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The HLL and HLLC Riemann Solvers

The approximate Riemann solver proposed by Harten Lax and van Leer
(HLL) in 1983 requires estimates for the fastest signal velocities emerging
from the initial discontinuity at the interface, resulting in a two–wave model
for the structure of the exact solution. A more accurate method is the HLLC,
introduced by Toro and collaborators in 1992. This method assumes a three–
wave model, resulting in better resolution of intermediate waves.

10.1 Introduction

For the purpose of computing a Godunov flux, Harten, Lax and van Leer
[244] presented a novel approach for solving the Riemann problem approxi-
mately. The resulting Riemann solvers have become known as HLL Riemann
solvers. In this approach an approximation for the intercell numerical flux is
obtained directly, unlike the Riemann solvers presented previously in Chaps.
4 and 9. The central idea is to assume, for the solution, a wave configuration
that consists of two waves separating three constant states. Assuming that
the wave speeds are given by some algorithm, application of the integral form
of the conservation laws gives a closed–form, approximate expression for the
flux. The approach produced practical schemes after the contributions of Davis
[150] and Einfeldt [181], who independently proposed various ways of comput-
ing the wave speeds required to completely determine the intercell flux. The
two–wave HLL approach, along with the wave speed estimates proposed by
Einfeldt [181] is known as the HLLE solver. The resulting HLL-type Riemann
solvers form the bases of very efficient and robust approximate Godunov–type
methods.

One difficulty with these schemes, however, is the assumption of a two–
wave configuration. This is correct only for hyperbolic systems of two equa-
tions, such as the one–dimensional shallow water equations. For larger sys-
tems, such as the Euler equations or the split two–dimensional shallow wa-
ter equations for example, the two–wave assumption is incorrect. As a con-
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sequence the resolution of physical features such as contact surfaces, shear
waves and material interfaces, can be very inaccurate. For the limiting case
in which these features are stationary relative to the mesh, the resulting nu-
merical smearing is unacceptable. In view of this situation Einfeldt proposed
[181] a modification to the HLLE scheme, called HLLM, in which the single
intermediate state in the HLL approach is modified by means of a linear distri-
bution. The modification involves some parameters that control the amount
of excessive dissipation for intermediate waves. Particular choices of these
parameters and of the wave speed estimates reduce the HLLM scheme to a
modified version of the Roe solver. See [182] for further details on both HLLE
and HLLEM.

A different approach to remedy the problem of intermediate waves in the
HLL approach waves was taken by Toro, Spruce and Speares in 1992 [541],
[542]. They proposed the HLLC Riemann solver (C standing for Contact), as
applied to the time–dependent Euler equations. HLLC is a three–wave model,
resulting two–star states for the intermediate region of the Riemann–problem
solution fan. A precursor to HLLC was also anticipated in [505]. Early appli-
cations of HLLC include the steady supersonic two–dimensional Euler equa-
tions [532] and the time–dependent two dimensional shallow water equations
[193], [194]. Batten and collaborators [32] analyzed the HLLC scheme and
proposed new ways of estimating the wave speeds. See also the work of Bat-
ten, Leschziner and Goldberg [33], in which they proposed implicit versions of
the HLLC Riemann solver, with application to turbulent flows. In later work
by Linde and others [324], [325] modifications to the HLL two–wave approach
were also explored, in order to reduce numerical dissipation of contact waves.

In the last decade or so we have seen further developments of the HLLC
method as well as ambitious applications. A quick electronic search, by typing
for example HLLC solver, will give hundreds of useful entries on the subject.
Recall that the Euler equations have three distinct characteristic fields in one,
two and three space dimensions, see Chapter 3, section 3.2. This is why HLLC
as proposed in [541], [542], [96] is a complete Riemann solver, for the Euler
equations; that is the approximate wave structure of HLLC contains all the
characteristic fields of the exact problem. However, for systems with eigen-
structure containing more than three distinct characteristic fields, the HLLC
becomes incomplete, tending to behave like HLL for the one–dimensional Euler
equations. The incomplete character of a Riemann solver affects the resolu-
tion of intermediate waves, particularly when these move slowly relative to
the mesh. Therefore, the obvious way of improving the HLLC approach is to
admit the correct number of characteristic fields for the system of interest.
Works along these lines include [230], [474] and [75]. Other interesting devel-
opments and ambitious applications are found in the following works, to name
but a few, [24], [553], [54], [54], [74], [360], [580], [318], [397], [351], [334], [572],
[6], [53], [285], [199], [255], [237], [382], [361], [86], [425], [602].

In this Chapter we present the HLL and HLLC Riemann solvers as applied
to the three–dimensional, time dependent Euler equations. The principles can
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easily be extended to solve other hyperbolic systems. Useful background read-
ing is found in Chaps. 3, 4, 6 and 9. The rest of this chapter is organised as
follows: Sect. 10.1 recalls the Riemann problem. In Sect. 10.3 we present the
original approach of Harten, Lax and van Leer. In Sect. 10.4 we present the
HLLC Riemann solver and in Sect. 10.5 we give various algorithms for comput-
ing the required wave speeds. A summary of the HLLC schemes is presented in
Sect. 10.6. In Sect. 10.7 we analyse the behaviour of the approximate Riemann
solvers in the presence of contacts and passive scalars. Numerical results are
shown in Sect. 10.8 and in Sect. 10.9 contains some concluding remarks.

10.2 The Riemann Problem

We are concerned with solving numerically the general Initial Boundary
Value Problem (IBVP)

PDEs : Ut + F(U)x = 0 ,
ICs : U(x, 0) = U(0)(x) ,
BCs : U(0, t) = Ul(t) , U(L, t) = Ur(t) ,

⎫
⎬
⎭ (10.1)

in a domain 0 ≤ x ≤ L, with appropriate boundary conditions. We use the
explicit conservative formula

Un+1
i = Un

i − Δt

Δx
[Fi+ 1

2
− Fi− 1

2
] , (10.2)

with the numerical flux Fi+ 1
2

yet to be defined.

10.2.1 The Godunov Flux

In Chap. 6 we defined the Godunov intercell numerical flux as

Fi+ 1
2

= F(Ui+ 1
2
(0)) , (10.3)

in which Ui+ 1
2
(0) is the exact similarity solution Ui+ 1

2
(x/t) of the Riemann

problem
Ut + F(U)x = 0 ,

U(x, 0) =
{

UL if x < 0 ,
UR if x > 0 ,

⎫
⎬
⎭ (10.4)

evaluated at x/t = 0. Fig. 10.1 shows the structure of the exact solution of
the Riemann problem for the x–split, three dimensional Euler equations, for
which the vectors of conserved variables and fluxes are

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

. (10.5)
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The value x/t = 0 for the Godunov flux corresponds to the t–axis. See Chaps.
4 and 6 for details. The piece–wise constant initial data, in terms of primitive
variables, is

WL =

⎡
⎢⎢⎢⎢⎣

ρL

uL

vL

wL

pL

⎤
⎥⎥⎥⎥⎦

, WR =

⎡
⎢⎢⎢⎢⎣

ρR

uR

vR

wR

pR

⎤
⎥⎥⎥⎥⎦

. (10.6)

In Chap. 9 we provided approximations to the state Ui+ 1
2
(x/t) and obtained
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Fig. 10.1. Structure of the exact solution of the Riemann problem for the x–split
three dimensional Euler equations. There are five wave families associated with the
eigenvalues u − a, u (of multiplicity 3) and u + a.

a corresponding approximate Godunov method by evaluating the physical flux
function F at this approximate state; see (10.3). The purpose of this chapter
is to find direct approximations to the flux function Fi+ 1

2
following the novel

approach proposed by Harten, Lax and van Leer [238].

10.2.2 Integral Relations

Consider Fig. 10.2, in which the whole of the wave structure arising from
the exact solution of the Riemann problem is contained in the control volume
[xL, xR] × [0, T ], that is

xL ≤ TSL , xR ≥ TSR , (10.7)

where SL and SR are the fastest signal velocities perturbing the initial data
states UL and UR respectively, and T is a chosen time. The integral form of
the conservation laws in (10.4), in the control volume [xL, xR] × [0, T ] reads
∫ xR

xL

U(x, T )dx =
∫ xR

xL

U(x, 0)dx +
∫ T

0

F(U(xL, t))dt −
∫ T

0

F(U(xR, t))dt .

(10.8)
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See Sect. 2.4.1 of Chap. 2 for details on integral forms of conservation laws.
Evaluation of the right–hand side of this expression gives

∫ xR

xL

U(x, T )dx = xRUR − xLUL + T (FL − FR) , (10.9)

where FL = F(UL) and FR = F(UR). We call the integral relation (10.9)
the consistency condition. Now we split the integral on the left–hand side of
(10.8) into three integrals, namely
∫ xR

xL

U(x, T )dx =
∫ TSL

xL

U(x, T )dx +
∫ TSR

TSL

U(x, T )dx +
∫ xR

TSR

U(x, T )dx

and evaluate the first and third terms on the right–hand side. We obtain
∫ xR

xL

U(x, T )dx =
∫ TSR

TSL

U(x, T )dx + (TSL − xL)UL + (xR − TSR)UR .

(10.10)
Comparing (10.10) with (10.9) gives

S

xx TSTS

T

S

RL L R

L R

t

x

Fig. 10.2. Control volume [xL, xR]× [0, T ] on x–t plane. SL and SR are the fastest
signal velocities arising from the solution of the Riemann problem.

∫ TSR

TSL

U(x, T )dx = T (SRUR − SLUL + FL − FR) . (10.11)

On division through by the length T (SR − SL), which is the width of the
wave system of the solution of the Riemann problem between the slowest and
fastest signals at time T , we have

1
T (SR − SL)

∫ TSR

TSL

U(x, T )dx =
SRUR − SLUL + FL − FR

SR − SL
. (10.12)

Thus, the integral average of the exact solution of the Riemann problem be-
tween the slowest and fastest signals at time T is a known constant, provided
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that the signal speeds SL and SR are known; such constant is the right–hand
side of (10.12) and we denote it by

Uhll =
SRUR − SLUL + FL − FR

SR − SL
. (10.13)

We now apply the integral form of the conservation laws to the left portion
of Fig. 10.2, that is the control volume [xL, 0] × [0, T ]. We obtain

∫ 0

TSL

U(x, T )dx = −TSLUL + T (FL − F0L) , (10.14)

where F0L is the flux F(U) along the t–axis. Solving for F0L we find

F0L = FL − SLUL − 1
T

∫ 0

TSL

U(x, T )dx . (10.15)

Evaluation of the integral form of the conservation laws on the control volume
[0, xR] × [0, T ] yields

F0R = FR − SRUR +
1
T

∫ TSR

0

U(x, T )dx . (10.16)

The reader can easily verify that the equality

F0L = F0R

results in the consistency condition (10.9). All relations so far are exact, as
we are assuming the exact solution of the Riemann problem.

10.3 The HLL Approximate Riemann Solver

Harten, Lax and van Leer [244] put forward the following approximate
Riemann solver

Ũ(x, t) =

⎧
⎨
⎩

UL if x
t ≤ SL ,

Uhll if SL ≤ x
t ≤ SR ,

UR if x
t ≥ SR ,

(10.17)

where Uhll is the constant state vector given by (10.13) and the speeds SL and
SR are assumed to be known. Fig. 10.3 shows the structure of this approximate
solution of the Riemann problem, called the HLL Riemann solver. Note that
this approximation consists of just three constant states separated by two
waves. The Star Region consists of a single constant state; all intermediate
states separated by intermediate waves are lumped into the single state Uhll.
The corresponding flux Fhll along the t–axis is found from the relations (10.15)
or (10.16), with the exact integrand replaced by the approximate solution
(10.17). Note that we do not take Fhll = F(Uhll). The non–trivial case of
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Fig. 10.3. Approximate HLL Riemann solver. Solution in the Star Region consists
of a single state Uhll separated from data states by two waves of speeds SL and SR.

interest is the subsonic case SL ≤ 0 ≤ SR. Substitution of the integrand in
(10.15) or (10.16) by Uhll in (10.13) gives

Fhll = FL + SL(Uhll − UL) , (10.18)

or
Fhll = FR + SR(Uhll − UR) . (10.19)

Note that relations (10.18) and (10.19) are also obtained from applying
Rankine–Hugoniot conditions across the left and right waves respectively; see
Sect. 2.4.2 of Chap. 2 and Sect. 3.1.3 of Chap. 3 for details on the Rankine–
Hugoniot conditions. Use of (10.13) in (10.18) or (10.19) gives the HLL flux

Fhll =
SRFL − SLFR + SLSR(UR − UL)

SR − SL
. (10.20)

The corresponding HLL intercell flux for the approximate Godunov method
is then given by

Fhll
i+ 1

2
=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

FL if 0 ≤ SL ,

SRFL − SLFR + SLSR(UR − UL)
SR − SL

, if SL ≤ 0 ≤ SR ,

FR if 0 ≥ SR .

(10.21)

Given an algorithm to compute the speeds SL and SR we have an approximate
intercell flux (10.21) to be used in the conservative formula (10.2) to produce
an approximate Godunov method. Procedures to estimate the wave speeds SL

and SR are given in Sect. 10.5. Harten, Lax and van Leer [244] showed that the
Godunov scheme (10.2), (10.21), if convergent, converges to the weak solution
of the conservation laws. In fact they proved that the converged solution is
also the physical, entropy satisfying, solution of the conservation laws. Their
results actually apply to a larger class of approximate Riemann solvers. One of
the requirements is consistency with the integral form of the conservation laws.
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That is, an approximate solution Ũ(x, t) is consistent with the integral form
of the conservation laws if, when substituted for the exact solution U(x, t) in
the consistency condition (10.9), the right–hand side remains unaltered.

A shortcoming of the HLL scheme is exposed by contact discontinuities,
shear waves and material interfaces, or any type of intermediate waves. For
the Euler equations these waves are associated with the multiple eigenvalue
λ2 = λ3 = λ4 = u. See Fig. 10.1. Note that in the integral (10.12), all
that matters is the average across the wave structure, without regard for the
spatial variations of the solution of the Riemann problem in the Star Region.
As pointed out by Harten, Lax and van Leer themselves [244], this defect of the
HLL scheme may be corrected by restoring the missing waves. Accordingly,
Toro, Spruce and Speares [541], [542] proposed the so called HLLC scheme,
where C stands for Contact. In this scheme the missing middle waves are put
back into the structure of the approximate Riemann solver.

10.4 The HLLC Approximate Riemann Solver

The HLLC scheme is a modification of the HLL scheme described in the
previous section, whereby the missing contact and shear waves in the Euler
equations are restored. The scheme was first presented in terms of the time–
dependent, two dimensional Euler equations [541], [542]. Early applications
include the steady supersonic two–dimensional Euler equations [532] and the
time–dependent two dimensional shallow water equations [193], [194].

10.4.1 Useful Relations

Consider Fig. 10.2, in which the complete structure of the solution of
the Riemann problem is contained in a sufficiently large control volume
[xL, xR] × [0, T ]. Now, in addition to the slowest and fastest signal speeds
SL and SR we include a middle wave of speed S∗; for the Euler equations
this corresponds to the multiple eigenvalue λ2 = λ3 = λ4 = u. See Fig. 10.4.
Evaluation of the integral form of the conservation laws in the control volume
reproduces the result of equation (10.12), even if variations of the integrand
across the wave of speed S∗ are allowed. Note that the consistency condition
(10.9) effectively becomes the condition (10.12). By splitting the left–hand
side of integral (10.12) into two terms we obtain

1
T (SR − SL)

∫ TSR

TSL

U(x, T )dx =
1

T (SR − SL)

∫ TS∗

TSL

U(x, T )dx

+
1

T (SR − SL)

∫ TSR

TS∗

U(x, T )dx .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(10.22)
We define the integral averages
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Fig. 10.4. HLLC approximate Riemann solver. Solution in the Star Region consists
of two constant states separated from each other by a middle wave of speed S∗.

U∗L =
1

T (S∗ − SL)

∫ TS∗

TSL

U(x, T )dx ,

U∗R =
1

T (SR − S∗)

∫ TSR

TS∗

U(x, T )dx .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(10.23)

By substitution of (10.23) into (10.22) and use of (10.12), the consistency
condition (10.9) becomes

(
S∗ − SL

SR − SL

)
U∗L +

(
SR − S∗
SR − SL

)
U∗R = Uhll , (10.24)

where Uhll is given by (10.12)–(10.13). The HLLC approximate Riemann
solver is given as follows

Ũ(x, t) =

⎧
⎪⎪⎨
⎪⎪⎩

UL , if x
t ≤ SL ,

U∗L , if SL ≤ x
t ≤ S∗ ,

U∗R , if S∗ ≤ x
t ≤ SR ,

UR , if x
t ≥ SR .

(10.25)

We seek a corresponding HLLC numerical flux defined as

Fhllc
i+ 1

2
=

⎧
⎪⎪⎨
⎪⎪⎩

FL , if 0 ≤ SL ,
F∗L , if SL ≤ 0 ≤ S∗ ,
F∗R , if S∗ ≤ 0 ≤ SR ,
FR , if 0 ≥ SR ,

(10.26)

with the intermediate fluxes F∗L and F∗R still to be determined. Fig. 10.4
shows the structure of the HLLC approximate Riemann solver.

By integrating over appropriate control volumes, or more directly, by ap-
plying Rankine–Hugoniot Conditions across each of the waves of speeds SL,
S∗, SR, we obtain

F∗L = FL + SL(U∗L − UL) , (10.27)
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F∗R = F∗L + S∗(U∗R − U∗L) , (10.28)

F∗R = FR + SR(U∗R − UR) . (10.29)

Compare relations (10.27) and (10.29) for the HLLC scheme with (10.18) and
(10.19) for the HLL scheme. Substitution of F∗L from (10.27) and F∗R from
(10.29) into (10.28) gives identically the consistency condition (10.24). Hence
conditions (10.27)–(10.29) are sufficient for ensuring consistency; these are
three equations for the four unknowns vectors U∗L, F∗L, U∗R, F∗R.

10.4.2 The HLLC Flux for the Euler Equations

We seek the solution for the two unknown intermediate fluxes F∗L and
F∗R. From (10.27)–(10.29) we see that it is sufficient to find solutions for the
two intermediate state vectors U∗L and U∗R. There are more unknowns than
equations and some extra conditions need to be imposed, in order to solve the
algebraic problem. Obvious conditions to impose are those satisfied by the
exact solution; for pressure and normal component of velocity we have

p∗L = p∗R = p∗ ,
u∗L = u∗R = u∗ ,

}
(10.30)

and for tangential velocity components we have

v∗L = vL , v∗R = vR ,
w∗L = wL , w∗R = wR .

}
(10.31)

See Chap. 4. In addition, it is entirely justified, and convenient, to set

S∗ = u∗ (10.32)

and thus if an estimate for S∗ is known, the normal velocity component u∗
in the Star Region is known. Now equations (10.27) and (10.29) can be re–
arranged as

SLU∗L − F∗L = SLUL − FL , (10.33)

and
SRU∗R − F∗R = SRUR − FR , (10.34)

where the right–hand sides of (10.33) and (10.34) are known constant vectors.
We also note the useful relation between U and F, namely

F(U) = uU + pD , D = [0, 1, 0, 0, u]T . (10.35)

Assuming that the wave speeds SL and SR are known and performing alge-
braic manipulations of the first and second components of equations (10.33)–
(10.34) one obtains the following solutions for pressure in the two Star Regions

p∗L = pL + ρL(SL − uL)(S∗ − uL) , p∗R = pR + ρR(SR − uR)(S∗ − uR) .
(10.36)
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From (10.30) p∗L = p∗R, which from (10.36) allows us to obtain an expression
for the speed S∗ purely in terms of the assumed speeds SL and SR, namely

S∗ =
pR − pL + ρLuL(SL − uL) − ρRuR(SR − uR)

ρL(SL − uL) − ρR(SR − uR)
. (10.37)

Thus, we only need to provide estimates for SL and SR, just as for the simpler
HLL solver.

Algebraic manipulation of (10.33) and (10.34) and using the corresponding
values p∗L and p∗R from (10.36) gives the intermediate fluxes F∗L and F∗R

as
F∗K = FK + SK(U∗K − UK) , (10.38)

for K=L and K=R, with the intermediate states given as

U∗K = ρK

(
SK − uK

SK − S∗

)

⎡
⎢⎢⎢⎢⎢⎢⎣

1
S∗
vK

wK

EK

ρK
+ (S∗ − uK)

[
S∗ +

pK

ρK(SK − uK)

]

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(10.39)
The final choice of the HLLC flux is made according to (10.26).

A variation in the formulation of the HLLC solver (10.38)–(10.39) is the
following. From equations (10.33) and (10.34) we may write the following
solutions for the state vectors U∗L and U∗R

U∗K =
SKUK − FK + p∗KD∗

SL − S∗
, D∗ = [0, 1, 0, 0, S∗] , (10.40)

with p∗L and p∗R as given by (10.36). Substitution of p∗K from (10.36) into
(10.40) followed by use of (10.27) and (10.29) gives direct expressions for the
intermediate fluxes as

F∗K =
S∗(SKUK − FK) + SK(pK + ρL(SK − uK)(S∗ − uK))D∗

SK − S∗
, (10.41)

with the final choice of the HLLC flux made again according to (10.26).
We remark here that the HLLC formulation (10.38)–(10.39) enforces the

condition p∗L = p∗R, which is satisfied by the exact solution. In the alterna-
tive HLLC formulation (10.41) we relax such condition, being more consistent
with the pressure approximations (10.36).

A different HLLC flux is obtained by assuming a single mean pressure
value in the Star Region, and given by the arithmetic average of the pressures
in (10.36), namely
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PLR =
1
2
[pL +pR +ρL(SL −uL)(S∗−uL)+ρR(SR −uR)(S∗−uR)] . (10.42)

Then the intermediate state vectors are given by

U∗K =
SKUK − FK + PLRD∗

SK − S∗
. (10.43)

Substitution of these into (10.27) and (10.29) gives the fluxes F∗L and F∗R

as

F∗K =
S∗(SKUK − FK) + SKPLRD∗

SK − S∗
. (10.44)

Again the final choice of HLLC flux is made according to (10.26).

Remark: general equation of state. All manipulations so far, assuming that
wave speed estimates for SL and SR are available, are valid for any equation
of state. The equation of state only enters in prescribing estimates for SL and
SR.

10.4.3 Multidimensional and Multicomponent Flow

Here we consider extensions of the HLLC solver to two areas of application,
namely multidimensional flow and multicomponent flow.

The presentation of the HLLC scheme has been made for the x–split three–
dimensional Euler equations, for which the corresponding eigenvalues are de-
noted here as λ1 = u − a, λ2 = u (multiplicity 3), λ3 = u + a, where u
is the normal velocity component and a is the speed of sound. In a general
multidimensional situation, see Chapt. 16, one usually requires the flux in the
direction normal to a volume (or element) interface, which is not necessarily
aligned with any of the Cartesian directions. In this case the form of the gov-
erning equations remains identical to the x–split system (10.4), (10.5). There
will be a normal and two tangential components of velocity as before, and all
the results obtained so far will be applicable.

In the study of multicomponent flow, one considers the advection of chemi-
cal species by the flow, the carrier fluid. For example, let us consider m species
of concentrations ql, for l = 1, . . . , m, advected with the normal fluid speed u.
This means that for each species we can write the following advection equation

∂tql + u∂xql = 0 ,

for l = 1, . . . , m. Note that these equations are written in non–conservative
form. However, by combining these with the continuity equation we obtain a
conservative form of these equations, namely

(ρql)t + (ρuql)x = 0 , for l = 1, . . . ,m .
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The eigenvalues of the enlarged system are as before, with the exception of
λ2 = u, which now, in three space dimensions, has multiplicity m + 3. These
conservation equations can then be added as new components to the conser-
vation equations in (10.1) or (10.4), with the enlarged vectors of conserved
variables and fluxes given as

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E
ρq1

. . .
ρql

. . .
ρqm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)
ρuq1

. . .
ρuql

. . .
ρuqm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10.45)

The HLLC flux accommodates these new equations in a very natural way,
and nothing special needs to be done. If the HLLC flux (10.38) is used, with
F as in (10.45), then the intermediate state vectors are given by

U∗K = ρK

(
SK − uK

SK − S∗

)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
S∗
vK

wK

EK

ρK
+ (S∗ − uK)

[
S∗ +

pK

ρK(SK − uK)

]

(q1)K

. . .
(ql)K

. . .
(qm)K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(10.46)
for K = L and K = R. In this manner the HLLC flux will resolve the
additional intermediate fields as the exact Riemann solver.

Note that the tangential velocity components v and w are special cases of
passive scalars; compare (10.46) with (10.39) for q = v and q = w.

10.5 Wave–Speed Estimates

In order to determine completely the numerical fluxes in both the HLL
and HLLC Riemann solvers we need to provide an algorithm for computing
the wave speeds SL and SR. For the HLLC scheme one requires in addition an
estimate for the speed of the middle wave S∗, but as seen in (10.37), this can
in fact be computed once SL and SR are known. Thus the pending task is to
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determine estimates for SL and SR. One approach is to estimate the speeds
directly; another approach relies on pressure estimates in the Star Region,
which are then utilised to obtain SL and SR using exact wave relations.

10.5.1 Direct Wave Speed Estimates

The most well known approach for estimating bounds for the minimum and
maximum signal velocities present in the solution of the Riemann problem is
to provide, directly, wave speeds SL and SR. Davis [150] suggested the simple
estimates

SL = uL − aL , SR = uR + aR (10.47)

and

SL = min {uL − aL, uR − aR} , SR = max {uL + aL, uR + aR} . (10.48)

These estimates make use of data values only, are exceedingly simple but are
not recommended for practical computations. Both Davis [150] and Einfeldt
[181], proposed to use the Roe [407] average eigenvalues for the left and right
non–linear waves, that is

SL = ũ − ã , SR = ũ + ã , (10.49)

where ũ and ã are the Roe–average particle and sound speeds respectively,
given as follows

ũ =
√

ρLuL +
√

ρRuR√
ρL +

√
ρR

, ã =
[
(γ − 1)(H̃ − 1

2
ũ2)

]1/2

, (10.50)

with the enthalpy H = (E + p)/ρ approximated as

H̃ =
√

ρLHL +
√

ρRHR√
ρL +

√
ρR

. (10.51)

Complete details of the Roe Riemann solver are given in Chap. 11.

Motivated by the Roe eigenvalues Einfeldt [181] proposed the estimates

SL = ū − d̄ , SR = ū + d̄ , (10.52)

for his HLLE solver, where

d̄2 =
√

ρLa2
L +

√
ρRa2

R√
ρL +

√
ρR

+ η2(uR − uL)2 (10.53)

and

η2 =
1
2

√
ρL

√
ρR

(
√

ρL +
√

ρR)2
. (10.54)
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These wave speed estimates are reported to lead to effective and robust
Godunov–type schemes. More details on the HLLE solver and its modification
HLLEM, are found in [182]. In this paper the authors also analyze the effect
of the choice of wave speed estimates on the Riemann solver and introduce
the concept of positively conservative Riemann solvers, for the Euler equa-
tions. These are solvers for which, for physically admissible data, density and
internal energy remain positive during the calculations. See Batten et al. [32]
for further discussion on direct wave speed estimates.

Davis made some observations regarding the relationship between the cho-
sen wave speeds and some well–known numerical methods. Suppose that for a
given Riemann problem we can identify a positive speed S+. Then by choos-
ing SL = −S+ and SR = S+ in the HLL flux (10.20) one obtains a Rusanov
flux [418]

Fi+1/2 =
1
2
(FL + FR) − 1

2
S+(UR − UL) . (10.55)

As to the choice of the speed S+, Davis [150] considered

S+ = max {| uL − aL |, | uR − aR |, | uL + aL | , | uR + aR |} .

Actually, the above speed is bounded by

S+ = max {| uL | +aL, | uR | +aR} . (10.56)

This choice is likely to produce a more robust scheme and is also simpler than
Davis’s choice.

Another possible choice is S+ = Sn
max, the maximum wave speed present

at the appropriate time found by imposing the Courant stability condition;
see Sect. 6.3.2 of Chap. 6. This speed is related to the time step Δt and the
grid spacing Δx via

Sn
max =

CcflΔx

Δt
, (10.57)

where Ccfl is the Courant number coefficient, usually chosen (empirically)
to be Ccfl ≈ 0.9, for a scheme of linear stability limit of unity. For Ccfl = 1
one has S+ = Δx

Δt , which results in the Lax–Friedrichs numerical flux

Fi+1/2 =
1
2
(FL + FR) − 1

2
Δx

Δt
(UR − UL) . (10.58)

See Sect. 5.3.4 of Chap. 5 and Sect. 7.3.1 of Chap. 7.
In the next section we propose a different way of finding wave–speed esti-

mates.

10.5.2 Pressure–Based Wave Speed Estimates

A different approach for finding wave speed estimates was proposed by
Toro et. al. [542], whereby one first finds an estimate for the pressure p∗ in
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the Star Region. Then, estimates for SL and SR are derived. This is a simple
task and several reliable choices are available. Suppose we have an estimate
p∗ for the pressure in the Star Region. Then we choose the following wave
speeds

SL = uL − aLqL , SR = uR + aRqR , (10.59)

where

qK =

⎧
⎪⎪⎨
⎪⎪⎩

1 if p∗ ≤ pK

[
1 +

γ + 1
2γ

(p∗/pK − 1)
]1/2

if p∗ > pK .

(10.60)

This choice of wave speeds discriminates between shock and rarefaction waves.
If the K wave (K = L or K = R) is a rarefaction then the speed SK corre-
sponds to the characteristic speed of the head of the rarefaction, which carries
the fastest signal. If the wave is a shock wave then the speed corresponds to
an approximation of the true shock speed; the wave relations used are exact
but the pressure ratio across the shock is approximated, because p∗ is an ap-
proximation to the pressure behind the shock wave. We propose to use the
state approximations of Chap. 9 to find p∗.

The PVRS approximate Riemann solver [502] presented in Sect. 9.3 of
Chap. 9 gives

ppvrs =
1
2
(pL + pR) − 1

2
(uR − uL)ρ̄ā , (10.61)

where
ρ̄ =

1
2
(ρL + ρR) , ā =

1
2
(aL + aR) . (10.62)

This approximation for pressure can be used directly into (10.59)–(10.60) to
obtain wave speed estimates for the HLL and HLLC schemes. See also Eq.
(9.28) of Chapt. 9 for alternative estimates for p∗.

Another choice is furnished by the Two–Rarefaction Riemann solver TRRS
of Sect. 9.4.1 of Chap. 9, namely

ptr =

[
aL + aR − γ−1

2 (uR − uL)
aL/pz

L + aR/pz
R

]1/z

, (10.63)

where

PLR =
(

pL

pR

)z

; z =
γ − 1
2γ

. (10.64)

The Two–Shock Riemann solver TSRS of Sect. 9.4.2 of Chap. 9 gives

pts =
gL(p0)pL + gR(p0)pR − Δu

gL(p0) + gR(p0)
, (10.65)

where
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gK(p) =
[

AK

p + BK

]1/2

, p0 = max(0, ppvrs) , (10.66)

for K = L and K = R.
In computational practice we could use the hybrid scheme of Sect. 9.5.2 of

Chap. 9 to determine p∗ See Chap. 9 for full details. The HLL approximate
Riemann solver with the hybrid pressure–based wave speed estimates has been
implemented in the NAG routine D03PXF [319] for Godunov–type methods to
solve the time–dependent, one dimensional Euler equations for ideal gases. For
ideal gases we find that the simplified PVRS scheme, with p∗ = max(0, ppvrs)
is very simple and also is found to be sufficiently robust.

10.6 Summary of HLLC Fluxes

Here we summarize the HLLC scheme, based on a particular choice of
wave speeds. To compute the HLLC flux one performs the following steps:

• Step I: pressure estimate. Compute estimate for the pressure p∗ in the Star
Region as

p∗ = max(0, ppvrs) , ppvrs = 1
2 (pL + pR) − 1

2 (uR − uL)ρ̄ā ,

ρ̄ = 1
2 (ρL + ρR) , ā = 1

2 (aL + aR) .

⎫
⎬
⎭ (10.67)

There are other possible choices for estimating the pressure p∗. See (10.63)
and (10.65).

• Step II: wave speed estimates. Compute the wave speed estimates for SL

and SR as
SL = uL − aLqL , SR = uR + aRqR , (10.68)

with

qK =

⎧
⎪⎪⎨
⎪⎪⎩

1 if p∗ ≤ pK

[
1 +

γ + 1
2γ

(p∗/pK − 1)
]1/2

if p∗ > pK .

(10.69)

Then compute the intermediate speed S∗ in terms of SL and SR as

S∗ =
pR − pL + ρLuL(SL − uL) − ρRuR(SR − uR)

ρL(SL − uL) − ρR(SR − uR)
. (10.70)

Other choices of SL and SR are possible. See for example (10.49) and
(10.52)
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• Step III: HLLC flux. Compute the HLLC flux, according to

Fhllc
i+ 1

2
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

FL if 0 ≤ SL ,

F∗L if SL ≤ 0 ≤ S∗ ,

F∗R if S∗ ≤ 0 ≤ SR ,

FR if 0 ≥ SR ,

(10.71)

with
F∗K = FK + SK(U∗K − UK) (10.72)

and

U∗K = ρK

(
SK − uK

SK − S∗

)

⎡
⎢⎢⎢⎢⎢⎢⎣

1
S∗
vK

wK

EK

ρK
+ (S∗ − uK)

[
S∗ +

pK

ρK(SK − uK)

]

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(10.73)

There are two variants of the HLLC flux in the third step, as seen below.

• Step III: HLLC flux, Variant 1. Compute the numerical fluxes as

F∗K =
S∗(SKUK − FK) + SK(pK + ρL(SK − uK)(S∗ − uK))D∗

SK − S∗
,

D∗ = [0, 1, 0, 0, S∗]T ,

⎫
⎪⎪⎬
⎪⎪⎭

(10.74)
and the final HLLC flux chosen according to (10.71).

• Step III: HLLC flux, Variant 2. Compute the numerical fluxes as

F∗K =
S∗(SKUK − FK) + SKPLRD∗

SK − S∗
, (10.75)

with D∗ as in (10.74) and

PLR =
1
2
[pL+pR+ρL(SL−uL)(S∗−uL)+ρR(SR−uR)(S∗−uR)] . (10.76)

The final HLLC flux is chosen according to (10.71).
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10.7 Contact Waves and Passive Scalars

Here we study the special case of a passive scalar q(x, t) transported with
the fluid speed u(x, t). The time–dependent, one dimensional Euler equations
are augmented by the extra conservation law

(ρq)t + (ρqu)x = 0 . (10.77)

Consider the special IVP in which p = constant, ρ = constant, u = constant
and

q(x, 0) = q0(x) =
{

qL if x ≤ 0 ,
qR if x > 0 .

(10.78)

Clearly, the non–trivial part of the exact solution is

q(x, t) = q0(x − ut) . (10.79)

Application of the HLL Riemann solver to this problem gives the following
expression for the numerical flux

fhll
i+ 1

2
=

1
2

(
1 +

1
M

)
fi +

1
2

(
1 − 1

M

)
fi+1 , (10.80)

where M = u
a is the Mach number and the wave speeds have been taken to

be
SL = u − a , SR = u + a .

Obviously, this flux applies only in the subsonic regime u−a ≤ 0 ≤ u+a. For
sonic flow, the flux (10.80) reduces identically to the Godunov flux computed
from the exact Riemann solver. For subsonic flow 1/M > 1 and the resulting
scheme is more diffusive than the Godunov method when used in conjunction
with the exact Riemann solver. For the special case

M =
uΔt

Δx

the HLL scheme reproduces the Lax–Friedrichs method, which is exceedingly
diffusive, see Chaps. 5 and 6. The limiting case of a stationary passive scalar
is the worst. Note that the analysis includes the important cases q = v and
q = w, the tangential velocity components in three–dimensional flow.

The analysis for an isolated contact can be carried out in a similar manner;
by using an appropriate choice of the wave speeds the resulting HLL flux is
identical to (10.80), and thus the same observations as for a passive scalar
apply. The HLLC solver, on the other hand, behaves as the exact Riemann
solver; for the limiting case in which the wave is stationary, the HLLC numer-
ical scheme gives infinite resolution; the reader can verify this algebraically. In
the next section on numerical results we compare the HLL and HLLC schemes
for this type of problems; see Fig. 10.9. The relevance of these observations is
that the HLL scheme, unlike the HLLC scheme, will add excessive numerical
dissipation to the resolution of special but important flow features such as
material interfaces, shear waves and vortices.
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10.8 Numerical Results

Here we assess the performance of Godunov’s first–order method used in
conjunction with the HLL and HLLC approximate Riemann solvers presented
in this chapter. The HLLC results shown correspond to the version (10.38)–
(10.39). For both HLL and HLLC, the wave speed estimates for SL and SR

are based on a pressure estimate obtained from the adaptive scheme of sec-
tion 9.5.2 of Chapter 9. For HLLC we note that, for the tests considered, all
three versions of HLLC give identical results when using the simple algorithm
(10.67)–(10.70).

We select seven test problems for the one–dimensional, time dependent
Euler equations for ideal gases with γ = 1.4; these have exact solutions. In
all chosen tests, data consists of two constant states WL = [ρL, uL, pL]T and
WR = [ρR, uR, pR]T , separated by a discontinuity at a position x = x0. The
states WL and WR are given in Table 10.1. The exact and numerical solutions
are found in the spatial domain 0 ≤ x ≤ 1. The numerical solution is computed
with M = 100 cells and the CFL condition is as for all previous computations,
see Chap. 6; the chosen Courant number coefficient is Ccfl = 0.9; boundary
conditions are transmissive.

The exact solutions were found by running the code HE-E1RPEXACT of
the library NUMERICA [518] and the numerical solutions were obtained by
running the code HE-E1GODFLUX of NUMERICA.

Test ρL uL pL ρR uR pR

1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950
5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01
6 1.4 0.0 1.0 1.0 0.0 1.0
7 1.4 0.1 1.0 1.0 0.1 1.0

Table 10.1. Data for seven test problems with exact solution

Test 1 is a modified version of Sod’s problem [453]; the solution has a right
shock wave, a right travelling contact wave and a left sonic rarefaction wave;
this test is useful for assessing the entropy satisfaction property of numerical
methods. The solution of Test 2 consists of two symmetric rarefaction waves
and a trivial contact wave; the Star Region between the non–linear waves is
close to vacuum, which makes this problem a suitable test for assessing the
performance of numerical methods for low–density flows. Test 3 is designed to
assess the robustness and accuracy of numerical methods; its solution consists
of a strong shock wave of shock Mach number 198, a contact surface and a
left rarefaction wave. Test 4 is also a very severe test, its solution consists of
three strong discontinuities travelling to the right. A detailed discussion on the
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exact solution of Tests 1 to 4 is found in Sect. 4.3.3 of Chap. 4. Test 5 is also
designed to test the robustness of numerical methods but the main reason for
devising this test is to assess the ability of the numerical methods to resolve
slowly–moving contact discontinuities. The exact solution of Test 5 consists of
a left rarefaction wave, a right–travelling shock wave and a stationary contact
discontinuity. Test 6 corresponds to an isolated stationary contact wave and
Test 7 corresponds to an isolated contact moving slowly to the right. The
purpose of Tests 6 and 7 is to illustrate the likely performance of HLL and
HLLC for contacts, shear waves and vortices. For each test problem we select a
convenient position x0 of the initial discontinuity and the output time. These
are stated in the legend of each figure displaying computational results.

We compare computed results with the exact solution for three first–order
methods, namely the Godunov method used in conjunction with the HLL and
HLLC approximate Riemann solvers, and the Rusanov scheme. In all three
schemes we compute wave speed estimates by using the adaptive noniterative
scheme of Sect. 9.5.2 of Chapt. 9. Figs. 10.5 to 10.9 show results for Godunov’s
method with the HLLC Riemann solver. Figs. 10.10 to 10.14 show results
for the Godunov method with the HLL Riemann solver and Figs. 10.15 to
10.19 show results for Rusanov’s method. Fig. 10.20 shows results aimed at
comparing the performance of HLL and HLLC for isolated, stationary and
slowly moving contact discontinuities.

The numerical results obtained from the Godunov method in conjunction
with the HLL and HLLC approximate Riemann solvers are broadly similar
to those obtained from Godunov’s method in conjunction with the exact Rie-
mann solver. See results of Chapt. 6. Some points to note are the following: the
sonic rarefaction of Test 1 is better resolved by the HLL and HLLC approxi-
mate Riemann solvers than by the exact Riemann solver. The resolution of the
stationary contact (non–isolated) of Test 5 by the HLLC Riemann solver is
comparable with that of the exact Riemann solver. The HLL Riemann solver
however, as anticipated by the analysis of Sect. 10.7, diffuses the contact wave
to similar levels seen in the Flux Vector Splitting methods of Steger–Warming
and van Leer, see results of Chap. 8. The advantage of HLLC over HLL is
the resolution of slowly–moving contact discontinuities; this point is further
emphasised by the results of Tests 6 and 7 for an isolated contact wave. The
HLLC Riemann solver preserves the excellent entropy–satisfaction property
of the HLL Riemann solver. The Rusanov scheme is broadly similar to the
HLL Riemann solver in that it also diffuses slowly moving contacts. For Test 1
containing a sonic rarefaction however, the Rusanov scheme is clearly inferior
to the HLL scheme, compare Fig. 10.15 with Fig. 10.10.

The results of Tests 6 and 7 using both the HLL and the HLLC schemes
are shown in Fig. 10.20. As anticipated by the analysis of Sect. 10.7, the
HLL scheme will give unacceptably smeared results for stationary and slowly
moving contact waves. The HLLC behaves like the exact Riemann solver for
this type of problem; it has much less numerical dissipation for slowly moving
contacts and it gives infinite resolution for stationary contact waves. The
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same observations apply to augmented systems of equations containing species
equations, and to shear waves and vortices in multiple space dimensions.

10.9 Closing Remarks

We have first studied HLL and HLLC approximate Riemann solvers for
the split three–dimensional Euler equations. Then we have indicated the man-
ner in which these solvers can be extended to three–dimensional flow and to
multicomponent flow, noting that HLLC will perform as the exact Riemann
solver in these more general situations. This is due to the fact that tangential
velocity components and species concentrations are all represented by the in-
termediate characteristic field λ2 = u, where u is understood as the normal
velocity component. HLLC, unlike HLL, captures correctly this characteristic
field, which is enough to correctly capture contact discontinuities, shear waves
and contact discontinuities associated with all the species equations.

The approximate Riemann solvers of this chapter may be applied in con-
junction with the Godunov first–order upwind method presented in Chap. 6.
Second–order Total Variation Diminishing (TVD) extensions of the schemes
are presented in Chap. 13 for scalar problems and in Chap. 14 for non–linear
one dimensional systems. In Chap. 15 we present techniques that allow the ex-
tension of these schemes to solve problems with source terms. In Chap. 16 we
study techniques to extend the methods of this chapter to three–dimensional
problems. Implicit versions of the HLL and HLLC Riemann solvers have been
developed by Batten, Leschziner and Goldberg [33], who have also applied the
schemes to turbulent flows. The HLLC scheme can be used as the building
block for high–order methods, semi discrete, fully discrete, finite volume and
discontinuous Galerkin finite element methods, on structured and unstruc-
tured grids. See for example [6], [86], [237], [334], [361], [382], [553] and [572].
At this stage, two useful remarks on the HLLC flux are worth mentioning.
The first concerns the positivity/negativity of the momentum flux Safranov
[420]. The second (Dr V. A. Titarev, personal communication) concerns the
question of robustness of the choice of wave speeds in the HLL and HLLC
solvers for the case of very high speed flow inpinging on solid stationary walls;
some of the well known wave speed estimates may fail.

Perhaps the most significant advance of the HLLC approach concerns sys-
tems with more than three distinct characteristic fields, such as systems for
multiphase flow and the MHD equations, for example. A proper treatment
of these, following the HLLC approach, requires the construction of an ap-
propriate wave model that includes, ideally, all the characteristic fields of the
relevant system. Developments in this direction are found, for example, in
[230], [474] and [75].
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Fig. 10.5. Godunov’s method with HLLC Riemann solver applied to Test 1, with
x0 = 0.3. Numerical (symbol) and exact (line) solutions are compared at time 0.2.
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Fig. 10.6. Godunov’s method with HLLC Riemann solver applied to Test 2, with
x0 = 0.5. Numerical (symbol) and exact (line) solutions are compared at time 0.15.
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Fig. 10.7. Godunov’s method with HLLC Riemann solver applied to Test 3, with
x0 = 0.5. Numerical (symbol) and exact (line) solutions are compared at time 0.012.
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Fig. 10.8. Godunov’s method with HLLC Riemann solver applied to Test 4, with
x0 = 0.4. Numerical (symbol) and exact (line) solutions are compared at time 0.035.
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Fig. 10.9. Godunov’s method with HLLC Riemann solver applied to Test 5, with
x0 = 0.8. Numerical (symbol) and exact (line) solutions are compared at time 0.012.

0

0.5

1

0 0.5 1

D
en

si
ty

Position

0

0.8

1.6

0 0.5 1

V
el

oc
ity

Position

0

0.5

1

0 0.5 1

Pr
es

su
re

Position

1.8

3.8

0 0.5 1

In
te

rn
al

 e
ne

rg
y

Position

Fig. 10.10. Godunov’s method with HLL Riemann solver applied to Test 1, with
x0 = 0.3. Numerical (symbol) and exact (line) solutions are compared at time 0.2.
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Fig. 10.11. Godunov’s method with HLL Riemann solver applied to Test 2, with
x0 = 0.5. Numerical (symbol) and exact (line) solutions are compared at time 0.15.
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Fig. 10.12. Godunov’s method with HLL Riemann solver applied to Test 3, with
x0 = 0.5. Numerical (symbol) and exact (line) solutions are compared at time 0.012.
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Fig. 10.13. Godunov’s method with HLL Riemann solver applied to Test 4, with
x0 = 0.4. Numerical (symbol) and exact (line) solutions are compared at time 0.035.
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Fig. 10.14. Godunov’s method with HLL Riemann solver applied to Test 5, with
x0 = 0.8. Numerical (symbol) and exact (line) solutions are compared at time 0.012.
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Fig. 10.15. Rusanov’s method applied to Test 1, with x0 = 0.3. Numerical (symbol)
and exact (line) solutions are compared at time 0.2.
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Fig. 10.16. Rusanov’s method applied to Test 2, with x0 = 0.5. Numerical (symbol)
and exact (line) solutions are compared at time 0.15.
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Fig. 10.17. Rusanov’s method applied to Test 3, with x0 = 0.5. Numerical (symbol)
and exact (line) solutions are compared at time 0.012.
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Fig. 10.18. Rusanov’s method applied to Test 4, with x0 = 0.4. Numerical (symbol)
and exact (line) solutions are compared at time 0.035.



344 10 The HLL and HLLC Riemann Solvers

0

3

6

0 0.5 1

D
en

si
ty

Position

-20

0

5

0 0.5 1

V
el

oc
ity

Position

0

500

1000

0 0.5 1

Pr
es

su
re

Position

0

1250

2500

0 0.5 1

In
te

rn
al

 e
ne

rg
y

Position

Fig. 10.19. Rusanov’s method applied to Test 5, with x0 = 0.8. Numerical (symbol)
and exact (line) solutions are compared at time 0.012.
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Fig. 10.20. Godunov’s method with HLL (left) and HLLC (right) Riemann solvers
applied to Tests 6 and 7. Numerical (symbol) and exact (line) solutions are compared
at time 2.0.
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