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Flux Vector Splitting Methods

8.1 Introduction

A distinguishing feature of upwind numerical methods is this: the dis-
cretisation of the equations on a mesh is performed according to the direction
of propagation of information on that mesh. In this way, salient features of
the physical phenomena modelled by the equations are incorporated into the
discretisation schemes. There are essentially two approaches for identifying
upwind directions, namely the Godunov approach [216] studied in Chap. 6,
and the Flux Vector Splitting (FVS) approach [424], [463], [560], [561] to be
studied in this chapter. These two approaches are often referred to as the
Riemann approach and the Boltzmann approach [244]. The respective numer-
ical methods derived from these two approaches are often referred to as Flux
Difference Splitting Methods and Flux Vector Splitting Methods . For a review
on both of these approaches the paper by Harten, Lax and van Leer [244] is
highly recommended. Closely related schemes to FVS, not studied here, are
the KFVS or kinetic schemes, see for example Pullin [389], Perthame [380],
[381], Mandal and Desphande [336], Xu and Prendergast [587], Xu et. al. [586],
Xu [585] and Yang et. al [591].

The identification of upwind directions in Flux Vector Splitting Methods
is achieved with less effort than in Godunov–type methods, leading to simpler
and somewhat more efficient schemes. These two features are very attractive
and have made FVS schemes very popular within a large community of prac-
titioners. The Flux Vector Splitting approach is particularly well suited for
implicit methods; these are popular in Aerodynamics, where the computation
of steady solutions is of great practical value. The reduced sophistication of
FVS schemes however, as compared with Godunov–type schemes, results in
poorer resolution of discontinuities, particularly stationary contact and shear
waves. In applications to the Navier–Stokes equations, it is reported by van
Leer, Thomas and Roe [565] that their FVS scheme is considerably less accu-
rate than Godunov’s method with Roe’s approximate Riemann solver [407].
A key feature of the FVS approach is its reliance on a special property of the
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266 8 Flux Vector Splitting Methods

equations, namely the homogeneity property. As seen in Sect. 3.1.1 of Chap.
3, the Euler equations satisfy this property but there are important examples,
such as the shallow water equations, that do not. The homogeneity property
may however be circumvented so as to be able to apply the FVS approach,
see Vázquez–Cendón [568].

The pioneering works of Sanders and Prendergast [424], Steger and Warm-
ing [463] and van Leer [560], [561] has been followed by numerous applications
as well as by increased research efforts to improve further the technique. See
for example the papers [12], [13], [166], [328], [578] and [387], amongst many
others.

The purpose of this chapter is to give an elementary introduction to Flux
Vector Splitting methods. Sects. 8.2 and 8.3 are devoted to a simple intro-
duction to the FVS approach. In Sect. 8.4 we derive FVS methods for the
time–dependent Euler equations following the methodologies of Steger and
Warming [463], that of van Leer [560], [561] and the recently proposed ap-
proach of Liou and Steffen [328]. Numerical results are presented in Sect. 8.5.
Techniques to construct high–order schemes based on FVS are found in Chaps.
13 and 14. In Chap. 15 we show how to solve systems with source terms and
in Chap. 16 we deal with approaches to construct multidimensional schemes.
Essential background material for reading this chapter is found in Chaps. 2,
3 and 5.

8.2 The Flux Vector Splitting Approach

In this section we introduce the flux vector splitting approach in the simple
setting of model hyperbolic systems, namely the small perturbation steady
supersonic equations and the isothermal equations of Gas Dynamics; see Sect.
1.6.2 of Chap. 1 and Sects. 2.1 and 2.4.1 of Chap. 2 for details on these systems.

8.2.1 Upwind Differencing

Consider the small perturbation steady supersonic equations

ux − a2vy = 0 , vx − uy = 0 , (8.1)

where u = u(x, y), v = v(x, y),

a =

√
1

M2
∞ − 1

(8.2)

is the sound speed and M∞ is the free–stream Mach number, assumed to be
greater than unity. Equations (8.1) may be rewritten as

Ux + AUy = 0 , (8.3)
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with

U =
[

u
v

]
, A =

[
0 −a2

−1 0

]
. (8.4)

The eigenvalues of the coefficient matrix A are

λ1 = −a , λ2 = +a , (8.5)

with corresponding right eigenvectors

K(1) =
[

a
1

]
, K(2) =

[
a
−1

]
. (8.6)

Given the mixed character of the eigenvalues (λ1 = −a is negative and λ2 =
+a is positive), a finite difference discretisation of (8.3) has limited choices for
the spatial derivative, if upwind bias is to be applied. Consider, for instance,
the one–sided difference schemes

Un+1
i = Un

i − Δx

Δy
A[Un

i − Un
i−1] , (8.7)

Un+1
i = Un

i − Δx

Δy
A[Un

i+1 − Un
i ] . (8.8)

Clearly scheme (8.7) is upwind relative to the eigenvalue λ2 = a > 0 but is
downwind, and thus unstable, relative to the eigenvalue λ1 = −a < 0. A sim-
ilar observation applies to scheme (8.8). For the case in which all eigenvalues
have the same sign the difficulty of choosing the upwind direction does not
arise.

As seen in Sect. 5.4 of Chap. 5, general linear hyperbolic systems with
constant coefficients may be solved by the CIR first–order upwind method by
decomposing the coefficient matrix A into a positive component A+ and a
negative component A−, such that

A = A+ + A− , (8.9)

where A+ has positive or zero eigenvalues and A− has negative or zero eigen-
values. One then has the upwind scheme

Un+1
i = Un

i − Δx

Δy
A+[Un

i − Un
i−1] −

Δx

Δy
A−[Un

i+1 − Un
i ] . (8.10)

The Split–Coefficient Matrix Scheme of Chakravarthy et. al. [97], [251]
is an extension of this procedure to non–linear systems, in non–conservative
form.

The CIR upwind scheme, when applied to general linear hyperbolic sys-
tems with constant coefficients, may be written in conservative form by defin-
ing the flux vector

F = AU . (8.11)
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Then the splitting (8.9) of the coefficient matrix A results in a natural splitting
of the flux vector F, namely

F = F+ + F− . (8.12)

In this way the CIR upwind scheme can be written in conservative form

Un+1
i = Un

i − Δt

Δx
[Fi+ 1

2
− Fi− 1

2
] , (8.13)

where the intercell numerical flux

Fi+ 1
2

= F+
i (Un

i ) + F−
i (Un

i+1) (8.14)

is identical to the Godunov intercell flux. See Sect. 5.4 of Chap. 5 for details.
The Flux Vector Splitting Method is a generalisation of this to non–linear
systems in conservation form.

8.2.2 The FVS Approach

Here we consider a general system of m non–linear hyperbolic conservation
laws

Ut + F(U)x = 0 . (8.15)

From the assumption of hyperbolicity the Jacobian matrix

A(U) =
∂F
∂U

(8.16)

may be expressed as
A = KΛK−1 , (8.17)

where Λ is the diagonal matrix formed by the eigenvalues of A, namely

Λ =

⎡
⎢⎣

λ1 0
. . .

0 λm

⎤
⎥⎦ . (8.18)

The matrix K is
K = [K(1),K(2), . . . ,K(m)] , (8.19)

where the column K(i) is the right eigenvector of A corresponding to λi and
K−1 is the inverse of K. Recall our usual convention of ordering the eigenval-
ues in increasing order.

As anticipated in the previous section, the Flux Vector Splitting method
aims at generalising (8.14) to non–linear systems (8.15). That is, FVS requires
a splitting of the flux vector F into two component F+ and F− such that

F(U) = F+(U) + F−(U) , (8.20)
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under the restriction that the eigenvalues λ̂+
i and λ̂−

i of the Jacobian matrices

Â
+

=
∂F+

∂U
, Â

−
=

∂F−

∂U
(8.21)

satisfy the condition
λ̂+

i ≥ 0 , λ̂−
i ≤ 0 . (8.22)

The splitting is also required to reproduce regular upwinding when all eigen-
values λi of the coefficient matrix A are one–sided, that is, all positive or zero,
or all negative or zero. That is to say

F+ = F , F− = 0 if λi ≥ 0 for i = 1, . . . ,m ,

F+ = 0 , F− = F if λi ≤ 0 for i = 1, . . . ,m .

⎫
⎬
⎭ (8.23)

If in addition to hyperbolicity, the system (8.15) satisfies the homogeneity
property

F(U) = A(U)U , (8.24)

just as in the linear constant coefficient case, then the sought splitting is easily
accomplished by identifying a suitable splitting of the Jacobian matrix A. As
seen in Sect. 3.1.1 of Chap. 3, the time–dependent Euler equations satisfy the
homogeneity property.

From the diagonalisation of A given by (8.17), a splitting of A may be
accomplished by an appropriate splitting of the diagonal matrix Λ. This in
turn, may be split by identifying a splitting of the eigenvalues λi, i = 1, . . . , m
of A. Suppose we may split the eigenvalues λi as

λi = λ+
i + λ−

i , (8.25)

such that λ+
i ≥ 0 and λ−

i ≤ 0. Then Λ may be split as

Λ = Λ+ + Λ− , (8.26)

where

Λ+ =

⎡
⎢⎣

λ+
1 0

. . .
0 λ+

m

⎤
⎥⎦ , Λ− =

⎡
⎢⎣

λ−
1 0

. . .
0 λ−

m

⎤
⎥⎦ . (8.27)

A natural splitting of A results, namely

A = A+ + A− , (8.28)

with
A+ = KΛ+K−1 , A− = KΛ−K−1 . (8.29)

Then, if (8.24) is satisfied, we can split F(U) as

F = F+ + F− , (8.30)
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where
F+ = A+U , F− = A−U . (8.31)

Steger and Warming [463] proposed a splitting of the eigenvalues λi as in
(8.25) with definitions

λ+
i =

1
2
(λi+ | λi |) , λ−

i =
1
2
(λi− | λi |) , (8.32)

where | λi | is the absolute value of λi namely,

| λi |=
{

λi if λi ≥ 0 ,
−λi if λi ≤ 0 .

(8.33)

Clearly
λ+

i ≥ 0 , λ−
i ≤ 0 , for i = 1, . . . ,m. (8.34)

Exercise 8.1. Verify that the following properties are satisfied

λi = λ+
i + λ−

i ; | λi | = λ+
i − λ−

i ,
Λ = Λ+ + Λ− ; | Λ | = Λ+ − Λ− ,
A = A+ + A− ; | A | = A+ − A− .

⎫
⎬
⎭ (8.35)

Solution 8.2. (Left to the reader).

8.3 FVS for the Isothermal Equations

In order to illustrate the FVS approach we consider the isothermal equa-
tions of Gas Dynamics

Ut + F(U)x = 0 , (8.36)

U =
[

ρ
ρu

]
, F(U) =

[
ρu

ρu2 + ρa2

]
, (8.37)

where the sound speed a is a positive constant. For details on the eigenstruc-
ture of this system see Sect. 2.4 of Chap. 2. The Jacobian matrix is

A =
∂F
∂U

=
[

0 1
a2 − u2 2u

]
. (8.38)

The eigenvalues of A are

λ1 = u − a , λ2 = u + a (8.39)

and the matrix K of corresponding right eigenvectors is

K =
[

1 1
u − a u + a

]
. (8.40)

Exercise 8.3. Verify that system (8.36)–(8.37) satisfy the homogeneity
property (8.24).

Solution 8.4. (Left to the reader).
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8.3.1 Split Fluxes

Given any splitting (8.25) with

Λ+ =
[

λ+
1 0
0 λ+

2

]
, Λ− =

[
λ−

1 0
0 λ−

2

]
, (8.41)

we require the computation of the matrices A+ and A− as given by (8.29).
One then requires the determination of the inverse K−1 of the matrix K, the
products of three matrices as in (8.29) and finally the products (8.31) to find
the flux components. For large systems this may be a rather tedious algebraic
task. For the isothermal equations we have

K−1 =
1
2a

[
u + a −1
a − u 1

]
. (8.42)

Now, given any of the two components (8.27) of Λ, Aα, say, we compute

Aα = KΛαK−1 .

The result is

Aα =
1
2a

[
λα

1 (u + a) − λα
2 (u − a) λα

2 − λα
1

(u2 − a2)(λα
1 − λα

2 ) λα
2 (u + a) − λα

1 (u − a)

]
. (8.43)

Application of (8.31) gives the flux vector component

Fα = AαU ,

that is

Fα =
ρ

2

[
λα

1 + λα
2

λα
1 (u − a) + λα

2 (u + a)

]
. (8.44)

Note that the expression for the component Fα given by (8.44) is general. For
α = + and α = − the flux components F+ and F− are

F+ =
ρ

2

[
λ+

1 + λ+
2

λ+
1 (u − a) + λ+

2 (u + a)

]
, (8.45)

and

F− =
ρ

2

[
λ−

1 + λ−
2

λ−
1 (u − a) + λ−

2 (u + a)

]
. (8.46)

Exercise 8.5. For the split fluxes (8.45)–(8.46), for the case of subsonic
flow,

– (i) Find the Jacobian matrices

Â
+

=
∂F+

∂U
, Â

−
=

∂F−

∂U
.



272 8 Flux Vector Splitting Methods

– (ii) Find the eigenvalues λ̂+
i and λ̂−

i .

Solution 8.6. For the positive flux component F+ the Jacobian matrix is

Â
+

=
∂F+

∂U
=
[

1
2a 1

2
1
2 (a2 − u2) u + a

]
.

The eigenvalues are the roots of the characteristic polynomial

λ2 − (
3
2
a + u)λ +

1
4
(u + a)2 = 0 ,

namely,

λ̂+
1 =

1
4
a
[
2M + 3 −

√
4M + 5

]
, λ̂+

2 =
1
4
a
[
2M + 3 +

√
4M + 5

]
.

Remark 8.7. Note that
Â

+ �= A+

and that
λ̂+

i �= λ+
i .

Note also that λ̂+
i > 0, that is, none of the eigenvalues vanish. Numerically,

this particular property is not desirable, and which unfortunately also carries
over to the Euler equations. As we shall see in the next section, there are
other splitting schemes that remove this difficulty.

8.3.2 FVS Numerical Schemes

The FVS approach can be used to solve (8.36) using the explicit conser-
vative scheme

Un+1
i = Un

i − Δt

Δx
[Fi+ 1

2
− Fi− 1

2
] , (8.47)

where the FVS numerical flux is given by

Fi+ 1
2

= F+
i (Un

i ) + F−
i+1(U

n
i+1) . (8.48)

Fig. 8.1 provides a physical interpretation of (8.48). The intercell numerical
flux Fi+ 1

2
is made out from two contributions; one comes from the forward

component F+
i in the left cell Ii and the other comes from the backward

component F−
i+1 in the right cell Ii+1.

The Steger and Warming [463] splitting (8.32) in a computational set up
is as follows: we consider a computing cell Ii at time level n, where Un

i is the
vector of conserved variables and Fn

i ≡ F(Un
i ) is the vector of fluxes. The

three cases to consider are illustrated in Fig. 8.2 and are
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i-1 i i i+1i-1

+ +- - -
i+1

FF
i+1/2i-1/2

i+1

x

i-1/2 i+1/2
i-1 i

+
F F F F FF

Fig. 8.1. Splitting of the flux function within each computing cell Ii at time level n

– Case (a) Left supersonic flow: λ2 = un
i +an

i ≤ 0. Fig. 8.2a illustrates
the situation in a cell Ii at time level n. Clearly

λ+
1 = 0 , λ−

1 = λ1 = un
i − an

i ,
λ+

2 = 0 , λ−
2 = λ2 = un

i + an
i ,

F+
i = 0 , F−

i = Fn
i .

⎫
⎬
⎭ (8.49)

– Case (b) Right supersonic flow: λ1 = un
i − an

i ≥ 0. See Fig. 8.2b.
Obviously

λ+
1 = λ1 = un

i − an
i , λ−

1 = 0 ,
λ+

2 = λ2 = un
i + an

i , λ−
2 = 0 ,

F+
i = Fn

i , F−
i = 0 .

⎫
⎬
⎭ (8.50)

– Case (c) Subsonic flow: λ1 = un
i − an

i ≤ 0 ≤ λ2 = un
i + an

i . See Fig.
8.2c. Evidently

λ+
1 = 0 , λ−

1 = λ1 = un
i − an

i ,
λ+

2 = λ2 = un
i + an

i , λ−
2 = 0 .

}
(8.51)

According to (8.45)–(8.46) the fluxes F+
i and F−

i for the subsonic
case are given by

F+
i =

ρn
i

2

[
un

i + an
i

(un
i + an

i )2

]
, F−

i =
ρn

i

2

[
un

i − an
i

(un
i − an

i )2

]
. (8.52)

8.4 FVS Applied to the Euler Equations

Here we present three Flux Vector Splitting schemes applied to the time
dependent Euler equations.
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(c)

λ
λ λ

(b)
i-1/2 i-1/2i+1/2 i+1/2

(a)

λ
1 2

Left supersonic Right supersonic Subsonic

2

λλ
1

2 1

i+1/2

i i i
i-1/2

Fig. 8.2. Possible flow patterns in cell Ii at time n: (a) supersonic flow to the left
(b) supersonic flow to the right (c) subsonic flow

8.4.1 Recalling the Equations

The one–dimensional Euler Equations in conservation–law form are given
by

Ut + F(U)x = 0 , (8.53)

U =

⎡
⎣

ρ
ρu
E

⎤
⎦ , F(U) =

⎡
⎣

ρu
ρu2 + p
u(E + p)

⎤
⎦ . (8.54)

As seen in Sect. 3.1.1 of Chap. 3, the Jacobian matrix A is given by

A =

⎡
⎣

0 1 0
1
2 (γ − 3)u2 (3 − γ)u γ − 1

1
2 (γ − 2)u3 − a2u

γ−1
3−2γ

2 u2 + a2

γ−1 γu

⎤
⎦ (8.55)

and the system is hyperbolic with real eigenvalues

λ1 = u − a , λ2 = u , λ3 = u + a . (8.56)

The matrix K of corresponding right eigenvectors is

K =

⎡
⎣

0 1 0
u − a u u + a

H − ua 1
2u2 H + ua

⎤
⎦ . (8.57)

Here H is the enthalpy

H = (E + p)/ρ =
1
2
u2 +

a2

(γ − 1)
. (8.58)

As explained in Sect. 3.2.4 of Chap. 3, the three–dimensional Euler equa-
tions may be dealt with by only considering the flux component normal to



8.4 FVS Applied to the Euler Equations 275

the computing cell interface, see also Sect. 16.2 of Chap. 16. In constructing
numerical methods for Cartesian geometries it is sufficient to consider the flux
in any of the coordinate directions. For general geometries this is modified by
use of rotation matrices; see Sect. 3.2 of Chap. 3. We thus state the schemes
for the x–split three dimensional Euler equations

Ut + F(U)x = 0 , (8.59)

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F(U) =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

. (8.60)

The Jacobian matrix A, see Sect. 3.2.2 of Chap. 3, is given by

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
γ̂H − u2 − a2 (3 − γ)u −γ̂v −γ̂w γ̂

−uv v u 0 0
−uw w 0 u 0

1
2u[(γ − 3)H − a2] H − γ̂u2 −γ̂uv −γ̂uw γu

⎤
⎥⎥⎥⎥⎦

, (8.61)

where

H = (E + p)/ρ =
1
2
V2 +

a2

(γ − 1)
, V2 = u2 + v2 + w2 , γ̂ = γ − 1 . (8.62)

This system is hyperbolic with real eigenvalues

λ1 = u − a , λ2 = λ3 = λ4 = u , λ5 = u + a . (8.63)

The matrix of corresponding right eigenvectors is

K =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 1
u − a u 0 0 u + a

v v 1 0 v
w w 0 1 w

H − ua 1
2V

2 v w H + ua

⎤
⎥⎥⎥⎥⎦

(8.64)

As seen in Chap. 3 the one–dimensional Euler equations satisfy the homo-
geneity property

F(U) = A(U)U . (8.65)

Exercise 8.8. Verify that the split three–dimensional Euler equations
(8.59)–(8.60) also satisfy the homogeneity property (8.65).

Solution 8.9. (Left to the reader).
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8.4.2 The Steger–Warming Splitting

For a splitting (8.25)–(8.27) we require an expression for the inverse K−1

of the matrix K, in order to find the split Jacobians (8.29).

The One–Dimensional Case

For the one–dimensional Euler equations we have

K−1 =
(γ − 1)

2a2

⎡
⎢⎣

1
2u2 + ua

γ−1 −u − a
γ−1 1

2a2

γ−1 − u2 2u −2
1
2u2 − ua

γ−1
a

γ−1 − u 1

⎤
⎥⎦ . (8.66)

Then, for any component Λα of the two components of Λ in (8.26) the corre-
sponding Jacobian component is

Aα = KΛαK−1 .

The associated split flux component Fα = AαU is

Fα =
ρ

2γ

⎡
⎣

λα
1 + 2(γ − 1)λα

2 + λα
3

(u − a)λα
1 + 2(γ − 1)uλα

2 + (u + a)λα
3

(H − ua)λα
1 + (γ − 1)u2λα

2 + (H + ua)λα
3

⎤
⎦ , (8.67)

where the eigenvalues λα
k are given by (8.32), for α = +,−.

The Three–Dimensional Case

For the three–dimensional case we have

K−1 =
(γ − 1)

2a2

⎡
⎢⎢⎢⎢⎢⎣

H + a
γ̂ (u − a) −(u + a

γ̂ ) −v −w 1
−2H + 4

γ̂ a2 2u 2v 2w −2
− 2va2

γ̂ 0 2a2

γ̂ 0 0
− 2wa2

γ̂ 0 0 2a2

γ̂ 0
H − a

γ̂ (u + a) −u + a
γ̂ −v −w 1

⎤
⎥⎥⎥⎥⎥⎦

(8.68)

and the resulting split flux component Fα = AαU is found to be

Fα =
ρ

2γ

⎡
⎢⎢⎢⎢⎣

λα
1 + 2(γ − 1)λα

2 + λα
5

(u − a)λα
1 + 2(γ − 1)uλα

2 + (u + a)λα
5

vλα
1 + 2(γ − 1)vλα

2 + vλα
5

wλα
1 + 2(γ − 1)wλα

2 + wλα
5

(H − ua)λα
1 + (γ − 1)V2λα

2 + (H + ua)λα
5

⎤
⎥⎥⎥⎥⎦

. (8.69)

Exercise 8.10. Verify expressions (8.68) and (8.69) above.

Solution 8.11. (Left to the reader).
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8.4.3 The van Leer Splitting

Van Leer [560], [561] constructed a splitting for the Euler equations that
has some extra desirable properties, namely

– (I) The split Jacobian matrices

Â
+

=
∂F+

∂U
, Â

−
=

∂F−

∂U

are required to be continuous.
– (II) The split fluxes are degenerate for subsonic flow, that is Â

+
, Â

−

have a zero eigenvalue.

Van Leer expresses the flux vector F as a function of density, sound speed
and Mach number M = u

a , that is

F = F(ρ, a,M) =

⎡
⎣

ρaM
ρa2(M2 + 1

γ )
ρa3M( 1

2M2 + 1
γ−1 )

⎤
⎦ ≡

⎡
⎣

fmas

fmom

fene

⎤
⎦ . (8.70)

For the mass flux
fmas = ρaM

one requires quadratics in M and the split mass fluxes are

f+
mas =

1
4
ρa(1 + M)2 , f−

mas = −1
4
ρa(1 − M)2 . (8.71)

The momentum split fluxes are

f+
mom = f+

mas

2a

γ
[
(γ − 1)

2
M + 1] , f−

mom = f−
mas

2a

γ
[
(γ − 1)

2
M − 1] (8.72)

and the energy split fluxes are

f+
ene =

γ2

2(γ2 − 1)
[f+

mom]2

f+
mas

, f−
ene =

γ2

2(γ2 − 1)
[f−

mom]2

f−
mas

. (8.73)

In vector form we have

F+ =
1
4
ρa(1 + M)2

⎡
⎢⎣

1
2a
γ (γ−1

2 M + 1)
2a2

γ2−1 (γ−1
2 M + 1)2

⎤
⎥⎦ , (8.74)

F− = −1
4
ρa(1 − M)2

⎡
⎢⎣

1
2a
γ (γ−1

2 M − 1)
2a2

γ2−1 (γ−1
2 M − 1)2

⎤
⎥⎦ . (8.75)
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For the x–split three dimensional Euler equations the split flux formulae are

F+ =
1
4
ρa(1 + M)2

⎡
⎢⎢⎢⎢⎣

1
2a
γ (γ−1

2 M + 1)
v
w

2a2

γ2−1 (γ−1
2 M + 1)2 + 1

2 (v2 + w2)

⎤
⎥⎥⎥⎥⎦

, (8.76)

and

F− = −1
4
ρa(1 − M)2

⎡
⎢⎢⎢⎢⎣

1
2a
γ (γ−1

2 M − 1)
v
w

2a2

γ2−1 (γ−1
2 M − 1)2 + 1

2 (v2 + w2)

⎤
⎥⎥⎥⎥⎦

, (8.77)

where the Mach number is still M = u
a .

Concerning stability, van Leer [560] gives the following practical stability
condition

Ccfl ≡ Δt

Δx
(| u | +a) ≤ 2γ+ | M | (3 − γ)

γ + 3
. (8.78)

Note that Ccfl = Ccfl(M) and that when γ = 1.4 we have

Cmax
cfl = 1 for | M |= 1 , Cmin

cfl =
2γ

γ + 3
≈ 0.636 . . . , for | M |= 0 . (8.79)

Remark 8.12. The CFL condition for the explicit FVS scheme is more
restrictive than that for the Godunov method, for which Ccfl is close to unity.
See Sect. 6.3.2 of Chap. 6 for a discussion on the CFL condition.

8.4.4 The Liou–Steffen Scheme

A recent scheme that attempts to combine features from the Flux Vec-
tor Splitting and Godunov approaches is due to Liou and Steffen [328]. The
scheme has been formulated in terms of the time–dependent Euler equations
and relies on splitting the flux vector F into a convective component F(c) and
a pressure component F(p). For the x–split three dimensional flux we have

F(U) =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

ρu
ρu2

ρuv
ρuw
ρuH

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0
p
0
0
0

⎤
⎥⎥⎥⎥⎦
≡ F(c) + F(p) , (8.80)

with the obvious definitions for the convective component F(c) and the pres-
sure component F(p). By introducing the Mach number and enthalpy
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M =
u

a
, H =

E + p

ρ

we write

F(c) = M

⎡
⎢⎢⎢⎢⎣

ρa
ρau
ρav
ρaw
ρaH

⎤
⎥⎥⎥⎥⎦
≡ M F̂

(c)
, (8.81)

with the obvious notation for the vector F̂
(c)

. In defining the intercell numer-
ical flux Fi+ 1

2
, Liou and Steffen take

Fi+ 1
2

= F(c)

i+ 1
2

+ F(p)

i+ 1
2

, (8.82)

where the convective flux component is given by

F(c)

i+ 1
2

= Mi+ 1
2

[
F̂

(c)
]

i+ 1
2

(8.83)

with definition

[•]i+ 1
2

=
{

[•]i if Mi+ 1
2
≥ 0 ,

[•]i+1 if Mi+ 1
2
≤ 0 .

(8.84)

Note that the flux vector in (8.83) is upwinded according to the sign of the
convection, or advection, speed implied in the intercell Mach number Mi+ 1

2
.

For this reason Liou and Steffen call their scheme AUSM, which stands for
Advection Upstream Splitting Method.

The cell–interface Mach number is given by the splitting

Mi+ 1
2

= M+
i + M−

i+1 (8.85)

with the positive and negative components yet to be defined. The splitting of
the pressure flux component depends on the splitting of the pressure itself,
namely

pi+ 1
2

= p+
i + p−i+1 . (8.86)

For the splitting of the Mach number Liou and Steffen follow van Leer and
set

M± =
{
± 1

4 (M±1)2 if | M | ≤ 1 ,
1
2 (M± | M |) if | M | > 1 .

(8.87)

For splitting the pressure they suggest two choices, namely

p± =
{ 1

2p(1±M) if | M | ≤ 1
1
2p (M±|M |)

M if | M | > 1
(8.88)

and

p± =
{ 1

4p(M±1)2(2 ∓ M) if | M | ≤ 1 ,
1
2p (M±|M |)

M if | M | > 1 .
(8.89)

For more details see the original paper by Liou and Steffen [328] and the more
recent publication of Liou [327].
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8.5 Numerical Results

Here we illustrate the performance of three FVS–type schemes on the one–
dimensional, time dependent Euler equations for ideal gases with γ = 1.4,
namely the Steger–Warming FVS scheme, the van Leer FVS scheme and the
AUSM scheme of Liou and Steffen. Numerical results are compared with
the exact solution. The respective results are obtained from running two
codes of NUMERICA [519], namely HE–E1FVS (FVS schemes) and HE–
E1RPEXACT (exact Riemann solver).

8.5.1 Tests

We use five test problems with exact solution. Data consists of two con-
stant states WL = [ρL, uL, pL]T and WR = [ρR, uR, pR]T , separated by a
discontinuity at a position x = x0, and are given in Table 8.1. The exact and
numerical solutions are found in the spatial domain 0 ≤ x ≤ 1. The numerical
solution is computed with M = 100 cells. The Courant number coefficient
is taken as Ccfl = 0.9, except for the van Leer scheme, for which we took
Ccfl = 0.6. In implementing the CFL condition we use the simple formula
given by equation 6.20 of Chap. 6 to estimate the maximum wave speed.
Therefore, for all methods, we reduce the CFL number further to 0.2 of that
given by the CFL condition, for the first 5 time steps. Boundary conditions
are transmissive. For each test problem we select a convenient position x0 of
the initial discontinuity and the output time; these are stated in the legend
of each figure displaying computational results. All numerical results should
be compared with those from Godunov’s method, Figs. 6.8 to 6.12 of Chap.
6. For more details on the exact solutions of the test problems see Sect. 4.3.3
of Chap. 4.

Test ρL uL pL ρR uR pR

1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950
5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01

Table 8.1. Data for five test problems with exact solution. Test 5 is like Test
3 with negative uniform background speed

8.5.2 Results for Test 1

Test 1 is a modified version of the popular Sod’s test [453]; the solution
consists of a right shock wave, a right travelling contact wave and a left sonic
rarefaction wave; this test is very useful in assessing the entropy satisfaction
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property of numerical methods. Figs. 8.3 to 8.5 show the results for the three
FVS schemes.

In the results from the Steger–Warming scheme, shown in Fig. 8.3, the
resolution of the shock and the right travelling contact is comparable with
that of Godunov’s method, Fig. 6.8 of Chap. 6. The resolution of the left
rarefaction is less satisfactory; the head and tail are visibly smeared and the
sonic point, as expected, is not handled correctly. The results from the van
Leer scheme, shown in Fig. 8.4, are virtually identical to those of Godunov’s
method of Fig. 6.8 for the rarefaction and contact, but the shock is broader.
The performance at the sonic point is comparable with that of Godunov’s
method and better than that of the Steger–Warming scheme. The results
from the Liou and Steffen scheme are shown in Fig. 8.5. In comparison with
Godunov’s method, the shock wave is more sharply resolved and the contact
wave is similar but the resolution of the rarefaction is not as good, particularly
near the sonic point.

8.5.3 Results for Test 2

The exact solution of Test 2 consists of two symmetric rarefaction waves
and a trivial contact wave of zero speed; the Star Region between the non–
linear waves is close to vacuum, which makes this problem a suitable test for
assessing the performance of numerical methods for low–density flows [182];
this is the so called 123 problem introduced in Sect. 4.3.3 of Chap. 4. Figs. 8.6
to 8.8 show the results for the three FVS schemes.

The results from the Steger–Warming scheme, shown in Fig. 8.6, are vir-
tually identical to those of the Godunov method, Fig. 6.9 of Chap. 6. The
results from the van Leer scheme, shown in Fig. 8.7, are also comparable with
those from the Godunov method. The heads of the rarefactions are slightly
more diffused. The Liou and Steffen scheme, Fig. 8.8, gives results that are
comparable with those of Godunov’s method and slightly more accurate than
those from van Leer’s scheme; in the vicinity of the trivial contact, where both
density and pressure are close to zero, the results are somewhat erratic, see
velocity and internal energy plots.

In view of the fact that Godunov–type methods with linearised Riemann
solvers will fail for this test problem [182], it is quite remarkable to note that
all three FVS–type schemes described in this chapter actually run and give,
overall, good results.

8.5.4 Results for Test 3

Test 3 is designed to assess the robustness and accuracy of numerical
methods; its solution consists of a strong right travelling shock wave of shock
Mach number 198, a contact surface and a left rarefaction wave. Figs. 8.9 and
8.10 show the results for two FVS schemes.



282 8 Flux Vector Splitting Methods

The Steger–Warming result, shown in Fig. 8.9, is seen to be overall less
accurate than the corresponding result from the Godunov method, shown in
Fig. 6.10 of Chap. 6; the numerical solution has an unphysical dip behind the
shock wave, which is more clearly seen in the velocity and pressure plots. The
results from the van Leer scheme, shown in Fig. 8.10, are also less accurate
than those from the Godunov method, but they are more accurate than the
results from the Steger–Warming scheme. The Liou and Steffen scheme, as
coded by the author, failed to give a solution at all for this very severe test
problem, even when reducing the CFL number to a value as low as 0.1.

8.5.5 Results for Test 4

Test 4, as Test 3, is also designed to assess the robustness of numerical
methods; data originates from two very strong shock waves travelling towards
each other and the solution consists of three strong discontinuities travelling
to the right; the left shock wave moves to the right very slowly, which adds
another difficulty [406] to numerical methods. Figs. 8.11 to 8.13 show the
results for the three FVS schemes.

The results from the Steger and Warming scheme, shown in Fig. 8.11,
are overall comparable with those of Godunov’s method shown in Fig. 6.11 of
Chapter 6. The only visible difference is seen near the left slowly moving shock,
and as expected, this is more diffused in the Steger–Warming result; however,
it appears as if the low frequency oscillations seen in the Godunov results
are significantly reduced in the Steger–Warming scheme. The results from the
van Leer scheme, shown in Fig. 8.12, are comparable with those of Godunov’s
method and are more accurate than those from the Steger–Warming scheme.
The slowly–moving shock is resolved with two interior cells, instead of one in
the Godunov’s method, but low–frequency spurious oscillations are just about
visible. The results from the Liou and Steffen scheme, shown in Fig. 8.13, are
comparable with the Godunov and van Leer results for this test; the fast right
shock is more sharply resolved than with the other methods, but at the cost
of an overshoot; the slowly moving left shock is slightly more smeared than
in the van Leer result.

8.5.6 Results for Test 5

Test 5 is effectively Test 3, with a negative uniform background speed
so as to obtain a stationary contact discontinuity. Test 5 is also designed to
test the robustness of numerical methods but the main reason for devising
this test is for assessing the ability of numerical methods to resolve slowly–
moving contact discontinuities. The exact solution of Test 5 consists of a left
rarefaction wave, a right–travelling shock wave (slow) and a stationary contact
discontinuity. Figs. 8.14 to 8.16 show the results for the three FVS schemes
and Fig. 8.17 shows the respective results obtained from the Godunov method
used in conjunction with the exact Riemann solver, code HE–E1GODSTATE
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of NUMERICA [519]. We note that at the chosen output time, the right
travelling shock wave has propagated only 5 cells, in 81 time steps. For this
test problem the results from the Steger/Warming and van Leer FVS schemes
are similar, in that the contact discontinuity is heavily smeared, even for
a relatively short evolution time. The Liou and Steffen FVS scheme, Fig.
8.16, differs from the other two FVS schemes in that it resolves the contact
discontinuity more sharply; note however the unphysical oscillations in the
vicinity of the shock wave, the contact discontinuity and even near the tail of
the rarefaction. For comparison, the results from the Godunov method used
in conjuction with the exact Riemann solver are displayed in Fig. 8.17. These
are obviously superior to any of the FVS schemes, for this test problem.

The numerical experiments presented suggest that Flux Vector Splitting
Schemes give, generally, results of similar quality to those obtained by the
Godunov method. The difference between these two upwind approaches is
evident when slowly or stationary contact waves are present. For multidimen-
sional problems this has important implications for the accurate resolution
of shear layers, material interfaces and vortical flows. The Liou and Steffen
FVS–type scheme is an exception, as it does resolve contacts more accurately
than the Warming–Beam and van Leer schemes, although there are questions
marks about its robustness. For Test 3 the Liou and Steffen scheme crashed
and for Test 5 produced large unphysical oscillations. It is worth remarking
that the Godunov method was used in conjunction with the exact Riemann
solver, to obtain the numerical results of Fig. 8.17. If the Godunov scheme is
used with linearised Riemann solvers, then it would fail for low–density flows,
such as Test 2 for example, whereas the FVS–type schemes appear to be much
less sensitive; they all produced acceptable results for Test 2. In addition, if
the Godunov method is used in conjunction with incomplete Riemann solvers,
such as those that ignore the presence of linear waves in the structure of the
solution of the Riemann problem, then the resolution of contacts will be as
poor as that of FVS–type schemes, such as the Warming–Beam and van Leer
schemes. The selection of the Riemann solver is crucial to the performance of
the Godunov method. See Chaps. 9 to 12.

For details on how to extend FVS–type schemes to higher order of accuracy
for one–dimensional homogeneous problems the reader is referred to Chapts.
13 and 14. Methods for treating source terms are given in Chapt. 15 and
techniques to extend the methods to solve multidimensional problems are
given in Chapt. 16. For multidimensional, steady state, applications of Flux
Vector Splitting methods, readers are encouraged to consult, amongst many
others, the following references: [12], [13], [600], [166], [578].
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Fig. 8.3. Steger and Warming FVS scheme applied to Test 1, with x0 = 0.3.
Numerical (symbol) and exact (line) solutions are compared at time 0.2 units
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Fig. 8.4. Van Leer FVS scheme applied to Test 1, with x0 = 0.3. Numerical (symbol)
and exact (line) solutions are compared at time 0.2 units
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Fig. 8.5. Liou and Steffen scheme applied to Test 1, with x0 = 0.3. Numerical
(symbol) and exact (line) solutions are compared at time 0.2 units
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Fig. 8.6. Steger and Warming FVS scheme applied to Test 2, with x0 = 0.5.
Numerical (symbol) and exact (line) solutions are compared at time 0.15 units
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Fig. 8.7. Van Leer FVS scheme applied to Test 2, with x0 = 0.5. Numerical (symbol)
and exact (line) solutions are compared at time 0.15 units
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Fig. 8.8. Liou and Steffen scheme applied to Test 2, with x0 = 0.5. Numerical
(symbol) and exact (line) solutions are compared at time 0.15 units
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Fig. 8.9. Steger and Warming FVS scheme applied applied to Test 3, with x0 = 0.5.
Numerical (symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 8.10. Van Leer FVS scheme applied applied to Test 3, with x0 = 0.5. Numerical
(symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 8.11. Steger and Warming FVS scheme applied to Test 4, with x0 = 0.4.
Numerical (symbol) and exact (line) solutions are compared at time 0.035 units
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Fig. 8.12. Van Leer FVS scheme applied to Test 4, with x0 = 0.4. Numerical
(symbol) and exact (line) solutions are compared at time 0.035 units
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Fig. 8.13. Liou and Steffen scheme applied to Test 4, with x0 = 0.4. Numerical
(symbol) and exact (line) solutions are compared at time 0.035 units
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Fig. 8.14. Steger and Warming FVS scheme applied to Test 5, with x0 = 0.8.
Numerical (symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 8.15. Van Leer FVS scheme applied to Test 5, with x0 = 0.8. Numerical
(symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 8.16. Liou and Steffen scheme applied to Test 5, with x0 = 0.8. Numerical
(symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 8.17. Godunov scheme applied to Test 5, with x0 = 0.8. Numerical (symbol)
and exact (line) solutions are compared at time 0.012 units
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