
Chapter 1
Introduction to Modelling and Validation

System development and engineering is a comprehensive discipline involving a mul-
titude of activities such as requirements engineering, design and specification, im-
plementation, testing, and deployment. An increasing number of system develop-
ment projects are concerned with concurrent systems. There are numerous exam-
ples of this, ranging from large-scale systems, in the areas of telecommunication
and applications based on Internet technology, to medium- or small- scale systems,
in the area of embedded systems.

Section 1.1 introduces the basic ideas and motivation for modelling in system
development, and Sect. 1.2 gives a high-level overview of the CPN modelling lan-
guage. Section 1.3 discusses the role of abstraction and visualisation when one is
constructing models of concurrent systems. Section 1.4 presents the benefits of for-
mal modelling languages and verification. Section 1.5 gives an overview of the main
features of CPN Tools. Finally, Sect. 1.6 provides an overview of the results from
four industrial projects using CP-nets. A more detailed description of the projects
will be given in Chap. 14.

1.1 Modelling and System Development

The development of concurrent systems is particularly challenging. A major reason
is that these systems possess concurrency and non-determinism which means that
the execution of such systems may proceed in many different ways, for example,
depending on whether messages are lost during transmission, the scheduling of pro-
cesses, and the time at which input is received from the environment. Hence, such
systems have an astronomical number of possible executions. It is extremely easy
for a human designer to miss some important interaction patterns when designing
such a system, leading to gaps or malfunctions in the system design. As a result,
concurrent systems are, by nature, complex and difficult to design, test, and debug.
Furthermore, for many concurrent systems such as those integrated into nuclear
power plants, aircraft control systems, and hospital life support equipment, it is es-
sential that the system works correctly from the very beginning. To cope with the

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 1, 1
c© Springer-Verlag Berlin Heidelberg 2009

2 1 Introduction to Modelling and Validation

complexity of modern concurrent systems, it is therefore crucial to provide meth-
ods that enable the debugging and testing of central parts of system designs prior to
implementation and deployment.

One way to approach the challenge of developing concurrent systems is to build
a model of the system. Modelling is a universal technique that can be used across
many of the activities in system development. Many modelling languages have been
suggested, and many are being used for system development. One prominent exam-
ple is the Unified Modeling Language (UML) [94] which is becoming the de-facto
standard modelling language of the software industry and which supports modelling
of the structure and behaviour of systems. The focus of this textbook is on executable
models that can be used to simulate the behaviour of systems.

The act of constructing a model of a system to be developed is typically done in
the early phases of system development, and is also known from other disciplines,
such as when engineers construct bridges and architects design buildings. For exam-
ple, architects make architectural drawings and may build three-dimensional models
in cardboard, plastic, or plywood, or use computerised 3D animation to visualise a
building. The purpose of these different models is to get a better impression of the
building. This allows the architect and the intended owners and users of the building
to imagine what the building will look like and how it will function, for example,
whether some corridors are too narrow or some doors so close to each other that
they may create dangerous situations. The main motivation behind such models is
that it is obviously preferable to correct design errors and other shortcomings before
the construction of the real building commences.

When a new concurrent system is being designed or an existing one is being in-
vestigated, there are similar reasons why it is beneficial to build a model of it and to
build it as early as possible.

• Insight. The act of constructing the model and simulating it usually leads to sig-
nificant new insights into the design and operation of the system considered.
Typically the modeller gains a more elaborate and complete understanding of the
system than what can be obtained by conventional means, for example, by read-
ing design documents. The same applies to people to whom a model of a system
is being presented. This insight often results in a simpler and more streamlined
design. By investigating a model, similarities can be identified that can be ex-
ploited to unify and generalise the design and make it more logical, or we may
get ideas to improve the usability of the system.

• Completeness. The construction of an executable model usually leads to a more
complete specification of the design. Gaps in the specification of the system will
become explicit as they will prohibit the model from being executed because cer-
tain parts are missing, or when the model is simulated, the designers and users
will find that certain expected events are not possible in the current state. Mod-
elling also leads to a more complete identification and understanding of the re-
quirements to be placed on the system, in particular because models can be used
to mediate discussions among designers and users of the system.

• Correctness. When simulations of a model are made a number of design errors
and flaws are usually detected. Since the modeller is able to control the execution

1.2 Coloured Petri Nets 3

of a model, unlike the real system, problematic scenarios can be reproduced, and
it can be checked whether a proposed modification of the design does indeed
fix an identified error or improves the design in the way intended. Checking a
number of different scenarios by means of simulations does not necessarily lead
to correct designs – there may simply be too many scenarios to investigate or the
modeller may fail to notice the existence of some important scenarios. However,
a systematic investigation of scenarios often significantly decreases the number
of design errors.

The construction of a model of a system design typically means that more effort is
spent in the early phases of system development, i.e., in requirements engineering,
design, and specification. This additional investment is in most cases justified by
the additional insight into the properties of the system which can be gained prior to
implementation. Furthermore, many design problems and errors can be discovered
and resolved in the requirements and design phase rather than in the implementation
phase. Finally, models are in most cases simpler and more complete than traditional
design documents, which means that the construction and exploration of the model
can result in a more solid foundation for doing the implementation. This may in turn
shorten the implementation and test phases significantly and decrease the number
of flaws in the final system.

1.2 Coloured Petri Nets

Coloured Petri Nets (CP-nets or CPNs) [60, 61, 63] is a graphical language for con-
structing models of concurrent systems and analysing their properties. CP-nets is a
discrete-event modelling language combining the capabilities of Petri nets [88, 93]
with the capabilities of a high-level programming language. Petri nets provide the
foundation of the graphical notation and the basic primitives for modelling concur-
rency, communication, and synchronisation. The CPN ML programming language,
which is based on the functional programming language Standard ML [84, 102],
provides the primitives for the definition of data types, for describing data manipu-
lation, and for creating compact and parameterisable models. The CPN modelling
language is a general-purpose modelling language, i.e., it is not aimed at modelling
a specific class of systems, but is aimed towards a very broad class of systems that
can be characterised as concurrent systems. Typical application domains of CP-nets
are communication protocols, data networks, distributed algorithms, and embed-
ded systems. CP-nets are, however, also applicable more generally for modelling
systems where concurrency and communication are key characteristics. Examples
of these are business processes and workflows, manufacturing systems, and agent
systems. An updated list of examples of industrial applications of CP-nets within
various domains is available via [40].

Petri Nets are traditionally divided into low-level Petri Nets and high-level Petri
Nets. CP-nets belong to the class of high-level Petri Nets which are characterised
by the combination of Petri Nets and programming languages. Low-level Petri Nets

4 1 Introduction to Modelling and Validation

(such as Place/Transition Nets [30]) are primarily suited as a theoretical model for
concurrency, although certain classes of low-level Petri Nets are often applied for
modelling and verification of hardware systems [111]. High-level Petri Nets (such as
CP-nets and Predicate/Transition Nets [45]) are aimed at practical use, in particular
because they allow the construction of compact and parameterised models. High-
level Petri Nets is an ISO/IEC standard [7], and the CPN modelling language and
supporting computer tools conform to this standard.

CPN models are executable and are used to model and specify the behaviour of
concurrent systems. A CPN model of a system is both state and action oriented. It
describes the states of the system and the events (transitions) that can cause the sys-
tem to change state. By performing simulations of the CPN model, it is possible to
investigate different scenarios and explore the behaviour of the system. Very often,
the goal of performing simulations is to debug and investigate the system design.
CP-nets can be simulated interactively or automatically. An interactive simulation is
similar to single-step debugging. It provides a way to ‘walk through’ a CPN model,
investigating different scenarios in detail and checking whether the model works
as expected. During an interactive simulation, the modeller is in charge and deter-
mines the next step by selecting between the enabled events in the current state.
It is possible to observe the effects of the individual steps directly in the graphi-
cal representation of the CPN model. This is similar to an architect deciding the
exact route to follow while performing an interactive walk through a 3D computer
model of a building. Automatic simulation is similar to program execution and the
purpose is to execute the CPN model as fast and efficiently as possible, without de-
tailed human interaction and inspection. Automatic simulation is typically used for
testing and performance analysis. For testing purposes, the modeller typically sets
up appropriate breakpoints and stop criteria. For performance analysis the model is
instrumented with data collectors to collect data on the performance of the system.

Time plays a significant role in a wide range of concurrent systems. The cor-
rect functioning of some systems depends crucially on the time taken by certain
activities, and different design decisions may have a significant impact on the per-
formance of a system. CP-nets include a concept of time that makes it possible to
capture the time taken by events in the system. This time concept also means that
CP-nets can be applied to simulation-based performance analysis, where perfor-
mance measures such as delays, throughput, and queue lengths in the system are
investigated, and for modelling and validation of real-time systems.

The development of CP-nets has been driven by the desire to develop an in-
dustrial strength modelling language – theoretically well founded and at the same
time versatile enough to be used in practice for systems of the size and complexity
found in typical industrial projects. CP-nets, however, is not a modelling language
designed to replace other modelling languages (such as UML). In our view, CP-nets
should be used as a supplement to existing modelling languages and methodologies
and can be used together with these or even integrated into them.

CP-nets is one of many modelling languages [14] developed for concurrent and
distributed systems. Other prominent examples are Statecharts [50] as supported by,
for example, the VisualState tool [103], the Calculus of Communicating Systems

1.3 Abstraction and Visualisation 5

[83] as supported by, for example, the Edinburgh Concurrency Workbench [32],
Timed Automata [1] as supported by, for example, the UPPAAL tool [76], Commu-
nicating Sequential Processes [52] as supported by, for example, the FDR tool [41],
and Promela [54], as supported by the SPIN tool [96].

CP-nets has been under development by the CPN group at Aarhus University,
Denmark since 1979. The first version was part of the PhD thesis of Kurt Jensen
and was presented in [59]. It was inspired by the pioneering work of Hartmann
Genrich and Kurt Lautenbach on Predicate/Transition Nets [46]. Since then, the
CPN group has been working on the consolidation of the basic model, extensions to
cope with modules and time, and methods for analysis by means of state spaces and
simulation-based performance analysis. Simultaneously the group has developed
and distributed industrial-strength computer tools, such as Design/CPN [28] and
CPN Tools [25], and we have conducted numerous application projects [40] where
CP-nets and their tools have been used together with industrial partners. For a more
detailed description of the origin of CP-nets and their relation to other kinds of
Petri Nets, the reader is referred to the bibliographical remarks in Chap. 1 of [60].
Numerous people have contributed to the development of CP-nets and their tools.
This includes the many people who have worked in the CPN group and the hundreds
of tool users who have proposed valuable extensions and improvements.

1.3 Abstraction and Visualisation

When a model is constructed, abstractions are made, which means that a number of
details are omitted. As an example, it is unlikely that an architect constructing an
architectural model of a building using cardboard, plastic, or plywood, will include
any information about the plumbing and wiring of the building. These things are
irrelevant for the purpose of this kind of model, which usually is to be able to judge
the aesthetics of the architectural design. However, the architect will construct other
models which contain a detailed specification of the wiring and plumbing. When
constructing a model, the first questions to ask ourselves should be: What is the pur-
pose? What do we want to learn about the system by making this kind of model?
What kinds of properties are we interested in investigating? Without initially an-
swering these questions in some detail, it is impossible to make a good model, and
we shall be unable to decide what should be included in the model, and what can be
abstracted away without compromising the correctness of the conclusions that will
be drawn from investigating the model. Finding the appropriate abstraction level at
different points in the development of systems is one of the arts of modelling.

The CPN language has few, but powerful modelling primitives, which means that
relatively few constructs must be mastered to be able to construct models. The mod-
elling primitives also make it possible to model systems and concepts at different
levels of abstraction. CPN models can be structured into a set of modules. This is
particularly important when one is dealing with CPN models of large systems. The
modules interact with each other through a set of well-defined interfaces, in a way

6 1 Introduction to Modelling and Validation

similar to that of programming languages. The concept of modules in CP-nets is
based on a hierarchical structuring mechanism, which allows a module to have sub-
modules, allows a set of modules to be composed to form a new module, and allows
reuse of submodules in different parts of the model. This enables the modeller to
work both top-down and bottom-up when constructing CPN models. By means of
the structuring mechanism, it is possible to capture different abstraction levels of the
modelled system in the same CPN model. A CPN model which represents a high
level of abstraction is typically constructed in the early stages of design or analysis.
This model is then gradually refined to yield a more detailed and precise descrip-
tion of the system under consideration. The fact that it is possible to abstract away
from many implementation details and gradually refine the system design implies
that constructing a CPN model can be a very cost-effective way of obtaining a first
executable prototype of a system.

Visualisation is a technique which is closely related to simulation of CPN models.
An important application of visualisation is that it allows the presentation of design
ideas and analysis results using concepts from the application domain. This is par-
ticularly important in discussions with people unfamiliar with CP-nets. The CPN
modelling language includes several means for adding application domain graphics
on top of the CPN model. This can be used to abstractly visualise the execution
of the CPN model in the context of the application domain. One example is the use
message sequence charts (or time sequence diagrams) [15] to visualise the exchange
of messages in the execution of a communication protocol. Furthermore, observing
every single step in a simulation is often too detailed a level of observation of the
behaviour of a system. It provides the observer with an overwhelming amount of
detail, particularly for large CPN models. By means of visual feedback from sim-
ulations, information about the execution of the system can be obtained at a more
adequate level of detail.

1.4 Formal Modelling and Verification

CPN models are formal, in the sense that the CPN modelling language has a math-
ematical definition of both its syntax and its semantics. Such models can be manip-
ulated by a computer tool and can be used to verify system properties, i.e., prove
that certain desired properties are fulfilled or that certain undesired properties are
guaranteed to be avoided. The formal representation is the foundation for the defi-
nition of the various behavioural properties and the analysis methods. Without the
mathematical representation it would have been impossible to develop a sound and
powerful CPN language.

Formal verification is, by its nature, different from and supplements the kind of
informal analysis performed when individual scenarios are inspected by means of
simulation. Verification involves a mathematical formulation of a property and a
computer-assisted proof that this property is fulfilled by the model. When verifying
system properties, it is also necessary to argue that the model captures those aspects

1.4 Formal Modelling and Verification 7

that are relevant for the property we are verifying. It must be ensured that the veri-
fied properties are really those that we want the system to possess. This means that
formal verification is always accompanied by informal justifications.

Verification of CPN models and system properties is supported by the state space
method. The basic idea underlying state spaces is to compute all reachable states and
state changes of the CPN model and represent these as a directed graph, where nodes
represent states and arcs represent occurring events. State spaces can be constructed
fully automatically. From a constructed state space, it is possible to answer a large
set of verification questions concerning the behaviour of the system, such as absence
of deadlocks, the possibility of always being able to reach a given state, and the
guaranteed delivery of a given service.

One of the main advantages of state spaces is that they can provide counterex-
amples (or error traces) giving detailed debugging information specifying why an
expected property does not hold. Furthermore, state spaces are relatively easy to use,
and they have a high degree of automation. The ease of use is primarily due to the
fact that it is possible to hide a large portion of the underlying complex mathematics
from the user. This means that, quite often, the user is required only to formulate the
property which is to be verified and then apply a computer tool. The main disadvan-
tage of using state spaces is the state explosion problem [106]: even relatively small
systems may have an astronomical or even infinite number of reachable states, and
this is a serious problem for the use of state spaces in the verification of real-life sys-
tems. A wide range of state space reduction methods have therefore been developed
for alleviating the state explosion problem inherent in state space-based verification.
It is also possible to use state spaces in conjunction with other analysis methods for
CP-nets, such as place invariants and net structure reductions.

The capability of working at different levels of abstraction is one of the keys to
making formal analysis of CP-nets possible. By abstraction it is possible to make
very large, detailed models tractable for state space analysis. The state space method
of CP-nets can also be applied to timed CP-nets. Hence, it is also possible to verify
the functional correctness of systems modelled by means of timed CP-nets.

The formal definition of CP-nets implies that CPN models are unambiguous and
hence provides a precise specification of the design. This is in contrast to design
specifications written in natural language, which are inherently ambiguous. Having
precise, unambiguous specifications is generally desirable, and it is crucial in many
areas such as the development of open protocol standards, where precise specifi-
cations are required to ensure interoperability between implementations made by
different vendors.

It should be stressed that for the practical use of CP-nets and their supporting
computer tools, it suffices to have an intuitive understanding of the syntax and se-
mantics of the CPN modelling language. This is analogous to the situation for ordi-
nary programming languages that are successfully applied by programmers who are
usually not familiar with the formal, mathematical definitions of the languages.

The practical application of CP-nets typically relies on a combination of inter-
active- and automatic simulation, visualisation, state space analysis, and perfor-
mance analysis. These activities in conjunction result in a validation of the system

8 1 Introduction to Modelling and Validation

under consideration, in the sense that it is possible to justify the assertion that the
system has the desired properties, and a high degree of confidence in and under-
standing of the system has been obtained.

1.5 CPN Tools

The practical application of modelling and validation relies heavily on the existence
of computer tools supporting the construction and manipulation of models.

CPN Tools is a tool for the editing, simulation, state space analysis, and perfor-
mance analysis of CPN models. CPN Tools supports untimed and timed hierarchical
CPN models. CPN Tools is used by more than 8,000 users in 140 different countries
and is available for Windows XP, Windows Vista, and Linux. A licence for CPN
Tools can be obtained free of charge via the CPN Tools Web pages [25]. Below, we
provide a very brief introduction to CPN Tools. The CPN Tools Web pages contain
an elaborate set of manuals on how to use the tool.

The user of CPN Tools works directly with the graphical representation of the
CPN model. The graphical user interface (GUI) of CPN Tools has no conventional
menu bars and pull-down menus, but is based on interaction techniques, such as tool
palettes and marking menus. Figure 1.1 provides a screenshot of CPN Tools. The
rectangular area to the left is an index. It includes the Tool box, which is available for
the user to manipulate the declarations and modules that constitute the CPN model.
The Tool box includes tools for creating, copying, and cloning the basic elements
of CP-nets. It also contains a wide selection of tools to manipulate the graphical
layout and the appearance of the objects in the CPN model. The latter set of tools
is very important in order to be able to create readable and graphically appealing
CPN models. The remaining part of the screen is the workspace, which in this case
contains four binders (the rectangular windows) and a circular pop-up menu.

Each binder holds a number of items which can be accessed by clicking the tabs
at the top of the binder (only one item is visible at a time). There are two kinds of
binders. One kind contains the elements of the CPN model, i.e., the modules and
declarations. The other kind contains the tools which the user applies to construct
and manipulate CPN models. The tools in a tool palette can be picked up with the
mouse cursor and applied. In the example shown, one binder contains three mod-
ules named Protocol, Sender, and Receiver, while another binder contains a single
module, named Network, together with the declaration of the colour set NOxDATA.
The two remaining binders contain four different tool palettes to Create elements,
change their Style, perform Simulations, and construct State spaces.

Items can be dragged from the index to the binders, and from one binder to
another binder of the same kind. It is possible to position the same item in two
different binders, for example, to view a module using two different zoom factors.
A circular marking menu has been popped up on top of the bottom left binder.
Marking menus are contextual menus that make it possible to select among the

1.5 CPN Tools 9

Fig. 1.1 Screenshot from CPN Tools

operations possible on a given object. In the case of Fig. 1.1, the marking menu
gives the operations that can be performed on a port place object.

CPN Tools performs syntax and type checking, and error messages are provided
to the user in a contextual manner next to the object causing the error. The syntax
check and code generation are incremental and are performed in parallel with edit-
ing. This means that it is possible to execute parts of a CPN model even if the model
is not complete, and that when parts of a CPN model are modified, a syntax check
and code generation are performed only on the elements that depend on the parts
that were modified. The main outcome of the code generation step is the simulation
code. The simulation code contains the functions for inferring the set of enabled
events in a given state of the CPN model, and for computing the state resulting from
the occurrence (execution) of an enabled event in a given state.

CPN Tools supports two types of simulation: interactive and automatic. In an in-
teractive simulation, the user is in complete control and determines the individual
steps in the simulation, by selecting between the enabled events in the current state.
CPN Tools shows the effect of executing a selected step in the graphical representa-
tion of the CPN model. In an automatic simulation the user specifies the number of
steps that are to be executed and/or sets a number of stop criteria and breakpoints.
The simulator then automatically executes the model without user interaction by
making random choices between the enabled events in the states encountered. Only
the resulting state is shown in the GUI. A simulation report can be saved, contain-

10 1 Introduction to Modelling and Validation

ing a specification of the steps that occurred during an automatic simulation. The
simulator of CPN Tools exploits a number of advanced data structures for efficient
simulation of large hierarchical CPN models. The simulator exploits the locality
property of Petri nets to ensure that the number of steps executed per second in a
simulation is independent of the size of the CPN model. This guarantees that simu-
lation scales to large CPN models.

Full state spaces, which are state spaces in their most basic form, and a collection
of advanced state space methods are supported by CPN Tools. The advanced meth-
ods make it possible to alleviate the impact of the state explosion problem, which
is particularly evident when state space analysis of large CPN models is conducted.
CPN Tools provides several means for analysing the properties of the system under
consideration using state spaces. The first step is usually to create a state space re-
port containing answers to a set of standard behavioural properties of CPN models,
such as the absence or presence of deadlocks and the minimum and maximum num-
ber of tokens on the individual places. In the early stages of system development,
design errors are very often evident in the state space report, which can be gener-
ated fully automatically. It is also possible for the user to interactively draw selected
parts of a state space and inspect the individual states and events. This can be a very
effective way of debugging a system. CPN Tools implements a set of query func-
tions that makes it possible for the user to traverse the state space in a number of
ways and thereby investigate system-dependent properties. Verification of system
properties based on formulating properties in temporal logic [37] and conducting
model checking [21, 22] is also supported.

Simulation-based performance analysis is supported via automatic simulation
combined with elaborate data collection. The basic idea of simulation-based perfor-
mance analysis is to conduct a number of lengthy simulations of the model during
which data about the performance of the system is collected. The data typically pro-
vides information such as the sizes of queues, the delays of packets, and the load
on various components. The collection of data is based on the concept of monitors
that allow the user to specify when data is to be collected during the individual steps
of a series of automatic simulations, and what data is to be collected. The data can
be written into log files for postprocessing, for example, in a spreadsheet, or a per-
formance report can be saved, summarising key figures for the collected data such
as averages, standard deviations, and confidence intervals. Simulation-based perfor-
mance analysis typically uses batch simulation, which makes it possible to explore
the parameter space of the model without user intervention and to conduct multiple
simulations of each parameter configuration to obtain statistically reliable results.

CPN Tools includes a visualisation package [109] implemented in Java that sup-
ports the user in constructing application domain graphics on top of CPN models.
Such graphics can provide an abstract application-specific presentation of the dy-
namics of the modelled system. They can be used to make the underlying formal
CPN model fully transparent to the observer. The animation package supports sev-
eral standard diagram and chart types, such as message sequence charts. The ani-
mation package also allows the user to implement additional diagram types using
existing libraries.

1.6 Industrial Applications 11

CPN Tools also includes a collection of libraries for various purposes. One ex-
ample is Comms/CPN [42], for TCP/IP communication between CPN models and
external applications. CPN Tools generally has an open architecture that allows the
user to extend its functionality, such as for experimenting with new state space meth-
ods. Hence, in addition to being a tool for modelling and validation, it also provides a
prototyping environment for researchers interested in experimenting with new anal-
ysis algorithms.

This book relies on a series of relatively simple CPN models of a communication
protocol, gradually enhanced and modified using the concepts and tools presented
in the following chapters. An industrial case study in Sect. 14.1 shows how much
more complex protocols can be modelled and validated.

1.6 Industrial Applications

An overview of industrial applications of CP-nets can be obtained via the Web pages
[40] which contain references to more than 100 published papers on CPN projects.
In Chap. 14, we will present four representative projects where CP-nets and their
supporting computer tools have been used for system development in an industrial
context. The projects have been selected to illustrate the fact that CP-nets can be
used in many different phases of system development, ranging from requirements
specification to design, validation, and implementation. The CPN models presented
were constructed in joint projects between our research group at Aarhus Univer-
sity and industrial partners. Chapter 14 provides a detailed description of the four
projects. Below, we shall only give an overview of the most important results.

The first project was concerned with the development of the Edge Router Dis-
covery Protocol (ERDP) at Ericsson Telebit. In the project, a CPN model was con-
structed that constituted a formal executable specification of ERDP. Simulation and
message sequence charts were used in initial investigations of the protocol’s be-
haviour. Then state space analysis was applied to conduct a formal verification of
the key properties of ERDP.

The application of CP-nets in the development of ERDP was successful for three
main reasons. Firstly, it was demonstrated that the CPN modelling language and
supporting computer tools are powerful enough to specify and analyse a real-world
communication protocol and that they can be integrated into a conventional pro-
tocol development process. Secondly, the modelling, simulation, and subsequent
state space analysis all helped to identify several omissions and errors in the design,
demonstrating the benefits of using formal techniques in a protocol design process.
Finally, the effort of constructing the CPN model and conducting the state space
analysis was represented by approximately 100 person-hours. This is a relatively
small investment compared with the many issues that were identified and resolved
early as a consequence of constructing and analysing the CPN model.

The second project was concerned with specifying the business processes at
Aarhus County Hospital and their support by a new IT System, called the Pervasive

12 1 Introduction to Modelling and Validation

Health Care System (PHCS). A CPN model of PHCS was used to engineer require-
ments for the system. Behavioural visualisation driven by a CPN model was used
to visualise system behaviour and enable the engineering of requirements through
discussions with people who were not familiar with the CPN modelling language.

The project demonstrated that CPN models are able to support various require-
ments engineering activities. One of the main motivations for the approach chosen
for PHCS was to build on top of prose descriptions of work processes and the pro-
posed computer support, consolidated as UML use cases. The stakeholders of PHCS
were already familiar with the UML use cases from earlier projects. The visualisa-
tions enabled users such as nurses and doctors to be actively engaged in specification
analysis and elicitation, which is crucial. User participation increases the probability
that a system is ultimately built that fits with the future users’ work processes.

The third project was concerned with the design and analysis of the BeoLink
system at Bang & Olufsen. A timed CPN model was developed, specifying the lock
management subsystem which is responsible for the basic synchronisation of the de-
vices in the BeoLink system. State spaces were used to verify the lock management
system.

The project demonstrated the use of CP-nets for modelling and validating a real-
time system, i.e., a system where the correctness of the system depends on timing
information. Engineers at Bang & Olufsen were given a four-day course on CP-nets,
enabling them to construct large parts of the CPN model. This demonstrates (as also
seen in other projects) that a relatively short introduction is required to get started on
using CP-nets in industrial projects. In the original BeoLink project, only the initiali-
sation phase of the lock management protocol was verified using state spaces. Since
then, a number of advanced state space methods have been developed and imple-
mented, and these methods have been used to verify configurations of the BeoLink
system that could not be verified using ordinary state spaces. It has also been demon-
strated that the advanced state space methods can be used simultaneously to get a
better reduction than obtainable from either method in isolation.

The fourth project was concerned with the development of a military scheduling
tool (COAST) in which the analysis capabilities are based on state space methods.
CPN modelling was used to conceptualise and formalise the planning domain to be
supported by the tool. Later on, the CPN model was extracted in executable form
from CPN Tools and embedded directly into the server of COAST together with a
number of tailored state space analysis algorithms.

The project demonstrated how a CPN model can be used for the implementation
of a computer tool thereby overcoming the usual gap between the design and the
final implementation. It also demonstrated the value of having a full programming-
language environment in the form of the Standard ML compiler integrated into CPN
Tools. This allowed a highly compact and parameterisable CPN model to be con-
structed, and allowed the CPN model to become the implementation of the COAST
server. It also made it possible to extend the COAST server with the specialised
algorithms required to extract task schedules from the generated state spaces.

	Introduction to Modelling and Validation
	Modelling and System Development
	Coloured Petri Nets
	Abstraction and Visualisation
	Formal Modelling and Verification
	CPN Tools
	Industrial Applications

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

