 1" (recv,pack)

recv,pack it | else empt
IN Y eEEC0__pf Tranemit l »(our) ot
RECVXPACKET RECVXPACKET

Fig. 5.33 Transmit module for collecting lost packets: first version

RECVXPACKET

if success
then empty
else 1" (recv,pack)

if success
then 1 (recv,pack)

recv,pack it | else empty
o) (o)) ) Tramemit »(our

RECVXPACKET RECVXPACKET

A

Fig. 5.34 Transmit module for collecting lost packets: revised version with fusion set



3" (Recv(1),Data((1,"COL")))++

118 5 Hierarchical Coloured Petri Nets
1" (Recv(2),Data((1,"COL")))++
37 (Recv(3),Data((1,"COL")))++

Packet .
2" (Recv(3).Ack(2))

RECVXPACKET

if success
then empty
else 1" (recv,pack)

13" (Recv(1),Data((1,"COL")))++
18" (Recv(2),Data((1,"COL")))++
12" (Recv(3),Data((1,"COL")))

if success [1” (Recv(1),Data((1,"COL")))|
then 1° (recv,pack)

»{( out

RECVXPACKET RECVXPACKET

3" (Recv(1),Data((1,"COL")))++

Fig. 5.35 Marking of Transmit instance corresponding to TransmitData
1" (Recv(2),Data((1,"COL")))++
3" (Recv(3),Data((1,"COL")))++

Packet .
2" (Recv(3).Ack(2))

RECVXPACKET

if success
then empty
else 1" (recv,pack)

2" (Recv(1),Ack(2))+ 1" (Recv(1),Ack(2))+
3" (Recv(3),Ack(2)) if success 1" (Recv(2),Ack(2))
then 1° (recv,pack)

(recv,pack) ETransmitl] €/se empty

( IN ) ,I Packetl »{ ouT

RECVXPACKET RECVXPACKET

Fig. 5.36 Marking of Transmit instance corresponding to TransmitAck

However, the two instances of the fusion place PacketsLost have the same marking,
owing to the fusion set, and it can be seen that this place contains both lost data
packets and lost acknowledgements. In this example, it is only the instances of a
single place in a single module that belong to the fusion set. However, in general
it is possible for any number of places in different modules to belong to the same
fusion set. This means that all of the corresponding place instances represent a single
compound place.

Another typical use of fusion sets is in the initialisation of a CPN model. It is
often the case that a CPN model can be set up to run in different configurations,
and larger CPN models typically have a number of parameters which determine
the configuration. For the CPN model of the protocol, we might be interested in
configuring the data packets to be transmitted and configuring the Transmit module
such that it is possible to run the model with a reliable or unreliable network. Since
this configuration information is related to several modules, it is convenient to create
a single Initialisation module where it is possible to set the configuration for the entire
CPN model. Figure 5.37 shows the initial marking of such an Initialisation module
for configuring the protocol model as outlined above. The Initialisation module is a
prime module of the CPN model, and becomes a root in the module hierarchy and
the instance hierarchy in a way similar to that for the other prime module, Protocol.



5.5 Fusion Sets 119

AllDataPackets(data)

~ P Data Packets
DataPackets PACKET
"COLOURED PETRI NET"
[1""COLOURED PETRI NET" |
Data
To Send data
DATA
itiali AllAckPackets(data)
Ir&t(;?jlésle P Ack Packets
[Acks]
PACKET
liabl
unreliable 1" unreliable
Network
trans
Booleans(trans
TRANSMISSION - ( ) > Success

BOOL

Fig. 5.37 Initial marking of the Initialisation module

This illustrates that it is possible to have multiple prime modules in a hierarchical
CPN model, and in this case the instance hierarchy becomes a forest of directed
trees rather than just a single directed tree.

The place DataToSend contains a token representing the string of data to be trans-
mitted. The place Network contains a token specifying whether the network is reli-
able or unreliable. By changing the initial marking of these places, we can set the
configuration of the protocol. The colour set TRANSMISSION is an enumeration
colour set defined as

colset TRANSMISSION = with reliable | unreliable;

The initial marking of the place Network is unreliable, meaning that packets
can be lost on the network. If we set the initial marking of the place to reliable,
no packet loss will occur. The transition InitialiseModel has two variables, declared
as

var data : DATA;
var trans : TRANSMISSION;

for accessing the configuration information given by the tokens on the places
DataToSend and Network. The transition InitialiseModel is the only enabled tran-
sition in the initial marking. When the transition InitialiseModel occurs, data will
be bound to the string on the place DataToSend and trans will be bound to the
colour of the token on the place Network.

The transition InitialiseModel, adds tokens to the places DataPackets, AckPackets,
and Success, which belongs to the fusion sets DataPackets, Acks, and Success,
respectively. The functions in the arc expressions on the output arc to DataPackets
and AckPackets use a common utility function SplitData to split the string bound
to data into a set of data packets respecting the packet length supported by the
network. This function is defined as



120 5 Hierarchical Coloured Petri Nets

val PacketLength = 3;

fun SplitData (data) =
let
val pl = PacketLength;

fun splitdata (n,data) =
let
val dl = String.size (data)
in
if dl <= pl
then [(n,data)]
else (n,substring (data,0,pl))::
splitdata
(n+1, substring (data,pl,dl-pl))
end;
in
splitdata (1,data)
end;

The function SplitData has a local environment for binding p1 to the packet
length and defining a recursive function splitdata, which does the actual split-
ting of the data string into a list of pairs, where each element consists of a sequence
number and a data payload. As an example, the result of evaluating the expression

SplitData ("COLOURED PETRI NET")
is the following list of pairs:

[(1,"COL"), (2,"OUR"), (3,"ED "),
(4,"PET"), (5,"RI "), (6, "NET")]

The first parameter n of the function splitdata gives the sequence number
of the first data packet to be produced. The second parameter is the data string to
be split into data packets. The function uses a local environment to bind d1 to the
data length. The predefined function String.size is used to obtain the length
of the data string. If the data string fits into a single data packet, such a data packet
is returned. Otherwise, a data packet is generated containing the first p1 characters
of the data string, and a recursive call is made to splitdata to generate the data
packets for the remainder of the data string. The function substring is used to
extract the correct prefix and postfix to be used in the data packet and in the recur-
sive call to the function.

The functions Al1DataPackets and A11AckPackets are defined as fol-
lows, using the function SplitData from above:



5.5 Fusion Sets 121

fun AllDataPackets (data) =
(List.map
(fn (n,d) => Data(n,d)) (SplitData (data)));

fun AllAckPackets (data) =
(List.map
(fn (n,_) => Ack(n+1l)) (Splitbhata (data)));

The function A11DataPackets uses the function List.map. In this case,
the first argument is the function fn (n,d) => Data(n,d), which, given a
pair (n, d), constructs the corresponding data packet. The list provided as the sec-
ond argument is the list of pairs returned by the function SplitData. The func-
tion Al1AckPackets is implemented in a similar way, except that it produces
the acknowledgements corresponding to the data packets. The function provided to
List.mapisinthiscase fn (n,_) => Ack(n+1). The sequence number has
1 added to it, since the acknowledgement of the data packet with sequence number
nisAck (n+1). Recall that multisets in CPN Tools are represented using lists, i.e.,
a multiset is represented as a list of the elements in the multiset. This is the reason
why the types of Al1DataPackets and A11AckPackets match the colour sets
of the places DataPackets and AckPackets, respectively.

The arc expression on the arc to the place Success uses the function Booleans,
defined as

fun Booleans reliable = l'true
| Booleans unreliable = 1‘true ++ 1‘'false;

If the token on the place Network is reliable, a single token with the
value true is put on the place Success. If the token on the place Network is
unreliable, two tokens with the values true and false are put on the place
Success. The purpose of the token(s) on the place Success will be clear when we
present the modified Transmit module below.

Figure 5.38 shows the marking of the Initialisation module after the occurrence of
the transition InitialiseModel in the initial marking shown in Fig. 5.37. Figure 5.39
shows the Protocol module, where the place PacketsToSend now belongs to the
fusion set DataPackets. Figure 5.40 shows the Sender module, where the place Acks
belongs to the fusion set Acks. This means that when the transition InitialiseModel
occurs, the places PacketsToSend and Acks receive the same tokens as do the places
in the Initialisation module that belong to the same fusion sets. In this way, tokens
determining the configuration of the protocol are distributed to the relevant modules
in the model.

The Transmit module is shown in Fig. 5.41. The place Success belongs to
the fusion set Success. This place specifies the possible bindings for the variable
success, which determine whether transmission is successful or not. In the mark-
ing shown, there are two tokens true and false present on this place. Hence,
both successful transmission and loss of packets are possible. If the place Network
in Fig. 5.37 initially contains the token reliable, then only a token with colour



122 5 Hierarchical Coloured Petri Nets

“Data((1,"COL"))++
*Data((2,"OUR"))++
*Data((3,"ED "))++
*Data((4,"PET"))++
*Data((5,"RI "))++

* Data((6,"NET"))

S

AllDataPackets(data)
~ P Data Packets

DataPackets

Ack(2)+4
Ack(3)+H
Ack(4)+H
Ack(5)+4
Ack(6)+H
" Ack(7)

j

PACKET

"COLOURED PETRI NET"

Data
To Send data

DATA

s

Initialise AllAckPackets(data)
Model

Ack Packets

j

[Acks]
PACKET

unreliable

1" false++
Network 1 true

trans
TRANSMISSION \_ Booleans(trans)

Success

BooL

g

Fig. 5.38 Marking of the Initialisation module when InitialiseModel has occurred

“Data((1,"COL"))++
Data((2,"OUR"))++
Data((3,"ED "))++
Data((4,"PET"))++
Data((5,"RI ")) ++

Data((6,"NET")) AllRecvs ""

1" (Recv(1),")++
1" (Recv(2),"")++
1" (Recv(3),"")

L

Data

Packets
To Send

DataPackets Received
PACKET RECVXDATA
RECVXPACKET RECVXPACKET
Sender Network Receiver
Sender Network Receiver
RECVXPACKET RECVXPACKET

Fig. 5.39 Marking of the Protocol module after initialisation

true will be present on the place Success and hence only successful transmission
is possible.



5.5 Fusion Sets 123

‘Data((1,"COL"))++
‘Data((2,"OUR"))++
‘Data((3,"ED "))++
‘Data((4,"PET"))++
‘Data((5,"RI "))++

“Data((6,"NET"))

PACKET

EEEEE

Data(n,d)

AllRecvs (Data(n,d)) _
Packet 26

RECVXPACKET
1" Ack(2)+H
17 Ack(3)++H 0
1 Ack(4)++
1" Ack(5)+H
1" Ack(6)++H
1" Ack(7)
6 Receive
bd—b < D
. @ Ack(n) Ack AllRecvs (Ack(n))
PACKET RECVXPACKET

Fig. 5.40 Marking of the Sender module after initialisation

Packets
Lost

RECVXPACKET

if success
then empty
else 1" (recv,pack)

if success
then 1" (recv,pack)

recv,pack it | else empty
1) (i Y22 Transmit »(out
RECVXPACKET RECVXPACKET
success
1’ false++
e 1" true
BOOL

Fig. 5.41 Marking of the Transmit module after initialisation

In the above, we have used the initial marking of certain places (in this case
DataToSend and Network) to specify the configuration of the protocol. It is also
possible to use files or dialogue boxes to provide the configuration information. We
shall illustrate the latter in Chap. 13.

Fusion sets can also be used to reduce the number of crossing arcs in a module.
When a place needs to be accessed by many different transitions, it may be impos-
sible to avoid crossing arcs, which make the CPN model difficult to read. A way to
reduce the number of crossing arcs is to split such places into two or more copies
and then create a fusion set that glues them together. Now it is possible to posi-
tion the copies of the places in different parts of the module and thereby reduce the
number of crossing arcs.



124 5 Hierarchical Coloured Petri Nets

5.6 Unfolding Hierarchical CPN Models

A hierarchical CPN model can always be unfolded into an equivalent non-hierarchical
CPN model with the same behaviour using a process consisting of three steps:

1. Replace each substitution transition with the content of its associated submodule
such that related port and socket places are merged into a single place.

2. Collect the content of all resulting prime modules into a single module. Recall
that prime modules are the roots of the module hierarchy.

3. Merge the places in each fusion set into a single place.

To illustrate the processes of replacing substitution transitions with their asso-
ciated submodules and merging the places in a fusion set into a single place, we
consider the CPN model of the previous section together with the Network module
shown in Fig. 5.42.

The result of replacing the two substitution transitions in Fig. 5.42 with the con-
tent of their associated submodules (see Fig. 5.41) and merging the fusion places is
shown in Fig. 5.43. For the substitution transition TransmitData, we have replaced
the port place IN and the related socket place A with a single place named A. The
port place OUT and the related socket place B have been replaced with a single place
named B. Similar replacements have been done for the ports and socket places of
the substitution transition TransmitAck. The fusion places named PacketsLost which
were present in each of the submodules associated with the substitution transitions
have been merged into a single place named PacketsLost. A similar merging has
been done with the fusion places named Success. The places PacketsLost and Suc-
cess are still fusion places, as one of them eventually has to be merged with the
corresponding fusion place in the Initialisation module.

The fact that a hierarchical CPN model can always be transformed into an equiv-
alent non-hierarchical CPN model implies that the hierarchy-related concepts of
CP-nets do not (in theory) add expressive power to the modelling language. Any
system that can be modelled with a hierarchical CPN model can also be modelled
with a non-hierarchical CPN model. In practice, however, the hierarchy constructs

Transmit e
RECVXPACKET RECVXPACKET

Transmit

RECVXPACKET

RECVXPACKET

Fig. 5.42 Network module



5.6 Unfolding Hierarchical CPN Models 125

if success
then 1 (recv,pack)

O (recv,pack) | Transmit else empty
A Packet

RECVXPACKET RECVXPACKET

if success
then empty
else 1" (recv,pack)

o

RECVXPACKET BOOL

success

if success
then empty

else 1" (recv,pack)
success

if success
then 1" (recv,pack)

else empty Transmit (recv,pack)
( D >= Packet (In]

RECVXPACKET RECVXPACKET

Fig. 5.43 Unfolded Network module

have significant importance as they make it possible to structure large models and
thereby cope with the complexity of large systems.

In this section, we have shown that every hierarchical CPN model can be trans-
formed into an equivalent non-hierarchical CPN model. In Sect. 2.4 of [60], it was
shown that every non-hierarchical CP-net can be transformed into an equivalent
low-level Place/Transition Net (PTN) as defined in [93]. The idea behind the trans-
formation is very simple. Each CPN place is replaced with as many PTN places
as there are colours in the colour set of the CPN place, and each CPN transition is
replaced with as many PTN transitions as there are possible bindings satisfying the
guard for the CPN transition. For a CPN model with infinite colour sets, this will
result in a PTN model with an infinite number of places and transitions.

The fact that a CPN model can always be transformed into an equivalent PTN
model implies that the introduction of the coloured tokens in CP-nets does not (in
theory) add expressive power to Petri Net models. Any system that can be modelled
with a CPN model can also be modelled with a PTN model. In practice, however,
CPN models are much more succinct and more suitable for the modelling of com-
plex systems. The CPN modelling language allows the modeller to work on a higher
abstraction level using types (colour sets) instead of bits (uncoloured tokens).

The step from PTN models to hierarchical CPN models is very similar to the step
from low-level machine languages (without types, procedures, functions, or mod-
ules) to high-level programming languages offering such abstraction mechanisms.
The high-level modelling and programming languages have the same (theoretical)
expressive power as the corresponding low-level languages, but the high-level lan-
guages have much more (practical) structuring power, and this makes it possible
for modellers and programmers to cope with the overwhelming amount of detail in
real-life concurrent systems.



	Hierarchical Coloured Petri Nets
	Modules and Interfaces
	Module Instances and Hierarchy
	Instance Folding and Module Parameterisation
	Model Parameterisation
	Fusion Sets
	Unfolding Hierarchical CPN Models



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




