
Chapter 14
Examples of Industrial Applications

This chapter presents a selection of representative projects where CP-nets and their
supporting computer tools have been used for system development in an industrial
context. These projects have been selected to illustrate the fact that CP-nets can be
used in many different phases of system development, ranging from requirements
specification to design, validation, and implementation. The CPN models presented
were constructed in joint projects between our research group at Aarhus University
and industrial partners.

Many CPN projects have been carried out and documented in the literature. Ex-
amples of industrial use of CP-nets can be found in the proceedings of the CPN
workshops [91], the special issues of the International Journal on Software Tools
for Technology Transfer [33, 34, 35, 36], and the proceedings of the International
Conferences on Application and Theory of Petri Nets and Other Models of Concur-
rency [89]. Many examples have also been published in proceedings and journals
related to particular application domains. A comprehensive overview of the appli-
cations and industrial use of CP-nets can be found via the Web pages at [40]. The
above sources may provide inspiration to people who wish to learn more about the
practical application of CP-nets within a particular domain and/or are about to apply
CP-nets for the modelling and validation of a larger concurrent system.

Section 14.1 presents a project [69] conducted with Ericsson Telebit, concerned
with the design of an edge router discovery protocol for mobile ad hoc networks.
Section 14.2 presents a project [64] conducted with Systematic Software Engineer-
ing and Aarhus County Hospital, on specifying the business processes at Aarhus
County Hospital and identifying requirements for their support by a new IT system.
Section 14.3 presents a project [17] conducted with Bang & Olufsen, concerned
with the design of the BeoLink system. Finally, Sect. 14.4 presents a project [74]
conducted with the Australian Defence Science and Technology Organisation, on
the development of a scheduling tool for the Australian Defence Forces. This chap-
ter provides an overview of the CPN modelling and validation conducted in each of
these projects. The reader is referred to the papers [17, 64, 69, 73, 74, 75, 112], on
which this chapter is based, for further details of these projects.

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 14, 313
c© Springer-Verlag Berlin Heidelberg 2009

314 14 Examples of Industrial Applications

14.1 Protocol Design at Ericsson Telebit

This project [69] conducted with Ericsson Telebit was concerned with the devel-
opment of a protocol called the Edge Router Discovery Protocol (ERDP). In the
project, a CPN model was constructed that constituted a formal executable spec-
ification of ERDP. Simulation and message sequence charts were used in initial
investigations of the protocol’s behaviour. Then state space analysis was applied to
conduct a formal verification of the key properties of ERDP. The modelling, simu-
lation, and subsequent state space analysis all helped to identify several omissions
and errors in the design, demonstrating the benefits of using formal techniques in a
protocol design process.

14.1.1 Edge Router Discovery Protocol

ERDP is based on the IPv6 protocol suite [56] and supports an edge router in a core
network in assigning network address prefixes to gateways in mobile ad hoc net-
works. A mobile ad hoc network is a collection of mobile nodes, such as laptops,
personal digital assistants, and mobile phones, capable of establishing a communica-
tion infrastructure for their common use. Ad hoc networks differ from conventional
networks in that the nodes in an ad hoc network operate in a fully self-configuring
and distributed manner, without any pre-existing communication infrastructure such
as designated base stations and routers.

Figure 14.1 shows the network architecture considered in the project. The net-
work architecture consists of an IPv6 stationary core network connecting a number
of mobile ad hoc networks on the edge of the core network. A number of edge
routers reside on the edge of the core network, and each ad hoc network may con-
tain one or more nodes capable of acting as gateways for communication with nodes
outside the ad hoc network. The edge routers and the gateways handle the connec-
tions between the core network and the ad hoc networks, and an edge router may
serve multiple ad hoc networks. The core network is a classical wired IP network
with stationary nodes, whereas wireless communication is used for communication
between the mobile nodes in the ad hoc networks. The edge routers and the gate-
ways are connected via wireless links. The nodes in the individual ad hoc networks
may move within an ad hoc network or between ad hoc networks. It is also pos-
sible for an entire ad hoc network, including its gateways, to move from one edge
router to another edge router, and possibly to be within reach of several edge routers
simultaneously.

ERDP is used between the gateways in the ad hoc networks and the edge routers
in the core network. ERDP supports gateways in discovering edge routers and sup-
ports edge routers in configuring gateways with a globally routeable IPv6 address
prefix. This address prefix can then be used to configure global IPv6 unicast ad-
dresses for mobile nodes in the ad hoc networks. ERDP is based on an extension

14.1 Protocol Design at Ericsson Telebit 315

IPv6 Core
Network

Ad-hoc
Network

Ad-hoc
Network

Ad-hoc
Network

Ad-hoc
Network

Ad-hoc
Network

Edge Router

Gateway

Fig. 14.1 IPv6-based network architecture

of the Neighbor Discovery Protocol (NDP) [85], which is part of the IPv6 protocol
suite.

Figure 14.2 shows the basic way that an edge router configures a gateway with
an address prefix using ERDP. This message sequence chart (MSC) was generated
automatically from the CPN model to be presented in Sect. 14.1.2. The column la-
belled GWBuffer represents a packet buffer between the gateway protocol entity and
the underlying protocol layers. Similarly, the ERBuffer column represents a packet
buffer in the edge router. An edge router periodically multicasts unsolicited router
advertisements (RAs) to announce its presence to any gateways that may be within
reach of that edge router. When an unsolicited RA is received by a gateway, it will
reply with its list of currently assigned address prefixes in a unicast router solicita-
tion (RS). In the example shown here, the gateway has no current prefixes and hence
it sends an RS with no prefixes (indicated by the empty list []). When the edge router
receives the RS, it will consult its lists of available prefixes and in this case select a
new address prefix (P1) to be assigned to the gateway. This newly assigned prefix
will then be sent back to the gateway in a unicast solicited RA. When the solicited
RA containing the prefix is received by the gateway, the gateway will update its
lists of currently assigned prefixes to contain the new prefix P1. Prefixes assigned
to gateways have a limited lifetime, and hence either will expire or will have to be
refreshed by the edge router.

14.1.2 ERDP CPN Model

CP-nets were integrated into the design of ERDP by developing a CPN model of
ERDP together with a conventional natural-language specification. The latter is nor-
mally used by protocol engineers to specify a protocol, and in the following we refer
to the natural-language specification of ERDP as the ERDP specification.

Figure 14.3 shows the module hierarchy of the CPN model. The CPN model con-
sists of three main parts. The Gateway module and its four submodules model the
operation of the gateway. The EdgeRouter module and its five submodules model
the operation of the edge router. The GW ER Link module models the wireless com-
munication link between the gateway and the edge router. We have omitted the

316 14 Examples of Industrial Applications

Fig. 14.2 Message sequence chart for prefix configuration with ERDP

names of the substitution transitions on the arcs, since the name of each substitu-
tion transition is identical to that of the submodule associated with that substitution
transition.

Figure 14.4 shows the ERDP module. The substitution transition Gateway rep-
resents the gateway, and the substitution transition EdgeRouter represents the edge
router. The communication link between the edge router and the gateway is repre-
sented by the substitution transition GW ER Link. The four places GWIn, GWOut,
ERIn, and EROut model packet buffers between the link layer and the gateway and
edge router. Both the gateway (GW) and the edge router (ER) have an incoming and
an outgoing packet buffer.

All four places in Fig. 14.4 have the colour set IPv6Packet, used to model
the IPv6 packets exchanged between the edge routers and gateways. Since ERDP is
based on the IPv6 Neighbor Discovery Protocol, the packets are carried as Internet
Control Message Protocol (ICMP) packets. The definitions of the colour sets for
NDP, ICMP, and IPv6 packets are given in Fig. 14.5 and were derived from RFC
2460 [29], which specifies IPv6 and RFC 2461 [85] specifying NDP. IPv6 addresses
and address prefixes are modelled as strings. This makes it possible to use both
mnemonic names and standard hexadecimal notation for IPv6 addresses in the CPN
model. Protocol fields that do not affect the operation of ERDP have been defined
using the colour set NOTMOD containing the single dummy value notmod. These

14.1 Protocol Design at Ericsson Telebit 317

Gateway

ProcessUnsolicitedRA

EdgeRouter

SendUnsolicitedRA

GW_ER_Link

ProcessRS

NoUnusedPrefix

AssignNewPrefix

ReceiveSolicitedRA

SendRouterSolicitation

GWDiscardPrefixes

ERDiscardPrefixes

ERDP

Fig. 14.3 Module hierarchy of the ERDP model

GW_ER_Link GW_ER_Link

EdgeRouter

EdgeRouter

Gateway

Gateway

EROut

IPv6Packet

ERIn

IPv6Packet

GWOut

IPv6Packet

GWIn

IPv6Packet

Gateway EdgeRouter

GW_ER_Link

Fig. 14.4 ERDP module

fields could alternatively have been omitted, but it was considered important for
later implementations of ERDP that the tokens in the CPN model should have the
same set of fields as the packets in the implementation. The colour sets UInt32,
UInt16, UInt8, Bit8, and Bit4 are all defined as INT. They model bit fields in
the packets and are defined as integers, as we are not concerned with the specific bit

318 14 Examples of Industrial Applications

(* --- IPv6 addresses --- *)
colset IPv6Addr = string;

(* --- Router Solicitations --- *)
colset RSOption = union

RS_SrcLinkAddr : NDLinkAddrOption +
RS_PrefixInformation : NDPrefixInfoOption;

colset RSOptions = list RSOption;

colset RouterSolicitation = record Options : RSOptions *
NU : NOTMOD;

(* --- Router Advertisements --- *)
colset RAOption = union

RA_SrcLinkAddr : NDLinkAddrOption +
RA_MTU : NDMTUOption +
RA_PrefixInformation : NDPrefixInfoOption;

colset RAOptions = list RAOption;

colset RouterAdvertisement = record CurHopLimit : UInt8 *
M : Bit *
O : Bit *
RouterLifetime : UInt16 *
ReachableTime : UInt32 *
RetransTimer : UInt32 *
Options : RAOptions;

(* --- ICMP messages --- *)
colset ICMPBody = union RS : RouterSolicitation +

RA : RouterAdvertisement;

colset ICMPMessage = record Type : UInt8 *
Code : UInt8 *
Message : ICMPBody;

(* --- IPv6 packets --- *)
colset IPv6Payload = union ICMP : ICMPMessage;

colset IPv6Header = record Version : Bit4 *
TrafficClass : NOTMOD *
Flowlabel : NOTMOD *
PayloadLength : NOTMOD *
NextHeader : Bit8 *
HopLimit : Bit8 *
SourceAddress : IPv6Addr *
DestAddress : IPv6Addr;

colset IPv6Packet = record Header : IPv6Header *
ExtHeaders : NOTMOD *
Payload : IPv6Payload;

Fig. 14.5 Declarations for IPv6 and ICMP packets

14.1 Protocol Design at Ericsson Telebit 319

layout of packets, but only the semantics of the individual packet fields. The colour
set Bit is defined as BOOL.

Figure 14.6 shows the EdgeRouter module. The places ERIn and EROut are re-
lated to the accordingly named socket places in the ERDP module (see Fig. 14.4).
The place Config models the configuration information associated with the edge
router, and the place PrefixCount models the number of prefixes still available in the
edge router for distribution to gateways. The place PrefixAssigned is used to keep
track of which prefixes are assigned to which gateways.

Figure 14.7 shows the declarations of the colour sets for the three places in
Fig. 14.6. The configuration information for the edge router (modelled by the colour
set ERConfig) is a record consisting of the IPv6 link-local address and the link-
layer address of the edge router. A list of pairs (colour set ERPrefixAssigned)
consisting of a link-local address and a prefix is used to keep track of which prefixes
are assigned to which gateways. A counter modelled by the place PrefixCount with
the colour set PrefixCount is used to keep track of the number of prefixes still
available. When this counter reaches 0, the edge router has no further prefixes avail-
able for distribution. The number of available prefixes can be modified by changing
the initial marking of the place PrefixCount, which is set to 1 by default.

The substitution transition SendUnsolicitedRA (in Fig. 14.6) corresponds to the
multicasting of periodic unsolicited RAs by the edge router. The substitution transi-
tion ProcessRS models the reception of unicast RSs from gateways, and the sending
of a unicast RA in response. The substitution transition ERDiscardPrefixes models
the expiration of prefixes on the edge router side.

The marking shown in Fig. 14.6 has a single token on each of the three places
used to model the internal state of the edge router protocol entity. In the marking
shown, the token on the place PrefixAssigned with the colour [] corresponds to the
edge router not having assigned any prefixes to the gateways. The token on the place

ERDiscard
Prefixes

ERDiscardPrefixes

ProcessRS

ProcessRS

Send
UnsolicitedRA

SendUnsolicitedRA

Prefix
Assigned

ERPrefixAssigned PrefixCount

Config

ERConfig

ERIn In

IPv6Packet

EROut Out

IPv6Packet

OutIn

SendUnsolicitedRA

ProcessRS

ERDiscardPrefixes

PrefixCount

{ll_er = "ER link-local address",
 er_l2 ="ER link-addr"}

[] 1`1

1
1`[]

1

1`{ll_er="ER link-local address",er_l2
="ER link-addr"}

1

1`1

Fig. 14.6 EdgeRouter module

320 14 Examples of Industrial Applications

colset LinkAddr = string;

colset ERConfig = record
ll_er : IPv6Addr * (* link-local address *)
er_l2 : LinkAddr; (* link-addr (layer 2) *)

colset ERPrefixEntry = product IPv6Addr * IPv6Prefix;
colset ERPrefixAssigned = list ERPrefixEntry;

colset PrefixCount = int;

Fig. 14.7 Colour set definitions for edge routers

PrefixCount with colour 1 indicates that the edge router has a single prefix available
for distribution. Finally, the colour of the token on the place Config specifies the
link-local and link addresses of the edge router. In this case the edge router has
the symbolic link-local address ER link-local address, and the symbolic
link-address ER link-addr.

Figure 14.8 depicts the SendUnsolicitedRA module which is the submodule of the
substitution transition SendUnsolicitedRA in Fig. 14.6. The transition SendUnso-
licitedRA models the sending of the periodic unsolicited router advertisements. The
variable erconfig is of type ERConfig, and the variable prefixleft is of
type PrefixCount (see Fig. 14.7). The transition SendUnsolicitedRA is enabled
only if the edge router has prefixes available for distribution, i.e., prefixleft
is greater than 0. This is ensured by the function SendUnsolicitedRA in the
guard of the transition.

Figure 14.9 depicts the marking of the SendUnsolicitedRA module after the oc-
currence of the transition SendUnsolicitedRA in the marking shown in Fig. 14.8.
An unsolicited router advertisement has been put in the outgoing buffer of the

gwprefixassign

CreateUnsolicitedRA(erconfig)

erconfig

Send
UnsolicitedRA

[SendUnsolicitedRA(gwprefixassign,prefixleft)]

Prefix
AssignedI/O

1`[]

1
ConfigI/O

{ll_er = "ER link-local address",
 er_l2 ="ER link-addr"}

ERConfig

IPv6Packet

I/O

PrefixCount

I/O EROut OutOut

prefixleft

ERPrefixAssigned

PrefixCountI/OI/O

1
1`[]

1

1`{ll_er="ER link-local address",er_l2
="ER link-addr"}

1
1`1

Fig. 14.8 Initial marking of the SendUnsolicitedRA module

14.1 Protocol Design at Ericsson Telebit 321

gwprefixassign

CreateUnsolicitedRA(erconfig)

erconfig

Send
UnsolicitedRA

[SendUnsolicitedRA(gwprefixassign,prefixleft)]

Prefix
AssignedI/O

1`[]

1
ConfigI/O

{ll_er = "ER link-local address",
 er_l2 ="ER link-addr"}

ERConfig

IPv6Packet

I/O

PrefixCount

I/O EROut OutOut

prefixleft

ERPrefixAssigned

PrefixCountI/OI/O

1
1`[]

1

1`{ll_er="ER link-local address",er_l2
="ER link-addr"}

1

1`{header={Version=6,TrafficClass=
notmod,Flowlabel=notmod,PayloadLe
nght=notmod,NextHeader=1,HopLimit
=255,SourceAddress="ER link-local ad
dress",DestinationAddress="all-node
s-multicast"},extheaders=notmod,pa
yload=ICMP({Type=134,Code=0,Mes
sage=RA({CurHopLimit=0,M=0,O=0,R
outerLifetime=300,ReachableTime=0,
RetransTimer=0,Options=[RA_SrcLink
Addr({Type=1,Length=notmod,LinkLa
yerAddress="ER link-addr"})]})})}

1
1`1

Fig. 14.9 Module SendUnsolicitedRA, after occurrence of SendUnsolicitedRA

edge router. It can be seen that the DestinationAddress is the address all-
nodes-multicast, the SourceAddress is ER link-local address,
and the LinkLayerAddress (in the options part) is ER link-addr.

Figure 14.10 shows the part of the GW ER Link module that models transmission
of packets from the edge router to the gateway across the wireless link. Transmis-
sion of packets from the gateway to the edge router is modelled similarly. The places
GWIn and EROut are linked to the similarly named socket places in Fig. 14.4. The
transition ERtoGW models the successful transmission of packets, whereas the tran-
sition LossERtoGW models the loss of packets. The variable ipv6packet is of
type IPv6Packet. A successful transmission of a packet from the edge router to
the gateway corresponds to moving the token modelling the packet from the place
EROut to GWIn. If the packet is lost, the token will only be removed from the place
EROut.

Wireless links, in general, have a lower bandwidth and higher error rate than
wired links. These characteristics have been abstracted away in the CPN model
since our aim is to reason not about the performance of ERDP but rather its logical

ipv6packet

ipv6packet ipv6packet

LossERtoGW

ERtoGWGWInOut

IPv6Packet

EROut In

IPv6Packet

Fig. 14.10 Part of the GW ER Link module

322 14 Examples of Industrial Applications

correctness. Duplication and reordering of messages are not possible on typical one-
hop wireless links, since the detection of duplicates and the preservation of order are
handled by the data-link layer. The modelling of the wireless links does allow over-
taking of packets, but this overtaking is eliminated in the analysis phase described in
Sect. 14.1.3 where we impose bounds on the capacity of the input and output packet
buffers.

The CPN model was developed as an integrated part of the development of
ERDP. The creation of the CPN model was done in cooperation with the proto-
col engineers at Ericsson Telebit and in parallel with the development of the ERDP
specification. Altogether, 70 person-hours were spent on CPN modelling. The proto-
col developers at Ericsson Telebit were given a 6 hour course on the CPN modelling
language. This course enabled them to read and interpret CPN models, allowing
the CPN model to be used as a basis for discussions of the protocol design and its
representation as a CPN model.

The development of ERDP started out with the creation of an initial natural-
language specification. Based on this specification, an initial version of the CPN
model was created. The act of creating this initial CPN model and discussing it,
in Review 1, led to the identification of several issues related to the design and
operation of ERDP. This included design errors, incompleteness and ambiguities
in the specification, and ideas for simplifications and improvements of the protocol
design. Based on the issues discovered in Review 1, the ERDP specification was
revised and extended. The CPN model was then revised, and a second review, was
performed. Review 2 led to further identification of issues, which were eventually
resolved, and the ERDP specification was modified accordingly. The CPN model
was then modified again to reflect the revised ERDP specification. At this stage, no
further issues were discovered in the process of revising the CPN model.

Table 14.1 categorises and enumerates the issues encountered in each of the two
reviews. These issues were identified in the process of constructing the CPN model,
performing single-step executions of the CPN model, and conducting discussions
of the CPN model among the project group members. Altogether, 24 issues were
identified.

Message sequence charts (such as the one shown in Fig. 14.2), integrated with
simulation were used in both review steps to investigate the behaviour of ERDP in

Table 14.1 Issues encountered in the modelling phase

Category Review 1 Review 2 Total

Errors in protocol specification/operation 2 7 9 issues
Incompleteness and ambiguity in specification 3 6 9 issues
Simplifications of protocol operation 2 0 2 issues
Additions to the protocol operation 4 0 4 issues

Total 11 13 24 issues

14.1 Protocol Design at Ericsson Telebit 323

detail. The use of MSCs in the project was of particular relevance since it presented
the operation of the protocol in a form well known to protocol developers.

The construction of a CPN model can be seen as a very thorough and systematic
way of reviewing a design specification of a protocol. Using an iterative process
where both a conventional natural-language specification and a CPN model were
developed (as in this project) turned out to be an effective way of integrating CPN
modelling and analysis into the development of a protocol. In general, we believe
that a combination of an executable formal model (such as a CPN model) and a
natural-language specification provides a useful way to develop a protocol. One
reason why both are required is that the people who are going to implement the
protocol are unlikely to be familiar with CP-nets. Secondly, in the present case,
there are important parts of the ERDP specification that are not reflected in the CPN
model, such as the layout of packets.

14.1.3 State Space Analysis and Verification

State space analysis was pursued after the three iterations of modelling described in
the previous subsection. The purpose of the state space analysis was to conduct a
more thorough investigation of the operation of ERDP, including verification of its
key properties.

The first step towards state space analysis of the CPN model was to obtain a finite
state space. The CPN model presented in the previous subsection has an infinite
state space, since an arbitrary number of tokens (packets) can be put on the places
modelling the packet buffers. As an example, the edge router may initially send an
arbitrary number of unsolicited router advertisements. To obtain a finite state space,
an upper integer bound of 1 was imposed on each of the places GWIn, GWOut,
ERIn, and EROut (see Fig. 14.4) that model the packet buffers. This also prevents
overtaking among the packets transmitted across the wireless link. Furthermore,
the number of packets simultaneously present in the four input/output buffers was
limited to 2. Technically, this was done by using the branching options available
in the CPN state space tool to prevent the processing of enabled transitions whose
occurrence in a given marking would violate the above bounds.

First, we generated the state space for the considered configuration of the proto-
col. This was followed by generation of the state space report and the use of user-
defined queries to investigate the model-dependent properties of the protocol. The
key property of ERDP is proper configuration of the gateway with prefixes. This
means that for a given prefix and state where the gateway has not yet been config-
ured with that prefix, the protocol must be able to configure the gateway with that
prefix. Furthermore, when the gateway has been configured with the prefix, the edge
router and the gateway should be consistently configured, i.e., the assignment of the
prefix must be recorded both in the gateway protocol entity and in the edge router
protocol entity. Whether a marking represents a consistently configured state for a

324 14 Examples of Industrial Applications

given prefix can be checked by inspecting the marking of the place PrefixAssigned
in the edge router and the marking of the place Prefixes in the gateway.

The state space analysis was conducted in three steps. The first step was to con-
sider the simplest possible configurations of ERDP, starting with a single prefix and
assuming that there is no loss of packets on the wireless link and that prefixes do
not expire. The full state space for this configuration had 46 nodes and 65 arcs. The
SCC graph had 36 nodes and 48 arcs. Inspection of the state space report showed
that there was a single dead marking represented by node 36. Inspection of this node
showed that it represented a state where all of the packet buffers were empty, but
where the edge router and gateway were inconsistently configured in the sense that
the edge router had assigned the prefix P1 (the single prefix), while the gateway
was not configured with that prefix. This was an error in the protocol. To locate the
source of the problem, query functions in the state space tool were used to obtain
a counterexample leading from the node representing the initial marking to node
36. Figure 14.11 shows the resulting error trace, visualised by means of an MSC.
The problem is that the edge router sends two unsolicited RAs. The first one gets
through and the gateway is configured with the prefix, which can be seen from the
event marked with *A* in the lower part of the MSC. However, when the second RS,
without any prefixes, is received by the edge router (the event marked with *B*), the
corresponding solicited RA will not contain any prefixes. Because of the way the
protocol was specified, the gateway will therefore update its list of prefixes to the
empty list (the event marked with *C*), and the gateway is no longer configured with
a prefix.

To fix the error, the protocol was modified such that the edge router always
replied with the list of all prefixes that it had currently assigned to the gateway.
The state space for the modified protocol consisted of 34 nodes and 49 arcs, and
there were no dead markings in the state space. The state space report specified that
there were 11 home markings (represented by the nodes in the single terminal SCC).
Inspection of these 11 markings showed that they all represented consistently con-
figured states for the prefix P1. The markings were contained in the single terminal
SCC of the state space. This shows that, from the initial marking it is always possible
to reach a consistently configured state for the prefix, and that when such a marking
has been reached, the protocol entities will remain in a consistently configured state.
To verify that a consistently configured state would eventually be reached, it was
checked that the single terminal SCC was the only non-trivial SCC. This showed
that all cycles in the state space (which correspond to non-terminating executions
of the protocol) were contained in the terminal SCC, which (from above) contained
only consistently configured states. The reason why the protocol is not supposed to
terminate in a consistently configured state represented by a dead marking is that
the gateway may, at any time, when it is configured, send a router solicitation back
to the edge router to have its prefixes refreshed. Since we are ignoring expiration of
prefixes, the edge router will always refresh the prefix.

When the correctness of the protocol had been established for a single prefix, we
increased the number of prefixes. When there is more than one prefix available it no
longer holds that a marking will eventually be reached where all prefixes are consis-

14.1 Protocol Design at Ericsson Telebit 325

Fig. 14.11 Message sequence chart showing an execution leading to an undesired terminal state

326 14 Examples of Industrial Applications

tently configured. The reason is that with more than one prefix, the edge router may
at any time decide not to configure the gateway with additional prefixes. Hence, a
state where all prefixes have been consistently configured might not eventually be
reached. Instead, firstly, it was verified that there was a single terminal SCC, all
markings of which represent states where all prefixes have been consistently con-
figured. This shows that it is always possible to reach such a marking, and when
the protocol has consistently configured all prefixes, the protocol entities will re-
main consistently configured. Secondly, it was checked that all markings in each
non-trivial SCC represented markings where the protocol entities were consistently
configured with a subset of the prefixes available in the edge router.

The second step was to allow packet loss on the wireless link between the edge
router and the gateway. First, the case was considered in which there is only a single
prefix for distribution. The state space for this configuration had 40 nodes and 81
arcs. Inspection of the state space report showed that there was a single dead mark-
ing. This marking represented an undesired terminal state where the prefix had been
assigned by the edge router, but the gateway was not configured with the prefix. Fig-
ure 14.12 shows an MSC corresponding to a path in the state space from the initial
marking to the undesired dead marking. The problem is that when the solicited RA
containing the prefix is lost, the edge router will have assigned its last prefix and is
no longer sending any unsolicited RAs. Furthermore, there are no timeouts in the
protocol entities that could trigger a retransmission of the prefix to the gateway.

Fig. 14.12 Message sequence chart showing an execution leading to an undesired terminal state

14.1 Protocol Design at Ericsson Telebit 327

The problem identified above was fixed by ensuring that the edge router would
resend an unsolicited RA to the gateway as long as it had prefixes assigned to the
gateway. The state space of the revised CPN model had 68 nodes and 160 arcs.
Inspection of the state space report showed that there were no dead markings and
no home markings. Investigation of the terminal SCCs showed that there were two
terminal SCCs, each containing 20 markings. The nodes in one of them all repre-
sented states where the edge router and gateway were consistently configured with
the single prefix P1, whereas the nodes in the other terminal SCC all represented
states where the protocol entities were not consistently configured. The markings
in the undesired terminal SCC represent a livelock in the protocol, i.e., if one of
the markings in the undesired terminal SCC is reached, it is no longer possible to
reach a state where the protocol entities are consistently configured with the pre-
fix. The source of the livelock was related to the control fields used in the router
advertisements for refreshing prefixes and their interpretation in the gateway. This
was identified by obtaining the MSC for a path leading from the initial marking to
one of the markings in the undesired terminal SCC. As a result, the processing of
router advertisements in the gateway was modified. The state space for the proto-
col with the modified processing of router advertisements also had 68 nodes and
160 arcs. The state space had a single terminal SCC containing 20 nodes, which all
represented states where the protocol entities were consistently configured with the
single prefix.

When packet loss is present, it is not immediately possible to prove that the two
protocol entities will eventually be consistently configured. The reason is that any
number of packets can be lost on the wireless link. Each of the non-trivial SCCs was
inspected using a user-defined query to investigate the circumstances under which
the protocol entities would not eventually be consistently configured. This query
checked that either all nodes in the non-trivial SCC represented consistently config-
ured states or none of the nodes in the SCC represented a consistently configured
state. For those non-trivial SCCs where no node represented a consistently config-
ured state, it was checked that all cycles contained the occurrence of a transition
corresponding to loss of a packet. Since this was the case, it can be concluded that
any failure to reach a consistently configured states will be due to packet loss and
nothing else. Hence, if only finitely many packets are lost, a consistently configured
state for some prefix will eventually be reached.

The third and final step in the analysis was to allow prefixes to expire. The anal-
ysis was conducted first for a configuration where the edge router had only a single
prefix to distribute. The state space for this configuration had 173 nodes and 531
arcs. The state space had a single dead marking, and inspection of this dead mark-
ing showed that it represented a state where the edge router has no further prefixes
to distribute, it has no prefixes recorded for the gateway, and the gateway is not con-
figured with any prefix. This marking is a desired terminating state of the protocol,
as we expect prefixes to eventually expire. Since the edge router has only finitely
many prefixes to distribute, the protocol should eventually terminate in such a state.
The single dead marking was also a home marking, meaning that the protocol can
always enter the expected terminal state.

328 14 Examples of Industrial Applications

When prefixes can expire, it is possible that the two protocol entities may never
enter a consistently configured state. The reason is that a prefix may expire in the
edge router (although this is unlikely) before the gateway has been successfully
configured with that prefix. Hence, we are only able to prove that for any marking
where a prefix is still available in the edge router, it is possible to reach a marking
where the gateway and the edge router are consistently configured with that prefix.

Table 14.2 lists statistics for the size of the state space in the three verification
steps for different numbers of prefixes. The column ‘|P|’ specifies the number of
prefixes. The columns ‘Nodes’ and ‘Arcs’ give the numbers of nodes and arcs, re-
spectively, in the state space. For the state spaces obtained in the first verification
step, it can be seen that 38 markings and 72 arcs are added for each additional prefix.
The reason for this is that ERDP proceeds in phases where the edge router assigns
prefixes to the gateway one at a time. Configuring the gateway with an additional
prefix follows exactly the same procedure as that for the assignment of the first pre-
fix. Once the state space had been generated, the verification of properties could
be done in a few seconds. It is also worth observing that as the assumptions are
relaxed, i.e., we move from one verification step to the next, the sizes of the state
spaces grow. This, combined with the identification of errors in the protocol even in
the simplest configuration, without packet loss and without expiration of prefixes,
shows the benefit of starting state space analysis from the simplest configuration
and then gradually lifting the assumptions. Furthermore, the state explosion prob-
lem was not encountered during the verification of ERDP, and the key properties of
ERDP were verified for the number of prefixes that were envisioned to appear in
practice.

It can be argued whether or not the issues and errors discovered in the process
of modelling and conducting state space analysis would have been identified if ad-
ditional conventional reviews of the ERDP specification had been conducted. Some
of them probably would have been, but more subtle problems such as the inconsis-

Table 14.2 State space statistics for the three verification steps

No loss/No expire Loss/No Expire Loss/Expire
|P| Nodes Arcs Nodes Arcs Nodes Arcs

1 34 49 68 160 173 531
2 72 121 172 425 714 2 404
3 110 193 337 851 2 147 7 562
4 148 265 582 1 489 5 390 19 516
5 186 337 926 2 390 11 907 43 976

6 224 409 1 388 3 605 23 905 89 654
7 262 481 1 987 5 185 44 550 169 169
8 300 553 2 742 7 181 78 211 300 072
9 338 625 3 672 9 644 130 732 505 992

10 376 697 4 796 12 625 209 732 817 903

14.2 Requirements Engineering at Systematic 329

tent configurations discovered during state space analysis would probably not have
been discovered until the first implementation of ERDP was operational. The reason
for this is that discovering these problems requires one to consider subtle execution
sequences of the protocol, and there are too many of these to do this in a systematic
way. This demonstrates the value of being able to conduct state space analysis of a
CPN model and in this way cover all execution sequences.

14.1.4 Conclusions from the ERDP Project

This project showed that even the act of constructing a CPN model based on the
ERDP specification provided valuable input to the ERDP specification, and the use
of simulation added further insight into the operation of the protocol. State space
analysis, starting with the simplest possible configuration of the protocol, identified
additional errors in the protocol. The state space analysis succeeded in establishing
the key properties of ERDP.

Overall, the application of CP-nets in the development of ERDP was considered a
success for three main reasons. Firstly, it was demonstrated that the CPN modelling
language and supporting computer tools were powerful enough to specify and anal-
yse a real-world communication protocol and that they could be integrated into the
conventional protocol development process. Secondly, the act of constructing the
CPN model, executing it, and discussing it led to the identification of several non-
trivial design errors and issues that, under normal circumstances, would not have
been discovered until, at best, the implementation phase. Finally, the effort of con-
structing the CPN model and conducting the state space analysis was represented
by approximately 100 person-hours. This is a relatively small investment compared
with the many issues that were identified and resolved early as a consequence of
constructing and analysing the CPN model.

14.2 Requirements Engineering at Systematic

This project [64, 75], conducted with Systematic Software Engineering and Aarhus
County Hospital was concerned with specifying the business processes at Aarhus
County Hospital and their support by a new IT System, called the Pervasive Health
Care System (PHCS). A CPN model of PHCS was used to engineer requirements for
the system, and input from nurses was crucial in this process. The project demon-
strated how behavioural visualisation driven by a CPN model can be used to visu-
alise system behaviour and enable the engineering of requirements through discus-
sions with people who are not familiar with the CPN modelling language.

330 14 Examples of Industrial Applications

14.2.1 Pervasive Health Care System

The aim of PHCS is to improve the system for electronic patient records (EPR)
deployed at the hospitals in Aarhus, Denmark. EPR is a comprehensive health care
IT system with a budget of approximately 15 million US dollars; it will eventually
have 8–10,000 users.

EPR solves obvious problems that occur with paper-based patient records such
as being not always up-to-date, only present in one location at a time, misplaced,
or sometimes even lost. However, the version of EPR that was deployed at the time
of the project was a desktop-PC-based system, which is not very practical for hos-
pital work, since users such as nurses and doctors are often on the move and away
from their offices (and thus their desktop PCs). Moreover, users are frequently in-
terrupted. Therefore, the desktop-PC-based EPR potentially induces at least two
central problems for its users. The first problem is immobility: in contrast to a paper-
based record, an electronic patient record accessed only from desktop PCs cannot
be easily transported. The second problem is time-consuming login and navigation:
EPR requires user identification and login to ensure the confidentiality and integrity
of information, and to start using the system for clinical work, a logged-in user must
navigate to find a specific document for a given patient, for example.

The motivation for PHCS is to address these problems. In the ideal situation,
the users should have access to the IT system wherever they need it, and it should
be easy to resume a work process which has been interrupted. The use of personal
digital assistants (PDAs), with which nurses and doctors could access EPR using a
wireless network, is a possible solution to the immobility problem. That approach
has been considered, but it is not ideal, for example, because of well-known char-
acteristics of PDAs such as small screens and limited memory, and because it does
not fully address the time-consuming login and navigation problem.

PHCS is a more ambitious solution, which takes advantage of the possibilities
of pervasive computing to a greater extent. Three basic design principles are ex-
ploited. The first principle is that PHCS is context-aware: nurses, patients, beds,
medicine trays, and other items are equipped with radio frequency identity (RFID)
tags, enabling the presence of such items to be detected automatically, for example,
by computers located beside the medicine cabinet and the patient beds. The second
design principle is that PHCS is propositional, in the sense that it makes qualified
propositions, or guesses. Context changes may result in the automatic generation
of buttons that appear on the taskbars of computers. Users may explicitly accept a
proposition by clicking on a button, or implicitly ignore or reject it by not clicking.
As an example, the presence of a nurse holding a medicine tray for patient P in front
of the medicine cabinet is a context that triggers the automatic generation of a button
Medicine plan:P on the computer in the medicine room. If the nurse clicks the but-
ton, he/she is logged in and taken to P’s medicine plan. The third design principle is
that PHCS is non-intrusive, i.e., it does not interfere with or interrupt hospital work
processes in an undesired way. Thus, when a nurse approaches a computer, it should
react to his/her presence in such a way that a second nurse, who may currently be
working on the computer, is not disturbed or interrupted.

14.2 Requirements Engineering at Systematic 331

Figure 14.13 presents a simplified interface of PHCS. The current context of
the system is that nurse Jane Brown is engaged in pouring medicine for patient
Bob Jones, to be given at 12 a.m. The medicine plan on the display shows which
medicines have been prescribed (indicated by Pr), poured (Po), and given (G) at the
current time. It can be seen that Advil and Tylenol have been poured for 12 a.m., but
Comtrex has not yet peen poured. Moreover, the medicine tray for another patient,
Tom Smith, stands close to the computer, as can be seen from the taskbar buttons.

Fig. 14.13 Outline of simplified PHCS interface

14.2.2 PHCS CPN Model

The CPN models of the envisioned new work processes and of the proposed com-
puter support were created with a focus on the medicine administration work pro-
cess. Assume that nurse N wants to pour medicine into a medicine tray and give it
to patient P. First, N goes to the room containing the medicine cabinet (the medicine
room). Here, there is a context-aware computer on which the buttons Login:N and
Patient list:N appear on the taskbar when N approaches. If the second button is
clicked, N is logged in and a list of the patients whom N is in charge of is displayed
on the computer. A medicine tray is associated with each patient. When N takes P’s
tray near the computer, the button Medicine plan:P will appear on the taskbar, and
a click will make P’s medicine plan appear on the display. N pours the prescribed
medicine into the tray and acknowledges this in PHCS. When N leaves the medicine
room, he/she is automatically logged out. N now takes P’s medicine tray and goes
to the ward where P lies in a bed, which is supplied with a context-aware computer.
When N approaches, the buttons Login:N, Patient list:N, and Medicine plan:P appear

332 14 Examples of Industrial Applications

on the taskbar. If the last button is clicked, the medicine plan for P is displayed.
Finally, N gives the medicine tray to P and acknowledges this in PHCS. When N
leaves the bed area, he/she is automatically logged out.

The description given above captures just one specific combination of work
processes. There are numerous other scenarios to take into account: for example,
medicine may be poured for one or more patients, for only one round of medicine
giving, for all four regular rounds of a 24 hour period, or for ad hoc giving; a nurse
may have to fetch trays left in the wards prior to pouring; a nurse may approach the
medicine cabinet without intending to pour medicine, but instead only to log into
EPR (via PHCS) or to check an already filled medicine tray; or two or more nurses
may do medicine administration at the same time. To support a smooth medicine
administration work process, the requirements for PHCS must deal with all of these
scenarios and many more. A CPN model, with its fine-grained and coherent nature,
is able to support the investigation and validation of this.

Figure 14.14 shows the module hierarchy of the medicine administration CPN
model. The organisation of the modules reflects how the work process of medicine
administration is decomposed into smaller work processes. We can give an impres-
sion of the model by describing the module shown in Fig. 14.15. This module mod-
els the pouring and checking of trays and is represented by the node PourCheckTrays
in Fig. 14.14. The medicine cabinet computer is in focus. It is modelled by a token

GiveMedicine

GetTrays

PourCheckTrays

GiveToPatients

PourCheckTray

FindPlan

GiveToPatient

PourAndAck

FindPlanTray

ProvideTrays

MedAdm

Fig. 14.14 Module hierarchy of the PHCS medicine administration model

on the place MedicineCabinetComputer. This place has the colour set COMPUTER,
whose elements are 4-tuples (compid,display,taskbar,users) consist-
ing of a computer identification, its display (main screen), its taskbar buttons, and
its current users. In the initial marking, the computer has a blank display, no taskbar
buttons, and no users.

The colour set NURSE is used to model nurses. A nurse is represented as a pair
(nurse,trays), where nurse identifies the nurse and trays is a list holding

14.2 Requirements Engineering at Systematic 333

(compid,display,
removeLoginButton nurse taskbar,
addUser nurse users)

(compid,display,
 taskbar,users)

if loggedin nurse (compid,display,taskbar,users) then
 (compid, blank, removeMedicineCabinetButtons nurse taskbar, removeUser nurse users)
else
 (compid, display, removeMedicineCabinetButtons nurse taskbar, users)

(compid,display, addMedicineCabinetButtons nurse taskbar, users)

(compid,display,taskbar,users)

(compid,display,taskbar,users)

(nurse,trays)

(nurse,trays)

(nurse,trays)

(nurse,trays)

(nurse,trays)

PourCheck
Tray

PourCheckTray

Enter EPR via
Login Button

[loginAllowed nurse
(compid,display,
taskbar,users)]

Leave Medicine
Cabinet

Approach
Medicine Cabinet

Medicine
Cabinet

Computer
I/O

1`(1,blank,noButtons,noUsers)

COMPUTER

TRAY

By Medicine
Cabinet

NURSE

Ready

1`(janeBrown,noTrays)++
1`(maryGreen,noTrays)

NURSE

I/O

PourCheckTray

Trays by
Medicine Cabinet I/OI/O

1

1`(1,blank,noButtons,noUsers)

2

1`(janeBrown,noTrays)++
1`(maryGreen,noTrays)

Fig. 14.15 PourCheckTrays module

the medicine trays that this nurse currently has in possession. Initially, the nurses
Jane Brown and Mary Green are ready (represented as tokens on the place Ready)
and have no trays.

The occurrence of the transition ApproachMedicineCabinet models the situation
where a nurse changes from being ready to being busy near the medicine cabinet.
At the same time, two buttons are added to the taskbar of the medicine cabinet com-
puter, namely one login button for the nurse and one patient list button for the nurse.
In the CPN model, these taskbar buttons are added by the function addMedicine-
CabinetButtons, which appears on the arc from the transition Approach-
MedicineCabinet to the place MedicineCabinetComputer.

The possible actions for a nurse who is by the medicine cabinet are modelled by
the three transitions PourCheckTray, EnterEPRviaLoginButton, and LeaveMedicine-
Cabinet. Often, a nurse at the medicine cabinet wants to pour and/or check some
trays. How this pouring and checking is carried out is modelled by the submodule
PourCheckTray associated with the substitution transition PourCheckTray.

The transition EnterEPRviaLoginButton models the situation where a nurse clicks
on the login button and makes a general-purpose login to EPR. It is outside the scope
of the model to describe what the nurse subsequently does – the domain of the model
is specifically medicine administration, not general EPR use. This transition has a
guard which checks if a nurse is allowed to log into EPR. When a nurse logs in, the
login button for that nurse is removed from the taskbar of the computer, modelled
by the function removeLoginButton. Moreover, the nurse is added to the set of
current users by the function addUser.

The transition LeaveMedicineCabinet models the effect of a nurse leaving: it
is checked whether the nurse is currently logged in, modelled by the function

334 14 Examples of Industrial Applications

loggedIn appearing in the if–then–else expression on the arc from the transi-
tion LeaveMedicineCabinet to the place MedicineCabinetComputer. If the nurse is
logged in, the medicine cabinet computer automatically returns to a blank screen, re-
moves the nurse’s taskbar buttons (removeMedicineCabinetButtons), and
logs him/her off (removeUser). If the nurse is not logged in, the buttons generated
because of his/her presence are removed, but the state of the computer is otherwise
left unaltered. In any case, the token corresponding to the nurse is put back on the
place Ready.

14.2.3 Behavioural Visualisation of Medicine Administration

The interaction graphics built on top of the CPN model are shown in Fig. 14.16.
The graphics are an interface to the CPN model, i.e., the interaction graphics are
consistent with the CPN model and reflect the markings, transition occurrences,
and marking changes that appear when the CPN model is executed, as explained in
Chap. 13. The interaction graphics were added to the CPN model to support com-
munication between the users (nurses) and the system developers, by reducing the
distance between the CPN model and the users’ conception of future work processes
and their proposed computer support.

The graphics are divided into three windows. The Department window (at the top
of Fig. 14.16) shows the layout of a hospital department, with wards, the medicine
room, the ‘team room’ (the nurses’ office), and two bathrooms. The Medicine room

Department

Give medicine

Pour/check trays

Provide trays

Ward

Bath Team room Ward

Ward Medicine room Bath Ward

Medicine room

Bob Jones

Leave medicine cabinet

Take trayPatient list: Jane Brown

Login: Jane Brown

Ward

Fig. 14.16 Medicine administration interaction graphics

14.2 Requirements Engineering at Systematic 335

window (in the middle of Fig. 14.16) shows the medicine cabinet, pill boxes, tables,
medicine trays, and a computer screen (enlarged). The Ward window (at the bottom
of Fig. 14.16) shows a patient, a bed, a table, and a computer screen. Thus, the
Department window gives an overview, and the other windows zoom in on areas of
particular interest.

In Fig. 14.16, the graphics show a situation where nurse Jane Brown is in the
medicine room, shown in the Department window and the Medicine room window,
sufficiently close to produce two taskbar buttons on the computer. The user must
make choices in order to drive the interaction graphics further. By selecting one of
the grey buttons on the right in the Medicine room window, the user can choose to
take a tray or leave the medicine room. The user can also select one of the taskbar
buttons on the computer. These four choices correspond to enabled transitions in the
CPN model. As an example, the user may push the LeaveMedicineCabinet button.
This forces the transition with the same name in the CPN model (see Fig. 14.15)
to occur. The result of the occurrence is experienced by the animation user, who
sees Jane Brown walking away from the medicine cabinet and the removal from
the computer screen of the taskbar buttons, which were generated because of Jane
Brown’s presence. If the animation user pushes the TakeTray button and then selects
Bob Jones’s medicine tray, this tray is moved close to the computer, and a medicine
plan button for Bob Jones appears on the computer taskbar. If this button is pushed,
the computer will display a screen similar to the one shown in Fig. 14.13.

14.2.4 Requirements Engineering for PHCS

When the PHCS project started, the first activities were domain analysis in the form
of ethnographic field work, and a series of vision workshops with participation by
nurses, doctors, computer scientists, and an anthropologist. One outcome of this
analysis was natural-language descriptions of work processes and their proposed
computer support. The first version of the CPN model presented in this section was
based on these prose descriptions. The CPN model and the interaction graphics were
extended and modified in a number of iterations, each version based on feedback
about the previous versions. The interaction graphics served as a basis for discus-
sions in evaluation workshops, with participation by nurses from hospitals in Aarhus
and personnel from the software company involved.

Through the construction and use of the CPN model and the use of interaction
graphics at the evaluation workshops, experience was gained in the use of CP-nets
in requirements engineering. It could be observed that for PHCS, the CPN model
and the interaction graphics were effective means for specification, specification
analysis, elicitation, and negotiation and agreement of requirements, as discussed
below.

The specification of requirements has a sound foundation because of the formal-
ity and unambiguity of the CPN model. In the case of the CPN model of medicine
administration, there are requirements precisely described by the transitions that

336 14 Examples of Industrial Applications

model manipulation of the computers involved. Each transition connected to a place
that models a computer, for example, the place MedicineCabinetComputer shown in
Fig. 14.15, must be taken into account. The following are examples of requirements
induced by the transitions of the module in Fig. 14.15:

R1 When a nurse approaches the medicine cabinet, the medicine cabinet
computer must add a login button and a patient list button for that nurse
to the taskbar (transition ApproachMedicineCabinet).

R2 When a logged-in nurse leaves the medicine cabinet, the medicine cab-
inet computer must return to a blank display, remove the nurse’s login
button and patient list button from the taskbar, and log that nurse out
(transition LeaveMedicineCabinet).

R3 When a nurse selects his/her login button, that nurse must be added as a
user of EPR, and the login button must be removed from the taskbar of
the computer (transition EnterEPRviaLoginButton).

Specification analysis is well supported by simulation, which allows experiments
and trial-and-error investigations of various scenarios for the envisioned work pro-
cess. Simulation combined with interaction graphics was considered the most appro-
priate means for specification analysis. It is easy for the nurses to understand, and
the work processes can be modelled in as much detail as desired without worrying
about state space explosion.

Elicitation includes the discovery of new requirements and the gaining of a better
understanding of known requirements. Elicitation is, like specification analysis, well
supported by simulation. Simulation spurs elicitation by triggering many questions.
Simulation of a CPN model typically catalyses the participants’ cognition and gen-
erates new ideas. Interaction with an executable model that is a coherent description
of multiple scenarios is very likely to bring up new questions, and issues appear
that the participants had not thought about earlier. Some examples of questions that
appeared during simulation of the CPN model for medicine administration and their
corresponding answers are:

Q1 What happens if two nurses are both close to the medicine cabinet com-
puter?

A1 The computer generates login buttons and patient list buttons for both
of them.

Q2 What happens when a nurse with several medicine trays approaches a
bed?

A2 In addition to a login button and a patient list button, only one medicine
plan button is generated – a button for the patient associated with that
bed.

14.2 Requirements Engineering at Systematic 337

Q3 Is it possible for one nurse to acknowledge the pouring of medicine for
a patient while another nurse at the same time acknowledges the giving
of medicine to that same patient?

A3 No, that would require more fine-grained concurrency control to be ex-
ercised over the patient records.

Questions such as Q1–Q3 and their answers A1–A3 may imply changes to be
made to the CPN model. As a concrete example, in an early version of the medicine
administration CPN model, the leaving of any nurse from the medicine cabinet re-
sulted in the computer display being blanked off. To be compliant with the principle
of non-intrusive design for PHCS, the leaving of a nurse who is not logged in should
of course not disturb another nurse who might be working at the computer, and the
CPN model had to be changed accordingly.

Negotiation and agreement may be eased via CPN models. In large projects,
negotiation about requirements inevitably takes place during the project. In many
cases, this has strong economic consequences, because a requirements specification
for a software system may be an essential part of a legal contract between, for ex-
ample, a hospital and a software company. Therefore, it is important to be able to
determine what requirements were included in the initial agreement. Questions such
as Q1–Q3 above may easily be subject to dispute. However, if the parties involved
have an agreement that medicine administration should be supported, and agree to
the overall stipulation that the formal, unambiguous CPN model is the authoritative
description, many disagreements can be quickly settled.

14.2.5 Conclusions from the PHCS Project

This project demonstrated that CPN models are able to support various requirements
engineering activities. The CPN model and the interaction graphics can be seen as a
supplement to UML use cases. Use cases describe work processes to be supported
by a new IT system, and a set of use cases is interpreted as a set of functional
requirements for that system. One of the main motivations for the requirements
engineering approach chosen for PHCS was to build on top of prose descriptions of
work processes and the proposed computer support, consolidated as UML use cases.
The advantage of this was that the stakeholders of PHCS were already familiar with
these UML use cases via the work on EPR. Having an executable representation of
a work process supports specification analysis and elicitation, as we have discussed.
The interaction graphics used in the project enabled users such as nurses and doctors
to be actively engaged in specification analysis and elicitation, which is crucial. User
participation increases the probability that a system is ultimately built that fits with
the future users’ work processes.

338 14 Examples of Industrial Applications

14.3 Embedded-System Design at Bang and Olufsen

This joint project [17, 75], conducted with Bang & Olufsen [3] was concerned with
the design and analysis of the BeoLink system. A timed CPN model was developed,
specifying the lock management subsystem which is responsible for the basic syn-
chronisation of the devices in the BeoLink system. Methods based on state spaces,
including a number of advanced state space methods, were used to verify the lock
management system.

14.3.1 BeoLink System

The BeoLink system makes it possible to connect audio and video devices in a
home via a dedicated network. A home equipped with the BeoLink system will
typically have a number of audio/video sources such as radios, CD/DVD players,
and TVs. Using the BeoLink system, it is possible to distribute these sources to
different rooms. The CPN modelling and analysis focused on the lock management
protocol of the BeoLink system. This protocol is used to grant devices exclusive
access to services in the system, such as being able to use the loudspeakers when
playing music. The lock management protocol is based on the notion of a key, and a
device is required to possess a key to access services in the system. When the system
is switched on, exactly one key must be generated by the devices currently in the
system. Furthermore, this key must be generated within 2 seconds for the system to
be properly working. Special devices in the system, called audio and video masters,
are responsible for generating the key.

The MSC in Fig. 14.17 shows a typical communication sequence in a BeoLink
system with four devices. A single User is present and wishes to change the CD
track on Device1. The event key wanted is sent to Device1, which is not currently
the lock manager. Device1 therefore requests the key over the network by broad-
casting a REQUEST KEY telegram (message). Device3 is the lock manager and is
ready to give away the key. Hence, Device3 sends a KEY TRANSFER telegram to
Device1 and the key is reserved. Device1 is granted the key upon reception of the
KEY TRANSFER telegram, and sends a telegram NEW LOCK MANAGER to De-
vice3 as an acknowledgement of a successful key transfer. Finally, the User receives
the event key ready, and the change of track on the CD player can take place.

14.3.2 BeoLink CPN Model

Figure 14.18 shows the module hierarchy of the BeoLink CPN model. The sub-
module Network models the network that connects the devices in the system. The
module Device and its submodules model the lock management protocol entities
in each device. The submodules on the right, from RequestKey down to Function-

14.3 Embedded-System Design at Bang and Olufsen 339

Fig. 14.17 Message sequence chart showing communication sequence in the BeoLink system

Lock2, correspond to the various functional blocks of the lock management proto-
col. The submodule KeyUser models the behaviour of devices as seen from the lock
management protocol.

LockManager

KeyWanted2

KeyLost2

Network

RequestKey

BeoLink

KeyUser

KeyImplement

FunctionLock2

NewLock1

KeyLost1

NewLock2

FunctionLock1

KeyRelease

KeyWanted1

KeyTransfer

Device

Fig. 14.18 Module hierarchy of the BeoLink model

340 14 Examples of Industrial Applications

Send
Buffer

DIDxTLG_LIST

Config

CONFIGS

Receive
Buffer

TLG_BUFFERS

Network
NetworkNetwork

Device
DeviceDevice

Fig. 14.19 BeoLink module

Figure 14.19 shows the BeoLink module. The substitution transition Network rep-
resents the network that connects the devices in the system. The substitution tran-
sition Device models the devices in the system. The CPN model provides a folded
representation of the behaviour of the devices. This is achieved by encoding the
identities of the devices as part of the colours of tokens (as in the protocol with mul-
tiple receivers in Sect. 5.4). This makes it possible to capture any number of devices
without having to make changes to the net structure of the CPN model, and without
having an instance of the submodules of the substitution transition Device for each
of the devices in the system. This way of compactly representing any number of
devices makes the CPN model parametric. The details will become evident when
we present the KeyUser module.

The socket places ReceiveBuffer and SendBuffer in Fig. 14.19, which connect
the two substitution transitions, model message buffers between the devices and the
network. Messages in the lock management protocol are called telegrams and are
abbreviated TLG. Each device has a buffer for outgoing and incoming telegrams.
The place Config is used for the configuration of the CPN model.

The behaviour of devices, as seen from the lock management protocol, is mod-
elled by the KeyUser module shown in Fig. 14.20. Each device has a cyclic control
flow, where the device is initially idle (modelled by the place Idle), it then asks for
the key (modelled by the transition RequestKey), and it enters a state where it is
waiting for the key (modelled by the place Waiting). The granting of the key to a
device is modelled by the transition GetKey which causes the device to enter a state
where it is using the key (modelled by the place UseKey). When the device has fin-
ished using the key, it releases the key and returns to the idle state, where it may then
ask for the key again. The places Status, Commands, and FunctionLockIn are used
to model the internal state of a device. The places SendBuffer and ReceiveBuffer are
linked to the accordingly named places in the BeoLink module via a sequence of
port/socket relationships. The markings of these five places are also changed by the
various functional blocks of the lock management protocol.

Figure 14.20 shows the initial marking of the CPN model, with three devices all
in their idle state, as represented by the three tokens on the place Idle. A device is

14.3 Embedded-System Design at Bang and Olufsen 341

(did,tlg_list3)

(did,tlg_list2)

tlgbuf

(did,fl_cmd_list)

(did,fl_cmd_list)

(did,fl_cmd_list^^[LOCK_MAN_KEY_RELEASE])

did@+(10+40*ran_0_1)

did

did@+(10+40*ran_0_1)

(did,KEY_IS_READY)

did

did

did

(did,fl_cmd_list^^[LOCK_MAN_KEY_WANTED])

ReleaseKey

GetKey

RequestKey

Send
Buffer I/O

DIDxTLG_LIST

DIDxTLG_LIST

Receive
Buffer I/O

TLG_BUFFERS

CommandsI/O

DIDxFL_CMD_LIST

StatusIn

DIDxFL_STATUS

UseKey

DID

Waiting

DID

Idle

DID

InI/O

I/O

I/O

FunctionLock
In I/OI/O

3
1`(1,[])++
1`(2,[])++
1`(3,[])

1

1`[(1,[]),(2,[]),(3,[])]

3

1`(1,[])++
1`(2,[])++
1`(3,[])

3
1`1@500+++
1`2@500+++
1`3@500

3

1`(1,[])++
1`(2,[])++
1`(3,[])

Fig. 14.20 Initial marking of the KeyUser module

identified simply by a number. In this marking any of the three devices may ask
for the key, corresponding to the transition RequestKey being enabled with three
different bindings depending on the device identifier assigned to the variable did.
Figure 14.21 shows a marking of the KeyUser module where device 1 is using the
key, whereas devices 2 and 3 have requested but not been granted the key.

The CPN model of the BeoLink system is timed. This means that the CPN model
captures the time taken by the various events in the protocol. As an example, the
transition GetKey uses the symbol @+ in the arc expression on the output arc leading
to the place UseKey. The number of time units to be added to the current model time
is specified by the expression 10+40*ran 0 1, where ran 0 1 is a variable that
can be bound to either 0 or 1. This models a situation where the event of obtaining
the key can take either 10 or 50 time units.

342 14 Examples of Industrial Applications

(did,tlg_list3)

(did,tlg_list2)

tlgbuf

(did,fl_cmd_list)

(did,fl_cmd_list)

(did,fl_cmd_list^^[LOCK_MAN_KEY_RELEASE])

did@+(10+40*ran_0_1)

did

did@+(10+40*ran_0_1)

(did,KEY_IS_READY)

did

did

did

(did,fl_cmd_list^^[LOCK_MAN_KEY_WANTED])

ReleaseKey

GetKey

Send
Buffer I/O

DIDxTLG_LIST

DIDxTLG_LIST

Receive
Buffer I/O

TLG_BUFFERS

CommandsI/O

DIDxFL_CMD_LIST

StatusIn

DIDxFL_STATUS

UseKey

DID

Waiting

DID

Idle

DID

InI/O

I/O

I/O

FunctionLock
In I/OI/ORequestKey

3
1`(1,[])++
1`(2,[])++
1`(3,[])

1

1`[(1,[]),(2,[]),(3,[])]

3

1`(1,[])++
1`(2,[])++
1`(3,[])

11`1@2050

21`2@500+++
1`3@500

3

1`(1,[])++
1`(2,[])++
1`(3,[])

Fig. 14.21 Marking of the KeyUser module, where device 1 is using the key

14.3.3 State Space Analysis and Verification

The CPN model was first validated by means of simulation, and, later, state spaces
were used to formally verify the properties of the BeoLink system. The three main
correctness criteria of the lock management protocol are:

C1 Key generation. When the system is booted, a key must eventually be
generated. The key is to be generated within 2.0 seconds.

C2 Mutual exclusion. At any time during the operation of the system at
most one key exists.

C3 Key access. Any given device always has the possibility of obtaining the
key, i.e., no device is ever excluded from getting access to the key.

Figure 14.22 shows an initial fragment of the state space for the BeoLink system.
This contains the markings that are reachable from the initial marking by at most
two transition occurrences. The initial marking (represented by node 1) was shown
in Fig. 14.20. In this marking there are three enabled binding elements, since all
three devices are able to request the key. The boxes positioned on top of the arcs
describe the enabled binding element to which the arc corresponds by giving the
transition name and the value bound to the variable did (the device identifier). The
transition KeyWanted is in another module of the CPN model.

The state space of the timed BeoLink CPN model is infinite because the BeoLink
system contains cyclic behaviour and because the absolute notion of time, as repre-
sented by the global clock and the timestamps of tokens, is carried over into the state

14.3 Embedded-System Design at Bang and Olufsen 343

RequestKey : did=1

RequestKey : did=3

KeyWanted : did=2

RequestKey : did=3 RequestKey : did=2

KeyWanted : did=1

RequestKey : did=2

RequestKey : did=1

KeyWanted : did=3

RequestKey : did=3

RequestKey : did=1

RequestKey : did=2

10
1:2

8
2:3

9
1:2

5
2:3

6
2:3

7
1:2

2
1:3

3
1:3

4
1:3

1
0:3

Fig. 14.22 Initial fragment of state space

space (see Sect. 10.3). Cyclic behaviour arises, for example, from the fact that de-
vices may execute a loop where they request the key, are granted the key, and finally
release the key. As a concrete example, consider the marking of the KeyUser mod-
ule shown in Fig. 14.23. This marking is similar to the marking previously shown in
Fig. 14.21, except that all devices have had the key once and device 1 now possesses
the key again. The markings in Figs 14.21 and 14.23 are represented by two differ-
ent nodes in the state space because the timestamps of the tokens and the values of
the global clock differ.

The initial state space analysis of the CPN model considered the initialisation
phase of the BeoLink system and the time-bounded key generation property C1.
Verification of C1 was investigated by considering a partial state space, i.e., a fi-
nite fragment of the full state space. This partial state space was obtained by not
generating successors for markings where the key had been generated or where the
model time had passed 2 seconds. It was then checked that a key was present in the
system in all markings for which successor markings had not been generated. To
save computer memory, the arcs in the state space were not stored, since they were
not needed for verifying the key generation property. Table 14.3 lists some statistics
showing the number of nodes in the partial state space for different configurations of
the BeoLink system. Configurations with one video master and a total of n devices
are denoted VM:n, and configurations with one audio master and a total of n devices
are denoted AM:n.

344 14 Examples of Industrial Applications

(did,tlg_list3)

(did,tlg_list2)

tlgbuf

(did,fl_cmd_list)

(did,fl_cmd_list)

(did,fl_cmd_list^^[LOCK_MAN_KEY_RELEASE])

did@+(10+40*ran_0_1)

did

did@+(10+40*ran_0_1)

(did,KEY_IS_READY)

did

did

did

(did,fl_cmd_list^^[LOCK_MAN_KEY_WANTED])

ReleaseKey

GetKey

Send
Buffer I/O

DIDxTLG_LIST

DIDxTLG_LIST

Receive
Buffer I/O

TLG_BUFFERS

CommandsI/O

DIDxFL_CMD_LIST

StatusIn

DIDxFL_STATUS

UseKey

DID

Waiting

DID

Idle

DID

InI/O

I/O

I/O

FunctionLock
In I/OI/ORequestKey

3
1`(1,[])++
1`(2,[])++
1`(3,[])

1

1`[(1,[]),(2,[]),(3,[])]

3

1`(1,[])++
1`(2,[])++
1`(3,[])

11`1@4498

21`2@4372+++
1`3@4472

3

1`(1,[])++
1`(2,[])++
1`(3,[])

Fig. 14.23 KeyUser module, when all devices have used the key once

Table 14.3 Statistics for partial state space of the initialisation phase (global clock ≤ 2.0 seconds)

Configuration Nodes

AM:3 1 839
AM:4 22 675
AM:5 282 399

VM:3 1 130
VM:4 13 421
VM:5 164 170

14.3.4 Application of Advanced State Space Methods

To conduct state space analysis of the full BeoLink system and not only the initial-
isation phase, the time equivalence method introduced in Sect. 10.4 was applied.
This factors out the absolute notion of time and constructs a finite condensed state
space whenever the state space of the underlying untimed CPN model is finite. Ta-
ble 14.4 shows statistics for the condensed state space constructed using the time
equivalence method. At the time of the project, it was not possible to generate the
time-condensed state space for more than three devices with the available amount
of computer memory. Using the condensed state space, it is now possible to verify
also properties C2 (mutual exclusion) and C3 (key access). Property C2 can be ex-
pressed as the property that in no reachable marking is there more than one token on

14.3 Embedded-System Design at Bang and Olufsen 345

Table 14.4 Statistics obtained with the time equivalence method for the full system

Config Nodes Arcs

AM:2 346 399
AM:3 27 246 37 625

VM:2 274 310
VM:3 10 713 14 917

the place UseKey (see Fig. 14.20), and property C3 can be expressed as the property
that, from any reachable marking and for any device, it is always possible to reach a
marking where the token corresponding to this device is on the place UseKey. These
two properties can be checked using the standard query functions PredAllNodes
and HomePredicate in the CPN state space tool.

The state space analysis presented above allowed only configurations with up to
three devices to be verified because of the state explosion problem, i.e., the state
spaces became too large to be computed with the available computer memory. To
obtain state spaces for larger configurations, we applied the symmetry method (see
Sect. 8.3) and the sweep-line method (see Sect. 8.2).

The symmetry method represents symmetric markings and symmetric binding
elements using equivalence classes. The devices in the BeoLink system that are not
audio or video masters are symmetric, in the sense that they behave in the same way
with respect to the lock management protocol. They are distinguishable only by their
device identity. This symmetry is also reflected in the state space (see Fig. 14.22).
Consider, for instance, the two markings represented by nodes 2 and 4, which cor-
respond to markings in which exactly one non-master device has requested the key
(device 1 is the audio master in the configuration considered). These two markings
are symmetric in the sense that node 2 can be obtained from node 4 by swapping
the identities of devices 2 and 3. Similarly, the two states represented by node 7 and
node 10 can be obtained from each other by interchanging the identity of devices 2
and 3. These two markings correspond to states in which one device has requested
the key and the lock management protocol has registered the request. Furthermore, it
can be observed that two symmetric states such as state 2 and state 4 have symmetric
sets of enabled binding elements and symmetric sets of successor markings.

Figure 14.24 shows the initial fragment of the symmetry-condensed state space
for the BeoLink system obtained by considering two markings equivalent if one
can be obtained from the other by a permutation of the identities of the non-master
devices. The nodes and arcs now represent equivalence classes of markings and
binding elements, respectively. The equivalence class of markings represented by
a node is listed in bracs in the inscription of the node; for example, node 2 repre-
sents markings 2 and 4 in Fig. 14.22. The basic idea of symmetry-condensed state
spaces is to represent these equivalence classes by picking a representative for each
equivalence class.

346 14 Examples of Industrial Applications

RequestKey : did=3

KeyWanted : did=1

RequestKey : did=2 RequestKey : did=1

KeyWanted : did=3

RequestKey : did=3 RequestKey : did=1

9
1:2

5
2:3

6
2:3

7
1:2

2
1:3

3
1:3

1
0:3

{7,10}

{1}

{2,4}

{5} {6,8}

{9}

{3}

Fig. 14.24 Initial fragment of symmetry-condensed state space

Table 14.5 shows statistics obtained when using the symmetry method for the
initialisation phase of the BeoLink system. The column ‘State space nodes’ lists the
number of nodes in the full state space, and the column ‘Symmetry nodes’ lists the
number of nodes in the symmetry-condensed state space. The column ‘Node ratio’
gives the number of nodes in the full state space divided by the number of nodes in
the symmetry-condensed state space. The column ‘Time ratio’ gives the time used
to generate the full state space divided by the time used to compute the symmetry
condensed state space. The column ‘(n−1)!’ lists the factorial of n−1, where n is
the number of devices in the configuration. When there are n devices in the config-
uration, there are (n−1)! possible permutations of the non-master devices. Hence,
(n−1)! is the theoretical upper limit on the reduction factor that can be obtained for
a configuration with n devices. The computation time for symmetry-condensed state
spaces becomes large for seven devices. This is due to the calculation of canonical

Table 14.5 Statistics for symmetry method: initialisation phase

State space Symmetry Node Time
Configuration nodes nodes ratio ratio (n−1)!

AM:3 1 839 968 1.9 1.0 2
AM:4 22 675 4 361 5.2 2.5 6
AM:5 282 399 15 865 17.8 10.0 24
AM:6 3 417 719 47 867 71.4 – 120

VM:3 1 130 594 1.9 1.0 2
VM:4 13 421 2 631 5.1 2.5 6
VM:5 164 170 9 328 17.6 10.0 24
VM:6 1 967 159 27 551 71.4 – 120
VM:7 22 892 208 68 683 333.3 – 720

14.3 Embedded-System Design at Bang and Olufsen 347

representatives being costly (as described at the end of Sect. 8.3). The size of the
full state space for the configurations AM:6, VM:6, and VM:7 has been calculated
from the symmetry-condensed state space by computing the size of each equiva-
lence class.

Table 14.6 lists statistics for the symmetry-condensed state spaces of the full
BeoLink system. The column ‘Time equiv nodes’ gives the number of nodes in the
state space obtained with the time equivalence method alone. The column ‘Sym-
metry + time equiv nodes’ gives the nodes for simultaneous use of the symmetry
method and the time equivalence method. The number of nodes for the configura-
tions AM:4 and VM:4 in the time equivalence method have been computed from
the symmetry-condensed state spaces.

Table 14.6 Statistics for symmetry method: full system

Time equiv Symmetry + time equiv Node Time
Configuration nodes nodes ratio ratio (n−1)!

AM:3 27 246 13 650 1.92 2.0 2
AM:4 12 422 637 2 074 580 5.88 - 6

VM:3 10 713 5 420 1.98 2.0 2
VM:4 3 557 441 594 092 5.99 - 6

Next, we used the sweep-line method. The basic idea of the sweep-line method
is to exploit a progress measure to explore all reachable markings of a CPN model,
while storing only small fragments of the state space in memory at a time. This
means that the peak memory usage is reduced. The sweep-line method is aimed
at on-the-fly verification of safety properties, for example, determining whether a
reachable marking satisfying a given state predicate exists. Hence, it can be used
to verify properties C1 (key generation) and C2 (mutual exclusion) of the BeoLink
system, but not property C3 (key access).

The global clock in a timed CPN model has the property that for two markings
M and M′, where M′ is a successor marking of M, the value of the global clock in
M is less than or equal to the value of the global clock in M′. This implies that the
global clock can be used as a monotonic progress measure. Figure 14.25 shows how
the markings/nodes in the state space fragment shown in Fig. 14.22 can be ordered
according to this notion of progress. Markings in one layer all have the same value of
the global clock. Layer 0 contains markings in which the global clock has the value
0. Layer 1 contains markings where the global clock is 500 time units. A marking
in a given layer has successor markings either in the same layer or in a layer that
represents further progress, but never in a layer that represents less progress.

Table 14.7 lists statistics for the application of the sweep-line method to the ini-
tialisation phase of the BeoLink system with the global clock as the progress mea-
sure.

To apply the sweep-line method to the full BeoLink system, we need to com-
bine it with the time equivalence method (otherwise the state space will be infinite).

348 14 Examples of Industrial Applications

RequestKey : did=1

RequestKey : did=3

KeyWanted : did=2

RequestKey : did=3 RequestKey : did=2

KeyWanted : did=1

RequestKey : did=2

RequestKey : did=1

KeyWanted : did=3

RequestKey : did=3

RequestKey : did=1

RequestKey : did=2

10
1:2

8
2:3

9
1:2

5
2:3

6
2:3

7
1:2

2
1:3

3
1:3

4
1:3

1
0:3

Layer 1:
Global clock 500

Layer 0: Global clock 0

Fig. 14.25 Initial fragment of state space, arranged by progress

Table 14.7 Statistics for sweep-line method: initialisation phase

State space Sweep-line Node Time
Configuration nodes peak nodes ratio ratio

AM:3 1 839 1 839 1.0 1.0
AM:4 22 675 5 169 4.4 1.2
AM:5 282 399 35 017 8.1 2.5

VM:3 1 130 1 130 1.0 1.0
VM:4 13 421 5 167 2.6 0.9
VM:5 164 170 34 968 4.7 2.2

The use of the time equivalence method implies that the global clock becomes 0 in
all markings. It is, however, possible to define a non-monotonic progress measure
based on the control flow of the devices and use this with the generalised sweep-
line method [70]. The devices have a cyclic control flow where first they are idle,
then they request the key, and finally they obtain the key. When they have used the
key, they return to the idle state. This is a kind of local progress, starting from the
idle state progressing towards the state where they have the key. This ordering can
be used to define a non-monotonic progress measure. Details can be found in [70].
With this progress measure, the markings shown in Figs 14.21 and 14.23 have a
higher progress value than the marking shown in Fig. 14.20. When a device releases
the key and moves to the idle state, we have a regress arc in the state space (i.e., an
arc along which the progress measure decreases).

14.3 Embedded-System Design at Bang and Olufsen 349

Table 14.8 lists statistics for the application of the generalised sweep-line method
to the full BeoLink system using the progress measure sketched above. The column
‘Time equiv nodes’ gives the number of nodes in the state space obtained with the
time equivalence method alone. The column ‘Nodes explored’ lists the total number
of nodes explored when the sweep-line method is used in combination with the
time equivalence method, and the column ‘Peak nodes’ gives the peak number of
nodes stored. It can be seen that some states are explored multiple times, which
causes a time penalty. The sweep-line method achieves a reduction in peak memory
usage to about 10%. The large time penalty was due to an inefficient implementation
of deletion of states in the sweep-line library [43]. A more efficient algorithm for
deletion of states has been developed in [71].

Table 14.8 Statistics for generalised sweep-line method: full system

Time equiv Sweep-line + time equiv. Node Time
Configuration nodes Nodes explored Peak nodes ratio ratio

AM:2 346 355 65 5.3 0.5
AM:3 27 246 28 363 2 643 10.3 0.3

VM:2 274 283 41 6.7 0.5
VM:3 10 713 11 388 1 039 10.3 0.5

We have seen above that it is possible to combine time-condensed state spaces
with both the symmetry method and with the sweep-line method. It is also possi-
ble to use the sweep-line method and the symmetry method simultaneously. This
combination was investigated in [8], where it was demonstrated that using the two
methods simultaneously leads to a better reduction than when either method is used
in isolation.

14.3.5 Conclusions from the BeoLink Project

This project demonstrated the use of CP-nets for modelling and validating a real-
time system, i.e., a system where the correctness of the system depends on timing
information. The construction of the CPN model was done in close cooperation
between engineers at Bang & Olufsen and members of our research group. The
engineers were given a four-day course on CP-nets, enabling them to construct large
parts of the CPN model. This demonstrates (as also seen in other projects) that a
relatively short introduction is required to get started on using CP-nets in industrial
projects.

When the BeoLink project was originally conducted, only the initialisation phase
of the lock management protocol was verified using state spaces [17]. The reason
for this was that no advanced state space methods were available in the CPN com-

350 14 Examples of Industrial Applications

puter tools at that time. Since then, a number of advanced state space methods have
been developed and implemented, and the revised state space analysis in [75] has
used these to verify configurations of the BeoLink system that could not be verified
using ordinary state spaces. The application of the advanced state space methods
demonstrated that these methods enable verification of larger configurations of a
system, and in some cases allow the verification of all configurations that are ex-
pected to appear in practice. It was also demonstrated that two advanced state space
methods can be used simultaneously to get a better reduction than obtainable from
either method in isolation.

14.4 Scheduling Tool for Australian Defence Forces

This project [73, 74, 112], conducted with the Australian Defence Science and Tech-
nology Organisation (DSTO), was concerned with the development of a Course of
Action Scheduling Tool (COAST). In the project, CPN modelling was used to con-
ceptualise and formalise the planning domain to be supported by the tool. Further-
more, the CPN model constructed was extracted in executable form from CPN Tools
and embedded into the server of COAST together with a number of tailored state
space analysis algorithms. The project demonstrated how a CPN model can be used
for the implementation of a computer tool by effectively bridging the gap between
a design specified as a CPN model and the implementation of the system.

14.4.1 Plans and Task Schedules

A plan (also called a course of action) consists of a set of tasks. The key capability
of COAST is the computation of task schedules (also called lines of operations).
The tool supports the development and analysis of military plans and their task
schedules. A CPN model is used to model the execution of tasks according to their
preconditions and postconditions, the synchronisations imposed, and the resources
available. The possible task schedules are then obtained by generating a state space
for the CPN model and extracting paths from the state space leading from the initial
marking to certain markings representing end states. The framework underlying
COAST is based on four key concepts:

• Tasks are the basic units of a plan and have associated preconditions describing
the conditions required for a task to start, and effects describing the results of its
execution. A task also includes a specification of the resources required to exe-
cute the task, and may have a specified duration. Tasks also have other attributes,
but these will be omitted in this presentation.

• Conditions are used to describe the explicit logical dependencies between tasks
via preconditions and effects. As an example, a task T1 may have an effect used

14.4 Scheduling Tool for Australian Defence Forces 351

as a precondition of a task T2. Hence, T2 depends logically on T1 in the sense
that it cannot be started until T1 has been executed.

• Resources are used by tasks during their execution. Resources typically repre-
sent aircrafts, ships, and personnel required to execute a task. Resources may be
available only at certain times, for example owing to service intervals. Resources
may be lost in the course of executing a task.

• Synchronisations can be used to capture requirements that a set of tasks must be-
gin or end simultaneously, that there has to be a specific amount of time between
the start and end of a certain task, and that a task can start only after a certain
point in time. A set of tasks that are required to begin at the same time is said to
be begin-synchronised. A set of tasks required to end at the same time is said to
be end-synchronised. End-synchronisations can cause the duration of tasks to be
extended.

Table 14.9 shows an example plan with six tasks. This table specifies for each
task its preconditions, its effects, the required resources, and the duration of the
task. In addition to the information provided in the table, the set {T5, T6} of tasks
are begin-synchronised and the set {T4, T5, T6} of tasks are end-synchronised. The
available resources are 4‘R1 ++ 3‘R2 ++ 3‘R3 ++ 1‘R4 ++ 1‘R5 (written as a multiset).
Figure 14.26 provides a graphical illustration of the dependencies and synchronisa-
tions between the tasks, using dashed lines to indicate begin-synchronisations and
end-synchronisations.

We want to calculate the possible task schedules, i.e., the ways in which the set
of tasks can be sequenced. Each task schedule must respect the effects and precon-
ditions, the available resources, and the synchronisation constraints. Figure 14.27
illustrates one such possible task schedule.

The COAST tool is based on a client–server architecture. The client constitutes
the domain-specific graphical user interface and is used for the specification of
plans. It supports the human planners in specifying tasks, resources, conditions, and
synchronisations. To analyse a plan, this information is sent to the COAST server.
The client can now invoke the analysis algorithms in the server to compute task
schedules. The server also supports the client in exploring and debugging the plan
in cases where an analysis shows that no task schedule exists. The communication

Table 14.9 Example plan with six tasks

Task Preconditions Effects Resources Duration

T1 – E1 4‘R1 2
T2 E1 E2 2‘R2 ++ 2‘R3 4
T3 E1 E3 2‘R2 ++ 2‘R3 7

T4 E1 E4 1‘R2 ++ 1‘R3 –
T5 E2 E5 1‘R4 7
T6 E3 E6 1‘R5 7

352 14 Examples of Industrial Applications

T1 T2

T3
E1

E1

T4

E1

T5

T6

E2

E3

begin end

Fig. 14.26 Illustration of dependencies and synchronisations between tasks in the example plan

Time

T1

0

T2

T4

T3

T5

T6

2 6 13 20

Fig. 14.27 One possible task schedule for the example plan

between the client and the server is based on a remote-procedure-call (RPC) mech-
anism implemented using the Comms/CPN library [42].

Figure 14.28 depicts the construction of the COAST server. The first step was to
develop and formalise the planning domain, which provides the semantic founda-
tion of COAST. This was done by constructing a CPN model that formally captures
the semantics of tasks, conditions, resources, and synchronisations. This activity in-
volved discussions with the prospective users of COAST (i.e., the military planners)
to identify requirements and determine the concepts and working processes that
were to be supported. The second step was to extract the constructed CPN model
from CPN Tools. This was done by saving a simulation image containing the Stan-
dard ML code that CPN Tools generated for simulation of the CPN model. The CPN
model is parameterised with respect to the set of tasks, conditions, resources, and
synchronisations. This ensures that any given plan can be analysed by changing the
initial marking (without changes to the net structure, arc inscriptions, or guards).
This implies that the simulation image extracted from CPN Tools is able to simulate
any plan, and hence CPN Tools was no longer needed once the simulation image
had been extracted. The third step was the implementation of a suitable interface
to the extracted CPN model and the implementation of the state space exploration
algorithms.

The Model Interface component contains primitives that make it possible to set
the initial marking of the CPN model to represent the concrete set of tasks, condi-
tions, resources, and synchronisations constituting the plan to be analysed. In addi-

14.4 Scheduling Tool for Australian Defence Forces 353

Step 1:

Formalisation CPN Model

Step 2:

Extracting

CPN Model
executable

COAST
Domain
Planning

CPN Tools

Image
Simulation

Step 3:

Interfacing and
Analysis algorithms

Analysis

Interface

Simulation

SML

system
runtime

Image

Model

COAST Server

CPN
Comms/

Fig. 14.28 Construction of the COAST server

tion, it provides primitives that make it possible to obtain the set of enabled binding
elements in a given marking, and the marking reached when an enabled binding el-
ement occurs. These primitives are used to implement the state space analysis algo-
rithms in the Analysis component for task schedules. The Comms/CPN component
was added, and it implements a remote-procedure-call mechanism that allows the
client to invoke the primitives in the Analysis and the Model Interface components.
The resulting application constitutes the COAST server.

Figure 14.29 shows a snapshot from the COAST client illustrating how the user
views a plan in the editor. There are four main windows, showing the set of tasks, the
assigned resources, the conditions, and the synchronisations. Figure 14.30 shows an
example of how task schedules are reported to the user. It shows a task schedule
which is identical to the schedule in Fig. 14.27, except that T3 now occurs before
T2. The fact that the COAST server uses a CPN model as a basis for the scheduling
analysis is fully transparent to an analyst using the COAST client.

14.4.2 COAST CPN Model

Figure 14.31 shows the module hierarchy for the CPN model. The CoastServer
module is the top-level module in the CPN model, which consists of three main
parts. The Execute module (left) and its submodules model the execution of tasks,
i.e, the start, termination, abortion, and failure of tasks according to the set of tasks,
resources, conditions, and synchronisations in the plan. The Environment module
(middle) and its submodules model the environment in which tasks execute, and is
responsible for managing the availability of resources over time, changes of condi-
tions over time, and task failures. The Initialisation module (right) and its submod-
ules are used for the initialisation of the model according to the concrete set of tasks,
synchronisations, and resources in a plan. The CPN model is timed, since capturing
the time taken by the execution of a task is an important part of the computation of
task schedules.

Figure 14.32 lists the definitions of the colour sets that represent the key entities
of a plan. A condition is modelled as a pair consisting of a STRING, specifying

354 14 Examples of Industrial Applications

Fig. 14.29 Snapshot from editing a plan in the COAST client

Fig. 14.30 Snapshot from analysing a plan in the COAST client

14.4 Scheduling Tool for Australian Defence Forces 355

Initialisation

Synchronisations

Resources

Conditions

ResourceManager

IntDeallocate

FailDeallocate

TaskFailures

VanishingConditions

FailEndSynchronise

AbortEndSynchronise

CoastServer

Execute

Start

Allocate

StartTasks

Terminate

Normal

Failure

Abort

Deallocate

Environment

TaskFailure

TaskInterrupt

Fig. 14.31 Module hierarchy of the COAST model

the name of the condition, and a boolean, specifying the truth value. The colour
set ResourceSpecification is used to represent the state of the resources as-
signed to the plan. The colour set Resources is defined as a union and is used
for modelling the idle and lost resources. The assigned resources also have a spec-
ification of the availability of the resources (via the colour set Availability),
specifying the time intervals during which or the start time at which the resource is
available.

Tasks are the executable entities in a plan. They are modelled by the colour set
Task, which is defined as a record consisting of 11 fields. The name field is used
to specify the name of the task, and the duration field is used to specify the
minimal duration of the task. The duration of a task may be extended owing to
synchronisations, and not all tasks are required to have a specified minimal duration,
since their durations may be given implicitly by synchronisations and conditions
(see T4 in Table 14.9). The remaining fields can be divided into:

• Preconditions, which specify the conditions that must be valid before the task
is started. The colour set Conditions is used for modelling the condition
attributes of tasks. The normalpreconditions specify the conditions that
must be satisfied for the task to start. A subset of the normal preconditions may be
further specified as vanishingpreconditions to represent the effect that
the start of the task will invalidate such preconditions. The sustainingpre-
conditions specify the set of conditions that must be satisfied for the entire
duration of the execution of the task. If a sustaining precondition becomes in-
valid, then it will cause the task to abort, which may in turn cause other tasks to
be interrupted. The terminationpreconditions specify the conditions
that must be satisfied for the task to terminate.

• Effects, which specify the effects of starting and executing the task. The
instanteffects are conditions that become immediately valid when the

356 14 Examples of Industrial Applications

colset Condition = product STRING * BOOL;
colset Conditions = list Condition;

colset Resource = product INT * STRING;
colset ResourceList = list Resource;

colset AvailSpecification = union INT : INTxINT + FROM : INT;
colset Availability = list AvailSpecification;

colset ResourcexAvailability = product Resource * Availability;
colset ResourceSpecification = list ResourcexAvailability;

colset Resources = union IDLE : ResourceSpecification
+ LOST : ResourceSpecification;

colset Task = record
name : STRING *
duration : Duration *
normalpreconditions : Conditions *
vanishingpreconditions : Conditions *
sustainingpreconditions : Conditions *
terminationpreconditions : Conditions *
instanteffects : Conditions *
posteffects : Conditions *
sustainingeffect : Conditions *
startresources : ResourceList *
resourceloss : ResourceList;

colset BeginSynchronisation = list Task;
colset EndSynchronisation = list Task;

Fig. 14.32 Colour set definitions for planning

task starts executing. The posteffects are conditions that become valid at
the moment the task terminates. Finally, sustainingeffects are conditions
that are valid as long as the task is executing.

• Resources, which specify the resources required by the task during its execution.
Each resource is modelled by the colour set Resource, which is a product of
an integer (INT), specifying the quantity, and a string (STRING), specifying the
resource name. Resources may be lost or consumed in the course of executing a
task. The startresources are resources required to start the task, and they
are allocated for as long as the task is executing. The resourceloss are re-
sources that may be lost during execution of the task.

The colour sets BeginSynchronisation and EndSynchronisation
are used to specify that certain tasks have to begin or end at the same time.

Figure 14.33 shows the top-level module of the CPN model. It contains three
substitution transitions and four places. The place Resources models the state of
the resources, and the place Conditions models the values of the conditions. The

14.4 Scheduling Tool for Australian Defence Forces 357

place Idle contains the tasks that are yet to be executed, and the place Executing
contains the tasks currently being executed. The marking in Fig. 14.33 represents
an intermediate state in the execution of the the plan shown in Table 14.9. The
place Conditions contains one token, which is a list containing the conditions in
the plan and their truth values. The colour set for the places Resources, Executing,
and Idle are complex. Hence, we have shown only the numbers of tokens and not
the colours. The latter two places contain a token for each task which is Idle and
Executing, respectively. The place Resources contains two tokens. One of these is a
list describing the current set of idle (available) resources. The other token is a list
describing the resources that have been lost up to now.

Figure 14.34 shows the Allocate module, which is one of the submodules of
the substitution transition Execute (see Fig. 14.33). This module represents one of
the steps in starting tasks. The transition Start models the start of a set of begin-
synchronised tasks. The two port places Resources and Conditions are associated
with the accordingly named places of the top-level module shown in Fig. 14.33
via a sequence of port–socket relations. An occurrence of the transition removes a
token representing the begin-synchronised tasks (assigned to the variable tasks)
from the place Tasks, a token representing the idle resources (bound to the variable
idleres) from the place Resources, and a token representing the values of the
conditions (bound to the variable conditions) from the place Conditions. The
transition adds a token representing the set of tasks to be started to the place Start-
ing and puts a token back on the place Conditions, updated according to the instant
effects of the tasks. All idle resources are put back on place Resources, since the
actual allocation is done in a subsequent step modelled by another module. The
guard checks that the preconditions of the tasks are satisfied and that the necessary
resources are available.

Other modules model the details of task execution and their effects on conditions
and resources. They have a complexity similar to the Allocate module.

Execute

Execute

Environment

Environment

Executing
T

Task

Conditions

C

Conditions

Idle
T

Task

Resources
R

Resources Environment

Initialise

InitialisationInitialisation

Execute

3

1

1`[("C1",true),("C2",true),("C3",true),
("C4",false),("C5",false),("C6",false)]

3

2

Fig. 14.33 CoastServer module

358 14 Examples of Industrial Applications

tasks

IDLE idleres conditions
Start

StartingOut

BeginSynchronisation

TasksIn

BeginSynchronisation

Resources
I/O

In

Out

[SatPreConditions(tasks,conditions),
 ResourcesAvailable (idleres,tasks)]

tasks

Resources Conditions
InstantEffects(tasks,conditions)

I/O
Conditions

I/OI/O

Fig. 14.34 Allocate module for starting tasks

14.4.3 Generation of Task Schedules

The main analysis capability of COAST is the generation of task schedules, i.e.,
a specification of start and end times for the tasks in a plan. The process of task
schedule generation consists of two phases. In the first phase, a state space is gener-
ated relative to the plan to be analysed. Successors are not generated for states that
qualify as desired end states according to the conditions specified by the user. In the
second phase, the task schedules are computed by traversing the constructed state
space. They are determined from the paths in the state space, and are divided into
two classes. Complete task schedules are schedules that lead from the initial mark-
ing to a marking representing a desired end state. Incomplete task schedules are
those that lead to markings representing undesired end states, i.e., dead markings
that do not satisfy the conditions specified by the user. When incomplete schedules
are reported, the user will typically investigate the causes of these using queries
about tasks, conditions, and resources in various states. In that sense, COAST also
supports the planner in identifying errors and inconsistencies in the plan under anal-
ysis.

Figure 14.35 shows the state space for the example plan shown in Table 14.9.
Node 1, on the left, corresponds to the initial marking. The thick arcs in the
state space correspond to the start and termination of tasks. The other arcs corre-
spond to internal events in the CPN model. The thick arcs have labels of the form
Si : t or Ei : t, where i specifies the task number and t specifies the time at which the
event takes place. As an example, task T1 starts at time 0, as specified by the label
on the outgoing arc from node 1, and ends at time 2, as specified by the label on the
outgoing arc from node 2.

The computation of task schedules is based on a breadth-first traversal of the state
space starting from the initial marking. The basic idea is to compute the schedules
leading to each of the markings encountered during the traversal of the state space,
where the schedules for a given marking are computed from the schedules associated
with its predecessor markings. The algorithm exploits the fact that the state space of
the CPN model is acyclic for any plan, and that the paths leading to a given marking
in the state space all have the same length.

14.4 Scheduling Tool for Australian Defence Forces 359

1 1 1 1 1 2 1 2 2 2 3 2

2

2

4

4

2

4

5

2

4

5

3

4

5

3

5

6

4

4

4

6

3

4

4

6

3

5

5

6

3

8

9

10

7

11

12

14

13

5

3

7

6

7

6

7

6

16

15

8

6

8

7

8

7

8

7

8

7

18

17

8

7

8

8

9

8

9

9

19 9

9 9 9 9 9 20 1 1 1 1 1 1 1 1 1 1 21

S1:0

S2:2

S4:2

S3:2

S4:2

S2:2

S3:2

S4:2

E2:6

E3:9

S3:6

S2:9

E1:2

E3:13

E2:13

S5/S6:13

E4/E5/E6:20

Fig. 14.35 State space for the example plan

We shall now illustrate how the algorithm operates. Figure 14.36 shows the task
schedule information associated with each marking in the first part of the state space.
The only schedule associated with the initial marking is the empty task schedule,
represented by the empty list []. Task schedules for the successor marking of the
initial marking are now computed. The outgoing arc from node 1 corresponds to
the start of a task. Hence, the schedule is augmented with information about the
time at which T1 was started. This results in the schedule [(T1, 0, ?)]. The sched-
ule remains the same until the arc corresponding to the termination of T1 at time 2
is reached. Then, the termination time of T1 is recorded in the schedule [T1, 0, 2].
The new schedule is propagated forwards and when node 3 is reached, the schedule
is propagated along three branches corresponding to the three successor markings
of node 3. The generation of schedules continues until nodes 7, 8, 9, and 10 are
reached. Here the schedules associated with nodes 7 and 8 are merged and associ-
ated with node 11, since the start times and termination times of each of the tasks
in the schedules are identical. Similarly, the schedules associated with nodes 9 and
10 are merged and associated with node 12. The breadth-first traversal now con-
tinues until, eventually, node 21 in Fig. 14.37 is reached, where the two complete
schedules leading to the desired end state have been computed. The first schedule
corresponds to the one shown in Fig. 14.27, and the second corresponds to the one
shown in Fig. 14.30.

360 14 Examples of Industrial Applications

1 1 1 1 1 2 1 2 2 2 2 3 2

2

2

4

4

2

4

5

2

4

5

3

4

5

3

5

6

4

4

4

6

3

4

4

6

3

5

5

6

3

8

9

10

7

11

12

S1:0

S2:2

S4:2

S3:2

S4:2

S2:2

S3:2

S4:2

E1:2

[(T1,0,?)] [(T1,0,2)][]

[(T1,0,2),(T2,2,?)]

[(T1,0,2),(T4,2,?)]

[(T1,0,2),(T3,2,?)]

[(T1,0,2),(T2,2,?),(T4,2,?]

[(T1,0,2),(T2,2,?),(T4,2,?]

[(T1,0,2),(T3,2,?),(T4,2,?]

[(T1,0,2),(T3,2,?),(T4,2,?]

Fig. 14.36 Start of task schedule generation

9 9 9 9 9 20 1 1 1 1 1 1 1 1 1 1 21
E4/E5/E6:20

[(T1,0,2),(T2,2,6),(T4,2,20),(T3,6,13),(T5,13,20),(T6,13,20)]
[(T1,0,2),(T4,2,20),(T3,2,9),(T2,9,13),(T5,13,20),(T6,13,20)]

Fig. 14.37 Termination of task schedule generation

The typical planning problems to which COAST is applied consist of 15–25
tasks, resulting in state spaces with 10–20,000 nodes and 25–35,000 arcs. The state
spaces are relatively small because the conditions, available resources, and imposed
synchronisations strongly limit the possible orders in which the tasks can be exe-
cuted.

14.4.4 Conclusions from the COAST Project

The role of CP-nets in the development of COAST was threefold. Firstly, CPN mod-
elling was used in the development and specification of the underlying framework.
Secondly, the CPN model constructed was used directly in the implementation of
COAST by embedding it into the COAST server, which constitutes the computa-
tional back end of COAST. Hence, CP-nets provide a semantic foundation by for-
malising and implementing the abstract conceptual framework underlying the tool.
Finally, the analysis capabilities of COAST are based on state space methods.

The development of the COAST tool is an example of how the usual gap be-
tween the design, as specified by a CPN model, and the final implementation of
a system can be overcome. The CPN model that was constructed to develop the
conceptual and semantic foundation of COAST is being used directly in the final
implementation of the COAST server. The project demonstrates the value of having
a full programming-language environment in the form of the Standard ML compiler
integrated into CPN Tools. Standard ML was crucial in several ways for the devel-
opment of COAST. It allowed a highly compact and parameterisable CPN model to
be constructed, and also allowed the CPN model to become the implementation of
the COAST server. The parameterisation is important for ensuring that the COAST

14.4 Scheduling Tool for Australian Defence Forces 361

server is able to analyse any set of tasks, conditions, resources, and synchronisations
without the user having to make changes to the CPN model. Having a full program-
ming language available also made it possible to extend the COAST server with
the specialised algorithms required to extract the task schedules from the generated
state spaces.

	Examples of Industrial Applications
	Protocol Design at Ericsson Telebit
	Requirements Engineering at Systematic
	Embedded-System Design at Bang and Olufsen
	Scheduling Tool for Australian Defence Forces

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

