
Chapter 10
Timed Coloured Petri Nets

This chapter shows how timing information can be added to CPN models. This
makes it possible to evaluate how efficiently a system performs its operations and
it also makes it possible to model and validate real-time systems [78], where the
correctness of the system relies on the proper timing of the events. With a timed CPN
model, performance measures such as maximum queue lengths and mean waiting
times can be calculated. Also, we may, for example, verify whether the operation of
a real-time system meets required deadlines.

It should be noted that it is often beneficial for the modeller to start by construct-
ing and validating an untimed CPN model. In this way, the modeller can concentrate
on the functional correctness of the system before worrying about timing issues. For
the protocol described in Sect. 2.4, we saw that it was possible to describe the ex-
istence of time-related system features, such as retransmissions, without explicitly
specifying concrete waiting times or the durations of the individual events. This is
often the case, and it is a sound design strategy to try to make the functional correct-
ness of a system independent of concrete assumptions about execution times and
waiting times.

CPN models can be used to validate both the functional correctness and the per-
formance of a system. This saves a lot of time, because we do not need to construct
two totally independent models of the system. Instead, a single model or, more often,
two closely related models are used. There exist a number of modelling languages
that are in widespread use for performance analysis of systems, for example lan-
guages based on queueing theory [9]. However, most of these modelling languages
turn out to be rather useless when it comes to modelling and validation of the func-
tional properties of systems. Some of these languages are also unable to cope with
performance analysis of systems which have an irregular behaviour. In this chapter,
the concept of time in CP-nets is presented using a non-hierarchical CPN model
as an example. The timing constructs also apply to hierarchical CP-nets, and CPN
Tools supports the simulation and analysis of timed hierarchical CP-nets. The con-
cept of time in CP-nets is one out of many time concepts that have been developed
in the context of Petri Nets [90].
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Section 10.1 presents a first timed CPN model of our protocol and introduces
the basic constructs of timed CPN models. Section 10.2 considers a second timed
CPN model of the protocol and introduces additional constructs of timed CPN mod-
els. Section 10.3 discusses basic state space analysis of timed CPN models and
Sect. 10.4 presents a special case of the equivalence method presented in Sect. 8.4
that can be used to obtain a finite state space for any timed CPN model where the
corresponding untimed CPN model has a finite state space.

10.1 First Timed Model of the Protocol

Consider Fig. 10.1, which contains a timed version of the CPN model of the protocol
described in Sect. 2.4. It is easy to see that the CPN model is very closely related
to the untimed CPN model in Fig. 2.10. The colour set definitions and variable
declarations for the CPN model are given in Fig. 10.2.

The main difference between timed and untimed CPN models is that the tokens
in a timed CPN model, in addition to the token colour, can carry a second value,
called a timestamp. This means that the marking of a place where the tokens carry
timestamps is now a timed multiset, specifying the elements in the multiset together
with their timestamps. Furthermore, the CPN model has a global clock, representing
model time. The distribution of tokens on the places, together with their timestamps
and the value of the global clock, is called a timed marking. In a hierarchical timed
CPN model there is a single global clock, shared among all of the modules.

The timestamps in CPN Tools are non-negative integers belonging to a CPN ML
type called TIME. The timestamp specifies the time at which the token is ready to be
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Fig. 10.1 Timed CPN model of the protocol
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colset NO = int timed;
colset DATA = string timed;
colset NOxDATA = product NO * DATA timed;
colset BOOL = bool;

var n, k : NO;
var d, data : DATA;
var success : BOOL;

Fig. 10.2 Colour sets and variables for the timed CPN model shown in Fig. 10.1

used, i.e., the time at which it can be removed by an occurring transition. A colour
set is declared to be timed using the CPN ML keyword timed. It can be seen from
Fig. 10.2 that all places in Fig. 10.1 have timed colour sets.

The initial marking of the timed CPN model of the protocol is shown in Fig. 10.3.
The colours of the tokens are the same as in the initial marking of the untimed CPN
model of the protocol, but now the tokens also carry timestamps. As an example,
the initial marking of the place PacketsToSend is

1‘(1,"COL")@0 +++
1‘(2,"OUR")@0 +++
1‘(3,"ED ")@0 +++
1‘(4,"PET")@0 +++
1‘(5,"RI ")@0 +++
1‘(6,"NET")@0
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Fig. 10.3 Initial marking M0 of the timed protocol model
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The timestamps of tokens are written after the symbol @, which is pronounced
‘at’. In this case, all tokens carry the timestamp 0. The operator +++ takes two timed
multisets as arguments and returns their union. All other tokens in the initial marking
also carry the timestamp 0. The value of the global clock in the initial marking is
also 0. The initial markings of all places are specified as an (untimed) multiset.
CPN Tools will automatically attach a timestamp 0 if the initial marking inscription
of a place with a timed colour set does not explicitly specify the timestamps of the
tokens.

In the initial marking M0, there is only one binding element that has the required
tokens on its input places. This is the transition SendPacket, with the binding 〈n=1,
d="COL"〉. To occur, this binding element needs the presence of a token with colour
1 on the place NextSend and the presence of a token with colour (1,"COL")
on the place PacketsToSend. This is determined by the input arc expressions by
means of the enabling rule explained in Chap. 2. We see that the two tokens that
are needed by NextSend exist on the input places and that both of them carry the
timestamp 0, which means that they can be used at time 0. Hence, the transition
can occur at time 0. When the transition occurs, it removes the two tokens from
the input places and adds a token to each of the three output places. The colours
of these tokens are determined from the output arc expressions by means of the
occurrence rule explained in Chap. 2. However, it is also necessary to calculate the
timestamps to be given to the three output tokens. This is done by using time delay
inscriptions attached to the transition and/or to the individual output arcs. A time
delay inscribed on a transition applies to all output tokens created by that transition,
whereas a time delay inscribed on an output arc applies only to tokens created at
that arc. In Fig. 10.3 we have associated a constant time delay expression @+9 with
the transition SendPacket. The outgoing arc to PacketsToSend has a constant time
delay expression @+Wait, where Wait is a symbolic constant defined as

val Wait = 100;

The arc expressions on the output arcs to the places A and NextSend have no
separate time delays. The timestamp given to the tokens created on an output arc
is the sum of the value of the global clock, the result of evaluating the time delay
inscription of the transition, and the result of evaluating the time delay inscription
of the arc. Hence, we conclude that the tokens added to the places NextSend and A
will receive the timestamp

0+9+0 = 9

The first 0 is the time at which the transition occurs as given by the global clock,
the 9 is the time delay inscribed on the transition, and the second 0 is the time delay
on the output arc (since there is no time delay on the output arc). Intuitively, this
means that the execution of the ‘send packet’ operation has a duration of 9 time
units.

The arc expression on the output arc to the place PacketsToSend has a sepa-
rate time delay: @+Wait. This means that the token added to PacketsToSend will
receive the timestamp
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0+9+100 = 109

The 0 is the time at which the transition occurs, the 9 is the time delay inscribed
on the transition, and the 100 is the time delay inscribed on the output arc. Intu-
itively, this represents the fact that we do not want to resend data packet number 1
until time 109, i.e., until 100 time units after the end of the previous send operation.
This is achieved by giving the token for data packet number 1 the timestamp 109,
thus making it unavailable until that moment of time. However, it should be noticed
that data packet number 2 still has a timestamp 0. Hence, it will be possible to trans-
mit this data packet immediately, if an acknowledgement arrives before time 109.
When SendPacket occurs at time 0, we reach the marking M1 shown in Fig. 10.4.

In the marking M1, there are three binding elements that have the needed tokens
on their input places:

SP1 = (SendPacket, 〈n=1, d="COL"〉)
TP1+ = (TransmitPacket, 〈n=1, d="COL", success=true〉)
TP1− = (TransmitPacket, 〈n=1, d="COL", success=false〉)
SP1 can occur at time 109 since it needs a token with timestamp 109 and a

token with timestamp 9. However, TP1+ and TP1− can already occur at time 9,
because they need a token with timestamp 9. Since TP1+ and TP1− are the first
binding elements that are ready to occur, one of these will be chosen. This means
that SP1 cannot occur in the marking M1, and hence SendPacket has no thick border
in Fig. 10.4. The chosen binding element will occur as soon as possible, i.e., at time
9. Only one of them will occur, since the two binding elements are in conflict with
each other.
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Fig. 10.4 Marking M1 reached when SendPacket occurs at time 0 in M0
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Assume that TP1+ is chosen to occur. It will remove the token from place A and
add a token to place B. The timestamp of this token will be the sum of the time
at which the transition occurs (9) and the evaluation of the time delay expression
@+Delay() inscribed on the transition. The function Delay takes a unit, written
(), as an argument and is defined as follows:

fun Delay () = discrete(25,75);

The function discrete is a predefined function that provides a discrete uni-
form distribution over the closed interval specified by its arguments. This means
that Delay() returns an integer from the interval [25, 75] and that all numbers
in the interval have the same probability of being chosen. Intuitively, this represents
the fact that the time needed to transmit a packet over the network may vary between
25 and 75 time units owing to the load on the network, for example. Assume that
Delay() evaluates to 38. We then reach the marking M2 shown in Fig. 10.5.

In the marking M2, there are two binding elements that have the needed tokens
on their input places:

SP1 = (SendPacket, 〈n=1, d="COL"〉)
RP1 = (ReceivePacket, 〈n=1, d="COL", k=1, data=""〉)
As before, SP1 can occur at time 109. However, RP1 can already occur at time

47, since it needs a token with timestamp 47 and two tokens with timestamp 0.
Hence RP1 will be chosen and we reach the marking M3 shown in Fig. 10.6.
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Fig. 10.5 Marking M2 reached when TransmitPacket occurs at time 9 in M1
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Fig. 10.6 Marking M3 reached when ReceivePacket occurs at time 47 in M2

In the marking M3, there are three binding elements that have the needed tokens
on their input places:

SP1 = (SendPacket, 〈n=1, d="COL"〉)
TA2+ = (TransmitAck, 〈n=2, success=true〉)
TA2− = (TransmitAck, 〈n=2, success=false〉)
SP1 can occur at time 109. However, TA2+ and TA2− can already occur at time

64 since they need a token with timestamp 64. Hence TA2+ or TA2− will be chosen.
Assuming that TA2+ is chosen and that Delay() evaluates to 33 this time, we
reach the marking M4 shown in Fig. 10.7.

In the marking M4, there are two binding elements that have the needed tokens
on their input places:

SP1 = (SendPacket, 〈n=1, d="COL"〉)
RA2 = (ReceiveAck, 〈n=2, k=1〉)
SP1 can occur at time 109. However, RA2 can already occur at time 97, since it

needs a token with timestamp 97 and a token with timestamp 9. Hence RA2 will be
chosen, and we reach the marking M5 shown in Fig. 10.8.

In the marking M5, there is only one binding element that has the needed tokens
on its input places:

SP2 = (SendPacket, 〈n=2,d="OUR"〉)

Hence SP2 will be chosen, and it will occur at time 104 because it needs a
token with timestamp 104 from NextSend and a token with timestamp 0 from
PacketsToSend. We then reach the marking M6 shown in Fig. 10.9.
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Fig. 10.7 Marking M4 reached when TransmitAck occurs at time 64 in M3
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Fig. 10.8 Marking M5 reached when ReceiveAck occurs at time 97 in M4

In the occurrence sequence considered above, it turned out that no retransmis-
sion of data packet number 1 became possible. However, the two evaluations of
Delay() in the time delay inscriptions of TransmitPacket and TransmitAck could
have produced two larger values (e.g., 74 and 50 instead of 38 and 33). If this had
been the case, TransmitAck would have produced a token on place D with timestamp
150 instead of 97, and we would have reached the marking M∗

4 shown in Fig. 10.10
instead of the marking M4 shown in Fig. 10.7.
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Fig. 10.9 Marking M6 reached when SendPacket occurs at time 104 in M5
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Fig. 10.10 Marking M∗
4 reached when the network delays are larger

In the marking M∗
4 , RA2 is ready to occur at time 150, i.e., later than SP1, which

is ready to occur at time 109. Hence SP1 will be chosen instead of RA2, and we
shall get a retransmission of data packet number 1.

Figure 10.11 shows a dead marking reached at the end of a simulation of the
timed CPN model of the protocol. We can see the times at which the individual data
packets would have been ready for the next retransmission (218, 2095, 2664, 2906,
3257, and 3499). Moreover, we can see that the last data packet was received at time
3357, and the last acknowledgement was received at time 3414. The CPN model is
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Fig. 10.11 Dead marking reached at the end of a simulation

non-deterministic and hence a second simulation would give other timestamps in
the final marking, but the token colours would be the same.

In the timed markings shown above, there was never more than one token with
a given colour on a place. As with an untimed CPN model, we can have several
tokens with the same colour on a given place, and these may or may not have the
same timestamps. As an example, consider the (non-reachable) marking of place D
where we have four tokens with colour 2 and one of these has timestamp 405, two
have timestamp 409, and one has timestamp 411, and we also have four tokens with
colour 3, all having timestamp 410. This timed multiset is written as

1‘2@405 +++
2‘2@409 +++
1‘2@411 +++
4‘3@410

When we have several tokens with the same colour and these have different
timestamps, we may have a situation where several tokens with a given colour are
ready to be consumed. As an example, assume that we have an enabled binding
element at time 409 that will remove a token with colour 2 from a place that has
the timed multiset above as its marking. In this case, the three tokens with colour
2 and timestamps 405, 409, and 409 are ready to be consumed. In such situations,
we remove the token with the largest possible timestamp. In this case, this means
that one of the tokens with colour 2 and timestamp 409 will be removed. Remov-
ing the tokens with the largest possible timestamps ensures that a marking that can
be reached by the occurrence of a step consisting of multiple binding element can
also be reached by letting the binding elements occur sequentially in some arbitrary
order, i.e., that Theorem 4.7 is also valid for timed CPN models. This means that
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it is sufficient for the simulator in CPN Tools to consider only steps consisting of a
single binding element.

In the timed CPN model considered above, all tokens carry a timestamp, since
all colour sets of the places were declared to be timed. However, this is not in gen-
eral the case. We allow the modeller to specify whether each individual colour set is
timed or not. The tokens of timed colour sets carry timestamps, whereas the tokens
of untimed colour sets do not. Tokens without timestamps are always ready to par-
ticipate in occurrences of binding elements. As an example, assume that the timed
CPN model of the protocol is modified such that the tokens on NextSend carry no
timestamps while all other tokens do carry timestamps. To have timestamps on C,
D, and NextRec and no timestamps on NextSend, we use the untimed colour set
INT for NextSend, while we use the timed colour set NO for the places C, D, and
NextRec. The initial marking of the modified CPN model is shown in Fig. 10.12.
This model behaves in a way similar to the timed CPN model shown in Fig. 10.1.
However, it is now possible for SendPacket and ReceiveAck to occur at the same
model time, i.e., immediately after each other, since access to NextSend now takes
zero time. This represents a situation in which the sender can perform several Send-
Packet and ReceiveAck operations at the same time, where we consider the occur-
rence of the corresponding transition to model the beginning of the operation. In the
original model in Fig. 10.1, the SendPacket and ReceiveAck operations had to wait
for the timestamp on the place NextSend and hence they could not occur at the same
moment of model time.

The execution of a timed CPN model is controlled by the global clock, and works
in a way similar to the event queue found in many simulation engines for discrete
event simulation. The model remains at a given model time as long as there are
binding elements that are colour enabled and ready. A binding element is colour
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Fig. 10.12 CPN model with untimed colour set for NextSend
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enabled if the required tokens are present on the input places. A binding element
is ready for execution if these tokens have timestamps which are old enough, i.e.,
less than or equal to the current value of the global clock. Hence, in a timed CPN
model an enabled binding element must be both colour enabled and ready in order
to be able to occur. When there are no longer such binding elements to be executed,
the simulator advances the clock to the next earliest model time at which binding
elements can be executed. Each marking exists in a closed interval of model time,
which may be a point, i.e., a single moment of time. As with untimed CPN mod-
els, we may have conflicts and concurrency between binding elements, and binding
elements may be concurrent with themselves, but only if the binding elements are
ready to be executed at the same moment of time.

The standard behavioural properties of timed CPN models are defined in a way
similar to that for the untimed case. For multiset bounds and home markings/spaces,
we consider the untimed markings of the places, i.e., we ignore the timestamps of
tokens. The algorithms used by the CPN state space tool for computing the contents
of the state space report are similar to those used for untimed CPN models.

A timed CPN model can always be transformed into an untimed CPN model by
making all colour sets untimed, removing all timestamps from initialisation func-
tions, and removing all time delay inscriptions on arcs and transitions. The possible
occurrence sequences of the timed CPN model always form a subset of the occur-
rence sequences of the corresponding untimed CPN model. This means that the
time delay inscriptions merely enforce a set of additional constraints on the execu-
tion of the CPN model that cause the binding elements to be chosen in the order
in which they become ready for execution. Turning an untimed CPN model into a
timed model cannot create new behaviour in the form of new occurrence sequences.
This supports the soundness of our advice at the beginning of this chapter: start
by investigating the functionality by means of an untimed CPN model. The timing
related to events can then be considered afterwards.

The occurrence of a transition is instantaneous, i.e., takes no time. However, as
shown in the protocol example above, it is easy to model a situation where some
actions in a system have a non-zero duration. This is done by giving the output
tokens created by the corresponding transition timestamps that prevent the tokens
from being used until the time at which the action has finished. As an example,
TransmitPacket cannot occur until 9 time units after the occurrence of SendPacket.
This represents the fact that the action of sending a data packet takes 9 time units.

Instead, we could have chosen to allow the occurrence of a transition to have a
non-zero duration. We could then remove the input tokens at the moment when the
occurrence begins and add the output tokens when the occurrence ends. However,
such an approach would make the relationship between a timed CPN model and
its corresponding untimed CPN model much more complex. Now there would be
many reachable markings in the timed CPN model which would be unreachable in
the untimed CPN model because they corresponded to situations where one or more
transitions were halfway through their occurrence, having removed tokens from the
input places but not yet having added tokens to the output places.
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The time values (i.e., timestamps and model time) considered above all belong
to the set of integers. It is straightforward to generalise the concept of time in CP-
nets such that time values belonging to the set of reals can be used, but the current
version of CPN Tools supports only integer time values.

10.2 Second Timed Model of the Protocol

It turns out that there are situations where it is useful to allow a transition to remove a
token from one of its input places ahead of time, i.e., at a moment of model time that
lies before the timestamp carried by the token. As an example, consider Fig. 10.13,
where we have performed a more detailed modelling of the operations in the sender,
in particular the mechanism for timing the retransmission of data packets. The tran-
sition SelectNext is enabled in the initial marking M0, and its occurrence models the
situation where the sender selects the next data packet for transmission. There is no
time delay inscription associated with this transition, since we consider the dura-
tion of selecting the next data packet to be insignificant. A similar remark applies to
the transitions TimeOut and StopTimer. In this variant of the sender, we have only
associated time delay inscriptions with the transitions SendPacket and ReceiveAck.
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Fig. 10.13 Variant of the sender, in the initial marking M0
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When the transition SelectNext occurs in the initial marking shown in Fig. 10.13,
we obtain the marking M1 shown in Fig. 10.14, in which the first data packet has
been removed from the place PacketsToSend and put on the place Selected.

The global clock will not be increased, since the transition SendPacket is enabled
at time 0. When SendPacket occurs, we reach the marking M2 shown in Fig. 10.15.
The time delay inscription Wait on the arc from SendPacket to Timer is used to
set the expiration time for a timer modelled by the place Timer. This ensures that
the transition TimeOut cannot occur until Wait time units after the previous send
operation. The guard of the transition TimeOut ensures that it can occur only if the
current data packet has not been acknowledged, since the place NextSend always
contains the highest sequence number received in an acknowledgement. If no ac-
knowledgement for the data packet currently being sent arrives before time 109, the
transition TimeOut will occur, leading back to a marking of the sender similar to the
one shown in Fig. 10.14 in which the data packet can be sent once more (but with a
higher timestamp).

Assume now that an acknowledgement 2 arrives at place D at time 94, as shown in
Fig. 10.16. The transition ReceiveAck will occur at time 94, leading to the marking
M4 shown in Fig. 10.17.

In this marking, the transition StopTimer will be enabled at time 101 despite the
timestamp 109 on the place Timer. This is achieved by using a time delay inscription
on the arc from Timer to StopTimer, i.e., on an input arc of a transition. Until now we
have used time delay inscriptions only on transitions and output arcs to specify what
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Fig. 10.14 Marking M1 reached when SelectNext occurs at time 0 in M0
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Fig. 10.15 Marking M2 reached when SendPacket occurs at time 0 in M1

if n>k
then n
else k

k

(n,d)

(n,d)

k

(n,d)(n,d)

n

k

k (n,d)@+Wait

(n,d)

(n,d)@+Wait

n

(n,d)

Stop
Timer

[k>n]

TimeOut

[k<=n]

Send
Packet

@+9

Receive
Ack

@+7

Select
Next Selected

NOxDATA

NextSend

1

NO

Select

1

NO

Timer

NOxDATA

A

NOxDATA

D

NO

Packets
To Send

AllPackets

NOxDATA

11`1@0

1 1`(1,"COL")@109

1
1`1@94

5

1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI  ")@0+++
1`(6,"NET")@0

Fig. 10.16 Marking M3, where an acknowledgement arrives at time 94
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Fig. 10.17 Marking M4 reached when ReceiveAck occurs at time 94 in M3

should be added to the current value of the global clock to obtain the timestamp of
the token produced on an output place. When a time delay is used on an input arc,
the time delay inscription specifies how far ahead of time the transition can remove
tokens from an input place. In this case we want to remove the token on the place
Timer as soon as we have received an acknowledgement for the data packet currently
being sent, and in this way ensure that the transition TimeOut will not occur, causing
the retransmission of the data packet. In this way, we can stop the timer represented
by the token on the place Timer. We have used Wait in the time delay inscription
on the input arc from Waiting to TimeOut since the timer will have to be disabled at
most Wait time units ahead of time. When the transition StopTimer occurs in M4,
we reach the marking M5 shown in Fig. 10.18, in which a token has been put on the
place Select, indicating that the current data packet has been acknowledged and that
the sender is ready to select and send the next data packet.

When a time delay inscription is used on a double-headed arc in a timed CPN
model, it is a shorthand for an arc in both directions with the same arc expression,
including the time delay inscription. This means that time delay inscriptions on
double-headed arcs must be used with care to avoid unintentionally removing tokens
ahead of time.



10.3 State Space Analysis of Timed Models 247

if n>k
then n
else k

k

(n,d)

(n,d)

k

(n,d)(n,d)

n

k

k (n,d)@+Wait

(n,d)

(n,d)@+Wait

n

(n,d)

Stop
Timer

[k>n]

TimeOut

[k<=n]

Send
Packet

@+9

Receive
Ack

@+7

Select
Next Selected

NOxDATA

NextSend

1

NO

Select

1

NO

Timer

NOxDATA

A

NOxDATA

D

NO

Packets
To Send

AllPackets

NOxDATA

11`2@101

11`2@101

5

1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI  ")@0+++
1`(6,"NET")@0

Fig. 10.18 Marking M5 reached when StopTimer occurs at time 101 in M4

10.3 State Space Analysis of Timed Models

The state space of a timed CPN model is defined in a way similar to that for untimed
CPN models, except that each state space node now represents a timed marking,
i.e., the value of the global clock and timed multisets specifying the markings of the
places.

In the section above, we have seen that each occurrence sequence in a timed CPN
model corresponds to an occurrence sequence in the corresponding untimed CPN
model, but usually not the other way around, since the timestamps of the tokens
put additional constraints on enabling. This reduces the outdegree (i.e., the num-
ber of outgoing arcs) of the nodes in the timed state space. Nevertheless, the timed
state space may be larger than the untimed state space. The reason for this is that
the nodes in the timed state space represent timed markings and include the global
clock and timestamps. Hence, two timed markings can be different even if the cor-
responding untimed markings are identical (see M4 and M∗

4 in Figs 10.7 and 10.10).
This means that the timing information makes more markings distinguishable and
hence contributes to the presence of more nodes in the state space. The structure
of the state space for a timed CPN model is therefore, in general, different from
the structure of the state space for the corresponding untimed CPN model. As we
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shall see below, this also means that the timed state space can be infinite, even if
the state space of the corresponding untimed CPN model is finite. Furthermore, the
difference in structure also means that the timed CPN model and the corresponding
untimed CPN model will satisfy different behavioural properties.

The timed CPN model presented in the previous section is not directly suited for
full state space analysis for two reasons. The first reason is that we want to limit the
number of packets that can be present simultaneously on the network. The second
reason is that we have used the function Delay to model the delay associated with
transmitting packets on the network. This means that the state space is not well de-
fined, since the set of reachable markings depends on the values returned by Delay,
which in turn depends on a random number generator. Two consecutive state space
generations may therefore result in different state spaces. This problem applies to
the use of functions that return random values independently of whether the model
is timed or not.

Figure 10.19 shows the initial marking of a variant of the timed protocol where
we have resolved the two issues above. The place Limit is used to limit the number
of packets simultaneously present on the network. Furthermore, we have introduced
the two places DelayTP and DelayTA, connected to the transitions TransmitPacket
and TransmitAck, respectively. The variable delay is of type INT, and the constant
Delays is defined as

val Delays = 1‘25 ++ 1‘50 ++ 1‘75;
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Fig. 10.19 Initial marking M0 of timed CPN model for state space analysis
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The tokens on the places DelayTP and DelayTA describe the possible delays for
transmission of packets on the network. We may have a short delay (25), a medium
delay (50), or a long delay (75). The value bound to the variable delay is used in
the time delay inscriptions of the two transitions to determine the delay when the
packet is transmitted. As an example, consider the marking M1 shown in Fig. 10.20.
In this marking, there are six enabled bindings for the transition TransmitPacket:

〈n=1, d="COL", success=true, delay=25〉
〈n=1, d="COL", success=true, delay=50〉
〈n=1, d="COL", success=true, delay=75〉
〈n=1, d="COL", success=false, delay=25〉
〈n=1, d="COL", success=false, delay=50〉
〈n=1, d="COL", success=false, delay=75〉
This means that the node representing the marking M1 in the state space will

have six outgoing arcs, and the timed marking reached when TransmitPacket occurs
depends only on the selected binding element, not on the value returned by a random
number function as was the case when the function Delay was used to obtain the
transmission delay. If we select the second of the above bindings to occur, we reach
the marking shown in Fig. 10.21.
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Fig. 10.20 Marking M1 reached when SendPacket occurs at time 0 in M0
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Fig. 10.21 Marking M2 reached when TransmitPacket occurs at time 9 in M1

The value of the global clock and the timestamps of the tokens are part of the
timed marking. As an example, consider the marking M1 in Fig. 10.20 and assume
that a binding of TransmitPacket occurs in which the data packet is lost. We then
reach the marking M−

2 shown in Fig. 10.22 in which the global clock has been
increased to 109 at which time SendPacket is enabled corresponding to a retrans-
mission of data packet 1. The initial marking M0 in Fig. 10.22 and the marking M−

2
are different timed markings, since the values of the global clock are different in the
two markings and the timestamps of one of the tokens are different. This means that
these two markings will be represented by two different nodes in the timed state
space.

Figure 10.23 shows an initial fragment of the state space for the timed protocol
consisting of the markings reachable by the occurrence of at most three binding el-
ements. Node 1 represents the initial marking, and the box next to each node gives
information about the tokens on the individual places in the marking represented
by the node. We have listed only places with a non-empty marking, and the places
PacketsToSend, DelayTP, and DelayTA have been omitted since the colours of the
tokens on these places do not change (except for the timestamps on PacketsToSend).
The integer following the Time entry specifies the value of the global clock when the
marking was created. For the labels on the arcs, we have used the same shorthand
notation as in Chap. 7, except that for the transition TransmitPacket we have also
specified the binding of the variable delay; for example, an arc labelled TPi+:50
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Fig. 10.22 Marking M−
2 reached after loss of data packet 1 in M1

denotes an occurrence of TransmitPacket with a binding corresponding to a suc-
cessful transmission of packet i where delay is bound to 50. There are three arcs
leading from node 2 to node 4, all corresponding to an unsuccessful transmission
of the first data packet. The difference between the three corresponding binding el-
ements is the value bound to the variable delay. These arcs all lead to node 4,
since the value bound to the variable delay does not matter when the occurrence
of TransmitPacket corresponds to an unsuccessful transmission. The occurrences of
the binding elements TP+1:25, TP1+:50, and TP1+:75 in node 2 lead to three differ-
ent markings (represented by nodes 5, 3, and 6, respectively), since the timestamps
on the token on place B in the resulting markings differ.

We may continue to lose the first data packet, and hence the timed state space can
be infinite even if the corresponding untimed CPN model has a finite state space. To
obtain a finite state space, we must set an upper bound on the value of the global
clock. This limits the applicability of full state spaces for timed CPN models, but
it is still possible to generate parts of timed state spaces and verify time-bounded
properties such as checking whether a certain packet has been received before time
1000. Table 10.1 gives statistics for the numbers of nodes and arcs in partial state
spaces obtained by not calculating successors for nodes when the global clock is
greater than a certain ‘Clock’ value.
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Fig. 10.23 Initial fragment of the state space for the timed protocol

Table 10.1 Size of partial state space for different time bounds

Clock Nodes Arcs Clock Nodes Arcs

10 12 19 60 3 005 4 583
20 48 87 70 7 822 12 154
30 156 269 80 17 996 28 002
40 397 644 90 49 928 79 224
50 814 1 273 100 103 377 165 798

10.4 Time Equivalence Method

As discussed above, one of the main limitations on the use of state spaces for timed
CPN models is that they are infinite for models containing cyclic behaviour. The
problem is that the absolute notion of time as represented by the global clock and
the timestamps of tokens is carried over into the timed markings of the state space.

Our protocol system contains cyclic behaviour since, for example, it is possi-
ble to keep losing and retransmitting the first data packet. As an example, consider
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Figs 10.24 and 10.25, which show the timed markings M1 and M2 of the timed pro-
tocol system described in Sect. 10.3. Figure 10.24 shows the marking reached when
SendPacket has occurred in the initial marking, and Fig. 10.25 shows the marking
reached when the first data packet is lost and then retransmitted. The two markings
are similar: the only difference is that the global clock has been advanced 109 time
units and so has the timestamp of the token (1,"COL") on PacketsToSend. The
two markings are represented by two nodes in the state space because the times-
tamps of the tokens and the values of the global clock differ.

The time equivalence method [19] has been developed to overcome this problem,
and uses equivalence classes as introduced in Sect. 8.4 to factor out the absolute
notion of time. This is done by replacing the absolute values in the global clock
and the timestamps with relative values to construct a condensed state space. It can
be proved that the condensed state space is finite provided that the state space of
the corresponding untimed CPN model is finite. Furthermore, the condensed state
space is constructed in such a way that all behavioural properties of the model that
can be verified using the full state space can also be verified using the condensed
state space.

The basic idea is to consider markings such as M1 and M2 to be equivalent and
to compute a canonical representative for each equivalence class as follows:

• All timestamps which are less than the current model time are set to zero (they
cannot influence enabling).
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Fig. 10.24 Timed marking M1 with an enabled transition at time 9



254 10 Timed Coloured Petri Nets

if n=k
then k+1
else k

delay

delay
(n,d)@+Wait(n,d)

()
if success
then empty
else 1`()

if success
then empty
else 1`()

()n

k

k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k 
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

Receive
Ack

@+7

Transmit
Ack

@+delay

Receive
 Packet

@+17

Transmit
Packet

@+delay

Send
Packet

@+9

Delay
TA

Delays

INT

Delay
TP

Delays

INT

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

INT

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

3
1`25++
1`50++
1`75

3
1`25++
1`50++
1`75

2 2`() 11`1@0

1

1`(1,"COL")@118

1 1`1

11`""@06

1`(1,"COL")@218+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI  ")@0+++
1`(6,"NET")@0

Fig. 10.25 Timed marking M2 with an enabled transition at time 118

• The current model time is subtracted from all timestamps which are greater than
or equal to the current model time.

• The current model time is set to zero.

Applying the above three rules to the markings in Figs 10.24 and 10.25 yields in
both cases the canonical timed marking shown in Fig. 10.26. The value of the global
clock is now 0. The timestamp of the token on A is also 0, and the timestamp of the
token (1,"COL") on PacketsToSend is 100 since the value of the global clock
has been subtracted from the timestamps of the corresponding tokens in the original
markings. The transition TransmitPacket is enabled in the canonical marking and
there are still 100 time units until the first data packet can be retransmitted, which
was also the case in the original markings. Hence, the same occurrence sequences
are possible in the canonical marking as in the original markings, but we have re-
moved the absolute time. A formalisation of the above equivalence can be found in
[19], including a proof that it is consistent for all timed CPN models.

The condensed state space for a timed CPN model can be computed fully au-
tomatically. The consistency of the equivalence has been proven once and for all
[19] and the user does not have to provide any predicate for expressing the time
equivalence, because it has been implemented in CPN Tools once and for all, for
all CPN models. It has been shown [19] that all properties of the system expressible
in the real-time temporal logic RCCTL∗ [38] are preserved in the condensed state
space. This set of properties includes all of the standard behavioural properties of
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Fig. 10.26 Canonical timed marking for M1 and M2

CPN models discussed in Chap. 7. Table 10.2 shows some statistics for the size of
the condensed state space for the protocol system. The time equivalence method has
also been used in the industrial application described in Sect. 14.3.

Table 10.2 Statistics for application of the time equivalence method

Limit Packets Nodes Limit Packets Nodes

1 10 81 5 2 88 392
1 20 161 5 4 308 727
1 50 401 7 1 13 198
1 100 801 7 2 145 926

2 5 3 056 7 3 323 129
2 10 6 706 10 1 20 062
2 20 14 006 10 2 244 990
2 50 35 906 12 1 24 630

3 1 2 699 12 2 335 651
3 5 85 088 13 1 26 914
3 15 306 118 13 2 391 743


	Timed Coloured Petri Nets
	First Timed Model of the Protocol
	Second Timed Model of the Protocol
	State Space Analysis of Timed Models
	Time Equivalence Method



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




