

Coloured Petri Nets

Kurt Jensen · Lars M. Kristensen

Coloured
Petri Nets

Modelling and Validation of
Concurrent Systems

123

Kurt Jensen
Department of Computer Science
Aarhus University
IT-parken, Aabogade 34
DK-8200 Aarhus N
Denmark
kjensen@cs.au.dk

Lars M. Kristensen
Department of Computer Engineering
Bergen University College
Nygaardsgaten 112
5020 Bergen
Norway
lmkr@hib.no

ISBN 978-3-642-00283-0 e-ISBN 978-3-642-00284-7
DOI 10.1007/b95112
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009926853

ACM Computing Classification (1998): F.1, I.6, D.2.2, D.2.4

c© Springer-Verlag Berlin Heidelberg 2009
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KünkelLopka, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This textbook presents Coloured Petri Nets (also known as CP-nets or CPNs).
Coloured Petri Nets is a language for the modelling and validation of concurrent
and distributed systems and other systems in which concurrency plays a major role.
The book introduces the constructs of the CPN modelling language and presents its
analysis methods, and provides a comprehensive road map to the practical use of
CP-nets. Furthermore, this book presents some selected industrial case studies illus-
trating the practical use of CPN modelling and validation for design, specification,
simulation, and verification in a variety of application domains.

This book is aimed at use both in university courses and for self-study. It contains
more than sufficient material for a one semester course at undergraduate or graduate
level. A typical course will cover the basics of CP-nets and it is optional whether to
include the formal definition of the language as part of this. A typical course will
also cover some selected case studies depending on the aim and focus of the course.
The last chapter in this book discusses how we have used the book to teach CP-nets
at Aarhus University.

Slide sets, CPN models, and suggestions for exercises and projects are available
from the Web pages accompanying this book, at

http://www.cs.au.dk/CPnets/cpnbook/

These Web pages also contain links to courses where this book has been used.
For the practically oriented exercises involving construction and validation of CPN
models, we recommend using CPN Tools. CPN Tools is an elaborate computer tool
supporting the construction, simulation, state space analysis, and performance anal-
ysis of CPN models. A licence for educational, research, and commercial use of
CPN Tools can be obtained free of charge.

This book is primarily aimed at readers interested in the practical use of CP-nets.
This is reflected in the presentation of the material which is organised into the fol-
lowing main parts:

• Basic concepts (Chapters 1-4) presenting the basic constructs of the CPN mod-
elling language, including the CPN ML inscription language.

v

vi Preface

• Hierarchical Coloured Petri Nets (Chapters 5-6) explaining how large CPN
models can be structured as a set of hierarchically organised modules.

• State spaces and verification (Chapters 7-9) showing how state spaces can be
used to verify and validate behavioural properties of CPN models.

• Timed Coloured Petri Nets (Chapters 10-12) explaining how timing informa-
tion can be added to CPN models, making it possible to reason about real-time
systems and conduct simulation-based performance analysis.

• Behavioural visualisation (Chapter 13) showing how CPN models can be aug-
mented with graphics that can be used to visualise and interact with the behaviour
of a system using system- and domain-specific concepts.

• Industrial case studies (Chapter 14) presenting four examples of representative
projects where CP-nets and their supporting computer tools have been used for
system development in an industrial context.

• Teaching (Chapter 15) describing a course at Aarhus University on the modelling
and validation of concurrent systems based on the content of this textbook.

We recommend that the reader starts by studying the first part on basic concepts.
The remaining parts are organised such that the readers can skip some of them ac-
cording to their interest and knowledge. All parts are organised such that concepts
and constructs are first informally introduced through examples, followed by the
formal definition of the concept (when applicable). The material is, however, organ-
ised such that the practically-oriented reader can skip the chapters containing the
formal definitions. This underpins the important property that CP-nets can be taught
and learned without studying the associated formal definitions. We have decided to
include the formal definitions of the CPN modelling language and analysis meth-
ods for the following reasons. Firstly, including the formal definitions resolves any
ambiguity that may be left in the informal explanations. Secondly, it means that this
book can be used by readers interested in studying the underlying theory of CP-nets.

This book assumes that the reader is familiar with conventional programming-
language concepts such as variables, types, procedures, and modules. We also as-
sume that the reader is familiar with the basic concepts of concurrent systems, such
as processes, concurrency, communication, and synchronisation.

This book can be seen as an update of the three-volume textbook Coloured Petri
Nets: Basic Concepts, Analysis Methods, and Practical Use authored by Kurt Jensen
in 1992–1997. The CPN language and analysis methods described in this new book
are very close to those presented in the three-volume textbook. This new book gains
from the experience in teaching and using CP-nets over the last 10 years of the
authors and of the more than 8,000 people who have been using CPN Tools.

The authors wish to thank the numerous colleagues and students who have con-
tributed to the development of the CPN modelling language, the accompanying anal-
ysis methods, the supporting computer tools, and the practical applications. Without
their help and devoted work the CPN technology would not have been at its present
level of maturity and applicability. With respect to the content of this book, we
wish to thank the following persons who have provided feedback on earlier ver-
sions of the manuscript: Jonathan Billington, Ronny R. Bruus, Jeppe Brøndsted,

Preface vii

João Miguel Fernandes, Florian Gootschalk, Maibritt Kerner, Charles Lakos, Alex
Lewis, Ronny S. Mans, Morten Ib Nielsen, Laure Petrucci, Anne Rozinat, and Lisa
M. Wells. The authors wish to thank Lisa M. Wells for her contribution to the chapter
on simulation-based performance analysis, and Michael Westergaard and Kristian
B. Lassen for their contributions to the chapter on behavioural visualisation. The au-
thors wish to acknowledge the contribution of Jens B. Jørgensen to the project pre-
sented in Sect. 14.2; the contributions of Søren Christensen and Jens B. Jørgensen to
the project presented in Sect. 14.3; the contributions of Lin Zhang, Brice Mitchell,
Guy E. Gallasch, Peter Mechlenborg, Jonathan Billington, and Chris Janczura to the
project presented in Sect. 14.4; and the contributions of Kristian L. Espensen and
Mads K. Kjeldsen to the student project presented in Sect. 15.4.

Aarhus, Denmark Kurt Jensen
Bergen, Norway Lars M. Kristensen
June 2009

Contents

1 Introduction to Modelling and Validation . 1
1.1 Modelling and System Development . 1
1.2 Coloured Petri Nets . 3
1.3 Abstraction and Visualisation . 5
1.4 Formal Modelling and Verification . 6
1.5 CPN Tools . 8
1.6 Industrial Applications . 11

2 Non-hierarchical Coloured Petri Nets . 13
2.1 A Simple Example Protocol . 13
2.2 Net Structure and Inscriptions . 14
2.3 Enabling and Occurrence of Transitions . 17
2.4 Second Model of the Protocol . 24
2.5 Concurrency and Conflict . 29
2.6 Guards . 34
2.7 Interactive and Automatic Simulation . 35

3 CPN ML Programming . 43
3.1 Functional Programming . 43
3.2 Colour Sets . 45
3.3 Expressions and Types . 56
3.4 Functions . 60
3.5 Recursion and Lists . 65
3.6 Patterns . 70
3.7 Computation of Enabled Binding Elements . 73

4 Formal Definition of Non-hierarchical Coloured Petri Nets 79
4.1 Multisets . 80
4.2 Net Structure and Inscriptions . 83
4.3 Enabling and Occurrence of Steps . 87

ix

x Contents

5 Hierarchical Coloured Petri Nets . 95
5.1 Modules and Interfaces . 95
5.2 Module Instances and Hierarchy . 100
5.3 Instance Folding and Module Parameterisation 105
5.4 Model Parameterisation . 112
5.5 Fusion Sets . 116
5.6 Unfolding Hierarchical CPN Models . 124

6 Formal Definition of Hierarchical Coloured Petri Nets 127
6.1 Modules . 127
6.2 Module Composition . 131
6.3 Instances and Compound Places . 136
6.4 Enabling and Occurrence of Steps . 141

7 State Spaces and Behavioural Properties . 151
7.1 Protocol for State Space Analysis . 152
7.2 State Spaces . 153
7.3 Strongly-Connected-Component Graphs . 160
7.4 Behavioural Properties . 163
7.5 Error Diagnostics and Counterexamples . 180
7.6 Limitations of State Spaces . 185

8 Advanced State Space Methods . 189
8.1 State Space Reduction Methods . 189
8.2 Sweep-Line Method . 191
8.3 Symmetry Method . 194
8.4 Equivalence Method . 198

9 Formal Definition of State Spaces and Behavioural Properties 203
9.1 Directed Graphs . 203
9.2 State Spaces . 209
9.3 Reachability Properties . 211
9.4 Basic Boundedness Properties . 213
9.5 Generalised Boundedness Properties . 216
9.6 Home Properties . 219
9.7 Liveness Properties . 222
9.8 Fairness Properties . 227

10 Timed Coloured Petri Nets . 231
10.1 First Timed Model of the Protocol . 232
10.2 Second Timed Model of the Protocol . 243
10.3 State Space Analysis of Timed Models . 247
10.4 Time Equivalence Method . 252

Contents xi

11 Formal Definition of Timed Coloured Petri Nets 257
11.1 Timed multisets . 257
11.2 Net Structure and Inscriptions . 264
11.3 Enabling and Occurrence of Steps . 265

12 Simulation-based Performance Analysis . 273
12.1 Timed Protocol for Performance Analysis . 274
12.2 Data Collection from the Occurring Binding Elements 278
12.3 Data Collection from the Markings Reached . 281
12.4 Collecting Data from the Final Marking . 286
12.5 Simulation Output . 287
12.6 Conducting Simulation Experiments . 291
12.7 Model Parameters and Configurations . 295

13 Behavioural Visualisation . 303
13.1 Message Sequence Charts . 304
13.2 System-Specific Interaction Graphics . 308

14 Examples of Industrial Applications . 313
14.1 Protocol Design at Ericsson Telebit . 314
14.2 Requirements Engineering at Systematic . 329
14.3 Embedded-System Design at Bang and Olufsen 338
14.4 Scheduling Tool for Australian Defence Forces 350

15 Teaching Coloured Petri Nets . 363
15.1 Course Context and Aims . 363
15.2 Intended Learning Outcomes . 364
15.3 Teaching and Assessment Methods . 367
15.4 Example of a Student Project from the Course 370
15.5 Experiences from Teaching the CPN Course . 372

References . 375

Index . 381

Chapter 1
Introduction to Modelling and Validation

System development and engineering is a comprehensive discipline involving a mul-
titude of activities such as requirements engineering, design and specification, im-
plementation, testing, and deployment. An increasing number of system develop-
ment projects are concerned with concurrent systems. There are numerous exam-
ples of this, ranging from large-scale systems, in the areas of telecommunication
and applications based on Internet technology, to medium- or small- scale systems,
in the area of embedded systems.

Section 1.1 introduces the basic ideas and motivation for modelling in system
development, and Sect. 1.2 gives a high-level overview of the CPN modelling lan-
guage. Section 1.3 discusses the role of abstraction and visualisation when one is
constructing models of concurrent systems. Section 1.4 presents the benefits of for-
mal modelling languages and verification. Section 1.5 gives an overview of the main
features of CPN Tools. Finally, Sect. 1.6 provides an overview of the results from
four industrial projects using CP-nets. A more detailed description of the projects
will be given in Chap. 14.

1.1 Modelling and System Development

The development of concurrent systems is particularly challenging. A major reason
is that these systems possess concurrency and non-determinism which means that
the execution of such systems may proceed in many different ways, for example,
depending on whether messages are lost during transmission, the scheduling of pro-
cesses, and the time at which input is received from the environment. Hence, such
systems have an astronomical number of possible executions. It is extremely easy
for a human designer to miss some important interaction patterns when designing
such a system, leading to gaps or malfunctions in the system design. As a result,
concurrent systems are, by nature, complex and difficult to design, test, and debug.
Furthermore, for many concurrent systems such as those integrated into nuclear
power plants, aircraft control systems, and hospital life support equipment, it is es-
sential that the system works correctly from the very beginning. To cope with the

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 1, 1
c© Springer-Verlag Berlin Heidelberg 2009

2 1 Introduction to Modelling and Validation

complexity of modern concurrent systems, it is therefore crucial to provide meth-
ods that enable the debugging and testing of central parts of system designs prior to
implementation and deployment.

One way to approach the challenge of developing concurrent systems is to build
a model of the system. Modelling is a universal technique that can be used across
many of the activities in system development. Many modelling languages have been
suggested, and many are being used for system development. One prominent exam-
ple is the Unified Modeling Language (UML) [94] which is becoming the de-facto
standard modelling language of the software industry and which supports modelling
of the structure and behaviour of systems. The focus of this textbook is on executable
models that can be used to simulate the behaviour of systems.

The act of constructing a model of a system to be developed is typically done in
the early phases of system development, and is also known from other disciplines,
such as when engineers construct bridges and architects design buildings. For exam-
ple, architects make architectural drawings and may build three-dimensional models
in cardboard, plastic, or plywood, or use computerised 3D animation to visualise a
building. The purpose of these different models is to get a better impression of the
building. This allows the architect and the intended owners and users of the building
to imagine what the building will look like and how it will function, for example,
whether some corridors are too narrow or some doors so close to each other that
they may create dangerous situations. The main motivation behind such models is
that it is obviously preferable to correct design errors and other shortcomings before
the construction of the real building commences.

When a new concurrent system is being designed or an existing one is being in-
vestigated, there are similar reasons why it is beneficial to build a model of it and to
build it as early as possible.

• Insight. The act of constructing the model and simulating it usually leads to sig-
nificant new insights into the design and operation of the system considered.
Typically the modeller gains a more elaborate and complete understanding of the
system than what can be obtained by conventional means, for example, by read-
ing design documents. The same applies to people to whom a model of a system
is being presented. This insight often results in a simpler and more streamlined
design. By investigating a model, similarities can be identified that can be ex-
ploited to unify and generalise the design and make it more logical, or we may
get ideas to improve the usability of the system.

• Completeness. The construction of an executable model usually leads to a more
complete specification of the design. Gaps in the specification of the system will
become explicit as they will prohibit the model from being executed because cer-
tain parts are missing, or when the model is simulated, the designers and users
will find that certain expected events are not possible in the current state. Mod-
elling also leads to a more complete identification and understanding of the re-
quirements to be placed on the system, in particular because models can be used
to mediate discussions among designers and users of the system.

• Correctness. When simulations of a model are made a number of design errors
and flaws are usually detected. Since the modeller is able to control the execution

1.2 Coloured Petri Nets 3

of a model, unlike the real system, problematic scenarios can be reproduced, and
it can be checked whether a proposed modification of the design does indeed
fix an identified error or improves the design in the way intended. Checking a
number of different scenarios by means of simulations does not necessarily lead
to correct designs – there may simply be too many scenarios to investigate or the
modeller may fail to notice the existence of some important scenarios. However,
a systematic investigation of scenarios often significantly decreases the number
of design errors.

The construction of a model of a system design typically means that more effort is
spent in the early phases of system development, i.e., in requirements engineering,
design, and specification. This additional investment is in most cases justified by
the additional insight into the properties of the system which can be gained prior to
implementation. Furthermore, many design problems and errors can be discovered
and resolved in the requirements and design phase rather than in the implementation
phase. Finally, models are in most cases simpler and more complete than traditional
design documents, which means that the construction and exploration of the model
can result in a more solid foundation for doing the implementation. This may in turn
shorten the implementation and test phases significantly and decrease the number
of flaws in the final system.

1.2 Coloured Petri Nets

Coloured Petri Nets (CP-nets or CPNs) [60, 61, 63] is a graphical language for con-
structing models of concurrent systems and analysing their properties. CP-nets is a
discrete-event modelling language combining the capabilities of Petri nets [88, 93]
with the capabilities of a high-level programming language. Petri nets provide the
foundation of the graphical notation and the basic primitives for modelling concur-
rency, communication, and synchronisation. The CPN ML programming language,
which is based on the functional programming language Standard ML [84, 102],
provides the primitives for the definition of data types, for describing data manipu-
lation, and for creating compact and parameterisable models. The CPN modelling
language is a general-purpose modelling language, i.e., it is not aimed at modelling
a specific class of systems, but is aimed towards a very broad class of systems that
can be characterised as concurrent systems. Typical application domains of CP-nets
are communication protocols, data networks, distributed algorithms, and embed-
ded systems. CP-nets are, however, also applicable more generally for modelling
systems where concurrency and communication are key characteristics. Examples
of these are business processes and workflows, manufacturing systems, and agent
systems. An updated list of examples of industrial applications of CP-nets within
various domains is available via [40].

Petri Nets are traditionally divided into low-level Petri Nets and high-level Petri
Nets. CP-nets belong to the class of high-level Petri Nets which are characterised
by the combination of Petri Nets and programming languages. Low-level Petri Nets

4 1 Introduction to Modelling and Validation

(such as Place/Transition Nets [30]) are primarily suited as a theoretical model for
concurrency, although certain classes of low-level Petri Nets are often applied for
modelling and verification of hardware systems [111]. High-level Petri Nets (such as
CP-nets and Predicate/Transition Nets [45]) are aimed at practical use, in particular
because they allow the construction of compact and parameterised models. High-
level Petri Nets is an ISO/IEC standard [7], and the CPN modelling language and
supporting computer tools conform to this standard.

CPN models are executable and are used to model and specify the behaviour of
concurrent systems. A CPN model of a system is both state and action oriented. It
describes the states of the system and the events (transitions) that can cause the sys-
tem to change state. By performing simulations of the CPN model, it is possible to
investigate different scenarios and explore the behaviour of the system. Very often,
the goal of performing simulations is to debug and investigate the system design.
CP-nets can be simulated interactively or automatically. An interactive simulation is
similar to single-step debugging. It provides a way to ‘walk through’ a CPN model,
investigating different scenarios in detail and checking whether the model works
as expected. During an interactive simulation, the modeller is in charge and deter-
mines the next step by selecting between the enabled events in the current state.
It is possible to observe the effects of the individual steps directly in the graphi-
cal representation of the CPN model. This is similar to an architect deciding the
exact route to follow while performing an interactive walk through a 3D computer
model of a building. Automatic simulation is similar to program execution and the
purpose is to execute the CPN model as fast and efficiently as possible, without de-
tailed human interaction and inspection. Automatic simulation is typically used for
testing and performance analysis. For testing purposes, the modeller typically sets
up appropriate breakpoints and stop criteria. For performance analysis the model is
instrumented with data collectors to collect data on the performance of the system.

Time plays a significant role in a wide range of concurrent systems. The cor-
rect functioning of some systems depends crucially on the time taken by certain
activities, and different design decisions may have a significant impact on the per-
formance of a system. CP-nets include a concept of time that makes it possible to
capture the time taken by events in the system. This time concept also means that
CP-nets can be applied to simulation-based performance analysis, where perfor-
mance measures such as delays, throughput, and queue lengths in the system are
investigated, and for modelling and validation of real-time systems.

The development of CP-nets has been driven by the desire to develop an in-
dustrial strength modelling language – theoretically well founded and at the same
time versatile enough to be used in practice for systems of the size and complexity
found in typical industrial projects. CP-nets, however, is not a modelling language
designed to replace other modelling languages (such as UML). In our view, CP-nets
should be used as a supplement to existing modelling languages and methodologies
and can be used together with these or even integrated into them.

CP-nets is one of many modelling languages [14] developed for concurrent and
distributed systems. Other prominent examples are Statecharts [50] as supported by,
for example, the VisualState tool [103], the Calculus of Communicating Systems

1.3 Abstraction and Visualisation 5

[83] as supported by, for example, the Edinburgh Concurrency Workbench [32],
Timed Automata [1] as supported by, for example, the UPPAAL tool [76], Commu-
nicating Sequential Processes [52] as supported by, for example, the FDR tool [41],
and Promela [54], as supported by the SPIN tool [96].

CP-nets has been under development by the CPN group at Aarhus University,
Denmark since 1979. The first version was part of the PhD thesis of Kurt Jensen
and was presented in [59]. It was inspired by the pioneering work of Hartmann
Genrich and Kurt Lautenbach on Predicate/Transition Nets [46]. Since then, the
CPN group has been working on the consolidation of the basic model, extensions to
cope with modules and time, and methods for analysis by means of state spaces and
simulation-based performance analysis. Simultaneously the group has developed
and distributed industrial-strength computer tools, such as Design/CPN [28] and
CPN Tools [25], and we have conducted numerous application projects [40] where
CP-nets and their tools have been used together with industrial partners. For a more
detailed description of the origin of CP-nets and their relation to other kinds of
Petri Nets, the reader is referred to the bibliographical remarks in Chap. 1 of [60].
Numerous people have contributed to the development of CP-nets and their tools.
This includes the many people who have worked in the CPN group and the hundreds
of tool users who have proposed valuable extensions and improvements.

1.3 Abstraction and Visualisation

When a model is constructed, abstractions are made, which means that a number of
details are omitted. As an example, it is unlikely that an architect constructing an
architectural model of a building using cardboard, plastic, or plywood, will include
any information about the plumbing and wiring of the building. These things are
irrelevant for the purpose of this kind of model, which usually is to be able to judge
the aesthetics of the architectural design. However, the architect will construct other
models which contain a detailed specification of the wiring and plumbing. When
constructing a model, the first questions to ask ourselves should be: What is the pur-
pose? What do we want to learn about the system by making this kind of model?
What kinds of properties are we interested in investigating? Without initially an-
swering these questions in some detail, it is impossible to make a good model, and
we shall be unable to decide what should be included in the model, and what can be
abstracted away without compromising the correctness of the conclusions that will
be drawn from investigating the model. Finding the appropriate abstraction level at
different points in the development of systems is one of the arts of modelling.

The CPN language has few, but powerful modelling primitives, which means that
relatively few constructs must be mastered to be able to construct models. The mod-
elling primitives also make it possible to model systems and concepts at different
levels of abstraction. CPN models can be structured into a set of modules. This is
particularly important when one is dealing with CPN models of large systems. The
modules interact with each other through a set of well-defined interfaces, in a way

6 1 Introduction to Modelling and Validation

similar to that of programming languages. The concept of modules in CP-nets is
based on a hierarchical structuring mechanism, which allows a module to have sub-
modules, allows a set of modules to be composed to form a new module, and allows
reuse of submodules in different parts of the model. This enables the modeller to
work both top-down and bottom-up when constructing CPN models. By means of
the structuring mechanism, it is possible to capture different abstraction levels of the
modelled system in the same CPN model. A CPN model which represents a high
level of abstraction is typically constructed in the early stages of design or analysis.
This model is then gradually refined to yield a more detailed and precise descrip-
tion of the system under consideration. The fact that it is possible to abstract away
from many implementation details and gradually refine the system design implies
that constructing a CPN model can be a very cost-effective way of obtaining a first
executable prototype of a system.

Visualisation is a technique which is closely related to simulation of CPN models.
An important application of visualisation is that it allows the presentation of design
ideas and analysis results using concepts from the application domain. This is par-
ticularly important in discussions with people unfamiliar with CP-nets. The CPN
modelling language includes several means for adding application domain graphics
on top of the CPN model. This can be used to abstractly visualise the execution
of the CPN model in the context of the application domain. One example is the use
message sequence charts (or time sequence diagrams) [15] to visualise the exchange
of messages in the execution of a communication protocol. Furthermore, observing
every single step in a simulation is often too detailed a level of observation of the
behaviour of a system. It provides the observer with an overwhelming amount of
detail, particularly for large CPN models. By means of visual feedback from sim-
ulations, information about the execution of the system can be obtained at a more
adequate level of detail.

1.4 Formal Modelling and Verification

CPN models are formal, in the sense that the CPN modelling language has a math-
ematical definition of both its syntax and its semantics. Such models can be manip-
ulated by a computer tool and can be used to verify system properties, i.e., prove
that certain desired properties are fulfilled or that certain undesired properties are
guaranteed to be avoided. The formal representation is the foundation for the defi-
nition of the various behavioural properties and the analysis methods. Without the
mathematical representation it would have been impossible to develop a sound and
powerful CPN language.

Formal verification is, by its nature, different from and supplements the kind of
informal analysis performed when individual scenarios are inspected by means of
simulation. Verification involves a mathematical formulation of a property and a
computer-assisted proof that this property is fulfilled by the model. When verifying
system properties, it is also necessary to argue that the model captures those aspects

1.4 Formal Modelling and Verification 7

that are relevant for the property we are verifying. It must be ensured that the veri-
fied properties are really those that we want the system to possess. This means that
formal verification is always accompanied by informal justifications.

Verification of CPN models and system properties is supported by the state space
method. The basic idea underlying state spaces is to compute all reachable states and
state changes of the CPN model and represent these as a directed graph, where nodes
represent states and arcs represent occurring events. State spaces can be constructed
fully automatically. From a constructed state space, it is possible to answer a large
set of verification questions concerning the behaviour of the system, such as absence
of deadlocks, the possibility of always being able to reach a given state, and the
guaranteed delivery of a given service.

One of the main advantages of state spaces is that they can provide counterex-
amples (or error traces) giving detailed debugging information specifying why an
expected property does not hold. Furthermore, state spaces are relatively easy to use,
and they have a high degree of automation. The ease of use is primarily due to the
fact that it is possible to hide a large portion of the underlying complex mathematics
from the user. This means that, quite often, the user is required only to formulate the
property which is to be verified and then apply a computer tool. The main disadvan-
tage of using state spaces is the state explosion problem [106]: even relatively small
systems may have an astronomical or even infinite number of reachable states, and
this is a serious problem for the use of state spaces in the verification of real-life sys-
tems. A wide range of state space reduction methods have therefore been developed
for alleviating the state explosion problem inherent in state space-based verification.
It is also possible to use state spaces in conjunction with other analysis methods for
CP-nets, such as place invariants and net structure reductions.

The capability of working at different levels of abstraction is one of the keys to
making formal analysis of CP-nets possible. By abstraction it is possible to make
very large, detailed models tractable for state space analysis. The state space method
of CP-nets can also be applied to timed CP-nets. Hence, it is also possible to verify
the functional correctness of systems modelled by means of timed CP-nets.

The formal definition of CP-nets implies that CPN models are unambiguous and
hence provides a precise specification of the design. This is in contrast to design
specifications written in natural language, which are inherently ambiguous. Having
precise, unambiguous specifications is generally desirable, and it is crucial in many
areas such as the development of open protocol standards, where precise specifi-
cations are required to ensure interoperability between implementations made by
different vendors.

It should be stressed that for the practical use of CP-nets and their supporting
computer tools, it suffices to have an intuitive understanding of the syntax and se-
mantics of the CPN modelling language. This is analogous to the situation for ordi-
nary programming languages that are successfully applied by programmers who are
usually not familiar with the formal, mathematical definitions of the languages.

The practical application of CP-nets typically relies on a combination of inter-
active- and automatic simulation, visualisation, state space analysis, and perfor-
mance analysis. These activities in conjunction result in a validation of the system

8 1 Introduction to Modelling and Validation

under consideration, in the sense that it is possible to justify the assertion that the
system has the desired properties, and a high degree of confidence in and under-
standing of the system has been obtained.

1.5 CPN Tools

The practical application of modelling and validation relies heavily on the existence
of computer tools supporting the construction and manipulation of models.

CPN Tools is a tool for the editing, simulation, state space analysis, and perfor-
mance analysis of CPN models. CPN Tools supports untimed and timed hierarchical
CPN models. CPN Tools is used by more than 8,000 users in 140 different countries
and is available for Windows XP, Windows Vista, and Linux. A licence for CPN
Tools can be obtained free of charge via the CPN Tools Web pages [25]. Below, we
provide a very brief introduction to CPN Tools. The CPN Tools Web pages contain
an elaborate set of manuals on how to use the tool.

The user of CPN Tools works directly with the graphical representation of the
CPN model. The graphical user interface (GUI) of CPN Tools has no conventional
menu bars and pull-down menus, but is based on interaction techniques, such as tool
palettes and marking menus. Figure 1.1 provides a screenshot of CPN Tools. The
rectangular area to the left is an index. It includes the Tool box, which is available for
the user to manipulate the declarations and modules that constitute the CPN model.
The Tool box includes tools for creating, copying, and cloning the basic elements
of CP-nets. It also contains a wide selection of tools to manipulate the graphical
layout and the appearance of the objects in the CPN model. The latter set of tools
is very important in order to be able to create readable and graphically appealing
CPN models. The remaining part of the screen is the workspace, which in this case
contains four binders (the rectangular windows) and a circular pop-up menu.

Each binder holds a number of items which can be accessed by clicking the tabs
at the top of the binder (only one item is visible at a time). There are two kinds of
binders. One kind contains the elements of the CPN model, i.e., the modules and
declarations. The other kind contains the tools which the user applies to construct
and manipulate CPN models. The tools in a tool palette can be picked up with the
mouse cursor and applied. In the example shown, one binder contains three mod-
ules named Protocol, Sender, and Receiver, while another binder contains a single
module, named Network, together with the declaration of the colour set NOxDATA.
The two remaining binders contain four different tool palettes to Create elements,
change their Style, perform Simulations, and construct State spaces.

Items can be dragged from the index to the binders, and from one binder to
another binder of the same kind. It is possible to position the same item in two
different binders, for example, to view a module using two different zoom factors.
A circular marking menu has been popped up on top of the bottom left binder.
Marking menus are contextual menus that make it possible to select among the

1.5 CPN Tools 9

Fig. 1.1 Screenshot from CPN Tools

operations possible on a given object. In the case of Fig. 1.1, the marking menu
gives the operations that can be performed on a port place object.

CPN Tools performs syntax and type checking, and error messages are provided
to the user in a contextual manner next to the object causing the error. The syntax
check and code generation are incremental and are performed in parallel with edit-
ing. This means that it is possible to execute parts of a CPN model even if the model
is not complete, and that when parts of a CPN model are modified, a syntax check
and code generation are performed only on the elements that depend on the parts
that were modified. The main outcome of the code generation step is the simulation
code. The simulation code contains the functions for inferring the set of enabled
events in a given state of the CPN model, and for computing the state resulting from
the occurrence (execution) of an enabled event in a given state.

CPN Tools supports two types of simulation: interactive and automatic. In an in-
teractive simulation, the user is in complete control and determines the individual
steps in the simulation, by selecting between the enabled events in the current state.
CPN Tools shows the effect of executing a selected step in the graphical representa-
tion of the CPN model. In an automatic simulation the user specifies the number of
steps that are to be executed and/or sets a number of stop criteria and breakpoints.
The simulator then automatically executes the model without user interaction by
making random choices between the enabled events in the states encountered. Only
the resulting state is shown in the GUI. A simulation report can be saved, contain-

10 1 Introduction to Modelling and Validation

ing a specification of the steps that occurred during an automatic simulation. The
simulator of CPN Tools exploits a number of advanced data structures for efficient
simulation of large hierarchical CPN models. The simulator exploits the locality
property of Petri nets to ensure that the number of steps executed per second in a
simulation is independent of the size of the CPN model. This guarantees that simu-
lation scales to large CPN models.

Full state spaces, which are state spaces in their most basic form, and a collection
of advanced state space methods are supported by CPN Tools. The advanced meth-
ods make it possible to alleviate the impact of the state explosion problem, which
is particularly evident when state space analysis of large CPN models is conducted.
CPN Tools provides several means for analysing the properties of the system under
consideration using state spaces. The first step is usually to create a state space re-
port containing answers to a set of standard behavioural properties of CPN models,
such as the absence or presence of deadlocks and the minimum and maximum num-
ber of tokens on the individual places. In the early stages of system development,
design errors are very often evident in the state space report, which can be gener-
ated fully automatically. It is also possible for the user to interactively draw selected
parts of a state space and inspect the individual states and events. This can be a very
effective way of debugging a system. CPN Tools implements a set of query func-
tions that makes it possible for the user to traverse the state space in a number of
ways and thereby investigate system-dependent properties. Verification of system
properties based on formulating properties in temporal logic [37] and conducting
model checking [21, 22] is also supported.

Simulation-based performance analysis is supported via automatic simulation
combined with elaborate data collection. The basic idea of simulation-based perfor-
mance analysis is to conduct a number of lengthy simulations of the model during
which data about the performance of the system is collected. The data typically pro-
vides information such as the sizes of queues, the delays of packets, and the load
on various components. The collection of data is based on the concept of monitors
that allow the user to specify when data is to be collected during the individual steps
of a series of automatic simulations, and what data is to be collected. The data can
be written into log files for postprocessing, for example, in a spreadsheet, or a per-
formance report can be saved, summarising key figures for the collected data such
as averages, standard deviations, and confidence intervals. Simulation-based perfor-
mance analysis typically uses batch simulation, which makes it possible to explore
the parameter space of the model without user intervention and to conduct multiple
simulations of each parameter configuration to obtain statistically reliable results.

CPN Tools includes a visualisation package [109] implemented in Java that sup-
ports the user in constructing application domain graphics on top of CPN models.
Such graphics can provide an abstract application-specific presentation of the dy-
namics of the modelled system. They can be used to make the underlying formal
CPN model fully transparent to the observer. The animation package supports sev-
eral standard diagram and chart types, such as message sequence charts. The ani-
mation package also allows the user to implement additional diagram types using
existing libraries.

1.6 Industrial Applications 11

CPN Tools also includes a collection of libraries for various purposes. One ex-
ample is Comms/CPN [42], for TCP/IP communication between CPN models and
external applications. CPN Tools generally has an open architecture that allows the
user to extend its functionality, such as for experimenting with new state space meth-
ods. Hence, in addition to being a tool for modelling and validation, it also provides a
prototyping environment for researchers interested in experimenting with new anal-
ysis algorithms.

This book relies on a series of relatively simple CPN models of a communication
protocol, gradually enhanced and modified using the concepts and tools presented
in the following chapters. An industrial case study in Sect. 14.1 shows how much
more complex protocols can be modelled and validated.

1.6 Industrial Applications

An overview of industrial applications of CP-nets can be obtained via the Web pages
[40] which contain references to more than 100 published papers on CPN projects.
In Chap. 14, we will present four representative projects where CP-nets and their
supporting computer tools have been used for system development in an industrial
context. The projects have been selected to illustrate the fact that CP-nets can be
used in many different phases of system development, ranging from requirements
specification to design, validation, and implementation. The CPN models presented
were constructed in joint projects between our research group at Aarhus Univer-
sity and industrial partners. Chapter 14 provides a detailed description of the four
projects. Below, we shall only give an overview of the most important results.

The first project was concerned with the development of the Edge Router Dis-
covery Protocol (ERDP) at Ericsson Telebit. In the project, a CPN model was con-
structed that constituted a formal executable specification of ERDP. Simulation and
message sequence charts were used in initial investigations of the protocol’s be-
haviour. Then state space analysis was applied to conduct a formal verification of
the key properties of ERDP.

The application of CP-nets in the development of ERDP was successful for three
main reasons. Firstly, it was demonstrated that the CPN modelling language and
supporting computer tools are powerful enough to specify and analyse a real-world
communication protocol and that they can be integrated into a conventional pro-
tocol development process. Secondly, the modelling, simulation, and subsequent
state space analysis all helped to identify several omissions and errors in the design,
demonstrating the benefits of using formal techniques in a protocol design process.
Finally, the effort of constructing the CPN model and conducting the state space
analysis was represented by approximately 100 person-hours. This is a relatively
small investment compared with the many issues that were identified and resolved
early as a consequence of constructing and analysing the CPN model.

The second project was concerned with specifying the business processes at
Aarhus County Hospital and their support by a new IT System, called the Pervasive

12 1 Introduction to Modelling and Validation

Health Care System (PHCS). A CPN model of PHCS was used to engineer require-
ments for the system. Behavioural visualisation driven by a CPN model was used
to visualise system behaviour and enable the engineering of requirements through
discussions with people who were not familiar with the CPN modelling language.

The project demonstrated that CPN models are able to support various require-
ments engineering activities. One of the main motivations for the approach chosen
for PHCS was to build on top of prose descriptions of work processes and the pro-
posed computer support, consolidated as UML use cases. The stakeholders of PHCS
were already familiar with the UML use cases from earlier projects. The visualisa-
tions enabled users such as nurses and doctors to be actively engaged in specification
analysis and elicitation, which is crucial. User participation increases the probability
that a system is ultimately built that fits with the future users’ work processes.

The third project was concerned with the design and analysis of the BeoLink
system at Bang & Olufsen. A timed CPN model was developed, specifying the lock
management subsystem which is responsible for the basic synchronisation of the de-
vices in the BeoLink system. State spaces were used to verify the lock management
system.

The project demonstrated the use of CP-nets for modelling and validating a real-
time system, i.e., a system where the correctness of the system depends on timing
information. Engineers at Bang & Olufsen were given a four-day course on CP-nets,
enabling them to construct large parts of the CPN model. This demonstrates (as also
seen in other projects) that a relatively short introduction is required to get started on
using CP-nets in industrial projects. In the original BeoLink project, only the initiali-
sation phase of the lock management protocol was verified using state spaces. Since
then, a number of advanced state space methods have been developed and imple-
mented, and these methods have been used to verify configurations of the BeoLink
system that could not be verified using ordinary state spaces. It has also been demon-
strated that the advanced state space methods can be used simultaneously to get a
better reduction than obtainable from either method in isolation.

The fourth project was concerned with the development of a military scheduling
tool (COAST) in which the analysis capabilities are based on state space methods.
CPN modelling was used to conceptualise and formalise the planning domain to be
supported by the tool. Later on, the CPN model was extracted in executable form
from CPN Tools and embedded directly into the server of COAST together with a
number of tailored state space analysis algorithms.

The project demonstrated how a CPN model can be used for the implementation
of a computer tool thereby overcoming the usual gap between the design and the
final implementation. It also demonstrated the value of having a full programming-
language environment in the form of the Standard ML compiler integrated into CPN
Tools. This allowed a highly compact and parameterisable CPN model to be con-
structed, and allowed the CPN model to become the implementation of the COAST
server. It also made it possible to extend the COAST server with the specialised
algorithms required to extract task schedules from the generated state spaces.

Chapter 2
Non-hierarchical Coloured Petri Nets

This chapter introduces the concepts of non-hierarchical Coloured Petri Nets. This
is done by means of a running example consisting of a set of simple communica-
tion protocols. Protocols are used because they are easy to explain and understand,
and because they involve concurrency, non-determinism, communication, and syn-
chronisation which are key characteristics of concurrent systems. No preliminary
knowledge of protocols is assumed.

Section 2.1 introduces the protocol used as a running example. Sections 2.2 and
2.3 introduce the net structure, inscriptions, and enabling and occurrence of tran-
sitions using a first model of the protocol. Sections 2.4–2.6 introduce concurrency,
conflicts, and guards using a more elaborate model of the protocol. Section 2.7 dis-
cusses interactive and automatic simulation of CPN models.

2.1 A Simple Example Protocol

We consider a simple protocol from the transport layer of the Open Systems In-
terconnection (OSI) reference model [100]. The transport layer is concerned with
protocols ensuring reliable transmission between hosts. The protocol is simple and
unsophisticated, yet complex enough to illustrate the basic CPN constructs.

The simple protocol consists of a sender transferring a number of data packets to
a receiver. Communication takes place over an unreliable network, i.e., packets may
be lost and overtaking is possible. The protocol uses sequence numbers, acknowl-
edgements, and retransmissions to ensure that the data packets are delivered once
and only once and in the correct order at the receiving end. The protocol deploys a
stop-and-wait strategy, i.e., the same data packet is repeatedly retransmitted until a
corresponding acknowledgement is received. A data packet consists of a sequence
number and the data payload. An acknowledgement consists of a sequence number
specifying the number of the next data packet expected by the receiver.

We start with a first, very simple model of the protocol where retransmissions
and the unreliability of the network are ignored. The model is then gradually refined

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 2, 13
c© Springer-Verlag Berlin Heidelberg 2009

14 2 Non-hierarchical Coloured Petri Nets

to introduce more and more aspects, including loss of packets on the network. The
gradual refinement of the model is used to illustrate the various facilities in the
CPN modelling language. When constructing CPN models or formal specifications
in general, it is good practice to start by making an initial simple model, omitting
certain parts of the system or making simplifying assumptions. The CPN model is
then gradually refined and extended to lift the assumptions and add the omitted parts
of the system.

2.2 Net Structure and Inscriptions

A CPN model is always created as a graphical drawing and Fig. 2.1 contains a first
model of the simple protocol. The left part models the sender, the middle part models
the network, and the right part models the receiver. The CPN model contains seven
places, drawn as ellipses or circles, five transitions drawn as rectangular boxes, a
number of directed arcs connecting places and transitions, and finally some textual
inscriptions next to the places, transitions, and arcs. The inscriptions are written
in the CPN ML programming language. Places and transitions are called nodes.
Together with the directed arcs they constitute the net structure. An arc always con-
nects a place to a transition or a transition to a place. It is illegal to have an arc
between two nodes of the same kind, i.e., between two places or two transitions.

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

Fig. 2.1 First CPN model of the simple protocol

2.2 Net Structure and Inscriptions 15

The places are used to represent the state of the modelled system. Each place can
be marked with one or more tokens, and each token has a data value attached to it.
This data value is called the token colour. It is the number of tokens and the token
colours on the individual places which together represent the state of the system.
This is called a marking of the CPN model: the tokens on a specific place constitute
the marking of that place. By convention, we write the names of the places inside
the ellipses. The names have no formal meaning – but they have huge practical
importance for the readability of a CPN model, just like the use of mnemonic names
in traditional programming. A similar remark applies to the graphical appearance of
the nodes and arcs, i.e., the line thickness, size, colour, and position. The state of the
sender is modelled by the two places PacketsToSend and NextSend. The state of the
receiver is modelled by the place PacketsReceived and the state of the network is
modelled by the places A, B, C, and D.

Next to each place is an inscription which determines the set of token colours
(data values) that the tokens on that place are allowed to have. The set of possible
token colours is specified by means of a type, as known from programming lan-
guages, and it is called the colour set of the place. By convention, the colour set
is written below the place. The places NextSend, C, and D have the colour set NO.
Colour sets are defined using the CPN ML keyword colset, and the colour set NO
is defined to be equal to the set of all integers int:

colset NO = int;

This means that tokens residing on the three places NextSend, C, and D will have
an integer as their token colour. The colour set NO is used to model the sequence
numbers in the protocol. The remaining four places have the colour set NOxDATA,
which is defined to be the product of the types NO and DATA. This type contains
all two-tuples (pairs) where the first element is an integer and the second element is
a text string. Tuples are written using brackets (and) around a comma-separated
list. The colour sets are defined as

colset DATA = string;
colset NOxDATA = product NO * DATA;

The colour set DATA is used to model the payload of data packets and is defined
to be the set of all text strings string. The colour set NOxDATA is used to model
the data packets, which contain a sequence number and some data.

The inscription on the upper right side of the place NextSend specifies that the
initial marking of this place consists of one token with the token colour (value) 1.
Intuitively, this indicates that data packet number 1 is the first data packet to be sent.
The inscription on the upper left side of the place PacketsToSend:

1‘(1,"COL") ++
1‘(2,"OUR") ++
1‘(3,"ED ") ++
1‘(4,"PET") ++
1‘(5,"RI ") ++
1‘(6,"NET")

16 2 Non-hierarchical Coloured Petri Nets

specifies that the initial marking of this place consists of six tokens with the data
values

(1,"COL"),
(2,"OUR"),
(3,"ED "),
(4,"PET"),
(5,"RI "),
(6,"NET").

The symbols ++ and ‘ are operators used to construct a multiset consisting of
these six token colours. A multiset is similar to a set, except that values can appear
more than once. The infix operator ‘ takes a non-negative integer as its left argu-
ment, specifying the number of appearances of the element provided as the right
argument. The operator ++ takes two multisets as arguments and returns their union
(the sum). The initial marking of PacketsToSend consists of six tokens representing
the data packets which are to be transmitted. The initial marking of a place is, by
convention, written above the place. The absence of an inscription specifying the
initial marking means that the place initially contains no tokens. This is the case for
the places A, B, C, D, and PacketsReceived.

The five transitions drawn as rectangles represent the events that can take place in
the system. As with places, the names of the transitions are written inside the rectan-
gles. The transition names have no formal meaning, but they are very important for
the readability of the model. When a transition occurs, it removes tokens from its in-
put places (those places that have an arc leading to the transition) and it adds tokens
to its output places (those places that have an arc coming from the transition). The
colours of the tokens that are removed from input places and added to output places
when a transition occurs are determined by means of the arc expressions, which are
the textual inscriptions positioned next to the individual arcs.

The arc expressions are written in the CPN ML programming language and are
built from variables, constants, operators, and functions. When all variables in an
expression are bound to values of the correct type, the expression can be evaluated.
As an example, consider the two arc expressions n and (n,d) on the arcs connected
to the transition SendPacket. They contain the variables n and d, declared as

var n : NO;
var d : DATA;

This means that n must be bound to a value of type NO (i.e., an integer), while
d must be bound to a value of type DATA (i.e., a text string). We may, for example,
consider the binding (variable assignment)

〈n=3, d="CPN"〉

2.3 Enabling and Occurrence of Transitions 17

which binds n to 3 and d to "CPN". For this binding the arc expressions evaluate
to the following values (token colours), where ‘→’ should be read as ‘evaluates to’:

n → 3
(n,d) → (3,"CPN")

All arc expressions in the CPN model of the protocol evaluate to a single token
colour (i.e., a multiset containing a single token). This means that the occurrence of
a transition removes one token from each input place and adds one token to each
output place. However, in general, arc expressions may evaluate to a multiset of
token colours, and this means that there may be zero, exactly one token, or more
than one token removed from an input place or added to an output place. This will
be illustrated later with some further examples.

2.3 Enabling and Occurrence of Transitions

Next, consider Fig. 2.2, which shows the protocol model with its initial marking M0.
The marking of each place is indicated next to the place. The number of tokens on
the place is shown in a small circle, and the detailed token colours are indicated in
a box positioned next to the small circle. As explained earlier, the initial marking
has six tokens on PacketsToSend and one token on NextSend. All other places are
unmarked, i.e., have no tokens.

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

1 1`1

6

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.2 Initial marking M0

18 2 Non-hierarchical Coloured Petri Nets

The arc expressions on the input arcs of a transition determine whether the tran-
sition is enabled, i.e., is able to occur in a given marking. For a transition to be
enabled, it must be possible to find a binding of the variables that appear in the sur-
rounding arc expressions of the transition such that the arc expression of each input
arc evaluates to a multiset of token colours that is present on the corresponding in-
put place. When a transition occurs with a given binding, it removes from each input
place the multiset of token colours to which the corresponding input arc expression
evaluates. Analogously, it adds to each output place the multiset of token colours to
which the corresponding output arc expression evaluates.

Consider now the transition SendPacket. In Fig. 2.2, the transition SendPacket
has a thick border, whereas the other four transitions do not. This indicates that
SendPacket is the only transition that has an enabled binding in the marking M0.
The other transitions are disabled because there are no tokens on their input places.
When the transition SendPacket occurs, it removes a token from each of the input
places NextSend and PacketsToSend. The arc expressions of the two input arcs are
n and (n,d), where n and d (as shown earlier) are declared as

var n : NO;
var d : DATA;

The initial marking of the place NextSend contains a single token with colour
1. This means that the variable n must be bound to 1. Otherwise, the expression
on the arc from NextSend would evaluate to a token colour which is not present at
NextSend, implying that the transition is disabled for that binding. Consider next
the arc expression (n,d) on the input arc from PacketsToSend. We have already
bound n to 1, and now we are looking for a binding of d such that the arc ex-
pression (n,d) will evaluate to one of the six token colours that are present on
PacketsToSend. Obviously, the only possibility is to bind d to the string "COL".
Hence, we conclude that the binding

〈n=1, d="COL"〉

is the only enabled binding for SendPacket in the initial marking. An occurrence
of SendPacket with this binding removes the token with colour 1 from the input
place NextSend, removes the token with colour (1,"COL") from the input place
PacketsToSend, and adds a new token with colour (1,"COL") to the output place
A. Intuitively, this represents the sending of the first data packet (1,"COL") to the
network. Note that it was the token on NextSend that determined the data packet to
be sent. The packet (1,"COL") is now at place A, waiting to be transmitted by the
network. The new marking M1 is shown in Fig. 2.3.

In the marking M1, TransmitPacket is the only enabled transition since the
other transitions have no tokens on their input places. Place A has a single token
with colour (1,"COL"), and hence it is straightforward to conclude that 〈n=1,
d="COL"〉 is the only enabled binding of the transition TransmitPacket in M1. When
the transition occurs in that binding, it removes the token (1,"COL") from A and
adds a new token with the same token colour to place B. Intuitively, this corresponds

2.3 Enabling and Occurrence of Transitions 19

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

1
1`(1,"COL ")

5

1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.3 Marking M1 reached when SendPacket occurs in M0

to a transmission of data packet number 1 over the network. The data packet is now
at place B, waiting to be received. The new marking M2 is shown in Fig. 2.4.

In the marking M2, we have a single enabled transition, ReceivePacket, and once
more we use the binding 〈n=1, d="COL"〉. The occurrence of the transition re-
moves the token with colour (1,"COL") from place B, adds a token with colour
(1,"COL") to the place PacketsReceived, and adds a token with colour 2 to the
place C. The token colour at C becomes 2, since the arc expression n+1 on the arc
from ReceivePacket to C evaluates to 2 in the above binding. Intuitively, this cor-
responds to the receipt of data packet number 1 by the receiver. The received data
packet is stored in the place PacketsReceived. The token on C represents an ac-
knowledgement sent from the receiver to the sender in order to confirm the receipt
of data packet number 1 and to request data packet number 2. The new marking M3

is shown in Fig. 2.5.
In the marking M3 there is a single enabled transition TransmitAck. This time we

use the binding 〈n=2〉. Intuitively, this represents the transmission over the network
of the acknowledgement requesting data packet number 2. The new marking M4 is
shown in Fig. 2.6. In the marking M4 there is a single enabled transition ReceiveAck,
and once more we use the binding 〈n=2〉. The new marking M5 is shown in Fig. 2.7.
This marking represents a state where the sender is ready to send data packet number
2 (since the first data packet is now known to have been successfully received).

20 2 Non-hierarchical Coloured Petri Nets

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

1
1`(1,"COL ")

5

1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.4 Marking M2 reached when TransmitPacket occurs in M1

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

1
1`2

11`(1,"COL ")5

1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.5 Marking M3 reached when ReceivePacket occurs in M2

In the above, we have described the sending, transmission, and reception of data
packet number 1 and the corresponding acknowledgement. In the CPN model this

2.3 Enabling and Occurrence of Transitions 21

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

1
1`2

11`(1,"COL ")5

1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.6 Marking M4 reached when TransmitAck occurs in M3

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

1 1`2

11`(1,"COL ")5

1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.7 Marking M5 reached when ReceiveAck occurs in M4

22 2 Non-hierarchical Coloured Petri Nets

corresponds to five steps, where each step is the occurrence of a transition in an
enabled binding. We have listed these five steps below, where each step is written as
a pair consisting of a transition and the occurring binding of the transition. Such a
pair is called a binding element.

Step Binding element

1 (SendPacket, 〈n=1, d="COL"〉)
2 (TransmitPacket, 〈n=1, d="COL"〉)
3 (ReceivePacket, 〈n=1, d="COL"〉)
4 (TransmitAck, 〈n=2〉)
5 (ReceiveAck, 〈n=2〉)

It is easy to see that the next five steps will be similar to the first five steps, except
that they describe the sending, transmission, and reception of data packet number 2
and the corresponding acknowledgement:

Step Binding element

6 (SendPacket, 〈n=2, d="OUR"〉)
7 (TransmitPacket, 〈n=2, d="OUR"〉)
8 (ReceivePacket, 〈n=2, d="OUR"〉)
9 (TransmitAck, 〈n=3〉)

10 (ReceiveAck, 〈n=3〉)

After these additional five steps, we reach the marking M10 shown in Fig. 2.8.
Next, we shall have five steps for data packet number 3 and its acknowledgement.
Then five steps for data packet 4, five for data packet number 5, and finally five steps
for data packet number 6. After these steps the marking M30 shown in Fig. 2.9 is
reached. This marking corresponds to a state of the protocol where all data packets
have been received by the receiver, all acknowledgements have been received by the
sender, and no packets are outstanding on the network. This marking has no enabled
transitions, and hence it is said to be a dead marking.

This completes the survey of the first very simple CPN model of the protocol.
This model is deterministic, in the sense that each marking reached has exactly one
enabled transition with exactly one enabled binding, except for the last marking
which is a dead marking. Hence, there is only one possible occurrence sequence,
consisting of the markings M0, M1, M2, . . . , M30 and the 30 steps described above.
It should be noted that this is quite unusual for CPN models, which are usually non-
deterministic, i.e., they describe systems where several transitions and bindings are
enabled in the same marking.

2.3 Enabling and Occurrence of Transitions 23

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

1 1`3

2
1`(1,"COL ")++
1`(2,"OUR")4

1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.8 Marking M10 reached after transmission of data packet number 2

n

n n n

n+1

(n,d)(n,d)

n

(n,d)

(n,d)(n,d)

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Packets
Received

B

NOxDATA

Packets
To Send

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

NOxDATA NOxDATA

Send
Packet

1 1`7

6

1`(1,"COL ")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.9 Dead marking M30 reached when all packets have been transmitted

24 2 Non-hierarchical Coloured Petri Nets

2.4 Second Model of the Protocol

We now consider a slightly more complex CPN model of the protocol. It is based on
the CPN model which was investigated in the previous sections, but now overtaking
and the possibility of losing data packets and acknowledgements when they are
transmitted over the network are taken into account. Hence, it is necessary to be able
to retransmit data packets, and the receiver must check whether it is the expected
data packet that arrives. Since acknowledgement may overtake each other, we also
have to take into account that the sender may receive acknowledgements out of
order. This second model of the protocol is non-deterministic and will be used to
introduce concurrency and conflict, which are two key concepts for CPN models
and other models of concurrency.

Figure 2.10 shows the second CPN model of the protocol in the initial marking
M0. It has the same five transitions as for the first CPN model of the protocol. We
also find six of the places used in the previous model, together with two new places.
The place DataReceived is used instead of PacketsReceived. Now we want to keep
only the data from the data packets, not the entire data packets. Hence the colour set
of the place DataReceived is specified to be DATA instead of NOxDATA. This place
has an initial marking, which consists of one token with colour "" which is the
empty text string. The place NextRec has the same colour set as the place NextSend
and it plays a similar role. It contains the number of the data packet that the receiver
expects to receive next. This time a small amount of space has been saved in the
drawing by specifying the initial marking of the place PacketsToSend by means of
a symbolic constant, defined as

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`11 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.10 Second CPN model of the protocol in the initial marking M0

2.4 Second Model of the Protocol 25

val AllPackets = 1‘(1,"COL") ++ 1‘(2,"OUR") ++
1‘(3,"ED ") ++ 1‘(4,"PET") ++
1‘(5,"RI ") ++ 1‘(6,"NET");

Consider now the individual transitions. The transition SendPacket has the same
surrounding arc expressions as before, but now the two input arcs are replaced by
double-headed arcs. A double-headed arc is a shorthand for the situation where
there are two oppositely directed arcs between a place and a transition sharing the
same arc expression. This implies that the place is both an input place and an output
place for the transition. When the transition occurs with an enabled binding, tokens
are removed from the place according to the result of evaluating the arc expression,
but they are immediately replaced by new tokens with the same token colours. This
means that the marking of the place does not change when the transition occurs,
but it does determine the enabling of the transition. In the initial marking, the only
enabled transition is SendPacket with the binding 〈n=1,d="COL"〉. As before, an
occurrence of SendPacket with this binding adds a token to place A representing
a data packet to be transmitted over the network. However, now the data packet is
not removed from PacketsToSend and also the token at NextSend is left unchanged.
This will allow retransmission of the packet, if this becomes necessary. Figure 2.11
shows the marking M1 reached when the above binding element occurs in the initial
marking.

Consider the marking M1 and the transition TransmitPacket. This transition has
the same input arc expression as before, but now there is an additional boolean
variable success, declared as

var success : BOOL;

which appears on the output arc. The colour set BOOL is defined as

colset BOOL = bool;

The transition TransmitPacket is enabled with two different bindings in M1:

b+ = 〈n=1, d="COL", success=true〉
b− = 〈n=1, d="COL", success=false〉

The first of these bindings, b+, represents a successful transmission over the
network. When it occurs, the following happens:

• The data packet (1,"COL") is removed from the input place A.
• A new token representing the same data packet is added to the output place B (in

the if–then–else expression, the condition success evaluates to true, while
1‘(n,d) evaluates to 1‘(1,"COL")).

Figure 2.12 shows the marking M+
2 , which is the result of an occurrence of the

binding b+ in M1. The second binding, b−, represents an unsuccessful transmission,
i.e., the data packet is lost on the network. When this binding occurs, the following
happens:

26 2 Non-hierarchical Coloured Petri Nets

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`1

1

1`(1,"COL")

1 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.11 Marking M1 reached when SendPacket occurs in M0

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`11 1`1

11`""

1

1`(1,"COL")

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.12 Marking M+
2 after successful transmission in M1

• The data packet (1,"COL") is removed from the input place A.
• No token is added to the output place B (in the if–then–else expression, the con-

dition success evaluates to false, while the constant empty evaluates to the
empty multiset).

2.4 Second Model of the Protocol 27

Figure 2.13 shows the marking M−
2 , which is the result of an occurrence of the

binding b− in M1. The marking M−
2 is identical to the initial marking M0 previously

shown in Fig. 2.10.
It should be noted that the output arc expression of TransmitPacket uses 1‘(n,d)

and not just (n,d) in the if–then–else expression. Using an arc expression such as

if success then (n,d) else empty

would result in a type mismatch since the then-part and the else-part have different
types. The constant empty denotes a multiset of tokens, and hence we also need
to specify a multiset of tokens in the other branch of the if–then–else expression.
Types and expressions are discussed further in Chap. 3.

Consider now the reception of data packets in the marking M+
2 . The transition

ReceivePacket has four variables on the surrounding arc expressions, with the fol-
lowing purposes:

• n and d denote the sequence number and the data, respectively, of the incoming
data packet. The variables n and d will be bound according to the colour of the
data packet to be removed from place B.

• k (of colour set NO) denotes the expected sequence number of the data packet. It
will be bound to the colour of the token on the place NextRec.

• data (of colour set DATA) denotes the data that has already been received. It
will be bound to the colour of the token on the place DataReceived.

When a data packet is present at place B there are two different possibilities.
Either n=k evaluates to true, which means that the data packet being received is
the one that the receiver expects, or n=k evaluates to false which means that it

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`11 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.13 Marking M−
2 after unsuccessful transmission in M1

28 2 Non-hierarchical Coloured Petri Nets

is not the data packet expected. If the data packet on place B is the expected data
packet (i.e., n=k), the following happens:

• The data packet is removed from place B.
• The data in the data packet is concatenated to the end of the data which is already

present at the place DataReceived. The operator ˆ is the concatenation operator
for text strings.

• The token colour on the place NextRec changes from k to k+1, which means
that the receiver now waits for the next data packet.

• An acknowledgement is put on place C. The acknowledgement contains the se-
quence number of the data packet that the receiver is expecting next.

Figure 2.14 shows the result of an occurrence of the transition ReceivePacket in
the marking M+

2 shown in Fig. 2.12. This occurrence of ReceivePacket corresponds
to the reception of the expected data packet.

If the data packet on B is not the expected data packet (i.e., n�=k), the following
happens:

• The data packet is removed from place B.
• The data in the data packet is ignored (the marking of DataReceived does not

change).
• The token colour on the place NextRec does not change, which means that the

receiver is waiting for the same data packet as before.
• An acknowledgement is put on place C. The acknowledgement contains the se-

quence number of the data packet that the receiver is expecting next.

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`2

1
1`2

1 1`1

11`"COL"6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.14 Marking reached when ReceivePacket occurs in M+
2

2.5 Concurrency and Conflict 29

The transition TransmitAck has a behaviour which is similar to the behaviour of
TransmitPacket. It removes acknowledgements from place C and adds them to the
place D in case of a successful transmission. The choice is determined by the binding
of the variable success that appears in the output arc expression.

Consider now the reception of acknowledgements. The transition ReceiveAck
has two variables:

• n (of colour set NO) denotes the sequence number in the incoming acknowledge-
ment, and will be bound to the acknowledgement on the place D.

• k (of colour set NO) denotes the sequence number of the data packet which
the sender is sending. It will be bound to the colour of the token on the place
NextSend.

When the transition ReceiveAck occurs, it removes an acknowledgement from
place D and updates the token on NextSend to contain the sequence number speci-
fied in the acknowledgement. This means that the sender will start sending the data
packet that the receiver has requested via the acknowledgement.

2.5 Concurrency and Conflict

We shall now consider the behaviour of the CPN model shown in Fig. 2.10 in further
detail. A single binding element is enabled in the initial marking

(SendPacket, 〈n=1, d="COL"〉)

When it occurs, it leads to the marking M1 shown in Fig. 2.15 (and Fig 2.11). In
the marking M1, three different binding elements are enabled:

SP = (SendPacket, 〈n=1, d="COL"〉)
TP+ = (TransmitPacket, 〈n=1, d="COL", success=true〉)
TP− = (TransmitPacket, 〈n=1, d="COL", success=false〉)
The first binding element represents a retransmission of data packet number 1.

The second binding element represents a successful transmission of data packet
number 1 over the network, and the third binding element represents a transmission
where the data packet is lost on the network. The last two binding elements, TP+ and
TP−, are in conflict with each other. Both of them are enabled, but only one of them
can occur since each of them needs a token on place A, and there is only one such
token in M1. However, the binding elements SP and TP+ can occur concurrently
(i.e., in parallel). To occur, SP needs a token on the place PacketsToSend and a token
on NextSend, while TP+ needs a token on place A. This means that the two binding
elements use disjoint sets of input tokens, and hence both of them can get the tokens
they need without competition or interference with the other binding element. By a
similar argument, we can see that SP and TP− are concurrently enabled. They use
disjoint sets of input tokens and hence can occur concurrently.

30 2 Non-hierarchical Coloured Petri Nets

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`1

1

1`(1,"COL")

1 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.15 Marking M1 reached when SendPacket occurs in M0

Assume that the first and second of the three enabled binding elements in the
marking M1 occur concurrently, i.e., that we have the following step, written as a
multiset of binding elements:

1‘(SendPacket, 〈n=1, d="COL"〉) ++
1‘(TransmitPacket, 〈n=1, d="COL", success=true〉)
We then reach the marking M2 shown in Fig. 2.16. In the marking M2, we have

four enabled binding elements, of which the first three are the same as in the marking
M1:

SP = (SendPacket, 〈n=1, d="COL"〉)
TP+ = (TransmitPacket, 〈n=1, d="COL", success=true〉)
TP− = (TransmitPacket, 〈n=1, d="COL", success=false〉)
RP = (ReceivePacket, 〈n=1, d="COL", k=1, data=""〉)
As before, we have a conflict between TP+ and TP−, whereas all of the other

binding elements are concurrently enabled since they use disjoint multisets of input

2.5 Concurrency and Conflict 31

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`1

1

1`(1,"COL")

1 1`1

11`""

1

1`(1,"COL")

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.16 Marking M2 reached when SendPacket and TransmitPacket occur in M1

tokens. Let us assume that we have a step where the first and last of the four binding
elements occur concurrently, i.e., the following step:

1‘(SendPacket, 〈n=1, d="COL"〉) ++
1‘(ReceivePacket, 〈n=1, d="COL", k=1, data=""〉)
We then reach the marking M3 shown in Fig. 2.17. In the marking M3, we have

five enabled binding elements, of which the first three are the same as in the marking
M1:

SP = (SendPacket, 〈n=1, "COL"〉)
TP+ = (TransmitPacket, 〈n=1, "COL", success=true〉)
TP− = (TransmitPacket, 〈n=1, "COL", success=false〉)
TA+ = (TransmitAck, 〈n=2, success=true〉)
TA− = (TransmitAck, 〈n=2, success=false〉)
However, this time there are two tokens on place A. This means that TP+ and

TP− can occur concurrently because there is a token on A for each of the two binding
elements. It also means that TP+ can occur concurrently with itself , and the same
is true for TP−. Thus it is possible to transmit multiple packets on the network

32 2 Non-hierarchical Coloured Petri Nets

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`2

1
1`2

2

2`(1,"COL")

1 1`1

11`"COL"6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.17 Marking M3 reached when SendPacket and ReceivePacket occur in M2

concurrently. Hence, we have the following five enabled steps with bindings for
TransmitPacket, where each step is a multiset of binding elements:

1‘ TP+,
1‘ TP−,
1‘ TP+ ++ 1‘ TP−,
2‘ TP+,
2‘ TP−

Moreover, it can be seen that each of the five steps with bindings for Trans-
mitPacket can occur concurrently with the following five steps with bindings for
SendPacket and/or TransmitAck:

1‘SP,
1‘TA+,
1‘TA−,
1‘SP ++ 1‘TA+,
1‘SP ++ 1‘TA−.

This means that the marking M3 has a total of 35 enabled steps (25 for the pos-
sible combinations of the individual steps in the two groups above plus 10 because
each of the 10 steps constitutes a step on its own).

The above illustrates that it soon becomes complex, time-consuming, and error-
prone for human beings to keep track of the enabled binding elements and steps,
and the current marking of a CPN model. This is one of the reasons for building and
using computer simulators for the execution of CPN models.

A step, in general, consists of a non-empty, finite multiset of concurrently enabled
binding elements. A step may consist of a single binding element. An empty multiset

2.5 Concurrency and Conflict 33

of binding elements is not considered to be a legal step, since it would have no effect
and always be enabled. The effect of the occurrence of a set of concurrent binding
elements is the sum of the effects caused by the occurrence of the individual binding
elements. This means that the marking reached will be the same as that which will
be reached if the set of binding elements occur sequentially, i.e., one after another
in some arbitrary order. As an example, consider the marking M1 shown in Fig. 2.15
and the enabled step consisting of the following two binding elements:

SP = (SendPacket, 〈n=1, d="COL"〉)
TP+ = (TransmitPacket, 〈n=1, d="COL", success=true〉)
The marking M2 resulting from an occurrence of this step was shown in Fig. 2.16.

The marking M2 is also the marking resulting from an occurrence of SP followed
by an occurrence of TP+, and it is also the marking resulting from an occurrence of
TP+ followed by an occurrence of SP. The CPN Tools simulator executes only steps
consisting of a single binding element. This is sufficient, since the marking resulting
from the occurrence of an enabled step with multiple binding elements is the same
as letting the binding elements in the step occur one after another in some arbitrary
order. Hence, markings that can be reached via occurrence sequences consisting of
steps with multiple binding elements can also be reached via occurrence sequences
consisting of steps with a single binding element.

When the first data packet has been sent by an occurrence of SendPacket, we
may choose a sequence of binding elements that will successfully transmit the
data packet, receive the data packet, successfully transmit the acknowledgement
for the data packet, and finally receive the acknowledgement updating the token on
NextSend to the value 2:

Step Binding element

1 (SendPacket, 〈n=1, d="COL"〉)
2 (TransmitPacket, 〈n=1, d="COL", success=true〉)
3 (ReceivePacket, 〈n=1, d="COL", k=1, data=""〉)
4 (TransmitAck, 〈n=2, success=true〉)
5 (ReceiveAck, 〈n=2, k=1〉)

This could be called the successful occurrence sequence for packet number 1.
In the successful occurrence sequence, no retransmission of packet number 1 takes
place. However, it should be noted that the transition SendPacket is enabled in all
of the markings of the successful occurrence sequence. If, in any of these markings,
we choose to execute SendPacket, this represents a retransmission of data packet
number 1. Intuitively, the retransmission happens because the transitions in the suc-
cessful occurrence sequence are too slow in occurring and hence are outraced by the
second occurrence of SendPacket, i.e., the retransmission of data packet number 1.
This means that we have described a time-related behaviour without the explicit use

34 2 Non-hierarchical Coloured Petri Nets

of time. What is important at the chosen abstraction level is not when a retrans-
mission may occur, but the simple fact that it is possible that such a retransmission
can occur. While we are executing the successful occurrence sequence for packet
number 1, we may also deviate from it by choosing a binding for TransmitPacket
or TransmitAck which loses the packet/acknowledgement, i.e., a binding in which
success=false. Then SendPacket will be the only enabled transition, and a
retransmission will be the only possible way to continue.

The CPN model presented in this section is without any reference to time. It
is specified that retransmissions are possible, but we do not specify how long the
sender should wait before performing such retransmissions. What matters is the
possible sequences in which the various events (binding elements) may occur: at
least for the moment, we are uninterested in the durations of and start/end times for
the individual events. Timed CP-nets will be introduced in Chap. 10; these make it
possible to model the time taken by the various events in the system.

Notice that it is possible to reach markings where place A contains two different
tokens, for example, the multiset 1‘(1,"COL") ++ 1‘(3,"ED ") represent-
ing data packets numbers 1 and 3. In this situation the variables n and d of Transmit-
Packet can be bound such that (n,d) evaluates to (1,"COL") or (3,"ED "),
and hence it is possible for data packet 3 to overtake data packet 1. A similar remark
applies to data packets on place B and acknowledgements on places C and D.

2.6 Guards

In the discussion above, we have seen that it is the input arc expressions that de-
termine whether a transition is enabled in a given marking. However, transitions
are also allowed to have a guard, which is a boolean expression. When a guard
is present, it must evaluate to true for the binding to be enabled, otherwise the
binding is disabled and cannot occur. Hence, a guard puts an extra constraint on the
enabling of bindings for a transition. Figure 2.18 shows a variant of the receiver part
of the protocol which illustrates the use of guards. In this variant, the reception of
data packets, previously modelled by ReceivePacket, has been split into two transi-
tions: DiscardPacket and ReceiveNext. The idea is that ReceiveNext models the case
where the data packet received is the one expected, whereas DiscardPacket models
the case where the data packet received is not the one expected. This variant also
illustrates a modelling choice concerning the number of transitions in a CPN model.

Each of the two transitions DiscardPacket and ReceiveNext has a guard, which,
by convention, is written in square brackets and positioned next to the transition.
The guards of the two transitions compare the sequence number in the incoming
data packet on place B with the expected sequence number on the place NextRec.
The guard of the transition ReceiveNext is [n=k] expressing the condition that
the sequence number of the incoming data packet bound to n must be equal to
the expected sequence number bound to k. The guard [n<>k] of the transition
DiscardPacket uses the inequality operator <> since this transition is only to be

2.7 Interactive and Automatic Simulation 35

k

k

(n,d)

k+1

k

data

k+1

data^d

(n,d)

Discard
 Packet

[n<>k]

Receive
Next

[n=k]

NextRec

1`1

NO

C

NO

Data
Received

1`""

DATA

B

NOxDATA

Fig. 2.18 Variant of the receiver part illustrating guards

enabled when the sequence number of the incoming data packet differs from the
expected sequence number.

Consider now Fig. 2.19, which depicts a marking where there are two data pack-
ets on place B: one corresponding to a data packet that has already been received,
and one corresponding to the expected data packet. For this marking, we can con-
sider the following bindings of ReceiveNext:

RN1 = 〈n=1, d="COL", k=2, data="COL"〉
RN2 = 〈n=2, d="OUR", k=2, data="COL"〉
For both bindings the input places have the tokens needed. However, the guard

[n=k] of ReceiveNext evaluates to false in the binding RN1. Hence, only the
binding RN2, corresponding to reception of the expected data packet, is enabled
in the marking shown in Fig. 2.19. Similarly, we can consider the following two
bindings of DiscardPacket:

DP1 = 〈n=1, d="COL", k=2〉
DP2 = 〈n=2, d="OUR", k=2〉
In this case only the binding DP1, corresponding to reception of the data packet

that has already been received, is enabled. The reason is that the guard [n<>k] of
DiscardPacket evaluates to false in the binding DP2.

Guards can, in general, be used in many different ways and for many different
purposes. Further examples of the use of guards will be given in later chapters.

2.7 Interactive and Automatic Simulation

An execution of a CPN model is described by means of an occurrence sequence,
which specifies the intermediate markings reached and the steps that occur. A mark-

36 2 Non-hierarchical Coloured Petri Nets

k

k

(n,d)

k+1

k

data

k+1

data^d

(n,d)

Discard
 Packet

[n<>k]

Receive
Next

[n=k]

NextRec

1`1

NO

C

NO

Data
Received

1`""

DATA

B

NOxDATA

1
1`2

11`"COL"

2

1`(1,"COL")++
1`(2,"OUR")

Fig. 2.19 Marking illustrating the semantics of guards

ing that is reachable via an occurrence sequence starting from the initial marking is
called a reachable marking. The existence of a reachable marking with more than
one enabled binding element makes a CPN model non-deterministic. This means
that there exist different occurrence sequences containing different sequences of
steps and leading to different reachable markings. It is important to stress that it
is only the choice between the enabled steps which is non-deterministic. The in-
dividual steps themselves are deterministic, in the sense that once an enabled step
has been selected in a given marking, the marking resulting from its occurrence is
uniquely determined, unless a random number function is used in one of the arc
expressions.

CPN Tools uses graphical simulation feedback, such as that shown in Fig. 2.20, to
provide information about the markings that are reached and the binding elements
that are enabled and occur during a simulation. The rectangular box next to the
transition ReceivePacket will be explained shortly.

The tools that are available for simulating CPN models in CPN Tools can be
found in the simulation tool palette shown in Fig. 2.21. A VCR (video cassette
recorder) metaphor is used for the graphical symbols representing the simulation
tools. The simulation tools can be picked up with the mouse cursor and applied to
the CPN model. The available tools (from left to right) are:

• Return to the initial marking.
• Stop an ongoing simulation.
• Execute a single transition with a manually chosen binding.
• Execute a single transition with a random binding.
• Execute an occurrence sequence with randomly chosen binding elements inter-

actively (i.e., display the current marking after each step).
• Execute an occurrence sequence with randomly chosen binding elements auto-

matically (i.e., without displaying the current marking after each step).
• Evaluate a CPN ML expression (to be explained in Chap. 3).

2.7 Interactive and Automatic Simulation 37

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`2

1
1`2

2

1`(1,"COL")++
1`(2,"OUR")

1 1`2

11`"COL"

2

1`(1,"COL")++
1`(2,"OUR")

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

k = 2
data = "COL"
n = ?

1
2

d = ?
"COL"
"OUR"

Fig. 2.20 Simulation feedback in CPN Tools

Fig. 2.21 Simulation tool palette in CPN Tools

When a CPN model is simulated in interactive mode, the simulator calculates the
set of enabled transitions in each marking encountered. It is then up to the user to
choose between the enabled transitions and bindings. Figure 2.20 shows an example
where the user is in the process of choosing between the enabled binding elements
of the transition ReceivePacket. The choice between the enabled binding elements
is done via the rectangular box opened next to the transition. This box lists the
variables of the transition and the values to which they can be bound. In this case,
the value 2 has already been bound to the variable k, and the value "COL" has been
bound to data. This is done automatically by the simulator, since there is only one
possible choice for these variables. The user still has a choice in binding values to
the variables n and d. The user may also leave the choice to the simulator, which
uses a random number generator for this purpose. In the above case it suffices for
the user to bind either n or d, since the value bound to the other variable is then
uniquely determined and will be automatically bound by the simulator.

The simulator executes the chosen binding element and presents the new marking
and its enabling to the user, who either chooses a new enabled binding element or
leaves the choice to the simulator, and so on. This means that it is the simulator that
makes all the calculations (of the enabled binding elements and the effect of their
occurrences), while it is the user who chooses between the different occurrence se-

38 2 Non-hierarchical Coloured Petri Nets

quences (i.e., the different behavioural scenarios). An interactive simulation is by its
nature slow, since it takes time for the user to investigate the markings and enablings
and to choose between them. This means that only a few steps can be executed per
minute and the working style is very similar to the single-step debugging known
from conventional programming environments.

When a CPN model is simulated in automatic mode, the simulator performs all
of the calculations and makes all of the choices. This kind of simulation is sim-
ilar to a program execution, and a speed of several thousand steps per second is
typical. Before the start of an automatic simulation, the user specifies one or more
stop criteria, for example, that 100 000 transitions shall occur. When one of the
stop criteria becomes fulfilled, the simulation stops and the user can inspect the
marking which has been reached. There are also a number of different ways in
which the user can inspect the markings and the binding elements that occurred
during the automatic simulation. We shall briefly return to this at the end of this
section.

We have previously illustrated that our CPN model of the protocol possesses
non-determinism, concurrency, and conflict. Now let us look at the marking M∗ in
Fig. 2.22. This marking is one of the many possible results of an automatic simu-
lation. From the marking of NextRec, it can be seen that the receiver is expecting
data packet number 5, and from the marking of DataReceived it can be seen that
the receiver has already received the data in the first four data packets in the correct
order. However, from the marking of NextSend, it follows that the sender is still
sending data packet number 4, and a copy of this data packet is present on place B.
Since this is not the expected data packet, it will be discarded by the receiver. An
acknowledgement requesting data packet number 5 is present at place D. When this
is received by the sender, NextSend gets the token colour 5, and the sender will start
sending data packet number 5.

If the automatic simulation is continued from the marking M∗, we may reach the
dead marking Mdead shown in Fig. 2.23. Owing to the non-determinism in the CPN
model, we cannot guarantee to reach the dead marking since it is possible to keep
losing packets and acknowledgements. However, if a dead marking is reached, it will
be the marking shown in Fig. 2.23. Here, we see that all six data packets have been
received in the correct order. The sender has stopped sending because NextSend
has the token colour 7 and there is no data packet with the number 7. All of the
places A, B, C, and D connecting the network to the sender and receiver are empty.
Hence, this marking represents the desired terminal state of the protocol system.
By performing a number of automatic simulations of the CPN model starting from
the initial marking, it is possible, by means of simulation, to test that the protocol
design as captured by the CPN model appears to be correct, in the sense that the
protocol succeeds in delivering the data packets in the correct order to the receiver.
Conducting a set of automatic simulations does not, however, guarantee that all
possible executions of the protocol have been covered. Hence, simulation cannot in
general be used to verify properties of the protocol, but it is a powerful technique
for testing the protocol and locating errors. In Chap. 7, we introduce state space

2.7 Interactive and Automatic Simulation 39

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`5

1
1`5

1 1`4

11`"COLOURED PET"

1

1`(4,"PET")

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.22 Marking M∗ reached by an automatic simulation

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`71 1`7

11`"COLOURED PETRI NET"6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 2.23 Dead marking Mdead reached at the end of an automatic simulation

analysis, which ensures, that all executions are covered. This makes it possible to
verify systems, i.e., prove that various behavioural properties are present or absent.

As mentioned earlier in this section, the user may be interested in inspecting
some of the markings that were reached and some of the binding elements that oc-
curred during an automatic simulation. A simple (and brute-force) way to do this
is to inspect the simulation report, which lists the steps that have occurred. For the

40 2 Non-hierarchical Coloured Petri Nets

simulation described above, the beginning of the simulation report could look as
shown in the extract in Fig. 2.24. Here we see the first six transitions that have
occurred. The simulation report specifies the name of the occurring transition, the
module instance where the transition is located, and the values bound to the vari-
ables of the transition. In this case all transitions are in instance 1 of the Protocol
module because the CPN model consists of just a single module, named Protocol.
The concept of modules in CP-nets will be presented in Chap. 5. The number 0
following the step number specifies the model time at which the transition occurs.
Since the model of the protocol presented in this chapter is untimed, all steps occur
at time zero. Timed CP-nets will be introduced in Chap. 10.

It is also possible to use graphical visualisation on top of CPN models. These
make it possible to observe the execution of the CPN model in a more abstract
manner using concepts from the application domain. Figure 2.25 shows an example
of a message sequence chart (MSC) created from a simulation of the CPN model
of the protocol. This MSC has four columns. The leftmost column represents the
sender and the rightmost column represents the receiver. The two middle columns
represent the sender and receiver sides of the network. The MSC captures a scenario
where the first data packet (1,"COL") sent by the sender is lost, as indicated by
the small square on the S-Network column. This then causes a retransmission of the
data packet. This time, the data packet is successfully transmitted to the receiver and
the corresponding acknowledgement 2 is successfully received by the sender.

1 0 SendPacket @ (1:Protocol)
- d = "COL"
- n = 1

2 0 TransmitPacket @ (1:Protocol)
- n = 1
- d = "COL"
- success = true

3 0 ReceivePacket @ (1:Protocol)
- k = 1
- data = ""
- n = 1
- d = "COL"

4 0 TransmitAck @ (1:Protocol)
- n = 2
- success = true

5 0 ReceiveAck @ (1:Protocol)
- k = 1
- n = 2

6 0 SendPacket @ (1:Protocol)
- d = "OUR"
- n = 2

Fig. 2.24 Beginning of a simulation report

2.7 Interactive and Automatic Simulation 41

Fig. 2.25 Example of a message sequence chart

In Chap. 13, we give examples of application domain graphics and explain how
they can be added to CPN models using the visualisation package [109] provided
together with CPN Tools. One of the examples in Chap. 13 also illustrates how
graphics can be used to provide input to the CPN model and thereby control its
execution.

Chapter 3
CPN ML Programming

This chapter presents the CPN ML programming language for defining colour sets
and functions, declaring variables, and writing inscriptions in CPN models. The pre-
vious chapter has provided a few simple examples of CPN ML programming. This
chapter provides a comprehensive introductory road map to the CPN ML program-
ming language. Many other examples of CPN ML programming will be given in
later chapters.

Section 3.1 gives an introduction to functional programming and CPN ML. Sec-
tion 3.2 describes the CPN ML constructs for defining colour sets. Section 3.3 dis-
cusses expressions and type inference, and Sect. 3.4 explains how functions can be
used in CPN models. Section 3.5 covers recursive functions and list manipulation.
Section 3.6 introduces patterns, and Sect. 3.7 explains how patterns are used for
calculating the enabled binding elements in a given marking of a CPN model.

3.1 Functional Programming

The CPN ML language is based on the functional programming language Standard
ML (SML) [84, 102]. CPN ML embeds the Standard ML language and extends it
with constructs for defining colour sets and declaring variables. The CPN ML pro-
gramming environment extends the Standard ML environment with the concepts
of multisets and functions for manipulation of multisets. There exist several imple-
mentations and programming environments for Standard ML. CPN Tools uses the
SML/NJ implementation [2].

The Standard ML language plays a major role in the CPN modelling language
and the CPN Tools implementation. Standard ML provides the user with the expres-
siveness required to model data and data manipulation of the size and complexity
found in typical industrial examples. Standard ML is also used to implement simula-
tion, state space analysis, and performance analysis. By embedding a full program-
ming language and its environment in CPN Tools, we have achieved the flexibility

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 3, 43
c© Springer-Verlag Berlin Heidelberg 2009

44 3 CPN ML Programming

and extensibility necessary to develop extensions such as prototype implementations
of new analysis methods.

There are several reasons why Standard ML was chosen as a basis for the CPN
inscription language and the implementation in CPN Tools. The formal definition
of CP-nets uses concepts such as types, variables, bindings, and evaluation of ex-
pressions that conceptually match the foundations of functional programming lan-
guages. Standard ML is based on the lambda calculus, which means that any com-
putable function can be expressed and that it has a formal semantics. CPN Tools is
thereby based on an expressive and sound formal foundation. The concept of pat-
terns, as supported in Standard ML, provides an elegant way of implementing the
enabling rule of CP-nets. Finally, Standard ML is supported by stable, mature com-
pilers such as SML/NJ, and textbooks and other documentation are easily available.

Mastering the CPN ML programming language is an important step in apply-
ing the CPN modelling language successfully. Experience has shown that this is
a non-trivial task. The main reason is that Standard ML, and hence CPN ML, is
a functional programming language and therefore has a different conceptual basis
from the traditional imperative languages such as C and object-oriented program-
ming languages such as Java and C++ that most users are familiar with. A key
difference is that computation in a functional programming language proceeds by
evaluation of expressions rather than execution of assignments that make permanent
modifications to memory locations. Expressions in a functional language are based
on the definition and application of functions as first-order values. This implies that
functions are treated in the same way as basic values such as integers, booleans, and
strings. Functions can be passed as arguments to functions. Furthermore, recursive
functions are used to express iterative constructs instead of for-loops and while-
loops. Another main difference is that CPN ML is strongly typed, which means that
all expressions, values, and variables have a type that can be determined at compile
time. Furthermore, the types of expressions are inferred at compile time by the CPN
ML system rather than being declared by the user. Strong typing makes programs
more concise and it eliminates the possibility of applying a function or operator to
a wrong type of value at run time. CPN ML also allows polymorphic functions, i.e.,
functions that can operate on different types of values.

The CPN ML programming language and environment is very comprehensive.
However, the amount of CPN ML programming required is highly dependent on the
system being modelled and the modelling approach chosen. This chapter introduces
the basic concepts of functional programming and covers the commonly used con-
structs of CPN ML. This means that we shall not introduce the Standard ML module
system, datatype construction, or the interface for accessing operating system ser-
vices such as reading and writing files. Instead, the chapter is intended to provide
a foundation that will make it possible for the reader to study the more advanced
concepts of CPN ML and Standard ML if this is required by the a particular appli-
cation of CP-nets. The reader is referred to textbooks on Standard ML programming
[27, 51, 86, 102] for a complete treatment of the Standard ML language and envi-
ronment. Similarly, the reader is referred to the CPN Tools Web pages [25] for a
complete reference on CPN ML programming.

3.2 Colour Sets 45

3.2 Colour Sets

The CPN ML language provides a predefined set of basic types inherited from Stan-
dard ML that can be used as simple colour sets. The simple colour sets can be used to
define structured colour sets using a set of colour set constructors. To illustrate the
use of the colour set constructors, we shall consider a variant of the CPN model of
the protocol described in the previous chapter. In the previous chapter, data packets
were modelled as a product, i.e., tuples consisting of an integer and a string. Data
packets will now be modelled as a record, with a field representing the sequence
number and another field representing the data content. Furthermore, a union colour
set will be created for data packets and acknowledgements and used as the colour
set of the places in the network. Finally, the network will be modified such that
duplication of packets becomes possible.

The definition of colour sets uses the keyword colset, and the modified model
defines two simple colour sets DATA and NO as follows:

colset DATA = string;
colset NO = int;

The colour sets DATA and NO are defined using the basic Standard ML types
string (the set of all text strings) and int (the set of all integers). Standard ML
additionally provides the basic types bool (containing the boolean values true
and false) and unit (containing a single value, written ()). The basic type bool
was illustrated in the previous chapter, and the use of unitwill be illustrated in later
chapters. The modified model additionally defines the following colour sets:

colset NOxDATA = product NO * DATA;
colset DATAPACK = record seq:NO * data:DATA;
colset ACKPACK = NO;
colset PACKET = union Data:DATAPACK + Ack:ACKPACK;
colset RESULT = with success | failure | duplicate;

The colour set NOxDATA is defined as a product colour set of the simple colour
sets NO and DATA using the colour set constructor product. Products may, in
general, contain two or more components.

The colour set DATAPACK is used to model the data packets and is defined as
a record colour set with two fields: seq for the sequence number and data for
the data content. Record colour sets are defined using the colour set constructor
record. Record values are written using curly brackets { and } surrounding a
comma-separated list. An example of a value in the colour set DATAPACK is

{seq=1,data="COL"}

which represents a data packet with sequence number 1 and content "COL". The
order in which the record fields are specified is insignificant, which means that it is
also possible to write the above value as {data="COL",seq=1}. Records may,
in general, contain one or more fields.

46 3 CPN ML Programming

The colour set ACKPACK will be used to represent acknowledgements and is
defined to be equal to the colour set NO, i.e., the set of colours in ACKPACK is equal
to the set of colours in NO.

The colour set PACKET is defined to be the union of the two colour sets
DATAPACK and ACKPACK. This is done using the colour set constructor union.
Each element in the union has an associated constructor. The constructor for data
packets is Data, takes a value of type DATAPACK as an argument, and constructs
a value of type PACKET. Similarly, the constructor for acknowledgements is Ack,
takes a value of type ACKPACK, and constructs a value of type PACKET. An exam-
ple of a value in the colour set PACKET is

Data({seq=1,data="COL"})

which represents a data packet with sequence number 1 and content "COL". The
record value {seq=1,data="COL"} belongs to the colour set DATAPACK and
is used as an argument to the constructor Data to construct a value belonging to
the colour set PACKET. The CPN ML language is case-sensitive and it is therefore
able to distinguish between the colour set named DATA and the constructor Data
of the colour set PACKET. Another example of a value in the colour set PACKET
is Ack(2), representing an acknowledgement with sequence number 2. Here, the
2 belongs to the colour set ACKPACK and is used as an argument to the constructor
Ack to construct a value belonging to the colour set PACKET.

The colour set RESULT is an enumeration colour set, defined using the colour set
constructor with. An enumeration colour set is defined by providing a |-separated
list of identifiers that names the colours in the colour set. The colour set RESULT
contains three colours, success, failure, and duplicate, representing the
three possible outcomes of transmitting a packet over the network in a refined CPN
model where duplication of packets is possible.

Variables of colour sets are declared using the keyword var. The refined model
contains the following variable declarations, which will be explained in more detail
when the refined model is presented below:

var n, k : NO;
var d, data : DATA;
var pack : PACKET;
var res : RESULT;

Figure 3.1 shows the revised CPN model based on the colour set definitions and
variable declarations above. The network places A, B, C, and D now all have the
union colour set PACKET, and the arc expressions on arcs connected to these places
have been changed accordingly. The expression on the arcs from SendPacket to A
and from B to ReceivePacket uses the constructor Data to produce and remove data
packets, respectively. The constructor Ack is used in a similar way to produce an
acknowledgement on place C and consume an acknowledgement from place D.

The variable pack is used in the arc expressions related to TransmitPacket in-
stead of the constructor Data and the variables n and d. The reason is that the

3.2 Colour Sets 47

k n

Ack(n) if res=success
then 1`pack
else
 if res = duplicate
 then 2`pack
 else empty

pack

if n=k
then Ack(k+1)
else Ack(k)

pack

Data
({seq=n,
 data=d})

n
if n=k
then data^d
else data

Data
({seq=n,
 data=d})

if res=success
then 1`pack
else
 if res = duplicate
 then 2`pack
 else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
 Packet

Transmit
Packet

Send
Packet

1`1

NO

C

PACKET

D

PACKET

A

PACKET

NextSend

1`1

NO

Data
Received

1`""

DATA

B

PACKET

Packets
To Send

AllPackets

NOxDATA

NextRec
k

if n=k
then k+1
else k

data

Fig. 3.1 Modified protocol illustrating record and union colour sets

transmission of packets, as modelled by TransmitPacket, does not need to consider
the sequence number and content of the packet being transmitted. Hence, it suf-
fices to bind pack to the entire data packet, i.e., the colour of the token being
removed from place A. The variable res ranges over the three possible outcomes
of transmitting a packet. Depending on the value bound to the variable res when
TransmitPacket occurs, the packet will be either successfully transmitted, dupli-
cated, or lost. This is captured by the nested if–then–else expression on the arc from
TransmitPacket to B. This expression uses the coefficient 2 as an argument to the
multiset operator ‘ to produce two tokens with their colour bound to the variable
pack if a duplication of the packet happens. The modelling related to TransmitAck
has been changed in a similar fashion.

To illustrate the operation of the model, consider the marking M1 shown in
Fig. 3.2. The transition TransmitPacket is enabled with the following three bindings
in M1:

b+ = 〈pack=Data({seq=1,data="COL"}), res=success〉
b− = 〈pack=Data({seq=1,data="COL"}), res=failure〉
b++ = 〈pack=Data({seq=1,data="COL"}), res=duplicate〉

If the binding element b++ occurs in M1, the arc expression on the arc from
TransmitPacket to B evaluates to 2‘Data({seq=1,data="COL"}) and the
marking M2 shown in Fig. 3.3 is reached. Later in this chapter, we shall show how
the nested if–then–else expression can be rewritten using a case expression.

When a CPN model contains tokens with structured colour sets such as products
and records, it is often necessary to access the individual components of products
and fields of records. This can be achieved using the family of # operators.

48 3 CPN ML Programming

A

PACKET

B

PACKET

Transmit
Packet

pack

if res=success
then 1`pack
else
 if res = duplicate
 then 2`pack
 else empty

1

1`Data({seq=1,data="COL"})

Fig. 3.2 Marking M1 of CPN model using record and union colour sets

A

PACKET

B

PACKET

Transmit
Packet

pack

if res=success
then 1`pack
else
 if res = duplicate
 then 2`pack
 else empty

2
2`Data({seq=1,data="COL"})

Fig. 3.3 Marking M2 of CPN model using record and union colour sets

The use of these operators will be illustrated below by creating variants of the
CPN model shown in Fig. 3.1. It should be mentioned that the first solution for the
protocol illustrating the use of records and products, shown in Fig. 3.1, contains
simpler inscriptions than the variants to be presented below. The more complex in-
scriptions presented below, however, illustrate how product components and record
fields are accessed, and how guards can be used to enforce the desired relationship
between the values bound to the variables of the transition.

First, we shall consider access to record fields. As an example, consider the
record colour set DATAPACK. The field seq of values belonging to this colour set is
obtained using the operator #seq and the field data is obtained using the operator
#data. In general, a field name of a record is accessed using the corresponding
operator #name. The following shows the results of evaluating expressions using
these operators on the record {seq=1,data="COL"} (where ‘→’ should be read
as ‘evaluates to’):

#seq {seq=1,data="COL"} → 1
#data {seq=1,data="COL"} → "COL"

We now illustrate how the field access operators for records can be used. In the
example in Fig. 3.1, the arc expression Data({seq=n,data=d}) on the arc from
B to ReceivePacket was used to bind the variable n to the field seq of the data
packet and the variable d to the field data. Figure 3.4 shows a revised version
where the arc expression on the arc from B to ReceivePacket now uses the vari-
able datapack, of colour set DATAPACK. On the output arcs of the transition
ReceivePacket the operator #seq is used to obtain the sequence number field in
the record bound to datapack, and the operator #data is used to extract the data
content field. Another alternative is shown in Fig. 3.5. Here, a guard

[n=(#seq datapack)]

3.2 Colour Sets 49

data

Data datapack

Receive
 Packet

1`1

NO

C

PACKET

1`""

DATA

B

PACKET

Data
Received

if (#seq datapack)=k
then data^(#data datapack)
else data

if (#seq datapack)=k
then k+1
else k

k
NextRec

if (#seq datapack)=k
then Ack(k+1)
else Ack(k)

Fig. 3.4 Modified receiver, illustrating access to record fields in arc expressions

B

PACKET

Data
Received

1`""

DATA

C

PACKET

1`1

NO

Receive
 Packet

k

Data datapack

data if n=k
then data^(#data datapack)
else data

[n = (#seq datapack)]

if n=k
then Ack(k+1)
else Ack(k)

NextRec
if n=k
then k+1
else k

Fig. 3.5 Modified receiver, illustrating access to record fields in guards

is used to ensure that when the transition ReceivePacket occurs, n will be equal to
the field seq of the record bound to datapack. Hence the variable n is used in
the output arc expressions instead of the much longer (#seq datapack).

Next, access to product components will be considered. As an example, consider
the product colour set NOxDATA. The first component of a two-tuple belonging to
this colour set is obtained using the operator #1, and the second component is ob-
tained using the operator #2. In general, the i’th component of a product is obtained

50 3 CPN ML Programming

using the operator #i. Two examples of the evaluation of expressions using these
operators on the product (3,"ED ") are given below:

#1 (3,"ED ") → 3
#2 (3,"ED ") → "ED "

We shall now illustrate how the component access operators for products can
be used in a CPN model. In the example in Fig. 3.1, the arc expression (n,d)
was used on the arc between PacketsToSend and SendPacket such that when Send-
Packet occurs, n is equal to the sequence number of the data packet to be sent and
d is equal to the data content. Alternatively, consider Fig. 3.6, which uses the ex-
pression nextpack where nextpack is a variable of colour set NOxDATA. The
component access operators are used in the guard to ensure that the variables n and
d are equal to the first and the second component, respectively, of the tuple bound
to nextpack. The model exploits the fact that a guard, in general, is a comma-
separated list of boolean expressions, and all expressions in the list must evaluate to
true for the binding to be enabled.

There is always a choice between using product and record colour sets in a CPN
model. We have seen versions of the protocol where data packets are modelled as
two-tuples, and versions where data packets are modelled as records with two fields.
It is always possible to replace a record colour set with a product colour set (and vice
versa), since each field of a record can be represented as a component of a product
(and vice versa). The inscriptions of the model must then be changed accordingly,
by replacing field access operators with component access operators. The advan-
tage of product colour sets is that they tend to result in shorter inscriptions, whereas
record colour sets tend to result in longer inscriptions because of the field names.
Records, on the other hand, have the advantage that one obtains a mnemonic name
for each field, and from the field name it is easy to see what the field represents.
With products, it can be difficult to remember what each of the components of a
product represents, although the use of variables with good mnemonic names helps.

Data{seq=n,data=d}

n

nextpack

Send
Packet

[n=(#1 nextpack),
 d=(#2 nextpack)]

A

PACKET

NextSend

1`1

NO

AllPackets

NOxDATA

Packets
To Send

Fig. 3.6 Modified sender, illustrating access to components of products

3.2 Colour Sets 51

As a rule of thumb, we do not recommend using products with more than four or
five components. If more components are required, records are recommended.

Until now, we have represented each data packet and each acknowledgement
by its own individual token. As noted at the end of Sect. 2.5, this means that data
packets may overtake each other (on places A and B) and, analogously, acknowl-
edgements may overtake each other (on places C and D). In some situations it may
be desirable to prevent overtaking, and we shall now show how list colour sets can
be used for this purpose. We shall use the protocol shown in Fig. 2.10 as a starting
point, and use lists on the places A, B, C, and D to ensure that data packets are re-
moved in a first-in first-out order, i.e., that the network buffers modelled by these
places behave as queues. The first step is the definition of colour sets for represent-
ing lists of data packets and lists of acknowledgements:

colset DATAPACKS = list NOxDATA;
colset ACKPACKS = list NO;

List colour sets are defined using the list colour set constructor list. Lists are
written using square brackets [and] enclosing a comma-separated list of elements.
The empty list (a list with no elements) is written []. An example of a colour in the
colour set DATAPACKS is

[(1,"COL"),(1,"COL"),(2,"OUR")]

which represents a list with three elements of type NOxDATA. An example of a
colour in the colour set ACKPACKS is [2,2,3], representing a list that contains
three integers 2, 2, and 3.

Consider the transition SendPacket shown in Fig. 3.7. The arc expressions use
the following variables:

var n : NO;
var d : DATA;
var datapacks : DATAPACKS;

The colour set of place A has been changed to DATAPACKS. The basic idea is
that in any reachable marking there will be a single token present on place A. The
colour of this token will be a list consisting of the data packets currently being stored
in the buffer modelled by A. Initially, there is an empty list on place A. An arc has
been added between place A and the transition SendPacket. When the transition
SendPacket occurs, it removes the list token at place A and replaces it by a new
list-token where the data packet being sent is added at the end of the list.

The expression on the arc from A to SendPacket is datapacks, which is a
variable of type DATAPACKS. When the transition SendPacket occurs, this variable
is bound to the list present on place A. The expression on the arc from SendPacket
to A is

datapacksˆˆ[(n,d)]

52 3 CPN ML Programming

datapacks

datapacks^^[(n,d)]

n

(n,d)

Send
Packet A

[]

DATAPACKS

NextSend

1`1

NO

Packets
To Send

AllPackets

NOxDATA

Fig. 3.7 Transition SendPacket in CPN model with list colour sets

where ˆˆ is the operator for list concatenation. This operator takes two lists as
arguments and concatenates the list provided as the right argument to the end of
the list provided as the left argument. As an example, the result of evaluating the
expression

[(1,"COL"),(1,"COL")]ˆˆ[(2,"OUR")]

is the list

[(1,"COL"),(1,"COL"),(2,"OUR")]

Consider the marking M1 shown in Fig. 3.8. For this marking, SendPacket is
enabled with the binding

〈n=2, d="OUR", datapacks=[(1,"COL"),(1,"COL")]〉

The expression on the arc from the transition SendPacket to place A evaluates to
the list

datapacks

datapacks^^[(n,d)]

n

(n,d)

Send
Packet A

[]

DATAPACKS

NextSend

1`1

NO

Packets
To Send

AllPackets

NOxDATA

1

1`[(1,"COL"),(1,"COL")]

1 1`2

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 3.8 Marking M1 of CPN model with list colour sets

3.2 Colour Sets 53

[(1,"COL"),(1,"COL"),(2,"OUR")]

where the data packet being sent has been added to the end of the list. In this case,
the left argument of the operator ˆˆ corresponds to the list token present on place
A and the right argument corresponds to a list containing a single element (n,d)
representing the data packet being sent. Figure 3.9 shows the marking M2 reached
when SendPacket occurs in M1 with the binding above.

Consider now the transition TransmitPacket and its surrounding places, shown in
Fig. 3.10. The arc expressions use the following variables:

var p : NOxDATA;
var success : BOOL;
var datapacks1, datapacks2 : DATAPACKS;

The places A and B both have the colour set DATAPACKS. The idea is that Trans-
mitPacket will remove the first data packet in the list token on place A and add it to
the end of the list token on place B. The arc expression p::datapacks1 on the
arc from A uses the list constructor ::. A list constructor is an operator taking two
arguments. The left argument is an element and the right argument is a list. The op-
erator adds the element provided as the left argument to the front of the list provided
as the right argument. As an example, the result of evaluating the expression

(1,"COL")::[(1,"COL"),(2,"OUR")]

is the list

datapacks

datapacks^^[(n,d)]

n

(n,d)

Send
Packet A

[]

DATAPACKS

NextSend

1`1

NO

Packets
To Send

AllPackets

NOxDATA

1

1`[(1,"COL"),(1,"COL"),(2,"OUR")]

1 1`2

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 3.9 Marking M2 of CPN model with list colour sets

if success
then datapacks2^^[p]
else datapacks2

datapacks2

Transmit
PacketA

[]

DATAPACKS

B

[]

DATAPACKS

p::datapacks1

datapacks1

Fig. 3.10 Transition TransmitPacket of CPN model with list colour sets

54 3 CPN ML Programming

[(1,"COL"),(1,"COL"),(2,"OUR")]

Consider the marking M2 shown in Fig. 3.11. In this marking, TransmitPacket is
enabled in two bindings:

b+ = 〈p=(1,"COL"), datapacks1=[(1,"COL"),(2,"OUR")],
success=true, datapacks2=[]〉

b− = 〈p=(1,"COL"), datapacks1=[(1,"COL"),(2,"OUR")],
success=false, datapacks2=[]〉

These two bindings differ only in the value bound to the variable success,
determining whether the data packet is successfully transmitted or lost. The arc
expression p::datapacks1 evaluates to

[(1,"COL"),(1,"COL"),(2,"OUR")]

which is equal to the token present on place A. The arc expression on the arc to B
inserts the element bound to p at the end of the list bound to datapacks2 if the
variable success is bound to true. Otherwise, the original list datapacks2 is
returned to place B. The left argument p of the list constructor is bound to the first
data packet (the head) in the list on place A and the right argument datapacks1
is bound to the remainder (the tail) of the list. The variable datapacks2 will be
bound to the list on place B. Figure 3.12 shows the marking M3 reached when the
transition TransmitPacket occurs with the binding b+ in the marking M2 shown in
Fig. 3.11.

Note that the arc expression on the arc from A ensures that TransmitPacket is
enabled only when there is a non-empty list present on place A. The reason is that
the variable p must be bound to a value of type NOxDATA, meaning that the arc
expression p::datapacks1 will evaluate to a non-empty list independently of
the value bound to datapacks1.

Figures 3.13–3.15 shows the complete sender, network, and receiver parts of the
modified CPN model using list colour sets. The variables used for processing of
acknowledgements are declared as

if success
then datapacks2^^[p]
else datapacks2

datapacks2

Transmit
PacketA

[]

DATAPACKS

B

[]

DATAPACKS

p::datapacks1

datapacks1

1

1`[(1,"COL"),(1,"COL"),(2,"OUR")]

1

1`[]

Fig. 3.11 Marking M2 of CPN model with list colour sets

if success
then datapacks2^^[p]
else datapacks2

datapacks2

Transmit
PacketA

[]

DATAPACKS

B

[]

DATAPACKS

p::datapacks1

datapacks1

1

1`[(1,"COL"),(2,"OUR")]

1

1`[(1,"COL")]

Fig. 3.12 Marking M3 of CPN model with list colour sets

3.2 Colour Sets 55

n::ackpacks

ackpacks

datapacks

k n

datapacks^^[(n,d)]

(n,d)

D

[]

ACKPACKS

A

[]

DATAPACKS

1`1

NO

AllPackets

NOxDATA

Receive
Ack

n

Packets
To Send

Send
Packet

NextSend

Fig. 3.13 Sender part of CPN model using list colour sets to prevent overtaking

ackpacks2

datapacks2

ackpacks1

datapacks1

n::ackpacks1

p::datapacks1

if success
then datapacks2^^[p]
else datapacks2

Transmit
Ack

Transmit
Packet

C

[]

ACKPACKS

D

[]

ACKPACKS

A

[]

DATAPACKS

B

[]

DATAPACKS

if success
then ackpacks2^^[n]
else ackpacks2

Fig. 3.14 Network part of CPN model using list colour sets to prevent overtaking

var n : NO;
var ackpacks, ackpacks1, ackpacks2 : ACKPACKS;

The transitions ReceiveAck (see Fig. 3.13) and ReceivePacket (see Fig. 3.15) use
the list constructor :: in a way similar to the TransmitPacket transition to remove
the first element from the list on places D and B, respectively. The colour set of
the places C and D (see Fig. 3.14) is ACKPACKS, and the transition TransmitAck
models the transmission of acknowledgements in a way similar to that in which
TransmitPacket models the transmission of data packets.

56 3 CPN ML Programming

if k=n
then k+1
else k

k

ackpacks

datapacks
data

ackpacks^^[if n=k
 then k+1
 else k]

if n=k
then data^d
else data

(n,d)::datapacks

Receive
PacketNextRec

1`1

NO

C

[]

ACKPACKS

Data
Received

1`""

DATA

B

[]

DATAPACKS

Fig. 3.15 Receiver part of CPN model using list colour sets to prevent overtaking

Using lists in a way similar to that described above, it is possible to implement
other disciplines such as stacks and priority queues, determining the order in which
tokens are consumed from places. The use of lists changes the number of tokens that
are present on the place. In the example above, the packets on a network place are
now represented by a single token instead of having a token for each packet. This
changes the concurrency properties of the CPN model, i.e., the binding elements
that are able to occur concurrently. In the above example, it was possible earlier for
SendPacket and TransmitPacket to occur concurrently. This is no longer possible,
because they both need to access the single list token on place A. Similar remarks
apply to the other parts of the model accessing the network places. Whether this is
desirable or not depends on the concrete system being modelled. In our example,
we can interpret the fact that SendPacket and TransmitPacket are no longer able to
occur concurrently to represent that they need exclusive access to the buffer mod-
elled by place A. In that sense, it is reasonable that they cannot access the buffer
concurrently. It should be noted that it is still possible, for instance, for SendPacket
and ReceivePacket to occur concurrently. In addition to the colour set constructors
introduced above, CPN ML provides an index colour set constructor and a subset
colour set constructor.

3.3 Expressions and Types

In the CPN models presented until now, relatively simple expressions have been
used as arc expressions, guards, and initial markings. The expressions used in a
CPN model can be much more complex, and it is possible to use the complete set

3.3 Expressions and Types 57

of Standard ML expressions provided that the expression has the proper type. Each
expression on an arc is required to be of a type which is equal either to the colour
set of the connected place (in the case where the arc expression always evaluates to
a single token) or a multiset type over the colour set of the connected place (in the
case where the arc expression evaluates to a multiset of tokens). Analogously, each
initial marking must evaluate to a value in the colour set of the place (in the case
where the initial marking is a single token) or a multiset over the colour set of the
place (in the case where the initial marking is a multiset of tokens). Finally, each
guard must be a boolean expression or a list of boolean expressions.

The CPN ML type system automatically checks that all expressions are type
consistent and satisfy the above requirements. This is done by inferring the types of
the expressions used in the CPN model and then checking that these types satisfy
the requirements. It is not possible to generate simulation code for a transition in a
CPN model until the guard and all of the arc expressions on the surrounding arcs
are type consistent and have the proper types. Similarly, it is not possible to create
the tokens initially on a place until the initial marking is type consistent and has the
proper type.

To illustrate the rules above, we reconsider the CPN model of Sect. 2.4, which is
repeated in Fig. 3.16. The CPN ML declarations are repeated in Fig. 3.17. Consider
the expression (n,d) used on the arc between PacketsToSend and SendPacket.
Since n is declared to be a variable of colour set NO and d to be a variable of colour
set DATA, the CPN ML type system infers that the expression (n,d) must be a
product type where the first component is of type NO and the second component
is of type DATA. This type is written NO * DATA. The type of the arc expres-
sion (n,d) is consistent with the colour set of the place PacketsToSend, since it
evaluates to a single value in the colour set of the place PacketsToSend. If the arc ex-
pression on the arc between PacketsToSend and SendPacket had been (n,n,d),
the type inferred for this expression would have been NO * NO * DATA and a
type error would have been issued because this expression is not consistent with the
colour set of the place PacketsToSend.

As a slightly more complex example of type inference, consider the arc expres-
sion on the arc from ReceivePacket to DataReceived:

if n=k
then dataˆd
else data

Type inference works in a bottom-up manner, starting with inferring the types of
the subexpressions and gradually working its way up to infer the type of the com-
plete expression. First, the then-branch, consisting of the expression dataˆd, is
considered. The operator ˆ takes two strings as arguments and evaluates to the string
which is the result of concatenating these two strings. Since both of the variables
data and d are of the colour set DATA, defined to be equal to the type string,
the then-branch of the expression is type consistent and of type DATA. The else-
branch consists only of the variable data and hence is of type DATA. Next, the
conditional expression n=k is considered. The equality operator is able to compare

58 3 CPN ML Programming

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`11 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 3.16 CPN model of protocol (identical to Fig. 2.10)

val AllPackets = 1‘(1,"COL") ++ 1‘(2,"OUR") ++ 1‘(3,"ED ") ++
1‘(4,"PET") ++ 1‘(5,"RI ") ++ 1‘(6,"NET");

colset NO = int;
colset DATA = string;
colset NOxDATA = product NO * DATA;

colset BOOL = bool;

var n : NO;
var d, data : DATA;
var success : BOOL;

Fig. 3.17 CPN ML declarations for the CPN model shown in Fig. 3.16

two expressions provided they are of the same type. Since both n and k are of the
colour set NO, this is type consistent. Hence, the type of the conditional expression is
bool, and the then-branch and the else-branch both have the type DATA. The com-
plete if–then–else expression is therefore type consistent and of type DATA. Hence,
the expression evaluates to a value in the colour set of DataReceived and the type of
the arc expression is therefore consistent with the colour set of DataReceived.

As a third example, consider the arc expression on the arc from TransmitPacket
to B:

if success
then 1‘(n,d)
else empty

3.3 Expressions and Types 59

For this expression, the type system infers that (n,d) is of type NO * DATA.
The multiset operator ‘ takes an integer and an element over some arbitrary type
and returns a multiset over that type. It is possible for the operator ‘ to take a value
of an arbitrary type as its right argument because it is a polymorphic operator. The
concept of polymorphism will be explained in more detail in Sect. 3.4. The above
means that the expression 1‘(n,d) is a multiset type over NO * DATA. This
multiset type is written

NO * DATA ms

where ms is the multiset type constructor. The expression empty is the empty mul-
tiset and belongs to any multiset type, and is therefore consistent with the type of
the then-branch. The variable success is of the colour set BOOL, which is equal
to the type bool. Hence, the complete expression is type consistent and of type
(NO * DATA) ms. The type of the arc expression is therefore consistent with the
colour set of place B, since it evaluates to a multiset of values over the colour set of
place B.

When arc expressions such as the one considered above are written, it is a com-
mon mistake to forget the 1‘ in front of (n,d) in the then-branch. This omission
has the effect that the then-branch is of type NOxDATA and the else-branch is of
type a ms, where a is some arbitrary type. This results in a type error because the
else-branch is a multiset type, whereas the then-branch is not. An if–then–else ex-
pression generally has the form if E then E1 else E2, where E, E1, and E2
are expressions. The type requirement is that E is of type bool and the expressions
E1 and E2 must have the same type.

The examples above have used an if–then–else expression as a conditional ex-
pression. The if–then–else construct is a special case of the more general case ex-
pression. The nested if–then–else expressions in Fig. 3.1

if res = success
then 1‘pack
else if res = duplicate

then 2‘pack
else empty

can be replaced by the case expression

case res of
success => 1‘pack

| duplicate => 2‘pack
| failure => empty

When this case expression is evaluated, res is evaluated first. If res evaluates to
the value success, the first clause is chosen. If res evaluates to duplicate, the
second clause is chosen. If res evaluates to failure, the third clause is chosen.

It is also possible to implement the case expression above as

60 3 CPN ML Programming

(case res of
success => 1

| duplicate => 2
| failure => 0)‘pack

where the case expression is used to obtain the coefficient (1, 2, or 0) for the number
of appearances of the element pack in the multiset of tokens to be created on place
B. Note that a coefficient of 0 means that the element is not present in the multiset,
and hence choosing the third clause in the case expression will result in the complete
expression evaluating to the empty multiset.

A case expression generally has the form

case E of
E1 => E1’

| E2 => E2’
...

| En => En’

where the expressions E1, . . . , En are required to qualify as patterns (see Sect. 3.6).
The expressions E, E1, E2, . . . , En are required to have the same type, and the
expressions E1’, E2’, . . . , En’ are also required to have the same type. An if–
then–else expression if E then E1 else E2 can be rewritten to the follow-
ing equivalent case expression:

case E of
true => E1

| false => E2

3.4 Functions

The fact that the expressions used in a CPN model can be arbitrary Standard ML
expressions implies that it is possible to use functions in guards, arc expressions, and
initial markings. Functions are similar to the procedures and methods known from
conventional programming languages. CPN modelling of industrial-sized systems
often requires the use of complex expressions on arcs and in guards. Such complex
expressions take up a lot of space in the graphical representation of the CPN model.
It is therefore convenient to write a complex expression as a function with a well-
chosen mnemonic name, and apply this function in the net inscriptions. The same
functionality is very often used in several expressions in a CPN model, and functions
provide a way to implement a functionality only once and then use it in several
different parts of the CPN model. This means that the CPN model becomes more
concise and easier to read and maintain. As an example, we shall modify the CPN
model shown in Fig. 3.16 such that functions are used on the outgoing arcs of the
transition ReceivePacket.

3.4 Functions 61

Functions in CPN ML are defined using the keyword fun followed by the
name of the function and a comma-separated list of parameters. We define the two
functions UpdSeq and AddData for use in the arc expressions of the transition
ReceivePacket. First we consider the function UpdSeq, implemented as follows:

fun UpdSeq (n,k) = if n=k
then k+1
else k;

The function UpdSeq takes two parameters, n and k. The body of the function
is identical to the former arc expression on the arcs from ReceivePacket to NextRec
and to C, and hence the function UpdSeq will be used on both of these arcs.

Strictly speaking, any function defined in CPN ML takes a single parameter –
but when the parameter is a product, as is the case for UpdSeq, we can think of the
individual components of the product as parameters. The equivalent of a function
that does not take any genuine parameters is implemented in CPN ML as a function
that takes the value (), of type unit, as the single parameter. We shall see examples
of this in later chapters.

Figure 3.18 shows the modified CPN model that uses the functions UpdSeq
and AddData. When the transition ReceivePacket occurs in a given binding, the
values bound to the variables n and k will be provided as arguments to the function
UpdSeq and the body of the function will be evaluated. Note that the function
UpdSeq is invoked twice when the transition occurs – once for each of the arcs on
which the function is used.

When implementing the functions above, we do not need to specify the types of
the parameters. The type of a function is inferred automatically by the CPN ML type
system. The function UpdSeq takes a product of type int * int as an argument
and returns an integer. This function type is written

k

UpdSeq(n,k)

data

n

n if success
then 1`n
else empty

n

UpdSeq(n,k)

(n,d)(n,d)

n

AddData
(data,d,n,k)

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Transmit
Packet

Send
Packet

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

k
Receive
PacketNextRec

Fig. 3.18 CPN model using functions in arc expressions

62 3 CPN ML Programming

int * int -> int

which specifies that the domain of the function is pairs of integers, and the codomain
(the result type) is the set of integers.

The CPN ML type system infers the type of UpdSeq as follows. Since k, to-
gether with 1, is used as an argument to the operator + in the body of the function,
k must be of type int and the result of evaluating the then-branch and the else-
branch is therefore of type int, which in turn implies that the return type of the
function is also int. Since k (which was inferred to be of type int) is used as an
argument to the equality operator = together with n, it is inferred that n must also
be of type int (since n and k cannot otherwise be compared in a type-consistent
manner). The arc expression UpdSeq(n,k) is type consistent because both of the
variables n and k are declared to be of colour NO, which is equal to int. The type of
the arguments provided to UpdSeq in the arc expressions where it is used is there-
fore NO * NO, which is consistent with the type int * int. Also, the result type
int is consistent with the colour set NO of the places C and NextRec.

The reader might have expected the type of the function UpdSeq function to be

NO * NO -> NO

because the variables n and k are declared to be of colour set NO. The n and k ap-
pearing in the parameter list of the function definition are, however, unrelated to the
variables n and k appearing on the arcs surrounding the transition ReceivePacket.
The n and k in the function definition are formal parameters and hence local vari-
ables in the body of the function, and the type of the function is inferred indepen-
dently of where the function is applied.

It is also possible for the programmer to explicitly specify some of the types. The
CPN ML type system will then check that the expressions are type consistent given
the types specified by the programmer. As an example, we can explicitly specify the
parameter and result types of the function UpdSeq as follows:

fun UpdSeq (n : NO,k : NO) : NO = if n=k
then k+1
else k;

The types of the parameters n and k are specified by a colon after the parameter,
followed by the explicit type of the parameter. The result type of the function is
specified by a colon after the parameter list, followed by the type. The type of this
variant of the function UpdSeq is

NO * NO -> NO

The complete function is type consistent because the explicit types provided are
consistent with the types that the CPN ML type system automatically infers.

The function AddData used on the arc from ReceivePacket to DataReceived is
implemented as follows:

3.4 Functions 63

fun AddData (data,d,n,k) = if n=k
then dataˆd
else data;

When the transition ReceivePacket occurs in a given binding, the values bound
to the variables data, d, n, and k are provided as arguments to the function. The
function AddData takes a four-tuple as an argument and evaluates to a string. The
type of the function AddData is inferred to be

string * string * ’’a * ’’a -> string

The first two parameters are of type string, since the concatenation operator ˆ
on strings is used in the body of the function to concatenate these. The a in the type
of the function represents a type variable and means that the function AddData is
polymorphic, i.e., it can be applied to any four-tuple as long as the first two com-
ponents are of type string, and the third and the fourth component are of some
common type a. The reason for this generality is that the n and k in the body of
the function are used as only arguments to the equality operator =. This means that
the body of the function is type consistent as long as n and k are of the same type.
The type of n and k is required to be an equality type which means that the built-in
equality operator = is required to be defined for the type a. The fact that an equality
type is required is specified by the ’’ appearing in front of the type variable a. In
the CPN model, the function AddData is applied only in the case where the third
and the fourth argument are of type NO, but it is also possible, for instance, to apply
this function to a four-tuple where the third and the fourth component are of another
type (as long as they have the same type) and the built-in equality operator = is
defined for that type.

As a further illustration of polymorphism, consider the expressions on the outgo-
ing arcs from TransmitPacket and TransmitAck (see Fig. 3.18). The type of the ex-
pression on the outgoing arc from TransmitPacket is (NO * DATA) ms. The type
of the expression on the outgoing arc from TransmitAck is NO ms. These are differ-
ent types. However, the purposes of the two arc expressions are identical – namely,
to produce zero or one token on the connected place depending on the value bound
to the variable success. Hence, we define a function Transmit:

fun Transmit (success,pack) = if success
then 1‘pack
else empty;

The type of this function is

bool * ’a -> ’a ms

which means that the function is polymorphic. The function takes two arguments.
The first argument is required to be of type bool, while the second argument can
be of any type a. The function evaluates to a value which belongs to the multiset
type over a. An equality type is not required for this function, since the built-in
equality operator is not used in the body of the function. Hence, a is preceded by

64 3 CPN ML Programming

a single ’ instead of two. The value returned is either a multiset over a containing
a single element (the value provided as the second argument) or the empty multiset
over a. This generality is possible because the multiset operator ‘ used in the body
of the function is also polymorphic, i.e., this operator takes a non-negative integer
representing the coefficient as its left argument and some element of some type a as
its right argument. This means that we can apply the function Transmit to both
data packets and acknowledgements.

Figure 3.19 shows the revised CPN model. The output arc from TransmitPacket
applies the function Transmit with a product (n,d) of type NO * DATA as
the second argument. When the transition TransmitPacket occurs in a given binding,
the parameter pack in the function Transmit becomes bound to the value of the
product (n,d), i.e., a value of type NOxDATA. This function is also used on the
arc from TransmitAck to D, with n, of type NO, as the second argument. When the
transition TransmitAck occurs in a given binding, the parameter pack in the function
Transmit becomes bound to the value of the variable n, i.e., a value of type NO.

We could have defined the function Transmit as

fun Transmit (success,(n,d)) = if success
then 1‘(n,d)
else empty;

where the second parameter is now a product (n,d). The type of this function is

bool * (’a * ’b) -> (’a * ’b) ms

and hence it requires the second argument to be a product where the first component
is of some type a and the second component is of some type b. The function is still
polymorphic, but it is not possible to apply it on the outgoing arc from TransmitAck,
since acknowledgements are not pairs (two-tuples).

data

n Transmit
(success,n)

n

UpdSeq(n,k)

(n,d)(n,d)

n

AddData
(data,d,n,k)

(n,d)
Transmit
(success, (n,d))

(n,d)

Receive
Packet

Send
Packet

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

Transmit
Packet

Transmit
Ack

UpdSeq(n,k)

Receive
Ack

k n

k
NextRec

Fig. 3.19 CPN model exploiting polymorphic functions

3.5 Recursion and Lists 65

3.5 Recursion and Lists

When complex CPN models are created, it is often required to search through struc-
tured values. An example is iterating through a list to check whether a certain el-
ement is present in the list. In imperative programming languages, iteration is ex-
pressed using, for example, a while-loop, a for-loop, or a repeat-until loop. Such
loop statements are not available in a functional programming language, which in-
stead relies on recursive functions to express iteration. To illustrate the use of recur-
sion in CPN ML, we shall develop a variant of the protocol where the sender is able
to send any data packet for which an acknowledgement has not yet been received.

Figure 3.20 shows the revised CPN model. The place NextSend has been re-
placed with a new place Acked with the colour set ACKS. This new place will contain
a list token with the sequence numbers of the data packets for which an acknowl-
edgement has been received. The place Acked initially contains an empty list, since
to begin with, no data packets have been acknowledged. The colour set ACKS and
the variable acks used on the arcs surrounding place Acked are defined as follows

colset ACKS = list NO;
var acks : ACKS;

The function member used in the guard of the transition SendPacket and the
function insert used on the arc from ReceiveAck to Acked will be presented in
more detail below.

First, we consider the transition SendPacket. When this transition occurs, the
variable acks becomes bound to the list present on the place Acked (initially the
list is empty). The purpose of the guard is to ensure that SendPacket is enabled only
in bindings corresponding to data packets that have not yet been acknowledged.
This is done by means of the boolean function member, which checks whether the

k

acks

if n=k
then k+1
else k

data

n if success
then 1`n
else empty

n

if n<=k
then 1`n
else empty

(n,d)(n,d)

if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
 Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

Acked

1`[]

ACKS

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

acks insert(n,acks)

[not
 (member
 (n,acks))]

Fig. 3.20 CPN model of protocol without stop-and-wait mechanism

66 3 CPN ML Programming

sequence number of the data packet to be sent (which is bound to n) is an element
in the list of acknowledgements that have been received (which is bound to acks).
The function member is implemented as follows:

fun member (e,l) =
if l = []
then false
else

if (e = List.hd l)
then true
else member (e,List.tl l);

The function member is a recursive function taking two parameters: an element
e and a list l. When the function is used in the guard of the transition SendPacket,
e is equal to the value bound to n, and l is equal to the value bound to acks. The
function is implemented by first checking whether l is the empty list [], which
represent the end of the recursion. If this is the case, e is not contained in l and
false is returned. If l is not the empty list, e is compared with the head of l,
i.e., the first element in l. If these are equal, e is a member of the list. The head
of the list is obtained using the library function List.hd. If e is not equal to the
head of the list, then a recursive call to member is made with the second argument
being the tail of the list. The tail of the list is obtained using the library function
List.tl. In the next section, we shall show a more elegant way of implementing
this function. Note that in the implementation of member, the functions List.hd
and List.tl are applied to their argument l without using parentheses around
the argument. The reason for this is (as mentioned earlier) that all functions take a
single parameter. It is only when the single argument is a product, as in the recursive
call to member, that parentheses are required.

The receiver part of the model has been modified such that an acknowledgement
is sent for a data packet being received if the data packet is the one expected or if it
has been received earlier (i.e., n<=k). Furthermore, the acknowledgement contains
the sequence number of the data packet received and not the sequence number of the
data packet expected next. This is achieved by modifying the arc expression on the
arc from ReceivePacket to C. The receiver still insists on receiving the data packets
in the correct order.

It is also possible to introduce local variables and environments into functions
using a let–in–end expression. As an example, the function member above can also
be implemented as shown below. In the implementation of the function, several
comments have been added, which in CPN ML are written inside ‘(*’ and ‘*)’.
Comments can also be used in arc expressions, guards, and initial markings of a
CPN model.

3.5 Recursion and Lists 67

fun member (e,l) =
if l = []
then false (* empty list, e is not a member *)
else (* list is not empty *)

let
(* extract head and tail of the list *)
val head = List.hd l
val tail = List.tl l

in
if e = head
then true (* e is equal to the head *)
else member (e,tail) (* check the tail *)

end;

When the outermost else-branch of this function is evaluated, the head of the list
is computed and bound to the local variable head, and the tail of the list is computed
and bound to tail. This binding is achieved using the keyword val, which can
be used to bind the result of evaluating an expression to a variable. Finally, the
expression between in and end is evaluated yielding the result of the function.

Consider now the transition ReceiveAck, where the function insert is used on
the arc to Acked. When ReceiveAck occurs, the variable acks becomes bound to the
list of sequence numbers on the place Acked. The purpose of the function insert
is to insert the incoming sequence number of the acknowledgement bound to n
into this list, provided that the acknowledgement has not yet been received. If the
acknowledgement has already been received, then the sequence number should not
be inserted into the list, to avoid having duplicate elements in the list. The function
insert is implemented as follows:

fun insert (e,l) =
if member (e,l)
then l
else e::l;

This function takes two parameters: an element e and a list l. When the function
is used on the output arc of the transition ReceiveAck, e is equal to the value
bound to n and l is equal to the value bound to acks. The basic idea is to use
the function member previously defined to check whether the element e is already
in the list l. If this is the case, the original list l is returned. Otherwise, the new
element e is added in front of the list of received acknowledgements. Figure 3.21
shows a marking reached after execution of a number of steps in the CPN model.
It shows a marking where an acknowledgement has been received for data packets
1,2, and 4, as represented by the marking of the place Acked. In this situation it is
possible to send data packets 3, 5, and 6, although it can be seen that data packet
number 3 has already been received. The reason for this is that the acknowledgement
for data packet number 3 was lost.

The function member implemented above is an instance of the more general
case where we want to determine whether there is an element in a list satisfying

68 3 CPN ML Programming

k

acks

if n=k
then k+1
else k

data

n if success
then 1`n
else empty

n

if n<=k
then 1`n
else empty

(n,d)(n,d)

if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
 Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

Acked

1`[]

ACKS

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

acks insert(n,acks)

[not
 (member
 (n,acks))]

11`5

11`2

1
1`(3,"ED ")

1 1`[4,2,1]

11`"COLOURED PET"

6

2`(2,"OUR")++
2`(3,"ED ")++
2`(6,"NET")

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 3.21 Marking of the protocol without stop-and-wait mechanism

a given boolean predicate. In the above case, the predicate is whether the element
is equal to n or not. We could therefore consider implementing a general function
exists that takes a predicate p and a list l as parameters and returns true if and
only if the predicate p evaluates to true on at least one of the elements in the list l.
This function can be implemented recursively as follows:

fun exists (p,l) =
if l = []
then false
else

if p (List.hd l)
then true
else exists (p,List.tl l);

The type of the function exists is

(’’a -> bool) * ’’a list -> bool

The implementation of exists exploits the fact that in CPN ML it is possible
to use functions as parameters and arguments for other functions. In fact, functions
in CPN ML are treated as values and can be passed around like all other values.
A function that takes a function as a parameter or returns a function is a higher-
order function. The parameter p above is a function of type ’’a -> bool, i.e., a
function that maps from some equality type a to a boolean. The type of the second
parameter l is ’’a list, i.e., a list over the equality type a. This means that
the type of the elements in the list has to match the domain of the predicate. The
function exists can be used in a revised implementation of member as follows:

3.5 Recursion and Lists 69

fun member (e,l) =
let

fun equal x = (e=x)
in

exists (equal,l)
end;

We have established a local environment using a let–in–end expression to define
a predicate equal that checks whether the parameter x is equal to the parameter
e of member. This predicate is then used as the function argument to exists
together with the list l.

In the above, we have explicitly named the function equal that is used as the
function argument to exists. It is also possible in CPN ML to define an anony-
mous function, i.e., to define a function without giving it a name. Anonymous func-
tions are written using the keyword fn. The function equal above could be written
anonymously as

fn x => e=x;

where the x following the keyword fn is the single parameter of the anonymous
function and the expression (e=x) following the arrow => is the body of the func-
tion. The implementation of the function member would then be as follows:

fun member (e,l) = exists (fn x => e=x,l);

A third alternative is to implement equal as a curried function. Until now, we
have seen functions that take their parameters as a product, and when the function
is applied, all arguments are provided at once. A curried function is a function that
takes its arguments one at a time. A curried implementation of equal looks as
follows

fun equal e x = (e=x);

The type of this function is

’’a -> ’’a -> bool

which specifies that the first parameter is of some equality type a, the second pa-
rameter is also of the equality type a, and the function evaluates to a boolean. The
parameters of equal can be provided one at a time. As an example, assume that
the first argument is provided to equal by writing the expression equal 4. The
expression equal 4 evaluates to a new function of type int -> bool, which
will evaluate to true if and only if the argument provided is 4. Curried functions
hence provide a way of writing functions that can later be specialised by provid-
ing some of their arguments. The complete implementation of member using the
curried version of equal is as follows:

fun equal e x = (e=x);
fun member (e,l) = exists (equal e,l);

70 3 CPN ML Programming

Lists and functions that manipulate lists are used very often in CPN modelling.
The CPN ML environment contains a number of library functions for manipulat-
ing lists. We have seen two examples of such library functions: List.hd and
List.tl. Another example is the function List.exists, which can be used
to determine whether a given list contains an element satisfying a predicate, and
is similar to the function exists that was implemented above. The function
List.exists is a polymorphic curried function with the type

(’a -> bool) -> ’a list -> bool

This function takes a predicate followed by a list and evaluates to true if there
is an element in the list satisfying the predicate. Using this library function, the
function member can be implemented as

fun member (e,l) = List.exists (fn x => e=x) l;

The CPN ML environment contains a large collection of predefined library func-
tions that are commonly and conveniently used for manipulating lists and other val-
ues. The reader is referred to the Web pages for CPN Tools [25] and the Standard
ML Basis Library [97] for a complete reference on these library functions.

3.6 Patterns

In the previous sections, we have seen several examples where values are matched
against patterns. One example was the case expression

case res of
success => 1‘p

| duplicate => 2‘p
| failure => empty

When this case expression is evaluated, the result of evaluating res is matched
against the three patterns success, duplicate, and failure to find the clause
1‘p, 2‘p, or empty to be evaluated. Another simple example illustrating patterns
was the function member:

fun member (e,l) =
if l = []
then false
else

if (e = List.hd l)
then true
else member (e,List.tl l);

When this function is applied to an argument, for example, (2,[1,3,4]), the
pattern (e,l) is matched against the argument, resulting in e being bound to 2

3.6 Patterns 71

and l being bound to [1,3,4]. Hence, patterns can in general be used to match
the arguments provided to a function.

The concept of a pattern is a powerful and important part of functional program-
ming. A pattern is an expression with variables (identifiers) which can be matched
with arguments to bind values. Patterns can be used to write very concise expres-
sions and a rather large set of expressions qualify as patterns. An expression qual-
ifies as a pattern if it is built of constants, constructors, and identifiers (variables).
An identifier is allowed to occur only once in a pattern.

The definition of a function can also use a sequence of patterns in a way similar
to that for a case expression. For the function member, we have two cases: the case
where l is the empty list and the case where it has one or more elements. Using
multiple patterns, the function member can alternatively be implemented as

fun member (e,[]) = false
| member (e,x::l) =

if (e = x)
then true
else member (e,l);

When this variant of member is applied to an argument, the argument will first
be matched against the pattern (e,[]). The argument matches this pattern only if
the second component of the product provided as an argument is the empty list [].
In that case, the function evaluates to false. If the argument provided does not
match the first pattern it is matched against the pattern (e,x::l). This will bind
e to the first component of the product provided as the argument, x to the head of
the non-empty list in the second component of the argument, and l to the tail of the
list.

In patterns, it is also possible to use the wildcard symbol (underscore), which
matches any value. This is often used in default cases or when a certain value is not
used in the body of a function. As an example, the case expression and the function
member above can also be defined as

case res of
success => 1‘p

| duplicate => 2‘p
| _ => empty

fun member (_,[]) = false
| member (e,x::l) =

if (e = x)
then true
else member (e,l);

A common pitfall when one is programming with patterns is the order in which
the clauses to be matched are listed. As an example, consider the following variant
of the case expression above:

72 3 CPN ML Programming

case res of
_ => empty

| success => 1‘p
| duplicate => 2‘p

where the case corresponding to empty has been moved to become the first clause.
The value bound to res is matched against the patterns starting from the top and
stopping as soon as a match is found. The wildcard symbol matches any value
and hence the entire case expression always evaluates to empty (the cases for
success and duplicate will never come into effect). In this case the CPN
ML compiler will issue a warning specifying that there is a redundant match. The
issue of redundant matches may occur whenever patterns are involved, including the
parameter list of functions.

Another common pitfall is the completeness of the set of clauses provided. As an
example, consider the following variant of the function member described above
where the first clause of the function has been omitted:

fun member (e,x::l) =
if (e = x)
then true
else member (e,l);

A problem arises when this function is applied to a product where the second
component is the empty list [] because the pattern x::l in the parameter list
matches only a non-empty list. In this case the CPN ML compiler will issue a warn-
ing specifying that there is a non-exhaustive match in the definition of the function.
If the problem is not resolved by the programmer and the function is applied to an
empty list during a simulation, a Match exception will be raised by the CPN ML
system to signal an error. This means that the ongoing simulation will be stopped.
It should be noted that if the element provided as the first argument is not contained
in the list provided as the second argument, then the function will be invoked with
the empty list at the end of the recursion – even if the original list was non-empty. It
is good programming practice to resolve all redundant and non-exhaustive matches
before performing simulations of a CPN model.

In Sect. 3.2, a variant of the protocol was presented that used a record colour set
for data packets, defined as

colset DATAPACK = record seq:NO * data:DATA;

Access to the individual record fields was achieved using the corresponding #
operators. It was observed that the use of records often leads to large inscriptions and
hence one often has to use functions in the arc expressions to reduce the size of the
inscriptions and thereby improve the readability of the model. The straightforward
implementation of a function that extracts the field data from a value belonging to
the colour set DATAPACK is

fun ExtractData (datapack:DATAPACK) = #data datapack;

3.7 Computation of Enabled Binding Elements 73

The body of this function extracts the data field from the parameter datapack
using the operator #data. We have had to explicitly provide the type DATAPACK
of the parameter datapack because, from the body of the function, the CPN ML
type system can infer only that datapack is of a record type with a field data.
But since there are many records types that have a field data, this does not uniquely
identify the type.

The function above can also be implemented using a record pattern as follows:

fun ExtractData ({seq=n,data=d}) = d;

When this function is called, the record pattern {seq=n,data=d} will be
matched with the argument provided, and the local variable n will be bound to the
field seq of the record provided as the argument and the local variable d will be
bound to the field data.

It is not required to explicitly introduce local variables such as n and d above for
the individual fields of a record. Hence, the function can also be implemented as

fun ExtractData ({seq,data}) = data;

When this function is invoked, the local variables seq and data will be bound
to the fields seq and the data, respectively, of the record provided as the argument.

In functions operating on records, access is often required to only a small subset
of the record fields. When record patterns are used, it is possible to use the wildcard
symbol ... to replace the record fields that are not referred to in the body of the
function. For example, in the function ExtractData we are interested only in the
field data. This means that the function can be implemented as

fun ExtractData ({data,...}:DATAPACK) = data;

Here we again need to specify the type of the parameter, because the CPN ML
type system can infer only that the record has a field data and this does not
uniquely identify a type. The use of the wildcard symbol ... in record patterns
is particularly useful when dealing with records having many fields.

For such record types, it is also useful that the individual fields can be updated by
library functions. As an example, the field data of a record r of type DATAPACK
can be updated to the value d as follows:

DATAPACK.set_data r d

The function DATAPACK.set data returns a record which is identical to r
except that the value of the field data is now equal to d.

3.7 Computation of Enabled Binding Elements

Patterns also play a key role in CPN Tools when the simulator computes the set
of enabled binding elements in a given marking. This is one of the main issues in

74 3 CPN ML Programming

implementing a CPN simulator. From the previous chapter, it follows that computing
the set of enabled binding elements amounts to considering the tokens on the input
places of the transitions, the input arc expressions, and the guards and, based on this,
obtaining the set of enabled binding elements for each transition.

Finding the set of enabled binding elements in a given marking is hard in its full
generality. The reason is that the variables of transitions may range over infinite do-
mains (e.g., lists and integers), and the arc expressions and guards can be any CPN
ML expression, including recursive functions. Moreover, there can be an arbitrary
number of input arcs for a transition. One possible way to overcome this prob-
lem would be to restrict the variables of transitions to only finite colour sets and
to perform an exhaustive search to find the enabled binding elements. This, how-
ever, is not efficient if the CPN model has large (but finite) types or if a transition
has many variables. Both of these situations occur frequently in practice. Moreover,
this approach would not be able to handle many modelling constructs that arise in
practice, such as using places with a list colour set to model queues and stacks.
Another possibility would be to impose syntactical restrictions on the expressions
such that it was trivial to deduce the values to be bound to the variables. In that
case, recursive functions would have to be disallowed in the inscriptions. Such a re-
striction is problematic, since CPN models in practice often use recursive functions
to manipulate structured tokens. One of the main design criteria for a mechanism
for computing the set of enabled binding elements in a given marking is therefore
that it should be time-efficient and at the same time accommodate enough expres-
sive power and modelling convenience to handle the CPN models encountered in
the practical modelling of systems. This has been achieved in CPN Tools using an
inference mechanism based on the pattern-matching capabilities of CPN ML.

To illustrate the basic idea of how pattern matching can be exploited to compute
enabled binding elements, consider the transition SendPacket of the simple protocol
shown in Fig. 3.22. The pattern (n,d) on the input arc from PacketsToSend con-
tains two variables, n (of type NO) and d (of type DATA). Hence, we can match the
colours (values) of the tokens on the place PacketsToSend and the pattern (n,d)
towards each other, causing values to be bound to n and d. In this way, we obtain
the binding elements

(SendPacket, 〈n=1, d="COL"〉)
(SendPacket, 〈n=2, d="OUR"〉)
(SendPacket, 〈n=3, d="ED "〉)
(SendPacket, 〈n=4, d="PET"〉)
(SendPacket, 〈n=5, d="RI "〉)
(SendPacket, 〈n=6, d="NET"〉)
Only the second binding element in the above list is enabled in the marking

considered. This can be determined by evaluating the arc expression n on the arc
from NextSend to SendPacket in the above bindings and comparing the result of
the evaluation with the token present on the place NextSend.

3.7 Computation of Enabled Binding Elements 75

(n,d)

n

(n,d)

A

NOxDATA

1`1

NO

AllPackets

NOxDATA

Packets
To Send

Send
Packet

NextSend

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

1 1`2

Fig. 3.22 Calculation of enabled binding elements for SendPacket

Matching the value of a token residing on an input place will, in general, only
bind a subset of the variables of the transition. As an example, consider the transition
ReceiveNext and the marking shown in Fig. 3.23. Matching the token (1,"COL")
residing on place B against the pattern (n,d) on the input arc from B will bind the
variable n to 1 and the variable d to "COL", but it will not bind the variables k
and data, resulting in a partial binding of the transition. To generalise the above
idea, it must be ensured that all variables of the transition are bound by matching the
tokens on input places against patterns appearing as expressions on input arcs. It is
often necessary to consider more than one input arc expression to bind the variables
of a transition. For the transition ReceiveNext, it is necessary to use three input arc
expressions: (n,d) (from place B), data (from the place DataReceived), and k
(from the place NextRec).

k

k

(n,d)

k+1

k

data

k+1

data^d

(n,d)

Discard
 Packet

[n<>k]

Receive
Next

[n=k]

NextRec

1`1

NO

C

NO

Data
Received

1`""

DATA

B

NOxDATA

1
1`2

11`"COL"

2

1`(1,"COL")++
1`(2,"OUR")

Fig. 3.23 Calculation of enabled binding elements for receiver part

76 3 CPN ML Programming

Since matching a token and a pattern results in a partial binding, each of the
patterns are considered in turn, to gradually convert the partial binding into a binding
where all of the variables are bound. The partial bindings obtained from one pattern
express only the constraints on the enabled bindings caused by the marking of the
corresponding input place, and hence they must be merged with the partial bindings
obtained by pattern matching at the other input places. As an example, consider
again Fig. 3.23 and the transition ReceiveNext. Matching the pattern (n,d) and
the tokens on place B yields the two partial bindings

〈n=1, d="COL", k=?, data=?〉
〈n=2, d="OUR", k=?, data=?〉

where ? has been used to indicate values that have not yet been bound. To bind
the variable data, the pattern data on the input arc from DataReceived must be
matched against the tokens on DataReceived, yielding the partial binding 〈n=?,
d=?, k=?, data="COL"〉. To obtain the combined partial binding, the set of par-
tial bindings arising from pattern matching with respect to the pattern (n,d) are
merged with the set of partial bindings obtained from pattern matching with respect
to the pattern data. The result of this merging is two partial bindings,

b1 = 〈n=1, d="COL", k=?, data="COL"〉
b2 = 〈n=2, d="OUR", k=?, data="COL"〉
To obtain the complete bindings, the pattern k must be matched against the to-

ken on NextRec, causing k to be bound to 2. Finally, the guard has to be checked,
causing the binding b1 to be discarded since it does not satisfy the guard.

The process of merging binding elements may also result in certain binding el-
ements being discarded. This happens when two partial binding elements have dif-
ferent values bound to the same variable. To illustrate this, consider the transition
SendPacket in Fig. 3.22 and assume that the computation of the enabled binding
elements is based on first binding n using the pattern on the arc from NextSend
and then binding d using the pattern on the arc from PacketsToSend. Matching the
pattern n with the token on the place NextSend yields the following partial binding:

b = 〈n=2, d=?〉
Matching the pattern (n,d) with the tokens on PacketsToSend yields the fol-

lowing bindings:

b1 = 〈n=1, d="COL"〉
b2 = 〈n=2, d="OUR"〉
b3 = 〈n=3, d="ED "〉
b4 = 〈n=4, d="PET"〉
b5 = 〈n=5, d="RI "〉
b6 = 〈n=6, d="NET"〉
When the bindings b1 to b6 are merged with the partial binding b, all of the

bindings apart from b2 are discarded.
The algorithm for the computation of enabled binding elements implemented in

CPN Tools is also able to exploit guards to bind variables. As an example, consider

3.7 Computation of Enabled Binding Elements 77

again Fig. 3.23 and the transition ReceiveNext. Matching the pattern (n,d) and the
tokens on place B results in the following two partial bindings:

〈n=1, d="COL", k=?, data=?〉
〈n=2, d="OUR", k=?, data=?〉
The guard of the transition ReceiveNext is n=k, which means that we can eval-

uate the left-hand side of the guard n in the two partial bindings above and match
them against the pattern k. This results in the two partial binding elements

〈n=1, d="COL", k=1, data=?〉
〈n=2, d="OUR", k=2, data=?〉
The general rule implemented in CPN Tools is that it must be possible to bind

each variable of a transition as described above using patterns either on input arcs or
in guards. The only exception to the above rule is for variables of small colour sets,
which, by default, are colour sets with fewer than 100 values. As an example, con-
sider the transition TransmitPacket in Fig. 3.24, which has the variable success as
one of its variables. This variable does not occur in any pattern on an input arc or in
a guard, and therefore it is not possible to bind this variable using pattern matching.
However, since the variable is of colour set BOOL, containing just two colours, it
is feasible to simply try all possible colours in this colour set in order to find the
set of enabled binding elements for this transition. CPN Tools will report an error if
it is impossible to bind one or more variables of a transition. A detailed treatment
of the algorithm for the computation of enabled binding elements implemented in
CPN Tools can be found in [68].

(n,d)

if success
then 1`(n,d)
else emptyTransmit

PacketA

NOxDATA

B

NOxDATA

Fig. 3.24 Calculation of enabled binding elements for small colour sets

Chapter 4
Formal Definition of Non-hierarchical
Coloured Petri Nets

This chapter gives a formal definition of the syntax and semantics of the non-
hierarchical and untimed parts of the CPN modelling language. The formal defi-
nition is a supplement to the informal introduction provided in Chap. 2. Readers
who are not interested in the mathematical definition and are content with the in-
formal introduction may decide to skip this chapter. The formal definition of the
hierarchical constructs will be given in Chap. 6, and that of the timed constructs
will be given in Chap. 11.

It should be noted that we do not define the syntax and semantics of the CPN ML
programming language for defining colour sets, declaring variables, and specifying
initial markings, guards, and arc expressions in CPN models. Hence, it is the Petri
net part of the CPN modelling language that is defined, whereas the programming-
language part is defined via the Standard ML programming language. This means
that the definition of CP-nets is independent of the concrete inscription language,
and it means that programming languages other than CPN ML can be used. In the
formal definition of CP-nets, it is assumed that the chosen programming language
provides constructs for defining data types and declaring variables. Furthermore, it
is assumed that the programming language has a notion of expressions that makes
it possible to talk about the type of an expression and the result of evaluating an
expression when the free variables in the expression are bound to values of the
proper types. When we present the formal definitions, the CPN model in Fig. 4.1 will
be used for illustration. This is identical to the CPN model described in Sect. 2.4.
The colour set definitions and variable declarations are listed in Fig. 4.2.

Section 4.1 defines multisets, and Sect. 4.2 defines the net structure and inscrip-
tions, i.e., the syntax of CPN models. Section 4.3 defines the enabling and occur-
rence of steps, i.e., the semantics of CPN models.

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 4, 79
c© Springer-Verlag Berlin Heidelberg 2009

80 4 Formal Definition of Non-hierarchical Coloured Petri Nets

k

if n=k
then k+1
else k

k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`3

4

1`(1,"COL")++
2`(2,"OUR")++
1`(3,"ED ")

1 1`3

11`"COLOUR"

6

1`(1,"COL")++
3`(2,"OUR")++
2`(3,"ED ")

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 4.1 Example used to illustrate the formal definitions

colset NO = int;
colset DATA = string;
colset NOxDATA = product NO * DATA;
colset BOOL = bool;

var n, k : NO;
var d, data : DATA;
var success : BOOL;

Fig. 4.2 Colour sets and variables for the CPN model in Fig. 4.1

4.1 Multisets

We start by formalising the concept of multisets which is used in the later def-
initions of markings, steps, and the enabling and occurrence of transitions and
steps. To illustrate the definition of multisets, we use the following three multisets
mP, mA, and mB over the colour set NOxDATA corresponding to the markings of
PacketsToSend, A, and B in Fig. 4.1:

mP = 1‘(1,"COL") ++ 1‘(2,"OUR") ++ 1‘(3,"ED ") ++
1‘(4,"PET") ++ 1‘(5,"RI ") ++ 1‘(6,"NET")

mA = 1‘(1,"COL") ++ 2‘(2,"OUR") ++ 1‘(3,"ED ")
mB = 1‘(1,"COL") ++ 3‘(2,"OUR") ++ 2‘(3,"ED ")

A multiset m over a non-empty set S can be viewed as a function from S into the
set of non-negative numbers N. The function maps each element s into the number

4.1 Multisets 81

of appearances, m(s), of the element s in the multiset m. The non-negative integer
m(s) is also called the coefficient of s in m. As an example, consider the multiset
mB over the colour set NOxDATA. The multiset mB can be specified as the following
function (also denoted mB):

mB(s) =

⎧⎪⎪⎨
⎪⎪⎩

1 if s = (1,"COL")
3 if s = (2,"OUR")
2 if s = (3,"ED ")
0 otherwise

The above example shows that it is straightforward to translate a multiset written
as a sum using ++ and ‘ into the equivalent functional representation. Similarly, it
is also possible to translate from a functional representation to a sum representation
making the two representations equivalent. Assume that m is a multiset over a finite
or infinite set S = {s1,s2,s3, . . .}. Then we can write m as the following sum:

++∑
s∈S

m(s)‘s = m(s1)‘s1 ++ m(s2)‘s2 ++ m(s3)‘s3 ++ . . . (4.1)

where we have used ++ to the upper left of the summation symbol to indicate that
it is a sum of multisets.

An element s is a member of a multiset m if the number of appearances m(s) of
s in m is strictly greater than zero, i.e., if m(s) > 0. When writing a multiset as a
sum, we usually omit the elements for which the number of appearances is zero.
The size of a multiset m, written |m|, is the sum of the numbers of appearances of
the elements in m. As an example, the multiset mP has size 6, mA has size 4, and mB

has size 6. A multiset can be infinite if the set S over which the multiset is created is
infinite. The number of appearances of an element in a multiset is, however, always
finite. The empty multiset over a set S is denoted /0MS and is the multiset over S in
which the number of appearances of each element is zero, i.e., m(s) = 0 for all s ∈ S.

To formalise the notion of the enabling and occurrence of transitions and steps,
we need to define addition (summation), comparison, subtraction, and scalar mul-
tiplication of multisets. The definition of the multiset operations is based on repre-
senting multisets as functions. The number of appearances of an element s in the
addition (or sum) m1 ++ m2 of two multisets m1 and m2 is obtained by adding the
number of appearances m1(s) of s in m1 and the number of appearances m2(s) of s
in m2, i.e., (m1 ++ m2)(s) = m1(s)+m2(s). As an example, the addition mA ++ mB

of the two multisets mA and mB is defined as

(mA ++ mB)(s) =

⎧⎪⎪⎨
⎪⎪⎩

2 if s = (1,"COL")
5 if s = (2,"OUR")
3 if s = (3,"ED ")
0 otherwise

The summation of a set of multisets m1,m2,m3, . . . is also represented as a sum-
mation of multisets:

82 4 Formal Definition of Non-hierarchical Coloured Petri Nets

++∑
i=1,2,3,...

mi = m1 ++ m2 ++ m3 ++ . . . (4.2)

Note that the notation introduced in (4.2) above is consistent with the sum repre-
sentation of a multiset defined in (4.1), since each of the terms m(si)‘si in (4.1) is a
multiset mi defined by

mi(s) =
{

m(s) if s = si

0 otherwise

A multiset m1 is smaller than or equal to a multiset m2, written m1 �= m2, if
for each element s the number of appearances m1(s) of s in m1 is less than or equal
to the number of appearances m2(s) of s in m2, i.e., m1(s) ≤ m2(s). As an example,
mA �= mB, whereas mA �= mP is false since the element 1‘(2,"OUR") appears
twice in mA but only once in mP.

The number of appearances of an element s in the subtraction m2 −− m1 of two
multisets m1 and m2 is obtained by subtracting the number of appearances m1(s) of
s in m1 from the number of appearances m2(s) of s in m2, i.e., (m2 −− m1)(s) =
m2(s)−m1(s). Subtracting m1(s) from m2(s) may result in a negative integer, and
subtraction is therefore defined only when m1 �= m2. As an example, the subtrac-
tion mB −− mA of the two multisets mA and mB is defined as

(mB −− mA)(s) =

⎧⎨
⎩

1 if s = (2,"OUR")
1 if s = (3,"ED ")
0 otherwise

A multiset m is multiplied by a scalar n ∈ N, written n ∗∗ m, by multiplying the
number of appearances m(s) of each element s by n, i.e., (n∗∗ m)(s) = n∗m(s). As
an example,

(4∗∗ mB)(s) =

⎧⎪⎪⎨
⎪⎪⎩

4 if s = (1,"COL")
12 if s = (2,"OUR")
8 if s = (3,"ED ")
0 otherwise

The following definition summarises the definition of multisets and multiset op-
erations based on the description above.

Definition 4.1. Let S = {s1,s2,s3, . . .} be a non-empty set. A multiset over S is
a function m : S → N that maps each element s ∈ S into a non-negative integer
m(s) ∈ N called the number of appearances (coefficient) of s in m. A multiset m
can also be written as a sum:

++∑
s∈S

m(s)‘s = m(s1)‘s1 ++ m(s2)‘s2 ++ m(s3)‘s3 ++ . . .

Membership, addition, scalar multiplication, comparison, and size are defined
as follows, where m1, m2, and m are multisets, and n ∈ N :

1. ∀s ∈ S : s ∈ m ⇔ m(s) > 0.

4.2 Net Structure and Inscriptions 83

2. ∀s ∈ S : (m1 ++ m2)(s) = m1(s)+m2(s).
3. ∀s ∈ S : (n∗∗ m)(s) = n∗m(s).
4. m1 �= m2 ⇔∀s ∈ S : m1(s) ≤ m2(s).
5. |m| = ∑s∈S m(s).

A multiset m is infinite if |m| = ∞. Otherwise m is finite. When m1 �= m2, sub-
traction is defined as:

6. ∀s ∈ S : (m2 −− m1)(s) = m2(s)−m1(s).

The set of all multisets over S, i.e., the multiset type over S is denoted SMS. The
empty multiset over S is denoted /0MS and is defined by /0MS(s) = 0 for all s ∈ S.

�
The formal definition of multisets given above differs in notation from the formal
definition in [60] in some minor points. We have introduced the symbols ++, −−,
∗∗, and �= for multiset operations to make it explicit when multisets are used in
the formal definition. We have also used the special summation symbol

++∑ to
make multiset sums more explicit.

4.2 Net Structure and Inscriptions

We now proceed with defining the syntax of CP-nets, i.e., the elements that consti-
tute a CPN model. The net structure consists of a finite set of places, P, a finite set
of transitions, T , and a finite set of directed arcs, A. For the example CPN model in
Fig. 4.1, P and T are defined as follows:

P = { PacketsToSend,A,B,DataReceived,NextRec,C,D,NextSend }
T = { SendPacket,TransmitPacket,ReceivePacket,TransmitAck,ReceiveAck }

We require P and T to be disjoint, i.e., that P∩T = /0. The set of directed arcs A con-
necting transitions and places is defined as a set of pairs where the first component
specifies the source of the arc and the second component specifies the destination of
the arc. To ensure that an arc either connects a place to a transition or a transition to
a place, A is required to be a subset of (P×T)∪ (T ×P). For the example model in
Fig. 4.1, the set of arcs A is defined as follows:

84 4 Formal Definition of Non-hierarchical Coloured Petri Nets

A = { (PacketsToSend,SendPacket),(SendPacket,PacketsToSend),
(SendPacket,A),(A,TransmitPacket),(TransmitPacket,B),
(B,ReceivePacket),(NextRec,ReceivePacket),(ReceivePacket,NextRec),
(DataReceived,ReceivePacket),(ReceivePacket,DataReceived),
(ReceivePacket,C),(C,TransmitAck),(TransmitAck,D),(D,ReceiveAck)
(ReceiveAck,NextSend),(NextSend,ReceiveAck),
(NextSend,SendPacket),(SendPacket,NextSend) }

Defining the set of arcs A to be a subset of (P×T)∪ (T ×P) means that we do
not directly include double-headed arcs in the formal definition. The reason is that
a double-headed arc between a place p and a transition t is treated as a syntactical
shorthand for two arcs (p, t) and (t, p) with the same arc expression. In the above
definition of A, each of the two double-headed arcs connected to SendPacket is
represented as two separate arcs – one in each direction in accordance with the
description above. We have also omitted parallel arcs in the formal definition, i.e.,
the possibility of having two arcs leading from a place p to a transition t (or from
a transition t to a place p). Two parallel arcs with arc expressions E1 and E2 can be
treated as a single arc with an arc expression which is the multiset sum E1 ++ E2 of
the arc expressions of the two parallel arcs. CPN Tools supports the use of double-
headed and parallel arcs when creating CPN models and treats them as described
above.

Consider now the net inscriptions, i.e., the arc expressions, guards, colour sets,
and initial markings. We denote by EXPR the set of expressions provided by the
inscription language (e.g., CPN ML in the case of CPN Tools), and by Type[e] we
denote the type of an expression e ∈ EXPR, i.e., the type of the values obtained
when evaluating e. The set of free variables in an expression e is denoted Var[e],
and the type of a variable v is denoted Type[v]. A free variable is a variable which is
not bound in the local environment of the expression. For the arc expressions in the
CPN model in Fig. 4.1, we have the following free variables:

Var[e] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{n,d} if e = (n,d)
{n,d,success} if e = if success then 1‘(n,d)

else empty
{k} if e = k
{n,k} if e = if n=k then k+1 else k
{data} if e = data
{n,k,d,data} if e = if n=k then data else dataˆd
{n} if e = n
{n,success} if e = if success then 1‘n else empty

We denote by Σ the set of colour sets defined for the CPN model. For the example
CPN model in Fig. 4.1, we have

4.2 Net Structure and Inscriptions 85

Σ = { NO,DATA,NOxDATA,BOOL }
We denote the set of variables by V . Each variable is required to have a type that

belongs to Σ . Let V ′ ⊆V be a subset of the set of variables V. The set of expressions
e ∈ EXPR such that Var[e] ⊆V ′ is denoted EXPRV ′ . For the CPN model in Fig. 4.1,
we have the following variables:

V = { n:NO,k:NO,d:DATA,data:DATA,success:BOOL }
corresponding to the variables declared in Fig. 4.2.

The colour set function C : P → Σ assigns to each place p a colour set C(p)
belonging to the set of types Σ . The colour set function for the CPN model in Fig. 4.1
is defined as

C(p) =

⎧⎨
⎩
NO if p ∈ {NextSend,NextRec,C,D}
DATA if p = DataReceived
NOxDATA if p ∈ {PacketsToSend,A,B}

The guard function G : T → EXPRV assigns to each transition t a guard G(t),
which is required to be a boolean expression, i.e., Type[G(t)] = Bool. The set of free
variables appearing in a guard is required to form a subset of V . Hence, it is required
that G(t) ∈ EXPRV . The guard function for the example in Fig. 4.1 is defined as

G(t) = true for all t ∈ T

In the CPN model in Fig. 4.1, no explicit guard is specified for any of the transi-
tions. This is because CPN Tools treats the absence of a guard as a shorthand for the
constant guard true, i.e., the guard that is satisfied in any binding of the transition.

The arc expression function E : A → EXPRV assigns to each arc a an arc expres-
sion E(a). As with guards, we require that the free variables of E(a) are a subset
of V , i.e., that E(a) ∈ EXPRV . For an arc (p, t) ∈ A, connecting a place p ∈ P to
a transition t ∈ T , it is required that the type of the arc expression is the multiset
type over the colour set C(p) of the place p, i.e., Type[E(p, t)] = C(p)MS. Similarly,
for an arc (t, p) ∈ A it is required that Type[E(t, p)] = C(p)MS. The arc expression
function for the example in Fig. 4.1 is defined in Fig. 4.3.

In the definition of E in Fig. 4.3 we have added 1‘ to the arc expressions in
Fig. 4.1 for which the result type is not the multiset type over the colour set of
the place, but the colour set of the place attached to the arc. This is required to
ensure that the type constraint imposed on arc expressions in the formal definition is
satisfied, i.e., that the type of the arc expression is the multiset type over the colour
set of the place connected to the arc. CPN Tools treats an arc expression e with a
type equal to the colour set of the place as a shorthand for 1‘e. Hence, it is not
required to write the 1‘ in the graphical representation of the CPN model.

Finally, the initialisation function I : P → EXPR /0 assigns to each place p an
initialisation expression I(p) which is required to evaluate to a multiset over the
colour set of the place p, i.e., Type[I(p)] = C(p)MS. The initialisation expression
must be a closed expression, i.e., it cannot have any free variables. This means that

86 4 Formal Definition of Non-hierarchical Coloured Petri Nets

E(a) =

⎧⎪⎪⎨
⎪⎪⎩

1‘(n,d) if a ∈ {(PacketsToSend,SendPacket),
(SendPacket,PacketsToSend),
(SendPacket,A),
(A,TransmitPacket),
(B,ReceivePacket)}

if success if a = (TransmitPacket,B)
then 1‘(n,d)
else empty

1‘k if a ∈ {(NextRec,ReceivePacket),
(NextSend,ReceiveAck)}

1‘(if n=k if a ∈ {(ReceivePacket,NextRec),
then k+1 (ReceivePacket,C)}
else k)

1‘data if a = (DataReceived,ReceivePacket)

1‘(if n=k if a = (ReceivePacket,DataReceived)
then dataˆd
else data)

1‘n if a ∈ {(C,TransmitAck),
(D,ReceiveAck),
(ReceiveAck,NextSend),
(NextSend,SendPacket),
(SendPacket,NextSend)}

if success if a = (TransmitAck,D)
then 1‘n
else empty

Fig. 4.3 Definition of the arc expression function for the example in Fig. 4.1

I(p) must belong to EXPR /0. The initialisation function for the CPN model in Fig. 4.1
is defined as

I(p) =

⎧⎪⎪⎨
⎪⎪⎩

AllPackets if p = PacketsToSend
1‘1 if p ∈ {NextSend,NextRec}
1‘"" if p = DataReceived
/0MS otherwise

In the CPN model in Fig. 4.1, we have not explicitly specified the initial marking
for places that initially have no tokens, i.e., places where the initial marking is the
empty multiset /0MS. When no explicit initial marking is specified for a place p, CPN
Tools treats this as a shorthand for specifying that p has the empty multiset as its
initial marking.

In CPN Tools, it would have sufficed to specify the initial markings of NextSend
and NextRec as 1, i.e., omitting the 1‘. Similarly, it would have sufficed to spec-

4.3 Enabling and Occurrence of Steps 87

ify the initial marking of DataReceived as "". The reason is that when an initial
marking evaluates to a value v belonging to the colour set of the place, CPN Tools
considers this as a shorthand for the multiset 1‘v. This shorthand is introduced to
make it convenient to specify initial markings consisting of a single colour – this
occurs often in practice.

The definition below summarises the definition of a CP-net based on the above
description.

Definition 4.2. A non-hierarchical Coloured Petri Net is a nine-tuple
CPN = (P,T,A,Σ ,V,C,G,E, I), where:

1. P is a finite set of places.
2. T is a finite set of transitions T such that P∩T = /0.
3. A ⊆ P×T ∪T ×P is a set of directed arcs.
4. Σ is a finite set of non-empty colour sets.
5. V is a finite set of typed variables such that Type[v] ∈ Σ for all variables v ∈V .
6. C : P → Σ is a colour set function that assigns a colour set to each place.
7. G : T → EXPRV is a guard function that assigns a guard to each transition t such

that Type[G(t)] = Bool.
8. E : A → EXPRV is an arc expression function that assigns an arc expression to

each arc a such that Type[E(a)] = C(p)MS, where p is the place connected to the
arc a.

9. I : P → EXPR /0 is an initialisation function that assigns an initialisation expres-
sion to each place p such that Type[I(p)] = C(p)MS.

�
The formal definition of the syntax of CP-nets given above differs from the for-

mal definition in [60] in some minor points. In the definition of a CP-net, we do not
directly allow parallel arcs, and the definition of a CP-net has been augmented to
include a set of variables V . The latter has been done to make the formal definition
coincide with how the user constructs a CPN model in CPN Tools. Here the user is
required to declare the variables that can appear as free variables in the guards and
arc expressions.

4.3 Enabling and Occurrence of Steps

We shall now define the semantics of CP-nets, i.e., the enabling and occurrence of
steps. The enabling rule specifies when a step (consisting of a multiset of binding
elements) is enabled in a given marking, and the occurrence rule specifies how the
marking changes when an enabled step occurs. In the following we shall use P, T ,
A, Σ , V , C, G, E, and I, to refer to the elements of an arbitrary CP-net as defined in
Definition 4.2.

88 4 Formal Definition of Non-hierarchical Coloured Petri Nets

A marking M is a function that maps each place p into a multiset of values M(p)
representing the marking of p. The individual elements in the multiset M(p) are
called tokens. The multiset of tokens present on a place p in a marking M is required
to match the type of the place, i.e., M(p) ∈C(p)MS. As an example, the marking M
shown in Fig. 4.1 is defined as

M(p)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1‘(1,"COL") ++ 1‘(2,"OUR") ++
1‘(3,"ED ") ++ 1‘(4,"PET") ++ if p = PacketsToSend
1‘(5,"RI ") ++ 1‘(6,"NET")

1‘3 if p ∈ {NextSend,NextRec}

1‘"COLOUR" if p = DataReceived

1‘(1,"COL") ++ 2‘(2,"OUR") ++ if p = A
1‘(3,"ED ")

1‘(1,"COL") ++ 3‘(2,"OUR") ++ if p = B
2‘(3,"ED ")

/0MS if p ∈ {C,D}
A CP-net has a distinguished initial marking, denoted M0, obtained by evaluating

the initialisation expressions. The initialisation expressions have no free variables,
and hence we evaluate these in the empty binding 〈〉, i.e., M0(p) = I(p)〈〉 for all
p ∈ P. For the CPN model in Fig. 4.1, we have the following initial marking:

M0(p)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1‘(1,"COL") ++ 1‘(2,"OUR") ++
1‘(3,"ED ") ++ 1‘(4,"PET") ++ if p = PacketsToSend
1‘(5,"RI ") ++ 1‘(6,"NET")

1‘1 if p ∈ {NextSend,NextRec}

1‘"" if p = DataReceived

/0MS otherwise

The variables of a transition t, denoted Var(t), consist of the free variables ap-
pearing in the guard and in any of the arc expressions of any arcs connected to the
transition. The sets of variables for the transitions in Fig. 4.1 are as follows:

4.3 Enabling and Occurrence of Steps 89

Var(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{ n,d } if t = SendPacket
{ n,d,success } if t = TransmitPacket
{ n,d,k,data } if t = ReceivePacket
{ n,success } if t = TransmitAck
{ n,k } if t = ReceiveAck

A binding b of a transition t is a function that maps each variable v of the tran-
sition t to a value b(v) belonging to the type of the variable v, i.e., b(v) ∈ Type[v].
Bindings are written 〈var1 = val1,var2 = val2, . . . ,varn = valn〉, where var1, var2,
. . . ,varn are the variables in Var(t) and vali is the value bound to the variable vari.
A binding element is a pair (t,b) consisting of a transition t and a binding b of t. A
step is a non-empty, finite multiset of binding elements. Several examples of binding
elements and steps for the CPN model in Fig. 4.1 were given in Sect. 2.5. A step is
required to be non-empty to avoid all markings having an enabled step (the empty
step) without necessarily having any enabled binding elements. A step is required
to be finite, since it would otherwise be possible for a step to produce an infinite
number of tokens with the same colour on a place. This would be illegal with our
concept of multisets, since we require the number of appearances of each element
to be finite.

The semantic concepts and notation introduced above are summarised in the fol-
lowing definition.

Definition 4.3. For a Coloured Petri Net CPN = (P,T,A,Σ ,V,C,G,E, I), we define
the following concepts:

1. A marking is a function M that maps each place p ∈ P into a multiset of tokens
M(p) ∈C(p)MS.

2. The initial marking M0 is defined by M0(p) = I(p)〈〉 for all p ∈ P.
3. The variables of a transition t are denoted Var(t) ⊆ V and consist of the free

variables appearing in the guard of t and in the arc expressions of arcs connected
to t.

4. A binding of a transition t is a function b that maps each variable v ∈ Var(t) into
a value b(v) ∈ Type[v]. The set of all bindings for a transition t is denoted B(t).

5. A binding element is a pair (t,b) such that t ∈ T and b ∈ B(t). The set of all
binding elements BE(t) for a transition t is defined by BE(t) = {(t,b) | b ∈ B(t)}.
The set of all binding elements in a CPN model is denoted BE.

6. A step Y ∈ BEMS is a non-empty, finite multiset of binding elements.
�

We now consider the rules for the enabling and occurrence of steps. We shall
start by considering the enabling and occurrence of a single binding element, and
then generalise this to steps with more binding elements.

Enabling and occurrence are based on evaluation of guards and arc expressions.
For a binding element (t,b), we denote by G(t)〈b〉 the result of evaluating the guard
expression G(t) of a transition t in the binding b. Similarly, we denote by E(a)〈b〉
the result of evaluating the arc expression E(a) of an arc a in the binding b. For

90 4 Formal Definition of Non-hierarchical Coloured Petri Nets

a given place p, E(p, t) denotes the arc expression on the input arc from p to t.
When no such arc exists, we define E(p, t) = /0MS. Analogously, E(t, p) denotes the
arc expression on the output arc from t to p. When no such arc exists, we define
E(t, p) = /0MS.

For a binding element (t,b) to be enabled in a marking M, we demand two dif-
ferent properties to be fulfilled. Firstly, the guard of the transition must be satisfied.
This means that G(t)〈b〉 must evaluate to true. Secondly, there must be sufficient
tokens on the input places of the transition. Let (p, t) be an input arc of the transition
t. The evaluation E(p, t)〈b〉 of the expression E(p, t) on the arc from p to t in the
binding b specifies the multiset of tokens required on p for t to be enabled with the
binding b, and it specifies the multiset of tokens that the transition t removes from
the place p when t occurs with the binding b. Hence, a binding element (t,b) is en-
abled in a marking M if the guard is satisfied and the following holds for each input
place p of t:

E(p, t)〈b〉 �= M(p)

It should be noted that it is sufficient to check the above condition for input places
p. The reason for this is that E(p, t)〈b〉 evaluates to /0MS if p is not an input place of
t. Hence, the condition is trivially satisfied for such places. As an example, consider
the binding element (ReceivePacket, bRP) for the CPN model in Fig. 4.1, where

bRP = 〈n=3, d="ED ", k=3, data="COLOUR"〉
Considering the input arcs of ReceivePacket, we have

E(B,ReceivePacket)〈bRP〉 = 1‘(3,"ED ")
�= 1‘(1,"COL") ++

3‘(2,"OUR") ++ 2‘(3,"ED ")
E(NextRec,ReceivePacket)〈bRP〉 = 1‘3

�= 1‘3

E(DataReceived,ReceivePacket)〈bRP〉 = 1‘"COLOUR"
�= 1‘"COLOUR"

This means that the multiset of tokens obtained by evaluating each of the in-
put arc expressions of ReceivePacket in the binding element bRP is smaller than or
equal to the multiset of tokens present on the corresponding input place. The guard
of the transition ReceivePacket is the constant true. Hence, the binding element
(ReceivePacket, bRP) is enabled in the marking shown in Fig. 4.1.

When an enabled binding element (t,b) occurs, it removes tokens from the input
places of t and adds tokens to the output places of t. The multiset of tokens removed
from an input place p when t occurs in a binding b is given by

E(p, t)〈b〉
and the multiset of tokens added to an output place p is given by

4.3 Enabling and Occurrence of Steps 91

E(t, p)〈b〉
which means that the new marking M′ reached when an enabled binding element
(t,b) occurs in a marking M is given by

M′(p) = (M(p)−− E(p, t)〈b〉)++ E(t, p)〈b〉 for all p ∈ P

As an example, consider the marking M shown in Fig. 4.1. The markings of
the places NextRec, B, C, and DataReceived in the marking M′ reached when
(ReceivePacket, bRP) occurs in M are given by

M′(NextRec) = (1‘3 -- 1‘3) ++ 1‘4
= 1‘4

M′(B) = (1‘(1,"COL") ++ 3‘(2,"OUR") ++ 2‘(3,"ED ")
-- 1‘(3,"ED ")) ++ /0MS

= 1‘(1,"COL") ++ 3‘(2,"OUR") ++ 1‘(3,"ED ")

M′(C) = (/0MS -- /0MS) ++ 1‘4
= 1‘4

M′(DataReceived) = (1‘"COLOUR" -- 1‘"COLOUR")
++ 1‘"COLOURED "

= 1‘"COLOURED "

The enabling and occurrence of a binding element are summarised in the follow-
ing definition.

Definition 4.4. A binding element (t,b)∈BE is enabled in a marking M if and only
if the following two properties are satisfied:

1. G(t)〈b〉.
2. ∀p ∈ P : E(p, t)〈b〉 �= M(p).

When (t,b) is enabled in M, it may occur, leading to the marking M′ defined by:

3. ∀p ∈ P : M′(p) = (M(p)−− E(p, t)〈b〉)++ E(t, p)〈b〉.
�

When one is testing the property in item 2 it suffices to check the input places
of t, since E(p, t)〈b〉 evaluates to /0MS if there is no arc from p to t. Similarly, when
one is computing the new marking M′ in item 3, it suffices to consider the places
connected to t, since E(p, t)〈b〉 and E(t, p)〈b〉 both evaluate to /0MS for all places p
not connected to t.

Consider now the enabling and occurrence of steps. First of all, each binding
element (t,b) included in a step Y is required to satisfy the guard of t. Furthermore,
as explained in Sect. 2.5, all binding elements in the step Y must be allowed to
remove their own private tokens without sharing these tokens with other binding

92 4 Formal Definition of Non-hierarchical Coloured Petri Nets

elements included in the step. Hence, we demand that each place p must be marked
by a multiset of tokens M(p) that is larger than or equal to the sum of the tokens
that are removed from p by the individual binding elements of the step Y , i.e., that

++
MS∑
(t,b)∈Y

E(p, t)〈b〉 �= M(p)

where we have written MS to the lower left of the summation symbol to specify that
we are adding a multiset of multisets. Each term E(p, t)〈b〉 occurs as many times
in the sum as (t,b) occurs in Y . Hence, if a binding element (t,b) occurs n times in
Y , the tokens E(p, t)〈b〉 will be counted n times in the summation. As an example,
consider the bindings

bTP1 = (TransmitPacket, 〈n=1, d="COL", success=true〉)
bTP2 = (TransmitPacket, 〈n=2, d="OUR", success=true〉)

for the transition TransmitPacket in the CPN model in Fig. 4.1, and the step

TP = 1‘(TransmitPacket, bTP1)++ 2‘(TransmitPacket, bTP2)

For the input place A of TransmitPacket, we have
++
MS∑
(t,b)∈TP

E(A, t)〈b〉

= E(A,TransmitPacket)〈bTP1〉++
E(A,TransmitPacket)〈bTP2〉++ E(A,TransmitPacket)〈bTP2〉

= 1‘(1,"COL") ++ 2‘(2,"OUR")

This multiset is contained in the multiset present on place A in the marking in
Fig. 4.1, and hence we conclude that the step TP is enabled.

When an enabled step Y occurs, it will remove

++
MS∑
(t,b)∈Y

E(p, t)〈b〉

tokens from place p, and it will add

++
MS∑
(t,b)∈Y

E(t, p)〈b〉

This means that the new marking M′ reached when an enabled step Y occurs in a
marking M is given by

M′(p) = (M(p)−− ++
MS∑
(t,b)∈Y

E(p, t)〈b〉)++ ++
MS∑
(t,b)∈Y

E(t, p)〈b〉 for all p ∈ P

4.3 Enabling and Occurrence of Steps 93

As an example, consider the marking M shown in Fig. 4.1. The marking of the
places A and B in the marking M′ reached when TP occurs in M is given by

M′(A) = (1‘(1,"COL") ++ 2‘(2,"OUR") ++ 1‘(3,"ED ") --
(1‘(1,"COL") ++ 2‘(2,"OUR"))) ++ /0MS

= 1‘(3,"ED ")

M′(B) = (1‘(1,"COL") ++ 3‘(2,"OUR") ++ 2‘(3,"ED ") --
/0MS) ++ 1‘(1,"COL") ++ 2‘(2,"OUR")

= 2‘(1,"COL") ++ 5‘(2,"OUR") ++ 2‘(3,"ED ")

The enabling and occurrence of steps are summarised in the following definition.
Definition 4.4 is a special case of the definition below.

Definition 4.5. A step Y ∈ BEMS is enabled in a marking M if and only if the fol-
lowing two properties are satisfied:

1. ∀(t,b) ∈ Y : G(t)〈b〉.
2. ∀p ∈ P :

++
MS∑
(t,b)∈Y

E(p, t)〈b〉 �= M(p).

When Y is enabled in M, it may occur, leading to the marking M′ defined by:

3. ∀p ∈ P : M′(p) = (M(p)−− ++
MS∑
(t,b)∈Y

E(p, t)〈b〉)++ ++
MS∑
(t,b)∈Y

E(t, p)〈b〉.

�
When a step Y occurs in a marking M1, producing a new marking M2 as specified

by Definition 4.5, item 3, we say that the marking M2 is directly reachable from M1

by the step Y . This is also written as

M1
Y−→M2 or M1 −→ M2

In the first case, we give all details. In the second, we state only that M2 is directly
reachable from M1 without specifying the step involved. We shall also write

M1
Y−→

to denote that a step Y is enabled in M1 without explicitly specifying the marking
that it will lead to.

The following definition defines occurrence sequences and reachability:

94 4 Formal Definition of Non-hierarchical Coloured Petri Nets

Definition 4.6. A finite occurrence sequence of length n ≥ 0 is an alternating se-
quence of markings and steps, written as

M1
Y1−→M2

Y2−→M3 · · ·Mn
Yn−→Mn+1

such that Mi
Yi−→Mi+1 for all 1 ≤ i ≤ n. All markings in the sequence are said to

be reachable from M1. This implies that an arbitrary marking M is reachable from
itself by the trivial occurrence sequence of length 0.

Analogously, an infinite occurrence sequence is a sequence of markings and
steps

M1
Y1−→ M2

Y2−→ M3
Y3−→ ·· ·

such that Mi
Yi−→Mi+1 for all i ≥ 1. The set of markings reachable from a marking M

is denoted R(M). The set of reachable markings is R(M0), i.e., the set of markings
reachable from the initial marking M0.

�
The following theorem formalises the property that a marking reached via the

occurrence of a step Y can also be reached via any division of Y into two smaller
steps Y1 and Y2 and then letting Y1 occur followed by Y2. When applied recursively,
the theorem implies that the marking reached via the occurrence of a step Y can also
be reached by letting the binding elements in Y occur in any arbitrary order. The
theorem follows from the definition of multiset operations in Definition 4.1 and the
definition of enabling and occurrence in Definition 4.5.

Theorem 4.7. Let Y be a step and M and M′ be markings such that M
Y−→M′. Let

Y1 and Y2 be steps such that

Y = Y1 ++ Y2

Then there exists a marking M′′ such that

M
Y1−→ M′′ Y2−→M′

�
The formal definition of the semantics of CP-nets given above differs from the

formal definition in [60] in some minor points. We have used
++
MS∑ to represent a

multiset sum of multisets. Satisfiability of the guard is now an explicit part of the
definition of enabling rather than being part of the definition of a binding element.
Moreover, we have changed the notation for enabling and occurrence sequences
to use −→ instead of [〉, and have used R(M) instead of [M〉 to denote the set
of markings which are reachable from M. The semantics given in this chapter is
equivalent to the semantics given in [60].

Chapter 5
Hierarchical Coloured Petri Nets

This chapter shows how a CPN model can be organised as a set of modules, in a
way similar to that in which programs are organised into modules. There are several
reasons why modules are needed. Firstly, it is impractical to draw a CPN model of
a large system as a single net, since it would become very large and inconvenient.
Although the net can be printed on a set of separate sheets and glued together, it
would be difficult to get an overview and it would be time-consuming to produce a
nice layout. Secondly, the human modeller needs abstractions that make it possible
to concentrate on only a few details at a time. CPN modules can be seen as black
boxes, where modellers, when they desire, can forget about the details within mod-
ules. This makes it possible to work at different abstraction levels, and hence we
shall also refer to CPN models with modules as hierarchical CPN models. Thirdly,
there are often system components that are used repeatedly. It would be inefficient
to model these components several times. Instead, a module can be defined once and
used repeatedly. In this way there is only one description to read, and one description
to modify when changes are necessary.

Section 5.1 introduces the concept of modules and their interfaces, and explains
how to compose modules using substitution transitions. Section 5.2 introduces mod-
ule instances, and Sect. 5.3 shows how modules can be parameterised. Section 5.4
shows how to parameterise a CPN model to make it easy to consider different con-
figurations of the modelled system. Section 5.5 introduces the concept of fusion
sets, and Sect. 5.6 shows how a hierarchical CPN model can be unfolded into a
non-hierarchical CPN model.

5.1 Modules and Interfaces

To illustrate the use of modules, we revisit the CPN model of the protocol given
in Sect. 2.4 and develop a hierarchical CPN model for this example protocol. A
straightforward idea is to create a module for the sender, a module for the network,
and a module for the receiver. These three modules could look as shown in Figs 5.1–

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 5, 95
c© Springer-Verlag Berlin Heidelberg 2009

96 5 Hierarchical Coloured Petri Nets

n

(n,d)

n

(n,d)

n

k

Receive
Ack

Send
Packet A Out

NOxDATA

D In

NO

NextSend

Packets
To SendI/O

AllPackets

NOxDATA

I/O

In

Out

NO

1`1

Fig. 5.1 Sender module

if n=k
then k+1
else k

(n,d)

if n=k
then data^d
else data

k

data

if n=k
then k+1
else k

Receive
Packet

COut

NO

BIn

NOxDATA

Data
Received I/O

""

DATA

NextRec

1`1

NO

I/O

In

Out

Fig. 5.2 Receiver module

5.3. Intuitively, the protocol has been cut into three separate parts, where each part
is identical to a subnet of Fig. 2.10.

The Sender module contains two transitions and four places. Place D is an input
port, place A is an output port, and the place PacketsToSend is an input/output port.
This means that A, D, and PacketsToSend constitute the interface through which
the Sender module exchanges tokens with its environment (i.e., the other modules).
The Sender module will import tokens via the input port D and export tokens via
the output port A. An input/output port is a port through which a module can both
import and export tokens. Port places can be recognised by rectangular port tags

5.1 Modules and Interfaces 97

n

if success
then 1`(n,d)
else empty

if success
then 1`n
else empty

(n,d)

Transmit
Ack

Transmit
Packet

C In

NO

B Out

NOxDATA

DOut

NO

AIn

NOxDATA

In

Out

Out

In

Fig. 5.3 Network module

positioned next to them specifying whether the port place is an input, output, or
input/output port. The place NextSend is an internal place, which is relevant only to
the Sender module itself.

The Receiver module has an input port B, an output port C, an input/output port
DataReceived, and an internal place NextRec. The Network module has two input
ports, A and C, together with two output ports, B and D. The Network module has
no internal places.

To tie the three modules together, we create the Protocol module, shown in
Fig. 5.4. This represents a more abstract view of the entire protocol system. In the
Protocol module, we can see that the Sender, Network, and Receiver exchange to-
kens with each other, via the places A, B, C, and D – but we cannot see the details of
what the Sender, Network, and Receiver do.

The rectangular boxes with double-line borders in the Protocol module are sub-
stitution transitions. Each of them has a rectangular substitution tag positioned next

substitution transition. Intuitively, this means that the submodule presents a more
detailed view of the behaviour represented by the substitution transition, in a way

Receiver

Receiver

Network

Network

Sender

Sender

Packets
To Send

AllPackets

NOxDATA

C

NO

D

NO

A

NOxDATA

Data
Received

""

DATA

B

NOxDATA

Sender Network Receiver

Fig. 5.4 Protocol module: top-level module of the hierarchical protocol model

to it. The substitution tag contains the name of a submodule which is related to the

98 5 Hierarchical Coloured Petri Nets

similar to that in which the implementation of a procedure provides a more detailed
view of the effect of a procedure call. In Fig. 5.4, each substitution transition has the
same name as its submodule, but this is not required in general.

The input places of substitution transitions are called input sockets, and the output
places are called output sockets. This means that A is an output socket for the substi-
tution transition Sender, and an input socket for the substitution transition Network.
The place PacketsToSend is an input/output socket for the substitution transition
Sender.

The socket places of a substitution transition constitute the interface of the sub-
stitution transition. To obtain a complete hierarchical model, it must be specified
how the interface of each submodule is related to the interface of its substitution
transition. This is done by means of a port–socket relation, which relates the port
places of the submodule to the socket places of the substitution transition. Input
ports are related to input sockets, output ports to output sockets, and input/output
ports to input/output sockets. In Figs 5.1–5.4, each port has the same name as the
socket to which it is related, but this is not required in general.

When a port and a socket are related, the two places constitute two different
views of a single place. This means that related port and socket places always share
the same marking and hence conceptually become a single compound place. Fig-
ures 5.5–5.7 show the marking of the Protocol, Sender, and Network modules after
an occurrence of the transition SendPacket in the initial marking.

When the transition SendPacket occurs, it creates a token at the output port A in
the Sender module (see Fig. 5.6). This port place is related to the output socket A
of the substitution transition Sender in the Protocol module (see Fig. 5.5). Hence,
the new token will also appear at place A in the Protocol module. This place is also

Receiver

Receiver

Network

Network

Sender

Sender

Packets
To Send

AllPackets

NOxDATA

C

NO

D

NO

A

NOxDATA

Data
Received

""

DATA

B

NOxDATA

Sender Network Receiver

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

1 1`(1,"COL")

11`""

Fig. 5.5 Marking of Protocol module, after occurrence of SendPacket

5.1 Modules and Interfaces 99

n

(n,d)

n

(n,d)

n

k

Receive
Ack

Send
Packet A Out

NOxDATA

D In

NO

NextSend

1`1

NO

Packets
To SendI/O

AllPackets

NOxDATA

I/O

In

Out
1

1`(1,"COL")

1 1`1

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 5.6 Marking of Sender module, after occurrence of SendPacket

an input socket for the substitution transition Network and has the port place A in
the Network module (see Fig. 5.7) related to it. Hence, the new token also becomes
available at the port place A of the Network module. In other words, the three places
A in the Protocol, Sender, and Network modules are three different views of a sin-
gle compound place, through which the modules can interchange tokens with each
other. Similar remarks can be made about the places B, C, and D. The place D ap-
pears in the Protocol, Sender, and Network modules, while B and C appear in the
Protocol, Network, and Receiver modules.

We have seen above that two related port and socket places constitute different
views of a single place, and that this means that they always have the same marking.
Obviously, this implies that they also need to have identical colour sets, and their
initial marking expressions must evaluate to the same multiset of tokens. The only
exception is that if a port place does not have an initial marking expression, then it

n

if success
then 1`(n,d)
else empty

if success
then 1`n
else empty

(n,d)

Transmit
Ack

Transmit
Packet

C In

NO

B Out

NOxDATA

DOut

NO

AIn

NOxDATA

In

Out

Out

In

1

1`(1,"COL")

Fig. 5.7 Marking of Network module, after occurrence of SendPacket

100 5 Hierarchical Coloured Petri Nets

obtains its initial marking from the related socket place. We shall show later how this
can be used to parameterise modules. It should be noted that substitution transitions
do not have arc expressions or guards. It does not make sense to talk about the en-
abling and occurrence of a substitution transition. Instead, the substitution transition
represents the compound behaviour of its submodule.

In the hierarchical model presented above there are only two levels of abstraction.
The highest abstraction level is the Protocol module, and the lowest abstraction level
is the Sender, Network, and Receiver modules. In general, there can be an arbitrary
number of abstraction levels. As an example, a more detailed model of the protocol
could be obtained by turning the transition SendPacket into a substitution transition
having a submodule where the send operation is defined by a number of separate
transitions, for example, one for the ordinary send operation and another for the
resend operation. A larger system could also be envisioned in which the Protocol
module is a submodule of one or more substitution transitions. CPN models of larger
systems typically have up to 10 abstraction levels.

5.2 Module Instances and Hierarchy

Next let us take a closer look at the Network module in Fig. 5.3. It contains two
transitions that have a very similar behaviour. However, the token colours involved
are slightly different. The transition TransmitPacket deals with data packets of type
NOxDATA, whereas the transition TransmitAck deals with acknowledgements of
type NO. This means that we cannot immediately use the same submodule to rep-
resent the behaviour of TransmitPacket and TransmitAck, because a socket and its
related port must have the same colour set. To overcome this problem, we use a
union colour set in a way similar to that in Sect. 3.2. It can contain values from
NOxDATA and values from NO, and is defined as follows:

colset PACKET = union Data:NOxDATA + Ack:NO;

This colour set is a union, and it uses two constructors Data and Ack to tell
whether a data value of this colour set represents a data packet (such as Data
(1,"COL")) or an acknowledgement packet (such as Ack(2)). Using the
PACKET colour set, we can construct a modified version of the hierarchical
protocol model consisting of the five modules shown in Figs 5.8–5.12.

As before, there are modules called Protocol, Sender, Network, and Receiver.
For the Protocol, Sender, and Receiver modules no changes are made, except for
those implied by the use of the colour set PACKET instead of NOxDATA and NO.
The Network module now has two substitution transitions, each related to the new
Transmit module shown in Fig. 5.12. The transition Transmit of the Transmit module
transmits packets of type PACKET, i.e., both data packets and acknowledgements.
The variable p is a variable of the colour set PACKET.

5.2 Module Instances and Hierarchy 101

Network

Network

Receiver

Receiver

Sender

Sender

Packets
To Send

AllPackets

PACKET

C

PACKET

D

PACKET

A

PACKET

Data
Received

B

PACKET

Sender ReceiverNetwork

DATA

""

Fig. 5.8 Modified Protocol module

nk

Data(n,d)

Ack(n)

Data(n,d)

n

Receive
Ack

Send
Packet A Out

PACKET

D In

PACKET

NextSend

1`1

NO

Packets
To Send

I/O

AllPackets

PACKET

In

Out

I/O

Fig. 5.9 Modified Sender module

The Transmit module is used as a submodule of the substitution transitions Trans-
mitData and TransmitAck in the Network module. This means that there will be two
separate instances of the Transmit module – one for each of the two substitution
transitions. For the instance of the Transmit module which is a submodule of the
substitution transition TransmitData in Fig. 5.11 the port place IN is related to the
socket place A, and the port place OUT is related to the socket place B. For the
instance of the Transmit module which is a submodule of the substitution transi-
tion TransmitAck in Fig. 5.11, the port place IN is related to the socket place C, and

102 5 Hierarchical Coloured Petri Nets

if n=k
then Ack(k+1)
else Ack(k)

Data(n,d)

if n=k
then data^d
else data

k

data

if n=k
then k+1
else k

Receive
 Packet

COut

PACKET

BIn

PACKET

Data
Received

I/O

""

DATA

NextRec

1`1

NO

In

Out

I/O

Fig. 5.10 Modified Receiver module

Transmit
Ack

Transmit

Transmit
Data

Transmit

C In

PACKET

DOut

PACKET

B Out

PACKET

AIn

PACKET

In Out

Out In

Transmit

Transmit

Fig. 5.11 Modified Network module

p
Transmit

PACKET

INIn

PACKET

if success
then 1`p
else empty

OUT OutIn Out

Fig. 5.12 New Transmit module

the port place OUT is related to the socket place D. The places and transitions in a
module instance are referred to as place instances and transition instances.

Each instance of a module has its own marking. This means that the marking
of the instance of the Transmit module corresponding to the substitution transition
TransmitData is independent of the marking of the instance corresponding to the
substitution transition TransmitAck. Figure 5.13 shows a marking of the Protocol
module with data packets on each of the socket places A and B, and acknowledge-
ments on each of the places C and D. Figures 5.14 and 5.15 show the markings of
the two instances of the Transmit module. It can be seen that each instance has its

5.2 Module Instances and Hierarchy 103

Network

Network

Receiver

Receiver

Sender

Sender

Packets
To Send

AllPackets

PACKET

C

PACKET

D

PACKET

A

PACKET

Data
Received

B

PACKET

Sender ReceiverNetwork

DATA

""6

1`Data((1,"COL"))++
1`Data((2,"OUR"))++
1`Data((3,"ED "))++
1`Data((4,"PET"))++
1`Data((5,"RI "))++
1`Data((6,"NET"))

3
3`Ack(3)

2

2`Ack(3)

3

1`Data((2,"OUR"))++
2`Data((3,"ED "))

11`"COLOUR"

1

1`Data((2,"OUR"))

Fig. 5.13 Example marking of the modified Protocol module

if success
then 1`p
else emptyp

Transmit OUT Out

PACKET

INIn

PACKET

In Out

1
1`Data((2,"OUR"))

3

1`Data((2,"OUR"))++
2`Data((3,"ED "))

Fig. 5.14 Marking of the Transmit module instance corresponding to TransmitData

if success
then 1`p
else emptyp

Transmit OUT Out

PACKET

INIn

PACKET

In Out

2
2`Ack(3)

3

3`Ack(3)

Fig. 5.15 Marking of the Transmit module instance corresponding to TransmitAck

private marking, matching the tokens present on the socket places of the associated
substitution transition.

The relationship between modules in a hierarchical model can be represented as
a directed graph which has a node for each module and an arc for each substitu-
tion transition. For the CPN model in Figs 5.8–5.12, the module hierarchy looks as
shown in Fig. 5.16. The names of the modules have been written inside the nodes,
and the arcs have been labelled with the names of the substitution transitions. The
node representing the Protocol module has no incoming arcs, it is a root of the mod-
ule hierarchy and is called a prime module. This node has three outgoing arcs, cor-
responding to the three substitution transitions in the Protocol module (see Fig. 5.8).
The arc from Protocol to Sender, labelled Sender, specifies that the substitution

104 5 Hierarchical Coloured Petri Nets

Network Receiver

Protocol

Sender

ReceiverSender Network

Transmit

TransmitData TransmitAck

Fig. 5.16 Module hierarchy for the hierarchical protocol model in Figs 5.8–5.12

transition Sender in the Protocol module has the Sender module as its related mod-
ule. The modules that can be reached by following the arcs starting from a given
module are said to be submodules of the latter module. The module hierarchy is
required to be acyclic and hence it is not possible for a module to be a submodule of
itself. This is required to ensure that there are only finitely many instances of each
module when the modules are instantiated.

Before simulation of a hierarchical model is possible, the appropriate number
of instances of each module must be instantiated and associated with substitution
transitions. This means that the module hierarchy is unfolded into a directed tree
called the instance hierarchy, where each node represents an instance of a mod-
ule and the arcs represent substitution transitions. A tree is a directed graph where
each node has at most one predecessor. Figure 5.17 shows the instance hierarchy
obtained from the module hierarchy in Fig. 5.16. For the Transmit module which is
the only module with more than one instance, we have written the instance number
in parentheses following the module name. The first instance of the Transmit module
is associated with the substitution transition TransmitData and the second instance is
associated with the substitution transition TransmitAck. Instantiation of modules is
handled fully automatically by CPN Tools, and the user is able to access the instance
hierarchy via the index. Figure 5.18 shows how the module instances are organised
in the index for the CPN model shown in Figs 5.8–5.12. A small triangle to the
left of a module name indicates that it has submodules, and the submodules of the
module are listed below it, and indented to the right. Each indentation level hence
corresponds to a level in the instance hierarchy. A number in parentheses after a
module name indicates that there are multiple instances, whereas a missing number
indicates that there is only one instance of that module. The user can hide/show the
submodules of a module in the index by clicking on the small triangle, and hence
for large models it is possible to show only parts of the instance hierarchy.

5.3 Instance Folding and Module Parameterisation 105

Network Receiver

Protocol

Sender

ReceiverSender Network

Transmit(1)

TransmitAck

Transmit(2)

TransmitData

Fig. 5.17 Instance hierarchy for the hierarchical protocol model in Figs 5.8–5.12

Fig. 5.18 Index in CPN Tools for accessing module instances

It should be noted that instantiation of modules is done as the model is being con-
structed, i.e., prior to simulation of the CPN model. Hence, the number of instances
of modules is fixed throughout the simulation of a hierarchical model, and it is not
possible to dynamically instantiate new modules during the simulation.

5.3 Instance Folding and Module Parameterisation

As another example of a hierarchical model we shall consider a variant of the pro-
tocol model, with two receivers. This will be used to illustrate two modelling tech-
niques that are often used in practice: a technique that allows us to achieve parame-
terisation of modules, and a technique that allows multiple instances of a module to
be folded into a single instance of a module.

Figures 5.19–5.23 show a first hierarchical model (and a representative marking)
of the protocol with two receivers; these receivers will be referred to as Receiver1
and Receiver2. The Transmit module is not shown, since it is identical to the one
shown in Fig. 5.12. The model with two receivers was obtained by splitting the net-
work places A, B, C, and D of the original model into eight places using A1, B1,

106 5 Hierarchical Coloured Petri Nets

Network

Network

Receiver1

Receiver

Receiver2

Receiver

Sender

Sender

Packets
To Send

AllPackets

PACKET
A1

PACKET

D1

PACKET

Data
Received1

""

DATA

C1

PACKET

B1

PACKET

C2

PACKET

D2

PACKET

A2

PACKET

Data
Received2

""

DATA

B2

PACKET

Sender Receiver ReceiverNetwork

6

1`Data((1,"COL"))++
1`Data((2,"OUR"))++
1`Data((3,"ED "))++
1`Data((4,"PET"))++
1`Data((5,"RI "))++
1`Data((6,"NET"))

1

1`""

2 2`Data((1,"COL"))

1
1`Ack(2)

2
2`Ack(2)

1
1`"COL"

1 1`Data((1,"COL"))

Fig. 5.19 Protocol module for protocol with two receivers

Ack(n)

Data(n,d)

Data(n,d)

Ack(n)

Data(n,d)

n

nk

Receive
Ack

Send
Packet

D1 In

PACKET

A2 Out

PACKET

A1 Out

PACKET

D2 In

PACKET

NextSend

1`1

NO

Packets
To Send

I/O

AllPackets

PACKET

I/O

In

Out

Out

In

2 2`Ack(2)

1 1`1

6

1`Data((1,"COL"))++
1`Data((2,"OUR"))++
1`Data((3,"ED "))++
1`Data((4,"PET"))++
1`Data((5,"RI "))++
1`Data((6,"NET"))

Fig. 5.20 Sender module for protocol with two receivers

C1, and D1 for communication with Receiver1 and A2, B2, C2, and D2 for com-
munication with Receiver2 (see Fig. 5.19). Furthermore, the substitution transitions
Receiver1 and Receiver2 have been introduced, representing the two receivers and
linked accordingly to the network places. The data received by Receiver1 is put
on the place DataReceived1, and the data received by Receiver2 is put on place
DataReceived2. The Network module (see Fig. 5.21) has been modified to take the

5.3 Instance Folding and Module Parameterisation 107

Transmit
Ack1

Transmit

Transmit
Ack2

Transmit

Transmit
Data2

Transmit

Transmit
Data1

Transmit

A2In

PACKET

D1Out

PACKET

A1In

PACKET

B2 Out

PACKET

D2Out

PACKET

B1 Out

PACKET

C2 In

PACKET

C1 In

PACKET

In

In

Out

Out

Out

In

Out

In

Transmit

Transmit

Transmit

Transmit

1 1`Data((1,"COL"))

2 2`Ack(2)

2 2`Data((1,"COL"))

1 1`Ack(2)

Fig. 5.21 Network module for protocol with two receivers

eight network places into account. The Sender module (see Fig. 5.20) has been
modified so that it sends (broadcasts) each data packet to both of the receivers. The
transition ReceiveAck can only occur when the input places contain two identical
acknowledgements – one from each of the two receivers. The Receiver module has
not been modified. In the first instance of the Receiver module (corresponding to Re-
ceiver1), the port place B is related to the socket place B1, and in the second instance
of the Receiver module (corresponding to Receiver2), the port place B is related to
the socket place B2. The port place C is related to C1 and C2 in a similar fashion.
Finally, the port place DataReceived is related to the socket places DataReceived1
and DataReceived2. This time there will be one instance of the Protocol, Sender,
and Network modules, four instances of the Transmit module, and two instances of
the Receiver module.

In the CPN model above, we have chosen to split the network places A, B, C, and
D of the original model into eight places, using A1, B1, C1, and D1 for communi-
cation with Receiver1 and the places A2, B2, C2, and D2 for communication with
Receiver2. This was done to be able to send data packets to both of the receivers
and receive acknowledgements from both of the receivers. A similar effect can also
be achieved by not splitting the network places, but instead revising the colour set
used for packets to include a component specifying the intended receiver of the data
packet and the receiver from which the acknowledgement originated. The modified
colour set definitions are

colset RECV = index Recv with 1..2;
colset RECVxPACKET = product RECV * PACKET;

108 5 Hierarchical Coloured Petri Nets

if n=k
then Ack(k+1)
else Ack(k)

Data(n,d)

if n=k
then data^d
else data

k

data

if n=k
then k+1
else k

Receive
Packet

COut

PACKET

BIn

PACKET

Data
Received

I/O

""

DATA

NextRec

1`1

NO

I/O

In

Out

2

2`Data((1,"COL"))

11`""

11`1

Fig. 5.22 Receiver module instance for substitution transition Receiver1

if n=k
then Ack(k+1)
else Ack(k)

Data(n,d)

if n=k
then data^d
else data

k

data

if n=k
then k+1
else k

Receive
Packet

COut

PACKET

BIn

PACKET

Data
Received

I/O

""

DATA

NextRec

1`1

NO

In

Out

I/O

1
1`Ack(2)

1

1`Data((1,"COL"))

11`"COL"

11`2

Fig. 5.23 Receiver module instance for substitution transition Receiver2

The index colour set RECV is used for modelling the identity of the two receivers.
This colour set contains two colours: Recv(1), identifying the first receiver, and
Recv(2) identifying the second receiver. The colour set RECVxPACKET is used
to model the packets on the network. An example of a colour in this colour set
is (Recv(1),Data(1,"COL")), specifying a data packet Data(1,"COL")
intended for the first receiver. Another example is (Recv(2),Ack(2)) repre-
senting an acknowledgement Ack(2) originating from the second receiver. The
modified Protocol module is shown in Fig. 5.24 with a representative marking.

5.3 Instance Folding and Module Parameterisation 109

Network

Network

Receiver1

Receiver

Receiver2

Receiver

Sender

Sender

Packets
To Send

AllPackets

PACKET

Data
Received1

(Recv(1),"")

RECVxDATA

C

RECVxPACKET

D

RECVxPACKET

A

RECVxPACKET

Data
Received2

(Recv(2),"")

RECVxDATA

B

RECVxPACKET

Sender Receiver ReceiverNetwork

6

1`Data((1,"COL"))++
1`Data((2,"OUR"))++
1`Data((3,"ED "))++
1`Data((4,"PET"))++
1`Data((5,"RI "))++
1`Data((6,"NET"))

1

1`(Recv(1),"")

1

1`(Recv(2),Ack(2))

2

2`(Recv(2),Ack(2))

1

1`(Recv(2),"COL")

3

2`(Recv(1),Data((1,"COL")))++
1`(Recv(2),Data((1,"COL")))

Fig. 5.24 Protocol module for modified protocol with two receivers

The places A and B are used for sending data packets to the two receivers, and
the places C and D are used for sending acknowledgement from the receivers. The
place B has the marking

2‘(Recv(1),Data((1,"COL"))) ++
1‘(Recv(2),Data((1,"COL")))

which represents two identical data packets Data(1,"COL") in transit to the first
receiver and one data packet Data(1,"COL") in transit to the second receiver.
The first component of the pair specifies the receiver of the data packet. The identity
of the receiver sending an acknowledgement is represented in a similar way in the
tokens on the places C and D. Hence, by adding an extra component to the colour
set of the network places, we have effectively folded the network places A1 and A2
into a single place A, and similarly for the other network places. Furthermore, we
have modified the colour set of the places DataReceived1 and DataReceived2 to
RECVxDATA, which is defined as

colset RECVxDATA = product RECV * DATA;

The idea is that the first component will specify the receiver identity and the
second component will specify the data received. The initial marking of the two
places has also been modified such that the initial marking of DataReceived1 is
(Recv(1),"") and the initial marking of DataReceived2 is (Recv(2),"").
The purpose of this modification will be explained when the Receiver module is
presented.

Figure 5.25 shows the modified Sender module. The expression on the arc from
SendPacket to A now produces two tokens whenever the transition SendPacket oc-
curs – one copy for each receiver. The expression on the arc from D to ReceiveAck
requires two tokens to be present on D for ReceiveAck to be enabled – one from
each receiver.

110 5 Hierarchical Coloured Petri Nets

Packets
To Send

I/O

PACKET

AllPackets

I/O

NextSend

NO

1`1

D In

RECVxPACKET

In

A Out

RECVxPACKET

Send
Packet

Receive
Ack

k n

n

Data(n,d)

1`(Recv(1),Ack(n)) ++
1`(Recv(2),Ack(n))

1`(Recv(1),Data(n,d))++
1`(Recv(2),Data(n,d))

Out

6
1`Data((1,"COL"))++
1`Data((2,"OUR"))++
1`Data((3,"ED "))++
1`Data((4,"PET"))++
1`Data((5,"RI "))++
1`Data((6,"NET"))

1 1`1

2
2`(Recv(2),Ack(2))

Fig. 5.25 Sender module for modified protocol with two receivers

Figure 5.26 shows the modified Network module, where there are now only two
substitution transitions: TransmitData, representing transmission of data packets to
the two receivers, and TransmitAck, representing transmission of acknowledgements
from both receivers. Both substitution transitions have the Transmit module shown
in Fig 5.27 as an associated submodule. The Transmit module has been modified
to take into account the modified colour sets of the port places IN and OUT. When
the transition TransmitPacket occurs, the variable pack, of colour set PACKET, is
bound to the packet (data packet or acknowledgement), and the variable recv, of
colour set RECV, is bound to the identity of the receiver. Before, we had two in-
stances of the Transmit module for transmission of data packets – now, there is just
a single instance. The two instances have effectively been folded into a single in-
stance of Transmit, and it is now the value bound to the variable recv that specifies
whether the transmission is concerned with the first or the second receiver.

Transmit
Ack

Transmit

Transmit
Data

Transmit

AIn

RECVxPACKET

B Out

RECVxPACKET

DOut

RECVxPACKET

C In

RECVxPACKET

InOut

OutIn

Transmit

Transmit

3

2`(Recv(1),Data((1,"COL")))++
1`(Recv(2),Data((1,"COL")))

2

2`(Recv(2),Ack(2))

1

1`(Recv(2),Ack(2))

Fig. 5.26 Network module for modified protocol with two receivers

5.3 Instance Folding and Module Parameterisation 111

if success
then 1`(recv,pack)
else empty(recv,pack) Transmit

Packet OUT Out

RECVxPACKET

INIn

RECVxPACKET

In Out

Fig. 5.27 Transmit module for modified protocol with two receivers

Figures 5.28 and 5.29 show the two instances of the new Receiver module, where
we have modified the colour set of the place DataReceived to RECVxDATA. For
the substitution transition Receiver1 we relate the port place DataReceived to the
socket place DataReceived1, and for the substitution transition Receiver2 we relate
this port place to the socket place DataReceived2. The port place DataReceived
does not have an initial marking expression, and therefore obtains its initial marking
from the related socket place. The initial marking of the compound place consisting
of the socket place DataReceived1 (see Fig. 5.24) and the port place DataReceived
(see Fig. 5.28) is therefore determined by the initial marking expression of DataRe-
ceived1. Analogously, the initial marking of the compound place consisting of the
socket place DataReceived2 (see Fig. 5.24) and the port place DataReceived (see
Fig. 5.29) is determined by the initial marking expression of DataReceived2. This
means that when the modules are instantiated, the module instance corresponding
to the substitution transition Receiver1 will have a (Recv(1),"") token on the
place DataReceived and the instance corresponding to the substitution transition
Receiver2 will have a (Recv(2),"") token on the place DataReceived.

By using the variable recv on the arc from DataReceived to ReceivePacket,
it is ensured that the first component in the token consumed from B matches the
identity of the receiver. This ensures that it is only the ReceivePacket transition in
the instance corresponding to Receiver1 that can consume the tokens with colour
(Recv(1),Data((1,"COL"))) and, similarly, it is only the ReceivePacket
transition in the instance corresponding to Receiver2 that is able to consume the
token (Recv(2),Data((1,"COL"))). The variable recv is also used on the
output arc to C. This ensures that the acknowledgement is labelled with the correct
receiver.

The above example demonstrates how a degree of parameterisation can be
achieved by using port and socket places and then using the initial marking of the
socket places to transfer parameters to the submodule (in this case the identity of the
receiver). The example above has also demonstrated that it is possible to fold places
and transitions in a CPN model and obtain a more compact model with fewer places
and transitions. It should be noted that the two models presented in this section are
behaviourally equivalent. The additional component in the tokens on the network
places specifying the receiver in the second model effectively tells us whether the
token was present on, for example, the place A1 or A2 in the original model. A
similar observation applies to the other network places. It is now the binding of the
variable recv of the transition TransmitPacket that specifies which earlier instance
the token corresponds to.

112 5 Hierarchical Coloured Petri Nets

if n=k
then (recv,Ack(k+1))
else (recv,Ack(k))

(recv,Data(n,d))

if n=k
then (recv,data^d)
else (recv,data)

(recv,data)

Receive
Packet

COut

RECVxPACKET

BIn

RECVxPACKET

Data
Received

I/O

RECVxDATA

NextRec

1`1

NO

In

Out

I/O

k

if n=k
then k+1
else k

1

1`(Recv(2),Ack(2))

3

2`(Recv(1),Data((1,"COL")))++
1`(Recv(2),Data((1,"COL")))

11`(Recv(1),"")

11`1

Fig. 5.28 Receiver module instance for Receiver1 in modified protocol with two receivers

if n=k
then (recv,Ack(k+1))
else (recv,Ack(k))

(recv,Data(n,d))

if n=k
then (recv,data^d)
else (recv,data)

(recv,data)

Receive
Packet

COut

RECVxPACKET

BIn

RECVxPACKET

Data
Received

I/O

RECVxDATA

NextRec

1`1

NO

I/O

In

Out

k

if n=k
then k+1
else k

1

1`(Recv(2),Ack(2))

3

2`(Recv(1),Data((1,"COL")))++
1`(Recv(2),Data((1,"COL")))

11`(Recv(2),"COL")

11`1

Fig. 5.29 Receiver module instance for Receiver2 in modified protocol with two receivers

5.4 Model Parameterisation

The model presented in Figs 5.24–5.29 in the previous section is more compact than
the first model with two receivers. A weakness of both models, however, is that it is
cumbersome to add additional receivers. As an example, if a third receiver is to be
added then we need to add a substitution transition Receiver3 in the Protocol module
(see Fig. 5.24) and associate a third instance of the Receiver module with this new
substitution transition. Also, the Sender module (see Fig. 5.25) must be modified

5.4 Model Parameterisation 113

such that it now produces three tokens on place A and consumes three appropriate
acknowledgements from place D.

We shall now present a model with multiple receivers where it is not required to
make changes to the net structure and inscriptions when the number of receivers is
changed. The basic idea is to fold the instances of the Receiver module in a way
similar to that for the network places and the Transmit instances in the previous
section. To achieve this, we revise the definition of the colour set RECV and add one
new colour set RECVxNO as follows:

val NoRecvs = 3;

colset RECV = index Recv with 1..NoRecvs;
colset RECVxNO = product RECV * NO;

We have introduced a symbolic constant NoRecvs, which determines the num-
ber of receivers. This constant is used in the definition of the colour set RECV such
that the colours in this colour set match the number of receivers. In the above case,
RECV contains the colours Recv(1), Recv(2), and Recv(3).

Figure 5.30 shows the Protocol module in the initial marking. There is now a
single substitution transition Receiver representing the receivers. The initial marking
of DataReceived is given by the expression

AllRecvs ""

which evaluates to the following multiset of tokens:

1‘(Recv(1),"") ++ 1‘(Recv(2),"") ++ 1‘(Recv(3),"")

This marking specifies that all receivers have initially received the empty string
"". The function AllRecvs is defined as follows (the functions RECV.all and
List.map will be explained shortly):

Network

Network

Receiver

Receiver

Sender

Sender

Packets
To Send

PACKET

C

RECVxPACKET

D

RECVxPACKET

A

RECVxPACKET

Data
Received

AllRecvs ""

RECVxDATA

B

RECVxPACKET

Sender ReceiverNetwork

AllPackets

6

1`Data((1,"COL"))++
1`Data((2,"OUR"))++
1`Data((3,"ED "))++
1`Data((4,"PET"))++
1`Data((5,"RI "))++
1`Data((6,"NET"))

3

1`(Recv(1),"")++
1`(Recv(2),"")++
1`(Recv(3),"")

Fig. 5.30 Protocol module for protocol with multiple receivers

114 5 Hierarchical Coloured Petri Nets

fun AllRecvs v = List.map
(fn recv => (recv,v)) (RECV.all());

We have used the predefined colour set function RECV.all, which takes a unit
() as an argument and returns the list representation of a multiset containing one
appearance of each of the colours in the colour set RECV, i.e., it returns the multiset

1‘Recv(1) ++ 1‘Recv(2) ++ 1‘Recv(3)

represented as the following list:

[Recv(1),Recv(2),Recv(3)]

We have also used the the curried predefined Standard ML function List.map,
which takes a function and a list as arguments and applies the function to each
element of the list. In this case, the function is fn recv => (recv,v), which,
given a receiver recv constructs the pair (recv,v) where v is the argument
provided to the function AllRecvs. In this case it results in the list

[(Recv(1),""),(Recv(2),""),(Recv(3),"")]

representing the following multiset, which becomes the initial marking of the place
PacketsToSend:

1‘(Recv(1),"") ++ 1‘(Recv(2),"") ++ 1‘(Recv(3),"")

If the value of NoRecv is changed to 4, the initial marking expression of DataRe-
ceived will evaluate to the following multiset:

1‘(Recv(1),"") ++ 1‘(Recv(2),"") ++
1‘(Recv(3),"") ++ 1‘(Recv(4),"")

hence the initialisation expression of DataReceived does not have to be modified
when the number of receivers is changed. It is sufficient to change the declaration
of NoRecv.

In the above definition of the function AllRecvs, we have exploited the fact
that multisets in CPN Tools are represented using lists, i.e., a multiset is represented
as a list of the elements in the multiset where an element appears as many times in
the list as its coefficient in the multiset specifies. This means that we can apply list
operations (such as List.map) directly to the elements of a multiset and there is
no need to convert between list and multiset representations.

The Network and Transmit modules do not need to be changed, so we shall present
only the Sender and Receiver modules below. The Receiver module is shown in
Fig. 5.31. The colour set of the place NextRec has been changed to RECVxNO,
and the idea is to use the first component to identify the receiver, and the second
component to specify the data packet expected next by the receiver identified in
the first component. The initial marking expression of NextRec uses the function
AllRecvs with the argument 1 to obtain the initial marking

1‘(Recv(1),1) ++ 1‘(Recv(2),1) ++ 1‘(Recv(3),1)

5.4 Model Parameterisation 115

if n=k
then (recv,Ack(k+1))
else (recv,Ack(k))

(recv,Data(n,d))

if n=k
then (recv,data^d)
else (recv,data)

(recv,k)

(recv,data)

if n=k
then (recv,k+1)
else (recv,k)

Receive
Packet

COut

RECVxPACKET

BIn

RECVxPACKET

Data
Received I/O

RECVxDATA

NextRec

RECVxNO

In

Out

AllRecvs 1

I/O
31`(Recv(1),"")++

1`(Recv(2),"")++
1`(Recv(3),"")

3

1`(Recv(1),1)++
1`(Recv(2),1)++
1`(Recv(3),1)

Fig. 5.31 Receiver module for protocol with multiple receivers

which specifies that all receivers initially expect the data packet with sequence num-
ber 1. The variable recv is used on all input and output arcs of ReceivePacket to
ensure that the update of the expected sequence number on the place NextRec, the
update of the data on the place DataReceived, and the acknowledgement produced
on place C all correspond to the intended receiver of the data packet removed from
place B.

Figure 5.32 shows the Sender module. The expressions on the arcs connected to
the two network places A and D have been modified to use the function AllRecvs,
which, for a given packet, produces a multiset over RECVxPACKET with a packet
for each receiver. As an example, the expression

AllRecvs (Data(1,"COL"))

evaluates to the multiset

1‘(Recv(1),Data(1,"COL")) ++
1‘(Recv(2),Data(1,"COL")) ++
1‘(Recv(3),Data(1,"COL"))

and the expression

AllRecvs (Ack(2))

evaluates to the multiset

1‘(Recv(1),Ack(2)) ++
1‘(Recv(2),Ack(2)) ++
1‘(Recv(3),Ack(2))

116 5 Hierarchical Coloured Petri Nets

Ack(n)

AllRecvs (Data(n,d))

AllRecvs (Ack(n))

Data(n,d)

n

Receive
Ack

Send
Packet

AllAcks

PACKET

A Out

RECVxPACKET

D In

RECVxPACKET

NextSend

1`1

NO

Packets
To SendI/O AllPackets

PACKET

I/O

In

Out

Acks

k n

1 1`1

6

1`Data((1,"COL"))++
1`Data((2,"OUR"))++
1`Data((3,"ED "))++
1`Data((4,"PET"))++
1`Data((5,"RI "))++
1`Data((6,"NET"))

6

1`Ack(2)++
1`Ack(3)++
1`Ack(4)++
1`Ack(5)++
1`Ack(6)++
1`Ack(7)

Fig. 5.32 Sender module for protocol with multiple receivers

The place Acks contains the set of possible acknowledgements that can be re-
ceived. The constant used as the initial marking of this place is defined as

val AllAcks = List.map
(fn Data(n,_) => Ack(n+1)) AllPackets;

The definition of AllAcks uses the function List.map. In this case the first
argument is the function fn Data(n,) => Ack(n+1), which, for a given data
packet with sequence number n, constructs the corresponding acknowledgement,
which has sequence number n+1. The second argument is the list of data packets to
be transmitted.

The place Acks has been introduced to make it possible to bind the variable n
of the transition ReceiveAck. The variable n can no longer be bound from the arc
expression on the input arc from D, since the arc expression now uses a function,
which means that it no longer qualifies as a pattern. Note that ReceiveAck is only
enabled for a given value bound to n when place D contains an acknowledgement
with sequence number n from all receivers.

5.5 Fusion Sets

It has been shown above how modules can exchange tokens via port and socket
places. It is also possible for modules to exchange tokens via fusion sets. Fusion
sets allow places in different modules to be glued together into one compound place
across the hierarchical structure of the model. Fusion sets are in some sense similar

5.5 Fusion Sets 117

to the global variables known in many programming languages and should there-
fore be used with care. However, there are many cases where fusion sets can be
convenient and below we give three typical examples of how fusion sets are used.

As a first example, consider the hierarchical model of the protocol with multiple
receivers created in the previous section. Suppose now that we are interested in
collecting the lost data packets and acknowledgements on a single place in the CPN
model. The first step is to add a place PacketsLost to the Transmit module as shown
in Fig. 5.33, and collect the tokens corresponding to the lost packets on this place.

As explained above, there are two instances of the Transmit module, and a sepa-
rate marking for each of these instances. This implies that there are two instances of
the place PacketsLost and that each of these has its own marking. To fold these two
place instances into a single place, we use a fusion set. The places that are members
of a fusion set are called fusion places and represent a single compound place, in a
way similar to that for a related port and socket place. This means that all instances
of all places in a fusion set always share the same marking and that they must have
identical colour sets and initial markings. In Fig. 5.34, PacketsLost belongs to a fu-
sion set called Lost. This can be seen from the rectangular fusion tag positioned next
to the place.

Figures 5.35 and 5.36 show the two instances of Transmit in a representative
marking. It can be seen that the two instances of the port place IN have different
markings and the same is the case for the two instances of the port place OUT.

if success
then empty
else 1`(recv,pack)

if success
then 1`(recv,pack)
else empty(recv,pack) Transmit

Packet

Packets
Lost

RECVxPACKET

OUT Out

RECVxPACKET

INIn

RECVxPACKET

In Out

Fig. 5.33 Transmit module for collecting lost packets: first version

if success
then empty
else 1`(recv,pack)

if success
then 1`(recv,pack)
else empty(recv,pack) Transmit

Packet

Packets
Lost

Lost
RECVxPACKET

OUT Out

RECVxPACKET

INIn

RECVxPACKET

In Out

Lost

Fig. 5.34 Transmit module for collecting lost packets: revised version with fusion set

118 5 Hierarchical Coloured Petri Nets

if success
then empty
else 1`(recv,pack)

if success
then 1`(recv,pack)
else empty(recv,pack) Transmit

 Packet

Packets
Lost

Lost
RECVxPACKET

OUT Out

RECVxPACKET

INIn

RECVxPACKET

In Out

Lost

9

3`(Recv(1),Data((1,"COL")))++
1`(Recv(2),Data((1,"COL")))++
3`(Recv(3),Data((1,"COL")))++
2`(Recv(3),Ack(2))

1

1`(Recv(1),Data((1,"COL")))

43

13`(Recv(1),Data((1,"COL")))++
18`(Recv(2),Data((1,"COL")))++
12`(Recv(3),Data((1,"COL")))

Fig. 5.35 Marking of Transmit instance corresponding to TransmitData

if success
then empty
else 1`(recv,pack)

if success
then 1`(recv,pack)
else empty(recv,pack) Transmit

 Packet

Packets
Lost

Lost
RECVxPACKET

OUT Out

RECVxPACKET

INIn

RECVxPACKET

In Out

Lost

9

3`(Recv(1),Data((1,"COL")))++
1`(Recv(2),Data((1,"COL")))++
3`(Recv(3),Data((1,"COL")))++
2`(Recv(3),Ack(2))

2

1`(Recv(1),Ack(2))++
1`(Recv(2),Ack(2))

5

2`(Recv(1),Ack(2))++
3`(Recv(3),Ack(2))

Fig. 5.36 Marking of Transmit instance corresponding to TransmitAck

However, the two instances of the fusion place PacketsLost have the same marking,
owing to the fusion set, and it can be seen that this place contains both lost data
packets and lost acknowledgements. In this example, it is only the instances of a
single place in a single module that belong to the fusion set. However, in general
it is possible for any number of places in different modules to belong to the same
fusion set. This means that all of the corresponding place instances represent a single
compound place.

Another typical use of fusion sets is in the initialisation of a CPN model. It is
often the case that a CPN model can be set up to run in different configurations,
and larger CPN models typically have a number of parameters which determine
the configuration. For the CPN model of the protocol, we might be interested in
configuring the data packets to be transmitted and configuring the Transmit module
such that it is possible to run the model with a reliable or unreliable network. Since
this configuration information is related to several modules, it is convenient to create
a single Initialisation module where it is possible to set the configuration for the entire
CPN model. Figure 5.37 shows the initial marking of such an Initialisation module
for configuring the protocol model as outlined above. The Initialisation module is a
prime module of the CPN model, and becomes a root in the module hierarchy and
the instance hierarchy in a way similar to that for the other prime module, Protocol.

5.5 Fusion Sets 119

Booleans(trans)
trans

data

Initialise
Model Ack Packets

Acks
PACKET

Success

Success BOOL

Data Packets

DataPackets
PACKET

Network

unreliable

TRANSMISSION

Data
To Send

"COLOURED PETRI NET"

DATA

DataPackets

Success

Acks

AllDataPackets(data)

AllAckPackets(data)

1 1`unreliable

1 1`"COLOURED PETRI NET"

Fig. 5.37 Initial marking of the Initialisation module

This illustrates that it is possible to have multiple prime modules in a hierarchical
CPN model, and in this case the instance hierarchy becomes a forest of directed
trees rather than just a single directed tree.

The place DataToSend contains a token representing the string of data to be trans-
mitted. The place Network contains a token specifying whether the network is reli-
able or unreliable. By changing the initial marking of these places, we can set the
configuration of the protocol. The colour set TRANSMISSION is an enumeration
colour set defined as

colset TRANSMISSION = with reliable | unreliable;

The initial marking of the place Network is unreliable, meaning that packets
can be lost on the network. If we set the initial marking of the place to reliable,
no packet loss will occur. The transition InitialiseModel has two variables, declared
as

var data : DATA;
var trans : TRANSMISSION;

for accessing the configuration information given by the tokens on the places
DataToSend and Network. The transition InitialiseModel is the only enabled tran-
sition in the initial marking. When the transition InitialiseModel occurs, data will
be bound to the string on the place DataToSend and trans will be bound to the
colour of the token on the place Network.

The transition InitialiseModel, adds tokens to the places DataPackets, AckPackets,
and Success, which belongs to the fusion sets DataPackets, Acks, and Success,
respectively. The functions in the arc expressions on the output arc to DataPackets
and AckPackets use a common utility function SplitData to split the string bound
to data into a set of data packets respecting the packet length supported by the
network. This function is defined as

120 5 Hierarchical Coloured Petri Nets

val PacketLength = 3;

fun SplitData (data) =
let

val pl = PacketLength;

fun splitdata (n,data) =
let

val dl = String.size (data)
in

if dl <= pl
then [(n,data)]
else (n,substring (data,0,pl))::

splitdata
(n+1,substring (data,pl,dl-pl))

end;
in

splitdata (1,data)
end;

The function SplitData has a local environment for binding pl to the packet
length and defining a recursive function splitdata, which does the actual split-
ting of the data string into a list of pairs, where each element consists of a sequence
number and a data payload. As an example, the result of evaluating the expression

SplitData("COLOURED PETRI NET")

is the following list of pairs:

[(1,"COL"),(2,"OUR"),(3,"ED "),
(4,"PET"),(5,"RI "),(6,"NET")]

The first parameter n of the function splitdata gives the sequence number
of the first data packet to be produced. The second parameter is the data string to
be split into data packets. The function uses a local environment to bind dl to the
data length. The predefined function String.size is used to obtain the length
of the data string. If the data string fits into a single data packet, such a data packet
is returned. Otherwise, a data packet is generated containing the first pl characters
of the data string, and a recursive call is made to splitdata to generate the data
packets for the remainder of the data string. The function substring is used to
extract the correct prefix and postfix to be used in the data packet and in the recur-
sive call to the function.

The functions AllDataPackets and AllAckPackets are defined as fol-
lows, using the function SplitData from above:

5.5 Fusion Sets 121

fun AllDataPackets (data) =
(List.map

(fn (n,d) => Data(n,d)) (SplitData (data)));

fun AllAckPackets (data) =
(List.map

(fn (n,_) => Ack(n+1)) (SplitData (data)));

The function AllDataPackets uses the function List.map. In this case,
the first argument is the function fn (n,d) => Data(n,d), which, given a
pair (n,d), constructs the corresponding data packet. The list provided as the sec-
ond argument is the list of pairs returned by the function SplitData. The func-
tion AllAckPackets is implemented in a similar way, except that it produces
the acknowledgements corresponding to the data packets. The function provided to
List.map is in this case fn (n,) => Ack(n+1). The sequence number has
1 added to it, since the acknowledgement of the data packet with sequence number
n is Ack(n+1). Recall that multisets in CPN Tools are represented using lists, i.e.,
a multiset is represented as a list of the elements in the multiset. This is the reason
why the types of AllDataPackets and AllAckPacketsmatch the colour sets
of the places DataPackets and AckPackets, respectively.

The arc expression on the arc to the place Success uses the function Booleans,
defined as

fun Booleans reliable = 1‘true
| Booleans unreliable = 1‘true ++ 1‘false;

If the token on the place Network is reliable, a single token with the
value true is put on the place Success. If the token on the place Network is
unreliable, two tokens with the values true and false are put on the place
Success. The purpose of the token(s) on the place Success will be clear when we
present the modified Transmit module below.

Figure 5.38 shows the marking of the Initialisation module after the occurrence of
the transition InitialiseModel in the initial marking shown in Fig. 5.37. Figure 5.39
shows the Protocol module, where the place PacketsToSend now belongs to the
fusion set DataPackets. Figure 5.40 shows the Sender module, where the place Acks
belongs to the fusion set Acks. This means that when the transition InitialiseModel
occurs, the places PacketsToSend and Acks receive the same tokens as do the places
in the Initialisation module that belong to the same fusion sets. In this way, tokens
determining the configuration of the protocol are distributed to the relevant modules
in the model.

The Transmit module is shown in Fig. 5.41. The place Success belongs to
the fusion set Success. This place specifies the possible bindings for the variable
success, which determine whether transmission is successful or not. In the mark-
ing shown, there are two tokens true and false present on this place. Hence,
both successful transmission and loss of packets are possible. If the place Network
in Fig. 5.37 initially contains the token reliable, then only a token with colour

122 5 Hierarchical Coloured Petri Nets

Booleans(trans)
trans

data

Initialise
Model Ack Packets

Acks
PACKET

Success

Success BOOL

Data Packets

DataPackets
PACKET

Network

unreliable

TRANSMISSION

Data
To Send

"COLOURED PETRI NET"

DATA

DataPackets

Success

Acks

AllDataPackets(data)

AllAckPackets(data) 6

1`Ack(2)++
1`Ack(3)++
1`Ack(4)++
1`Ack(5)++
1`Ack(6)++
1`Ack(7)

2

1`false++
1`true

6

1`Data((1,"COL"))++
1`Data((2,"OUR"))++
1`Data((3,"ED "))++
1`Data((4,"PET"))++
1`Data((5,"RI "))++
1`Data((6,"NET"))

Fig. 5.38 Marking of the Initialisation module when InitialiseModel has occurred

Network

Network

Receiver

Receiver

Sender

Sender

Packets
To Send DataPackets

PACKET

Packets
To Send

PACKET

C

RECVxPACKET

D

RECVxPACKET

A

RECVxPACKET

Data
Received

RECVxDATA

B

RECVxPACKET

DataPackets

Sender ReceiverNetwork

AllRecvs ""6

1`Data((1,"COL"))++
1`Data((2,"OUR"))++
1`Data((3,"ED "))++
1`Data((4,"PET"))++
1`Data((5,"RI "))++
1`Data((6,"NET")) 3

1`(Recv(1),"")++
1`(Recv(2),"")++
1`(Recv(3),"")

Fig. 5.39 Marking of the Protocol module after initialisation

true will be present on the place Success and hence only successful transmission
is possible.

5.5 Fusion Sets 123

Ack(n)

AllRecvs (Data(n,d))

AllRecvs (Ack(n))

Data(n,d)

n

nk

Receive
Ack

Send
Packet

Acks

Acks PACKET

A Out

RECVxPACKET

D In

RECVxPACKET

NextSend

1`1

NO

Packets
To Send

I/O

PACKET

In

Out

Acks

I/O

6

1`Ack(2)++
1`Ack(3)++
1`Ack(4)++
1`Ack(5)++
1`Ack(6)++
1`Ack(7)

1 1`1

6

1`Data((1,"COL"))++
1`Data((2,"OUR"))++
1`Data((3,"ED "))++
1`Data((4,"PET"))++
1`Data((5,"RI "))++
1`Data((6,"NET"))

Fig. 5.40 Marking of the Sender module after initialisation

success

if success
then empty
else 1`(recv,pack)

if success
then 1`(recv,pack)
else empty(recv,pack) Transmit

Packet

BOOL

Packets
Lost

Lost RECVxPACKET

OUT Out

RECVxPACKET

INIn

RECVxPACKET

Out

Lost

In

Success

SuccessSuccess

2
1`false++
1`true

Fig. 5.41 Marking of the Transmit module after initialisation

In the above, we have used the initial marking of certain places (in this case
DataToSend and Network) to specify the configuration of the protocol. It is also
possible to use files or dialogue boxes to provide the configuration information. We
shall illustrate the latter in Chap. 13.

Fusion sets can also be used to reduce the number of crossing arcs in a module.
When a place needs to be accessed by many different transitions, it may be impos-
sible to avoid crossing arcs, which make the CPN model difficult to read. A way to
reduce the number of crossing arcs is to split such places into two or more copies
and then create a fusion set that glues them together. Now it is possible to posi-
tion the copies of the places in different parts of the module and thereby reduce the
number of crossing arcs.

124 5 Hierarchical Coloured Petri Nets

5.6 Unfolding Hierarchical CPN Models

A hierarchical CPN model can always be unfolded into an equivalent non-hierarchical
CPN model with the same behaviour using a process consisting of three steps:

1. Replace each substitution transition with the content of its associated submodule
such that related port and socket places are merged into a single place.

2. Collect the content of all resulting prime modules into a single module. Recall
that prime modules are the roots of the module hierarchy.

3. Merge the places in each fusion set into a single place.

To illustrate the processes of replacing substitution transitions with their asso-
ciated submodules and merging the places in a fusion set into a single place, we
consider the CPN model of the previous section together with the Network module
shown in Fig. 5.42.

The result of replacing the two substitution transitions in Fig. 5.42 with the con-
tent of their associated submodules (see Fig. 5.41) and merging the fusion places is
shown in Fig. 5.43. For the substitution transition TransmitData, we have replaced
the port place IN and the related socket place A with a single place named A. The
port place OUT and the related socket place B have been replaced with a single place
named B. Similar replacements have been done for the ports and socket places of
the substitution transition TransmitAck. The fusion places named PacketsLost which
were present in each of the submodules associated with the substitution transitions
have been merged into a single place named PacketsLost. A similar merging has
been done with the fusion places named Success. The places PacketsLost and Suc-
cess are still fusion places, as one of them eventually has to be merged with the
corresponding fusion place in the Initialisation module.

The fact that a hierarchical CPN model can always be transformed into an equiv-
alent non-hierarchical CPN model implies that the hierarchy-related concepts of
CP-nets do not (in theory) add expressive power to the modelling language. Any
system that can be modelled with a hierarchical CPN model can also be modelled
with a non-hierarchical CPN model. In practice, however, the hierarchy constructs

Transmit
Ack

Transmit

Transmit
Data

Transmit

AIn

RECVxPACKET

B Out

RECVxPACKET

DOut

RECVxPACKET

C In

RECVxPACKET

InOut

OutIn

Transmit

Transmit

Fig. 5.42 Network module

5.6 Unfolding Hierarchical CPN Models 125

if success
then empty
else 1`(recv,pack)

success

if success
then 1`(recv,pack)
else empty (recv,pack)

success

if success
then empty
else 1`(recv,pack)

if success
then 1`(recv,pack)
else empty(recv,pack)

Transmit
Packet

Transmit
Packet

Success Success

BOOL

Packets
Lost

Lost

RECVxPACKET

AIn

RECVxPACKET

B Out

RECVxPACKET

DOut

RECVxPACKET

C In

RECVxPACKET

InOut

OutIn

SuccessLost

Fig. 5.43 Unfolded Network module

have significant importance as they make it possible to structure large models and
thereby cope with the complexity of large systems.

In this section, we have shown that every hierarchical CPN model can be trans-
formed into an equivalent non-hierarchical CPN model. In Sect. 2.4 of [60], it was
shown that every non-hierarchical CP-net can be transformed into an equivalent
low-level Place/Transition Net (PTN) as defined in [93]. The idea behind the trans-
formation is very simple. Each CPN place is replaced with as many PTN places
as there are colours in the colour set of the CPN place, and each CPN transition is
replaced with as many PTN transitions as there are possible bindings satisfying the
guard for the CPN transition. For a CPN model with infinite colour sets, this will
result in a PTN model with an infinite number of places and transitions.

The fact that a CPN model can always be transformed into an equivalent PTN
model implies that the introduction of the coloured tokens in CP-nets does not (in
theory) add expressive power to Petri Net models. Any system that can be modelled
with a CPN model can also be modelled with a PTN model. In practice, however,
CPN models are much more succinct and more suitable for the modelling of com-
plex systems. The CPN modelling language allows the modeller to work on a higher
abstraction level using types (colour sets) instead of bits (uncoloured tokens).

The step from PTN models to hierarchical CPN models is very similar to the step
from low-level machine languages (without types, procedures, functions, or mod-
ules) to high-level programming languages offering such abstraction mechanisms.
The high-level modelling and programming languages have the same (theoretical)
expressive power as the corresponding low-level languages, but the high-level lan-
guages have much more (practical) structuring power, and this makes it possible
for modellers and programmers to cope with the overwhelming amount of detail in
real-life concurrent systems.

Chapter 6
Formal Definition of Hierarchical
Coloured Petri Nets

This chapter formally defines the syntax and semantics of hierarchical CPN mod-
els. Readers who are not interested in the mathematical definitions and are content
with the informal introduction given in the previous chapter may decide to skip this
chapter. The definition of hierarchical CPN models relies on the definition of non-
hierarchical CPN models, and we assume that the reader is familiar with the formal
definitions provided in Chap. 4.

To illustrate the formal definition, we shall use the hierarchical CPN model
shown in Fig 6.1–6.6. This is the hierarchical protocol model considered in
Sects. 5.4–5.5 with three receivers and an initialisation module. When we exemplify
the formal definitions, we shall illustrate only the concepts that are new compared
with the definition of non-hierarchical CPN models.

Section 6.1 defines modules, Sect. 6.2 defines how modules are composed to
form a hierarchical CPN model, Sect. 6.3 defines module instances and compound
places, and Sect. 6.4 defines markings, and the enabling and occurrence of steps.

6.1 Modules

Each module of a hierarchical CPN model constitutes a non-hierarchical CPN model
as defined in Definition 4.2. Hence, it consists of a finite set of places P, a finite set
of transitions T , a set of directed arcs A, a finite set of non-empty colour sets Σ , a
finite set of typed variables V , a colour set function C, a guard function G, an arc
expression function E, and an initialisation function I. This means that each module
can have its local colour set definitions and declarations of typed variables. In CPN
Tools there is global set of common colour sets and variables shared among all the
modules. This corresponds to the case of all modules having identical sets of colour
sets and variables. The formal definition, however, accommodates the possibility of
the modules having local colour sets and variables.

Each module also has a possibly empty set of substitution transitions Tsub ⊆ T .
For the Protocol module in Fig. 6.1, we have

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 6, 127
c© Springer-Verlag Berlin Heidelberg 2009

128 6 Formal Definition of Hierarchical Coloured Petri Nets

Network

Network

Receiver

Receiver

Sender

Sender

Packets
To Send DataPackets

C

RECVxPACKET

D

RECVxPACKET

A

RECVxPACKET

Data
Received

AllRecvs ""

RECVxDATA

B

RECVxPACKET

ReceiverSender Network

DataPackets
Packets
To Send

PACKETPACKET

Fig. 6.1 Protocol module

Ack(n)

AllRecvs (Data(n,d))

AllRecvs (Ack(n))

Data(n,d)

n

nk

Receive
Ack

Send
Packet

Acks
Acks

PACKET

A Out

RECVxPACKET

D In

RECVxPACKET

NextSend

1`1

NO

Packets
To SendI/O

PACKET

I/O

In

Out

Acks

Fig. 6.2 Sender module

Tsub = {Sender,Network,Receiver}

For the example CPN model considered in this chapter either all or none of the
transitions in a module are substitution transitions. A module may, in general, con-
tain both ordinary (non-substitution) transitions and substitution transitions. Since
the substitution transitions are a subset of the transitions in the module, substitution
transition have a guard, and arcs connected to a substitution transition have arc ex-
pressions. Since substitution transitions cannot become enabled and occur (as will
be formally defined in Sect. 6.4), these inscriptions have no effect on the behaviour
of the model and they are automatically deleted by CPN Tools. However, it sim-
plifies the formal definitions to define the substitution transitions as a subset of the
transitions in the module.

6.1 Modules 129

Transmit
Ack

Transmit

Transmit
Data

Transmit

AIn

RECVxPACKET

B Out

RECVxPACKET

DOut

RECVxPACKET

C In

RECVxPACKET

InOut

OutIn

Transmit

Transmit

Fig. 6.3 Network module

if n=k
then (recv,Ack(k+1))
else (recv,Ack(k))

(recv,Data(n,d))

if n=k
then (recv,data^d)
else (recv,data)

(recv,k)

(recv,data)

Receive
Packet

COut

RECVxPACKET

BIn

RECVxPACKET

Data
Received I/O

RECVxDATA

NextRec

AllRecvs 1

RECVxNO

In

Out

if n=k
then (recv,k+1)
else (recv,k)

I/O

Fig. 6.4 Receiver module

The input socket places P in
sock(t) of a substitution transition t are the set of input

places for the transition, and the output socket places Pout
sock(t) are the set of output

places. Finally, the input/output socket places P i/o
sock(t) are the set of input/output

places for the transition. The socket places Psock(t) for a substitution transition t are
the union of the input, output, and input/output sockets for the transition. For the
Protocol module in Fig. 6.1 and the substitution transition Sender we have:

P in
sock(Sender) = {D}

Pout
sock(Sender) = {A}

P i/o
sock(Sender) = {PacketsToSend}

Psock(Sender) = {PacketsToSend,A,D}

130 6 Formal Definition of Hierarchical Coloured Petri Nets

success

if success
then empty
else 1`(recv,pack)

if success
then 1`(recv,pack)
else empty(recv,pack) Transmit

Packet

Success

Success BOOL

Packets
Lost

Lost RECVxPACKET

OUT Out

RECVxPACKET

INIn

RECVxPACKET

In Out

Success

Lost

Fig. 6.5 Transmit module

AllAckPackets(data)

Booleans(trans)

AllDataPackets(data)

trans

data

Initialise
Model Ack Packets

Acks
PACKET

Success

Success BOOL

Data Packets

DataPackets
PACKET

Network

unreliable

TRANSMISSION

Data
To Send

"COLOURED PETRI NET"

DATA

DataPackets

Success

Acks

Fig. 6.6 Initialisation module

Socket places are not defined explicitly as components of a module, since they
are implicitly given via the arcs connected to the substitution transitions. For each
substitution transition t, we define a socket type function ST (t) that maps each socket
place of t into its type. It is defined as:

ST (t)(p) =

⎧⎨
⎩

IN if p ∈ P in
sock(t)

OUT if p ∈ Pout
sock(t)

I/O if p ∈ P i/o
sock(t)

For the substitution transition Sender in Fig. 6.1, we have

6.2 Module Composition 131

ST (Sender) :

⎧⎨
⎩

D �→ IN
A �→ OUT
PacketsToSend �→ I/O

where the notation a �→ b is used to denote that a is mapped to b by the function
being specified.

Each module has a possibly empty set of port places Pport ⊆ P and a port type
function PT that specifies whether the port place is an input port (IN), an output port
(OUT), or an input/output port (I/O). For the Sender module in Fig. 6.2, we have

Pport = {PacketsToSend,A,D}

PT :

⎧⎨
⎩

D �→ IN
A �→ OUT
PacketsToSend �→ I/O

The definition below summarises the definition of a module in a hierarchical CPN
model based on the description above.

Definition 6.1. A Coloured Petri Net Module is a four-tuple CPNM = (CPN,Tsub,
Pport,PT), where:

1. CPN = (P,T,A,Σ ,V,C,G,E, I) is a non-hierarchical Coloured Petri Net.
2. Tsub ⊆ T is a set of substitution transitions.
3. Pport ⊆ P is a set of port places.
4. PT : Pport → {IN,OUT, I/O} is a port type function that assigns a port type to

each port place.
�

6.2 Module Composition

A hierarchical CPN model consists of a finite set S of modules. Each module s ∈ S
is defined according to Definition 6.1: s = (CPNs,Ps

port,T
s

sub,PT s), with CPNs =
(Ps,T s,As,Σ s,V s,Cs,Gs,Es, Is). It would have been desirable to use M instead of S
to denote the set of modules. The symbol M is, however, already being used to de-
note markings. We have therefore chosen to use S, since the modules can be thought
of as subnets. For the example CPN model in Figs 6.1–6.6, we have the following
set of modules:

S = {Protocol,Sender,Network,Receiver,Transmit, Initialisation}
The places and transitions in the individual modules are required to be dis-

joint, i.e., for any two modules s1,s2,∈ S such that s1 �= s2, we have (Ps1 ∪T s1)∩
(Ps2 ∪ T s2) = /0, which means that a node (a place or a transition) can only be a

132 6 Formal Definition of Hierarchical Coloured Petri Nets

member of one module. Definition 4.2 already ensures that the sets of places and
transitions in a single module are disjoint.

To talk about the elements of an entire hierarchical CPN model, we use P to
denote the union of all places in the modules, T to denote the union of all transitions,
and Σ to denote the union of all colour sets. We then define a global colour set
function C : P → Σ and a global initialisation function I : P → EXPR /0 based on the
corresponding functions in the modules, by C(p) = Cs(p) and I(p) = Is(p) where
the place p belongs to the module s. In a similar way, we can define a global guard
function G and a global arc expression function E. We use Tsub to denote the union
of all substitution transitions in the modules, and Pport to denote the union of all port
places in the modules. We define a global socket type function ST and a global port
type function PT based on the corresponding functions for the individual modules
in a way similar to that for the global colour set and initialisation functions above.

In the example model in Figs 6.1–6.6, we have given the same name to different
places; for example, there is a place named A in both the Protocol module and the
Sender module. In such cases, we shall write the module name in superscript fol-
lowing the place name to distinguish the places, i.e., place A in the Protocol module
is denoted AProtocol and place A in the Sender module is denoted ASender. We shall, in
general, whenever there is an overlap in naming, use the notation XY to identify a
node (a place or a transition) X belonging to a module Y.

The submodule function SM maps each substitution transition t into the submod-
ule SM(t) associated with t. For the CPN model in Figs 6.1–6.6, we have

Tsub = { SenderProtocol,NetworkProtocol,ReceiverProtocol,

TransmitDataNetwork,TransmitAckNetwork}

and the submodule function is defined as

SM :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

SenderProtocol �→ Sender
NetworkProtocol �→ Network
ReceiverProtocol �→ Receiver
TransmitDataNetwork �→ Transmit
TransmitAckNetwork �→ Transmit

It is possible for the substitution transition and the associated submodule to have
different names. This is, for example, illustrated by the substitution transition Trans-
mitData and the module Transmit.

The module hierarchy for a hierarchical CPN model is a directed graph with
a node for each module and a labelled arc for each substitution transition. There
is an arc labelled with t leading from a node representing a module s1 to a node
representing a module s2 if and only if s1 contains a substitution transition t such
that the module assigned to t by the submodule function SM is s2, i.e., s2 = SM(t).

Figure 6.7 is a graphical representation of the module hierarchy for the CPN
model shown in Figs 6.1–6.6. The set of nodes NMH for the module hierarchy in
Fig. 6.7 is

6.2 Module Composition 133

Network Receiver

Protocol

Sender

ReceiverSender Network

Transmit

TransmitData TransmitAck

Initialisation

Fig. 6.7 Module hierarchy for the hierarchical CPN model shown in Figs 6.1–6.6

NMH = {Protocol,Sender,Network,Receiver,Transmit, Initialisation}

The arcs in the module hierarchy are represented as triples where the first compo-
nent is the source node, the second component is the substitution transition labelling
the arc, and the third component is the destination node. The set of arcs AMH for the
module hierarchy in Fig. 6.7 is

AMH = { (Protocol,Sender,Sender),
(Protocol,Network,Network),
(Protocol,Receiver,Receiver),
(Network,TransmitData,Transmit),
(Network,TransmitAck,Transmit)}

It should be noted that it is possible to have parallel arcs in the module hierarchy,
i.e., two or more arcs between the same pair of nodes, such as the two arcs from the
Network to the Transmit module.

A path of length n in the module hierarchy leading from a module s1 to a module
sn+1 is an alternating sequence of modules and substitution transitions written as

s1
t1−→ s2

t2−→s3 · · ·sn
tn−→sn+1

such that (si, ti,si+1) ∈ AMH for 1 ≤ i ≤ n, and the existence of such a path means
that the module sn+1 is reachable from the module s1 in the module hierarchy. When
specifying a path, we shall sometimes omit the intermediate modules, in which case
the above path is written

134 6 Formal Definition of Hierarchical Coloured Petri Nets

s1
t1t2···tn−−−−→sn+1

It should be noted that a module s is always reachable from itself by the trivial
path consisting of only the module itself. The trivial path is written s

ε−→s, where ε
denotes the empty sequence of substitution transitions. If there is a non-trivial path
in the module hierarchy leading from a node s to a node s′, then s′ is a submodule of
s. As an example, the module Transmit is a submodule of the module Protocol since
the following path exists in the module hierarchy:

Protocol
Network−−−−→ Network

TransmitData−−−−−−−→Transmit

A cycle is a non-trivial path s1
t1t2···tn−−−−→sn+1 such that s1 = sn+1. We require that

no module is a submodule of itself, which is equivalent to requiring that the module
hierarchy is an acyclic directed graph, i.e., it contains no cycles. The roots of the
module hierarchy, i.e., the nodes with no incoming arcs are called prime modules.
The set of all prime modules is denoted SPM, and for the CPN model in Figs 6.1–6.6
we have

SPM = { Protocol, Initialisation }
The port–socket relation function PS assigns to each substitution transition t a

port–socket relation PS(t) which is a subset of Psock(t)×PSM(t)
port . The elements of a

port–socket relation are pairs of the form (p, p′) consisting of a socket place p of
t and a port place p′ belonging to the submodule SM(t) assigned to t. Such a pair
specifies that the socket place p and the port place p′ are related. For the substitution
transition Sender in Fig. 6.1 and the associated submodule Sender in Fig. 6.2, we
have

PS(SenderProtocol) = { (PacketsToSendProtocol,PacketsToSendSender),
(AProtocol,ASender),(DProtocol,DSender) }

In the above port–socket relation, a related socket and port place have the same
name. This is not generally required, as illustrated by the port–socket relation for the
substitution transition TransmitData in Fig. 6.3 and the Transmit module in Fig. 6.5.
In this case the port place IN in Fig. 6.5 is related to the socket place A in Fig. 6.3,
and the port place OUT is related to the socket place B:

PS(TransmitData) = { (ANetwork, IN),(BNetwork,OUT) }
The definition of port–socket relations implies that it is possible to relate a port

place to several socket places and a socket place to several port places. It is also
possible to have port places that are not related to a socket place, and socket places
that have no related port places. CPN Tools implements a restricted form of port–
socket relations in which a port place can be associated with only one socket place

6.2 Module Composition 135

and vice versa. Furthermore, it is required that each port place is associated with
some socket place, and each socket place with some port place.

For a port–socket relation, it is required that input port places are related to input
socket places, that output port places are related to output socket places, and that in-
put/output port places are related to input/output socket places. Formally, this means
that for a socket place p and a related port place p′ it is required that the socket type
ST (p) of p is equal to the port type PT (p′) of p′, i.e., ST (p) = PT (p′). Furthermore,
we require that the colour sets of p and p′ are identical, i.e., that C(p) = C(p′), and
that the initial marking expressions evaluate to identical multisets of tokens, i.e.,
that I(p)〈〉 = I(p′)〈〉. The latter is not required in CPN Tools, where a port place
obtains its initial marking from the associated socket place, which supports param-
eterisation of modules as explained in Sect. 5.3. To simplify the formal definitions,
we require related socket and port places to have initial marking expressions that
evaluate to the same multiset of tokens.

The fusion sets FS are a set of non-empty sets of places, and a fusion set fs ∈ FS
is a member of the set of all subsets of places, denoted 2P. For the CPN model in
Figs 6.1-.6.6, we have

FS = {DataPackets,Acks,Transmit,Lost}
where the four fusion sets are defined as

DataPackets = {DataPacketsInitialisation,PacketsToSendProtocol}
Acks = {AckPacketsInitialisation,AcksSender}

Transmit = {SuccessInitialisation,SuccessTransmit}
Lost = {PacketsLostTransmit}

All places in a fusion set fs are required to have identical colour sets, and their initial
marking expressions must evaluate to identical multisets of tokens. This means that
for all places p, p′ belonging to a fusion set fs it is required that C(p) = C(p′) and
I(p)〈〉 = I(p′)〈〉.

The implementation of hierarchical CPNs in CPN Tools requires that fusion sets
are disjoint. Furthermore, it does not allow port places to be members of a fusion
set. Neither of these has any practical implications, since fusion sets can always be
made disjoint and socket places are allowed to be members of fusion sets.

The definition below summarises the definition of a hierarchical CPN model
based on the description above.

Definition 6.2. A hierarchical Coloured Petri Net is a four-tuple CPNH = (S,SM,
PS,FS) where:

1. S is a finite set of modules. Each module is a Coloured Petri Net Module s =
((Ps,T s,As,Σ s,V s,Cs,Gs,Es, Is),T s

sub,P
s
port,PT s). It is required that (Ps1 ∪T s1)∩

(Ps2 ∪T s2) = /0 for all s1,s2 ∈ S such that s1 �= s2.

136 6 Formal Definition of Hierarchical Coloured Petri Nets

2. SM : Tsub → S is a submodule function that assigns a submodule to each sub-
stitution transition. It is required that the module hierarchy (see Definition 6.3) is
acyclic.

3. PS is a port–socket relation function that assigns a port–socket relation
PS(t) ⊆ Psock(t) × PSM(t)

port to each substitution transition t. It is required that
ST (p) = PT (p′), C(p) = C(p′), and I(p)〈〉 = I(p′)〈〉 for all (p, p′) ∈ PS(t) and
all t ∈ Tsub.

4. FS ⊆ 2P is a set of non-empty fusion sets such that C(p) = C(p′) and I(p)〈〉 =
I(p′)〈〉 for all p, p′ ∈ fs and all fs ∈ FS.

�
The definition below summarises the definition of the module hierarchy.

Definition 6.3. The module hierarchy for a hierarchical Coloured Petri Net CPNH

= (S,SM,PS,FS) is a directed graph MH = (NMH ,AMH), where

1. NMH = S is the set of nodes.
2. AMH = {(s1, t,s2) ∈ NMH ×Tsub ×NMH | t ∈ T s1

sub ∧ s2 = SM(t)} is the set of arcs.

The roots of MH are called prime modules, and the set of all prime modules is
denoted SPM.

�
In the above, we have not formally defined the concept of directed graphs. This

will be done when we define state spaces in Chap. 9.

6.3 Instances and Compound Places

Before a hierarchical CPN model can be simulated, the appropriate number of in-
stances of the modules must be created. An instance of a module s corresponds to a
path in the module hierarchy leading from a prime module to the module s, and the
module s has as many instances as there are such paths. Since the module hierarchy
is finite and is required to be acyclic, there will be finitely many instances of each
module. As an example, the Transmit module in the CPN model in Figs 6.1–6.6
has two instances, corresponding to the following two paths leading from the prime
module Protocol to the Transmit module:

Protocol
Network−−−−→ Network

TransmitData−−−−−−−→Transmit

Protocol
Network−−−−→ Network

TransmitAck−−−−−−→Transmit

A single instance of each prime module is created, since a prime module s can
be reached only by the path s

ε−→s of length 0 consisting of the prime module it-
self. Since each instance of a module s corresponds to a path in the module hi-
erarchy starting at a prime module, we define instances of a module s as triples

6.3 Instances and Compound Places 137

(s′, t1t2 · · ·tn,s) where s′ is a prime module and s′ t1t2···tn−−−−→s is a path in the module
hierarchy leading to s.

For the CPN model in Figs 6.1–6.6, we have two prime modules, Protocol and
Initialisation, and from the module hierarchy in Fig. 6.7 we obtain the following
module instances, where the shorthand names introduced for the module instances
have been marked with an asterisk to make it easier to distinguish between instances
and modules:

Protocol∗ = (Protocol, ε , Protocol)
Initialisation∗ = (Initialisation, ε , Initialisation)
Sender∗ = (Protocol, Sender, Sender)
Network∗ = (Protocol, Network, Network)
Transmit∗(1) = (Protocol, Network TransmitData, Transmit)
Transmit∗(2) = (Protocol, Network TransmitAck, Transmit)
Receiver∗ = (Protocol, Receiver, Receiver)

The instance hierarchy for a hierarchical CPN model is a directed graph with
a node for each module instance and a labelled arc for each substitution transition
instance. An arc labelled with t leading from an instance s∗1 of a module s1 to an
instance s∗2 of a module s2 specifies that s1 contains a substitution transition t and
that the instance of s2 associated with t in s∗1 is s∗2. The instance of s2 associated with
t in the instance s∗1 = (s′, t1t2 · · ·tn,s1) is the instance identified by taking the path
in the module hierarchy corresponding to s∗1 and extending it with the arc (s1, t,s2),
i.e., the instance s∗2 = (s′, t1t2 · · ·tnt,s2).

Figure 6.8 is a graphical representation of the instance hierarchy for the CPN
model shown in Figs 6.1–6.6. The set of nodes NIH for the instance hierarchy in
Fig. 6.8 is given by

NIH = { Protocol∗, Initialisation∗,Sender∗,Network∗,
Transmit∗(1),Transmit∗(2),Receiver∗}

The set of arcs AIH for the instance hierarchy in Fig. 6.8 is

AIH = { (Protocol∗,Sender,Sender∗),
(Protocol∗,Network,Network∗),
(Protocol∗,Receiver,Receiver∗),
(Network∗,TransmitData,Transmit∗(1)),
(Network∗,TransmitAck,Transmit∗(2)) }

The following definition summarises the definition of module instances and the
instance hierarchy based on the description above. We have used T ∗

sub to denote
the set of all finite sequences of substitution transitions. The empty sequence of
substitution transitions is denoted ε .

138 6 Formal Definition of Hierarchical Coloured Petri Nets

ReceiverSender Network

TransmitData TransmitAck

Protocol* Initialisation*

Receiver*Sender* Network*

Transmit*(1) Transmit*(2)

Fig. 6.8 Instance hierarchy for the hierarchical CPN model shown in Figs 6.1–6.6

Definition 6.4. Let CPNH = (S,SM,PS,FS) be a hierarchical Coloured Petri Net
and let MH = (NMH ,AMH) be the module hierarchy of CPNH .

The set of module instances MIs of a module s ∈ S is defined by

MIs = { (s′, t1t2 · · ·tn,s) ∈ SPM ×T ∗
sub ×S | s′ t1t2···tn−−−−→s is a path in MH }

The set of all instances of modules is denoted MI.

The instance hierarchy of CPNH is a directed graph IH = (NIH,AIH) where:

1. NIH = MI is the set of nodes.
2. AIH = {((s′, t1t2 · · ·tn,s1), t,(s′, t1t2 · · ·tnt,s2)) ∈ NIH ×Tsub ×NIH } is the set of

arcs.
�

When we create an instance of a module, we also create a place instance for each
of the places in the module and a transition instance for each of the transitions in
the module. To distinguish between instances of the same place, a place instance is
a pair consisting of a place and a module instance. As an example, for the Transmit
module in Fig. 6.5 we obtain the following instances of the place IN:

{(IN,Transmit∗(1)),(IN,Transmit∗(2))}
Similarly, a transition instance is a pair consisting of a transition and a module
instance. As an example, for the Transmit module in Fig. 6.5 we obtain the following
instances of the transition TransmitPacket:

{(TransmitPacket,Transmit∗(1)),(TransmitPacket,Transmit∗(2))}

6.3 Instances and Compound Places 139

We denote the set of all place instances by PI and the set of all transition instances
by TI.

A compound place is a set of place instances related via port–socket relations or
fusion sets. Place instances belonging to the same compound place are equivalent in
the sense that they always have identical markings. The concept of compound places
is based on defining an equivalence relation denoted ∼cp over place instances. That
∼cp is an equivalence relation implies that it induces a partitioning of the place
instances into equivalence classes where each equivalence class represents a com-
pound place.

The equivalence relation ∼cp is based on defining that a place instance (p1,s∗1)
is related to a place instance (p2,s∗2), i.e., (p1,s∗1) ∼cp (p2,s∗2) if at least one of the
following two conditions holds:

1. The places p1 and p2 are related via a fusion set, i.e., there exists a fusion set
fs ∈ FS such that p1, p2 ∈ fs. For the CPN model in Figs 6.1–6.6, this condition
implies, for example, that the place instance (DataPackets,Initialisation∗) is re-
lated to (PacketsToSend,Protocol∗), since the two places DataPackets and Pack-
etsToSend belong to the fusion set DataPackets.

2. The place instances (p1,s∗1) and (p2,s∗2) are related via a port–socket relation.
This means that the following two conditions are fulfilled:

• The module instance s∗1 contains a substitution transition t, and the module
instance s∗2 is the instance associated with t. This is equivalent to requiring
that (s∗1, t,s

∗
2) is an arc in the instance hierarchy.

• The two places p1 and p2 are related via the port–socket relation of t, i.e.,
(p1, p2) ∈ PS(t).

For the CPN model in Figs 6.1–6.6, these conditions imply, for example, that the
place instance (PacketsToSend,Protocol∗) is related to (PacketsToSend,Sender∗),
since the module instance Sender∗ is associated with the substitution transition
Sender in Protocol∗, and the places PacketsToSendProtocol and PacketsToSendSender

are related via a port–socket relation.

An equivalence relation is required to be reflexive, symmetric, and transitive.
That the relation is reflexive means that any place is related to itself. That the relation
is symmetric means that if an instance (p1,s∗1) is related to another instance (p2,s∗2),
then (p2,s∗2) is also related to (p1,s∗1). Using the examples above, symmetry means
that since (PacketsToSend,Protocol∗) is related to (DataPackets,Initialisation∗), then
(DataPackets,Initialisation∗) is related to (PacketsToSend,Protocol∗). That the rela-
tion is transitive means that if a place instance (p1,s∗1) is related to a place in-
stance (p2,s∗2) which is turn is related to a place instance (p3,s∗3), then (p1,s∗1)
is also related to (p3,s∗3). Using the examples above, transitivity means that since
(DataPackets,Initialisation∗) is related to (PacketsToSend,Protocol∗), which in turn
is related to (PacketsToSend,Sender∗), then (DataPackets,Initialisation∗) is related
to (PacketsToSend,Sender∗).

Conditions 1 and 2 above do not ensure that the relation is an equivalence rela-
tion. We therefore define ∼cp to be the smallest reflexive, symmetric, and transitive

140 6 Formal Definition of Hierarchical Coloured Petri Nets

relation that relates place instances via conditions 1 and 2 above. We define it to be
the smallest equivalence relation because we do not want to consider place instances
other than those related via conditions 1 and 2 to be equivalent.

A pair of place instances ((p1,s∗1),(p2,s∗2)) belonging to ∼cp are said to be equiv-
alent which is written (p1,s∗1) ∼cp (p2,s∗2). For a place instance p∗ we use [p∗] to
denote the equivalence class (compound place) to which p∗ belongs. We use [PI] to
denote the set of all such equivalence classes (compound places). It should be noted
that if a place instance is not equivalent to any other place instance, i.e., the place is
not part of a port–socket relation and does not belong to a fusion set, it will form an
equivalence class with a single place instance and form its own compound place.

For the CPN model in Figs 6.1–6.6, we have the following compound places:

PacketsToSendcp = { (PacketsToSend,Protocol∗),(PacketsToSend,Sender∗),
(DataPackets, Initialisation∗)}

Acp = { (A,Protocol∗,(A,Sender∗),(A,Network∗),
(IN,Transmit∗(1))}

Bcp = { (B,Protocol∗),(B,Receiver∗),(B,Network∗),
(OUT,Transmit∗(1))}

Ccp = { (C,Protocol∗),(C,Receiver∗),(C,Network∗),}
(IN,Transmit∗(2))

Dcp = { (D,Protocol∗),(D,Sender∗),(D,Network∗),}
(OUT,Transmit∗(2))

DataReceivedcp = { (DataReceived,Protocol∗),(DataReceived,Receiver∗)}
NextSendcp = { (NextSend,Sender∗)}

Ackscp = { (Acks,Sender∗),(AckPackets, Initialisation∗)}
NextReccp = { (NextRec,Receiver∗)}

PacketLostcp = { (PacketsLost,Transmit∗(1)),(PacketsLost,Transmit∗(2))}
Successcp = { (Success,Transmit∗(1)),(Success,Transmit∗(2)),

(Success, Initialisation∗)}
DataToSendcp = { (DataToSend, Initialisation∗)}

Networkcp = { (Network, Initialisation∗)}

The following definition summarises the definition of place and transition in-
stances, and of compound places according to the description above.

6.4 Enabling and Occurrence of Steps 141

Definition 6.5. Let CPNH = (S,SM,PS,FS) be a hierarchical Coloured Petri Net
and let IH = (NIH,AIH) be the instance hierarchy of CPNH .

The set of all place instances PIp of a place p belonging to a module s is defined
by

PIp = {(p,s∗) | s∗ ∈ MIs}
The set of all transition instances TIt of a transition t belonging to a module s is
defined by

TIt = {(t,s∗) | s∗ ∈ MIs}
The set of all place instances is denoted PI and the set of all transition instances is
denoted TI.

The place instance relation ∼cp PI × PI is the smallest equivalence relation
containing all those pairs ((p1,s∗1),(p2,s∗2)) that satisfy at least one of the following
two conditions:

1. There exists a fusion set fs ∈ FS such that p1, p2 ∈ fs.
2. There exists an arc (s∗1, t,s

∗
2) ∈ AIH and (p1, p2) ∈ PS(t).

The equivalence classes determined by ∼cp are called compound places. The set of
compound places is denoted [PI].

�

6.4 Enabling and Occurrence of Steps

We now define the semantics of hierarchical CPN models, i.e., the enabling and
occurrence of steps. The definition of the semantics is similar to the definition of the
semantics of non-hierarchical CPN models except that markings are now defined in
terms of compound places and steps are defined in terms of transition instances.

A marking M for a hierarchical CPN model is a function that maps each com-
pound place [p∗] into a multiset of tokens M([p∗]) representing the marking of the
place instances belonging to the compound place [p∗]. As an example, the marking
M shown in Figs 6.9–6.15 can be written

142 6 Formal Definition of Hierarchical Coloured Petri Nets

Network

Network

Receiver

Receiver

Sender

Sender

PACKETPACKET

C

RECVxPACKET

D

RECVxPACKET

A

RECVxPACKET

Data
Received

RECVxDATA

B

RECVxPACKET

Sender ReceiverNetwork

Packets
To Send DataPacketsDataPackets
Packets
To Send

AllRecvs ""

1

1`(Recv(1),Ack(2))

2

1`(Recv(2),Data((1,"COL")))++
1`(Recv(3),Data((1,"COL")))

3

1`(Recv(1),"COL")++
1`(Recv(2),"")++
1`(Recv(3),"")

6

1`Data((1,"COL"))++
1`Data((2,"OUR"))++
1`Data((3,"ED "))++
1`Data((4,"PET"))++
1`Data((5,"RI "))++
1`Data((6,"NET"))

Fig. 6.9 Marking M of module instance Protocol∗

M :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PacketsToSendcp �→ 1‘Data((1,"COL")) ++
1‘Data((2,"OUR")) ++
1‘Data((3,"ED ")) ++
1‘Data((4,"PET")) ++
1‘Data((5,"RI ")) ++
1‘Data((6,"NET"))

Acp �→ 1‘(Recv(2),Data((1,"COL"))) ++
1‘(Recv(3),Data((1,"COL")))

Bcp �→ /0MS

Ccp �→ 1‘(Recv(1),Ack(2))
Dcp �→ /0MS

DataReceivedcp �→ 1‘(Recv(1),"COL") ++
1‘(Recv(2),"") ++ 1‘(Recv(3),"")

NextSendcp �→ 1‘1
Ackscp �→ 1‘Ack(2) ++ 1‘Ack(3) ++ 1‘Ack(4) ++

1‘Ack(5) ++ 1‘Ack(6) ++ 1‘Ack(7)
NextReccp �→ 1‘(Recv(1),2) ++ 1‘(Recv(2),1) ++

1‘(Recv(3),1)
PacketsLostcp �→ /0MS

Successcp �→ 1‘false ++ 1‘true
DataToSendcp �→ /0MS

Networkcp �→ /0MS

6.4 Enabling and Occurrence of Steps 143

AllRecvs (Data(n,d))

Data(n,d)

n

nk

Receive
Ack

Send
Packet

PACKET

A Out

RECVxPACKET

D In

RECVxPACKET

NextSend

1`1

NO

Packets
To SendI/O

PACKET

I/O

In

Out

AcksAcksAcks
Ack(n) AllRecvs (Ack(n))

2

1`(Recv(2),Data((1,"COL")))++
1`(Recv(3),Data((1,"COL")))

1 1`1

6

1`Data((1,"COL"))++
1`Data((2,"OUR"))++
1`Data((3,"ED "))++
1`Data((4,"PET"))++
1`Data((5,"RI "))++
1`Data((6,"NET"))

6

1`Ack(2)++
1`Ack(3)++
1`Ack(4)++
1`Ack(5)++
1`Ack(6)++
1`Ack(7)

Fig. 6.10 Marking M of module instance Sender∗

Transmit
Ack

Transmit

Transmit
Data

Transmit

AIn

RECVxPACKET

B Out

RECVxPACKET

DOut

RECVxPACKET

C In

RECVxPACKET

InOut

OutIn

Transmit

Transmit

2

1`(Recv(2),Data((1,"COL")))++
1`(Recv(3),Data((1,"COL")))

1

1`(Recv(1),Ack(2))

Fig. 6.11 Marking M of module instance Network∗

144 6 Formal Definition of Hierarchical Coloured Petri Nets

if n=k
then (recv,Ack(k+1))
else (recv,Ack(k))

(recv,Data(n,d))

if n=k
then (recv,data^d)
else (recv,data)

(recv,k)

if n=k
then (recv,k+1)
else (recv,k)

Receive
Packet

COut

RECVxPACKET

BIn

RECVxPACKET

Data
Received I/O

RECVxDATA

NextRec

AllRecvs 1

RECVxNO

I/O

In

Out

(recv,data)

1

1`(Recv(1),Ack(2))

3

1`(Recv(1),"COL")++
1`(Recv(2),"")++
1`(Recv(3),"")

3

1`(Recv(1),2)++
1`(Recv(2),1)++
1`(Recv(3),1)

Fig. 6.12 Marking M of module instance Receiver∗

success

if success
then empty
else 1`(recv,pack)

if success
then 1`(recv,pack)
else empty(recv,pack) Transmit

Packet

Success

Success BOOL

Packets
Lost

Lost RECVxPACKET

OUT Out

RECVxPACKET

INIn

RECVxPACKET

In Out

Lost

Success

2
1`false++
1`true

2

1`(Recv(2),Data((1,"COL")))++
1`(Recv(3),Data((1,"COL")))

Fig. 6.13 Marking M of module instance Transmit∗(1)

6.4 Enabling and Occurrence of Steps 145

success

if success
then empty
else 1`(recv,pack)

if success
then 1`(recv,pack)
else empty(recv,pack) Transmit

Packet

Success

Success BOOL

Packets
Lost

Lost RECVxPACKET

OUT Out

RECVxPACKET

INIn

RECVxPACKET

In Out

Lost

Success

2
1`false++
1`true

1

1`(Recv(1),Ack(2))

Fig. 6.14 Marking M of module instance Transmit∗(2)

Booleans(trans)

AllDataPackets(data)

trans

data

Initialise
Model Ack Packets

Acks
PACKET

Success

Success BOOL

Data Packets

DataPackets
PACKET

Network

unreliable

TRANSMISSION

Data
To Send

"COLOURED PETRI NET"

DATA

DataPackets

Acks

Success

AllAckPackets(data) 6

1`Ack(2)++
1`Ack(3)++
1`Ack(4)++
1`Ack(5)++
1`Ack(6)++
1`Ack(7)

2

1`false++
1`true

6

1`Data((1,"COL"))++
1`Data((2,"OUR"))++
1`Data((3,"ED "))++
1`Data((4,"PET"))++
1`Data((5,"RI "))++
1`Data((6,"NET"))

Fig. 6.15 Marking M of module instance Initialisation∗

146 6 Formal Definition of Hierarchical Coloured Petri Nets

A hierarchical CPN model has a distinguished initial marking, denoted M0. The
formal definition of hierarchical CPN models in Definition 6.2 requires the initial
marking expressions of places in a fusion set to evaluate to the same multiset of
tokens, and similarly for a related socket and port place. This means that we can
define the initial marking of a compound place [p∗] to be M0([p∗]) = I(p)〈〉, where
(p,s∗) is any place instance belonging to the compound place [p∗]. For the CPN
model in Figs 6.9–6.15, we have the following initial marking M0:

M0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PacketsToSendcp �→ /0MS

Acp �→ /0MS

Bcp �→ /0MS

Ccp �→ /0MS

Dcp �→ /0MS

DataReceivedcp �→ 1‘(Recv(1),"") ++ 1‘(Recv(2),"") ++
1‘(Recv(3),"")

NextSendcp �→ 1‘1
Ackscp �→ /0MS

NextReccp �→ 1‘(Recv(1),1) ++ 1‘(Recv(2),1) ++
1‘(Recv(3),1)

PacketsLostcp �→ /0MS

Successcp �→ /0MS

DataToSendcp �→ 1‘"COLOURED PETRI NET"
Networkcp �→ 1‘unreliable

The concepts of variables of transitions, bindings, binding elements, and steps are
defined in a way similar to that for non-hierarchical CPN models except that we now
consider transition instances instead of transitions and we do not define bindings for
substitution transitions, as they cannot become enabled and occur. The following
definition summarises the semantic concepts and notation introduced above.

Definition 6.6. For of a hierarchical Coloured Petri Net CPNH , we define the fol-
lowing concepts:

1. A marking M is a function that maps each compound place [p∗] into a multiset
of tokens M([p∗]) ∈ C(p)MS, where (p,s∗) is any place instance belonging to
[p∗].

2. The initial marking M0 is defined by M0([p∗]) = I(p)〈〉 where (p,s∗) is any
place instance belonging to [p∗].

3. The variables of a transition instance t∗ of a transition t are denoted Var(t∗)
and defined by Var(t∗) = Var(t).

4. A binding of a transition instance t∗ of a transition t ∈ T −Tsub is a function b
that maps each variable v ∈ Var(t∗) into a value b(v) ∈ Type[v]. The set of all
bindings for a transition instance t∗ is denoted B(t∗).

5. A binding element is a pair (t∗,b) such that t∗ is a transition instance of a tran-
sition t ∈ T − Tsub and b ∈ B(t∗). The set of all binding elements BE(t∗) for a

6.4 Enabling and Occurrence of Steps 147

transition instance t∗ is defined by BE(t∗) = {(t∗,b) | b ∈ B(t∗)}. The set of all
binding elements in CPNH is denoted BE.

6. A step Y ∈ BEMS is a non-empty, finite multiset of binding elements.
�

When p∗ is an instance of a place p and t∗ is an instance of a transition t, we define

E(p∗, t∗) =
{

E(p, t) if p∗ and t∗ belong to the same module instance
/0MS otherwise

Analogously, we define

E(t∗, p∗) =
{

E(t, p) if t∗ and p∗ belong to the same module instance
/0MS otherwise

Intuitively, this means that t∗ cannot remove or add tokens at p∗ when they belong
to different modules or to different instances of the same module. Finally, when t∗
is a transition instance of t, we define the guard of t∗ by G(t∗) = G(t).

When we calculate the tokens to be removed from a compound place pcp by a
step Y , we need to consider all those transition instances which remove tokens from
a place instance p∗ belonging to pcp. This means that the multiset of tokens removed
from pcp is given by

++
MS∑

(t∗,b)∈Y,p∗∈pcp

E(p∗, t∗)〈b〉

Hence, for a step Y to be enabled in a marking M we require that the guards
must be satisfied for all (t∗,b) ∈Y and that the following property is satisfied for all
compound places pcp:

++
MS∑

(t∗,b)∈Y,p∗∈pcp

E(p∗, t∗)〈b〉 �= M(pcp)

To illustrate the condition above, consider the following binding of the transition
instance (TransmitPacket,Transmit∗(1)) of the CPN model shown in Fig. 6.13:

bTP = 〈recv=Recv(2), pack=Data(1,"COL"), success=true〉

148 6 Formal Definition of Hierarchical Coloured Petri Nets

Consider also the following step:

TP = 1‘((TransmitPacket,Transmit∗(1)),bTP)

For the compound place Acp, we have
++
MS∑

(t∗,b)∈TP,p∗∈Acp

E(p∗, t∗)〈b〉

= E((A,Protocol∗),(TransmitPacket,Transmit∗(1)))〈bTP〉++
E((A,Sender∗),(TransmitPacket,Transmit∗(1)))〈bTP〉++
E((A,Network∗),(TransmitPacket,Transmit∗(1)))〈bTP〉++
E((IN,Transmit∗(1)),(TransmitPacket,Transmit∗(1)))〈bTP〉

= /0MS ++ /0MS ++ /0MS ++ 1‘(Recv(2),Data(1,"COL"))
= 1‘(Recv(2),Data(1,"COL"))

For the compound place Successcp, we have
++
MS∑

(t∗,b)∈TP,p∗∈Successcp

E(p∗, t∗)〈b〉

= E((Success,Transmit∗(1)),(TransmitPacket,Transmit∗(1)))〈bTP〉++
E((Success,Transmit∗(2)),(TransmitPacket,Transmit∗(1)))〈bTP〉++
E((Success, Initialisation∗),(TransmitPacket,Transmit∗(1)))〈bTP〉

= 1‘true ++ /0MS ++ /0MS

= 1‘true

Since in both cases the multisets obtained are less than or equal to the marking
of the corresponding compound place, we conclude that the step TP is enabled.

When an enabled step Y occurs, it will remove

++
MS∑

(t∗,b)∈Y,p∗∈pcp

E(p∗, t∗)〈b〉

from the compound place pcp and it will add

++
MS∑

(t∗,b)∈Y,p∗∈pcp

E(t∗, p∗)〈b〉

This means that the new marking M reached when an enabled step Y occurs in a
marking M is given by

M′(pcp) = (M(pcp)−− ++
MS∑

(t∗,b)∈Y,p∗∈pcp

E(p∗, t∗)〈b〉)++ ++
MS∑

(t∗,b)∈Y,p∗∈pcp

E(t∗, p∗)〈b〉

6.4 Enabling and Occurrence of Steps 149

As an example, consider the marking M shown in Figs 6.9–6.15. The marking
of the compound places Acp, Bcp, Successcp, and PacketsLostcp in the marking M′
reached when TP occurs in M is given by

M′(Acp) = ((1‘(Recv(2),Data(1,"COL")) ++
1‘(Recv(3),Data(1,"COL")))--
1‘(Recv(2),Data(1,"COL"))) ++ /0MS

= 1‘(Recv(3),Data(1,"COL"))

M′(Bcp) = (/0MS -- /0MS) ++
1‘(Recv(2),Data(1,"COL"))

= 1‘(Recv(2),Data(1,"COL"))

M′(Successcp) = ((1‘true ++ 1‘false) -- 1‘true) ++ 1‘true
= 1‘true ++ 1‘false

M′(PacketsLostcp) = (/0MS -- /0MS) ++ /0MS

= /0MS

The enabling and occurrence of steps are summarised in the following definition.
Recall that [PI] denotes the set of all compound places.

Definition 6.7. A step Y ∈ BEMS is enabled in a marking M if and only if the fol-
lowing two properties are satisfied:

1. ∀(t∗,b) ∈ Y : G(t∗)〈b〉.

2. ∀pcp ∈ [PI] :
++
MS∑

(t∗,b)∈Y,p∗∈pcp

E(p∗, t∗)〈b〉 �= M(pcp).

When Y is enabled in M, it may occur, leading to the marking M′ defined by

3. ∀pcp ∈ [PI] : M′(pcp) = (M(pcp)−− ++
MS∑

(t∗,b)∈Y,p∗∈pcp

E(p∗, t∗)〈b〉)++ ++
MS∑

(t∗,b)∈Y,p∗∈pcp

E(t∗, p∗)〈b〉.

�
The concepts of directly reachable, reachability, reachable markings, and oc-

currence sequences are defined as for non-hierarchical CPN models (see Defini-
tion 4.6). Theorem 4.7 is also valid for hierarchical CPN models.

The formal definition of the semantics of hierarchical CPN models given in this
chapter differs from the formal definition in [60] in some minor points. The defi-
nition of a hierarchical CPN model now has an explicit definition of modules (see
Definition 6.1). We now define instances of substitution transitions, but not bindings
for instances of substitution transitions. Hence, it is still not possible for substitution
transitions to become enabled and occur. Furthermore, the definition of module in-
stances has been simplified, since it is no longer possible to have multiple instances
of prime modules. The behaviour of hierarchical CPN models as defined in this
chapter is equivalent to the semantics given in [60].

Chapter 7
State Spaces and Behavioural Properties

This chapter introduces the basic state space method of CP-nets and shows how it
can be used to investigate the behavioural properties of the protocol described in
Chap. 2. The basic idea of state spaces is to calculate all reachable states (markings)
and state changes (occurring binding elements) of the CPN model and to represent
these in a directed graph where the nodes correspond to the set of reachable mark-
ings and the arcs correspond to occurring binding elements. The state space of a
CPN model can be computed fully automatically and makes it possible to automati-
cally analyse and verify an abundance of properties concerning the behaviour of the
model. Examples of such properties include the minimum and maximum numbers
of tokens on a place, the states in which the system may terminate, and the system
always being able to reach a certain state.

This chapter gives an informal introduction to state spaces and introduces a stan-
dard set of behavioural properties. These properties are not tied to state spaces,
but define general behavioural properties of a CPN model. Practical experience has
shown that these properties are often investigated using state spaces and hence it
is natural to present them as part of a presentation of the state space method of
CP-nets. Behavioural properties of concurrent systems are also often expressed in
temporal logics [37], such as linear-time temporal logic (LTL) and computation tree
temporal logic (CTL). The use of temporal logic for stating and checking verifi-
cation questions is referred to as model checking [21], and CPN Tools include a li-
brary for performing CTL model checking. A treatment of temporal logic and model
checking is, however, outside the scope of this book. One reason is that expressing
properties using temporal logic operators requires considerable mathematical skills.
Secondly, some behavioural properties of CPN models, such as best upper and lower
bounds of places are not conveniently expressed using temporal logic. State spaces
and behavioural properties are presented using a non-hierarchical CPN model as an
example. However, state spaces can be generalised to hierarchical CPN models by
replacing places with place instances and transitions with transition instances. CPN
Tools supports state spaces for hierarchical CPN models.

Section 7.1 presents the protocol to be used as a running example for introducing
state spaces. Section 7.2 introduces state spaces, and Sect. 7.3 presents strongly-

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 7, 151
c© Springer-Verlag Berlin Heidelberg 2009

152 7 State Spaces and Behavioural Properties

connected-component graphs. Section 7.4 introduces the standard behavioural prop-
erties, and Sect. 7.5 demonstrates how state spaces can be used to automatically
produce error diagnostics and counter examples. Finally, Sect. 7.6 discusses the
practical limitations of using state spaces.

7.1 Protocol for State Space Analysis

We consider the protocol described in Sect. 2.4, which has been repeated in Fig. 7.1.
Before we construct a state space for the protocol, we need to make a small modi-
fication. The CPN model in Fig. 7.1 has an infinite number of reachable markings,
and hence the state space cannot be calculated. The reason for the infinite number
of reachable markings is that the network buffer places A, B, C, and D can contain
an arbitrary number of tokens. As an example, we can produce n tokens on place A
by letting the transition SendPacket occur n times immediately after each other.

To obtain a finite number of reachable markings, we limit the number of tokens
which may simultaneously reside on the network places A, B, C, and D. This is done
by adding a place Limit as shown in Fig. 7.2. It has the colour set UNIT, defined as

colset UNIT = unit;

where unit is a basic Standard ML type containing the single value (). The initial
marking of Limit is the multiset 3‘(), which has the effect that at most three tokens
can be present simultaneously on the network buffer places. Tokens with the token
colour () can be thought of as being ‘uncoloured’ tokens where the value attached

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`11 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 7.1 CPN model of protocol (identical to Fig. 2.10)

7.2 State Spaces 153

if success
then empty
else 1`()

if success
then empty
else 1`()

()

()

k

if n=k
then k+1
else k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

k
3 3`() 11`11 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 7.2 Modified CPN model used for state space analysis

carries no information since it can take only one possible value. The arcs around the
place Limit have arc expressions such that a token is removed from the place Limit
each time a packet is sent to the network. Analogously, a token is added to the place
Limit each time a packet is removed from or lost in the network. This means that
the total number of tokens on the five places A, B, C, D, and Limit is constant and
identical to the number of tokens which Limit has in the initial marking.

Limiting the number of tokens that can reside simultaneously on the network re-
stricts the behaviour of the CPN model. As an example, in the CPN model in Fig. 7.1
it is possible to have an infinite occurrence sequence consisting of occurrences of
the transition SendPacket only, whereas this is not possible in the CPN model in
Fig. 7.2. This means that the state space analysis results must be interpreted taking
into account the restrictions on the CPN model being analysed, and the modifica-
tions made to it.

7.2 State Spaces

Simulation can only be used to explore a finite number of executions of the sys-
tem under consideration. This makes simulation suitable for detecting errors and for
obtaining increased confidence in the correctness of a system. For the present proto-
col, a number of simulations can be conducted which show that the protocol always
seems to terminate in the desired state, where all data packets have been received
in the correct order. This makes it likely that the protocol works correctly, but it
cannot be used to ensure this with 100% certainty, since we cannot guarantee that

154 7 State Spaces and Behavioural Properties

the simulations cover all possible executions. Hence, after a set of simulations have
been conducted, there may still exist executions of the protocol that lead to a state
where, for example, the data packets are not received in the correct order. A state
space, in contrast, represents all possible executions of the system under considera-
tion and can be used to verify, i.e., prove in the mathematical sense of the word, that
the system possesses a certain formally specified property.

A state space is a directed graph where we have a node for each reachable mark-
ing and an arc for each occurring binding element. There is an arc labelled with a
binding element (t,b) from a node representing a marking M1 to a node representing
a marking M2 if and only if the binding (t,b) is enabled in M1 and the occurrence
of (t,b) in M1 leads to the marking M2. When constructing state spaces, we con-
sider only steps consisting of single binding elements. As discussed in Sect. 2.5 and
stated formally in Theorem 4.7 in Sect. 4.3, this is sufficient to obtain all reachable
markings and all occurring binding elements of a CPN model.

To construct the state space for the CPN model in Fig. 7.2, we first create the node
which represents the initial marking. This node is shown as a rounded box in Fig. 7.3
and has been given the number 1. The rectangular box positioned next to node 1
gives information about the individual places in the marking corresponding to node
1. We have only listed places with non-empty markings and place PacketsToSend
has been omitted since it always contains the six data packets to be transmitted.

In the initial marking, only one binding element (SendPacket, 〈n=1, d="COL"〉)
is enabled, and it leads to a marking which is identical to the initial marking except
that we now also have a token (1,"COL") on place A and only two tokens, with
colour (), on the place Limit. In Fig. 7.4, the new marking is represented by node
number 2. The arc from node 1 to node 2 is labelled SP1, which is a shorthand for
the binding element where SendPacket sends data packet number 1. We draw node
1 with a thick border to indicate that we have calculated all of its enabled binding
elements and the immediate successor markings. We say that the node 1 has been
processed.

Next we process node 2. In Fig. 7.5, we see that the marking corresponding to
node 2 has three enabled binding elements:

SP1 = (SendPacket, 〈n=1, d="COL"〉)
TP1+ = (TransmitPacket, 〈n=1, d="COL", success=true〉)
TP1− = (TransmitPacket, 〈n=1, d="COL", success=false〉)

These leads to the markings represented by:

1
1:1

NextSend: 1`1
NextRec: 1`1
DataReceived: 1`""
Limit: 3`()

NextSend: 1`1
NextRec: 1`1
DataReceived: 1`""
Limit: 3`()

Fig. 7.3 State space construction starting with the initial marking

7.2 State Spaces 155

SP1
2

2:3

NextSend: 1`1
A: 1`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 2`()

NextSend: 1`1
A: 1`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 2`()

1
1:1

NextSend: 1`1
NextRec: 1`1
DataReceived: 1`""
Limit: 3`()

NextSend: 1`1
NextRec: 1`1
DataReceived: 1`""
Limit: 3`()

Fig. 7.4 Partial state space after node 1 has been processed.

• Node 4, with two copies of packet number 1 on place A.
• Node 3, with one copy of packet number 1 on place B.
• Node 1, the initial marking.

In Fig. 7.5, we have a total of four nodes and four arcs. Nodes 1 and 2 have been
processed, while nodes 3 and 4 are unprocessed. We select one of the unprocessed
nodes, for example node 3, and process it. In Fig. 7.6, we see that the marking
corresponding to node 3 has two enabled binding elements:

SP1 = (SendPacket, 〈n=1, d="COL"〉)
RP1 = (ReceivePacket, 〈n=1, d="COL", k=1, data=""〉)

These leads to the markings represented by:

• Node 6, with one copy of packet number 1 on place A and one copy on place B.
• Node 5, with one copy of acknowledgement number 2 on place C.

Next we process node 4. In Fig. 7.7, we see that node 4 has three enabled binding
elements:

SP1 = (SendPacket, 〈n=1, d="COL"〉)
TP1+ = (TransmitPacket, 〈n=1, d="COL", success=true〉)
TP1− = (TransmitPacket, 〈n=1, d="COL", success=false〉)

These leads to the markings represented by nodes 7, 6, and 2, respectively.

SP1

TP1+

TP1-

SP1
4

2:3

NextSend: 1`1
A: 2`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 1`()

NextSend: 1`1
A: 2`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 1`()

3
2:2

NextSend: 1`1
B: 1`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 2`()

NextSend: 1`1
B: 1`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 2`()

2
2:3

NextSend: 1`1
A: 1`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 2`()

NextSend: 1`1
A: 1`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 2`()

1
1:1

Fig. 7.5 Partial state space after node 2 has been processed

156 7 State Spaces and Behavioural Properties

SP1

RP1

SP1

TP1+

TP1-

SP1

5
4:3

NextSend: 1`1
NextRec: 1`2
DataReceived: 1`"COL"
C: 1`2
Limit: 2`()

NextSend: 1`1
NextRec: 1`2
DataReceived: 1`"COL"
C: 1`2
Limit: 2`()

6
3:4

NextSend: 1`1
A: 1`(1,"COL")
B: 1`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 1`()

NextSend: 1`1
A: 1`(1,"COL")
B: 1`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 1`()

4
2:3

3
2:2

NextSend: 1`1
B: 1`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 2`()

NextSend: 1`1
B: 1`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 2`()

2
2:3

1
1:1

Fig. 7.6 Partial state space after node 3 has been processed

SP1

RP1

SP1

TP1+

TP1-

SP1

TP1+

TP1-

SP1

5
4:3

7
1:2

NextSend: 1`1
A: 3`(1,"COL")
NextRec: 1`1
DataReceived: 1`""

NextSend: 1`1
A: 3`(1,"COL")
NextRec: 1`1
DataReceived: 1`""

6
3:4

NextSend: 1`1
A: 1`(1,"COL")
B: 1`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 1`()

NextSend: 1`1
A: 1`(1,"COL")
B: 1`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 1`()

4
2:3

NextSend: 1`1
A: 2`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 1`()

NextSend: 1`1
A: 2`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 1`()

3
2:2

2
2:3

1
1:1

Fig. 7.7 Partial state space after node 4 has been processed

Next we process node 5. In Fig. 7.8, we see that node 5 has three enabled binding
elements:

SP1 = (SendPacket, 〈n=1, d="COL"〉)
TA2+ = (TransmitAck, 〈n=2, success=true〉)
TA2− = (TransmitAck, 〈n=2, success=false〉)
These leads to the markings represented by nodes 10, 9, and 8, respectively. The

marking represented by node 8 is identical to the initial marking except that the
markings of NextRec and DataReceived have been changed to 1‘2 and 1‘"COL",
respectively.

7.2 State Spaces 157

SP1

TA2+

TA2-

SP1

RP1

SP1

TP1+

TP1-

SP1

TP1+

TP1-

SP1

10
5:5

NextSend: 1`1
A: 1`(1,"COL")
NextRec: 1`2
DataReceived: 1`"COL"
C: 1`2
Limit: 1`()

NextSend: 1`1
A: 1`(1,"COL")
NextRec: 1`2
DataReceived: 1`"COL"
C: 1`2
Limit: 1`()

9
3:2

NextSend: 1`1
NextRec: 1`2
DataReceived: 1`"COL"
D: 1`2
Limit: 2`()

NextSend: 1`1
NextRec: 1`2
DataReceived: 1`"COL"
D: 1`2
Limit: 2`()

8
2:1

NextSend: 1`1
NextRec: 1`2
DataReceived: 1`"COL"
Limit: 3`()

NextSend: 1`1
NextRec: 1`2
DataReceived: 1`"COL"
Limit: 3`()

5
4:3

NextSend: 1`1
NextRec: 1`2
DataReceived: 1`"COL"
C: 1`2
Limit: 2`()

NextSend: 1`1
NextRec: 1`2
DataReceived: 1`"COL"
C: 1`2
Limit: 2`()

7
1:2

6
3:4

4
2:3

3
2:2

2
2:3

1
1:1

Fig. 7.8 Partial state space after node 5 has been processed

Next we process node 6. In Fig. 7.9, we see that node 6 has four enabled binding
elements:

SP1 = (SendPacket, 〈n=1, d="COL"〉)
TP1+ = (TransmitPacket, 〈n=1, d="COL", success=true〉)
TP1− = (TransmitPacket, 〈n=1, d="COL", success=false〉)
RP1 = (ReceivePacket, 〈n=1, d="COL", k=1, data=""〉)

These leads to the markings represented by nodes 12, 11, 3, and 10, respectively.
The construction of the state space continues in the way described above un-

til no more unprocessed nodes remain. We process the nodes one by one, in some
arbitrary order. If the state space is finite, the construction will terminate when we
have processed all reachable markings. Otherwise, we can continue the construction
forever, obtaining a larger and larger part of the state space without ever finishing.
In Fig. 7.10, we show a partial state space with 23 nodes and 32 arcs. Twelve of
the nodes have been processed, while the remaining 11 nodes are still unprocessed.
Node 17 represents a marking which is identical to the initial marking except that
the places NextSend and NextRec now both have a token with value 2 and DataRe-
ceived has a token with colour "COL".

A directed path in a state space is an alternating sequence of nodes and arcs. As
an example, Fig. 7.11 shows a path starting from node 1, going through nodes 2,
3, 6, 10, 16, 20, and 17, and ending in node 21. It should be obvious that there is
a one-to-one correspondence between the paths in the state space and occurrence

158 7 State Spaces and Behavioural Properties

TP1+

SP1
TP1-

RP1

SP1

TA2+

TA2-

SP1

RP1

SP1

TP1+

TP1-

SP1

TP1+

TP1-

SP1

12
2:3

NextSend: 1`1
A: 2`(1,"COL")
B: 1`(1,"COL")
NextRec: 1`1
DataReceived: 1`""

NextSend: 1`1
A: 2`(1,"COL")
B: 1`(1,"COL")
NextRec: 1`1
DataReceived: 1`""

11
2:2

NextSend: 1`1
B: 2`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 1`()

NextSend: 1`1
B: 2`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 1`()

10
5:5

NextSend: 1`1
A: 1`(1,"COL")
NextRec: 1`2
DataReceived: 1`"COL"
C: 1`2
Limit: 1`()

NextSend: 1`1
A: 1`(1,"COL")
NextRec: 1`2
DataReceived: 1`"COL"
C: 1`2
Limit: 1`()

9
3:2

8
2:1

5
4:3

7
1:2

6
3:4

4
2:3

3
2:2

NextSend: 1`1
B: 1`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 2`()

NextSend: 1`1
B: 1`(1,"COL")
NextRec: 1`1
DataReceived: 1`""
Limit: 2`()

2
2:3

1
1:1

Fig. 7.9 Partial state space after node 6 has been processed

sequences where all steps consist of a single binding element. As an example, the
path shown in Fig. 7.11 corresponds to the following sequence of occurring binding
elements starting from the initial marking:

Step Binding element

1 SP1 = (SendPacket, 〈n=1, d="COL"〉)
2 TP1+ = (TransmitPacket, 〈n=1, d="COL", success=true〉)
3 SP1 = (SendPacket, 〈n=1, d="COL"〉)
4 RP1 = (ReceivePacket, 〈n=1, d="COL", k=1, data=""〉)
5 TA2+ = (TransmitAck, 〈n=2, success=true〉)
6 RA2 = (ReceiveAck, 〈n=2, k=1〉)
7 TP1− = (TransmitPacket, 〈n=1, d="COL", success=false〉)
8 SP2 = (SendPacket, 〈n=2, d="OUR"〉)

It should be noted that even if a CPN model has a finite state space it may still
have an infinite number of occurrence sequences and some of these may be infinite
owing to cycles in the state space. As an example, the simple cycle in Fig. 7.11
consisting of nodes 1 and 2 represents an infinite occurrence sequence.

As we shall see later in this chapter, the CPN model shown in Fig. 7.2 has a finite
state space. However, this state space is far too big to be conveniently represented
as a drawing. It has more than 13 000 nodes and more than 52 000 arcs. Manual

7.2 State Spaces 159

construction of state spaces would be extremely time-consuming and error-prone.
State spaces are calculated fully automatically by the CPN state space tool using a
state space construction algorithm. CPN Tools stores the directed graph representing
the state space in internal memory. This means that the state space can be generated
only if it fits into the available computer memory. CPN Tools also supports the user
in drawing fragments of the state space, and Figs 7.3–7.11 were created using CPN
Tools.

SP1

TP1+

SP1

SP2

SP2

TP1+

TP1-

SP1

TP1+
TP1-

RA2

SP1

RA2

SP1

TP1+
TP1-

TA2+

TA2-

TP1-

RP1

SP1

TA2+

TA2-

SP1

RP1

SP1

TP1+

TP1-

SP1

TP1+

TP1-

SP1

21
5:3

22
5:5

23
6:2

18
2:3

19
4:3

20
5:3

17
5:1

NextSend: 1`2
NextRec: 1`2
DataReceived: 1`"COL"
Limit: 3`()

NextSend: 1`2
NextRec: 1`2
DataReceived: 1`"COL"
Limit: 3`()

14
3:4

15
5:4

16
4:4

13
3:3

12
2:3

11
2:2

10
5:5

9
3:2

8
2:1

5
4:3

7
1:2

6
3:4

4
2:3

3
2:2

2
2:3

1
1:1

Fig. 7.10 Partial state space after nodes 8, 9, 10, 16, 17, and 20 have been processed

160 7 State Spaces and Behavioural Properties

SP1

TP1+

SP1

SP2

SP2

TP1+

TP1-

SP1

TP1+
TP1-

RA2

SP1

RA2

SP1

TP1+
TP1-

TA2+

TA2-

TP1-

RP1

SP1

TA2+

TA2-

SP1

RP1

SP1

TP1+

TP1-

SP1

TP1+

TP1-

SP1

21
5:3

22
5:5

23
6:2

18
2:3

19
4:3

20
5:3

17
5:1

14
3:4

15
5:4

16
4:4

13
3:3

12
2:3

11
2:2

10
5:5

9
3:2

8
2:1

5
4:3

7
1:2

6
3:4

4
2:3

3
2:2

2
2:3

1
1:1

Fig. 7.11 A path in the state space represents an occurrence sequence

7.3 Strongly-Connected-Component Graphs

The generation of the state space is in most cases followed by the generation of the
strongly-connected-component graph (SCC graph), which is derived from the graph
structure of the state space. The SCC graph is used by the CPN state space tool to
determine a number of standard behavioural properties of the model. Moreover, the
structure of the SCC graph quite often gives useful information about the overall
behaviour of the system under consideration. Figure 7.12 shows a small example
state space, with 10 nodes (markings) M0,M2, . . . ,M9 and 16 arcs, that will be used
to introduce SCC graphs. We have omitted the labels on the arcs specifying the
binding elements.

The nodes in the SCC graph are subgraphs, called strongly connected compo-
nents (SCCs), and are obtained by making a disjoint division of the nodes in the

7.3 Strongly-Connected-Component Graphs 161

M

0

M1

M2

M9M7M5

M4 M8

M

3

M6

Fig. 7.12 Example state space

state space such that two state space nodes n1 and n2 are in the same SCC if and
only if they are mutually reachable, i.e., there exists a path in the state space from
n1 to n2 and a path from n2 to n1. Figure 7.13 shows the SCCs for the state space
shown in Fig. 7.12, where each node with a thick border is an SCC. It can be seen
that there are five nodes (SCCs), named S0 to S4. As an example, the SCC S0 con-
sists of the state space nodes M0, M1, and M2 and the four arcs between them. The
nodes M0, M1, and M2 are in the same SCC since they are mutually reachable in the
state space. The state space nodes M4 and M0 are not in the same SCC, since there is
no path from M4 to M0 in the state space. Note that strongly connected components
are maximal, i.e., if a state space node n1 belongs to an SCC S, then S contains all
state space nodes n2 for which n1 and n2 are mutually reachable.

An SCC graph has an arc from an SCC S1 leading to an SCC S2 for each arc in
the state space leading from a node n1 belonging to S1 to a node n2 belonging to
S2. Figure 7.14 shows the SCC graph for the state space shown in Fig. 7.12 where
the nodes with thick borders and the thick arcs are the nodes and arcs of the SCC
graph. As an example, there is an arc in the SCC graph leading from SCC S0 to SCC
S1 because of the arc in the state space leading from M1 (which belongs to S0) to
M4 (which belongs to S1). There are two arcs in the SCC graph leading from S1 to
S4 because of the arc in the state space from M4 to M7 and the arc from M6 to M9.
The label of an arc in an SCC graph is the label of the corresponding arc in the state
space.

Since an SCC graph groups nodes that are mutually reachable, it follows that
an SCC graph is an acyclic graph. A cycle containing two SCCs S′ and S′′ would
mean that any state space node n′ in SCC S′ could be reached from any state space
node n′′ in SCC S′′ (and vice versa), and hence n′ and n′′ would be in the same
SCC since SCCs are maximal. Terminal nodes in an SCC graph, i.e., SCCs without

162 7 State Spaces and Behavioural Properties

M0

M1

M2

M9M7M5

M4 M8

M3

M6

S4

S1

S2

S3
S0

Fig. 7.13 Strongly connected components for the state space shown in Fig. 7.12

outgoing arcs are called terminal strongly connected components (terminal SCCs).
The SCC graph in Fig. 7.14 has two terminal SCCs, S3 and S4. Nodes in an SCC
graph corresponding to SCCs with a single state space node and no state space arcs
are called trivial strongly connected components (trivial SCCs). The SCC S3 is the
only trivial SCC in the SCC graph in Fig. 7.14. The SCC S2 is not trivial, since it
contains a state space arc.

M

0

M1

M2

M9M7M5

M4 M8

M

3

M6

1

S2

S

S 3
S0

4

S

Fig. 7.14 SCC graph for the state space in Fig. 7.12

7.4 Behavioural Properties 163

7.4 Behavioural Properties

State spaces can become very large, and hence they need to be analysed by means
of a computer tool. Usually, the first step is to ask for a state space report, which
provides some basic information about the size of the state space and about some
standard behavioural properties of the CPN model. Figure 7.15 shows the first part
of the CPN Tools state space report for the CPN model shown in Fig. 7.2. This
part provides some state space statistics specifying how large the state space is.
For the protocol shown in Fig. 7.2 there are 13215 nodes and 52784 arcs. The
construction of the state space took 53 seconds (on a standard PC). Statistics for the
SCC graph are also specified. It has 5013 nodes and 37312 arcs, and was calculated
in 2 seconds. The fact that there are fewer nodes in the SCC graph than in the state
space implies that there are non-trivial SCCs and hence there are cycles in the state
space of the protocol. This means that infinite occurrence sequences exist and that
the protocol will not necessarily terminate.

The state space report is produced completely automatically, and contains infor-
mation about a number of key properties of the CPN model under analysis. The
behavioural properties investigated in the state space report are standard proper-
ties that can be investigated for any model. Hence, the state space report is often
the first thing which the user asks for. However, the user may also want to investi-
gate properties that are not general enough to be part of the state space report. For
this purpose, a number of predefined query functions are available in the CPN state
space tool, which makes it possible to write user-defined, model-dependent queries.
These queries are written in the CPN ML programming language. The CPN state
space tool also uses the predefined query functions when computing the content of
the state space report.

In the following subsections, we shall go through the various classes of be-
havioural properties and discuss the corresponding parts of the state space report
for the CPN model shown in Fig. 7.2. We shall also give several examples of user-
defined, model-dependent queries.

State Space Statistics

State Space Scc Graph

Nodes: 13215 Nodes: 5013
Arcs: 52784 Arcs: 37312
Secs: 53 Secs: 2

Fig. 7.15 State space report: statistics

164 7 State Spaces and Behavioural Properties

7.4.1 Reachability Properties

The reachability properties are concerned with determining whether a marking M′ is
reachable from another marking M, i.e., whether there exists an occurrence sequence
starting from M which leads to the marking M′. As was observed in the previous
section, there is a one-to-one correspondence between the paths in the state space
and the occurrence sequences which starts from a reachable marking and where each
step consists of a single binding element. This means that a marking M′ is reachable
from a reachable marking M if and only if there exists a path in the state space from
the node representing M to the node representing M′. Simple reachability properties
can be investigated using the standard query function Reachable, which takes a
pair (n,n′) of integers as an argument and checks whether there exists a path in the
state space leading from node n to node n′. As an example, consider Fig. 7.10 and
assume that we want to check (without drawing a partial state space as in Fig. 7.10)
whether the marking where the first data packet has been successfully received and
acknowledged (node 17) is reachable from the initial marking represented by node
1. This can be checked using the following query:

Reachable (1,17);

The result of this query is true as expected. As another example, we might be
interested in investigating whether it is possible to reach the initial marking from
the marking represented by node 17. This can be done using the following query:

Reachable (17,1);

The result of this query is false, as expected. After the protocol has encoun-
tered a marking where the first data packet has been received, it can never return to
the initial marking. When checking whether a node n′ is reachable from a node n,
the CPN state space tool uses a standard graph traversal starting from n.

In the queries above we used the state space to determine whether a marking
M′ is reachable from a marking M. It is also possible to use the SCC graph for
this purpose, by checking whether there exists a path in the SCC graph leading
from the SCC to which M belongs to the SCC to which M′ belongs. Checking
reachability using the SCC graph is implemented by the standard query function
SccReachable. The two reachability properties checked by means of the query
function Reachable above can be checked using the SCC graph as follows:

SccReachable (1,17);
SccReachable (17,1);

Using the SCC graph to check reachability properties is more efficient, since the
SCC graph is often significantly smaller than the state space. This is, for instance,
the case for the CPN model shown in Fig. 7.2, where the state space has 13215
nodes and 52784 arcs, whereas the SCC graph has only 5013 nodes and 37312
arcs. When checking whether a node n′ is reachable from a marking n using the

7.4 Behavioural Properties 165

SCC graph, the CPN state space tool uses a standard graph traversal of the SCC
graph starting from the SCC to which n belongs.

As a more elaborate example of reachability properties we shall now write a
query which uses the state space to determine whether a reachable marking for
the CPN model shown in Fig. 7.2 exists which corresponds to the desired ter-
minal state of the protocol system. For this purpose, we implement a predicate
DesiredTerminal, which given a node n, returns true if the marking repre-
sented by n corresponds to the desired terminal state. This predicate is implemented
as follows:

fun DesiredTerminal n =
((Mark.Protocol’NextSend 1 n) == 1‘7) andalso
((Mark.Protocol’NextRec 1 n) == 1‘7) andalso
((Mark.Protocol’A 1 n) == empty) andalso
((Mark.Protocol’B 1 n) == empty) andalso
((Mark.Protocol’C 1 n) == empty) andalso
((Mark.Protocol’D 1 n) == empty) andalso
((Mark.Protocol’PacketsToSend 1 n)

== AllPackets) andalso
((Mark.Protocol’DataReceived 1 n)

== 1‘"COLOURED PETRI NET");

The marking of the place NextSend is obtained using the predefined function
Mark.Protocol’NextSend, which takes a module instance number and a state
space node as parameters and returns the multiset of tokens on the place NextSend in
the marking represented by the node. Note that Protocol is the name of the mod-
ule in which the place NextSend appears. There is only one instance of this module,
and hence the module instance number is 1. The markings of the other places are
obtained using similar functions and each marking obtained is compared using the
multiset equality operator == with the marking of the place in the desired terminal
state of the protocol system. The operator andalso is the CPN ML operator that
implements the logical AND.

The predicate DesiredTerminal can be used as an argument to the stan-
dard query function ReachablePred, which, given a predicate, returns true if
and only if there is a node in the state space satisfying the predicate. The function
ReachablePred stops as soon as a state satisfying the predicate has been found.
The query is as follows:

ReachablePred DesiredTerminal;

The result of this query is true, which means that a marking satisfying the
predicate DesiredTerminal is reachable from the initial marking. This is as
expected as demonstrated by means of simulation in Sect. 2.7.

It is also possible to obtain a list containing those markings that satisfy the pred-
icate DesiredTerminal. This can be done using the standard query function
PredAllNodes, which takes a predicate as an argument, applies the predicate to

166 7 State Spaces and Behavioural Properties

all nodes in the state space, and returns the list of nodes satisfying the predicate. The
query is as follows:

PredAllNodes DesiredTerminal;

The result of this query function is a list containing a single state space node with
the number 4868. This tells us that the marking corresponding to node 4868 in the
state space is the only marking satisfying the predicate DesiredTerminal.

The state space report does not contain information about reachability properties
since the specific markings which it is of interest to investigate are highly model-
dependent. The statistics from the state space report in Fig. 7.15, however, show
that there is more than one SCC. This means that not all nodes in the state space
are mutually reachable, as was also demonstrated above using the standard query
functions.

7.4.2 Boundedness Properties

The boundedness properties specify how many and which tokens a place may hold,
when all reachable markings are considered. Figure 7.16 shows the part of the state
space report which specifies the best upper and lower integer bounds. The best up-
per integer bound of a place specifies the maximal number of tokens that can re-
side on that place in any reachable marking. The best upper integer bound of the
place DataReceived is 1, which means that there is at most one token on the place
DataReceived and that there exists a reachable marking where there is one token
on DataReceived. This is what we would expect, since DataReceived is supposed
always to contain a single token with a colour corresponding to the data received up
to that point. The place A has a best upper integer bound of 3, which means that in
any reachable marking there are at most three tokens on A and there exists a reach-
able marking where there are exactly three tokens on A. A similar remark applies to
the places B, C, and D. This is what we would expect, since we have modified the
original model by introducing the place Limit to ensure that there are at most three
tokens simultaneously on the places A, B, C, and D. What we learn from the best
upper integers bound of the four network places is that there are markings where the
maximum number of packets allowed simultaneously on the network are all on one
network place.

The best lower integer bound for a place specifies the minimal number of tokens
that can reside on that place in any reachable marking. The place DataReceived has
a best lower integer bound of 1 which means that there is always at least one token
on this place. Together with the best upper integer bound of 1, this means that there
is exactly one token on this place in any reachable marking. When the best upper
and lower integer bounds are equal, this implies that the place always contains a
constant number of tokens, as given by the two integer bounds. As an example,
the place PacketsToSend always contains exactly six tokens. The best lower integer

7.4 Behavioural Properties 167

Best Integer Bounds Upper Lower

PacketsToSend 6 6
DataReceived 1 1
NextSend, NextRec 1 1
A, B, C, D 3 0
Limit 3 0

Fig. 7.16 State space report: integer bounds

bound of place A is 0, which means that reachable markings exist in which there are
no tokens on this place. A similar remark applies to the places B, C, and D.

To find the best upper and lower integer bounds for a place, the CPN state space
tool searches through all of the nodes in the state space, finds the number of tokens
on the place in each of these states, and returns the largest and smallest of these
values.

The best upper and lower integer bounds can be generalised by considering a
set of places. As an example, we might be interested in getting information about
the maximal and minimal numbers of tokens that can simultaneously reside on the
places A and B. To do this, we define a function SumMarkings that adds the mul-
tisets of tokens on places A and B:

fun SumMarkings n =
(Mark.Protocol’A 1 n) ++ (Mark.Protocol’B 1 n);

The markings of places A and B are obtained in a way similar to that for the
predicate DesiredTerminal defined in the previous subsection. To find the best
upper and lower integer bounds when both places are considered simultaneously,
SumMarkings is used as an argument to the query functions UpperInteger
and LowerInteger as follows:

UpperInteger SumMarkings;
LowerInteger SumMarkings;

The functions UpperInteger and LowerInteger take as an argument a
function that maps from a state space node into a multiset type ’a ms. The func-
tions return the maximal and minimal size, respectively, of the multisets obtained
when the argument function is applied to each node in the state space. As before,
the best upper integer bound is 3 and the best lower integer bound is 0, which means
that there are at most three tokens simultaneously on the two places and there are
reachable markings in which there are zero tokens on these places.

It is also possible to investigate integer bounds where only certain token colours
and places are considered. As an example, we shall investigate the minimal and

168 7 State Spaces and Behavioural Properties

maximal numbers of tokens with the colour (1,"COL") that can simultane-
ously reside on the places A and B. For this purpose, we define the function
SumFirstDataPacket:

fun SumFirstDataPacket n =
(List.filter
(fn p => p = (1,"COL"))
(SumMarkings n));

This function uses the function SumMarkings defined above to obtain the sum
of the markings of the places A and B. The predefined function List.filter
is used to obtain the tokens in the list corresponding to the first data packet. The
function List.filter takes a predicate and a list as arguments and returns a list
consisting of the elements satisfying the predicate. In this case, the predicate takes a
data packet p and returns true if and only if the data packet corresponds to the first
data packet. The function SumFirstDataPacket can be used as an argument to
the standard query functions UpperInteger and LowerInteger as before. In
this case, the best upper integer bound is 3, which means that there are at most three
tokens with the colour (1,"COL") simultaneously on the two places and there
exist reachable markings in which there are exactly three such tokens present. The
best lower integer bound is 0, which means that there are reachable markings in
which there are no tokens with the colour (1,"COL") on these places.

In the above, we have considered the minimal and maximal numbers of tokens
that may be present on a place. Figure 7.17 specifies the best upper and lower mul-
tiset bounds. These bounds consider not only the number of tokens but also the
colours of the tokens. The best upper multiset bound of a place specifies for each
colour in the colour set of the place, the maximal number of tokens that are present
on this place with the given colour in any reachable marking. This is specified as a
multiset, where the coefficient of each value is the maximal number of tokens with
the given value.

As an example, place C has the following multiset as the best upper multiset
bound:

3‘2 ++ 3‘3 ++ 3‘4 ++ 3‘5 ++ 3‘6 ++ 3‘7

This specifies that there is a maximum of three tokens with the colour 2 on C in
any reachable marking (and similarly for the colours 3, 4, 5, 6, and 7). It also speci-
fies that a reachable marking exists where there are three tokens with the colour 2 on
this place. The best upper multiset bound for C also specifies that there can never be
a token with the colour 1 on this place. This is expected, since the acknowledgement
sent for the first data packet has the sequence number 2.

As another example, consider the place DataReceived, which has the following
best upper multiset bound:

1‘"" ++ 1‘"COL" ++ 1‘"COLOUR" ++ 1‘"COLOURED " ++
1‘"COLOURED PET" ++ 1‘"COLOURED PETRI " ++
1‘"COLOURED PETRI NET"

7.4 Behavioural Properties 169

Best Upper multiset Bounds

PacketsToSend 1‘(1,"COL")++1‘(2,"OUR")++1‘(3,"ED ")++
1‘(4,"PET")++1‘(5,"RI ")++1‘(6,"NET")

DataReceived 1‘""++1‘"COL"++1‘"COLOUR"++
1‘"COLOURED "++1‘"COLOURED PET"++
1‘"COLOURED PETRI "++
1‘"COLOURED PETRI NET"

NextSend, Nextrec 1‘1++1‘2++1‘3++1‘4++1‘5++1‘6++1‘7

A, B 3‘(1,"COL")++3‘(2,"OUR")++3‘(3,"ED ")++
3‘(4,"PET")++3‘(5,"RI ")++3‘(6,"NET")

C, D 3‘2++3‘3++3‘4++3‘5++3‘6++3‘7

Limit 3‘()

Best Lower multiset Bounds

PacketsToSend 1‘(1,"COL")++1‘(2,"OUR")++1‘(3,"ED ")++
1‘(4,"PET")++1‘(5,"RI ")++1‘(6,"NET")

DataReceived empty

NextSend, NextRec empty

A, B, C, D empty

Limit empty

Fig. 7.17 State space report: multiset bounds

This specifies a maximum of one token with the colour "" on DataReceived
in any reachable marking (and similarly for the other values in the multiset). The
size of the above multiset is 7 – even though DataReceived has a single token in
each reachable marking, as specified by the best upper and lower integer bounds in
Fig. 7.16. From the best upper multiset bound and the best upper and lower integer
bounds, it follows that the possible markings of the place DataReceived are

170 7 State Spaces and Behavioural Properties

1‘""
1‘"COL"
1‘"COLOUR"
1‘"COLOURED"
1‘"COLOURED PET"
1‘"COLOURED PETRI "
1‘"COLOURED PETRI NET"

This corresponds to the expected prefixes of the data being sent from the sender.
From the boundedness properties, we cannot see the order in which these markings
are reached. In the state space report they are sorted in alphabetical order, which, by
coincidence, is the order in which they will be reached.

Above, we have illustrated the fact that the integer and multiset bounds often tell
us different, complementary ‘stories’. The integer bounds of DataReceived tell us
that this place always has exactly one token, but nothing about the possible colours
of this token. The best upper multiset bound of DataReceived tells us the token
colours that we may have at this place, but not that there can be only one token at
a time. The best upper multiset bound of DataReceived also illustrates the fact that
there is no guarantee that a reachable marking exists where the marking of a place
is equal to its best upper multiset bound.

The best lower multiset bound of a place specifies, for each colour in the colour
set of the place, the minimal number of tokens that are present on this place with
the given colour in any reachable marking. This is specified as a multiset, where
the coefficient of each value is the minimal number of tokens with the given value.
Best lower multiset bounds therefore give information about how many tokens of
each colour are always present on a given place. All places in the protocol except
PacketsToSend have the empty multiset empty as their best lower multiset bound.
This means that there are no token colours which are always present on these places.
However, we cannot conclude that there exist reachable markings with no tokens on
these places. This is, for example, not the case for the places NextSend and NextRec.

The best lower multiset bound for PacketsToSend is

1‘(1,"COL") ++ 1‘(2,"OUR") ++ 1‘(3,"ED ") ++
1‘(4,"PET") ++ 1‘(5,"RI ") ++ 1‘(6,"NET")

This means that there is a minimum of one token with the colour (1,"COL")
on PacketsToSend in any reachable marking (and similarly for the other val-
ues in the multiset). This is expected, since the data packet being removed from
PacketsToSend when SendPacket occurs is immediately put back again. It can be
observed that the best upper and best lower multiset bounds of PacketsToSend are
identical. This implies that the marking of PacketsToSend is always the same, and
equal to the best upper and best lower multiset bounds.

To find the best upper and lower multiset bounds for a place, the CPN state space
tool searches through all of the nodes in the state space, finds the number of appear-
ances of each token colour on that place in each of these markings, and returns the
largest and smallest of these values.

7.4 Behavioural Properties 171

The best upper and lower multiset bounds can be generalised to sets of places
and to specific token colours residing on a set of places in a way similar to that
described for integer bounds. As an example, the best multiset bounds when only
tokens with the colour (1,"COL") and the places A and B are considered can be
obtained using the function SumFirstDataPacket defined above:

UpperMultiSet SumFirstDataPacket;
LowerMultiSet SumFirstDataPacket;

The best upper multiset bound is 3‘(1,"COL") and the best lower multiset
bound is empty, which are the expected results.

7.4.3 Home Properties

Figure 7.18 shows the part of the state space report specifying the home proper-
ties. The home properties tell us that there exists a single home marking, which has
the node number 4868. A home marking Mhome is a marking which can be reached
from any reachable marking. This means that it is impossible to have an occur-
rence sequence starting from M0 which cannot be extended to reach Mhome. In other
words, we cannot do things which will make it impossible to reach Mhome after-
wards. Figure 7.19 illustrates the basic idea behind home markings, where we have
used dashed arcs to represent occurrence sequences. It shows that starting from any
marking M reachable from the initial marking M0, there exists an occurrence se-
quence leading to the home marking Mhome.

In the protocol, we have a single home marking. If we ask the CPN simulator
to display the marking corresponding to state space node 4868, we get the mark-
ing Mhome shown in Fig. 7.20. It can be seen that this is the marking in which the
protocol has successfully finished the transmission of all six data packets. The fact
that this is a home marking means that no matter what happens when the protocol
is executed (e.g., packet loss and overtaking of packets on the network), it is always
possible to reach a marking where the transmission of all six data packets has been
completed successfully. It should be noted that we require only that it is possible to
reach the home marking Mhome from any reachable marking M. There is no guar-
antee that Mhome actually will be reached from M; i.e., there may exist occurrence
sequences that start from M and never reach Mhome. As an example, the protocol
has an infinite occurrence sequence in which SendPacket and TransmitPacket, with

Home Properties

Home Markings: [4868]

Fig. 7.18 State space report: home properties

172 7 State Spaces and Behavioural Properties

Home marking

0 M Mhome

Initial marking Arbitrary
reachable marking

M

Fig. 7.19 A home marking can be reached from any reachable marking

a binding in which the data packet is lost, occur alternately an infinite number of
times. In this case we shall never reach the marking in Fig. 7.20. If we want to ex-
clude this kind of behaviour, we need to introduce a counter which limits the number
of retransmissions allowed for each individual packet.

A home space is a generalisation of a home marking. A home space is a set of
markings M∗

home such that at least one marking in M∗
home can be reached from any

reachable marking. This means that it is impossible to have an occurrence sequence
which cannot be extended to reach at least one of the markings in M∗

home. Figure 7.21
illustrates the basic idea behind home spaces. It shows that starting from any mark-
ing M reachable from the initial marking M0, there exists an occurrence sequence
leading to one of the markings in the home space M∗

home. It is easy to see that each
home marking Mhome determines a home space {Mhome} with only one marking. A
system may, however, have home spaces without having any home markings.

A home predicate is a further generalisation of a home space. A home predicate
is a predicate on markings with the property, that from any reachable marking it is
always possible to reach a marking satisfying the predicate. Figure 7.22 illustrates
the basic idea behind home predicates. It shows that starting from any marking M
reachable from the initial marking M0, there exists an occurrence sequence leading

if success
then empty
else 1`()

if success
then empty
else 1`()

()

()

k

if n=k
then k+1
else k

k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

3 3`() 11`71 1`7

11`"COLOURED PETRI NET"6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 7.20 Home marking represented by node 4868

7.4 Behavioural Properties 173

MM0

M5278

M57

M13 M24

M456

Mhome
*

Home space

Initial marking Arbitrary
reachable marking

Fig. 7.21 A home space can be reached from any reachable marking

reachable marking

M0

M23 M47

M517 M816

Markings satisfying home predicate
Initial marking Arbitrary

M

Fig. 7.22 A marking satisfying a home predicate can be reached from any reachable marking

to one of the markings satisfying the predicate. It is easy to see that if a predicate p is
a home predicate, then the set of all reachable markings satisfying the predicate is a
home space. As an example, instead of inspecting node 4868 visually as in Fig. 7.20,
we can check whether the predicate DesiredTerminal (defined in Sect. 7.4.1)
is a home predicate using the query function HomePredicate:

HomePredicate DesiredTerminal;

The result of this query is, as expected, true.
Home markings, home spaces, and home predicates are excellent for locating

certain kinds of errors. As an example, we may consider a CPN model of a tele-
phone system. If all users stop calling and terminate all ongoing calls, the system
is expected to reach an idle system state in which all lines and all equipment are
unused and no calls are in progress. The idle system state will be represented by a
home marking (if the system is memoryless) or by a home space/home predicate
(if information is stored about prior activities). If one or more reachable markings
exist from which we cannot reach the idle system state, we may have made a mod-
elling error or a design error; for example, we may have forgotten to return some
resources.

The CPN state space tool uses the SCC graph to determine the set of home mark-
ings. When the state space is finite, the SCC graph is a finite, acyclic graph and
hence it is always possible to reach a terminal SCC. This property implies that,
from any reachable marking belonging to an SCC S, it is always possible to reach
the markings belonging to some terminal SCC S′. For home markings to exist there
must be a single terminal SCC in the SCC graph. All of the markings in such a

174 7 State Spaces and Behavioural Properties

single terminal SCC are then home markings. This is a sufficient condition since,
from any reachable marking, we can reach a marking belonging to the single ter-
minal SCC and, within this terminal SCC, all markings are mutually reachable. It
is also a necessary condition since, from a marking within one terminal SCC, it is
not possible to reach a marking within another terminal SCC. This is illustrated in
Fig. 7.23, which depicts three SCC graphs. The nodes with thick borders (S0, S1, S2,
and S3) and the thick arcs are the nodes and arcs of the SCC graph. The SCC graph
in Fig. 7.23a has a single terminal SCC S2 (containing the markings M4, M5, and
M6) whereas the SCC graph in Fig. 7.23b has two terminal SCCs S2 and S3. The
SCC graph in Fig. 7.23c consists of a single SCC. In the example in Fig. 7.23a, all
markings belonging to S2 are home markings, since it is always possible to reach
a marking belonging to S2 and, within S2, all markings are mutually reachable. In
the SCC graph in Fig. 7.23b there are no home markings since from a marking be-
longing to S3 it is not possible to reach a marking belonging to S2, and vice versa.
All markings in the example in Fig. 7.23c are home markings since all markings are
mutually reachable.

M1

M2

M3

M0

M4

M5
M6

1S

S 0

2S

M1

M2

M3

M0

M4

M5
M6

1S

S0

2S3S

M7

M1

M2

M3

M0

M4

M6M5

S 0

M7

(a) (b) (c)

Fig. 7.23 Examples of SCC graphs

7.4 Behavioural Properties 175

The function below shows how the CPN state space tool calculates the set of
home markings:

fun ListHomeMarkings () =
let

val Terminal_Sccs = PredAllSccs SccTerminal;
in

case Terminal_Sccs of
[scc] => SccToNodes scc

| _ => []
end;

This function uses the query function PredAllSccs, which takes a predicate
as an argument and finds all the SCCs satisfying the predicate. Here we have used
the predefined predicate SccTerminal, which evaluates to true on an SCC if it
is a terminal SCC, i.e., the SCC has no outgoing arcs. This gives a list of all terminal
SCCs. If the list contains a single element, we know that all markings in that terminal
SCC are home markings. In that case we return the list of state space nodes in the
terminal SCC using the predefined function SccToNodes, which returns the list
of state space nodes contained in a given SCC. Otherwise, we return the empty list.

To determine whether a set of markings is a home space, the CPN state space
tool also considers the terminal SCCs. For a set of markings to be a home space,
the set must contain at least one marking from each of the terminal SCCs. Checking
that a predicate is a home predicate is similar, as the requirement is that there must
be at least one marking in each of the terminal SCCs satisfying the predicate.

7.4.4 Liveness Properties

Figure 7.24 shows the part of the state space report specifying the liveness proper-
ties. The liveness properties tell us that there is a single dead marking, which has the
node number 4868. A dead marking is a marking in which no binding elements are
enabled. This means that the marking corresponding to node 4868 is both a home
and a dead marking. The fact that node 4868 is the only dead marking tells us that
the protocol as specified by the CPN model is partially correct – if execution ter-
minates, we have the correct result. Furthermore, because node 4868 is also a home
marking, it is always possible to terminate the protocol with the correct result.

It may be a little surprising that a dead marking can be a home marking, but this
is possible because any marking can be reached from itself by means of the trivial
occurrence sequence of length zero. If a system has two or more dead markings,
none of them can be home markings: the first dead marking cannot be reached from
the second, and the second cannot be reached from the first.

To find the set of dead markings, the CPN state space tool traverses all nodes in
the state space and finds the nodes without outgoing arcs. The following function

176 7 State Spaces and Behavioural Properties

Liveness Properties

Dead Markings: [4868]
Dead Transitions: None
Live Transitions: None

Fig. 7.24 State space report: liveness properties

shows how the list of dead markings is obtained using the standard query function
PredAllNodes:

fun ListDeadMarkings () =
PredAllNodes (fn n => (OutArcs n) = []);

The predicate function provided as an argument to PredAllNodes uses the
function OutArcs which lists the outgoing arcs of a node in the state space. A
node represents a dead marking if the list of outgoing arcs is empty.

Figure 7.24 also tells us that there are no dead transitions. A transition is dead
if there are no reachable markings in which it is enabled. That there are no dead
transitions means that each transition in the protocol has the possibility of occurring
at least once. If a model has dead transitions, then they correspond to parts of the
model that can never be activated. Hence, we can remove dead transitions from the
model without changing the behaviour of it.

To find the set of dead transitions, the CPN state space tool traverses all of the
arcs in the state space. The dead transitions are the transitions that do not appear in
any of the binding elements on the arcs of the state space. The following shows how
the CPN state space tool determines whether a transition instance ti is dead using
the standard query function PredAllArcs, which takes a predicate on arcs as an
argument and returns a list of arcs in the state space satisfying the predicate.

fun TransitionInstanceDead ti =
(PredAllArcs (fn a => ArcToTI a = ti)) = [];

The function ArcToTI returns the transition instance of the binding element
corresponding to the arc provided as an argument. If the list returned by PredAll
Arcs is empty then the transition is dead. The query can be made more efficient by
stopping the search as soon as an arc corresponding to an occurrence of ti has been
encountered, in which case it is known that the transition instance is non-dead.

The concept of dead transitions can be generalised to binding elements, sets of
binding elements, and sets of transitions. A binding element is dead if it can never
become enabled, and a set of binding elements is dead if none of the binding el-
ements in it can become enabled. A set of transitions is dead if the union of their
binding elements is dead. Determining whether a set of binding elements is dead
is equivalent to checking that no binding element in the set appears on an arc in
the state space. As an example, we shall implement a query that checks whether it

7.4 Behavioural Properties 177

is possible for the sender to receive an acknowledgement with sequence number 1.
This can be done by checking whether the binding elements for the transition Re-
ceiveAck where n is bound to 1 are dead. To check this, we use the predefined query
functions BEsDead, which takes a list of binding elements and a marking. It checks
whether the set of binding elements is dead in the specified marking, i.e., whether
occurrence sequences starting in the marking and containing one of the binding el-
ements exist. Here we use the initial marking, which has the node number 1, as the
second argument to BEsDead:

BEsDead ([Bind.Protocol’ReceiveAck (1,{k=1, n=1}),
Bind.Protocol’ReceiveAck (1,{k=2, n=1}),
Bind.Protocol’ReceiveAck (1,{k=3, n=1}),
Bind.Protocol’ReceiveAck (1,{k=4, n=1}),
Bind.Protocol’ReceiveAck (1,{k=5, n=1}),
Bind.Protocol’ReceiveAck (1,{k=6, n=1}),
Bind.Protocol’ReceiveAck (1,{k=7, n=1})
],1);

This function uses the constructor Bind.Protocol’ReceiveAck to create
the individual binding elements in the list. This constructor takes a pair, where the
first component specifies the module instance of the transition and the second com-
ponent is a record specifying the binding of the variables of the transition. Protocol
is the name of the module in which the transition ReceiveAck appears. There is only
one instance of this module, and hence the module instance number is 1. The result
of this query is true as expected. This property can also be deduced from the up-
per multiset bounds for place D in Fig. 7.17 where it can be seen that no reachable
marking exists that has a token with colour 1 on place D.

Figure 7.24 also tells us that there are no live transitions. A transition t is live if,
starting from any reachable marking, we can always find an occurrence sequence
containing t. In other words, we cannot do things which will make it impossible for
the transition to occur afterwards. Figure 7.25 illustrates the basic idea behind live
transitions. It shows that, starting from any marking M′ reachable from the initial
marking M0, there exists an occurrence sequence leading to a marking M′′ where
the transition t is enabled. It should be noted that we require only that it is possible
to reach a marking M′′ in which t is enabled. Usually, there is no guarantee that M′′
will be reached, and if M′′ is reached there is no guarantee that t will occur in M′′.
This means that there may exist occurrence sequences starting from M′ that do not
include t.

M’0

Initial marking Arbitrary

t

Marking where

t is enabled

M’’

reachable marking

M

Fig. 7.25 A live transition t always has the possibility of becoming enabled

178 7 State Spaces and Behavioural Properties

Liveness is quite a strong property. If a live transition t occurs in a marking M′′,
we reach another reachable marking. We can then use the new marking as M′ and
hence t is able to occur once more, and so on. This means that there exist infinite
occurrence sequences starting from M′ in which t occurs infinitely many times. We
have already seen that the protocol has a dead marking, and this is the reason why it
cannot have any live transitions – no transitions can be made enabled starting from
the dead marking. It should be noted that a transition can be non-dead without being
live. Being non-dead implies that the transition can be made enabled at least once,
not that it can continue to be made enabled.

The CPN state space tool uses the SCC graph to determine the live transitions.
A transition is live if and only if it appears on at least one arc in each of the termi-
nal SCCs. This is a sufficient condition, since from any reachable marking, we can
reach a marking belonging to some terminal SCC and, within this terminal SCC, we
can then reach some node where the transition labels an outgoing arc. It is also a
necessary condition since, from a node in a terminal SCC where the transition does
not appear on an arc it is not possible to reach a marking where the transition is
enabled. This can be illustrated by considering Fig. 7.23. For a transition to be live
given the SCC graph in Fig. 7.23a, it must be present on some arc in the single ter-
minal SCC S2. For the SCC graph in Fig. 7.23b, we do not have any live transitions
since the terminal SCC S3 does not contain any arcs. The SCC graph in Fig. 7.23c
consists of a single SCC (which is therefore also terminal), and hence all transitions
appearing on arcs in this SCC are live.

The concept of live transitions can be generalised to binding elements, sets of
binding elements, and sets of transitions. A binding element is live if it can always
become enabled, and a set of binding elements is live if it is always possible to
enable at least one binding element in the set. A set of transitions is live if the union
of their binding elements is live. The CPN state space tool uses the SCC graph to
determine the liveness of binding elements, sets of binding elements, and sets of
transitions. As an example, a set of binding elements is live if and only if each of
the terminal SCCs contains an arc corresponding to some binding element from the
set. The CPN model in Fig. 7.2 has a dead marking and hence there exist no live
binding elements, sets of live binding elements, or sets of live transitions.

7.4.5 Fairness Properties

Figure 7.26 shows the part of the state space report specifying the fairness prop-
erties, i.e., information about how often transitions occur in infinite occurrence se-
quences. It lists those transitions that are impartial. A transition t is impartial if it
occurs infinitely often in all infinite occurrence sequences. This implies that removal
of the transition t or blocking by means of a guard false will remove all infinite
occurrence sequences from the CPN model. Figure 7.27 illustrates a situation where
a transition is impartial. It shows that any infinite occurrence sequence starting in
the initial marking M0 has the property that, starting from one occurrence of the

7.4 Behavioural Properties 179

Fairness Properties

Impartial Transitions: [SendPacket 1, TransmitPacket 1]

Fig. 7.26 State space report: fairness properties

M0

Initial marking
t t t t

M’’ M’

M’’ M’

M’’ M’

M’’

1 2

2 3

3 4

41M’

Fig. 7.27 An impartial transition occurs infinitely often in all infinite occurrence sequences

transition t, there will be a finite number of steps until a new occurrence of t. This
means that occurrences of the transition t will be repeatedly encountered.

The state space report specifies that the transitions SendPacket and Transmit-
Packet are impartial. This means that in any non-terminating execution of the pro-
tocol there will be an infinite number of occurrences of the transitions SendPacket
and TransmitPacket. The transition Transmit is impartial owing to the addition of
the place Limit. Without the place Limit, it would be possible to have infinite oc-
currence sequences where only the transition SendPacket occurs, which means that
TransmitPacket is not impartial in the original CPN model.

The impartiality property can be generalised to binding elements, sets of binding
elements, and sets of transitions. A binding element is impartial if it occurs infinitely
often in all infinite occurrence sequences, and a set of binding elements is impar-
tial if binding elements from the set occur infinitely often in all infinite occurrence
sequences. A set of transitions is impartial if the union of their binding elements is
impartial. As an example, we can investigate whether the set of binding elements
corresponding to loss of data packets and acknowledgements is impartial. If the
protocol does not terminate we expect this to be because the network keeps losing
packets, and we therefore expect this set of binding elements to be impartial. This
property can be checked by means of the following query:

180 7 State Spaces and Behavioural Properties

BEsImpartial
(List.map
(fn (n,d) =>
Bind.StateSpaceProtocol’TransmitPacket

(1,{n=n,d=d,success=false}))
AllPackets)ˆˆ
(List.map
(fn (n,_) =>
Bind.StateSpaceProtocol’TransmitAck

(1,{n=n+1,success=false}))
AllPackets);

This query uses the standard query function BEsImpartial, which takes a list of
binding elements as an argument and determines whether the corresponding set of
binding elements is impartial. The list of binding elements provided to the function
corresponds to loss of data packets and acknowledgements. The result of this query
is true, indicating that this set of binding elements is impartial. This means that all
occurrence sequences of the protocol where only finitely many packets are lost are
finite.

The CPN state space tool uses an SCC graph to determine whether a transition (or
set of binding elements) is impartial. This is done by computing an SCC graph for a
pruned state space where all arcs corresponding to occurrences of the transition (or
binding elements) in question have been removed. If the SCC graph for the pruned
state space has the same number of nodes and arcs as has the pruned state space
itself, we conclude that the pruned state space has no cycles. This implies that each
cycle in the original state space contains an arc corresponding to an occurrence of
the transition (or one of the binding elements) in question.

7.5 Error Diagnostics and Counterexamples

In the above, we have analysed the CPN model of the protocol, demonstrating that
it satisfies the key behavioural properties of interest. In general, the result of a query
may also be that a desired property does not hold, and an important advantage of
state spaces is that in this case they can be used to automatically obtain a counterex-
ample, i.e., an execution of the system which demonstrates why a desired property
does not hold.

To illustrate this, we consider a model-dependent query that investigates whether
the protocol obeys a stop-and-wait strategy, i.e., whether the sender always sends
the data packet expected by the receiver (or the previous packet). For this purpose
we define the predicate StopWait, which expresses this relationship between the
sequence numbers in the sender and in the receiver:

7.5 Error Diagnostics and Counterexamples 181

fun StopWait n =
let

val NextSend =
ms_to_col (Mark.Protocol’NextSend 1 n);

val NextRec =
ms_to_col (Mark.Protocol’NextRec 1 n);

in
(NextSend = NextRec) orelse
(NextSend = NextRec - 1)
end;

We have used the function ms to col, which takes a multiset of size one and re-
turns the element in the multiset. The operator orelse is the CPN ML operator that
implements the logical OR. We can then use the query function PredAllNodes to
investigate whether there are any nodes that do not satisfy the predicate StopWait
as follows, where not is the boolean negation operator:

val SWviolate =
PredAllNodes (fn n => not (StopWait n));

We search for a marking where the predicate StopWait does not hold (i.e., we
negate the property we are after) since it is easier to check that PredAllNodes
returns the empty list than to check that all nodes in the state space are in the list
returned.

Surprisingly, not all nodes satisfy the predicate StopWait and the list returned
by the above query consists of 7020 node numbers. The reason for this is that ac-
knowledgements may overtake each other on places C and D, which means that it
is possible for the sender to receive an old acknowledgement that causes the sender
to decrement NextSend. To find a shortest counterexample, i.e., one of the short-
est occurrence sequences leading from the initial marking to a marking where the
predicate does not hold, we exploit the fact that the state space was generated in
breadth-first order. This means that to find a shortest counter example, we search
for the node in the list SWviolate with the lowest number. This can be done as
follows:

List.foldr
Int.min (List.hd SWviolate) (List.tl SWviolate);

We have used the predefined function List.foldr, which takes three argu-
ments: a combination function, an initial value, and a list. In this case the combina-
tion function is Int.min, which returns the minimum of two integers, the initial
value is the node number at the head of the list SWviolate, and the list is the
tail of the list SWviolate. The function List.foldr iterates over the list, and
in each iteration Int.min is applied to a pair consisting of the current element
in the list and the value returned by the previous application of Int.min. In the
first iteration, the initial value (List.hd SWviolate) plays the role of the result
from the previous application. The result of the above query is node number 557.

182 7 State Spaces and Behavioural Properties

Using the query function ArcsInPath provided by CPN Tools, it is easy to obtain
a shortest counterexample as follows:

ArcsInPath(1,557);

This query returns the following list of arc numbers, which constitute the arcs on
one of the shortest paths from node 1 to node 557:

[1,3,9,16,27,46,71,104,142,
201,265,362,489,652,854,1085,1354,1648]

This path can be visualised using the drawing facilities of CPN Tools similarly
to what was done for the initial fragment of the state space shown in Fig. 7.10.
Alternatively, we can use the function ArcToBE to obtain a list of the occurring
binding elements on the path as follows:

List.map ArcToBE (ArcsInPath(1,557));

The result of this query is the following list of binding elements:

Step Binding element

1 (SendPacket, 〈d="COL",n=1〉)
2 (TransmitPacket, 〈n=1,d="COL",success=true〉)
3 (ReceivePacket, 〈k=1,data="",n=1,d="COL"〉)
4 (SendPacket, 〈d="COL",n=1〉)
5 (TransmitAck, 〈n=2,success=true〉)
6 (ReceiveAck, 〈k=1,n=2〉)
7 (SendPacket, 〈d="OUR",n=2〉)
8 (TransmitPacket, 〈n=1,d="COL",success=true〉)
9 (TransmitPacket, 〈n=2,d="OUR",success=true〉)

10 (ReceivePacket, 〈k=2,data="COL",n=1,d="COL"〉)
11 (ReceivePacket, 〈k=2,data="COL",n=2,d="OUR"〉)
12 (TransmitAck, 〈n=3,success=true〉)
13 (ReceiveAck, 〈k=2,n=3〉)
14 (SendPacket, 〈d="ED ",n=3〉)
15 (TransmitPacket, 〈n=3,d="ED ",success=true〉)
16 (ReceivePacket, 〈k=3,data="COLOUR",n=3,d="ED "〉)
17 (TransmitAck, 〈n=2,success=true〉)
18 (ReceiveAck, 〈k=3,n=2〉)

This occurrence sequence describes a scenario in which the first three data pack-
ets are sent, successfully transmitted, and received. This means that the receiver is
expecting data packet 4. However, data packet 1 was resent (step 4), retransmitted
(step 8), and received (step 10). This has created an old acknowledgement request-
ing data packet 2. This old acknowledgement is eventually received by the sender in
step 18. This causes the sender to start sending data packet 2. The sender is now two

7.5 Error Diagnostics and Counterexamples 183

k

if n<>k
then 1`()
else empty

if success
then empty
else 1`()

()

()

if n=k
then k+1
else k

data

n if success
then 1`n
else empty

n

if n=k
then 1`(k+1)
else empty

(n,d)(n,d)

n if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

if success
then empty
else 1`()k n

3 3`() 11`11 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 7.28 CPN model with modified receiver

sequence numbers behind the receiver, and the predicate StopWait is violated.

As a further example of counterexample generation, we shall investigate a variant
of the protocol where the receiver sends an acknowledgement only if the data packet
being received is the expected one. We shall investigate whether the protocol is still
correct with this modification. Figure 7.28 shows the CPN model, where the arc
expression on the arc from ReceivePacket to C has been modified and we have
added an arc from ReceivePacket to Limit such that a token is returned to Limit if no
acknowledgement is sent.

The state space for this variant of the protocol has 1823 nodes and 6829 arcs. The
state space has a single dead marking, but it does not have any home markings. The
dead marking corresponds to the desired terminal state, where all data packets have
been correctly received. Hence, if the protocol terminates, it still terminates in the
desired state. But since the dead marking is no longer a home marking, we can reach
situations where we are no longer able to terminate the protocol correctly. Since the
dead marking is no longer a home marking, we must have terminal SCCs from
which we cannot reach the dead marking. These terminal SCCs can be obtained as
follows:

PredAllSccs (fn scc => SccTerminal scc andalso
not (SccTrivial scc));

This query uses the predicates SccTerminal and SccTrivial to find the
terminal and non-trivial SCCs. The predicate SccTrivial returns true if and
only if the SCC is trivial, i.e., consists of just a single state space node and no
arcs. The use of SccTrivial ensures that we do not obtain the terminal SCC

184 7 State Spaces and Behavioural Properties

if n<>k
then 1`()
else empty

()

() data

n if success
then 1`n
else empty

n

if n=k
then 1`(k+1)
else empty

(n,d)(n,d)

n if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

Receive
Ack

if success
then empty
else 1`()

if success
then empty
else 1`()

nk

if n=k
then k+1
else k

k

3 3`() 11`21 1`1

11`"COL"6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 7.29 A marking demonstrating an error in the modified protocol

containing the dead marking. The result of the above query is a list of six SCCs. The
nodes in these SCCs can be obtained using the function SccToNodes. Figure 7.29
shows the marking corresponding to node number 12, which is the node with the
lowest number in the six SCCs. From Fig. 7.29, we can see that the protocol has
reached a state where the first data packet has been received and the receiver is now
waiting for the data packet with sequence number 2. The sender is, however, still
sending the data packet with sequence number 1.

Using the query function ArcsInPath, we can obtain one of the shortest paths
in the state space leading from the initial marking, which has node number 1, to
node 12 as follows:

ArcsInPath(1,12);

This query returns a list containing four arcs, specifying how to reach node 12
from the initial state. This path constitutes a counterexample that demonstrates an
error in this variant of the protocol. The details of the occurring binding elements
on the path can be obtained using the function ArcToBE, as illustrated earlier:

List.map ArcToBE (ArcsInPath (1,12));

7.6 Limitations of State Spaces 185

The result of this query is the following list of binding elements:

Step Binding element

1 (SendPacket, 〈d="COL", n=1〉)
2 (TransmitPacket, 〈d="COL", n=1, success=true〉)
3 (ReceivePacket, 〈d="COL", n=1, k=1, data=""〉)
4 (TransmitAck, 〈n=2, success=false〉)

This list corresponds to an occurrence sequence where the first data packet is
sent, successfully transmitted, and received, but the acknowledgement is lost. From
this point on the sender will keep sending data packet number 1 and the receiver
will never send an acknowledgement, since it only sends acknowledgements when
it receives the expected data packet (which is now data packet number 2). Hence,
the protocol cannot make any progress once such a marking has been encountered.

In the preceding subsections, representative examples have been given of how
properties of a model can be investigated using the CPN state space tool. The state
space report can be produced fully automatically and contains information about
behavioural properties which make sense for all models. A set of standard query
functions (such as Reachable and UpperInteger) can be used to investigate
model-specific standard behavioural properties. Finally, a general collection of state
space search functions (such as PredAllNodes and PredAllSccs) is avail-
able for constructing fully user-defined queries. The reader is referred to [25] for a
complete list of the query functions available.

7.6 Limitations of State Spaces

Verification using state spaces is always conducted relative to a specific configura-
tion of the system parameters. In the case considered in this chapter, we have two
parameters: the number of data packets to be transmitted and the capacity of the
network. In the preceding sections we have conducted state space analysis of the
protocol using a configuration with six data packets and a capacity of three packets
present simultaneously on the network, as specified by the initial markings of the
places PacketsToSend and Limit. It is of interest to also investigate other configura-
tions of the protocol. Table 7.1 gives statistics for the size of the state space for a
number of configurations of the protocol. The columns ‘Limit’ specify the capac-
ity of the network and the columns ‘Packets’ specify the number of data packets to
be sent. The columns ‘Nodes’ give the number of nodes in the state space and the
columns ‘Arcs’ columns give the number of arcs.

It can be seen that as the values of the parameters are increased the size of the
state space grows rapidly. This phenomenon is known as the state explosion prob-
lem. All of the state spaces in Table 7.1 can be generated on a standard PC, but had

186 7 State Spaces and Behavioural Properties

Table 7.1 Size of state spaces for different configurations

Limit Packets Nodes Arcs Limit Packets Nodes Arcs

1 10 81 110 5 1 217 760
1 20 161 220 5 2 2 279 10 645
1 50 401 550 5 3 17 952 97 963
1 100 801 1 100 5 4 82 260 483 562
1 600 4 801 6 600 5 5 269 680 1 655 021

2 1 26 53 7 1 576 2 338
2 5 716 1 917 7 2 11 280 64 297
2 10 3 311 9 062 7 3 148 690 1 015 188
2 20 14 276 39 402 10 1 1 782 8 195
2 50 93 371 258 822 10 2 76 571 523 105

3 1 60 159 12 1 3 276 15 873
3 5 7 156 28 201 12 2 221 117 1 636 921
3 10 70 131 286 746 13 1 4 305 21 294
3 15 253 656 1 047 716 13 2 357 957 2 737 878

we chosen to consider larger configurations we would have ended up in situations
where the state space would be too big to be represented in memory and/or it would
take too long to calculate. We therefore recommend starting with the simplest pos-
sible configurations when state space analysis is to be conducted. When the smaller
configurations have been verified, the values of the system parameters can then be
gradually increased in small steps. This approach is beneficial because systems in
the early stages of analysis often contain errors, which in some cases significantly
increase the size of the state space. Such errors typically manifest themselves also
in small configurations of the system. This means that it is desirable to remove any
errors by analysing small configurations first before moving on to analysing larger
configurations.

Conducting state space analysis can be a time-consuming process because it can
take hours to generate the state spaces and verify the desired properties. It is, how-
ever, important to keep in mind that the generation of the state spaces and verifi-
cation of their properties are fully automatic and hence do not require any human
assistance. These tasks therefore require much less human work than do lengthy
simulations and tests. Furthermore, even if it may take days to verify the properties
of a system, this is still a relatively small investment compared with the total amount
of resources typically used in a system development project, and it is a small invest-
ment compared with the cost of implementing, deploying, and correcting a system
containing errors that could have been detected in the design phase.

As stated above, state space analysis is always conducted for a fixed configura-
tion. For the protocol considered here, this means that we can verify the protocol
for a specific configuration with a certain number of data packets and a certain ca-
pacity of the network. If we want to analyse another configuration, we must change
the initial marking accordingly, calculate a new state space, and repeat the verifica-

7.6 Limitations of State Spaces 187

tion. We are not able to verify the protocol for all values of the system parameters,
i.e., independently of the number of data packets and the capacity of the network.
However, being able to verify a certain set of configurations of a system contributes
significantly to validating the correctness of the system, and if we find errors in the
process of verifying these configurations of the system, then state space analysis
has contributed to removing errors from the system design. Furthermore, in some
cases it may be possible to verify all configurations of a system which can appear
in practice. Sometimes it is also possible to use verified configurations as a basis for
inductively proving that all other configurations work correctly.

When conducting state space analysis of a system one often ends up in a situation
where the state space for a given system configuration cannot be generated, either
because it takes too much time or because the state space is too big to be stored in
the available computer memory. This means that only a partial state space, i.e., a
fragment of the state space, can be generated. Partial state spaces cannot in general
be used to verify properties, but they are often very useful as a systematic technique
for identifying errors. An an example, if we generate a partial state space and find a
dead marking, then this dead marking will also be present in the full state space. The
use of partial state spaces can in that sense be viewed as being positioned between
simulation and the use of state spaces. The CPN state space tool has a number of
parameters that allow the user to control the generation of partial state spaces.

In Chap. 8, we give an overview of a number of advanced state space reduction
methods which have been developed to alleviate the impact of the state explosion
problem. These reduction methods typically represent the state space in a compact
form or represent only parts of the state space. The state space reduction is done
on-the-fly and in such a way that it is still possible to verify behavioural properties
of the system.

Chapter 8
Advanced State Space Methods

This chapter gives an overview and some concrete examples of state space reduction
methods. The main limitation of using state spaces to verify behavioural properties
of systems is the state explosion problem [106], i.e., that state spaces of systems
may have an astronomical number of reachable states, which means that they are
too large to be handled with the available computing power (memory and CPU
speed). Methods for alleviating this inherent complexity problem are an active area
of research, which has led to the development of a large collection of state space
reduction methods. These methods have significantly broadened the class of systems
that can be verified, and state spaces can now be used to verify systems of industrial
size. Some of these methods [18, 61, 62, 108] have been developed in the context
of the CPN modelling language. Other methods (e.g., [55, 87, 104, 110]) have been
developed outside the context of the CPN modelling language. Most state space
reduction methods are independent of the concrete modelling language used and
hence are applicable to a large class of such languages.

Section 8.1 briefly introduces some representative classes of state space reduction
methods and the associated paradigms. Section 8.2 presents the sweep-line method
[18], which exploits a certain notion of progress in systems to delete states dur-
ing state space exploration and thereby reduce the peak memory usage. Section 8.3
presents the symmetry method [62], which exploits inherent symmetries in systems
to compute a condensed state space where each node represents an equivalence class
of markings and each arc represents an equivalence class of binding elements. Fi-
nally, Sect. 8.4 presents the equivalence method [61], which is a generalisation of the
symmetry method. The three advanced state space method presented in Sects. 8.2–
8.4 have been used in the industrial application described in Sect. 14.3.

8.1 State Space Reduction Methods

State space reduction methods typically exploit certain characteristics of the system
under analysis, and hence no single reduction method works well on all kinds of sys-

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 8, 189
c© Springer-Verlag Berlin Heidelberg 2009

190 8 Advanced State Space Methods

tems. Furthermore, the methods often limit the verification questions that can be an-
swered. When verifying a concrete system one must therefore choose a method that
exploits characteristics present in the system and preserves the behavioural prop-
erties to be verified. In many cases it is possible to use two or more state space
reduction methods simultaneously, which typically leads to more reduction in CPU
time and memory usage than when each method is used in isolation.

Many reduction methods are based on the paradigm of on-the-fly verification,
which means that the verification question is stated before the exploration of the
state space starts, and the state space exploration is done relative to the verification
question provided. This makes it possible to ignore irrelevant parts of the state space
and terminate the state space exploration as soon as the answer to the verification
question has been obtained. Many advanced state space reduction methods uses
linear-time temporal logic (LTL) [107] or computation tree temporal logic (CTL)
[22] for stating the verification questions [37].

One class of methods aims at exploring only a subset of the state space. The
stubborn-set [104], ample-set [87], and persistent-set [49] methods exploit the in-
dependence between transitions to construct a reduced state space which is a subset
of the full state space. Many variants of these methods have been developed for dif-
ferent classes of behavioural properties, ranging from simple deadlock properties
[104] to LTL [105] and CTL [47] model checking. A good survey of these vari-
ants can be found in [106]. It is also possible to use search heuristics known from
the domain of artificial intelligence to guide the exploration of the state space such
that only a subset of the state space is explored and the answer to the verification
question is computed as soon as possible. An orthogonal approach is to delete states
from memory during state space exploration. The sweep-line method [18] (to be
discussed in Sect. 8.2) and the state caching method [58] delete states from memory
during state space exploration to reduce the peak memory usage. These methods
explore the full state space and may explore the same state several times. Belonging
to this class of method is also the to-store or not-to-store method [5] which uses
heuristics to decide whether a visited state must be stored in memory or not.

Another class of methods is based on computing a condensed state space, where
each node represents an equivalence class of states (markings) and where each arc
represents an equivalence class of events (binding elements). The idea is then to
store only one representative for each such equivalence class and in this way con-
sume less memory and obtain a faster construction of the state space. This class
includes the symmetry method the [62], equivalence method [61], and the use of
time condensed-state spaces [19]. Many reduction methods are also based on stor-
ing states in a compact manner in memory using special data structures. These in-
clude the bit-state hashing method [55], the hash compaction method [98, 110], and
the comback method [108]. Belonging to this class are also methods [82] based on
binary-decision diagrams (BDDs) [13] and the methods presented in [44, 55]. A
related class of methods uses external storage to store the set of visited states [99].

A computer tool supporting state spaces must implement a wide range of state
space reduction methods, since no single method works well on all systems. CPN

8.2 Sweep-Line Method 191

Tools supports a number of reduction methods, and the set of supported methods is
continuously being expanded as new methods are developed and implemented.

8.2 Sweep-Line Method

The amount of main memory available is often the limiting factor in the practical use
of state spaces. During construction of the state space, the set of markings encoun-
tered is kept in memory in order to recognise already visited markings and thereby
ensure that the state space exploration terminates. The basic idea of the sweep-line
method [18] is to exploit a certain kind of progress exhibited by many systems.
Exploiting progress makes it possible to explore all of the reachable markings of a
CPN model while storing only small fragments of the state space in main memory
at any given time. This means that the peak memory usage is significantly reduced.
The sweep-line method is aimed at on-the-fly verification of safety properties, such
as verifying that all reachable states satisfy a given predicate on states or determin-
ing whether a reachable marking exists that satisfies a given predicate. Below, we
illustrate the use of the sweep-line method using a variant of the CPN model of the
protocol system described in Sect. 7.1, shown in Fig. 8.1. The difference compared
with the model considered in Chap. 7 is that we have modified the arc expression
on the arc from ReceiveAck to NextSend such that the sender never decreases the
sequence number on NextSend. Furthermore, we are considering a configuration of
the protocol where the network has a limit of six data packets.

For the protocol system, one source of progress is the sequence number of the
receiver, i.e., the colour of the token on the place NextRec. The basic observation is
that the receiver sequence number, modelled by the place NextRec has the property

if success
then empty
else 1`()

if success
then empty
else 1`()

()

()

k

if n=k
then k+1
else k

k

data

if n > k
then n
else k

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

Limit

6`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

Fig. 8.1 CPN model used to illustrate the sweep-line method

192 8 Advanced State Space Methods

that as the protocol executes, the value of this counter is increased and never de-
creased. This means that we can quantify how far the protocol system has progressed
by considering the sequence number of the data packet expected by the receiver.
This progress is also reflected in the state space of the protocol system. Figure 8.2
shows an initial fragment of the state space for the protocol system, where node 1
represents the initial marking. To simplify the drawing, we have omitted the detailed
information about the markings corresponding to each node and the arc labels de-
scribing the binding elements. We have organised the nodes into layers (separated
by thick horizontal lines) according to the value of the receiver sequence number on
NextRec. Layer 1 contains the markings in which the receiver sequence number has
the value 1, and layer 2 contains markings where the receiver sequence number is 2.
This means that markings in higher-numbered layers are markings where the system
has progressed further (in terms of receiver sequence number) than in markings in
lower-numbered layers.

The progress present in the protocol system manifests itself in the state space in
that a marking in a given layer has successor markings either in the same layer or in
layers that represent further progress, but never in layers that represent less progress.
Markings in layer 1 can thus never be reached from markings in layer 2 (because the
value of the token on NextRec is never decremented). If we process the markings
(i.e., calculate successor markings) one layer at a time, moving from one layer to
the next when all markings in the first layer have been processed and not before,
we can think of a ‘sweep-line’ moving through the state space. At any given point
during state space exploration, the sweep-line corresponds to a single layer – all of
the markings in the layer are ‘on’ the sweep-line – and all new markings calculated
are either on the sweep-line or in front of the sweep-line.

The progress in the protocol system can be captured by a progress measure which
is a function that maps each marking into a progress value. In this case the function

28
3:3

7
4:3

NextRec: 1`2NextRec: 1`2

15
5:4

20
4:5

2
2:3

19
1:1

13
2:3

8
2:3

9
2:2

5
1:2

6
3:4

3
2:3

4
2:2

1
1:1NextRec: 1`1NextRec: 1`1

14
3:4

Layer 2:

10
5:5

Layer 1:

Fig. 8.2 Initial fragment of state space, arranged by progress

8.2 Sweep-Line Method 193

maps a marking into the receiver sequence number. This progress measure can be
implemented as the following CPN ML function, where the structure Mark is used
to obtain the marking of the place NextRec:

fun ProtocolPM n =
ms_to_col (Mark.Protocol’NextRec 1 n);

The fundamental property that the sweep-line method requires from a progress mea-
sure is that for a given marking M, the progress value of any successor marking M′
of M must be greater than or equal to the progress value of M. This property can be
checked during state space exploration by simply checking that the property holds
for all markings encountered.

Table 8.1 gives statistics for the application of the sweep-line method to the pro-
tocol system using the receiver sequence number as the progress measure. The col-
umn ‘Limit’ specifies the capacity of the network, and the column ‘Packets’ speci-
fies the number of data packets to be sent. The column ‘Nodes’ gives the number of
nodes in the ordinary state space, and the column ‘Arcs’ column gives the number
of arcs. The column ‘Sweep-line peak’ gives the peak number of nodes stored si-
multaneously in main memory during state space exploration using the sweep-line
method. The column ‘Node ratio’ specifies the number of nodes in the state space
divided by the peak number of nodes stored when the sweep-line method is used,
and hence specifies the reduction in memory usage obtained using the sweep-line
method. There is no reduction factor for arcs, since the sweep-line method does not
store any arcs during exploration of the state space. The column ‘Time ratio’ speci-
fies the CPU time used to generate the state space using ordinary state space explo-
ration divided by the CPU time used to explore the state space using the sweep-line
method, and hence specifies the reduction in time usage obtained using the sweep-
line method. The time ratio of 1.0 for the first three configurations (the three small-
est) is due to the fact that the CPU times become identical for the two methods when
rounded to two digits.

Table 8.1 Statistics for application of the sweep-line method

State space Sweep-line Node Time
Limit Packets Nodes Arcs peak ratio ratio

1 4 33 44 33 1.00 1.00
2 4 293 764 134 2.19 1.00
3 4 1 829 6 860 758 2.41 1.00
4 4 9 025 43 124 4 449 2.03 1.78
5 4 37 477 213 902 20 826 1.80 1.65
6 4 136 107 891 830 82 586 1.65 1.51

4 5 20 016 99 355 8 521 2.35 1.95
4 6 38 885 198 150 14 545 2.67 2.19
4 7 68 720 356 965 22 905 3.00 2.27
4 8 113 121 596 264 33 985 3.33 2.41

194 8 Advanced State Space Methods

It can be seen that the sweep-line method yields a reduction in both space and
time. The former is expected, since markings are deleted during state space explo-
ration. The saving in time is because the deletion of states implies that there are
fewer markings to be compared during state space exploration when determining
whether a marking has already been encountered.

In the above, we have introduced the basic sweep-line method, which relies on
the use of a monotonic progress measure, i.e., a progress measure for which the
successor markings of a given marking M have progress values which are always
greater than or equal to the progress value of M. This property ensures that it is safe
to delete markings and that the sweep-line method terminates after all reachable
markings have been processed once. A generalised version of the sweep-line method
[70] also exists, which can deal with progress measures that are not monotonic.
The basic idea of the generalised sweep-line method is to perform multiple sweeps
of the state space and to make certain markings persistent, which means that they
cannot be deleted from memory. In addition, the basic sweep-line method has been
extended with respect to the properties that can be verified with it [81]. It has also
been extended [72] to use external storage such that counterexamples and diagnostic
information can be obtained, which is not possible with the basic method, since it
deletes the markings from memory.

For timed CP-nets the global clock can be used as a progress measure. We shall
give further examples of the use of the basic and generalised sweep-line methods in
Sect. 14.3.

8.3 Symmetry Method

Many concurrent systems possess a certain degree of symmetry. For example, many
concurrent systems are composed of similar components whose identities are in-
terchangeable from the point of view of verification. This symmetry is also re-
flected in the state spaces of such systems. The basic idea in the symmetry method
[23, 39, 57, 62] is to represent symmetric markings and symmetric binding ele-
ments using equivalence classes. State spaces can be condensed by factoring out
this symmetry, and the symmetry-condensed state space is typically orders of mag-
nitude smaller than the full state space. A symmetry-condensed state space can be
constructed directly without first constructing the full state space and then grouping
nodes and arcs into equivalence classes. Furthermore, behavioural properties can be
verified directly using symmetry-condensed state spaces without unfolding to the
full state space. Below we explain the use of the symmetry method using a vari-
ant of the hierarchical CPN model of the protocol system with multiple receivers
described in Sect. 5.4. Figure 8.3 shows the Protocol module of the CPN model.
Compared with the CPN model presented in Sect. 5.4, we have added a place Limit
to obtain a finite state space in a way similar to what was done in Sect. 7.1.

It can be observed that the receivers in the protocol system are symmetric, in
the sense that they behave in the same way. They are distinguishable only by their

8.3 Symmetry Method 195

Network

Network

Receiver

Receiver

Sender

Sender

Limit

2`()

UNIT

Packets
To Send

AllPackets

PACKET

C

RECVxPACKET

D

RECVxPACKET

A

RECVxPACKET

Data
Received

AllRecvs ""

RECVxDATA

B

RECVxPACKET

Sender ReceiverNetwork

Fig. 8.3 Protocol module for protocol, used to illustrate the symmetry method

identities. This symmetry is also reflected in the state space. Figure 8.4 shows an
initial fragment of the state space for the CPN model shown in Fig. 8.3, with two
receivers. We have used the same notation in the arc labels as in Chap. 7 and have
additionally appended the identity of the receiver which a given binding element
corresponds to. As an example, the arc label TP1+ (Recv(2)) on the arc from node

TP1+ (Recv(2))

TP1- (Recv(2))

RP1 (Recv(1)) RP1 (Recv(2))

TP1+ (Recv(1))

TP1- (Recv(1))

TP1+ (Recv(1))TP1- (Recv(1)) TP1- (Recv(2))

SP1

9
2:4

3
1:3

NextSend: 1`1
A: 1`(Recv(2),Data((1,"COL")))
B: 1`(Recv(1),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")

NextSend: 1`1
A: 1`(Recv(2),Data((1,"COL")))
B: 1`(Recv(1),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")

4
1:2

5
1:3

NextSend: 1`1
A: 1`(Recv(1),Data((1,"COL")))
B: 1`(Recv(2),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")

NextSend: 1`1
A: 1`(Recv(1),Data((1,"COL")))
B: 1`(Recv(2),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")

6
1:2

2
1:4

NextSend: 1`1
A: 1`(Recv(1),Data((1,"COL")))++1`(Recv(2),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")

NextSend: 1`1
A: 1`(Recv(1),Data((1,"COL")))++1`(Recv(2),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")

1
2:1

NextSend: 1`1
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")
Limit: 2`()

NextSend: 1`1
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")
Limit: 2`()

8
2:1

NextSend: 1`1
B: 1`(Recv(1),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")
Limit: 1`()

NextSend: 1`1
B: 1`(Recv(1),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")
Limit: 1`() 7

2:2

NextSend: 1`1
B: 1`(Recv(1),Data((1,"COL")))++1`(Recv(2),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")

NextSend: 1`1
B: 1`(Recv(1),Data((1,"COL")))++1`(Recv(2),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")

TP1+ (Recv(2))

10
2:1

NextSend: 1`1
B: 1`(Recv(2),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")
Limit: 1`()

NextSend: 1`1
B: 1`(Recv(2),Data((1,"COL")))
NextRec: 1`(Recv(1),1)++1`(Recv(2),1)
DataReceived: 1`(Recv(1),"")++1`(Recv(2),"")
Limit: 1`()

11
2:4

Fig. 8.4 Initial fragment of state space

196 8 Advanced State Space Methods

2 to node 5 specifies that this arc represents an occurrence of TransmitPacket with
a binding corresponding to a successful transmission of data packet 1, intended for
receiver 2.

Consider now the two nodes 3 and 5, which correspond to markings in which
exactly one of the two data packets has been transmitted successfully across the net-
work. These two markings are symmetric in the sense that the marking represented
by node 3 can be obtained from the marking represented by node 5 by swapping
the identities of receivers 1 and 2. Similarly, the two markings represented by nodes
4 and 6 can be obtained from each other by interchanging the identities of the re-
ceivers. Nodes 4 and 6 correspond to markings in which one of the two data packets
was lost on the network. It can also be observed that two symmetric markings such
as marking 3 and marking 5 have symmetric sets of enabled binding elements, and
symmetric sets of successor markings. As an example, markings 7, 8, and 9, which
are successor markings of marking 3, are symmetric to markings 7, 10, and 11,
respectively, which are successor markings of marking 5. This property can be ex-
tended to finite and infinite occurrence sequences, i.e., for any occurrence sequence
starting in a marking M and for all markings M′ symmetric with M, there exists a
symmetric occurrence sequence starting in M′.

Figure 8.5 shows an initial fragment of the symmetry-condensed state space for
the protocol system obtained by considering two markings equivalent if one of them
can be obtained from the other by a permutation of the identities of the receivers. The
nodes and arcs now represent equivalence classes of markings and binding elements,
respectively. The equivalence class of markings represented by a node is listed in
curly brackets in the inscription of the node; for example, node 3 represents nodes
3 and 5 in Fig. 8.4. A similar notation is used for binding elements.

Symmetry-condensed state spaces can be represented by storing a representative
marking (or binding element) for each equivalence class of markings (or binding
elements), and the calculation of the condensed state space is typically based on

{TP1+ (Recv(2)),
 TP1+ (Recv(1))}{TP1- (Recv(2)),

 TP1- (Recv(1))}

{RP1 (Recv(1)),
 RP1 (Recv(2))}

{TP1+ (Recv(1)),
 TP1+ (Recv(2))}

{TP1- (Recv(1)),
 TP1- (Recv(2))}

{SP1}

8
2:1

3
1:3

4
1:2

2
1:4

1
2:1

{8,10}

{3,5}

7
2:2

9
2:4{9,11} {7}

{4,6}

{2}

{1}

Fig. 8.5 Initial fragment of symmetry-condensed state space

8.3 Symmetry Method 197

calculating canonical representatives of each equivalence class [79]. This means that
whenever a new marking is generated during state space exploration, this marking
is transformed into a canonical representative of its equivalence class. It is then
checked whether this canonical representative is already included in the state space.
A similar processing is done for binding elements.

The symmetries used to reduce the state space are required to be symmetries
actually present in the CPN model. This amounts to checking the following three
properties:

• All initial marking inscriptions must be symmetric, i.e., applying a permutation
to the initial marking does not change the initial marking.

• All guard expressions must be symmetric, i.e., evaluating the guard in a binding
must give the same result as first permuting the binding and then evaluating the
guard.

• All arc expressions must be symmetric, i.e., evaluating the arc expression in a
binding and then applying a permutation must give the same result as first per-
muting the binding and then evaluating the arc expression.

These requirements can be checked prior to state space exploration by examining
the inscriptions of the CPN model one at a time. This means that they can be checked
statically without considering occurrence sequences. The specification of the sym-
metries themselves is done by associating an algebraic group of permutations with
each atomic colour set of the CPN model. The atomic colour sets are those colour
sets defined without reference to other colour sets, i.e., those colour sets defined
without using colour set constructors such as unions, products, and records. Exam-
ples of permutation groups are the set of all permutations of colours in the colour
set, the set of all rotations for an ordered colour set, and the set that consists of just
the identity element, i.e., the group that allows no permutation of the colours in the
colour set. For the present protocol system, we associate the set of all permutations
with the atomic colour set RECV, which models the identities of receivers. For the
other atomic colour sets (such as NO, modelling the sequence numbers), we assign
the trivial permutation group consisting of the identity element only, since we do
not allow permutation of colours in these colour sets.

Table 8.2 shows some statistics obtained using the symmetry method on the pro-
tocol system for different configurations. The column L lists the capacity of the
network, the column P lists the number of data packets, and the column R lists the
number of receivers in the configuration. The table gives the numbers of nodes and
arcs in the full and in the symmetry-condensed state spaces. The columns ‘Node
ratio’, ‘Arc ratio’, and ‘Time ratio’ give the reduction obtained in terms of nodes,
arcs, and CPU time, respectively. The column R! lists the factorial of the number of
receivers in the configuration. When there are R receivers in the configuration, there
are R! possible permutations of the receivers. Hence, R! is the theoretical upper limit
on the reduction factor that can be obtained for a configuration with R receivers. For
the configurations with five and six receivers, it was not possible to compute the full
state space; its size was instead computed by computing the sizes of the equivalence

198 8 Advanced State Space Methods

Table 8.2 Statistics for application of the symmetry method

State space Symmetry Node Arc Time
L P R Nodes Arcs Nodes Arcs ratio ratio ratio R!

2 3 2 921 1 832 477 924 1.93 1.98 0.7 2
3 3 3 22 371 64 684 4 195 11 280 5.33 5.73 2.0 6
4 3 4 172 581 671 948 9 888 32 963 17.45 20.38 23.9 24
5 2 5 486 767 2 392 458 8 387 31 110 58.04 76.90 – 120
6 2 6 5 917 145 35 068 448 24 122 101 240 245.30 346.39 – 720

classes represented by the nodes and arcs in the condensed state space. This is why
no time reduction ratio has been provided for these configurations.

The advantage of the symmetry method is that significant reductions can be ob-
tained, as was illustrated above, and that the method can be used to check all be-
havioural properties that are invariant under symmetry. The main limitation of the
symmetry method is that computing the canonical representations of markings and
binding elements is computationally expensive. It has been shown [20] that comput-
ing canonical representatives for equivalence classes is at least as hard as the graph
isomorphism problem, for which no polynomial-time algorithm is known. The cur-
rent available algorithms for computing canonical representatives, which exploit a
number of advanced algebraic techniques, can, however, in practice deal efficiently
with systems where the number of permutation symmetries is below 10! [79].

8.4 Equivalence Method

The symmetry method presented in the previous section is based on symmetries in
the system inducing an equivalence relation on the markings and binding elements.
The equivalence method is a generalisation of the symmetry method, where the con-
straint that the equivalence relations are induced by symmetries is removed. Instead,
arbitrary equivalence relations on the markings and binding elements can be used
provided that they are consistent, i.e., equivalent markings must have equivalent sets
of enabled binding elements and equivalent sets of successor markings. Below, we
illustrate the use of the equivalence method using the CPN model from Fig. 8.1.

The equivalence relation for this protocol system is based on the observation
that certain packets on the network become similar (equivalent) as the protocol ex-
ecutes. As an example, consider the marking M1 in Fig. 8.6 and the arrival of the
retransmitted data packet with sequence number 2 at the receiver. The arrival of this
data packet does not change the state of the receiver. The sequence number is smaller
than the expected number, and the data packet is said to be old. The arrival of this old
data packet has the effect that an acknowledgement asking for data packet number 3
is sent. Generalising this, the arrival of any old data packet (with a sequence number

8.4 Equivalence Method 199

if success
then empty
else 1`()

if success
then empty
else 1`()

()

()

k

if n=k
then k+1
else k

k

data

if n > k
then n
else k

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

Limit

6`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`3

3
2`2++
1`3

1 1`3

11`"COLOUR"

3

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 8.6 Example marking M1 for the equivalence method

less than the one expected) has the effect that an acknowledgement is sent indicating
which packet is actually expected. For instance, reception of an old data packet with
sequence number 1 on place A has exactly the same effect as the reception of an old
data packet with sequence number 2. Similar observations and terminology apply to
acknowledgements arriving at the sender, as we have changed the CPN model such
that the sender never decreases its sequence number when an old acknowledgement
is received.

The intuition behind the equivalence relation for the transport protocol is that it
captures that old data packets are equivalent, and, similarly, old acknowledgements.
The equivalence relation considers two markings to be equivalent if three conditions
hold:

• The markings of the places PacketsToSend, NextSend, Limit, NextRec, and
DataReceived must be identical.

• The markings of the network places A, B, C, and D must be identical when only
non-old packets are considered.

• The markings of the network places A, B, C, and D must have the same numbers
of old packets.

As an example, the marking M1 shown in Fig. 8.6 is equivalent to the marking M2

shown in Fig. 8.7. The markings of places B and D are different in the two markings,
but there is the same number of old data packets on B and the same number of old
acknowledgements on D in the two markings. Furthermore, the non-old data packets
and non-old acknowledgements on B and D are identical in the two markings.

Two bindings of a transition are considered equivalent if they both involve old
data packets (or old acknowledgements), whereas bindings involving non-old data

200 8 Advanced State Space Methods

if success
then empty
else 1`()

if success
then empty
else 1`()

()

()

k

if n=k
then k+1
else k

k

data

if n > k
then n
else k

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

Limit

6`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`3

3

1`1++
1`2++
1`3

1 1`3

11`"COLOUR"

3

2`(2,"OUR")++
1`(3,"ED ")

6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 8.7 Example marking M2 for the equivalence method

packets (or acknowledgements) are equivalent only to themselves. The specification
of the equivalence relations is provided to CPN Tools by implementing two predi-
cates in CPN ML. The predicate on markings takes two markings and returns true if
and only if the two markings are equivalent. Analogously, the predicate on binding
elements takes two binding elements and returns true if and only if the two binding
elements are equivalent. A formalisation of the above equivalence relation can be
found in [65], including a proof that it is consistent. Table 8.3 gives some statistics
obtained using the equivalence method on the protocol system for several different
limits on the network.

The advantage of the equivalence method is that it allows a more general notion
of equivalence compared with the symmetry method. The disadvantage is that the
proof of consistency of the equivalence relation must be done manually, and this can
be a difficult task for complex CPN models, Furthermore, it is often cumbersome
to write the CPN ML code specifying the two equivalence relations. These are the

Table 8.3 Statistics for application of the equivalence method

State space Equivalence Node Arc Time
Limit Packets Nodes Arcs Nodes Arcs ratio ratio ratio

1 4 33 44 33 44 1.00 1.00 1.00
2 4 293 764 155 383 1.89 1.99 1.00
3 4 1 829 6 860 492 1 632 3.72 4.20 0.90
4 4 9 025 43 124 1 260 5 019 7.16 8.59 1.56
5 4 37 477 213 902 2 803 12 685 13.37 16.86 4.09
6 4 136 107 891 830 5 635 28 044 24.15 31.80 13.58

8.4 Equivalence Method 201

main reasons why the equivalence method in its full generality has not been used
very much in practice.

Section 10.4 presents a special version of the equivalence method that can be
used to obtain a finite state space for any timed CPN model where the underlying
untimed CPN model has a finite state space. This special version is fully automatic
to use, as it requires no manual consistency proof and manual implementation of the
equivalence predicates.

Chapter 9
Formal Definition of State Spaces and
Behavioural Properties

This chapter formally defines state spaces and behavioural properties. Readers who
are not interested in the mathematical definitions and are content with the informal
introduction given in Chap. 7 may decide to skip this chapter. The definition of
state spaces relies on the definitions for non-hierarchical CPN models presented in
Chap. 4, and it is assumed that we have a non-hierarchical CPN model CPN =
(P,T,A,Σ ,V,C,G,E, I) as defined in Definition 4.2. All definitions given in this
chapter can be generalised immediately to hierarchical CPN models by replacing
places with place instances and transitions with transition instances.

Section 9.1 defines directed graphs, strongly-connected-component graphs (SCC
graphs), and a set of graph-theoretical concepts used in the subsequent sections.
Section 9.2 defines state spaces and presents the basic algorithm for the construc-
tion of state spaces. Sections 9.3–9.8 define the behavioural properties and present
algorithms for determining behavioural properties from a state space.

9.1 Directed Graphs

A directed graph consists of a set of nodes (vertices) N, and a set of arcs (edges) A
with labels from a set L. The set of arcs is a subset of N ×L×N, and an element
(n, l,n′) belonging to A represents an arc leading from a node n to a node n′ labelled
with l. When drawing directed graphs, we represent each node n by a rounded box
with n inscribed in it, and each arc (n, l,n′) by an arrow labelled with l, starting
from the source node n and ending in the destination node n′. Figure 9.1 shows an
example of a directed graph. For this directed graph, the set of nodes N is given by

N = {v0,v1,v2,v3,v4,v5,v6,v7,v8,v9}
The set of arc labels L is given by

L = {a,b,c,d,e, f ,g,h, i}

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 9, 203
c© Springer-Verlag Berlin Heidelberg 2009

204 9 Formal Definition of State Spaces and Behavioural Properties

5

f

e

a c

a

cb

v 7v 9v

g

i
3v

v hd
4 6v v8

e

v

v

1

0

b

c

2
a

b

v

Fig. 9.1 Example of a directed graph

and the set of arcs A is given by

A = { (v0,b,v1),(v0,a,v2),(v1,c,v0),(v1,a,v4),
(v2,b,v1),(v2, f ,v3),(v3,g,v3),(v3, i,v5),
(v4,d,v6),(v4,b,v7),(v5,a,v7),(v6,e,v4),
(v6,h,v8),(v6,c,v9),(v7,c,v9),(v9,e,v5) }

A directed graph is finite if the number of nodes and arcs is finite. Otherwise,
it is infinite. The set of nodes without outgoing arcs are called terminal nodes. In
Fig. 9.1, there is a single terminal node, v8.

The definition below formally defines a directed graph based on the description
above.

Definition 9.1. A directed graph with arc labels from a set L is a tuple DG =
(N,A), where:

1. N is a set of nodes.
2. A ⊆ N ×L×N is a set of arcs.

�
Note that Definition 9.1 allows parallel arcs, i.e., arcs (n, l,n′) and (n, l′,n′) that

connect the same pair of nodes. This generalisation is necessary to handle state
spaces, as two different enabled binding elements in a given marking may have the
same effect.

9.1 Directed Graphs 205

A finite directed path of length k≥ 0 in a directed graph is an alternating sequence
of nodes and arcs on the form

n1 (n1, l1,n2)n2 (n2, l2,n3) · · · nk (nk, lk,nk+1)nk+1

The existence of such a path leading from n1 to nk+1 means that the end node nk+1

is reachable from the start node n1. The set of nodes reachable from a node n in
a directed graph DG is denoted RDG(n). As an example, consider Fig. 9.1 and the
following finite path of length 4 leading from node v0 to node v8:

v0 (v0,b,v1)v1 (v1,a,v4)v4 (v4,d,v6)v6 (v6,h,v8)v8

A path is trivial if it consists of a single node. A cycle is a non-trivial finite path
where the start node is identical to the end node. In Fig. 9.1, the following finite path
is a cycle:

v5 (v5,a,v7)v7 (v7,c,v9)v9 (v9,e,v5)v5

An infinite directed path starting from a node n1 is an alternating infinite se-
quence of nodes and arcs on the form

n1 (n1, l1,n2)n2 (n2, l2,n3)n3 (n3, l3,n4)n4 · · ·
The definition below summarises the definition of finite and infinite directed

paths.

Definition 9.2. Let DG = (N,A) be a directed graph. A finite directed path of
length k ≥ 0 is an alternating sequence of nodes and arcs on the form

n1 (n1, l1,n2)n2 (n2, l2,n3) · · · nk (nk, lk,nk+1)nk+1

An infinite directed path is an alternating infinite sequence of nodes and arcs on
the form

n1 (n1, l1,n2)n2 (n2, l2,n3)n3 (n3, l3,n4)n4 · · ·
�

A subgraph of a directed graph DG = (N,A) is a directed graph DG′ = (N′,A′)
such that N′ is a subset of the set of nodes in DG and A′ is a subset of the arcs
in DG, i.e., N′ ⊆ N and A′ ⊆ A. Note that the requirement that DG′ is a directed
graph implies that the nodes n′ and n′′ of an arc (n′, l,n′′) ∈ A′ belong to N′. Hence,
the source and destination nodes of an arc in a subgraph will also belong to that
subgraph. The subgraph DG′ is the subgraph induced by N′ if A′ contains all arcs
connecting nodes in N′, i.e., A′ = {(n, l,n′) ∈ A |n,n′ ∈ N′}. Figure 9.2 shows two
examples of subgraphs for the directed graph shown in Fig. 9.1. For both subgraphs,
we have N′ = {v4,v6,v8 }. The subgraph in Fig. 9.2a is the subgraph induced by N′,

206 9 Formal Definition of State Spaces and Behavioural Properties

v v4v d
6 8

e

h v v4v d
6 8

h

(a) (b)

Fig. 9.2 Examples of subgraphs

whereas this is not the case for the subgraph in Fig. 9.2(b), since that subgraph does
not contain the arc leading from node v6 to node v4, labelled with e.

The definition below summarises the definition of subgraphs and induced sub-
graphs.

Definition 9.3. Let DG = (N,A) and DG′ = (N′,A′) be directed graphs. DG′ is a
subgraph of DG if and only if

N′ ⊆ N and A′ ⊆ A

DG′ is an induced subgraph of DG if and only if

N′ ⊆ N and A′ = {(n, l,n′) ∈ A |n,n′ ∈ N′}
�

Two nodes n and n′ in a directed graph DG are strongly connected if there exists
a finite path leading from node n to node n′ and vice versa, i.e., if n′ ∈ RDG(n) and
n ∈ RDG(n′). A set of nodes N′ is strongly connected if all pairs of nodes in N′ are
strongly connected. As an example, consider Fig. 9.1. The set {v0,v1,v2} of nodes
is strongly connected. The set {v0,v1,v2,v3} of nodes is not strongly connected,
since there is, for example, no directed finite path leading from node v3 to node
v0. A strongly connected component (SCC) of a directed graph DG = (N,A) is a
directed subgraph DG = (N′,A′) induced by a set of nodes N′ such that the nodes
in N′ are strongly connected and such that N′ is not contained in a larger subset of
strongly connected nodes, i.e., if N′′ ⊆ N is also strongly connected and N′ ⊆ N′′
then N′ = N′′. As an example, consider Fig. 9.3, which shows two subgraphs of the
directed graph shown in Fig. 9.1. The subgraph in Fig. 9.3a is induced by the nodes
v0, v1 and v2 and is a strongly connected component. The subgraph in Fig. 9.3b is
induced by the set N′ = {v0,v1}. It is not a strongly connected component since it is
possible to add the node v2 to N′ and obtain a set of nodes which is also strongly con-
nected. The strongly connected component in Fig. 9.3a corresponds to the following
subgraph:

S0 = ({ v0,v1,v2 },{ (v0,b,v1),(v0,a,v2),(v1,c,v0),(v2,b,v1) })
The directed graph in Fig. 9.1 has the following five strongly connected components,
shown in Fig. 9.4 as rounded boxes with a thick border:

9.1 Directed Graphs 207

b

v

1vc

0 2

b

va

b

v

1vc

0

(a) (b)

Fig. 9.3 Examples of subgraphs induced by sets of strongly connected nodes

3v 5v 7v 9v

g

ca

e

f

S1

S3

S 4
S2

S0
6v 8v4v d

e

0v

1vc

b

2va

b

b c

a

i

h

Fig. 9.4 Strongly connected components for the directed graph in Fig. 9.1

S0 = ({ v0,v1,v2 },{ (v0,b,v1),(v0,a,v2),(v1,c,v0),(v2,b,v1) })
S1 = ({ v4,v6 },{ (v4,d,v6),(v6,e,v4) })
S2 = ({ v3 },{ (v3,g,v3) })
S3 = ({ v8 }, /0)

S4 = ({ v5,v7,v9 },{ (v5,a,v7),(v7,c,v9),(v9,e,v5)) })

The set of strongly connected components determines a disjoint partition of the
nodes in the directed graph. A strongly connected component is trivial if it consists
of a single node and no arcs. The strongly connected component S3 is the only triv-
ial strongly connected component of the directed graph in Fig. 9.1. Note that S2 is
not trivial, since it contains an arc. A strongly connected component is terminal if

208 9 Formal Definition of State Spaces and Behavioural Properties

it has no outgoing arcs in DG. The SCCs S3 and S4 in Fig. 9.4 are terminal SCCs.
The SCC S1 is not terminal, since it has at least one and in fact three outgoing arcs
(v6,h,v8),(v6,c,v9), and (v4,b,v7) i.e., arcs that start in S1 and ends in another SCC.
For a node n, we denote by SCC(n) the strongly connected component to which n
belongs.

The definition below summarises the definition of strongly connected compo-
nents.

Definition 9.4. Let DG = (N,A) be a directed graph. A set of nodes N′ is strongly
connected if and only if

∀n,n′ ∈ N′ : n′ ∈ RDG(n)

A strongly connected component (SCC) is a subgraph induced by a set of nodes
N′ ⊆ N such that:

1. N′ is strongly connected.
2. If N′′ ⊆ N is strongly connected and N′ ⊆ N′′, then N′ = N′′.

The set of all strongly connected components of a directed graph DG is denoted
SCCDG.

�
The strongly-connected-component graph (SCC graph) for a directed graph

DG = (N,A) is a directed graph SG = (NSG,ASG) where the set of nodes NSG is
equal to the set of strongly connected components SCCDG of DG. There is an arc
with label l leading from an SCC S′ = (N′,A′) to an SCC S′′ = (N′′,A′′) if and only
if there exists an arc with label l in DG leading from a node in S′ to a node in S′′,
i.e., if there exists an arc (n′, l,n′′)∈ A such that n′ ∈ N′ and n′′ ∈ N′′. Since the SCC
graph groups nodes that are mutually reachable, it follows that the SCC graph is an
acyclic directed graph, i.e., it contains no cycles.

Figure 9.5 shows the SCC graph corresponding to the directed graph in Fig. 9.1.
The thick nodes and arcs are the nodes and arcs of the SCC graph. The set of nodes
NSG is given by:

NSG = { S0,S1,S2,S3,S4 }
where S0,S1, . . . ,S4 are as defined earlier. The set of arcs ASG is given by

ASG = { (S0,a,S1),(S0, f ,S2),(S1,h,S3),(S1,b,S4),(S1,c,S4),(S2, i,S4) }

The definition of SCC graphs is given below.

Definition 9.5. Let DG = (N,A) be a directed graph with arc labels from a set L.
The strongly-connected-component graph (SCC graph) for DG is a directed graph
SG = (NSG,ASG), where:

9.2 State Spaces 209

5

f

e

a c

a

cb

v 7v 9v

g

i
3v

f

S1

S3

S 4
S2

S0

i

ha

b c

v hd
4 6v v8

e

v

v

1

0

b

c

2
a

b

v

Fig. 9.5 SCC graph for the directed graph in Fig. 9.1

1. NSG = SCCDG is the set of nodes.
2. ASG = {((N′,A′), l,(N′′,A′′)) ∈ NSG ×L×NSG | ∃(n′, l,n′′) ∈ A : n′ ∈ N′ ∧ n′′ ∈

N′′} is the set of arcs.
�

The SCC graph can be computed in time and space linear in the size of the state
space using a variant of Tarjan’s algorithm [101] adapted such that arcs are also
included in the SCCs and arcs are created between the SCCs according to Defini-
tion 9.5.

9.2 State Spaces

The state space of a CPN model is a directed graph SS, where the set of nodes
NSS corresponds to the set of reachable markings R(M0). The set of arcs ASS cor-
responds to occurring binding elements, and there is an arc labelled with a binding
element (t,b) leading from a node M to a node M′ if and only if (t,b) is enabled
in the marking M and the occurrence of (t,b) in M leads to the marking M′, i.e., if

M
(t,b)−→M′. The state space of a CPN model is finite if the CPN model has a finite set

of reachable markings and a finite set of enabled binding elements in each reachable
marking. Otherwise, the state space is infinite.

The definition below formally defines the state space of a CPN model.

Definition 9.6. The state space of a Coloured Petri Net is a directed graph SS =
(NSS,ASS) with arc labels from BE, where:

210 9 Formal Definition of State Spaces and Behavioural Properties

1. NSS = R(M0) is the set of nodes.

2. ASS = {(M,(t,b),M′) ∈ NSS ×BE ×NSS | M
(t,b)−→M′} is the set of arcs.

SS is finite if and only if NSS and ASS are finite.
�

The basic algorithm for state space construction is based on the standard algorithm
for traversal of a directed graph. Figure 9.6 gives the algorithm which uses three
datastructures: NODES stores the nodes (markings) generated up to now, ARCS

stores the arcs generated up to now, and UNPROCESSED contains the nodes for
which successor nodes have not yet been calculated. The algorithm starts by ini-
tialising NODES and UNPROCESSED to the initial marking M0 and ARCS to the
empty set /0. It then executes a loop until no further unprocessed nodes exist. In
each step of the loop, a marking M is selected from UNPROCESSED and the set of

enabled binding elements in M is calculated. We have used M
t,b−→ to denote that

a binding element (t,b) is enabled in a marking M. For each enabled binding ele-
ment (t,b), the marking M′ reached when (t,b) occurs in M is calculated and the
triple (M,(t,b),M′) is added to ARCS. Furthermore, if the marking M′ has not yet
been encountered, i.e., is not contained in NODES, then M′ is added to both NODES

and UNPROCESSED. The algorithm terminates provided that the state space is finite.
When the algorithm terminates, NODES will be equal to the set of reachable mark-
ings since, by Theorem 4.7, any reachable marking can be reached via occurrence
sequences with steps containing a single binding element. A partial state space is
obtained if the state space construction is stopped before the algorithm terminates,
i.e., before the set of unprocessed nodes becomes empty.

The order in which nodes are selected from UNPROCESSED determines the order
in which the state space is explored. If the set of unprocessed nodes is organised as

1: NODES ←{M0}
2: UNPROCESSED ←{M0}
3: ARCS ← /0
4: while UNPROCESSED �= /0 do
5: Select a marking M in UNPROCESSED

6: UNPROCESSED ← UNPROCESSED −{M}
7: for all binding elements (t,b) such that M

(t,b)−→ do

8: Calculate M′ such that M
(t,b)−→M′

9: ARCS ← ARCS ∪ {(M,(t,b),M′)}
10: if M′ �∈ NODES then
11: NODES ← NODES ∪ {M′}
12: UNPROCESSED ← UNPROCESSED ∪ {M′}
13: end if
14: end for
15: end while

Fig. 9.6 Basic algorithm for state space construction

9.3 Reachability Properties 211

a queue, the state space is explored in a breadth-first order. If the set of unprocessed
nodes is organised as a stack, the state space is explored in a depth-first order. Other
orderings are possible, and some are exploited by the advanced state space reduc-
tion methods discussed in Chap. 8. All possible orders yield identical state spaces
(except for the numbering of the nodes). From the algorithm in Fig. 9.6, it is rather
straightforward to implement the state space construction. The main challenge is to
implement a data structure that provides a time- and space-efficient representation
of the markings and allows an efficient test to determine whether a marking already
belongs to NODES.

Given a state space SS, we denote the SCC graph for SS by SGSS. The set of
strongly connected components is denoted SCCSS. The set of terminal strongly con-
nected components is denoted SCCTM

SS , and the set of trivial strongly connected com-
ponents is denoted SCCTR

SS . When no confusion can arise, we usually omit the SS and
write SG, SCC, SCCTM, and SCCTR. In the following sections, we assume that we
are dealing with a CPN model that has a finite state space.

9.3 Reachability Properties

From the definitions above, it follows that a directed finite path of length k ≥ 0
starting from a node M1 and leading to a node Mk+1 in a state space SS = (NSS,ASS)
has the form

M1 (M1,be1,M2) M2 (M2,be2,M3) M3 · · ·Mk (Mk,bek,Mk+1) Mk+1

where the Mi are markings, the bei are binding elements, and (Mi,bei,Mi+1) ∈ ASS,

i.e., Mi
bei−→Mi+1 for all 1 ≤ i ≤ k. This means that each finite directed path in the

state space corresponds to a finite occurrence sequence of the CPN model. Similarly,
each finite occurrence sequence of the CPN model starting from a reachable marking
M1 and consisting of steps with a single binding element,

M1
be1−→M2

be2−→M3 · · ·Mk
bek−→Mk+1

corresponds to a finite directed path in the state space.
A directed infinite path starting from a node M1 has the following form:

M1 (M1,be1,M2)M2 (M2,be2,M3) · · ·
where the Mi are markings, the bei are binding elements, and (Mi,bei,Mi+1) ∈ ASS,

i.e., Mi
bei−→Mi+1 for all i ≥ 1. This means that each infinite occurrence sequence of

the CPN model starting from a reachable marking and consisting of steps with a
single binding element has a corresponding infinite directed path in the state space
and vice versa.

The correspondence between directed paths and occurrence sequences is sum-
marised in the following proposition.

212 9 Formal Definition of State Spaces and Behavioural Properties

Proposition 9.7. Let SS = (NSS,ASS) be the state space of a Coloured Petri Net CPN
and let M1 ∈ R(M0). Then the following holds:

1. M1
be1−→ M2

be2−→M3 · · · Mk
bek−→Mk+1 is a finite occurrence sequence of CPN if

and only if M1 (M1,be1,M2)M2 (M2,be2,M3)M3 · · · Mk (Mk,bei,Mk+1)Mk+1 is a
finite directed path in SS.

2. M1
be1−→ M2

be2−→M3 · · · is an infinite occurrence sequence of CPN if and only if
M1 (M1,be1,M2)M2 (M2,be2,M3)M3 · · · is a infinite directed path in SS.

�
From the above proposition it follows that a marking M′ is reachable from a

marking M ∈ R(M0) if and only if M′ ∈ RSS(M), i.e., if and only if there exists a
finite directed path leading from M to M′ in the state space. To find out whether a
marking M′ is reachable from a marking M ∈ R(M0), we conduct a graph traver-
sal starting from node M. If we encounter node M′, then M′ is reachable from M;
otherwise, M′ is not reachable from M.

It is also possible to use the SCC graph for determining reachability properties.
A marking M′ is reachable from a marking M ∈ R(M0) if and only if there exists
a finite directed path leading from the strongly connected component SCC(M) to
which M belongs to the strongly connected component SCC(M′) to which M′ be-
longs. As an example, consider Fig. 9.5. If we wish to determine whether node v8 is
reachable from node v1, then we can check whether SCC S3 (the SCC to which v8

belongs) is reachable from the SCC S0 (the SCC to which v1 belongs).
A predicate φ on markings is reachable if there exists a reachable marking sat-

isfying φ . Checking this property can be done by applying the predicate φ to each
node in the state space. The following proposition specifies how to check reachabil-
ity properties from a state space.

Proposition 9.8. Let SS = (NSS,ASS) be the finite state space of a Coloured Petri
Net, and let SG = (NSG,ASG) be the SCC graph. Then the following holds:

1. A marking M′ is reachable from a marking M ∈ R(M0) if and only if

M′ ∈ RSS(M)

2. A marking M′ is reachable from a marking M ∈ R(M0) if and only if

SCC(M′) ∈ RSG(SCC(M))

3. A predicate φ on markings is reachable if and only if

∃M ∈ NSS : φ(M)
�

9.4 Basic Boundedness Properties 213

9.4 Basic Boundedness Properties

For a place p and a marking M, we use |M(p)| to denote the size of the multiset
M(p), i.e., the number of tokens on p in the marking M. A non-negative integer n
is an upper integer bound for a place p if the number of tokens on p is always less
than or equal to n, i.e., if |M(p)| ≤ n for all M ∈ R(M0). If an upper integer bound
exists for p, then p is bounded. Otherwise, p is unbounded, which means that p
may possess an arbitrarily high number of tokens. The best upper integer bound for
a bounded place p is the smallest integer which qualifies as an upper integer bound.
If a CPN model contains an unbounded place, this implies that the state space is
infinite. It should be noted that a CPN model may have an infinite state space even
if all places are bounded, since places may have infinite colour sets.

A non-negative integer n is a lower integer bound for a place p if the number
of tokens on p is always greater than or equal to n, i.e., if |M(p)| ≥ n for all M ∈
R(M0). From this it is easy to see that 0 is always a lower integer bound. The best
lower integer bound for a place p is the largest integer which qualifies as a lower
integer bound. The definitions of integer bounds are summarised in the following
definition.

Definition 9.9. Let a place p ∈ P and a non-negative integer n ∈ N be given.

1. n is an upper integer bound for p if and only if

∀M ∈ R(M0) : |M(p)| ≤ n

2. n is a lower integer bound for p if and only if

∀M ∈ R(M0) : |M(p)| ≥ n

3. p is bounded if and only if an upper integer bound for p exists. Otherwise, p
is unbounded.

�
To find the best upper/lower integer bound for a place p, we search through all

of the nodes in the state space, find the number of tokens |M(p)| on the place p in
each node M encountered, and return the maximum/minimum of these values. This
is formalised in the following proposition which provides the basis for determining
the best upper and lower integer bounds from the state space.

Proposition 9.10. Let SS = (NSS,ASS) be the finite state space of a Coloured Petri
Net CPN. Then the following holds:

1. The best upper integer bound for a place p is given by

max{|M(p)| | M ∈ NSS }

2. The best lower integer bound for a place p is given by

min{|M(p)| | M ∈ NSS } �

214 9 Formal Definition of State Spaces and Behavioural Properties

A multiset m is an upper multiset bound for a place p if the marking of p is al-
ways less than or equal to m, i.e., if M(p) �= m for all M ∈ R(M0). When n is an
upper integer bound for a place p, it is easy to see that n ∗∗ C(p) is an upper mul-
tiset bound for p, and from this we conclude that all bounded places have an upper
multiset bound. It is, however, possible for a place to be unbounded and still have
an upper multiset bound. When an upper multiset bound m for a place p is a finite
multiset, it can be seen that |m| is an upper integer bound for p. If a place does not
have an upper multiset bound, this means that there is a token in the colour set of p
that can appear in the marking of p with an arbitrarily high coefficient. This implies
that the state space of the CPN model is infinite. The best upper multiset bound for
a place p is the smallest multiset which qualifies as an upper multiset bound.

For two multisets m1 and m2 over a set S, we define the minimum of m1 and m2,
denoted minMS(m1,m2), as the multiset where the coefficient of an element s ∈ S is
the minimum of the coefficients with which s appears in m1 and m2. As an example,
consider the following two multisets from the protocol example:

m1 = 1‘(1,"COL") ++ 2‘(2,"OUR") ++ 4‘(3,"ED ")

m2 = 1‘(1,"COL") ++ 3‘(2,"OUR") ++ 2‘(3,"ED ")

For these two multisets, we have

minMS(m1,m2) = 1‘(1,"COL") ++ 2‘(2,"OUR") ++ 2‘(3,"ED ")

Formally, minMS(m1,m2) is defined by

∀s ∈ S : minMS(m1,m2)(s) = min(m1(s),m2(s))

It follows from the above that if m1 and m2 are both upper multiset bounds for
a place p, then minMS(m1,m2) is an upper multiset bound for p which is smaller
than or equal to both m1 and m2. Furthermore, minMS(m1,m2) is the largest multiset
which is smaller than or equal to both m1 and m2.

A multiset m is a lower multiset bound for a place p if the marking of p is always
greater than or equal to m, i.e., if M(p) �= m for all M ∈ R(M0). Whereas a place
need not have an upper multiset bound, a place always has a lower multiset bound
of /0MS. When a lower multiset bound m for a place p is a finite multiset, it can be
seen that |m| is a lower integer bound for p. The best lower multiset bound for a
place p is the largest multiset which qualifies as a lower multiset bound.

For two multisets m1 and m2 over a set S, we define the maximum of m1 and m2,
denoted maxMS(m1,m2), as the multiset where the coefficient of an element s ∈ S is
the maximum of the coefficients with which s appears in m1 and m2. As an example,
consider again the two multisets from the protocol example

9.4 Basic Boundedness Properties 215

m1 = 1‘(1,"COL") ++ 2‘(2,"OUR") ++ 4‘(3,"ED ")

m2 = 1‘(1,"COL") ++ 3‘(2,"OUR") ++ 2‘(3,"ED ")

For these two multisets, we have

maxMS(m1,m2) = 1‘(1,"COL") ++ 3‘(2,"OUR") ++ 4‘(3,"ED ")

Formally, maxMS(m1,m2) is defined by

∀s ∈ S : maxMS(m1,m2)(s) = max(m1(s),m2(s))

It follows from the above that if m1 and m2 are both lower multiset bounds for
a place p, then maxMS(m1,m2) is a lower multiset bound for p which is larger than
or equal to both m1 and m2. Furthermore, maxMS(m1,m2) is the smallest multiset
which is larger than or equal to both m1 and m2.

The definitions of multiset bounds are summarised in the following definition.

Definition 9.11. Let a place p ∈ P and a multiset m ∈C(p)MS be given.

1. m is an upper multiset bound for p if and only if

∀M ∈ R(M0) : M(p) �= m

2. m is a lower multiset bound for p if and only if

∀M ∈ R(M0) : M(p) �= m
�

To find the best upper and lower multiset bounds for a place, the CPN state space
tool searches through all of the nodes in the state space, finds the number of appear-
ances of each token colour on the place in each of these markings, and returns the
largest and smallest of these values. This is formalised in the following proposition,
which provides the basis for determining the best upper and lower multiset bounds
from the state space.

Proposition 9.12. Let SS = (NSS,ASS) be the finite state space of a Coloured Petri
Net. Then the following holds:

1. The best upper multiset bound for a place p is given by

maxMS{ M(p) | M ∈ NSS }
2. The best lower multiset bound for a place p is given by

minMS{ M(p) | M ∈ NSS }
�

216 9 Formal Definition of State Spaces and Behavioural Properties

In the above, we have used maxMS and minMS on a set of multisets even though
they were defined to take only two multisets as arguments. The generalisation is,
however, straightforward.

9.5 Generalised Boundedness Properties

In the above, we have defined integer and multiset bounds for a place. However, it is
also possible to look at more general boundedness properties. When we have a set
of places P∗ ⊆ P, we can define upper and lower integer bounds for the set P∗.

As an example, for the CPN model of the protocol shown in Fig. 7.2, we might
be interested in an upper and a lower integer bound on the number of tokens that
could be present simultaneously on the network places A, B, C, and D. In this case,
we could define

P∗ = {A,B,C,D}
An upper integer bound for P∗ is a non-negative integer n such that, for all reachable
markings M

∑
p∈P∗

|M(p)| = |M(A)|+ |M(B)|+ |M(C)|+ |M(D)| ≤ n

Similarly, a lower integer bound for P∗ is a non-negative integer n such that, for
all reachable markings M

∑
p∈P∗

|M(p)| = |M(A)|+ |M(B)|+ |M(C)|+ |M(D)| ≥ n

We might also be interested in upper and lower multiset bounds for the sum of
the markings of a set of places having the same colour set. As an example, for the
protocol model shown in Fig. 7.2, we might be interested in an upper and a lower
multiset bound for the sum of the markings of the places A and B. In this case:

P∗ = {A,B}
An upper multiset bound for P∗ is a multiset m such that, for all reachable mark-

ings M

++∑
p∈P∗

M(p) = M(A)++M(B) �= m

Similarly, a lower multiset bound for P∗ is a multiset m such that, for all reachable
markings M

++∑
p∈P∗

M(p) = M(A)++M(B) �= m

9.5 Generalised Boundedness Properties 217

The following definition generalises the boundedness properties defined in Defi-
nitions 9.9 and 9.11.

Definition 9.13. Let a set of places P∗ ⊆ P and a non-negative integer n ∈ N be
given.

1. n is an upper integer bound for P∗ if and only if

∀M ∈ R(M0) : ∑
p∈P∗

|M(p)| ≤ n

2. n is a lower integer bound for P∗ if and only if

∀M ∈ R(M0) : ∑
p∈P∗

|M(p)| ≥ n

If all members of P∗ have the same colour set CS and m ∈CSMS, then:

3. m is an upper multiset bound for P∗ if and only if

∀M ∈ R(M0) :
++∑

p∈P∗
M(p) �= m

4. m is a lower multiset bound for P∗ if and only if

∀M ∈ R(M0) :
++∑

p∈P∗
M(p) �= m

�
As earlier, we can define the best upper/lower integer (or multiset) bound as

the smallest/largest integer (or multiset) which qualifies as an integer (or multiset)
bound. The best upper and lower bounds for the generalised boundedness proper-
ties can be determined from the state space in a way similar to that for the basic
boundedness properties by traversing all nodes in the state space as summarised in
the following proposition, which is a generalisation of Propositions 9.10 and 9.12.

Proposition 9.14. Let SS = (NSS,ASS) be the finite state space of a Coloured Petri
Net, and let P∗ ⊆ P be a set of places. Then the following holds:

1. The best upper integer bound for P∗ is given by

max{ ∑
p∈P∗

|M(p)| | M ∈ NSS }

2. The best lower integer bound for P∗ is given by

min{ ∑
p∈P∗

|M(p)| | M ∈ NSS }

If all members of P∗ have the same colour set, then:

218 9 Formal Definition of State Spaces and Behavioural Properties

3. The best upper multiset bound for P∗ is given by

maxMS{ ++∑
p∈P∗

M(p) | M ∈ NSS }

4. The best lower multiset bound for P∗ is given by

minMS{ ++∑
p∈P∗

M(p) | M ∈ NSS }
�

The bounds defined above consider all tokens present on a place (or on a set of
places). Sometimes it is of interest to consider only tokens with certain colours when
considering the boundedness properties. A token element is a pair (p,c), where p is
a place and c∈C(p) is a colour which may reside on p. A token element (p,c) hence
specifies a token with a particular colour c residing on a place p. M(p)(c) denotes
the number of appearances of the colour c in the multiset M(p), i.e., the number
of c-tokens on the place p. For an arbitrary set of token elements TE∗, we may
consider upper and lower integer bounds. As an example, for the protocol model
shown in Fig. 7.2, we might be interested in an upper and a lower integer bound on
the number of data packets with colour (1,"COL") and acknowledgements with
sequence number 2 that could be present simultaneously on the places A, B, C, and
D. In this case, we define

TE∗ = {(A,(1,"COL")),(B,(1,"COL")),(C,2),(D,2)}
An upper integer bound for TE∗ is an integer n such that, for all reachable mark-

ings M

∑
(p,c)∈TE∗

M(p)(c)

= M(A)((1,"COL"))+M(B)((1,"COL"))+M(C)(2)+M(D)(2) ≤ n

Similarly, a lower integer bound for TE∗ is an integer n such that, for all reachable
markings M

∑
(p,c)∈TE∗

M(p)(c)

= M(A)((1,"COL"))+M(B)((1,"COL"))+M(C)(2)+M(D)(2) ≥ n

As earlier we can define the best upper (or lower) integer bound as the smallest
(or largest) n which is an upper (or lower) integer bound for TE∗. The above is
summarised in the following definition.

9.6 Home Properties 219

Definition 9.15. Let a set of token elements TE∗ and a non-negative integer n ∈ N

be given.

1. n is an upper integer bound for TE∗ if and only if

∀M ∈ R(M0) : ∑
(p,c)∈TE∗

M(p)(c) ≤ n

2. n is an lower integer bound for TE∗ if and only if

∀M ∈ R(M0) : ∑
(p,c)∈TE∗

M(p)(c) ≥ n

�
The best upper and lower integer bounds for token elements can be calculated as

explained earlier, and as formalised in the following proposition.

Proposition 9.16. Let SS = (NSS,ASS) be the finite state space of a Coloured Petri
Net, and let TE∗ be a set of token elements. Then the following holds:

1. The best upper integer bound for TE∗ is given by

max{ ∑
(p,c)∈TE∗

M(p)(c) | M ∈ NSS }

2. The best lower integer bound for TE∗ is given by

min{ ∑
(p,c)∈TE∗

M(p)(c) | M ∈ NSS }
�

9.6 Home Properties

A home marking Mhome is a marking with the property that it is possible to reach
Mhome from all reachable markings, i.e., for all M ∈ R(M0) it holds that Mhome ∈
R(M). It should be noted that we require only that it is possible to reach the home
marking Mhome from any reachable marking M. There is no guarantee that Mhome

actually will be reached from M, as there may exist occurrence sequences that start
in M and never reach Mhome. Figure 9.7a shows a small example of a state space. In
this example M4, M5, and M6 are home markings. None of the other markings are
home markings. This can be demonstrated by observing that when the model has
entered one of the markings M4, M5, or M6, it will loop between these three markings
and hence it is no longer possible to reach any of the markings M0,M1,M2,or M3.
This example also demonstrates that the model is not required to eventually reach
a home marking. In this case, it is possible to loop between the markings in the
cycle formed by M1, M2, and M3 forever. Figure 9.7b shows another example of a

220 9 Formal Definition of State Spaces and Behavioural Properties

M1

M2

M3

M0

M4

M5
M6

M1

M2

M3

M0

M4

M5
M6

M7

M1

M2

M3

M0

M4

M6M5

M7

(a) (b) (c)

Fig. 9.7 Examples of state spaces illustrating home properties

state space. In this case there are no home markings. Figure 9.7c shows an example
where all reachable markings are home markings. It follows from the definition of
home markings that the initial marking is a home marking if and only if all reachable
markings are home markings.

A home space M∗
home is a set of markings with the property that it is possible to

reach at least one of the markings in M∗
home from all reachable markings, i.e., for all

M ∈ R(M0) there exists a marking M′ ∈ R(M) such that M′ ∈ M∗
home. For the state

space in Fig. 9.7b, we did not have any home markings. This example, however, has
several home spaces. One home space is {M4,M7}. It follows from the structure of
the state space in Fig. 9.7b that all home spaces in this example must include M7

and at least one of the markings M4,M5, and M6. It is easy to see that any home
marking Mhome determines a home space {Mhome} with only one marking. If a set of
markings which constitute a home space is augmented with additional markings the
set still constitutes a home space. The set of all reachable markings R(M0) always
constitutes a home space. A home predicate is a predicate φ on markings with the
property that it is possible to reach a marking M′ satisfying the predicate φ from all
reachable markings, i.e., for all M ∈R(M0) there exists a marking M′ ∈R(M) such
that φ(M′).

The definitions of home properties are summarised in the following definition.

9.6 Home Properties 221

Definition 9.17. Let Mhome be a marking and M∗
home a set of markings.

1. Mhome is a home marking if and only if

∀M ∈ R(M0) : Mhome ∈ R(M)

2. M∗
home is a home space if and only if

∀M ∈ R(M0) ∃M′ ∈ R(M) : M′ ∈ M∗
home

3. A predicate φ on markings is a home predicate if and only if

∀M ∈ R(M0) ∃M′ ∈ R(M) : φ(M′)
�

We can use the terminal SCCs in the SCC graph to determine whether a given
marking is a home marking and whether a given set of home markings constitutes a
home space. The underlying observation is that from any node in a finite SCC graph
it is always possible to reach one of the terminal SCCs. Figure 9.8 shows the SCC
graphs for the example state spaces shown in Fig. 9.7. The state space in Fig. 9.7a
has a single terminal SCC S2, containing the markings M4,M5, and M6. The state
space in Fig. 9.7b has two terminal SCCs S2 and S3. The state space in Fig. 9.7c has
a single SCC, which is terminal.

For a marking M to be a home marking, the SCC graph must have a single termi-
nal SCC S = (NS,AS) and M must belong to this single terminal SCC, i.e., M ∈ NS.

M1

M2

M3

M0

M4

M5
M6

1S

S0

2S

M1

M2

M3

M0

M4

M5
M6

1S

S0

2S3S

M7

M1

M2

M3

M0

M4

M6M5

S 0

M7

(a) (b) (c)

Fig. 9.8 SCC graphs for the state spaces in Fig. 9.7

222 9 Formal Definition of State Spaces and Behavioural Properties

This is a sufficient condition, since from any reachable marking, we can always
reach some marking M′ belonging to the single terminal SCC and, from M′, we can
reach M since all nodes in an SCC are reachable from each other. This condition is
also necessary. If we have more than one terminal SCC, then there will be at least
one of these to which M does not belong, and we cannot reach M from nodes in that
terminal SCC.

For a set of markings M∗
home to be a home space, each terminal SCC S = (NS,AS)

must contain a node (marking) belonging to M∗
home, i.e., there must exist a marking

M ∈NS such that M ∈M∗
home. For a predicate φ to be a home predicate, there must be

a marking in each of the terminal SCCs that satisfies the predicate. The arguments
for why these are sufficient and necessary conditions are similar to the arguments
given above for the case of home markings.

The above checks of home properties are summarised in the following proposi-
tion. Recall that the set of terminal SCCs is denoted SCCTM.

Proposition 9.18. Let SG = (NSG,ASG) be the SCC graph for the finite state space
SS of a Coloured Petri Net. Then the following holds:

1. A marking M ∈ R(M0) is a home marking if and only if

SCCTM = {(NS,AS)} and M ∈ NS

2. A set of markings M∗
home ⊆ R(M0) is a home space if and only if

∀(NS,AS) ∈ SCCTM ∃M ∈ NS : M ∈ M∗
home

3. A predicate φ on markings is a home predicate if and only if

∀(NS,AS) ∈ SCCTM ∃M ∈ NS : φ(M)
�

9.7 Liveness Properties

A dead marking is a marking M without enabled transitions, i.e., for all t ∈ T ,
¬ (M t−→), where we have used the notation M

t−→ to denote that a transition t
is enabled in a marking M. A transition t is dead in the initial marking M0 if it is not
enabled in any reachable marking M, i.e., ¬ (M t−→) for all M ∈ R(M0). A dead
transition can be removed from the model without changing the behaviour of the
model. Figure 9.9 shows two examples of state spaces where all arcs corresponding
to binding elements for a particular transition t have been labelled with t. The transi-
tion t is dead in Fig. 9.9a, since it does not appear on any of the arcs. The transition
t is non-dead in Fig. 9.9b, since it appears on the arc from M2 to M3.

A transition t is live in the initial marking M0 if for all reachable markings M ∈
R(M0) there exists a marking M′ ∈ R(M) in which t is enabled, i.e., M′ t−→. This

9.7 Liveness Properties 223

M1

M2

M3

M0

M4

M5
M6

M1

M2

M3

M0

M4

M6M5

t

(a) (b)

Fig. 9.9 Examples of state spaces illustrating dead transitions

means that t can always be made enabled. Figure 9.10 shows two examples of state
spaces, where, again, all arcs corresponding to binding elements for a particular
transition t have been labelled with t. In Fig. 9.10a, t is not live, since it cannot be
made enabled from e.g., M7. In Fig. 9.10b, t is live, since it can always be made
enabled. It should be noted that a transition can be non-dead without being live.
Being non-dead implies that a transition may occur once, not that it can always be
made to occur, as illustrated by Fig. 9.9b. The above is summarised in the following
definition.

Definition 9.19. Let a transition t ∈ T and a marking M be given.

1. M is a dead marking if and only if

∀t ∈ T : ¬ (M t−→)

2. t is dead in M0 if and only if

∀M ∈ R(M0) : ¬ (M t−→)

3. t is live in M0 if and only if

∀M ∈ R(M0) ∃M′ ∈ R(M) : M′ t−→
�

224 9 Formal Definition of State Spaces and Behavioural Properties

M1

M2

M3

M0

M4

M6M5

M7

M8 t

M1

M2

M3

M0

M4

M6M5

M7

M8 t

t

(a) (b)

Fig. 9.10 Examples of state spaces illustrating live transitions

Being dead (or live) in the initial marking M0 can be generalised to being dead
(or live) in a arbitrary marking M∗ by replacing M0 with M∗ in the definition. In the
following, we shall say that a transition is dead (or live) if it is dead (or live) in the
initial marking M0.

Calculating the set of reachable dead markings is simple since they correspond
to the set of nodes in the state space without outgoing arcs. This means that the dead
markings correspond to the set of terminal nodes of the state space. A transition is
dead if and only if t does not appear on any arc in the state space. The terminal
SCCs are used in a way similar to what was done for home properties to determine
whether a transition t is live. A sufficient and necessary condition for t to be live is
that it appears on an arc in each of the terminal SCCs. In Fig. 9.10a, we have two
terminal SCCs and t appears in only one of these. Hence, t is non-live. In Fig. 9.10b,
t appears in both terminal SCCs and hence t is live. The above are summarised in the
following proposition. For a state space SS, we have used T (SS) to denote the set of
transitions that appear in an arc label of SS, and for a strongly connected component
S, we have used T (S) to denote the set of transitions that appear in an arc label of S.

9.7 Liveness Properties 225

Proposition 9.20. Let SG = (NSG,ASG) be the SCC graph for the finite state space
SS = (NSS,ASS) of a CP-net. Then the following holds:

1. A marking M ∈ R(M0) is dead if and only if

M is a terminal node of SS

2. A transition t is dead if and only if

t �∈ T (SS)

3. A transition t is live if and only if

∀S ∈ SCCTM : t ∈ T (S)
�

In the above, we have defined dead and live transitions. It is also possible to
define more general liveness properties. A binding element (t,b) is dead in M0 if
it is not enabled in any reachable marking. A binding element (t,b) is live in M0

if for any reachable marking M there exists a marking M′ ∈ R(M) in which (t,b)
is enabled. When we have a set of transitions (or a set of binding elements) X , we
define X to be dead in M0 if all members of X are dead in M0. A set of transitions
(or binding elements) X is live in M0 if, for all reachable markings M ∈ R(M0),
there exists a marking M′ ∈ R(M) in which some member of X is enabled. The
generalisation of liveness properties to sets of transitions and binding elements is
summarised in the following definition.

Definition 9.21. Let (t,b) be a binding element and let X be a set of transitions or
binding elements.

1. (t,b) is dead in M0 if and only if

∀M ∈ R(M0) : ¬ (M
(t,b)−→)

2. (t,b) is live in M0 if and only if

∀M ∈ R(M0)∃M′ ∈ R(M) : M′ (t,b)−→
3. X is dead in M0 if and only if

∀M ∈ R(M0)∀x ∈ X : ¬ (M x−→)

4. X is live in M0 if and only if

∀M ∈ R(M0)∃M′ ∈ R(M)∃x ∈ X : M′ x−→
�

226 9 Formal Definition of State Spaces and Behavioural Properties

Being dead (or live) in the initial marking M0 can be generalised to being dead
(or live) in a marking M in the same way as for transitions. In the following, we
shall say that a binding element or set of transitions/binding elements is dead (or
live) if it is dead (or live) in M0.

Determining whether a binding element, set of transitions, or set of binding el-
ements is dead is done in a way similar to checking whether a transition is dead.
For a binding element (t,b), we check that it does not appear on any arc in the state
space. For a set of transitions (or binding elements) X , we check that no transition
(or binding element) belonging to X appears on an arc in the state space. To check
whether a binding element (t,b) is live, we check that it appears on some arc in
each of the terminal SCCs. To check whether a set of transitions (or set of bind-
ing elements) X is live, we check whether there is an arc in each of the terminal
SCCs on which some transition (or binding element) belonging to X appears. This
is formalised in the following proposition. We have used BE(SS) to denote the set
of binding elements labelling the arcs in a state space SS. For a strongly connected
component S, we have used BE(S) to denote the set of binding elements labelling
the arcs of S.

Proposition 9.22. Let SG = (NSG,ASG) be the SCC graph for the finite state space
SS = (NSS,ASS) of a Coloured Petri Net. Let (t,b) be a binding element, let X be a
set of binding elements, and let X ′ be a set of transitions. Then the following holds:

1. (t,b) is dead if and only if

(t,b) �∈ BE(SS)

2. (t,b) is live if and only if

∀S ∈ SCCTM : (t,b) ∈ BE(S)

3. X is dead if and only if

X ∩ BE(SS) = /0

4. X is live if and only if

∀S ∈ SCCTM : X ∩BE(S) �= /0

5. X ′ is dead if and only if

X ′ ∩ T(SS) = /0

6. X ′ is live if and only if

∀S ∈ SCCTM : X ′ ∩T (S) �= /0
�

9.8 Fairness Properties 227

9.8 Fairness Properties

The fairness properties give information about how often transitions occur in infinite
occurrence sequences. We denote by OS∞ the set of infinite occurrence sequences
starting in the initial marking. For a transition t ∈ T and an infinite occurrence se-
quence σ ∈ OS∞ we use OCt(σ) to denote the number of steps in which t occurs.

A transition t is impartial if t occurs infinitely often in any infinite occurrence
sequence, i.e., OCt(σ) = ∞ for all σ ∈ OS∞. Figure 9.11 shows two state spaces,
where all arcs corresponding to binding elements for a particular transition t have
been labelled with t. The transition t is impartial for the state space in Fig. 9.11a
since any infinite occurrence sequence contains an infinite number of occurrences
of t. The transition t is not impartial in the state space in Fig. 9.11b. This state space
contains an infinite occurrence sequence where the model enters the marking M4

and then repeatedly executes the cycle determined by M4, M5, and M6. In this infi-
nite occurrence sequence, the transition t does not occur infinitely often.

The formal definition of impartiality of a transition is summarised in the follow-
ing definition.

Definition 9.23. A transition t ∈ T is impartial if and only if

∀σ ∈ OS∞ : OCt(σ) = ∞
�

Determining whether a transition is impartial is closely linked to the identifica-
tion of specific cycles in the state space and relies on considering a special SCC
graph. A transition t is impartial if and only if it occurs in all cycles of the state
space. If this is not the case, then we can use a cycle in which t does not appear to
create an infinite occurrence sequence in which t does not appear an infinite num-
ber of times. If, on the other hand, t appears in all cycles, then t will also occur
an infinite number of times in any infinite occurrence sequence, since any infinite
occurrence sequence must contain a cycle infinitely often when the state space is
finite.

Checking whether a transition t is impartial can therefore be done by remov-
ing the arcs in the full state space corresponding to occurrences of t and checking
whether the resulting t-pruned state space is an acyclic directed graph. To do this,
we calculate the SCC graph for the t-pruned state space and check that all SCCs in
it are trivial, i.e., consist of just a single node. This is summarised in the following
proposition.

Proposition 9.24. Let t be a transition and let SCCSS/t denote the set of SCCs for the
t-pruned state space of a Coloured Petri Net with a finite state space. The transition
t is impartial if and only if

∀S ∈ SCCSS/t : S is trivial.
�

228 9 Formal Definition of State Spaces and Behavioural Properties

M1

M2

M3

M0

M4

M6M5

t

t

M1

M2

M3

M0

M4

M6M5

t

(a) (b)

Fig. 9.11 Examples of state spaces illustrating impartial transitions

In the above, we have introduced impartiality for a transition. It is also possible to
consider more general fairness properties. A binding element is impartial if it occurs
infinitely often in any infinite occurrence sequence. When we have a binding ele-
ment (t,b), OC(t,b)(σ) denotes the number of steps in which (t,b) occurs. Similarly,
when we have a set of transitions (or a set of binding elements) X , OCX (σ) denotes
the number of steps in which one or more elements of X occur. A set of transitions
(or binding elements) is impartial if any infinite occurrence sequence contains an
infinite number of occurrences of elements of the set. This is summarised in the
following definition.

Definition 9.25. Let (t,b) be a binding element, and let X be a set of transitions or
binding elements.

1. (t,b) is impartial if and only if

∀σ ∈ OS∞ : OC(t,b)(σ) = ∞

2. X is impartial if and only if

∀σ ∈ OS∞ : OCX (σ) = ∞
�

Checking that a binding element, set of transitions, or set of binding elements is
impartial is done in the same way as for individual transitions, except that we now

9.8 Fairness Properties 229

prune the state space with respect to the binding element, set of transitions, or set
of binding elements. For a binding element (t,b), the (t,b)-pruned state space is the
state space obtained from the full state space by removing all arcs corresponding
to occurrences of the binding element (t,b). Similarly, for a set of transitions (or
set of binding elements) X, the X-pruned state space is the state space obtained
by removing all arcs corresponding to occurrences of transitions in X (or binding
elements in X). The following proposition summarises how the generalised fairness
properties can be checked from the state space.

Proposition 9.26. Let (t,b) be a binding element and let X be a set of transitions or
binding elements. Let SCCSS/(t,b) denote the set of SCCs for the (t,b)-pruned state
space, and let SCCSS/X denote the set of SCCs for the X-pruned state space of a
CP-net with a finite state space. Then the following holds:

1. (t,b) is impartial if and only if

∀S ∈ SCCSS/(t,b) : S is trivial.

2. X is impartial if and only if

∀S ∈ SCCSS/X : S is trivial.
�

The formal definitions of state spaces, SCC graphs, and behavioural properties
given in this chapter are equivalent to the corresponding definitions given in [60, 61]
except for minor notational differences. We have concentrated on the behavioural
properties that are used most frequently in practice, and hence we have omitted the
definitions of ‘strictly live’, ‘strictly impartial’, ‘fair’, and ‘just’. For home proper-
ties, we have added the definition of a home predicate.

Chapter 10
Timed Coloured Petri Nets

This chapter shows how timing information can be added to CPN models. This
makes it possible to evaluate how efficiently a system performs its operations and
it also makes it possible to model and validate real-time systems [78], where the
correctness of the system relies on the proper timing of the events. With a timed CPN
model, performance measures such as maximum queue lengths and mean waiting
times can be calculated. Also, we may, for example, verify whether the operation of
a real-time system meets required deadlines.

It should be noted that it is often beneficial for the modeller to start by construct-
ing and validating an untimed CPN model. In this way, the modeller can concentrate
on the functional correctness of the system before worrying about timing issues. For
the protocol described in Sect. 2.4, we saw that it was possible to describe the ex-
istence of time-related system features, such as retransmissions, without explicitly
specifying concrete waiting times or the durations of the individual events. This is
often the case, and it is a sound design strategy to try to make the functional correct-
ness of a system independent of concrete assumptions about execution times and
waiting times.

CPN models can be used to validate both the functional correctness and the per-
formance of a system. This saves a lot of time, because we do not need to construct
two totally independent models of the system. Instead, a single model or, more often,
two closely related models are used. There exist a number of modelling languages
that are in widespread use for performance analysis of systems, for example lan-
guages based on queueing theory [9]. However, most of these modelling languages
turn out to be rather useless when it comes to modelling and validation of the func-
tional properties of systems. Some of these languages are also unable to cope with
performance analysis of systems which have an irregular behaviour. In this chapter,
the concept of time in CP-nets is presented using a non-hierarchical CPN model
as an example. The timing constructs also apply to hierarchical CP-nets, and CPN
Tools supports the simulation and analysis of timed hierarchical CP-nets. The con-
cept of time in CP-nets is one out of many time concepts that have been developed
in the context of Petri Nets [90].

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 10, 231
c© Springer-Verlag Berlin Heidelberg 2009

232 10 Timed Coloured Petri Nets

Section 10.1 presents a first timed CPN model of our protocol and introduces
the basic constructs of timed CPN models. Section 10.2 considers a second timed
CPN model of the protocol and introduces additional constructs of timed CPN mod-
els. Section 10.3 discusses basic state space analysis of timed CPN models and
Sect. 10.4 presents a special case of the equivalence method presented in Sect. 8.4
that can be used to obtain a finite state space for any timed CPN model where the
corresponding untimed CPN model has a finite state space.

10.1 First Timed Model of the Protocol

Consider Fig. 10.1, which contains a timed version of the CPN model of the protocol
described in Sect. 2.4. It is easy to see that the CPN model is very closely related
to the untimed CPN model in Fig. 2.10. The colour set definitions and variable
declarations for the CPN model are given in Fig. 10.2.

The main difference between timed and untimed CPN models is that the tokens
in a timed CPN model, in addition to the token colour, can carry a second value,
called a timestamp. This means that the marking of a place where the tokens carry
timestamps is now a timed multiset, specifying the elements in the multiset together
with their timestamps. Furthermore, the CPN model has a global clock, representing
model time. The distribution of tokens on the places, together with their timestamps
and the value of the global clock, is called a timed marking. In a hierarchical timed
CPN model there is a single global clock, shared among all of the modules.

The timestamps in CPN Tools are non-negative integers belonging to a CPN ML
type called TIME. The timestamp specifies the time at which the token is ready to be

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

if success
then 1`(n,d)
else empty

(n,d)@+Wait

Receive
Ack

Transmit
Ack

Receive
 Packet

@+17

Transmit
Packet

Send
Packet

@+9

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

(n,d)

k

(n,d)

if n=k
then k+1
else k

k

@+7 @+Delay()

@+Delay()

Fig. 10.1 Timed CPN model of the protocol

10.1 First Timed Model of the Protocol 233

colset NO = int timed;
colset DATA = string timed;
colset NOxDATA = product NO * DATA timed;
colset BOOL = bool;

var n, k : NO;
var d, data : DATA;
var success : BOOL;

Fig. 10.2 Colour sets and variables for the timed CPN model shown in Fig. 10.1

used, i.e., the time at which it can be removed by an occurring transition. A colour
set is declared to be timed using the CPN ML keyword timed. It can be seen from
Fig. 10.2 that all places in Fig. 10.1 have timed colour sets.

The initial marking of the timed CPN model of the protocol is shown in Fig. 10.3.
The colours of the tokens are the same as in the initial marking of the untimed CPN
model of the protocol, but now the tokens also carry timestamps. As an example,
the initial marking of the place PacketsToSend is

1‘(1,"COL")@0 +++
1‘(2,"OUR")@0 +++
1‘(3,"ED ")@0 +++
1‘(4,"PET")@0 +++
1‘(5,"RI ")@0 +++
1‘(6,"NET")@0

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

if success
then 1`(n,d)
else empty

(n,d)@+Wait

Receive
Ack

Transmit
Ack

Receive
 Packet

@+17

Transmit
Packet

Send
Packet

@+9

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

(n,d)

k

(n,d)

if n=k
then k+1
else k

k

@+7 @+Delay()

@+Delay()

11`1@01 1`1@0

11`""@06

1`(1,"COL")@0+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.3 Initial marking M0 of the timed protocol model

234 10 Timed Coloured Petri Nets

The timestamps of tokens are written after the symbol @, which is pronounced
‘at’. In this case, all tokens carry the timestamp 0. The operator +++ takes two timed
multisets as arguments and returns their union. All other tokens in the initial marking
also carry the timestamp 0. The value of the global clock in the initial marking is
also 0. The initial markings of all places are specified as an (untimed) multiset.
CPN Tools will automatically attach a timestamp 0 if the initial marking inscription
of a place with a timed colour set does not explicitly specify the timestamps of the
tokens.

In the initial marking M0, there is only one binding element that has the required
tokens on its input places. This is the transition SendPacket, with the binding 〈n=1,
d="COL"〉. To occur, this binding element needs the presence of a token with colour
1 on the place NextSend and the presence of a token with colour (1,"COL")
on the place PacketsToSend. This is determined by the input arc expressions by
means of the enabling rule explained in Chap. 2. We see that the two tokens that
are needed by NextSend exist on the input places and that both of them carry the
timestamp 0, which means that they can be used at time 0. Hence, the transition
can occur at time 0. When the transition occurs, it removes the two tokens from
the input places and adds a token to each of the three output places. The colours
of these tokens are determined from the output arc expressions by means of the
occurrence rule explained in Chap. 2. However, it is also necessary to calculate the
timestamps to be given to the three output tokens. This is done by using time delay
inscriptions attached to the transition and/or to the individual output arcs. A time
delay inscribed on a transition applies to all output tokens created by that transition,
whereas a time delay inscribed on an output arc applies only to tokens created at
that arc. In Fig. 10.3 we have associated a constant time delay expression @+9 with
the transition SendPacket. The outgoing arc to PacketsToSend has a constant time
delay expression @+Wait, where Wait is a symbolic constant defined as

val Wait = 100;

The arc expressions on the output arcs to the places A and NextSend have no
separate time delays. The timestamp given to the tokens created on an output arc
is the sum of the value of the global clock, the result of evaluating the time delay
inscription of the transition, and the result of evaluating the time delay inscription
of the arc. Hence, we conclude that the tokens added to the places NextSend and A
will receive the timestamp

0+9+0 = 9

The first 0 is the time at which the transition occurs as given by the global clock,
the 9 is the time delay inscribed on the transition, and the second 0 is the time delay
on the output arc (since there is no time delay on the output arc). Intuitively, this
means that the execution of the ‘send packet’ operation has a duration of 9 time
units.

The arc expression on the output arc to the place PacketsToSend has a sepa-
rate time delay: @+Wait. This means that the token added to PacketsToSend will
receive the timestamp

10.1 First Timed Model of the Protocol 235

0+9+100 = 109

The 0 is the time at which the transition occurs, the 9 is the time delay inscribed
on the transition, and the 100 is the time delay inscribed on the output arc. Intu-
itively, this represents the fact that we do not want to resend data packet number 1
until time 109, i.e., until 100 time units after the end of the previous send operation.
This is achieved by giving the token for data packet number 1 the timestamp 109,
thus making it unavailable until that moment of time. However, it should be noticed
that data packet number 2 still has a timestamp 0. Hence, it will be possible to trans-
mit this data packet immediately, if an acknowledgement arrives before time 109.
When SendPacket occurs at time 0, we reach the marking M1 shown in Fig. 10.4.

In the marking M1, there are three binding elements that have the needed tokens
on their input places:

SP1 = (SendPacket, 〈n=1, d="COL"〉)
TP1+ = (TransmitPacket, 〈n=1, d="COL", success=true〉)
TP1− = (TransmitPacket, 〈n=1, d="COL", success=false〉)
SP1 can occur at time 109 since it needs a token with timestamp 109 and a

token with timestamp 9. However, TP1+ and TP1− can already occur at time 9,
because they need a token with timestamp 9. Since TP1+ and TP1− are the first
binding elements that are ready to occur, one of these will be chosen. This means
that SP1 cannot occur in the marking M1, and hence SendPacket has no thick border
in Fig. 10.4. The chosen binding element will occur as soon as possible, i.e., at time
9. Only one of them will occur, since the two binding elements are in conflict with
each other.

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

if success
then 1`(n,d)
else empty

(n,d)@+Wait

Receive
Ack

Transmit
Ack

Receive
 Packet

@+17

Transmit
Packet

Send
Packet

@+9

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

(n,d)

k

(n,d)

if n=k
then k+1
else k

k

@+7 @+Delay()

@+Delay()

11`1@0

1

1`(1,"COL")@9

1 1`1@9

11`""@06

1`(1,"COL")@109+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.4 Marking M1 reached when SendPacket occurs at time 0 in M0

236 10 Timed Coloured Petri Nets

Assume that TP1+ is chosen to occur. It will remove the token from place A and
add a token to place B. The timestamp of this token will be the sum of the time
at which the transition occurs (9) and the evaluation of the time delay expression
@+Delay() inscribed on the transition. The function Delay takes a unit, written
(), as an argument and is defined as follows:

fun Delay () = discrete(25,75);

The function discrete is a predefined function that provides a discrete uni-
form distribution over the closed interval specified by its arguments. This means
that Delay() returns an integer from the interval [25, 75] and that all numbers
in the interval have the same probability of being chosen. Intuitively, this represents
the fact that the time needed to transmit a packet over the network may vary between
25 and 75 time units owing to the load on the network, for example. Assume that
Delay() evaluates to 38. We then reach the marking M2 shown in Fig. 10.5.

In the marking M2, there are two binding elements that have the needed tokens
on their input places:

SP1 = (SendPacket, 〈n=1, d="COL"〉)
RP1 = (ReceivePacket, 〈n=1, d="COL", k=1, data=""〉)
As before, SP1 can occur at time 109. However, RP1 can already occur at time

47, since it needs a token with timestamp 47 and two tokens with timestamp 0.
Hence RP1 will be chosen and we reach the marking M3 shown in Fig. 10.6.

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

if success
then 1`(n,d)
else empty

(n,d)@+Wait

Receive
Ack

Transmit
Ack

Receive
 Packet

@+17

Transmit
Packet

Send
Packet

@+9

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

(n,d)

k

(n,d)

if n=k
then k+1
else k

k

@+7 @+Delay()

@+Delay()

11`1@01 1`1@9

11`""@0

1

1`(1,"COL")@47

6

1`(1,"COL")@109+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.5 Marking M2 reached when TransmitPacket occurs at time 9 in M1

10.1 First Timed Model of the Protocol 237

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

if success
then 1`(n,d)
else empty

(n,d)@+Wait

Receive
Ack

Transmit
Ack

Receive
 Packet

@+17

Transmit
Packet

Send
Packet

@+9

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

(n,d)

k

(n,d)

if n=k
then k+1
else k

k

@+7 @+Delay()

@+Delay()

11`2@64

11`2@64

1 1`1@9

11`"COL"@646

1`(1,"COL")@109+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.6 Marking M3 reached when ReceivePacket occurs at time 47 in M2

In the marking M3, there are three binding elements that have the needed tokens
on their input places:

SP1 = (SendPacket, 〈n=1, d="COL"〉)
TA2+ = (TransmitAck, 〈n=2, success=true〉)
TA2− = (TransmitAck, 〈n=2, success=false〉)
SP1 can occur at time 109. However, TA2+ and TA2− can already occur at time

64 since they need a token with timestamp 64. Hence TA2+ or TA2− will be chosen.
Assuming that TA2+ is chosen and that Delay() evaluates to 33 this time, we
reach the marking M4 shown in Fig. 10.7.

In the marking M4, there are two binding elements that have the needed tokens
on their input places:

SP1 = (SendPacket, 〈n=1, d="COL"〉)
RA2 = (ReceiveAck, 〈n=2, k=1〉)
SP1 can occur at time 109. However, RA2 can already occur at time 97, since it

needs a token with timestamp 97 and a token with timestamp 9. Hence RA2 will be
chosen, and we reach the marking M5 shown in Fig. 10.8.

In the marking M5, there is only one binding element that has the needed tokens
on its input places:

SP2 = (SendPacket, 〈n=2,d="OUR"〉)

Hence SP2 will be chosen, and it will occur at time 104 because it needs a
token with timestamp 104 from NextSend and a token with timestamp 0 from
PacketsToSend. We then reach the marking M6 shown in Fig. 10.9.

238 10 Timed Coloured Petri Nets

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

if success
then 1`(n,d)
else empty

(n,d)@+Wait

Receive
Ack

Transmit
Ack

Receive
 Packet

@+17

Transmit
Packet

Send
Packet

@+9

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

(n,d)

k

(n,d)

if n=k
then k+1
else k

k

@+7 @+Delay()

@+Delay()

11`2@64

1
1`2@97

1 1`1@9

11`"COL"@646

1`(1,"COL")@109+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.7 Marking M4 reached when TransmitAck occurs at time 64 in M3

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

if success
then 1`(n,d)
else empty

(n,d)@+Wait

Receive
Ack

Transmit
Ack

Receive
 Packet

@+17

Transmit
Packet

Send
Packet

@+9

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

(n,d)

k

(n,d)

if n=k
then k+1
else k

k

@+7 @+Delay()

@+Delay()

11`2@641 1`2@104

11`"COL"@646

1`(1,"COL")@109+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.8 Marking M5 reached when ReceiveAck occurs at time 97 in M4

In the occurrence sequence considered above, it turned out that no retransmis-
sion of data packet number 1 became possible. However, the two evaluations of
Delay() in the time delay inscriptions of TransmitPacket and TransmitAck could
have produced two larger values (e.g., 74 and 50 instead of 38 and 33). If this had
been the case, TransmitAck would have produced a token on place D with timestamp
150 instead of 97, and we would have reached the marking M∗

4 shown in Fig. 10.10
instead of the marking M4 shown in Fig. 10.7.

10.1 First Timed Model of the Protocol 239

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

if success
then 1`(n,d)
else empty

(n,d)@+Wait

Receive
Ack

Transmit
Ack

Receive
 Packet

@+17

Transmit
Packet

Send
Packet

@+9

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

(n,d)

k

(n,d)

if n=k
then k+1
else k

k

@+7 @+Delay()

@+Delay()

11`2@64

1

1`(2,"OUR")@113

1 1`2@113

11`"COL"@646

1`(1,"COL")@109+++
1`(2,"OUR")@213+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.9 Marking M6 reached when SendPacket occurs at time 104 in M5

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

if success
then 1`(n,d)
else empty

(n,d)@+Wait

Receive
Ack

Transmit
Ack

Receive
 Packet

@+17

Transmit
Packet

Send
Packet

@+9

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

(n,d)

k

(n,d)

if n=k
then k+1
else k

k

@+7 @+Delay()

@+Delay()

11`2@100

1
1`2@150

1 1`1@9

11`"COL"@1006

1`(1,"COL")@109+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.10 Marking M∗
4 reached when the network delays are larger

In the marking M∗
4 , RA2 is ready to occur at time 150, i.e., later than SP1, which

is ready to occur at time 109. Hence SP1 will be chosen instead of RA2, and we
shall get a retransmission of data packet number 1.

Figure 10.11 shows a dead marking reached at the end of a simulation of the
timed CPN model of the protocol. We can see the times at which the individual data
packets would have been ready for the next retransmission (218, 2095, 2664, 2906,
3257, and 3499). Moreover, we can see that the last data packet was received at time
3357, and the last acknowledgement was received at time 3414. The CPN model is

240 10 Timed Coloured Petri Nets

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

if success
then 1`(n,d)
else empty

(n,d)@+Wait

Receive
Ack

Transmit
Ack

Receive
 Packet

@+17

Transmit
Packet

Send
Packet

@+9

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

(n,d)

k

(n,d)

if n=k
then k+1
else k

k

@+7 @+Delay()

@+Delay()

11`7@33571 1`7@3414

11`"COLOURED PETRI NET"@33576

1`(1,"COL")@218+++
1`(2,"OUR")@2095+++
1`(3,"ED")@2664+++
1`(4,"PET")@2906+++
1`(5,"RI")@3257+++
1`(6,"NET")@3499

Fig. 10.11 Dead marking reached at the end of a simulation

non-deterministic and hence a second simulation would give other timestamps in
the final marking, but the token colours would be the same.

In the timed markings shown above, there was never more than one token with
a given colour on a place. As with an untimed CPN model, we can have several
tokens with the same colour on a given place, and these may or may not have the
same timestamps. As an example, consider the (non-reachable) marking of place D
where we have four tokens with colour 2 and one of these has timestamp 405, two
have timestamp 409, and one has timestamp 411, and we also have four tokens with
colour 3, all having timestamp 410. This timed multiset is written as

1‘2@405 +++
2‘2@409 +++
1‘2@411 +++
4‘3@410

When we have several tokens with the same colour and these have different
timestamps, we may have a situation where several tokens with a given colour are
ready to be consumed. As an example, assume that we have an enabled binding
element at time 409 that will remove a token with colour 2 from a place that has
the timed multiset above as its marking. In this case, the three tokens with colour
2 and timestamps 405, 409, and 409 are ready to be consumed. In such situations,
we remove the token with the largest possible timestamp. In this case, this means
that one of the tokens with colour 2 and timestamp 409 will be removed. Remov-
ing the tokens with the largest possible timestamps ensures that a marking that can
be reached by the occurrence of a step consisting of multiple binding element can
also be reached by letting the binding elements occur sequentially in some arbitrary
order, i.e., that Theorem 4.7 is also valid for timed CPN models. This means that

10.1 First Timed Model of the Protocol 241

it is sufficient for the simulator in CPN Tools to consider only steps consisting of a
single binding element.

In the timed CPN model considered above, all tokens carry a timestamp, since
all colour sets of the places were declared to be timed. However, this is not in gen-
eral the case. We allow the modeller to specify whether each individual colour set is
timed or not. The tokens of timed colour sets carry timestamps, whereas the tokens
of untimed colour sets do not. Tokens without timestamps are always ready to par-
ticipate in occurrences of binding elements. As an example, assume that the timed
CPN model of the protocol is modified such that the tokens on NextSend carry no
timestamps while all other tokens do carry timestamps. To have timestamps on C,
D, and NextRec and no timestamps on NextSend, we use the untimed colour set
INT for NextSend, while we use the timed colour set NO for the places C, D, and
NextRec. The initial marking of the modified CPN model is shown in Fig. 10.12.
This model behaves in a way similar to the timed CPN model shown in Fig. 10.1.
However, it is now possible for SendPacket and ReceiveAck to occur at the same
model time, i.e., immediately after each other, since access to NextSend now takes
zero time. This represents a situation in which the sender can perform several Send-
Packet and ReceiveAck operations at the same time, where we consider the occur-
rence of the corresponding transition to model the beginning of the operation. In the
original model in Fig. 10.1, the SendPacket and ReceiveAck operations had to wait
for the timestamp on the place NextSend and hence they could not occur at the same
moment of model time.

The execution of a timed CPN model is controlled by the global clock, and works
in a way similar to the event queue found in many simulation engines for discrete
event simulation. The model remains at a given model time as long as there are
binding elements that are colour enabled and ready. A binding element is colour

(n,d)

k

if n=k
then k+1
else k

k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)@+Wait

Receive
Ack

@+7

Transmit
Ack

@+Delay()

Receive
 Packet

@+17

Transmit
Packet

@+Delay()

Send
Packet

@+9

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

INT

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`1@01 1`1

11`""@06

1`(1,"COL")@0+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.12 CPN model with untimed colour set for NextSend

242 10 Timed Coloured Petri Nets

enabled if the required tokens are present on the input places. A binding element
is ready for execution if these tokens have timestamps which are old enough, i.e.,
less than or equal to the current value of the global clock. Hence, in a timed CPN
model an enabled binding element must be both colour enabled and ready in order
to be able to occur. When there are no longer such binding elements to be executed,
the simulator advances the clock to the next earliest model time at which binding
elements can be executed. Each marking exists in a closed interval of model time,
which may be a point, i.e., a single moment of time. As with untimed CPN mod-
els, we may have conflicts and concurrency between binding elements, and binding
elements may be concurrent with themselves, but only if the binding elements are
ready to be executed at the same moment of time.

The standard behavioural properties of timed CPN models are defined in a way
similar to that for the untimed case. For multiset bounds and home markings/spaces,
we consider the untimed markings of the places, i.e., we ignore the timestamps of
tokens. The algorithms used by the CPN state space tool for computing the contents
of the state space report are similar to those used for untimed CPN models.

A timed CPN model can always be transformed into an untimed CPN model by
making all colour sets untimed, removing all timestamps from initialisation func-
tions, and removing all time delay inscriptions on arcs and transitions. The possible
occurrence sequences of the timed CPN model always form a subset of the occur-
rence sequences of the corresponding untimed CPN model. This means that the
time delay inscriptions merely enforce a set of additional constraints on the execu-
tion of the CPN model that cause the binding elements to be chosen in the order
in which they become ready for execution. Turning an untimed CPN model into a
timed model cannot create new behaviour in the form of new occurrence sequences.
This supports the soundness of our advice at the beginning of this chapter: start
by investigating the functionality by means of an untimed CPN model. The timing
related to events can then be considered afterwards.

The occurrence of a transition is instantaneous, i.e., takes no time. However, as
shown in the protocol example above, it is easy to model a situation where some
actions in a system have a non-zero duration. This is done by giving the output
tokens created by the corresponding transition timestamps that prevent the tokens
from being used until the time at which the action has finished. As an example,
TransmitPacket cannot occur until 9 time units after the occurrence of SendPacket.
This represents the fact that the action of sending a data packet takes 9 time units.

Instead, we could have chosen to allow the occurrence of a transition to have a
non-zero duration. We could then remove the input tokens at the moment when the
occurrence begins and add the output tokens when the occurrence ends. However,
such an approach would make the relationship between a timed CPN model and
its corresponding untimed CPN model much more complex. Now there would be
many reachable markings in the timed CPN model which would be unreachable in
the untimed CPN model because they corresponded to situations where one or more
transitions were halfway through their occurrence, having removed tokens from the
input places but not yet having added tokens to the output places.

10.2 Second Timed Model of the Protocol 243

The time values (i.e., timestamps and model time) considered above all belong
to the set of integers. It is straightforward to generalise the concept of time in CP-
nets such that time values belonging to the set of reals can be used, but the current
version of CPN Tools supports only integer time values.

10.2 Second Timed Model of the Protocol

It turns out that there are situations where it is useful to allow a transition to remove a
token from one of its input places ahead of time, i.e., at a moment of model time that
lies before the timestamp carried by the token. As an example, consider Fig. 10.13,
where we have performed a more detailed modelling of the operations in the sender,
in particular the mechanism for timing the retransmission of data packets. The tran-
sition SelectNext is enabled in the initial marking M0, and its occurrence models the
situation where the sender selects the next data packet for transmission. There is no
time delay inscription associated with this transition, since we consider the dura-
tion of selecting the next data packet to be insignificant. A similar remark applies to
the transitions TimeOut and StopTimer. In this variant of the sender, we have only
associated time delay inscriptions with the transitions SendPacket and ReceiveAck.

if n>k
then n
else k

k

(n,d)

(n,d)

k

(n,d)(n,d)

n

k

k (n,d)@+Wait

(n,d)

(n,d)@+Wait

n

(n,d)

Stop
Timer

[k>n]

TimeOut

[k<=n]

Send
Packet

@+9

Receive
Ack

@+7

Select
Next Selected

NOxDATA

NextSend

1

NO

Select

1

NO

Timer

NOxDATA

A

NOxDATA

D

NO

Packets
To Send

AllPackets

NOxDATA

11`1@0

11`1@0

6

1`(1,"COL")@0+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.13 Variant of the sender, in the initial marking M0

244 10 Timed Coloured Petri Nets

When the transition SelectNext occurs in the initial marking shown in Fig. 10.13,
we obtain the marking M1 shown in Fig. 10.14, in which the first data packet has
been removed from the place PacketsToSend and put on the place Selected.

The global clock will not be increased, since the transition SendPacket is enabled
at time 0. When SendPacket occurs, we reach the marking M2 shown in Fig. 10.15.
The time delay inscription Wait on the arc from SendPacket to Timer is used to
set the expiration time for a timer modelled by the place Timer. This ensures that
the transition TimeOut cannot occur until Wait time units after the previous send
operation. The guard of the transition TimeOut ensures that it can occur only if the
current data packet has not been acknowledged, since the place NextSend always
contains the highest sequence number received in an acknowledgement. If no ac-
knowledgement for the data packet currently being sent arrives before time 109, the
transition TimeOut will occur, leading back to a marking of the sender similar to the
one shown in Fig. 10.14 in which the data packet can be sent once more (but with a
higher timestamp).

Assume now that an acknowledgement 2 arrives at place D at time 94, as shown in
Fig. 10.16. The transition ReceiveAck will occur at time 94, leading to the marking
M4 shown in Fig. 10.17.

In this marking, the transition StopTimer will be enabled at time 101 despite the
timestamp 109 on the place Timer. This is achieved by using a time delay inscription
on the arc from Timer to StopTimer, i.e., on an input arc of a transition. Until now we
have used time delay inscriptions only on transitions and output arcs to specify what

if n>k
then n
else k

k

(n,d)

(n,d)

k

(n,d)(n,d)

n

k

k (n,d)@+Wait

(n,d)

(n,d)@+Wait

n

(n,d)

Stop
Timer

[k>n]

TimeOut

[k<=n]

Send
Packet

@+9

Receive
Ack

@+7

Select
Next Selected

NOxDATA

NextSend

1

NO

Select

1

NO

Timer

NOxDATA

A

NOxDATA

D

NO

Packets
To Send

AllPackets

NOxDATA

1
1`(1,"COL")@0

11`1@0

5

1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.14 Marking M1 reached when SelectNext occurs at time 0 in M0

10.2 Second Timed Model of the Protocol 245

if n>k
then n
else k

k

(n,d)

(n,d)

k

(n,d)(n,d)

n

k

k (n,d)@+Wait

(n,d)

(n,d)@+Wait

n

(n,d)

Stop
Timer

[k>n]

TimeOut

[k<=n]

Send
Packet

@+9

Receive
Ack

@+7

Select
Next Selected

NOxDATA

NextSend

1

NO

Select

1

NO

Timer

NOxDATA

A

NOxDATA

D

NO

Packets
To Send

AllPackets

NOxDATA

11`1@0

1 1`(1,"COL")@109

1

1`(1,"COL")@9

6

1`(1,"COL")@0+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.15 Marking M2 reached when SendPacket occurs at time 0 in M1

if n>k
then n
else k

k

(n,d)

(n,d)

k

(n,d)(n,d)

n

k

k (n,d)@+Wait

(n,d)

(n,d)@+Wait

n

(n,d)

Stop
Timer

[k>n]

TimeOut

[k<=n]

Send
Packet

@+9

Receive
Ack

@+7

Select
Next Selected

NOxDATA

NextSend

1

NO

Select

1

NO

Timer

NOxDATA

A

NOxDATA

D

NO

Packets
To Send

AllPackets

NOxDATA

11`1@0

1 1`(1,"COL")@109

1
1`1@94

5

1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.16 Marking M3, where an acknowledgement arrives at time 94

246 10 Timed Coloured Petri Nets

if n>k
then n
else k

k

(n,d)

(n,d)

k

(n,d)(n,d)

n

k

k (n,d)@+Wait

(n,d)

(n,d)@+Wait

n

(n,d)

Stop
Timer

[k>n]

TimeOut

[k<=n]

Send
Packet

@+9

Receive
Ack

@+7

Select
Next Selected

NOxDATA

NextSend

1

NO

Select

1

NO

Timer

NOxDATA

A

NOxDATA

D

NO

Packets
To Send

AllPackets

NOxDATA

11`2@101

1 1`(1,"COL")@109

5

1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.17 Marking M4 reached when ReceiveAck occurs at time 94 in M3

should be added to the current value of the global clock to obtain the timestamp of
the token produced on an output place. When a time delay is used on an input arc,
the time delay inscription specifies how far ahead of time the transition can remove
tokens from an input place. In this case we want to remove the token on the place
Timer as soon as we have received an acknowledgement for the data packet currently
being sent, and in this way ensure that the transition TimeOut will not occur, causing
the retransmission of the data packet. In this way, we can stop the timer represented
by the token on the place Timer. We have used Wait in the time delay inscription
on the input arc from Waiting to TimeOut since the timer will have to be disabled at
most Wait time units ahead of time. When the transition StopTimer occurs in M4,
we reach the marking M5 shown in Fig. 10.18, in which a token has been put on the
place Select, indicating that the current data packet has been acknowledged and that
the sender is ready to select and send the next data packet.

When a time delay inscription is used on a double-headed arc in a timed CPN
model, it is a shorthand for an arc in both directions with the same arc expression,
including the time delay inscription. This means that time delay inscriptions on
double-headed arcs must be used with care to avoid unintentionally removing tokens
ahead of time.

10.3 State Space Analysis of Timed Models 247

if n>k
then n
else k

k

(n,d)

(n,d)

k

(n,d)(n,d)

n

k

k (n,d)@+Wait

(n,d)

(n,d)@+Wait

n

(n,d)

Stop
Timer

[k>n]

TimeOut

[k<=n]

Send
Packet

@+9

Receive
Ack

@+7

Select
Next Selected

NOxDATA

NextSend

1

NO

Select

1

NO

Timer

NOxDATA

A

NOxDATA

D

NO

Packets
To Send

AllPackets

NOxDATA

11`2@101

11`2@101

5

1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.18 Marking M5 reached when StopTimer occurs at time 101 in M4

10.3 State Space Analysis of Timed Models

The state space of a timed CPN model is defined in a way similar to that for untimed
CPN models, except that each state space node now represents a timed marking,
i.e., the value of the global clock and timed multisets specifying the markings of the
places.

In the section above, we have seen that each occurrence sequence in a timed CPN
model corresponds to an occurrence sequence in the corresponding untimed CPN
model, but usually not the other way around, since the timestamps of the tokens
put additional constraints on enabling. This reduces the outdegree (i.e., the num-
ber of outgoing arcs) of the nodes in the timed state space. Nevertheless, the timed
state space may be larger than the untimed state space. The reason for this is that
the nodes in the timed state space represent timed markings and include the global
clock and timestamps. Hence, two timed markings can be different even if the cor-
responding untimed markings are identical (see M4 and M∗

4 in Figs 10.7 and 10.10).
This means that the timing information makes more markings distinguishable and
hence contributes to the presence of more nodes in the state space. The structure
of the state space for a timed CPN model is therefore, in general, different from
the structure of the state space for the corresponding untimed CPN model. As we

248 10 Timed Coloured Petri Nets

shall see below, this also means that the timed state space can be infinite, even if
the state space of the corresponding untimed CPN model is finite. Furthermore, the
difference in structure also means that the timed CPN model and the corresponding
untimed CPN model will satisfy different behavioural properties.

The timed CPN model presented in the previous section is not directly suited for
full state space analysis for two reasons. The first reason is that we want to limit the
number of packets that can be present simultaneously on the network. The second
reason is that we have used the function Delay to model the delay associated with
transmitting packets on the network. This means that the state space is not well de-
fined, since the set of reachable markings depends on the values returned by Delay,
which in turn depends on a random number generator. Two consecutive state space
generations may therefore result in different state spaces. This problem applies to
the use of functions that return random values independently of whether the model
is timed or not.

Figure 10.19 shows the initial marking of a variant of the timed protocol where
we have resolved the two issues above. The place Limit is used to limit the number
of packets simultaneously present on the network. Furthermore, we have introduced
the two places DelayTP and DelayTA, connected to the transitions TransmitPacket
and TransmitAck, respectively. The variable delay is of type INT, and the constant
Delays is defined as

val Delays = 1‘25 ++ 1‘50 ++ 1‘75;

if n=k
then k+1
else k

delay

delay
(n,d)@+Wait(n,d)

()
if success
then empty
else 1`()

if success
then empty
else 1`()

()n

k

k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

Receive
Ack

@+7

Transmit
Ack

@+delay

Receive
 Packet

@+17

Transmit
Packet

@+delay

Send
Packet

@+9

Delay
TA

Delays

INT

Delay
TP

Delays

INT

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

INT

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

3
1`25++
1`50++
1`75

3
1`25++
1`50++
1`75

3 3`() 11`1@01 1`1

11`""@06

1`(1,"COL")@0+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.19 Initial marking M0 of timed CPN model for state space analysis

10.3 State Space Analysis of Timed Models 249

The tokens on the places DelayTP and DelayTA describe the possible delays for
transmission of packets on the network. We may have a short delay (25), a medium
delay (50), or a long delay (75). The value bound to the variable delay is used in
the time delay inscriptions of the two transitions to determine the delay when the
packet is transmitted. As an example, consider the marking M1 shown in Fig. 10.20.
In this marking, there are six enabled bindings for the transition TransmitPacket:

〈n=1, d="COL", success=true, delay=25〉
〈n=1, d="COL", success=true, delay=50〉
〈n=1, d="COL", success=true, delay=75〉
〈n=1, d="COL", success=false, delay=25〉
〈n=1, d="COL", success=false, delay=50〉
〈n=1, d="COL", success=false, delay=75〉
This means that the node representing the marking M1 in the state space will

have six outgoing arcs, and the timed marking reached when TransmitPacket occurs
depends only on the selected binding element, not on the value returned by a random
number function as was the case when the function Delay was used to obtain the
transmission delay. If we select the second of the above bindings to occur, we reach
the marking shown in Fig. 10.21.

if n=k
then k+1
else k

delay

delay
(n,d)@+Wait(n,d)

()
if success
then empty
else 1`()

if success
then empty
else 1`()

()n

k

k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

Receive
Ack

@+7

Transmit
Ack

@+delay

Receive
 Packet

@+17

Transmit
Packet

@+delay

Send
Packet

@+9

Delay
TA

Delays

INT

Delay
TP

Delays

INT

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

INT

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

3
1`25++
1`50++
1`75

3
1`25++
1`50++
1`75

2 2`() 11`1@0

1

1`(1,"COL")@9

1 1`1

11`""@06

1`(1,"COL")@109+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.20 Marking M1 reached when SendPacket occurs at time 0 in M0

250 10 Timed Coloured Petri Nets

if n=k
then k+1
else k

delay

delay
(n,d)@+Wait(n,d)

()
if success
then empty
else 1`()

if success
then empty
else 1`()

()n

k

k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

Receive
Ack

@+7

Transmit
Ack

@+delay

Receive
 Packet

@+17

Transmit
Packet

@+delay

Send
Packet

@+9

Delay
TA

Delays

INT

Delay
TP

Delays

INT

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

INT

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

3
1`25++
1`50++
1`75

3
1`25++
1`50++
1`75

2 2`() 11`1@01 1`1

11`""@0

1

1`(1,"COL")@59

6

1`(1,"COL")@109+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.21 Marking M2 reached when TransmitPacket occurs at time 9 in M1

The value of the global clock and the timestamps of the tokens are part of the
timed marking. As an example, consider the marking M1 in Fig. 10.20 and assume
that a binding of TransmitPacket occurs in which the data packet is lost. We then
reach the marking M−

2 shown in Fig. 10.22 in which the global clock has been
increased to 109 at which time SendPacket is enabled corresponding to a retrans-
mission of data packet 1. The initial marking M0 in Fig. 10.22 and the marking M−

2
are different timed markings, since the values of the global clock are different in the
two markings and the timestamps of one of the tokens are different. This means that
these two markings will be represented by two different nodes in the timed state
space.

Figure 10.23 shows an initial fragment of the state space for the timed protocol
consisting of the markings reachable by the occurrence of at most three binding el-
ements. Node 1 represents the initial marking, and the box next to each node gives
information about the tokens on the individual places in the marking represented
by the node. We have listed only places with a non-empty marking, and the places
PacketsToSend, DelayTP, and DelayTA have been omitted since the colours of the
tokens on these places do not change (except for the timestamps on PacketsToSend).
The integer following the Time entry specifies the value of the global clock when the
marking was created. For the labels on the arcs, we have used the same shorthand
notation as in Chap. 7, except that for the transition TransmitPacket we have also
specified the binding of the variable delay; for example, an arc labelled TPi+:50

10.3 State Space Analysis of Timed Models 251

if n=k
then k+1
else k

delay

delay
(n,d)@+Wait(n,d)

()
if success
then empty
else 1`()

if success
then empty
else 1`()

()n

k

k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

Receive
Ack

@+7

Transmit
Ack

@+delay

Receive
 Packet

@+17

Transmit
Packet

@+delay

Send
Packet

@+9

Delay
TA

Delays

INT

Delay
TP

Delays

INT

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

INT

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

3
1`25++
1`50++
1`75

3
1`25++
1`50++
1`75

3 3`() 11`1@01 1`1

11`""@06

1`(1,"COL")@109+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.22 Marking M−
2 reached after loss of data packet 1 in M1

denotes an occurrence of TransmitPacket with a binding corresponding to a suc-
cessful transmission of packet i where delay is bound to 50. There are three arcs
leading from node 2 to node 4, all corresponding to an unsuccessful transmission
of the first data packet. The difference between the three corresponding binding el-
ements is the value bound to the variable delay. These arcs all lead to node 4,
since the value bound to the variable delay does not matter when the occurrence
of TransmitPacket corresponds to an unsuccessful transmission. The occurrences of
the binding elements TP+1:25, TP1+:50, and TP1+:75 in node 2 lead to three differ-
ent markings (represented by nodes 5, 3, and 6, respectively), since the timestamps
on the token on place B in the resulting markings differ.

We may continue to lose the first data packet, and hence the timed state space can
be infinite even if the corresponding untimed CPN model has a finite state space. To
obtain a finite state space, we must set an upper bound on the value of the global
clock. This limits the applicability of full state spaces for timed CPN models, but
it is still possible to generate parts of timed state spaces and verify time-bounded
properties such as checking whether a certain packet has been received before time
1000. Table 10.1 gives statistics for the numbers of nodes and arcs in partial state
spaces obtained by not calculating successors for nodes when the global clock is
greater than a certain ‘Clock’ value.

252 10 Timed Coloured Petri Nets

RP1RP1 RP1

SP1

TP1+:50

TP1-:50

TP1+:25

TP1-:25

TP1+:75
TP1-:75

SP1

7
1:4

Time: 59
NextSend: 1`1
NextRec: 1`2@76
DataReceived: 1`"COL"@76
C: 1`2@76
Limit: 2`()

Time: 59
NextSend: 1`1
NextRec: 1`2@76
DataReceived: 1`"COL"@76
C: 1`2@76
Limit: 2`()

9
1:4

Time: 34
NextSend: 1`1
NextRec: 1`2@51
DataReceived: 1`"COL"@51
C: 1`2@51
Limit: 2`()

Time: 34
NextSend: 1`1
NextRec: 1`2@51
DataReceived: 1`"COL"@51
C: 1`2@51
Limit: 2`()

10
1:4

Time: 84
NextSend: 1`1
NextRec: 1`2@101
DataReceived: 1`"COL"@101
C: 1`2@101
Limit: 2`()

Time: 84
NextSend: 1`1
NextRec: 1`2@101
DataReceived: 1`"COL"@101
C: 1`2@101
Limit: 2`()

8
1:4

Time: 109
NextSend: 1`1
A: 1`(1,"COL")@118
NextRec: 1`1@0
DataReceived: 1`""@0
Limit: 2`()

Time: 109
NextSend: 1`1
A: 1`(1,"COL")@118
NextRec: 1`1@0
DataReceived: 1`""@0
Limit: 2`()

3
1:1

Time: 9
NextSend: 1`1
B: 1`(1,"COL")@59
NextRec: 1`1@0
DataReceived: 1`""@0
Limit: 2`()

Time: 9
NextSend: 1`1
B: 1`(1,"COL")@59
NextRec: 1`1@0
DataReceived: 1`""@0
Limit: 2`()

4
1:1

Time: 9
NextSend: 1`1
NextRec: 1`1@0
DataReceived: 1`""@0
Limit: 3`()

Time: 9
NextSend: 1`1
NextRec: 1`1@0
DataReceived: 1`""@0
Limit: 3`()

5
1:1

Time: 9
NextSend: 1`1
B: 1`(1,"COL")@34
NextRec: 1`1@0
DataReceived: 1`""@0
Limit: 2`()

Time: 9
NextSend: 1`1
B: 1`(1,"COL")@34
NextRec: 1`1@0
DataReceived: 1`""@0
Limit: 2`()

6
1:1

Time: 9
NextSend: 1`1
B: 1`(1,"COL")@84
NextRec: 1`1@0
DataReceived: 1`""@0
Limit: 2`()

Time: 9
NextSend: 1`1
B: 1`(1,"COL")@84
NextRec: 1`1@0
DataReceived: 1`""@0
Limit: 2`()

2
1:4

Time: 0
NextSend: 1`1
A: 1`(1,"COL")@9
NextRec: 1`1@0
DataReceived: 1`""@0
Limit: 2`()

Time: 0
NextSend: 1`1
A: 1`(1,"COL")@9
NextRec: 1`1@0
DataReceived: 1`""@0
Limit: 2`()

1
0:1

Time: 0
NextSend: 1`1
NextRec: 1`1@0
DataReceived: 1`""@0
Limit: 3`()

Time: 0
NextSend: 1`1
NextRec: 1`1@0
DataReceived: 1`""@0
Limit: 3`()

Fig. 10.23 Initial fragment of the state space for the timed protocol

Table 10.1 Size of partial state space for different time bounds

Clock Nodes Arcs Clock Nodes Arcs

10 12 19 60 3 005 4 583
20 48 87 70 7 822 12 154
30 156 269 80 17 996 28 002
40 397 644 90 49 928 79 224
50 814 1 273 100 103 377 165 798

10.4 Time Equivalence Method

As discussed above, one of the main limitations on the use of state spaces for timed
CPN models is that they are infinite for models containing cyclic behaviour. The
problem is that the absolute notion of time as represented by the global clock and
the timestamps of tokens is carried over into the timed markings of the state space.

Our protocol system contains cyclic behaviour since, for example, it is possi-
ble to keep losing and retransmitting the first data packet. As an example, consider

10.4 Time Equivalence Method 253

Figs 10.24 and 10.25, which show the timed markings M1 and M2 of the timed pro-
tocol system described in Sect. 10.3. Figure 10.24 shows the marking reached when
SendPacket has occurred in the initial marking, and Fig. 10.25 shows the marking
reached when the first data packet is lost and then retransmitted. The two markings
are similar: the only difference is that the global clock has been advanced 109 time
units and so has the timestamp of the token (1,"COL") on PacketsToSend. The
two markings are represented by two nodes in the state space because the times-
tamps of the tokens and the values of the global clock differ.

The time equivalence method [19] has been developed to overcome this problem,
and uses equivalence classes as introduced in Sect. 8.4 to factor out the absolute
notion of time. This is done by replacing the absolute values in the global clock
and the timestamps with relative values to construct a condensed state space. It can
be proved that the condensed state space is finite provided that the state space of
the corresponding untimed CPN model is finite. Furthermore, the condensed state
space is constructed in such a way that all behavioural properties of the model that
can be verified using the full state space can also be verified using the condensed
state space.

The basic idea is to consider markings such as M1 and M2 to be equivalent and
to compute a canonical representative for each equivalence class as follows:

• All timestamps which are less than the current model time are set to zero (they
cannot influence enabling).

if n=k
then k+1
else k

delay

delay
(n,d)@+Wait(n,d)

()
if success
then empty
else 1`()

if success
then empty
else 1`()

()n

k

k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

Receive
Ack

@+7

Transmit
Ack

@+delay

Receive
 Packet

@+17

Transmit
Packet

@+delay

Send
Packet

@+9

Delay
TA

Delays

INT

Delay
TP

Delays

INT

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

INT

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

3
1`25++
1`50++
1`75

3
1`25++
1`50++
1`75

2 2`() 11`1@0

1

1`(1,"COL")@9

1 1`1

11`""@06

1`(1,"COL")@109+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.24 Timed marking M1 with an enabled transition at time 9

254 10 Timed Coloured Petri Nets

if n=k
then k+1
else k

delay

delay
(n,d)@+Wait(n,d)

()
if success
then empty
else 1`()

if success
then empty
else 1`()

()n

k

k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

Receive
Ack

@+7

Transmit
Ack

@+delay

Receive
 Packet

@+17

Transmit
Packet

@+delay

Send
Packet

@+9

Delay
TA

Delays

INT

Delay
TP

Delays

INT

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

INT

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

3
1`25++
1`50++
1`75

3
1`25++
1`50++
1`75

2 2`() 11`1@0

1

1`(1,"COL")@118

1 1`1

11`""@06

1`(1,"COL")@218+++
1`(2,"OUR")@0+++
1`(3,"ED ")@0+++
1`(4,"PET")@0+++
1`(5,"RI ")@0+++
1`(6,"NET")@0

Fig. 10.25 Timed marking M2 with an enabled transition at time 118

• The current model time is subtracted from all timestamps which are greater than
or equal to the current model time.

• The current model time is set to zero.

Applying the above three rules to the markings in Figs 10.24 and 10.25 yields in
both cases the canonical timed marking shown in Fig. 10.26. The value of the global
clock is now 0. The timestamp of the token on A is also 0, and the timestamp of the
token (1,"COL") on PacketsToSend is 100 since the value of the global clock
has been subtracted from the timestamps of the corresponding tokens in the original
markings. The transition TransmitPacket is enabled in the canonical marking and
there are still 100 time units until the first data packet can be retransmitted, which
was also the case in the original markings. Hence, the same occurrence sequences
are possible in the canonical marking as in the original markings, but we have re-
moved the absolute time. A formalisation of the above equivalence can be found in
[19], including a proof that it is consistent for all timed CPN models.

The condensed state space for a timed CPN model can be computed fully au-
tomatically. The consistency of the equivalence has been proven once and for all
[19] and the user does not have to provide any predicate for expressing the time
equivalence, because it has been implemented in CPN Tools once and for all, for
all CPN models. It has been shown [19] that all properties of the system expressible
in the real-time temporal logic RCCTL∗ [38] are preserved in the condensed state
space. This set of properties includes all of the standard behavioural properties of

10.4 Time Equivalence Method 255

if n=k
then k+1
else k

delay

delay
(n,d)@+Wait(n,d)

()
if success
then empty
else 1`()

if success
then empty
else 1`()

()n

k

k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

Receive
Ack

@+7

Transmit
Ack

@+delay

Receive
 Packet

@+17

Transmit
Packet

@+delay

Send
Packet

@+9

Delay
TA

Delays

INT

Delay
TP

Delays

INT

Limit

3`()

UNIT

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

INT

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

3
1`25++
1`50++
1`75

3
1`25++
1`50++
1`75

2 2`() 11`1@0

1

1`(1,"COL")@0

1 1`1

11`""@06

1`(1,"COL")@100+++
1`(2,"OUR")@0+++
1`(3,"ED")@0+++
1`(4,"PET")@0+++
1`(5,"RI")@0+++
1`(6,"NET")@0

Fig. 10.26 Canonical timed marking for M1 and M2

CPN models discussed in Chap. 7. Table 10.2 shows some statistics for the size of
the condensed state space for the protocol system. The time equivalence method has
also been used in the industrial application described in Sect. 14.3.

Table 10.2 Statistics for application of the time equivalence method

Limit Packets Nodes Limit Packets Nodes

1 10 81 5 2 88 392
1 20 161 5 4 308 727
1 50 401 7 1 13 198
1 100 801 7 2 145 926

2 5 3 056 7 3 323 129
2 10 6 706 10 1 20 062
2 20 14 006 10 2 244 990
2 50 35 906 12 1 24 630

3 1 2 699 12 2 335 651
3 5 85 088 13 1 26 914
3 15 306 118 13 2 391 743

Chapter 11
Formal Definition of Timed Coloured Petri Nets

This chapter formally defines the syntax and semantics of timed CPN models. Read-
ers who are not interested in the mathematical definitions and are content with the
informal introduction given in the previous chapter may decide to skip this chap-
ter. The definition of timed CPN models relies on the definition of untimed non-
hierarchical CPN models, and we assume that the reader is familiar with the formal
definitions provided in Chap. 4.

To illustrate the formal definitions, we shall use the timed CPN model shown in
Fig. 11.1. The colour set definitions and variable declarations for this CPN model are
listed in Fig. 11.2 and are identical to those previously given in Sect. 10.1. The timed
marking shown in Fig. 11.1 is not reachable from the initial marking, but it allows
us to illustrate some of the more complex issues that arise in the formal definitions.
When we exemplify the formal definitions, we shall illustrate only concepts that are
new compared with the definition of untimed CPN models. The formal definitions
are given for timed non-hierarchical CPN models, but all definitions given in this
chapter can be generalised to timed hierarchical CPN models in a straightforward
way.

Section 11.1 defines timed multisets, Sect. 11.2 defines the net structure and in-
scriptions of timed CPN models, and Sect. 11.3 defines the enabling and occurrence
of steps.

11.1 Timed multisets

We start by formalising the concept of timed multisets which is used in the later
definitions of markings, steps, and the enabling and occurrence of steps. To illustrate
the definition of timed multisets, we shall use the timed multisets tmA, tmB, and tmRP

over the colour set NOxDATA. The timed multisets tmA and tmB correspond to the
markings of A and B in Fig. 11.1, and tmRP describes (as we shall see later) the

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 11, 257
c© Springer-Verlag Berlin Heidelberg 2009

258 11 Formal Definition of Timed Coloured Petri Nets

(n,d)

k

if n=k
then k+1
else k

k

data

n

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)@+Wait

Receive
Ack

@+7

Transmit
Ack

@+Delay()

@+17

Transmit
Packet

@+Delay()

Send
Packet

@+9

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

Receive
 Packet11`3@2010

11`3@2010

6

1`(1,"COL")@2045+++
3`(2,"OUR")@2017+++
1`(2,"OUR")@2015+++
1`(3,"ED")@2017

1 1`3@2017

11`"COLOUR"@2010

5

1`(1,"COL")@2030+++
1`(2,"OUR")@2015+++
2`(2,"OUR")@2005+++
1`(2,"OUR")@1994

6

1`(1,"COL")@763+++
1`(2,"OUR")@1005+++
1`(3,"ED")@1029+++
1`(4,"PET")@0+++
1`(5,"RI")@0+++
1`(6,"NET")@0

Fig. 11.1 Example used to illustrate the formal definitions for timed CP-nets; global clock is 1993

colset NO = int timed;
colset DATA = string timed;
colset NOxDATA = product NO * DATA timed;
colset BOOL = bool;

var n, k : NO;
var d, data : DATA;
var success : BOOL;

Fig. 11.2 Colour sets and variables for the timed CPN model shown in Fig. 11.1

token to be removed from place B when ReceivePacket occurs. These multisets are
defined as follows:

tmA = 1‘(1,"COL")@2045 +++ 3‘(2,"OUR")@2017 +++
1‘(2,"OUR")@2015 +++ 1‘(3,"ED ")@2017 +++

tmB = 1‘(1,"COL")@2030 +++ 1‘(2,"OUR")@2015 +++
2‘(2,"OUR")@2005 +++ 1‘(2,"OUR")@1994

tmRP = 1‘(1,"COL")@2010

The global clock and the timestamps of tokens are represented as values over a
set of time values T, which is equal to the set of non-negative integers N. In CPN
Tools, T is represented by the type TIME.

A timed multiset tm over a non-empty set S is a multiset over S×T, i.e., a function
from S×T into the set of non-negative integers N. This function maps each element

11.1 Timed multisets 259

(s, t) into the number of appearances tm(s, t) of (s, t). The non-negative integer
tm(s, t) is also called the coefficient of (s, t) in tm and specifies how many tokens
with colour s appear with the timestamp t. As an example, consider the multiset tmB

over the colour set NOxDATA. The multiset tmB can be specified as the following
function (also denoted tmB):

tmB(s, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if (s, t) = ((1,"COL"),2030)
1 if (s, t) = ((2,"OUR"),2015)
2 if (s, t) = ((2,"OUR"),2005)
1 if (s, t) = ((2,"OUR"),1994)
0 otherwise

The above example shows that it is straightforward to translate a timed multiset,
written as a sum using +++ and ‘ into the equivalent functional representation.
Similarly, it is also possible to translate from a functional representation to a sum
representation, making the two representations equivalent. When writing a timed
multiset as a sum, we usually omit the elements for which the number of appear-
ances is zero.

The number of appearances (or coefficient) tm(s) of an element s is the number
of times that s appears with some timestamp t, i.e., tm(s) = ∑t∈T tm(s, t). As an ex-
ample, the coefficient of (2,"OUR") in the multiset tmB is 4, since (2,"OUR")
appears once with timestamp 2015, twice with timestamp 2005, and once with
timestamp 1994. An element s is a member of a timed multiset tm if the number
of appearances of s is strictly greater than 0.

The timestamp list of an element s ∈ S, denoted tm[s], is the list of timestamps
with which s appears in tm, sorted in increasing order. Each timestamp is represented
in the timestamp list as many times as s appears with that timestamp, and hence tm[s]
has tm(s) elements. As an example, the timestamp list for the element (2,"OUR")
in the multiset tmB is given by

tmB[(2,"OUR")] = [1994,2005,2005,2015]

From the above, it follows that the length of the timestamp list of an element s
in a timed multiset tm is equal to the number of appearances of s in tm. This means
that a timed multiset can be specified by specifying the timestamp list tm[s] for each
element s.

The size of a timed multiset tm, written |tm|, is the sum of the numbers of ap-
pearances of the elements of tm. As an example, the multiset tmA has size 6, and
tmB has size 5. A timed multiset can be infinite if the set S over which the multiset
is created is infinite. The number of appearances of an element s in a timed multiset
is, however, required to be finite, i.e., tm(s) < ∞ for all s ∈ S. The set of all timed
multisets over a set S is denoted STMS.

The following definition summarises the definition of timed multisets.

260 11 Formal Definition of Timed Coloured Petri Nets

Definition 11.1. Let S be a non-empty set and let T be the set of time values. A
timed multiset over S is a function tm : S×T → N that maps each element (s, t) ∈
S×T into a non-negative integer tm(s, t) ∈ N. It is required that the sum

tm(s) = ∑
t∈T

tm(s, t)

is finite for all s ∈ S. The non-negative integer tm(s) is the number of appearances
(or coefficient) of s in tm. The timestamp list for an element s is a list

tm[s] = [t1, t2, . . . ,ttm(s)]

satisfying ti ≤ ti+1 for all 1 ≤ i < tm(s). It contains the time values t for which
tm(s, t) > 0 and a time value t appears tm(s, t) times in the list. Membership and
size are defined as follows, where tm is a timed multiset:

1. ∀s ∈ S : s ∈ tm ⇔ tm(s) > 0.
2. |tm| = ∑s∈S tm(s).

A timed multiset tm is infinite if |tm| = ∞. Otherwise tm is finite. The set of all
timed multisets over S is denoted STMS. The empty multiset over S is denoted /0TMS

and is defined by /0TMS(s, t) = 0 for all (s, t) ∈ S×T.
�

We now consider addition, comparison, and subtraction of timed multisets. The
definition of timed multisets given above implies that each timed multiset over S is
also an untimed multiset over S×T as defined in Definition 4.1. This means that
operations on timed multisets could be defined by simply using the definitions for
untimed multisets. This is sufficient for some of the operations (e.g., addition), but
it turns out to be inadequate for comparison and subtraction, since the formalisation
of the enabling and occurrence rules would then require that the timestamps of the
tokens to be removed from a place have specific values. We only require that the
timestamps present at a place are less than or equal to some specific values, and this
needs to be taken into account in the definition of comparison and subtraction.

The number of appearances of an element (s, t) in the addition tm1 +++ tm2

of two timed multisets tm1 and tm2 is defined as for untimed multisets by adding
the number of appearances tm1(s, t) of (s, t) in tm1 to the number of appearances
tm2(s, t) of (s, t) in tm2. As an example, the addition tmA +++ tmB of the two timed
multisets tmA and tmB is given by

(tmA +++ tmB)(s, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (s, t) = ((1,"COL"),2045)
1 if (s, t) = ((1,"COL"),2030)
3 if (s, t) = ((2,"OUR"),2017)
2 if (s, t) = ((2,"OUR"),2015)
2 if (s, t) = ((2,"OUR"),2005)
1 if (s, t) = ((2,"OUR"),1994)
1 if (s, t) = ((3,"ED "),2017)
0 otherwise

11.1 Timed multisets 261

A timed multiset tm1 is smaller than or equal to a timed multiset tm2, writ-
ten tm1 ≪= tm2, if two conditions hold. The first condition is that the number
of appearances of each element s in tm1 must be less than or equal to the num-
ber of appearances of the element s in tm2, i.e., tm1(s) ≤ tm2(s) for all s ∈ S.
The second condition considers the timestamp lists tm1[s] = [t1

1 , t1
2 , . . . ,t1

tm1(s)] and

tm2[s] = [t2
1 , t2

2 , . . . ,t2
tm2(s)] for each element s. Here we require that t1

i ≥ t2
i for all

1 ≤ i ≤ tm1(s). This means that each timestamp t1
i of s in tm1 must be matched by

a smaller timestamp t2
i in tm2. This condition is written tm1[s] ≤[T] tm2[s]. As an

example, consider the following two multisets:

tmRP = 1‘(2,"OUR")@2010

tmB = 1‘(1,"COL")@2030 +++ 1‘(2,"OUR")@2015 +++
2‘(2,"OUR")@2005 +++ 1‘(2,"OUR")@1994

For these two multisets and the element (2,"OUR"), we have

tmRP((2,"OUR")) = 1
tmRP[(2,"OUR")] = [2010]

tmB((2,"OUR")) = 4
tmB[(2,"OUR")] = [1994, 2005, 2005, 2015]

The first condition, tmRP((2,"OUR")) ≤ tmB((2,"OUR")), holds, and the
second condition, tmRP[(2,"OUR")] ≤[T] tmB[(2,"OUR")], holds because the
time stamp 2010 in the timestamp list tmRP[s] is matched by the smaller timestamp
1994 in the timestamp list tmB[s]. These two conditions hold also for the remain-
ing elements of NOxDATA, since these appear with a coefficient of 0 in tmRP. We
therefore have tmRP ≪= tmB.

The reason for requiring the smaller timed multiset to have the larger timestamps
can be explained by considering the enabling condition of transitions. As an ex-
ample, consider the timed multisets tmB and tmRP above. The timed multiset tmB

corresponds to the marking of place B in Fig. 11.1. The timed multiset tmRP de-
scribes the multiset of tokens to be removed from place B when the binding element
(ReceivePacket,〈n=2, d="OUR", k=3, data="COLOUR"〉) occurs at time 2010.
The enabling condition of transitions (to be formally defined in Sect. 11.3) requires
that the timed multiset tmRP is smaller than or equal to the timed multiset of tokens
tmB present on B. As we have described in Chap. 10, this means that the tokens in
tmRP must be present in tmB and have timestamps in tmB which are ‘old enough’,
i.e., less than or equal to the timestamps of the tokens in tmRP.

Let us now consider the subtraction of two timed multisets tm1 and tm2 where
tm1 ≪= tm2. The definition consists of two parts, corresponding to the two con-
ditions in the definition of ≪=. The first part specifies the number of appearances
of an element s in the subtraction tm2 −−− tm1 of tm1 and tm2. The number of
appearances of an element s in tm2 −−− tm1 is obtained by subtracting the num-

262 11 Formal Definition of Timed Coloured Petri Nets

ber of appearances of s in tm1 from the number of appearances of s in tm2, i.e.,
(tm2 −−− tm1)(s) = tm2(s)− tm1(s) for all s ∈ S. As an example, consider the two
timed multisets tmB and tmRP above. For these two multisets, we have

tmB(s) =

⎧⎨
⎩

1 if s = (1,"COL")
4 if s = (2,"OUR")
0 otherwise

tmRP(s) =
{

1 if s = (2,"OUR")
0 otherwise

and hence

(tmB −−− tmRP)(s) =

⎧⎨
⎩

1 if s = (1,"COL")
3 if s = (2,"OUR")
0 otherwise

The second part of the definition of the subtraction specifies the time stamp list
of s in the subtraction of tm1 and tm2. The timestamp list of s in tm2 −−− tm1

is obtained from the timestamp list tm2[s] of s in tm2 by considering in turn each
time stamp t in the timestamp list tm1(s) of s in tm1 and successively removing the
largest timestamp which is smaller than t. The resulting timestamp list of s is written
tm2[s]−[T] tm1[s]. As an example, consider the timed multisets tmB and tmRP and the
element (2,"OUR"). For these multisets, we have

tmB[(2,"OUR")] = [1994, 2005, 2005, 2015]
tmRP[(2,"OUR")] = [2010]

In order to compute the timestamp list of (2,"OUR") in tmB −−− tmRP, we
consider the timestamps in the timestamp list of tmRP in turn and remove the
largest timestamp from tmB which is smaller than or equal to the timestamp in the
timestamp list of tmRP under consideration. In this case, the result is the following
(since the largest timestamp which is smaller than or equal to 2010 is 2005):

(tmB −−− tmRP)[(2,"OUR")] = [1994,2005,2015]

Altogether, this means that the subtraction of tmB and tmRP is given by

tmB −−− tmRP = 1‘(1,"COL")@2030 +++ 1‘(2,"OUR")@2015 +++
1‘(2,"OUR")@2005 +++ 1‘(2,"OUR")@1994

Always removing the tokens with the largest possible timestamps ensures that
Theorem 4.7 is also valid for timed CPN models, i.e., that a step consisting of a
multiset of enabled binding elements can be split into two substeps and the individ-
ual substeps can be executed in any order resulting in the same marking.

To formally define the subtraction tm2[s]−[T] tm1[s] of two timestamp lists, where
tm1[s] ≤[T] tm2[s], we first define the subtraction of a single time stamp from a
timestamp list, i.e., the removal of the largest time stamp from a timestamp list

11.1 Timed multisets 263

which is smaller than or equal to a given time stamp. Let t be a timestamp, and let
tm[s] = [t1, t2, . . . ,ttm(s)] be a timestamp list such that t ≥ t1. The requirement t ≥ t1
ensures that there exists a time stamp in tm[s] which is smaller than or equal to t.
The subtraction of t from tm[s] denoted tm[s]−T t, is the timestamp list

tm[s]−T t = [t1, t2, t3, . . . ,ti−1, ti+1, . . . ,ttm(s)]

where i is the largest index for which ti ≤ t. This means that we remove the largest
timestamp which is smaller than or equal to t. The subtraction of two timestamp lists
tm1[s] = [t1

1 , t1
2 , . . . ,t1

tm1(s)] and tm2[s] = [t2
1 , t2

2 , . . . ,t2
tm2(s)] is defined by successively

removing the timestamps in tm1[s] from the timestamp list tm2[s] using the definition
of −T:

tm2[s]−[T] tm1[s] = ((([t2
1 , t2

2 , . . . ,t2
tm2(s)]−T t1

1)−T t1
2) · · ·−T t1

tm1(s))

For the definition of the enabling and occurrence rules, we have to add the value
of the global clock to all timestamps in the timed multisets obtained by evaluating
the arc expressions. For a timestamp list tm[s] = [t1, t2, . . . ,ttm(s)] and a time value t,
tm[s]+t denotes the timestamp list obtained from tm[s] by adding t to all timestamps,
i.e., tm[s]+t = [t1 + t, t2 + t, . . . , ttm(s) + t]. As an example, for the timestamp list

tmB[(2,"OUR")] = [1994,2005,2005,2015]

we have

tmB[(2,"OUR")]+20 = [2014,2025,2025,2035]

The above operation can be extended to multisets by defining an operation which
adds a time value t to all timestamps in a timed multiset tm. The timed multiset
obtained by adding a time value t to all time values is denoted tm+t . As an exam-
ple, adding the time value 20 to the timed multiset tmB yields the timed multiset
(tmB)+20 given by

(tmB)+20(s, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if (s, t) = ((1,"COL"),2050)
1 if (s, t) = ((2,"OUR"),2035)
2 if (s, t) = ((2,"OUR"),2025)
1 if (s, t) = ((2,"OUR"),2014)
0 otherwise

The following definitions summarise the definition of operations on timestamp
lists and timed multisets as presented above.

264 11 Formal Definition of Timed Coloured Petri Nets

Definition 11.2. For timed multisets over a set S and time values T, comparison,
subtraction, and addition of time on timestamp lists are defined as follows, where
tm[s] = [t1, t2, . . . ,ttm(s)], tm1[s] = [t1

1 , t1
2 , . . . ,t1

tm1(s)], and tm2[s] = [t2
1 , t2

2 , . . . ,t2
tm2(s)]

are timestamp lists of an element s ∈ S:

1. tm1[s] ≤[T] tm2[s] ⇔ tm1(s) ≤ tm2(s) and t1
i ≥ t2

i for all 1 ≤ i ≤ tm1(s)
2. For t ∈ T such that t ≥ t1, tm[s]−T t is the timestamp list

• tm[s] −T t = [t1, t2, t3, . . . ,ti−1, ti+1, . . . ,ttm(s)] where i is the largest index for
which ti ≤ t.

3. When tm1[s] ≤[T] tm2[s], tm2[s]−[T] tm1[s] is the timestamp list defined by

• tm2[s]−[T] tm1[s] = ((([t2
1 , t2

2 , . . . ,t2
tm2(s)]−T t1

1)−T t1
2) · · ·−T t1

tm1(s)).

4. For t ∈ T, tm[s]+t is the timestamp list defined by

• tm[s]+t = [t1 + t, t2 + t, . . . , ttm(s) + t]
�

Definition 11.3. For timed multisets over a set S and time values T, addition, com-
parison, subtraction, and addition of time are defined as follows, where tm, tm1,
and tm2 are timed multisets:

1. ∀(s, t) ∈ S×T : (tm1 +++ tm2)(s, t) = tm1(s, t)+ tm2(s, t).
2. tm1 ≪= tm2 ⇔∀s ∈ S : tm1[s] ≤[T] tm2[s].
3. When tm1 ≪= tm2, tm2 −−− tm1 is the timed multiset defined by

• ∀s ∈ S : (tm2 −−− tm1)(s) = tm2(s)− tm1(s);
• ∀s ∈ S : (tm2 −−− tm1)[s] = tm2[s]−[T] tm1[s].

4. For t ∈ T, tm+t is the timed multiset defined by

• ∀s ∈ S : tm+t(s) = tm(s) and tm+t [s] = tm[s]+t .
�

11.2 Net Structure and Inscriptions

The syntax of timed CPN models is defined similarly to that of non-hierarchical
CP-nets in Definition 4.2, i.e., as a tuple CPNT = (P,T,A,Σ ,V,C,G,E, I). The dif-
ference is that each colour set in Σ is now either timed or untimed. A place with a
timed colour set is called a timed place, and a place with an untimed colour set is
called an untimed place. Similarly, the surrounding arcs of a timed place are called
timed arcs, and the surrounding arcs of an untimed place are called untimed arcs.
The CPN model in Fig. 10.12 is an example of a CPN model containing both timed
and untimed places, and both timed and untimed arcs. For a timed place, we require
that the initial marking expression evaluates to a timed multiset over C(p), i.e., that

11.3 Enabling and Occurrence of Steps 265

Type[I(p)] = C(p)TMS. Furthermore, for a timed arc a connected to a place p we
require that the arc expression E(a) evaluates to a timed multiset over C(p), i.e.,
that Type[E(a)] = C(p)TMS.

The definition below summarises the definition of a timed CP-net based on the
above description. This definition is identical to Definition 4.2 except for modifica-
tions in items 4, 6, 8, and 9.

Definition 11.4. A timed non-hierarchical Coloured Petri Net is a nine-tuple
CPNT = (P,T,A,Σ ,V,C,G,E, I) where:

1. P is a finite set of places.
2. T is a finite set of transitions such that P∩T = /0.
3. A ⊆ P×T ∪T ×P is a set of directed arcs.
4. Σ is a finite set of non-empty colour sets. Each colour set is either untimed or

timed.
5. V is a finite set of typed variables such that Type[v] ∈ Σ for all variables v ∈V .
6. C : P → Σ is a colour set function that assigns a colour set to each place. A place

p is timed if C(p) is timed, otherwise p is untimed.
7. G : T → EXPRV is a guard function that assigns a guard to each transition t such

that Type[G(t)] = Bool.
8. E : A → EXPRV is an arc expression function that assigns an arc expression to

each arc a such that

• Type[E(a)] = C(p)MS if p is untimed;
• Type[E(a)] = C(p)TMS if p is timed.

Here, p is the place connected to the arc a.
9. I : P → EXPR /0 is an initialisation function that assigns an initialisation expres-

sion to each place p such that

• Type[I(p)] = C(p)MS if p is untimed;
• Type[I(p)] = C(p)TMS if p is timed.

�
In CPN Tools, we allow the initial marking of a timed place to evaluate to an

untimed multiset or a single untimed colour. In this case, all timestamps are set to 0.
An analogous remark applies to the arc expression of a timed arc. Finally, in CPN
Tools we allow a transition to have a time delay inscription, which is an expression
of type TIME. This is a shorthand for adding this time delay inscription to the time
delay inscription of each output arc expression.

11.3 Enabling and Occurrence of Steps

We now define the semantics of timed CPN models, i.e., the enabling and occur-
rence of steps. The concepts of bindings, binding elements, and steps are defined
as for untimed CP-nets in Definition 4.3. A marking of a timed CP-net maps each

266 11 Formal Definition of Timed Coloured Petri Nets

timed place into a timed multiset, and each untimed place into an untimed multiset.
A timed marking consists of a marking and a value of the global clock. The initial
timed marking is the marking obtained by evaluating the initial marking expression
I(p) for each place p and setting the value of the global clock to 0.

The new semantic concepts and notation introduced above for timed CPN models
are summarised in the following definition.

Definition 11.5. For a timed Coloured Petri Net CPNT = (P,T,A,Σ ,V,C,G,E, I),
we define the following concepts:

1. A marking is a function M that maps each place p ∈ P into a multiset M(p) of
tokens such that

• M(p) ∈C(p)MS if p is untimed;
• M(p) ∈C(p)TMS if p is timed.

2. A timed marking is a pair (M, t∗), where M is a marking and t∗ ∈ T is the value
of the global clock.

3. The initial timed marking is the pair (M0,0), where M0 is defined by M0(p) =
I(p)〈〉 for all p ∈ P.

�
Let us now consider the enabling and occurrence of steps. The definition is sim-

ilar to the definition for untimed CPN models except that we now have to take into
account the timestamps of tokens on timed places and describe how the global clock
is advanced. First of all, each binding element (t,b) included in a step Y is required
to satisfy the guard of t. Secondly, as with untimed CPN models, all binding el-
ements in a step Y must be allowed to remove their own private tokens without
sharing these tokens with other binding elements included in the step. For an un-
timed place p, this means that p must be marked by a multiset of tokens M(p) that
is larger than or equal to the sum of the tokens that are removed from p by the
individual binding elements of the step Y , i.e., that

++
MS∑
(t,b)∈Y

E(p, t)〈b〉 �= M(p)

For a timed place, we have a similar requirement, but here we also take into
account the global clock and the timestamps of tokens. The multiset of tokens to be
removed from p when Y occurs at time t ′ is determined by evaluating the output arc
expression of p and adding the value of the global clock t ′ to the timestamps of the
resulting timed multiset, i.e.,

+++
MS∑
(t,b)∈Y

E(p, t)〈b〉+t ′

where we have used
+++
MS∑ to specify that this sum is a multiset (MS) sum of timed

multisets (+++). The requirement is now that this timed multiset is smaller than or
equal to the timed multiset present on p, i.e., that

11.3 Enabling and Occurrence of Steps 267

+++
MS∑
(t,b)∈Y

E(p, t)〈b〉+t ′ ≪= M(p)

A step Y satisfying the requirement above is enabled at time t ′ in a timed marking
(M, t∗) provided that t∗ ≤ t ′ and that t ′ is the smallest value of the global clock for
which there exists a step satisfying the above requirement for all places p.

It should be noted that the above requirement also takes into account time delay
inscriptions on input arcs of transitions which can be used to remove tokens ahead
of time as illustrated in Sect. 10.2. Introducing a time delay inscription on an arc
from p to t with a positive time delay t ′′ means that the elements of E(p, t)〈b〉 will
have the time stamp t ′′. This implies that the elements of E(p, t)〈b〉+t ′ will have
timestamps which are t ′′ time units higher compared with not having the time delay
inscription. This means that tokens on p with timestamps less than or equal to t ′+ t ′′
will be considered for removal.

As an example, consider the binding bRP of ReceivePacket

bRP = 〈n=2, d="OUR", k=3, data="COLOUR"〉

in the timed marking (M,1993) shown in Fig. 11.1, and the following step:

RP = 1‘(ReceivePacket,bRP)

Consider the enabling of this step at time 2010. For the input place B of
ReceivePacket, we have

+++
MS∑
(t,b)∈Y

(E(B, t)〈b〉)+2010

= (E(B,ReceivePacket)〈bRP〉)+2010

= (1‘(2,"OUR")@0)+2010

= 1‘(2,"OUR")@2010

For the input place DataReceived, we have

+++
MS∑
(t,b)∈Y

(E(DataReceived, t)〈b〉)+2010

= (E(DataReceived,ReceivePacket)〈bRP〉)+2010

= (1‘"COLOUR"@0)+2010

= 1‘"COLOUR"@2010

For the input place NextRec, we have

268 11 Formal Definition of Timed Coloured Petri Nets

+++
MS∑
(t,b)∈Y

(E(NextRec, t)〈b〉)+2010

= (E(NextRec,ReceivePacket)〈bRP〉)+2010

= (1‘3@0)+2010

= 1‘3@2010

The above three timed multisets are smaller than or equal to the timed multisets
on the corresponding input places in the timed marking shown in Fig. 11.1. More-
over, it is easy to see that there exists no step which is enabled earlier than time 2010.
Hence, we conclude that the step RP is enabled in the marking shown in Fig. 11.1
at time 2010.

When an enabled step Y occurs at time t ′ in a timed marking (M, t∗), we again
consider the two cases of timed and untimed places. For an untimed place p, the
new marking of a place p is given as for untimed CPN models:

M′(p) = (M(p)−− ++
MS∑
(t,b)∈Y

E(p, t)〈b〉)++ ++
MS∑
(t,b)∈Y

E(t, p)〈b〉

The new marking of a timed place p is obtained in a similar way, except that we
now use addition and subtraction of timed multisets and take into account the time
t ′ at which the step occurs. The timed multiset of tokens to be removed from a place
p is determined by evaluating the output arcs of p and adding the time t ′ to each
timed multiset:

+++
MS∑
(t,b)∈Y

E(p, t)〈b〉+t ′

The timed multiset of tokens to be added to p is obtained by evaluating the input
arcs of p and adding the time value t ′ to each timed multiset:

+++
MS∑
(t,b)∈Y

E(t, p)〈b〉+t ′

This means that the new marking of the place p is given by

M′(p) = (M(p)−−−+++
MS∑
(t,b)∈Y

E(p, t)〈b〉+t ′)++++++
MS∑
(t,b)∈Y

E(t, p)〈b〉+t ′

As an example, consider the timed marking (M,1993) shown in Fig. 11.1 and
the step

RP = 1‘(ReceivePacket, 〈n=2, d="OUR", k=3,data="COLOUR"〉)

11.3 Enabling and Occurrence of Steps 269

The marking of the places B and C in the timed marking (M′,2010) reached when
RP occurs in (M,1993) at time 2010 is given by:

M′(B) = ((1‘(1,"COL")@2030 +++ 1‘(2,"OUR")@2015 +++
2‘(2,"OUR")@2005 +++ 1‘(2,"OUR")@1994) ---
1‘(2,"OUR")@0+2010) +++ (/0TMS)+2010

= ((1‘(1,"COL")@2030 +++ 1‘(2,"OUR")@2015 +++
2‘(2,"OUR")@2005 +++ 1‘(2,"OUR")@1994) ---
1‘(2,"OUR")@2010) +++ /0TMS

= 1‘(1,"COL")@2030 +++ 1‘(2,"OUR")@2015 +++
1‘(2,"OUR")@2005 +++ 1‘(2,"OUR")@1994

M′(C) = (1‘3@2010 --- (/0TMS)+2010) +++ (1‘3@17)+2010

= (1‘3@2010 --- /0TMS) +++ 1‘3@2027
= 1‘3@2010 +++ 1‘3@2027

The enabling and occurrence of steps are summarised in the following definition.

Definition 11.6. A step Y ∈ BEMS is enabled at time t ′ in a timed marking (M, t∗)
if and only if the following properties are satisfied:

1. ∀(t,b) ∈ Y : G(t)〈b〉.
2.

++
MS∑
(t,b)∈Y

E(p, t)〈b〉 �= M(p) for all untimed places p ∈ P.

3.
+++
MS∑
(t,b)∈Y

(E(p, t)〈b〉)+t ′ ≪= M(p) for all timed places p ∈ P.

4. t∗ ≤ t ′.
5. t ′ is the smallest time value for which there exists a step satisfying conditions

1–4.

When Y is enabled in (M, t∗) at time t ′, it may occur at time t ′, leading to the timed
marking (M′, t ′) defined by:

6. M′(p) = (M(p)−− ++
MS∑
(t,b)∈Y

E(p, t)〈b〉)++ ++
MS∑
(t,b)∈Y

E(t, p)〈b〉

for all untimed places p ∈ P.
7. M′(p) = (M(p)−−−+++

MS∑
(t,b)∈Y

E(p, t)〈b〉+t ′)++++++
MS∑
(t,b)∈Y

E(t, p)〈b〉+t ′

for all timed places p ∈ P.
�

It is worth observing that the requirement which describes how the global clock
is advanced (item 5 above) implies that the enabling rule of timed CPN models is not
local, i.e., it is not sufficient to consider only the transitions in a step Y to determine
whether that step is enabled. It must also be checked that no other step exists which
is enabled at an earlier time. This is in contrast to untimed CPN models, where the

270 11 Formal Definition of Timed Coloured Petri Nets

enabling of a step can be determined by considering only the transition included in
that step.

The concepts of directly reachable, reachability, reachable markings, and occur-
rence sequences are defined as for untimed CPN models in Definition 4.6. The only
difference is that all markings are now timed markings. As mentioned in Sect. 11.1,
we have defined subtraction of timed multisets such that timed CPN models also sat-
isfy the property expressed in Theorem 4.7. The state space of a timed CPN model
is defined as for untimed CPN models in Definition 9.6 with the modification that
the set of nodes is the set of reachable timed markings.

A timed CPN model CPNT can always be transformed into an untimed CPN
model CPNU by making all colour sets untimed, removing all timestamps from
initialisation functions, and removing all time delay inscriptions on arcs and transi-
tions. Furthermore, for each timed marking (M, t∗) of CPNT we have a marking MU

of CPNU obtained by removing all timestamps from the tokens in M. As discussed
in Sect. 10.1, the timestamps of tokens in a timed CPN model enforce additional
constraints on the execution of the CPN model compared with the corresponding
untimed CPN model. This means that each finite occurrence sequence of a timed
CPN model has a corresponding occurrence sequence in the corresponding untimed
CPN model, but not the other way around. A similar property holds for infinite oc-
currence sequences, as summarised in the following proposition.

Proposition 11.7. Let CPNT be a timed Coloured Petri Net and let CPNU be the
corresponding untimed Coloured Petri Net. Each finite occurrence sequence of
CPNT

(M1, t
∗
1)

Y1−→ (M2, t
∗
2)

Y2−→(M3, t
∗
3) · · · (Mn, t

∗
n) Yn−→(Mn+1, t

∗
n+1)

determines a finite occurrence sequence of CPNU , defined by

(M1)U
Y1−→ (M2)U

Y2−→(M3)U · · · (Mn)U
Yn−→(Mn+1)U

Each infinite occurrence sequence of CPNT

(M1, t
∗
1)

Y1−→ (M2, t
∗
2)

Y2−→(M3, t
∗
3)

Y3−→ ·· ·
determines an infinite occurrence sequence of CPNU , defined by

(M1)U
Y1−→ (M2)U

Y2−→(M3)U
Y3−→ ·· ·

�
The formal definition of the syntax and semantics of timed CPN models given in

this chapter differs from the formal definition in [61] in a number of points. We have
introduced the symbols +++, −−−, and ≪= for operations on timed multisets to
make it explicit when timed multisets are used in the formal definition. We have
also used the special summation symbol

+++∑ to make timed multiset sums more
explicit. As a result, we have split the definition of enabling and occurrence into
cases for timed and untimed places. Similarly, we have introduced −[T] to denote

11.3 Enabling and Occurrence of Steps 271

subtraction of timestamp lists. We have used the term ‘timed marking’ instead of the
term ‘state’ used in [61]. Finally, we have defined the set of time values to be equal
to the set of non-negative integers. It is, however, straightforward to generalise the
definitions in this chapter to allow the set of time values to be the set of reals. The
only difference is that the concept of blocking needs to be taken into account, as was
done in [61]. Blocking refers to a situation in which no smallest t ′ exists that satisfies
the requirements in Definition 11.6. We have disallowed negative time values, as
they do not seem to have any practical application. Except for the definition of time
values, the semantics of timed CPN models with non-negative integer time values
given in this chapter is equivalent to the semantics of timed CPN models in [61].

Chapter 12
Simulation-based Performance Analysis

This chapter shows how simulation of CPN models can be used to investigate the
performance of systems and thereby evaluate their efficiency. Performance is a cen-
tral issue in the design and configuration of concurrent systems, and performance
analysis is conducted to evaluate existing or planned systems, to compare alter-
native implementations, and to find optimal configurations of systems. The basic
idea of simulation-based performance analysis is to conduct a number of lengthy
simulations of a CPN model, during which data is collected from the occurring
binding elements and the markings reached in order to calculate estimates of perfor-
mance measures of the system. The typical performance measures include average
queue lengths, average delays, and throughput. Simulation-based performance anal-
ysis also involves statistical investigation of output data, the exploration of large data
sets, appropriate visualisation of performance-related data, and estimating the accu-
racy of simulation experiments. Simulation output data exhibit random behaviour,
and therefore appropriate statistical techniques must be used both to design and to
interpret simulation experiments.

Section 12.1 presents a variant of the timed protocol model to be used as an
example for introducing performance analysis. Section 12.2 shows how data can
be collected from binding elements that occur during a simulation, and Sect. 12.3
shows how to collect data from the markings reached during a simulation. Sec-
tion 12.4 shows how data can be collected from the final marking of a simulation.
Section 12.5 presents the performance report, which contains key statistical figures
for the collected data. Section 12.6 shows how to conduct simulation experiments
such that statistically reliable results are obtained. Finally, in Sect. 12.7, we illustrate
how one can create CPN models that make it convenient to investigate different con-
figurations of a system. The reader is assumed to be familiar with standard statistical
concepts such as averages and standard deviations [4, 77].

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 12, 273
c© Springer-Verlag Berlin Heidelberg 2009

274 12 Simulation-based Performance Analysis

12.1 Timed Protocol for Performance Analysis

We consider a variant of the timed protocol model described in Sect. 10.1. There are
a number of interesting performance measures for the timed protocol, including the
average packet delay, the throughput, and the average packet queue lengths at the
sender and in the network. To properly estimate these performance measures, we
need to make some modifications to the timed protocol model. The revised model
used for performance analysis is a hierarchical CPN model consisting of three mod-
ules. Figure 12.1 shows the top-level module of the CPN model. This module has
two substitution transitions: DataPacketArrival and Protocol. The submodules asso-
ciated with these substitution transitions are presented below.

The purpose of the DataPacketArrival module is to produce the workload to be
processed by the protocol, i.e., the data packets to be transmitted from the sender
to the receiver. The data packets to be sent by the sender have, until now, been
represented by the initial marking inscription of the place PacketsToSend. In the
CPN model for performance analysis, we create the data packets to be sent during
the simulation of the CPN model. In this way, we model how data packets are created
by upper layers of the network stack, for example, in the application layer, before
they arrive at a lower level of the network stack that is responsible for transmitting
the data packets to the receiver. In particular, we model the times at which data
packets arrive for transmission.

Figure 12.2 shows the DataPacketArrival module. The revised colour set defini-
tions and variable declarations for the CPN model are given in Fig. 12.3. The token
on the place NextArrival is used to control the arrival of data packets. The colour of
this token represents the sequence number of the next data packet that will arrive,
and the timestamp of the token determines the arrival time. Initially the token has
the colour 1 and the timestamp 0, which means that the first data packet will arrive
at time 0 and have sequence number 1. In the marking shown in Fig. 12.4, the next
data packet will arrive at time 439, and it will get the sequence number 3. It can also
be seen that in this marking data packet number 2 is on PacketsToSend, waiting to
be sent. The time stamp of the token on PacketsToSend is higher than 439 owing to

DataPacket
Arrival

DataPacketArrival

Protocol

Protocol

Data
Received

1`""

DATA

Packets
To Send

DATAPACKET

Protocol

DataPacketArrival

Fig. 12.1 Top-level module for the CPN model used for performance analysis

12.1 Timed Protocol for Performance Analysis 275

n+1@+NextArrival()

n

NewDataPacket(n)

DataPacket
Arrives

1`1

NO

Packets
To Send Out

DATAPACKET

Out

Next
Arrival

Fig. 12.2 DataPacketArrival module

colset NO = int timed;
colset DATA = string timed;
colset TOA = int; (* Time Of Arrival *)
colset DATAPACKET = product NO * DATA * TOA timed;

var n, k : NO;
var d, data : DATA;
var t : TOA;

Fig. 12.3 Colour set and variable declarations for the timed CPN model

possible retransmissions of data packet number 2, as will become evident when we
present the modelling of the sender. When the transition DataPacketArrives occurs,
the time delay of the token that is added to the place NextArrival is determined by
the function NextArrival:

fun NextArrival() = discrete(200,220);

The value returned by the function NextArrival represents the amount of
time that will pass before the next data packet arrives. The function discrete
generates interarrival times that are integers uniformly distributed between 200 and
220.

We have modified the colour set that models the data packets to be able to mea-
sure the data packet delay, i.e., the time that elapses from when a data packet arrives
at the sender until it is received by the receiver. In Sect. 10.1, the token colour of

n+1@+NextArrival()

n

NewDataPacket(n)

DataPacket
Arrives

Next
Arrival

1`1

NO

Packets
To Send Out

DATAPACKET

Out

1
1`3@439

1 1`(2,"p2 ",220)@588

Fig. 12.4 Example marking of DataPacketArrival module

276 12 Simulation-based Performance Analysis

a data packet was a pair consisting of a sequence number, of type NO, and the data
content, of type DATA. The token colour of a data packet is now a triple consisting
of a sequence number, the data content, and the time of arrival of the data packet.
The time of arrival is represented by the colour set TOA, which is an integer colour
set (see Fig. 12.3). The time-of-arrival component is used to record in a data packet
the time at which it arrived for transmission at the sender.

The arrival of a new data packet is represented by adding a new token to the
place PacketsToSend when transition the DataPacketArrives occurs. The colour of
the token on the place NextArrival is bound to the variable n, and this value is used
to create a new data packet using the function NewDataPacket:

fun NewDataPacket n =
(n, "p"ˆNO.mkstr(n)ˆ" ", ModelTime());

The function NewDataPacket takes an argument n which determines the se-
quence number of the data packet that is created. The parameter n is also used to cre-
ate the data content of the packet using the expression "p"ˆNO.mkstr(n)ˆ" ",
which returns the concatenation of three strings. The first string is "p". The second
string is obtained by converting the value of n to a string by calling the function
NO.mkstr, which takes a value (an integer) belonging to the colour set NO and re-
turns its string representation. The third string consists of a single space (" "). The
third component of the triple is an integer representing the time of arrival of the data
packet, i.e., the model time at which it is added to PacketsToSend. The model time
is obtained using the predefined function ModelTime, which returns the current
model time. Figure 12.5 shows the marking of the DataPacketArrival module after
DataPacketArrives occurs at time 439 in the marking shown in Fig. 12.4. It can be
seen that the random number returned by the function NextArrival in this case
was 218 (439 + 218 = 657).

In this model, we have decided to create the workload dynamically during simu-
lation of the CPN model. It is also possible to use fixed workloads, i.e., workloads
that are predetermined at the start of a simulation or workloads that are read from
files. The latter is particularly useful when one wants to compare the performance
of different configurations of a system for the same workload. In some situations, it
may be desirable to create a separate CPN model that generates a set of workloads
for the system and writes these into files. These files can then be used as workload
input for other CPN models.

n+1@+NextArrival()

n

NewDataPacket(n)

DataPacket
Arrives

Next
Arrival

1`1

NO

Packets
To Send Out

DATAPACKET

Out

1
1`4@657

2
1`(2,"p2 ",220)@588+++
1`(3,"p3 ",439)@439

Fig. 12.5 Marking reached when DataPacketArrives occurs

12.1 Timed Protocol for Performance Analysis 277

Let us now turn our attention to Fig. 12.6 which shows the Protocol module.
This module is closely related to the timed model shown previously in Fig. 10.1.
There are three differences between the module in Fig. 12.6 and the model in
Fig. 10.1. The first difference is that data packets are now modelled using the colour
set DATAPACKET. The second difference is that data packets are removed from
PacketsToSend after they have been acknowledged. The third difference is in the
way in which packet loss is modelled. The three differences are explained in more
detail below.

As we have seen, the colour set for data packets has been extended to include in-
formation about the time at which a data packet arrives at the sender. The colour set
DATAPACKET is the colour set for the places PacketsToSend, A, and B in Fig. 12.6.
When the transition ReceivePacket in Fig. 12.6 occurs, a DATAPACKET token is
removed from place B, and the time of arrival of the data packet is bound to the
variable t. This value is used to compute the data packet delay, i.e., the time that
elapses from when the data packet arrived at the place PacketsToSend until it is
received by the receiver.

The transition RemovePacket in Fig. 12.6 is used to remove a data packet from
the place PacketsToSend when it has been acknowledged. An occurrence of the tran-
sition ReceiveAck adds a token to the place AckReceived if the sequence number in
the acknowledgement is larger than the sequence number on the place NextSend,
i.e., if it is the first acknowledgement for a particular data packet. The colour of
the token added to AckReceived enables RemovePacket in a binding corresponding
to the data packet that can now be removed from PacketsToSend. The time delay
inscription on the arc from PacketsToSend to RemovePacket allows tokens to be
removed ahead of time from the place PacketsToSend. This corresponds to dis-
abling the retransmission timer for the data packet being removed, as illustrated in
Sect. 10.2. The symbolic constant Wait is defined to take the value 175.

if n=k
then k+1
else k

(n,d,t)

if n>k
then 1`k
else empty

data

n

(n,d,t)@+Wait

(n,d,t)

k

if n=k
then k+1
else k

k

if n>k
then n
else k

n if Success()
then 1`n
else empty

n

(n,d,t)(n,d,t)

n

if n=k
then data^d
else data

if Success()
then 1`(n,d,t)
else empty

(n,d,t)@+Wait

Remove
Packet

Receive
Ack

@+7

Transmit
Ack

@+Delay()

Receive
 Packet

@+17

Transmit
Packet

@+Delay()

Send
Packet

@+9

Ack
Received

NO

NextRec

1

NO

C

NO

D

NO

A

DATAPACKET

NextSend

1

NO

Data
Received Out

1`""

DATA

B

DATAPACKET

Packets
To Send

In

DATAPACKET

In Out

Fig. 12.6 Protocol module

278 12 Simulation-based Performance Analysis

The loss of data packets is also modelled in a different manner. In simulations of
the model presented in Sect. 10.1, the variable success for the transition Transmit-
Packet is randomly bound to either true or false, and both values have the same
probability. This means that approximately 50% of the data packets are lost. Most
networks are far more reliable than this, so it is necessary to represent the loss rate
more accurately. In Fig. 12.6, the function Success determines whether a packet
will be transmitted successfully; this function is defined as

val successrate = 0.9;
fun Success () = uniform(0.0,1.0)<=successrate;

The probability of successful transmission is defined by the symbolic constant
successrate. When the function Success is called, it will return either true
or false. Evaluating the expression uniform(0.0,1.0) returns a real number
from the interval [0.0, 1.0], and all numbers have the same probability of being
chosen. If the number returned by the function uniform is less than or equal to
successrate, then the value true will be returned, otherwise false will be
returned. In other words, there is a 90% chance that the function Success will
return true, and hence there is a 90% chance that a data packet will be transmitted
successfully. Consequently, there is only a 10% chance that a data packet is lost.
The loss of acknowledgements is modelled in a similar manner.

12.2 Data Collection from the Occurring Binding Elements

Performance measures are estimated based on numerical data collected from a CPN
model during simulation. In this section we show how data can be extracted from
the binding elements that occur during a simulation, and in Sect. 12.3 we show how
to collect data from the markings reached during a simulation. Data collection is
supported in CPN Tools by data collection monitors, which must be defined for each
performance measure of interest. A data collection monitor includes a predicate
function that determines when data should be collected, and an observation function
that determines what data is to be collected when the predicate function evaluates
to true. A data collection monitor also has a start function, which may be used
to collect data from the initial marking, and a stop function, which may be used to
collect data from the marking reached at the end of a simulation. The four functions
defining the operation of a monitor are collectively referred to as monitor functions.

The data values returned by the start, observation, and stop functions are used
to calculate statistics, such as the sum, average, and maximum of the observed data
values. A monitor has an associated set of places and/or transitions which determine
the place markings and binding elements that can be referred to when the monitor
functions are implemented. CPN Tools can exploit the locality of CPN models to
invoke monitor functions only when steps occur that affect the places and transi-
tions associated with a monitor. In this way, the time overhead of conducting data
collection during simulations can be significantly reduced.

12.2 Data Collection from the Occurring Binding Elements 279

As a first example of the estimation of a performance measure, we consider the
number of data packets processed by the receiver. This performance measure can
be estimated by counting the number of times the transition ReceivePacket occurs
during a simulation. This is done by associating the transition ReceivePacket with a
count transition occurrences monitor. We have named this monitor DataPacketRe-
ceptions, and at the end of a simulation a counter within this monitor will indicate
how many times the transition ReceivePacket occurred during the simulation. This
is an example of a standard data collection monitor, and for such monitors CPN
Tools generates the monitor functions fully automatically based upon a set of places
and transitions selected by the user. More generally, it is also possible to define a
transition occurrences monitor for a set of transitions. A counter within the monitor
will then indicate the total number of occurrences of transitions within the set.

Next we investigate how many duplicate data packets are received by the receiver.
This performance measure can be estimated by counting the number of occurrences
of the transition ReceivePacket with bindings where the value bound to k is dif-
ferent from the value bound to n. Such bindings correspond to data packets that
have already been received. This means that we need to count the number of times
that a particular transition occurs with certain bindings. In the following, we have
named the corresponding monitor DuplicateReceptions. As the monitor deals with
a model-specific property, a user-defined data collection monitor is required. For
user-defined monitors, CPN Tools generates template code, which then has to be
adapted by the user to obtain the desired functionality. Each monitor function typi-
cally consists of 5–10 lines of CPN ML code. For the DuplicateReceptions monitor,
we want to collect data when the transition ReceivePacket occurs. The predicate
function pred that expresses this condition is as follows:

fun pred (Protocol’Receive_Packet
(1,{d,data,k,n,t})) = true

| pred _ = false;

This predicate function takes a binding element as an argument and is split into
two cases. If the function is invoked with a binding element corresponding to the
transition ReceivePacket in the Protocol module, it will match the first line of the
function and true is returned. Otherwise, the default case (specified using the wild-
card pattern) is chosen and false is returned.

Next we need an observation function for the monitor that specifies what data
to collect whenever the above predicate function evaluates to true. If the value
bound to n is different from the value bound to k, we want the observation function
to return the value 1; otherwise, we want it to return the value 0. Observing the value
1 indicates that we have a duplicate data packet, whereas 0 indicates a non-duplicate
data packet. The implementation of this observation function is as follows:

fun obs (Protocol’Receive_Packet (1,{d,data,k,n,t})) =
if n<>k then 1 else 0

| obs _ = 0;

280 12 Simulation-based Performance Analysis

This observation function takes a binding element as an argument. When the oc-
curring binding element corresponds to the transition ReceivePacket the first case is
invoked. The default case (specified using the wildcard pattern) has been included
only to make the function exhaustive. The function obs will never be invoked with
a binding element not corresponding to the transition ReceivePacket since the func-
tion obs is invoked only when the function pred evaluates to true.

CPN Tools automatically ensures that the predicate function pred for the mon-
itor is invoked whenever the transition ReceivePacket occurs during a simulation,
and since it returns true, CPN Tools will invoke the observation function obs and
add the value returned by the observation function to the data values observed by
the monitor. At the end of a simulation, the sum of the data values returned by the
observation function corresponds to the number of duplicate data packets received.
The average of the data values returned is the sum of the data values divided by the
number of times the observation function is called. In other words, the average is
the number of duplicate data packets received divided by the total number of data
packets received. Therefore, the average of the data values will be the proportion
of duplicate data packets relative to the total number of data packets received. We
could have considered defining the predicate function for the DuplicateReceptions
monitor so that it returned true only when ReceivePacket occurred and n<>k, but
then it would not have been possible to calculate the proportion of duplicate data
packets as described above.

We now consider the data packet delay, which is concerned with the time that
elapses from when a data packet is put on the place PacketsToSend until the cor-
responding data is added to the token on the place DataReceived. In the following,
we have named the corresponding monitor DataPacketDelay. This monitor is an ex-
ample of a user-defined monitor, as it needs to refer to specific binding elements
of the CPN model. A data packet is received by the receiver when the transition
ReceivePacket occurs, and in this case we want to measure the delay when the data
packet is received for the first time, i.e., when the value bound to the variable n is
equal to the value bound to the variable k. The predicate function for the DataPack-
etDelay monitor is as follows:

fun pred (Protocol’Receive_Packet
(1,{d,data,k,n,t})) = n=k

| pred _ = false;

When the transition ReceivePacket occurs, the variable t is bound to the arrival
time at the sender for the data packet that is being received, and this value can be
used to calculate the packet delay by considering the model time at which the data
packet was received. The observation function for the DataPacketDelay monitor is
as follows:

fun obs (Protocol’Receive_Packet
(1, {d,data,k,n,t})) = ModelTime()-t+17

| obs _ = 0;

12.3 Data Collection from the Markings Reached 281

The delay of the data packet is calculated by the expression ModelTime()-
t+17, in which the time of arrival of the data packet, t, is subtracted from the model
time at which the transition ReceivePacket occurs. The time required to receive the
data packet is 17, as specified by the time delay inscription of ReceivePacket, and
this is added since it is part of the packet delay.

12.3 Data Collection from the Markings Reached

We shall now show how to collect data from the markings that are reached dur-
ing a simulation. As a first example, we investigate how many data packets are in
the queue at the sender. If data packets arrive from the upper network layers much
faster than they can be sent and acknowledged, then a large queue of data packets
will grow at the sender. The performance measure in question can be estimated us-
ing a marking size monitor that counts the number of tokens present on the place
PacketToSend in the markings encountered during a simulation. In the following,
we have named this monitor PacketsToSendQueue. A marking size monitor is a
standard monitor that can be used to measure the number of tokens on a place dur-
ing a simulation. Since the monitor that we are using is a standard monitor, CPN
Tools automatically generates the monitor functions for it. The only thing the user
has to do is to select the place to be monitored. A marking size monitor can be used
to calculate, for example, the average and maximum numbers of tokens on a place
during a simulation.

The PacketsToSendQueue monitor takes into account the amount of time for
which the place PacketsToSend contains any given number of tokens when calcu-
lating the average of the observed values. To see how this works, consider Table 12.1
which describes a short simulation consisting of 13 steps. It shows the number of
tokens on the place PacketsToSend in the 14 markings that are reached during the
simulation. The first row in the table corresponds to the initial marking in which
there are no tokens on PacketsToSend. The column ‘Time’ indicates the model time
at which the binding element in the column ‘Binding element’ occurred. For exam-
ple, in step 13 the transition ReceivePacket occurred at time 347, and there was one
token on PacketsToSend in the marking that was reached.

The top of Fig. 12.7 shows the number of tokens on the place PacketsToSend for
each of the steps in Table 12.1. This graph contains one point for each value in the
column ‘Tokens’ of Fig. 12.1. The bottom of Fig. 12.7 shows the number of tokens
on the place PacketsToSend and the model times at which the number of tokens was
measured.

The straightforward way to calculate the average number of tokens on the place
PacketsToSend from the data shown in the column ‘Tokens’ in Table 12.1 is to
calculate the sum of the observed data values and then divide by the number of data
values. In this case, the average number of packets to be sent is

0+1+1+1+1+1+2+2+2+2+2+1+1+1
14

= 1.29

282 12 Simulation-based Performance Analysis

Table 12.1 Number of tokens on the place PacketsToSend during a simulation

Step Time Binding element Tokens

0 0 – 0
1 0 (DataPacketArrives, 〈n=1〉) 1
2 0 (SendPacket, 〈n=1, d="p1", t=0〉) 1
3 9 (TransmitPacket, 〈n=1,d="p1", t=0〉) 1
4 184 (SendPacket, 〈n=1, d="p1", t=0〉) 1
5 193 (TransmitPacket, 〈n=1, d="p1", t=0〉) 1
6 216 (DataPacketArrives, 〈n=2〉) 2
7 231 (ReceivePacket, 〈n=1, d="p1", t=0, data="",k=1〉) 2
8 248 (TransmitAck, 〈n=2, t=0〉) 2
9 276 (ReceiveAck, 〈n=2, t=0,k=2〉) 2
10 283 (SendPacket, 〈n=2,d="p2 ",t=436〉) 2
11 283 (RemovePacket, 〈n=1, t=0,d="p1 "〉) 1
12 292 (TransmitPacket, 〈n=2,d="p2 ", t=216〉) 1
13 347 (ReceivePacket, 〈n=2,k=2,d="p2 ",t=216, data="p1 "〉) 1

The average of a set of observations (also called the mean or sample mean) is the
sum of all of the observations divided by the number of observations:

avrg = ∑n
i=1 xi

n

Statistics that are calculated for a collection of discrete data values as above are
known as discrete-parameter statistics. It is important to note that an average is
based on a particular data set. If another simulation is run, the observations will be
different from those in Table 12.1 and Fig. 12.7.

Reconsidering Fig. 12.7, it is interesting to note that there were two tokens on
the place of interest from time 216 to time 283, which is a relatively short period of
time compared with the time when there was one token on the place. Such timing
information is taken into consideration when we calculate the time averaged number
of packets to send. When the number of tokens is measured, the amount of model
time that passes until the number of tokens is measured again is used to weight
the first measurement. For example, if the number of tokens is k when measured
at model time ti, and the number of tokens is measured again at model time ti+1,
where ti+1 ≥ ti, then the value (ti+1 − ti) is used to weight the data value k. For the
observations in Table 12.1, this gives the following weighted sum:

0×0 + 1×0 + 1×9 + 1×175 + 1×9 + 1×23 + 2×15 +
2×17 + 2×28 + 2×7 + 2×0 + 1×9 + 1×55 + 1×0 = 414

The interval for the final measurement of the number of tokens corresponds to the
amount of model time that passed from when the final measurement was made until
the time average was calculated. In this case we have calculated the time average at
the time when the simulation stopped, i.e., at time 347, which is equal to the time

12.3 Data Collection from the Markings Reached 283

 0

 1

 2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

P
ac

ke
ts

T
oS

en
d

Step

 0

 1

 2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

P
ac

ke
ts

T
oS

en
d

Step

 0

 1

 2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

P
ac

ke
ts

T
oS

en
d

Step

 0

 1

 2

 0 50 100 150 200 250 300 350

P
ac

ke
ts

T
oS

en
d

Model time

 0

 1

 2

 0 50 100 150 200 250 300 350

P
ac

ke
ts

T
oS

en
d

Model time

 0

 1

 2

 0 50 100 150 200 250 300 350

P
ac

ke
ts

T
oS

en
d

Model time

Fig. 12.7 Number of tokens on PacketsToSend from Table 12.1, plotted against step number (top)
and model time (bottom)

at which the last measurement was made. This is why the interval 0 has been used
to weight the final measurement above. The time average is obtained by dividing
the above weighted sum by 347, which is the amount of time that passed between
the first measurement and the end of the simulation. The time-averaged number
of tokens is approximately 1.19, to be compared with 1.29, which is the average
number of tokens when time is not considered. The time average reflects better the
fact that there were zero tokens on the place for zero time at the beginning of the
simulation, and that there were two tokens on the place for a relatively short period
of time.

284 12 Simulation-based Performance Analysis

Statistics that take timing information into account are called continuous-time
statistics [67]. In general, suppose that we have a set of observations x1,x2, . . . ,xn

that are observed at model times t1, t2, . . . ,tn, where ti+1 ≥ ti for all i. The time sum
and time average of the observations at time t ≥ tn are calculated as follows:

sumt = (
n−1

∑
i=1

xi(ti+1 − ti))+ xn(t − tn)

avrgt =
sumt

t − t1

The marking of a place can change only when one of its neighbouring transitions
occurs. Hence, in order to calculate the time-average number of tokens on a place, it
is sufficient to measure the number of tokens when a neighbouring transition occurs.
The simulator in CPN Tools can automatically detect which transitions are neigh-
bours of a place, and exploits this to reduce the number of times the predicate and
observation functions are invoked. Figure 12.8 shows the equivalent of Fig. 12.7 ob-
tained, when we reduce the number of measurements in this way. It can be seen that
in this case only seven measurements are required, in contrast to the 14 measure-
ments made when we observed the number of tokens in each step of the simulation.
This reduces the time overhead of data collection during simulation.

Next we investigate the number of data packets and acknowledgements in transit
on the network. This performance measure can be estimated by defining a mon-
itor that considers the sum of the numbers of data packets and acknowledge-
ments on the places B and D. In the following, we have named this monitor
NetworkBufferQueue. As above, this monitor takes into account the amount of time
for which any given number of tokens is present on the two places. This moni-
tor is an example of a user-defined data collection monitor that is associated with
more than one place. It calculates the time-averaged number of tokens on these
two places, and it is therefore sufficient to measure the number of tokens when-
ever one of the transitions connected to either of these places occurs. The moni-
tor is therefore associated with places B and D, and the transitions TransmitPacket,
ReceivePacket, TransmitAck, and ReceiveAck. The predicate function (not shown
here) is defined such that it returns true whenever one of the four transitions men-
tioned above occurs. The start function (start) and the observation function (obs)
for NetworkBufferQueue return the sum of the numbers of tokens on places B and
D:

fun start (Protocol’B_1_mark : DATAPACKET tms,
Protocol’D_1_mark : ACK tms) =

SOME ((size Protocol’B_1_mark) +
(size Protocol’D_1_mark));

fun obs (bindelem, Protocol’B_1_mark : DATAPACKET tms,
Protocol’D_1_mark : ACK tms) =

(size Protocol’B_1_mark) +
(size Protocol’D_1_mark);

12.3 Data Collection from the Markings Reached 285

 0

 1

 2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

P
ac

ke
ts

T
oS

en
d

Step

 0

 1

 2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

P
ac

ke
ts

T
oS

en
d

Step

 0

 1

 2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

P
ac

ke
ts

T
oS

en
d

Step

 0

 1

 2

 0 50 100 150 200 250 300 350

P
ac

ke
ts

T
oS

en
d

Model time

 0

 1

 2

 0 50 100 150 200 250 300 350

P
ac

ke
ts

T
oS

en
d

Model time

 0

 1

 2

 0 50 100 150 200 250 300 350

P
ac

ke
ts

T
oS

en
d

Model time

Fig. 12.8 Measurements on PacketsToSend taking neighbouring transitions into account, plotted
against step number (top) and model time (bottom)

The start function takes the current markings of places B and D in instance 1 of
the Protocol module as parameters. This function returns the sum of the numbers of
tokens on the two places. The function uses the predefined function size to obtain
the size of a multiset. The function start returns an option type of the form SOME
x. The reason for this is that sometimes the user may not want to define a start
function. In this situation CPN Tools uses a default start function that returns the
value NONE (which is ignored). The observation function takes three parameters:
a binding element, which is not used in the body of the function, and the current

286 12 Simulation-based Performance Analysis

markings of the places B and D. It computes the sum of the numbers of tokens on
the two places in the same way as in the start function.

12.4 Collecting Data from the Final Marking

In the above, we have seen that a monitor has a start function that can be used to
collect data from the initial marking of the CPN model. Similarly, a monitor has
a stop function which can be used to collect data from the final marking, i.e., the
marking of the CPN model at the end of the simulation. As with the start function,
the stop function of a monitor cannot be used to collect data from binding elements.

To illustrate the use of stop functions, we consider the throughput of the protocol
system, i.e., the number of correct (non-duplicate) data packets delivered by the
protocol system per time unit. This performance measure can be calculated at the
end of a simulation by dividing the number of unique data packets that have been
received during the simulation by the model time in the final marking. We therefore
implement a user-defined data collection monitor named Throughput that uses a
stop function to calculate the throughput based on the number of observations made
by the DataPacketDelay monitor. Recall that the DataPacketDelay monitor makes
an observation whenever the data packet being received is the expected one. The
function stop for the Throughput monitor is implemented as follows:

fun stop () =
let
val received = Real.fromInt

(DataPacketDelay.count());
val modeltime = Real.fromInt (ModelTime());

in
SOME (received / modeltime)

end;

The monitor does not need to collect any data from place markings and is, there-
fore, not associated with any places. Consequently, the stop function has no param-
eters. The number of correct data packets that were received during the simulation
is obtained using the function DataPacketDelay.count() which returns the
number of data values that were observed by the DataPacketDelay monitor. Since a
simulation starts at model time 0, the function ModelTime will return at the end of
the simulation the amount of model time that has passed since the start of the simu-
lation. The number of observations and the model time are converted to reals using
the function Real.fromInt before the two numbers are divided. The data value
is returned using the option type constructor SOME in the same way as for the start
function of the NetworkBufferQueue monitor defined in the previous section. Again,
the reason for this is that the user may not always want to define a stop function to
return a data value from the final marking.

12.5 Simulation Output 287

As a second example of the collection of data from the marking reached at the end
of a simulation, we consider the utilisation of the receiver, i.e., the proportion of time
in a simulation during which the receiver is busy receiving data packets and send-
ing acknowledgements. In the following, we have named the corresponding monitor
ReceiverUtilisation. The receiver becomes busy when the transition ReceivePacket
occurs. Hence, we can estimate the performance measure of interest by multiplying
the number of occurrences of ReceivePacket by 17 time units (the time delay on Re-
ceivePacket) and dividing the result by the total model time. We use a stop function
for the monitor in a way similar to that for the Throughput monitor. In the calcu-
lation, we use excesstime to take into account the fact that a simulation may
stop before 17 time units have elapsed since the last occurrence of ReceivePacket.
In this case, the final occurrence of the transition adds an additional 17 time units to
the estimate of the busy time of the receiver, but the receiver has not been busy for
all 17 units of time. The function stop for the monitor is as follows:

fun stop (Protocol’NextRec_1_mark : NO tms) =
let
val busytime = DataPacketReceptions.count() * 17;
val ts = timestamp (Protocol’NextRec_1_mark);

val excesstime = Int.max (ts - ModelTime(),0);
val busytime’ = Real.fromInt

(busytime - excesstime);
in
SOME (busytime’ / (Real.fromInt (ModelTime())));

end;

The stop function uses DataPacketReceptions.count() to obtain the
number of times that the transition ReceivePacket occurred. The function
timestamp is used to obtain the timestamp ts of the token on the place
NextRec. This timestamp indicates the time at which any ongoing reception of a
data packet will finish. The stop function then computes any excess time in the re-
ceiver busy time caused by the simulation stopping before 17 units after the last
occurrence of ReceivePacket. The utilisation of the receiver is calculated by divid-
ing the actual busy time (busytime’) of the receiver by the simulated model time,
which is returned by the function ModelTime.

12.5 Simulation Output

Several different kinds of output can be generated from data collection monitors in
CPN Tools. In this section, we show some examples of performance-related output,
including log files and statistical reports. The simulation output presented in this
section is based on the following settings of the parameters for the protocol system:

288 12 Simulation-based Performance Analysis

val Wait = 175;
val successrate = 0.9;
fun Delay() = discrete(25,75);
fun NextArrival() = discrete(200,220);

All of the data that is collected by a data collection monitor can be saved in a data
collection log file. Figure 12.9 shows the first part of a log file for the PacketsTo
SendQueue monitor. The log file corresponds to the simulation reported in Ta-
ble 12.1 and Figs 12.7 and 12.8.

There are four columns in the log file. The first column shows the data that was
collected by the monitor. The second column shows a counter that enumerates the
collected data values. The third column shows the number of the simulation step
after which the data was collected. The fourth column shows the model time at
which the data was collected. For example, the last line of Fig. 12.9 shows that there
was 1 token on the place PacketsToSend after step 11, which occurred at model time
283, and that was the 7th measurement made by the monitor.

#data counter step time
0 1 0 0
1 2 1 0
1 3 2 0
1 4 4 184
2 5 6 216
2 6 10 283
1 7 11 283

Fig. 12.9 Data collection log file for PacketsToSendQueue monitor

Data collection log files can be postprocessed after a simulation has been com-
pleted. For example, they can be imported into a spreadsheet or plotted. CPN Tools
generates scripts for plotting data collection log files using gnuplot [48], which is
a program for plotting data and functions. These scripts make it easy to generate
graphs such as those previously shown in Fig. 12.7. Figure 12.10 shows the data
packet delay as a function of time based on the data contained in a log file for the
DataPacketDelay monitor. It can be seen that owing to loss of data packets occa-
sional high peaks of data packet delays are observed.

Data collection monitors are used to make repeated measurements or observa-
tions of quantities, such as packet delays, the reception of duplicate data packets, or
the number of tokens on a place. The separate observations are often of little interest,
but it is interesting to calculate statistics for the set of observations. For example,
it is not interesting to know the packet delay of a single data packet in the timed
protocol example, but it is interesting to know the average and maximum packet de-
lays for all of the data packets that are received by the receiver during a simulation.
A statistic is a quantity, such as an average or maximum, that is computed from an
observed data set.

12.5 Simulation Output 289

 0

 500

 1000

 1500

 2000

 0 50000 100000 150000 200000 250000

D
at

a
P

ac
ke

t D
el

ay

Model time

 0

 500

 1000

 1500

 2000

 0 50000 100000 150000 200000 250000

D
at

a
P

ac
ke

t D
el

ay

Model time

Fig. 12.10 Data packet delays observed in a simulation

A data collection monitor can calculate either the (regular) average or the time
average for the data values that the monitor collects. A monitor that calculates a
(regular) average is said to calculate discrete-parameter statistics. A monitor that
calculates a time averaged is said to calculate continuous-time statistics. An option
for the monitor determines which kind of statistics it calculates. Both kinds of moni-
tors can calculate a number of different statistics, including the count (number of ob-
servations), minimum, maximum, sum, average, first value observed, and last (i.e.,
most recent) value observed. A monitor that calculates continuous-time statistics
can also calculate the time of first observation, time of last observation, and inter-
val of time since the first observation. Each data collection monitor has predefined
functions that can be used to access the statistics that are calculated for that moni-
tor. Examples of these functions are count, sum, avrg, and max. We have seen,
for example, that the function DataPacketReceptions.count was used to
calculate the receiver utilisation.

The statistics that are calculated for data collection monitors are saved in various
kinds of reports. A simulation performance report contains statistics that have been
calculated for the data collected by monitors during a single simulation. Tables 12.2
and 12.3 show statistics from a simulation performance report for the timed proto-
col. In addition to statistics obtained from monitors, the report contains information
telling us that the simulation stopped at model time 275 201 after 10 000 simulation
steps had been executed. This information has not been included in the two tables.

Table 12.2 shows the continuous-time statistics from the simulation performance
report. It contains a number of statistics for each of the data collection monitors
that calculate continuous-time statistics. This simulation performance report con-
tains five statistics: the count, time average, standard deviation, minimum, and max-
imum. The user can determine which statistics should be included in a simulation

290 12 Simulation-based Performance Analysis

Table 12.2 Continuous-time statistics from simulation performance report

Monitor Count Average StD Min Max

PacketsToSendQueue 4 219 1.2583 0.9207 0 5
NetworkBufferQueue 5 784 0.5004 0.5000 0 1

performance report. The statistics for the PacketsToSendQueue monitor show that
the time-averaged number of data packets to be sent was 1.2583, that the standard
deviation (StD) was 0.9207, and that the maximum number of data packets to be
sent was 5. The count statistic for this monitor shows that it collected 4219 data val-
ues, i.e., it measured the number of tokens on the place PacketsToSend 4219 times.
The time average for the NetworkBufferQueue monitor shows that the time-averaged
number of packets in transit i.e., the time-averaged number of tokens on places B
and D, was 0.5004.

Table 12.3 shows the discrete-parameter statistics from the simulation perfor-
mance report. The count statistic for the DataPacketDelay monitor shows that this
monitor measured the packet delay for 1309 data packets. The average packet delay
was 186.30 time units. The sum and count statistics for the DataPacketsReception
monitor show that the transition ReceivePacket occurred 1 439 times during the
simulation. The sum for the DuplicateReceptions monitor shows that 130 duplicate
data packets were received, and the count statistic shows that the monitor collected
1439 data values. The average is equal to the proportion of duplicate data packets
received relative to the total number of data packets received, and in this case 9.03%
of the data packets received were duplicates. The Throughput monitor shows that
the throughput for the system was 0.0048 data packets per time unit. Finally, the
ReceiverUtilisation monitor shows that the receiver was busy 8.89% of the time.

Table 12.3 Discrete-parameter statistics from simulation performance report

Monitor Count Sum Average StD Min Max

DataPacketDelay 1 309 243 873 186.30 152.89 51 851
DataPacketReceptions 1 439 1 439 1.0 0.0 1 1
DuplicateReceptions 1 439 130 0.0903 0.2868 0 1
Throughput 1 0.0048 0.0048 0.0 0.0048 0.0048
ReceiverUtilisation 1 0.0889 0.0889 0.0 0.0889 0.0889

12.6 Conducting Simulation Experiments 291

12.6 Conducting Simulation Experiments

As we have seen, a number of statistics can be calculated for the data that is collected
by a particular data collection monitor, and these statistics can be used as estimates
of performance measures. Since most simulation models contain random behaviour,
the simulation output data also exhibit random behaviour. In particular, this means
that running different simulations will result in different estimates, and hence care
must be taken when interpreting and analysing the output data. Table 12.4 shows
the averages for some of the monitors, calculated for five different simulations of
the timed protocol model described in Sect. 12.1. Each simulation was stopped after
1500 unique data packets had been received by the receiver. Note that the estimates
of the performance measures vary rather a lot from one simulation to another. For
example, the average packet delay varies from 184.34 (in simulation 2) to 250.95
(in simulation 1). At the other extreme, the throughput estimate varies very little,
and the same is true for the receiver utilisation. The intuitive reason for the latter is
that even though the individual data packet delay may vary a lot, almost the same
numbers of data packets will be received per time unit when a longer period of time
is considered.

The estimates listed in Table 12.4 for five different simulations show that when
one is conducting performance analysis it is necessary to perform multiple simula-
tions to obtain statistically reliable results, and it is necessary to have a way to deter-
mine the accuracy of the estimates obtained. Confidence intervals are a commonly
used technique for determining how reliable the estimates of performance measures
are. A 95% confidence interval is an interval which is determined such that there
is a 95% likelihood that the true value of the performance measure is within that
interval. The most frequently used confidence intervals are confidence intervals for
averages of estimates of performance measures and are based on the assumption
that the estimates are independent and identically distributed. As an example, con-
sider the five estimates of the average data packet delay in Table 12.4. The average
of these five values is 205.30. The 95% confidence interval for the average packet
delay has endpoints 205.30 ± 21.43, i.e., it is the interval [205.30 - 21.43 , 205.30
+ 21.43] = [183.87, 226.73]. We can thus conclude that there is a 95% probability
that the actual average packet delay for the first 1500 data packets received is in the

Table 12.4 Estimates of performance measures from five different simulations

Simulation
Performance measure 1 2 3 4 5

PacketsToSendQueue 1.5702 1.2567 1.3853 1.2824 1.2762
NetworkBufferQueue 0.5047 0.4946 0.5093 0.5125 0.5073
DataPacketDelay 250.95 184.34 210.20 191.93 189.07
DuplicateReceptions 0.1026 0.0938 0.1137 0.0983 0.1073
Throughput 0.004768 0.004758 0.004766 0.004763 0.004760
ReceiverUtilisation 0.089749 0.088802 0.090570 0.088693 0.089821

292 12 Simulation-based Performance Analysis

interval [183.87, 226.73]. CPN Tools can automatically compute confidence inter-
vals for estimates of performance measures, and saves these in performance report
files as will be explained below.

The size of a confidence interval is dependent on many different things, for ex-
ample, the data values on which it is based, and the confidence level. The confidence
level of the confidence interval for the data packet delay discussed above was 95%.
Given a set of data values, a 90% confidence interval will be narrower than a 95%
confidence interval, whereas a 99% confidence interval will be wider. Figure 12.11
shows the 90, 95, and 99% confidence intervals for the data packet delays in
Table 12.4.

 100

 150

 200

 250

 300

90 95 99

A
ve

ra
ge

 d
at

a
pa

ck
et

 d
el

ay

Confidence interval %

 100

 150

 200

 250

 300

90 95 99

A
ve

ra
ge

 d
at

a
pa

ck
et

 d
el

ay

Confidence interval %

Fig. 12.11 90, 95, and 99% confidence intervals for the average data packet delay

The size of a confidence interval is also dependent on the length of the individual
simulations and on the number of simulations. In general, the size of a confidence in-
terval will decrease if the number of data values observed is increased. Figure 12.12
shows how the 95% confidence interval for the average data packet delay decreases
as more estimates are collected by increasing the number of simulations.

Calculations of performance measure estimates and of confidence intervals are
supported by means of simulation replications in CPN Tools. The basic idea of sim-
ulation replications is to collect estimates of performance measures from a set of
independent, statistically identical simulations. Statistically identical simulations of
a given model start and stop in the same way. For example, statistically identical
simulations of the timed protocol example all start in the same initial state, and they
all stop when the same stop criterion is fulfilled; for example, they could all stop
when 1500 unique data packets have been received by the receiver. Furthermore,
statistically identical simulations use the same input parameter settings; for exam-
ple, the time between data packet arrivals could be always uniformly distributed
between 200 and 220. The estimates in Table 12.4 were obtained by running five

12.6 Conducting Simulation Experiments 293

 180

 200

 220

 240

 260

 280

 300

1007550255

A
ve

ra
ge

 d
at

a
pa

ck
et

 d
el

ay

Number of simulations

 180

 200

 220

 240

 260

 280

 300

1007550255

A
ve

ra
ge

 d
at

a
pa

ck
et

 d
el

ay

Number of simulations

Fig. 12.12 95% confidence intervals for the average data packet delay

simulation replications of the CPN model of the timed protocol. To do this, we
evaluated the following CPN ML expression, which uses the predefined function
Replications.run provided by CPN Tools:

Replications.run 5;

To ensure that the five simulations stopped when 1500 unique data packets had
been received by the receiver, we used a breakpoint monitor. A breakpoint monitor
is a monitor which can be used to stop a simulation when the predicate function
of the monitor evaluates to true. In this case, we associate the monitor with the
transition ReceivePacket and defined the predicate function as follows:

fun pred (Protocol’Receive_Packet (1, {k,...})) =
k > 1500

| pred _ = false;

This predicate function returns true when the variable k, indicating which data
packet the receiver expects next, is greater than 1500 – in which case the receiver has
successfully received and acknowledged 1500 unique data packets. The user cannot
define an observation function for a breakpoint monitor, as breakpoint monitors can
be used only for stopping simulations.

The performance estimates collected during the simulations are saved in log files.
Figure 12.13 shows the five estimates of the average data packet delay for 1500 data
packets. The column ‘#data’ lists the performance measure estimates (in this case
the average data packet delay), and the column ‘counter’ lists the numbers of the
simulations.

A simulation replication report can be generated; this contains general infor-
mation about the simulation replications that were run. Figure 12.14 shows an ex-
cerpt from the simulation replication report for the five simulation replications of the

294 12 Simulation-based Performance Analysis

#data counter
250.946702 1
184.340440 2
210.198534 3
191.931379 4
189.071286 5

Fig. 12.13 Log file for estimates of average data packet delay

Simulation no.: 1
Steps.........: 11530
Model time....: 314810
Stop reason...: The following stop criteria are fulfilled:
- Breakpoint: PacketsReceived

Time to run simulation: 2 seconds

Simulation no.: 2
Steps.........: 11450
Model time....: 315488
Stop reason...: The following stop criteria are fulfilled:
- Breakpoint: PacketsReceived

Time to run simulation: 3 seconds

Fig. 12.14 Excerpt from a simulation replication report

timed protocol model. A simulation replication report has a section for each simula-
tion which specifies the number of simulated steps and model time, and the reason
why the simulation run was stopped. In this case, the simulation run was stopped
because the PacketsReceived breakpoint monitor defined above evaluated to true.

CPN Tools stores information about estimates of averages, confidence intervals,
standard deviation, minima and maxima estimates in a performance report. Ta-
ble 12.5 shows some parts of this performance report for the monitors concerned
with the packets to send queue, network buffer queue, and data packet delay. The
column ‘Average’ specifies the average of the estimates collected across the set of
simulations. The column ‘95%’ specifies the 95% confidence interval for each per-
formance estimate by specifying the amount that must be subtracted from (or added
to) the average to obtain the left (or right) endpoint of the confidence interval. The
column ‘StD’ specifies the standard deviations of the collected estimates. Finally,
the columns ‘Min’ and ‘Max’ list the minimum and maximum, respectively, of the
collected estimates.

When conducting the simulations of the timed protocol model above, we started
the data collection from the very beginning of the simulation. It is often useful to
define a warm-up period, during which data should not be collected, at the beginning
of a simulation. Such a warm-up period is used to ignore the behaviour of the model
during the time it takes the model to reach a steady state. As an example, consider a
study of the steady-state behaviour of the timed protocol. The model starts in a state
where there are no data packets waiting to be sent, and this means that the packet

12.7 Model Parameters and Configurations 295

Table 12.5 Reliable statistics based on data from five replications

Monitor Average 95% StD Min Max

PacketsToSendQueue 1.3542 0.1025 0.1169 1.2567 1.5702
NetworkBufferQueue 0.5057 0.0053 0.0061 0.4946 0.5125
DataPacketDelay 205.30 21.43 24.45 184.34 250.95

delay for the first few data packets is likely to be low. As the model reaches steady
state, it is likely that there will be a number of data packets waiting to be sent, and
hence the packet delay in the steady state is likely to be increased. The data packets
that are received before steady-state behaviour is reached should be ignored so that
they do not adversely affect the estimate of the average data packet delay. With
CPN Tools it is possible to define such a warm-up period by defining the predicate
functions of the monitors such that they return false until the situation defining the
end of the warm-up period has been reached.

As described above, CPN Tools supports the simulation replication method for
obtaining reliable estimates of performance measures. Another method is the batch-
means method. In this method, estimates of performance measures are derived from
a single long simulation. The idea behind this method is to divide the simulation
into intervals called batches. The observations within each of the batches are then
grouped, and an average calculated for each batch. The averages obtained can then
be used to calculate estimates of a performance measure. The size of a confidence
interval computed via the batch-means method will depend on the number of obser-
vations per batch and on the number of batches. Currently, there is not direct support
for the batch-means method in CPN Tools.

12.7 Model Parameters and Configurations

The performance of a modelled system is often dependent on a number of parame-
ters. Simulation-based performance analysis may then be used to compare different
scenarios or configurations of the system. In some studies, the scenarios may be
given, and the purpose of the study may be to compare the given configurations and
determine the best of these configurations. If the scenarios are not predetermined,
one goal of the simulation study may be to locate the parameters that have the most
impact on a particular performance measure.

The timed protocol example has parameters that determine the probability that
packets will be transmitted successfully, the minimum and maximum times between
arrivals of data packets, the minimum and maximum times for the transmission
delay, and the value of the retransmission timer. Changing these parameters will
change the performance of the system. For example, reducing the probability that
a packet is transmitted successfully is expected to increase the average data packet
delay and average number of data packets to be sent. In the CPN model presented

296 12 Simulation-based Performance Analysis

in Sect. 12.1, these parameters were defined using symbolic constants in the CPN
model. An example was the function Success:

val successrate = 0.9;
fun Success() = uniform(0.0,1.0)<=successrate;

The probability that a packet will be transmitted successfully is 90%. This pa-
rameter can be changed by modifying the declaration of the symbolic constant
successrate. In CPN Tools, these changes must be made manually, and the dec-
laration has to be rechecked by the syntax and type checker. After the recheck, it is
also necessary to recheck the parts of the model, including the declarations and net
structure, that are dependent on the declaration that has been rechecked. When the
symbolic constant successrate is changed, then the transitions TransmitPacket
and TransmitAck, as well as their surrounding arcs, must be rechecked.

These problems can be avoided if parameters are declared as reference vari-
ables. It then becomes possible to change the value of a parameter without having to
recheck any parts of the CPN model. Below are declarations of reference variables
for the parameters of the timed CPN model presented in Sect. 12.1:

globref successrate = 90;
globref packetarrival = (200,220);
globref packetdelay = (25,75);
globref retransmitwait = 175;

The keyword globref specifies that a global reference variable is being de-
clared, i.e., the reference variable can be accessed from any part of the CPN model.
The reference variables are successrate, packetarrival, packetdelay,
and retransmitwait. We have chosen to specify the success rate as an integer
giving the probability as a percentage, of successfully transmitting a packet. The ref-
erence variable packetarrival is a pair specifying the lower and upper bounds
for the discrete uniform distribution of integers that is used for data packet arrivals.
Analogously, the reference variable packetdelay is a pair specifying the lower
and upper bounds on the transmission delay of packets on the network. The ref-
erence variable retransmitwait specifies the amount of time that must elapse
before a data packet can be retransmitted. The values of the reference variables can
now be accessed from the following functions:

fun Success() = discrete(0,100)<=(!successrate);
fun Delay() = discrete(!packetdelay);
fun NextArrival() = discrete(!packetarrival);
fun Wait() = !retransmitwait;

The operator ! is used to access the value of a reference variable. Evaluating
the expression !successrate returns the value 90. The operator := is used to
assign a new value to a reference variable. Suppose that the probability that a packet
is transmitted successfully is to be changed from 90% to 75%. This can be done by
the following expression:

12.7 Model Parameters and Configurations 297

successrate := 75;

It is not necessary to recheck the syntax of any part of a CPN model when the
value of a reference variable is changed. Hence, it is easy to change the values of
the parameters and simulate different model configurations without any rechecks.
Figure 12.15 shows how the Protocol module has been modified. The only change
is that the time delay inscriptions on the arcs around PacketsToSend have been
modified to use the function Wait defined above.

To make it convenient to investigate different configurations, i.e., settings of the
parameters of the model, it is beneficial to define a colour set that describes a con-
figuration of the model. For the timed protocol model, this can be done as follows:

colset INT = int;
colset INTxINT = product INT * INT;

colset CONFIG = record successrate : INT *
packetarrival : INTxINT *
packetdelay : INTxINT *
retransmitwait : INT;

A colour belonging to the colour set CONFIG describes a particular setting of
the parameters of the timed protocol model. As an example, the configuration of
the timed protocol model which we have considered until now is specified by the
following record colour:

{successrate = 90,
packetarrival = (200,220),
packetdelay = (25,75),
retransmitwait = 175}

Based upon this, we can define a function which, given a configuration as a
colour belonging to the colour set CONFIG, updates the parameters of the model
accordingly:

data

n

(n,d,t)

k

if n=k
then k+1
else k

k

if n>k
then n
else k

n if Success()
then 1`n
else empty

n

(n,d,t)(n,d,t)

n

if n=k
then data^d
else data

if Success()
then 1`(n,d,t)
else empty

(n,d,t)@+Wait

Remove
Packet

Receive
Ack

@+7

@+Delay()

Receive
 Packet

@+17

Transmit
Packet

@+Delay()

Send
Packet

@+9

Ack
Received

NO

NextRec

1

NO

C

NO

D

NO

A

DATAPACKET

NextSend

1

NO

Data
Received Out

1`""

DATA

B

DATAPACKET

Packets
To Send

In

DATAPACKET

if n>k
then 1`k
else empty

(n,d,t)@+Wait()

if n=k
then k+1
else k

(n,d,t)

Transmit
Ack

Fig. 12.15 The revised Protocol module

298 12 Simulation-based Performance Analysis

fun setconfig (config : CONFIG) =
(successrate := (#successrate config);
packetarrival := (#packetarrival config);
packetdelay := (#packetdelay config);
retransmitwait := (#retransmitwait config));

This function updates each of the global reference variables in the model accord-
ing to the value of the corresponding field in the configuration config provided
as an argument to the function. The expressions in a sequence separated by semi-
colons are evaluated in turn, and the result of the complete sequence is the result of
evaluating the last expression in the sequence.

Assume that we would like to investigate the performance of the timed protocol
for values of the retransmission parameter in the set {10, 20, 30, ..., 300 }. Further-
more, to obtain results which are statistically more reliable than conducting just a
single simulation, we wish to perform five simulation replications for each value
of the parameters. The first step is then to generate configuration colours accord-
ing to the configurations that we would like to investigate. The 30 configurations of
interest can be generated automatically as follows:

val configs = List.tabulate
(30,fn i =>

{successrate = 90,
packetarrival = (200,220),
packetdelay = (25,75),
retransmitwait = 10+(i*10)});

In the above, we have used the predefined CPN ML function List.tabulate
to create a list containing all configurations. The first argument of List.
tabulate is the length of the list to be created. The second argument is a function
which is called for each index i in the list (starting from 0) to create each element
in the list. The value configs is now a list containing 30 elements describing the
configurations to be investigated.

Next we define a function runconfig, which, given an integer n and a con-
figuration config, conducts n simulation replications of the model for the given
configuration:

fun runconfig n config = (setconfig config;
Replications.run n);

Finally, we apply the function runconfig 5 to each of the elements in the list
configs and specify that five simulation replications must be performed for each
configuration:

List.app (runconfig 5) configs;

12.7 Model Parameters and Configurations 299

The function List.app applies the function runconfig to each element in the
list configs.

The CPN simulator now conducts all of the simulations while saving the sim-
ulation output in log files and performance reports as described in Sects. 12.5 and
12.6. Figure 12.16 shows estimates of the average data packet delay that were ob-
tained in this way (with 95% confidence intervals). It can be seen that for values
between 10 and 200 time units we get reasonably accurate estimates of the average
data packet delay. For higher values the average data packet delay is higher, and the
confidence intervals become wider. The estimates show that the retransmission time
has relatively little effect on the average data packet delay as long as it is below 150
time units. When the retransmission time is above 250 time units, large average data
packet delays are observed because lost data packets now wait a long time before
being retransmitted.

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200 250 300

A
ve

ra
ge

 D
at

aP
ac

ke
tD

el
ay

Retransmission wait

95 % confidence intervals

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200 250 300

A
ve

ra
ge

 D
at

aP
ac

ke
tD

el
ay

Retransmission wait

95 % confidence intervals

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200 250 300

A
ve

ra
ge

 D
at

aP
ac

ke
tD

el
ay

Retransmission wait

95 % confidence intervals

Fig. 12.16 Estimation of average data packet delay

Figure 12.17 shows the estimates of the average number of data packets on the
place PacketsToSend. It can be seen that the curve (and the confidence intervals)
is similar to that in Fig. 12.16. When the retransmission time becomes more than
200 time units, a queue of data packets starts to build up on the place, which in turn
contributes to the increased data packet delay that is observed in Fig. 12.16. This is
also evident when we consider the log files for the PacketsToSendQueue monitor.
Figure 12.18 depicts data from a log file of the PacketsToSendQueue monitor for a
simulation with a retransmission time of 300. In this case, the system has become
unstable, and hence performance measure estimates must be interpreted with care
since the average number of tokens will depend on how long the simulation has been
running, and the average number of tokens can be made arbitrarily large by simply
continuing the simulation for long enough.

Figure 12.19 shows the estimates of the average number of tokens on places B
and D. Here it can be seen that when the time between retransmissions is small, the
more frequent retransmissions introduce more packets into the network. In all cases,

300 12 Simulation-based Performance Analysis

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

A
ve

ra
ge

 P
ac

ke
ts

T
oS

en
dQ

ue
ue

Retransmission wait

95 % confidence intervals

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

A
ve

ra
ge

 P
ac

ke
ts

T
oS

en
dQ

ue
ue

Retransmission wait

95 % confidence intervals

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

A
ve

ra
ge

 P
ac

ke
ts

T
oS

en
dQ

ue
ue

Retransmission wait

95 % confidence intervals

Fig. 12.17 Estimation of average number of tokens on PacketsToSend

 0

 10

 20

 30

 40

 50

 0 50000 100000 150000 200000 250000 300000

P
ac

ke
ts

T
oS

en
dQ

ue
ue

Model time

 0

 10

 20

 30

 40

 50

 0 50000 100000 150000 200000 250000 300000

P
ac

ke
ts

T
oS

en
dQ

ue
ue

Model time

Fig. 12.18 Number of tokens on PacketsToSend in a simulation with a retransmission time of 300

we get reasonably accurate estimates of the performance measure, as is evident from
the narrow confidence intervals.

Figure 12.20 shows how the receiver utilisation decreases when the retransmis-
sion time is increased. When the retransmission time is above 150, there are rarely
any unnecessary retransmissions of data packets. Hence, the receiver utilisation no
longer decreases. Figure 12.21 shows how the throughput of the system varies as we
increase the retransmission parameter. Once the retransmission parameter becomes
larger than 250, throughput decreases and the confidence intervals become larger.

12.7 Model Parameters and Configurations 301

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300

A
ve

ra
ge

 N
et

w
or

kB
uf

fe
rQ

ue
ue

Retransmission wait

95 % confidence intervals

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300

A
ve

ra
ge

 N
et

w
or

kB
uf

fe
rQ

ue
ue

Retransmission wait

95 % confidence intervals

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300

A
ve

ra
ge

 N
et

w
or

kB
uf

fe
rQ

ue
ue

Retransmission wait

95 % confidence intervals

Fig. 12.19 Estimation of average number of tokens on places B and D

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

R
ec

ei
ve

rU
til

is
at

io
n

Retransmission wait

95 % confidence intervals

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

R
ec

ei
ve

rU
til

is
at

io
n

Retransmission wait

95 % confidence intervals

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

R
ec

ei
ve

rU
til

is
at

io
n

Retransmission wait

95 % confidence intervals

Fig. 12.20 Estimation of receiver utilisation

 0.0045

 0.0046

 0.0047

 0.0048

 0.0049

 0.005

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t

Retransmission wait

95 % confidence intervals

 0.0045

 0.0046

 0.0047

 0.0048

 0.0049

 0.005

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t

Retransmission wait

95 % confidence intervals

 0.0045

 0.0046

 0.0047

 0.0048

 0.0049

 0.005

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t

Retransmission wait

95 % confidence intervals

Fig. 12.21 Estimation of throughput

Chapter 13
Behavioural Visualisation

As illustrated in Chap. 2, a user of CPN Tools observes the execution of a CPN
model directly in its graphical representation. Even though the CPN modelling lan-
guage supports abstraction and a concept of hierarchical modules there can still be
an overwhelming amount of detail in a constructed CPN model. Furthermore, ob-
serving every single step in a simulation is often too detailed a level of observation
for investigating the behaviour of a model, especially for large CPN models. This
can be a limitation when, for example, presenting a CPN model to colleagues unfa-
miliar with the CPN modelling language and discussing the model with them. The
basic idea of behavioural visualisation is to augment the CPN model with visualisa-
tion graphics that reflect the execution of the model. This means that feedback from
simulations can be investigated at a more suitable level of detail using concepts that
are specific to the system and domain being modelled. Behavioural visualisation can
even be applied in such a way that the underlying formal CPN model becomes fully
invisible to the observer. CPN Tools can use the BRITNeY Suite visualisation tool
[11, 109] to create system- and domain-specific graphics on top of CPN models.
The BRITNeY tool is a stand-alone application, and CPN Tools invokes the primi-
tives of this visualisation tool using remote procedure calls. This visualisation tool
supports a wide range of diagram types via a plug-in architecture, and the reader is
referred to [11, 109] for full details.

In this chapter we give two examples of how BRITNeY can be used to cre-
ate system- and domain-specific graphics. We use the CPN model of the protocol
system described in Sect. 2.4, shown in Fig. 13.1, as a basis for both examples.
Section 13.1 shows how message sequence charts (sequence diagrams) can be used
to illustrate the exchange of messages in the protocol system. Section 13.2 illus-
trates how it is possible to provide input to and control a simulation by interacting
with system-specific graphics. Additional examples of behavioural visualisation are
given in Sects. 14.1–14.3.

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 13, 303
c© Springer-Verlag Berlin Heidelberg 2009

304 13 Behavioural Visualisation

if n=k
then k+1
else knk

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n
if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

Transmit
Ack

Receive
Packet

Transmit
Packet

Send
Packet

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

11`11 1`1

11`""6

1`(1,"COL")++
1`(2,"OUR")++
1`(3,"ED ")++
1`(4,"PET")++
1`(5,"RI ")++
1`(6,"NET")

Fig. 13.1 CPN model used to illustrate behavioural visualisation (identical to Fig. 2.10)

13.1 Message Sequence Charts

Message sequence charts (MSCs) are diagrams used to describe interactions be-
tween processes or entities. Message sequence charts are also known as sequence
diagrams in UML [94]. MSCs are widely used in the telecommunication domain
and have been standardised by the International Telecommunication Union in Rec-
ommendation Z.120 [15]. Figure 13.2 shows an example of an MSC created during
a simulation of the CPN model of the protocol system. It has four columns. The
leftmost column represents the Sender and the rightmost column represents the Re-
ceiver. The two middle columns, S-Network and R-Network, represent the sender
and receiver side of the network. This MSC captures an execution scenario where
the first data packet sent by the sender is lost, which then causes a retransmission of
the data packet. This time, the data packet is successfully transmitted to the receiver
and the corresponding acknowledgement is successfully received by the sender. The
MSC is updated during the simulation of the CPN model. As we shall see below,
this is achieved by attaching code segments to the transitions in the CPN model.
A code segment consists of a piece of sequential CPN ML code that is executed
whenever the corresponding transition occurs in a simulation of the CPN model.

The first step in visualising the execution of the CPN model of the protocol sys-
tem in an MSC is to create and initialise an MSC diagram using the primitives
provided by the visualisation tool. This is done by means of the following CPN ML
code, which is added to the declarations of the CPN model:

structure Msc = MSC (val name = "Protocol");

13.1 Message Sequence Charts 305

Fig. 13.2 Example of a message sequence chart

The MSC is created by creating a CPN ML structure named Msc using the func-
tor MSC provided by the visualisation tool. The structure Msc now contains the
primitives that can be used to update the MSC. Structures and functors are the basic
CPN ML constructs that allow larger CPN ML programs to be structured into mod-
ules each with their own name space. A CPN ML structure is similar to an object as
known from, for example, Java. A function inside a structure is accessed using the
name of the structure followed by a dot (.), followed by the name of the function
to be invoked. The four columns of the MSC can now be created by the following
sequence of CPN ML expressions separated by semicolons

(Msc.addProcess "Sender";
Msc.addProcess "S-Network";
Msc.addProcess "R-Network";
Msc.addProcess "Receiver");

The expressions in a sequence are evaluated in turn, and the result of the complete
sequence is the result of evaluating the last expression in the sequence. A column
of the MSC is created using the function addProcess inside the structure Msc.
The addProcess takes a single argument, which is the name of the column to be
created.

The MSC created and initialised above is updated during a simulation using code
segments associated with each of the transitions in the CPN model. A code seg-
ment is a piece of Standard ML code which is evaluated each time the transition
occurs. Code segments are typically used to update visualisations, to perform non-
deterministic calculations, and to read and write files. As an example, the transition
SendPacket has the following code segment attached, which creates an arrow from
the Sender column to the S-Network column when the transition SendPacket oc-
curs:

306 13 Behavioural Visualisation

input (n,d);
action

SPmsc(n,d);

where SPmsc is a function defined as

fun SPmsc (n,d)=
Msc.addEvent

("Sender","S-Network",NOxDATA.mkstr(n,d));

This code segment contains an input part and an action part. The input part lists
the variables n and d from the input arcs of SendPacket. This means that the code
segment is provided with the values bound to the variables n and d of the transi-
tion. The action part specifies a CPN ML expression which is evaluated when the
transition occurs. In this case the action part invokes the function SPmsc with the
values bound to n and d. The function SPmsc uses the function addEvent from
the structure Msc to create an arrow from the Sender column to the S-Network col-
umn, labelled with the values bound to n and d. The function NOxDATA.mkstr
is used to convert the pair (n,d) into the corresponding string representation. It is
not required that the action part of a code segment is a function call. It can be any
CPN ML expression of the proper type. We have chosen to implement the action
part using a function call here to reduce the space that the code segment takes up in
the graphical representation of the CPN model.

As another example, consider the code segment associated with the transition
TransmitPacket. As can be seen in Fig. 13.2, the code segment of this transition cre-
ates an arrow from the S-Network column to the R-Network column if the occurrence
of the transition corresponds to a successful transmission. If the occurrence corre-
sponds to the data packet being lost, it creates an internal event in the S-Network
column, represented by a small square. The code segment for the transition Trans-
mitPacket is as follows:

input (n,d,success);
action

TPmsc(n,d,success);

where TPmsc is a function defined as

fun TPmsc (n,d,success)=
if success
then Msc.addEvent

("S-Network","R-Network",NOxDATA.mkstr (n,d))
else Msc.addInternalEvent

("S-Network","Lost:"ˆ(NOxDATA.mkstr (n,d)));

This function uses the value bound to success to determine whether
addEvent is invoked (in which case an arrow is created from S-Network to
R-Network) or addInternalEvent is invoked (in which case a small square
is created on the S-Network column).

13.1 Message Sequence Charts 307

The other transitions of the CPN model have similar code segments. Each code
segment consists essentially of invoking the appropriate primitive in the visualisa-
tion tool. Figure 13.3 shows the complete CPN model with code segments associ-
ated with the transitions. The code segment of each transition has been positioned
next to the transition.

Instead of code segments, we can use a monitor as introduced in Chap. 12. This
monitor is associated with the set of all transitions in the CPN model and invokes
the appropriate visualisation primitive depending on which transition occurs. The
monitor consists of an observation function, defined as follows:

fun obs (Protocol’Send_Packet
(1, {n,d})) = SPmsc (n,d)

| obs (Protocol’Transmit_Packet
(1, {n,d,success})) = TPmsc (n,d,success)

| obs (Protocol’Receive_Packet
(1, {n,d,k,data})) = RPmsc (n,d,k)

| obs (Protocol’Transmit_Ack
(1, {n,success})) = TAmsc (n,success)

| obs (Protocol’Receive_Ack
(1, {n,k})) = RAmsc (n);

This function has a case for each transition in the CPN model. Each case invokes
the appropriate visualisation primitives. The advantage of using a monitor to invoke
the visualisation primitives is that we avoid cluttering the graphical representation
of the CPN model with code segments. Moreover, it becomes easy to turn the visu-
alisation on and off by turning the corresponding monitor on and off.

if n=k
then k+1
else k

k

data

n if success
then 1`n
else empty

n

if n=k
then k+1
else k

(n,d)(n,d)

n

if n=k
then data^d
else data

(n,d)

if success
then 1`(n,d)
else empty

(n,d)

Receive
Ack

input (n);
action
 RAmsc(n)

Transmit
Ack

input (n,success);
action
 TAmsc(n,success)

Receive
Packet input (n,d,k)

action
 RPmsc(n,d,k)

Transmit
Packet

input (n,d,success);
action
 TPmsc (n,d,success)

Send
Packet

input (n,d);
action
 SPmsc(n,d)

NextRec

1`1

NO

C

NO

D

NO

A

NOxDATA

NextSend

1`1

NO

Data
Received

1`""

DATA

B

NOxDATA

Packets
To Send

AllPackets

NOxDATA

k n

Fig. 13.3 CPN model with code segments used to update the message sequence chart

308 13 Behavioural Visualisation

13.2 System-Specific Interaction Graphics

Figure 13.4 shows an example of a system-specific interaction graphic created in
BRITNeY using a visualisation plug-in based on the SceneBeans framework [95].
This graphic shows the current state of the protocol system in a way that can be inter-
preted without any knowledge of CP-nets. The computer icon on the left represents
the sender and the computer icon on the right represents the receiver. The cloud in
the middle represents the network. The text above the sender computer shows the
text string to be transmitted and hence is a representation of the marking of the place
PacketsToSend. Similarly, the text above the receiver computer shows the text string
received by the receiver and hence is a representation of the marking of the place
DataReceived. The two counters above the sender and the receiver are representa-
tions of the values of the tokens on the places NextSend and NextRec, respectively.
The four numbers at the edges of the network cloud represent the numbers of tokens
on the network places A, B, C, and D. In the topmost part of the network, a data
packet (1,"Col") is shown, which is currently in transit on the network. The two
square boxes in the middle below the data packet (coloured green and red) allow the
user to choose whether the packet will be lost (if the user clicks on the red square)
or successfully transmitted (if the user clicks on the green square). A similar in-
teraction is used when acknowledgements are transmitted. This illustrates how it is
possible for the user to provide input to an ongoing simulation via the graphics. The
interaction graphics additionally include a dialogue box that, at the beginning of the
simulation, allows the user to enter the text string to be transmitted from the sender
to the receiver.

The interaction graphics are created on the basis of a SceneBeans file, which is an
XML file that describes the various elements in the visualisation, i.e., the computer
icons, the network cloud, the text labels, and the buttons in the present case. The
SceneBeans file also describes the behaviour and timing of the animated graphical

Fig. 13.4 Example of a system-specific interaction graphic

13.2 System-Specific Interaction Graphics 309

objects and defines the commands that can be invoked from the CPN model. The
BRITNeY visualisation tool contains an editor which can be used to develop the
SceneBeans file. The interaction graphics for the protocol system are initialised by
the following lines of CPN ML code, which are added to the declarations of the
CPN model:

structure Vis = SceneBeans (val name = "Protocol");

val _ = Vis.setVisualisation ("visualisation.xml");

structure DataDialog =
GetString (val name = "Enter message");

globref networkcount = Array.array(4,0);

The first line creates the structure representing the diagram using the func-
tor SceneBeans provided by the visualisation tool. The second line loads the
SceneBeans XML file into the diagram. The third and fourth lines create the dia-
logue box to be used for entering the message to be transmitted. The last line creates
an array with four elements, all initialised to 0. This array is used to keep track of the
numbers of packets in the four network buffers, i.e., the values of the four counters
on the edges of the network cloud.

When a simulation is started, a dialogue box pops up that allows the user to enter
the text string to be transmitted from the sender to the receiver. Figure 13.5 shows
a dialogue box in which the text "Coloured Petri Nets" has been entered.
The simulation of the CPN model will pause until the user has entered the data string
to be transmitted.

The dialogue box is created by adding a transition Init connected to the place
PacketsToSend, as shown in Fig. 13.6a. The transition Init is the only enabled tran-
sition in the initial marking, and when it occurs it removes the token with colour
() from the place Init, executes the attached code segment, and creates data packets
on the place PacketsToSend according to the data string entered by the user in the
dialogue box. The code segment of Init invokes a function InitVis, which pops up the
dialogue box and returns the data string that is entered, via the output part of the
code segment and the variable data. The variable data, which is of string type,
is then used as an argument to the function SplitData on the arc from Init to
PacketsToSend to split the string bound to data into a set of data packets of length

Fig. 13.5 Dialogue box for entering a message to be transmitted

310 13 Behavioural Visualisation

Packets
To Send

NOxDATA

Init

UNIT

()

Send
Packet

input (n,d);
action
 SPVis(n,d);

Init

input ();
output (data);
action
 InitVis()

(n,d)

()

SplitData(data)

1 1`()

Packets
To Send

NOxDATA

Init

UNIT

()

Send
Packet

input (n,d);
action
 SPVis(n,d);

Init

input ();
output (data);
action
 InitVis()

(n,d)

()

SplitData(data)

7

1`(1,"Col")++
1`(2,"our")++
1`(3,"ed ")++
1`(4,"Pet")++
1`(5,"ri ")++
1`(6,"Net")++
1`(7,"s")

(a) (b)

Fig. 13.6 Enabling (a) and occurrence (b) of transition Init

3. The implementation of the function SplitData was shown in Sect. 5.5. Fig-
ure 13.6b shows the marking after the user has pressed OK in the dialogue box. The
implementation of the function InitVis used in the code segment of the transition
Init is as follows:

fun InitVis () =
let
val data = DataDialog.getString("Message to send","")
val _ = Vis.setTextValue("send message",data)
val _ = Vis.setTextValue("receive message","")
val _ = (networkcount := Array.array(4,0))

in
data

end;

The first line in the let-part uses the function getString in the structure
DataDialog to open the dialogue box and get a string being entered by the user.
The string being entered is bound to the local variable data. The next two lines
initialise the text labels above the sender and the receiver, which show the data to be
sent and the data received, respectively. Finally, the network counter array is reset
such that all four counters have value 0 and the string data is returned so that it
can be used on the output arc to PacketsToSend.

Consider now the code segment associated with the transition SendPacket. As
can be seen in Fig. 13.6, this code segment invokes the function SPvis with the
values bound to the variables n and d. This function visualises the movement of a
data packet from the sender into the network (by showing some moving coloured

13.2 System-Specific Interaction Graphics 311

dots) and increments the counter at the upper left edge of the network cloud. The
implementation of the function SPvis is as follows:

fun SPvis (n,d) =
(Vis.setValue ("packet","text",NOxDATA.mkstr(n,d));
InvokeCommand("send packet");
IncNetworkCount(1));

This function first sets the text label of the packet to be animated. The text label
corresponds to the string representation of the data packet (n,d) which is ob-
tained using the function NOxDATA.mkstr. The function then invokes the com-
mand identified by "send packet", which causes the visualisation tool to ani-
mate the movement of the data packet from the computer into the network. Finally,
the function increments the network counter at the upper left of the network cloud.

As a final example of the code segments, consider the transition TransmitPacket.
The code segment of this transition is responsible for making visible the two squares
that let the user select whether to successfully transmit the data packet or lose it. The
variable success is then subsequently bound to either true or false depending
on the choice made by the user. The code segment for the transition TransmitPacket
is as follows:

input (n,d);
output (success);
action
TPvis(n,d);

The function TPvis returns true or false depending on the choice made by
the user, and this value is then bound to the variable success using the output part
of the code segment. The function TPvis is implemented as follows:

fun TPvis (n,d) =
(Visualisation.setValue

("packet","text",NOxDATA.mkstr(n,d));
DecNetworkCount(1);
InvokeCommand("show buttons");
case Visualisation.getNextEvent () of

"success" => (IncNetworkCount(2);
true)

| _ => false);

This function first sets the text label of the packet to be animated and then decre-
ments the network counter at the upper left of the network cloud. The function then
invokes the command identified by "show buttons", which causes the green
and red squares to appear. Then the function getNextEvent is invoked to wait
for the user to make a selection. If the choice made by the user is "success",
then the network counter at the upper right is incremented and true is returned.
Otherwise, false is returned.

312 13 Behavioural Visualisation

The other transitions in the CPN model for creating the interaction graphics have
code segments associated with them that have a complexity similar to those de-
scribed above. To update the interaction graphics, we could have considered using
a monitor in a way similar to that illustrated for MSCs in Sect. 13.1. A monitor,
however, is not suitable in this case because the function in a monitor is executed
after a step has occurred in the simulation. To let the user input a string representing
the data to be sent and to let the user choose between successfully transmitting or
losing a packet, we need to provide input during a step to bind the values of cer-
tain variables of the transition. This is only possible with code segments which are
executed during the occurrence of the transition.

Chapter 14
Examples of Industrial Applications

This chapter presents a selection of representative projects where CP-nets and their
supporting computer tools have been used for system development in an industrial
context. These projects have been selected to illustrate the fact that CP-nets can be
used in many different phases of system development, ranging from requirements
specification to design, validation, and implementation. The CPN models presented
were constructed in joint projects between our research group at Aarhus University
and industrial partners.

Many CPN projects have been carried out and documented in the literature. Ex-
amples of industrial use of CP-nets can be found in the proceedings of the CPN
workshops [91], the special issues of the International Journal on Software Tools
for Technology Transfer [33, 34, 35, 36], and the proceedings of the International
Conferences on Application and Theory of Petri Nets and Other Models of Concur-
rency [89]. Many examples have also been published in proceedings and journals
related to particular application domains. A comprehensive overview of the appli-
cations and industrial use of CP-nets can be found via the Web pages at [40]. The
above sources may provide inspiration to people who wish to learn more about the
practical application of CP-nets within a particular domain and/or are about to apply
CP-nets for the modelling and validation of a larger concurrent system.

Section 14.1 presents a project [69] conducted with Ericsson Telebit, concerned
with the design of an edge router discovery protocol for mobile ad hoc networks.
Section 14.2 presents a project [64] conducted with Systematic Software Engineer-
ing and Aarhus County Hospital, on specifying the business processes at Aarhus
County Hospital and identifying requirements for their support by a new IT system.
Section 14.3 presents a project [17] conducted with Bang & Olufsen, concerned
with the design of the BeoLink system. Finally, Sect. 14.4 presents a project [74]
conducted with the Australian Defence Science and Technology Organisation, on
the development of a scheduling tool for the Australian Defence Forces. This chap-
ter provides an overview of the CPN modelling and validation conducted in each of
these projects. The reader is referred to the papers [17, 64, 69, 73, 74, 75, 112], on
which this chapter is based, for further details of these projects.

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 14, 313
c© Springer-Verlag Berlin Heidelberg 2009

314 14 Examples of Industrial Applications

14.1 Protocol Design at Ericsson Telebit

This project [69] conducted with Ericsson Telebit was concerned with the devel-
opment of a protocol called the Edge Router Discovery Protocol (ERDP). In the
project, a CPN model was constructed that constituted a formal executable spec-
ification of ERDP. Simulation and message sequence charts were used in initial
investigations of the protocol’s behaviour. Then state space analysis was applied to
conduct a formal verification of the key properties of ERDP. The modelling, simu-
lation, and subsequent state space analysis all helped to identify several omissions
and errors in the design, demonstrating the benefits of using formal techniques in a
protocol design process.

14.1.1 Edge Router Discovery Protocol

ERDP is based on the IPv6 protocol suite [56] and supports an edge router in a core
network in assigning network address prefixes to gateways in mobile ad hoc net-
works. A mobile ad hoc network is a collection of mobile nodes, such as laptops,
personal digital assistants, and mobile phones, capable of establishing a communica-
tion infrastructure for their common use. Ad hoc networks differ from conventional
networks in that the nodes in an ad hoc network operate in a fully self-configuring
and distributed manner, without any pre-existing communication infrastructure such
as designated base stations and routers.

Figure 14.1 shows the network architecture considered in the project. The net-
work architecture consists of an IPv6 stationary core network connecting a number
of mobile ad hoc networks on the edge of the core network. A number of edge
routers reside on the edge of the core network, and each ad hoc network may con-
tain one or more nodes capable of acting as gateways for communication with nodes
outside the ad hoc network. The edge routers and the gateways handle the connec-
tions between the core network and the ad hoc networks, and an edge router may
serve multiple ad hoc networks. The core network is a classical wired IP network
with stationary nodes, whereas wireless communication is used for communication
between the mobile nodes in the ad hoc networks. The edge routers and the gate-
ways are connected via wireless links. The nodes in the individual ad hoc networks
may move within an ad hoc network or between ad hoc networks. It is also pos-
sible for an entire ad hoc network, including its gateways, to move from one edge
router to another edge router, and possibly to be within reach of several edge routers
simultaneously.

ERDP is used between the gateways in the ad hoc networks and the edge routers
in the core network. ERDP supports gateways in discovering edge routers and sup-
ports edge routers in configuring gateways with a globally routeable IPv6 address
prefix. This address prefix can then be used to configure global IPv6 unicast ad-
dresses for mobile nodes in the ad hoc networks. ERDP is based on an extension

14.1 Protocol Design at Ericsson Telebit 315

IPv6 Core
Network

Ad-hoc
Network

Ad-hoc
Network

Ad-hoc
Network

Ad-hoc
Network

Ad-hoc
Network

Edge Router

Gateway

Fig. 14.1 IPv6-based network architecture

of the Neighbor Discovery Protocol (NDP) [85], which is part of the IPv6 protocol
suite.

Figure 14.2 shows the basic way that an edge router configures a gateway with
an address prefix using ERDP. This message sequence chart (MSC) was generated
automatically from the CPN model to be presented in Sect. 14.1.2. The column la-
belled GWBuffer represents a packet buffer between the gateway protocol entity and
the underlying protocol layers. Similarly, the ERBuffer column represents a packet
buffer in the edge router. An edge router periodically multicasts unsolicited router
advertisements (RAs) to announce its presence to any gateways that may be within
reach of that edge router. When an unsolicited RA is received by a gateway, it will
reply with its list of currently assigned address prefixes in a unicast router solicita-
tion (RS). In the example shown here, the gateway has no current prefixes and hence
it sends an RS with no prefixes (indicated by the empty list []). When the edge router
receives the RS, it will consult its lists of available prefixes and in this case select a
new address prefix (P1) to be assigned to the gateway. This newly assigned prefix
will then be sent back to the gateway in a unicast solicited RA. When the solicited
RA containing the prefix is received by the gateway, the gateway will update its
lists of currently assigned prefixes to contain the new prefix P1. Prefixes assigned
to gateways have a limited lifetime, and hence either will expire or will have to be
refreshed by the edge router.

14.1.2 ERDP CPN Model

CP-nets were integrated into the design of ERDP by developing a CPN model of
ERDP together with a conventional natural-language specification. The latter is nor-
mally used by protocol engineers to specify a protocol, and in the following we refer
to the natural-language specification of ERDP as the ERDP specification.

Figure 14.3 shows the module hierarchy of the CPN model. The CPN model con-
sists of three main parts. The Gateway module and its four submodules model the
operation of the gateway. The EdgeRouter module and its five submodules model
the operation of the edge router. The GW ER Link module models the wireless com-
munication link between the gateway and the edge router. We have omitted the

316 14 Examples of Industrial Applications

Fig. 14.2 Message sequence chart for prefix configuration with ERDP

names of the substitution transitions on the arcs, since the name of each substitu-
tion transition is identical to that of the submodule associated with that substitution
transition.

Figure 14.4 shows the ERDP module. The substitution transition Gateway rep-
resents the gateway, and the substitution transition EdgeRouter represents the edge
router. The communication link between the edge router and the gateway is repre-
sented by the substitution transition GW ER Link. The four places GWIn, GWOut,
ERIn, and EROut model packet buffers between the link layer and the gateway and
edge router. Both the gateway (GW) and the edge router (ER) have an incoming and
an outgoing packet buffer.

All four places in Fig. 14.4 have the colour set IPv6Packet, used to model
the IPv6 packets exchanged between the edge routers and gateways. Since ERDP is
based on the IPv6 Neighbor Discovery Protocol, the packets are carried as Internet
Control Message Protocol (ICMP) packets. The definitions of the colour sets for
NDP, ICMP, and IPv6 packets are given in Fig. 14.5 and were derived from RFC
2460 [29], which specifies IPv6 and RFC 2461 [85] specifying NDP. IPv6 addresses
and address prefixes are modelled as strings. This makes it possible to use both
mnemonic names and standard hexadecimal notation for IPv6 addresses in the CPN
model. Protocol fields that do not affect the operation of ERDP have been defined
using the colour set NOTMOD containing the single dummy value notmod. These

14.1 Protocol Design at Ericsson Telebit 317

Gateway

ProcessUnsolicitedRA

EdgeRouter

SendUnsolicitedRA

GW_ER_Link

ProcessRS

NoUnusedPrefix

AssignNewPrefix

ReceiveSolicitedRA

SendRouterSolicitation

GWDiscardPrefixes

ERDiscardPrefixes

ERDP

Fig. 14.3 Module hierarchy of the ERDP model

GW_ER_Link GW_ER_Link

EdgeRouter

EdgeRouter

Gateway

Gateway

EROut

IPv6Packet

ERIn

IPv6Packet

GWOut

IPv6Packet

GWIn

IPv6Packet

Gateway EdgeRouter

GW_ER_Link

Fig. 14.4 ERDP module

fields could alternatively have been omitted, but it was considered important for
later implementations of ERDP that the tokens in the CPN model should have the
same set of fields as the packets in the implementation. The colour sets UInt32,
UInt16, UInt8, Bit8, and Bit4 are all defined as INT. They model bit fields in
the packets and are defined as integers, as we are not concerned with the specific bit

318 14 Examples of Industrial Applications

(* --- IPv6 addresses --- *)
colset IPv6Addr = string;

(* --- Router Solicitations --- *)
colset RSOption = union

RS_SrcLinkAddr : NDLinkAddrOption +
RS_PrefixInformation : NDPrefixInfoOption;

colset RSOptions = list RSOption;

colset RouterSolicitation = record Options : RSOptions *
NU : NOTMOD;

(* --- Router Advertisements --- *)
colset RAOption = union

RA_SrcLinkAddr : NDLinkAddrOption +
RA_MTU : NDMTUOption +
RA_PrefixInformation : NDPrefixInfoOption;

colset RAOptions = list RAOption;

colset RouterAdvertisement = record CurHopLimit : UInt8 *
M : Bit *
O : Bit *
RouterLifetime : UInt16 *
ReachableTime : UInt32 *
RetransTimer : UInt32 *
Options : RAOptions;

(* --- ICMP messages --- *)
colset ICMPBody = union RS : RouterSolicitation +

RA : RouterAdvertisement;

colset ICMPMessage = record Type : UInt8 *
Code : UInt8 *
Message : ICMPBody;

(* --- IPv6 packets --- *)
colset IPv6Payload = union ICMP : ICMPMessage;

colset IPv6Header = record Version : Bit4 *
TrafficClass : NOTMOD *
Flowlabel : NOTMOD *
PayloadLength : NOTMOD *
NextHeader : Bit8 *
HopLimit : Bit8 *
SourceAddress : IPv6Addr *
DestAddress : IPv6Addr;

colset IPv6Packet = record Header : IPv6Header *
ExtHeaders : NOTMOD *
Payload : IPv6Payload;

Fig. 14.5 Declarations for IPv6 and ICMP packets

14.1 Protocol Design at Ericsson Telebit 319

layout of packets, but only the semantics of the individual packet fields. The colour
set Bit is defined as BOOL.

Figure 14.6 shows the EdgeRouter module. The places ERIn and EROut are re-
lated to the accordingly named socket places in the ERDP module (see Fig. 14.4).
The place Config models the configuration information associated with the edge
router, and the place PrefixCount models the number of prefixes still available in the
edge router for distribution to gateways. The place PrefixAssigned is used to keep
track of which prefixes are assigned to which gateways.

Figure 14.7 shows the declarations of the colour sets for the three places in
Fig. 14.6. The configuration information for the edge router (modelled by the colour
set ERConfig) is a record consisting of the IPv6 link-local address and the link-
layer address of the edge router. A list of pairs (colour set ERPrefixAssigned)
consisting of a link-local address and a prefix is used to keep track of which prefixes
are assigned to which gateways. A counter modelled by the place PrefixCount with
the colour set PrefixCount is used to keep track of the number of prefixes still
available. When this counter reaches 0, the edge router has no further prefixes avail-
able for distribution. The number of available prefixes can be modified by changing
the initial marking of the place PrefixCount, which is set to 1 by default.

The substitution transition SendUnsolicitedRA (in Fig. 14.6) corresponds to the
multicasting of periodic unsolicited RAs by the edge router. The substitution transi-
tion ProcessRS models the reception of unicast RSs from gateways, and the sending
of a unicast RA in response. The substitution transition ERDiscardPrefixes models
the expiration of prefixes on the edge router side.

The marking shown in Fig. 14.6 has a single token on each of the three places
used to model the internal state of the edge router protocol entity. In the marking
shown, the token on the place PrefixAssigned with the colour [] corresponds to the
edge router not having assigned any prefixes to the gateways. The token on the place

ERDiscard
Prefixes

ERDiscardPrefixes

ProcessRS

ProcessRS

Send
UnsolicitedRA

SendUnsolicitedRA

Prefix
Assigned

ERPrefixAssigned PrefixCount

Config

ERConfig

ERIn In

IPv6Packet

EROut Out

IPv6Packet

OutIn

SendUnsolicitedRA

ProcessRS

ERDiscardPrefixes

PrefixCount

{ll_er = "ER link-local address",
 er_l2 ="ER link-addr"}

[] 1`1

1
1`[]

1

1`{ll_er="ER link-local address",er_l2
="ER link-addr"}

1

1`1

Fig. 14.6 EdgeRouter module

320 14 Examples of Industrial Applications

colset LinkAddr = string;

colset ERConfig = record
ll_er : IPv6Addr * (* link-local address *)
er_l2 : LinkAddr; (* link-addr (layer 2) *)

colset ERPrefixEntry = product IPv6Addr * IPv6Prefix;
colset ERPrefixAssigned = list ERPrefixEntry;

colset PrefixCount = int;

Fig. 14.7 Colour set definitions for edge routers

PrefixCount with colour 1 indicates that the edge router has a single prefix available
for distribution. Finally, the colour of the token on the place Config specifies the
link-local and link addresses of the edge router. In this case the edge router has
the symbolic link-local address ER link-local address, and the symbolic
link-address ER link-addr.

Figure 14.8 depicts the SendUnsolicitedRA module which is the submodule of the
substitution transition SendUnsolicitedRA in Fig. 14.6. The transition SendUnso-
licitedRA models the sending of the periodic unsolicited router advertisements. The
variable erconfig is of type ERConfig, and the variable prefixleft is of
type PrefixCount (see Fig. 14.7). The transition SendUnsolicitedRA is enabled
only if the edge router has prefixes available for distribution, i.e., prefixleft
is greater than 0. This is ensured by the function SendUnsolicitedRA in the
guard of the transition.

Figure 14.9 depicts the marking of the SendUnsolicitedRA module after the oc-
currence of the transition SendUnsolicitedRA in the marking shown in Fig. 14.8.
An unsolicited router advertisement has been put in the outgoing buffer of the

gwprefixassign

CreateUnsolicitedRA(erconfig)

erconfig

Send
UnsolicitedRA

[SendUnsolicitedRA(gwprefixassign,prefixleft)]

Prefix
AssignedI/O

1`[]

1
ConfigI/O

{ll_er = "ER link-local address",
 er_l2 ="ER link-addr"}

ERConfig

IPv6Packet

I/O

PrefixCount

I/O EROut OutOut

prefixleft

ERPrefixAssigned

PrefixCountI/OI/O

1
1`[]

1

1`{ll_er="ER link-local address",er_l2
="ER link-addr"}

1
1`1

Fig. 14.8 Initial marking of the SendUnsolicitedRA module

14.1 Protocol Design at Ericsson Telebit 321

gwprefixassign

CreateUnsolicitedRA(erconfig)

erconfig

Send
UnsolicitedRA

[SendUnsolicitedRA(gwprefixassign,prefixleft)]

Prefix
AssignedI/O

1`[]

1
ConfigI/O

{ll_er = "ER link-local address",
 er_l2 ="ER link-addr"}

ERConfig

IPv6Packet

I/O

PrefixCount

I/O EROut OutOut

prefixleft

ERPrefixAssigned

PrefixCountI/OI/O

1
1`[]

1

1`{ll_er="ER link-local address",er_l2
="ER link-addr"}

1

1`{header={Version=6,TrafficClass=
notmod,Flowlabel=notmod,PayloadLe
nght=notmod,NextHeader=1,HopLimit
=255,SourceAddress="ER link-local ad
dress",DestinationAddress="all-node
s-multicast"},extheaders=notmod,pa
yload=ICMP({Type=134,Code=0,Mes
sage=RA({CurHopLimit=0,M=0,O=0,R
outerLifetime=300,ReachableTime=0,
RetransTimer=0,Options=[RA_SrcLink
Addr({Type=1,Length=notmod,LinkLa
yerAddress="ER link-addr"})]})})}

1
1`1

Fig. 14.9 Module SendUnsolicitedRA, after occurrence of SendUnsolicitedRA

edge router. It can be seen that the DestinationAddress is the address all-
nodes-multicast, the SourceAddress is ER link-local address,
and the LinkLayerAddress (in the options part) is ER link-addr.

Figure 14.10 shows the part of the GW ER Link module that models transmission
of packets from the edge router to the gateway across the wireless link. Transmis-
sion of packets from the gateway to the edge router is modelled similarly. The places
GWIn and EROut are linked to the similarly named socket places in Fig. 14.4. The
transition ERtoGW models the successful transmission of packets, whereas the tran-
sition LossERtoGW models the loss of packets. The variable ipv6packet is of
type IPv6Packet. A successful transmission of a packet from the edge router to
the gateway corresponds to moving the token modelling the packet from the place
EROut to GWIn. If the packet is lost, the token will only be removed from the place
EROut.

Wireless links, in general, have a lower bandwidth and higher error rate than
wired links. These characteristics have been abstracted away in the CPN model
since our aim is to reason not about the performance of ERDP but rather its logical

ipv6packet

ipv6packet ipv6packet

LossERtoGW

ERtoGWGWInOut

IPv6Packet

EROut In

IPv6Packet

Fig. 14.10 Part of the GW ER Link module

322 14 Examples of Industrial Applications

correctness. Duplication and reordering of messages are not possible on typical one-
hop wireless links, since the detection of duplicates and the preservation of order are
handled by the data-link layer. The modelling of the wireless links does allow over-
taking of packets, but this overtaking is eliminated in the analysis phase described in
Sect. 14.1.3 where we impose bounds on the capacity of the input and output packet
buffers.

The CPN model was developed as an integrated part of the development of
ERDP. The creation of the CPN model was done in cooperation with the proto-
col engineers at Ericsson Telebit and in parallel with the development of the ERDP
specification. Altogether, 70 person-hours were spent on CPN modelling. The proto-
col developers at Ericsson Telebit were given a 6 hour course on the CPN modelling
language. This course enabled them to read and interpret CPN models, allowing
the CPN model to be used as a basis for discussions of the protocol design and its
representation as a CPN model.

The development of ERDP started out with the creation of an initial natural-
language specification. Based on this specification, an initial version of the CPN
model was created. The act of creating this initial CPN model and discussing it,
in Review 1, led to the identification of several issues related to the design and
operation of ERDP. This included design errors, incompleteness and ambiguities
in the specification, and ideas for simplifications and improvements of the protocol
design. Based on the issues discovered in Review 1, the ERDP specification was
revised and extended. The CPN model was then revised, and a second review, was
performed. Review 2 led to further identification of issues, which were eventually
resolved, and the ERDP specification was modified accordingly. The CPN model
was then modified again to reflect the revised ERDP specification. At this stage, no
further issues were discovered in the process of revising the CPN model.

Table 14.1 categorises and enumerates the issues encountered in each of the two
reviews. These issues were identified in the process of constructing the CPN model,
performing single-step executions of the CPN model, and conducting discussions
of the CPN model among the project group members. Altogether, 24 issues were
identified.

Message sequence charts (such as the one shown in Fig. 14.2), integrated with
simulation were used in both review steps to investigate the behaviour of ERDP in

Table 14.1 Issues encountered in the modelling phase

Category Review 1 Review 2 Total

Errors in protocol specification/operation 2 7 9 issues
Incompleteness and ambiguity in specification 3 6 9 issues
Simplifications of protocol operation 2 0 2 issues
Additions to the protocol operation 4 0 4 issues

Total 11 13 24 issues

14.1 Protocol Design at Ericsson Telebit 323

detail. The use of MSCs in the project was of particular relevance since it presented
the operation of the protocol in a form well known to protocol developers.

The construction of a CPN model can be seen as a very thorough and systematic
way of reviewing a design specification of a protocol. Using an iterative process
where both a conventional natural-language specification and a CPN model were
developed (as in this project) turned out to be an effective way of integrating CPN
modelling and analysis into the development of a protocol. In general, we believe
that a combination of an executable formal model (such as a CPN model) and a
natural-language specification provides a useful way to develop a protocol. One
reason why both are required is that the people who are going to implement the
protocol are unlikely to be familiar with CP-nets. Secondly, in the present case,
there are important parts of the ERDP specification that are not reflected in the CPN
model, such as the layout of packets.

14.1.3 State Space Analysis and Verification

State space analysis was pursued after the three iterations of modelling described in
the previous subsection. The purpose of the state space analysis was to conduct a
more thorough investigation of the operation of ERDP, including verification of its
key properties.

The first step towards state space analysis of the CPN model was to obtain a finite
state space. The CPN model presented in the previous subsection has an infinite
state space, since an arbitrary number of tokens (packets) can be put on the places
modelling the packet buffers. As an example, the edge router may initially send an
arbitrary number of unsolicited router advertisements. To obtain a finite state space,
an upper integer bound of 1 was imposed on each of the places GWIn, GWOut,
ERIn, and EROut (see Fig. 14.4) that model the packet buffers. This also prevents
overtaking among the packets transmitted across the wireless link. Furthermore,
the number of packets simultaneously present in the four input/output buffers was
limited to 2. Technically, this was done by using the branching options available
in the CPN state space tool to prevent the processing of enabled transitions whose
occurrence in a given marking would violate the above bounds.

First, we generated the state space for the considered configuration of the proto-
col. This was followed by generation of the state space report and the use of user-
defined queries to investigate the model-dependent properties of the protocol. The
key property of ERDP is proper configuration of the gateway with prefixes. This
means that for a given prefix and state where the gateway has not yet been config-
ured with that prefix, the protocol must be able to configure the gateway with that
prefix. Furthermore, when the gateway has been configured with the prefix, the edge
router and the gateway should be consistently configured, i.e., the assignment of the
prefix must be recorded both in the gateway protocol entity and in the edge router
protocol entity. Whether a marking represents a consistently configured state for a

324 14 Examples of Industrial Applications

given prefix can be checked by inspecting the marking of the place PrefixAssigned
in the edge router and the marking of the place Prefixes in the gateway.

The state space analysis was conducted in three steps. The first step was to con-
sider the simplest possible configurations of ERDP, starting with a single prefix and
assuming that there is no loss of packets on the wireless link and that prefixes do
not expire. The full state space for this configuration had 46 nodes and 65 arcs. The
SCC graph had 36 nodes and 48 arcs. Inspection of the state space report showed
that there was a single dead marking represented by node 36. Inspection of this node
showed that it represented a state where all of the packet buffers were empty, but
where the edge router and gateway were inconsistently configured in the sense that
the edge router had assigned the prefix P1 (the single prefix), while the gateway
was not configured with that prefix. This was an error in the protocol. To locate the
source of the problem, query functions in the state space tool were used to obtain
a counterexample leading from the node representing the initial marking to node
36. Figure 14.11 shows the resulting error trace, visualised by means of an MSC.
The problem is that the edge router sends two unsolicited RAs. The first one gets
through and the gateway is configured with the prefix, which can be seen from the
event marked with *A* in the lower part of the MSC. However, when the second RS,
without any prefixes, is received by the edge router (the event marked with *B*), the
corresponding solicited RA will not contain any prefixes. Because of the way the
protocol was specified, the gateway will therefore update its list of prefixes to the
empty list (the event marked with *C*), and the gateway is no longer configured with
a prefix.

To fix the error, the protocol was modified such that the edge router always
replied with the list of all prefixes that it had currently assigned to the gateway.
The state space for the modified protocol consisted of 34 nodes and 49 arcs, and
there were no dead markings in the state space. The state space report specified that
there were 11 home markings (represented by the nodes in the single terminal SCC).
Inspection of these 11 markings showed that they all represented consistently con-
figured states for the prefix P1. The markings were contained in the single terminal
SCC of the state space. This shows that, from the initial marking it is always possible
to reach a consistently configured state for the prefix, and that when such a marking
has been reached, the protocol entities will remain in a consistently configured state.
To verify that a consistently configured state would eventually be reached, it was
checked that the single terminal SCC was the only non-trivial SCC. This showed
that all cycles in the state space (which correspond to non-terminating executions
of the protocol) were contained in the terminal SCC, which (from above) contained
only consistently configured states. The reason why the protocol is not supposed to
terminate in a consistently configured state represented by a dead marking is that
the gateway may, at any time, when it is configured, send a router solicitation back
to the edge router to have its prefixes refreshed. Since we are ignoring expiration of
prefixes, the edge router will always refresh the prefix.

When the correctness of the protocol had been established for a single prefix, we
increased the number of prefixes. When there is more than one prefix available it no
longer holds that a marking will eventually be reached where all prefixes are consis-

14.1 Protocol Design at Ericsson Telebit 325

Fig. 14.11 Message sequence chart showing an execution leading to an undesired terminal state

326 14 Examples of Industrial Applications

tently configured. The reason is that with more than one prefix, the edge router may
at any time decide not to configure the gateway with additional prefixes. Hence, a
state where all prefixes have been consistently configured might not eventually be
reached. Instead, firstly, it was verified that there was a single terminal SCC, all
markings of which represent states where all prefixes have been consistently con-
figured. This shows that it is always possible to reach such a marking, and when
the protocol has consistently configured all prefixes, the protocol entities will re-
main consistently configured. Secondly, it was checked that all markings in each
non-trivial SCC represented markings where the protocol entities were consistently
configured with a subset of the prefixes available in the edge router.

The second step was to allow packet loss on the wireless link between the edge
router and the gateway. First, the case was considered in which there is only a single
prefix for distribution. The state space for this configuration had 40 nodes and 81
arcs. Inspection of the state space report showed that there was a single dead mark-
ing. This marking represented an undesired terminal state where the prefix had been
assigned by the edge router, but the gateway was not configured with the prefix. Fig-
ure 14.12 shows an MSC corresponding to a path in the state space from the initial
marking to the undesired dead marking. The problem is that when the solicited RA
containing the prefix is lost, the edge router will have assigned its last prefix and is
no longer sending any unsolicited RAs. Furthermore, there are no timeouts in the
protocol entities that could trigger a retransmission of the prefix to the gateway.

Fig. 14.12 Message sequence chart showing an execution leading to an undesired terminal state

14.1 Protocol Design at Ericsson Telebit 327

The problem identified above was fixed by ensuring that the edge router would
resend an unsolicited RA to the gateway as long as it had prefixes assigned to the
gateway. The state space of the revised CPN model had 68 nodes and 160 arcs.
Inspection of the state space report showed that there were no dead markings and
no home markings. Investigation of the terminal SCCs showed that there were two
terminal SCCs, each containing 20 markings. The nodes in one of them all repre-
sented states where the edge router and gateway were consistently configured with
the single prefix P1, whereas the nodes in the other terminal SCC all represented
states where the protocol entities were not consistently configured. The markings
in the undesired terminal SCC represent a livelock in the protocol, i.e., if one of
the markings in the undesired terminal SCC is reached, it is no longer possible to
reach a state where the protocol entities are consistently configured with the pre-
fix. The source of the livelock was related to the control fields used in the router
advertisements for refreshing prefixes and their interpretation in the gateway. This
was identified by obtaining the MSC for a path leading from the initial marking to
one of the markings in the undesired terminal SCC. As a result, the processing of
router advertisements in the gateway was modified. The state space for the proto-
col with the modified processing of router advertisements also had 68 nodes and
160 arcs. The state space had a single terminal SCC containing 20 nodes, which all
represented states where the protocol entities were consistently configured with the
single prefix.

When packet loss is present, it is not immediately possible to prove that the two
protocol entities will eventually be consistently configured. The reason is that any
number of packets can be lost on the wireless link. Each of the non-trivial SCCs was
inspected using a user-defined query to investigate the circumstances under which
the protocol entities would not eventually be consistently configured. This query
checked that either all nodes in the non-trivial SCC represented consistently config-
ured states or none of the nodes in the SCC represented a consistently configured
state. For those non-trivial SCCs where no node represented a consistently config-
ured state, it was checked that all cycles contained the occurrence of a transition
corresponding to loss of a packet. Since this was the case, it can be concluded that
any failure to reach a consistently configured states will be due to packet loss and
nothing else. Hence, if only finitely many packets are lost, a consistently configured
state for some prefix will eventually be reached.

The third and final step in the analysis was to allow prefixes to expire. The anal-
ysis was conducted first for a configuration where the edge router had only a single
prefix to distribute. The state space for this configuration had 173 nodes and 531
arcs. The state space had a single dead marking, and inspection of this dead mark-
ing showed that it represented a state where the edge router has no further prefixes
to distribute, it has no prefixes recorded for the gateway, and the gateway is not con-
figured with any prefix. This marking is a desired terminating state of the protocol,
as we expect prefixes to eventually expire. Since the edge router has only finitely
many prefixes to distribute, the protocol should eventually terminate in such a state.
The single dead marking was also a home marking, meaning that the protocol can
always enter the expected terminal state.

328 14 Examples of Industrial Applications

When prefixes can expire, it is possible that the two protocol entities may never
enter a consistently configured state. The reason is that a prefix may expire in the
edge router (although this is unlikely) before the gateway has been successfully
configured with that prefix. Hence, we are only able to prove that for any marking
where a prefix is still available in the edge router, it is possible to reach a marking
where the gateway and the edge router are consistently configured with that prefix.

Table 14.2 lists statistics for the size of the state space in the three verification
steps for different numbers of prefixes. The column ‘|P|’ specifies the number of
prefixes. The columns ‘Nodes’ and ‘Arcs’ give the numbers of nodes and arcs, re-
spectively, in the state space. For the state spaces obtained in the first verification
step, it can be seen that 38 markings and 72 arcs are added for each additional prefix.
The reason for this is that ERDP proceeds in phases where the edge router assigns
prefixes to the gateway one at a time. Configuring the gateway with an additional
prefix follows exactly the same procedure as that for the assignment of the first pre-
fix. Once the state space had been generated, the verification of properties could
be done in a few seconds. It is also worth observing that as the assumptions are
relaxed, i.e., we move from one verification step to the next, the sizes of the state
spaces grow. This, combined with the identification of errors in the protocol even in
the simplest configuration, without packet loss and without expiration of prefixes,
shows the benefit of starting state space analysis from the simplest configuration
and then gradually lifting the assumptions. Furthermore, the state explosion prob-
lem was not encountered during the verification of ERDP, and the key properties of
ERDP were verified for the number of prefixes that were envisioned to appear in
practice.

It can be argued whether or not the issues and errors discovered in the process
of modelling and conducting state space analysis would have been identified if ad-
ditional conventional reviews of the ERDP specification had been conducted. Some
of them probably would have been, but more subtle problems such as the inconsis-

Table 14.2 State space statistics for the three verification steps

No loss/No expire Loss/No Expire Loss/Expire
|P| Nodes Arcs Nodes Arcs Nodes Arcs

1 34 49 68 160 173 531
2 72 121 172 425 714 2 404
3 110 193 337 851 2 147 7 562
4 148 265 582 1 489 5 390 19 516
5 186 337 926 2 390 11 907 43 976

6 224 409 1 388 3 605 23 905 89 654
7 262 481 1 987 5 185 44 550 169 169
8 300 553 2 742 7 181 78 211 300 072
9 338 625 3 672 9 644 130 732 505 992

10 376 697 4 796 12 625 209 732 817 903

14.2 Requirements Engineering at Systematic 329

tent configurations discovered during state space analysis would probably not have
been discovered until the first implementation of ERDP was operational. The reason
for this is that discovering these problems requires one to consider subtle execution
sequences of the protocol, and there are too many of these to do this in a systematic
way. This demonstrates the value of being able to conduct state space analysis of a
CPN model and in this way cover all execution sequences.

14.1.4 Conclusions from the ERDP Project

This project showed that even the act of constructing a CPN model based on the
ERDP specification provided valuable input to the ERDP specification, and the use
of simulation added further insight into the operation of the protocol. State space
analysis, starting with the simplest possible configuration of the protocol, identified
additional errors in the protocol. The state space analysis succeeded in establishing
the key properties of ERDP.

Overall, the application of CP-nets in the development of ERDP was considered a
success for three main reasons. Firstly, it was demonstrated that the CPN modelling
language and supporting computer tools were powerful enough to specify and anal-
yse a real-world communication protocol and that they could be integrated into the
conventional protocol development process. Secondly, the act of constructing the
CPN model, executing it, and discussing it led to the identification of several non-
trivial design errors and issues that, under normal circumstances, would not have
been discovered until, at best, the implementation phase. Finally, the effort of con-
structing the CPN model and conducting the state space analysis was represented
by approximately 100 person-hours. This is a relatively small investment compared
with the many issues that were identified and resolved early as a consequence of
constructing and analysing the CPN model.

14.2 Requirements Engineering at Systematic

This project [64, 75], conducted with Systematic Software Engineering and Aarhus
County Hospital was concerned with specifying the business processes at Aarhus
County Hospital and their support by a new IT System, called the Pervasive Health
Care System (PHCS). A CPN model of PHCS was used to engineer requirements for
the system, and input from nurses was crucial in this process. The project demon-
strated how behavioural visualisation driven by a CPN model can be used to visu-
alise system behaviour and enable the engineering of requirements through discus-
sions with people who are not familiar with the CPN modelling language.

330 14 Examples of Industrial Applications

14.2.1 Pervasive Health Care System

The aim of PHCS is to improve the system for electronic patient records (EPR)
deployed at the hospitals in Aarhus, Denmark. EPR is a comprehensive health care
IT system with a budget of approximately 15 million US dollars; it will eventually
have 8–10,000 users.

EPR solves obvious problems that occur with paper-based patient records such
as being not always up-to-date, only present in one location at a time, misplaced,
or sometimes even lost. However, the version of EPR that was deployed at the time
of the project was a desktop-PC-based system, which is not very practical for hos-
pital work, since users such as nurses and doctors are often on the move and away
from their offices (and thus their desktop PCs). Moreover, users are frequently in-
terrupted. Therefore, the desktop-PC-based EPR potentially induces at least two
central problems for its users. The first problem is immobility: in contrast to a paper-
based record, an electronic patient record accessed only from desktop PCs cannot
be easily transported. The second problem is time-consuming login and navigation:
EPR requires user identification and login to ensure the confidentiality and integrity
of information, and to start using the system for clinical work, a logged-in user must
navigate to find a specific document for a given patient, for example.

The motivation for PHCS is to address these problems. In the ideal situation,
the users should have access to the IT system wherever they need it, and it should
be easy to resume a work process which has been interrupted. The use of personal
digital assistants (PDAs), with which nurses and doctors could access EPR using a
wireless network, is a possible solution to the immobility problem. That approach
has been considered, but it is not ideal, for example, because of well-known char-
acteristics of PDAs such as small screens and limited memory, and because it does
not fully address the time-consuming login and navigation problem.

PHCS is a more ambitious solution, which takes advantage of the possibilities
of pervasive computing to a greater extent. Three basic design principles are ex-
ploited. The first principle is that PHCS is context-aware: nurses, patients, beds,
medicine trays, and other items are equipped with radio frequency identity (RFID)
tags, enabling the presence of such items to be detected automatically, for example,
by computers located beside the medicine cabinet and the patient beds. The second
design principle is that PHCS is propositional, in the sense that it makes qualified
propositions, or guesses. Context changes may result in the automatic generation
of buttons that appear on the taskbars of computers. Users may explicitly accept a
proposition by clicking on a button, or implicitly ignore or reject it by not clicking.
As an example, the presence of a nurse holding a medicine tray for patient P in front
of the medicine cabinet is a context that triggers the automatic generation of a button
Medicine plan:P on the computer in the medicine room. If the nurse clicks the but-
ton, he/she is logged in and taken to P’s medicine plan. The third design principle is
that PHCS is non-intrusive, i.e., it does not interfere with or interrupt hospital work
processes in an undesired way. Thus, when a nurse approaches a computer, it should
react to his/her presence in such a way that a second nurse, who may currently be
working on the computer, is not disturbed or interrupted.

14.2 Requirements Engineering at Systematic 331

Figure 14.13 presents a simplified interface of PHCS. The current context of
the system is that nurse Jane Brown is engaged in pouring medicine for patient
Bob Jones, to be given at 12 a.m. The medicine plan on the display shows which
medicines have been prescribed (indicated by Pr), poured (Po), and given (G) at the
current time. It can be seen that Advil and Tylenol have been poured for 12 a.m., but
Comtrex has not yet peen poured. Moreover, the medicine tray for another patient,
Tom Smith, stands close to the computer, as can be seen from the taskbar buttons.

Fig. 14.13 Outline of simplified PHCS interface

14.2.2 PHCS CPN Model

The CPN models of the envisioned new work processes and of the proposed com-
puter support were created with a focus on the medicine administration work pro-
cess. Assume that nurse N wants to pour medicine into a medicine tray and give it
to patient P. First, N goes to the room containing the medicine cabinet (the medicine
room). Here, there is a context-aware computer on which the buttons Login:N and
Patient list:N appear on the taskbar when N approaches. If the second button is
clicked, N is logged in and a list of the patients whom N is in charge of is displayed
on the computer. A medicine tray is associated with each patient. When N takes P’s
tray near the computer, the button Medicine plan:P will appear on the taskbar, and
a click will make P’s medicine plan appear on the display. N pours the prescribed
medicine into the tray and acknowledges this in PHCS. When N leaves the medicine
room, he/she is automatically logged out. N now takes P’s medicine tray and goes
to the ward where P lies in a bed, which is supplied with a context-aware computer.
When N approaches, the buttons Login:N, Patient list:N, and Medicine plan:P appear

332 14 Examples of Industrial Applications

on the taskbar. If the last button is clicked, the medicine plan for P is displayed.
Finally, N gives the medicine tray to P and acknowledges this in PHCS. When N
leaves the bed area, he/she is automatically logged out.

The description given above captures just one specific combination of work
processes. There are numerous other scenarios to take into account: for example,
medicine may be poured for one or more patients, for only one round of medicine
giving, for all four regular rounds of a 24 hour period, or for ad hoc giving; a nurse
may have to fetch trays left in the wards prior to pouring; a nurse may approach the
medicine cabinet without intending to pour medicine, but instead only to log into
EPR (via PHCS) or to check an already filled medicine tray; or two or more nurses
may do medicine administration at the same time. To support a smooth medicine
administration work process, the requirements for PHCS must deal with all of these
scenarios and many more. A CPN model, with its fine-grained and coherent nature,
is able to support the investigation and validation of this.

Figure 14.14 shows the module hierarchy of the medicine administration CPN
model. The organisation of the modules reflects how the work process of medicine
administration is decomposed into smaller work processes. We can give an impres-
sion of the model by describing the module shown in Fig. 14.15. This module mod-
els the pouring and checking of trays and is represented by the node PourCheckTrays
in Fig. 14.14. The medicine cabinet computer is in focus. It is modelled by a token

GiveMedicine

GetTrays

PourCheckTrays

GiveToPatients

PourCheckTray

FindPlan

GiveToPatient

PourAndAck

FindPlanTray

ProvideTrays

MedAdm

Fig. 14.14 Module hierarchy of the PHCS medicine administration model

on the place MedicineCabinetComputer. This place has the colour set COMPUTER,
whose elements are 4-tuples (compid,display,taskbar,users) consist-
ing of a computer identification, its display (main screen), its taskbar buttons, and
its current users. In the initial marking, the computer has a blank display, no taskbar
buttons, and no users.

The colour set NURSE is used to model nurses. A nurse is represented as a pair
(nurse,trays), where nurse identifies the nurse and trays is a list holding

14.2 Requirements Engineering at Systematic 333

(compid,display,
removeLoginButton nurse taskbar,
addUser nurse users)

(compid,display,
 taskbar,users)

if loggedin nurse (compid,display,taskbar,users) then
 (compid, blank, removeMedicineCabinetButtons nurse taskbar, removeUser nurse users)
else
 (compid, display, removeMedicineCabinetButtons nurse taskbar, users)

(compid,display, addMedicineCabinetButtons nurse taskbar, users)

(compid,display,taskbar,users)

(compid,display,taskbar,users)

(nurse,trays)

(nurse,trays)

(nurse,trays)

(nurse,trays)

(nurse,trays)

PourCheck
Tray

PourCheckTray

Enter EPR via
Login Button

[loginAllowed nurse
(compid,display,
taskbar,users)]

Leave Medicine
Cabinet

Approach
Medicine Cabinet

Medicine
Cabinet

Computer
I/O

1`(1,blank,noButtons,noUsers)

COMPUTER

TRAY

By Medicine
Cabinet

NURSE

Ready

1`(janeBrown,noTrays)++
1`(maryGreen,noTrays)

NURSE

I/O

PourCheckTray

Trays by
Medicine Cabinet I/OI/O

1

1`(1,blank,noButtons,noUsers)

2

1`(janeBrown,noTrays)++
1`(maryGreen,noTrays)

Fig. 14.15 PourCheckTrays module

the medicine trays that this nurse currently has in possession. Initially, the nurses
Jane Brown and Mary Green are ready (represented as tokens on the place Ready)
and have no trays.

The occurrence of the transition ApproachMedicineCabinet models the situation
where a nurse changes from being ready to being busy near the medicine cabinet.
At the same time, two buttons are added to the taskbar of the medicine cabinet com-
puter, namely one login button for the nurse and one patient list button for the nurse.
In the CPN model, these taskbar buttons are added by the function addMedicine-
CabinetButtons, which appears on the arc from the transition Approach-
MedicineCabinet to the place MedicineCabinetComputer.

The possible actions for a nurse who is by the medicine cabinet are modelled by
the three transitions PourCheckTray, EnterEPRviaLoginButton, and LeaveMedicine-
Cabinet. Often, a nurse at the medicine cabinet wants to pour and/or check some
trays. How this pouring and checking is carried out is modelled by the submodule
PourCheckTray associated with the substitution transition PourCheckTray.

The transition EnterEPRviaLoginButton models the situation where a nurse clicks
on the login button and makes a general-purpose login to EPR. It is outside the scope
of the model to describe what the nurse subsequently does – the domain of the model
is specifically medicine administration, not general EPR use. This transition has a
guard which checks if a nurse is allowed to log into EPR. When a nurse logs in, the
login button for that nurse is removed from the taskbar of the computer, modelled
by the function removeLoginButton. Moreover, the nurse is added to the set of
current users by the function addUser.

The transition LeaveMedicineCabinet models the effect of a nurse leaving: it
is checked whether the nurse is currently logged in, modelled by the function

334 14 Examples of Industrial Applications

loggedIn appearing in the if–then–else expression on the arc from the transi-
tion LeaveMedicineCabinet to the place MedicineCabinetComputer. If the nurse is
logged in, the medicine cabinet computer automatically returns to a blank screen, re-
moves the nurse’s taskbar buttons (removeMedicineCabinetButtons), and
logs him/her off (removeUser). If the nurse is not logged in, the buttons generated
because of his/her presence are removed, but the state of the computer is otherwise
left unaltered. In any case, the token corresponding to the nurse is put back on the
place Ready.

14.2.3 Behavioural Visualisation of Medicine Administration

The interaction graphics built on top of the CPN model are shown in Fig. 14.16.
The graphics are an interface to the CPN model, i.e., the interaction graphics are
consistent with the CPN model and reflect the markings, transition occurrences,
and marking changes that appear when the CPN model is executed, as explained in
Chap. 13. The interaction graphics were added to the CPN model to support com-
munication between the users (nurses) and the system developers, by reducing the
distance between the CPN model and the users’ conception of future work processes
and their proposed computer support.

The graphics are divided into three windows. The Department window (at the top
of Fig. 14.16) shows the layout of a hospital department, with wards, the medicine
room, the ‘team room’ (the nurses’ office), and two bathrooms. The Medicine room

Department

Give medicine

Pour/check trays

Provide trays

Ward

Bath Team room Ward

Ward Medicine room Bath Ward

Medicine room

Bob Jones

Leave medicine cabinet

Take trayPatient list: Jane Brown

Login: Jane Brown

Ward

Fig. 14.16 Medicine administration interaction graphics

14.2 Requirements Engineering at Systematic 335

window (in the middle of Fig. 14.16) shows the medicine cabinet, pill boxes, tables,
medicine trays, and a computer screen (enlarged). The Ward window (at the bottom
of Fig. 14.16) shows a patient, a bed, a table, and a computer screen. Thus, the
Department window gives an overview, and the other windows zoom in on areas of
particular interest.

In Fig. 14.16, the graphics show a situation where nurse Jane Brown is in the
medicine room, shown in the Department window and the Medicine room window,
sufficiently close to produce two taskbar buttons on the computer. The user must
make choices in order to drive the interaction graphics further. By selecting one of
the grey buttons on the right in the Medicine room window, the user can choose to
take a tray or leave the medicine room. The user can also select one of the taskbar
buttons on the computer. These four choices correspond to enabled transitions in the
CPN model. As an example, the user may push the LeaveMedicineCabinet button.
This forces the transition with the same name in the CPN model (see Fig. 14.15)
to occur. The result of the occurrence is experienced by the animation user, who
sees Jane Brown walking away from the medicine cabinet and the removal from
the computer screen of the taskbar buttons, which were generated because of Jane
Brown’s presence. If the animation user pushes the TakeTray button and then selects
Bob Jones’s medicine tray, this tray is moved close to the computer, and a medicine
plan button for Bob Jones appears on the computer taskbar. If this button is pushed,
the computer will display a screen similar to the one shown in Fig. 14.13.

14.2.4 Requirements Engineering for PHCS

When the PHCS project started, the first activities were domain analysis in the form
of ethnographic field work, and a series of vision workshops with participation by
nurses, doctors, computer scientists, and an anthropologist. One outcome of this
analysis was natural-language descriptions of work processes and their proposed
computer support. The first version of the CPN model presented in this section was
based on these prose descriptions. The CPN model and the interaction graphics were
extended and modified in a number of iterations, each version based on feedback
about the previous versions. The interaction graphics served as a basis for discus-
sions in evaluation workshops, with participation by nurses from hospitals in Aarhus
and personnel from the software company involved.

Through the construction and use of the CPN model and the use of interaction
graphics at the evaluation workshops, experience was gained in the use of CP-nets
in requirements engineering. It could be observed that for PHCS, the CPN model
and the interaction graphics were effective means for specification, specification
analysis, elicitation, and negotiation and agreement of requirements, as discussed
below.

The specification of requirements has a sound foundation because of the formal-
ity and unambiguity of the CPN model. In the case of the CPN model of medicine
administration, there are requirements precisely described by the transitions that

336 14 Examples of Industrial Applications

model manipulation of the computers involved. Each transition connected to a place
that models a computer, for example, the place MedicineCabinetComputer shown in
Fig. 14.15, must be taken into account. The following are examples of requirements
induced by the transitions of the module in Fig. 14.15:

R1 When a nurse approaches the medicine cabinet, the medicine cabinet
computer must add a login button and a patient list button for that nurse
to the taskbar (transition ApproachMedicineCabinet).

R2 When a logged-in nurse leaves the medicine cabinet, the medicine cab-
inet computer must return to a blank display, remove the nurse’s login
button and patient list button from the taskbar, and log that nurse out
(transition LeaveMedicineCabinet).

R3 When a nurse selects his/her login button, that nurse must be added as a
user of EPR, and the login button must be removed from the taskbar of
the computer (transition EnterEPRviaLoginButton).

Specification analysis is well supported by simulation, which allows experiments
and trial-and-error investigations of various scenarios for the envisioned work pro-
cess. Simulation combined with interaction graphics was considered the most appro-
priate means for specification analysis. It is easy for the nurses to understand, and
the work processes can be modelled in as much detail as desired without worrying
about state space explosion.

Elicitation includes the discovery of new requirements and the gaining of a better
understanding of known requirements. Elicitation is, like specification analysis, well
supported by simulation. Simulation spurs elicitation by triggering many questions.
Simulation of a CPN model typically catalyses the participants’ cognition and gen-
erates new ideas. Interaction with an executable model that is a coherent description
of multiple scenarios is very likely to bring up new questions, and issues appear
that the participants had not thought about earlier. Some examples of questions that
appeared during simulation of the CPN model for medicine administration and their
corresponding answers are:

Q1 What happens if two nurses are both close to the medicine cabinet com-
puter?

A1 The computer generates login buttons and patient list buttons for both
of them.

Q2 What happens when a nurse with several medicine trays approaches a
bed?

A2 In addition to a login button and a patient list button, only one medicine
plan button is generated – a button for the patient associated with that
bed.

14.2 Requirements Engineering at Systematic 337

Q3 Is it possible for one nurse to acknowledge the pouring of medicine for
a patient while another nurse at the same time acknowledges the giving
of medicine to that same patient?

A3 No, that would require more fine-grained concurrency control to be ex-
ercised over the patient records.

Questions such as Q1–Q3 and their answers A1–A3 may imply changes to be
made to the CPN model. As a concrete example, in an early version of the medicine
administration CPN model, the leaving of any nurse from the medicine cabinet re-
sulted in the computer display being blanked off. To be compliant with the principle
of non-intrusive design for PHCS, the leaving of a nurse who is not logged in should
of course not disturb another nurse who might be working at the computer, and the
CPN model had to be changed accordingly.

Negotiation and agreement may be eased via CPN models. In large projects,
negotiation about requirements inevitably takes place during the project. In many
cases, this has strong economic consequences, because a requirements specification
for a software system may be an essential part of a legal contract between, for ex-
ample, a hospital and a software company. Therefore, it is important to be able to
determine what requirements were included in the initial agreement. Questions such
as Q1–Q3 above may easily be subject to dispute. However, if the parties involved
have an agreement that medicine administration should be supported, and agree to
the overall stipulation that the formal, unambiguous CPN model is the authoritative
description, many disagreements can be quickly settled.

14.2.5 Conclusions from the PHCS Project

This project demonstrated that CPN models are able to support various requirements
engineering activities. The CPN model and the interaction graphics can be seen as a
supplement to UML use cases. Use cases describe work processes to be supported
by a new IT system, and a set of use cases is interpreted as a set of functional
requirements for that system. One of the main motivations for the requirements
engineering approach chosen for PHCS was to build on top of prose descriptions of
work processes and the proposed computer support, consolidated as UML use cases.
The advantage of this was that the stakeholders of PHCS were already familiar with
these UML use cases via the work on EPR. Having an executable representation of
a work process supports specification analysis and elicitation, as we have discussed.
The interaction graphics used in the project enabled users such as nurses and doctors
to be actively engaged in specification analysis and elicitation, which is crucial. User
participation increases the probability that a system is ultimately built that fits with
the future users’ work processes.

338 14 Examples of Industrial Applications

14.3 Embedded-System Design at Bang and Olufsen

This joint project [17, 75], conducted with Bang & Olufsen [3] was concerned with
the design and analysis of the BeoLink system. A timed CPN model was developed,
specifying the lock management subsystem which is responsible for the basic syn-
chronisation of the devices in the BeoLink system. Methods based on state spaces,
including a number of advanced state space methods, were used to verify the lock
management system.

14.3.1 BeoLink System

The BeoLink system makes it possible to connect audio and video devices in a
home via a dedicated network. A home equipped with the BeoLink system will
typically have a number of audio/video sources such as radios, CD/DVD players,
and TVs. Using the BeoLink system, it is possible to distribute these sources to
different rooms. The CPN modelling and analysis focused on the lock management
protocol of the BeoLink system. This protocol is used to grant devices exclusive
access to services in the system, such as being able to use the loudspeakers when
playing music. The lock management protocol is based on the notion of a key, and a
device is required to possess a key to access services in the system. When the system
is switched on, exactly one key must be generated by the devices currently in the
system. Furthermore, this key must be generated within 2 seconds for the system to
be properly working. Special devices in the system, called audio and video masters,
are responsible for generating the key.

The MSC in Fig. 14.17 shows a typical communication sequence in a BeoLink
system with four devices. A single User is present and wishes to change the CD
track on Device1. The event key wanted is sent to Device1, which is not currently
the lock manager. Device1 therefore requests the key over the network by broad-
casting a REQUEST KEY telegram (message). Device3 is the lock manager and is
ready to give away the key. Hence, Device3 sends a KEY TRANSFER telegram to
Device1 and the key is reserved. Device1 is granted the key upon reception of the
KEY TRANSFER telegram, and sends a telegram NEW LOCK MANAGER to De-
vice3 as an acknowledgement of a successful key transfer. Finally, the User receives
the event key ready, and the change of track on the CD player can take place.

14.3.2 BeoLink CPN Model

Figure 14.18 shows the module hierarchy of the BeoLink CPN model. The sub-
module Network models the network that connects the devices in the system. The
module Device and its submodules model the lock management protocol entities
in each device. The submodules on the right, from RequestKey down to Function-

14.3 Embedded-System Design at Bang and Olufsen 339

Fig. 14.17 Message sequence chart showing communication sequence in the BeoLink system

Lock2, correspond to the various functional blocks of the lock management proto-
col. The submodule KeyUser models the behaviour of devices as seen from the lock
management protocol.

LockManager

KeyWanted2

KeyLost2

Network

RequestKey

BeoLink

KeyUser

KeyImplement

FunctionLock2

NewLock1

KeyLost1

NewLock2

FunctionLock1

KeyRelease

KeyWanted1

KeyTransfer

Device

Fig. 14.18 Module hierarchy of the BeoLink model

340 14 Examples of Industrial Applications

Send
Buffer

DIDxTLG_LIST

Config

CONFIGS

Receive
Buffer

TLG_BUFFERS

Network
NetworkNetwork

Device
DeviceDevice

Fig. 14.19 BeoLink module

Figure 14.19 shows the BeoLink module. The substitution transition Network rep-
resents the network that connects the devices in the system. The substitution tran-
sition Device models the devices in the system. The CPN model provides a folded
representation of the behaviour of the devices. This is achieved by encoding the
identities of the devices as part of the colours of tokens (as in the protocol with mul-
tiple receivers in Sect. 5.4). This makes it possible to capture any number of devices
without having to make changes to the net structure of the CPN model, and without
having an instance of the submodules of the substitution transition Device for each
of the devices in the system. This way of compactly representing any number of
devices makes the CPN model parametric. The details will become evident when
we present the KeyUser module.

The socket places ReceiveBuffer and SendBuffer in Fig. 14.19, which connect
the two substitution transitions, model message buffers between the devices and the
network. Messages in the lock management protocol are called telegrams and are
abbreviated TLG. Each device has a buffer for outgoing and incoming telegrams.
The place Config is used for the configuration of the CPN model.

The behaviour of devices, as seen from the lock management protocol, is mod-
elled by the KeyUser module shown in Fig. 14.20. Each device has a cyclic control
flow, where the device is initially idle (modelled by the place Idle), it then asks for
the key (modelled by the transition RequestKey), and it enters a state where it is
waiting for the key (modelled by the place Waiting). The granting of the key to a
device is modelled by the transition GetKey which causes the device to enter a state
where it is using the key (modelled by the place UseKey). When the device has fin-
ished using the key, it releases the key and returns to the idle state, where it may then
ask for the key again. The places Status, Commands, and FunctionLockIn are used
to model the internal state of a device. The places SendBuffer and ReceiveBuffer are
linked to the accordingly named places in the BeoLink module via a sequence of
port/socket relationships. The markings of these five places are also changed by the
various functional blocks of the lock management protocol.

Figure 14.20 shows the initial marking of the CPN model, with three devices all
in their idle state, as represented by the three tokens on the place Idle. A device is

14.3 Embedded-System Design at Bang and Olufsen 341

(did,tlg_list3)

(did,tlg_list2)

tlgbuf

(did,fl_cmd_list)

(did,fl_cmd_list)

(did,fl_cmd_list^^[LOCK_MAN_KEY_RELEASE])

did@+(10+40*ran_0_1)

did

did@+(10+40*ran_0_1)

(did,KEY_IS_READY)

did

did

did

(did,fl_cmd_list^^[LOCK_MAN_KEY_WANTED])

ReleaseKey

GetKey

RequestKey

Send
Buffer I/O

DIDxTLG_LIST

DIDxTLG_LIST

Receive
Buffer I/O

TLG_BUFFERS

CommandsI/O

DIDxFL_CMD_LIST

StatusIn

DIDxFL_STATUS

UseKey

DID

Waiting

DID

Idle

DID

InI/O

I/O

I/O

FunctionLock
In I/OI/O

3
1`(1,[])++
1`(2,[])++
1`(3,[])

1

1`[(1,[]),(2,[]),(3,[])]

3

1`(1,[])++
1`(2,[])++
1`(3,[])

3
1`1@500+++
1`2@500+++
1`3@500

3

1`(1,[])++
1`(2,[])++
1`(3,[])

Fig. 14.20 Initial marking of the KeyUser module

identified simply by a number. In this marking any of the three devices may ask
for the key, corresponding to the transition RequestKey being enabled with three
different bindings depending on the device identifier assigned to the variable did.
Figure 14.21 shows a marking of the KeyUser module where device 1 is using the
key, whereas devices 2 and 3 have requested but not been granted the key.

The CPN model of the BeoLink system is timed. This means that the CPN model
captures the time taken by the various events in the protocol. As an example, the
transition GetKey uses the symbol @+ in the arc expression on the output arc leading
to the place UseKey. The number of time units to be added to the current model time
is specified by the expression 10+40*ran 0 1, where ran 0 1 is a variable that
can be bound to either 0 or 1. This models a situation where the event of obtaining
the key can take either 10 or 50 time units.

342 14 Examples of Industrial Applications

(did,tlg_list3)

(did,tlg_list2)

tlgbuf

(did,fl_cmd_list)

(did,fl_cmd_list)

(did,fl_cmd_list^^[LOCK_MAN_KEY_RELEASE])

did@+(10+40*ran_0_1)

did

did@+(10+40*ran_0_1)

(did,KEY_IS_READY)

did

did

did

(did,fl_cmd_list^^[LOCK_MAN_KEY_WANTED])

ReleaseKey

GetKey

Send
Buffer I/O

DIDxTLG_LIST

DIDxTLG_LIST

Receive
Buffer I/O

TLG_BUFFERS

CommandsI/O

DIDxFL_CMD_LIST

StatusIn

DIDxFL_STATUS

UseKey

DID

Waiting

DID

Idle

DID

InI/O

I/O

I/O

FunctionLock
In I/OI/ORequestKey

3
1`(1,[])++
1`(2,[])++
1`(3,[])

1

1`[(1,[]),(2,[]),(3,[])]

3

1`(1,[])++
1`(2,[])++
1`(3,[])

11`1@2050

21`2@500+++
1`3@500

3

1`(1,[])++
1`(2,[])++
1`(3,[])

Fig. 14.21 Marking of the KeyUser module, where device 1 is using the key

14.3.3 State Space Analysis and Verification

The CPN model was first validated by means of simulation, and, later, state spaces
were used to formally verify the properties of the BeoLink system. The three main
correctness criteria of the lock management protocol are:

C1 Key generation. When the system is booted, a key must eventually be
generated. The key is to be generated within 2.0 seconds.

C2 Mutual exclusion. At any time during the operation of the system at
most one key exists.

C3 Key access. Any given device always has the possibility of obtaining the
key, i.e., no device is ever excluded from getting access to the key.

Figure 14.22 shows an initial fragment of the state space for the BeoLink system.
This contains the markings that are reachable from the initial marking by at most
two transition occurrences. The initial marking (represented by node 1) was shown
in Fig. 14.20. In this marking there are three enabled binding elements, since all
three devices are able to request the key. The boxes positioned on top of the arcs
describe the enabled binding element to which the arc corresponds by giving the
transition name and the value bound to the variable did (the device identifier). The
transition KeyWanted is in another module of the CPN model.

The state space of the timed BeoLink CPN model is infinite because the BeoLink
system contains cyclic behaviour and because the absolute notion of time, as repre-
sented by the global clock and the timestamps of tokens, is carried over into the state

14.3 Embedded-System Design at Bang and Olufsen 343

RequestKey : did=1

RequestKey : did=3

KeyWanted : did=2

RequestKey : did=3 RequestKey : did=2

KeyWanted : did=1

RequestKey : did=2

RequestKey : did=1

KeyWanted : did=3

RequestKey : did=3

RequestKey : did=1

RequestKey : did=2

10
1:2

8
2:3

9
1:2

5
2:3

6
2:3

7
1:2

2
1:3

3
1:3

4
1:3

1
0:3

Fig. 14.22 Initial fragment of state space

space (see Sect. 10.3). Cyclic behaviour arises, for example, from the fact that de-
vices may execute a loop where they request the key, are granted the key, and finally
release the key. As a concrete example, consider the marking of the KeyUser mod-
ule shown in Fig. 14.23. This marking is similar to the marking previously shown in
Fig. 14.21, except that all devices have had the key once and device 1 now possesses
the key again. The markings in Figs 14.21 and 14.23 are represented by two differ-
ent nodes in the state space because the timestamps of the tokens and the values of
the global clock differ.

The initial state space analysis of the CPN model considered the initialisation
phase of the BeoLink system and the time-bounded key generation property C1.
Verification of C1 was investigated by considering a partial state space, i.e., a fi-
nite fragment of the full state space. This partial state space was obtained by not
generating successors for markings where the key had been generated or where the
model time had passed 2 seconds. It was then checked that a key was present in the
system in all markings for which successor markings had not been generated. To
save computer memory, the arcs in the state space were not stored, since they were
not needed for verifying the key generation property. Table 14.3 lists some statistics
showing the number of nodes in the partial state space for different configurations of
the BeoLink system. Configurations with one video master and a total of n devices
are denoted VM:n, and configurations with one audio master and a total of n devices
are denoted AM:n.

344 14 Examples of Industrial Applications

(did,tlg_list3)

(did,tlg_list2)

tlgbuf

(did,fl_cmd_list)

(did,fl_cmd_list)

(did,fl_cmd_list^^[LOCK_MAN_KEY_RELEASE])

did@+(10+40*ran_0_1)

did

did@+(10+40*ran_0_1)

(did,KEY_IS_READY)

did

did

did

(did,fl_cmd_list^^[LOCK_MAN_KEY_WANTED])

ReleaseKey

GetKey

Send
Buffer I/O

DIDxTLG_LIST

DIDxTLG_LIST

Receive
Buffer I/O

TLG_BUFFERS

CommandsI/O

DIDxFL_CMD_LIST

StatusIn

DIDxFL_STATUS

UseKey

DID

Waiting

DID

Idle

DID

InI/O

I/O

I/O

FunctionLock
In I/OI/ORequestKey

3
1`(1,[])++
1`(2,[])++
1`(3,[])

1

1`[(1,[]),(2,[]),(3,[])]

3

1`(1,[])++
1`(2,[])++
1`(3,[])

11`1@4498

21`2@4372+++
1`3@4472

3

1`(1,[])++
1`(2,[])++
1`(3,[])

Fig. 14.23 KeyUser module, when all devices have used the key once

Table 14.3 Statistics for partial state space of the initialisation phase (global clock ≤ 2.0 seconds)

Configuration Nodes

AM:3 1 839
AM:4 22 675
AM:5 282 399

VM:3 1 130
VM:4 13 421
VM:5 164 170

14.3.4 Application of Advanced State Space Methods

To conduct state space analysis of the full BeoLink system and not only the initial-
isation phase, the time equivalence method introduced in Sect. 10.4 was applied.
This factors out the absolute notion of time and constructs a finite condensed state
space whenever the state space of the underlying untimed CPN model is finite. Ta-
ble 14.4 shows statistics for the condensed state space constructed using the time
equivalence method. At the time of the project, it was not possible to generate the
time-condensed state space for more than three devices with the available amount
of computer memory. Using the condensed state space, it is now possible to verify
also properties C2 (mutual exclusion) and C3 (key access). Property C2 can be ex-
pressed as the property that in no reachable marking is there more than one token on

14.3 Embedded-System Design at Bang and Olufsen 345

Table 14.4 Statistics obtained with the time equivalence method for the full system

Config Nodes Arcs

AM:2 346 399
AM:3 27 246 37 625

VM:2 274 310
VM:3 10 713 14 917

the place UseKey (see Fig. 14.20), and property C3 can be expressed as the property
that, from any reachable marking and for any device, it is always possible to reach a
marking where the token corresponding to this device is on the place UseKey. These
two properties can be checked using the standard query functions PredAllNodes
and HomePredicate in the CPN state space tool.

The state space analysis presented above allowed only configurations with up to
three devices to be verified because of the state explosion problem, i.e., the state
spaces became too large to be computed with the available computer memory. To
obtain state spaces for larger configurations, we applied the symmetry method (see
Sect. 8.3) and the sweep-line method (see Sect. 8.2).

The symmetry method represents symmetric markings and symmetric binding
elements using equivalence classes. The devices in the BeoLink system that are not
audio or video masters are symmetric, in the sense that they behave in the same way
with respect to the lock management protocol. They are distinguishable only by their
device identity. This symmetry is also reflected in the state space (see Fig. 14.22).
Consider, for instance, the two markings represented by nodes 2 and 4, which cor-
respond to markings in which exactly one non-master device has requested the key
(device 1 is the audio master in the configuration considered). These two markings
are symmetric in the sense that node 2 can be obtained from node 4 by swapping
the identities of devices 2 and 3. Similarly, the two states represented by node 7 and
node 10 can be obtained from each other by interchanging the identity of devices 2
and 3. These two markings correspond to states in which one device has requested
the key and the lock management protocol has registered the request. Furthermore, it
can be observed that two symmetric states such as state 2 and state 4 have symmetric
sets of enabled binding elements and symmetric sets of successor markings.

Figure 14.24 shows the initial fragment of the symmetry-condensed state space
for the BeoLink system obtained by considering two markings equivalent if one
can be obtained from the other by a permutation of the identities of the non-master
devices. The nodes and arcs now represent equivalence classes of markings and
binding elements, respectively. The equivalence class of markings represented by
a node is listed in bracs in the inscription of the node; for example, node 2 repre-
sents markings 2 and 4 in Fig. 14.22. The basic idea of symmetry-condensed state
spaces is to represent these equivalence classes by picking a representative for each
equivalence class.

346 14 Examples of Industrial Applications

RequestKey : did=3

KeyWanted : did=1

RequestKey : did=2 RequestKey : did=1

KeyWanted : did=3

RequestKey : did=3 RequestKey : did=1

9
1:2

5
2:3

6
2:3

7
1:2

2
1:3

3
1:3

1
0:3

{7,10}

{1}

{2,4}

{5} {6,8}

{9}

{3}

Fig. 14.24 Initial fragment of symmetry-condensed state space

Table 14.5 shows statistics obtained when using the symmetry method for the
initialisation phase of the BeoLink system. The column ‘State space nodes’ lists the
number of nodes in the full state space, and the column ‘Symmetry nodes’ lists the
number of nodes in the symmetry-condensed state space. The column ‘Node ratio’
gives the number of nodes in the full state space divided by the number of nodes in
the symmetry-condensed state space. The column ‘Time ratio’ gives the time used
to generate the full state space divided by the time used to compute the symmetry
condensed state space. The column ‘(n−1)!’ lists the factorial of n−1, where n is
the number of devices in the configuration. When there are n devices in the config-
uration, there are (n−1)! possible permutations of the non-master devices. Hence,
(n−1)! is the theoretical upper limit on the reduction factor that can be obtained for
a configuration with n devices. The computation time for symmetry-condensed state
spaces becomes large for seven devices. This is due to the calculation of canonical

Table 14.5 Statistics for symmetry method: initialisation phase

State space Symmetry Node Time
Configuration nodes nodes ratio ratio (n−1)!

AM:3 1 839 968 1.9 1.0 2
AM:4 22 675 4 361 5.2 2.5 6
AM:5 282 399 15 865 17.8 10.0 24
AM:6 3 417 719 47 867 71.4 – 120

VM:3 1 130 594 1.9 1.0 2
VM:4 13 421 2 631 5.1 2.5 6
VM:5 164 170 9 328 17.6 10.0 24
VM:6 1 967 159 27 551 71.4 – 120
VM:7 22 892 208 68 683 333.3 – 720

14.3 Embedded-System Design at Bang and Olufsen 347

representatives being costly (as described at the end of Sect. 8.3). The size of the
full state space for the configurations AM:6, VM:6, and VM:7 has been calculated
from the symmetry-condensed state space by computing the size of each equiva-
lence class.

Table 14.6 lists statistics for the symmetry-condensed state spaces of the full
BeoLink system. The column ‘Time equiv nodes’ gives the number of nodes in the
state space obtained with the time equivalence method alone. The column ‘Sym-
metry + time equiv nodes’ gives the nodes for simultaneous use of the symmetry
method and the time equivalence method. The number of nodes for the configura-
tions AM:4 and VM:4 in the time equivalence method have been computed from
the symmetry-condensed state spaces.

Table 14.6 Statistics for symmetry method: full system

Time equiv Symmetry + time equiv Node Time
Configuration nodes nodes ratio ratio (n−1)!

AM:3 27 246 13 650 1.92 2.0 2
AM:4 12 422 637 2 074 580 5.88 - 6

VM:3 10 713 5 420 1.98 2.0 2
VM:4 3 557 441 594 092 5.99 - 6

Next, we used the sweep-line method. The basic idea of the sweep-line method
is to exploit a progress measure to explore all reachable markings of a CPN model,
while storing only small fragments of the state space in memory at a time. This
means that the peak memory usage is reduced. The sweep-line method is aimed
at on-the-fly verification of safety properties, for example, determining whether a
reachable marking satisfying a given state predicate exists. Hence, it can be used
to verify properties C1 (key generation) and C2 (mutual exclusion) of the BeoLink
system, but not property C3 (key access).

The global clock in a timed CPN model has the property that for two markings
M and M′, where M′ is a successor marking of M, the value of the global clock in
M is less than or equal to the value of the global clock in M′. This implies that the
global clock can be used as a monotonic progress measure. Figure 14.25 shows how
the markings/nodes in the state space fragment shown in Fig. 14.22 can be ordered
according to this notion of progress. Markings in one layer all have the same value of
the global clock. Layer 0 contains markings in which the global clock has the value
0. Layer 1 contains markings where the global clock is 500 time units. A marking
in a given layer has successor markings either in the same layer or in a layer that
represents further progress, but never in a layer that represents less progress.

Table 14.7 lists statistics for the application of the sweep-line method to the ini-
tialisation phase of the BeoLink system with the global clock as the progress mea-
sure.

To apply the sweep-line method to the full BeoLink system, we need to com-
bine it with the time equivalence method (otherwise the state space will be infinite).

348 14 Examples of Industrial Applications

RequestKey : did=1

RequestKey : did=3

KeyWanted : did=2

RequestKey : did=3 RequestKey : did=2

KeyWanted : did=1

RequestKey : did=2

RequestKey : did=1

KeyWanted : did=3

RequestKey : did=3

RequestKey : did=1

RequestKey : did=2

10
1:2

8
2:3

9
1:2

5
2:3

6
2:3

7
1:2

2
1:3

3
1:3

4
1:3

1
0:3

Layer 1:
Global clock 500

Layer 0: Global clock 0

Fig. 14.25 Initial fragment of state space, arranged by progress

Table 14.7 Statistics for sweep-line method: initialisation phase

State space Sweep-line Node Time
Configuration nodes peak nodes ratio ratio

AM:3 1 839 1 839 1.0 1.0
AM:4 22 675 5 169 4.4 1.2
AM:5 282 399 35 017 8.1 2.5

VM:3 1 130 1 130 1.0 1.0
VM:4 13 421 5 167 2.6 0.9
VM:5 164 170 34 968 4.7 2.2

The use of the time equivalence method implies that the global clock becomes 0 in
all markings. It is, however, possible to define a non-monotonic progress measure
based on the control flow of the devices and use this with the generalised sweep-
line method [70]. The devices have a cyclic control flow where first they are idle,
then they request the key, and finally they obtain the key. When they have used the
key, they return to the idle state. This is a kind of local progress, starting from the
idle state progressing towards the state where they have the key. This ordering can
be used to define a non-monotonic progress measure. Details can be found in [70].
With this progress measure, the markings shown in Figs 14.21 and 14.23 have a
higher progress value than the marking shown in Fig. 14.20. When a device releases
the key and moves to the idle state, we have a regress arc in the state space (i.e., an
arc along which the progress measure decreases).

14.3 Embedded-System Design at Bang and Olufsen 349

Table 14.8 lists statistics for the application of the generalised sweep-line method
to the full BeoLink system using the progress measure sketched above. The column
‘Time equiv nodes’ gives the number of nodes in the state space obtained with the
time equivalence method alone. The column ‘Nodes explored’ lists the total number
of nodes explored when the sweep-line method is used in combination with the
time equivalence method, and the column ‘Peak nodes’ gives the peak number of
nodes stored. It can be seen that some states are explored multiple times, which
causes a time penalty. The sweep-line method achieves a reduction in peak memory
usage to about 10%. The large time penalty was due to an inefficient implementation
of deletion of states in the sweep-line library [43]. A more efficient algorithm for
deletion of states has been developed in [71].

Table 14.8 Statistics for generalised sweep-line method: full system

Time equiv Sweep-line + time equiv. Node Time
Configuration nodes Nodes explored Peak nodes ratio ratio

AM:2 346 355 65 5.3 0.5
AM:3 27 246 28 363 2 643 10.3 0.3

VM:2 274 283 41 6.7 0.5
VM:3 10 713 11 388 1 039 10.3 0.5

We have seen above that it is possible to combine time-condensed state spaces
with both the symmetry method and with the sweep-line method. It is also possi-
ble to use the sweep-line method and the symmetry method simultaneously. This
combination was investigated in [8], where it was demonstrated that using the two
methods simultaneously leads to a better reduction than when either method is used
in isolation.

14.3.5 Conclusions from the BeoLink Project

This project demonstrated the use of CP-nets for modelling and validating a real-
time system, i.e., a system where the correctness of the system depends on timing
information. The construction of the CPN model was done in close cooperation
between engineers at Bang & Olufsen and members of our research group. The
engineers were given a four-day course on CP-nets, enabling them to construct large
parts of the CPN model. This demonstrates (as also seen in other projects) that a
relatively short introduction is required to get started on using CP-nets in industrial
projects.

When the BeoLink project was originally conducted, only the initialisation phase
of the lock management protocol was verified using state spaces [17]. The reason
for this was that no advanced state space methods were available in the CPN com-

350 14 Examples of Industrial Applications

puter tools at that time. Since then, a number of advanced state space methods have
been developed and implemented, and the revised state space analysis in [75] has
used these to verify configurations of the BeoLink system that could not be verified
using ordinary state spaces. The application of the advanced state space methods
demonstrated that these methods enable verification of larger configurations of a
system, and in some cases allow the verification of all configurations that are ex-
pected to appear in practice. It was also demonstrated that two advanced state space
methods can be used simultaneously to get a better reduction than obtainable from
either method in isolation.

14.4 Scheduling Tool for Australian Defence Forces

This project [73, 74, 112], conducted with the Australian Defence Science and Tech-
nology Organisation (DSTO), was concerned with the development of a Course of
Action Scheduling Tool (COAST). In the project, CPN modelling was used to con-
ceptualise and formalise the planning domain to be supported by the tool. Further-
more, the CPN model constructed was extracted in executable form from CPN Tools
and embedded into the server of COAST together with a number of tailored state
space analysis algorithms. The project demonstrated how a CPN model can be used
for the implementation of a computer tool by effectively bridging the gap between
a design specified as a CPN model and the implementation of the system.

14.4.1 Plans and Task Schedules

A plan (also called a course of action) consists of a set of tasks. The key capability
of COAST is the computation of task schedules (also called lines of operations).
The tool supports the development and analysis of military plans and their task
schedules. A CPN model is used to model the execution of tasks according to their
preconditions and postconditions, the synchronisations imposed, and the resources
available. The possible task schedules are then obtained by generating a state space
for the CPN model and extracting paths from the state space leading from the initial
marking to certain markings representing end states. The framework underlying
COAST is based on four key concepts:

• Tasks are the basic units of a plan and have associated preconditions describing
the conditions required for a task to start, and effects describing the results of its
execution. A task also includes a specification of the resources required to exe-
cute the task, and may have a specified duration. Tasks also have other attributes,
but these will be omitted in this presentation.

• Conditions are used to describe the explicit logical dependencies between tasks
via preconditions and effects. As an example, a task T1 may have an effect used

14.4 Scheduling Tool for Australian Defence Forces 351

as a precondition of a task T2. Hence, T2 depends logically on T1 in the sense
that it cannot be started until T1 has been executed.

• Resources are used by tasks during their execution. Resources typically repre-
sent aircrafts, ships, and personnel required to execute a task. Resources may be
available only at certain times, for example owing to service intervals. Resources
may be lost in the course of executing a task.

• Synchronisations can be used to capture requirements that a set of tasks must be-
gin or end simultaneously, that there has to be a specific amount of time between
the start and end of a certain task, and that a task can start only after a certain
point in time. A set of tasks that are required to begin at the same time is said to
be begin-synchronised. A set of tasks required to end at the same time is said to
be end-synchronised. End-synchronisations can cause the duration of tasks to be
extended.

Table 14.9 shows an example plan with six tasks. This table specifies for each
task its preconditions, its effects, the required resources, and the duration of the
task. In addition to the information provided in the table, the set {T5, T6} of tasks
are begin-synchronised and the set {T4, T5, T6} of tasks are end-synchronised. The
available resources are 4‘R1 ++ 3‘R2 ++ 3‘R3 ++ 1‘R4 ++ 1‘R5 (written as a multiset).
Figure 14.26 provides a graphical illustration of the dependencies and synchronisa-
tions between the tasks, using dashed lines to indicate begin-synchronisations and
end-synchronisations.

We want to calculate the possible task schedules, i.e., the ways in which the set
of tasks can be sequenced. Each task schedule must respect the effects and precon-
ditions, the available resources, and the synchronisation constraints. Figure 14.27
illustrates one such possible task schedule.

The COAST tool is based on a client–server architecture. The client constitutes
the domain-specific graphical user interface and is used for the specification of
plans. It supports the human planners in specifying tasks, resources, conditions, and
synchronisations. To analyse a plan, this information is sent to the COAST server.
The client can now invoke the analysis algorithms in the server to compute task
schedules. The server also supports the client in exploring and debugging the plan
in cases where an analysis shows that no task schedule exists. The communication

Table 14.9 Example plan with six tasks

Task Preconditions Effects Resources Duration

T1 – E1 4‘R1 2
T2 E1 E2 2‘R2 ++ 2‘R3 4
T3 E1 E3 2‘R2 ++ 2‘R3 7

T4 E1 E4 1‘R2 ++ 1‘R3 –
T5 E2 E5 1‘R4 7
T6 E3 E6 1‘R5 7

352 14 Examples of Industrial Applications

T1 T2

T3
E1

E1

T4

E1

T5

T6

E2

E3

begin end

Fig. 14.26 Illustration of dependencies and synchronisations between tasks in the example plan

Time

T1

0

T2

T4

T3

T5

T6

2 6 13 20

Fig. 14.27 One possible task schedule for the example plan

between the client and the server is based on a remote-procedure-call (RPC) mech-
anism implemented using the Comms/CPN library [42].

Figure 14.28 depicts the construction of the COAST server. The first step was to
develop and formalise the planning domain, which provides the semantic founda-
tion of COAST. This was done by constructing a CPN model that formally captures
the semantics of tasks, conditions, resources, and synchronisations. This activity in-
volved discussions with the prospective users of COAST (i.e., the military planners)
to identify requirements and determine the concepts and working processes that
were to be supported. The second step was to extract the constructed CPN model
from CPN Tools. This was done by saving a simulation image containing the Stan-
dard ML code that CPN Tools generated for simulation of the CPN model. The CPN
model is parameterised with respect to the set of tasks, conditions, resources, and
synchronisations. This ensures that any given plan can be analysed by changing the
initial marking (without changes to the net structure, arc inscriptions, or guards).
This implies that the simulation image extracted from CPN Tools is able to simulate
any plan, and hence CPN Tools was no longer needed once the simulation image
had been extracted. The third step was the implementation of a suitable interface
to the extracted CPN model and the implementation of the state space exploration
algorithms.

The Model Interface component contains primitives that make it possible to set
the initial marking of the CPN model to represent the concrete set of tasks, condi-
tions, resources, and synchronisations constituting the plan to be analysed. In addi-

14.4 Scheduling Tool for Australian Defence Forces 353

Step 1:

Formalisation CPN Model

Step 2:

Extracting

CPN Model
executable

COAST
Domain
Planning

CPN Tools

Image
Simulation

Step 3:

Interfacing and
Analysis algorithms

Analysis

Interface

Simulation

SML

system
runtime

Image

Model

COAST Server

CPN
Comms/

Fig. 14.28 Construction of the COAST server

tion, it provides primitives that make it possible to obtain the set of enabled binding
elements in a given marking, and the marking reached when an enabled binding el-
ement occurs. These primitives are used to implement the state space analysis algo-
rithms in the Analysis component for task schedules. The Comms/CPN component
was added, and it implements a remote-procedure-call mechanism that allows the
client to invoke the primitives in the Analysis and the Model Interface components.
The resulting application constitutes the COAST server.

Figure 14.29 shows a snapshot from the COAST client illustrating how the user
views a plan in the editor. There are four main windows, showing the set of tasks, the
assigned resources, the conditions, and the synchronisations. Figure 14.30 shows an
example of how task schedules are reported to the user. It shows a task schedule
which is identical to the schedule in Fig. 14.27, except that T3 now occurs before
T2. The fact that the COAST server uses a CPN model as a basis for the scheduling
analysis is fully transparent to an analyst using the COAST client.

14.4.2 COAST CPN Model

Figure 14.31 shows the module hierarchy for the CPN model. The CoastServer
module is the top-level module in the CPN model, which consists of three main
parts. The Execute module (left) and its submodules model the execution of tasks,
i.e, the start, termination, abortion, and failure of tasks according to the set of tasks,
resources, conditions, and synchronisations in the plan. The Environment module
(middle) and its submodules model the environment in which tasks execute, and is
responsible for managing the availability of resources over time, changes of condi-
tions over time, and task failures. The Initialisation module (right) and its submod-
ules are used for the initialisation of the model according to the concrete set of tasks,
synchronisations, and resources in a plan. The CPN model is timed, since capturing
the time taken by the execution of a task is an important part of the computation of
task schedules.

Figure 14.32 lists the definitions of the colour sets that represent the key entities
of a plan. A condition is modelled as a pair consisting of a STRING, specifying

354 14 Examples of Industrial Applications

Fig. 14.29 Snapshot from editing a plan in the COAST client

Fig. 14.30 Snapshot from analysing a plan in the COAST client

14.4 Scheduling Tool for Australian Defence Forces 355

Initialisation

Synchronisations

Resources

Conditions

ResourceManager

IntDeallocate

FailDeallocate

TaskFailures

VanishingConditions

FailEndSynchronise

AbortEndSynchronise

CoastServer

Execute

Start

Allocate

StartTasks

Terminate

Normal

Failure

Abort

Deallocate

Environment

TaskFailure

TaskInterrupt

Fig. 14.31 Module hierarchy of the COAST model

the name of the condition, and a boolean, specifying the truth value. The colour
set ResourceSpecification is used to represent the state of the resources as-
signed to the plan. The colour set Resources is defined as a union and is used
for modelling the idle and lost resources. The assigned resources also have a spec-
ification of the availability of the resources (via the colour set Availability),
specifying the time intervals during which or the start time at which the resource is
available.

Tasks are the executable entities in a plan. They are modelled by the colour set
Task, which is defined as a record consisting of 11 fields. The name field is used
to specify the name of the task, and the duration field is used to specify the
minimal duration of the task. The duration of a task may be extended owing to
synchronisations, and not all tasks are required to have a specified minimal duration,
since their durations may be given implicitly by synchronisations and conditions
(see T4 in Table 14.9). The remaining fields can be divided into:

• Preconditions, which specify the conditions that must be valid before the task
is started. The colour set Conditions is used for modelling the condition
attributes of tasks. The normalpreconditions specify the conditions that
must be satisfied for the task to start. A subset of the normal preconditions may be
further specified as vanishingpreconditions to represent the effect that
the start of the task will invalidate such preconditions. The sustainingpre-
conditions specify the set of conditions that must be satisfied for the entire
duration of the execution of the task. If a sustaining precondition becomes in-
valid, then it will cause the task to abort, which may in turn cause other tasks to
be interrupted. The terminationpreconditions specify the conditions
that must be satisfied for the task to terminate.

• Effects, which specify the effects of starting and executing the task. The
instanteffects are conditions that become immediately valid when the

356 14 Examples of Industrial Applications

colset Condition = product STRING * BOOL;
colset Conditions = list Condition;

colset Resource = product INT * STRING;
colset ResourceList = list Resource;

colset AvailSpecification = union INT : INTxINT + FROM : INT;
colset Availability = list AvailSpecification;

colset ResourcexAvailability = product Resource * Availability;
colset ResourceSpecification = list ResourcexAvailability;

colset Resources = union IDLE : ResourceSpecification
+ LOST : ResourceSpecification;

colset Task = record
name : STRING *
duration : Duration *
normalpreconditions : Conditions *
vanishingpreconditions : Conditions *
sustainingpreconditions : Conditions *
terminationpreconditions : Conditions *
instanteffects : Conditions *
posteffects : Conditions *
sustainingeffect : Conditions *
startresources : ResourceList *
resourceloss : ResourceList;

colset BeginSynchronisation = list Task;
colset EndSynchronisation = list Task;

Fig. 14.32 Colour set definitions for planning

task starts executing. The posteffects are conditions that become valid at
the moment the task terminates. Finally, sustainingeffects are conditions
that are valid as long as the task is executing.

• Resources, which specify the resources required by the task during its execution.
Each resource is modelled by the colour set Resource, which is a product of
an integer (INT), specifying the quantity, and a string (STRING), specifying the
resource name. Resources may be lost or consumed in the course of executing a
task. The startresources are resources required to start the task, and they
are allocated for as long as the task is executing. The resourceloss are re-
sources that may be lost during execution of the task.

The colour sets BeginSynchronisation and EndSynchronisation
are used to specify that certain tasks have to begin or end at the same time.

Figure 14.33 shows the top-level module of the CPN model. It contains three
substitution transitions and four places. The place Resources models the state of
the resources, and the place Conditions models the values of the conditions. The

14.4 Scheduling Tool for Australian Defence Forces 357

place Idle contains the tasks that are yet to be executed, and the place Executing
contains the tasks currently being executed. The marking in Fig. 14.33 represents
an intermediate state in the execution of the the plan shown in Table 14.9. The
place Conditions contains one token, which is a list containing the conditions in
the plan and their truth values. The colour set for the places Resources, Executing,
and Idle are complex. Hence, we have shown only the numbers of tokens and not
the colours. The latter two places contain a token for each task which is Idle and
Executing, respectively. The place Resources contains two tokens. One of these is a
list describing the current set of idle (available) resources. The other token is a list
describing the resources that have been lost up to now.

Figure 14.34 shows the Allocate module, which is one of the submodules of
the substitution transition Execute (see Fig. 14.33). This module represents one of
the steps in starting tasks. The transition Start models the start of a set of begin-
synchronised tasks. The two port places Resources and Conditions are associated
with the accordingly named places of the top-level module shown in Fig. 14.33
via a sequence of port–socket relations. An occurrence of the transition removes a
token representing the begin-synchronised tasks (assigned to the variable tasks)
from the place Tasks, a token representing the idle resources (bound to the variable
idleres) from the place Resources, and a token representing the values of the
conditions (bound to the variable conditions) from the place Conditions. The
transition adds a token representing the set of tasks to be started to the place Start-
ing and puts a token back on the place Conditions, updated according to the instant
effects of the tasks. All idle resources are put back on place Resources, since the
actual allocation is done in a subsequent step modelled by another module. The
guard checks that the preconditions of the tasks are satisfied and that the necessary
resources are available.

Other modules model the details of task execution and their effects on conditions
and resources. They have a complexity similar to the Allocate module.

Execute

Execute

Environment

Environment

Executing
T

Task

Conditions

C

Conditions

Idle
T

Task

Resources
R

Resources Environment

Initialise

InitialisationInitialisation

Execute

3

1

1`[("C1",true),("C2",true),("C3",true),
("C4",false),("C5",false),("C6",false)]

3

2

Fig. 14.33 CoastServer module

358 14 Examples of Industrial Applications

tasks

IDLE idleres conditions
Start

StartingOut

BeginSynchronisation

TasksIn

BeginSynchronisation

Resources
I/O

In

Out

[SatPreConditions(tasks,conditions),
 ResourcesAvailable (idleres,tasks)]

tasks

Resources Conditions
InstantEffects(tasks,conditions)

I/O
Conditions

I/OI/O

Fig. 14.34 Allocate module for starting tasks

14.4.3 Generation of Task Schedules

The main analysis capability of COAST is the generation of task schedules, i.e.,
a specification of start and end times for the tasks in a plan. The process of task
schedule generation consists of two phases. In the first phase, a state space is gener-
ated relative to the plan to be analysed. Successors are not generated for states that
qualify as desired end states according to the conditions specified by the user. In the
second phase, the task schedules are computed by traversing the constructed state
space. They are determined from the paths in the state space, and are divided into
two classes. Complete task schedules are schedules that lead from the initial mark-
ing to a marking representing a desired end state. Incomplete task schedules are
those that lead to markings representing undesired end states, i.e., dead markings
that do not satisfy the conditions specified by the user. When incomplete schedules
are reported, the user will typically investigate the causes of these using queries
about tasks, conditions, and resources in various states. In that sense, COAST also
supports the planner in identifying errors and inconsistencies in the plan under anal-
ysis.

Figure 14.35 shows the state space for the example plan shown in Table 14.9.
Node 1, on the left, corresponds to the initial marking. The thick arcs in the
state space correspond to the start and termination of tasks. The other arcs corre-
spond to internal events in the CPN model. The thick arcs have labels of the form
Si : t or Ei : t, where i specifies the task number and t specifies the time at which the
event takes place. As an example, task T1 starts at time 0, as specified by the label
on the outgoing arc from node 1, and ends at time 2, as specified by the label on the
outgoing arc from node 2.

The computation of task schedules is based on a breadth-first traversal of the state
space starting from the initial marking. The basic idea is to compute the schedules
leading to each of the markings encountered during the traversal of the state space,
where the schedules for a given marking are computed from the schedules associated
with its predecessor markings. The algorithm exploits the fact that the state space of
the CPN model is acyclic for any plan, and that the paths leading to a given marking
in the state space all have the same length.

14.4 Scheduling Tool for Australian Defence Forces 359

1 1 1 1 1 2 1 2 2 2 3 2

2

2

4

4

2

4

5

2

4

5

3

4

5

3

5

6

4

4

4

6

3

4

4

6

3

5

5

6

3

8

9

10

7

11

12

14

13

5

3

7

6

7

6

7

6

16

15

8

6

8

7

8

7

8

7

8

7

18

17

8

7

8

8

9

8

9

9

19 9

9 9 9 9 9 20 1 1 1 1 1 1 1 1 1 1 21

S1:0

S2:2

S4:2

S3:2

S4:2

S2:2

S3:2

S4:2

E2:6

E3:9

S3:6

S2:9

E1:2

E3:13

E2:13

S5/S6:13

E4/E5/E6:20

Fig. 14.35 State space for the example plan

We shall now illustrate how the algorithm operates. Figure 14.36 shows the task
schedule information associated with each marking in the first part of the state space.
The only schedule associated with the initial marking is the empty task schedule,
represented by the empty list []. Task schedules for the successor marking of the
initial marking are now computed. The outgoing arc from node 1 corresponds to
the start of a task. Hence, the schedule is augmented with information about the
time at which T1 was started. This results in the schedule [(T1, 0, ?)]. The sched-
ule remains the same until the arc corresponding to the termination of T1 at time 2
is reached. Then, the termination time of T1 is recorded in the schedule [T1, 0, 2].
The new schedule is propagated forwards and when node 3 is reached, the schedule
is propagated along three branches corresponding to the three successor markings
of node 3. The generation of schedules continues until nodes 7, 8, 9, and 10 are
reached. Here the schedules associated with nodes 7 and 8 are merged and associ-
ated with node 11, since the start times and termination times of each of the tasks
in the schedules are identical. Similarly, the schedules associated with nodes 9 and
10 are merged and associated with node 12. The breadth-first traversal now con-
tinues until, eventually, node 21 in Fig. 14.37 is reached, where the two complete
schedules leading to the desired end state have been computed. The first schedule
corresponds to the one shown in Fig. 14.27, and the second corresponds to the one
shown in Fig. 14.30.

360 14 Examples of Industrial Applications

1 1 1 1 1 2 1 2 2 2 2 3 2

2

2

4

4

2

4

5

2

4

5

3

4

5

3

5

6

4

4

4

6

3

4

4

6

3

5

5

6

3

8

9

10

7

11

12

S1:0

S2:2

S4:2

S3:2

S4:2

S2:2

S3:2

S4:2

E1:2

[(T1,0,?)] [(T1,0,2)][]

[(T1,0,2),(T2,2,?)]

[(T1,0,2),(T4,2,?)]

[(T1,0,2),(T3,2,?)]

[(T1,0,2),(T2,2,?),(T4,2,?]

[(T1,0,2),(T2,2,?),(T4,2,?]

[(T1,0,2),(T3,2,?),(T4,2,?]

[(T1,0,2),(T3,2,?),(T4,2,?]

Fig. 14.36 Start of task schedule generation

9 9 9 9 9 20 1 1 1 1 1 1 1 1 1 1 21
E4/E5/E6:20

[(T1,0,2),(T2,2,6),(T4,2,20),(T3,6,13),(T5,13,20),(T6,13,20)]
[(T1,0,2),(T4,2,20),(T3,2,9),(T2,9,13),(T5,13,20),(T6,13,20)]

Fig. 14.37 Termination of task schedule generation

The typical planning problems to which COAST is applied consist of 15–25
tasks, resulting in state spaces with 10–20,000 nodes and 25–35,000 arcs. The state
spaces are relatively small because the conditions, available resources, and imposed
synchronisations strongly limit the possible orders in which the tasks can be exe-
cuted.

14.4.4 Conclusions from the COAST Project

The role of CP-nets in the development of COAST was threefold. Firstly, CPN mod-
elling was used in the development and specification of the underlying framework.
Secondly, the CPN model constructed was used directly in the implementation of
COAST by embedding it into the COAST server, which constitutes the computa-
tional back end of COAST. Hence, CP-nets provide a semantic foundation by for-
malising and implementing the abstract conceptual framework underlying the tool.
Finally, the analysis capabilities of COAST are based on state space methods.

The development of the COAST tool is an example of how the usual gap be-
tween the design, as specified by a CPN model, and the final implementation of
a system can be overcome. The CPN model that was constructed to develop the
conceptual and semantic foundation of COAST is being used directly in the final
implementation of the COAST server. The project demonstrates the value of having
a full programming-language environment in the form of the Standard ML compiler
integrated into CPN Tools. Standard ML was crucial in several ways for the devel-
opment of COAST. It allowed a highly compact and parameterisable CPN model to
be constructed, and also allowed the CPN model to become the implementation of
the COAST server. The parameterisation is important for ensuring that the COAST

14.4 Scheduling Tool for Australian Defence Forces 361

server is able to analyse any set of tasks, conditions, resources, and synchronisations
without the user having to make changes to the CPN model. Having a full program-
ming language available also made it possible to extend the COAST server with
the specialised algorithms required to extract the task schedules from the generated
state spaces.

Chapter 15
Teaching Coloured Petri Nets

This chapter describes a course on the modelling and validation of concurrent sys-
tems based on this textbook which we have been giving at the Department of Com-
puter Science, at Aarhus University. The course uses CP-nets as a formal modelling
language for concurrency and exposes students to the benefits and applications of
modelling for designing and reasoning about the behaviour of concurrent systems.
The course introduces participants to the CPN modelling language, its analysis
methods, and its supporting computer tools. It also includes a presentation of in-
dustrial projects where CP-nets have been used for the modelling and validation of
systems. After the course, the participants will have a detailed knowledge of CP-nets
and practical experience in the modelling and validation of concurrent systems. The
course emphasises the practical use of modelling and validation and has less focus
on the formal foundation of CP-nets. The slide sets, CPN models, and suggestions
for exercises and projects from the course are available via the Web pages for this
textbook.

Section 15.1 describes the overall organisation of the course and explains its
context in the curriculum. Section 15.2 discusses the intended learning outcomes
of the course, and Sect. 15.3 presents the teaching and assessment methods used.
Section 15.4 gives an example of a representative student project conducted during
the course. Section 15.5 discusses our experiences obtained when developing and
giving the course.

15.1 Course Context and Aims

The course is divided into two parts, each lasting seven weeks, and participants may
choose to follow only the first seven weeks. Each part of the course corresponds to
5 ECTS (European Credit Transfer and Accumulation System), which means that
the participants are expected to spend one-third of their study time on the course.
The aim of the first part of the course is that the participants will obtain a detailed
knowledge of CP-nets and gain experience in the modelling and validation of small

K. Jensen, L.M. Kristensen, Coloured Petri Nets, DOI 10.1007/b95112 15, 363
c© Springer-Verlag Berlin Heidelberg 2009

364 15 Teaching Coloured Petri Nets

concurrent systems. The aim of the second part is that the participants will gain
practical experience in the application of CP-nets and CPN Tools for the modelling
and validation of larger concurrent systems. The working methods of the second
part are also intended to train the participants to plan and complete projects and to
communicate professional issues.

The only prerequisite for the course is that the participants must have completed
the first two short introductory programming courses of their bachelor’s degree stud-
ies. These two programming courses correspond to 10 ECTS. This means that we
assume that the participants are familiar with conventional programming-language
concepts such as variables, types, procedures, and modules. The overall approach
taken in the course is to introduce the CPN modelling language in a way similar
to that in which programming languages are introduced, i.e., through concrete ex-
amples that illustrate the constructs of the modelling language and also the more
general concepts of concurrency, synchronisation, and communication. The course
is an optional advanced course, and the majority of the participants are in their third
to fifth year of studies when taking the course. The course usually has 15–20 par-
ticipants. It is important to emphasise that the course is a specialised course on the
CPN modelling language and its supporting computer tools. There are several other
courses in the curriculum at our computer science department aimed at giving a
more general introduction to the theoretical and practical aspects of concurrency.
The theoretically oriented courses include courses on automata, concurrency, and
model checking introducing the students to labelled transition systems, communi-
cating sequential processes (CSP), the calculus of communicating systems (CCS),
and temporal logic. The practically oriented courses include courses on network
protocols and internetworking, operating systems, and distributed systems.

15.2 Intended Learning Outcomes

The formulation of the intended learning outcomes of the course is based upon
the Structure of the Observed Learning Outcome (SOLO) taxonomy of Biggs [6],
which provides a tool and framework for specifying the learning outcomes of a
course. The SOLO taxonomy has five levels, listed in Table 15.1, which determine a
hierarchy of learning competences, where level 5 is the highest level. The verbs used
in Table 15.1 to characterise the individual levels are very generic terms for learning
competences and often need adaptation depending on the educational context in
which the SOLO taxonomy is applied. Within our department, a variant of the SOLO
taxonomy has been developed with verbs specifically aimed at computer science
competences and these will be used below when we present the intended learning
outcomes of the course.

The SOLO taxonomy has been adopted by the Faculty of Science at Aarhus Uni-
versity as a general means for formulating learning outcomes. It was introduced at
the same time as a new Danish assessment scale with seven grades was introduced
and an ECTS certification process was undertaken by Aarhus University. The pur-

15.2 Intended Learning Outcomes 365

Table 15.1 The five levels of the SOLO taxonomy (see [6], pp. 39–40)

Level 5: Extended abstract
Characterised by verbs such as theorise, hypothesise, generalise, reflect, and generate.
These verbs represent competences at a level extending beyond what has been dealt
with in the actual teaching.

Level 4: Relational
Characterised by verbs such as apply, integrate, analyse, and explain. These verbs
represent competences in orchestrating facts, theory, actions, and purposes.

Level 3: Multistructural
Characterised by verbs such as classify, describe, and list. These verbs represents solid
competences within each topic and a basic understanding of the boundaries of each
topic.

Level 2: Unistructural
Characterised by verbs such as memorise, identify, and recognise. These verbs repre-
sent a minimalistic, but sufficient understanding of each topic viewed in isolation.

Level 1: Prestructural
This is the very bottom level, where no competences have been obtained.

pose of the new grading scale is to measure more explicitly than earlier the extent
to which course participants have achieved the intended learning outcomes (ILOs).
In Tables 15.2 and 15.3, the verbs that map into the five levels of the SOLO taxon-
omy are highlighted using bold italic type. The SOLO level to which a given verb
belongs is written in superscript following the verb. For the first part of the course,
seven ILOs, given in Table 15.2, have been defined. These intended learning out-
comes express what the participants are expected to be able to do at the end of the
course. In the following, we discuss each of these learning outcomes in more detail.

ILO1 (constructs and concepts) is concerned with learning the constructs of the
CPN modelling language, which include the net structure, the CPN ML inscription
language, and the concepts related to hierarchical and timed CPN models. ILO1 also
includes concepts such as binding elements, steps, concurrency, and conflict.

In ILO2 (syntax and semantics), we require the participants to be able to for-
mally define and explain the syntax and semantics of CP-nets. The purpose of ILO2
is to make the participants understand that CP-nets rely on a formal foundation.
When they are introduced to the formal definitions, the participants explore CP-nets
from a different angle than the example-driven introduction to the language. In this
sense, the formal definitions represent a complementary view of the modelling con-
structs that can help the participants to consolidate their understanding. ILO2 does
not require the participants to be able to formally define hierarchical CPN models
and timed CPN models. The formal definitions for this limited subset of the CPN
modelling language can be introduced using simple mathematical concepts.

In ILO3 (behaviour of concurrent systems), we require the participants to be
able to define and explain the standard behavioural properties of CP-nets (such as
boundedness properties, dead markings, and live transitions) and quantitative per-
formance properties (such as delays, throughput, and utilisation). These concepts are

366 15 Teaching Coloured Petri Nets

Table 15.2 Intended learning outcomes of the first part of the course

ILO1 Explain4 the constructs and concepts of the CPN modelling language.
ILO2 Define2 and explain4 the syntax and semantics of non-hierarchical untimed CP-nets.
ILO3 Define2 and explain4 properties used for characterising the behaviour of concurrent sys-

tems.
ILO4 Explain4 the basic concepts and techniques underlying state space analysis methods.
ILO5 Explain4 the basic concepts and techniques underlying simulation-based performance

analysis.
ILO6 Apply4 CP-nets and CPN Tools to the modelling and validation of small concurrent sys-

tems.
ILO7 Judge4 the practical application of CP-nets to the modelling and validation of concurrent

systems.

used when the students work with the analysis methods of CP-nets, which include
state space analysis and simulation-based performance analysis.

ILO4 (state space analysis) is concerned with the state space analysis meth-
ods of CP-nets. Here we require the participants to be able to explain the con-
cepts of state spaces and strongly-connected-component graphs. Furthermore, we
require the participants to be able to explain the techniques used to check the stan-
dard behavioural properties of CPN models from the state space and the strongly-
connected-component graph. Finally, we require that the participants are able to
explain the basic ideas underlying the advanced state space methods.

ILO5 (performance analysis) is concerned with simulation-based performance
analysis of CPN models. Here we require the participants to be able to explain
the techniques underlying simulation-based performance analysis such as work-
load generation, data collection monitors, and simulation replications. Furthermore,
we require the participants to be able to explain the statistical concepts related to
discrete- and continuous-time statistics.

ILO6 (modelling and validation of small systems) specifies that the participants
must have operational knowledge of the topics taught in the course, i.e., be able to
apply the modelling language and the analysis methods in practice.

ILO7 (judging the application of CP-nets) requires the participants to be able
to determine whether CP-nets constitute an appropriate choice for modelling and
validating systems within a given domain, i.e., to determine whether CP-nets are
suitable for the modelling of a system and the validation of the properties of interest.

For the second part of the course, three intended learning outcomes given in
Table 15.3, have been defined. ILO8 (modelling of larger systems) and ILO9 (val-
idation of larger systems) require the participants to be able to model and validate
concurrent systems of a size and complexity that appear in real system development
projects. ILO10 (discussing application of CP-nets) requires the participants to be
able to convey the results of modelling and validation, and issues arising from these
results, to colleagues.

15.3 Teaching and Assessment Methods 367

Table 15.3 Intended learning outcomes of the second part of the course

ILO8 Construct3 and structure3 CPN models of larger concurrent systems.
ILO9 Apply4 analysis methods for CP-nets to the validation of larger concurrent systems.
ILO10 Discuss5 the application of CP-nets to the modelling and validation of larger concurrent

systems.

We discuss the learning outcomes further in the next section, where we explain
how the teaching methods were chosen to support the participants in achieving the
intended learning outcomes, and how assessment methods were chosen to measure
whether the participants had achieved these outcomes.

15.3 Teaching and Assessment Methods

The teaching and assessment methods used in the course were chosen according to
the theory of constructive alignment [6]. In short, this theory states that the intended
learning outcomes should be the focal point of the course and the teaching methods
and activities used should be chosen so that they support the participants in achiev-
ing these intended learning outcomes. Similarly, the assessment methods used (e.g.,
the form of the exams) must be chosen so that they measure the degree to which the
participants have fulfilled the intended learning outcomes. The overall goal of con-
structive alignment is to encourage and motivate students to take a deep approach
to learning in contrast to a surface approach. A surface approach is characterised by
students doing tasks with a minimum of effort using low-cognitive-level activities,
whereas a deep approach to learning is characterised by students actively working
with the topics using higher-cognitive-level activities. This means that the focus of
constructive alignment is on the processes and products that result from the learning
activities of the students. A fun and easy way to learn more about the SOLO taxon-
omy and the difference between surface learning and deep learning is to watch the
award-winning 19-minute short film Teaching Teaching and Understanding Under-
standing [10], which is available via the Internet.

As explained earlier, the course is divided into two parts. The first part of the
course has a duration of 7 weeks (called a quarter) and is organised into 14 ses-
sions, as detailed in Table 15.4. The column ‘Material’ lists the chapter(s) that the
lectures are based on. Each session lasts for two hours (2 times 45 minutes). The
column ‘ILO’ lists the intended learning outcome addressed in the session. It can
be seen that the course is a combination of lectures and workshops. In the work-
shops, the participants work in groups of two or three persons in front of a PC using
CPN Tools to solve exercises and projects. The lecturers are present to help with
technical questions and issues related to the projects and exercises. In our experi-
ence, these workshops are very useful, as they enable face-to-face discussion with

368 15 Teaching Coloured Petri Nets

Table 15.4 Sessions in the first part of the course

Session Topic Method Material ILO Projects

1 Why modelling and validation? Lecture Chap. 1 7
2 Non-hierarchical CP-nets Lecture Chap. 2 1+3
3 CPN ML programming Lecture Chap. 3 1
4 Practical modelling Workshop Exercises 1+3+6 Start P1

5 Formal definition of CP-nets Lecture Chap. 4 2
6 Practical modelling Workshop Project 1 1+3+6
7 Hierarchical CP-nets Lecture Chap. 5 1 End P1

8 State space analysis (1) Lecture Chaps. 7+8 3+4 Start P2
9 State space analysis (2) Lecture Chaps. 7+8 3+4
10 Practical state space analysis Workshop Project 2 3+4+6

11 Timed CP-nets Lecture Chap. 10 1 End P2
12 Performance analysis Lecture Chap. 12 3+5 Start P3
13 Practical performance analysis Workshop Project 3 3+5+6

14 Industrial applications Lecture Chap. 14 7 End P3

the participants and are effective in highlighting issues that need to be discussed
in more detail – and which can then be discussed on demand at the workshops. In
this respect the workshops facilitate an interactive teaching–learning environment.
The workshops support the intended learning outcomes of the course, in particular
ILO6 (modelling and validation of small concurrent systems), but the workshops
also facilitate learning outcomes ILO1, ILO3, ILO4, and ILO5 as they stimulate
discussions among the participants of the concepts covered.

There are three mandatory projects in the first part of the course: project 1, on
modelling; project 2, on state space analysis; and project 3, on performance analy-
sis. The projects start and end as indicated in column “Projects” of Table 15.4. The
projects are conducted in groups of two or three participants and have to be docu-
mented in a short 5–10 page written group report. The first project is concerned
with extending the CPN model of the protocol system shown in Fig. 2.10 to model
a sliding-window protocol. The model of the sliding-window protocol must be vali-
dated using simulation. The second project is concerned with conducting state space
analysis of the model developed in project 1 in order to verify the correctness of the
protocol. It is interesting that 50–75% of the groups usually discover errors in their
design of the sliding window protocol from project 1 – errors that were not disco-
vered by means of the simulation conducted as part of project 1. This means that
the participants experience at first hand the power of verification techniques such
as the use of state spaces. Finally, project 3 is concerned with analysing the per-
formance of the sliding-window protocol created in project 1 using simulation and
comparing it with the performance of the protocol system described in Chap. 12.
The three projects must be approved before a participant can enrol for the exam.
This ensures that the participants have fulfilled learning outcome ILO6 (modelling

15.3 Teaching and Assessment Methods 369

and validation of small concurrent systems) before taking the exam. The exam is a
20-minute oral exam and the participants have approximately one week for prepara-
tion for the exam. In the exam, each examinee draws one question, covering ILO1–5
and ILO7. Table 15.5 lists the topics of the exam questions. Each question corres-
ponds to a chapter in this textbook.

Table 15.5 Exam questions for the first part of the course

Question Topic

1 Non-hierarchical Coloured Petri Nets (Chap. 2)
2 Formal definition of non-hierarchical Coloured Petri Nets (Chap. 4)
3 Hierarchical Coloured Petri Nets (Chap. 5)
4 State spaces and behavioural properties (Chap. 7)
5 Advanced state space methods (Chap. 8)
6 Timed Coloured Petri Nets (Chap. 10)
7 Simulation-based performance analysis (Chap. 12)
8 Industrial applications (Chap. 14)

The second part of the course is organised in a different manner, as the main aim
is to train participants in the modelling and validation of larger concurrent systems.
In this part of the course, the participants conduct a larger modelling and valida-
tion project. There is a high degree of freedom in defining the project which is to
be done in groups of two to three persons. During the second part of the course
there are no conventional lectures, but there are two progress workshops where the
groups give a 25-minute oral presentation of the current state of their project. In the
first progress workshop, the focus is on the modelling, and the groups discuss their
models with the lecturers and the other participants, who provide feedback. In the
second progress workshop, the focus is on the validation part of the project. The
project is typically based on a natural-language description of a larger concurrent
system. The following is a partial list of the systems that have served as a basis for
projects:

• Distributed file systems. This project was based upon Chapter 8 of the textbook
[24].

• Dynamic Host Configuration Protocol (DHCP). This project was based upon the
IETF Request for Comments document 2131 [31].

• Data dissemination protocol. This project was based upon the paper [12].
• Dynamic MANET On-demand (DYMO) routing protocol. This project was based

upon the IETF Internet-Draft [16].
• Internet Key Exchange (IKE) protocol. This project was based upon the IETF

Request for Comments document 6306 [66].
• Mutual exclusion algorithms. This project was based upon selected algorithms

from the textbook [92].

370 15 Teaching Coloured Petri Nets

• PathFinder scheduling mechanism. This project was based upon a description
that can be found in the paper [53].

Each year we provide a set of five to ten project proposals, but participants may
also choose other systems as a basis for their projects. Many of the projects have
focused on communication protocols and distributed algorithms, but it is possible
to choose systems from other domains such as workflow systems, manufacturing
systems, and embedded systems. In the next section, we give an example of a rep-
resentative project conducted during the second part of the course.

The assessment of the second part of the course is based on an evaluation of a
written group report, which is required to have a length of 15–20 pages, together
with an individual oral exam, where each participant is required to give a presenta-
tion of the group project. The final grade is the average of the grade for the written
report and the grade for the oral performance. The act of constructing and validating
a larger model supports ILO8 (modelling of larger systems) and ILO9 (validation
of larger systems), whereas the progress presentations and the exam support ILO10
(discussing the application of CP-nets).

15.4 Example of a Student Project from the Course

As a representative example of a project conducted during the second part of the
course, we consider a project carried out by a student group on modelling and val-
idation of the Dynamic MANET On-demand (DYMO) protocol [16]. A mobile ad
hoc network (MANET) is an infrastructureless wireless network consisting of a set
of mobile nodes, where multihop communication is supported by the individual mo-
bile nodes, acting as routers. DYMO is a routing protocol that is being developed by
the IETF MANET working group [80] and is specified in a 35-page ‘Internet-draft’
giving a natural-language specification of the protocol.

Figure 15.1 shows the module hierarchy. We have omitted the names of the sub-
stitution transitions on the arcs, since the name of each substitution transition is
identical to that of the submodule associated with the substitution transition. The
complete CPN model is a medium-sized model consisting of 9 modules, 18 transi-
tions, 45 places, 17 colour sets, and 20 CPN ML functions.

The CPN model is divided into four main parts. The ApplicationLayer module
represents the applications that use the multihop routes established by the DYMO-
Layer module. The NetworkLayer module models the transmission of packets over
the underlying mobile network, and the Topology module models the mobility of the
nodes which causes the topology of the MANET to be dynamic. Figure 15.2 shows
the MANET module which is the top-level module of the CPN model.

Figure 15.3 depicts the ProcessRREQ module, which is an example of a module
at the lowest level in the CPN model. It models the processing of route reply (RREP)
messages by the mobile nodes. Messages from the underlying network arrive at the
place NetworktoDYMO at the lower right. The module captures the two possible
cases that can arise when an RREP message is received: either the RREP message

15.4 Example of a Student Project from the Course 371

DYMO Layer

Update Routing Table

Application Layer

Topology

Network Layer

Process Routing Message

MANET

Process RREP

Process RREQ

Fig. 15.1 Module hierarchy of the DYMO protocol model

has to be forwarded to the next destination address, i.e., the next mobile node on
the route being established, or the mobile node is the target for the RREP. These
two cases are modelled by the accordingly named transitions. If the RREP is to be
forwarded, it is put on the place DYMOtoNetwork. If the mobile node is the target for
the RREP, the message is put on the place ReceivedRREPs for further processing
(not modelled).

The CPN model constructed captures a large subset of the DYMO protocol spec-
ification. Through the modelling the students demonstrated that they were able to
take a complex system (in this case the DYMO protocol) and construct a CPN model
at a good level of abstraction (see ILO8, modelling of larger systems). Furthermore,
they showed that they were able to divide the CPN model into modules which nat-
urally reflected the various operations of the protocol. In the process of construct-
ing the CPN model, the students discovered several ambiguities and missing parts
in the DYMO specification, and they used state space analysis to investigate non-
trivial issues related to the operation of the DYMO protocol (see ILO9, validation
of larger systems). The project was documented in a 20-page written report that
introduced the basic operation of the DYMO protocol, presented the CPN model
and the assumptions made in the modelling, and discussed the simulation and state
space analysis results obtained (see ILO10, discussing the application of CP-nets
for larger systems).

372 15 Teaching Coloured Petri Nets

Network Layer Network Layer

Topology Topology

DYMO Layer DYMO Layer

Application Layer Application Layer

Packets
received

DYMOPacket

Packets
to transmit

DYMOPacket

Network
to DYMO

DYMOPacket

DYMO to
Network

DYMOPacket

DYMO to
Application

IPxIP

Application
to DYMO

IPxIP

Topology

Network Layer

DYMO Layer

Application Layer

Fig. 15.2 MANET module: top-level module of the DYMO protocol model

forwardRREP (p, rt)

p

p p

(ip, n)rt

Target for
RREP

[#msgtype p = RREP,
 #targetAddr p = #destAddr p]

Forward
RREP

[#msgtype p = RREP,
 #targetAddr p <> #destAddr p,
 #destAddr p = #ip rt]

Received
RREPs

DYMOPacket

DYMOPacket

SeqNum I/O

SeqNum

Routing
TableI/O

RouteTable

Network to
DYMO

In

DYMOPacket

DYMO to
networkOut

Fig. 15.3 ProcessRREP module, describing the processing of RREP messages

15.5 Experiences from Teaching the CPN Course

The course was developed in conjunction with this textbook, and we have gradu-
ally refined and revised the course material and the textbook based upon feedback
received from course participants and our own experiences.

At the end of both parts of the course, we spend approximately 30 minutes with
the participants on evaluating and discussing the course in an informal way. This in-
formal evaluation is supplemented by a more formal on-line evaluation of the course

15.5 Experiences from Teaching the CPN Course 373

organised by the Faculty of Science. Unfortunately, it is typical for all courses at the
Faculty of Science that only a few participants fill out the on-line evaluation form.
Table 15.5 provides a representative summary of the formal evaluation for one of
the years in which the course was given. Altogether there were eight participants
who filled out the on-line evaluation form, and each asterisk in a table entry repre-
sents the feedback of one participant. This means that a single participant represents
12.5% of the replies, and the evaluation results should therefore be interpreted with
some care. Nevertheless, the feedback provides a useful indication of the partici-
pants’ views of the course.

The evaluations that we have received are in general very positive. In terms of
achieving the course goals, content, and level of interest, the participants are pos-
itive. It is also interesting to observe that the participants do not find the course
to be particularly difficult. The participants are expected to spend one-third 1/3 of
their study time on the course, which is approximately 15 hours per week, but the
feedback shows that they spend less. This is probably related to the participants not
finding the course difficult, which in turn may be related to the workshops, where
the participants can work on their projects under our supervision. Issues that may
arise can thereby be resolved quickly. Participants are also positive with respect to
the learning outcomes, the lectures, the workshops, and the textbook. The overall
evaluation of the course is also positive.

Compared with the old CPN textbooks [60, 61, 63] and the way we taught CP-
nets earlier, we have added more material on the CPN ML programming language.
Mastering the CPN ML programming language is important in order for the partici-
pants to be able to apply the CPN modelling language successfully to the modelling
and validation of concurrent systems.

We have made the deliberate choice of introducing CP-nets directly without first
introducing ordinary Petri nets (e.g., Place/Transitions Nets). The main benefit of
this is that it enables us to use realistic model examples from the very beginning
of the course without having to model data manipulation in an unnatural way using
the net structure. Demonstrating that realistic examples can be modelled using rela-
tively simple CPN ML constructs is a factor which contributes to the motivation of
the participants. Our teaching activities rely heavily on the integrated use of CPN
Tools. This choice is deliberate as it is, in our view, a very motivating factor for the
participants and it encourages the participants to work actively with the topics.

A key characteristic of CP-nets is that the language has few but powerful mod-
elling constructs. This is an advantage from a teaching perspective since there are
relatively few concepts that have to be introduced and mastered. It is also to some
extent a disadvantage in practical modelling, since certain parts of systems cannot
be modelled in a straightforward, natural way. A further development of the CPN
modelling language and CPN Tools to include constructs such as queueing places,
capacities, and module parameterisation is therefore of interest also from a didactic
perspective and would improve its convenience of use for modelling.

The first part of the course relies heavily on the protocol model that we have used
as a running example. In the second part of the course, we have observed that it takes
some efforts from the participants to get started on their own modelling project,

374 15 Teaching Coloured Petri Nets

Table 15.6 Summary of on-line participant evaluation

To a very To a large To some To a lesser Not at
large extent extent extent extent all

Were course * *******
goals achieved?

Did content ** ***** *
match description?

Was the course * ***** **
interesting?

Was the course *** **** *
difficult?

Hours spend <4 5–8 9–12 13–16 17–20

*** *****

Very good Good Either way Bad Very bad

Learning outcomes * ****** *
Lectures * ***** **
Workshops * *** ****
Textbook * ****** *

Overall evaluation * *******

which is concerned with a different system and sometimes lies within a different
application domain. In courses with sufficient time it is therefore recommended that
additional examples of CPN modelling should be integrated in the course. A number
of small and medium examples can be obtained from the CPN Tools Web pages, and
a list of larger examples from the literature is available via [40]. Altogether, this can
give participants a broader perspective on CPN modelling and validation. This is
useful when the participants are working on their final project, and hence are facing
the challenges of modelling a larger system. It also contributes to ILO7 (judging the
application of CP-nets).

As described above, we have recently adapted the theory of constructive align-
ment and the SOLO taxonomy [6] for describing course aims and learning outcomes
of the course at our department. This has not prompted major changes to the way
the course is being taught, but it has been very helpful in making the learning out-
comes of the courses much more explicit than earlier. In our opinion, the SOLO
taxonomy and constructive alignment provide a very good and practically applica-
ble framework for reflecting upon the teaching and assessment methods used in a
course.

References

375

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–
235, 1994.

2. A. W. Appel and D. B. MacQueen. Standard ML of New Jersey. In Proceedings of 3rd Inter-
national Symposium on Programming Language Implementation and Logic Programming,
Vol. 528 of Lecture Notes in Computer Science, pages 1–13. Springer, 1991.

3. Bang & Olufsen. www.bang-olufsen.com.
4. J. Banks, (ed). Handbook of Simulation. Wiley, 1998.
5. G. Behrmann, K.G. Larsen, and R. Pelánek. To store or not to store. In Proc. of Computer-

Aided Verification (CAV’03), Vol. 2725 of Lecture Notes in Computer Science, pages 433–
445. Springer, 2003.

6. J. Biggs. Teaching for Quality Learning at University. The Society for Research into Higher
Education and Open University Press, 2nd edition, 2003.

7. J. Billington. ISO/IEC 15909-1:2004, Software and System Engineering – High-level Petri
nets - Part 1: Concepts, Definitions and Graphical notation.

8. J. Billington, G. Gallasch, L.M. Kristensen, and T. Mailund. Exploiting equivalence reduc-
tion and the sweep-line method for detecting terminal states. IEEE Transactions on Systems,
Man, and Cybernetics. Part A: Systems and Humans, 34(1):23–38, 2004.

9. S.J. Bose. An Introduction to Queueing Theory. Kluwer, 2002.
10. C. Brabrand. Teaching Teaching and Understanding Understanding.

www.daimi.au.dk/˜brabrand/short-film/.
11. BRITNeY Suite homepage. wiki.cs.au.dk/britney/.
12. J. Brøndsted and L.M. Kristensen. Specification and performance evaluation of two zone

dissemination protocols for vehicular ad-hoc networks. In Proc. of 39th Annual Simulation
Symposium, pages 68–79. IEEE Computer Society, 2006.

13. R. E. Bryant. Graph based algorithms for boolean function manipulation. IEEE Transactions
on Computers, C-35(8):677–691, 1986.

14. B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, L. Petrucci A. Petit, and P. Schnoebelen.
Systems and Software Verification. Springer, 2001.

15. ITU (CCITT). Recommendation Z.120: Message Sequence Charts (MSC). Technical report,
International Telecommunication Union, 1992.

16. I.D. Chakeres and C.E. Perkins. Dynamic MANET On-demand (DYMO) Routing.
www.ietf.org/internet-drafts/. IETF, Internet-Draft, July 2007.

17. S. Christensen and J.B. Jørgensen. Analysis of Bang and Olufsen’s BeoLink audio/video
system using coloured Petri nets. In Proc. of 18th International Conference on Application
and Theory of Petri Nets, Vol. 1248 of Lecture Notes in Computer Science, pages 387–406.
Springer, 1997.

376 References

18. S. Christensen, L.M. Kristensen, and T. Mailund. A sweep-line method for state space ex-
ploration. In Proc. of Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’01), Vol. 2031 of Lecture Notes in Computer Science, pages 450–464. Springer,
2001.

19. S. Christensen, L.M. Kristensen, and T. Mailund. Condensed state spaces for timed Petri
nets. In Proc. of 22nd International Conference on Application and Theory of Petri Nets,
Vol. 2075 of Notes in Computer Science, pages 101–120. Springer, 2001.

20. E. Clarke, E.A. Emerson, S. Jha, and A.P. Sistla. Symmetry Reductions in Model Checking.
In Proc. of Computer-Aided Verification (CAV’98), Vol. 1427 of Lecture Notes in Computer
Science, pages 147–159. Springer, 1998.

21. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
22. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite state concurrent

systems using temporal logic. ACM Transactions on Programming Languages and Systems,
8(2):244–263, 1986.

23. E.M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetries in temporal logic
model checking. Formal Methods in System Design, 9(1–2): 77–104, Kluwer Academic
Publishers, 1996.

24. G. Colouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and Design.
Addison-Wesley, 2001.

25. CPN Tools homepage. www.cs.au.dk/CPNTools.
26. CPN Group, at University of Aarhus, homepage. www.cs.au.dk/CPnets.
27. A. Cumming, (ed.). A Gentle Introduction to ML.

www.dcs.napier.ac.uk/course-notes/sml/manual.html, 1998.
28. Design/CPN homepage. www.daimi.au.dk/designCPN.
29. S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. IETF RFC

2460, December 1998.
30. J. Desel and W. Reisig. Place/transition Nets. In Lectures on Petri Nets I: Basic Models, Vol.

1491 of Lecture Notes in Computer Science, pages 122–173. Springer, 1998.
31. R. Droms. Dynamic Host Configuration Protocol. IETF RFC 2131, March 1997.
32. Edinburgh Concurrency Workbench homepage.

www.dcs.ed.ac.uk/home/cwb/index.html.
33. K. Jensen (ed.). International Journal on Software Tools for Technology Transfer, Vol. 2, No.

2. Special section on coloured Petri nets, 1998.
34. K. Jensen (ed.). International Journal on Software Tools for Technology Transfer, Vol. 3, No.

4. Special section on coloured Petri nets, 2001.
35. K. Jensen (ed.). International Journal on Software Tools for Technology Transfer, Vol. 9, No.

3-4. Special section on coloured Petri nets, 2007.
36. K. Jensen (ed.). International Journal on Software Tools for Technology Transfer, Vol. 10,

No. 1. Special section on coloured Petri nets, 2008.
37. E. A. Emerson. Temporal and Modal Logic, Vol. B of Handbook of Theoretical Computer

Science, Chap. 16, pages 995–1072. Elsevier, 1990.
38. E.A. Emerson, A.K. Mok, A.P. Sistla, and J. Srinivasan. Quantitative temporal reasoning.

In Proc. of Computer-Aided Verification (CAV’90), Vol. 531 of Lecture Notes in Computer
Science, pages 136–145. Springer, 1990.

39. E.A. Emerson and A.P. Sistla. Symmetry and model checking. Formal Methods in System
Design, 9(1–2): 105–131, Kluwer Academic Publishers, 1996.

40. Examples of Industrial Use of CP-nets.

41. Formal Systems – FDR2. www.fsel.com/software.html.
42. G.E. Gallasch and L.M. Kristensen. COMMS/CPN: A communication infrastructure for

external communication with Design/CPN. In Third Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, DAIMI PB-554, pages 75–91, 2001.

43. G.E. Gallasch, L.M. Kristensen, and T. Mailund. Sweep-Line state space exploration for
coloured Petri nets. In Proc. of 4th Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools, pages 101–120. Department of Computer Science, University
of Aarhus, 2002. DAIMI PB-560.

www.cs.au.dk/CPnets/industrialex.

References 377

44. J. Geldenhuys and A. Valmari. A nearly memory-optimal data structure for sets and map-
pings. In Proc. of SPIN 2003, Vol. 2648 of Lecture Notes in Computer Science, pages
136–150. Springer, 2003.

45. H. Genrich. Predicate/transition Nets. In K. Jensen and G. Rozenberg (eds.), High-level Petri
Nets: Theory and Application, pages 3–43. Springer, 1991.

46. H.J. Genrich and K. Lautenbach. System modelling with high-level Petri nets. Theoretical
Computer Science, 13:109–136, 1981.

47. R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to branching time
logic model checking. In Proc. of 3rd Israel Symposium on the Theory of Computing and
Systems, pages 130–140. IEEE, 1995.

48. Gnuplot tool homepage. www.gnuplot.info.
49. P. Godefroid. Using partial orders to improve automatic verification Methods. In Proc.

of Computer-Aided Verification (CAV’90), Vol. 531 of Lecture Notes in Computer Science,
pages 175–186. Springer, 1990.

50. D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Pro-
gramming, 8:231–274, 1987.

52. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International, 1985.
53. G. Holzmann, E. Najm, and A. Serhrouchni. SPIN model checking: An introduction. Inter-

national Journal on Software Tools for Technology Transfer, 2:321–327, 2000.
54. G. J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.
55. G.J. Holzmann. An analysis of bitstate hashing. Formal Methods in System Design, 13:289–

307, 1998.
56. C. Huitema. IPv6: The New Internet Protocol. Prentice-Hall, 1998.
57. C.N. Ip and D.L. Dill. Better verification through symmetry. Formal Methods in System

Design, 9(1–2): 41–75, Kluwer Academic Publishers, 1996.
58. C. Jard and T. Jeron. Bounded-memory algorithms for verification on-the-fly. In Proc.

of Computer-Aided Verification (CAV’91), Vol. 575 of Lecture Notes in Computer Science,
pages 192–202. Springer, 1991.

59. K. Jensen. Coloured Petri nets and the invariant method. Theoretical Computer Science,
14:317–336, 1981.

60. K. Jensen. Coloured Petri Nets; Basic Concepts, Analysis Methods and Practical Use. Vol.
1, Basic Concepts, Monographs in Theoretical Computer Science. Springer, 1992.

61. K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Vol.
2, Analysis Methods, Monographs in Theoretical Computer Science. Springer, 1994.

62. K. Jensen. Condensed state spaces for symmetrical coloured Petri nets. Formal Methods in
System Design, 9(1–2): 7–40, Kluwer Academic Publishers, 1996.

63. K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Vol.
3, Practical use, Monographs in Theoretical Computer Science. Springer, 1997.

64. J.B. Jørgensen and C. Bossen. Requirements engineering for a pervasive health care system.
In Proc. of 11th IEEE International Requirements Engineering Conference, pages 55–64.
IEEE Computer Society, 2003.

65. J.B. Jørgensen and L.M. Kristensen. Verification of coloured Petri nets using state spaces
with equivalence classes. In Petri Net Approaches for Modelling and Validation, Vol. 1 of
LINCOM Studies in Computer Science, Chap. 2, pages 17–34. Lincoln Europa, 2003.

66. C. Kaufman. Internet Key Exchange (IKEv2) Protocol. IETF, RFC 4306, December 2005.
67. W.D Kelton, Randall P. Sadowski, and D.A. Sadowski. Simulation with Arena. McGraw-Hill,

2nd edition, 2002.
68. L.M. Kristensen and S. Christensen. Implementing coloured Petri nets using a functional

programming language. Journal on Higher-Order and Symbolic Computation, 17(3):207–
243, 2004.

69. L.M. Kristensen and K. Jensen. Specification and validation of an edge router discovery
protocol for mobile ad-hoc networks. In Proc. of Integration of Software Specification Tech-
niques for Applications in Engineering, Vol. 3147 of Lecture Notes in Computer Science,
pages 248–269. Springer, 2004.

51. R. Harper. Programming in Standard ML.
www.cs.cmu.edu/˜rwh/smlbook/online.pdf, 2006.

378 References

70. L.M. Kristensen and T. Mailund. A generalised sweep-line method for safety properties.
In Proc. of Formal Methods Europe (FME’02), Vol. 2391 of Lecture Notes in Computer
Science, pages 549–567. Springer, 2002.

71. L.M. Kristensen and T. Mailund. A compositional sweep-line state space exploration
method. In Proc. of Formal Techniques for Networked and Distributed Systems, Vol. 2529 of
Lecture Notes in Computer Science, pages 327–343. Springer, 2002.

72. L.M. Kristensen and T. Mailund. Efficient path finding with the sweep-line method us-
ing external storage. In Proc. of International Conference on Formal Engineering Methods
(ICFEM’03), Vol. 2885 of Lecture Notes in Computer Science, pages 319–337. Springer,
2003.

73. L.M. Kristensen, P. Mechlenborg, L. Zhang, B. Mitchell, and G.E. Gallasch. Model-based
development of a course of action scheduling tool. In Proc. of 7th Workshop and Tutorial on
Practical Use of Coloured Petri Nets and CPN Tools, DAIMI PB-579, pages 1–26, 2006.

74. L.M. Kristensen, P. Mechlenborg, L. Zhang, B. Mitchell, and G.E. Gallash. Model-based
development of a course of action scheduling tool. International Journal on Software Tools
for Technology Transfer, 10(1):5–14, 2007.

75. L.M. Kristensen, J.B. Jørgensen, and K. Jensen. Application of coloured Petri nets in system
development. In Proc. of 4th Advanced Course on Petri Nets Lectures on Concurrency and
Petri Nets - Advances in Petri Nets, Vol. 3098 of Lecture Notes in Computer Science, pages
626–685. Springer, 2004.

76. K.G. Larsen, P. Petterson, and W. Yi. UppAal in a nutshell. International Journal on Software
Tools for Technology Transfer, 1(1+2):134–152, 1997.

77. A.M. Law and W.D. Kelton. Simulation Modeling & Analysis. McGraw-Hill, 3rd edition,
2000.

78. J. Liu. Real-Time Systems. Prentice Hall, 2000.
79. L. Lorentsen and L.M. Kristensen. Exploiting stabilizers and parallelism in state space gen-

eration with the symmetry method. In Proc. of ICACSD’01, pages 211–220. IEEE Computer
Society, 2001.

80. IETF MANET Working Group homepage.
www.ietf.org/html.charters/manet-charter.html.

81. T. Mailund and M. Westergaard. Obtaining memory-efficient reachability graph representa-
tions using the sweep-line method. In Proc. of Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2004), Vol. 2988 of Lecture Notes in Computer Science,
pages 177–191. Springer, 2004.

82. K.L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.
83. R. Milner. Communication and Concurrency, Prentice Hall International Series in Computer

Science. Prentice-Hall, 1989.
84. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Revised).

MIT Press, 1997.
85. T. Narten, E. Nordmark, and W. Simpson. Neighbor Discovery for IP Version 6 (IPv6). IETF,

RFC 2461, December 1998
86. L.C. Paulson. ML for the Working Programmer. Cambridge University Press, 1996.
87. D. Peled. All from one, one for all: On model checking using representatives. In Proc.

of Computer-Aided Verification (CAV’93), Vol. 697 of Lecture Notes in Computer Science,
pages 409–423. Springer, 1993.

88. C.A. Petri. Kommunikation mit Automaten. Bonn: Institut für Instrumentelle Mathematik,
Schriften des IIM Nr. 2, 1962.

89. Proc. of International Conferences on Application and Theory of Petri Nets and Other Mod-
els of Concurrency. Springer, 1992–.

90. Proc. of International Workshop on Petri Nets and Performance Models. IEEE Computer
Society, 1992–.

91. Proc. of Workshops on Practical Use of Coloured Petri Nets and the CPN Tools.
www.cs.au.dk/CPnets/, 1998–.

92. M. Raynal. Algorithms for Mutual Exclusion. North Oxford Academic, 1986.

References 379

93. W. Reisig. Petri Nets: An Introduction, Vol. 4 of EATCS Monographs on Theoretical Com-
puter Science. Springer, 1985.

94. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Man-
ual. Addison-Wesley, 1999.

95. SceneBeans homepage. www-dse.doc.ic.ac.uk/Software/SceneBeans/.
96. SPIN tool homepage. spinroot.com/.
97. The Standard ML Basis Library. www.standardml.org/Basis/, 2004.
98. U. Stern and D.L. Dill. Improved probabilistic verification by hash compaction. In Correct

Hardware Design and Verification Methods, Vol. 987 of Lecture Notes in Computer Science,
pages 206–224. Springer, 1995.

99. U. Stern and D.L. Dill. Using magnetic disk instead of main memory in the Murphi verifier.
In Proc. of Computer-Aided Verification (CAV’98), Vol. 1427 of Lecture Notes in Computer
Science, pages 172–183. Springer, 1998.

100. A.S. Tanenbaum. Computer Networks. Prentice-Hall, 4th edition, 2003.
101. R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of Computing,

1(2):146–160, 1972.
102. J.D. Ullman. Elements of ML Programming. Prentice Hall, 1998.
103. VisualState homepage. www.iar.com.
104. A. Valmari. Error detection by reduced reachability graph generation. In Proc. of the 9th

European Workshop on Application and Theory of Petri Nets, pages 95–112, 1988.
105. A. Valmari. A stubborn attack on state explosion. In Proc. of Computer-Aided Verification

(CAV’90), Vol. 531 of Lecture Notes in Computer Science, pages 156–165. Springer, 1990.
106. A. Valmari. The state explosion problem. In Lectures on Petri Nets I: Basic Models, Vol.

1491 of Lecture Notes in Computer Science, pages 429–528. Springer, 1998.
107. M. Vardi and P. Wolper, An automata-theoretic approach to automatic program verification.

In Proc. of 1st IEEE Symposium on Logic in Computer Science, pages 322–331, IEEE, 1986.
108. M. Westergaard, L.M. Kristensen, G.S. Brodal, and L.A. Arge. The Comback method –

extending hash compaction with backtracking. In Proc. of 28th International Conference
on Application and Theory of Petri Nets and Other Models of Concurrency, Vol. 4546 of
Lecture Notes in Computer Science, pages 445–464. Springer, 2007.

109. M. Westergaard and K.B. Lassen. The BRITNeY Suite animation tool. In Proc. of 27th
International Conference on Application and Theory of Petri Nets and Other Models of Con-
currency, Vol. 4024 of Lecture Notes in Computer Science, pages 431–440. Springer, 2006.

110. P. Wolper and D. Leroy. Reliable hashing without collision detection. In Proc. of Computer-
Aided Verification (CAV’93), Vol. 697 of Lecture Notes in Computer Science, pages 59–70.
Springer, 1993.

111. A. Yakovlev, L. Gomes, and L. Lavagno (eds). Hardware Design and Petri Nets. Kluwer
Academic, 2000.

112. L. Zhang, L.M. Kristensen, C. Janczura, G. Gallasch, and J. Billington. A coloured Petri net
based tool for course of action development and analysis. In Proc. of Workshop on Formal
Methods Applied to Defence Systems, Vol. 12 of Conferences in Research and Practice in
Information Technology, pages 125–134. Australian Computer Society, 2001.

Index

addition of multisets, 81, 82
addition of time on timed multisets, 264
addition of time on timestamp list, 264
addition of timed multisets, 260, 264
ample-set, 190
anonymous function, 69
arc, 14, 87
arc expression, 16
arc expression function, 85, 87
arc in directed graph, 203, 204
arc in state space, 210
arc in strongly-connected-component graph,

209
argument of function, 61
automatic simulation mode, 38

basic type, 45
batch-means method, 295
best lower integer bound, 166, 213
best lower multiset bound, 170, 214
best upper integer bound, 166, 213
best upper multiset bound, 168, 214
binder in CPN Tools, 8
binding, 16, 89, 146
binding element, 22, 89, 146
bit-state hashing method, 190
bounded place, 213
boundedness properties, 166, 213, 214, 216
branching option, 323
breakpoint monitor, 293

case expression, 59
closed expression, 85
code segment, 304
codomain, 62
coefficient in multiset, 81
coefficient in timed multiset, 259

colour enabled, 241
colour set, 15, 87
colour set constructor, 45
colour set function, 85, 87
comback method, 190
comparison of multisets, 82
comparison of timed multisets, 264
comparison of timestamp lists, 264
compound place, 98, 99, 116, 117, 139, 141
concurrent binding elements, 29
concurrently with itself, 31
condensed state space, 190, 253
confidence interval, 291
conflicting binding elements, 29
consistent equivalence relations, 198
constant, 24
constructor for union colour set, 46
continuous-time statistics, 284
count transition occurrences monitor, 279
counterexample, 180
curried function, 69
cycle in directed graph, 205

data collection log file, 288
data collection monitor, 278
dead binding element, 225
dead in M0, 223
dead marking, 22, 175, 222, 223
dead transition, 176, 222
destination node, 203
deterministic behaviour, 22
directed graph, 203, 204
directly reachable marking, 93, 149, 270
disabled transition, 18
discrete-parameter statistics, 282
domain, 62
double-headed arc, 25

381

382 Index

empty multiset, 81
enabled binding element, 91
enabled step, 93, 149, 269
enabled transition, 18
enumeration colour set, 46
equality type, 63
equivalence class, 194
equivalence method, 190, 198
equivalence relation, 139
evaluation of expression, 16
expression, 44, 56

fairness properties, 178, 227
finite directed graph, 204
finite directed path, 205
finite multiset, 83
finite occurrence sequence, 94
finite state space, 210
finite timed multiset, 260
free variables, 84
function, 60
functional language, 43
functor, 305
fusion place, 117
fusion set, 116, 117, 135, 136

global clock, 232
graph isomorphism problem, 198
guard, 34
guard function, 85, 87

hash compaction method, 190
head of list, 54
hierarchical Coloured Petri Net, 95, 127, 131,

135
high-level Petri Net, 3
higher-order function, 68
home marking, 171, 219, 221
home predicate, 172, 220, 221
home properties, 171, 219
home space, 172, 220, 221

if–then–else expression, 25, 27
impartial binding element, 228, 229
impartial transition, 178, 227
index colour set, 56, 108
index in CPN Tools, 8
induced subgraph, 206
infinite directed graph, 204
infinite directed path, 205
infinite multiset, 83
infinite occurrence sequence, 94
infinite timed multiset, 260
initial marking, 15, 88, 89, 146

initial timed marking, 266
initialisation function, 85, 87
input place, 16
input port, 96, 131
input socket, 98, 129
input/output port, 96, 131
input/output socket, 98, 129
inscription, 14
instance hierarchy, 104, 137, 138
intended learning outcomes, 365
interaction graphics, 308, 334
interactive simulation mode, 37
interface of module, 96

let–in–end expression, 66
list colour set, 51
live binding element, 225
live in M0, 223
live transition, 177, 222
liveness properties, 175, 222
low-level Petri Net, 3
lower integer bound, 166, 213, 217, 219
lower multiset bound, 170, 214, 215, 217

marking, 15, 88, 89, 141, 146, 266
marking menu in CPN Tools, 8
marking size monitor, 281
member of multiset, 81, 82
member of timed multiset, 259, 260
message sequence chart, 40, 304, 315, 324,

326, 338
model checking, 151
model time, 232
module, 95, 127, 131, 135
module hierarchy, 103, 132, 136
module instance, 101, 136, 138
monitor function, 278
monotonic progress measure, 194
multiset, 16, 80, 82

net inscription, 84
net structure, 14, 83
node, 14
node in directed graph, 203, 204
node in state space, 210
node in strongly-connected-component graph,

209
non-deterministic behaviour, 24, 36
non-exhaustive pattern match, 72
non-hierarchical Coloured Petri Net, 79, 87
number of appearances in multiset, 16, 81, 82
number of appearances in timed multiset, 259,

260

Index 383

observation function, 278
occur, 16, 18
occurrence of binding element, 91
occurrence of step, 93, 149, 269
occurrence sequence, 35, 149, 270
on-the-fly verification, 190
option type, 285
output place, 16
output port, 96, 131
output socket, 98, 129

parameter of function, 61
parameterisation of CPN model, 111
partial binding, 75
partial state space, 187, 210
pattern, 71
persistent-set, 190
place, 14, 87
place instance, 102, 138, 141
place instance relation, 141
polymorphic function, 44, 63
port place, 131
port type function, 131
port–socket relation, 98, 134, 136
port–socket relation function, 134, 136
predicate function, 278
prime module, 103, 134, 136
processed state space node, 154
product colour set, 45
progress in state space, 191
progress measure, 192
pruned state space, 229

query function, 163

reachability properties, 164, 211
reachable marking, 36, 94, 149, 212, 270
reachable node in directed graph, 205
ready, 232, 241, 242
record colour set, 45
record field, 45
recursive function, 44, 65
reduced state space, 190
redundant pattern match, 72
reference variable, 296

scalar multiplication of multiset, 82
sequence diagram, 304
simple colour set, 45
simulation code in CPN Tools, 9
simulation feedback, 36
simulation image, 352
simulation performance report, 289
simulation replication, 292

simulation replication report, 293
simulation report, 39
size of multiset, 81, 82
size of timed multiset, 259, 260
small colour set, 77
socket place, 129
socket type function, 130
source node, 203
standard data collection monitor, 279
start function, 278, 286
state explosion problem, 185, 189
state space, 151, 154, 209
state space reduction method, 189
state space report, 163
state space statistics, 163
step, 30, 89, 147
stop function, 278, 286
strongly connected component, 160, 206, 208
strongly connected nodes, 206, 208
strongly typed, 44
strongly-connected-component graph, 160,

208
structure in CPN ML, 305
structured colour set, 45
stubborn-set, 190
subgraph, 205, 206

submodule function, 132, 136
subnet, 131
subset colour set, 56
substitution tag, 97
substitution transition, 97, 127, 131
subtraction of multisets, 82, 83
subtraction of timed multisets, 264
subtraction of timestamp lists, 264
sweep-line method, 190, 191, 345, 347
symmetry method, 190, 194, 345

tail of list, 54
template code, 279
terminal node, 204
terminal strongly connected component, 162,

207
time average, 282
time delay inscription, 234
time equivalence method, 253, 344
timed arc, 264
timed colour set, 233
timed marking, 232, 266
timed multiset, 232, 258, 260, 264
timed non-hierarchical Coloured Petri Net, 265
timed place, 264
timestamp, 232
timestamp list, 259, 260

submodule, 97, 134, 136

384 Index

token, 15, 88
token colour, 15
token element, 218
tool palette in CPN Tools, 8
transition, 14, 87
transition instance, 102, 138, 141
trivial path, 205
trivial strongly connected component, 162, 207
type consistent, 57
type inference, 57
type of an expression, 84
type variable, 63
typed variable, 87

unbounded place, 213
unfolding of hierarchical CPN model, 124
union colour set, 45, 46

unprocessed state space node, 155
untimed arc, 264
untimed multiset, 264
untimed place, 264
upper integer bound, 166, 213, 217, 219
upper multiset bound, 168, 214, 215, 217
user-defined data collection monitor, 279

validation of system, 7
variables of transition, 88, 89
variables of transition instance, 146
verification of system, 154

warm-up period, 294
wildcard symbol, 71
workload, 274
workspace in CPN Tools, 8

	Preface
	Contents
	Introduction to Modelling and Validation
	Modelling and System Development
	Coloured Petri Nets
	Abstraction and Visualisation
	Formal Modelling and Verification
	CPN Tools
	Industrial Applications

	Non-hierarchical Coloured Petri Nets
	A Simple Example Protocol
	Net Structure and Inscriptions
	Enabling and Occurrence of Transitions
	Second Model of the Protocol
	Concurrency and Conflict
	Guards
	Interactive and Automatic Simulation

	CPN ML Programming
	Functional Programming
	Colour Sets
	Expressions and Types
	Functions
	Recursion and Lists
	Patterns
	Computation of Enabled Binding Elements

	Formal Definition of Non-hierarchical Coloured Petri Nets
	Multisets
	Net Structure and Inscriptions
	Enabling and Occurrence of Steps

	Hierarchical Coloured Petri Nets
	Modules and Interfaces
	Module Instances and Hierarchy
	Instance Folding and Module Parameterisation
	Model Parameterisation
	Fusion Sets
	Unfolding Hierarchical CPN Models

	Formal Definition of Hierarchical Coloured Petri Nets
	Modules
	Module Composition
	Instances and Compound Places
	Enabling and Occurrence of Steps

	State Spaces and Behavioural Properties
	Protocol for State Space Analysis
	State Spaces
	Strongly-Connected-Component Graphs
	Behavioural Properties
	Error Diagnostics and Counterexamples
	Limitations of State Spaces

	Advanced State Space Methods
	State Space Reduction Methods
	Sweep-Line Method
	Symmetry Method
	Equivalence Method

	Formal Definition of State Spaces and Behavioural Properties
	Directed Graphs
	State Spaces
	Reachability Properties
	Basic Boundedness Properties
	Generalised Boundedness Properties
	Home Properties
	Liveness Properties
	Fairness Properties

	Timed Coloured Petri Nets
	First Timed Model of the Protocol
	Second Timed Model of the Protocol
	State Space Analysis of Timed Models
	Time Equivalence Method

	Formal Definition of Timed Coloured Petri Nets
	Timed multisets
	Net Structure and Inscriptions
	Enabling and Occurrence of Steps

	Simulation-based Performance Analysis
	Timed Protocol for Performance Analysis
	Data Collection from the Occurring Binding Elements
	Data Collection from the Markings Reached
	Collecting Data from the Final Marking
	Simulation Output
	Conducting Simulation Experiments
	Model Parameters and Configurations

	Behavioural Visualisation
	Message Sequence Charts
	System-Specific Interaction Graphics

	Examples of Industrial Applications
	Protocol Design at Ericsson Telebit
	Requirements Engineering at Systematic
	Embedded-System Design at Bang and Olufsen
	Scheduling Tool for Australian Defence Forces

	Teaching Coloured Petri Nets
	Course Context and Aims
	Intended Learning Outcomes
	Teaching and Assessment Methods
	Example of a Student Project from the Course
	Experiences from Teaching the CPN Course

	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

