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Some Properties of the Euler Equations

In this chapter we apply the mathematical tools presented in Chap. 2 to
analyse some of the basic properties of the time–dependent Euler equations.
As seen in Chap. 1, the Euler equations result from neglecting the effects of
viscosity, heat conduction and body forces on a compressible medium. Here we
show that these equations are a system of hyperbolic conservations laws and
study some of their mathematical properties. In particular, we study those
properties that are essential for finding the solution of the Riemann problem
in Chap. 4. We analyse the eigenstructure of the equations, that is, we find
eigenvalues and eigenvectors; we study properties of the characteristic fields
and establish basic relations across rarefactions, contacts and shock waves. It
is worth remarking that the process of finding eigenvalues and eigenvectors
usually involves a fair amount of algebra as well as some familiarity with
basic physical quantities and their relations. For very complex systems of
equations finding eigenvalues and eigenvectors may require the use of symbolic
manipulators. Useful background reading for this chapter is found in Chaps.
1 and 2.

3.1 The One–Dimensional Euler Equations

Here we study the one–dimensional time–dependent Euler equations with
an ideal Equation of State, using conservative and non–conservative formula-
tions. The basic structure of the solution of the Riemann problem is outlined
along with a detailed study of the elementary waves present in the solution.
We provide the foundations for finding the exact solution of the Riemann
problem in Chap. 4.

3.1.1 Conservative Formulation

The conservative formulation of the Euler equations, in differential form,
is
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Ut + F(U)x = 0 , (3.1)

where U and F(U) are the vectors of conserved variables and fluxes, given
respectively by

U =

⎡
⎣

u1

u2

u3

⎤
⎦ ≡

⎡
⎣

ρ
ρu
E

⎤
⎦ , F =

⎡
⎣

f1

f2

f3

⎤
⎦ ≡

⎡
⎣

ρu
ρu2 + p
u(E + p)

⎤
⎦ . (3.2)

Here ρ is density, p is pressure, u is particle velocity and E is total energy per
unit volume

E = ρ(
1
2
u2 + e) , (3.3)

where e is the specific internal energy given by a caloric Equation of State
(EOS)

e = e(ρ, p) . (3.4)

For ideal gases one has the simple expression

e = e(ρ, p) =
p

(γ − 1)ρ
, (3.5)

with γ = cp/cv denoting the ratio of specific heats. From the EOS (3.5) and
using equation (1.36) of Chap. 1 we write the sound speed a as

a =
√

(p/ρ2 − eρ)/ep =
√

γp

ρ
. (3.6)

The conservation laws (3.1)–(3.2) may also be written in quasi–linear form

Ut + A(U)Ux = 0 , (3.7)

where the coefficient matrix A(U) is the Jacobian matrix

A(U) =
∂F
∂U

=

⎡
⎣

∂f1/∂u1 ∂f1/∂u2 ∂f1/∂u3

∂f2/∂u1 ∂f2/∂u2 ∂f2/∂u3

∂f3/∂u1 ∂f3/∂u2 ∂f3/∂u3

⎤
⎦ .

Proposition 3.1 (Jacobian Matrix). The Jacobian matrix A is

A(U) =

⎡
⎢⎢⎢⎢⎣

0 1 0

− 1
2 (γ − 3)(u2

u1
)2 (3 − γ)(u2

u1
) γ − 1

−γu2u3
u2

1
+ (γ − 1)(u2

u1
)3 γu3

u1
− 3

2 (γ − 1)(u2
u1

)2 γ(u2
u1

)

⎤
⎥⎥⎥⎥⎦

.

Proof. First we express all components fi of the flux vector F in terms
of the components ui of the vector U of conserved variables, namely u1 ≡ ρ,
u2 ≡ ρu, u3 ≡ E. Obviously f1 = u2 ≡ ρu. To find f2 and f3 we first need
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to express the pressure p in terms of the conserved variables. From (3.3) and
(3.5) we find

p = (γ − 1)[u3 −
1
2
(u2

2/u1)] .

Thus the flux vector can be written as

F(U) =

⎡
⎣

f1

f2

f3

⎤
⎦ ≡

⎡
⎢⎣

u2

1
2 (3 − γ)u2

2
u1

+ (γ − 1)u3

γ u2
u1

u3 − 1
2 (γ − 1)u3

2
u2

1

⎤
⎥⎦ .

By direct evaluation of all partial derivatives we arrive at the sought result.

Exercise 3.2. Write the Jacobian matrix A(U) in terms of the the sound
speed a and the particle velocity u.

Solution 3.3.

A(U) =

⎡
⎢⎢⎢⎢⎣

0 1 0

1
2 (γ − 3)u2 (3 − γ)u γ − 1

1
2 (γ − 2)u3 − a2u

γ−1
3−2γ

2 u2 + a2

γ−1 γu

⎤
⎥⎥⎥⎥⎦

. (3.8)

Often, the Jacobian matrix is also expressed in terms of the total specific
enthalpy H, which is related to the specific enthalpy h and other variables,
namely

H = (E + p)/ρ ≡ 1
2
u2 + h , h = e + p/ρ . (3.9)

The Jacobian matrix may also be written as

A(U) =

⎡
⎢⎢⎢⎢⎣

0 1 0

1
2 (γ − 3)u2 (3 − γ)u γ − 1

(γ − 1)u3 − γuE/ρ γE/ρ − 3
2 (γ − 1)u2 γu

⎤
⎥⎥⎥⎥⎦

. (3.10)

Proposition 3.4 (The Homogeneity Property). The Euler equations
(3.1)–(3.2) with the ideal–gas EOS (3.5) satisfy the homogeneity property

F(U) = A(U)U . (3.11)

Proof. The proof of this property is immediate. By multiplying the Jaco-
bian matrix (3.8) by the vector U in (3.2) we identically reproduce the vector
F(U) of fluxes in (3.2).
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This remarkable property of the Euler equations forms the basis for nu-
merical schemes of the Flux Vector Splitting type studied in Chap. 8. Note
that the relationship between the flux F, the coefficient matrix A and the
conserved variables U for the Euler equations is identical to that for linear
systems with constant coefficients, see Sect. 2.4 of Chap. 2. This property is
also satisfied by the Euler equations with an Equation of State that is slightly
more general than (3.5). See Steger and Warming [463] for details.

Proposition 3.5. The eigenvalues of the Jacobian matrix A are

λ1 = u − a , λ2 = u , λ3 = u + a (3.12)

and the corresponding right eigenvectors are

K(1) =

⎡
⎣

1
u − a

H − ua

⎤
⎦ , K(2) =

⎡
⎣

1
u

1
2u2

⎤
⎦ , K(3) =

⎡
⎣

1
u + a

H + ua

⎤
⎦ . (3.13)

Proof. Use of the expression (3.8) for A and the characteristic polynomial

|A − λI| = 0 ,

lead to
(λ − u)(γu − λ) [(2u − γu − λ] +
(λ − u)

[
−a2 − (γ − 1)u2 + (γ − 1)γu2

]
+ Δ = 0 ,

where

Δ =
1
2
(γu − λ)(1 − γ)u2 − 1

2
(γ − 1)u2 [(1 − 2γ)λ + γu] .

Manipulations show that Δ also contains the common factor (λ − u), which
implies that λ2 = u is a root of the characteristic polynomial and thus an
eigenvalue of A. After cancelling (λ − u) the remaining terms give

λ2 − 2uλ + u2 − a2 = 0 ,

with real roots
λ1 = u − a , λ3 = u + a .

Therefore the eigenvalues are: λ1 = u − a, λ2 = u, λ3 = u + a as claimed.
To find the right eigenvectors we look, see Sect. 2.1 of Chap. 2, for a vector
K = [k1, k2, k3]T such that

AK = λK .

By substituting λ = λi in turn, solving for the components of the vector K
and selecting appropriate values for the scaling factors we find the desired
result.
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The eigenvalues are all real and the eigenvectors K(1), K(2), K(3) form a
complete set of linearly independent eigenvectors. We have thus proved that
the time–dependent, one–dimensional Euler equations for ideal gases are hy-
perbolic. In fact these equations are strictly hyperbolic, because the eigenvalues
are all real and distinct, as long as the sound speed a remains positive. Hyper-
bolicity remains a property of the Euler equations for more general equations
of state, as we shall see in Chap. 4 for covolume gases.

3.1.2 Non–Conservative Formulations

The Euler equations (3.1)–(3.2) may be formulated in terms of variables
other than the conserved variables. For smooth solutions all formulations are
equivalent. For solutions containing shock waves however, non–conservative
formulations give incorrect shock solutions. This point is addressed via the
shallow water equations and the isothermal equations in Sect. 3.3 of this chap-
ter. In spite of this, non–conservative formulations have some advantages over
their conservative counterpart, when analysing the equations, for instance.
Also, from the numerical point of view, there has been a recent revival of the
idea of using schemes for non–conservative formulations of the equations. See
e.g. Karni [278] and Toro [508], [517].

Primitive–Variable Formulations

For smooth solutions the equations may be formulated, and solved, using
variables other than the conserved variables. For the one–dimensional case
one possibility is to choose a vector W = (ρ, u, p)T of primitive or physical
variables, with p given by the equation of state. Expanding derivatives in the
first of equations (3.1)–(3.2), the mass equation, we obtain

ρt + uρx + ρux = 0 . (3.14)

By expanding derivatives in the second of equations (3.1)–(3.2), the momen-
tum equation, we obtain

u [ρt + uρx + ρux] + ρ

[
ut + uux +

1
ρ
px

]
= 0 .

Use of (3.14) followed by division through by ρ gives

ut + uux +
1
ρ
px = 0 . (3.15)

In a similar manner, the energy equation in (3.1)–(3.2) can be rearranged so
as to use (3.14) and (3.15). The result is

pt + ρa2ux + upx = 0 . (3.16)
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Thus, in quasi–linear form we have

Wt + A(W)Wx = 0 , (3.17)

where

W =

⎡
⎣

ρ
u
p

⎤
⎦ , A(W) =

⎡
⎣

u ρ 0
0 u 1/ρ
0 ρa2 u

⎤
⎦ . (3.18)

Proposition 3.6. The system (3.17)–(3.18) has real eigenvalues

λ1 = u − a , λ2 = u , λ3 = u + a , (3.19)

with corresponding right eigenvectors

K(1) = α1

⎡
⎣

1
−a/ρ

a2

⎤
⎦ , K(2) = α2

⎡
⎣

1
0
0

⎤
⎦ , K(3) = α3

⎡
⎣

1
a/ρ
a2

⎤
⎦ . (3.20)

where α1, α2, α3 are scaling factors, or normalisation parameters, see Sect.
2.1 of Chap. 2. The left eigenvectors are

L(1) = β1(0, 1,− 1
ρa ) ,

L(2) = β2(1, 0,− 1
a2 ) ,

L(3) = β3(0, 1, 1
ρa ) ,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.21)

where β1, β2, β3 are scaling factors.

Proof. (Left to the reader).

Exercise 3.7. Verify that by choosing appropriate normalisation param-
eters α1, α2, α3 and β1, β2, β3 in (3.20) and (3.21) respectively, the left and
right eigenvectors L(j) and K(j) of A(W) are bi–orthonormal, that is

L(j) · K(i) =

⎧
⎨
⎩

1 if i = j ,

0 otherwise .
(3.22)

Characteristic Equations

Recall that the eigenvalues λ1 = u − a, λ2 = u, λ3 = u + a define char-
acteristic directions dx/dt = λi for i = 1, 2, 3. For a set of partial differential
equations (3.17) a characteristic equation says that in a direction dx/dt = λi,
L(i) · dW = 0, or in full
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L(i) ·

⎡
⎣

dρ
du
dp

⎤
⎦ = 0 . (3.23)

By expanding (3.23) for L(1),L(2),L(3) we obtain the characteristic equations

dp − ρadu = 0 along dx/dt = λ1 = u − a ,

dp − a2 dρ = 0 along dx/dt = λ2 = u ,

dp + ρadu = 0 along dx/dt = λ3 = u + a .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.24)

These differential relations hold true along characteristic directions. For nu-
merical purposes, linearisation of these equations provides ways of solving
the Riemann problem for the Euler equations, approximately; see Sect. 9.3 of
Chap. 9.

Entropy Formulation

The entropy s can be written as

s = cv ln(
p

ργ
) + C0 , (3.25)

where C0 is a constant. From this equation we obtain

p = C1ρ
γes/cv , (3.26)

where C1 is a constant. Now, if in the primitive–variable formulation (3.17)
we use entropy s instead of pressure p we have the new vector of unknowns

W = (ρ, u, s)T , (3.27)

and a corresponding new way of expressing the governing equations.

Proposition 3.8. The entropy s satisfies the following PDE

st + usx = 0 . (3.28)

Proof. From (3.25) and the expression (3.6) for the sound speed a we have

st =
cv

p

[
pt − a2ρt

]
, sx =

cv

p

[
px − a2ρx

]
.

But from (3.16) pt = −ρa2ux − upx, and hence st + usx = 0, as claimed.

The significance of the result is that

st + usx =
ds

dt
= 0 , (3.29)
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and so in regions of smooth flow, the entropy s is constant along particle paths
dx/dt = u. Hence, along a particle path one has the isentropic law given by

p = Cργ , (3.30)

where C = C(s0) is a function of the initial entropy s0 and is constant along
the path so long as the flow remains smooth; see Sect. 1.6.2 of Chap. 1. In
general of course, C changes from path to path. When solving the Riemann
problem the initial entropy can be computed on the initial data of the Riemann
problem, which is piece–wise constant. If C is the same constant throughout
the flow domain we speak of isentropic flow, or sometimes, homentropic flow.
This leads to the special set of governing equations (1.109)–(1.110) presented
in Chap. 1. The governing equations for the entropy formulation, written in
quasi–linear form, are

Wt + A(W)Wx = 0 , (3.31)

with

A(W) =

⎡
⎣

u ρ 0
a2/ρ u 1

ρ
∂p
∂s

0 0 u

⎤
⎦ . (3.32)

Proposition 3.9. The eigenvalues of system (3.31)–(3.32) are

λ1 = u − a , λ2 = u , λ3 = u + a (3.33)

and the corresponding right eigenvectors are

K(1) =

⎡
⎣

1
−a/ρ

0

⎤
⎦ , K(2) =

⎡
⎣
−∂p

∂s
0
a2

⎤
⎦ , K(3) =

⎡
⎣

1
a/ρ
0

⎤
⎦ . (3.34)

Proof. (Left to the reader).

3.1.3 Elementary Wave Solutions of the Riemann Problem

Here we describe the structure of the solution of the Riemann problem as
a set of elementary waves such as rarefactions, contacts and shock waves, see
Sect. 2.4.4 of Chapt. 4. Each of these elementary waves are studied in detail.
Basic relations across these waves are established. Such relations will be used
in Chap. 4 to connect all unknown states to the data states and thus find the
complete solution of the Riemann problem.

The Riemann problem for the one–dimensional, time dependent Euler
equations (3.1)–(3.2) with data (UL,UR) is the IVP

Ut + F(U)x = 0 ,

U(x, 0) = U(0)(x) =
{

UL if x < 0 ,
UR if x > 0 .

⎫
⎬
⎭ (3.35)
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The physical analogue of the Riemann problem is the shock–tube problem
in Gas Dynamics, in which the velocities uL and uR on either side of the
diaphragm, here idealised by an initial discontinuity, are zero. Shock tubes
and shock–tube problems have played, over a period of more than 100 years,
a fundamental role in fluid dynamics research.

The structure of the similarity solution U(x/t) of (3.35) is as depicted in
Fig. 3.1. There are three waves associated with the three characteristic fields

UU

*R*L

R

U

(u+a)(u-a)

regionStar
(u)

U

L

0

t

x

Fig. 3.1. Structure of the solution of the Riemann problem in the x–t plane for the
time–dependent, one dimensional Euler equations. There are three wave families
associated with the eigenvalues u − a, u and u + a

corresponding to the eigenvectors K(i), i = 1, 2, 3. We choose the convention
of representing the outer waves, when their character is unknown, by a pair of
rays emanating from the origin and the middle wave by a dashed line. Each
wave family is shown along with the corresponding eigenvalue. The three
waves separate four constant states. From left to right these are UL (left data
state); U∗L between the 1–wave and the 2–wave; U∗R between the 2–wave
and the 3–wave and UR (right data state). As we shall see the waves present
in the solution are of three types: rarefaction waves, contact discontinuities
and shock waves. In order to identify the types we analyse the characteristic
fields for K(i), i = 1, 2, 3; see Sects. 2.4.3 and 2.4.4 of Chap. 2.

Proposition 3.10. The K(2)–characteristic field is linearly degenerate
and the K(1), K(3) characteristic fields are genuinely non–linear.

Proof. For the K(2)–characteristic field we have

∇λ2(U) = [∂λ2/∂u1, ∂λ2/∂u2, ∂λ2/∂u3] = [−u/ρ, 1/ρ, 0] .

Hence

∇λ2 · K(2) = [−u/ρ, 1/ρ, 0] ·

⎡
⎣

1
u

1
2u2

⎤
⎦ = 0
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and therefore the K(2) characteristic field is linearly degenerate as claimed.
The proof that the K(1) and K(3) characteristic fields are genuinely nonlinear
is left to the reader.

The wave associated with the K(2) characteristic field is a contact disconti-
nuity and those associated with the K(1), K(3) characteristic fields will either
be rarefaction waves (smooth) or shock waves (discontinuities), see Sect. 2.4.4
of Chapt. 4. Of course one does not know in advance what types of waves
will be present in the solution of the Riemann problem. The only exception
is the middle wave, which is always a contact discontinuity. Fig. 3.2 shows a

S
S

UU

0

t

U U
L

Shock
Contact

Rarefaction

3

R

*L *R

2

x

Fig. 3.2. Structure of the solution of the Riemann problem in the x–t plane for
the time–dependent, one dimensional Euler equations, in which the left wave is a
rarefaction, the middle wave is a contact discontinuity and the right wave is a shock
wave

particular case in which the left wave is a rarefaction, the middle wave is a
contact and the right wave is a shock wave. For each wave we have drawn a
pair of arrows, one on each side, to indicate the characteristic directions of
the corresponding eigenvalue. For the rarefaction wave we have

λ1(UL) ≤ λ1(U∗L) .

The eigenvalue λ1(U) increases monotonically as we cross the rarefaction wave
from left to right and the characteristics on either side diverge from the wave;
compare with Fig. 2.20 of Chap. 2. For the shock wave, characteristics run
into the wave and we have

λ3(U∗R) > S3 > λ3(UR) ,

which is the entropy condition. See Sect. 2.4.4 of Chap. 2. S3 is the speed of
the 3–shock. For the contact wave we have

λ2(U∗L) = λ2(U∗R) = S2 ,

where S2 is the speed of the contact wave; the characteristics are parallel to
the contact wave. Recall that this is what happens for all characteristic fields
in linear hyperbolic systems with constant coefficients. Next we study each
type of waves separately.
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Contact Discontinuities

The contact discontinuity in the solution of the Riemann problem for
the Euler equations can be analysed by utilising the eigenstructure of the
equations. In particular the Generalised Riemann Invariants will reveal which
quantities change across the wave. Recall that for a general m×m hyperbolic
system, such as (3.1)–(3.2) or (3.7), with

W = [w1, w2, · · · , wm]T ,

and right eigenvectors

K(i) =
[
k

(i)
1 , k

(i)
2 , · · · , k(i)

m

]
,

the i−th Generalised Riemann Invariants are the (m − 1) ODEs

dw1

k
(i)
1

=
dw2

k
(i)
2

=
dw3

k
(i)
3

= · · · =
dwm

k
(i)
m

.

Using the eigenstructure (3.12)–(3.13) of the conservative formulation (3.1)–
(3.2), for the K(2)–wave we have

dρ

1
=

d(ρu)
u

=
dE
1
2u2

. (3.36)

Manipulation of these equalities gives

p = constant, u = constant

across the contact wave. The same result follows directly by inspection of the
eigenvector K(2) in (3.20) for the primitive–variable formulation (3.17)–(3.18):
the wave jumps in ρ, u and p are proportional to the corresponding compo-
nents of the eigenvector. These are zero for the velocity and pressure. The
jump in ρ is in general non–trivial. To conclude: a contact wave is a discon-
tinuous wave across which both pressure and particle velocity are constant but
density jumps discontinuously as do variables that depend on density, such as
specific internal energy, temperature, sound speed, entropy, etc.

Rarefaction Waves

Rarefaction waves in the Euler equations are associated with the K(1)

and K(3) characteristic fields. Inspection of the eigenvectors (3.20) for the
primitive–variable formulation reveals that ρ, u and p change across a rar-
efaction wave. We now utilise the Generalised Riemann Invariants for the
eigenstructure (3.33)–(3.34) of the entropy formulation (3.31)–(3.32).



98 3 Some Properties of the Euler Equations

Proposition 3.11. For the Euler equations the Generalised Riemann In-
variants across 1 and 3 rarefactions are

IL(u, a) = u + 2a
γ−1 = constant

s = constant

}
across λ1 = u − a , (3.37)

IR(u, a) = u − 2a
γ−1 = constant

s = constant

}
across λ3 = u + a . (3.38)

Proof. Across a wave associated with λ1 = u − a wave we have

dρ

1
=

du

−a/ρ
=

ds

0
.

Two meaningful relations are

u +
∫

a

ρ
dρ = constant and s = constant. (3.39)

Similarly, across the λ3 = u + a wave we have

u −
∫

a

ρ
dρ = constant and s = constant. (3.40)

In order to reproduce (3.37) and (3.38) we need to evaluate the integrals in
(3.39) and (3.40). First we note that by inspection of the eigenvectors K(1)

and K(3) the condition of constant entropy across the respective waves is
immediate. We may therefore use the isentropic law (3.30) with the constant
C evaluated at the appropriate data state (constant). Thus the integral is as
found for the isentropic equations in Sect. 2.4.3 of Chap. 2, that is

∫
a

ρ
dρ =

2a

γ − 1
,

and thus equations (3.37)–(3.38) are reproduced.

To summarise: a rarefaction wave is a smooth wave associated with the 1
and 3 fields across which ρ, u and p change. The wave has a fan–type shape and
is enclosed by two bounding characteristics corresponding to the Head and the
Tail of the wave. Across the wave the Generalised Riemann Invariants apply.
The solution within the rarefaction will be given in Chap. 4, where the full
solution of the Riemann problem is presented.

Shock Waves

Details on the Physics of shock waves are found in any book on Gas Dy-
namics. We particularly recommend Becker [35], Anderson [10], Landau and
Lifshitz [297]. The specialised book by Zeldovich and Raizer [599] is highly
recommended.
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In the context of the one–dimensional Euler equations, shock waves are
discontinuous waves associated with the genuinely non–linear fields 1 and 3.
All three quantities ρ, u and p change across a shock wave. Consider the K(3)

characteristic field and assume the corresponding wave is a right–facing shock
wave travelling at the constant speed S3; see Fig. 3.3. In terms of the primitive
variables we denote the state ahead of the shock by WR = (ρR, uR, pR)T

and the state behind the shock by W∗ = (ρ∗, u∗, p∗)T . We are interested
in deriving relations, across the shock wave, between the various quantities
involved. Central to the analysis is the application of the Rankine–Hugoniot
conditions. It is found convenient to transform the problem to a new frame

*

R

R

R

R

R

(b)

*

R*

3

u

*

*

*

u

(a)

u

0S

u

ρρρρ

p p p p

Fig. 3.3. Right–facing shock wave: (a) stationary frame of reference, shock has
speed S3; (b) frame of reference moves with speed S3, so that the shock has zero
speed

of reference moving with the shock so that in the new frame the shock speed
is zero. Fig. 3.3 depicts both frames of reference. In the transformed frame
(b) the states ahead and behind the shock have changed by virtue of the
transformation. Densities and pressures remain unaltered while velocities have
changed to the relative velocities ûR and û∗ given by

û∗ = u∗ − S3 , ûR = uR − S3 . (3.41)

Application of the Rankine–Hugoniot conditions in the frame in which the
shock speed is zero gives

ρ∗û∗ = ρRûR , (3.42)

ρ∗û
2
∗ + p∗ = ρRû2

R + pR , (3.43)

û∗(Ê∗ + p∗) = ûR(ÊR + pR) . (3.44)

By using the definition of total energy E and introducing the specific internal
energy e the left–hand side of (3.44) may we written as

û∗ρ∗

[
1
2
û2
∗ + (e∗ + p∗/ρ∗)

]
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and the right–hand side of (3.44) as

ûRρR

[
1
2
û2

R + (eR + pR/ρR)
]

.

Now we use the specific enthalpy h and write

h∗ = e∗ + p∗/ρ∗ , hR = eR + pR/ρR . (3.45)

Use of equations (3.42) and (3.44) leads to

1
2
û2
∗ + h∗ =

1
2
û2

R + hR . (3.46)

By using (3.42) into (3.43) we write

ρ∗û
2
∗ = (ρRûR)ûR + pR − p∗ = (ρ∗û∗)

ρ∗û∗
ρR

+ pR − p∗ .

After some manipulations we obtain

û2
∗ =

(
ρR

ρ∗

)[
pR − p∗
ρR − ρ∗

]
. (3.47)

In a similar way we obtain

û2
R =

(
ρ∗
ρR

)[
pR − p∗
ρR − ρ∗

]
. (3.48)

Substitution of (3.47)–(3.48) into (3.46) gives

h∗ − hR =
1
2
(p∗ − pR)

[
ρ∗ + ρR

ρ∗ρR

]
. (3.49)

Assuming the specific internal energy e is given by the the caloric equation of
state (3.4), it is then more convenient to rewrite the energy equation (3.49)
using (3.45). We obtain

e∗ − eR =
1
2
(p∗ + pR)

[
ρ∗ − ρR

ρ∗ρR

]
. (3.50)

Note that up to this point no assumption on the general caloric EOS (3.4)
has been made. In what follows, we derive shock relations that apply to ideal
gases in which the ideal caloric EOS (3.5) is assumed. By using (3.5) into
(3.50) and performing some algebraic manipulations one obtains

ρ∗
ρR

=
( p∗

pR
) + (γ−1

γ+1 )

(γ−1
γ+1 )( p∗

pR
) + 1

. (3.51)
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This establishes a useful relation between the density ratio ρ∗/ρR and the
pressure ratio p∗/pR across the shock wave.

We now introduce Mach numbers

MR = uR/aR , MS = S3/aR , (3.52)

where MR is the Mach number of the flow ahead of the shock, in the original
frame; MS is the shock Mach number. Manipulation of equations (3.48), (3.51)
and (3.52) leads to expressions for the density and pressure ratios across the
shock as functions of the relative Mach number MR − MS, namely

ρ∗
ρR

=
(γ + 1)(MR − MS)2

(γ − 1)(MR − MS)2 + 2
, (3.53)

p∗
pR

=
2γ(MR − MS)2 − (γ − 1)

(γ + 1)
. (3.54)

The shock speed S3 can be related to the density and pressure ratios across
the shock wave. In terms of the pressure ratio (3.54) we first note the following
relationship

MR − MS = −
√(

γ + 1
2γ

)(
p∗
pR

)
+
(

γ − 1
2γ

)
.

This leads to an expression for the shock speed as a function of the pressure
ratio across the shock, namely

S3 = uR + aR

√(
γ + 1
2γ

)(
p∗
pR

)
+
(

γ − 1
2γ

)
. (3.55)

Note that as the shock strength tends to zero, the ratio p∗/pR tends to unity
and the shock speed S3 approaches the characteristic speed λ3 = uR + aR, as
expected. We can also obtain an expression for the particle velocity u∗ behind
the shock wave. From (3.42) we relate u∗ to the density ratio across the shock,
namely

u∗ = (1 − ρR/ρ∗)S3 + uRρR/ρ∗ . (3.56)

Example 3.12 (Shock Wave). Consider a shock wave of shock Mach number
MS = 3 propagating into the atmosphere with conditions (ahead of the shock)
ρR = 1.225 kg/m3, uR = 0 m/s, pR = 101 325 Pa. Assume the process is
suitably modelled by the ideal gas EOS (3.5) with γ = 1.4. From the definition
of sound speed (3.6) we obtain aR = 340.294 m/s. As the shock Mach number
MS = 3 is assumed (a parameter) then equation (3.52) gives the shock speed
as S = 1020.882 m/s. From equation (3.53) we obtain ρ∗ = 4.725 kg/m3.
From equation (3.54) we obtain p∗ = 1047 025 Pa and from equation (3.56)
we obtain u∗ = 756.2089 m/s.
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Remark 3.13. Shock relations (3.53), (3.54) and (3.56) define a state

(ρ∗, u∗, p∗)T

behind a shock for given initial conditions (ρR, uR, pR)T ahead of the shock
and a chosen shock Mach number MS , or equivalently a shock speed S3. The
shock is associated with the 3–wave family. These relations can be useful
in setting up test problems involving a single shock wave to test numerical
methods.

The analysis for a 1–shock wave (left facing) travelling with velocity S1

is entirely analogous. The state ahead of the shock (left side now) is denoted
by WL = (ρL, uL, pL)T and the state behind the shock (right side) by W∗ =
(ρ∗, u∗, p∗)T . As done for the 3–shock we transform to a stationary frame of
reference. The relative velocities are

ûL = uL − S1 , û∗ = u∗ − S1 . (3.57)

Mach numbers are
ML = uL/aL , MS = S1/aL . (3.58)

The density and pressure ratio relationship is

ρ∗
ρL

=
( p∗

pL
) + (γ−1

γ+1 )

(γ−1
γ+1 )( p∗

pL
) + 1

. (3.59)

In terms of the relative Mach number ML−MS the density and pressure ratios
across the left shock can be expressed as follows

ρ∗
ρL

=
(γ + 1)(ML − MS)2

(γ − 1)(ML − MS)2 + 2
, (3.60)

p∗
pL

=
2γ(ML − MS)2 − (γ − 1)

(γ + 1)
. (3.61)

The shock speed S1 can be obtained from either (3.60) or (3.61). In terms of
the pressure ratio (3.61) we have

ML − MS =

√(
γ + 1
2γ

)(
p∗
pL

)
+
(

γ − 1
2γ

)
,

which leads to

S1 = uL − aL

√(
γ + 1
2γ

)(
p∗
pL

)
+
(

γ − 1
2γ

)
. (3.62)

Note that as the shock strength tends to zero, the ratio p∗/pL tends to unity
and the shock speed S1 approaches the characteristic speed λ1 = uL − aL, as
expected. The particle velocity behind the left shock is
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u∗ = (1 − ρL/ρ∗)S1 + uLρL/ρ∗ . (3.63)

Shock relations (3.60), (3.61) and (3.63) define a state (ρ∗, u∗, p∗)T behind
a shock for given initial conditions (ρL, uL, pL)T ahead of the shock and a
chosen shock Mach number MS , or equivalently a shock speed S1. The shock
is associated with the 1–wave family.

3.2 Multi–Dimensional Euler Equations

In the previous section we analysed the one–dimensional, time–dependent
Euler equations. Here we study a few basic properties of the two and three
dimensional cases. In differential conservation–law form the three–dimensional
equations are

Ut + F(U)x + G(U)y + H(U)z = 0 , (3.64)

with

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

,

G =

⎡
⎢⎢⎢⎢⎣

ρv
ρuv

ρv2 + p
ρvw

v(E + p)

⎤
⎥⎥⎥⎥⎦

, H =

⎡
⎢⎢⎢⎢⎣

ρw
ρuw
ρvw

ρw2 + p
w(E + p)

⎤
⎥⎥⎥⎥⎦

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.65)

Here E is the total energy per unit volume

E = ρ (
1
2
V2 + e) , (3.66)

where 1
2V

2 = 1
2V ·V = 1

2 (u2 + v2 + w2) is the specific kinetic energy and e is
specific internal energy given by a caloric equation of state (3.4).

The corresponding integral form of the conservation laws (3.64) is given
by

d
dt

∫ ∫ ∫

V

UdV +
∫ ∫

A

H · ndA = 0 , (3.67)

where V is a control volume, A is the boundary of V , H = (F,G,H) is the
tensor of fluxes, n is the outward unit vector normal to the surface A, dA is
an area element and H · ndA is the flux component normal to the boundary
A. The conservation laws (3.67) state that the time–rate of change of U inside
volume V depends only on the total flux through the surface A, the boundary
of the control volume V . Numerical methods of the finite volume type, see
Sect. 16.7.3 of Chap. 16, are based on this formulation of the equations. For
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details of the derivation of integral form of the conservation laws see Sects.
1.5 and 1.6.1 of Chap. 1.

In the next section we study some properties of the two–dimensional Euler
equation in conservation form

3.2.1 Two–Dimensional Equations in Conservative Form

The two–dimensional version of the Euler equations in differential conser-
vative form is

Ut + F(U)x + G(U)y = 0 , (3.68)

with

U =

⎡
⎢⎢⎣

ρ
ρu
ρv
E

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣

ρu
ρu2 + p

ρuv
u(E + p)

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

ρv
ρuv

ρv2 + p
v(E + p)

⎤
⎥⎥⎦ . (3.69)

Eigenstructure

Here we find the Jacobian matrix of the x–split equations, its eigenvalues
and corresponding right eigenvectors. We also study the types of characteristic
fields present.

Proposition 3.14. The Jacobian matrix A(U) corresponding to the flux
F(U) is given by

A(U) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−u2 + 1
2 (γ − 1)V2 (3 − γ)u −(γ − 1)v γ − 1

−uv v u 0

u
[
1
2 (γ − 1)V2 − H

]
H − (γ − 1)u2 −(γ − 1)uv γu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.70)

The eigenvalues of A are

λ1 = u − a , λ2 = λ3 = u , λ4 = u + a , (3.71)

with corresponding right eigenvectors

K(1) =

⎡
⎢⎢⎣

1
u − a

v
H − au

⎤
⎥⎥⎦ , K(2) =

⎡
⎢⎢⎣

1
u
v

1
2V

2

⎤
⎥⎥⎦ ,

K(3) =

⎡
⎢⎢⎣

0
0
1
v

⎤
⎥⎥⎦ , K(4) =

⎡
⎢⎢⎣

1
u + a

v
H + ua

⎤
⎥⎥⎦ .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.72)
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Proof. Exercise.

Rotational Invariance

We next prove an important property, called the rotational invariance
of the Euler equations. The property allows the proof of hyperbolicity in
time for the two–dimensional equations (3.68)–(3.69) and can also be used for
computational purposes to deal with domains that are not aligned with the
Cartesian directions, see Sect. 16.7.3 of Chap. 16. We first note that outward
unit vector n normal to the surface A in the two–dimensional case is given by

n ≡ (n1, n2) ≡ (cos θ, sin θ) , (3.73)

where θ is the angle formed by x–axis and the normal vector n; θ is measured
in an anticlockwise manner and lies in the range 0 ≤ θ ≤ 2π. Fig. 3.4 depicts
the situation. The integrand of the surface integral in (3.67) becomes

(F,G) · n = cos θF(U) + sin θG(U) . (3.74)

x

y

Tangent to surface A
Normal n

Boundary  A  of control volume  V

θ
x-direction

Fig. 3.4. Control volume V on x–y plane; boundary of V is A, outward unit normal
vector is n and θ is angle between the x–direction and n

Proposition 3.15 (Rotational Invariance). The two–dimensional Eu-
ler equations (3.68)–(3.69) satisfy the rotational invariance property

cos θF(U) + sin θG(U) = T−1F (TU) , (3.75)

for all angles θ and vectors U. Here T = T(θ) is the rotation matrix and
T−1(θ) is its inverse, namely

T =

⎡
⎢⎢⎣

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

⎤
⎥⎥⎦ , T−1 =

⎡
⎢⎢⎣

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎤
⎥⎥⎦ . (3.76)
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Proof. First we calculate Û = TU. The result is

Û = TU = [ρ, ρû, ρv̂, E]T ,

with û = u cos θ + v sin θ, v̂ = −u sin θ + v cos θ. Next we compute F̂ = F(Û)
and obtain

F̂ = F(Û) =
[
ρû, ρû2 + p, ρûv̂, û(E + p)

]T
.

Now we apply T−1 to F(Û). The result is easily verified to be

T−1F̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρû

cos θ
(
ρû2 + p

)
− sin θ (ρûv̂)

sin θ
(
ρû2 + p

)
+ cos θ (ρûv̂)

û(E + p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= cos θF + sin θG .

This is clearly satisfied for the first and fourth components. Further manipu-
lation show that it is also satisfied for the second and third flux components
and the proposition is thus proved.

Hyperbolicity in Time

Here we use the rotational invariance property of the two–dimensional
time dependent Euler equations to show that the equations are hyperbolic in
time.

Definition 3.16 (Hyperbolicity in time). System (3.68)–(3.69) is hy-
perbolic in time if for all admissible states U and real angles θ, the matrix

A(U, θ) = cos θA(U) + sin θB(U) (3.77)

is diagonalisable. Here A(U) and B(U) are respectively the Jacobian matrices
of the fluxes F(U) and G(U) in (3.68).

Proposition 3.17. The two–dimensional Euler equations (3.68)–(3.69)
are hyperbolic in time.

Proof. We want to prove that the matrix A(U, θ) in (3.77) is diagonalis-
able, see Sect. 2.3.2 of Chap. 2. That is we want to prove that there exist a
diagonal matrix Λ(U, θ) and a non–singular matrix K(U, θ) such that

A(U, θ) = K(U, θ)Λ(U, θ)K−1(U, θ) . (3.78)

By differentiating (3.75) with respect to U we have

A(U, θ) = cos θA(U) + sin θB(U) = T(θ)−1A (T(θ)U)T(θ) .



3.2 Multi–Dimensional Euler Equations 107

But the matrix A(U) is diagonalisable, it has four linearly independent eigen-
vectors K(i)(U) given by (3.72). Therefore we can write

A(U) = K(U)Λ(U)K−1(U) ,

where K(U) is the non–singular matrix the columns of which are the right
eigenvectors K(i)(U), K−1(U) is its inverse and Λ(U) is the diagonal matrix
with the eigenvalues λi(U) given by (3.71) as the diagonal entries. Then we
have

A(U, θ) = T(θ)−1
{
K (T(θ)U)Λ (T(θ)U)K−1 (T(θ)U)

}
T(θ)

=
{
T(θ)−1K (T(θ)U)

}
Λ (T(θ)U)

{
T(θ)−1K (T(θ)U)

}−1
.

Hence the condition for hyperbolicity holds by taking

K(U, θ) = T−1(θ)K (T(θ)U) , Λ(U, θ) = Λ (T(θ)U) .

We have thus proved that the time–dependent, two dimensional Euler
equations are hyperbolic in time, as claimed.

Characteristic Fields

Next we analyse the characteristic fields associated with the four eigenvec-
tors given by (3.72).

Proposition 3.18 (Types of Characteristic Fields). For i = 1 and
i = 4 the K(i)(U) characteristic fields are genuinely non–linear, while for
i = 2 and i = 3 they are linearly degenerate.

Proof. The proof that the fields i = 2 and i = 3 are linearly degenerate is
trivial. Clearly

∇λ2 = ∇λ3 = (−u/ρ, 1/ρ, 0, 0) .

By inspecting K(2)(U) and K(3)(U) it is obvious that

∇λ2 · K(2)(U) = ∇λ3 · K(3)(U) = 0

and therefore the 2 and 3 characteristic fields are linearly degenerate as
claimed. The proof for i = 1, 4 involves some algebra. The result is

∇λ1 · K(1)(U) = − (γ + 1)a
2ρ

�= 0 , ∇λ4 · K(4)(U) =
(γ + 1)a

2ρ
�= 0

and thus the 1 and 4 characteristic fields are genuinely non–linear as claimed.

In the context of the Riemann problem we shall see that across the 2
and 3 waves both pressure p and normal velocity component u are constant.
The 2 field is associated with a contact discontinuity, across which density
jumps discontinuously. The 3 field is associated with a shear wave across
which the tangential velocity component jumps discontinuously. The 1 and 4
characteristic fields are associated with shock waves and rarefaction waves.
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3.2.2 Three–Dimensional Equations in Conservative Form

Here we extend previous results proved for the two–dimensional equations,
to the time–dependent three dimensional Euler equations. Proofs are omitted,
they involve elementary but tedious algebra.

Eigenstructure

The Jacobian matrix A corresponding to the flux F(U) in (3.64) is given
by

A =
∂F
∂U

=

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
γ̂H − u2 − a2 (3 − γ)u −γ̂v −γ̂w γ̂

−uv v u 0 0
−uw w 0 u 0

1
2u[(γ − 3)H − a2] H − γ̂u2 −γ̂uv −γ̂uw γu

⎤
⎥⎥⎥⎥⎦

, (3.79)

where

H = (E + p)/ρ =
1
2
V2 +

a2

(γ − 1)
,V2 = u2 + v2 + w2 , γ̂ = γ − 1 . (3.80)

The x–split one–dimensional system is hyperbolic with real eigenvalues

λ1 = u − a , λ2 = λ3 = λ4 = u , λ5 = u + a . (3.81)

The matrix of corresponding right eigenvectors is

K =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 1
u − a u 0 0 u + a

v v 1 0 v
w w 0 1 w

H − ua 1
2V

2 v w H + ua

⎤
⎥⎥⎥⎥⎦

. (3.82)

We also give the expression for the inverse matrix of K, namely

K−1 =
(γ − 1)

2a2

⎡
⎢⎢⎢⎢⎢⎣

H + a
γ̂ (u − a) −(u + a

γ̂ ) −v −w 1
−2H + 4

γ̂ a2 2u 2v 2w −2
− 2va2

γ̂ 0 2a2

γ̂ 0 0
− 2wa2

γ̂ 0 0 2a2

γ̂ 0
H − a

γ̂ (u + a) −u + a
γ̂ −v −w 1

⎤
⎥⎥⎥⎥⎥⎦

. (3.83)

Rotational Invariance

We now state the rotational invariance property for the three–dimensional
case.
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Proposition 3.19. The time–dependent three dimensional Euler equa-
tions are rotationally invariant, that is they satisfy

cos θ(y) cos θ(z)F(U) + cos θ(y) sin θ(z)G(U) + sin θ(y)H(U) = T−1F (TU) ,
(3.84)

for all angles θ(y), θ(z) and vectors U. Here T = T(θ(y), θ(z)) is the rotation
matrix

T =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 cos θ(y) cos θ(z) cos θ(y) sin θ(z) sin θ(y) 0
0 − sin θ(z) cos θ(z) 0 0
0 − sin θ(y) cos θ(z) − sin θ(y) sin θ(z) cos θ(y) 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

, (3.85)

and is the product of two rotation matrices, namely

T = T(θ(y), θ(z)) = T(y)T(z) , (3.86)

with

T(y) ≡ T(y)(θ(y)) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 cos θ(y) 0 sin θ(y) 0
0 0 1 0 0
0 − sin θ(y) 0 cos θ(y) 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

,

T(z) ≡ T(z)(θ(z)) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 cos θ(z) sin θ(z) 0 0
0 − sin θ(z) cos θ(z) 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.87)

More details of the rotational invariance and related properties of the
three–dimensional Euler equations are found in Billett and Toro [64].

3.2.3 Three–Dimensional Primitive Variable Formulation

As done for the one–dimensional Euler equations, we can express the two
and three dimensional equations in terms of primitive variables.

Proposition 3.20. The three–dimensional, time–dependent Euler equa-
tions can be written in terms of the primitive variables W = (ρ, u, v, w, p)T

as
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ρt + uρx + vρy + wρz + ρ(ux + vy + wz) = 0 ,

ut + uux + vuy + wuz + 1
ρpx = 0 ,

vt + uvx + vvy + wvz + 1
ρpy = 0 ,

wt + uwx + vwy + wwz + 1
ρpz = 0 ,

pt + upx + vpy + wpz + ρa2(ux + vy + wz) = 0 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.88)

Proof. To prove this result one follows the same steps as for the one–
dimensional case leading to equations (3.14)–(3.16).

Equations (3.88) can be written in quasi–linear form as

Wt + A(W)Wx + B(W)Wy + C(W)Wz = 0 , (3.89)

where the coefficient matrices A(W), B(W) and C(W) are given by

A(W) =

⎡
⎢⎢⎢⎢⎣

u ρ 0 0 0
0 u 0 0 1/ρ
0 0 u 0 0
0 0 0 u 0
0 ρa2 0 0 u

⎤
⎥⎥⎥⎥⎦

, (3.90)

B(W) =

⎡
⎢⎢⎢⎢⎣

v ρ 0 0 0
0 v 0 0 0
0 0 v 0 1/ρ
0 0 0 v 0
0 0 ρa2 0 v

⎤
⎥⎥⎥⎥⎦

, (3.91)

C(W) =

⎡
⎢⎢⎢⎢⎣

w ρ 0 0 0
0 w 0 0 0
0 0 w 0 0
0 0 0 w 1/ρ
0 0 0 ρa2 w

⎤
⎥⎥⎥⎥⎦

. (3.92)

Proposition 3.21. The eigenvalues of the coefficient matrix A(W) in
(3.90) are given by

λ1 = u − a , λ2 = λ3 = λ4 = u , λ5 = u + a . (3.93)

with corresponding right eigenvectors
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K(1) =

⎡
⎢⎢⎢⎢⎣

ρ
−a
0
0

ρa2

⎤
⎥⎥⎥⎥⎦

, K(2) =

⎡
⎢⎢⎢⎢⎣

1
0
v
w
0

⎤
⎥⎥⎥⎥⎦

, K(3) =

⎡
⎢⎢⎢⎢⎣

ρ
0
1
w
0

⎤
⎥⎥⎥⎥⎦

,

K(4) =

⎡
⎢⎢⎢⎢⎣

ρ
0
v
1
0

⎤
⎥⎥⎥⎥⎦

, K(5) =

⎡
⎢⎢⎢⎢⎣

ρ
a
0
0

ρa2

⎤
⎥⎥⎥⎥⎦

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.94)

Proof. The proof involves the usual algebraic steps for finding eigenvalues
and eigenvectors. See Sect. 2.1 of Chap. 2.

3.2.4 The Split Three–Dimensional Riemann Problem

When solving numerically the two or three dimensional Euler equations
by most methods of the upwind type in current use, one requires the solution
of split Riemann problems. The x–split, three–dimensional Riemann problem
is the IVP

Ut + F(U)x = 0 ,

U(x, 0) = U(0)(x) =
{

UL if x < 0 ,
UR if x > 0 ,

⎫
⎬
⎭ (3.95)

where

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F(U) =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

. (3.96)

The structure of the similarity solution is shown in Fig. 3.5 and is almost
identical to that for the one–dimensional case shown in Fig. 3.1. Both pres-
sure and normal particle velocity u are constant in the Star Region, across the
middle wave. There are two new characteristic fields associated with λ3 = u
and λ4 = u, arising from the multiplicity 3 of the eigenvalue u; these cor-
respond to two shear waves across which the respective tangential velocity
components v and w change discontinuously. For the two–dimensional case
we proved in Sect. 3.2.1 that the λ3–field is linearly degenerate. This result
is also true for the λ4–field in three dimensions. The 1 and 5 characteristic
fields are genuinely non–linear and are associated with rarefactions or shock
waves, just as in the one–dimensional case. By inspecting the eigenvectors
K(1) and K(5) in (3.94) we see immediately that the Generalised Riemann
Invariants across 1 and 5 rarefaction waves give no change in the tangential
velocity components v and w across these waves, see Fig. 3.5. In fact this is
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Fig. 3.5. Structure of the solution of the three–dimensional split Riemann problem

also true when these waves are shock waves. Consider a right shock wave of
speed S associated with the 5 field. By transforming to a frame of reference in
which the shock speed is zero and applying the Rankine–Hugoniot conditions
we obtain the same relations (3.42)–(3.44) as in the one–dimensional case plus
two extra relations involving v and w. The three relevant relations are

ρ∗(u∗ − S) = ρR(uR − S) , (3.97)

ρ∗(u∗ − S)(v∗ − S) = ρR(uR − S)(vR − S) , (3.98)

ρ∗(u∗ − S)(w∗ − S) = ρR(uR − S)(wR − S) . (3.99)

Application of the shock condition (3.97) into equations (3.98) and (3.99)
gives directly v∗ = vR and w∗ = wR. A similar analysis for a left shock wave
gives an equivalent result. Hence the tangential velocity components v and
w remain constant across the non–linear waves 1 and 5, irrespective of their
type.

Therefore finding the solution of the Riemann problem for the split three–
dimensional equations is fundamentally the same as finding the solution for the
corresponding one–dimensional Riemann problem. The solution for the extra
variables v and w could not be simpler: it consists of single jump discontinuities
across the shear waves from the values vL, wL on the left data state to the
values vR, wR on the right data state. This simple behaviour of the tangential
velocity components in the solution of split Riemann problems is sometimes
incorrectly modelled by some approximate Riemann solvers.

3.3 Conservative Versus Non–Conservative Formulations

The specific purpose of this section is first to make the point that under
the assumption of smooth solutions, conservative and non–conservative for-
mulations are not unique. It is vitally important to scrutinise the conservative
formulations carefully, as these may be conservative purely in a mathematical
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sense. The key question is to see what the conserved quantities are in the for-
mulation and whether the conservation statements they imply make physical
sense. The second point of interest here is to make the reader aware of the fact
that in the presence of shock waves, formulations that are conservative purely
in a mathematical sense will produce wrong shock speeds and thus wrong so-
lutions. We illustrate these points through the one–dimensional shallow water
equations, see Sect. 1.6.3 of Chap. 1,

[
φ
φu

]

t

+
[

φu
φu2 + 1

2φ2

]

x

= 0 . (3.100)

They express the physical laws of conservation of mass and momentum. Under
the assumption of smooth solutions we can expand derivatives so as to write
the equations in primitive–variable form

φt + uφx + φux = 0 , (3.101)

ut + uux + φx = 0 . (3.102)

It is tempting to derive new conservation–law forms of the shallow water
equations starting from equations (3.101)–(3.102). One possibility is to keep
the mass equation as in (3.101) and re–write the momentum equation (3.102)
as

ut + (
1
2
u2 + φ)x = 0 . (3.103)

Now we have an alternative conservative form of the shallow water equations,
namely [

φ
u

]

t

+
[

φu
1
2u2 + φ

]

x

= 0 . (3.104)

Mathematically, see Chap. 2, this is a system of conservation laws. It expresses
conservation of mass, as in (3.101), and conservation of particle speed u. Phys-
ically, this second conservation law does not make sense. A critical question
is this : can we use the conservation–law form (3.104) for the shallow water
equations. The anticipated answer is : yes we can, if and only if solutions are
smooth. In the presence of shock waves formulations (3.100) and (3.104) lead
to different solutions, as we now demonstrate.

Without loss of generality we consider a right facing shock wave in which
the state ahead of the shock is given by the variables φR, uR.

Proposition 3.22. A right–facing shock wave solution of (3.100) has
shock speed

S = uR + Q/φR ,

Q =
[
1
2 (φ∗ + φR) φ∗φR

] 1
2 ,

}
(3.105)

while a right–facing shock wave solution of (3.104) has speed

Ŝ = uR + Q̂/φR ,

Q̂ =
[

2
φ∗+φR

] 1
2

φ∗φR .

⎫
⎬
⎭ (3.106)
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Proof. This is left to the reader as an exercise. Use contents of Chap. 2
and those of Sect. 3.1.3 of Chap. 3.

Remark 3.23. Clearly the shock speeds S and Ŝ are equivalent only when
φ∗ ≡ φR, that is when the shock wave is trivial. In general

Ŝ ≤ S (3.107)

and thus shock solutions of the new (incorrect) conservation laws (3.104) are
slower than shock solutions of the conventional (correct) conservation laws
(3.100). Note also that the conservative form (3.104) is non–unique.

Consider now the isothermal equations of Gas Dynamics, see Sect. 1.6.2
of Chap. 1. In conservation–law form these equations read

[
ρ
ρu

]

t

+
[

ρu
ρu2 + a2ρ

]

x

= 0 , (3.108)

where the sound speed a is constant. These conservation laws state that mass
and momentum are conserved, which is in accord with the laws of conservation
of mass and momentum studied in Chap. 1. Let us now assume that solutions
are sufficiently smooth so that partial derivatives exist; we expand derivatives
and after some algebraic manipulations obtain the primitive–variable formu-
lation

ρt + uρx + ρux = 0 , (3.109)

ut + uux +
a2

ρ
ρx = 0 . (3.110)

This is a perfectly acceptable formulation, valid for smooth flows.
New conservation laws can be constructed, starting from the primitive

formulation (3.109)–(3.110) above. One such possible system of conservation
laws is [

ρ
u

]

t

+
[

ρu
1
2u2 + a2lnρ

]

x

= 0 . (3.111)

Mathematically, these equations are a set of conservation laws, see Sects. 2.1
and 2.4 of Chap. 2. Physically however, they are useless, they state that mass
and velocity are conserved !

Exercise 3.24. Using the contents of Sect. 3.1.3 for isolated shock waves,
compare the shock solutions of the two conservative formulations (3.108) and
(3.111). Which gives the fastest shock ? Find other conservative formulations
corresponding to (3.109)–(3.110).
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