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Splitting Schemes for PDEs with Source Terms

15.1 Introduction

This chapter is concerned with numerical methods for solving non–linear
systems of hyperbolic conservation laws with source terms

Ut + F(U)x = S(U) . (15.1)

U is the vector of unknowns, F(U) is the vector of fluxes and S(U) is a vector
of sources, which in general is an algebraic function of U or other physical
parameters of the problem at hand. In Chap. 2 we studied some properties
for the pure advection hyperbolic problem

Ut + F(U)x = 0 . (15.2)

This homogeneous system, in which S(U) ≡ 0 (no sources) is a simplified
version of (15.1). The time–dependent one dimensional Euler equations of
Chap. 3 are one example of a homogeneous system of this kind. Another
simplification of (15.1) results from the assumption of no spatial variations,
F(U)x = 0, in which case one obtains

d

dt
U = S(U) , (15.3)

which is a system of Ordinary Differential Equations (ODEs).
Inhomogeneous systems of the form (15.1), S(U) �= 0, arise naturally

in many problems of practical interest. A whole class of inhomogeneous sys-
tems are derived when reducing the spatial dimensionality of multidimensional
problems. For example, under the assumption of spherically or cylindrically
symmetric flow, the three or two dimensional Euler equations become a one–
dimensional system of the form (15.1); see Sect. 1.6.2 of Chap. 1. In this case
the source terms are geometric in character. Sources of similar type are present
in the shallow water equations for flow on non–horizontal channels; see Sect.
1.6.3 of Chap. 1.
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Important examples of inhomogeneous systems of the form (15.1) arise in
the study of the fluid dynamics of reactive gaseous mixtures, where in addition
to the fluid dynamics governed by a system like (15.2), there are chemical
reactions between the constituent gases, which in the absence of fluid flow
may be modelled by systems of the form (15.3). Examples of problems of this
kind arise in the study of hypersonic flows [119], [9] and detonation waves, see
for instance [191], [72], [78], [118] and [363].

Chemically active flows contain a range of widely varying time scales,
which leads to stiff ODEs of the form (15.3), [296]. The problem of stiffness in
ODEs may be resolved by resorting to implicit methods. For chemically active
flow models (15.1), stiffness may not be resolved by simply using implicit
methods. If the mesh is not sufficiently fine in both space and time, then
spurious solutions travelling at unphysical speeds may be computed [136],
[314], [49], [78], [227]. See also the recent review paper by Yee and Sweby
[594]. There are still a number of unresolved problems in solving systems like
(15.2), which are the subject of current research.

There are essentially two ways of constructing methods to solve inhomo-
geneous systems of the form (15.1). One approach attempts to preserve some
coupling between the two processes in (15.1). These two processes might be
represented by the systems (15.2) (advection) and (15.3) (reaction–like). LeV-
eque and Yee [314] report on a predictor–corrector scheme of the MacCormack
type with a TVD constraint. The idea of upwinding the source terms [412],
may be seen as an attempt to couple the two processes involved, although the
eigenstructure used in projecting the source terms is oblivious to the influence
of these.

Another approach is to split (15.1), for a time Δt, into the advection prob-
lem (15.2) and the source problem (15.3). At first sight this might appear
unreasonable. However, for the case of a model inhomogeneous PDE, splitting
is actually exact. For more general problems, the fact that one can construct
high–order splitting schemes following this approach is also somewhat reassur-
ing. In addition, computational experience suggests that splitting is a viable
approach, if used with caution. The main attraction of splitting schemes is in
the fact that one can deploy the optimal, existing schemes for each subprob-
lem. For instance, to solve the homogeneous subproblem (15.2) one may use
directly any of the schemes presented in Chaps. 6 to 14, or any other appro-
priate method. To solve the subproblem (15.3) one may use directly any of
the ODE solvers available. If the system is known to be stiff, then stiff solvers
must be used.

This chapter is concerned with splitting schemes to solve (15.1). In Sect.
15.2 we show that for a model equation, splitting is exact; in Sect. 15.3 we
present numerical schemes based on the splitting approach; in Sect. 15.4 we
briefly review some basic aspects of numerical methods for Ordinary Differ-
ential Equations (ODEs). Concluding remarks are given in Sect. 15.5.
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15.2 Splitting for a Model Equation

The simplest model hyperbolic equation of the form (15.1) is given by

ut + aux = λu , (15.4)

where a is constant wave propagation speed and λ is a constant parame-
ter. This simple model equation will prove very useful in discussing possible
strategies for solving (15.1) numerically.

Consider the initial value problem (IVP) for (15.4), namely

PDE : ut + aux = λu ,
IC : u(x, 0) = u0(x) .

}
(15.5)

Here u = u(x, t), −∞ < x < ∞, t > 0 and u0(x) is the initial data for the
problem at t = 0. It is easy to verify that the exact solution of IVP (15.5) is

u(x, t) = u0(x − at)eλt . (15.6)

Note in particular that if λ = 0 we recover the exact solution for the homo-
geneous equation ut + aux = 0, namely u0(x − at); see Sect. 2.2 of Chap.
2.

A geometric interpretation of the original IVP (15.5) results if we view
(15.5) as an IVP involving an ODE along characteristics, namely

d
dtu = λu ; u(0) = u(x0) ,
d
dtx = a ; x(0) = x0 .

}
(15.7)

Fig. 15. 1 illustrates the situation. The ODE in (15.7) requires initial data at

x

x = x  + at

dx

t
0

0

 = a
dt

Fig. 15.1. Illustration of operator splitting scheme for model PDE with source term

the foot of the characteristic curve x = x0 +at, namely the point x0. Actually
the initial data is then u(0) = u(x0) = u(x − at), which is the solution of the
homogeneous problem in (15.5), λ = 0.

Next we show that the exact solution (15.6) can also be obtained by solving
exactly a pair of initial value problems in succession.
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Theorem 15.1 (Splitting of Source Term).
The exact solution (15.6) of the inhomogeneous IVP (15.5) can be found

by solving exactly the following pair of IVP’s.

PDE : rt + arx = 0 ,
IC : r(x, 0) = u0(x) ,

}
=⇒ r(x, t) (15.8)

ODE : d
dts = λs ,

IC : s(0) = r(x, t) ,

}
=⇒ u(x, t) (15.9)

Note here that the initial condition of IVP (15.8) is the actual initial
condition for the original IVP (15.5) and the initial condition for IVP (15.9)
is the solution r(x, t) of IVP (15.8).

Proof. Clearly the solution of IVP (15.8) is r(x, t) = u0(x − at), while
the exact solution of IVP (15.9) is s(x(t), t) = s(0)eλt. But s(0) = r(x, t) =
u0(x − at) and thus the resulting solution of IVPs (15.8) and (15.9) is

s(x, t) = u0(x − at)eλt ,

which is the exact solution (15.6) of the original inhomogeneous IVP (15.5),
and the theorem is thus proved.

The result on the splitting scheme obtained by solving in succession (15.8),
(15.9) can be expressed in the succinct form

u(x, t) = S(t)C(t)[u0(x)] . (15.10)

We interpret C(t) as the solution operator for the advection problem (15.8)
applied over a time t and S(t) as the solution operator for the ODE (15.9)
applied for a time t.

Exercise 15.2. Show that the exact solution u(x, t) of IVP (15.5) can be
obtained by solving

PDE : ut + f(u)x = 0 ; f(u) = au ,
IC : u(x, 0) = u0(x)

}
=⇒ un+1 (15.11)

and
ODE : d

dxf(u) = λu ,
IC : un+1

}
=⇒ un+1 (15.12)

in succession.

This result says that the splitting scheme (15.8), (15.9) modified by replacing
the ODE in time by an ODE in space also gives the exact solution. This
splitting scheme can be expressed in the succinct form

u(x, t) = S(x)C(t)[u0(x)] , (15.13)

where S(x) denotes the solution operator for the ODE in x in (15.12).
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Solution 15.3. Left to the reader.

Glimm, Marshall and Plohr [214] constructed numerical splitting schemes
of the form (15.11), (15.12) to solve numerically one–dimensional flows with
area variation. In this case the source term involves a spatial derivative and
does not depend on time.

In the next section we construct numerical methods based on the splitting
approach, or fractional step approach [466], [588].

15.3 Numerical Methods Based on Splitting

We have shown that for the model inhomogeneous PDE (15.4) the splitting
approach, as described in the previous section, is exact. For non–linear systems
(15.1) this result is no longer valid. However, approximate, numerical schemes
based on the splitting approach can be constructed. We first consider the
scalar case.

15.3.1 Model Equations

The splitting scheme (15.8)–(15.9), represented by (15.10), is exact if the
operators C and S are exact. Here we are interested in constructing numerical
methods for the scalar IVP

PDE : ut + f(u)x = s(u) : 0 ≤ x ≤ L ,
IC : u(x, tn) = un ,

}
(15.14)

To this end we replace the exact operators C(t) and S(t) in (15.10) by approx-
imate operators and re–state the problem in a numerical context. Given the
IVP (15.14), we want to evolve the solution from its initial value un at a time
tn, by one time step of size Δt, to a value un+1 at time tn+1 = tn + Δt. We
assume the spatial domain [0, L] has been discretised into a finite number M
of cells i (finite volume approach) or grid points i (finite difference approach).
Here un is a set of discrete values un

i at time tn. The discrete analogue of the
splitting scheme (15.8)–(15.9) is now

PDE : ut + f(u)x = 0 ,
IC : u(x, tn) = un ,

}
=⇒ un+1 (15.15)

ODE : d
dtu = s(u) ,

IC : un+1 .

}
=⇒ un+1 (15.16)

The initial condition for the advection problem (15.15) is the initial condition
for the complete problem (15.14). The solution of (15.15) after a time Δt
is denoted by un+1 and is used as the initial condition for the second IVP
(15.16). This second IVP accounts for the presence of the source term s(u)
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and is also solved for a complete time step Δt; this solution is then regarded
as an approximation to the solution un+1 of the full problem (15.14) at a
time tn+1 = tn + Δt. If the numerical analogues of S(t) and C(t) in (15.10)
are still denoted by S and C, then we can write the splitting of (15.14) into
(15.15)–(15.16) as

un+1 = S(Δt)C(Δt)(un) . (15.17)

Each numerical sub–problem (15.15), (15.16) is dealt with separately, for a
time step Δt. One requires a numerical method to solve the homogeneous ad-
vection problem (15.15) and another numerical method to solve the ordinary
differential equation in (15.16), with the initial data taken from the solution
of (15.15). This procedure for solving inhomogeneous systems is exceedingly
simple but is only first–order accurate in time, when S and C are at least
first–order accurate solution operators. A second–order accurate scheme is

un+1 = S( 1
2 Δt)C(Δt)S( 1

2 Δt)(un) , (15.18)

where S and C are at least second–order accurate solution operators.

15.3.2 Schemes for Systems

Here we extend the application of the splitting scheme of the previous
section to non–linear systems of the form (15.1). The generalisation of (15.15),
(15.16) to solve (15.1) is straightforward. Given the IVP

PDE’s : Ut + F(U)x = S(U) ; 0 ≤ x ≤ L ,
IC : U(x, tn) = Un ,

}
(15.19)

we want to evolve Un from time t = tn to the new value Un+1 at t = tn+1 in
a time step Δt = tn+1 − tn. The splitting (15.15), (15.16) becomes

PDE’s : Ut + F(U)x = 0 ,
IC : U(x, tn) = Un

}
=⇒ U

n+1
, (15.20)

PDE’s : d
dtU = S(U) ,

IC’s : U
n+1

}
=⇒ Un+1 . (15.21)

The analogue of the first–order scheme (15.17) is

Un+1 = S(Δt)C(Δt)(Un) . (15.22)

A second–order accurate scheme for systems is

Un+1 = S( 1
2 Δt)C(Δt)S( 1

2 Δt)(Un) . (15.23)

A splitting scheme based on (15.11), (15.12) is
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PDEs : Ut + F(U)x = 0 ,
IC : U(x, tn) = Un ,

}
=⇒ U

n+1
(15.24)

ODEs : d
dxF(U) = S(U) ,

IC : U
n+1

.

}
=⇒ Un+1 (15.25)

There appears to be little experience in using this approach. For source terms
that are independent of time or involve spatial derivatives, this approach may
be advantageous. See [214].

The attraction of splitting schemes is in the freedom available in choos-
ing the numerical operators S and C. In general, one may choose the best
scheme for each type of problems. For solving the advection (homogeneous)
IVP (15.20) one can, for instance, use any of the schemes studied in Chaps.
6 to 14, or some other method. For solving the ODEs in (15.21), (15.25) one
may choose some appropriate ODE solver, see next section.

15.4 Remarks on ODE Solvers

There is a vast literature on ODEs and on numerical methods for solving
ODEs. For theoretical properties of ODEs see for example Brown [81], Ince
and Sneddon [260], Sánchez [423] and Coddington and Levinson [130]. Almost
any textbook on Numerical Analysis will contain some chapter on schemes for
ODEs. See for example Hildebrand [249]; Mathews [347]; Conte and de Boor
[139]; Maron and Lopez [337]; Johnson and Riess [273]; Kahaner, Moler and
Nash [275]. Advanced textbooks are those of Gear [200], Lambert [296] and
Shampine [441].

15.4.1 First–Order Systems of ODEs

Here we recall some very basic facts about first–order systems of ODEs

d

dt
U(t) ≡ U′ = S(t,U(t)) . (15.26)

Here U = U(t) and S(t,U(t)) are vector–valued functions of m components

U = [u1, u2, . . . , um]T ; S = [s1, s2, . . . , sm]T (15.27)

and the independent variable t is a time–like variable. The Jacobian A(U) is
defined as the matrix

A(U) = ∂S/∂U =

⎡
⎢⎢⎢⎣

∂s1/∂u1 . . . ∂s1/∂um

∂s2/∂u1 . . . ∂s2/∂um

...
...

...
∂sm/∂u1 . . . ∂sm/∂um

⎤
⎥⎥⎥⎦ . (15.28)
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The entries aij of A(U) are partial derivatives of the components si of the vec-
tor S with respect to the components uj of the vector U, that is aij = ∂si/∂uj .
The eigenvalues λi of A are the solutions of the characteristic polynomial

|A − λI| = det(A − λI) = 0 , (15.29)

where I is the identity matrix. Generally, the eigenvalues are complex numbers.
Trivially, the eigenvalue of the model ODE

u′(t) = λu(t) (15.30)

is λ. The behaviour of a system of ODEs is, in the main, determined by the
behaviour of its eigenvalues. For instance, the exact solution of (15.30) with
initial condition u(0) = 1 is u(t) = eλt. For t close to 0 the solution varies
rapidly if the eigenvalue is negative and large in absolute value. For t away
from zero the solution is almost indistinguishable from 0.

An important property of ODEs is that of stability. Generally speaking
stable solutions are bounded. Note that the solution of the linear ODE (15.30)
is bounded only if λ < 0. Geometrically, a solution U(t) is stable if any other
solution of the ODE whose initial condition is sufficiently close to that of
U(t) remains in a tube enclosing U(t). If the diameter of the tube tends to 0
as t tends to ∞, the solution is said to be asymptotically stable. Stability of
solutions U(t) is characterised in terms of the eigenvalues λj of the Jacobian
matrix. In particular if the real part of every eigenvalue is negative the solution
is asymptotically stable.

Another feature of ODEs is that of stiffness. Stiff ODEs are usually associ-
ated with processes operating on disparate time scales. Chemical kinetics is a
classical source of stiff ODEs. The stiffness of a system is generally determined
by the behaviour of the eigenvalues of the system. In addition, the time inter-
val over which the solution is sought is also a consideration in determining the
stiffness of the system. There will be intervals of rapid variations (transient)
of the solution and intervals of slow variation. The single ODE (15.30) is stiff
for λ � 0 and for time t in the vicinity of 0.

Following Lambert [296], a nonlinear system of the form (15.26) is said to
be stiff if

• (i) Re(λj) < 0 , j = 1, 2, . . . ,m and
• (ii) λmax ≡ maxj |Re(λj)| � λmin ≡ minj |Re(λj)|.

Here Re(λj) denotes the real part of the complex number λj . The stiffness
ratio is defined as Rstif = λmax/λmin. Modest values of Rstif , e.g. 20, are
sufficient to cause serious numerical difficulties to explicit methods. In real
applications Rstif may be as large as 106.

Before thinking of numerical methods to solve ODEs, a fundamental ques-
tion is to investigate whether the ODEs are stiff or not; this will determine
the appropriate numerical methods to be used for solving the equations. See
Kahaner, Moler and Nash [275], Gear [200] and Lambert [296].
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15.4.2 Numerical Methods

We are interested in solving the Initial Value Problem (IVP) for (15.26)
with initial condition

U(t0) = U0. (15.31)

Discretise the domain of integration [t0, tf ] through the partition t0 < t1 <
t2 . . . < tn < tn+1 . . . < tf . One way of constructing numerical methods to
solve the IVP (15.26), (15.31) is by using Taylor series expansions. Another
way is to integrate (15.26) between tn and tn+1 to obtain

U(tn+1) = U(tn) +
∫ tn+1

tn

S(t,U(t))dt . (15.32)

Various numerical methods are obtained depending on the way the integral is
evaluated. The Euler Method results from evaluating the integral at the old
time,

Un+1 = Un + ΔtS(tn,Un) . (15.33)

where Δt = tn+1 − tn is the time step and Un ≈ U(tn). The Euler method is
explicit and first–order accurate. The Backward Euler Method, also first order
accurate but implicit, results from evaluating the integral at the new time
tn+1, namely

Un+1 = Un + ΔtS(tn+1,Un+1) . (15.34)

A second–order implicit method results from a trapezium rule approximation
to the integral, giving the Trapezoidal Method

Un+1 = Un +
1
2
Δt[S(tn,Un) + S(tn+1,Un+1)] . (15.35)

A second–order, two stage Runge–Kutta method (explicit) is

K1 = ΔtS(tn,Un) ,
K2 = ΔtS(tn + Δt,Un + K1) ,
Un+1 = Un + 1

2 [K1 + K2] .

⎫
⎬
⎭ (15.36)

A fourth–order, four stage Runge–Kutta method (explicit) is

K1 = ΔtS(tn,Un) ,
K2 = ΔtS(tn + 1

2Δt,Un + 1
2K1) ,

K3 = ΔtS(tn + 1
2Δt,Un + 1

2K2) ,
K4 = ΔtS(tn + Δt,Un + K3) ,
Un+1 = Un + 1

6 [K1 + 2K2 + 2K3 + K4] .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(15.37)

Stability of numerical methods is a most important issue. To illustrate this
point consider the model ODE (15.30) as solved by the explicit Euler method
(15.33). The scheme reads
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un+1 = (1 + Δtλ)un . (15.38)

Clearly, for stability one requires that the ODE itself be stable, λ < 0, and
that the amplification factor satisfy |1+λΔt| ≤ 1. Therefore the time step Δt
must satisfy the stability restriction

Δt ≤ 2
|λ| . (15.39)

For large |λ| (stiff ODE) Δt can be extremely small, which means that the
method becomes very inefficient or even useless in practice.

On the other hand, the Trapezoidal method (15.35), which is implicit,
gives

un+1 =
(1 + 1

2Δtλ)
(1 − 1

2Δtλ)
un . (15.40)

This is stable for any Δt, provided λ ≤ 0, that is whenever the ODE itself is
stable.

Explicit methods are much simpler to use than implicit methods. The lat-
ter require the solution of non–linear algebraic equations at each time step and
are therefore much more expensive. However, as illustrated, for stiff problems
implicit methods are the only methods to use in any practical situation.

15.4.3 Implementation Details for Split Schemes

There are two facts that need to be emphasised when solving ODEs in the
context of the splitting schemes described in Sect. 15.3. First, at every time
tn, at each mesh point i one has a system of ODEs to solve; second, the time
evolution of the ODEs is generally short and is dictated by the time step in
the overall splitting scheme. This second point is relevant when choosing ODE
solvers.

Before selecting a method, an analysis of the ODEs must be performed. If
the problem is non–stiff then a high–order explicit method is recommended.
A stability analysis of the method must be carried out and enforced when
selecting the size of the time step Δt. For simplicity, let us assume we want
to implement the first–order splitting scheme (15.22). A practical problem is
to determine the time step Δt. One first determines the time step Δtc for the
advection problem (15.20). If this problem is solved by some explicit method,
e.g. Godunov’s first order upwind method (see Chap. 6), then Δtc is found
from some stability constraint, i.e. the Courant condition, see Chap. 6. The
solution of the advection problem is found at every mesh point i and this
gives U

n+1
, which is then used as the initial data for the ODE step (15.21). If

the ODEs are solved by some implicit method, then there will be no stability
restriction on the time step, and therefore one can advance the solution via the
ODE solver by a time Δts = Δtc, in one go. However, if an explicit method
is used to solve the ODEs, then a stable time step Δts must first be found.
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If Δts ≥ Δtc, then one may again advance the solution via the ODEs by a
time Δtc in one go. Hence the final solution at time tn+1 has been advanced
by a time Δt = Δtc. If Δts < Δtc, then one possibility is to update via
the ODEs in k steps of size Δtk = Δtc/k, where k is a positive integer such
such Δtk is a stable time step for the ODE solver. The previous observations
apply directly when implementing the second–order splitting scheme (15.23).
A useful reference is Chiang and Hoffmann [108].

15.5 Concluding Remarks

We have only presented one approach for treating source terms. There are
other approaches, but at the present time there appears to be no clear, and
sufficiently general, alternative to splitting. The idea of upwinding the source
terms proposed by Roe [412] appears to work well for certain problems. See
for instance the work of Vázquez [568] and that of Bermúdez and Vázquez
[51]. See also the recent paper of Vázquez [569], which addresses the issue of
geometric and friction source terms in shallow water models. For steady–state
problems computed by time–marching schemes the reader should consult the
recent paper by LeVeque [310].

The reader is strongly encouraged to utilise problems with exact solutions,
whenever available, to carefully assess the numerical methods before applying
them to the real problem. The simplest test problem is the IVP (15.5) with
exact solution (15.6). More scalar test problems are found in [314], [136], [227].
A test problem with exact solution for a 2 × 2 non–linear system is the so
called Fickett detonation analogue [191], see also example 2.4.3 of Sect. 2.4.2
in Chap. 2. This problem is exploited in [118] for testing numerical methods
for detonation waves in high–energy solids. For the Euler equations, a test
problem with exact solution is reported in [120]. Details of the solution are
given in [115] and applications are also shown in [412] and [471].

For certain types of problems, such as detonation waves, there are seri-
ous difficulties in designing numerical methods to properly account for the
fluid dynamics and the chemistry. For sufficiently fine meshes such difficulties
may be overcome but at a cost that is impossible to meet with current com-
puting resources, if realistic problems in multidimensions are to be solved.
Since the early papers by Colella, Majda and Roytburd [136] and that of
LeVeque and Yee [314], there has been a noticeable increase in the interest
for hyperbolic systems with source terms, both numerically and theoretically.
See, amongst others: Griffiths, Stuart and Yee [227]; Berkenbosch, Kaasschi-
eter and Boonkkamp [49]; Bourlioux, Majda and Roytburd [78]; Fey, Jeltsch
and Müller [190]; Chalabi [98], [99], [100], [101]; Benkhaldoun and Chalabi
[44]; Pember [377], [378]; Schroll and Tveito [432]; Schroll and Winther [434];
Schroll, Tveito and Winther [433]; Corberán and Gascón [140]; Lorenz and
Schroll [333]; Lafon and Yee [294], [295]; and especially the review paper of
Yee and Sweby [594].
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The splitting approach may also be applied to treat diffusion like terms
[82], [529] in exactly the same manner as for algebraic source terms. The
splitting approach also offers one way of solving multidimensional problems;
this topic is dealt with in Chap. 16.
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