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The Riemann Solver of Roe

Perhaps, the most well–known of all approximate Riemann solvers today,
is the one due to Roe, which was first presented in the open literature in 1981
[407]. Since then, the method has not only been refined, but it has also been
applied to a very large variety of physical problems. Refinements to the Roe
approach were introduced by Roe and Pike [416], whereby the computation
of the necessary items of information does not explicitly require the Roe av-
eraged Jacobian matrix. This second methodology appears to be simpler and
is thus useful in solving the Riemann problem for new, complicated sets of
hyperbolic conservations laws, or for conventional systems but for complex
media. Glaister exploited the Roe–Pike approach to extend Roe’s method to
the time–dependent Euler equations with a general equation of state [208],
[209]. The large body of experience accumulated by many workers over a con-
siderable period of time has led to various improvements of the scheme. As
originally presented the Roe scheme computes rarefaction shocks, thus vio-
lating the entropy condition. Harten and Hyman [243], Roe and Pike [416],
Roe [414], Dubois and Mehlman [167] and others, have produced appropri-
ate modifications to the scheme. Einfeldt et. al. [182] produced corrections
to the basic Roe scheme to avoid the so–called vacuum problem near low–
density flows; they also showed that in fact this anomaly afflicts all linearised
Riemann solvers.

Ambitious applications of the Roe scheme were presented by Brio and Wu
[80], who utilised Roe’s method to solve the Magneto–Hydrodynamic equa-
tions (MHD). Clarke et. al. [118] applied the method in conjunction with
adaptive gridding to the computation of two–dimensional unsteady detona-
tion waves in solid materials. Giraud and Manzini [206] produced parallel
implementions of the Roe scheme for two–dimensional Gas Dynamics. LeV-
eque and Shyue [313] have applied the Roe scheme in the context of front
tracking in two space dimensions. Marx has applied the Roe scheme to solve
the incompressible Navier–Stokes equations [345], [346] and the compressible
Navier–Stokes equations [344] using implicit versions of the scheme; see also
McNeil [348]. The method has also been applied to multiphase flows; Toro
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[501] solved reactive multi–phase problems in the context of propulsion sys-
tems via a phase–splitting procedure; recently, Sainsaulieu [421] has extended
the Roe scheme to a class of multiphase flow problems without phase splitting.

The purpose of this chapter is to present the approximate Riemann solver
of Roe as applied to the three–dimensional time dependent Euler equations.
For the numerical methods considered here, we only need to derive the Rie-
mann solver for the split three–dimensional equations. After a general intro-
duction to the method, we present both the methodology of Roe and that
of Roe and Pike. Both methodologies are suitably illustrated via the simpler
isothermal equations. Useful background reading is found in Chaps. 2 to 6.

11.1 Bases of the Roe Approach

In this section we describe the Roe approach for a general system of m hy-
perbolic conservation laws. Detailed application of the scheme to the isother-
mal and Euler equations are given in subsequent sections.

11.1.1 The Exact Riemann Problem and the Godunov Flux

We are concerned with solving numerically the general Initial Boundary
Value Problem (IBVP)

PDEs : Ut + F(U)x = 0 ,
ICs : U(x, 0) = U(0)(x) ,
BCs : U(0, t) = Ul(t) , U(L, t) = Ur(t) ,

⎫
⎬
⎭ (11.1)

in a domain xl ≤ x ≤ xr, utilising the explicit conservative formula

Un+1
i = Un

i +
Δt

Δx
[Fi− 1

2
− Fi+ 1

2
] . (11.2)

We assume the solution of IBVP (11.1) exists. In Chap. 6 we defined the
Godunov intercell numerical flux

Fi+ 1
2

= F(Ui+ 1
2
(0)) , (11.3)

in which Ui+ 1
2
(0) is the exact similarity solution Ui+ 1

2
(x/t) of the Riemann

problem
Ut + F(U)x = 0 ,

U(x, 0) =
{

UL if x < 0 ,
UR if x > 0

⎫
⎬
⎭ (11.4)

evaluated at x/t = 0. Fig. 11.1 shows the structure of the exact solution of
the Riemann problem for the x–split three dimensional Euler equations, for
which the vectors of conserved variables and fluxes are
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U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

. (11.5)

The Star Region between the left and right waves contains the unknowns of
the problem. The particular value at x/t = 0 corresponds to the t–axis and is
the value required by the Godunov flux. See Chaps. 4 and 6 for details. The
piece–wise constant initial data, in terms of primitive variables, is

WL =

⎡
⎢⎢⎢⎢⎣

ρL

uL

vL

wL

pL

⎤
⎥⎥⎥⎥⎦

, WR =

⎡
⎢⎢⎢⎢⎣

ρR

uR

vR

wR

pR

⎤
⎥⎥⎥⎥⎦

. (11.6)

*

*L *R

L R

*

ρ ρ

(u,u,u)

p u

w

L
R

R

R

R

t

R
R

L

L

L

L

L

ρ

(u-a) (u+a)

x
0

v
w

v
w

ρ
u

p
w
v
u

p

v

Fig. 11.1. Structure of the solution of the Riemann problem for the x–split three
dimensional Euler equations

In Chap. 4 we provided an algorithm to compute the exact solution
Ui+ 1

2
(x/t) and in Chap. 6 we utilised this solution in the Godunov method.

In Chap. 9 we provided approximations to the state Ui+ 1
2
(x/t) and obtained

a corresponding approximate Godunov method by evaluating the physical
flux function F at this approximate state. The purpose of this chapter is to
find direct approximations to the flux function Fi+ 1

2
following the approach

proposed by Roe [407] and Roe and Pike [416].

11.1.2 Approximate Conservation Laws

Roe [407] solved the Riemann problem (11.4) approximately. By introduc-
ing the Jacobian matrix

A(U) =
∂F
∂U

(11.7)
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and using the chain rule the conservation laws

Ut + F(U)x = 0

in (11.4) may be written as

Ut + A(U)Ux = 0 . (11.8)

Roe’s approach replaces the Jacobian matrix A(U) in (11.8) by a constant
Jacobian matrix

Ã = Ã(UL,UR) , (11.9)

which is a function of the data states UL, UR. In this way the original PDEs
in (11.4) are replaced by

Ut + ÃUx = 0 . (11.10)

This is a linear system with constant coefficients. The original, Riemann prob-
lem (11.4) is then replaced by the approximate Riemann problem

Ut + ÃUx = 0

U(x, 0) =
{

UL , x < 0
UR , x > 0

⎫
⎬
⎭ , (11.11)

which is then solved exactly. The approximate problem results from replacing
the original non–linear conservation laws by a linearised system with constant
coefficients but the initial data of the exact problem is retained.

For a general hyperbolic system of m conservation laws, the Roe Jacobian
matrix Ã is required to satisfy the following properties:

Property (A): Hyperbolicity of the system. Ã is required to have real eigen-
values λ̃i = λ̃i(UL,UR), which we choose to order as

λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃m , (11.12)

and a complete set of linearly independent right eigenvectors

K̃
(1)

, K̃
(2)

, · · · , K̃
(m)

. (11.13)

Property (B): Consistency with the exact Jacobian

Ã(U,U) = A(U) . (11.14)

Property (C): Conservation across discontinuities

F(UR) − F(UL) = Ã (UR − UL) . (11.15)

Property (A) on hyperbolicity is an obvious requirement; the approximate
problem should at the very least preserve the mathematical character of the
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original non–linear system. Property (B) ensures consistency with the conser-
vation laws. Property (C) ensures conservation. It also ensures exact recogni-
tion of isolated discontinuities; that is, if the data UL, UR are connected by a
single, isolated discontinuity, then the approximate Riemann solver recognises
this wave exactly. Note however that this does not mean that the correspond-
ing, approximate, Godunov method with the Roe approximate numerical flux
will in general give exact solutions for isolated discontinuities.

The construction of matrices satisfying properties (A)–(C) for general hy-
perbolic systems can be very complicated and thus computationally unattrac-
tive. For the specific case of the Euler equations of Gas Dynamics Roe [407]
proposed a relatively simple way of constructing a matrix Ã. Later, Roe and
Pike [416] proposed a simpler approach, where the explicit construction of Ã
is actually avoided.

11.1.3 The Approximate Riemann Problem and the Intercell Flux

Once the matrix Ã(UL,UR), its eigenvalues λ̃i(UL,UR) and right eigen-

vectors K̃
(i)

(UL,UR) are available, one solves the Riemann problem (11.11)
by direct application of methods discussed in Sect. 2.3 of Chap. 2 and Sect.
5.4 of Chap. 5, for linear hyperbolic systems with constant coefficients. By
projecting the data difference

ΔU = UR − UL

onto the right eigenvectors we write

ΔU = UR − UL =
m∑

i=1

α̃iK̃
(i)

, (11.16)

from which one finds the wave strengths α̃i = α̃i(UL,UR). The solution
Ui+ 1

2
(x/t) evaluated along the t–axis, x/t = 0, is given by

Ui+ 1
2
(0) = UL +

∑

λ̃i≤0

α̃iK̃
(i)

, (11.17)

or
Ui+ 1

2
(0) = UR −

∑

λ̃i≥0

α̃iK̃
(i)

. (11.18)

We now find the corresponding numerical flux. Recall that we have replaced
the original set of conservation laws in (11.4) by the constant coefficient linear
system (11.10); this can be viewed as a modified system of conservation laws

Ut + F(U)x = 0 , (11.19)

with flux function
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F(U) = ÃU . (11.20)

The corresponding numerical flux, see (11.3), is not the obvious choice

Fi+ 1
2

= Ã Ui+ 1
2
(0) ,

where Ui+ 1
2
(0) is given by any of (11.17)–(11.18). That this would be incor-

rect becomes obvious when, for instance, assuming right supersonic flow in
(11.17) one would compute an intercell flux Fi+ 1

2
�= FL. Instead, the correct

expression for the corresponding numerical flux is obtained from any of the
integral relations

F0L = FL − SLUL − 1
T

∫ 0

TSL

U(x, T )dx , (11.21)

F0R = FR − SRUR +
1
T

∫ TSR

0

U(x, T )dx , (11.22)

derived in Sect. 10.2 of Chap. 10. Here SL, SR are the smallest and largest
signal speeds in the exact solution of the Riemann problem with data UL,UR

and T is a positive time. If the integrand U(x, t) in (11.21) or (11.22) is
replaced by some approximate solution, then equality of the fluxes F0L and
F0R requires the approximate solution to satisfy a Consistency Condition, see
Sect. 10.2 of Chap. 10.

If Ui+ 1
2
(x, t) is the solution of the Riemann problem for the modified

conservation laws (11.19) with data UL,UR, then the integrals in (11.21) and
(11.22) respectively, are

∫ 0

TSL

Ui+ 1
2
(x, T )dx = T [F(UL) − F(Ui+ 1

2
(0))] − TSLUL (11.23)

and
∫ TSR

0

Ui+ 1
2
(x, T )dx = T [F(Ui+ 1

2
(0)) − F(UR)] + TSRUR . (11.24)

Substitution of (11.23) and (11.24) into (11.21) and (11.22) gives

F0L = F(Ui+ 1
2
(0)) + F(UL) − F(UL) (11.25)

and
F0R = F(Ui+ 1

2
(0)) + F(UR) − F(UR) . (11.26)

Finally, by using Ui+ 1
2
(0) as given by (11.17) or (11.18) and the definition of

the flux F = Ã U we obtain the numerical flux as

Fi+ 1
2

= FL +
∑

λ̃i≤0

α̃iλ̃iK̃
(i)

, (11.27)
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or
Fi+ 1

2
= FR −

∑

λ̃i≥0

α̃iλ̃iK̃
(i)

. (11.28)

Alternatively, we may also write

Fi+ 1
2

=
1
2
(FL + FR) − 1

2

m∑
i=1

α̃i|λ̃i|K̃
(i)

. (11.29)

We remark that all previous relations (11.19)–(11.29) are valid for any
hyperbolic system and any linearisation of it. In order to compute Roe’s nu-
merical flux for a particular system of hyperbolic conservation laws, one re-
quires expressions for the wave strengths α̃i, the eigenvalues λ̃i and the right
eigenvectors K̃

(i)
in any of the flux expressions (11.27)–(11.29). Note that the

Jacobian matrix Ã(UL,UR) is not explicitly required by the numerical flux.
In the next two sections we give details on methodologies to find α̃i, λ̃i and
K̃

(i)
. There are two approaches, namely the original approach presented by

Roe in 1981 [407] and the Roe–Pike approach [416].

11.2 The Original Roe Method

In order for the approximate Godunov method based on (11.2) with the
Roe–type numerical flux (11.27)–(11.29) to be completely determined, we need
to find the average eigenvalues λ̃i, the corresponding averaged right eigenvec-
tors K̃

(i)
and averaged wave strengths α̃i. In his original paper [407] Roe finds

an averaged Jacobian matrix Ã, the Roe matrix, from which λ̃i, K̃
(i)

and α̃i

follow directly. In constructing a matrix Ã the properties (A)–(C), equations
(11.12)–(11.15), are enforced. It is not difficult to think of candidates Ã that
satisfy the first two properties. Property C is crucial and is the one that nar-
rows down the choices. Roe showed that the existence of a matrix Ã satisfying
Property C is assured by the mean value theorem. An early line of attack in
constructing a matrix Ã satisfying all desirable properties is reported by Sells
[440]. Roe identifies some disadvantages of this approach; it is argued, for in-
stance, that the construction is far from unique and that the resulting schemes
are too complicated.

A breakthrough in constructing Ã resulted from Roe’s ingenious idea of
introducing a parameter vector Q, such that both the vector of conserved
variables U and the flux vector F(U) could be expressed in terms of Q. That
is

U = U(Q) , F = F(Q) . (11.30)

Two important steps then follow. First, the changes

ΔU = UR − UL , ΔF = F(UR) − F(UL) (11.31)
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can be expressed in terms of the change ΔQ = QR −QL. Then, averages are
obtained in terms of simple arithmetic means of Q. Next, we illustrate the
technique as applied to a simple set of conservation laws.

11.2.1 The Isothermal Equations

Consider the isothermal equations

Ut + F(U)x = 0 ,

U ≡
[

u1

u2

]
≡
[

ρ
ρu

]
; F ≡

[
f1

f2

]
≡
[

ρu
ρu2 + a2ρ

]
,

⎫
⎪⎬
⎪⎭

(11.32)

where a is a constant sound speed. See Sect. 1.6.2 of Chap. 1. See also Sect.
2.4.1 of Chap. 2, where the eigenstructure of the equations is given. The exact
Jacobian, eigenvalues and corresponding right eigenvectors are

A(U) =
[

0 1
a2 − u2 2u

]
,

λ1 = u − a , λ2 = u + a ,

K(1) =
[

1
u − a

]
, K(2) =

[
1

u + a

]
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.33)

Choose the parameter vector

Q ≡
[

q1

q2

]
≡ U

√
ρ

=
[ √

ρ√
ρu

]
. (11.34)

Then U and F can be expressed in terms of the components q1, q2 of Q,
namely

U ≡
[

u1

u2

]
≡ q1Q =

[
q2
1

q1q2

]
(11.35)

and

F ≡
[

f1

f2

]
≡
[

q1q2

q2
2 + a2q2

1

]
. (11.36)

One now looks for an averaged vector Q̃ = (q̃1, q̃2)T . This is found by simple
arithmetic averaging

Q̃ =
[

q̃1

q̃2

]
=

1
2
(QL + QR) =

1
2

[ √
ρL +

√
ρR√

ρLuL +
√

ρRuR

]
. (11.37)

Then two matrices B̃ = B̃(Q̃) and C̃ = C̃(Q̃) are found, such that the jumps
ΔU and ΔF in (11.31) can be expressed in terms of the jump ΔQ, namely

ΔU = B̃ΔQ ; ΔF = C̃ΔQ . (11.38)
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Use of these two expressions produces

ΔF = (C̃B̃
−1

)ΔU , (11.39)

which if compared with condition (C), equation (11.15), produces the Roe
averaged matrix

Ã = C̃B̃
−1

. (11.40)

Matrices B̃ and C̃ satisfying (11.38) are

B̃ =
[

2q̃1 0
q̃2 q̃1

]
; C̃ =

[
q̃2 q̃1

2a2q̃1 2q̃2
2

]
, (11.41)

which the reader can easily verify. The sought Roe matrix is then

Ã =
[

0 1
a2 − ũ2 2ũ

]
, (11.42)

where ũ is the Roe averaged velocity and is given by

ũ =
√

ρLuL +
√

ρRuR√
ρL +

√
ρR

. (11.43)

Compare (11.42) with the matrix in (11.33). As the sound speed a is constant,
no averaged ρ̃ is required.

Having found Ã one computes the averaged eigenvalues, eigenvectors and
wave strengths. The eigenvalues of Ã are

λ̃1 = ũ − a ; λ̃2 = ũ + a (11.44)

and are all real. The corresponding averaged right eigenvectors are

K̃
(1)

=
[

1
ũ − a

]
; K̃

(2)
=
[

1
ũ + a

]
(11.45)

and are easily seen to be linearly independent. Thus condition (A) is satisfied.
To find the wave strengths α̃i we solve the 2 × 2 linear system, see (11.16),

ΔU ≡
[

Δu1

Δu2

]
=

2∑
i=1

α̃iK̃
(i)

.

The solution is easily verified to be

α̃1 =
Δu1(ũ + a) − Δu2

2a
,

α̃2 =
−Δu1(ũ − a) + Δu2

2a
,

⎫
⎪⎪⎬
⎪⎪⎭

(11.46)

with the obvious definitions Δu1 ≡ ρR − ρL, Δu2 ≡ ρRuR − ρLuL. The
corresponding Roe numerical flux Fi+ 1

2
now follows from using (11.43)–(11.46)

into any of the expressions (11.27)–(11.29).
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11.2.2 The Euler Equations

Here we present the Roe Riemann solver as applied to the Riemann prob-
lem (11.4)–(11.5) for the x–split three dimensional time dependent Euler equa-
tions for ideal gases. Details of the Euler equations are found in Sect. 1.1 and
Sect. 1.2 of Chap. 1; mathematical properties of the Euler equations are stud-
ied in Chap. 3.

The exact, x–direction Jacobian matrix A(U) is

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
γ̂H − u2 − a2 (3 − γ)u −γ̂v −γ̂w γ̂

−uv v u 0 0
−uw w 0 u 0

1
2u[(γ − 3)H − a2] H − γ̂u2 −γ̂uv −γ̂uw γu

⎤
⎥⎥⎥⎥⎦

, (11.47)

where γ̂ = γ − 1. The eigenvalues are

λ1 = u − a , λ2 = λ3 = λ4 = u , λ5 = u + a , (11.48)

where a =
√

γp/ρ is the sound speed. The corresponding right eigenvectors
are

K(1) =

⎡
⎢⎢⎢⎢⎣

1
u − a

v
w

H − ua

⎤
⎥⎥⎥⎥⎦

; K(2) =

⎡
⎢⎢⎢⎢⎣

1
u
v
w

1
2V 2

⎤
⎥⎥⎥⎥⎦

; K(3) =

⎡
⎢⎢⎢⎢⎣

0
0
1
0
v

⎤
⎥⎥⎥⎥⎦

K(4) =

⎡
⎢⎢⎢⎢⎣

0
0
0
1
w

⎤
⎥⎥⎥⎥⎦

; K(5) =

⎡
⎢⎢⎢⎢⎣

1
u + a

v
w

H + ua

⎤
⎥⎥⎥⎥⎦

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.49)

Here H is the total enthalpy

H =
E + p

ρ
(11.50)

and E is the total energy per unit volume

E =
1
2
ρV2 + ρe , (11.51)

with
V2 = u2 + v2 + w2 (11.52)

and e denoting the specific internal energy, which for ideal gases, see Sect. 1.2
of Chap. 1, is
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e =
p

(γ − 1)ρ
. (11.53)

Roe chooses the parameter vector

Q ≡

⎡
⎢⎢⎢⎢⎣

q1

q2

q3

q4

q5

⎤
⎥⎥⎥⎥⎦
≡ √

ρ

⎡
⎢⎢⎢⎢⎣

1
u
v
w
H

⎤
⎥⎥⎥⎥⎦

, (11.54)

which has the property that every component ui of U and every component
fi of F(U) in (11.4)–(11.5) is a quadratic in the components qi of Q. For
instance u1 = q2

1 and f1 = q1q2, etc. Actually, the property is also valid for
the components of the G and H fluxes for the full three–dimensional Euler
equations.

As done for the isothermal equations, see equations (11.38), one can ex-
press the jumps ΔU and ΔF in terms of the jump ΔQ via two matrices B̃
and C̃. Roe [407] gives the following expressions

B̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2q̃1 0 0 0 0

q̃2 q̃1 0 0 0

q̃3 0 q̃1 0 0

q̃4 0 0 q̃1 0

q̃5

γ

γ − 1
γ

q̃2
γ − 1

γ
q̃3

γ − 1
γ

q̃4
q̃1

γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.55)

and

C̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q̃2 q̃1 0 0 0

γ − 1
γ

q̃5
γ + 1

γ
q̃2 −γ − 1

γ
q̃3 −γ − 1

γ
q̃4

γ − 1
γ

q̃1

0 q̃3 q̃2 0 0

0 q̃4 0 q̃2 0

0 q̃5 0 0 q̃2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11.56)

The sought Roe matrix is then given by

Ã = B̃C̃
−1

. (11.57)

The eigenvalues of Ã are

λ̃1 = ũ − ã , λ̃2 = λ̃3 = λ̃4 = ũ , λ̃5 = ũ + ã (11.58)
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and the corresponding right eigenvectors are

K̃
(1)

=

⎡
⎢⎢⎢⎢⎣

1
ũ − ã

ṽ
w̃

H̃ − ũã

⎤
⎥⎥⎥⎥⎦

; K̃
(2)

=

⎡
⎢⎢⎢⎢⎣

1
ũ
ṽ
w̃

1
2 Ṽ 2

⎤
⎥⎥⎥⎥⎦

; K̃
(3)

=

⎡
⎢⎢⎢⎢⎣

0
0
1
0
ṽ

⎤
⎥⎥⎥⎥⎦

K̃
(4)

=

⎡
⎢⎢⎢⎢⎣

0
0
0
1
w̃

⎤
⎥⎥⎥⎥⎦

; K̃
(5)

=

⎡
⎢⎢⎢⎢⎣

1
ũ + ã

ṽ
w̃

H̃ + ũã

⎤
⎥⎥⎥⎥⎦

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.59)

The symbol r̃ in (11.58), (11.59) denotes a Roe average for a variable r. The
relevant averages are given as follows

ũ =
√

ρLuL +
√

ρRuR√
ρL +

√
ρR

,

ṽ =
√

ρLvL +
√

ρRvR√
ρL +

√
ρR

,

w̃ =
√

ρLwL +
√

ρRwR√
ρL +

√
ρR

,

H̃ =
√

ρLHL +
√

ρRHR√
ρL +

√
ρR

,

ã =
(
(γ − 1)(H̃ − 1

2Ṽ
2
)
) 1

2
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.60)

where Ṽ
2

= ũ2 + ṽ2 + w̃2.
In order to determine completely the Roe numerical flux Fi+ 1

2
we need, in

addition, the wave strengths α̃i. These are obtained by projecting the jump
ΔU onto the right, averaged eigenvectors (11.59), namely

ΔU =
5∑

i=1

α̃iK̃
(i)

. (11.61)

When written in full these equations read

α̃1 + α̃2 + α̃5 = Δu1 , (11.62)

α̃1(ũ − ã) + α̃2ũ + α̃5(ũ + ã) = Δu2 , (11.63)

α̃1ṽ + α̃2ṽ + α̃3 + α̃5ṽ = Δu3 , (11.64)

α̃1w̃ + α̃2w̃ + α̃4 + α̃5w̃ = Δu4 , (11.65)
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α̃1(H̃ − ũã) +
1
2
Ṽ

2
α̃2 + α̃3ṽ + α̃4w̃ + α̃5(H̃ + ũã) = Δu5 . (11.66)

Here the right–hand side terms of equations (11.62)–(11.66) are known: they
are jumps Δui in the conserved quantity ui, namely

Δui = (ui)R − (ui)L .

Before solving these equations we note that in the purely one–dimensional
case

ṽ = w̃ = 0 , α̃3 = α̃4 = 0 , K̃
(3)

= K̃
(4)

= 0 (11.67)

and the problem reduces to solving (11.62), (11.63) and (11.66) for α̃1, α̃2 and
α̃5, with terms involving α̃3 and α̃4 being absent.

For the x–split three dimensional problem the system (11.62)–(11.66) may
be viewed in exactly the same manner as for the one–dimensional case. Use
of equation (11.62) into (11.64) and (11.65) gives directly

α̃3 = Δu3 − ṽΔu1 ; α̃4 = Δu4 − w̃Δu1 . (11.68)

Then one solves (11.62), (11.63) and (11.66) for α̃1, α̃2, α̃5. Computationally,
it is convenient to arrange the solution as follows

α̃2 =
γ − 1
ã2

[
Δu1(H̃ − ũ2) + ũΔu2 − Δu5

]
,

α̃1 =
1
2ã

[Δu1(ũ + ã) − Δu2 − ãα̃2] ,

α̃5 = Δu1 − (α̃1 + α̃2) ,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(11.69)

where

Δu5 = Δu5 − (Δu3 − ṽΔu1)ṽ − (Δu4 − w̃Δu1)w̃ . (11.70)

An Algorithm

To compute the Roe numerical flux Fi+ 1
2

according to any of the formulae
(11.27)–(11.29) we do the following:

(1) Compute the Roe average values for ũ, ṽ, w̃, H̃ and ã according to (11.60).
(2) Compute the averaged eigenvalues λ̃i according to (11.58).

(3) Compute the averaged right eigenvectors K̃
(i)

according to (11.59).
(4) Compute the wave strengths α̃i according to (11.68)–(11.70).
(5) Use all of the above quantities to compute Fi+ 1

2
, according to any of the

formulae (11.27)–(11.29).

For the pure one–dimensional case, virtually all the required information
for the application of the above algorithm is contained in this Chapter. An
entropy fix is given in Sect. 11.4. The remaining items such as choosing the
time step size and boundary conditions are found in Chap. 6. For two and
three dimensional applications the reader requires the additional information
provided in Chap. 16.
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11.3 The Roe–Pike Method

Recall that solving the Riemann problem (11.4) approximately using Roe’s

method means finding averaged eigenvalues λ̃i, right eigenvectors K̃
(i)

and
wave strengths α̃i, so that the Roe numerical flux may be evaluated by any
of the formulae (11.27)–(11.29). In the previous section this task was carried
out by following the original Roe approach, where the averaged Jacobian
matrix Ã is first sought. In this section we present a different approach, due
to Roe and Pike [416], whereby the construction of Ã is avoided; instead,
one seeks directly averages of a set of scalar quantities that can then be used
to evaluate the eigenvalues, right eigenvectors and wave strengths needed in
formulae (11.27)–(11.29).

11.3.1 The Approach

The approach assumes, of course, that the appropriate original system is
hyperbolic and that analytical expressions for the eigenvalues λi and the set of
linearly independent right eigenvectors K(i) are available. Analytical expres-
sions α̂i for the wave strengths require extra work via an extra linearisation.
One then selects a suitable vector of scalar quantities, typically the vector W
of primitive variables in (11.6) or variations of it, for which an average W̃ is

to be found. The values of λ̃i, K̃
(i)

and α̃i are then found by direct evaluation
of the analytical expressions for λi, K(i) and α̂i at the state W̃. There are
two distinct steps in the Roe–Pike approach.

Linearisation about a Reference State

To find analytical expressions for the wave strengths αi Roe and Pike
assume a linearised form of the governing equations based on the assumption
that the data states UL and UR are close to a reference state Û, to order
O(Δ2). Linearisation of the conservation laws in (11.4) about this state Û
gives

Ut + F(U)x ≡ Ut +
(

∂F
∂U

)
Ux ≈ Ut + ÂUx ,

where
Ut + ÂUx = 0 (11.71)

is an approximation to the original conservation laws. Here Â is the Jacobian
matrix, assumed available, computed at the reference state Û. Eigenvalues
and right eigenvectors follow. Analytical expressions for the wave strengths
α̂i in the solution of the linear Riemann problem

Ut + ÂUx = 0 ,

U(x, 0) =
{

UL if x < 0 ,
UR if x > 0 ,

⎫
⎬
⎭ (11.72)
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are found by decomposing the data jump ΔU onto the right eigenvectors, in
the usual way; see Sect. 2.3 of Chap. 2 and Sect. 5.4 of Chap. 5. That is we
solve

ΔU = UR − UL =
m∑

k=1

α̂kK̂
(k)

. (11.73)

Before proceeding, we note that this linearisation is not the Roe linearisation
resulting from the Roe matrix Ã; it is merely a step to find some sufficiently
simple analytical expressions for the wave strengths, which can then be eval-
uated at the unknown Roe–Pike average state W̃, yet to be found.

The Algebraic Problem for the Average State

The sought Roe–Pike average vector W̃ is then found by first setting

α̃i = α̂i(W̃) , λ̃i = λi(W̃) , K̃
(i)

= K(i)(W̃) ; (11.74)

the analytical expressions for λi, K(i) and α̂i are evaluated at the unknown
average state W̃. Then W̃ is found by solving the algebraic problem posed
by the following two sets of equations

ΔU = UR − UL =
m∑

k=1

α̃kK̃
(k)

(11.75)

and

ΔF = FR − FL =
m∑

k=1

α̃kλ̃kK̃
(k)

. (11.76)

In the following section we illustrate the Roe–Pike approach in terms of a
simple system of conservation laws.

11.3.2 The Isothermal Equations

We solve the Riemann problem

Ut + F(U)x = 0 ,

U(x, 0) =
{

UL if x < 0 ,
UR if x > 0 ,

⎫
⎬
⎭ (11.77)

for the isothermal equations using the Roe–Pike approach; the vectors U
and F are given in (11.32). The exact Jacobian matrix, eigenvalues and right
eigenvectors are

A(U) =
[

0 1
a2 − u2 2u

]
,

λ1 = u − a , λ2 = u + a ,

K(1) =
[

1
u − a

]
, K(2) =

[
1

u + a

]
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.78)
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Linearisation about a Reference State

Assume that the data states UL and UR are close to a state Û to order
O(Δ2). Linearisation of the conservation laws in (11.77) about this state Û
gives linear Riemann problem

Ut + ÂUx = 0 ,

U(x, 0) =
{

UL if x < 0 ,
UR if x > 0 .

⎫
⎬
⎭ (11.79)

Here Â is the Jacobian A evaluated at the reference state Û, which in terms
of primitive variables is denoted by Ŵ = (ρ̂, û)T . The complete eigenstructure
is

A(U) =
[

0 1
a2 − û2 2û

]
,

λ̂1 = û − a , λ̂2 = û + a ,

K̂(1) =
[

1
û − a

]
, K̂(2) =

[
1

û + a

]
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.80)

Recall that the sound speed a is constant. We look for solutions of (11.79).
The system is linear with constant coefficients. One can therefore deploy ap-
propriate techniques studied in Sect. 2.3 of Chap. 2 and Sect. 5.4 of Chap. 5.
We decompose the data jump ΔU onto the right eigenvectors as follows

ΔU = UR − UL =
2∑

k=1

α̂kK̂
(k)

= α̂1K̂
(1)

+ α̂2K̂
(2)

, (11.81)

where analytical expressions for the coefficients α̂1, α̂2 are to be found. Writing
(11.81) in full gives

Δρ = ρR − ρL = α̂1 + α̂2 , (11.82)

Δ(ρu) = (ρu)R − (ρu)L = α̂1(û − a) + α̂2(û + a) . (11.83)

It can easily be shown that

Δ(ρu) = ρ̂Δu + ûΔρ + O(Δ2) , (11.84)

where the leading term in O(Δ2) is

(ρR − ρ̂)(uR − û) − (ρL − ρ̂)(uL − û) .

By neglecting O(Δ2), (11.83) becomes

ρ̂Δu + ûΔρ = α̂1(û − a) + α̂2(û + a) . (11.85)

Solving equations (11.82) and (11.85) gives the sought analytical expressions
for α̂1 and α̂2, namely
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α̂1 =
1
2

[
Δρ − ρ̂

Δu

a

]
, α̂2 =

1
2

[
Δρ + ρ̂

Δu

a

]
. (11.86)

Compare these with expressions (11.46). The reader may easily verify that,
to within O(Δ2), the following two sets of equations are identically satisfied

ΔU = UR − UL =
2∑

k=1

α̂kK̂
(k)

, ΔF = FR − FL =
2∑

k=1

α̂kλ̂kK̂
(k)

. (11.87)

Here we give details for the second set. In full, these equations read

Δ(ρu) = α̂1λ̂1 + α̂2λ̂2 , (11.88)

Δ(ρu2 + ρa2) = α̂1λ̂1(û − a) + α̂2λ̂2(û + a) . (11.89)

Equation (11.88) may be written as

ρ̂Δu + ûΔρ = û(α̂1 + α̂2) + a(α̂2 − α̂1) ,

which after using (11.86) becomes an identity. To prove (11.89) we first expand
its left–hand side

Δ(ρu2 + ρa2) = 2ρ̂ûΔu + û2Δρ + a2Δρ .

The right–hand side of (11.89) can be expressed as

(α̂1 + α̂2)(û2 + a2) + 2ûa(α̂2 − α̂1) .

Therefore, after use of (11.86), equation (11.89) becomes an identity and thus
the second set of equations in (11.87), to order O(Δ2), is identically satisfied.

The Algebraic Problem for the Average State

For the general case in which the data states UL and UR are not necessar-
ily close, the Roe–Pike approach proposes the algebraic problem of finding the
Roe–Pike averages ρ̃ and ũ such that the two conditions (11.75) and (11.76)
are valid, namely

ΔU =
2∑

k=1

α̃kK̃
(k)

, ΔF =
2∑

k=1

α̃kλ̃kK̃
(k)

. (11.90)

Here, according to (11.74), α̃k, λ̃k and K̃
(k)

are obtained by evaluating the
available analytical expressions at the sought averages ρ̃, ũ. For the wave
strengths these are given by (11.86). For the eigenvalues and right eigenvectors
they are given by (11.78). We then set

α̃1 =
1
2

[
Δρ − ρ̃

Δu

a

]
, α̃2 =

1
2

[
Δρ + ρ̃

Δu

a

]
, (11.91)
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λ̃1 = ũ − a , λ̃2 = ũ + a , (11.92)

K̃
(1)

=
[

1
ũ − a

]
, K̃

(2)
=
[

1
ũ + a

]
. (11.93)

Writing conditions (11.90) in full produces

Δρ = α̃1 + α̃2 , (11.94)

Δ(ρu) = α̃1(ũ − a) + α̃2(ũ + a) , (11.95)

Δ(ρu) = λ̃1α̃1 + λ̃2α̃2 , (11.96)

Δ(ρu2 + a2ρ) = λ̃1α̃1(ũ − a) + λ̃2α̃2(ũ + a) . (11.97)

These are a set of four non–linear algebraic equations for the two unknowns ρ̃
and ũ. Note however that, by virtue of (11.91), (11.94) is an identity, for any
average value ρ̃. Also, (11.95) is identical to (11.96) and thus we work with
(11.96) and (11.97) only. From equation (11.96) one obtains

Δ(ρu) = ũ(α̃1 + α̃2) + a(α̃2 − α̃1).

Use of (11.91) here leads to

Δ(ρu) = ρ̃Δu + ũΔρ . (11.98)

From (11.97) we write

Δ(ρu2 + ρa2) = (α̃1 + α̃2)(ũ2 + a2) + 2aũ(α̃2 − α̃1) ,

which after using (11.91) and the exact relation

Δ(ρu2 + ρa2) = Δ(ρu2) + a2Δρ

leads to the result
Δ(ρu2) = 2ũρ̃Δu + ũ2Δρ . (11.99)

Elimination of ρ̃ from (11.98) and (11.99) leads to a quadratic equation for ũ,
namely

Δρũ2 − 2Δ(ρu)ũ + Δ(ρu2) = 0 . (11.100)

This equation has two solutions, namely

ũ =
Δ(ρu) ±

√
[Δ(ρu)]2 − ΔρΔ(ρu2)

Δρ
. (11.101)

After using the definition Δr = rR − rL the discriminant is found to be

ρLρR(Δu)2 ,

which simplifies (11.101) to



11.3 The Roe–Pike Method 363

ũ =
Δ(ρu) ± Δu

√
ρLρR

Δρ
. (11.102)

The root obtained by taking the negative sign in (11.102) produces the Roe–
averaged velocity

ũ =
√

ρLuL +
√

ρRuR√
ρL +

√
ρR

. (11.103)

Compare (11.103) with (11.43). From (11.98) we obtain

ρ̃ =
√

ρLρR . (11.104)

We have thus found algebraic expressions for the sought Roe–Pike averages ρ̃
and ũ. We observe that the second root obtained by taking the positive sign
in (11.102) leads to the spurious solution

ũ =
√

ρRuR −√
ρLuL√

ρR −√
ρL

. (11.105)

There is a very good reason for rejecting this as a useful solution; in the trivial
case ρL = ρR, uL �= uR the solution ũ is not even defined.

Having found the Roe–Pike averages ρ̃ and ũ we can then compute the wave
strengths α̃k, the eigenvalues λ̃k and the right eigenvectors K̃

(k)
according to

expressions (11.91)–(11.93). The Roe numerical flux Fi+ 1
2

to be used in the
conservative formula (11.2) can now be obtained from any of the relations
(11.27)–(11.29).

11.3.3 The Euler Equations

We solve the Riemann problem (11.4) for the x–split, three dimensional
Euler equations using the Roe–Pike method. Assuming the analytical expres-
sions (11.48)–(11.49) for the eigenvalues and eigenvectors, one then linearises
the equations about a state Û to find analytical expressions for the wave
strengths; this is done under the assumption that both data states UL,UR

are close to Û to O(Δ2). This leads to the linear system

Ut + ÂUx = 0 ,

U(x, t) =
{

UL , x < 0 ,
UR , x > 0 .

⎫
⎪⎬
⎪⎭

(11.106)

The Jacobian matrix Â is obtained by evaluating the exact Jacobian matrix
(11.47) at the state Û; the eigenvalues λ̂i are

λ̂1 = û − â , λ̂2 = λ̂3 = λ̂4 = û , λ̂5 = û + â (11.107)

and the right eigenvectors K̂(i) are
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K̂(1) =

⎡
⎢⎢⎢⎢⎣

1
û − â

v̂
ŵ

Ĥ − ûâ

⎤
⎥⎥⎥⎥⎦

; K̂(2) =

⎡
⎢⎢⎢⎢⎣

1
û
v̂
ŵ

1
2 V̂ 2

⎤
⎥⎥⎥⎥⎦

; K̂(3) =

⎡
⎢⎢⎢⎢⎣

0
0
1
0
v̂

⎤
⎥⎥⎥⎥⎦

K̂(4) =

⎡
⎢⎢⎢⎢⎣

0
0
0
1
ŵ

⎤
⎥⎥⎥⎥⎦

; K̂(5) =

⎡
⎢⎢⎢⎢⎣

1
û + â

v̂
ŵ

Ĥ + ûâ

⎤
⎥⎥⎥⎥⎦

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.108)

By expanding the data jump ΔU onto the right eigenvectors we write

ΔU =
5∑

i=1

α̂iK̂
(i)

(11.109)

The solution of this 5 × 5 linear system will provide analytical expressions
for the wave strengths α̂i. As a matter of fact we can use the solution for
the wave strengths obtained in the Roe original method, (11.68)–(11.70), and
reinterpret the solution appropriately. These are

α̂3 = Δu3 − v̂Δu1 ,

α̂4 = Δu4 − ŵΔu1 ,

α̂2 = γ−1
â2 [Δu1(Ĥ − û2) + ûΔu2 − Δu5] ,

α̂1 = 1
2â [Δu1(û + â) − Δu2 − âα̂2] ,

α̂5 = Δu1 − (α̂1 + α̂2) ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.110)

where

Δu5 = Δu5 − (Δu3 − v̂Δu1)v̂ − (Δu4 − ŵΔu1)ŵ . (11.111)

By applying the operator

Δ(rs) = r̂Δs + ŝΔr + O(Δ2) (11.112)

and neglecting O(Δ2) we arrive at the following solution:

α̂1 =
1

2â2
[Δp − ρ̂âΔu] ,

α̂2 = Δρ − Δp/â2 ,

α̂3 = ρ̂Δv ,

α̂4 = ρ̂Δw ,

α̂5 =
1

2â2
[Δp + ρ̂âΔu]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.113)
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The second step in the Roe–Pike method is to find an average state

W̃ = (ρ̃, ũ, ṽ, w̃, ã)T , (11.114)

such that the algebraic problem posed by the following two sets of equations

ΔU =
5∑

i=1

α̃iK̃
(i)

, (11.115)

ΔF =
5∑

i=1

α̃iλ̃iK̃
(i)

, (11.116)

is satisfied, where

α̃i = α̂i(W̃) , λ̃i = λi(W̃) , K̃
(i)

= K(i)(W̃) , (11.117)

with λi and K(i) given by (11.48)–(11.49) and α̂i given by (11.113). Details
of the algebra for the one–dimensional case are given by Roe and Pike [416].
For the x–split three dimensional case the solution for the average vector W̃
is

ρ̃ =
√

ρLρR ,

ũ =
√

ρLuL +
√

ρRuR√
ρL +

√
ρR

,

ṽ =
√

ρLvL +
√

ρRvR√
ρL +

√
ρR

,

w̃ =
√

ρLwL +
√

ρRwR√
ρL +

√
ρR

,

H̃ =
√

ρLHL +
√

ρRHR√
ρL +

√
ρR

,

ã =
(
(γ − 1)(H̃ − 1

2Ṽ
2
)
) 1

2
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.118)

where Ṽ
2

= ũ2 + ṽ2 + w̃2. These are identical to the Roe averages obtained
by the original Roe method, see (11.60). Now α̃i, λ̃i and K̃

(i)
are computed

according to (11.117) and then the Roe intercell flux Fi+ 1
2

follows from any
of the formulae (11.27)–(11.29).

An Algorithm

To compute the Roe numerical flux Fi+ 1
2

according to any of the formulae
(11.27)–(11.29) we do the following:



366 11 The Riemann Solver of Roe

(1) Compute the Roe average values according to (11.118).
(2) Compute the eigenvalues λ̃i using the analytical expressions (11.107) eval-

uated on the averages (11.118).
(3) Compute the right eigenvectors using the analytical expressions (11.108)

evaluated on the averages (11.118).
(4) Compute the wave strengths using the analytical expressions (11.113)

evaluated on the averages (11.118).
(5) Use all of the above quantities to compute Fi+ 1

2
, according to any of the

formulae (11.27)–(11.29).

Before applying the scheme as described to practical problems, a modi-
fication to handle sonic flow correctly is required. This is the subject of the
next section.

11.4 An Entropy Fix

Linearised Riemann problem solutions consist of discontinuous jumps only.
See Sect. 2.3 of Chap. 2. This can be a good approximation for contacts and
shocks, in that the discontinuous character of the wave is correct, although
the size of the jump may not be correctly approximated by the linearised
solution. Rarefaction waves, on the other hand, carry a continuous change
in flow variables, and as time increases, they tend to spread; that is spatial
gradients tend to decay. Quite clearly then, the linearised approximation via
discontinuous jumps is grossly incorrect. In a practical computational set up
however, it is only in the case in which the rarefaction wave is transonic, or
sonic, where linearised approximations encounter difficulties; these show up
in the form of unphysical, entropy violating discontinuous waves, sometimes
called rarefaction shocks.

11.4.1 The Entropy Problem

Consider the Riemann problem whose initial data is that of Test 1 in Table
11.1. The structure of the exact solution of this problem, depicted in Fig. 11.2,
contains a left sonic rarefaction, a contact discontinuity of speed u∗ and a right
shock wave. As the left rarefaction is sonic the eigenvalue λ1 = u− a changes
from negative to positive, as the wave is crossed from left to right. There is a
point at which λ1 = u − a = 0, giving the sonic flow condition u = a.

λ1(UL) = SHL = uL − aL < 0

is the speed of the head of the rarefaction and

λ1(U∗L) = STL = u∗ − a∗L > 0

is the speed of the tail. Fig. 11.4 shows the numerical (symbols) and exact
(line) solutions of this problem, where the numerical solution is obtained by
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Roe’s method as described so far. The numerical solution within the rarefac-
tion exhibits a discontinuity within the wave; this discontinuity is unphysical,
it violates the entropy condition. See Sect. 2.4.2 of Chap. 2. Recall that a
physically admissible discontinuity of speed S requires Sb ≥ S ≥ Sa where Sb

and Sa are characteristic speeds behind and ahead of the wave respectively.
That is, characteristics move into the discontinuity; the limiting case of par-
allel characteristic speeds is that of a contact discontinuity. For the example
above, the opposite happens. See Sect. 2.4.2 of Chap. 2, for a discussion on
entropy–violating solutions.

L R

*L *R

*

U

a a
u u

U

*

= u+a(

)

)

( = u
1

Left sonic rarefaction

λ

λ2

3

t

u - a )
HL TL

x
0

=S S( λ

Fig. 11.2. Left transonic rarefaction wave. Left eigenvalue λ1 = u− a changes sign
as the wave is crossed from left to right

Roe’s solver can be modified so as to avoid entropy violating solutions. This
is usually referred to as an entropy fix. Harten and Hyman [243] suggested
an entropy fix for Roe’s method, which has widespread use. Other ways of
correcting the scheme have been discussed by Roe and Pike [416], Roe [414],
Sweby [469] and Dubois and Mehlman [167], amongst others. Here we present
the details of the Harten–Hyman approach.

11.4.2 The Harten–Hyman Entropy Fix

The general approach is presented in the original paper of Harten and
Hyman of 1983 [243]. A description can also be found in [308]. The presen-
tation here is tailored specifically to the time–dependent Euler equations, for
which we only need to consider the left and right non–linear waves associated
with the eigenvalues λ1 = u − a and λ5 = u + a respectively. Our version of
the Harten–Hyman entropy fix relies on estimates for particle velocity u∗ and
sound speeds a∗L, a∗R in the Star Region; see Figs. 11.1 and 11.2. Various
ways of finding these are given in Sect. 11.4.3.
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Left Transonic Rarefaction

Consider the situation depicted in Fig. 11.2. Assuming u∗ and a∗L are
available, we compute the speeds

λL
1 = uL − aL ; λR

1 = u∗ − a∗L . (11.119)

If
λL

1 < 0 < λR
1 , (11.120)

then the left wave is a transonic, or sonic, rarefaction wave. In these cir-
cumstances the entropy fix is required and is enforced as follows. The single
jump

U∗L − UL = α̃1K̃
(1)

(11.121)

travelling with speed λ̃1 is split into two smaller jumps USL −UL and U∗L −
USL travelling respectively at speeds λL

1 and λR
1 , where USL is a transonic

state yet to be found; see Fig. 11.3. Application of the integral form of the
conservation laws, see Chaps. 3 and 10, gives

λR
1 (USL − U∗L) + λL

1 (UL − USL) = λ̃1(UL − U∗L) , (11.122)

from which we obtain

USL =
(λ̃1 − λL

1 )UL + (λR
1 − λ̃1)U∗L

λR
1 − λL

1

. (11.123)

To compute the Roe intercell flux we adopt the one–sided formulae (11.27),
namely

U

λ λ
λ

U

x

U U

U

L

11
L R

1

*L

L

*L

SL

t

0

Fig. 11.3. Entropy fix for left transonic rarefaction wave. Single jump U∗L − UL

travelling with speed λ̃1 is split into the two jumps USL − UL and U∗L − USL

travelling with speeds λL
1 and λR

1 . Profile shown is a representation a single variable
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Fi+ 1
2

= FL +
∑

λ̃k≤0

λ̃kα̃kK̃
(k)

, (11.124)

where in the present case the summation applies to the single jump USL−UL

travelling with speed λL
1 < 0; in view of (11.122) the jump is

USL − UL =
(λR

1 − λ̃1)
(λR

1 − λL
1 )

(U∗L − UL) . (11.125)

But the Roe approximation gives

U∗L − UL = α̃1K̃
(1)

(11.126)

and thus the flux jump (ΔF)L
1 across the wave of speed λL

1 is

(ΔF)L
1 = λL

1

(
λR

1 − λ̃1

λR
1 − λL

1

)
α̃1K̃

(1)
. (11.127)

By defining the new wave speed

λ1 = λL
1

(
λR

1 − λ̃1

λR
1 − λL

1

)
, (11.128)

the intercell flux (11.27) becomes

Fi+ 1
2

= FL + λ1α̃1K̃
(1)

. (11.129)

Right Transonic Rarefaction

For a right transonic rarefaction, the entropy fix procedure is entirely anal-
ogous to the left rarefaction case. Assuming the speeds u∗ and a∗R are avail-
able, we compute the two wave speeds

λL
5 = u∗ + a∗R , λR

5 = uR + aR . (11.130)

If
λL

5 < 0 < λR
5 (11.131)

then the right wave is a transonic rarefaction wave. The transonic state USR

is defined between the waves of speeds λL
5 and λR

5 and is given by

USR =
(λR

5 − λ̃5)UR + (λ̃5 − λL
5 )U∗R

λR
5 − λL

5

. (11.132)

Next we define the new wave speed

λ5 = λR
5

(
λ̃5 − λL

5

λR
5 − λL

5

)
(11.133)
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and then use the one–sided flux formula (11.28) to compute the numerical
flux. The resulting Roe numerical flux is

Fi+ 1
2

= FR − λ5α̃5K̃
(5)

. (11.134)

In the present version of the Harten–Hyman entropy fix we have used
the one–sided flux formulae (11.27) and (11.28). The procedure can be easily
adapted for use in conjunction with the centred formulae (11.29), if desired.

Next we discuss ways of finding the speeds u∗, a∗L and a∗R needed to
implement the entropy fix.

11.4.3 The Speeds u∗, a∗L, a∗R

The star states U∗L, U∗R are required in order to obtain the speeds u∗,
a∗L, a∗R and thus the characteristic speeds in (11.119) and (11.130). We
present various possible alternatives.

The Roe–Averaged States

Given the Roe–averaged α̃i and K̃
(i)

one can find the state U∗L as

U∗L = UL + α̃1K̃
(1)

, (11.135)

which leads to

ρ∗L = ρL + α̃1 , u∗ =
ρLuL + α̃1(ũ − ã)

ρL + α̃1
,

p∗ = (γ − 1)
[
EL + α̃1(H̃ − ũã) − 1

2ρ∗Lu2
∗

]
.

⎫
⎪⎬
⎪⎭

(11.136)

Then we compute the sound speed

a∗L =
√

γp∗
ρ∗L

(11.137)

and thus the speeds λL
1 and λR

1 in Eq. (11.119) follow. For the right wave one
has

U∗R = UR − α̃5K̃
(5)

, (11.138)

which produces

ρ∗R = ρR − α̃5 , u∗ =
ρRuR − α̃5(ũ + ã)

ρR − α̃5
,

p∗ = (γ − 1)
[
ER − α̃5(H̃ + ũã) − 1

2ρ∗Ru2
∗

]
.

⎫
⎪⎬
⎪⎭

(11.139)

The sound speed follows as a∗R =
√

γp∗
ρ∗R

and thus the wave speeds λL
5 and

λR
5 in Eq. (11.130) are determined.
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The PVRS Approximation

Another way of estimating the required wave speeds is by using the
Primitive–Variable Riemann Solver (PVRS) of Toro [502] presented in Sect.
9.3 of Chap. 9. The relevant solution values are

p∗ = 1
2 (pL + pR) + 1

2 (uL − uR)ρ̄ā ,
u∗ = 1

2 (uL + uR) + 1
2 (pL − pR)/(ρ̄ā) ,

ρ∗L = ρL + (uL − u∗)ρ̄/ā ,
ρ∗R = ρR + (u∗ − uR)ρ̄/ā ,

⎫
⎪⎪⎬
⎪⎪⎭

(11.140)

with
ρ̄ =

1
2
(ρL + ρR) , ā =

1
2
(aL + aR). (11.141)

In order to avoid negative pressures we recommend replacing the linearised
solution p∗ by max {0, p∗}. The sound speeds a∗L, a∗R are then computed in
the usual way.

TRRS Approximation

Another possibility is to use the Two–Rarefaction Riemann Solver (TRRS)
discussed in Chap. 9, Sect. 9.4.1. The pressure p∗ is given by

p∗ =

[
aL + aR − γ−1

2 (uR − uL)
aL/pz

L + aR/pz
R

] 1
z

, (11.142)

with z = γ−1
2γ . For the left non–linear wave the sound speed and particle

velocity follow directly as

a∗L = aL(p∗/pL)z , u∗ = uL +
2

(γ − 1)
(aL − a∗L) . (11.143)

For the right non–linear wave we have

a∗R = aR(p∗/pR)z , u∗ = uR +
2

(γ − 1)
(a∗R − aR) . (11.144)

Hence speeds (11.119) and (11.130) are determined.

Other Alternatives

Both the PVRS and the Roe linearised solutions for the speeds u∗, a∗L,
a∗R may fail in the vicinity of low density flow [182]. The TRRS approxima-
tion presented above would not suffer from such difficulties; in fact, in the
case in which both non–linear waves are rarefactions such an approximation
would be exact. But as seen in equations (11.142)–(11.144) there are four
fractional powers to be computed in each case, which makes this approxima-
tion rather expensive to use. A robust and yet more efficient scheme is the
Two–Shock Riemann Solver (TSRS) [509] of Sect. 9.4.2, Chap. 9. Even better
is the adaptive Riemann solver scheme of Sect. 9.5.2, Chap. 9.
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11.5 Numerical Results and Discussion

Here we illustrate the performance of Godunov’s first–order upwind method
used in conjunction with the Roe approximate Riemann solver, discuss the
results and point directions for extending the method.

11.5.1 The Tests

We select five test problems for the one–dimensional, time dependent Euler
equations for ideal gases with γ = 1.4; these have exact solutions. In all
chosen tests, data consists of two constant states WL = [ρL, uL, pL]T and
WR = [ρR, uR, pR]T , separated by a discontinuity at a position x = x0. The
states WL and WR are given in Table 11.1. The exact and numerical solutions
are found in the spatial domain 0 ≤ x ≤ 1. The numerical solution is computed
with M = 100 cells and the CFL condition is as for all previous computations,
see Chap. 6; the chosen Courant number coefficient is Ccfl = 0.9; boundary
conditions are transmissive.

The exact solutions were found by running the code HE-E1RPEXACT of
the library NUMERICA [519] and the numerical solutions were obtained by
running the code HE-E1GODFLUX of NUMERICA.

Test ρL uL pL ρR uR pR

1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950
5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01

Table 11.1. Data for five test problems with exact solution, for the
time–dependent, one dimensional Euler equations

Test 1 is a modified version of Sod’s problem [453]; the solution has a right
shock wave, a right travelling contact wave and a left sonic rarefaction wave;
this test is useful in assessing the entropy satisfaction property of numerical
methods. The solution of Test 2 consists of two symmetric rarefaction waves
and a trivial contact wave; the Star Region between the non–linear waves is
close to vacuum, which makes this problem a suitable test for assessing the
performance of numerical methods for low–density flows. Test 3 is designed to
assess the robustness and accuracy of numerical methods; its solution consists
of a strong shock wave of shock Mach number 198, a contact surface and a
left rarefaction wave. Test 4 is also a very severe test, its solution consists of
three strong discontinuities travelling to the right. A detailed discussion on the
exact solution of the test problems is found in Sect. 4.3.3 of Chap. 4. Test 5 is
also designed to test the robustness of numerical methods but the main reason
for devising this test is to assess the ability of numerical methods to resolve
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slowly–moving contact discontinuities. The exact solution of Test 5 consists of
a left rarefaction wave, a right–travelling shock wave and a stationary contact
discontinuity. For each test problem we select a convenient position x0 of the
initial discontinuity and the output time. These are stated in the legend of
each figure displaying computational results.

11.5.2 The Results

The computed results for Tests 1 to 5 using the Godunov first–order
method in conjunction with the Roe approximate Riemann solver are shown
in Figs. 11.4–11.8, where the numerical solution is shown by the symbols and
the full line denotes the exact solution. As discussed earlier, Fig. 11.4 shows
the results obtained from the Roe Riemann solver without the entropy fix and,
as expected, the computed solution is obviously incorrect. Fig. 11.5 shows the
corresponding results from the modified scheme using the Harten–Hyman en-
tropy fix presented in the previous section. These results are, to plotting accu-
racy, almost indistinguishable from those obtained by the Godunov method in
conjunction with the exact Riemann solver; see Fig. 6.8, Chap. 6. As a matter
of fact, near the sonic point, the modified Roe solution looks slightly better;
it also looks better than the Flux Vector Splitting solution, with the van Leer
splitting, see Fig. 8.4 of Chap. 8. The HLL and HLLC solutions of Chap.
10, still seem to be the most accurate near sonic points. Compare also with
the Osher results of Chap. 12. As anticipated, the Roe solver will fail near
low–density flows; Test 2 contains two strong rarefactions with a low density
and low pressure region in the middle and the Roe method, as described, does
actually fail on this test. To compute successfully this kind of flows one must
modify the Roe solver following the methodology of Einfeldt et. al. [182]. The
results for Tests 3 and 4 are virtually identical to those of Godunov’s method
with the exact Riemann solver, as the reader can verify by comparing Figs.
11.6 and 11.7 with Figs. 6.10 and 6.11 of Chap. 6. The results for Test 5 are
also very similar to those obtained from the Godunov method with the exact
Riemann solver; note however that the (non–isolated) stationary contact is
not as sharply resolved as with the approximate HLLC Riemann solver of
Chapt. 10, see Fig. 10.9. As expected of course, the resolution of the station-
ary contact is better than that of the Flux Vector Splitting Method with the
Steger–Warming splitting and that with the van Leer splitting, see Figs. 8.14
and 8.15 of Chap. 8.

11.6 Extensions

The Roe approximate Riemann solver, following the original method of
Roe and that of Roe and Pike, has been presented and illustrated via the
isothermal equations of gas dynamics and the split three–dimensional, time
dependent Euler equations. Details of the Roe solver for the three–dimensional
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steady supersonic Euler equations are found in the original paper of Roe [407].
For one–dimensional applications all the required information is contained in
this chapter and Chap. 6. Second–order Total Variation Diminishing (TVD)
extensions of the schemes are presented in Chap. 13 for scalar problems and
in Chap. 14 for non–linear one dimensional systems. In chap. 15 we present
techniques that allow the extension of these schemes to solve problems with
source terms. In Chap. 16 we study techniques to extend the methods of this
chapter to three–dimensional problems.
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Fig. 11.4. Godunov’s method with Roe’s Riemann solver (no entropy fix) for Test
1, x0 = 0.3. Numerical (symbol) and exact (line) solutions compared at time 0.2
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