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Approximate–State Riemann Solvers

9.1 Introduction

The method of Godunov [216] and its high–order extensions require the
solution of the Riemann problem. In a practical computation this is solved bil-
lions of times, making the Riemann problem solution process the single most
demanding task in the numerical method. In Chap. 4 we provided exact Rie-
mann solvers for the Euler equations for ideal and covolume gases. An iterative
procedure is always involved and the associated computational effort may not
always be justified. This effort may increase dramatically by equations of state
of complicated algebraic form or by the complexity of the particular system
of equations being solved, or both. Approximate, non–iterative solutions have
the potential to provide the necessary items of information for numerical pur-
poses. There are essentially two ways of extracting approximate information
from the solution of the Riemann problem to be used in Godunov–type meth-
ods: one approach is to find an approximation to the numerical flux employed
in the numerical method, directly, see Chaps. 10, 11 and 12; the other ap-
proach is to find an approximation to a state and then evaluate the physical
flux function at this state. It is the latter route the one we follow in this
chapter.

We present, approximate, Riemann solvers that do not need an iteration
process. We provide an approximate solution for the state required to evaluate
the Godunov flux. The approximations can be used directly in the first–oder
Godunov method and its high–order extensions. Some of the approximations
presented are exceedingly simple but not accurate enough to produce robust
numerical methods. This difficulty is resolved by designing hybrid schemes that
combine various approximate solvers in and adaptive fashion. There are other
uses of the explicit approximate solutions presented here. For instance, the
simplest solutions can be used in the characteristic limiting of high–order Go-
dunov type methods based on the MUSCL approach; see Sect. 13.4 of Chap.
13. They also provide valuable information of use in other well known approxi-
mate Riemann solvers. For instance, Roe’s approximate Riemann solver, [407]
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to be studied in Chap. 11, requires an entropy fix; the results of this chapter
may be used to provide the state values in the Harten–Hyman entropy fix
[243]. The approximate Riemann solver of Osher [372], to be studied in Chap.
12, requires intersection points for the integration paths; the approximations
of this chapter can be used directly. The HLL approach of Harten, Lax and
van Leer [244] for deriving approximate solutions to the Riemann problem,
to be studied in Chap. 10, requires estimates for the smallest and largest sig-
nal velocities in the Riemann problem; again, the pressure–velocity approx-
imation of this chapter can directly lead to estimates for wave speeds. The
approximate solutions presented in this chapter may also be of use in other
computational approaches, such as in front tracking schemes [468], [403]. The
techniques discussed here can easily be extended to other systems, such as the
shallow water equations, the steady supersonic Euler equations, the artificial
compressibility equations (see Sect. 1.6.3 of Chap. 1) and the Euler equations
with general equation of state.

Useful background for studying this chapter is found in Chaps. 2, 3, 4, and
6. The rest of this chapter is organised as follows: in Sect. 9.2 we recall the
Godunov flux and the Riemann problem solution, in Sect. 9.3 we present very
simple Riemann solvers based on primitive variable formulations of the Euler
equations. In Sect. 9.4 we study approximations based on the exact function
for pressure, namely the two–rarefaction approximation and the two–shock
approximation. Hybrid schemes are dealt with in Sect. 9.5 and numerical
results are presented in Sect. 9.6.

9.2 The Riemann Problem and the Godunov Flux

We want to solve numerically the general Initial Boundary Value Problem
(IBVP)

PDEs : Ut + F(U)x = 0 ,
ICs : U(x, 0) = U(0)(x) ,
BCs : U(0, t) = Ul(t) , U(L, t) = Ur(t) ,

⎫
⎬
⎭ (9.1)

utilising the explicit conservative formula

Un+1
i = Un

i +
Δt

Δx
[Fi− 1

2
− Fi+ 1

2
] , (9.2)

along with the Godunov intercell numerical flux

Fi+ 1
2

= F(Ui+ 1
2
(0)) . (9.3)

We assume that the solution of IBVP (9.1) exists. Here Ui+ 1
2
(0) is the simi-

larity solution Ui+ 1
2
(x/t) of the Riemann problem

Ut + F(U)x = 0 ,

U(x, 0) =
{

UL if x < 0 ,
UR if x > 0 ,

⎫
⎬
⎭ (9.4)



9.2 The Riemann Problem and the Godunov Flux 295

evaluated at x/t = 0. Fig. 9.1 shows the structure of the exact solution of
the Riemann problem for the x–split three–dimensional Euler equations, for
which the vectors of conserved variables and fluxes are

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

. (9.5)

The value x/t = 0 for the Godunov flux corresponds to the t–axis. See Chap. 6
for details. The piece–wise constant initial data, in terms of primitive variables,
is

WL =

⎡
⎢⎢⎢⎢⎣

ρL

uL

vL

wL

pL

⎤
⎥⎥⎥⎥⎦

, WR =

⎡
⎢⎢⎢⎢⎣

ρR

uR

vR

wR

pR

⎤
⎥⎥⎥⎥⎦

. (9.6)

*

*L *R

L R

*

ρ ρ

(u,u,u)

p u

w

L
R

R

R

R

t

R
R

L

L

L

L

L

ρ

(u-a) (u+a)

x
0

v
w

v
w

ρ
u

p
w
v
u

p

v

Fig. 9.1. Structure of the solution of the Riemann problem for the x–split, three
dimensional Euler equations. Data and solution are given in terms of primitive vari-
ables

The purpose of this chapter is to find approximate solutions to the Rie-
mann problem in order to evaluate the Godunov flux. As seen in Chap. 6,
the evaluation of the flux requires the identification of the appropriate wave
pattern in the Riemann problem solution; as depicted in Fig. 9.2, there are
ten possibilities to be considered.

In our solution procedure we split the task of solving the complete Riemann
problem into three subproblems, namely

(I) The star values
p∗ , u∗ , ρ∗L , ρ∗R (9.7)

in the Star Region between the non–linear waves, see Fig. 9.1.
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(II) The solution for the tangential velocity components v and w throughout
the wave structure, and

(III) The solution for ρ, u and p inside sonic rarefactions.

Cases (II) and (III) are dealt with in the rest of this section, while case (I)
is the subject of the rest of the chapter.

9.2.1 Tangential Velocity Components

Recall that in the exact solution, the values of the tangential velocity
components v and w do not change across the non–linear waves but do change,
discontinuously, across the middle wave. Thus, given an approximate solution
u∗ for the normal velocity component in the Star Region, the solution for the
tangential velocity components v and w is

v(x, t) , w(x, t) =

⎧
⎨
⎩

vL , wL if x
t ≤ u∗ ,

vR , wR if x
t > u∗ .

(9.8)

In this way, the solution for the tangential velocity components is, in a sense,
exact; the only approximation being that for u∗. As a matter of fact, any
passive scalar quantity q(x, y, z, t) advected with the fluid will have this prop-
erty. In the study of multi–component flow, this quantity could be a species
concentration; in practical applications there can be many of such quantities.
Hence, it is very important that the approximate solution of the Riemann
problem preserves the correct behaviour, as in (9.8).

9.2.2 Sonic Rarefactions

Assuming the solution for the star values (9.7) is available, we then need to
identify the correct values along the t–axis, in order to evaluate the Godunov
flux. The cases (a1) to (a4) and (b1) to (b4) of Fig. 9.2 can be dealt with
once solutions for (9.7) and (9.8) are available. The sonic flow cases (a5) and
(b5) must be treated separately. For these two cases we recommend the use
of the exact solution, which, as seen in Sect. 4.4 of Chap. 4 for ideal gases, is
non–iterative.

The solution along the t–axis inside a left sonic rarefaction is obtained by
setting x/t = 0 in

WLfan =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ = ρL

[
2

(γ+1) + (γ−1)
(γ+1)aL

(
uL − x

t

)] 2
γ−1

,

u = 2
(γ+1)

[
aL + (γ−1)

2 uL + x
t

]
,

p = pL

[
2

(γ+1) + (γ−1)
(γ+1)aL

(
uL − x

t

)] 2γ
γ−1

.

(9.9)
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Fig. 9.2. Possible wave patterns in evaluating the Godunov flux for the Euler
equations:(a) positive particle speed in the Star Region (b) negative particle speed
in the Star Region

The solution along the t–axis inside a right sonic rarefaction is obtained by
setting x/t = 0 in

WRfan =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ = ρR

[
2

(γ+1) −
(γ−1)

(γ+1)aR

(
uR − x

t

)] 2
γ−1

,

u = 2
(γ+1)

[
−aR + (γ−1)

2 uR + x
t

]
,

p = pR

[
2

(γ+1) −
(γ−1)

(γ+1)aR

(
uR − x

t

)] 2γ
γ−1

.

(9.10)

The rest of this chapter is devoted to providing approximate solutions
for the star values (9.7). We study four approaches as well as two adaptive
schemes that combine various approximations.

9.3 Primitive Variable Riemann Solvers (PVRS)

A very simple linearised solution to the Riemann problem [502] for the
x–split, three dimensional time dependent Euler equations (9.4)–(9.5) can be
obtained in terms of the primitive variables ρ, u, v, w, p. The corresponding
governing equations, see Sect. 3.2.3 of Chap. 3, are
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Wt + A(W)Wx = 0 , (9.11)

where the coefficient matrix A(W) is given by

A =

⎡
⎢⎢⎢⎢⎣

u ρ 0 0 0
0 u 0 0 1/ρ
0 0 u 0 0
0 0 0 u 0
0 ρa2 0 0 u

⎤
⎥⎥⎥⎥⎦

. (9.12)

The eigenvalues of A(W) are

λ1 = u − a , λ2 = λ3 = λ4 = u , λ5 = u + a (9.13)

and the matrix of corresponding right eigenvectors is

K =

⎡
⎢⎢⎢⎢⎣

ρ 1 ρ ρ ρ
−a 0 0 0 a
0 v 1 v 0
0 w w 1 0

ρa2 0 0 0 ρa2

⎤
⎥⎥⎥⎥⎦

. (9.14)

The difficulty in solving (9.11) is due to the fact that the coefficient matrix
A(W) depends on the solution vector W itself. If A(W) were to be constant,
then we could apply, directly, the various techniques studied in Sect. 2.3.3 of
Chap. 2 for solving linear hyperbolic systems with constant coefficients.

Assume that the initial data WL, WR and the solution W(x/t) are close
to a constant state W̄. Then, by setting

Ā ≡ A(W̄) (9.15)

we approximate the Riemann problem for (9.11) by the Riemann problem for
the linear hyperbolic systems with constant coefficients

Wt + ĀWx = 0 . (9.16)

We now solve this approximate problem, with initial data (9.6), exactly. In Sect.
2.3.3 of Chap. 2 we studied various techniques that are directly applicable to
this problem. One possibility is to apply Rankine–Hugoniot Conditions across
each wave of speed λ̄i. Thus we treat (9.16) as the system in conservative form

Wt + F(W)x = 0 , F(W) ≡ ĀW . (9.17)

Then, across a wave of speed λ̄i we have

ΔF ≡ ĀΔW = λ̄iΔW . (9.18)

Direct application of (9.18) to the λ̄1 and λ̄5 waves gives four useful relations,
namely
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(u∗ − uL)ρ̄ + ā(ρ∗L − ρL) = 0 ,
(p∗ − pL)/ρ̄ + ā(u∗ − uL) = 0 ,
(uR − u∗)ρ̄ − ā(ρR − ρ∗R) = 0 ,
(pR − p∗)/ρ̄ − ā(uR − u∗) = 0 .

⎫
⎪⎪⎬
⎪⎪⎭

(9.19)

The complete solution for the unknowns (9.7) is then given by

p∗ = 1
2 (pL + pR) + 1

2 (uL − uR)(ρ̄ā) ,

u∗ = 1
2 (uL + uR) + 1

2 (pL − pR)/(ρ̄ā) ,

ρ∗L = ρL + (uL − u∗)(ρ̄/ā) ,

ρ∗R = ρR + (u∗ − uR)(ρ̄/ā) .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.20)

Notice that in this linearised solution we only need to specify constant
values for ρ̄ and ā. There is some freedom in making the choice. Selecting some
average of the data values ρL, ρR, aL, aR appears sensible. The choice may
be constrained to satisfy some desirable properties of the Riemann problem
solution, such as exact recognition of particular flow features. Here we suggest
to select the simple arithmetic means

ρ̄ =
1
2
(ρL + ρR) , ā =

1
2
(aL + aR). (9.21)

Note that if the data states WL and WR are connected by a single iso-
lated contact discontinuity or shear wave, then the solution is actually exact,
regardless of the particular choice for the averages ρ̄ and ā. This is in fact a
very important property; contacts and shear waves turn out to be some of the
most challenging flow features to resolve correctly by any numerical method.

Another way of obtaining approximate solutions for the star values is to
use the characteristic equations, see Sect. 3.1.2 of Chap. 3,

dp − ρadu = 0 along dx/dt = u − a , (9.22)

dp − a2 dρ = 0 along dx/dt = u , (9.23)

dp + ρadu = 0 along dx/dt = u + a . (9.24)

These differential relations hold true along characteristic directions. First we
set

C = ρa. (9.25)

Then, in order to find the star values we connect the state W∗L to the data
state WL, see Fig. 9.1, by integrating (9.24) along the characteristic of speed
u + a, where C is evaluated at the foot of the characteristic. See Fig. 9.3 The
results is

p∗ + CLu∗ = pL + CLuL . (9.26)
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Fig. 9.3. Solution for star values using characteristic equations

Similarly, we connect W∗R to the data state WR by integrating (9.22) along
the characteristic of speed u − a, with C is evaluated at the foot of the char-
acteristic. We obtain

p∗ − CRu∗ = pR − CRuR . (9.27)

The values ρ∗L and ρ∗R are obtained by connecting W∗L to WL and W∗R

to WR via (9.23). The complete solution is

p∗ = 1
CL+CR

[CRpL + CLpR + CLCR(uL − uR)] ,

u∗ = 1
CL+CR

[CLuL + CRuR + (pL − pR)] ,

ρ∗L = ρL + (p∗ − pL)/a2
L ,

ρ∗R = ρR + (p∗ − pR)/a2
R .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.28)

In this approximation we do not need to make a choice for the averages ρ̄
and ā; their values are replaced by data values at the foot of the corresponding
characteristics. If CL = CR = ρ̄ā, then the two approximations (9.20) and
(9.28) are identical.

The two linearised approximations (9.20) and (9.28) for the star values are
exceedingly simple and may be useful in a variety of ways. The approaches
might prove very useful in solving the Riemann problem for complicated sets
of equations.

We have now given the complete approximate solution to the sub–problems
(9.7)–(9.10). In order to evaluate the Godunov flux (9.3) we need to sample the
solution to find the value Wi+ 1

2
(0) along the t–axis. This sampling procedure

is virtually identical, although simpler, to the sampling procedure for the ex-
act Riemann problem solution presented in Chap. 4. The reader is made aware
that the numerical schemes associated with the simple linearised solutions just
derived may not be robust enough to be used with absolute confidence under
all flow conditions. In Sect. 9.5 we study hybrid Riemann solvers, which com-
bine simple and sophisticated solvers to provide schemes that have effectively
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the computational cost of the simplest Riemann solvers and the robustness of
the sophisticated Riemann solvers.

9.4 Approximations Based on the Exact Solver

In Chap. 4 we presented an exact Riemann solver based on the pressure
equation

f(p) ≡ fL(p,WL) + fR(p,WR) + Δu = 0 , Δu = uR − uL , (9.29)

with

fK(p) =

⎧
⎪⎪⎨
⎪⎪⎩

(p − pK)
[

AK

p+BK

] 1
2

if p > pK (shock) ,

2aK

(γ−1)

[(
p

pK

)z

− 1
]
if p ≤ pK (rarefaction) ,

(9.30)

z =
γ − 1
2γ

, AK =
2

(γ + 1)ρK
, BK =

(
γ − 1
γ + 1

)
pK , K = L,R . (9.31)

Various approximations based on f(p) = 0 can be obtained, including
curve–fitting procedures [509]. Here we give approximations based on the rar-
efaction and shock branches (9.30) of f(p).

9.4.1 A Two–Rarefaction Riemann Solver (TRRS)

Recall that the non–linear waves in the Riemann problem solution are
either shock or rarefaction waves and finding their type is part of the solution
procedure. If one assumes a–priori that both non–linear waves are rarefactions
then (9.29), with the appropriate choice of fL and fR in (9.30), becomes

2aL

(γ − 1)

[(
p

pL

)z

− 1
]

+
2aR

(γ − 1)

[(
p

pR

)z

− 1
]

+ uR − uL = 0 .

Solving this equation for pressure p∗ gives the approximation

p∗ =

[
aL + aR − γ−1

2 (uR − uL)
aL/pz

L + aR/pz
R

] 1
z

. (9.32)

Having found p∗ one can obtain the particle velocity u∗ from any of the
rarefaction wave relations

u∗ = uL − 2aL

(γ − 1)

[(
p∗
pL

)z

− 1
]

(9.33)

or
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u∗ = uR +
2aR

(γ − 1)

[(
p∗
pR

)z

− 1
]

. (9.34)

Alternatively, one can eliminate p∗ from (9.33) and (9.34) to obtain a closed–
form solution for the particle velocity

u∗ =
PLRuL/aL + uR/aR + 2(PLR − 1)/(γ − 1)

PLR/aL + 1/aR
, PLR =

(
pL

pR

)z

. (9.35)

Computing p∗ from (9.32) requires the evaluation of 3 fractional powers. A
more efficient approach is to calculate u∗ from (9.35), which only requires one
fractional power, and then evaluate p∗ from (9.33) or (9.34), or from a mean
value as

p∗ =
1
2

{
pL

[
1 +

(γ − 1)
2aL

(uL − u∗)
] 1

z

+ pR

[
1 +

(γ − 1)
2aR

(u∗ − uR)
] 1

z

}
.

(9.36)
Being consistent with the assumption that the two nonlinear waves are

rarefaction waves, the computation of the densities ρ∗L and ρ∗R on either side
of the contact discontinuity is obtained from the isentropic law, see Sect. 3.1.2
of Chap. 3. The result is

ρ∗L = ρL

(
p∗
pL

) 1
γ

, ρ∗R = ρR

(
p∗
pR

) 1
γ

. (9.37)

An improved version of the two–rarefaction solution is obtained by using exact
relations, for given p∗ or u∗. For instance, suppose p∗ is given by (9.32) say,
then u∗ can be found from

u∗ =
1
2
(uL + uR) +

1
2

[fR(p∗) − fL(p∗)] , (9.38)

where the functions fL and fR are evaluated according to the exact relations
(9.30) by comparing p∗ with pL and pR. The densities ρ∗L and ρ∗R can be
found from the isentropic law if the K wave is a rarefaction (p∗ ≤ pK) or from
the shock relation if the K wave is a shock wave (p∗ > pK).

The two–rarefaction approximation is generally quite robust; it is more
accurate, although more expensive, than the simple PVRS solutions (9.20) or
(9.28) of the previous section. The TRRS is in fact exact when both non–
linear waves are actually rarefaction waves. This can be detected a–priori by
the condition

f(pmin) ≥ 0 with pmin = min(pL, pR) . (9.39)

See Sect. 4.3 of Chap. 4 for details on the behaviour of the pressure function.
We have now given another approximate solution to the problem (9.7).

The solution for (9.9)–(9.10) follows. The evaluation of the Godunov flux (9.3)
requires sampling the solution to find the value Wi+ 1

2
(0) along the t–axis, in

the usual way. See Sect. 4.5 of Chap. 4.
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9.4.2 A Two–Shock Riemann Solver (TSRS)

By assuming that both non–linear waves are shock waves in (9.29)–(9.30)
one can derive the two–shock approximation

f(p) = (p − pL)gL(p) + (p − pR)gR(p) + uR − uL = 0 , (9.40)

with

gK(p) =
[

AK

p + BK

] 1
2

(9.41)

and AK , BK given by (9.31). Unfortunately, this approximation does not lead
to a closed–form solution. Further approximations must be constructed [168],
[384], [509]. Obvious approximations to the two–shock approximation involve
quadratic equations. These do not generally lead to robust schemes. One dif-
ficulty is the non–uniqueness of solutions and making the correct choice; the
exact solution, as seen in Chap. 4, is unique. The other problem is the case of
complex roots (non–existence) even for data for which the exact problem has
a solution; in our experience these can occur very often and is therefore the
most serious difficulty of the two–shock approach.

An alternative approach [509] is as follows. First we assume an estimate
p0 for the solution for pressure. Then we insert this estimate in the functions
(9.41), which in turn are substituted into equation (9.40). We obtain

(p − pL)gL(p0) + (p − pR)gR(p0) + uR − uL = 0 .

The solution of this equation is immediate:

p∗ =
gL(p0)pL + gR(p0)pR − (uR − uL)

gL(p0) + gR(p0)
. (9.42)

Being consistent with the two–shock assumption we derive a solution for the
velocity u∗ as

u∗ =
1
2
(uL + uR) +

1
2

[(p∗ − pR)gR(p0) − (p∗ − pL)gL(p0)] . (9.43)

Solution values for ρ∗Landρ∗R obtained from shock relations, see Sect. 3.1.3
of Chap. 3, namely

ρ∗L = ρL

⎡
⎣

p∗
pL

+ (γ−1)
(γ+1)

(γ−1)
(γ+1)

p∗
pL

+ 1

⎤
⎦ , ρ∗R = ρR

⎡
⎣

p∗
pR

+ (γ−1)
(γ+1)

(γ−1)
(γ+1)

p∗
pR

+ 1

⎤
⎦ . (9.44)

As to the choice for the pressure estimate p0 we propose

p0 = max(0, ppvrs) , (9.45)

where ppvrs is the solution (9.20) for pressure given by the PVRS solver of
Sect. 9.3.
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We have just presented another approximate solution to the problem (9.7).
As before, the solution for (9.8)–(9.10) follows. The evaluation of the Godunov
flux (9.3) requires sampling the solution to find the value Wi+ 1

2
(0) along the

t– axis, in the usual way. See Sect. 4.5 of Chap. 4.
The approximation (9.42)–(9.44) to the star values (9.7) is more efficient

than the TRRS and only slightly more expensive than the PVRS approxima-
tions. Also TSRS is more accurate than TRRS and PVRS for a wider range
of flow conditions, except for near vacuum conditions, where TRRS is very
accurate or indeed exact. As for the case of the TRRS approximation, we can
improve the TSRS by using the true wave relations whenever possible. For in-
stance, for given p∗ as computed from (9.42), one can obtain u∗, ρ∗L and ρ∗R

from exact wave relations. This is bound to improve the accuracy of the de-
rived quantities.

9.5 Adaptive Riemann Solvers

In a typical flow field the overwhelming majority of local Riemann prob-
lems are a representation for smooth flow. Large gradients occur only near
shock waves, contact surfaces, shear waves or some other sharp flow features.
Large gradients generate Riemann problems with widely different data states
WL,WR. Generally, it is in this kind of situations where approximate Rie-
mann solvers can be fatally inaccurate, leading to failure of the numerical
method being used. The rationale behind the use of hybrid schemes is the
use of simple Riemann solvers in regions of smooth flow and near isolated
contacts and shear waves, and more sophisticated Riemann solvers elsewhere,
in an adaptive fashion.

Successful implementations of adaptive schemes involving the PVRS and
the exact Riemann solvers were presented in [502] for the two–dimensional,
time dependent Euler equations. Toro and Chou [533] extended the idea to
the case of the steady supersonic Euler equations. Quirk [400] implemented
this Riemann–solver adaptation approach in a MUSCL–type scheme, used in
conjunction with adaptive mesh refinement techniques.

Here we present two hybrid schemes to compute the star values (9.7).
Problems (9.8)–(9.10) are solved as before and the sampling is handled as
described in Sect. 4.5 of Chap. 4.

9.5.1 An Adaptive Iterative Riemann Solver (AIRS)

This adaptive scheme makes use of two Riemann solvers: any of the
primitive–variable Riemann solvers PVRS of Sect. 9.3 and the exact Riemann
solver of Chap. 4. The PVRS scheme is used if the following two conditions
are met:

Q = pmax/pmin < Quser (9.46)
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and
pmin < p∗ < pmax , (9.47)

where

pmin ≡ min(pL, pR) , pmax ≡ max(pL, pR) , p∗ ≡ ppvrs . (9.48)

Otherwise, the exact Riemann solver is used.
Some remarks on the switching conditions (9.46)–(9.47) are in order. Con-

dition (9.46) ensures that the pressure data values pL, pR are not widely
different. Condition (9.47) imposes an extra restriction on the use of PVRS.
The pressure restriction (9.46) is not sufficient; in fact for Q ≈ 1, (pL ≈ pR)
and Δu = uR − uL negative and large in absolute value, strong shock waves
are present in the solution of the Riemann problem, that is p∗ > pmax. For Δu
large and positive p∗ < pmin and strong rarefactions are present in the exact
solution of the Riemann problem. Condition (9.47) is effectively a condition
on Δu and excludes the two–rarefaction and the two–shock cases; both of
these cases occur naturally at reflected boundaries, where it would be unwise
to employ unreliable approximations. Also, these two cases are inconsistent
with condition (9.46) on pressure ratios.

A choice of the switching parameter Quser is to be made. Extensive testing
suggests that the value Quser = 2 is perfectly adequate to give both very robust
and efficient schemes. Even much larger values of Quser can give accurate
solutions, but the gains are not significant and thus the cautious choice of
Quser = 2 is recommended. For typical flow conditions and meshes, over 90%
of all Riemann problems are handled by the cheap linearised Riemann solver.
Effectively, the resulting schemes have the efficiency of the cheapest Riemann
solvers and the robustness of the exact Riemann solver. A disadvantage of
this hybrid PVRS–EXACT scheme is the iterative character of the robust
component of the scheme, namely the exact Riemann solver. This may be
inconvenient for some computer architectures. One possibility here is to fix
the number of iterations in the exact Riemann solver. In our experience, one
iteration leads to very accurate values for pressure and subsequent quantities
derived. This is due in part to the provision of a sophisticated starting value
for the iteration procedure.

9.5.2 An Adaptive Noniterative Riemann Solver (ANRS)

Here we propose to combine a PVRS scheme, as the cheap component,
together with the non–iterative TRRS and TSRS solvers of Sects. 9.4.1 and
9.4.2 to provide the robust component of the adaptive scheme. The use of
PVRS is again restricted by conditions (9.46)–(9.47) of the previous scheme.
If any of conditions (9.46) or (9.47) are not met we use either TRRS or TSRS.
The switching between TRRS and TSRS is motivated by the behaviour of the
exact function for pressure, see Sect. 4.3.1 of Chap. 4, and is as follows. If
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Fig. 9.4. Flow chart for Adaptive Noniterative Riemann Solver (ANRS) involving
PVRS, TRRS and TSRS

ppvrs ≤ pmin , (9.49)

then we use TRRS, otherwise we use TSRS. The flow chart of Fig. 9.4 illus-
trates the implementation of this adaptive scheme. The problems of comput-
ing the tangential velocity components, handling sonic flow and the sampling
procedure to find the Godunov flux are dealt with as described in the previ-
ous sections. This adaptive noniterative Riemann solver is recommended for
practical applications.

9.6 Numerical Results

Here we assess the performance of Godunov’s first–order upwind method
used in conjunction with the approximate Riemann solvers presented in this
chapter. We select five test problems for the one–dimensional, time dependent
Euler equations for ideal gases with γ = 1.4; these have exact solutions, which
are evaluated by running the code HE–E1RPEXACT of NUMERICA [519].

In all chosen tests, data consists of two constant states WL = [ρL, uL, pL]T

and WR = [ρR, uR, pR]T , separated by a discontinuity at a position x = x0.
The states WL and WR are given in Table 9.1. The ratio of specific heats is
chosen to be γ = 1.4. For all test problems the spatial domain is the interval
[0, 1] which is discretised with M = 100 computing cells. The Courant number
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coefficient is Ccfl = 0.9; boundary conditions are transmissive and Sn
max is

found using the simplified formula (6.20) of Chapt. 6. But given that this
formula is somewhat unreliable, see discussion of Sect. 6.3.2 of Chapter 6,
in all computations presented here we take, for the the first 5 time steps, a
Courant number coefficient Ccfl reduced by a factor of 0.2.

Test ρL uL pL ρR uR pR

1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950
5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01

Table 9.1. Data for five test problems with exact solution. Test 5 is like Test
3 with negative uniform background speed

Test 1 is a modified version of the popular Sod’s test [453]; the solution
consists of a right shock wave, a right travelling contact wave and a left sonic
rarefaction wave; this test is very useful in assessing the entropy satisfaction
property of numerical methods. Test 2 has solution consisting of two sym-
metric rarefaction waves and a trivial contact wave of zero speed; the Star
Region between the non–linear waves is close to vacuum, which makes this
problem a suitable test for assessing the performance of numerical methods
for low–density flows; this is the so called 123 problem introduced in chapter
Chap. 4. Test 3 is designed to assess the robustness and accuracy of numerical
methods; its solution consists of a strong shock wave, a contact surface and
a left rarefaction wave. Test 4 is also designed to test robustness of numeri-
cal methods; the solution consists of three strong discontinuities travelling to
the right. See Sect. 4.3.3 of Chap. 4 for more details on the exact solution of
these test problems. Test 5 is also designed to test the robustness of numerical
methods but the main reason for devising this test is to assess the ability of
the numerical methods to resolve slowly– moving contact discontinuities. The
exact solution of Test 5 consists of a left rarefaction wave, a right–travelling
shock wave and a stationary contact discontinuity. For each test we select a
convenient position x0 of the initial discontinuity and an output time. These
are stated in the legend of each figure displaying computational results.

We present numerical results for two of the approximate Riemann solvers
presented in this chapter, namely the Two–Shock Riemann solver (TSRS) and
the Adaptive Noniterative Riemann Solver (ANRS). The numerical solutions
are obtained by running the code HE–E1GODSTATE of NUMERICA [519].
The results from TSRS are shown in Figs. 9.5 to 9.9 and those of ANRS
are shown in Figs. 9.10 to 9.14. All of these results are to be compared with
those obtained from the Godunov scheme used in conjunction with the exact
Riemann solver, see Figs. 6.8 to 6.12, Chapt. 6; to plotting accuracy, there is



308 9 Approximate–State Riemann Solvers

no difference in the computed results. The two approximate Riemann solvers
TSRS and ANRS are recommended for practical applications.

The Godunov–type methods based on the approximate–state Riemann
solvers of this chapter are extended to second–order of accuracy using the
techniques of Chaps. 13 and 14, for one–dimensional problems. Approaches for
including source terms are given in Chapt. 15 and for solving multidimensional
problems in Chap. 16.
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Fig. 9.5. Two–Shock Riemann Solver applied to Test 1, with x0 = 0.3. Numerical
(symbol) and exact (line) solutions are compared at time 0.2 units
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Fig. 9.6. Two–Shock Riemann Solver applied to Test 2, with x0 = 0.5. Numerical
(symbol) and exact (line) solutions are compared at time 0.15 units

0

3

6

0 0.5 1

D
en

si
ty

Position

0

12.5

25

0 0.5 1

V
el

oc
ity

Position

0

500

1000

0 0.5 1

Pr
es

su
re

Position

0

1250

2500

0 0.5 1

In
te

rn
al

 e
ne

rg
y

Position

Fig. 9.7. Two–Shock Riemann Solver applied to Test 3, with x0 = 0.5. Numerical
(symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 9.8. Two–Shock Riemann Solver applied to Test 4, with x0 = 0.4. Numerical
(symbol) and exact (line) solutions are compared at time 0.035 units
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Fig. 9.9. Two–Shock Riemann Solver applied to Test 5, with x0 = 0.8. Numerical
(symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 9.10. Adaptive Noniterative Riemann Solver applied to Test 1, with x0 = 0.3.
Numerical (symbol) and exact (line) solutions are compared at time 0.2 units
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Fig. 9.11. Adaptive Noniterative Riemann Solver applied to Test 2, with x0 = 0.5.
Numerical (symbol) and exact (line) solutions are compared at time 0.15 units
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Fig. 9.12. Adaptive Noniterative Riemann Solver applied to Test 3, with x0 = 0.5.
Numerical (symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 9.13. Adaptive Noniterative Riemann Solver applied to Test 4, with x0 = 0.4.
Numerical (symbol) and exact (line) solutions are compared at time 0.035 units
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Fig. 9.14. Adaptive Noniterative Riemann Solver applied to Test 5, with x0 = 0.8.
Numerical (symbol) and exact (line) solutions are compared at time 0.012 units
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