

Lecture Notes in Computer Science 3582
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

John Fitzgerald Ian J. Hayes
Andrzej Tarlecki (Eds.)

FM 2005:
Formal Methods

International Symposium of Formal Methods Europe
Newcastle, UK, July 18-22, 2005
Proceedings

13

Volume Editors

John Fitzgerald
University of Newcastle upon Tyne
Centre for Software Reliability
Newcastle upon Tyne, NE1 7RU, UK
E-mail: john.fitzgerald@ncl.ac.uk

Ian J. Hayes
University of Queensland
School of Information Technology and Electrical Engineering
Brisbane, QLD 4072, Australia
E-mail: Ian.Hayes@itee.uq.edu.au

Andrzej Tarlecki
Warsaw University
Faculty of Mathematics, Informatics and Mechanics
Banacha 2, 02-097 Warszawa, Poland
E-mail: tarlecki@mimuw.edu.pl

Library of Congress Control Number: 2005928720

CR Subject Classification (1998): D.2, F.3, D.3, D.1, J.1, K.6, F.4

ISSN 0302-9743
ISBN-10 3-540-27882-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-27882-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11526841 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of Formal Methods 2005, the 13th
International Symposium on Formal Methods held in Newcastle upon Tyne, UK,
during July 18–22, 2005. Formal Methods Europe (FME, www.fmeurope.org) is
an independent association which aims to stimulate the use of, and research on,
formal methods for system development. FME conferences began with a VDM
Europe symposium in 1987. Since then, the meetings have grown and have been
held about once every 18 months. Throughout the years the symposia have been
notably successful in bringing together researchers, tool developers, vendors, and
users, both from academia and from industry. Formal Methods 2005 confirms
this success.

We received 130 submissions to the main conference, from all over the world.
Each submission was carefully refereed by at least three reviewers. Then, after
an intensive, in-depth discussion, the Program Committee selected 31 papers for
presentation at the conference. They form the bulk of this volume. We would
like to thank all the Program Committee members and the referees for their
excellent and efficient work.

Apart from the selected contributions, the Committee invited three keynote
lectures from Mathai Joseph, Marie-Claude Gaudel and Chris Johnson. You will
find the abstracts/papers for their keynote lectures in this volume as well.

An innovation for the FM 2005 program was a panel discussion on the history
of formal methods, with Jean-Raymond Abrial, Dines Bjørner, Jim Horning and
Cliff Jones as panelists. Unfortunately, it was not possible to reflect this event
in the current volume, but you will find the material documenting it elsewhere
(see the conference Web page).

An Industry Day was organized by the Formal Techniques Industrial Associ-
ation (ForTIA) alongside the main symposium. This was directly related to the
main theme of the FM symposia: the use of well-founded formal methods in the
industrial practice of software design, development and maintenance. We have
therefore included abstracts of the invited presentations in this volume as well.

The main FM 2005 conference was accompanied by 9 workshops and 11
tutorials.

The electronic submission, refereeing and Program Committee discussions
would not have been possible without software support. We worked with the
OCS system developed at the University of Dortmund — our thanks to the staff
there for their support.

Finally, we would like to thank all those who helped to create and run the
symposium in Newcastle, and in particular Claire Smith, Jon Warwick, Joan
Atkinson, Sarah Davidson, Nigel Jefferson, Joey Coleman, Jeremy Bryans, Neil
Henderson and Juan Bicarregui for their help in bringing the program, and these
proceedings, together.

July 2005 John Fitzgerald, Ian Hayes, Andrzej Tarlecki

Organization

FM 2005 was organized by the Centre for Software Reliability at the Univer-
sity of Newcastle upon Tyne (www.csr.ncl.ac.uk) and Formal Methods Europe.
We are grateful for the support of the University of Newcastle and its School of
Computing Science. Within Formal Methods Europe, we are particularly grateful
to Kees Pronk and Stefania Gnesi for their help with budgeting and organiza-
tion. We also gladly acknowledge direct sponsorship from SAP Research and the
British Computer Society Specialist Group on Formal Aspects of Computing
Science (BCS-FACS).

Conference Chairs

General Chair John S. Fitzgerald, University of Newcastle, UK
Program Co-chairs Ian Hayes, University of Queensland, Australia

Andrzej Tarlecki, Warsaw University, Poland
Conference Organizer Claire Smith, University of Newcastle, UK
Finance Chair Jon Warwick, University of Newcastle, UK
Tools Exhibition Chair Joan Atkinson, University of Newcastle, UK
Workshops Chair Juan Bicarregui, Rutherford Appleton Laboratory, UK
Tutorials Chair Neil Henderson, University of Newcastle, UK

Program Committee

Bernhard Aichernig, UNU-IIST, Macau, China
Keijiro Araki, Kyushu University, Japan
Juan Bicarregui, Rutherford Appleton Laboratory, UK
Michel Bidoit, LSV, CNRS and ENS de Cachan, France
Ed Brinksma, University of Twente, The Netherlands
Luca Cardelli, Microsoft Research, UK
Ernie Cohen, Microsoft, USA
Jin Song Dong, National University of Singapore, Singapore
José Luiz Fiadeiro, University of Leicester, UK
John S. Fitzgerald, Centre for Software Reliability, UK
Stefania Gnesi, CNR, Italy
Anthony Hall, UK
Anne E. Haxthausen, Technical University of Denmark, Denmark
Ian Hayes, University of Queensland, Australia (Co-chair)
Thomas A. Henzinger, EPFL and University of California, Berkeley, USA
He Jifeng, UNU-IIST, Macau, China
Cliff Jones, University of Newcastle, UK

VIII Organization

Shaoying Liu, Hosei University, Japan
Mı́cheál Mac an Airchinnigh, Trinity College Dublin, Ireland
Tom Maibaum, McMaster University, Canada
Dino Mandrioli, Politecnico di Milano, Italy
Tobias Nipkow, Technische Universität München, Germany
José Oliveira, Universidade do Minho, Portugal
Sam Owre, CRI, USA
Alexander Petrenko, ISPRAS, Russia
Nico Plat, West Consulting, The Netherlands
Ken Robinson, University of New South Wales, Australia
Mark Saaltink, ORA Canada, Canada
Shin Sahara, JFITS, Japan
Steve Schneider, University of Surrey, UK
Kaisa Sere, Åbo Akademi, Finland
Ketil Stølen, SINTEF, Norway
Andrzej Tarlecki, Warsaw University, Poland (Co-chair)
Mark Utting, Waikato University, New Zealand
Marcel Verhoef, Chess IT and Radboud University, Nijmegen, Netherlands
Alan Wassyng, McMaster University, Canada
Martin Wirsing, Ludwig-Maximilians-Universität, München, Germany

Referees

Carlos Bacelar Almeida
Paulo Sergio Almeida
Matthias Anlauff
Alvaro Arenas
Alexei Barantsev
Luis Barbosa
Leonor Barroca
Hubert Baumeister
Marek A. Bednarczyk
Maurice ter Beek
Axel Belinfante
Dirk Beyer
Machiel van der Bijl
Henrik Bohnenkamp
Pontus Boström
Ahmed Bouajjani
Patricia Bouyer
Folker den Braber
Laura Brandan Briones
Phil Brooke
Roberto Bruni
Hans Bruun

Gyrd Brændeland
Bettina Buth
Jens Bæk Jørgensen
Jacques Carette
David Carrington
Arindam Chakrabarti
Michel Chaudron
Chunqing Chen
Jacek Chrza̧szcz
David Clark
Joey Coleman
Phil Cook
Véronique Cortier
Jorge Cuellar
Roberto Delicata
Dubravka Ilic
Bruno Dutertre
Neil Evans
Alessandro Fantechi
Gianluigi Ferrari
Paul Fischer
Oana Florescu

Martin Fränzle
Laurent Fribourg
Carlo Furia
Peter Gorm Larsen
Jean Goubault-Larrecq
Adriaan de Groot
Stefan Gruner
Moritz Hammer
Ping Hao
Neil Henderson
Martijn Hendriks
Thai Son Hoang
Martin Hofmann
Jozef Hooman
Dang Van Hung
Wilson Ifill
Ryszard Janicki
Tomasz Janowski
Einar Broch Johnsen
Wolfram Kahl
Alexander Kamkin
Ridha Khedri

Organization IX

Victor Khomenko
Alexander Knapp
Erwin van der Koogh
Evgeny Kornykhin
Piotr Kosiuczenko
Fred Kröger
Steve Kremer
Victor Kuliamin
Alexander Kurz
Linas Laibinis
Christian Lange
Rom Langerak
Franiçois Laroussinie
Diego Latella
Timo Latvala
Christian Lengauer
Yuan Fang Li
Quan Long
Mass Soldal Lund
Volkmar Lotz
Hans Henrik Løvengreen
Tom Lysemose
Qaisar Ahmad Malik
Tiziana Margaria
Nicolas Markey
Mieke Massink
Brian Matthews
Franco Mazzanti
Alistair McEwan
Robert Meolic

Stephan Merz
Ali Mesbah
Tim Miller
Leonardo de Moura
Henry Muccini
Damian Niwiński
David von Oheim
Nickolay Pakulin
Jun Pang
Dirk Pattinson
Jan Peleska
Luigia Petre
Laure Petrucci
Nir Piterman
David Pitt
Matteo Pradella
Kees Pronk
Axel Rauschmayer
Atle Refsdal
Brian Ritchie
Markus Roggenbach
Judith Rossebø
Matteo Rossi
Ragnhild Kobro Runde
John Rushby
Theo Ruys
Denis Sabatier
Hassen Saidi
Thomas Santen
Bernhard Schätz

Norbert Schirmer
Aleksy Schubert
Fredrik Seehusen
Emil Sekerinski
Natarajan Shankar
Mike Shields
Graeme Smith
Monika Solanki
Bjørnar Solhaug
Jorge Sousa Pinto
Simao Melo de Sousa
Pieter van der Spek
Paola Spoletini
Mariëlle Stoelinga
Asuman Suenbuel
Jun Sun
Helen Treharne
Jan Tretmans
Leonidas Tsiopoulos
Irek Ulidowski
Neeraj Verma
Joost Visser
Peter Visser
Fredrik Vraalsen
Marina Waldén
Burkhart Wolff
Lu Yan
Yuwen Yang

Sponsors

Table of Contents

Keynote Talks

Formal Aids for the Growth of Software Systems
Mathai Joseph . 1

Formal Methods and Testing: Hypotheses, and Correctness
Approximations

Marie-Claude Gaudel . 2

The Natural History of Bugs: Using Formal Methods to Analyse
Software Related Failures in Space Missions

C.W. Johnson . 9

Object Orientation

Modular Verification of Static Class Invariants
K. Rustan M. Leino, Peter Müller . 26

Decoupling in Object Orientation
Ioannis T. Kassios . 43

Controlling Object Allocation Using Creation Guards
Cees Pierik, Dave Clarke, Frank S. de Boer . 59

Symbolic Animation of JML Specifications
Fabrice Bouquet, Frédéric Dadeau, Bruno Legeard, Mark Utting 75

Resource Analysis and Verification

Certified Memory Usage Analysis
David Cachera, Thomas Jensen, David Pichardie,
Gerardo Schneider . 91

Compositional Specification and Analysis of Cost-Based Properties in
Probabilistic Programs

Orieta Celiku, Annabelle McIver . 107

Formally Defining and Verifying Master/Slave Speculative
Parallelization

Pierre Salverda, Grigore Roşu, Craig Zilles . 123

XII Table of Contents

Timing and Testing

Systematic Implementation of Real-Time Models
Martin De Wulf, Laurent Doyen, Jean-François Raskin 139

Timing Tolerances in Safety-Critical Software
Alan Wassyng, Mark Lawford, Xiayong Hu . 157

Timed Testing with TorX
Henrik Bohnenkamp, Axel Belinfante . 173

Automatic Verification and Conformance Testing for Validating Safety
Properties of Reactive Systems

Vlad Rusu, Hervé Marchand, Thierry Jéron . 189

CSP, B and Circus

Adding Conflict and Confusion to CSP
Christie Bolton . 205

Combining CSP and B for Specification and Property Verification
Michael Butler, Michael Leuschel . 221

Operational Semantics for Model Checking Circus
Jim Woodcock, Ana Cavalcanti, Leonardo Freitas 237

Control Law Diagrams in Circus
Ana Cavalcanti, Phil Clayton, Colin O’Halloran 253

Security

Verification of a Signature Architecture with HOL-Z
David Basin, Hironobu Kuruma, Kazuo Takaragi, Burkhart Wolff . . . 269

End-to-End Integrated Security and Performance Analysis on the
DEGAS Choreographer Platform

Mikael Buchholtz, Stephen Gilmore, Valentin Haenel,
Carlo Montangero . 286

Formal Verification of Security Properties of Smart Card Embedded
Source Code

June Andronick, Boutheina Chetali, Christine Paulin-Mohring 302

Table of Contents XIII

Networks and Processes

A Formal Model of Addressing for Interoperating Networks
Pamela Zave . 318

An Approach to Unfolding Asynchronous Communication Protocols
Yu Lei, S. Purushothaman Iyer . 334

Semantics of BPEL4WS-Like Fault and Compensation Handling
Qiu Zongyan, Wang Shuling, Pu Geguang, Zhao Xiangpeng 350

Abstraction, Retrenchment and Rewriting

On Some Galois Connection Based Abstractions for the Mu-Calculus
Dragan Bošnački . 366

Retrenching the Purse: Finite Sequence Numbers, and the Tower Pattern
Richard Banach, Michael Poppleton, Czeslaw Jeske,
Susan Stepney . 382

Strategic Term Rewriting and Its Application to a VDM-SL to SQL
Conversion

T.L. Alves, P.F. Silva, J. Visser, J.N. Oliveira . 399

Scenarios and Modeling Languages

Synthesis of Distributed Processes from Scenario-Based Specifications
Jun Sun, Jin Song Dong . 415

Verifying Scenario-Based Aspect Specifications
Emilia Katz, Shmuel Katz . 432

An MDA Approach Towards Integrating Formal and Informal Modeling
Languages

Soon-Kyeong Kim, Damian Burger, David Carrington 448

Model Checking

Model-Checking of Specifications Integrating Processes, Data and Time
Jochen Hoenicke, Patrick Maier . 465

Automatic Symmetry Detection for Model Checking Using
Computational Group Theory

A.F. Donaldson, A. Miller . 481

XIV Table of Contents

On Partitioning and Symbolic Model Checking
Subramanian Iyer, Debashis Sahoo, E. Allen Emerson,
Jawahar Jain . 497

Dynamic Component Substitutability Analysis
Natasha Sharygina, Sagar Chaki, Edmund Clarke, Nishant Sinha 512

Industry Day: Abstracts of Invited Talks

Floating-Point Verification
John Harrison . 529

Preliminary Results of a Case Study: Model Checking for Advanced
Automotive Applications

Stefan Eisler, Christian Scheidler, Bernhard Josko,
Guido Sandmann, Joachim Stroop . 533

Model-Based Testing in Practice
Alexander Pretschner . 537

Testing Concurrent Object-Oriented Systems with Spec Explorer
Colin Campbell, Wolfgang Grieskamp, Lev Nachmanson,
Wolfram Schulte, Nikolai Tillmann, Margus Veanes 542

ASD Case Notes: Costs and Benefits of Applying Formal Methods to
Industrial Control Software

Guy H. Broadfoot . 548

The Informal Nature of Systems Engineering
Gerrit Muller . 552

Author Index . 557

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, p. 1, 2005
© Springer-Verlag Berlin Heidelberg 2005

Formal Aids for the Growth of Software Systems

Mathai Joseph

Tata Research Development & Design Centre,
A Division of Tata Consultancy Services

mathai.joseph@tcs.com

Abstract. The use of formal techniques has for a long time been focused on
relatively small and complex applications. The hardware domain lends itself
well to this and it has therefore been the target of some of the most significant
applications of formal techniques. The software applications that have typically
been considered were for small, safety-critical systems.

This restricted focus was understandable and necessary while formal
techniques were evolving and practical considerations limited the size of the
system that could be specified and verified. However, there are now compelling
demands for the use of more precise techniques for a variety of large-scale
applications, ranging from smart cards to financial systems.

So there are now new reasons to extend the use of formal methods for all
phases of software development: from requirements and software modeling to
coding and testing. Problems of scale still remain so it is important to focus the
use of formal techniques in areas where their impact will be most important.

Different formal techniques can be used for solving different problems. For
example, use of model-checking during requirements modeling can identify
incomplete or inconsistent specifications, while use of transformational
techniques can be very effective for software modeling and enable generation of
code directly from models. Program analysis techniques can be used to generate
tests that will greatly improve functional coverage during testing.

The use of formal techniques continues during software maintenance
through the following kinds of activities:

a. Remedial: correction of errors discovered during use;
b. Adaptive: making changes to cater to changes in the operating

environment;
c. Enhancing: adding new features or capabilities; and
d. Improving: making the software more robust and easier to maintain.

It is estimated that the cost of software maintenance amounts to as much as
90% of the life-cycle cost of a software system. While this calls for major
improvements in maintenance techniques, changes in software development
methods can also help to reduce the need for, and therefore the cost of, making
remedial improvements (i.e. bug fixing).

In this talk, I will describe the use of formal techniques for different areas of
the software life-cycle and relate this to evidence obtained through the analysis
of a large number of actual software development and maintenance projects.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 2 – 8, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Formal Methods and Testing: Hypotheses, and
Correctness Approximations

Marie-Claude Gaudel

LRI, Paris-Sud University & CNRS, Orsay, France
mcg@lri.fr

Abstract. It has been recognised for a while that formal specifications can bring
much to software testing. Numerous methods have been proposed for the deri-
vation of test cases from various kinds of formal specifications, their submis-
sion, and verdict. All these methods rely upon some hypotheses on the system
under test that formalise the gap between the success of a test campaign and the
correctness of the system under test.

1 Introduction

It has been recognised for a while that formal specifications and models can bring
much to software testing [16], [10]. In this extended abstract, we first precisely intro-
duce the distinction between specification testing, model checking, and implementa-
tion testing based on formal specifications. Then we focus on the specificities of the
latter one.

Actually, embedding implementation testing within a formal framework is far from
being obvious. One tests a system. A system is a dynamic entity. It raises tricky issues
such as observability and controllability, and sometimes specific physical constraints.
A system is not a formula, even if it can be partially described as such. Thus, testing
is very different from program proving, even if it is related. Similarly, testing is dif-
ferent from model checking, where verifications are performed on a known model:
when testing, the model corresponding to the system under test is unknown (if it was
known, testing would not be necessary…) and it is sometimes difficult to observe in
what state it is [20], [22]. These points have been successfully circumvented in sev-
eral testing methods based on formal specifications (or models) that use various and
diverse techniques such as graph theory, symbolic evaluation, proof techniques, con-
straint solving, static analysis or model checking.

Explicitly or not, all these methods rely upon hypotheses on the system under test.
They provide some approximation of correctness that is correlated to these hypothe-
ses. In this talk we recall the notions of testability hypotheses and selection hypothe-
ses that were introduced in [4], and we show how they have been used or could be
used on various kinds of formal methods. We also address the issues of observation
and control of the system under test.

 Formal Methods and Testing: Hypotheses, and Correctness Approximations 3

2 Testing Specifications, Checking Models, or Testing
Implementations?

Before starting some discussion on formal methods and testing, it is necessary to
introduce some terminology. Unfortunately, there is no consensus on these issues
among the various research communities working in the area of software.

There is not even an agreement on the meanings of the words “validation” and
“verification” [7] [3]. Similarly, the word “testing” is often used with different mean-
ings.

Looking in a dictionary, one gets definitions such as:
“subjecting somebody or something to challenging difficulties”

In the case of software and formal methods, the “somebody or something” and the
“challenging difficulties” are sometimes understood in different ways.

In most cases, the entity under test is a system, and the “challenging difficulties”
are inputs, or sequences of inputs, aiming at revealing some dysfunctions [4], [8], [12]
[13], [15], etc. In such cases, formal descriptions of the system are mainly used as
guidelines for the selection of (sequences of) inputs and for the verdict. We focus on
these approaches in Sections 3, 4 and 5.

2.1 Debugging or Testing Formal Specifications

In some other cases, testing is understood as debugging of formal descriptions or
models. The formal description is the subject of the test. The challenges are either
properties to be satisfied or refuted [14], or inputs for some simulation of the future
system, based on the formal description [19], [11].

As the main characteristic of formal specifications is the ability of reasoning, theo-
rem proving is used either to prove that a required property is a consequence of the
specification, or to refute a property that corresponds to a forbidden situation. The
choice of such challenges is far from being simple. It requires a very good expertise in
the application domain. As the specification may be wrong, is probably a good idea to
make this choice as independent of it as possible [2], even if some positive experi-
ments have been performed on mutation of formal specifications [6].

2.2 Checking Models … or Testing Them?

Model checking is similar in purpose: it aims at finding faults in so-called models of
software systems. These models are behavioural (Kripke Structures, Finite Automata,
Finite State Machine, Labelled Transition Systems, or even program control graphs),
with a finite (but often huge) number of states labelled by atomic propositions. A
model checker checks properties written in some temporal logic via an exhaustive
exploration of the model, or some equivalent technique. Here also, the choice of the
temporal properties to be checked is far from being obvious.

Model checking could be seen as a special kind of testing where the subject is a
model and the challenges are temporal properties. Actually, there is some evolution in
this direction. Due to the state explosion problem new techniques have been proposed
that somewhat give up exhaustiveness: for instance, bounded model checking [5]

4 M.-C. Gaudel

where only finite prefixes of traces are considered; or randomised exploration of mod-
els until a target coverage quality is reached [17].

2.3 Testing Implementations

When testing implementations against a formal specification, the situation is different.
As said in the introduction, the subject of the test is an executable system, whose
internal state is often unknown. The system under test is not a formal entity. The only
way to observe it is to interact via some specific (and often limited) interface, submit-
ting inputs and collecting outputs.

3 Specifications, Implementations, and Testing

Given a specification SP and a system under test SUT, any testing activity must be
based on a relation of satisfaction (sometimes called conformance relation) that we
note SUT sat SP. This relation is usually defined on a semantic domain common to
implementations and specifications (i.e. there is some domain D such that sat ⊆ D×D)
[4], [9], [20], but in some cases they may be different (sat ⊆ D1×D2) [9].

3.1 Test Experiments, Exhaustiveness, and Testability

The satisfaction relation SUT sat SP is generally a large conjunction of elementary
properties (for instance it may begin by “for all traces in the specification…”). These
elementary properties are the basis for the definition of what is a test experiment, a
test data, and the verdict of a test experiment, i.e. the decision whether SUT passes a
test t. The satisfaction relation as a whole is used for the definition of an exhaustive
test set, Exhaust(SP).

However, an implementation's passing all the tests in the exhaustive test set does
not necessarily mean that it satisfies the specification. This is true for a class of rea-
sonable implementations. But a totally erratic system, or a diabolic one, may pass the
exhaustive test set and then fail. More formally, the implementation under test must
fulfil some basic requirements coming from the semantic domain considered for the
implementations. As an example, in the case of finite state machines [20], the imple-
mentation must behave without memory of its history. Or when faced to non-
deterministic SUT, some reasonable assumptions on the way of controlling it, or on
the way of covering all the possible behaviours, are needed. We call such properties
of the implementation the testability hypothesis, or the minimal hypothesis. We will
note it Hmin(SUT).

Hmin, Exhaust, and sat must satisfy:

Hmin(SUT) (SUT passes Exhaust(SP) ⇔ SUT sat SP) . (1)

There are cases where several choices are possible for the pair <Hmin, Exhaust> .
When restricting the class of implementations under test, using for instance some
knowledge on the way it was developed, it is possible to lessen Exhaust(SP).

 Formal Methods and Testing: Hypotheses, and Correctness Approximations 5

3.2 Selection Hypotheses, Uniformity, Regularity

A black-box testing strategy can be formalised as the selection of a finite subset of
Exhaust(SP). Let us consider as an example the classical partition testing strategy
(more exactly, it should be called sub-domain testing strategy). It consists in defining
a collection of (possibly non-disjoint) subsets that covers the exhaustive test set. Then
a representative element of each subset is selected and submitted to the implementa-
tion under test.

The choice of such a strategy corresponds to stronger hypotheses than Hmin on the
system under test. We call such hypotheses selection hypotheses. In this case, it is a
uniformity hypothesis. The system is assumed to uniformly behave on the test subsets
UTSi:

UTS1 ∪ … ∪ UTSp = Exhaust(SP), and

∀i = 1, …, p, ∀t ∈ UTSi, SUT passes t SUT passes UTSi (2)

Various selection hypotheses can be formulated and combined depending on some
knowledge of the program, some coverage criteria of the specification and ultimately
cost considerations. A regularity hypothesis uses a size function on the tests and has
the form “if the subset of Exhaust(SP) made up of all the tests of size less than or
equal to a given limit is passed, then Exhaust(SP) also is” (there is some similarity
with bounded model checking).

All these hypotheses are important from a theoretical point of view because they
express the gap between the success of a test strategy and correctness. They are also
important in practice because exposing them makes clear the assumptions made on
the implementation. It gives some indication of complementary verifications.

Weak selection hypotheses lead, via formula (1), to large test sets. Strong selection
hypotheses lead to smaller, more practicable test sets, with the risk that they may not
be fulfilled. The strongest selection hypothesis is the correctness assumption: in this
case, an empty test set is sufficient…

There exist various ways to select test sets in the framework of specification-based
testing. The most used are coverage criteria based on the specification. A well-known
example in the case of finite state machines is transition coverage [10]. It corresponds
to a testability hypothesis that the SUT is some deterministic FSM. Another approach
is to select tests via a finite number of test purposes describing some behaviours that
are considered to be important to test. Combining the specification and the tests pur-
poses, a finite number of test cases are generated. This kind of selection is used for
example in the TGV tool [9]. It can be formalised as some restriction of the confor-
mance relation combined with some selection hypotheses.

3.3 The Oracle Problem

The interpretation of the results of a test is often very difficult. This difficulty is
known as the oracle problem. The problem may be difficult for various causes.

The SUT may yield the results in a way that depends on some representation
choices and makes the comparison with the specified results difficult. The test is
based on a specification that is (normally) more abstract than the program. Thus pro-

6 M.-C. Gaudel

gram results may appear in a form that is not obviously equivalent to the specified
results. This contradicts a common belief that the existence of a formal specification
is sufficient to directly decide whether a test is a success. In presence of complex data
types, it may be necessary to embed the tests into observable contexts, or to enrich the
SUT with some concrete equivalence function [22].

Similarly, when the specification is based on states and transitions, it may be diffi-
cult to check that the SUT is in an acceptable state after a test. It may require com-
plementing the test itself by some other tests for identifying the internal state [20].

4 Axioms, Pre-conditions and Post-conditions

Historically the above framework has been developed for algebraic specifications [4],
[22]. Test data are just instantiated axioms of the specification and test experiments
consist in their evaluation by the SUT to check that they are satisfied. The exhaustive
test set is the set of all closed instances of the axioms of the specification. The test-
ability hypothesis on the SUT is that all the functions of the signature are imple-
mented in a deterministic way, and that there is no junk (no unspecified values). A
basic testing strategy is to cover once every axiom. It corresponds to uniformity hy-
potheses on the domains of their variables. This strategy can be refined by composing
axioms (unfolding functions) in order to get a better coverage of sub-cases, i.e.
weaker uniformity hypotheses. In the case of positive conditional axioms, this method
has been automated by the LOFT constraint solver [4].

In the case of VDM, Jeremy Dick and Alain Faivre [12] have proposed to reduce
the pre conditions and post conditions into disjunctive normal forms (DNF), creating
a set of disjoint input sub-domains for each operation of the specification. This pro-
vides a nice way of discovering uniformity hypotheses. As VDM is state-based, it is
not enough to partition operations domains: thus the authors give a method of extract-
ing a finite state automaton from the specification. It uses the uniformity sub-domains
of the operations to perform a partition of the states. Given this finite state automaton
one can use one of the testing methods mentioned in the next section. This work has
been influential on several researches on testing based on formal methods close to
VDM, such as Z, or B, that are too numerous to be all cited here.

More recently, similar ideas have been used in the KORAT framework for testing
Java methods specified by JML preconditions and post conditions [8]. KORAT de-
rives from the precondition “all non isomorphic test cases up to a given small size”,
i.e. the selection is based on a combination of uniformity and regularity hypotheses.

5 Behavioural Models, FSM, LTS, etc

Historically, finite state machines (FSM) have been the first formal descriptions used
as basis for automatic test derivation [10]. Originally, there was a testability hypothe-
sis that the SUT behaves as a FSM with the same number (or a larger known number)
of states as the specification FSM. The conformance relation was equivalence. These
choices were adequate for hardware testing, which was the original motivation. The
excellent survey by Lee and Yannakakis presents extensions to more elaborated con-

 Formal Methods and Testing: Hypotheses, and Correctness Approximations 7

formance notions, and to extended state machines [20]. Similar approaches have been
developed in the area of communication protocols, based on labelled transition sys-
tems (LTS) or variants of them [9]. In [15] and [21] we have stated the underlying
notions of testability hypotheses, exhaustive test sets, and selection hypotheses for
these approaches.

For some years, there is a fruitful cross-fertilisation between these so-called model-
based testing methods and model checking techniques (cf. [1] [18], [23] among many
others). For instance, the ability of model checker to provide counterexamples can be
used to produce test sequences that satisfy a property P by model-checking the prop-
erty “always not P”. Model checkers are now among the major tools for testing
based on formal specification, together with constraint solvers, theorem provers, and
symbolic interpreters.

6 Conclusion

There has been a lot of work on test cases derivation from formal descriptions. It is
our claim that formal approaches bring more than that to testing. They make it possi-
ble to state the underlying hypotheses associated with test strategies and thus to ex-
press the correctness approximation they introduce. This open a lot of possibilities,
first for identifying complementary verifications, second for assessing these approxi-
mations.

References

1. Ammann, P. E., Black, P.E., Majurski, W. : Using model checking to generate tests from
specifications. IEEE International Conference on Formal Engineering Methods
(ICFEM'98), IEEE , (1998) 46-54.

2. Arnold, A., Gaudel, M.-C., Marre B.: An experiment on the validation of a specification by
heterogeneous formal means. 5th IFIP working conference on Dependable Computing for
Critical Applications, Urbana Champaign, (1995) 24-34.

3. Avizienis, A., Laprie, J-C., Landwehr, C., Randell, B.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Trans. on Dependable and Secure Computing,
vol. 1, n° 1, (2004) 11-33.

4. Bernot, G., Gaudel, M.-C., Marre B.: Software Testing based on Formal Specifications : a
theory and a tool. Software Engineering Journal, vol. 6, n° 6, (1991) 387-405.

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y. : Symbolic model checking without BDDs.
TACAS’99, LNCS n° 1579, Springer-Verlag (1999) 193–207

6. Black, P.E., Okun, V., Yesha, Y. : Mutation Operators for Specifications. IEEE Interna-
tional Conference on Automated Software Engineering (ASE2000), IEEE (2000) 81-88.

7. Boehm, B. W.: Software Engineering Economics, Prentice Hall (1981).
8. Boyapati, C., Khurshid, S., Marinov, D.: KORAT: automated testing based on Java predi-

cates. ACM International Symposium on Software Testing and Analysis, (2002) 123-133.
9. Brinksma, E., Tretmans, J.: Testing Transition Systems, an annotated bibliography. Lec-

ture Notes in Computer Science n° 2067, Springer-Verlag (2001) 187-195.
10. Chow, T. S.: Testing Software Design Modeled by Finite-State Machines. IEEE Transac-

tions on Software Engineering, vol. SE-4, n° 3, (1978) 178-187.

8 M.-C. Gaudel

11. Desovski, D.: Combining Testing and Model Checking for Verification of High Assurance
Systems. IEEE Int. Symp. on High Assurance Software Engineering, IEEE (2004).

12. Dick, J., Faivre, A.: Automating the Generation and Sequencing of test cases from model-
based specifications. International Symposium of Formal Methods Europe, Lecture Notes
in Computer Science n°670, Springer-Verlag (1993) 268-284.

13. Farchi, E., Hartman, A., Pinter, S. S.: Using a model-based test generator to test for stan-
dard conformance. IBM Systems Journal, vol. 41, n° 1, (2002) 89-110.

14. Garland, S.J, Guttag, J.V.: Using LP to Debug Specifications. IFIP TC2 Working Confer-
ence on Programming Concepts and Methods, North-Holland (1990).

15. Gaudel, M.-C., James, P. R.: Testing Algebraic Data Types and Processes : a unifying the-
ory. Formal Aspects of Computing, 10(5-6), (1999) 436-451.

16. Goodenough, J. B., Gerhart, S.: Toward a Theory of Test Data Selection. IEEE Transac-
tions on Software Engineering, vol. SE-1, n° 2, (1975) 156-173.

17. 17. Grosu, R., Smolka, S. A.: Monte Carlo Model Checking. TACAS 2005, Lecture Notes
in Computer Science n° 3440, Springer-Verlag, (2005) 271–286.

18. Hamon, G., de Moura, L, Rushby, J.: Generating Efficient Test Sets with a Model
Checker. IEEE Int. Conf. on Software Engineering and Formal Methods, IEEE, (2004)
261-270.

19. Kemmerer, R.A.: Testing Formal Specifications to Detect Design Errors. IEEE Transac-
tions on Software Engineering, vol. SE-11, no 1 (1985) 32-43.

20. Lee, D, Yannakakis, M.: Principles and methods of Testing Finite State Machines – a sur-
vey. The Proceedings of IEEE, vol. 84, n° 8, (1996)1089-1123.

21. Lestiennes, G., Gaudel, M.-C.: Testing Processes from Formal Specifications with Inputs,
Outputs, and Data Types. 13th IEEE Int. Symp. on Software Reliability Engineering
(ISSRE-2002), IEEE, (2002) 3-14.

22. Machado, P. D. L,: On Oracles for Interpreting Test Results against Algebraic Specifica-
tions. Lecture Notes in Computer Science n° 1548, Springer-Verlag (1998) 502-518.

23. Peled, D., Vardi, M., Yannakakis, M.: Black Box Checking. Proceedings of
FORTE/PSTV, Kluwer (1999) 225-240.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 9 – 25, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Natural History of Bugs:
Using Formal Methods to Analyse Software Related

Failures in Space Missions

C.W. Johnson

Department of Computing Science, University of Glasgow, Glasgow, G12 9QQ
johnson@dcs.gla.ac.uk

Abstract. Space missions force engineers to make complex trade-offs between
many different constraints including cost, mass, power, functionality and
reliability. These constraints create a continual need to innovate. Many
advances rely upon software, for instance to control and monitor the next
generation ‘electron cyclotron resonance’ ion-drives for deep space
missions.Programmers face numerous challenges. It is extremely difficult to
conduct valid ground-based tests for the code used in space missions. Abstract
models and simulations of satellites can be misleading. These issues are
compounded by the use of ‘band-aid’ software to fix design mistakes and
compromises in other aspects of space systems engineering. Programmers must
often re-code missions in flight. This introduces considerable risks. It should,
therefore, not be a surprise that so many space missions fail to achieve their
objectives. The costs of failure are considerable. Small launch vehicles, such as
the U.S. Pegasus system, cost around $18 million. Payloads range from $4
million up to $1 billion for security related satellites. These costs do not include
consequent business losses. In 2005, Intelsat wrote off $73 million from the
failure of a single uninsured satellite. It is clearly important that we learn as
much as possible from those failures that do occur. The following pages
examine the roles that formal methods might play in the analysis of software
failures in space missions.

1 The Challenges of Software Engineering in Space

Space is unforgiving. The following sections briefly review some of the challenges
that complicate software development in this environment.

1.1 The Usual Suspects

‘Rocket science’ is often seen as the pinnacle of scientific and technological progress.
For instance, it has been estimated that there are more than 1.5 million lines of code in
the onboard command and control computers on the International Space
Station.However, such figures are commonplace in several other industries. The day-
to-day reality of maintaining space-related code would also be familiar to other
software engineers. For example, the Expedition 10 crew is on the International Space

10 C.W. Johnson

Station as I write this article. Part of their six-month stay will be used to install
software upgrades. These are intended to eliminate the 300 workarounds, ‘Station
Program Notes’, that are used by ground flight controllers [15].

The causes of many failures in space missions will also be familiar to software
engineers. These include the under-specification of complex systems, lack of
resources for validation and verification, poor communication between
multidisciplinary teams and so on. One consequence of this is that many academic
computer scientists cite software failures from space missions as warnings to their
students about what can go wrong in their own programs. The most familliar
examples include the Ariane 5 code re-use [14] and the confusion over metric and
imperial units of thrust in the Mars Climate Orbiter [16]. In contrast, the following
pages delve a little more deeply into the challenges that distinguish software
engineering for space systems from a mass of other applications.

1.2 Remoteness of Space

One of the first issues to confront a programmer is that many space missions must
travel thousands of miles from Earth. This creates a peculiar form of batch processing
where code will not be executed until months or even years after launch. Further
complexity is created by the possibility of reprogramming these missions in flight.
Such reprogramming is widely acknowledged to be both difficult and error prone.
For example, some telemetry configurations may not enable programmers to verify
that a spacecraft has successfully received instruction sequences. In other words, the
target machines are often ‘write-only’.

There are significant pressures associated with recoding a space mission as it
travels towards a rendez-vous with a distant planet. In consequence, programming
teams will often develop coding strategies to reduce the chances for an error. One
technique is to program a range of different options before launch. Once the mission
is in flight, the team accepts self-imposed limits on the admissible reprogramming
that may be attempted. Often the choice will be restricted to one of the pre-scripted
instruction sequences planned and loaded before launch [19]. Other missions have
adopted hybrid strategies where programmers can only upload new code after
multiple reviews and at a small number of key stages in the mission. At all other
times, they must rely on prescripted command sequences.

The differences that physical distance impose on the programming of space
missions can be illustrated by events involving NASA’s Spirit and Opportunity Mars
Rovers during September 2004 [20]. Programmers had to transfer Spirit and
Opportunity back from ‘conjunction’ to normal mode. During a conjunction,
communications are disrupted because Mars and Earth are on opposite sides of the
Sun. During the conjunction, pre-loaded command sequences were used to perform
daily science missions, for instance using a Mössbauer spectrometer and a magnet
array to analyze dust particles. The Rovers transmitted the data from these
experiments to the Mars Odyssey orbiter. Odyssey then retransmitted the data back to
Earth each afternoon. This link was extremely error prone. This created a bottleneck
that reduced Spirit’s memory available for science data storage from approximately
400 to 100 megabits. The problems were compounded when the mission team began
to transmit ‘no operation’ commands to test direct communications with the Rovers

 The Natural History of Bugs 11

during the conjunction. One of these commands triggered a software ‘reset’ on
Opportunity.

Reprogramming arguably offers greatest benefits to programmers when they
correct for problems with their own code. For example, Spirit and Opportunity had to
be reprogrammed shortly after they landed on Mars in January 2004 and have been
reprogrammed many times since. Spirit suffered a software fault during its navigation
of the ‘Columbia Hills’. The flight software team identified that an error occurred
within a 3-microsecond window of vulnerability when a ‘write’ command was
permitted and attempted on a ‘write-protected’ area of RAM [20]. The error was
subsequently corrected in a software upgrade that was also communicated to
Opportunity. Significant changes have been made to their code in order to extend
their mission life beyond Summer 2004. For example, Spirit was commanded to avoid
using a faulty brake relay on its steering motor. Both Rovers have been
reprogrammed to alternate their drive direction to maintain the long-term health of
their wheel drives.

Similarly, the Solar and Helioscopic Observatory (SOHO) was reprogrammed in-
flight to de-spin one of its three gyroscopes. The gyros were identified as a ‘life
limiting’ factor for the mission as a whole. Of course, such benefits carry risks as
well. The de-spun ‘A’ gyroscope was involved in the SOHO mission interruption as
controllers tried to work out which one of the three systems was providing reliable
information [18].

1.3 Non-standard Hardware

Software development is complicated because many space applications require
specialist hardware. As a minimum requirement, processors must be ‘radiation
hardened’. For example, the RAD 6000 processor has been tested to demonstrate 0.2
errors per year GCR – Galactic Cosmic Ray background [6]. If the radiation exposure
is increased to a level similar to the flare events seen in October 1982 and January
1972 then the rate rises to 0.6 errors per flare.

Space programmers are caught between a ‘rock and a hard place’. They must
understand the unique features of ‘rad-hard’ processors. They must also cope with
reduced tool support. Specialist devices lack the wide range of software development
applications that support Commercial Off The Shelf (COTS) processors. The limited
market for space rad-hard devices often does not justify the development of
computer-aided software engineering tools. The additional validation criteria imposed
on space-rated processors can also exacerbate the ‘generation gap’ between the
facilities provided by this hardware compared to COTS processors.

Many of these problems can be illustrated by the General Purpose Computer
configuration on the Shuttle. A five processor redundant architecture is used to
perform critical guidance, navigation and control functions. However, the detailed
analysis and design necessary to approve both the hardware and software on the GPC
array prevented any updates to the processors for over fifteen years. During which
time it became increasingly difficult to find vendors and suppliers for this technology.
These are not isolated comments. For example, the minutes of subsystems groups
reveal similar concerns throughout the Shuttle programme. The Extra-Vehicular
Activities equipment board looking at the Caution and Warning System has continued

12 C.W. Johnson

to experience difficulties in supplying the “100 pieces of the EEPROM for the CPU
board, which are becoming obsolete” [21]. It is difficult to underestimate the
consequences of such supply problems. Storage and re-commissioning procedures
must often be considered when utilizing stocks that were not initially acquired by the
eventual end-user. Similarly, there are significant training issues associated with
obsolete and non-standard hardware platforms.

Pilot projects have begun to develop specialist versions of commercial
microprocessors. For instance, the US Defence Technology Program has invested
over $50 million in providing a space-rated version of the PowerPC 750 processor.
The resulting SCS750 processors can reduce the flare error rate from 0.6 per event,
cited above, to 0.36 errors per flare. These individual heavy-ion irradiation errors can
be detected and mitigated by the SCS750 processor [6]. However, the application of
these hybrid platforms is still in its infancy.

1.4 Limitations of Re-use

There is a surprising degree of re-use in other forms of space engineering. For
example, the design of the heat shields and the parachutes on the Mars Surveyor
missions were based on designs from the Pathfinder missions. This provides
important benefits to engineers in the aftermath of a mission failure. Investigators
quickly dismissed these subsystems as causes of the Polar Lander loss because “the
high degree of heritage to the successful Mars Pathfinder design, fabrication, test, and
flight results (suggests) that the failure of an undamaged heat shield is implausible”
[19]. These arguments can be based on limited evidence “there was not an extensive
qualification program as part of the Pathfinder design phase, the Pathfinder chute did,
in fact, work, thus providing at least one successful occurrence”.

In contrast, space missions offer limited opportunities for code re-use. The loss of
Ariane 5 provided a salient example of the problems that can arise when software is
ported between different space missions. It is important to acknowledge some of the
reasons why code re-use is difficult. Command and control software is typically used
to interface complex sub-systems. Any unidentified interactions between these
components will most often be revealed in the form of software failure. Later sections
will also describe an increasing trend to introduce ‘band-aid’ software that is intended
to fix design deficiencies or to achieve cost savings in the wider engineering of space
missions. ‘Band aid’ code necessarily involves bespoke programming because it
provides a short-term fix for underlying problems in the design and development of
complex systems.

1.5 Limitations of Ground-Based Testing

Much of the software used in space missions cannot easily be tested on the ground.
For example, no test was made to establish that Ariane 5’s Inertial Reference System
(SRI) would behave as intended under the countdown and flight time sequence for the
expected trajectory. The Lyons investigation found that “for reasons of physical law,
it is not feasible to test the SRI as a ‘black box’ in the flight environment, unless one
makes a completely realistic flight test” [14]. It was possible to conduct a limited
form of ground testing by injecting simulated accelerometric signals based on

 The Natural History of Bugs 13

predicted flight parameters using a turntable to simulate launcher angular movements.
Only in retrospect was it argued, “Had such a test been performed by the supplier or
as part of the acceptance test, the failure mechanism would have been exposed”.

Similarly, the attempt to deliver two Deep Space 2 high-impact micro-probes into
the surface of Mars, went ahead in spite of concerns by mathematical modelers that
they could not reliably analyze the potential impact forces acting on the devices. Their
concerns were significant because of the problems involved in conducting other forms
of testing. The mission validation exercises relied on an incremental build-test
strategy. However, most of the communications system was only qualified with non-
functioning brass-board and breadboard components. Issues of cost prevented a full
impact test. In addition, delays in the schedule meant that a fully functioning probe
was only available relatively late in the programme. To employ destructive testing
would have involved a delay to the launch window [19].

1.6 Limitations of Executable and Abstract Modeling

The problems of software development for space missions are compounded because
abstract models and simulations have often proven to be unreliable. It is common
practice to enter into an iterative cycle where software is first developed and tested on
a satellite or vehicle simulator [10]. The results from these evaluations are then
compared with those results that can be obtained from the eventual platform.
However, any discrepancies are just as likely to result in changes to the simulator as
they are to changes in the command and control software. For example, both NASA
and the European Space Agency operated their own simulators of the joint Solar and
Helioscopic Observatory (SOHO) mission. During the mission interruption it was
realized that the NASA model predicted some of the problems they were
experiencing. However, the results could not be replicated for the ESA models;
“analysis of the differing simulation results (ESA vs. NASA simulators) was
continuing as the timeline execution was in process… this, in itself, was an indirect
factor in the failure scenario since the technical support staff were distracted by the
on-going simulation evaluation rather than focusing on the recovery efforts” [18]. The
simulators had not been maintained with all on-board software changes that had been
implemented on the spacecraft.

There has long been a debate in the formal methods communities about whether
executable models can provide an appropriate level of abstraction to support
reasoning about critical properties of complex software systems. However, there are
aspects of space missions that stretch our ability to model interactions even at the
highest level of abstraction. The investigation into the Mars Surveyor mission failures
concluded that the “large modeling effort, however, may have not been enough to
ensure success given the choice in the design phase of some of the system
components, such as the propulsion system and the landing Radar, and given some
aspects of the design of the Guidance and Control algorithms/software, which resulted
in a system that was extremely difficult to model and more sensitive to model errors
than it might have been” [19]. For example, the Polar Lander used pulse-width
modulation (PWM) for controlling the thrust of the descent engines rather than the
more conventional throttle based system. This reduced the costs of the Polar Lander
hardware but greatly increased the complexity of software development for the

14 C.W. Johnson

programmers who had to calculate the exact duration of each engine pulse during the
descent; “the complexity of the interactions between the feed system, the thrusters,
the structure, the Guidance and Control sensors, and the Guidance and Control
algorithms that the PWM approach creates, practically dictate that the only way of
verifying the system with high confidence is with a full-scale closed-loop test of the
system… this was prohibitive from a cost and schedule point of view and it was not
done” [19].

1.7 Organizational Complexity and ‘Band-Aid’ Software

The use of software to compensate for the pulse-width modulation on the Polar
Lander provides an example of ‘band-aid’ software. This code is introduced to fix
design mistakes and compromises in other aspects of space systems engineering.
Software is used to cover over design problems just as some mothers use sticking
plasters to cover a host of injuries sustained by their children. Arguably the best
example of band-aid software comes from the Mars Climate Orbiter mission. As
mentioned previously many software engineers are aware that the probable cause of
this mission failure stemmed from the use of Imperial rather than Metric units in the
calculation of thrust for the rocket motors during the mission cruise phase. Few
software engineers realize that the rockets were fired as part of Angular Momentum
Desaturation (AMD) events. The software was called upon far more often than was
originally intended, some estimates state that there were 10 to 14 times more AMDs
than planned. AMD events were intended to desaturate the momentum that was built
up on an internal flywheel. This momentum was, in turn, used to counteract solar
induced momentum on an asymmetrical solar array. Previous missions had used
symmetrical solar panels. The Climate Orbiter’s novel design again reduced hardware
costs but created problems because solar induced momentum skewed the cruise
trajectory. In this way, the engineering decision to have asymmetrical solar arrays
created the need to counteract the ‘uneven’ effects of solar induced momentum on the
panels. This was done by spinning the flywheel in an equal and opposite direction to
the momentum induced on the solar panels. However, the flywheel could only be used
until its momentum threatened the stability of the vehicle. In order to desaturate the
flywheel, programmers had to perform the complex calculations that controlled the
rocket motors [16].

The problems created by band-aid software are increased by the organizational
complexity of many space missions. For example, most of the team that worked on
the software and hardware development of the Mars Climate Orbiter was transferred
to the design of the Mars Polar Lander. The mission staff that then had to operate the
Orbiter during its cruise and orbit acquisition phases, therefore, lacked many of the
insights that might have been provided by the original coders. In other missions,
there are conflicts between the programmers who must maintain the integrity of the
platform and those who have a primary interest in particular scientific objectives.
For instance, the SOHO Flight Operations Team was encouraged to modify the stored
sequences of ground-generated commands. These modifications reduced operational
cost during the extended life of the mission; they also minimized science ‘downtime’
and conserved the gyro life. Some modifications proposed by the Science Team
‘were not necessarily driven by any specific requirement changes’ [18]. The

 The Natural History of Bugs 15

modifications were not adequately managed, for example not all of them were
considered by a Configuration Board. Many were poorly documented. Verification
relied on the NASA computer-based simulator, mentioned previously. There were no
code walk-throughs, no independent reviews by ESA or any other body not involved
in the implementation of the change. No hard copy of the command procedure set on
the satellite existed at the time of the mission interruption.

2 Formal Methods in the Development of Space-Related Software

There have been a number of notable attempts to use formal methods to address the
problems of software engineering for space-related applications. SRI have used a
range of theorem provers, such as PVS, and model checking tools, including Murφ to
verify that there are no violations of desired properties in models of a system. One of
the best-known examples of this work includes the analysis of the software for the
Simplified Aid for Extra-Vehicular (EVA) Rescue, known as SAFER. This can be
thought of as a form of jet-pack [17]. Other projects have looked at the Shuttle’s
contingency guidance system [3]. In Europe, the Picgal project has used VDM to
analyze ground-based software for launch vehicles similar to Ariane 5 [4]. Relatively
slow progress has been made towards the introduction of these techniques as tools for
the development of space-related software. One reason for this is the relative
immaturity of contemporary software engineering practices in space applications. A
number of more basic software engineering processes provide greater benefits at
lower costs.

The remainder of this paper looks at an alternate use of formal methods. Rather
than focusing on the constructive use of formal methods during program
development, these techniques can be used to help us analyze the causes of software
failures in space missions.

3 Understanding Space-Related Software Failures

As mentioned, most previous work has focused on the use of formal methods to
support the design of space-related software. In general terms, this approach relies
upon the following semantic inconsistency:

System, Environment, Requirements |= false (1)

In other words, we might wish to establish that a particular model of the system and
the environment necessarily involve a violation of safety or liveness properties. This
is the traditional role of model checking. These tools will provide a trace of system
states and properties that violate particular theorems. This approach can be extremely
frustrating. The identification of a semantic inconsistency may provide analysts with
limited insights to guide their search for a system and an environment such that the
requirements hold. This is not the only way in which formal methods might be used.
For example, the following semantic entailment can be used in theorem proving to
establish that a system and its environment satisfy a set of requirements:

16 C.W. Johnson

System, Environment |= Requirements (2)

In other words, a set of theorems can be shown to hold for a given model of a system
operating in a particular environment. These theorems, typically, represent the safety
and liveness properties that we might like to hold for our application. This framework
is a simplification of the high-level approach to environmental specifications being
proposed by Michael Jackson and Pamela Zave [8]. For instance, they have recently
proposed the following formalization of ‘Adequacy’ where e and s represent
environment and system models respectively. Environment models include
information about the World and any Requirements. System models include
information about Machines and Programs:

∀ e s . World ∧ Machine ∧ Program Requirements (3)

In design, these approaches have been used to demonstrate that particular theorems
continue to hold, as system models, in other words programs and machines, are
iteratively refined towards implementation. We can also use these technologies in a
completely different way. For example, after an accident we might like to verify that
we have understood the manner in which a failure occurred. For example, one
hypothesis about the failure of the Mars Polar Lander mission was that it met a
localized meteorological anomaly, such as areas of low pressure, during the parachute
descent to the planet surface. In such a situation we might therefore wish to prove that
there exists a revised world model, one in which there are localized low pressure
regions, with a machine and program that implies the requirements do not hold:

∃ e’ s . World ∧ Machine ∧ Program ¬ Requirements (4)

Equally, an investigation might focus on potential misunderstandings about the
manner in which a program will execute on a particular machine. For example, a
software requirement of the Mars Polar Lander was that thrust should be cut to the
engines if a signal was generated from the Hall effect sensors on each of the legs and
the Doppler radar system detected that the planet surface was in range. However, the
programmers failed to account for a global variable that retained a spurious signal that
was retained once the legs initially deployed from the body of the Lander. In terms of
formula (4) these insights would force us to revise our ideas about how a Program
within the system, s, might perform in a particular environment. The key point here is
that we can use theorem proving and model checking to demonstrate that changes in
our environment or system models will lead to the violation of safety and liveness
properties. If we cannot construct such a proof then we need to search for an alternate
explanation of the reasons why an accident occurred.

This approach to formal accident verification can yield some interesting surprises.
For example, the system and environment models are often correct. In space missions,
considerable time and skill is devoted to understanding these issues. The need to
understand gravitational influences is well known. Similarly, the bespoke nature of
many space missions leads to a detailed understanding of these machines. Mishaps
often occur because the safety and liveness requirements are not well understood. For
example, the Polar Lander had a software sequence that was to be executed if it

 The Natural History of Bugs 17

remained on the planet surface for 24 hours without receiving a command. The
purpose of this software was to start testing alternate communications facilities.
However, the Lander was placed into a ‘sleep mode’ to conserve battery resources
with an interval of less than 24 hours. Software reset the timer back to 24 hours each
time the Lander awoke and hence the alternate communications configuration was
never used. In this example, the model of the world, the machine and the program
would satisfy the individual requirements for the backup communications and for the
sleep mode. However, the models do not imply the requirement for the backup
communications to work in the presence of the sleep mode. This illustrates some of
the complexities associated with a formal approach to accident verification by
providing an example of the problems associated with the development of complete
requirements. The development of a formal proof to identify the potential problem
before launch is technically feasible. However, the real challenge is to identify those
requirements that are necessary to ensure mission success. Unless we can first do this,
there is little likelihood that we will identify the corresponding theorems.

There are few examples of this alternate use of formal methods as a tool to assist
accident investigation. Ladkin and Loer have extended theorem-proving mechanisms
as part of their Why-Because Analysis technique [12]. This is deliberately intended
to support accident investigation. There are other notable examples. Zuojun Shen [22]
has used the Murφ procedure in Figure 1 to model the Entry, Descent and Landing
phase of the Mars Polar Lander. The model checker was used to search for sequences
of states that led to the violation of a Murφ invariant. This stated that the PWM thrust
should always be on above a certain altitude. Although Shen’s work illustrates the
feasibility of the approach, many unresolved questions remain to be addressed.

Procedure EDL_DESCENT

(freeD_uncnty:FREESECENT_ACC_UNCNTY;supon_uncnty:SUPON_ACC_UNCNTY;
subon_uncnty:SUBON_ACC_UNCNTY;
subon_hshelloff_uncnty:SUPONHSELLOFF_ACC_UNCNTY;
SupPyroSwitchHealth: boolean; AccelerameterHEalth: boolean;
SubPyroSwitchHealth: boolean; AltimeterEalth: boolean);--: EDLstate;

Var ENTRY_OK,state2_OK,state3_OK,state4_OK: boolean;

Begin

ENTRY_OK :=false; state2_OK:=false; state3_OK:=false; state4_OK:=false;
if s = ENTRY then

SupDply(SupPyroSwitchHealth,AccelerameterHEalth,freeD_uncnty);
ENTRY_OK :=true;

End;
if s = state2 & ENTRY_OK then

SupSepr(supon_uncnty);
state2_OK:= true;

End;
if s = state3 & ENTRY_OK & state2_OK then

SubDply(freeD_uncnty);
state3_OK:= true;

End;
if s = state4 & ENTRY_OK & state2_OK & state3_OK then

HeatshellOff(subon_uncnty);
state4_OK:= true;

End;
if s = state5 & ENTRY_OK & state2_OK & state3_OK & state4_OK then
 SubSepr(SubPyroSwitchHealth,AltimeterEalth,subon_hshelloff_uncnty);
End;

End;

Fig. 1. Excerpt from Shen’s Model of the Mars Polar Lander Mishap [22]

18 C.W. Johnson

3.1 Traditional Investigation and Identifying Theorems

The most obvious limitation of formal methods in accident investigation is that the
benefits may not outweigh any associated costs. Typically, the budgets available to
accident investigation teams are a tiny fraction of those devoted to the development of
space missions. Added to this, there are usually tight deadlines by which a report has
to be presented to the commissioning authorities. These deadlines are dictated by
future launch windows. A number of factors might mitigate these costs. For example,
the use of technology such as Murφ can greatly assist the general application of
formal methods both in design and accident verification. By extension, if
mathematical specification techniques were more widely used in the development of
space systems then this would drastically reduce the costs associated with accident
modeling. In other words, we might already have the program, machine and
environmental models identified in formula (4).

There are further problems. The application of formal methods would seem to
require that we already have some idea about the potential failure mode for the space
system. If an existing mathematical model of a program, machine and environment
can be shown to violate safety or liveness requirements then the mission should not
have gone ahead. In practice many missions, including the Mars Climate Orbiter,
have been launched with known bugs in their software. The meta-level point is,
however, that we cannot simply set a model checker loose on a system and
environmental description with the hope that it will identify a sequence of events
leading to an accident. The formalization process necessarily involves a number of
complex decisions about the scope of any models and these circumscribe the range of
possible causal hypotheses. This problem is even more acute for theorem proving
where we must identify the particular safety and liveness properties that are to be
disproved. These theorems represent a significant commitment towards the putative
causes of an accident. Equally, however, the process of formalization can force
developers to ask questions about requirements that might not previously have been
asked. This is especially important in the early stages of development before
requirements can become intractable in the mass of detail that is associated with an
eventual implementation. Unfortunately, the introduction of ‘band-aid’ software
implies that these initial requirements will be subject to constant revision. We are,
therefore, faced with a complex situation in which formalization can help both to
uncover problems that were not anticipated and to reinforce existing prejudices by
modeling those aspects that are already well understood.

It can be argued that a formal model of the symptoms of an accident might be used
to support a form of backwards reasoning from the observed failed state. Such models
help to narrow the search space of possible causes. However, further problems arise
from what has been termed ‘causal asymmetries’ [10]. If we know that an event has
occurred then we can predict its effects with a reasonably degree of confidence.
However, if all we know are the consequences of an earlier event then we typically
have a far worse ability to predict the causes of those effects. By analogy, if we know
a program and its inputs we can reason about the likely outputs. However, if we have
a program and its outputs it can be far harder to reason about the combinations of
input values that led to the observed results.

 The Natural History of Bugs 19

The previous caveats undermine some of Shen’s achievements in his application of
Murφ to the Mars Polar Lander case study. He already knew what to include in his
finite state model because he was working from the Casani report into the mission
failure. In general, investigations into space mission failure are not so fortunate. It is
worth considering the investigatory processes that did reveal the possible software
failures in this mission. The failure mode in the PWM engine code was not found by
the application of the Murφ model checker. Lockhead Martin engineers identified the
bug during a test run on a second Lander that was intended for a future mission. An
engineer pushed a button to indicate a touchdown too early in the test. He released the
button when he realized his error and “was surprised when thrust termination
occurred prematurely” [19]. This prompted a more formal failure analysis that
uncovered the software problem. Similarly, the bug in the Polar Lander’s uplink
command string was not found during the initial code design walkthrough. The
investigators argued that one reason for this was that logic flow diagrams were not
used; “it is difficult to find logic errors by walking through the code without logic
flow diagrams to help the process” [19]. The uplink design error was discovered after
a fault-tree analysis led to the examination of the code and the preparation of code
descriptions for reviews by outside reviewers. Such observations make it important to
be careful in the claims that are made for the formal analysis of accidents. They can
be used to add confidence in any analysis but, at present, it seems too optimistic to
argue that they will automatically uncover failure modes. It seems likely that the use
of mathematical reasoning will continue to depend upon insights provided by more
traditional forms of software forensics [9].

3.2 Material Implication Does not Represent Causation

The previous section focused on some of the practical limitations to the formal
verification of accident models. There are also a number of theoretical problems [11].
For example, many people would interpret formula (4) as representing a causal
relationship. Changes in our environmental model can be used to explain why an
accident occurred. Unfortunately, material implication cannot easily be used to
represent and reason about the causes of an adverse event. Several paradoxes,
including circular arguments, can confuse the unwary. The impact of these paradoxes
and other features of material implication should not be underestimated. For instance,
we can introduce an arbitrary true antecedent to implications that may convince non-
mathematicians of causal relationships even though there is no direct relevance with
the antecedent. ‘If NASA’s Faster, Better Cheaper programme reduced funds for the
Mars Surveyor projects then software failures led to the loss of the Polar Lander’.

A number of logicians, philosophers and linguists have recognised the limitations
of strict implication and have responded by constructing alternative logics, which
avoid the problems of classical logic, or by analysing the ways in which people
construct implicational statements using material conditions. Grice [5] and Jackson
[7] have exploited this latter approach. They argue that material implication remains a
valid form of argument for indicative conditionals. In particular, Grice and Jackson
observe that most people use arguments to communicate information in the most ‘cost
effective’ means possible. They are anxious to avoid the costly repair actions that are
necessary whenever misunderstandings occur. One consequence of this is that people

20 C.W. Johnson

will not assert weaker forms of a proposition when they can assert a strong form. In
particular, speakers do not say 'If P, then Q' when they know that P is false. It is
simpler and more informative to say 'not P'. Grice and Jackson’s analysis is important
because it can be used to avoid some of the problems that arise from material
implication between two arbitrary false statements. Recall that material implication
would allow a statement of the form 'If snow is black, then grass is red‘ to be true.
Grice and Jackson argue that people do not reject such statements because they
believe them to be ‘false’. nstead, they argue that our reservations stem from the
impression that such arguments would misleadingly suggest that we are unsure about
the colour of snow.

Lewis [see Lewis and Langford, 13] goes beyond the material implication of
classical logic to develop the notion of strict implication. This is based upon the idea
that a proposition strictly implies all others, which are true, in all possible
circumstances where it is true. The semantics for this form of strict implication is
based around that of modal logics. Hence, we have that A->> B is true at world w if
and only if for all w' such that w' is accessible to w, either A fails in w' or B obtains
there. However, the Lewis semantics for strict implication still permit an antecedent
that is irrelevant to the consequent. Logicians have responded by developing what are
known as relevance logics. One approach builds on a notion of ‘relevant’ proof [1].
This requires that premises and conclusion must share a variable in valid conditionals.
This requirement can help to ensure that the antecedent and consequent refer to the
same object in an assertion. Alternatively, the proof theory of relevance logics can
require that conclusions can be directly derived from a premise without the
introduction of arbitrary antecedents and consequents. This is intended to ensure that
any premises really are used to obtain a valid conclusion.

Further problems also arise because the material implication of classical logic
cannot convey different and varied interpretations of causal information. For example,
mishap investigators often distinguish between necessary and sufficient causes. A
necessary cause is often identified using counter-factual arguments of the form ‘the
mishap would not have occurred if this cause(s) had not also occurred’. A sufficient
cause can be distinguished by arguments of the form ‘the mishap could have occurred
if this cause(s) had taken place irrespective of any other of the other circumstances
surrounding the incident’. Similarly, many causal arguments are constructed using a
form of subjunctive conditional that is not characterized by material implication. In
particular, counterfactual conditionals rely upon an antecedent, which represents a
past tense subjunctive sentence of the form "If X had been the case …then Y would
have happened. These sentences are known as counterfactuals because there is an
assumption that the antecedent is false. In other words that X is known not to have
been the case. For example, an investigator might assert that ‘If he had been further
away, then he would not have been hurt’. There is an implication that he was NOT
further away and also that he was, in fact, hurt. Most incident investigation guidelines
explicitly recommend that investigators use counterfactual arguments to guide their
analysis [11]. The Lewis semantics for strict implication can be used to form
counterfactual arguments. However, the interpretation of the accessibility relation
between possible worlds still relies on the subjective judgment of domain experts. In
other words, disagreements can arise over whether it is plausible that an accident
would have been avoided if only a cause had been prevented.

 The Natural History of Bugs 21

The key meta-level issue here is that many of the logics that are used to support the
formal analysis of complex systems have serious limitations if they are to model the
causes of incidents and accidents. Instead, we have been forced to rely on modal
logics and non-standard proof techniques. The identification of a tractable alternative
to first order classical logic remains a topic of considerable debate amongst the small
number of researchers in this area. It also remains the focus of several funding
initiatives from the potential end-users of this technology.

3.3 Can We Model the System and the Environment?

The opening sections of this paper described how many academic software engineers
use space mission failures to warn students about the hazards of programming. Many
of these talks omit critical details. For example, they focus on the confusion between
imperial and metric units in the Mars Climate Orbiter code. They overlook the ways
in which software was used as a ‘band aid’ for the asymmetrical solar arrays.
Similarly, I have attended research talks where software engineers construct elaborate
counterfactual arguments of the form ‘if only ESA/NASA/ISRO had followed
software engineering technique X then the mishap would have been avoided’. Such
counterfactuals are by their very nature non-truth functional. We have no accessible
world in which the mishap did not occur so we can never really be sure that the
software engineering technique X would have prevented the mission failure.

In contrast, I would urge software engineers to watch more natural history
programmes on television. These programmes help to show how the animals’
environment helps to shape behavior. By analogy, in order to understand the causes of
software failure in space missions we need to look beyond the immediate causes of
bugs to look at the organizational context that created them. It is extremely
fashionable to talk about accidents as the result of ‘emergent properties’ or
unanticipated outcomes from interaction between subsystems. I do not support this
view. All of the failures mentioned in this report had precursors; the agencies either
had experienced previous similar failures or their own employees and sub-contractors
had described potential concerns through incident reporting systems.

It is also important to stress that analytical techniques can be applied to represent
and reason about the environment in which bugs occur. For example, Figure 2
represents an Event and Causal Factor (ECF) analysis for the pre-launch phase of the
Mars Polar Lander [10]. The US National Transportation Safety Board and the US
Department of Energy pioneered ECF for use in accident investigation. Rectangles
denote events while ellipses are used to represent those causal factors that make
events more likely.

The ‘Faster, Better, Cheaper’ initiative placed the entire Surveyor programme
under pressure to push the boundaries of cost and technology. This in turn led to a
number of contextual factors that helped shape the programming effort. It was hard
for contractors to meet the mission requirements with the available resources. As we
have seen, opportunities for testing and validation were restricted as tight deadlines
prevented access to hardware platforms and costs prevented many forms of
destructive testing. Analysis and modeling were proposed as lower cost alternatives
and so on. These influences led to the decision to use pulse mode control and a 4 by 3

22 C.W. Johnson

 Mars Surveyor’98 faces
pressures to push boundaries of

cost and technology.

Mars Polar
Lander and
Deep Space
(MPL/DS2)
launched
(3/1/99)

Launch
approved.

Development
completed.

Preliminary design
review doesn’t fully

recognise some
programme risks.

No assessment of risks
for proceeding with
15% mass margin.

Management focus on
mass reduction not risk

mitigation.

Bottom-up FMECA
hides interaction issues

& systemic failures.

No risk analysis for
interaction between
propulsion, thermal &
control subsystems.

Software bug in timer to
re-establish failed uplink
only found in fault tree

after mission loss.

Premature trigger of
touchdown software

found in fault tree but
not guarded against.

Technological innovation
 and costs constraints

often demand increased
development effort.

Decision to use
pulse mode

control.

Decision to use
off-the-shelf

engines in 4 x 3
configuration.

Use test results from
off-the-shelf/inherited

designs.

Limit changes to
those required to correct

known problems.

Use modelling
as cheaper alternative

to direct tests.
Hard for LMA staff

 to fulfill mission requirements
with available resources.

Less checks and
balances than normal in

JPL projects.

Breakdown in
inter-group communications.

Key technical
areas staffed by a single

individual.
LMA depend on too
much overtime to

complete schedule.

Validation more
 limited than previous

missions.

‘Faster, Better,
Cheaper initiative’

is announced

Fig. 2. Events and Causal Factor Overview of the Mars Polar Lander, Pre-Lauch [10]

array of off the shelf engines in preference to previous missions that had used a more
gradual form of throttle control. The outcome of these decisions was to increase the
complexity of software development to control the platform. At the same time,
management focused on the problems of mass reduction so that the Polar Lander
would meet the performance profile of the launch vehicle and cruise resources. This
arguably took their attention away from the wider engineering risks created by cost
reduction across the programme. The contextual factors at the bottom of Figure 2
show that fault tree analysis revealed the hazard from premature shutdown of the
Lander engines, possibly triggered by a software bug. However, this risk was not
adequately guarded against.

 The Natural History of Bugs 23

Figure 2 characterizes the growing pressures on investigators to look beyond the
immediate or catalytic events that lead to mission failures. It has been argued by
government organizations, by researchers and by a mass of other public bodies that
accident and mishap analysis should instead look for root causes [10]. Unfortunately,
software engineering has a tendency to focus on the immediate events that trigger
particular failures. We remember the code re-use in Ariane 5 or the metric and
imperial confusion with the Mars Climate Orbiter or even the uplink timer commands
on the Polar Lander. Instead, we should look at the underlying causes. For instance,
the Faster, Better Cheaper initiative arguably fostered a culture in which engineers
took considerable risks to innovate with new design. These included the asymmetrical
solar arrays on the Climate Orbiter and the pulse controlled engines on the Polar
Lander. These innovative engineering decisions saved costs but relied on ‘band aid’
software. Programmers were forced to calculate the de-saturation parameters that
would compensate for momentum induced by the innovative solar arrays.
Programmers had to develop control software for the pulse times needed by the Polar
Lander.

4 Conclusions and Further Work

The rise of ‘systemic’ approaches to accident investigation has clear implications for
the use of formal methods in mishap analysis. One option is to follow the route taken
by many others in the formal methods communities by looking for niche applications.
Mathematical reasoning might be confined to the early stages of an investigation
where it is important to understand precisely what happened. In this view, techniques
such as model checking would provide simple extensions of their more conventional
role in software engineering following the model outlined by Shen’s use of the Murφ
system. The challenges of this work should not be underestimated. In particular, we
must find ways of using the results from theorem proving and model checking to
inform the wider analytical techniques, such as ECF analysis, that will retain the
primary role in identifying the managerial and organizational root causes of any
mishap. This use of formal methods in forensic software engineering raises a host of
further technical barriers. Space-related software continues to become more complex
as it controls increased functionality and provides a vehicle for highly integrated
systems, including satellite arrays.

An alternative future is one in which the scope of formal methods is expanded to
reason about the root causes of software-related failures. Such a route follows the
vision of Jackson and Zave where we begin to model many features of the
environment that are not traditionally considered within formal areas of software
engineering. Again this poses enormous technical challenges. A key question is what
might be included within a formal model of a mishap. For interactive systems, such as
the Shuttle’s General Purpose Computing system, our model may be forced to
consider cognitive, perceptual and physiological attributes of the crew. This, in turn,
raises profound questions about the abstractions that might support such modeling.
There has been work on formal aspects of human computer interaction but the results
are limited and can often be disappointing when applied to applications such as the
Shuttle or Rovers. Even if formal modeling were expanded in this way, it would still

24 C.W. Johnson

not capture the organizational and managerial issues that are increasingly being
identified as the root causes of software failure. The use of epistemic and deontic
notations to model such decision-making now forms part of the heritage of formal
methods. Studies in the 1980s and 1990s showed how these techniques might be used,
for instance to model legislative requirements. Again, however, the results do not
seem to scale well and there are considerable problems in developing suitable proof
theories. These problems are compounded when one remembers the host of problems
in developing discrete mathematics to provide a satisfactory model of causal
arguments.

To summarize, this paper has introduced some of the demands that are created by
software development for space-related applications. These include the usual suspects
that complicate all forms of software engineering. However, the physical properties of
space environments create novel problems. For example, data and software updates
must often be communicated over vast distances and this creates novel forms of batch
processing. High-levels of radiation as well as mass and power limitations also create
problems because they typically force programmers to rely on specialist hardware.
Additional verification requirements and the limited sales of these processors often
imply that they are obsolete in terms of mass-market applications long before they
reach the launch pad. Later sections have also described the problems created by
‘band aid’ software. There is a growing tendency to rely on code to mitigate problems
created by engineering decisions that are made elsewhere in the development of a
space mission. One consequence of this is that software seems to be playing an
increasingly prominent role in space-related mission failures.

The traditional role of formal methods can be expanded beyond design to analyze
software failures. Existing models of software development, such as that proposed by
Jackson and Zave, can easily be adapted to support this endeavor. Others have used a
range of theorem proving and model-checking technology to represent and reason
about space-related software failures [10, 22]. However, there are many technical and
conceptual challenges that remain to be addressed. In particular, software bugs often
form part of more complex problems that permeate through many different aspects of
the engineering of space missions. The technical challenges also include basic issues
with the representation of causal arguments given the limitations of classical material
implication. The conceptual issues relate to the scope of the modeling activity. Do we
focus narrowly on the behavior of a machine and its program? Or do we consider the
managerial and organization precursors that are the root causes of software failure?
Until these issues are resolved we remain even less equipped to identify the causes of
software failure than we are to support the development of space related systems.

References

[1] A.R. Anderson and N.D. Belnap, Entailment: The Logic of Relevance and Necessity,
Princeton, Princeton University Press, Volume I, 1975.

[2] J.Blum, Intelsat Loses Use of Satellite: Spacecraft Failure Could Jeopardize Sale of
Company, Washington Post, Tuesday, January 18, 2005; Page E01.

[3] J. Crow and B. L. Di Vito. Formalizing space shuttle software requirements. In
Proceedings of the ACM SIGSOFT Workshop on Formal Methods in Software Practice,
pages 40-48, January 1996.

 The Natural History of Bugs 25

[4] L. Devauchelle, PICGAL: Process Improvement Experiment of a Code Generator to the
ARIANE Launcher, ESSI Project 21 710, Final Report, Aerospatiale, November 1997.
http://www.esi.es/VASIE/Reports/All/21710/Report/21710.pdf

[5] H.P. Grice, Studies in the Way of Words. Harvard University Press, Cambridge MA,
1989.

[6] R. Hillman, M. Conrad, P. Layton, C. Thibodeau, G.M. Swift and F. Irom, Space
Processor Radiation Mitigation and Validation Techniques for an 1800 MIPS Processor
Board, Maxwell Technologies and Jet Propulsion Laboratory, California Institute of
Technology, 2003. http://parts.jpl.nasa.gov/docs/radecs03_swift.pdf

[7] F. Jackson, On Assertion and Indicative Conditionals. Philosophical Review, (88):565-
589, 1979.

[8] M. Jackson and P. Zave, Deriving Specifications from Requirements: An Example,
Proceedings of the 17th International Conference on Software Engineering, pages 15-24,
ACM Press, 1995.

[9] C.W. Johnson, Forensic Software Engineering: Are Software Failures Symptomatic of
Systemic Problems? Safety Science (40)9:835-847, 2002.

[10] C.W. Johnson, A Handbook of Accident and Incident Reporting, Glasgow University
Press, Glasgow, 2003. http://www.dcs.gla.ac.uk/~johnson/book

[11] C.W. Johnson and C.M. Holloway, A Survey of Causation in Mishap Logics, eliability
Engineering and Systems Safety, (80)3:271-291, 2003.

[12] P. Ladkin and K. Loer, Why-Because Analysis: Formal Reasoning About Incidents, RVS-
Bk-98-01, Technischen Fakultät der Universität, Bielefeld, Germany, 1988.

[13] C.I. Lewis and C.H. Langford, Symbolic Logic, The Century Co. New York and ondon,
1932.

[14] J.L. Lyons. Report of the inquiry board into the failure of Flight 501 of the Ariane 5
rocket. Technical report, European Space Agency, Paris, France, July 1996.

[15] NASA, Expedition 10: Paving the Road for the Return to Flight, International Space
Station, Science Operations, Oct. 2004. http://www.scipoc.msfc.nasa.gov/expedition10.
html

[16] NASA. Mars Climate Orbiter: Mishap Investigation Board, Phase I Report. Technical
report, Mars Climate Orbiter, Mishap Investigation Board, NASA Headquarters,
Washington DC, USA, 1999. ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf.

[17] NASA, Formal Methods Specification and Verification Guidebook for Software and
Computer Systems, Report NASA-GB-002-95, NASA Office of Safety and Mission
Assurance, Washington DC, 1995. http://eis.jpl.nasa.gov/quality/Formal_Methods

[18] NASA/ESA, SOHO Mission Interruption Joint NASA/ESA Investigation Board Final
Report, 1998. http://umbra.nascom.nasa.gov/soho/SOHO_final_report.html

[19] NASA/JPL. Report on the loss of the Mars Polar Lander and Deep Space 2 Missions (The
‘Casani’ Report). JPL D-18709, NASA/Jet Propulsion Laboratory, 2000.

[20] NASA/JPL, Sol 243-262: Spirit Back to Normal Operations, Mars Exploration Rover
Mission, NASA/Jet Propulsion Laboratory, California Institute of Technology, 29
September 2004, http://marsrover.nasa.gov/mission/status_spiritAll.html#sol243

[21] NASA/JSC EVA Project Office, EVA Equipment Board (EEB) Minutes of Meeting
September 19, 2001, http://www.spaceref.ca/news/viewsr.html?pid=3821

[22] Z. Shen, Model Checking for the MPL Entry and Descent Sequence, Technical Report,
Department of Aerospace Engineering, Iowa State University, December 2001,
http://www.public.iastate.edu/~zjshen/ProjectReport.pdf

Modular Verification of Static Class Invariants

K. Rustan M. Leino1 and Peter Müller2

1 Microsoft Research, Redmond, WA, USA
leino@microsoft.com
2 ETH Zürich, Switzerland

peter.mueller@inf.ethz.ch

Abstract. Object invariants describe the consistency of object-oriented data struc-
tures and are central to reasoning about the correctness of object-oriented soft-
ware. But object invariants are not the only consistency conditions on which a
program may depend. The data in object-oriented programs consists not just of
object fields, but also of static fields, which hold data that is shared among ob-
jects. The consistency of static fields is described by static class invariants, which
are enforced at the class level. Static class invariants can also mention instance
fields, describing the consistency of dynamic data structures rooted in static fields.
Sometimes there are even consistency conditions that relate the instance fields of
many or all objects of a class; static class invariants describe these relations, too,
since they cannot be enforced by any one object in isolation.

This paper presents a systematic way (a methodology) for specifying and ver-
ifying static class invariants in object-oriented programs. The methodology sup-
ports the three major uses of static fields and invariants in the Java library. The
methodology is amenable to static, modular verification and is sound.

Keywords: Static class invariant, verification, object-oriented programming, static
field.

1 Introduction

A central problem in reasoning about a computer program’s correctness comes down
to reasoning about which program states the program can ever reach. Programmers
rely on that only some states are reached, most prominently by assuming that the pro-
gram’s data structures satisfy certain properties. These properties are called invariants.
By declaring invariants explicitly, the programmer can get support from tools (like the
tools for JML [4] or Spec# [2]) that make sure the program maintains the invariants. In
this paper, we present a systematic way (a methodology) for specifying and reasoning
about invariants in object-oriented programs. In particular, we consider invariants that
are described and enforced at the level of each class, called static class invariants.

The main data structures in modern object-oriented programs are stored as the state
of individual objects, in variables known as instance fields, and as the state of classes,
in variables known as static fields. We have identified three major uses of static fields
and invariants in the standard Java libraries (Java 2 Standard Edition version 5.0). First
and foremost, static fields are used to store shared values. For example, the well-known
static field System.out in Java provides an output stream whose characters flow to the

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 26–42, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Modular Verification of Static Class Invariants 27

console. Second, static fields are used to hold the roots of object data structures. For
example, the implementation of the String class in Java has a shared pool of interned
strings, storing canonical string references for certain character sequences. Third, static
fields are occasionally used to reflect something about all instances of a class. For ex-
ample, Java’s Thread class assigns unique identifiers to its instances and uses a static
field to keep track of which identifiers are in use. In all of these three cases, implicit or
informally documented static class invariants describe the intended consistency condi-
tions. The methodology we present in this paper enables the explicit specification and
formal verification of these invariants.

Previous work on specifying and verifying invariants in object-oriented programs
have developed methodologies for object invariants, which describe the consistent state
of individual objects and aggregate objects, formations of individual objects into one
logic unit [16, 1, 10, 3]. However, these methodologies do not apply to static class in-
variants, because the classes of a program build on each other in a way that is different
from the principal way in which objects in an aggregate build on each other: whereas an
object has a unique point of use in an aggregate, a class is used by many other classes.

Our basic methodology draws from the Boogie methodology for object invariants [1,
10, 3], but innovates in significant ways to handle static class invariants. First, to ad-
dress the abstraction problem that arises when a class is used by several other classes,
our methodology performs different bookkeeping for invariants, tailored to work with
any partial order among classes. Second, our methodology introduces such a partial or-
der on classes. This order makes it possible for a method override to rely on the static
class invariant of the subclass even when the method specification in a superclass is not
able to name the subclass. The order also prescribes how to initialize classes, which
provides a way to avoid unexpected class initialization errors. Third, our methodology
adds the ability for an invariant to quantify over objects (for example, specifying that
no two linked-list nodes have the same successor), which involves a syntactic restric-
tion on programs. We present our methodology for a programming language similar to
the sequential subset of Java or C#. The only major semantic difference is how class
initialization is performed, as explained later.

To support programming in the large, a crucial aspect of any specification and veri-
fication methodology is that it be modular. That is, it should be possible to reason about
smaller portions of a program at a time, say a class and its imported classes, without
having access to all pieces of code in the program that use the class or extend the class.
Our methodology is modular.

To save space, we combine the three kinds of static class invariants into one running
example, the Service and Client classes in Figs. 1 and 2. Objects of class Service rep-
resent instances of a system service. These instances share a common job cache, which
is referenced from the static field jobs . The first class invariant in Service says that
jobs is non-null, and the second says that the non-null elements of the cache are dis-
tinct. Objects of class Client represent users of the service. Each client has an ID and
the static field ids keeps track of the number of IDs ever given out. The first class invari-
ant says that ids is a natural number, the second says that ids exceeds all client IDs, and
the third says that clients have unique IDs. Here and throughout, quantifications over
objects range over allocated, non-null objects. The quantifications in the class invariants

28 K.R.M. Leino and P. Müller

class Service imports Client {
static rep Client [] jobs ;

static invariant Service.jobs �= null ; // simple
static invariant (∀ int i , j

⎪⎪⎪ 0 ≤ i < j < Service.jobs.length •
Service.jobs[i] �= null ⇒ Service.jobs[i] �= Service.jobs[j]) ; // ownership

static initializer {Service.jobs := new 〈Service〉Client [10] ;}
static void cache(Client c)

requires Service.sinv = tvalid ∧ c �= null ;
{

if (c �∈ Service.jobs) {
int free := arbitrary value in { 0, . . . , Service.jobs.length − 1 } ;
expose Service {

expose Service.jobs for Client [] ; Service.jobs[free] := c ;
unexpose Service.jobs for Client [] ;

} } } }

Fig. 1. Service has a static field jobs , which references an array of Client objects. The class
invariants guarantee that jobs is not null and that each Client object is stored at most once
in the jobs array. Both invariants are established by the static initializer. The rep keyword in
the declaration of jobs indicates an ownership relation between the Service class and the array
referenced by jobs

in Client are also restricted to valid Client objects, indicated by c.invClient = valid
and explained later. Note that the third invariant in Client does not mention any static
fields, but we nevertheless consider it a class invariant since individual objects cannot
maintain this invariant. No previous methodology can handle these kinds of invariants
in an object-oriented setting where the dynamic call order does not follow any statically
determined order on the classes, but our methodology handles all of them.

In Sec. 2, we present our methodology for simple class invariants, which talk about
the static fields of a class, handling the shared-values use of static fields. In Sec. 3, we
extend this methodology to ownership-based class invariants, handling the roots-of-
object-structures use of static fields. In Sec. 4, we further extend the methodology to
global class invariants, which quantify over all valid objects of the class, handling the
all-instances use of static fields and invariants. We formalize the methodology and state
a soundness theorem in Sec. 5. We end the paper with related work and a conclusion.

2 Methodology

In this section, we introduce our methodology for class invariants, explain how we
overcome the central problem of abstraction and information hiding, and prescribe class
initialization. We focus on the general ideas, tightening up the details in Section 5.

As illustrated by the examples in Figs. 1 and 2, class invariants are declared by
clauses of the form static invariant P ; where P is a predicate that can mention
fields. A class C can contain several invariant clauses. The class invariant of C , de-
noted by ClassInvC , refers to the conjunction of all invariant clauses declared in C . In

Modular Verification of Static Class Invariants 29

class Client imports String {
int id ; static int ids ;

static invariant 0 ≤ Client .ids ; // simple
static invariant (∀Client c

⎪⎪⎪ c.invClient = valid • c.id < Client .ids) ; // global
static invariant (∀Client c

⎪⎪⎪ c.invClient = valid •
(∀Client d

⎪⎪⎪ d .invClient = valid • c �= d ⇒ c.id �= d .id)) ; // global

static initializer {Client .ids := 0 ; }
Client()

requires Client .sinv = tvalid ;
ensures this.invClient = valid ;

{
expose Client {

id := Client .ids ; Client .ids := Client .ids + 1 ;
unexpose this for Client ;

}
}
static String debugMsg()

requires Client .sinv = tvalid ;
{ result := “Client objects created : ”.appendNat(Client .ids) ; }

}

Fig. 2. Every object of class Client has an ID. The next available ID is stored in the static field
ids . Class invariants guarantee that ids has not been assigned to a Client object and that all
Client objects have different IDs

this section, we focus on simple class invariants, that is, invariants where the only fields
mentioned in P are static fields of C .

2.1 Basic Methodology

Two fundamental issues drive the design of a methodology for class invariants. First, in
general, class invariants relate the values of several fields. Therefore, it is not possible
to expect class invariants to hold at every program point; we must allow class invariants
to be temporarily violated.

Second, it is not possible to completely free clients of the responsibility of making
sure the class invariant holds when a method of the class is called. This is because of
the possibility of reentrancy: a method m declared in class C can call methods that
cause control to reenter C . A problem would occur if m makes such a call at a time
C ’s invariant is temporarily violated and the method through which C is reentered
expects the invariant to hold. It would be overly restrictive to forbid method calls while
an invariant is temporarily violated. For example, one may want to invoke a method on
the data structure rooted in a static field.

To deal with these two fundamental issues, the methodology must permit times
when the class invariant becomes violated. For this reason, we introduce a special pro-
gram statement, expose C { s } , which allows the invariant of class C to be violated
for the duration of the sub-statement s , throughout which time we say that C is muta-
ble. Any update of any static field C .g must take place while C is mutable (but there

30 K.R.M. Leino and P. Müller

are no restrictions on when variables can be read). The class invariant is checked to hold
at the end of the expose block. We define expose blocks to be non-reentrant; that
is, it is illegal to expose an already mutable class. (Non-reentrancy and condition J2,
below, are what guarantee that the class invariant holds on entry to sub-statement s .)

When reasoning modularly about a program, it is important to know whether or
not a class is mutable. For example, Client ’s constructor in Fig. 2 needs to declare a
precondition that says class Client is valid, that is, not mutable; otherwise, it would
not be possible to prove that the program meets the non-reentrancy requirement of the
expose block in the constructor’s implementation. To facilitate mentioning the valid-
ity status of a class, we introduce for each class C a special static field C .sinv (whose
possible values we will describe later), which can be mentioned in method specifica-
tions. C .sinv is an abstraction of the static class invariant in C : a specification can
mention C .sinv to require C to be valid, which in effect says that C ’s invariant holds
but does not reveal the details of the invariant itself.

A program cannot update the static field C .sinv directly. Instead, the value of
C .sinv is changed automatically on entry and exit of each expose statement. We
postpone until Section 2.4 the issue of setting the initial value of C .sinv .

It is important to understand that our methodology does not use a visible state se-
mantics, where methods can automatically assume all class invariants to hold in the
pre-state. Instead, a method is allowed to rely only on those invariants whose validity
follows from the explicit precondition. Conversely, one does not have to prove that all
class invariants hold when the method terminates. Instead, we prove that (1) the only
static fields that are assigned to are those of mutable classes, and (2) the class invariant
of a class C holds at the end of each expose C statement.

2.2 Abstraction and Information Hiding

The special static field sinv makes it possible for a program to record, usually in pre-
conditions of methods, when a class invariant is expected to hold. However, whenever
one class uses another, it would be clumsy, at best, to have to mention explicitly in a pre-
condition all classes whose validity is needed. For example, suppose the String class
contains a global cache of integers and their String representations. Then, many meth-
ods of String , including appendNat which is called by debugMsg (Fig. 2), would
have a precondition that requires the String class to be valid. Method debugMsg , in
turn, would then need to declare the precondition that both Client and String are valid.
And so on, for the methods of other classes that may transitively call debugMsg . As
this example suggests, preconditions would become unwieldy. Moreover, if one class
deep in a program one day is changed to call a method of String , then all transitive
callers would have to be changed to add String validity as a precondition. Such a pro-
gramming methodology would not respect good principles of information hiding.

To address this problem, we derive from the class declarations of a program a par-
tial order on classes, the so-called validity ordering, and provide the ability, using the
special static field sinv , to express the transitive validity of a class. A class C is transi-
tively valid (or t-valid for short) if the invariant of C holds and all classes that precede
C in the validity order are t-valid.

The most common edge in the validity ordering arises when one class is a client of
another class. We require that if a class C refers to a class D or to an entity declared in

Modular Verification of Static Class Invariants 31

D , then either D is a superclass of C or C is declared explicitly to import D . (Note
that in the latter case, the import declaration is mandatory, in contrast to Java’s “import”
construct, which is just a convenient alternative to writing fully qualified names.) If C
imports D , then this import also gives rise to the edge D ← C (“D precedes C ”) in
the validity ordering. For instance, class Client imports String , which, in particular,
allows debugMsg to call a method of String . The case where D is a superclass of C
is handled conversely as explained below.

It is now time we introduce actual values for the sinv field:

– C .sinv = tvalid says that C is transitively valid, that is, that the invariant of C
holds and that all classes that precede C in the validity order are t-valid.

– C .sinv = valid says that the invariant of C holds, but says nothing about the
validity of C ’s predecessors.

– C .sinv = mutable says that C ’s invariant may be violated and that the program
is allowed to execute statements that assign to the static fields of C .

As suggested by these bullets, and as we later shall justify, our methodology guarantees
that the following properties are program invariants, that is, that they hold at every
control point in a program (here and throughout, quantifications over class names range
over all classes of a program):

J1: (∀C , D • D ← C ∧ C .sinv = tvalid ⇒ D .sinv = tvalid)
J2: (∀C • C .sinv = tvalid ∨ C .sinv = valid ⇒ ClassInvC)

We can now spell out the preconditions of the methods involved in the Fig. 2 ex-
ample. Since Client imports String , String precedes Client in the validity ordering.
Assume the following declaration in class String :

String appendNat(int n)
requires 0 ≤ n ∧ String .sinv = tvalid ;

Method debugMsg needs the precondition Client .sinv = tvalid , since it not only
needs Client ’s invariant in order to establish that the parameter passed to appendNat
is non-negative, but also needs the t-validity of String in order to meet the precondition
of appendNat . Client ’s constructor can require Client .sinv = tvalid , Client .sinv =
valid , or Client .sinv = tvalid∨Client .sinv = valid , since the implementation of the
constructor does not depend on the validity of other classes. However, Client .sinv =
tvalid is generally to be preferred, because that specification is general enough to allow
the implementation to be changed to rely on the validity of other classes.

2.3 Subclasses

Since validity-ordering edges are introduced along with the imports relation, a declared
class becomes a successor of all classes it imports. In this subsection, we show that
subclassing has to be treated differently from other uses-relations between classes.

To illustrate with an example, consider a hierarchy of classes representing decision
procedures for various theories, as may be used in the implementation of an automatic
theorem prover. Each theory implements a method assertLiteral that adds a constraint
to the decision procedure. Fig. 3 declares class Theory , the root of the hierarchy.

32 K.R.M. Leino and P. Müller

class Theory { void assertLiteral(Literal l) { . . . } . . . }
class LATheory extends Theory imports String {

static String version ;
static invariant LATheory .version �= null ;
static initializer {LATheory .version := “Version ”.appendNat(3) ;}
override void assertLiteral(Literal l) { . . . }
. . . }

Fig. 3. An example to illustrate the specification problem of a method override that relies on a
static class invariant

Now, consider a particular theory, say the theory of linear arithmetic, represented by
a subclass LATheory , see Fig. 3. Being a method override, LATheory .assertLiteral
has the same specification as the overridden Theory .assertLiteral , and in particular,
the override cannot strengthen the precondition of the overridden method.

Suppose the LATheory implementation of assertLiteral makes use of some static
fields of LATheory and relies on the class invariant to hold of these static fields.
This means that LATheory .assertLiteral relies on the t-validity of LATheory . Since
this method override cannot strengthen the precondition for assertLiteral defined in
Theory , the precondition of Theory .assertLiteral must imply that LATheory is
t-valid. But how can such a precondition be declared in class Theory without ex-
plicitly mentioning LATheory (since Theory may not know about the existence of
LATheory , which may be authored long after the authoring of Theory)?

If LATheory precedes Theory in the validity ordering, then we can solve the spec-
ification problem on account of program invariant J1. The method in class Theory then
declares the precondition

requires Theory .sinv = tvalid ;

which by J1 implies LATheory .sinv = tvalid , as needed in the method override. In
other words, a caller of method assertLiteral , which may not even know about the
existence of LATheory but may nevertheless hold a reference to an object of allocated
type LATheory , must establish the t-validity of Theory at the time of call, which
allows the implementation of LATheory to determine that LATheory is t-valid, too.

To allow class LATheory to define the edge LATheory ← Theory in the validity
ordering, we use the extends relation that is already used to declare subclasses. That is,
as part of our methodology, a subclass precedes its superclasses in the validity ordering.
A class can extend one superclass (single inheritance) and import any number of other
classes. However, we require that the resulting validity ordering is acyclic.

An acyclic validity ordering prevents mutually dependent classes (except when one
class is a subclass of the other). Cyclic references between classes can be allowed by
grouping classes into modules and declaring the validity ordering on modules instead of
classes. Then, the classes in one module can mutually depend on each other. We explain
and formalize this approach in our technical report [9].

2.4 Class Initialization

A static class invariant is first established by the static initializer of the class, a desig-
nated block of code that is invoked exactly once. Static initializers are invoked by the

Modular Verification of Static Class Invariants 33

runtime system, so as to orchestrate the initialization of multiple classes. For brevity,
we do not consider dynamic class loading here, but our methodology can handle it [9].

Since the static initializer of a class C may access fields and methods of imported
classes, it requires C ’s predecessors in the validity ordering to be valid. This is achieved
by initializing classes in the order of the validity ordering.

A program is executed by invoking the static method main on a specified class,
say M . Before main is actually called, the runtime system loads M and all classes
that M transitively imports or extends. The static fields of all classes are initialized to
zero-equivalent values, in particular, sinv is initialized to mutable . Next, the runtime
system executes the static initializer of each class, according to the validity ordering.
After executing the static initializer of a class C , C .sinv is set to tvalid .

C ’s static initializer can, therefore, assume on entry that (1) C is mutable, which
allows the initializer to assign to C ’s static fields, and (2) all predecessors of C are
t-valid. That is, C ’s static initializer may assume that the following precondition holds:

C .sinv = mutable ∧ (∀D • D ← C ⇒ D .sinv = tvalid)

The initializer is responsible for making sure the implicit assertion assert ClassInvC

holds on exit. For example, consider class LATheory in Fig. 3. Because String pre-
cedes LATheory , the second conjunct of the precondition implies String .sinv =
tvalid ; therefore, the initializer can meet the precondition of appendNat . Because of
the first conjunct of the precondition, the assignment to LATheory .version is permit-
ted. Provided appendNat returns a non-null value, the implicit assertion at the end of
the initializer body will hold.

Note, by the way, that the LATheory initializer cannot assume Theory to be t-
valid, since Theory does not precede LATheory . This is different from the initializa-
tion order in Java, where superclasses are initialized before their subclasses. Most cor-
rect programs that require that superclass invariants are established before subclasses
are initialized can be modeled or rewritten to follow Java’s initialization ordering. The
key idea is to separate out static fields and invariants of the superclass into a helper
class, which is imported by both the superclass and the subclasses.

2.5 Summary

We summarize the steps that lead us to our methodology: Class invariants can state
relations between multiple static fields, and thus the methodology must permit class
invariants to be temporarily violated. To allow calls while a class invariant is violated
and since such calls may reenter the class, we explicitly represent (by sinv) whether or
not a class invariant might be violated, which allows preconditions to be explicit about
which invariants are assumed to hold. The explicit representation reveals the central
problem of abstraction, which we address by allowing classes to be ordered (by the
validity ordering) and by representing transitive validity of classes along that ordering.
Finally, the validity ordering has an impact on class initialization.

The methodology allows programmers to specify invariants on the state of each
class. The programmer is assured that the invariant of a class C holds whenever C .sinv
is valid or tvalid . Thus, by requiring that, for example, C .sinv = tvalid holds on en-
try to a method, the implementation of the method can safely rely on C ’s class invariant

34 K.R.M. Leino and P. Müller

to hold on entry. Dependencies between classes are indicated by edges in the validity
ordering, which coupled with our initialization order avoids class initialization errors.

3 Ownership-Based Class Invariants

Simple class invariants refer only to static fields of the enclosing class, but not to in-
stance fields. Preventing class invariants from depending on instance fields is too restric-
tive for many interesting programs. For instance, class Service (Fig. 1) uses a global
cache, which is implemented by an array and rooted in the static field jobs . Service
imposes restrictions on the elements stored in this array object.

Assume that the class invariant of a class C refers to the instance field f of an object
X . The reason the methodology introduced so far cannot handle such class invariants is
that a method m outside C that gets hold of a reference to X can update X .f , thereby
potentially violating C ’s invariant. Since the invariant might not be known to m , it is
not possible to determine modularly that this update has to be guarded by an assertion
that C is mutable. In our example, any method that has a reference to the Service.jobs
array can break the Service invariant by assigning to elements of the array.

In this section, we extend our methodology by the notion of ownership. This ex-
tension allows the invariant of a class C to depend on fields of objects owned by C
without restricting where these fields are declared. The extended methodology ensures
that a field of an object can be updated only if the object’s owning class is mutable.

3.1 Ownership

Ownership organizes objects into a hierarchy of contexts, where the objects in each
context have a common owner (see, e.g., [5, 16]). In this paper, we use a restricted form
of ownership where objects can be owned by a class, but not by other objects. This
restriction allows us to focus on the methodology for class invariants without getting
into details of the corresponding methodology for object invariants. An extension to
ownership among objects is presented in our report [9]. We do not restrict references;
classes and objects may have non-owning references to objects.

Following the encoding in our work on object invariants [10], we represent owner-
ship by a special field owner for every object. The value of owner is a class name. It is
set when an object is created. The allocation statement x := new 〈C 〉T creates a new
object of class T owned by class C . In this paper, we assume owner to be immutable
after object creation. We described how to handle a mutable owner field for objects
(ownership transfer) in a previous paper [10].

We allow the owner field to be mentioned in class invariants. To specify ownership
relations, we introduce a modifier rep that can be used in the declaration of any static
field. A field declaration static rep S g ; in a class C gives rise to the following
implicit class invariant about ownership in C :

C .g �= null ⇒ C .g .owner = C ;

The invariant of a class C is allowed to refer to fields of objects owned by C . In
our example, the rep modifier of the static field Service.jobs indicates that the object
referenced by Service.jobs is owned by Service , which allows the class invariant of

Modular Verification of Static Class Invariants 35

Service to refer to the fields (that is, array elements) of jobs . Accessing array elements
is handled analogously to field access, as if each element were a field.

3.2 Mutability of Owned Objects

Analogously to the static field sinv and following our methodology for objects, each
object type (class or array type) C declares a two-valued field invC that indicates
whether the object invariant declared in C may be assumed to hold. If X .invC =
valid , we say that object X is valid for C , or just X is valid if the object type is clear
from the context. Conversely, we say X is mutable for C if X .invC = mutable . An
instance field f declared in C can be assigned to only if the instance is mutable for C .
That is, an update X .f := E is guarded by the precondition X .invC = mutable .

Consider a class C that owns an object X . C ’s invariant is allowed to depend on
X .f even if f is declared in another class. Consequently, an update of X .f may poten-
tially violate C ’s invariant. Our methodology handles this situation by the following
rule: If a class C is valid, then all objects owned by C are valid for their object type
and all supertypes. That is, if X is mutable for D so that X .f can be assigned to
(where f is declared in class D), then X ’s owner, C , is also mutable, so violations of
C ’s static class invariant are allowed.

This rule is enforced by manipulating the invD field according to a strict protocol:
invD can be manipulated only by statements analogous in functionality to expose
for classes. However, although exposing and unexposing objects typically is done in
a block-structured way, it does not have to be. In particular, some constructors, like
Client ’s constructor in Fig. 2, unexpose the newly created object without previously
exposing it. Therefore, instead of an expose block statement for objects, we use two
separate statements, expose X for D and unexpose X for D , which expose and
unexpose an object X for a class D , respectively. When applied to a valid object X and
for a class D , expose X for D checks that X ’s owner is mutable and sets X .invD to
mutable . unexpose X for D checks that X is mutable and sets X .invD to valid .
When an object of class C is created, its invD fields start off as mutable for all super-
classes D of C .

The cache method of class Service in Fig. 1 illustrates how ownership-based
invariants are handled. It requires Service to be t-valid. To satisfy the precondition
Service.jobs.invClient[] = mutable of the update Service.jobs[free] := c , Service
has to be mutable. The expose statement sets Service.sinv to mutable , which makes
the jobs array exposable and allows updates to temporarily violate Service ’s class in-
variant. In our example, the invariant is not actually violated by the update, because we
insert c only if it is not already contained in the array.

Because of lack of space and to focus on static class invariants, we do not present in
this paper the complete object-centered methodology that allows a program to ensure
its field updates apply only to mutable objects, but see [1, 10].

4 Global Class Invariants

In this section, we explain how our methodology allows class invariants to quantify over
all valid objects of the enclosing class.

36 K.R.M. Leino and P. Müller

4.1 Quantification over Valid Objects

A class invariant of a class C is allowed to universally quantify over all C objects that
are valid for C and to refer to those instance fields of these objects that are declared in
C . For example, Client ’s third invariant (Fig. 2) quantifies over valid Client objects
and refers to the id field declared in Client . We only let a class invariant quantify over
valid objects, because during the time when an object is being updated, which occurs
when the object is mutable, the object cannot be expected to satisfy all invariants.

A global class invariant of a class C is potentially violated by unexposing C objects
for C , since making a C object valid for C enlarges the range of the quantification in
the invariant. Therefore, additional requirements for unexpose are needed to guaran-
tee that a class C is mutable whenever one of its objects is unexposed for C . Note that
updates of instance fields do not require additional proof obligations for global class
invariants, because only fields of mutable objects can be updated.

For soundness, it is sufficient to guard the statement unexpose X for C by a
precondition C .sinv = mutable . However, stronger requirements are necessary to
achieve a practical solution, as we discuss next.

4.2 Practicality

Assume that class Client has a method Client Foo() and that we want to verify the
statement expose Client { v := X .Foo(); } , where X is a valid Client object. To
prove that Client ’s class invariant holds at the end of the expose block, we have to
show in particular that the call to Foo does not create new valid Client objects that
violate the global class invariants. For instance, the following implementation of Foo
does violate Client ’s third invariant:

Client Foo()
requires Client .sinv = mutable ∧ this.invClient = valid ;

{
result := new 〈Object〉Client() ; result.id := this.id ;
unexpose result for Client ;

}

Since allocation and initialization of objects is typically considered an implementation
detail [8, 11], Foo ’s specification will in general be too weak to determine whether Foo
creates valid objects, which makes it impossible to verify the expose block above.

To be able to reason about the effects of a method call on a global class invari-
ant, we impose a syntactic requirement that prevents methods and constructors from
unexposing objects for C , if called in a state in which class C is mutable: each
unexpose X for C operation has to be textually enclosed by C ’s static initializer or
by an expose C block. This syntactic requirement guarantees that C .sinv = mutable
holds before making an object valid for C . That is, we do not have to impose this con-
dition as a precondition for unexposing C objects explicitly.

This syntactic requirement prevents a method called from within an expose C
block from unexposing objects for C , in particular, newly created objects. This prop-
erty gives rise to an implicit postcondition that allows one to verify the expose C
block. In our example above, Foo does not meet the requirement because it unexposes
result outside an expose Client block.

Modular Verification of Static Class Invariants 37

5 Technical Treatment

In this section, we define precisely which invariants are admissible, explain the proof
obligations that are necessary to maintain the program invariants J1 and J2 (Sec. 2.2),
and present a soundness theorem.

5.1 Admissible Invariants

A class invariant of class C can refer to static fields of C , instance fields of objects
owned by C , and, by quantification, instance fields of valid C objects:

Definition 1 (Admissible class invariant). A class invariant declaration in class C is
admissible if its subexpressions typecheck according to the rules of the programming
language and if each of its field-access expressions has one of the following forms:

1. C .g .
2. C .g .f where C .g is declared rep .
3. o.f where f is declared in C and o is bound by a quantification of the form

(∀C o
⎪⎪⎪ o.invC = valid • . . . o.f . . .)

The static field g must not be the predefined field sinv , and the instance field f must
be different from all invT fields.

Simple class invariants contain only access expressions of Case 1. Access expres-
sions of Case 2 allow ownership-based class invariants to depend on fields of objects
owned by C . Invariants that contain access expressions of Case 3 are global.

5.2 Proof Rules

The methodology presented in this paper does not assume a particular programming
logic to reason about programs and specifications. Special rules are required only for
class initialization and those statements that deal with the sinv and invT fields (static
and instance field update, class expose , and object expose and unexpose) as well
as owner (object creation). In this subsection, we present these rules and explain why
they are necessary to maintain the program invariants J1 and J2 presented in Sec. 2.2.

The proof rules are formulated in terms of assertions, which cause the program ex-
ecution to abort if evaluated to false . Proving the correctness of a program therefore
amounts to statically verifying that the program does not abort due to a violated asser-
tion. To do that, each assertion is turned into a proof obligation. One can then use an
appropriate program logic to show that the assertions hold (cf. [18, 7]). All of the proof
obligations can be generated and shown modularly. For the proof, one may assume that
the program invariants J1 and J2 hold.

Class Loading and Initialization. The program invariants J1 and J2 are first estab-
lished during class loading and initialization. Program execution starts with a class
loading phase, followed by a class initialization phase. In the loading phase, each class
of the program is loaded and its static fields are set to zero-equivalent values. The zero-
equivalent value for sinv is mutable . This guarantees that all classes are mutable after
the loading phase, which implies that both J1 and J2 hold.

38 K.R.M. Leino and P. Müller

In the following initialization phase, classes are initialized according to the validity
ordering, that is, a class C is initialized after its predecessors in the validity order-
ing. For each class C , C ’s static initializer is called before setting C .sinv to tvalid .
Since C .sinv is set to mutable by the loading phase and since C ’s predecessors in the
validity ordering are initialized before C , the precondition of C ’s static initializer is
established (see Sec. 2.4). In particular, all predecessors of C are t-valid. The postcon-
dition of this initializer, ClassInvC , guarantees that J2 is preserved when C .sinv is
set to tvalid . Since C ’s predecessors are tvalid, J1 is preserved as well. Consequently,
both J1 and J2 hold after the initialization phase.

The static initializer of a class D can create valid objects only for D ’s prede-
cessors in the validity ordering. Consider a class C that is not a predecessor of D .
D ’s static initializer cannot expose C since C is mutable, that is, the precondition
of expose C is not satisfied. Therefore, it cannot unexpose an object for C since
the unexpose X for C statements can occur only within expose C blocks and
C ’s static initializer. Consequently C ’s static initializer may assume the precondition
(∀C X • X .invC = mutable) , which is important to prove that it establishes C ’s
global class invariants.

Static Field Update. Updating a static field cannot affect program invariant J1. For J2,
we have to ensure that a static field update does not break the invariant of a valid or
t-valid class C . The only static fields C ’s class invariant can refer to are static fields
of C (Def. 1). Consequently, we can maintain J2 by requiring C to be mutable, which
is enforced by guarding each static field update of the form C .f := E by the check
assert C .sinv = mutable .

Instance Field Update. Program invariant J1 is trivially preserved. An update X .f :=E
potentially breaks the class invariant of a class C if (1) X is owned by C (ownership-
based invariants) or (2) f is declared in C and X is valid for C (global invariants).
The check assert X .invC = mutable guarantees that (1) X ’s owner class is mutable
(see proof rule for expose) and (2) X is not valid for C .

Class Expose. As explained in Sec. 2.1, expose C { s } essentially sets C .sinv to
mutable , executes s , and restores the original value of C .sinv . To prevent reentrant
expose blocks, an assertion checks that C is not already mutable before the statement.
Program invariant J2 is maintained by asserting that C ’s class invariant holds before
C .sinv is restored.

Maintaining J1 is a bit more involved. Changing C .sinv from tvalid to mutable
implies that C ’s t-valid successors in the validity ordering are no longer t-valid, but just
valid. Therefore, for each class D that transitively succeeds C (that is, C ← D), if
D .sinv = tvalid , then the expose statement temporarily changes D .sinv to valid .
At the end of the expose block, the initial values of the D .sinv ’s are restored. This
results in the following pseudo code for expose :

expose C { s } ≡
assert C .sinv �= mutable ;
let Q = {D

⎪⎪⎪ C ← D ∧ D .sinv = tvalid } ;
foreach D ∈ Q { D .sinv := valid ; }

Modular Verification of Static Class Invariants 39

C .sinv := mutable ;
s ;
assert ClassInvC ;
foreach D ∈ {C} ∪ Q { D .sinv := old(D .sinv) ; }

Object Expose. expose and unexpose for objects do not modify sinv of any class,
so J1 is preserved. Exposing an object cannot break a class invariant. expose X for C
requires X ’s owner to be mutable before setting X .invC to mutable to maintain
the property that an object can be mutable only if its owner class is mutable. Since
unexpose X for C modifies only the field X .invC , the only class invariant that can
be potentially broken by this operation is a global class invariant in class C . As dis-
cussed in Sec. 4.2, a syntactic requirement guarantees that C is mutable at the time
when X is unexposed for C , so no extra precondition is required. The Boogie method-
ology for object invariants requires X ’s object invariant to hold before X is unexposed.
We omit this assertion since we do not consider object invariants in this paper. In sum-
mary, we have the following pseudo code for expose and unexpose :

expose X for C ≡ unexpose X for C ≡
assert X �= null ∧ X .invC = valid ; assert X �= null ∧ X .invC = mutable ;
assert X .owner .sinv = mutable ;
X .invC := mutable X .invC := valid

Object Creation. Again, program invariant J1 is trivially preserved. As explained in
Sec. 3.2, the created object has its invT fields set to mutable and its owner field
initialized with the class C given in the creation expression. These assignments have
no impact on class invariants with field-access expressions of Forms 1 (no static field
involved), 2 (the new object is not referenced from a static field), or 3 (the new object
is not valid for its class) of Def. 1. Since the new object is mutable, its owner class, C ,
has to be mutable as well, which is checked by the precondition C .sinv = mutable .

5.3 Soundness

A program P is well-formed if P is syntactically correct and type correct, P’s invariants
are admissible (Def. 1), and the syntactic requirement for unexpose (Sec. 4.2) is met.

Theorem 1. In each reachable state of a well-formed program, J1 and J2 hold.

For a lack of space, we do not present the soundness proof in this paper. We have
explained the arguments of the soundness proof along with the presentation of the proof
rules. The complete proof is found in our technical report [9].

6 Related Work

Classical proof systems for objects and invariants such as Meyer’s work [15] or the
approach of Liskov, Wing, and Guttag [13, 12] do not consider static fields or quantifi-
cation over objects.

JML [8, 4] provides both object and class invariants (called instance and static in-
variants, respectively). Object invariants may refer to static fields, but class invariants

40 K.R.M. Leino and P. Müller

cannot refer to the states of objects. In contrast to our work, JML applies a visible state
semantics, where invariants have to hold in the pre- and post-states of all non-helper
methods. It does not provide a sound modular proof system.

The use of static fields is sometimes considered bad programming style that can be
avoided by using instance fields of a singleton object, u . Simple and ownership-based
class invariants can then be expressed as an object invariant of u . However, such a
programming model requires that all objects that need access to the shared state of u
have references to u and can expose and modify u . Therefore, reasoning about the
shared object, in particular, about the validity of u , is tedious. It is generally based on
the fact that u is a singleton, which is difficult to express by standard object invariants.

Eiffel’s once methods [14] provide a better abstraction mechanism for shared ob-
jects. A once method computes its result when it is called the first time. This result
is cached and then returned upon succeeding calls. Therefore, each object can access
shared data (in particular, a reference to the singleton u) through a once method instead
of storing the reference in a field. Validity of u can then be guaranteed by the postcon-
dition of the once method returning the reference. However, since u may not be valid
in all execution states in which the method might be called, an additional flag is needed
for each once method, indicating whether the object returned by the method is valid.
The methodology required to maintain such a flag is identical to our methodology for
class invariants and the sinv field.

The Boogie methodology for object invariants [1, 3, 10] does not admit class in-
variants. However, visibility-based object invariants [3, 10] can be generalized to allow
object invariants to mention static fields. For instance, Client ’s second class invariant
can also be expressed by the object invariant this.id < Client .ids . With such object
invariants, a static field update potentially violates the object invariant of many objects,
all of which would have to be exposed before the update. Barnett and Naumann [3] show
that update guards can be used to exploit monotonicity properties to avoid exposing all
objects possibly affected by a field update. An update guard specifies a condition under
which a field update is guaranteed not to break an invariant. For instance, increasing the
value of Client .ids cannot violate the above invariant for any Client object.

Like our work, Pierik et al. [17] extend the Boogie methodology to class invari-
ants. They handle simple class invariants in the same way as we do. Ownership-based
class invariants are not supported. Therefore, class invariants can refer to instance fields
only in a limited way. Invariants are allowed to quantify over all objects of a class, for
example, to specify that a singleton object is the only instance of a class. Invariants
that quantify over all objects of a class rather than over all valid objects can be broken
by object creation. Therefore, one has to expose a class before creating an instance of
it, an obligation that unfortunately falls on the client of a class. The client is then re-
sponsible for reestablishing the class invariant. Alternatively, a client can prove that it
establishes a creation guard, which specifies a condition under which an object creation
is guaranteed not to break an invariant. However, a creation guard cannot refer to the
newly allocated object, so it is typically false . Pierik et al. do not address either the
abstraction problem for class invariants or the initialization-order problem for classes.

Modular Verification of Static Class Invariants 41

Müller’s thesis [16] also uses a visible state semantics for object invariants. It sup-
ports invariants over so-called abstract fields in a sound way, which we consider future
work for the methodology presented here.

Leino and Nelson [11] developed a modular treatment of object invariants over ab-
stract fields, which was used in the Extended Static Checker for Modula-3 [6]. Leino
and Nelson treat some aspects of class invariants, but neither Müller’s nor Leino and
Nelson’s work fully supports class invariants.

7 Conclusions

We have presented a verification methodology for class invariants, which allows class
invariants to specify properties of static fields, of object structures rooted in static fields,
and of all valid objects of a class. The methodology is sound and covers all typical ap-
plications of static fields we have found in programs. This work is part of a larger effort
to advance programming theory to catch up with the current programming practice.

As future work, we plan to build on our previous work on visibility-based invariants
[10] to support less common class invariants that refer to static fields and that quantify
over objects of other classes. Moreover, we plan to implement our methodology as
part of the .NET program checker Boogie, which is part of the Spec# programming
system [2].

References

1. M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification of object-
oriented programs with invariants. Journal of Object Technology, 3(6), 2004. www.jot.fm.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.
In CASSIS 2004, volume 3362 of LNCS, pages 49–69. Springer-Verlag, 2004.

3. M. Barnett and D. A. Naumann. Friends need a bit more: Maintaining invariants over shared
state. In MPC 2004, volume 3125 of LNCS, pages 54–84. Springer-Verlag, July 2004.

4. L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino, and
E. Poll. An overview of JML tools and applications. Software Tools for Technology Transfer
(STTT), 2004.

5. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection. In
OOPSLA ’98, pages 48–64. ACM, October 1998.

6. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static checking. Research
Report 159, Compaq SRC, December 1998.

7. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended
static checking for Java. In PLDI 2002, pages 234–245. ACM, 2002.

8. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral interface
specification language for Java. Technical Report 98-06-rev27, Iowa State University, 2003.

9. K. R. M. Leino and P. Müller. Modular verification of global module invariants in object-
oriented programs. Technical Report 459, ETH Zürich, 2004.

10. K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In ECOOP 2004,
volume 3086 of LNCS, pages 491–516. Springer-Verlag, 2004.

11. K. R. M. Leino and G. Nelson. Data abstraction and information hiding. TOPLAS,
24(5):491–553, September 2002.

42 K.R.M. Leino and P. Müller

12. B. Liskov and J. Guttag. Abstraction and Specification in Program Development. MIT
Electrical Engineering and Computer Science Series. MIT Press, 1986.

13. B. Liskov and J. M. Wing. A behavioral notion of subtyping. TOPLAS, 16(6):1811–1841,
1994.

14. B. Meyer. Eiffel: The Language. Prentice Hall, 1992.
15. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.
16. P. Müller. Modular Specification and Verification of Object-Oriented Programs, volume

2262 of LNCS. Springer-Verlag, 2002. PhD thesis.
17. C. Pierik, D. Clarke, and F. S. de Boer. Controlling object allocation using creation guards.

In Formal Methods (FM 2005), LNCS. Springer-Verlag, 2005. In this volume.
18. A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In ESOP 1999,

volume 1576 of LNCS, pages 162–176. Springer-Verlag, 1999.

Decoupling in Object Orientation

Ioannis T. Kassios

Dept. of Computer Science, University of Toronto,
BA5212, 40 St.George St. Toronto ON M5S 2E4 Canada

ykass@cs.toronto.edu

Abstract. In formal design, decoupling means to make the features of
a formal system as independent as possible from each other. Decou-
pling tends to make the features semantically more primitive and the
overall system more general. Quite opposite to decoupling, the tradition
in object oriented refinement theories is to combine all features, such
as specification, usage constraints, encapsulation and inheritance into a
single formal construct, the class. We propose a decoupled formalization
of object orientation, in which all those features are introduced indepen-
dently from the class construct and from each other. Even though each
of the features is significantly simpler than its standard counterparts, the
overall system is more general: standard class-based object orientation
is shown to be a special case of our system.

Keywords: object orientation, specification and refinement

1 Introduction

In a formal system, feature A is coupled with feature B, if the constructs of the
system force the user to always use B when using A. In the opposite situation,
we say that A is decoupled from (or orthogonal to) B. Decoupling enhances the
expressiveness of a system, because it permits the independent use of the decou-
pled features. It also enhances the simplicity of the system, because decoupled
features tend to be more primitive. Thus, from the point of view of generality
and simplicity, it makes good sense to make the features of a formal system as
decoupled from each other as possible.

Example 1. In Pascal, a defined function must always have a name: we say that
Pascal functions are coupled with names. In contrast, in most functional lan-
guages, functions are decoupled from names, thanks to λ abstraction, a construct
that creates nameless functions.

In the systems which decouple names from functions, it is still possible to
create functions with names by using the two features together, but it is also
possible to create and use nameless functions. For example, in

let f = λx ·
(
(λy · 2× y + 3)(3× x)

)
+ 5

we have both a named and a nameless function. Decoupling makes these systems
more general in that respect.

Decoupling also makes both features simpler. The naming feature (i.e. the
let construct) by itself is extremely simple. We can use it to give names to

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 43–58, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

44 I.T. Kassios

functions as well as to other values and it has none of the complexity of the
function construct. Similarly, the function feature (i.e. the λ construct) is more
primitive than its Pascal counterpart. We can use it with or without a name and
it has none of the complexity of the naming construct.

In object oriented refinement formal theories, designers usually overload a
single formal construct with many different features: specification, encapsulation,
usage constraints, inheritance are all supported by the class construct only (or,
in some frameworks, the object construct). In other words, the traditional view
of object orientation couples all those features with the class construct. This is
especially true of model-based specification languages [15, 18, 1, 16, 17, 4, 3, 6, 19,
9], while languages with algebraic specification features [2, 8, 14, 13] tend to be
less coupling (specifications are not coupled with classes).

In light of our discussion above, a way to generalize object orientation and
to make all those features mathematically simpler is decoupling. This is the task
undertaken by the present paper. Our approach is to introduce the notions of ob-
ject specification, object refinement, usage constraints (including encapsulation)
and inheritance independently from the class construct and from each other.

Thanks to decoupling, the semantics of each of the features that we introduce
is mathematically primitive. This results in what we believe to be a very clean
and easy to understand model. Despite the primitive mathematical basis, the
theory fully covers the standard notions of object orientation as special cases. It
is even somewhat more general than other theories, because it allows independent
use of these features. The minimalism of the mathematics is a worthwhile goal of
any formal system design: it means that the formulas that we manipulate do not
have any unnecessary complexity and therefore reasoning is only as complicated
as the problem we are trying to solve. Construct generality is another worthwhile
goal: the more we can express formally, the smaller the formalization gap is likely
to be.

This paper presents only part of the theory, omitting pointers. This limits
its applicability compared to some other object oriented refinement theories,
although some of the most important work in the area also has copy semantics,
for example the ROOL project [6] and the object oriented extensions [18, 4, 3, 9]
of [5, 11]. Pointers are supported in the full theory to be presented in the author’s
forthcoming Ph.D. thesis.

An extended version of this paper is [12]; the interested reader is referred
there for more details, features that are not covered here and for the omitted
proofs. Sect. 6.2 contains a small summary of some of the omitted features. The
examples presented both here and in [12] are purposefully primitive, because
their aim is to explain the theory as simply as possible.

2 Preliminaries

2.1 Notation

Meta-notation. If S and t are expressions and x is a variable, then S(t/x) rep-
resents expression S with all free occurrences of x replaced by t.

Decoupling in Object Orientation 45

Primitive Values. A label is a finite sequence of Latin letters. A constant label
is written in sans serif font. For example, n, x and get are labels. The set of all
labels is denoted L. The set of boolean values is B = {	,⊥}. Boolean equivalence
is not different from equality, so we use the same sign (=) for both. Symbols =∧
have the same semantics as = ∧ respectively, but their precedence is lower than
every other symbol in the notation and even the scope of quantifiers. They are
used to reduce the number of parentheses in expressions.

Functions. Function application is denoted by juxtaposition. The domain of
function f is denoted Δf . The set of all total functions from set A to set B
is denoted A → B.

For any x and a, function x �→ a is defined by:

Δ(x �→ a) = {x} (x �→ a)x = a

If f, g are functions then f |g is a function defined by

Δ(f |g) = Δf ∪Δg
y ∈ Δ(f |g) ⇒ (f |g)y = if y ∈ Δf then f y else g y

A function in S → B is called a predicate on S. Implication (⇒) is pointwise
extended on predicates. If F ∈ (S → B) → S → B is monotonic with respect to
⇒, then νF is the weakest fixpoint of F , i.e.

F (νF) = νF f ∈ S → B ∧ F f = f ⇒ (f ⇒ νF)

Predicate even returns 	 if and only if its argument is an even number.
A function whose domain is a set of labels is called a record. If S is a set,

then the set of all records that return elements in S is denoted rec S. In this
paper, the set of all data values is denoted U and includes rec U . If S ⊆ U , and l
is a label, then l ⇁ S is a the set of records whose domain contains l and whose
application to l returns an element of S:

l ⇁ S = {r ∈ rec U | l ∈ Δr ∧ r l ∈ S}

If the li are mutually disjoint labels and the Si are non-empty sets of values, and
R =

⋂
i · li ⇁ Si, then R is called a record space. Set

⋃
i · li is called the domain

of R. Notice that record spaces are contravariant in their domain. Adding a label
in the domain adds a further restriction. For example, record x �→ 3 is contained
in x ⇁ Z but not in x ⇁ Z ∩ y ⇁ B.

A function whose domain is {0, .., n− 1}, for some natural n, is called a list.
If S is a set, the set of all lists of elements of S is denoted list S. List catenation
is denoted +. Operator tail takes a non-empty list and removes its first item.

Strings. A number, boolean, label or function is an item. A string is a sequence
of zero or more items separated by the string catenation operator (;). The cate-
nation operator is associative. A one-item string coincides with that item. The

46 I.T. Kassios

empty string is denoted nil . The length of string s (the number of items it con-
tains) is denoted �s. Item i of string s is denoted si (starting from item 0). The
suffix of string s starting from item i (incl.) is denoted si;...

Let S be a set. The set of all strings of elements of S is denoted S∗. The set
of all strings of elements of S whose length is exactly n is denoted n ∗ S.

Given a string s we can form a list [s] such that for all i ∈ {0, .., �s − 1},
it is [s]i = si. The difference between lists and strings is packaging: a one-item
list [x] does not coincide with that item x. In this paper we use both strings
and lists. We use strings when we want items to be treated as special cases of
sequences. We use lists when we want packaging so that we can form sequences
of sequences.

2.2 Predicative Programming

We use [10] as an underlying programming theory. In [10], an imperative specifi-
cation is a boolean expression on the initial and the final values of the program
variables. Thus a program variable x is a pair of mathematical variables: its plain
version x that represents the initial value and its primed version x′ that repre-
sents the final value. An example of imperative specification is x′ > x, which
specifies that the value of program variable x must be increased. Programming
constructs are introduced as abbreviations for boolean expressions.

Let P be an imperative specification on program variables x, y, z, ... and T
be a set of values. Then var x : T · P is an imperative specification on program
variables y, z, ..., called local declaration and defined as follows:

var x : T · P = ∃x ∈ T · ∃x′ ∈ T · P

Set T is called the type of x in P .
Let P and Q be imperative specifications on program variables x, y, ... of

types X,Y, ... resp. Then the sequential composition of P and Q is an imperative
specification P ;Q defined as follows:

P ;Q = ∃x′′ ∈ X · ∃y′′ ∈ Y · ... · P (x′′/x′)(y′′/y′)... ∧ Q(x′′/x)(y′′/y)...

Let P be an imperative specification on program variables x, y, ... and a, b,
Then frame x, y, ... ·P is an imperative specification that asserts P and that all
the program variables other than x, y, ..., remain unchanged:

frame x, y, ... · P = P ∧ a′ = a ∧ b′ = b ∧ ...

Let E be an expression without primed variables and let x be a program
variable. Then assignment of E to x is an imperative specification x := E
defined as follows:

x := E = frame x · x′ = E

If the type T of x is a record space and y belongs to the domain of T , then x y
may be used as a left operand of :=

x y := E = x := y �→ E | x

Decoupling in Object Orientation 47

Imperative specification ok preserves the state

ok = frame · 	

3 Specification

In this section, we introduce object specifications independently of classes and
we show an object specification that is not expressible as a class. Then we define
classes as a special case of object specifications.

3.1 Basic Definitions

Denote by U the set of all possible values. U contains at least integers, booleans,
records and lists. It also includes a set O of objects. The axiomatization of O is
left to the makers of object specifications.

A message is a list whose first item is a label and all the subsequent items
are data values. The set of all messages is M = {[m;w] | m ∈ L ∧ w ∈ U∗}.

Let x be a program variable whose value is an object, m a label, y, z, ...
other program variables and w a string of data expressions. Then, expression
y; z; ... := x.m(w) in an imperative specification called invocation of message
[m;w] on x assigned to y; z; If there are no variables y, z, ... then := is omitted.
If w = nil , then (w) is omitted.

Invocation y; z; ... := x.m(w) changes the values of x, y, z... only1. The list
[y′; z′; ...] of the values of variables y; z; ... after the invocation is called the result
of the invocation. Denote by x←↩ ς the value of x after the invocation of ς on x
(i.e. the object at its new state) and by x@ς the result of the invocation. Then
invocation is defined as follows:

y; z; ... := x.m(w)
= frame x, y, z, ... · [y′; z′; ...] = x@[m;w] ∧ x′ = x←↩ [m;w]

A scenario is a string of messages. A scenario result is a string of results (i.e.
lists of data values). Set S = M∗ is the set of all scenarios and setR = (list U)∗

is the set of all scenario results.
We can extend operators←↩ and @ to apply to general scenarios instead of

just messages. If ς is a scenario, then x←↩ ς is object x after invoking all messages
in ς (in the order they appear in ς) and x@ς is the string of all the results that
we get by making these invocations. Formally:

x←↩nil = x x←↩(ς; τ) = (x←↩ ς)←↩ τ
x@nil = nil x@(ς; τ) = (x@ς) ; ((x←↩ ς)@τ)

1 All parameter passing is by value. For simplicity, any observation of the global state
must be an explicit input and any side-effect must be an explicit output of the
invocation.

48 I.T. Kassios

3.2 Object Specifications and Object Refinement

An object specification is a subset of O. An object specification can be created by
specifying x@ς for any conforming object x and any scenario ς. To do that, we
use a predicate on S and R called a value specification. Set VS = S → R → B

contains all value specifications. Operator o applies to a value specification V
and returns the corresponding object specification:

oV = {x ∈ O | ∀ς ∈ S · V ς (x@ς)}

Usually, we use mutual recursion to define a whole family of value specifica-
tions. Let Σ be a non-empty set of values. Let F ∈ (Σ → VS) → Σ → VS be a
monotonic function. From F , we get a family of value specifications V ∈ Σ → VS
as the weakest fix-point of F and then an object specification S:

V = νF S =
⋃

σ ∈ I · o(V σ)

for some I such that ∅ �= I ⊆ Σ. Function F is called a pre-specification. Set Σ is
called the abstract state space of S and F . Set I is called the initialization space
of S. A further axiom that we need is S �= ∅, which guarantees that a client can
introduce objects that conform to S.

Example 2. Consider the following abstract requirements for stacks of integers:

(a) If the top value is n and we invoke top, then the result is n.
(b) Invoking push with parameter x sets the top value to x.
(c) If we make a series of invocations of push, pop and top, in which push

and pop invocations balance out, then the top value is preserved.

Requirements (a,b,c) are more abstract than the standard model-based speci-
fication for stacks and closer to the standard algebraic specification. However,
they are even weaker than the standard algebraic specification in that they do
not require that a push followed by a pop return back the same stack.

To formalize Requirements (a,b,c) as an object specification, we first define
the set Balance of all scenarios in which push and pop invocations balance
out. This is the smallest set that satisfies the following axioms:

nil ∈ Balance [top] ∈ Balance
x ∈ Z ∧ s ∈ Balance ⇒ [push;x]; s; [pop] ∈ Balance

Since our requirements only talk about the top value, our abstract state space
must contain enough information to store the top value. We must also reserve
an abstract state for the situation when the stack is empty. Define:

ΣStack = Z ∪ {⊥}

An abstract state σ ∈ Σ is either an integer n, indicating that the top value is
equal to n, or the special value ⊥, indicating that the stack is empty.

Decoupling in Object Orientation 49

Define pre-specification FStack ∈ (ΣStack → VS) → ΣStack → VS as follows

FStack V σ ς ρ
= (ς = [top] ∧ σ �= ⊥ ⇒ ρ = [σ]
∧ ∀x ∈ Z · ∀t ∈ S · ς = [push;x]; t ⇒ V x t ρ1;..

∧ ∀s ∈ Balance · ∀t ∈ S · ς = s; t ⇒ V σ t ρ�s;..)

This axiom specifies the behavior of a stack that is in abstract state σ as follows.
The first conjunct says that if we invoke message [top], and the stack is not
empty, then the result is σ (Requirement (a)). The second conjunct says that
if the first message is [push;x], then the behavior for the rest of the scenario is
that of a stack whose top value is x (Requirement (b)). The last conjunct says
that if the first part of the scenario is in Balance, then the behavior for the
rest of the scenario is that of a stack in abstract state σ (i.e. the top value or its
non-existence is preserved – Requirement (c)).

The rest of the axioms are (using {⊥} as the initialization space):

VStack = νFStack Stack = o(VStack⊥) �= ∅

To use an object x that conforms to object specification S, we introduce it
in the client using syntax new x : S, which is defined as follows:

new x : S = frame x · x′ ∈ S

Example 3. Here is a client for Stack of Example 2:

P
= new x : Stack ; x.push(3) ; x.push(4) ; z := x.top ; x.pop ; y := x.top

We can prove [12] that P sets variable z to 4 and variable y to 3:

P ⇒ z′ = 4 ∧ y′ = 3

An object specification S refines an object specification Q, if and only if
S ⊆ Q. Relation ⊆ on object specifications is called object refinement.

3.3 Classes

Class Basics. A class is a special kind of object specification in which we specify
the result of one invocation at a time. To formalize self-invocation later on, we
also assert that invocation of message [state] returns the whole state of the object
without changing it. This does not contradict encapsulation, as explained in Sect.
4. When we talk about classes, set Σ is called the concrete state space (or simply
state space) and function F is called the pre-class.

Formally, a class C is defined as follows. First we pick the state space ΣC .
The state space is a record space. The elements of the domain of ΣC are called

50 I.T. Kassios

the attributes of C. We define pre-class FC ∈ (ΣC → VS) → ΣC → VS as
follows:

FC V σ ς ρ = (ς = nil ⇒ ρ = nil
∧ ς0 = [state] ⇒ ρ0 = [σ] ∧ V σ ς1;.. ρ1;..

∧ P)

(1)

where P is a boolean expression that describes the methods of the class called
the class body.

The class body is a conjunction of method specifications. A method specifi-
cation is a boolean expression of the form:

∀x ∈ X · ∀y ∈ Y · ... · ∃σ′ ∈ ΣC · ∃r′ ∈ R · ∃q′ ∈ Q · ...·
ς0 = [m;x; y; ...] ⇒ S ∧ ρ0 = [r′; q′; ...] ∧ V σ′ ς1;.. ρ1;..

(2)

where m is a label, X,Y, ..., R,Q, ... are sets of data values and S is an impera-
tive specification on program variable σ and mathematical variables x, y, ... and
r′, q′, ... and V .

If method specification (2) appears in the body of C, and the number of
variables x, y, ... is a, we say that C supports method m with arity a (or method
m/a). Imperative specification S is called the body of m/a in C. Two different
methods of C must have either different names or different arities and no method
with arity 0 can have name state .

Finally, we pick an initialization space IC . The rest of the axioms are the
usual:

VC = νFC C =
(⋃

σ ∈ IC · o(V σ)
)
�= ∅ (3)

Abbreviations. The class construct is introduced as an abbreviation for the
class definition axioms presented above. In particular, syntax

C = class(Σ)(I) · P

abbreviates axioms ΣC = Σ, IC = I, (1), (3). The method construct

method m(x : X , y : Y , ...)(r : R , q : Q , ...) · S

abbreviates method specification (2).

Self-invocation. Imperative specification y; z; ... := this.m(w) represents self-
invocation of message [m;w] assigned to y; z; Its definition is:

y; z; ... := this.m(w)
= frame y, z, ..., σ · V σ ([m;w]; [state]) ([y′; z′; ...]; [σ′])

where σ is the program variable that represents the state within the method, and
V is the value specification family that is being currently defined. We can prove
[12] that if C supports a method with specification (2), then self-invocation of
that method is the same as executing S. Formally:

VC σ ([m;w]; [state]) ([v′]; [σ′]) = S(w0/x)(w1/y)...(v′
0/r′)(v′

1/q′)...

Decoupling in Object Orientation 51

The following example shows the classical model-based specification for stacks
in our notation.

Example 4. Here is a class StackC that specifies stacks of integers, using lists
of integers as the state space.

StackC
= class(c ⇁ list Z)(c ⇁ {[nil]})·

(method push(x : Z)() · σc := [x]+σc
∧method pop()() · var b : B·

b := this.isempty ; if b then ok else σc := tail(σc)
∧method top()(r : Z) · var b : B·

b := this.isempty ; if b then ok else r := σ c 0
∧method isempty()(e : B) · e := σc = [nil])

We can prove [12] that StackC refines Stack of Example 2. Since StackC is
written entirely using executable constructs, it is an implementation2 of object
specification Stack.

Model-based theories define specifications to be classes and refinement to be
pointwise method refinement. Pointwise method refinement is a special case of
object refinement. Although it is more complex than object refinement, pointwise
method refinement is known to be incomplete, while object refinement does not
have this problem. This is demonstrated in the following example.

Example 5. Define:

C = class(n ⇁ Z)(n ⇁ Z) · method m()() · even(σ′n)
D = class(n ⇁ Z)(n ⇁ {0}) · method m()() · σ′n = σn + 2

We can prove that D ⊆ C, even though D does not refine C in the standard
sense of pointwise method refinement.

4 Encapsulation and Usage Constraints

In this section, we introduce usage schemes as a feature that plays the role that
usage constraints (also known as “history clauses”) play in some specification
languages. Usage schemes are stand-alone and independent of classes, so they
can be applied incrementally and they can be applied to general object specifica-
tions. We show an example of such an application. We then introduce standard
encapsulation as a special case of the use of usage schemes and data refinement
as its application.

2 Not all classes are implementations; non-deterministic method specifications are also
possible.

52 I.T. Kassios

4.1 Usage Schemes

Sometimes the client of an object specification is required to obey certain rules
when invoking methods on its conforming objects. Such rules are captured by
our notion of usage scheme. A usage scheme is a predicate on S. Given a value
specification V and a usage scheme E, the encapsulated version of V with respect
to E is value specification V \E defined as follows:

(V \E)ς ρ = E ς ⇒ V ς ρ

Value specification V \E insists that the behavior of an object value agrees with
V as long as the client obeys E, but makes no promise about what happens if the
client does not obey E. Because of that, V \E is weaker than V and consequently
the implementer of o(V \E) has an easier job than the implementer of oV .

Example 6. Consider the Stack specification of Example 2. If we assume that
the client does not need to store more than N items in the stack at any given
time, we have the freedom to implement Stack using a fixed-size list.

In this example, we create object specification LimStack that only allows
storage of N items in the stack. Instead of creating LimStack from scratch,
we create it incrementally, by first devising a usage scheme and then defining
LimStack as the encapsulated version of Stack with respect to that scheme.
In fact, we define a family of usage schemes E ∈ {−1 , .., N + 1} → S → B,
with mutual recursion as follows: for any n ∈ {0, .., N} and scenario ς:

E n ς = ς = nil ∨ (∃x ∈ Z · ς0 = [push;x] ∧ E(n− 1)ς1;..)
∨ (ς0 = [pop] ∧ E(n + 1)ς1;..) ∨ (ς0 = [top] ∧ E n ς1;..)

¬E(−1)ς ¬E(N + 1)ς

Intuitively, E n allows at most another n items to be pushed and at most another
N − n items to be popped (for n ∈ {0, .., N}).

The definition of LimStack is now incremental:

VLimStack σ = VStack σ \ E N LimStack = o(VLimStack⊥)

Unlike Stack, we can implement LimStack with a list of fixed size N . An
implementation is shown in [12].

4.2 Encapsulation

Let C be a class and E a usage scheme. The encapsulated version of C with
respect to E is object specification C\E defined as follows:

C\E =
⋃

σ ∈ IC · o(VC σ \ E)

Applying a usage scheme to a class corresponds to the history clauses that the
class constructs of certain model-based specification languages support.

Standard encapsulation is another special case of the use of usage schemes.
When we encapsulate a class, we do not allow the client to access the state. This
is expressed by usage scheme StdEnc, which is defined as follows:

StdEnc ς = ∀i ∈ {0, ..�ς − 1} · ςi �= [state]

Decoupling in Object Orientation 53

Scheme StdEnc allows the implementer to change the representation of the
class data in such a way that the rest of the behavior of the class is preserved.
This is called data refinement. A methodology3 to data-refine class C into class
D is to decide on a new state space ΣD and a transformer G ∈ ΣC → ΣD → B

that relates the two state spaces. The transformer must be such that

∀σD ∈ ΣD · ∃σC ∈ ΣC ·G σC σD

The initialization space of C is transformed into ID as follows:

ID = {σ ∈ ΣD | ∃σC ∈ IC ·G σC σ}

The body S of each method of C is transformed into:

∀σC ∈ ΣC ·G σC σ ⇒ ∃σ′
C ∈ ΣC ·G σ′

C σ′ ∧ S(σC/σ)(σ′
C/σ′)

Example 7. Let

C = class(n ⇁ Z)(n ⇁ {0})·method inc()(r : B)· σ′n = σn+1 ∧ r′ = even(σ′n)

We can change the wasteful internal representation of C because the only infor-
mation that is observed by a client that does not invoke [state] is whether the
value of attribute n is even or not. The new attribute space is b ⇁ B and the
transformer is defined by:

G σC σD = even(σCn) = σDb

The transformation gives us class D, which is defined as follows:

D = class(b ⇁ B)(b ⇁ {	}) ·method inc()(r : B) · r′ = ¬σb ∧ σ′b = ¬σb

By the soundness of data refinement, we know that D ⊆ C\StdEnc.

5 Inheritance

In this section, we introduce inheritance as an operation on pre-specifications
and subclassing as the application of inheritance to pre-classes.

Inheritance is sometimes understood as a kind of refinement: if class D in-
herits from class C, then we should be able to use objects of D when objects of
C are wanted (this is for example the philosophy of Eiffel [16]). An alternative
view decouples code reuse from object substitutability (see for example [4]). In
that view, objects of D can be used where objects of C are expected if and only
if D is a refinement of C regardless of whether D was created incrementally from
C. Also, a class D can be created incrementally from another class C, regardless
of whether D is a refinement of C. We subscribe to the latter more liberal view
and generalize it to object specifications: by the term “inheritance” we mean the
creation of an object specification incrementally from other object specifications,
regardless of whether the new object specification is a refinement of the old ones.

3 The outlined methodology is called L−1 data refinement in [7].

54 I.T. Kassios

5.1 General Inheritance

Let F be a pre-specification. We can create a new pre-specification G incremen-
tally from F by adding and/or excluding functionality. We add functionality by
conjoining a boolean expression N that describes the new functionality:

G V σ ς ρ = F V σ ς ρ ∧ N (4)

We exclude functionality as follows:

G V σ ς ρ = ¬ E ς ⇒ F V σ ς ρ (5)

where E is a usage scheme that describes the excluded scenarios.
Inheritance is the use of operations that add functionality, such as (4), and

operations that exclude functionality, such as (5) to create a pre-specification
G incrementally from other pre-specifications F whose abstract state space is
greater than or equal to that of G. If more than one pre-specifications F are
involved, then we have multiple inheritance. Overriding of functionality is a
combination of operations: first we exclude the old functionality and then we
add the new one.

Notice that our notion of overriding ensures dynamic dispatch of the messages
invoked by the client (the related behavior is re-specified). In Sect. 5.2, we see
that dynamic dispatch of self-invocations is also supported.

Example 8. Suppose that we want to write an object specification VarStack
that describes stacks. A stack conforming to VarStack behaves according to
Stack of Example 2 but is different in that method top allows only one obser-
vation of the top value. In particular, after the invocation of [top], the top value
is set to 0.

Since our requirement is incremental, it is a good idea to create VarStack
incrementally. To do that, we use our mechanism of inheritance. We keep the
same abstract state space ΣStack .

Our requirement is an overriding requirement. We must exclude the func-
tionality that has to do with what happens after the invocation of top . So we
exclude scenarios [top]; t where t �= nil . We must then add the new functionality.
The new pre-specification FVarStack ∈ (ΣStack → VS) → ΣStack → VS is defined
as follows:

FVarStack V σ ς ρ
= (¬(∃t ∈ S · t �= nil ∧ ς = [top]; t) ⇒ FStack σ ς ρ
∧ ∀t ∈ S · t �= nil ∧ ς = [top]; t ⇒ V 0 t ρ1;..)

The first line inherits the behaviors of Stack excluding the above stated sce-
narios. The second line defines the new functionality for exactly those scenarios.
Notice that the behavior for a single [top] invocation is inherited. This guarantees
that an invocation of [top] still returns the top value. The “balance” behaviors
(except for scenarios that start with [top]) are also inherited, so for example
[push; 6]; [top]; [top]; [pop] still preserves the top value.

Decoupling in Object Orientation 55

The rest of the axioms are the usual:

VVarStack = νFVarStack VarStack = o(VVarStack⊥) �= ∅

The fact that the state space of F is greater than or equal to that of G
might seem counter-intuitive when one considers standard inheritance in which
the state of the subclass “grows” by adding more attributes. This intuition is
wrong: in fact adding attributes makes the state space smaller, because record
spaces are contravariant in their domain.

5.2 Subclassing

Subclassing is a restricted form of inheritance in which:

– The pre-specifications involved are pre-classes.
– The state space is restricted only by adding attributes and intersecting an

initialization space related to the new attributes.
– We add functionality only by conjoining new method specifications.
– We only override methods.
– There is no name clash between any of the inherited attributes and the new

attributes or any of the inherited methods and the new methods.

The formula below makes all the above formal. It creates a new class D
incrementally from classes Ci, provided that there is no name clash:

D = class(Σ ∩
⋂

i ·ΣCi
)(I ∩

⋂
i · ICi

) · P ∧ ∀i · ¬ Ei ς0 ⇒ FCi
V σ ς ρ

(6)

where Σ is the state space for the new attributes, I is the initialization space for
the new attributes, P is a class body that describes the new methods and for
all i, Ei is a usage scheme that describes the methods that are overridden from
class Ci. Every usage scheme Ei has a special form:

Ei ς = ∃j · ∃x ∈ ai;j ∗ U · ς = [mi;j ;x]

where the mi;j/ai;j are the methods of Ci to be excluded.
Note that, all self-invocations in the Ci refer to the family V under definition

and thus, they become self-invocations in D. This means that our notion of
inheritance supports dynamic dispatch not only of client invocations, but of
self-invocations as well.

Definition (6) can be abbreviated by the following syntax:

D = class(Σ)(I)
inherit C0 without m0;0/a0;0 ; m0;1/a0;1 ; ...
inherit C1 without m1;0/a1;0 ; m1;1/a1;1 ; ...
...
·P

Keyword without is omitted if there is no overridden method.

56 I.T. Kassios

Some languages allow the invocation of an overridden method m from class
C within the body of the inheriting class D, bypassing dynamic dispatch (for
example Java uses keyword super). This is possible in our language too: the
idea is to replace V with VC in the definition of self-invocation. The syntax we
use is y; z; ... := (this as C).m(w):

y; z; ... := (this as C).m(w)
= frame y, z, ..., σ · VC σ ([m;w]; [state]) ([y′; z′; ...]; [σ′])

Example 9. We create a class CountStackC that inherits from StackC, of
Example 4 but also provides a counter that counts invocations of push. To do
that, we add an attribute n, a method getCount and we override method push.
The new method specification for push invokes the old method. We initialize
the value of n to 0.

CountStackC
= class(n ⇁ Z)(n ⇁ {0}) inherit StackC without push/1·

(method push(x : Z)()·
σn := σn + 1 ; (this as StackC).push(x)

∧ method getCount()(r : N) · r := σn)

6 Discussion

6.1 Contribution

In this paper, we have presented part of the object oriented refinement theory
of [12]. Our focus here is the decoupling aspect of the theory. We have shown
that decoupling makes all our features very primitive. For example, our notions
of object specification and refinement are as primitive as they can be, having
none of the complexity of classes, encapsulation or usage constraints.

We have also shown that the overall system is more general than standard
systems, because the decoupled features can apply independently. In particular,
object specifications are more general than classes, as shown in Example 2,
encapsulation and usage constraints are applicable incrementally as shown in
Example 6, and both usage constraints and inheritance are applicable to general
object specifications, as shown in Examples 6 and 8. Object refinement is more
general than pointwise method refinement, as shown in Example 5. Examples 4,
7 and 9 show standard object orientation as a special case of our theory.

6.2 Features not Covered Here

There are significant parts of the theory of [12] that we do not have space to
discuss here. The other major underlying design principle behind the theory
is unification. The theory shows that the concept of object specification alone
formalizes all object oriented entities (interfaces, classes, objects) and that ob-
ject refinement alone formalizes all object oriented relations (instantiation, type

Decoupling in Object Orientation 57

compliance, subtyping, the sub-object relation, class refinement, implementation
etc.). The theory also provides algebraic laws like those in [10], to make reasoning
practical. The use of these laws is demonstrated in refinement proofs that had to
be omitted here. Finally, the theory provides a formalism that avoids referring to
the state σ when writing object specifications. This, and other syntactic sugar,
makes specifications easier to read.

6.3 Restrictions of the Theory and Future Work

The theory of [12] does not support delegation-based object orientation, and it is
relational. We do not treat features like parallelism and distributed computation,
but these are directly supported by [10].

We think that the main disadvantage of the theory presented here is that
it has a copy semantics. The extension to cover pointers requires a further de-
coupling: value specifications are separated from state. Other than that, the
extension is orthogonal to the theory.

We have argued that mathematical simplicity and construct generality are
important goals in their own right. We have shown how our theory achieves those
goals. However, this paper does not show how these goals translate into concrete
practical advantages for the user of the theory. That requires more pragmatic
examples than the ones presented here (whose purpose is the explanation of the
theory and not the demonstration of its practicality).

Both the extension of the theory with pointers and the validation of the
theory with pragmatic examples will be included in the author’s forthcoming
Ph.D. thesis.

Acknowledgment. This paper has benefited greatly from the criticisms by anony-
mous reviewers of this and an earlier version.

References

[1] M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In M. Bidoit
and M. Dauchet, editors, Proceedings of TAPSOFT’97: Theory and Practice of
Software Development, volume 1214 of Lecture Notes in Computer Science, pages
682–696. Springer-Verlag, 1997.

[2] A. J. Alencar and J. A. Goguen. OOZE: An object-oriented Z environment. In
P. America, editor, Proceedings of ECOOP’91: European Conference on Object-
Oriented Programming, volume 512 of Lecture Notes in Computer Science, pages
180–199. Springer-Verlag, 1991.

[3] R. Back, L. Mikhajlov, and J. vonWright. Formal semantics of inheritance and
object substitutability. Technical Report 337, Turku Centre for Computer Science,
Lemminkäisenkatu 14, FIN-20520, Turku, Finland, 2000.

[4] R. Back, A. Mikhajlova, and J. vonWright. Class refinement as semantics of
correct object substitutability. Technical Report 333, Turku Centre for Computer
Science, Lemminkäisenkatu 14, FIN-20520, Turku, Finland, 2000.

[5] R. Back and J. vonWright. Refinement Calculus. A Systematic Introduction.
Graduate Texts in Computer Science. Springer-Verlag, 1998.

58 I.T. Kassios

[6] A. Cavalcanti and D. A. Naumann. A weakest precondition semantics for
an object-oriented language of refinement. In J. M. Wing, J. Woodcock, and
J. Davies, editors, Proceedings of the FM’99 World Congress on Formal Methods,
volume 1709 of Lecture Notes in Computer Science, pages 1439–1459. Springer-
Verlag, 1999.

[7] W. P. deRoever and K. Engelhardt. Data Refinement: Model Oriented Meth-
ods and their Comparison. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1998.

[8] J.A Goguen and J. Meseguer. Unifying functional, object-oriented and relational
programming with logical semantics. In B. Shriver and P. Wegner, editors, Re-
search Directions in Object-Oriented Programming, Series in Computer Systems,
pages 417–477. MIT Press, 1987.

[9] J. He, Z. Liu, and X. Li. Towards a refinement calculus for object systems. In
Proceedings of ICCI2002, pages 69–77. IEEE Computer Society, 2002.

[10] E. C. R. Hehner. A Practical Theory of Programming. Current edition, 2004.
Available on-line: http://www.cs.toronto.edu/~hehner/aPToP/ First edition
was published by Springer-Verlag in 1993.

[11] C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice Hall
Series in Computer Science. Prentice Hall, 1998.

[12] I. T. Kassios. Object orientation in predicative programming, unification
and decoupling in object orientation. Technical Report 500, Computer
Systems Research Group, University of Toronto, 2004. Available on-line:
http://www.cs.toronto.edu/~ykass/work/oopp.ps.gz.

[13] K. Lano. Formal Object-Oriented Development. Springer-Verlag, 1995.
[14] G. T. Leavens. An overview of Larch/C++. behavioral specifications for C++

modules. Technical Report TR96-01e, Department of Computer Science, Iowa
State University, 1996.

[15] S. Meira and A. Cavalcanti. Modular object-oriented Z specifications. In Z User
Meeting 1990, Workshops in Computing, pages 173–192. Springer-Verlag, 1990.

[16] B. Meyer. Object-Oriented Software Construction. The Object-Oriented Series.
Prentice Hall, 2nd edition, 1997.

[17] R. F. Paige and E. C. R. Hehner. Bunches for object-oriented, concurrent and real
time specification. In J. M. Wing, J. Woodcock, and J. Davies, editors, Proceedings
of the FM’99 World Congress on Formal Methods, volume 1708 of Lecture Notes
in Computer Science, pages 530–550. Springer-Verlag, 1999.

[18] E. Sekerinski. A type-theoretic basis for an object-oriented refinement calculus. In
S. J. Goldsack and S. J. H. Kent, editors, Formal Methods and Object Technology.
Springer-Verlag, 1996.

[19] G. Smith. The Object Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers, 2000.

Controlling Object Allocation Using
Creation Guards

Cees Pierik1, Dave Clarke2, and Frank S. de Boer1,2,3

1 ICS, Utrecht University, The Netherlands
2 CWI, Amsterdam, The Netherlands

3 LIACS, Leiden University, The Netherlands
cees@cs.uu.nl, {dave, frb}@cwi.nl

Abstract. Sharing of objects between different modules is often neces-
sary to meet speed and resource demands. The invariants that describe
properties of shared objects are difficult to maintain because they can be
falsifiable by object allocation. This paper introduces creation guards to
obtain a sound and modular methodology that supports such invariants.

Keywords: invariants, object allocation, specification, verification, ob-
ject-oriented programming.

1 Introduction

Sharing of objects is often necessary to increase the speed and reduce the resource
demands of programs. A system that allocates too many objects is prone to be
slow. This phenomenon forces modules to share objects whenever possible.

Fortunately, many objects can safely be shared. This holds, for example, for
simple immutable objects like strings and classes that encapsulate primitive data
like integers or floating-point values. More complex examples include objects that
represent key strokes, and borders of graphical user interface elements.

The resource demands of a program can be reduced by means of a mecha-
nism that handles requests of client code for new objects by returning existing,
shared objects whenever possible. Moreover, clients should be discouraged (or
downright precluded) from allocating such objects directly. The flyweight pat-
tern [6] supports object sharing by means of factories that maintain pools of
shared objects. It is interesting to see that many variants of this pattern appear
in version 1.4 and later versions of the Java API.

In this paper, we formally analyze this type of object sharing by studying
the invariants that describe such object pools. A common feature of these in-
variants is that they are falsifiable by the allocation of new objects. This is a
disturbing observation because object allocation is possible in every context in
which a constructor method of the class is visible. Therefore almost every code
fragment may potentially falsify the invariant. We show how such invariants can
nevertheless be maintained by means of creation guards. A creation guard for a

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 59–74, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

60 C. Pierik, D. Clarke, and F.S. de Boer

particular class is a formula that should hold in each state in which a new object
of that class is allocated.

Invariants are commonly used to describe properties of the encapsulated rep-
resentation of a single object following an influential paper by Hoare [8]. Bar-
nett and Naumann recently proposed a friendship system with update guards
for maintaining invariants over shared state [2]. In this paper, we show how to
extend their system with creation guards in order to control object allocation.
A preliminary version [15] of this paper has been presented at a workshop.

This paper is organized as follows. Sect. 2 presents an example involving
a border factory that enables clients to share border objects. In the following
section we give the syntax of the (static) invariants that we consider in this
paper, along with some new results concerning the relationship between object
creation and invariants. Sect. 4 summarizes the invariant framework on which we
build. In Sect. 5 we introduce creation guards, and the corresponding invariant
methodology. Sect. 6 generalizes the methodology in order to handle subclassing.
We provide a sketch of the soundness proof of our methodology in Sect. 7. The
last two sections are devoted to related work and conclusions.

2 An Example: Sharing Borders

In this section, we describe an example factory class that enables clients to share
bevel borders. Fig. 1 shows the two classes of the example. The example is derived
from the corresponding classes in Java’s javax.swing package. More complex
examples are possible, but this example suffices to illustrate our approach.

The example is written in a simple class-based object-oriented Java-like lan-
guage. For convenience, we will assume that our examples behave according to
the semantics of Java. However, this does not imply that the techniques that we
will describe cannot be applied to other object-oriented languages like C#.

A bevel border can either be lowered or raised. The type field in class BBorder
stores the type of the border. The factory class has two static fields (LOWERED
and RAISED) that represent the two types.

Factory methods handle request for specific objects. They ensure that only
one object is created for each value (or type). The getBBorder method in the
BorderFactory class is an example of a factory method; it returns BBorder
objects. The border factory class typically provides a factory method for each
available border type.

To enable object sharing, references to the existing instances of a class should
be maintained in a global object pool. In our example two static variables
(raised and lowered) are used to build such a pool; more complex examples
usually involve a hash table.

The constructor method of class BBorder is public. This is necessary because
the factory method must have access to it. However, this also implies that client
code is able to ignore the factory method by directly instantiating the class. That
is, the implementation does not effectively impose object sharing on clients.
This kind of situation is often accompanied by strong warnings in the class

Controlling Object Allocation Using Creation Guards 61

class BBorder {
private boolean type ;

public BBorder(boolean type) { this.type := type ; }

/* methods for drawing the border omitted */
}
class BorderFactory {
public static final boolean RAISED := true, LOWERED := false ;
private static BBorder raised, lowered ;

public static BBorder getBBorder(boolean type) {
if (type = RAISED) {
if (raised = null) { raised := new BBorder(RAISED) ; }
return raised ;

}
else {
if (lowered = null) { lowered := new BBorder(LOWERED) ; }
return lowered ;

}
}

/* fields and factory methods for other border types omitted */
}

Fig. 1. A class that represents bevel borders, and a factory class that maintains a
border pool

documentation not to exploit this leak. We will show how creation guards can
repair this weak spot.

In situations where a factory only controls one class, it is best to place the
factory method in the same class; the problem can then be avoided by declaring
the constructor to be private (see, e.g., class java.util.Currency in version 1.4
of the Java API). However, one still needs a way to check whether statements in
that class do not inadvertently falsify invariants by allocating new objects. Our
example addresses the more general situation where the factory method resides
in a different class.

The code of the factory class facilitates (but does not impose) an invariant
regarding BBorder objects: each object occurs in the object pool, and each bevel
border has a unique type. That situation is described by the following invariant.

(∀b : BBorder • b = lowered ∨ b = raised)
∧ lowered �= null→ lowered.type = LOWERED
∧ raised �= null→ raised.type = RAISED .

(BorderFactory.Inv)

(Here, and throughout this paper, we assume that quantification ranges over
allocated non-null objects.) We assign this invariant to class BorderFactory,
which makes it a static invariant. We will assume that static invariants are
invariants that belong to a class, and not to the instances of a particular class.

62 C. Pierik, D. Clarke, and F.S. de Boer

Non-static (object) invariants describe the representation of instances of a
class, and are allowed to refer to their receiver by means of this. The first part
of the above invariant could be rephrased as the object invariant

this = lowered ∨ this = raised .

However, this object invariant has the flaw that it makes the instances respon-
sible for assigning themselves to the proper location in the object pool. This is
impossible in our example due to the visibility restrictions. We will therefore
focus on static invariants in this paper.

Invariants reveal important design choices regarding a class that may justify
code optimizations. For example, if invariant (BorderFactory.Inv) holds, then
the following efficient implementation of the equals method is sufficient to check
if two instances of the class represent the same border type.

public boolean equals(Object obj) { return this = obj ; }

3 The Syntax of Invariants

In this section, we define the syntax of invariants, and describe a syntactical
criterion for determining whether invariants are falsifiable by the creation of
new objects of a particular class. This criterion will later be used to determine
which invariants are admissible.

We will assume that invariants are expressed in terms of the expressions of
the underlying (Java-like) programming language. That is, they should be based
on the following set of expressions:

e ∈ Expr ::= undefined | null | C.x | z | e.f | (C)e | e ? e : e | e = e

| type(e) | e instanceof C | op(e1, . . . , en)

The keyword undefined denotes the value of expressions whose values would
normally be undefined because they result in an exception. For example, it would
have the same value as the expression e.f if e were equal to null (where e.f
denotes the value of field f of object e). We will assume that x is a static
variable declared in class C, whereas z always denotes a logical variable. By
type(e) we denote the dynamic (allocated) type of object e. Finally, op denotes
an arbitrary operator on elements of a primitive type. The meaning of other
expressions should be clear.

Invariants are simply formulas over the set of expressions that we have defined
above:

I ∈ Inv ::= e | ¬I | I ∧ I | (∀z : t • I)
A formula (∀z : C • I) means that I holds for all existing objects of (each
subclass of) class C. The type t is either a primitive type or a class name; we
usually omit it if it is clear from the context. Invariants are not allowed to have
unbound occurrences of logical variables. The standard abbreviations like I1∨I2

for ¬(¬I1 ∧ ¬I2) and (∃z • I) for ¬(∀z • ¬I) are valid.
The formal semantics of the introduced set of formulas is fairly standard (see,

e.g., [16]).

Controlling Object Allocation Using Creation Guards 63

3.1 Invariants, Object Allocation and Quantification

The static invariant of class BorderFactory (BorderFactory.Inv) is an ex-
ample of an invariant that is falsifiable by object creation. It is clear that
(BorderFactory.Inv) is falsified by the allocation of a new instance of class
BBorder whenever the static variables raised and lowered already reference
existing objects.

In general, we will use a weakest precondition operation of object allocation
to check whether invariants are falsifiable by object allocation. Let [newC/u]
denote the weakest precondition of the allocation of a new instance of class C,
and its assignment to a fresh local variable u that temporarily stores a reference
to the object. (The weakest precondition operation of object allocation has to
take the change scope of quantifiers into account. A formal definition of the
operation can be found in previous work of the first and third authors [16].)

The operation does not model the execution of a constructor method. It
merely models the effect of the heap extension that is caused by the alloca-
tion of a new object, which is the first effect of the execution of a statement
new C(e1, . . . , en) in Java [7]. Whether the constructor method preserves the
invariant should be checked in the constructor method itself.

The following theorem describes the correspondence between falsifiability by
object creation of an invariant and the validity of a formula.

Theorem 1. An invariant I is falsifiable by the allocation of a new instance of
class C if I → (I[newC/u]) does not hold.

It follows from the assumption that [newC/u] computes the weakest precon-
dition of the allocation of a new instance of class C [16].

In most cases one can also directly deduce from the syntax of an invariant
that it cannot be falsified by the allocation of a new instance. The following
result states that only invariants that quantify over a domain that includes the
new object may be falsified by its allocation.

Theorem 2. If an invariant I has no subformula of the form (∀z : C • I ′), for
some superclass C of class D, then it cannot be falsified by the allocation of a
new instance of class D.

We assume here that each class is also a sub- or superclass of itself. Invariants
that have a subformula of the form (∃z : C • I) may also be falsifiable by object
creation (recall that a formula of the form (∃z • I) abbreviates the formula
¬(∀z • ¬I)). The result can be proved by structural induction on the invariants
using Theorem 1. Note that the implication is not valid in the opposite direction.

4 The Boogie Approach to Invariants

Invariants are commonly expected to hold in all ‘visible’ states. This implies that
the invariants must hold every time control leaves a method of a class [9, 10].
The Boogie approach to invariants [1, 11] weakens this restriction while still
preventing scenarios in which one wrongfully assumes that an invariant holds.

64 C. Pierik, D. Clarke, and F.S. de Boer

For this purpose, an auxiliary field inv is introduced to signal which invariants
hold for a particular object. Its value is always a superclass of the dynamic type of
an object. The methodology ensures that if the value of the inv field of an object
is class C, then the object satisfies all object invariants declared in superclasses
of C (including the invariant in class C). The following system invariant (for
each class C) formally describes the relation between this field and the object
invariant InvC of class C.

(∀o : C • o.inv � C → (InvC [o/this]) (1)

Here, � denotes the reflexive and transitive subclass-relation, and [o/this] is
the capture-avoiding substitution of this by o.

The default value of field inv is the root class Object, which implies that the
object invariant of this class must hold for each fresh object. The value of the
inv is controlled by two special statements, pack and unpack, which are defined
as follows for a class D with immediate superclass C.

pack e as D ≡
assert e �= undefined ∧ e �= null ∧ e.inv = C ∧ (InvD[e/this]) ;
e.inv := D ;

unpack e from D ≡
assert e �= undefined ∧ e �= null ∧ e.inv = D ;
e.inv := C ;

The formulas that follow the assert keyword should be seen as preconditions
for these statements. The program logic in which they are used should guarantee
that they hold whenever these statements are executed (e.g., by adding them to
the weakest preconditions of these statements). A runtime assertion checker can
simply check if the assertion holds upon reaching the statement.

These statements enable a discipline whereby each object is sufficiently un-
packed before its fields may be modified. This can be achieved by placing the
additional precondition e.inv �� C on all field assignments of the form e.f := e′,
where C is the class in which field f is declared.

The above mentioned discipline suffices for object invariants that only de-
pend on the fields of their receiver. Other invariants can be allowed by using
ownership [4] in order to extend the range of invariants to objects beyond of the
original object, to owned objects and objects with the same owner [1, 11].

The Boogie approach to invariants can also be used to handle static invari-
ants. For this purpose, we assign to each class an auxiliary boolean field stable
that indicates whether the class is stable, i.e., whether its static invariant holds.
Assignments to static fields of a class will only be allowed if it is unpacked. A
class is unpacked if its stable field has the value false. The following statements
control this field.

pack class C ≡ assert C.Inv ; C.stable := true ;
unpack class C ≡ C.stable := false ;

Thus we maintain the following system invariant, for each class C.

C.stable→ C.Inv (2)

Controlling Object Allocation Using Creation Guards 65

4.1 The Friendship System

Barnett and Naumann [2, 14] extended the set of admissible invariants by al-
lowing object invariants to depend on fields of unowned (shared) objects. The
classes of these objects are called friend classes. Translated to our setting, this
allows the invariant of the factory class to depend on instance fields of objects
of (friend) class BBorder. Note that BorderFactory.Inv depends on field type
declared in class BBorder. We will describe in this section how their proposal
can be applied to static invariants.

Their friendship system uses update guards to describe permitted updates to
shared fields. An update is permitted if it occurs in a state in which the guards
of the field hold, or if the factory class is unpacked. We will use the following
syntax to declare an update guard U in class C for an instance field f of class
C.

static guard U guards f for F ;

The keyword static indicates that the guard protects a static invariant; the
guard U protects the static invariant of class F against updates of field f of
C-objects that would falsify F ’s invariant. The guard itself should be a valid
formula that does not mention fields that are invisible to clients of the class. It
may additionally refer to two keywords: this denotes the object whose field is
modified, and val denotes the value that is assigned to the field. A field may
have several update guards.

A static invariant F.Inv that depends on a field f of some other class C is
only allowed if it is sufficiently protected by the update guard of that field. An
update guard U for field f protects the static invariant of class F if

F.Inv ∧ U → (F.Inv [val/this.f]) (3)

holds. By [val/this.f] we denote the weakest precondition operation of the
assignment this.f := val (see, e.g., [16]).

As mentioned above, updates to guarded fields are only allowed in states in
which either the guards hold or in which the class of the invariant is unpacked.
This is checked by giving each assignment of the form e.f := e′ the (additional)
precondition ¬F.stable ∨ (U [e, e′/this, val]). Here [e, e′/this, val] is the si-
multaneous substitution of this by e, and val by e′. Thus we ensure that all
updates to this field maintain (2).

Note that guards are always placed in the class in which the field is declared.
This is necessary in a modular proof system. It ensures that a proof of correctness
for a method cannot be falsified by adding additional classes that declare new
guards for arbitrary fields of other classes.

We can also use this mechanism to allow static invariants that depend on
static variables declared in other classes. A guard declaration

static guard U guards x for F ;

protects the static invariant of class F against updates of static variable C.x in
states in which the guard does not hold. The keyword this does not make sense
in update guards of static fields and is therefore not permitted.

66 C. Pierik, D. Clarke, and F.S. de Boer

One can check whether an update guard U for a static field C.x protects the
invariant by replacing [val/this.f] in (3) by the weakest precondition operation
[val/C.x] of the assignment C.x := val. An assignment C.x := e is only allowed
in states in which ¬F.stable ∨ (U [e/val]) holds.

In the following section we introduce creation guards in order to enable static
invariants that are falsifiable by object creation. The definition of the set of
admissible static invariants will therefore also be deferred to that section.

5 Creation Guards

Theorem 2 states that only invariants that quantify over a domain that includes
new objects can be falsified by object creation. It would therefore be safe to
allow static invariants to quantify over the instances of the class in which they
are declared if that class has only private constructors. Thus creation of instances
of the class would be restricted to methods of the class, and it would suffice to
check that the methods of the class ensure that the invariant holds in all visible
states.

However, as we have argued in Sect. 2, it is often not the case that the factory
methods are part of the same class. Moreover, we often find protected or even
public constructors for shareable objects. We will use creation guards to grant
the class of the factory method the right to quantify over shared objects. A
creation guard for some class C is a formula that should hold in each state in
which a new object of class C is allocated.

Let F be the class that contains the factory method(s) for objects of class
C. Class C can protect the static invariant of its factory class by declaring a
creation guard. Such a declaration could have the following form.

static creation guard G for F ;

The creation guard G is an arbitrary formula over the part of the program state
that is visible to clients; it should not reveal hidden implementation details of
class C.

The most commonly used creation guard is false. This creation guard seems
to prohibit creation of objects of class C, but that is not the case. The effect
of such a creation guard is that objects of that class can only be created if the
factory class is unpacked. That is, we require that ¬F.stable∨G holds prior to
the execution of each statement of the form new C().

The invariants that are enabled by a creation guard depend on the strength
of the guard. The only invariants that are allowed are those that cannot be
inadvertently falsified by the allocation of a new object as a consequence of
the creation guard. A creation guard G protects the static invariant F.Inv of a
factory class F against allocation of instances of class C if

F.Inv ∧G → (F.Inv [newC/u])

holds, where u is a fresh local variable. Only invariants that are protected by
guards in the above sense will be allowed to quantify over the shared objects.

Controlling Object Allocation Using Creation Guards 67

5.1 Admissible Invariants

In this subsection, we briefly summarize the methodology that we have proposed
thus far. In particular, we give a precise definition of the set of admissible in-
variants that is supported by the guards that have been introduced up to now.
The definition avoids possible complications that may arise due to subclassing;
we discuss subclassing in Sect. 6.

Definition 1 (admissible invariant). A static invariant F.Inv is admissible
if the following conditions are met:

– each static variable C.x that occurs in F.Inv is syntactically distinct from
C.stable, and either belongs to class F (C ≡ F), or class C has a static up-
date guard U for C.x and class F such that F.Inv ∧ U → (F.Inv [val/C.x]);

– each subformula of the form e.f concerns a field f that is syntactically dis-
tinct from inv, and the class C in which it has been declared has a static up-
date guard U for f and class F such that F.Inv ∧ U → (F.Inv [val/this.f]);

– each subformula of the form (∀z : C•I) concerns a class C that has a creation
guard G for class F such that F.Inv ∧G → (F.Inv [newC/u]); moreover, class
C is either final, or has at least one private constructor, and no public or
protected constructors.

Note that quantification over the values of a primitive type is never a problem.
Such formulas are not falsifiable by object creation (as follows from Theorem 2).
The last clause ensures that the class over which the invariant quantifies has no
subclasses. Classes that have at least one private constructor, and no public or
protected constructors, cannot have subclasses in Java. Thus the quantification
domain of a formula in an invariant never includes instances of subclasses. This
prevents invariants from depending on the creation of such objects. We will
weaken this restriction in Sect. 6, where we address subclassing.

5.2 The Border Example Revisited

In this subsection we revisit the example described in Sect. 2. A proof outline of
the example classes can be found in Fig. 2. It shows what annotation is needed
to ensure that the required invariant is maintained, and how the invariant can
be used to guarantee that methods behave according to their specification.

The static invariant of class BorderFactory is introduced by the keywords
static and invariant on three succesive lines; the actual invariant is the con-
junction of its three parts. The first part of the invariant is protected by a
creation guard in class BBorder. However, the given invariant is only admissible
if the class BBorder would have been declared to be final; we will explain in
the following section why the invariant is also admissible without finalizing class
BBorder.

Note that the references to the static variables in the invariant do not require
update guards; a static invariant is always allowed to depend on static fields of
the class in which it is declared. The following two parts are protected by the
update guard for field type in the code of class BBorder.

68 C. Pierik, D. Clarke, and F.S. de Boer

class BBorder {
private boolean type ;

static creation guard false for BorderFactory ;
static guard false guards type for BorderFactory ;

requires ¬BorderFactory.stable ;
ensures this.type = type ;
public BBorder(boolean type) { this.type := type ; }

requires BorderFactory.stable ;
ensures result = (obj instanceof BBorder

&& ((BBorder)obj).type = this.type) ;
public boolean equals(Object obj) { return this = obj ; }

}

class BorderFactory {
public static final boolean RAISED := true, LOWERED := false ;
private static BBorder raised, lowered ;

static invariant (∀b : BBorder • b = raised ∨ b = lowered) ;
static invariant raised �= null → raised.type = RAISED ;
static invariant lowered �= null → lowered.type = LOWERED ;

requires stable ;
ensures result.type = type ∧ stable ;
public static BBorder getBBorder(boolean type) {
if (type = RAISED) {
if (raised = null) {
unpack class BorderFactory ;
assert type = RAISED ∧ raised = null ∧ (∀c : BBorder • c = lowered)

∧¬stable ∧ (lowered �= null → lowered.type = LOWERED) ;
raised := new BBorder(RAISED) ;
pack class BorderFactory ;

}
return raised ;

}
else {
if (lowered = null) {
unpack class BorderFactory ;
assert type = LOWERED ∧ lowered = null ∧ (∀c : BBorder • c = raised)

∧¬stable ∧ (raised �= null → raised.type = RAISED) ;
lowered := new BBorder(LOWERED) ;
pack class BorderFactory ;

}
return lowered ;

}
}

}

Fig. 2. A proof outline of the shared borders example

Controlling Object Allocation Using Creation Guards 69

The proof outline does not restrict the values of the static fields RAISED and
LOWERED with e.g., the invariant RAISED = true∧LOWERED = false. Instead, we
assume that the proof method replaces occurrences of these variables by their
initializer expressions, which would make the above invariant trivially true. This
preprocessing step corresponds to the way Java compilers handle final static
variables with initializer expressions that are compile-time constants [7–§ 12.4.1].

The constructor method of class BBorder is listed with its precondition
(requires clause) and postcondition (ensures clause). It assigns to field type,
and must therefore require that the factory class is unpacked due to the update
guard of the field. Note that we assume that an occurrence of a parameter in a
postcondition denotes its value in the initial state.

The equals-method of class BBorder depends on the static invariant of
BorderFactory as signalled by its precondition. It uses the fact that the class
is packed and the system invariant (2) to prove its postcondition, which would
otherwise be too strong.

The factory method preserves the invariant of the class according to its spec-
ification. It temporarily unpacks the class if it has to allocate a new instance
of the class. For clarity, we have inserted assert statements that describe what
holds immediately after the class is unpacked. The invariant is restored in the
factory method by assigning the fresh object to the proper static variable after
completion of the constructor method.

6 Subclassing

The set of admissible invariants that we defined in Sect. 5.1 does not allow
quantification over a range that includes instances of subclasses. This may seem
a strong restriction, but it actually matches well with many variants of the
flyweight pattern that we found in the Java API. These sharing facilities do not
cater for subclasses because the creation statements in the factory methods fix
the classes of the objects in the pool.

However, it is not difficult to conceive a more flexible factory based on the
prototype pattern [6] that would not statically fix the class of its objects. Such
a factory method would have to be initialized with a prototype object. From
that point on, the factory method should clone the prototype object each time
a new object is required, thus ensuring that all objects have the same type. We
therefore investigate the use of creation guards in the presence of subclassing in
this section.

Assume that we have a static invariant in class F that quantifies over the
instances of class C. In closed programs, one can check for each subclass D of
C if its creation guards protect the invariant. However, this solution cannot be
applied if some of the (future) subclasses are unavailable. Therefore we will have
to rely on a system in which the creation guards of a subclass are restricted by
the creation guards of its superclass.

At first glance, one is tempted to think that it suffices to let subclasses inherit
the guards of their superclass, but that is not the case. Assume, for example, that

70 C. Pierik, D. Clarke, and F.S. de Boer

we have a static invariant (∀o : C •type(o) = C). This invariant is not falsifiable
by creation of instances of class C, so we could give class C the creation guard
true for this invariant. However, if class C has a subclass D, then we can easily
break the invariant by allocating an instance of class D. The inherited creation
guard does not prevent this scenario. The problem with this invariant is that it
depends on a property of objects that is not inherited by subclasses. Instances
of a subclass belong to a different class than instances of their superclass. The
type operator may be used to discriminate between objects that differ in this
sense, and should therefore not be allowed inside quantified formulas.

The instanceof operator and the cast operator are operations that also
depend on the class of the objects to which they are applied, but their second
operand (a class name) always reveals the criterion that is used. These operators
cannot discriminate between instances of that class and its subclasses, and may
therefore be used inside quantified formulas, provided that one checks whether
the creation guard of the second operand protects the invariant. This latter
restriction needs only be checked if the class occurs in a formula that quantifies
over the instances of some superclass of that class.

The above mentioned restrictions suffice to protect invariants provided that
creation guards are inherited by subclasses. A subclass may override a creation
guard that it inherits if the new creation guard is stronger than the inherited
guard. The above considerations lead to the following refinement of Def. 1.

Definition 2 (admissible invariant). A static invariant F.Inv is admissible
if the first two conditions of Def. 1 are met, and moreover, each subformula of
the form (∀z : C • I) of F.Inv concerns a class C with a creation guard G for
class F such that the implication F.Inv ∧G → (F.Inv [newC/u]) holds, and

– class C is either final, or has at least one private constructor, and no public
or protected constructors, or

– operator type does not occur in I, and each subclass D of class C that occurs
in I has a creation guard G′ for F such that F.Inv ∧G′ → (F.Inv [newD/u]).

7 Soundness

Soundness of our methodology means that system invariant (2) holds in each
reachable state of a properly annotated program in which all invariants are ad-
missible according to Def. 2. Our soundness proof presupposes a sound proof
system which ensures that the explicated preconditions of program statements
hold. We show that these preconditions suffice to ensure that the various state-
ments in the program maintain the system invariant.

A full soundness proof would require more space than is available to us here.
Fortunately, many details of the proof would correspond to similar steps in the
soundness proof of the friendship system [14]. The results that we prove below
cover the part of the proof that checks if object allocation preserves (2).

A program state 〈H,σ〉 consists of a heap H and a store σ (see [14, 16]). The
heap map objects to object states. The store σ is a map that assigns values to

Controlling Object Allocation Using Creation Guards 71

all local, static, and logical variables. A state 〈H,σ〉 is valid if H and σ have no
dangling references, i.e., if their range does not include objects that do not exist
in H. By val(e)(〈H,σ〉) we denote the value of expression e in state 〈H,σ〉. The
validity of an invariant I in a state 〈H,σ〉 is written 〈H,σ〉 |= I.

A statement new C(e1, . . . , en) first allocates a new instance of class C, and
then initializes the object by calling the corresponding constructor method with
parameters e1 to en [7]. For simplicity, we assume that parameter evaluation
has no side effects. The methodology must ensure that the system invariant is
maintained by the allocation to prevent scenarios in which the specifier of the
constructor method wrongfully assumes that the invariant holds. We will denote
the heap that results from the allocation of a new instance of some class C in H
by HC . The fields of the new object have their default values after allocation.

The following definitions play an important role in the proof. Let classes(I)
denote the least set such that C ∈ classes(I) whenever invariant I has a subfor-
mula (∀z : C • I ′), or a subexpression of the form (C)e or e instanceof C. By
the most specific superclass of a class D in an invariant I we mean the most spe-
cific superclass C of D such that C ∈ classes(I), if any. Formally, C ∈ classes(I)
is the most specific superclass of D in invariant I if D � C, and there exists no
other class E ∈ classes(I) such that D � E � C.

The following lemma shows that allocation of an instance of an arbitrary
subclass has the same effect on an invariant as the allocation of an object of its
most specific superclass.

Lemma 1 (equality formulas). Let I be a formula in which the type operator
does not occur. Let class C be a superclass of class D such that C is the most
specific superclass of D in I if it exists. Let H and σ be a heap and a store such
that 〈HC , σ〉 is a proper state. We assume that the identity of the new object
does not depend on its class. Then 〈HD, σ〉 |= I ⇔ 〈HC , σ〉 |= I.

Proof. By structural induction on I. The base case requires us to prove that
val(e)(〈HD, σ〉) = val(e)(〈HC , σ〉) for any expression e in which the type operator
does not occur.

The main result of this section implies that any admissible invariant cannot
be falsified by object allocation in a state in which all relevant creation guards
hold. It is necessary to prove a slightly stronger result to be able to prove the
claim by structural induction.

Lemma 2 (immutability invariants). Let C.Inv be an admissible invariant
according to the additional requirements stated in Def. 2 (i.e., without the re-
quirements of Def. 1 concerning update guards). Let D be an arbitrary class.
Let 〈H,σ〉 be a state such that 〈H,σ〉 |= C.Inv, and moreover, for each creation
guard G declared in some class E ∈ classes(C.Inv) that protects friend class C
we have 〈H,σ〉 |= G. Then 〈HD, σ〉 |= C.Inv.

Proof. By structural induction on I. We first prove for the base case that
val(e)(〈HD, σ〉) = val(e)(〈H,σ〉) by structural induction on e.

72 C. Pierik, D. Clarke, and F.S. de Boer

The most interesting case of the lemma concerns an invariant C.Inv such that
C.Inv ≡ (∀z : E•I) for some class E such that D � E. Let S be the most specific
superclass of D in C.Inv . Note that S exists because E is already a valid candi-
date. We have by Def. 2 that C.Inv ∧G→ (C.Inv [newS/u]), where G is the cre-
ation guard declared in class S for friend class C. From 〈H,σ〉 |= C.Inv [newS/u]
follows by the definition of the weakest precondition that 〈HS , σ〉 |= C.Inv . The
required validity of 〈HD, σ〉 |= C.Inv then follows from Lemma 1.

8 Related Work

The problem of maintaining invariants that are falsifiable by object creation has
not been solved before. This is somewhat surprising because it is quite common to
allow quantification in program annotations, and quantification is the (potential)
source of the issue. Leino and Nelson also identified the problem [13], but they
responded to it by forbidding this kind of invariant.

Calcagno et al. [3] studied the consequences of garbage collection (object
deallocation) on program specifications. They rightly pointed out that certain
formulas that are similar to the set of invariants that we studied are vulnerable
to object deallocation. Their remedy is to weaken the semantics of quantification
such that non-existing objects are also included. However, the invariants that
we studied are not valid in their semantics. Consequently, one has no means
to prove the correctness of method specifications that rely on such invariants.
It is more common to ignore garbage collection in the semantics of garbage-
collected languages without pointer arithmetics such as Java and C#. Note
that our example invariants are invulnerable to garbage collection because the
references retained by each factory ensure that the objects are always reachable.

The Boogie approach to invariants was initially designed to handle reentrant
calls to objects that are not in a stable state [1]. Several later extensions showed
that the initial extended state approach could be stretched to cope with other
object-oriented specification patterns. In this paper, we have focussed on the use
of creation guards, and have therefore ignored some of the orthogonal extensions
such as the use of ownership.

Leino and Müller [11] proposed a new ownership model to support object
invariants that depend on fields of owned objects that are not statically reachable
from their owner, which allows, e.g., the invariant of a List object to depend on
the fields of all the Node objects in its representation. They later also explored
the use of ownership in static invariants [12]. However, quantification over owned
objects is too weak to fully express the properties obtained by factory methods.
They also explore quantification over packed objects, which turns out to be
difficult to handle in a general way [12].

Barnett and Naumann [2] introduced update guards to protect object invari-
ants that depend on fields of friend objects. They show how the set of friends
can be managed using auxiliary state. Their friendship system protects invari-
ants over shared state in circumstances where the ownership relation would be
too rigid. They give a semantical characterization of the set of admissible in-

Controlling Object Allocation Using Creation Guards 73

variants that rules out invariants that can be invalidated by object creation. An
elaborate soundness proof of the system appeared in a companion paper [14].

The Java specification language JML [10] defines static invariants in terms
of visible states. Such a definition seems incompatible with invariants that are
falsifiable by object creation, because objects can be created in every state.

The preliminary version [15] of this paper does not contain a precise definition
of the set of admissible invariants, and it also does not address subclassing and
the soundness of our proposal.

9 Conclusions

Object sharing is an important technique to overcome some of the potential
resource demands and speed limitations of object-oriented programs. This is
witnessed by the amount of examples of patterns that manage object allocation
that we found in the Java API. However, as we have shown in this paper, the
invariants that describe pools of shared objects are falsifiable by object alloca-
tion. The singleton pattern [6] is another example of a pattern that leads to an
invariant that is falsifiable by object creation [15].

The main contribution of this paper is a sound and modular methodology
for static invariants which could be falsified by both states updates and object
allocation. We introduced creation guards to maintain such invariants. The ex-
amples that we studied are best described using static invariants, but creation
guards can also be used to protect object invariants.

The invariant methodology can be applied in both a static-checking and in a
full program verification context. It also seems useful to check creation guards
using a runtime assertion checker. The methodology is not tied to a specific
program logic, although we have partly expressed it in terms of our previous
work on program logics for object-oriented programs. The formulas that use the
weakest precondition operation for object allocation can be rephrased in terms
of the semantics of object allocation. We employed a syntactical description to
be more specific about the set of admissible invariants.

We have implemented the invariant methodology in a successor of the tool
described in [5] that computes the proof obligations of proof outlines of sequential
Java programs. Future work includes a study of the use of creation guards in a
concurrent setting.

References

1. M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification
of object-oriented programs with invariants. Journal of Object Technology, 3(6):27–
56, June 2004.

2. M. Barnett and D. A. Naumann. Friends need a bit more: Maintaining invariants
over shared state. In Mathematics of Program Construction (MPC 2004), volume
3125 of LNCS, pages 54–84, 2004.

3. C. Calcagno, P. O’Hearn, and R. Bornat. Program logic and equivalence in the pres-
ence of garbage collection. Theoretical Computer Science, 298(2):557–581, 2003.

74 C. Pierik, D. Clarke, and F.S. de Boer

4. D. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection.
In Proceedings of the 13th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pages 48–64, 1998.

5. F. de Boer and C. Pierik. Computer-aided specification and verification of anno-
tated object-oriented programs. In Proc. of Formal Methods for Open Object-Based
Systems V (FMOODS 2002), pages 163–177. Kluwer Academic Publishers, 2002.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

7. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.
Addison-Wesley, second edition, 2000.

8. C. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271–
281, 1972.

9. K. Huizing and R. Kuiper. Verification of object oriented programs using class
invariants. In Fundamental Approaches to Software Engineering (FASE 2000),
volume 1783 of LNCS, pages 208–221, 2000.

10. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98-06y, Department of
Computer Science, Iowa State University, June 2004.

11. K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In Proc. of
the European Conference on Object-Oriented Programming (ECOOP 2004), vol-
ume 3086 of LNCS, pages 491–516. Springer, 2004.

12. K. R. M. Leino and P. Müller. Modular verification of static class invariants. In:
Formal Methods (FM 2005). LNCS, Springer, 2005. In this volume.

13. K. R. M. Leino and G. Nelson. Data Abstraction and Information Hiding. ACM
Transaction on Programming Languages and Systems, 24(5):491–553, 2002.

14. D. A. Naumann and M. Barnett. Towards imperative modules: Reasoning about
invariants and sharing of mutable state. In Proc. of Logic in Computer Science
(LICS 2004), pages 313–323. IEEE, 2004.

15. C. Pierik, D. Clarke, and F. S. de Boer. Creational invariants. In Formal techniques
for Java-like Programs (Proceedings of the ECOOP Workshop FTfJP ’2004), 2004.
The proceedings appeared as technical report nr. NIII-R0426, University of Ni-
jmegen, 2004.

16. C. Pierik and F. S. de Boer. A syntax-directed Hoare logic for object-oriented
programming concepts. In Formal Methods for Open Object-Based Distributed
Systems (Proc. of FMOODS 2003), volume 2884 of LNCS, pages 64–78, 2003.

Symbolic Animation of JML Specifications
∗

Fabrice Bouquet, Frédéric Dadeau, Bruno Legeard, and Mark Utting

Laboratoire d’Informatique (LIFC),
Université de Franche-Comté, CNRS - INRIA,

16, route de Gray - 25030 Besançon cedex, France
{bouquet, dadeau, legeard, utting}@lifc.univ-fcomte.fr

Abstract. This paper presents a model-based framework for the sym-
bolic animation of object-oriented specifications. A customized set-theo-
retic solver is used to simulate the execution of the system and han-
dle constraints on state variables. We define a framework for animating
object-oriented specifications with dynamic object creations, interactions
and inheritance. We show how this technique can be applied to Java
Modeling Language (JML) specifications, making it possible to animate
Java programs that only contain method interfaces and no code!

Keywords: Java Modeling Language, JML, model-based, object-oriented,
symbolic animation.

1 Introduction

The use of formal models is a common practice in the software design process. A
variety of modeling languages, such as B [1], Z [15], and UML [14] enriched with
OCL [17] constraints, are available for specifying and analyzing systems before
they are implemented.

JML (Java Modeling Language) [9] is a relatively recent modeling language
that is targeted at specifying Java classes and interfaces. It is an extension of
Java which allows formal specifications to be written within the Java comment
syntax. It allows invariants to be added to constrain the class variables and
preconditions and postconditions to be added to Java methods to describe their
behavior. This paper describes an animation framework for JML, implemented
in a tool, which can assist specifiers to validate their JML specifications.

When developing a formal model of a system, it is important to be able to
both verify and validate the model. Verification involves checking various proper-
ties of the model itself, to ensure that it is consistent, well-typed, that invariants
are preserved, etc. On the other hand, validation involves checking the model
against the informal system requirements, to ensure that the desired behavior
has been specified. Animation is one of the most important techniques for vali-
dating models. Animation consists of simulating the execution of the system, by

∗
This work has been realized within the GECCOO project of program “ACI Sécurité
Informatique” supported by the French Ministry of Research and New Technologies.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 75–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

76 F. Bouquet et al.

activating the different behaviors described in the model. Whereas verification
can be automated with proof or model-checking techniques, validation is at best
a semi-automated process, because it requires human assistance to compare the
model with the initial requirements. Animation is also semi-automated in the
sense that it requires human assistance to choose the input values of methods,
and thus, which behavior the user wants to activate. However, the computation
of the resulting system states can be done automatically, based on the formal
model.

Symbolic animation increases the power and flexibility of animation as a
validation tool. A symbolic animator simulates of the execution of a system
using abstract states rather than concrete values. A symbolic solver is used to
manipulate these abstract states during execution. Our symbolic solver uses
Constraint Logic Programming (CLP) techniques, which treat the execution
of an operation as a Constraint Satisfaction Problem (CSP). This means that
one abstract (constrained) state can represent a large number of actual system
states. This significantly decreases the size of the reachability graph. Moreover,
it becomes possible to handle data non-determinism, which allows users to leave
input parameters undefined, in order to create constrained states.

The major contributions of this paper are that it describes how we modified
an existing non-modular specification animator to support multiple interacting
objects, inheritance with behavioral subtyping, dynamic object creation, frames
and invariant and history checking with counter-example generation. One of the
strengths of the approach is that it supports constrained animation, which allows
many possible behaviors to be explored within a single animation sequence. The
techniques described here have been implemented in the JML-TT tool, which to
our knowledge is the first animation tool for JML.

The paper is organized as follows. Section 2 presents the Java Modeling Lan-
guage and introduces the example that will be used in the remainder of the
paper. Section 3 presents the symbolic animation of specifications as realized
in our framework. Section 4 explains how we express object concepts, such as
class representation and inheritance, within our framework. Section 5 shows the
application of these techniques to JML. Section 6 illustrates the possibilities of
our approach with an animation of the example. Section 7 discusses the related
work. Finally, Section 8 concludes and describes our future work.

2 The Java Modeling Language

The Java Modeling Language (JML) is an object-oriented specification language
used to describe Java modules, i.e. classes or interfaces. JML was introduced re-
cently by Leavens et al. at the Iowa State University who wanted to create an
object-oriented modeling language that may be easily understood and practiced
by developers. Therefore, the syntax of JML is based on Java syntax and JML
annotations are directly integrated within the Java code of a program, in a
transparent way, so that standard Java compilers can be run unchanged. The

Symbolic Animation of JML Specifications 77

JML annotations are inserted using //@ for one-line annotations or /*@ ... @*/
for multiple-line annotations.

2.1 General Description

JML makes it possible to describe the behavioral interface specification of a Java
class, by adding annotations describing several kind of properties, such as class
invariants or history constraints, and by specifying the behavior of the meth-
ods. Method specifications may contain various specification clauses, the most
common being the precondition and the postcondition. Preconditions describe
the requirements that the class attributes and the method parameters have to
fulfill in order to execute the method. If the precondition is not satisfied, the
method should not be executed, according to the concept of Design By Contract
(DBC) introduced by Eiffel [12]. Postconditions are written using before-after
predicates, which link the after values of fields with their before values (repre-
sented by a \old expression). By default, an expression which is not surrounded
by \old is evaluated, in a before-after predicate, as its value in the after-state.

First order logic predicates are written using Java boolean operators (e.g. &&
for logical and, || for logical or, ! for logical not), plus new symbols such as <==>
for equivalence, <=!=> for non-equivalence, or \forall (resp. \exists) for the
universal (resp. existential) quantifier. New keywords extend the expressiveness
of Java, such as \result, which represents the return value of a method.

JML also introduces ways to express the dynamic of objects, such as object
creation, specified using the \fresh(o) keyword, which expresses, in a postcon-
dition, that the object o has been freshly allocated during the execution of the
method.

2.2 Illustrating JML with an Example

The example we will use in the remainder of the paper is shown in figure 1. It is
a specification of a simplified electronic purse. This example is used to illustrate
the main concepts of JML.

This specification illustrates the main clauses of JML, such as the class invari-
ant (invariant), specifying that the balance should always be greater or equal
to zero. History constraints (constraints) can be used to describe a property
that should hold after each method execution.

Each clause is described by a keyword indicating its kind (e.g. requires for
preconditions, ensures for normal postcondition (normal_behavior), signals
for exceptional postcondition (exceptional_behavior), etc.), followed by a first-
order logic predicate or an explicit keyword (e.g. \nothing, \not_specified,
etc.). The assignable clause in the method specifications is used to list the
fields which may be modified by the execution of the method. This is called the
frame. The signals clause is used to describe the postcondition the method
establishes when the considered method throws an exception of the given type.
In our example, the exception NoCreditException is raised when the amount
to withdraw is greater than the value of the balance.

78 F. Bouquet et al.

class Purse {

//@ invariant balance >= 0;
protected short balance;

/*@ public normal_behavior
@ requires b >= 0;
@ assignable balance;
@ ensures balance == b;
@*/

public Purse(short b) { ... }

/*@ behavior
@ requires a > 0;
@ assignable balance;
@ ensures balance == \old(balance) + a;
@*/

public void credit(short a) { ... }

/*@ behavior
@ requires a > 0;
@ assignable balance;
@ ensures balance == \old(balance) - a;
@ signals (NoCreditException e)
@ (\old(balance) < a) ==>
@ balance == \old(balance);
@*/

public void withdraw(short a)
throws NoCreditException { ... }

/*@ normal_behavior
@ assignable \nothing;
@ ensures \result == balance;
@*/

public /*@ pure */ short getBalance() { ... }

/*@ normal_behavior
@ assignable \nothing;
@ ensures \fresh(\result) &&
@ \result.equals(this);
@*/

public /*@ pure @*/ Purse duplicate() { ... }

/*@ normal_behavior
@ assignable \nothing;
@ ensures \result <==>
@ (this.getBalance()== p.getBalance())
@*/

public /*@ pure @*/ boolean equals(Purse p){...}

}

class LimitedPurse extends Purse {

//@ invariant balance <= max;
//@ constraint \not_modified(max);
static short max = 10000;

/*@ normal_behavior
@ requires b >= 0 && b <= max;
@ assignable balance;
@ ensures balance == b;
@*/

public LimitedPurse(short b) { ... }

/*@ also
@ requires a > 0;
@ {|
@ requires \old(balance)+a <= max;
@ assignable balance;
@ ensures balance == \old(balance) + a;
@ also
@ requires \old(balance)+a > max;
@ assignable \nothing;
@ signals (MaxReachedException e)
@ balance == \old(balance);
@ |}
@*/

public void credit(short a) { ... }

}

Fig. 1. The JML specification of the Purse example

JML also introduces new kinds of method declaration modifiers, including the
notion of purity, meaning that a method specified as pure does not change the
value of any field of the considered class. In our example, method getBalance()
is described to observe the value of the field balance.

Method specifications may contain method calls, if and only if these methods
are described as pure, in order to avoid side-effects. The use of the \fresh
operator is illustrated by the specification of method duplicates which creates
a new Purse, whose attributes have the same values as the current Purse.

3 Symbolic Animation

This section presents the symbolic animation using constraint systems, as real-
ized in the current framework. Constrained animation makes it possible to keep

Symbolic Animation of JML Specifications 79

the non-determinism on data, and also lets the user constrain input parameters
to specific values or leave them unconstrained in order to represent a large sub-
set of the possible resulting system states. Firstly, we introduce the framework
architecture, the internal format and the environment representation. Secondly
we present the animation itself, beginning with an initial state, then showing the
effects of the operations.

3.1 General Framework

Each input JML class is translated into an equivalent set of prolog clauses in
an intermediate format. We briefly describe several aspects of this format, which
are useful to understand the rest of the paper. Each clause represents one JML
construct (method, precondition, variable etc.), and is tagged with the name of
the class from which it originated. Specification variables may be either constants
(const), variables (variable) or primed variable (prime), designating the speci-
fication variable after an operation has been invoked. Each specification variable
has a domain, which is a subset of the solver’s computation domain. Opera-
tions are related to modules, and are applied to specification variables to change
their values. They are described with local variables, i.e. inputs (input(op)), or
outputs (output(op)), which are used within preconditions and postconditions.
Postconditions are expressed with before-after predicates displaying at the same
time state variables at the before state and at the after state, expressed using a
specific function: prime. Finally, initialization clauses, related to a module and
expressed with “after predicates only”, are used to describe the initial state of
the system. The dot operator is used to reference data from another module, by
using the syntax: module dot variable.

The animation itself is realized from this internal format,
within a prolog module named CLPS-BZ. This module con-
tains an animation engine and a constraint solver. In order
to animate the specification, we need to maintain an environ-
ment that represents the variables and their values during the
execution. The environment maps each specification variable
to a clps-bz variable, on which it is possible to define con-
straints.

Definition 1 (Multi-module constrained environment). Let M be the set
of modules, SV the set of specification variables, V the set of clps-bz variables,
K the set of data kinds, DV the union of data domains, and CS a constraint
store. The multi-module constrained environment CE managed by CLPS-BZ is
defined by:

CE = 〈CS , M×SV �→ V × K ×DV 〉 (1)

The constraint store is managed by the CLPS-BZ solver, which makes it
possible to (i) add constraints to the store, (ii) check the store’s consistency,
and (iii) perform labeling (enumeration of all possible solutions) to assign to
clps-bz variables a value of their domain.

80 F. Bouquet et al.

The types managed by the internal format (T) are defined by the following
abstract grammar: int, atom, set(T), pair(T ,T). The solver works with finite
domains, and its computation structures have to be hereditary finite.

3.2 Animating Specifications

Our animation approach is based on the decomposition of predicative specifica-
tions into Disjunctive Normal Form (DNF). As a result, effects are identified,
that are expressed with before-after predicates [10]. We use our internal format
as a predicative specification representing the original specification language.

Example 1. Considering the before-after predicate describing an operation ap-
plying on the state variable x :

x ∈ [−10 . . . 10] ∧ ((x > 0 ⇒ x ′ = x − 5) ∨ (x ≤ 0 ⇒ x ′ = x + 5))

This operation can be decomposed in two effects, separated by the symbol []
expressing a disjunction of effects:

x ∈ [−10 . . . 10] ∧ x > 0 ∧ x ′ = x − 5 [] x ∈ [−10 . . . 10] ∧ x ≤ 0 ∧ x ′ = x + 5

The animation engine performs the activation of effects. Therefore, it has
two tasks. First of all, it creates new variables in the environment, which are the
primed versions of the current variables, representing the variables in the after
state of the effect. Secondly, it adds constraints corresponding to the effect to
the store, which changes their values, or reduces their set of solutions.

Definition 2 (Activation of an effect). An effect is called “enabled” if and
only if the store remains consistent after the adding the before-after predicates
of the effect.

The activation of an effect is done by adding correspond-
ing before-after predicates to the store, after having added to
the environment the local variables of the corresponding op-
eration, whether instantiated by an user or left constrained.
The environment manager is used to access clps-bz variables
to be computed with the solver. The executability of an effect
is deduced from the consistency of the constraints store after
the effect’s activation.

In practice, the behavior decomposition of an operation
and the effect activation are done simultaneously by a pro-
log module which creates choice-points when a disjunction
of effects is met. A simple prolog backtracking technique

makes it possible to fail with the current effect and try the activation of the next
effect.

The environment is initialized by creating an entry in the environment for
each declared specification variable. The activation of the effects extracted from
the initialization predicates is used to determine the initial values of the variables.

Symbolic Animation of JML Specifications 81

This environment can only represent before and after versions of the spec-
ification variables. Therefore, in order to execute successive operations, it is
necessary to remove primed variables, and local variables of the operation. For
the environment to be ready for the next execution, a specific function named
unprime, overrides modified variables (i.e., existing in a primed version) by as-
signing them their after value. Obviously their corresponding clps-bz variables
and constraints are still stored in the environment.

4 Expression of Object Concepts

This section focuses on the expression of object concepts in our framework. We
firstly describe the general expression of classes and instances, then we present
how inheritance can be handled.

4.1 Class Representation

We consider classes to be modules. Instances of classes are represented by distinct
atoms. Each class manages its instances with a variable named instances of type
set(atom), indicating the created instances of the considered class.

Methods (static and non-static) are represented as module operations. Each
non-static operation has an input parameter named this, representing the in-
stance to which the method is applied. A precondition is added to the operation
to require that the parameter this is a member of the set of instances of the class.
Non-static attributes are modeled as partial functions, which map instances of
the class to their corresponding value.

Example 2. Considering the example described in figure 1, the creation of two
instances p1 and p2 with a respective initial balance of 200 and 1000, leads to
balance = {p1 �→ 200, p2 �→ 1000}.

In reality, we also record module names, and extra typing information as
described in the following definition.

Definition 3 (Non-static attributes representation). Let C be the set of
class names, A be the set of non-static attribute names, V a set of clps-bz
variables, K the set of data kinds, Ic the set of created instances from the class c
∈ C, and DA the domain of the attributes translated to be handled by CLPS-BZ.
An object-oriented representation for non-static attributes is defined by:

C × A �→ V × K × (Ic → DA) (2)

Likewise, static attributes, which have the same value for all instances, are
translated as a variable whose domain is not indexed by the instances (Ic). That
is, (Ic → DA) in Definition 3 becomes just DA.

So each name of each class is mapped to a triple (V,K, Domain), where V
is a clps-bz constrained variable that represents all the possible values of the
name (this is usually a function from instance names to values), K gives the

82 F. Bouquet et al.

role that the name plays (input, output, variable, primed variable etc.), and
Domain specifies the maximum possible set of values (that is, the type) of the
name within each instance. Example 3 in the next subsection illustrates these
principles in addition to inheritance.

4.2 Inheritance Representation

Inheritance is expressed by considering that subclass instances are a subset of
the superclass instances. If B is a subclass of A, then instancesB ⊆ instancesA.

An attribute is always associated with the class, i.e, the module, in which it is
first declared. There is no copy of inherited fields within the subclasses, unless the
fields are redefined. Fields and methods that are inherited without redefinition
are not copied into the subclasses. Instead, we directly use the definitions from
their original superclass. When the user invokes a method like p.credit(100),
a dynamic dispatch is performed by using the runtime type of p to determine
which specification of credit(short) is used.

Example 3. Consider the two classes Purse and LimitedPurse, described in the
example in Fig. 1. Given an animation sequence that has created one instance
of each class Purse and LimitedPurse (respectively named p1 and lp1), by in-
voking their respective constructors with an unspecified initializing value, the
resulting constrained multi-modules environment CEex managing the execution
is the following:

CEex = 〈{V1 ∈ 0..32767}, V2 ∈ 0..10000},{(b_Purse, instances) �→ ({p1, lp1},variable,{{p1, lp1}}),
(b_Purse, b_balance) �→ ({p1 �→ V1, lp1 �→ V2}, variable, {p1, lp1} → −32768..32767),

(b_LimitedPurse, instances) �→ ({lp1}, variable, {{lp1}}),
(b_LimitedPurse, b_max) �→ (10000, variable,−32768..32767)}〉

Notice that names extracted from the original specification are systematically
prefixed with b_ to create prolog atoms, to prevent problems with capital
letters being reserved for prolog variables.

We will now explain the meaning of this environment. The instance p1 has
been created using the Purse(short) constructor, leaving the value of the pa-
rameter unspecified, i.e., constrained by the precondition of the constructor,
thus its domain has been reduced to 0..32767. The second instance lp1 has been
created using the LimitedPurse(short) constructor with a constrained param-
eter, whose domain has been reduced to 0..10000 according to the constructor’s
preconditions. Both of these instances are member of the set of Purse instances,
whereas lp1 only is a specific member of the set of LimitedPurse instances. Since
max is a static field, its value is not related to any instance, contrary to balance,
which is a total function mapping p1 and lp1 to their values.

5 Application to JML Specifications

Animating JML specifications is different from animating B machines, as per-
formed in BZ-Testing-Tools [2]. In order to animate a B machine, we need to

Symbolic Animation of JML Specifications 83

express it as pre- and postconditions by rewriting the generalized substitutions
with before-after predicates according to the rules given in [1]. Unlike B, JML
is well-suited to the possibilities of our approach. Indeed, the postconditions of
the Java/JML methods are expressed using before-after predicates, which repre-
sents constraints over the class fields. Moreover, the frame condition is explicitly
given for each method, describing the exhaustive list of fields modified by the
method invocation. Thus, the expression of JML within our framework is quite
straightforward as shown in [3].

This section firstly presents the way JML is handled within our framework
and secondly we introduce the way we consider the dynamic creation of objects.
Finally, we introduce the way properties are checked for a specific execution
state.

5.1 Expressing Java/JML Within Our Framework

Expressing Types. In our translation, the supported types are integers (to
represent all built-in Java types, except long and floats), and atoms (for object
references). Domain definitions are distinguished to differentiate the different
types. For example, Range(byte) = −128..127, Range(char) = 0..65535, and
Range(C) = b_C dot instances ∪ {null} respectively give the range of values
for bytes, characters and objects of class C . We represent arrays by functions
mapping the indexes to the values. Basic integers (int) are restricted according
to the limitation of the underlying SICStus CLP(FD) library.

These data domains are used to specify the domain of variables representing
the class attributes in the internal format. They appear in the internal format
as an invariant, used to type data, and also in the preconditions of operations
to type the method parameters.

Expressing JML Clauses. JML clauses are expressed in our internal format
with only minor changes, because our internal format supports first-order logic
predicates. Moreover, its expressiveness, based on B, is sufficient to express JML
predicates without major modifications. The JML before-after predicates are
written using the special \old symbol to represent before values, whereas our
internal format uses the prime symbol to distinguish after values. Thus, we rely
on static analysis to determine in the expressions, whether attributes have to be
considered at their before or after values.

In order to handle JML specification clauses, our internal format is enriched
with new kind of predicates, named jml_invariant and jml_constraints to
respectively express invariant and history constraints. In order to be able to
check history constraints, we store in an execution environment both current
and previous values of the state variables representing the JML fields. Current
state variable are those whose kind is prime whereas previous values have the
variable kind.

Method Specification Clauses. As described in the previous section, class
methods are expressed with module operations. Return values of the operations,

84 F. Bouquet et al.

symbolized by the \result keyword in JML predicates, are declared as an op-
eration output parameter, named b_result. Preconditions and postconditions
are both natively supported by our format, but we need to distinguish normal
and exceptional JML postconditions. To do this, the exception that is thrown
is bound to a parameter named exc, which is no_exc for normal returns, or the
exception object when exceptions are thrown, as shown in the example 4 below.

Example 4 (Distinction of effects). Considering the following JML method spec-
ification:

/*@ behavior
@ requires P;
@ assignable A;
@ ensures Q;
@ signals (Ex1) S1;
@ ...
@ signals (ExN) SN;
@*/

void m() throws Ex1,...,ExN { ... }

The following (N + 1) effects are identified:

(P ∧ Q ∧ exc = no_exc) [] (P ∧ S1 ∧ exc = Ex1) [] . . . [] (P ∧ SN ∧ exc = ExN)

5.2 Dynamic Objects Management

Java objects can be seen as pointers on memory addresses at which structures are
defined. Firstly, we define the heap representation we have considered. Secondly,
we explain how we handle dynamic object creation.

Heap Representation. The heap structure is represented by a set of atoms,
describing the set of addresses that may be used during the animation. Since our
solver works with finite domains, this set is bounded but its size can be user-
defined. It is represented by a constant, named all_addresses, linked with a
general module named system. In addition, we consider a set of addresses, the
subset of created instances, which is a subset of all_addresses, also linked with
the system module. This set, named allocated, represents the union of all the
instances variables of the different modules. This makes it possible to use a
non-deterministic choice among the possible addresses, each time an object is
created, either when a constructor is invoked, or when a field is freshly allocated.

Frames and Dynamic Object Creation. For precisely animating a specifi-
cation we need to know which fields are modified or not. Therefore, we use the
assignable clause to determine which field are supposed to be modified, and
by extension which ones are supposed to remain unchanged. The main difficulty
in animating an object oriented specification is to “detect” the creation of ob-
jects during the execution of a method. Using the \fresh(o) JML operator in
addition to the assignable clause, we are able to identify among the modified
fields, which ones are assigned to an already-existing object, and which ones are
assigned to a new object. If the postcondition does not explicitly specify that a
field is assigned to a newly-created object, then the after value of this latter is
computed among the already existing object of the considered type.

Symbolic Animation of JML Specifications 85

The presence of the \fresh operator causes a new object identifier to be
allocated and returned. This new object identifier is chosen from the set of
unallocated addresses, given by the set-difference between all_addresses and
allocated in the system module. Since this local variable is constrained, we have
chosen to immediately perform a labeling on it, so that a value is directly assigned
to it. Thus, there are no choice-points related to the new object’s addresses.
In addition, we have to consider all the instance fields to make them appear
in the domain of the clps-bz variables representing the corresponding fields.
Recursively, if one of the fields is specified as being fresh, the same process is
applied. If the new object’s class has subclasses, a choicepoint is created to select
one of these possible (sub)types. This choicepoint may be discarded by the use
of the JML \typeof operator which specifies the dynamic type of an object.

5.3 Checking Model Properties On-the-Fly

Our framework makes it possible to check predicates within an execution state.
When the execution sequence does not introduce any constrained variables, the
property can be evaluated to true or false. On the contrary, if constrained vari-
ables have been introduced, the property can be evaluated either to satisfiable
–if the property can be true for at least one of the variables values– or valid,
if the property is true for all possible values of the variables. Our technique for
checking predicates is describe hereafter.

The validity of the predicate is checked by adding its negation to the con-
straint store. If it produces an inconsistency, the predicate is declared as valid.
Otherwise, the store is still consistent and its valuation presents a counter-
example to the predicate. Similarly, the satisfiability of the predicate is checked
by adding the predicate itself to the store. If it produces an inconsistency, then
we can conclude that the predicate is unsatisfiable, and a valuation of the store
before adding the predicate is a counter-example.

This ability to produce precise counter-examples gives very useful concrete
feedback to users, and is one of the strengths of our approach.

6 Animating the Example

Considering the example described in figure 1, we will describe its animation
step by step to illustrate our approach. At each step, we present the resulting
environment. In order to lighten the display, after values of variables are not
displayed if they are equal to the before value. Some details of how these object
states and constraints are actually displayed to the user are given in [4].

Suppose we consider a heap of size 5 for the needs of the animation. The
initial state describing the execution of the Purse specification is:

CE0 =〈{}, {(system, all_addresses) �→ ({a1, a2, a3, a4, a5}, const, ...),

(system, allocated) �→ ({}, variable, {{}}), (b_Purse, instances) �→ ({}, variable, {{}}),
(b_Purse, b_balance) �→ ({}, variable, {{}}), (b_LimitedPurse, instances) �→ ({},variable, {{}}),
(b_LimitedPurse, b_max) �→ (10000, variable,−32768..32767)}〉

86 F. Bouquet et al.

The creation of an instance a1 from class LimitedPurse using the construc-
tor LimitedPurse(?), leaving the initial amount of money unspecified, leads to
the following environment.
CE1 = 〈{V1 ∈ [0..10000]}, {(system, all_addresses) �→ ({a1, a2, a3, a4, a5}, const, ...),

(system, allocated) �→ ({}, variable, {{}}), (b_Purse, instances) �→ ({}, variable, {{}}),
(b_Purse, b_balance) �→ ({}, variable, {{}}), (b_LimitedPurse,instances) �→ ({},variable,{{}}),
(b_LimitedPurse, b_max) �→ (10000, variable,−32768..32767),

(b_Purse, this) �→ (a1, input(b_Purse_short),−32768..32767),

(b_Purse, b_b) �→ (V1, input(b_Purse_short),−32768..32767),

(system, allocated) �→ ({a1}, prime, {{a1}}), (b_Purse, instances) �→ ({a1}, prime, {{a1}}),
(b_LimitedPurse, instances) �→ ({a1}, prime, {{a1}}),
(b_Purse, b_balance) �→ ({a1 �→ V1}, prime, {a1} → −32768..32767)}〉

This introduces a constrained value V1, whose domain is reduced by the
precondition b >= 0 && b <= max to 0..10000.

The dynamic creation of object can be illustrated when calling method
duplicate() on the previously created instance. The first possible address is
chosen to represent the new instance. By default, this instance is added to the
set of created instances of the class representing the return type of the module.
This is shown in the environment below.

CE2 = 〈{V1 ∈ 0..10000, V2 = V1}, {(system, all_addresses) �→ ({a1, a2, a3, a4, a5}, const, ...),

(system, allocated) �→ ({a1}, variable, {{a1}}),
(b_Purse, instances) �→ ({a1}, variable, {{a1}}),
(b_Purse, b_balance) �→ ({a1 �→ V1}, variable, {a1} → −32768..32767),

(b_LimitedPurse, instances) �→ ({a1}, variable, {{a1}}),
(b_LimitedPurse, b_max) �→ (10000, variable,−32768..32767),

(b_Purse, this) �→ (a1, input(b_duplicate),−32768..32767),

(system, allocated) �→ ({a1, a2}, prime, {{a1, a2}}),
(b_Purse, instances) �→ ({a1, a2}, prime, {{a1, a2}}),
(b_Purse, b_balance) �→ ({a1 �→ V1, a2 �→ V2}, prime, {a1, a2} → −32768..32767)}〉

Notice that prime variables of the previous environment have become the cur-
rent variable of this environment. Suppose now we perform a labeling so that
V2 is assigned to 200. By constraints propagation, V1 will also be assigned to 200.

We now applying the method withdraw on instance a2, without specifying
which exception will be thrown or which amount should be removed. This
induces two possible effects, which produce two different environments. The
first one, CE3a , is established when no exception is raised. The second one,
CE3b , corresponds to the throwing of exception NoCreditException.
CE3a =〈{V3 ∈ 1..32767, V4 = 200 − V3}, {(system, all_addresses) �→ ({a1,a2,a3, a4, a5}, const, ...),

(system, allocated) �→ ({a1, a2}, variable, {{a1, a2}}),
(b_Purse, instances) �→ ({a1, a2}, variable, {{a1, a2}}),
(b_Purse, b_balance) �→ ({a1 �→ 200, a2 �→ 200}, variable, {a1, a2} → −32768..32767)),

(b_LimitedPurse, instances) �→ ({a1}, variable, {{a1}}),
(b_LimitedPurse, b_max) �→ (10000, variable,−32768..32767),

(b_Purse, this) �→ (a2, input(b_withdraw_short),−32768..32767),

(b_Purse, exc) �→ (no_exc, input(b_withdraw_short), {no_exc, b_NoCreditException}),

Symbolic Animation of JML Specifications 87

(b_Purse, b_a) �→ (V3, input(b_withdraw_short),−32768..32767),

(b_Purse, b_balance) �→ ({a1 �→ 200, a2 �→ V4}, prime, {a1, a2} → −32768..32767)}〉

CE3b =〈{V 3 ∈ 201..32767}, {(system, all_addresses) �→ ({a1, a2, a3, a4, a5}, const, ...),

(system, allocated) �→ ({a1, a2}, variable, {{a1, a2}}),
(b_Purse, instances) �→ ({a1, a2}, variable, {{a1, a2}}),
(b_Purse, b_balance) �→ ({a1 �→ 200, a2 �→ 200}, variable, {a1, a2} → −32768..32767)),

(b_LimitedPurse, instances) �→ ({a1}, variable, {{}}),
(b_LimitedPurse, b_max) �→ (10000, variable,−32768..32767),

(b_Purse, this) �→ (a2, input(b_withdraw_short),−32768..32767),

(b_Purse, exc) �→ (b_NoCreditException, input(b_withdraw_short),{no_exc, b_NoCreditException}),
(b_Purse, b_a) �→ (V3, input(b_withdraw_short),−32768..32767),

(b_Purse, b_balance) �→ ({a1 �→ 200, a2 �→ 200}, prime, {a1, a2} → −32768..32767)}〉

In the first case, no exception is raised, and the new value of the balance is
computed, depending on the input value. In the second case, an exception is
thrown, and the value of the balance is unchanged.

If we consider the first environment (CE3a), the verification of the validity of
the class invariant of instance a1 (i.e., class Purse) is performed by adding its
negation to the store. This leads to the following set of constraints:

{V3 ∈ 1..32767,V4 = 200 − V3,V4 < 0}

which is still consistent. Performing a labeling displays a reachable counter-
example to the validity of the invariant {V3 = 201, V4 = −1}. This exhibits an
error in the specification of the withdraw(short) method. Indeed, the model
makes it possible to withdraw more money than the purse contains, since the
normal postcondition does not take this fact into account. This mistake can be
corrected by rewriting the method specification to:
/*@ behavior

@ requires a > 0;
@ assignable balance;
@ ensures (a <= \old(balance)) ==> (balance == \old(balance) - a);
@ signals (NoCreditException e)
@ (a > \old(balance)) ==> (balance == \old(balance));
@*/

public void withdraw(short a) throws NoCreditException { ... }

Note how powerful the constrained animation was in this example – we ef-
fectively executed the withdraw method with all possible input values, then
after executing the method we determined which of those input values could
result in a contradiction (thus showing that the postcondition was not precise
enough, or the precondition was too weak). This ability to delay choosing input
values makes constrained animation a much more powerful validation tool than
traditional value-based animation.

7 Related Work

Animating a specification is a simple and direct way for an user to validate
the specification he has written. Most of the animation work deals with the

88 F. Bouquet et al.

trade-off between expressiveness of the notation and its executability, especially
with the Z notation. For example, Possum [8] executes Z and uses Cogito to
test the specification before refining. Works about Object-Z animation with a Z
animation environment has been described in [11].

UML/OCL presents a higher abstraction level that JML, which can be seen
as a refinement step from UML. In UML the interaction between objects are
represented through associations, which make step-by-step animation easier to
perform. The USE tool [6] for UML/OCL makes it possible to perform the
animation of an UML description of a system. On the same principle, in the
domain of symbolic animation, [7] describes the animation of UML diagrams
enriched with OCL constraints by expressing it into them into the prolog++
declarative language, but this work only focuses on invariant constraints and
does not take into account the pre- and postconditions for the animation.

One of the closest work related to ours is the approach presented by Wahls
et al. for executing formal model-based specifications in [16]. As for the latter,
specifications are translated to the concurrent constraints language AKL (Agents
Kernel Language). An application is made on the SPECS/C++ language, which
is a JML-like specification language based on C++ with pre- and postconditions
annotations for each method. The main difference is that both approaches rely
on AKL or prolog++ to perform the animation.

Efforts have also been made for checking JML specifications by relying on
the model-checker Bogor, as implemented within the SpEx-JML tool [13]. As
for our approach, this tools performs verifications dynamically, but as for every
model-checker, it suffers from state-space-explosion, even if Bogor is powerful
enough to delay it. Although it does not have the same goals –verification vs.
validation– this approach is similar to ours, but we use constrained values to
represent Java values and therefore avoid the state-explosion phenomenon.

The existing object-oriented model-based animators rely on common con-
strained languages and built-in virtual machines for interpretation and so, ani-
mation. Our approach is different. We rely on an intermediate language, inter-
preted by a customized virtual machine, which combines constraint solvers, to
handle state variable values, and backtracking techniques, to enable the different
effects of the operations. Thus, our framework is fully independent and may be
extended at will. Although it does not directly integrate object concepts, we are
able to express and to handle them easily, as shown in this application to JML,
which does not seem to have been targeted before.

8 Conclusion and Future Work

This paper has presented a technique for animating object-oriented specifica-
tions. It relies on an existing non-modular framework extended to take into
account object-oriented specifications. We have chosen to apply this transla-
tion on JML specifications and we have implemented it into a tool-set named
JML-Testing-Tools [4]. This tool handles, in addition to the previously described
features, precondition checking and property verification with counter-example

Symbolic Animation of JML Specifications 89

display. The tool also allows animation sequences to be saved and rerun. This is
useful for regression testing, when the JML specifications evolve. To our knowl-
edge, this is the first specification animation tool for JML specifications.

The use of our animation tool is a very important part of the design of
formal models, since it makes it possible to detect model inconsistencies and
unintended behaviors, early in the software lifecycle. Nevertheless, our approach
requires the specification to be detailed enough to perform a “realistic” symbolic
execution. Anyway, a detailed modeling is still very useful, since the more precise
the specification is, the more accurate are the results, whatever the purpose is:
validating a model, or validating the implementation w.r.t. the model.

In the future, we plan to extend the computation domain of the CLPS-BZ
solver, to handle sequences and floats. These extensions will allow us to express
a larger subset of JML/Java, with a better management of arrays and the in-
tegration of floats. In parallel, we plan to use our technology to generate Java
test sequences to ensure the conformance of the implementation with respect
to the specification. Our tool already allows user-defined animation sequences
to be saved as Java code sequences, so that they can be used as test cases for
implementations that can be verified with the JML Runtime Assertion Checker,
as described in [5]. But, we would like to adapt the boundary test generation
method implemented in BZ-Testing-Tools [2] and therefore produce boundary
test cases from JML specifications for Java programs.

References

1. J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux,
N. Vacelet, and M. Utting. BZ-TT: A Tool-Set for Test Generation from Z and B
using Contraint Logic Programming. In Robert Hierons and Thierry Jerron, edi-
tors, Formal Approaches to Testing of Software, FATES 2002 workshop of CON-
CUR’02, pages 105–120. INRIA Report, August 2002.

3. F. Bouquet, F. Dadeau, and J. Groslambert. Checking JML Specifications with B
Machines. In Proceedings of the International Conference on Formal Specification
and Development in Z and B (ZB’05), volume 3455 of Lecture Notes in Computer
Science, pages 435–454, Guildford, United Kingdom, April 2005. Springer-Verlag.

4. F. Bouquet, F. Dadeau, B. Legeard, and M. Utting. JML-Testing-Tools: a Sym-
bolic Animator for JML Specifications using CLP. In Nicolas Halbwachs and
Lenore Zuck, editors, Proceedings of 11th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems, Tool session (TACAS’05), volume 3440
of Lecture Notes in Computer Science, pages 551–556, Edinburgh, United King-
dom, April 2005. Springer-Verlag.

5. Yoonsik Cheon and Gary T. Leavens. A Runtime Assertion Checker for the Java
Modeling Language (JML). In Hamid R. Arabnia and Youngsong Mun, editors,
Proceedings of the International Conference on Software Engineering Research and
Practice (SERP ’02), Las Vegas, Nevada, USA, June 24-27, 2002, pages 322–328.
CSREA Press, June 2002.

90 F. Bouquet et al.

6. M. Gogolla and M. Richters. Development of UML Descriptions with USE. In
Hassan Shafazand and A Min Tjoa, editors, Proc. 1st Eurasian Conf. Information
and Communication Technology (EURASIA’2002), volume 2510 of LNCS, pages
228–238. Springer, 2002.

7. J. Gray and S. Schach. Constraint Animation Using an Object-Oriented Declara-
tive Language. In Proceedings of the 38th Annual ACM SE Conference, Clemson,
April 2000.

8. D. Hazel, P. Strooper, and O. Traynor. Possum: An Animator for the SUM Speci-
fication Language. In Proceedings of the Fourth Asia-Pacific Software Engineering
and International Computer Science Conference, pages 42–51, 1997.

9. G.T. Leavens, A.L. Baker, and C. Ruby. JML: a Java Modeling Language. In
Formal Underpinnings of Java Workshop (at OOPSLA ’98), October 1998.

10. B. Legeard, F. Peureux, and M. Utting. Controlling Test Case Explosion in Test
Generation from B Formal Models. The Journal of Software Testing, Verification
and Reliability, 14(2):to appear, 2004.

11. T. McComb and G. Smith. Animation of Object-Z Specifications Using a Z An-
imator. In IEEE Computer Society, editor, International conference on Software
Engineering and Formal Methods (SEFM 2003), 2003.

12. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2 edition, 1997.
13. Robby, E. Rodŕıguez, M. Dwyer, and J. Hatcliff. Checking Strong Specifications

Using an Extensible Software Model Checking Framework. In Kurt Jensen and
Andreas Podelski, editors, Tools and Algorithms for the Construction and Analysis
of Systems, 10th International Conference, TACAS 2004, volume 2988 of Lecture
Notes in Computer Science, pages 404–420. Springer, 2004.

14. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual, addison-wesley edition, 1999.

15. J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition,
1992. ISBN 0 13 978529 9.

16. T. Wahls, G.T. Leavens, and A.L. Baker. Executing Formal Specifications with
Concurrent Constraint Programming. Automated Software Engineering, 7(4):315
– 343, December 2000.

17. J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley, 1998.

Certified Memory Usage Analysis�

David Cachera1, Thomas Jensen2, David Pichardie1, and Gerardo Schneider2,3

1 IRISA/ENS Cachan (Bretagne), Campus de Ker Lann, 35170 Bruz, France
2 IRISA/CNRS, Campus de Beaulieu, 35042 Rennes cedex, France

3 Dept. of Informatics, Univ. of Oslo, PO Box 1080 Blindern, N-0316 Oslo, Norway

Abstract. We present a certified algorithm for resource usage analysis, appli-
cable to languages in the style of Java byte code. The algorithm verifies that a
program executes in bounded memory. The algorithm is destined to be used in
the development process of applets and for enhanced byte code verification on
embedded devices. We have therefore aimed at a low-complexity algorithm de-
rived from a loop detection algorithm for control flow graphs. The expression
of the algorithm as a constraint-based static analysis of the program over simple
lattices provides a link with abstract interpretation that allows to state and prove
formally the correctness of the analysis with respect to an operational semantics
of the program. The certification is based on an abstract interpretation framework
implemented in the Coq proof assistant which has been used to provide a com-
plete formalisation and formal verification of all correctness proofs.

Keywords: Program analysis, certified memory analysis, theorem proving, con-
straint solving.

1 Introduction

This paper presents a certified algorithm for resource usage analysis, aimed at veri-
fying that a program executes in bounded memory. Controlling the way that software
consumes resources is a general concern to the software developer, in particular for soft-
ware executing on embedded devices such as smart cards where memory is limited and
cannot easily be recovered. Indeed, for Java Card up to version 2.1 there is no garbage
collector and starting with version 2.2 the machine includes a garbage collector which
may be activated invoking an API function at the end of the execution of the applet.
This has lead to a rather restrictive programming discipline for smart cards in which the
programmer must avoid memory allocation in parts of the code that are within loops.
We provide a certified analysis that automatically and efficiently can check that such a
programming discipline is respected on a Java Card. This analysis can be deployed in
two contexts:

1. As part of a software development environment for smart cards. In that case, it will
play a role similar to other program analyses used in type checking and optimisa-
tion.

� This work was partially supported by the French RNTL project ”Castles”.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 91–106, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

92 D. Cachera et al.

2. As part of an extended on-card byte code verifier that checks applets and software
down-loaded on the card after it has been issued.

In both scenarios, there is a need for certification of the analysis. In the first case, the
analysis will be part of a software development process satisfying the requirements
of the certification criteria. In the second case, the analysis will be part of the card
protection mechanisms (the so-called Trusted Computing Base) that have to be certified.
The current implementation has a time complexity that is sufficiently low to integrate it
in a development tool. However, we have not yet paid attention to the space complexity
of the algorithm and current memory consumption excludes any analysis to take place
on-device.

The analysis is a constraint-based static analysis that works by generating a set of
constraints from the program byte code. These constraints define a number of sets that
describe a) whether a given method is (mutually) recursive or can be called from (mu-
tually) recursive methods, and b) whether a method can be called from intra-procedural
cycles. This information is then combined to identify memory allocations (or any other
type of resource-sensitive instructions) that could be executed an unbounded number of
times. By casting the analysis as a constraint-based static analysis we are able to give a
precise semantic definition of each set and use the framework of abstract interpretation
to prove that the analysis provide correct information for all programs. The paper offers
the following contributions:

– A constraint-based static analysis that formalises a loop-detecting algorithm for
detecting methods and instructions that may be executed an unbounded number of
times.

– A formalisation based on abstract interpretation of the link between the analysis
result and the operational semantics for the underlying byte code language.

– A certification of the analysis in the form of a complete formalisation of the analysis
and the correctness proof within the Coq theorem prover.

The paper is organised as follows. Section 2 briefly introduces the byte code lan-
guage of study. Section 3 gives an informal presentation of the algorithm and its relation
to an operational trace semantics. In Section 4 we formalise the correctness relationship.
In Section 5 we give a general description of the structure of the Coq proof. Section 6
exposes some complexity considerations and presents some benchmarks. Section 7 de-
scribes the background for this work and compares with existing resource analyses.
Section 8 concludes.

2 Java Card Byte Code

Our work is based on the Carmel intermediate representation of Java Card byte code
[11]. The Carmel language consists of byte codes for a stack-oriented machine whose
instructions include stack operations, numeric operations, conditionals, object creation
and modification, and method invocation and return. We do not deal with subroutines
(the Java jsr instruction) or with exceptions. These instructions can be treated in our
framework but complicates the control flow and may lead to inferior analysis results.

Certified Memory Usage Analysis 93

instructionAtP (m, pc) = instr

〈〈h, 〈m, pc, l, s〉, sf 〉〉 →instr 〈〈h, 〈m, pc + 1, l′, s′〉, sf 〉〉
instructionAtP (m, pc) = if pc′

n = 0

〈〈h, 〈m, pc, l, n :: s〉, sf 〉〉 →if pc′

〈〈h, 〈m, pc′, l, s〉, sf 〉〉

instructionAtP (m, pc) = if pc′
n �= 0

〈〈h, 〈m, pc, l, n :: s〉, sf 〉〉 →if pc′

〈〈h, 〈m, pc + 1, l, s〉, sf 〉〉

instructionAtP (m, pc) = goto pc′

〈〈h, 〈m, pc, l, s〉, sf 〉〉 →goto pc′

〈〈h, 〈m, pc′, l, s〉, sf 〉〉

instructionAtP (m, pc) = new cl
∃c ∈ classes(P) with nameClass(c) = cl

(h′, loc) = newObject(cl, h)

〈〈h, 〈m, pc, l, s〉, sf 〉〉 →new cl

〈〈h′, 〈m, pc + 1, l, loc :: s〉, sf 〉〉

instructionAtP (m, pc) = invokevirtual M
h(loc) = o m′ = methodLookup(M, o) f = 〈m, pc, l, loc :: V :: s〉

f ′ = 〈m′, 1, V, ε〉 f ′′ = 〈m, pc, l, s〉
〈〈h, f, sf 〉〉 →invokevirtual M 〈〈h, f ′, f ′′ :: sf 〉〉

instructionAtP (m, pc) = return f ′ = 〈m′, pc′, l′, s′〉
〈〈h, 〈m, pc, l, v :: s〉, f ′ :: sf 〉〉 →return 〈〈h, 〈m′, pc′ + 1, l′, v :: s′〉, sf 〉〉

Fig. 1. Carmel operational semantics

The formal definition of the language is given as a small-step operational seman-
tics with a state of the form 〈〈h, 〈m, pc, l, s〉, sf 〉〉, where h is the heap of objects,
〈m, pc, l, s〉 is the current frame and sf is the current call stack (a list of frames). A
frame 〈m, pc, l, s〉 contains a method name m and a program point pc within m, a set
of local variables l, and a local operand stack s (see [15] for details). Let StateP be the
set of all the states of a given program P . We will write simply State if P is understood
from the context. The transition relation →I describes how the execution of instruc-
tion I changes the state. This is extended to a transition relation → on traces such that
tr ::: s1 → tr ::: s1 ::: s2 if there exists an instruction I such that s1 →I s2

1.
The instructions concerned with control flow and memory allocation: if, goto,

invokevirtual, return and new, need a special treatment in our analysis. The rest of
the instructions may have different effects on the operand stack and local variables but
behave similarly with respect to memory and control flow (move to the next instruction
without doing any memory allocation). For clarity and in order to focus on the essen-
tials, these instructions have been grouped into one generic instruction instr with this
behaviour. Fig. 1 shows the rules describing the operational semantics of Carmel.

The rule for the generic instruction instr is formalised as a (non-
deterministic) transition from state 〈〈h, 〈m, pc, l, s〉, sf 〉〉 to any state of form
〈〈h, 〈m, pc + 1, l′, s′〉, sf 〉〉. Instructions if and goto affect the control flow by modi-

1 Here and everywhere in the paper, “:::” denotes the “cons” operation for traces (appending an
element to the right of the trace). We will use “::” as the “cons” operation of the operand stack
(the top of the stack being on the left).

94 D. Cachera et al.

fying the pc component of the state. The if instruction produces a jump to an indicated
program point pc′ if the top of the operand stack is 0; otherwise it moves to the instruc-
tion pc + 1. The goto pc′ unconditionally jumps to pc′. The new instruction modifies
the heap (h′) creating an object of class cl on location loc; loc is added to the stack and
the pc is incremented.

The rule for invokevirtual is slightly more complicated. Let M be a method
name. The instruction invokevirtual M at address (m, pc) of state σ = 〈〈h, f, sf 〉〉
may only occur if the current frame f of σ has an operand stack of the form loc :: V :: s,
i.e., it starts with a heap location denoted by loc, followed by a vector of values V . The
actual method that will be called is to be found in the object o that resides in the heap h
at the address h(loc), and the actual parameters of that method are contained in the vec-
tor V . Then, the methodLookup function searches the class hierarchy for the method
name M in the object o, and returns the actual method to which the control will be
transferred. The new method, together with its starting point pc = 1, its vector V of ac-
tual parameters, and an empty operand stack ε, constitute a new frame f ′ pushed on top
of the call stack of the resulting state σ′ = 〈〈h, f ′, f ′′ :: sf 〉〉, where f ′′ = 〈m, pc, l, s〉
is the frame to be taken into account after the completion of the method invocation.
Finally, the return instruction pops the control stack and execution continues at the
program point indicated in the frame that is now on top of the control stack.

The partial trace semantics �P � of a Carmel program P is defined as the set of
reachable partial traces:

�P � =
{

s0 :: s1 :: · · · :: sn ∈ State+

∣∣∣∣ s0 ∈ Sinit ∧
∀k < n, ∃i, sk →i sk+1

}
∈ ℘(State+)

where Sinit is the set of initial states.

3 Specification of the Analysis

The memory usage analysis detects inter- and intra-procedural loops and checks if the
creation of new objects may occur inside such loops, leading to unbounded memory
consumption. Intuitively, the algorithm consists of the following steps:

1. Compute the set of potential ancestors of a method m in the call graph: Anc(m);
2. Determine the set of methods that are reachable from a mutually recursive method:

MutRecR;
3. Compute the set of potential predecessors of a program point pc in a method m:

Pred(m, pc);
4. Determine the set of methods that may be called from intra-procedural loops:

LoopCall ;
5. Combining all these results (Unbounded(P)): phases 1 to 4 are used to detect if

a new object creation may occur in a loop, leading to a potentially unbounded
memory usage.

Notice that step 3 is the only intra-procedural computation. In the following, we de-
scribe the rules for obtaining each of the above-mentioned sets and explain informally
how they are related to the operational semantics. This relationship is formalised in
Section 4 which proves the correctness of the analysis.

Certified Memory Usage Analysis 95

(m, pc) : invokevirtual mID m′ ∈ implements(P, mID)

Anc(m) ∪ {m} ⊆ Anc(m′)

Fig. 2. Rule for Anc

m ∈ Anc(m)

{m} ⊆ MutRecR

Anc(m) ∩ MutRecR �= ∅
{m} ⊆ MutRecR

Fig. 3. Rules for MutRecR

3.1 Computing Ancestors of a Method (Anc)

Anc associates to each method name the set of potential ancestors of this method in
the call graph. The type of Anc is thus methodName → ℘(methodName). Fig. 2
shows the rule corresponding to the invokevirtual instruction for computing the set
Anc(m′): for each method m′ which may be called by a method m, it determines that
the set of ancestors of m′ must contain m as well as all the ancestors of m. The function
implements is a static over-approximation of the dynamic method lookup function. It
returns all possible implementations of a given method with name mID relative to a
program P . We do not specify it in further detail. No constraint is generated for any
other instruction different from invokevirtual since we are here interested only in
the method call graph.

Intuitively, given a trace, if the current method being executed is m, then Anc(m)
contains all the methods appearing in the current stack frame.

3.2 Determining Mutually Recursive Methods (MutRecR)

MutRecR contains the mutually recursive methods as well as those reachable from a
mutually recursive method. Fig. 3 shows the rules used to compute the set MutRecR:
if m is in the list of its ancestors, then it is mutually recursive, and all the descendants
of a mutually recursive method are reachable from a mutually recursive method. The
result of the computation of MutRecR can be seen as a marking of methods: methods
reachable from mutually recursive methods may be called an unbounded number of
times within the execution of an inter-procedural loop. Instructions in these methods
may be executed an unlimited number of times. For an example, see Fig. 4: methods
are represented with rectangles, thin arrows represent local jumps (goto), and thick
arrows represent method invocations. Shaded methods are those in MutRecR.

Intuitively, given a trace where the current method being executed is m, if m �∈
MutRecR, then m does not appear in the current stack frame, and all methods in this
stack frame are distinct.

3.3 Computing Predecessors of a Program Point (Pred)

Given a method m, Pred(m, pc) contains the set of predecessors of the program point
pc in the intra-procedural control flow graph of method m. The type of Pred is thus
methodName × progCount → ℘(progCount). Fig. 5 shows the rules (one for each

96 D. Cachera et al.

m m m

m

m m

m

m1

2 3 4

5

6 7

8

Fig. 4. Example of mutually recursive reachable methods

(m, pc) : instr

Pred(m, pc) ∪ {pc} ⊆ Pred(m, pc + 1)

(m, pc) : if pc′

Pred(m, pc) ∪ {pc} ⊆ Pred(m, pc + 1)
Pred(m, pc) ∪ {pc} ⊆ Pred(m, pc′)

(m, pc) : goto pc′

Pred(m, pc) ∪ {pc} ⊆ Pred(m, pc′)

Fig. 5. Rules for Pred

instruction) used for defining Pred . For instructions that do not induce a jump (instr
stands for any instruction different from if and goto), the set of predecessors of a
program point pc, augmented with pc itself, is transferred to its direct successor pc +1.
For the if instruction, the two branches are taken into account. For a goto instruction,
the set of predecessors of the current program point pc, augmented with pc itself, is
transferred to the target of the jump.

To relate Pred to the execution traces, we need to define the notion of current
execution of a method: the current execution of a method m in a trace tr ′ = tr :::
〈〈h, 〈m, pc, l, s〉, sf 〉〉 is the set of all program points (m, pc′) appearing in a maximal
suffix of tr ′ that does not contain a program point where a call to m is performed.
Intuitively, given a trace, Pred(m, pc) represents the set of all programs points pc′ ap-
pearing in the current execution of m.

3.4 Determining Method Calls Inside Loops (LoopCall)

The LoopCall set contains the names of the methods susceptible to be executed an
unbounded number of times due to intra-procedural loops. Fig. 6 shows the rules used
for computing LoopCall . The first rule says that if a method m′ is possibly called by a
method m at program point pc, and if pc is within an intra-procedural loop of m (pc is
in the set of its predecessors), then m′ may be called an unbounded number of times.

Certified Memory Usage Analysis 97

(m, pc) : invokevirtual mID m′ ∈ implements(P, mID) pc ∈ Pred(m, pc)

{m′} ⊆ LoopCall

(m, pc) : invokevirtual mID m′ ∈ implements(P, mID) m ∈ LoopCall

{m′} ⊆ LoopCall

Fig. 6. Rules for LoopCall

m m m

m

m m

m

m1

2 3 4

5

6 7

8

Fig. 7. Marking methods called from inside an intra-procedural loop

Furthermore, if m may be called an unbounded number of times and m calls m′, then
this property is inherited by m′.

Intuitively, given a trace tr where the method currently being executed is m, if m �∈
LoopCall then for each method m′ at point pc′ performing a call to m, (m′, pc′) appears
only once in the current execution of m′. For an example of the result of this phase of the
algorithm, see Fig. 7. The newly shaded methods m6 and m7 are in LoopCall because
of the call from within the loop in method m5.

3.5 The Main Predicate (Unbounded(P))

So far, the constraints we defined yield an algorithm that detects inter- and intra-
procedural loops of a given program P . We now can specialise this algorithm for de-
termining if the memory usage of our program is certainly bounded. The final result
consists in a predicate Unbounded(P) which is computed by the rule depicted in Fig.
8. This rule sums up the previous results, by saying that if a new object creation may

(m, pc) : newo cl m ∈ MutRecR ∨ m ∈ LoopCall ∨ pc ∈ Pred(m, pc)

Unbounded(P)

Fig. 8. Rule for Unbounded(P)

98 D. Cachera et al.

occur inside a loop (directly or indirectly, as described by the sets Anc, LoopCall ,
MutRecR and Pred) then Unbounded(P) is true.

4 Correctness

The correctness proof follows a classic abstract interpretation approach in which we
show that the information computed by the constraints is an invariant of the trace se-
mantics of a program P . For each previously defined function or set X (Anc, MutRecR,
LoopCall , Pred and Unbounded(P)) we use the following schema:

1. Prove that all the domains are lattices and that they have no infinite, strictly increas-
ing chains (ascending chain condition).

2. Determine a set of constraints for defining X .
3. Define a concretisation function γX in order to relate concrete domains (sets of

traces) and abstract domains (X).
4. Prove that all partial traces of a given program are correctly approximated by X ,

i.e., that ∀t ∈ �P �, t ∈ γX(X). This result is a consequence of the classical
characterisation of �P � as the least element of the following set:

⎧⎨
⎩S ∈ ℘(Trace)

∣∣∣∣∣∣ Sinit ⊆ S ∧
∀t1, t2 ∈ Trace,
if t1 ∈ S and t1 → t2
then t2 ∈ S

⎫⎬
⎭

We must prove the following two intermediary lemmas:

For any trace t1 ∈ �P �, if t1 ∈ γX(X) and t1 → t2, then t2 ∈ γX(X). (1)

For any trace t ∈ Sinit , t ∈ γX(X). (2)

5. Analyse a given applet P , which consists then of 1) constructing the set of con-
straints associated to the program 2) solving this system with a classic fixed point
iteration whose termination is ensured by the lattice ascending chain condition.

Steps 1 to 4 are proof-theoretical while step 5 is algorithmic. All these steps are
performed in the Coq proof assistant. Steps 1, 2 and 5 benefit from the framework
proposed in [3] and thus no new proof is required. We only need to prove steps 3 and 4,
for which the property (1) represents the core of the work:

Lemma 1. For any trace t1 ∈ �P �, if t1 ∈ γX(X) and t1 → t2, then t2 ∈ γX(X).

We now define the concretisation functions γX for Anc, MutRecR, Pred and
LoopCall .

Anc. The concretisation function for Anc formalises the fact that m′ calls m (directly
or indirectly) in a trace t by examining the call stack of each element in t:

γAnc : (methodName → ℘(methodName)) −→ ℘(State+)

X �→
{

t ∈ State+

∣∣∣∣ for all 〈〈h, 〈m, pc, l, s〉, sf 〉〉 in t
for all m′ appearing in sf , m′ ∈ X(m)

}

Certified Memory Usage Analysis 99

MutRecR. Given a method name m and a partial trace t, we say that “m is ever executed
with a safe callstack in t” (which is denoted by the SafeCallStack(m, t) predicate) iff
for all 〈〈h, 〈m, pc, l, s〉, sf 〉〉 in t, m does not appear in sf and all methods in sf are
distinct.

The concretisation function for MutRecR is then defined by:

γMutRecR : ℘(methodName) −→ ℘(State+)

X �→
{

t ∈ State+

∣∣∣∣ for all m ∈ methodName, if m �∈ X ,
then SafeCallStack(m, t) holds

}

Pred . The associated concretisation function is

γPred : (methodName× progCount → ℘(progCount)) −→ ℘(State+)

X �→
{

t ∈ State+

∣∣∣∣ for all prefix t′ ::: 〈〈h, 〈m, pc, l, s〉, sf 〉〉 of t,
if SafeCallStack(m, t) then current(t′,m) ⊆ X(m, pc)

}

where current(t′,m) is the set of program points which appear in the current execution
of m relative to the trace t′.

LoopCall . Given two method names m and m′, and a partial trace t, we use the
predicate OneCall to state that m is called at most once within each invocation
of m′. Formally, OneCall is defined by OneCall(m,m′, t) iff for all prefix t′ :::
〈〈h, 〈m, pc, l, s〉, sf 〉〉 of t, and for all positions (m′, pc′) where a call to m is performed,
pc′ occurs only once in the corresponding current execution of m′.

The concretisation function for LoopCall is then defined by:

γLoopCall : ℘(methodName) −→ ℘(State+)

X �→

⎧⎪⎪⎨
⎪⎪⎩

t ∈ State+

∣∣∣∣∣∣∣∣

for all prefix t′ ::: 〈〈h, 〈m, pc, l, s〉, sf 〉〉 of t,
if SafeCallStack(m, t) and m �∈ X ,
then for all m′ in methodName,
OneCall(m,m′, t) holds

⎫⎪⎪⎬
⎪⎪⎭

To prove the correctness of Unbounded(P) we need to prove the following lemma:

Lemma 2. If for all program point (m, pc) where an instruction new is found we have
m �∈ MutRecR ∪ LoopCall and pc �∈ Pred(m, pc), then there exists a bound Max new

so that
∀t ∈ �P �, |t|new < Max new

where |t|new counts the number of new instructions which appear in the states of the
trace t.

To establish the above result we first prove an inequality relation between the
number of executions of the different methods. We write Exec(m, t) for the num-
ber of executions of a method m found in a trace t. Similarly, Max invoke(m) is the
maximum number of invokevirtual instructions which appear in a method m. Let
m ∈ Call(m′) denote that m′ calls m.

Lemma 3. For all methods m, if m �∈ MutRecR ∪ LoopCall then for all t ∈ �P �,

Exec(m, t) ≤
∑

m∈Call(m′)

Exec(m′, t) ·Max invoke(m′).

100 D. Cachera et al.

Using this lemma we prove that the number of executions of the method m in the trace
t is bounded, as expressed in the following lemma.

Lemma 4. There exists a bound Max exec such that for all methods m which verify
m �∈ LoopCall ∪MutRecR, we have

∀t ∈ �P �, Exec(m, t) ≤ Max exec.

To conclude the proof of Lemma 2 we need to prove the following result, establish-
ing that if a method is not (mutually) recursive, nor reachable from a mutually recursive
one and it is not in a intra-method cycle, then the number of new instructions is bounded.

Lemma 5. Given a method m which verifies m �∈ MutRecR ∪ LoopCall , if for all
program points (m, pc) in m where an instruction new is found, pc �∈ Pred(m, pc)
holds then

∀t ∈ �P �, |t|mnew ≤ Exec(m, t)

where |t|mnew counts the number of instructions new which appears in the states of the
trace t in the method m.

Lemma 2 follows then from the following inequality:

∀t ∈ �P �, |t|new =
∑
m

|t|mnew ≤ MethodMaxP ·Max invoke

where MethodMaxP is the number of methods in program P .
The correctness of our analysis is a corollary of Lemma 2:

Theorem 1. ¬Unbounded(P) ⇒ ∃Max new, ∀t ∈ �P �, |t|new < Max new.

5 Coq Development

The following section gives an overview of the structure of the Coq development. It
is meant to give an intuition for how the development of a certified analyser can be
done methodologically [3] and to serve as a first guide to the site [13] from which the
analyser and the Coq specification and proofs can be downloaded, compiled and tested.

The formalisation of Java Card syntax and semantics is taken form an existing data
flow analyser formalised in Coq [3]. The analysis consists in calculating the sets Anc,
MutRecR, Pred and LoopCall that are indexed by program methods and program
points. This naturally leads to a representation as arrays of sets, defined in the following
way using Coq modules:

Module MAnc := ArrayLattice(FiniteSetLattice).
Module MMutRec := FiniteSetLattice.
Module MPred:= ArrayLattice(ArrayLattice(FiniteSetLattice))
Module MLoopCall := FiniteSetLattice.
Module MUnbounded := BoolLattice.

Certified Memory Usage Analysis 101

This leads to a type for eg. Pred that is dependent on the actual program P to analyse.
Once the program P is supplied, we construct the actual set Pred , properly indexed by
the methods and program points of P .

Each of the four type of sets gives rise to a specific kind of constraints. For example,
the constraints defining the set Pred are given the following definition

Inductive ConstraintPred : Set :=
C4: MethodName -> progCount -> progCount ->

(FiniteSetLattice.Pos.set -> FiniteSetLattice.Pos.set)
-> ConstraintPred.

Thus, each constraint is constructed as an element of a data type that for a given method
m and two instructions at program points pc and pc’ provides the transfer function that
links information at one program point to the other. The actual generation of constraints
is done via a function that recurses over the program, matching each instruction to see
if it gives rise to the generation of a constraint.The following definition corresponds to
the Coq formalisation of the constraint rules depicted on Fig. 5.

Definition genPred (P:Program) (m:MethodName) (pc:progCount)
(i:Instruction) : list ConstraintPred :=

match i with
return_v => nil

| goto pc’ => (C4 m pc pc’ (fun s =>(add_set pc s)))::nil
| If pc’ => (C4 m pc pc’ (fun s => (add_set pc s)))::

(C4 m pc (nextAddress P pc)
(fun s => (add_set pc s)))::nil

| _ => (C4 m pc (nextAddress P pc)
(fun s => (add_set pc s)))::nil

The result of the constraint generation is a list of constraints that together specify
the sets Anc, Pred , MutRecR and LoopCall . When calculating the solution of the
constraint system, we use the technique that the resolution of a constraint system can
be done by interpreting each constraint as a function that computes information to add
to each state and then increment the information associated with the state with this
information. Formally, for each constraint of the form f(X(m, pc1)) � X(m, pc2)
over an indexed set X (such as Pred), we return a function for updating the indexed set
by replacing the value of X at (m, pc2) by the value f(X(m, pc1)).

Definition F_Pred (c:ConstraintPred) :
MPred.Pos.set -> MPred.Pos.set :=

match c with
(C4 m pc1 pc2 f)=> fun s => update s m pc2 (f (s m pc1))

The resolution of the constraints can now be done using the iterative fix-point solver, as
explained in [3]. The fix-point solver is a function of type

(l: (L → L) list) → (∀f ∈ l, (monotone L f)) →
∃x:A,(∀f ∈ l, (order L (f x) x)) ∧

(∀ y:A (∀f ∈ l, (order L (f y) y))⇒(order L x y))

102 D. Cachera et al.

Subject number of lines

syntax + semantics 1000
lattices + solver 3000
Anc, MutRecR, Pred , LoopCall correctness 1300
Unbounded(P)correctness 2500
constraint collecting, monotonicity 1200

total 9000

Fig. 9. Proof effort for the development

that will take a list of monotone functions over a lattice L and iterate these until sta-
bilisation. The proof of this proposition (ie. the inhabitant of the type) is a variant
of the standard Knaster-Tarski fix-point theorem on finite lattices that constructs (and
hence guarantees the existence of) a least fix-point as the limit of the ascending chain
⊥, f(⊥), f2(⊥),

5.1 Correctness Proof in Coq

The remaining parts of the proof effort are dedicated to the correctness of the memory
usage analysis. Two particular points connected with the correctness proof are worth
mentioning:

– The correctness of Unbounded(P) requires much more work than the proof of the
various partial analyses. This is not surprising because of the mathematical diffi-
culties of the corresponding property: counting proofs are well-known examples of
where big gaps can appear between informal and formal proofs.

– In many of the proofs involved in the construction of the analyser, there is one case
for each byte code instruction. Most of the cases are dealt with in the same way.
For the methodology to scale well, the proof effort should not grow proportional to
the size of the instruction set. This is true already for the relatively small Carmel
instruction set (15 instructions) and in particular for the real Java Card byte code
language (180 instructions).

For the latter point, it was essential to use the Coq tactic language of proof scripts (called
tactics in Coq) which allows to apply the same sequence of proof steps to different
subgoals, looking in the context for adequate hypothesis. In this way, most of our proofs
are only divided in three parts: one case for invokevirtual, one case for return
and one case (using an appropriate tactics applied on several subgoals) for the other
instructions. With such a methodology, we can quickly add simple instructions (like
operand stack manipulations) without modifying any proof scripts.

The extracted analyser is about 1000 lines of OCaml code while the total devel-
opment is about 9000 lines of Coq. The following table gives the breakdown of the proof

Certified Memory Usage Analysis 103

effort measured in lines of proof scripts2. Fig. 9 summarises the proof effort for each
part of the certified development of the analyser.

6 Complexity and Benchmarks

The computation of the final result of the algorithm from the constraints defined above
is performed through well-known iteration strategies. Let N denote the number of meth-
ods and Im the number of instructions in method m. The computation of the sets Anc,
MutRecR and LoopCall consists in a fix-point iteration on the method call graph, that is
at most quadratic in N . The computation of Pred for a given method m requires at most
Im × (| number of jumps in m | +1) operations. The computation of Unbounded(P)
requires

∑
m Im ≤ N × max{Im} operations and in the worst case to save Im line

numbers for each instruction (i.e., I2
m). The algorithm may be further optimised by us-

ing a more compact representation with intervals but we have not implemented this.

2 Note that the size of a Coq development can change significantly from one proof script style
to another. The same proofs could have consumed two or three times more script lines if the
capabilities of the proof tactics language were not exploited. Thus, it is the relative size of the
proofs that is more important here.

 0

 20

 40

 60

 80

 100

 120

100 k50 k

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Program size (LOCs)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

100 k50 k

M
em

or
y

us
ag

e
(m

eg
ab

yt
es

)

Program size (LOCs)

 0

 50

 100

 150

 200

 250

50 k

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Program size (LOCs)

 0

 100

 200

 300

 400

 500

 600

 700

50 k

M
em

or
y

us
ag

e
(m

eg
ab

yt
es

)

Program size (LOCs)

Fig. 10. Performance measures. The first row corresponds to a variable number of methods with
a fixed number of lines per method, while the second corresponds to a fixed number of methods
with a variable number of lines per method

104 D. Cachera et al.

to guarantee absence of aliasing. Together, this allows to prove the sound reuse of heap
space in the presence of kinds of heap cells (integers, list cells, etc).

Crary and Weirich [5] define a logic for reasoning about resource consumption
certificates of higher-order functions. The certificate of a function provides an over-
approximation of the execution time of a call to the function. The logic only defines
what is a correct deduction of a certificate and has no inference algorithm associated
with it. The logic is about computation time but could be extended to measure memory
consumption.

The most accurate automatic, static analysis of heap space usage is probably the
analysis proposed by Hofmann and Jost [8] that operates on first-order functional pro-
grams. The analysis both determines the amount of free cells necessary before execution
as well as a safe (under)-estimate of the size of a free-list after successful execution of a
function. These numbers are obtained as solutions to a set of linear programming (LP)
constraints derived from the program text. Automatic inference is obtained by using
standard polynomial-time algorithms for solving LP constraints. The correctness of the
analysis is proved with respect to an operational semantics that explicitly keeps track of
the memory structure and the number of free cells.

The Hofmann-Jost analysis is more precise than the analysis presented here but is
too costly to be executed on most embedded devices, in particular smart cards. Rather,
its use lies in the generation of certificates that can then be checked on-card. A simi-

7 Related Work

Hofmann [7] has devised a type system for bounded space and functional in-place up-
date. In this system, a specific �-type is used to indicate heap cells that can be over-
written. A type system for a first-order functional language defines when the reuse
of heap cells due to such type annotations is guaranteed not to alter the behaviour of
the program. Inspired by this work and by Typed Assembly Language of Morrisett et
al. [12], Aspinall and Campagnoni [1] have defined heap-bounded assembly language, a
byte code language equipped with specific pseudo-instructions for passing information
about the heap structure to the type system. The type system use linearity constraints

Fig. 10 gives benchmarks for the performance of the extracted program. These mea-
sure have been performed with a randomly byte code program generator. Given two
parameters N and l, this program generates a well formed Carmel program with N
methods, each of them containing 6 · l lines of byte code. Each group of 6 lines han-
dles a call to a randomly chosen method, a goto and a if instruction with an appari-
tion probability of 1/5. Hence we can easily measure the performance of our extracted
program on big Carmel programs. The first row of Fig. 10 corresponds to a variable
number of methods with a fixed number of lines per method, while the second corre-
sponds to a fixed number of methods with a variable number of lines per method. These
benchmarks show a linear performance in the first case (both in computation time and
memory requirements), and a quadratic performance in the latter.

As the benchmarks show, the extracted program performs very well, in particular
when taking into account that no modification on the extracted code was necessary.

Certified Memory Usage Analysis 105

lar distinction can been observed in on-card byte code verification where the on-card
verifier of Casset et al. [4] relies on certificates generated off-card, whereas the veri-
fier described by Leroy [10] imposes slight language restrictions so that the verifier can
execute on-card.

A similar (but less precise) analysis to ours is presented in [14]. The analysis is
shown to be correct and complete w.r.t. an abstraction of the operational semantics.
One difference with our work is the computation of Pred , which keeps track only of
the program points pc of the branching commands instead of all the visited method
program points, decreasing the space complexity. However, in such work the proofs
are done manually and the semantics being considered is total in contrast with the par-
tial semantics used in our work; this could make the formal proof in Coq much more
difficult.

The certification of our analysis was done by formalising the correctness proof in
the proof assistant Coq. Mechanical verification of Java analysers have so far mainly
dealt with the Java byte code verifier [2, 9, 4]. The first exception is the work reported
in [3] on formalising an interprocedural data flow analyser for Java Card, on which
part of the formalisation of the present analysis is based. The framework proposed in
[3] allows us to concentrate on the specification of the analysis as a set of constraints
and on the correctness of this system with respect to the semantics of the language (see
Section 4). The lattice library and the generic solver of [3] were reused as is to extract
the certified analyser.

8 Conclusion

We have presented a constraint-based analysis for detecting unbounded memory con-
sumption on embedded devices such as Java Card smart cards. The analysis has been
proved correct with respect to an operational semantics of Java byte code and the proof
has been entirely formalised in the theorem prover Coq, providing the first certified
memory usage analysis. The analysis can be used in program processing tools for ver-
ifying that certain resource-aware programming styles have been followed. An impor-
tant contribution of the paper is to demonstrate how such an analysis can be formalised
entirely inside a theorem prover. To the best of our knowledge, this is the first time
that a resource usage analysis has undergone a complete formalisation with machine-
checkable correctness proof. Still, several aspects of the analysis merit further develop-
ment:

– By using the formula established in Lemma 3, we could in principle compute an
over-approximation of the number of new instructions performed during any execu-
tion of the program and thereby produce an estimation of the memory usage. How-
ever, it is unclear whether this algorithm can be expressed in the constraint-based
formalism used here; a specific proof effort would be required for this extension.

– From a programming language perspective, it would be interesting to investigate
how additional restrictions on the programming discipline could be used to lower
the complexity of the analysis, in the style of what was used in [10]. For example,
knowing that the byte code is a result of a compilation of Java source code imme-
diately gives additional information about the structure of the control flow graph.

106 D. Cachera et al.

– A challenge in the smart card setting would be to refine the algorithm to an im-
plementation of a certified on-device analyser that could form part of an enhanced
byte code verifier for protecting the device against resource-consumption attacks.
The main challenge here is to optimise the memory usage of the analysis which is
currently too high. Recent work on verification of C code in Coq [6] could be of
essential use here. Techniques for an actual implementation can be gleaned from
[10] as well as from [14] in order to optimise the computation of Pred .

References

1. David Aspinall and Andrea Compagnoni. Heap bounded assembly language. Journal of
Automated Reasoning, 31(3–4):261–302, 2003.

2. Gilles Barthe, Guillaume Dufay, Line Jakubiac, Bernard Serpette, and Simão Melo de Sousa.
A Formal Executable Semantics of the JavaCard Platform. In Proc. ESOP’01. Springer
LNCS vol. 2028, 2001.

3. David Cachera, Thomas Jensen, David Pichardie, and Vlad Rusu. Extracting a data flow
analyser in constructive logic. In Proc. ESOP’04, number 2986 in Springer LNCS, pages
385–400, 2004.

4. Ludovic Casset, Lilian Burdy, and Antoine Requet. Formal Development of an embedded
verifier for Java Card Byte Code. In Proc. of IEEE Int. Conference on Dependable Systems
& Networks (DSN), 2002.

5. Karl Crary and Stephanie Weirich. Resource bound certification. In Proc. 27th ACM
Symp. on Principles of Programming Languages (POPL’00), pages 184–198. ACM Press,
2000.

6. Jean-Christophe Filliâtre and Claude Marché. Multi-Prover Verification of C Programs. In
Proc. ICFEM 2004, number 3308 in Springer LNCS, pages 15–29, 2004.

7. Martin Hofmann. A type system for bounded space and functional in-place update. Nordic
Journal of Computing, 7(4):258–289, 2000.

8. Martin Hofmann and Stefan Jost. Static prediction of heap space usage for first-order func-
tional programs. In Proc. of 30th ACM Symp. on Principles of Programming Languages
(POPL’03), pages 185–197. ACM Press, 2003.

9. Gerwin Klein and Tobias Nipkow. Verified Bytecode Verifiers. Theoretical Computer Sci-
ence, 298(3):583–626, 2002.

10. Xavier Leroy. On-card bytecode verification for Java card. In I. Attali and T. Jensen, edi-
tors, Smart card programming and security, (E-Smart 2001), pages 150–164. Springer LNCS
vol. 2140, 2001.

11. Renaud Marlet. Syntax of the JCVM language to be studied in the SecSafe project. Technical
Report SECSAFE-TL-005, Trusted Logic SA, May 2001.

12. Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed assembly
language. ACM Trans. Program. Lang. Syst., 21(3):527–568, 1999.

13. David Pichardie. Coq sources of the development. http://www.irisa.fr/lande/
pichardie/MemoryUsage/.

14. Gerardo Schneider. A constraint-based algorithm for analysing memory usage on Java cards.
Technical Report RR-5440, INRIA, December 2004.

15. Igor Siveroni. Operational semantics of the Java Card Virtual Machine. J. Logic and Alge-
braic Programming, 58(1-2), 2004.

Compositional Specification and Analysis
of Cost-Based Properties in Probabilistic

Programs

Orieta Celiku1 and Annabelle McIver2

1 Åbo Akademi University and Turku Centre for Computer Science,
Lemminkäisenkatu 14 A, 20520 Turku, Finland

oceliku@abo.fi
2 Department of Computer Science and Mathematics,

Macquarie University, Sydney 2109, Australia
anabel@ics.mq.edu.au

Abstract. We introduce a formal framework for reasoning about per-
formance-style properties of probabilistic programs at the level of pro-
gram code. Drawing heavily on the refinement-style of program verifi-
cation, our approach promotes abstraction and proof re-use. The theory
and proof tools to facilitate the verification have been implemented in
HOL.

1 Introduction

The importance of a timely consideration of performance-style properties has
been noted by several authors [6], and recent research has produced a number of
modelling and verification tools based on formal principles — the model checkers
PRISM [12] and the Erlangen-Twente checker [3], and performance evaluation
tools such as PEPA [6] are just a few examples of the impressive work in this area.
However all these tools are based on concrete model realisation rather than at the
level of program code. The contribution of this paper is to introduce language
constructs to specify performance-style properties, together with a toolkit of
formal techniques to enable the construction of mechanised tool support for
verifying those properties at varying levels of abstraction, including at the level
of program code.

Our point of departure is Morgan’s pGCL [14], the extension of the guarded
command language [2] to include probabilistic program statements; crucially for
us the semantics leaves intact the refinement structure of the original framework
giving access to abstraction, which is fundamental for practical specification
and development tasks, encouraging the verifier to move between levels of ab-
straction as appropriate. Moreover pGCL’s innovative program logic (originally
suggested by Kozen [11]), and its combination of “nondeterminism” and “proba-
bilistic choice” make it ideal for the specification of performance-style properties
of probabilistic programs. Terms in the logic are interpreted as real-valued func-
tions — originally conceived to give access to pure probabilistic events, they can

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 107–122, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

108 O. Celiku and A. McIver

be used equally effectively for general quantitative properties such as “delays”
or other performance-style costs. The presence of nondeterminism, as distinct
from probabilistic choice, represents genuine unquantifiable uncertainty in the
system; as well as being fundamental for a theory of program refinement, in
practice, it turns out to be very useful for specifying ranges in input data, which
often becomes necessary in performance-style analyses where delays present in
the system are only known up to some margin of error [17].

In this paper we use the formal mechanisms provided by pGCL to propose
methods based on a novel refinement order. That leads to a compositional style
of code-level performance verification via a combination of abstraction and divid-
ing the work of a complete verification into smaller, more palatable fragments,
whilst maintaining the integrity of the entire verification task. Our specific con-
tributions include the following:

– A delay statement and semantics for the specification of performance-style
properties (Sec. 3);

– An augmented refinement relation between programs and a “calculus of de-
lays” to allow simplification of performance-style properties (Sec. 4);

– Mechanised tool support which uses the delay semantics to provide ma-
chine assistance for the many small proofs required for analysis (Sec. 3.1
and Sec. 4).

We also include a range of examples to illustrate and explain the proposed
methods. We begin in Sec. 2 by reviewing pGCL.

The mechanised tool support was developed in the HOL proof environ-
ment [5]. It provides a high degree of assurance for program verification as well
as supports the creation of mechanised tools so that many proofs can be carried
out automatically. We have not included any detailed proofs of theorems and
lemmas stated in this paper as they have all been developed and proved within
the HOL system. We have sometimes however described how a particular veri-
fication has been achieved whenever we wish to indicate how the mathematical
results have been used.

Throughout the following notational conventions and definitions will be used.
We use “.” for function application. We write S for a (fixed) underlying state
space, and S for the set of discrete probability distributions over S, where a prob-
ability distribution is a function from S to the interval [0, 1] which is normalised
to 1. Functions from S to the non-negative reals are called expectations ; they
are ordered by lifting pointwise the order ≤ on the reals, which we denote by �.
Given two expectations A and B, they are equivalent, denoted A ≡ B exactly
when A � B and B � A. Operations on expectations are pointwise liftings of
those on the reals. We write c for the constant function returning c for all states.
cA denotes c × A, where A is an expectation. If f is a probability distribution
and A is a measurable function then

∫
f

A denotes the expected value of A with
respect to f . When f is in S and A is a real-valued function over S, this reduces
to

∑
s∈S(f.s) × (A.s) (if defined). If pred is a predicate, then we write [pred]

for the characteristic function which takes states satisfying pred to 1, and to 0
otherwise. Other notation will be introduced as we need it.

Compositional Specification and Analysis of Cost-Based Properties 109

2 Cost-Analysis of Sequential Programs

When programs incorporate probability, their properties can no longer be guar-
anteed “with certainty”, but only “up to some probability”. For example the
program

b := T 2/3⊕ b := F , (1)

sets the Boolean-valued variable b to T only with probability 2/3 — in practice
this means that if the statement were executed a large number of times, and the
final values of b tabulated, roughly 2/3 of them would record b having been set
to T (up to well-known statistical error).

The language pGCL and its associated quantitative logic [13] were developed
to express such programs and to derive their probabilistic properties by extend-
ing the classical assertional style of programming [15]. Programs in pGCL are
modelled (operationally) as functions (or transitions) which map initial states
in S to (sets of) probability distributions over final states — the program at
(1) for instance operates over a state space of size 2, and has a single transition
which maps any initial state to a (single) final distribution; we represent it as a
normalised function d, evaluating to 2/3 when b = T and to 1/3 when b = F.

Since properties are now quantitative we express them via a logic of (non-
negative) real-valued functions, or expectations. For example the property “the
final value of b is T with probability 2/3” can be expressed as

∫
d
[b = T], the

expected value of the function [b = T] with respect to d, which evaluates to
2/3 × 1 + 1/3 × 0 = 2/3. Direct appeal to the operational semantics is how-
ever unwieldy — better is the equivalent transformer-style semantics which is
obtained by rationalising the above calculation in terms of expectations rather
than transitions. The expectation [b = T] has been transformed to the expec-
tation 2/3 by the program (1) above so that they are in the relation “2/3 is
the expected value of [b = T] with respect to the program’s result distribution”.
More generally given a program P , an expectation A and a state s ∈ S, we define
wp.P.A.s to be the expected value of A with respect to the result distribution
of program P if executed initially from state s [13]. We say that wp.P is the
expectation transformer relative to P . In our example that allows us to write

2/3 ≡ wp.(b := T 2/3⊕ b := F).[b = T] .

In the case that nondeterminism is present, execution of P results in a set of
possible distributions and we modify the definition of wp to take account of this
— in fact we may define wp.P.A.s so that it delivers either the greatest- or least-
expected value with respect to all distributions in the result set. Those choices
correspond respectively to an angelic or demonic resolution of the nondetermin-
ism — which interpretation is used depends very much on the application, and
we explain the alternatives in the next section, where we also set out in full the
details of the expectation transformer semantics.

Continuing informally for the time being, with the transformer approach
we see that having access to real-valued functions makes it possible to express
a great range of quantitative properties other than just “plain probabilities”.

110 O. Celiku and A. McIver

More precisely we can specify a property as some “random variable” of interest
and investigate a program’s behaviour relative to it, where a random variable is
just a real-valued function of S (not necessarily normalised), and for us they are
synonymous with expectations.

The property we investigate in this paper was inspired by the need to analyse
the efficiency of probabilistic programs. To motivate the idea, suppose we have
an iterative program whose termination depends on the result of a coin flip, for
example the iterative program

do (b = F) → b := T 2/3⊕ b := F od , (2)

has termination occurring after a random number of iterations, whenever b is
set to T. Clearly the precise moment of termination of program (2) cannot be
determined exactly since the result of the flip cannot be predicted in advance: the
best that can be done is to estimate the expected number of required iterations.
Put another way, the property we wish to investigate is the expected value of a
random variable which records the number of iterations until termination.

Fortunately the quantitative program logic can cope with this — we add a
fresh variable n to the program and increment it on each iteration,

flipsn =̂ n := 0; do (b = F) → (b := T 2/3⊕ b := F); n := n + 1 od . (3)

The effect of this is to produce an output distribution over final values of n
at termination. For example n = 1 finally if the loop terminates on the first
step, which occurs with probability 2/3; more generally n = k finally if the
loop terminates on the k’th step, which occurs with probability 2/3× (1/3)k−1.
This means that the expected final value of n with respect to that distribution
is precisely the expected number of iterations until termination. In our logical
framework we define n to be the real-valued function which returns the current
value of the variable n — its expected value relative to the program’s result
probability distribution (over n) is now just

wp.flipsn.n ≡ 3[b = F]/2 , (4)

indicating that on average there will be 3/2 iterative steps before termination,
when b = F initially.

Although at first glance this is an appealingly simple way to estimate ex-
pected efficiency, several technical difficulties arise in attempts to extend it to
programs generally. First, it gives an unintuitive answer in the case when pro-
grams only terminate with some probability. For example if the probabilistic
choice in (3) above were changed from “2/3⊕” to “0⊕” (that is to say that there
is no chance of b’s ever being set to T) then intuitively one might think that
the expected time to achieve termination would be infinite; however the wp-
(total-correctness) semantics for non-terminating programs gives 0. 1

1 There are similar problems associated with using a “partial-correctness” interpreta-
tion for iterative programs.

Compositional Specification and Analysis of Cost-Based Properties 111

More serious however is that in practice its application to more intricate
programs is somewhat cumbersome, a situation which cannot be relieved by
developing simplification rules within the current pGCL theory. 2

Celiku and McIver [1] overcame some of these problems by formalising a
transformer that accomplishes the task of efficiency analysis without the need to
introduce a fresh “n” at all. That approach deals properly with non-terminating
programs, and considerably simplifies the mechanised tools implemented to aid
with the many small proofs required for the formal analysis. Unfortunately it
is limited to un-nested iterations, and can only express the expected number
of iterations, rather than a range of cost-based performance properties. In the
remainder of the paper we propose a calculus of delays which distinguishes func-
tional and performance properties, in order to develop a fully compositional
verification method. That idea requires a theory which can handle non-constant
costs associated with each iteration, together with a novel program refinement
augmenting standard refinement’s functional properties with expected costs. We
address those topics below.

3 The Delay Statement

In this section we introduce a new programming statement 〈X〉 which we will
use to specify “delays” at various points in a program. Here X is an expectation,
and the idea is that when 〈X〉 “executes” from initial state s, it does nothing at
all, except to wait for X.s “time steps”. (Note that we are not assuming that the
delay is governed by some underlying exponential distribution as in traditional
theories of performance analysis [6].)

As a simple example we consider how delay statements can be used to express
the expected number of iterations to termination — we re-write flipsn at Eqn. 3
using a delay statement rather than a fresh n,

flips =̂ do (b = F) → (b := T 2/3⊕ b := F); 〈1〉 od . (5)

Operationally we think of a “delay” of 1 time step after every iteration. Our
aim is to introduce a transformer-style semantics which will allow analysis of all
specified delays so that, for example, applied to flips will give a total expected
delay of 3[b = F]/2, agreeing with Eqn. 4. Before we can do that, we must review
the analysis of probabilistic functional properties, as it is fundamental to the
analysis of cost-based properties.

As indicated in Sec. 2, the functional properties of probabilistic programs
are based on a wp-style transformer; here we formalise two interpretations, which
differ only in their treatment of nondeterminism; recall that a nondeterministic
choice represents genuine unquantifiable variation in program behaviour. In the

2 The standard pGCL is based on a program equivalence defined at the distribution
level; simplification rules for cost-based properties need an equivalence based directly
on expected costs.

112 O. Celiku and A. McIver

awp-semantics we interpret nondeterministic choice angelically, that is maximal
seeking; in the dwp-semantics it is interpreted demonically, that is minimal seek-
ing. Both interpretations are useful depending on the application — a demonic
style is best for reasoning about total correctness as it provides guarantees on
lower bounds on probabilistic behaviour. Alternatively the angelic style guar-
antees a least upper bound on possible probabilistic behaviour, and is therefore
ideal for bounding from above worst-case expected efficiency. For our calculus
of delays we will need both — the details are set out in Fig. 1 below for a small
programming language which augments pGCL with delay statements.

skip awp.skip.A =̂ A ,
delay awp.〈X〉.A =̂ A ,
assignment awp.(x := E).A =̂ A[x := E] ,
sequential composition awp.(r; r′).A =̂ awp.r.(awp.r′.A) ,
probabilistic choice awp.(r p⊕ r′).A =̂ p × awp.r.A + (1−p) × awp.r′.A ,
nondeterministic choice awp.(r [] r′).A =̂ awp.r.A � awp.r′.A ,
Boolean choice awp.(if B then r else r′).A =̂ [B] × awp.r.A + [¬B]× awp.r′.A ,
iteration awp.(do B → r od).A =̂ (μX • [B] × awp.r.X + [¬B] × A) .

X is an expectation, E is an integer-valued state function, p is an expectation bounded
by 1, and the term (μX . . .) refers to the least fixed point with respect to �; it is
guaranteed to exist since the expectations (augmented with a “top” element) form a
complete partial order [8]. � denotes the pointwise lifting of the max operator from the
non-negative reals; similarly, � below denotes the lifting of min.
The dwp-interpretation can be rendered directly from the above structural definition by
replacing awp with dwp everywhere except for nondeterministic choice, whose definition
is instead

dwp.(r [] r′).A =̂ dwp.r.A � dwp.r′.A .

These definitions are dual to an operational model based on the state-to-distribution
semantics [13].

Fig. 1. Structural definitions of awp and dwp for pGCL with delays

From Fig. 1 we see that the awp/dwp-semantics are almost identical to the
standard weakest-precondition semantics — the extra construct p⊕ averages
the results of its operands, whereas the nondeterministic choice seeks to max-
imise/minimise the results corresponding to the angelic/demonic execution de-
scribed above. Notice that the functional behaviour of the new 〈X〉 statement is
identical to skip.

We can appreciate the difference between the angelic and demonic styles, by
considering the program fragment

(b := T 2/3⊕ b := F) [] skip ,

Compositional Specification and Analysis of Cost-Based Properties 113

which elects either to set b probabilistically, or to do nothing. Suppose we wish
to investigate termination in a state satisfying b = T. A “demon” executing
“ [] ” would be able to avoid this outcome every time provided that b = F holds
initially, since he would choose to execute the skip option. On the other hand
if b = T initially then the demon could only avoid remaining in that state with
probability “at most” 1/3, by choosing to execute the probabilistic option. Thus

dwp.((b := T 2/3⊕ b := F) [] skip).[b = T] ≡ 2[b = T]/3 ,

since the program must, after all, satisfy b = T with probability “at least 2/3”,
but only from the initial state where b = T. An “angel” executing [] , on the other
hand, would do the opposite, and strive to satisfy b = T finally, thus would choose
to skip when b = T initially and execute the probabilistic statement otherwise.
Hence

awp.((b := T 2/3⊕ b := F) [] skip).[b = T] ≡ 2[b = F]/3 � [b = T] .

We can see from this small example that it is possible to express ranges of
probabilistic behaviour using [] — that will be useful in examples where precise
quantitative values are only known up to some margin of error.

Next we recall the definition of standard program refinement. It is defined
by preservation of functional properties: a program Prog is refined by Prog′ if
Prog′ exhibits less nondeterminism. That corresponds to reducing the range of
choice available whilst maintaining the functional properties, and is equivalent
to increased dwp results.

Definition 1 (Program refinement [13]). Program Prog is refined by pro-
gram Prog′, or Prog � Prog′, if and only if,

∀A • dwp.Prog.A � dwp.Prog′.A .

As a total-correctness semantics, we can use dwp to express program termination.
An iterative program terminates only if there is no chance of iterating forever,
i.e. the chance that the loop guard is eventually not satisfied must be 1. An
equivalent, but simpler property is that terminating programs have no effect on
constant-valued expectations.

Definition 2 (Program termination [13]). We say program Prog terminates
(with probability 1), if and only if, for all non-negative reals k,

dwp.Prog.k ≡ k .

As expected there is a duality between awp and dwp in the context of program
refinement, but only for terminating programs — as dwp results increase, awp
results decrease.

Theorem 3 (Dual refinement). If programs Prog and Prog′ terminate, then
Prog � Prog′, if and only if,

∀A • awp.Prog′.A � awp.Prog.A .

114 O. Celiku and A. McIver

Next we set out a semantics which takes account of the specified delays.
Given a program P we write Δ(P) for the expectation which, when evaluated at
an initial state s, gives the expected accumulated delays specified by the delay
statements if execution begins at s. The structural semantics of Δ is set out in
full at Fig. 2.

skip Δ(skip) =̂ 0 ,
delay Δ(〈X〉) =̂ X ,
assignment Δ(x := E) =̂ 0 ,
sequential composition Δ(r; r′) =̂ Δ(r) + awp.r.Δ(r′) ,
probabilistic choice Δ(r p⊕ r′) =̂ p × Δ(r) + (1 − p) × Δ(r′) ,
nondeterministic choice Δ(r [] r′) =̂ Δ(r) � Δ(r′) ,
Boolean choice Δ(if B then r else r′) =̂ [B] × Δ(r) + [¬B] × Δ(r′) ,
iteration Δ(do B → r od) =̂ (μX • [B] × (Δ(r) + awp.r.X)) .

Fig. 2. Delay semantics of pGCL with 〈X〉

We note that only the 〈X〉 statement introduces actual delays; the other opera-
tors combine the delays of their operands, taking account of the intervening prob-
abilistic transitions. The choice operators — r [] r′, r p⊕r′ and (if B then r else r′)
— take (in the worst case) the maximum, the average and the Boolean combina-
tion of their operands. The rule for a sequential composition r; r′ corresponds to
the sum of the two expected delays, although Δ(r′) must be averaged over the dis-
tribution of intermediate states as a result of r’s execution. The definition reflects
the idea that subsequent delays are independent of earlier ones.

As for the functional properties, the delay semantics has a similar opera-
tional interpretation based on a state-to-distributions model where some of the
transitions are “weighted” with delays. However we can appreciate informally
the definitions of Fig. 2 by returning briefly to the “variable counter” approach
suggested in Sec. 2. Given a program P containing delay statements, we imagine
replacing each delay 〈X〉 with the assignment n := n + X.s, where as before n
is a fresh variable; next we imagine executing the statement n := 0 immediately
before the revised P . We write Pn for the resulting program — flips and flipsn

at Eqns. 5 and 3 above illustrate the conversion from P to Pn. It is possible to
show that awp.Pn.n � Δ(P), and thus that the Δ semantics is correctly giving
the required upper bound on the running time. The details for Δ(flips) are as
follows, where we write flip for b := T 2/3⊕ b := F:

Δ(flips)
≡ (μX • [b = F]× (Δ(flip; 〈1〉) + awp.(flip; 〈1〉).X)) Fig. 2

≡ (μX • [b = F]× (1 + awp.(flip; 〈1〉).X)) Fig. 1

≡ 3[b = F]/2 ,

in agreement with Eqn. 4 above.

Compositional Specification and Analysis of Cost-Based Properties 115

In general the analysis of iterations is not computed directly as above, but
rather relies on an invariant-style rule in the same way that correctness argu-
ments for loops rely on program invariants [15]. The details are set out in the
next lemma.

Lemma 4 (Δ-iteration).

∀A, r,B • [B]× (Δ(r) + awp.r.A) � A ⇒ Δ(do B → r od) � A .

We call any expectation A satisfying the antecedent a weak invariant.

There is a nice relationship between expected delays and termination: if the
expected cost for a single (iterative) step is bounded away from zero, and the
(worst-case) accumulated expected cost is finite, then the program is guaranteed
to terminate.

Lemma 5 (Δ-reasoning and termination).

∀B, r • terminates (r) ∧
(∃c • 0 < c ∧ c �= ∞ ∧ c[B] � Δ.r) ∧
(∃c′ • 0 < c′ ∧ c′ �= ∞ ∧ Δ(do B → r od) � c′)
⇒ terminates (do B → r od) .

This result allows us to reduce the burden of analysis as we can deduce termi-
nation immediately from the efficiency analysis.

3.1 An Automated Verification Condition Generator

To support the practical analysis of delays we implemented a verification condi-
tion generator (VCG) which takes a goal of the form Δ(r) � X, systematically
transforms “Δ” and “awp”, and reduces the goal to checking relationships be-
tween explicit expectations. The VCG works with Prolog-like rules derived from
the definitions set out in Fig. 1 and Fig. 2, and monotonicity of awp [13]. In the
case of iterations Lem. 4 justifies a verification style based on user-defined weak
invariants in much the same way that the application of standard loop rules
requires user-defined program invariants.

If r contains no loops an exact (although not necessarily fully simplified)
result for Δ(r) can be produced automatically, whereas in the case loops are
present, the weak-invariant approach limits the automatic calculation to the
calculation of upper bounds on Δ(r). Exact results can be verified for loops
too, however that requires interactive algebraic reasoning as demonstrated in
the calculation of flips.

To illustrate we consider the analysis of a standard geometric probability
distribution generated by sampling from a source of random bits [10, 7]. A
Geometric(p) random variable is defined to be the index of the first success
in an infinite sequence of Bernoulli(p) trials, where a Bernoulli(p) trial is just a
flip of a p-biased coin. The Geometric(1

2) distribution can be sampled by record-
ing the number of leading “heads” in a potentially infinite sequence of coin flips,

116 O. Celiku and A. McIver

which we model in the program below using a variable m, incremented whenever
the loop guard is true.

Geometric =̂ m := 0;
do (b = T) →

m := m + 1;
b := T 1/2⊕ (b := F; 〈[m = k]〉)

od

⎫⎪⎪⎬
⎪⎪⎭

loop

The delay statement 〈[m = k]〉 depends on the value of the program variables,
and is only nonzero when m is equal to k, and b is set to F, at which point the loop
terminates. Thus Δ(Geometric) gives the expected cost of that event which, by a
fact of basic probability theory, is the same as the probability that the program
terminates with m equal to k.

To verify the total delay, we provide [m < k∧ b = T]/2k−m as weak invariant
for loop. Since Δ(Geometric) ≡ awp.(m := 0).Δ(loop), we expect

[0 < k ∧ b = T]/2k

to be (an upper bound on) the total expected delay, a fact which is verified from
the VCG and expressed in the following theorem:

Δ(Geometric) � [0 < k ∧ b = T]/2k . (6)

Indeed in this case we can verify an equality, because there is no nondeter-
minism in the program, and it terminates.

To give an idea of the verification effort involved, we recorded the number of
primitive inference steps HOL took to prove the theorem at (6) above: it took
83,922 such steps. The VCG generated 4 verification conditions and around 30
lines of interactive proof were needed to discharge them. On the other hand, the
VCG could automatically verify (in 9,582 primitive inference steps) that loop
iterates on average (at most) twice. In the next section we examine techniques
to mitigate the effort of interactive proof.

4 Cost-Based Program Refinement

Although in theory the basic HOL verification condition generator outlined
above has sufficient implemented theory to verify programs’ expected delays,
unfortunately in practice it requires too much guidance from the prover for pro-
grams of any intricacy. In this section we investigate more sophisticated tech-
niques for simplifying analysis in order to increase the efficiency of tool support
in practice.

Our approach is to augment the standard equivalence between programs
based on functional properties with expected delays. That will allow us to sim-
plify programs using refinement-like techniques.

Compositional Specification and Analysis of Cost-Based Properties 117

Definition 6 (Δ-refinement). We say program Prog is “delay-refined by pro-
gram Prog′”, or Prog � Prog′, if and only if,

Prog � Prog′ ∧ Δ(Prog′) � Δ(Prog) .

In other words, Prog′ �-refines Prog only if Prog′ preserves both the functional
properties of Prog, and is at least as efficient. The next theorem shows that
this definition does indeed lead to a compositional equivalence, in the sense that
�-refinement is preserved by contexts.

Theorem 7 (�-monotonicity).

∀Prog, r, r′ • r � r′ ∧ terminates (r) ⇒ Prog � Prog[r\r′] .

The extra condition in Thm. 7 — that r terminates 3 — is needed to be able
to appeal to Thm. 3, the duality between awp- and dwp-results, since both awp
and dwp are used in the proof.

Now that we have access to the �-refinement, we are in a position to develop
a calculus of delays; in Fig. 3 we set out some �-refinement rules. Rules (7–
9) illustrate some simple ways to combine delay statements directly, whereas
rules (10–13) promote the technique of separating the delays from the standard
program statements. Rule (13), for example, suggests a proof method based
on a gradual simplification of both the functional properties — using standard
program refinement — and of the delay analysis.

〈X〉 [] 〈Y 〉 ≡ 〈X � Y 〉 (7)

〈X〉; 〈Y 〉 ≡ 〈X + Y 〉 (8)

〈X〉 p⊕ 〈Y 〉 ≡ 〈p × X + (1 − p) × Y 〉 (9)

P ; 〈X〉 ≡ 〈awp.P.X〉; P (10)

P ; 〈a〉 p⊕ Q; 〈b〉 ≡ (P p⊕ Q); 〈p × a + (1 − p) × b〉 (11)

(P [] Q); 〈X � Y 〉 � P ; 〈X〉 [] Q; 〈Y 〉 (12)

Q � P ∧ Δ(Q) ≡ 0 ⇒ 〈Δ(P)〉; Q � P (13)

In the above definitions, a and b are non-negative reals, X and Y are expectations,
and P and Q are pGCL programs with delays. The equivalence symbol means that the
�-refinement holds in both directions.

Fig. 3. A calculus of delays

Turning now to the application of the rules in Fig. 3 we observe that, as
well as needing to determine Δ-results, we also need to establish �-refinements

3 Termination of r′ follows from termination of r, and r � r′.

118 O. Celiku and A. McIver

between program fragments. Unfortunately direct appeal to Def. 1 for accom-
plishing the latter task implies consideration of all expectations, clearly an infea-
sible approach in practice. As for standard programs, we need to derive instead
“first order” rules to determine �-refinements — but for probabilistic programs
however, this is not a straightforward matter [13]. In some important cases how-
ever, such as sampling from randomly-generated bits, “almost” first-order rules
are indeed available, and the next lemma sets out a rule for one such simple
case. Essentially, any program �-refines a probabilistic choice provided that the
probabilities are preserved.

Lemma 8. Let P =̂ x := 0 p⊕ x := 1. For any pGCL program Q, if

p � dwp.Q.[x = 0]
and 1− p � dwp.Q.[x = 1] ,

then P � Q.
To illustrate Lem. 8 we consider the cost of simulating a biased coin by sam-

pling from a stream of uniformly-generated random bits. Let m and n be natural
numbers such that 0 ≤ m/n ≤ 1 (and n �= 0). The program Bernoulli(m/n, x)
uses only “1/2⊕” choices to simulate a “m/n⊕” choice, which we prove formally
below.

Bernoulli(m/n, x) =̂ |[var s, b •

s := m;
(b := T 1/2⊕ b := F); 〈k〉
do (b = T) →

s := 2s;
if s > n then s := s− n else skip;
(b := T 1/2⊕ b := F); 〈k〉

od;

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

bloop

if 1/2 ≤ s/n then x := 0 else x := 1
]|

Informally however, Bernoulli(m/n, x)’s correctness relies on the fact from prob-
ability theory that for any fraction 0 ≤ p ≤ 1 the equality p =

∑
i≥0 pi/2i is

valid, where 0.p0p1p2 . . . is the binary expansion of p [7]. But the infinite sum
is just the expected value with respect to the geometric distribution of the ran-
dom variable which returns the i’th bit in the binary expansion of p. Focus-
ing on the variable b, and comparing with the program Geometric above, we
see that bloop below does indeed compute a geometric distribution over, so-
to-speak, leading “heads”. The additional variable s computes in situ the i’th
bit in the binary expansion of m/n. Observe that the variables s and b are in-
troduced as local variables so that overall the program can be considered to
operate over the single (public) variable x. Local variables are handled in the
usual way [15]: they are introduced via a nondeterministic choice over their type,
thus awp.(|[var y ·P]|) ≡ awp.(y ∈ Y ;P) for local variable y, and the introduction

Compositional Specification and Analysis of Cost-Based Properties 119

is instantaneous, i.e. Δ(|[var y · P]|) =̂ Δ(P). 4 We attach a delay of k to each
call to the random bit, modelled with a “1/2⊕” choice, so that the performance
property effectively determines the expected number of coin flips, with a cost of
k per flip.

To verify that Bernoulli(m/n, x) does indeed simulate a “m/n⊕” flip, using a
total delay of no more than 2k, we prove the �-refinement,

〈2k〉; (x := 0 m/n⊕ x := 1) � Bernoulli(m/n, x) , (14)

which, according to Def. 6, we do by considering the delay- and functional anal-
yses separately.

The delay-analysis proceeds in two steps. First we show that

Δ(bloop) � 2k[b = T] ,

using the weak invariant 2k[b = T]; next we use rule (13) of Fig. 3 establishing
the inequality

〈2k[b = T]〉; bloop′ � bloop ,

where bloop′ is the delay-free version of bloop. Finally we use rules (8) and (10),
first to combine the two remaining delay statements (adding the delays together),
and then to bring all the delays to the front through the various assignments to
b and s. The result of the analysis is that indeed

Δ(Bernoulli(m/n, x)) � 〈2k〉 .

The delay-analysis is also used to establish termination for bloop (and hence
Bernoulli(m/n, x)). Note that it is sufficient to prove that bloop satisfies the
conditions of Lem. 5 for a particular (suitable) instance of k, since dwp.bloop is
not affected by k. It is easy to see that any finite positive value for k would do.

To establish the �-refinement we verify that two conditions

m/n � dwp.Bernoulli(m/n, x).[x = 0] and
1−m/n � dwp.Bernoulli(m/n, x).[x = 1] ,

are satisfied, which suffices by Lem. 8. The inequalities follow using standard
probabilistic invariant-based techniques [13] and and their HOL implementa-
tion [8].

5 The IEEE FireWire

In this section we illustrate our techniques further by considering the root con-
tention mechanism present in the IEEE High Performance serial bus(“FireWire”)

4 The actual HOL implementation achieves the same effect differently, but we omit
the details here; a nice way of implementing local variables is shown in [16].

120 O. Celiku and A. McIver

standard [9], which is used to transport digitised video and audio signals within
a network of multimedia systems and devices.

As part of the protocol, a leader must be elected whenever there is a bus
reset in the network. The election protocol first constructs a spanning tree over
the network nodes with the tree root becoming the leader. To do this, nodes
engage in a series of negotiations in which they send “be my parent” requests to
their neighbours who are not already their children. Contention can arise when
two nodes simultaneously send requests to each other; to break the stalemate
situation when such a contention is detected, the contending nodes flip coins to
determine whether to wait either a short or a long delay before backing off and
trying again.

In this paper we only consider the contention mechanism, and our specifica-
tion is based on that of Fidge and Shankland [4], who used pGCL to analyse the
expected number of “back-off-and-retry” rounds until the contention is resolved.
Here we do something rather different, and use our delay-statements to incorpo-
rate specific times attached to the short and long delays specified by the IEEE
standard [9]. We then analyse the total expected time delay for the contention
to resolve (rather than the expected total number of rounds). Nondeterminism
is important here as the delays for the “long/short” delays are only specified as
ranges.

Fidge and Shankland’s specification of the contention mechanism is very sim-
ple: once two nodes are in a “contention state” they repeatedly flip for “long”
or “short” delay. We write x and y for the variables corresponding to the two
contending nodes, and these are set probabilistically; an outcome of 0 represents
a short delay, and 1 a long delay. Thus in any round there are three possible
outcomes: either both nodes choose short, both choose long, or one chooses short
and the other long. A short delay is specified to be in the range 240−260 ns, and
a long delay in the range 570− 600 ns; we assume that the time to send packets
is negligible and that in the case that the nodes choose differently the time is
dominated by the long delay. In the program below we use [] to incorporate the
above delay ranges. We also use the Bernoulli(p, x) program above to simulate
a “p⊕” choice, whose optimal value we determine formally below.

FireWire =̂ do x = y →
Bernoulli(p, x);
Bernoulli(p, y);
if (x = 0 = y) then 〈240〉 [] 〈260〉
else if (x = 1 = y) then 〈570〉 [] 〈600〉
else 〈570〉 [] 〈600〉

⎫⎬
⎭ delays

od

The formal analysis proceeds in several simplification steps. First we simplify
both Bernoulli-procedures using the analysis of Sec. 4, for example from Eqn. 14
we have

〈2k〉; (x := 0 p⊕ x := 1) � Bernoulli(p, x) .

Compositional Specification and Analysis of Cost-Based Properties 121

As each Bernoulli-procedure supplies a delay of 2k, that makes 4k in all, and we
can move the 〈4k〉-statement to the front of the FireWire outer loop body. Next
we take into account the delays involved in the long/short waits as follows:

Δ(x := 0 p⊕ x := 1; y := 0 p⊕ y := 1; delays)
≡ awp.(x := 0 p⊕ x := 1; y := 0 p⊕ y := 1).Δ(delays) Fig. 2

≡ 〈600− 340p2〉 . Fig. 1

Next moving the 〈600− 340p2〉 statement through the probabilistic choices using
rule (13), and combining it with the 〈4k〉-statement using (8) we have verified
the �-refinement:

do x = y →
〈4k + 600− 340p2〉;
(x := 0 p⊕ x := 1);
(y := 0 p⊕ y := 1)

od

� FireWire

Finally using a direct Δ-analysis on the simplified loop with weak invariant
[x = y](2k + 300− 170p2)/(p(1− p)) by �-refinement we deduce that

Δ(FireWire) � [x = y](2k + 300− 170p2)/(p(1− p)) . (15)

As a corollary to this, using Lem. 5, since the total expected delay until
conflict is resolved is finite (for 0 < p < 1 and finite k), we deduce that the
protocol terminates with probability 1, for 0 < p < 1.

A number of researchers have investigated the expected time delay of the
contention stage using a wide variety of methods, though most of them are
based on some form of model checking; Stoelinga [17] gives a nice survey of
those results. Of those that investigate the effect of biasing the probability of
selecting between long and short delays, all conclude that there should be a bias
in favour of a short delay, for although this results in more rounds until the
conflict is resolved, overall the total time delay is still minimised. Assuming that
k is small compared to the back-off delays, examining Eqn. 15 we see that the
right-hand side takes a minimal value (for 0 ≤ p ≤ 1) ranging between 0.598
and 0.603 for various values of k. This compares almost precisely with results
reported by Stoelinga.

6 Conclusions

In this paper we have provided a formal framework for reasoning about per-
formance-style properties at the level of program code; we have also implemented
a tool which provides a high assurance of correctness. Our approach draws heav-
ily on the refinement-style of program verification, which promotes abstraction
and proof re-use, the latter was borne out by our practical experience where we
made many small changes to the specifications of the delay statements. Other

122 O. Celiku and A. McIver

approaches, whilst also being compositional, do not exploit program refinement
to simplify performance-style analysis.

In the future we would like to explore the possibility of finding weak invariants
using tools such as constraint solvers, reducing even further the burden on the
human prover.

References

1. O. Celiku and A. McIver. Cost-based analysis of probabilistic programs mechanised
in HOL. Nordic Journal of Computing, 11(2):102–128, 2004.

2. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
3. Erlangen-Twente Markov Chain Checker. http://www.informatik.uni-erlangen.

de/etmcc/.
4. C. J. Fidge and C. Shankland. But what if I don’t want to wait forever? Formal

Aspects of Computing, 15(2-3):258–279, 2003.
5. M. J. C. Gordon and T. F. Melham. Introduction to HOL (A theorem-proving

environment for higher order logic). Cambridge University Press, 1993.
6. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge

University Press, 1996.
7. J. Hurd. Formal Verification of Probabilistic Algorithms. PhD thesis, University

of Cambridge, 2002.
8. J. Hurd, A. McIver, and C. Morgan. Probabilistic guarded commands mechanized

in HOL. In Proc. of QAPL 2004, Mar. 2004.
9. Institute of Electrical and Electronics Engineers. IEEE Standard for a High Per-

formance Serial Bus (Ammendment). Std 1394a-2000. June 2000.
10. D. E. Knuth and A. C. Yao. The complexity of nonuniform random number

generation. In J. F. Traub, editor, Algorithms and Complexity: New Directions
and Recent Results. Academic Press, 1976.

11. D. Kozen. A probabilistic PDL. In Proceedings of the 15th ACM Symposium on
Theory of Computing, 1983.

12. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model
checker. In Proceedings of TOOLS 2002, volume 2324 of Lecture Notes in Computer
Science, pages 200–204. Springer, Apr. 2002.

13. A. McIver and C. Morgan. Abstraction, refinement and proof for probabilistic
systems. Springer, 2004.

14. C. Morgan and A. McIver. pGCL: Formal reasoning for random algorithms. South
African Computer Journal, 22:14—27, 1999.

15. C. C. Morgan. Programming from Specifications. Prentice-Hall, 1990.
16. T. Nipkow. Hoare logics in Isabelle/HOL. In H. Schwichtenberg and R. Stein-

brüggen, editors, Proof and System-Reliability, pages 341–367. Kluwer, 2002.
17. M. Stoelinga. Fun with FireWire: A comparative study of formal verification

methods applied to the IEEE 1394 root contention protocol. Formal Aspects of
Computing, 4(3):328–337, 2003.

Formally Defining and Verifying Master/Slave
Speculative Parallelization�

Pierre Salverda, Grigore Roşu, and Craig Zilles

University of Illinois at Urbana-Champaign
{salverda, grosu, zilles}@cs.uiuc.edu

Abstract. Master/Slave Speculative Parallelization (MSSP) is a new
execution paradigm that decouples the issues of performance and cor-
rectness in microprocessor design and implementation. MSSP uses a fast,
not necessarily correct, master processor to speculatively split a program
into tasks, which are executed independently and concurrently on slower,
but correct, slave processors. This work reports on the first steps in our
efforts to formally validate that overall correctness can be achieved in
MSSP despite a lack of correctness guarantees in its performance-critical
parts. We describe three levels of an abstract model for MSSP, each re-
fining the next and each preserving equivalence to a sequential machine.
Equivalence is established in terms of a jumping refinement, a notion we
introduce to describe equivalence at specific places of interest in the code.
We also report on experiences and insights gained from this exercise. In
particular, we show how formalizing MSSP facilitated a deeper under-
standing of performance-correctness decoupling and its attendant trade-
offs, all key features of the MSSP paradigm. Moreover, formalization
revealed all assumptions underpinning correctness, which, being spec-
ified abstractly, can be understood in an implementation-independent
way. We found these results so valuable that we plan to advance MSSP’s
formalization in parallel with its subsequent design iterations.

1 Introduction

Technology advances have reached the point where it is now possible to engineer
multiple processor cores onto a single chip. While this capability lends itself to
throughput-oriented workloads, latency-critical sequential applications do not
see any benefit. The traditional approach of relying on the programmer to find
and extract parallelism in such programs has met with little success, primarily
because manual parallelization is complicated and error-prone. Thus, a funda-
mental challenge facing computer architects today is bringing the benefits of
multiple cores to bear on the performance of sequential programs.

Master/Slave Speculative Parallelization (MSSP) [14] is a recent proposal for
automatically extracting parallelism from sequential programs. The paradigm

� This work was supported in part by a grant from Intel and National Science Foun-
dation grants CCR-0311340 and CCF-0347260.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 123–138, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

124 P. Salverda, G. Roşu, and C. Zilles

Simple
processor
Simple

processor
Simple

processorcompiler
Simple

Runtime
hints

Input
data

Source
program

Output
data

Correct
binary

Distilled
binary

Correct path

Fast path

Slave
processor

Master
processordistiller

Program

Fig. 1. Conceptual organization of MSSP. On the fast path, the master executes

an approximate program (distilled binary) to run ahead of the slaves, providing hints

(live-ins) of where execution is likely to be headed. On the slower correct path, the

slave processors use the hints to concurrently compute their tasks

uses a master processor to divide the dynamic instruction stream into pieces,
called tasks, which are executed in parallel on multiple slave processors. Dataflow
dependences between the tasks are resolved by the master, which predicts live-in
values for each task by executing an approximate version of the original program.
Slaves use the original program code when executing their tasks, but operate
on the speculative live-in data supplied to them by the master. The results
computed by slaves are committed to the machine’s non-speculative state only
if the corresponding live-ins are consistent with that state. If inconsistencies are
detected, the results are discarded and the machine resumes its operation using
the pristine non-speculative state as a starting point. Because slaves operate
concurrently, overall performance is determined largely by the master processor.
In turn, because the master executes an approximate (shorter) version of the
original program, MSSP is able to achieve significant speed-ups over speculative,
out-of-order superscalar machines [14].

The potential for high performance in MSSP is underpinned by its ability
to decouple performance and correctness concerns, in so doing facilitating the
simultaneous pursuit of these otherwise conflicting goals. Complexity lies at the
root of the tension between performance and correctness: pursuit of the former
incurs complexity (out-of-order superscalar architectures and optimizing code
transformations are complex), which, in turn, compromises our ability to ensure
the latter (complex systems are hard to verify). MSSP decouples the two by
separating the parts of the system that produce output — and are thereby
constrained to be correct — from the parts that determine the rate at which
output is produced. Figure 1 depicts this idea.

Decoupling in such a framework is successful if neither subsystem can com-
promise the objectives of the other. That is, the fast path should not compromise
correctness and the correct path should not determine overall performance. As
noted already, the latter property does indeed hold in MSSP because the master
processor resides on the critical path, not the slaves. The former requirement —
that of correctness in spite of the potential for errors on the fast path — is the
focus of this paper.

Formally Defining and Verifying Master/Slave Speculative Parallelization 125

Thus, our primary goal here is to demonstrate that correctness in MSSP can-
not be influenced by how the master operates, nor by the instructions contained
in the distilled binary it executes. In so doing, we conclusively demonstrate that
the correct path is properly decoupled from the fast path. This provides a formal
basis for a central theme in our work: correctness need not be compromised by
the pursuit of performance.

The formalization of MSSP also served a secondary goal of obtaining an
abstract model for the new execution paradigm. In developing that model, we
have exposed the fundamental aspects of MSSP that underpin its correctness.
Specifically, we isolated the notion of task safety (Section 4) as the principal con-
dition upon which correct operation rests. That we could distill the correctness
requirement so precisely and succinctly was simultaneously surprising and en-
couraging. Indeed, the mere process of formalizing MSSP has been fundamental
to our gaining a deeper understanding of an execution paradigm we previously
understood only “intuitively.” The lack of implementation-specific detail in the
abstract model will also facilitate reasoning about correctness in subsequent it-
erations of the MSSP design, each of which is likely to be encumbered by the
artifacts of technology-driven design trade-offs. These benefits accrue because
we embarked on the formal study early on in our research, in contrast to much
formal work, which tends to be a “post-mortem” exercise whose sole goal is to
find errors in an extant design. In this respect, our experiences are in agreement
with previous assertions (see, for example, [5]) that formal verification should
be a part of the design process.

In terms of the formalization itself, we report on our use of rewriting logic [7],
as supported by Maude [3]. We establish correctness by proving MSSP’s equiv-
alence to a conventional sequential execution model. In this respect, our work is
similar to the extensive studies of microarchitecture verification, where correct-
ness is proven by comparing a microarchitectural specification to the specification
of an instruction set architecture (ISA). The work of Burch and Dill [2], Hunt
and Sawada [10, 11] and Arvind and Shen [1] are notable examples in this area.
However, we differ from those studies in that we are not trying to establish that
a refinement — in the usual sense of the word — of an ISA is correct, since
MSSP is not a standard refinement of an ISA.

Although an MSSP machine implements a conventional sequential ISA, it dif-
fers from a sequential machine in terms of the granularity at which updates the
architected state1 occur — MSSP updates state at task boundaries rather than
at instruction boundaries. Thus, a key property of MSSP is that it “jumps” over
sequences of states in the sequential model. In fact, if one ignores MSSP tran-
sitions that do not change architected state, then the sequential model can be
regarded as a stuttering refinement [6] of MSSP. But this is somewhat counterin-
tuitive because our objective is to reason about MSSP in terms of the sequential

1 By this we mean the ISA-visible state — the set of all registers and memory cells
accessible via the instruction set. Internal state, such as that held speculatively by
the master and all slave processors, is not included in this set.

126 P. Salverda, G. Roşu, and C. Zilles

model, not the other way round. To capture the desired relationship between
MSSP and the sequential model, we define the notion of jumping refinement in
Section 3 and then show formally that MSSP is a jumping refinement of the
sequential model.

We tackled the formalization process iteratively, beginning with a high-level
abstract model in which we make a number of simplifying assumptions. Section 4
describes this work. Sections 5 and 6 show successive refinements of the abstract
model, identifying low-level requirements from which our initial assumptions can
be inferred. Throughout, we present only the most important and interesting re-
sults at an abstract, mathematical level, rather than our particular formalization
in Maude. Even though Maude provides a suite of useful tools for our project,
we would like to avoid giving the reader the impression that it was a crucial part
of our formalization. We believe that one can relatively easily adapt our work to
other formal systems and tools. Section 7 concludes the paper and summarizes
some of our main observations and lessons learned during this work.

2 An Overview of MSSP

In this section, we present an overview of MSSP. This high-level description is
meant to provide the contextual knowledge necessary to understand the formal
work that follows in the remainder of the paper. A more extensive treatment of
MSSP can be found in [13] and [14].

2.1 High-Level Operation

Consider again Figure 1. An MSSP machine has two execution paths: the fast
path and the correct path. The fast path is composed of a single, complex master
processor that executes a speculatively optimized executable called the distilled
program. The master processor runs ahead of the correct path execution to pro-
duce hints of where the execution is headed. The correct path is implemented by
multiple slave processors, which lag behind the master. Because the individual
slave processors are slower than the master, we need a means for the correct
path to keep up. MSSP uses speculative parallelization [12] for this purpose. Ex-
ecution of the correct path program is split into segments, called tasks, that are
executed concurrently on the slaves.

To enable these tasks to execute independently and in parallel, the master
execution is used to predict the sequence of tasks — that is, the starting program
counter (PC) of each task, and the values that are live-in to each of them.
The predictions are generated by logically taking a checkpoint of the master’s
(speculative) state at the point corresponding to the beginning of the task.

Because the master’s predictions are not guaranteed to be correct, the re-
sults computed by slaves are themselves speculative, and must be checked be-
fore they can be made architecturally visible. To enable this, each task’s inputs
(live-ins) and outputs (live-outs) are recorded and sent to a verification/commit
unit. When a completed task becomes the oldest (i.e., the next to commit), a

Formally Defining and Verifying Master/Slave Speculative Parallelization 127

CHKPT

FORK

FORK

FORK

P1 P2 P3P0

A’

B’

C’

Task A

Task B

Task C

Verify
Commit State

Misspeculation

Restart Task C
C’

Bad Checkpoint
...

1

2
3

4

7

Fork Task

Execute Task

8

Squashed

Ti
m

e

Commit State

Architected
State

live-ins, spec. stores

Verify

Detected

live-ins, spec. stores 6

5

Fig. 2. Master processor distributes checkpoints to slaves. The master, execut-

ing the distilled program on processor P0, assigns tasks to slave processors, providing

them with predicted live-in values

memoization-like operation is performed that commits the outputs if the inputs
match the machine’s current architected state.

2.2 MSSP Example

To facilitate a conceptual understanding of MSSP, we provide an example that
outlines its basic behavior. Figure 2 illustrates an MSSP execution with four
processors: one master (P0) and three slaves (P1, P2, and P3) that begin the
example idle. Each processor has its own register file and local first-level cache;
values held there are speculative. The machine’s architected state appears on
the right in the figure. This holds the current (correct) values of all ISA-visible
registers and memory addresses. In an MSSP machine, this is maintained in the
shared second-level cache, which is backed by DRAM.

At annotation (1) in the figure, the master processor spawns Task B onto
processor P2, which then begins executing (2). P0 continues executing (3) the
distilled program segment that corresponds to Task B, which we refer to as
Task B′. As the slave executes Task B, it reads values that it did not write (the
live-in values supplied by the master) and performs writes of its own (the live-out
values). When Task B completes (4), P2 sends its live-in and live-out values to
a verify/commit unit, which checks that the live-ins exactly correspond to the
architected state; if so, the live-outs can be committed to architected state (5).
The commit is implemented so that it appears atomic to all processors in the
system [14]. This avoids potential problems with memory coherence if MSSP is
used in a multiprocessor system.

If the master generates an incorrect value (3), one of the recorded live-in
values will differ from the corresponding value in the architected state, and a
mismatch will be detected at verification (6). When this occurs, the master
and all other in-flight tasks are squashed — the speculative data they hold in

128 P. Salverda, G. Roşu, and C. Zilles

their registers and caches is discarded. The architected state of the machine is
not affected by the misspeculation, so it holds the state the program was in at
the completion of Task B. At this time, the master is restarted at C′ (7) and,
in parallel, non-speculative execution of the corresponding task in the original
program (Task C) begins on P2 (8). In both cases, the processors have their
state seeded with the correct values currently held in architected state.

3 Rewriting Logic, Jumping Refinements and Maude

We chose rewriting logic as the formal framework in which to define and reason
about MSSP. Rewriting logic (RL) has been introduced as a unifying framework
for concurrency [7], making it quite appealing for a complex and highly con-
current architecture like MSSP. As a tool supporting RL, we chose the Maude
system [3]. Maude provides a series of formal analysis tools for rewriting logic
theories, including: (1) a highly-efficient rewriting engine; (2) a search procedure
exploring the (potentially unbounded) state space using a breadth-first strategy;
(3) a linear temporal logic (LTL) model checker; and (4) an inductive theorem
prover and proof assistant (ITP) [4]. While our present work does not require all
of these features, the potential to expand without changing tools makes Maude
a compelling choice.

RL extends equational logic by adding rewriting rules as parameterized state
transitions. Briefly, a rewriting theory R is a triple (Σ,E,R), where Σ contains
all the type and operator declarations, E contains a set of equations, and R is
a set of rewriting rules. Equations in E are used to define the computational
infrastructure of a system specification (such as predicates and sets of tasks,
in the case of MSSP), while the rewriting rules in R are used to specify the
concurrent aspects (such as committing a slave processor’s live-outs). Equations
and rules can contain variables, and they are applied to a given term at any
position where they match. Given R = (Σ,E,R), we let ≡R and⇒R denote the
binary relations on terms derived by applying the equations and the rewriting
rules, respectively; ⇒�

R denotes the reflexive, transitive, and ≡R-closure (i.e.
modulo equations in E) of ⇒R. The subscript R is omitted whenever apparent
from context.

Any transition system can be defined as a rewrite theory. In particular, both
the sequential model and the various versions of MSSP are rewrite theories,
each having a special state type (or sort); the rewrite sequences on state terms
correspond to state transitions. The standard notion of (stuttering) refinement
of rewrite theories states that a step in the abstract theory can be simulated
by a sequence of steps in the refined theory. We would clearly want MSSP to
refine the sequential model, but note that this is not true within the standard
meaning of (stuttering) refinement — and this has nothing to do with our choice
of using rewriting logic for our formal framework — because MSSP deliberately
does not reproduce all the steps of the sequential model. To formally capture
this relationship, we introduce the notion of jumping refinement, as follows.

Formally Defining and Verifying Master/Slave Speculative Parallelization 129

Definition 1. Given R = (Σ,E,R) and R′ = (Σ′, E′, R′) with rewrite rela-
tions ⇒R and ⇒R′ , respectively, and containing some designated sorts State
and State′, respectively, together with a map ψ associating terms of sort State to
terms of sort State′, we say R′ is a jumping ψ-refinement of R iff for any
transition t ⇒R′ u in R′ there is a sequence ψ(t) ⇒�

R ψ(u) of transitions in R.

The intuition here is that the states in R′ contain more information than
those in R, and ψ is a projection extracting a state of R from a state of R′.
It may therefore be the case that several transitions take place in R′ without
changing the corresponding state in R. In other words, it may be the case that
t ⇒R′ t′ while ψ(t) ≡R ψ(t′), but it is also possible that ψ(t) ⇒+

R ψ(t′) for a
large number of transitions in R. In the first case we metaphorically say that
the transition in R′ “accumulates energy” with respect to R, and in the second
that the transition in R′ “jumps” with respect to R. In our case, R′ will specify
MSSP, R the sequential model, and ψ will return the architected state of MSSP.
Note that the slave execution steps in MSSP do not modify the architected
state, so their execution “accumulates energy”; but once a slave computation is
committed, the MSSP machine “jumps” several sequential states.

4 First Iteration

We next introduce abstract models for sequential and MSSP execution, and then
show that the latter is a jumping refinement of the former. Since the sequential
machine model under consideration is deterministic, its executions can safely be
considered atomic. This implies the rewrite rules (transitions) in the sequential
model can be regarded as equations, so we will often say, by slight abuse of
language, that MSSP is equivalent to the sequential model instead of a jumping
refinement of it.

The formalisms presented here are abstracted from our original Maude source,
which is harder to read but available online in complete form at [8]. The reader
is encouraged to refer to that source for a mechanical formalization, both of the
execution model specifications and of the proofs of the main results, the details
of which we must necessarily omit here.

4.1 The Sequential Execution Model

The sequential execution model, which we denote by SEQ, serves as a reference
against which correctness of MSSP is measured. Since we do not wish to couple
ourselves to any particular sequential ISA, we avoid specifying one for SEQ. We
can afford to do so because we assume that the slaves implement the same ISA
as the “reference” sequential machine.

The SEQ model is centered on the notion of machine state. Although we have
defined machine state precisely in other work [9], the abstractions we present in
this paper are at a sufficiently high level for us to avoid having to impose a
structure on it. Thus, machine state is defined simply as the domain, denoted
by S, in which execution occurs. That said, it is useful, in this and subsequent

130 P. Salverda, G. Roşu, and C. Zilles

sections, to understand — if only informally — that a member of S captures
the values held in a machine’s ISA-visible storage cells (registers and memory
locations). We will see in Section 5 that the live-in and live-out data processed
by MSSP slaves also constitute machine states, but that these sets will generally
contain members for only a subset of all ISA-visible cells. That is, a machine
state need not hold members for all ISA-visible cells.

Executing an instruction results in updates to a machine’s storage cells, so an
instruction’s execution constitutes a transformation of machine state. Sequential
execution of more instructions is then defined as follows.

Definition 2 (Sequential execution). Function seq : S × + �→ S models
the sequential execution of multiple instructions, and is defined:

seq(S, n) =
{

S if n = 0
seq(next(S), n− 1) otherwise

Function next : S �→ S, which is uninterpreted, models the execution of a single
instruction.

Note that seq(S0, n) = S1 states only that S1 is the state that results after
executing n instructions in state S0. S0 determines those instructions implicitly,
since a machine’s state holds both instructions and data. The program counter,
itself a member of S0, identifies the cell in which the next instruction is held.

4.2 The MSSP Execution Model

The design of a realistic MSSP machine is encumbered by numerous performance-
mandated features, none of which have any bearing on the processes that underly
its correct operation. Thus, our formalisms are based not on the operation of a
real MSSP machine, but on a more abstract model [9] that eliminates all of the
performance-related complexities. A few differences between the abstract model
and the real machine are worth noting.

First, we view the master as a “black box” that is capable of generating
arbitrary live-in data. This is of course key to our objective of ensuring that
correctness in MSSP is entirely independent of how the fast path operates. This
view does, however, expose a limitation of the model: we cannot guarantee for-
ward progress if we cannot guarantee anything about live-in data. But this is an
artifact of our model, not of the real MSSP machine, which can make guaran-
tees about forward progress because it has the capability to revert, at any time,
to normal sequential execution. In the interests of keeping our formalisms sim-
ple, we choose not to model this dual-mode operation in MSSP, and thus treat
forward progress as a property that can be verified separate from this work.

Second, rather than have each task’s boundaries specified in terms of start and
end program counter values, the abstract model assumes tasks are delineated by
means of an instruction count — a task is complete when the specified number of
instructions have been executed. This simplifies our work because it eliminates
the need to expose the notion of program counter in the formal models.

Formally Defining and Verifying Master/Slave Speculative Parallelization 131

Finally, a real MSSP machine permits slaves to read (but not to write) ar-
chitected state, which, in turn, allows the master to supply as live-in data only
that which has been modified by it; values not modified recently are fetched by
a slave direct from architected state.2 Rather than encumber our model with
these details, we assume the master supplies all data that it assumes a slave will
need; slaves are wholly isolated from architected state (and one another) in our
abstract model.

Analogous to the sequential model, MSSP’s execution is defined in terms
of state transitions, but now manipulation of state occurs at the granularity
of tasks rather than instructions. MSSP contains a collection of “active” tasks.
At each step, the machine selects one task from this collection and, if certain
conditions are met (the task safety requirement), “commits” it to the architected
state. In this section, we do not specify a structure for tasks, nor do we define
how the commit process is effected. We state only that if a task satisfies the
commit requirement, then committing it has the same effect as advancing the
architected state according to the sequential model; we use #t to denote the
number of instructions by which this advancing occurs.

In this section, task safety is not interpreted; we define it only as a necessary
condition for committing a task, and hence for advancing the architected state.
Task safety is a property both of the task to be committed and the machine state
to which the commit is to occur. Changes to machine state can thus establish
or violate the safety of a given task. Hence, committing one task can affect the
safety of another.

We let T denote the set of all MSSP tasks, T ∗ the set of all finite sets of
tasks, and use operator | : T ∗ × T ∗ �→ T ∗ to construct new task sets; it is both
associative and commutative.3 | is overloaded to also permit construction of task
sets from individual tasks.

Definition 3 (MSSP execution). Function mssp : S × T ∗ �→ S models a
single step in the operation of an MSSP machine. For t ∈ T , τ ∈ T ∗ and S ∈ S
such that t is safe for S, we define the rule mssp(S, t|τ) ⇒ mssp(seq(S,#t), τ).
To define MSSP operation on the empty task set, we add rule mssp(S, ∅) ⇒ S.

Note that the above rule is conditional — t must be safe for S for the state
transition to apply, so at this point MSSP’s behavior is left undefined for tasks
that are not safe. Note also that the task that is selected for committing is not
prescribed, since | is associative and commutative. Indeed, a key property of our
model is that we do not impose an ordering on the sequence of task commits.

That ordering of commits is not important was initially surprising to us,
mainly because the extant MSSP design does impose an order. In fact, we dis-
covered this as a direct result of formalizing MSSP, which thus helped us dis-
cover that task safety is the single requirement for correct operation. Further, in

2 This is merely a performance-driven design choice: the master could equally supply
all data, but that would demand too much bandwidth between it and each slave.

3 We distinguish | from set union (∪) because, in our Maude framework, T is not a
set, but a multiset — it can contain duplicate members.

132 P. Salverda, G. Roşu, and C. Zilles

eliminating ordering from our model, we impose minimal constraints on imple-
mentations while still allowing for reasoning about correctness.

We point out again that our model for MSSP is devoid of any mention of the
master processor. The omission is deliberate — correct operation of the MSSP
machine is not dependent on what the master does. Correctness depends only on
the slaves and the manner in which the results of their execution are committed.

4.3 Equivalence

We need to show that any transformation of state that can be effected by MSSP
can also be achieved in SEQ. In what follows, we first show how we used Maude to
arrive at a slightly weaker result — that MSSP can effect sequential transforma-
tions of machine state — and then a stronger result — that all transformations
that can be achieved by MSSP are also possible in SEQ.

Equivalence on Safe Task Sets. We can extend Definition 3 to describe
MSSP operation at the more coarse granularity of a task set. This requires an
extension of our notion of task safety: a task set is considered safe for a given
machine state if there exists some enumeration of its members such that each is
safe for the machine state resulting from committing its predecessor. A simple
inductive argument then gives us the following.

Lemma 1. If τ ∈ T ∗ is safe for S, then mssp(S, τ) ⇒∗ mssp(seq(S,#τ), ∅) ⇒
seq(S,#τ).

The above lemma states that an MSSP machine starting out in state S and with
an active set of tasks τ , which is safe for S, can attain the same configuration as
a sequential machine executing #τ instructions from the same S. This is because
safety of a task set is defined in terms of the existence of a safe enumeration of
its members, yet MSSP operation is not constrained to follow the order of such
an enumeration. We therefore cannot infer that MSSP necessarily commits all
members of a safe set of tasks; it will do so only if it chooses the right commit
order. If it chooses poorly, it can commit some task which, despite being safe,
is not the next task in any safe enumeration of τ . In such a case, the remaining
members of τ can be rendered unsafe.

It is important to realize that even though our model permits MSSP to pick
an inappropriate task, it is never wrong for that task to be committed — since
it was safe, committing it, by definition, advances architected state as per SEQ.
Choosing an inappropriate task affects only the efficiency of the machine, not
its correctness, as shown next.

Equivalence for All Task Sets. We can easily extend the above result to cater
for any collection of tasks in the active set. To do so, we define mssp(S, τ) =
mssp(S, ∅) for all τ ∈ T ∗ that contain no tasks safe for S. Thus, if the machine
chooses to commit a task that renders the remainder of its active task set un-
safe, it simply discards what remains. Hence our earlier claim that inappropriate
choices affect only the machine’s efficiency: the order in which tasks are com-
mitted determines the fraction of the active set that can be committed before
the remainder is discarded.

Formally Defining and Verifying Master/Slave Speculative Parallelization 133

We are now in a position to define MSSP operation on any given task set.
Our main result rests on the claim that any given task set can be partitioned
into two disjoint subsets, one that is safe for the current architected state and
one that contains no safe members.

Theorem 1. If τ is safe for machine state S, and τ ′ contains no members that
are safe for seq(S,#τ), then mssp(S, τ |τ ′) ⇒� mssp(seq(S,#τ), ∅) ⇒ seq(S,#τ).

In the above, we assert the existence of a sequence of transitions; we do not
claim that, given task set τ |τ ′, the MSSP machine will necessarily reach state
seq(S,#τ). However, we can invoke a “meta-argument” about our specification
to prove that any trace of MSSP execution on a given set of tasks effects a bisec-
tion of that set into a safe subset and a subset that contains no safe members,
so Theorem 1 applies to any execution of the MSSP machine. In other words,
all executions in MSSP are possible in SEQ.

5 Second Iteration

In the previous section, tasks were uninterpreted and effectively treated as the
atomic units on which execution of an MSSP machine is based. Likewise, task
safety and the commit operation were uninterpreted and treated as basic capa-
bilities of the machine. In this section, we zoom in on the domain T by imposing
a structure on tasks, which yields a stuttering refinement [6] of the MSSP exe-
cution model. Thus, we now describe MSSP’s execution at an instruction rather
than at a task granularity. In so doing, we also partially interpret both task
safety and the commit process; Section 6 further refines those concepts.

Once again, we point out that the results presented here are distilled from
the original Maude specifications [8], to which we refer the interested reader.

5.1 Tasks

In the existing MSSP implementation, a task is constructed by the master pro-
cessor, then transferred to a slave where it executes to completion, and finally
checked by the verification unit, which either commits or discards the results.
Consequently, we define a task as a tuple comprising input and output data,
plus information about the current state of the execution at a slave processor.

Definition 4 (Task). A task is a 4-tuple contained in T = S × + × S × +.
The tuple 〈Sin , n, Sout , k〉 ∈ T denotes a task with live-in set Sin and live-out
set Sout . The value n is the number of sequential instructions that constitute
complete execution of this task; k is the number of instructions that have been
executed by a slave so far (0 ≤ k ≤ n).

A newly created task has form 〈Sin , n, Sin , 0〉; at its completion, it has form
〈Sin , n, Sout , n〉. We will relate Sin and Sout later in this section.

We define a number of functions on T for the sake of notational convenience.
Let t = 〈Sin , n, Sout , k〉. Functions live in : T �→ S and live out : T �→ S

134 P. Salverda, G. Roşu, and C. Zilles

produce the live-in and live-out sets for a given task. Thus, live in(t) = Sin and
live out(t) = Sout . Function # : T �→ +, which we introduced in the previous
section, yields the second component of a task: #t = n.

5.2 Task Evolution

We use task evolution as a means for modeling the manner in which a task is
processed by a slave processor. It is defined as follows.

Definition 5 (Task evolution). Let 〈Sin , n, Sout , k〉 ∈ T be a task in an MSSP
machine’s active task set. Then the following transition rule applies.

〈Sin , n, Sout , k〉 ⇒
{
〈Sin , n, next(Sout), k + 1〉 if k < n
〈Sin , n, Sout , n〉 otherwise

Note that this rule is decoupled from the specification of the MSSP machine
itself, so tasks evolve independent of, and concurrent with, the task commit pro-
cess defined in the previous section. From the above definition it is also clear that
slaves execute according to the sequential model. More precisely, the first step in
slave execution simply advances the live-outs as per SEQ: live out(t), which is
initially the same as live in(t), is transformed to next(live in(t)). Extrapolating,
we arrive at the following transition rule.

Lemma 2. 〈Sin , n, Sin , 0〉 ⇒∗ 〈Sin , n, seq(Sin , n), n〉.

In fact, we can say something stronger: since we specify no transition rules other
than those in Definition 5, the only way in which a task can reach completion
is through the sequential advancing of its live-in set. That is, if t is a completed
task, then live out(t) = seq(live in(t),#t).

5.3 Task Safety and Commit

Having introduced task evolution, we can now partially interpret task safety.
To do so, we introduce the notion of superimposition, which models the commit
process. Operator ← : S×S �→ S denotes the superimposition of one machine
state onto another. We do not interpret this operation formally, simply because
the domain S itself remains uninterpreted. However, the intuition behind its
operation should be clear: S0 ← S1 is the machine state that results when S0 is
overwritten by S1.4

Definition 6 (Task safety). t ∈ T safe for S if seq(S,#t) = S ← live out(t).

Since live out(t) = seq(live in(t),#t) at the completion of t (Lemma 2), task
safety is equivalently characterized by seq(S,#t) = S ← seq(live in(t),#t).

4 Recall that live-in and live-out sets need not represent the state of a whole machine.
It can therefore be the case that S0 refers to storage cells not covered by S1. Those
cells will appear, unchanged, in the superimposition.

Formally Defining and Verifying Master/Slave Speculative Parallelization 135

5.4 MSSP Operation, Refined

We can now replace Definition 3 with the following.

Definition 7 (MSSP operation, refined). Let t ∈ T and τ ∈ T ∗. If S is a
state for which t is safe, then mssp(S, t|τ) ⇒ mssp(S ← live out(t), τ).

We have argued that at the completion of task t, live out(t) = seq(live in(t),#t).
Since t is safe for S, S ← seq(live in(t),#t) = seq(S,#t), so the above refine-
ment implies mssp(S, t|τ) ⇒ mssp(seq(S,#t), τ), which is precisely Definition 3.

6 Third Iteration

We have not yet specified what the check for task safety entails. We now refine
our formal models to prove that a more low-level set of checks, which have
feasible hardware implementations, are sufficient to ensure task safety. To do so,
we first introduce a number of constraints on the superimposition operator and
then refine our SEQ model to incorporate superimposition.

6.1 Superimposition

In this subsection, we persist with an informal view of superimposition, but
we now impose a number of constraints on its behavior. In order to do so, we
must first refine knowledge about machine state. We introduce an uninterpreted
“consistency” operator ⊆ : S×S �→ {true, false}, understanding informally
that S1 ⊆ S2 implies that S1 is consistent with S2 in the sense that all of the
storage cells of S1 are also available in S2 and, further, that both agree on the
values held in those cells.

Definition 8 (Superimposition properties). Superimposition satisfies

1. Associativity: (S1 ← S2) ← S3 = S1 ← (S2 ← S3);
2. Containment: S1 ⊆ S2 implies (S1 ← S3) ⊆ (S2 ← S3);
3. Idempotency: S2 ⊆ S1 implies (S1 ← S2) = S1.

6.2 Sequential Execution, Refined

A sequential machine operates by fetching an instruction, decoding and execut-
ing it, and then writing the results back to machine state. This view leads to
a definition of instruction execution in terms of superimposition. Before that,
however, we must address a problem incurred by SEQ in the context of MSSP
slave execution. Tasks evolve by sequentially advancing their live-in sets (as per
Definition 5). Since those live-in sets are produced by the master, they are po-
tentially unsuitable for the purposes of executing the next instruction (we make
no assumptions about the live-ins produced by the master). To serve as a pre-
condition for well-defined sequential execution, we introduce an uninterpreted
notion of machine state completeness. Completeness is largely ISA-specific, but
we can understand it in a general sense as follows. A machine state is complete

136 P. Salverda, G. Roşu, and C. Zilles

for an instruction’s execution if it contains a cell for the program counter, the
memory cell pointed to by that program counter (the instruction itself), and
all other cells (registers and/or memory locations) that the instruction will read
during its execution.

Definition 9 (Instruction execution). If S ∈ S is complete, then we define
next(S) to be S ← δ(S). Thus, δ(S) ∈ S constitutes the changes to state that
will result from executing the next instruction.

Effectively, the function δ : S �→ S, which is defined only if its argument is
complete, performs the fetch-decode-execute steps alluded to above; the super-
imposition “commits” the results.

A key property of sequential execution upon which our results depend is de-
terminism. Specifically, we require that advancing two consistent machine states
by the same number of steps must yield consistent results. Formally, S1 ⊆ S2

must imply seq(S1, n) ⊆ seq(S2, n). This can be inferred from the more basic re-
quirement that execution of a single instruction be deterministic: S1 ⊆ S2 must
imply δ(S1) = δ(S2). That is, two consistent, complete states, which will execute
the same instruction on the same data when advanced one step, must produce
the same set of outputs.

Of course, sequential execution of n instructions is well-defined only if, at
each step along the way, the machine state is complete. When this is the case for
a given machine state, we will say that state is n-complete. More formally, S is
n-complete if it is complete (for one instruction) and next(S) is (n−1)-complete.

In order to define sequential execution in terms of superimposition, we intro-
duce the notion of cumulative writes, which are the results that accrue from the
sequential execution of multiple instructions.

Definition 10 (Cumulative writes). The cumulative writes generated by se-
quential execution are given by Δ : S × + �→ S. For all n ≥ 0, we define

Δ(S, n) =
{
∅ if n = 0
Δ(S, n− 1) ← δ(seq(S, n− 1)) otherwise

]

From properties of superimposition, determinism and cumulative writes we ob-
tain the following important result.

Lemma 3. For all n ≥ 0, the following hold.

– If S ∈ S is n-complete, then seq(S, n) = S ← Δ(S, n).
– For S1, S2 ∈ S n-complete, S1 ⊆ S2 implies Δ(S1, n) = Δ(S2, n).

6.3 Establishing Task Safety

We can now show that checking for task safety, which we have assumed is a
basic capability of the MSSP machine, is equivalently performed through two
low-level checks. This result is expressed formally as follows.

Theorem 2. If S1 ⊆ S2 ∈ S are n-complete then seq(S2, n) = S2 ← seq(S1, n).

Formally Defining and Verifying Master/Slave Speculative Parallelization 137

This result follows from Lemma 3 and the properties of superimposition that
we enumerated in Definition 8. Specifically, since S1 is n-complete, seq(S1, n) =
S1 ← Δ(S1, n). Hence, S2 ← seq(S1, n) = S2 ← (S1 ← Δ(S1, n)). Since su-
perimposition is associative, the right hand side is the same as (S2 ← S1) ←
Δ(S1, n). But S1 ⊆ S2, so S2 ← S1 = S2. Thus, S2 ← seq(S1, n) = S2 ←
Δ(S1, n). But we also know that Δ(S2, n) = Δ(S1, n), and hence that S2 ←
seq(S1, n) = S2 ← Δ(S2, n). The latter expression is exactly seq(S2, n).

The obvious implication of this result is that completeness and consistency
imply task safety: if S is the architected state of an MSSP machine, and t ∈
T is some task such that live in(t) ⊆ S and live in(t) is #t-complete, then
seq(S,#t) = S ← seq(live in(t),#t). That is, t is safe for S.

7 Conclusion

We have shown that MSSP achieves the equivalent of a sequential execution,
albeit at the coarser granularity of tasks rather than instructions. Through our
formalization of its operation, we isolated the concept of task safety as the prin-
cipal factor that underpins correctness. We proved that safety follows from com-
pleteness and consistency of live-ins with respect to architected state, two re-
quirements that the existing MSSP architecture can easily be shown to satisfy.

In establishing the above results, we also discovered a number of unexpected
properties of MSSP. Good examples are the associativity of superimposition
(commits) and our dependence on determinism in SEQ. In a sense, these results
are merely artifacts of the formalization process itself — superimposition’s as-
sociativity, for example, was needed in the proof of one of our lemmas. In this
respect, we feel the process of deriving the formal model was as beneficial to our
understanding as was the final model itself. On those grounds alone, the exercise
proved its worth.

In general, all the benefits we reaped in this work are a result of the system-
atic, rigorous thinking necessitated by formalization. The computer architects
involved in this work found such rigor particularly liberating because it permit-
ted us to focus on the fundamental, implementation-independent issues, rather
than on the intricate performance-mandated design points. Indeed, the ability
to separate correctness from performance concerns pervades our work; the for-
malization of MSSP reinforced our conviction in this respect.

We found the process of mechanizing our proofs in Maude to be easy and
intuitive. Deriving the Maude modules from a manual (pencil-and-paper) ef-
fort [9] was completed in well under a week, mostly by a novice Maude user.
The mechanization did force an even more rigorous approach, which, in turn,
exposed even more fundamental assumptions we were making. For example, our
discovery that commit order is not important is a good example of how Maude
assisted us — having to be explicit about associativity and commutativity of
operators brought this issue to the fore. That said, we were on occasion frus-
trated by the system’s inability to reduce certain terms as required, which forced
us to sometimes organize the modules in a non-ideal fashion. In mitigation, this

138 P. Salverda, G. Roşu, and C. Zilles

problem eased as our experience grew, but certainly a proof assistant tool, which
permits its user to specify explicitly which rewriting rules — be they equational
or transitional — should be applied, would have been a boon.

In summary, our efforts in the formal verification of MSSP have been enor-
mously fruitful. In fact, our positive experiences have motivated further work.
We have recently started reasoning about MSSP operation on machine state,
such as memory-mapped I/O addresses, where we cannot rely on accesses being
idempotent. Speculative execution is precluded in such regions, demanding that
we impose task boundaries and proceed, non-speculatively, as per SEQ.

References

1. Arvind and X. Shen. Using term rewriting systems to design and verify processors.
IEEE Micro, 9(3):36–46, May/June 1999.

2. J.R. Burch and D.L. Dill. Automatic verification of pipelined microprocessor con-
trol. In Proc. International Conference on Computer Aided Verification, volume
818 of LNCS, pages 68–80, June 1994.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude 2.0 Manual, 2003. http://maude.cs.uiuc.edu/manual.

4. M. Clavel, F. Durán, S. Eker, and J. Meseguer. Building equational proving tools
by reflection in rewriting logic. In CAFE: An Industrial-Strength Algebraic Formal
Method. Elsevier, 2000.

5. D.L. Dill, A.J. Drexler, A.J. Hu, and C.H. Yang. Protocol verification as a hardware
design aid. In Proc. IEEE International Conference on Computer Design: VLSI
in Computers and Processors, pages 522–525, October 1992.

6. L. Lamport. What good is temporal logic? In Information Processing ’83: Proc.
IFIP 9th World Congress, pages 657–668, September 1983.

7. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, April 1992.

8. P. Salverda, G. Roşu, and C. Zilles. Maude formalization of MSSP.
http://fsl.cs.uiuc.edu/mssp.

9. P. Salverda and C. Zilles. Formal verification of MSSP. Technical Report
UIUCDCS-R-2003-2384, University of Illinois at Urbana-Champaign, December
2003.

10. J. Sawada and W.A. Hunt. Trace table based approach for pipelined microprocessor
verification. In Proc. International Conference on Computer Aided Verification,
volume 1254 of LNCS, pages 364–375, June 1997.

11. J. Sawada and W.A. Hunt. Processor verification with precise exceptions and
speculative execution. In Proc. International Conference on Computer Aided Ver-
ification, volume 1427 of LNCS, pages 135–146, June 1998.

12. G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar processors. In Proc. 22nd
Annual International Symposium on Computer Architecture, pages 414–425, June
1995.

13. C. Zilles. Master/slave speculative parallelization and approximate code. PhD
thesis, University of Winsconsin - Madison, 2002.

14. C. Zilles and G. Sohi. Master/slave speculative parallelization. In Proc. 35th
Annual ACM/IEEE International Symposium on Microarchitecture, pages 85–96,
November 2002.

Systematic Implementation of
Real-Time Models�

Martin De Wulf, Laurent Doyen��, and Jean-François Raskin

Computer Science Department, Université Libre de Bruxelles, Belgium

Abstract. Recently we have proposed the ”almost ASAP” semantics as
an alternative semantics for timed automata. This semantics is useful
when modeling real-time controllers : control strategies modeled with
this semantics are robust and implementable (without making the syn-
chrony hypothesis). We show in this paper how to effectively encode this
semantics using timed automata along with their classical semantics. We
have implemented a tool set that allows us to verify, using HyTech and
Uppaal, the almost ASAP behavior of controllers and generate auto-
matically provably correct code from verified models. To illustrate the
applicability of our results, we show how we have synthesized the code
for the Philips Audio Control Protocol for Lego MindstormsTM.

1 Introduction

Timed automata are an important formal model for the specification and anal-
ysis of real-time systems. Formalisms like timed automata and hybrid automata
are central in the so-called model-based development methodology for embedded
controllers. The steps underlying that methodology can be summarized as fol-
lows: (i) construct a (timed/hybrid automaton) model Env of the environment
in which the controller will be embedded; (ii) make clear what is the control ob-
jective: for example, prevent the environment to enter a set of Bad states; (iii)
design a (timed automaton) model Cont of the control strategy; (iv) verify that
Reach(�Env ‖ Cont�)∩Bad = ∅. When Cont has been proven correct, it would be
valuable to ensure that an implementation Impl of that model can be obtained
in a systematic way in order to ensure the conservation of correctness, that is to
ensure that Reach(�Env ‖ Impl�) ∩ Bad = ∅ is obtained by construction.

Unfortunately, this is often not possible for several fundamental and/or tech-
nical reasons. First, the notion of time used in the traditional semantics of timed
automata is continuous and defines perfect clocks with infinite precision while
implementations can only access time through digital and finitely precise clocks.
Second, timed automata react instantaneously to events and time-outs while im-
plementations can only react within a given, usually small but not zero, reaction

� Supported by the FRFC project “Centre Fédéré en Vérification” funded by the
Belgian National Science Fundation (FNRS) under grant nr 2.4530.02.

�� Research fellow supported by the Belgian National Science Foundation (FNRS).

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 139–156, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

140 M. De Wulf, L. Doyen, and J.-F. Raskin

delay. Third, timed automata may describe control strategies that are unreal-
istic, like zeno-strategies or strategies that ask the controller to act faster and
faster [CHR02]. For one of those three reasons, a model for a digital controller
that has been proven correct may not be implementable (at all) or it may not be
possible to turn it systematically into an implementation that is proven correct
w.r.t. this model.

To overcome those problems, we recently proposed an alternative seman-
tics to timed automata in [DDR04]. This semantics is called the Almost ASAP
semantics, AASAP for short. The AASAP semantics of a timed automaton A,
noted �A�AAsap

Δ , is a parametric semantics that leaves as a parameter Δ, which
takes value δ ∈ Q≥0, the reaction delay of the controller. This semantics re-
laxes the classical semantics of timed automata in that it does not impose
on the controller to react instantaneously but imposes on the controller to
react within δ time units. We have proven that a timed controller is imple-
mentable with a sufficiently fast hardware if there exists δ ∈ Q>0 such that
Reach(�Env� ‖ �Cont�AAsap

δ) ∩ Bad = ∅.
To use the AASAP semantics in practice, we need tool support. In [DDR04],

we have shown that the AASAP semantics of a controller can be encoded using
a single parameter timed automaton. Unfortunately, this construction is expo-
nential in all cases, which makes it useless for all but the toy examples. In this
paper, we define a new compositional construction that avoids the exponen-
tial blow-up. The exponential behavior can still appear during the verification
phase but only in the worst case. Thanks to this new construction, we have
implemented a tool set in order to manipulate the AASAP semantics on top of
HyTech [HHWT95] and Uppaal [PL00]. We show the practical interest of our
construction by applying our tool set to a non-trivial example: the Philips Audio
Control Protocol [BPV94]. We show how the AASAP semantics can be used to
produce provably correct executable code for this protocol. The code that we
have produced automatically can be run on Lego MindstormsTM. With this
case study, we believe that we have shown that the AASAP semantics is useful
when supported by computer aided verification tools and that it can be used to
produce correct code for non-trivial embedded controllers without making the
synchrony hypothesis. To the best of our knowledge, this is the first time that
provably correct (without making the synchrony hypothesis) real-time code is
produced for a non-trivial case study.

The rest of the paper is organized as follows. In Section 2, we recall some
preliminary notions. In Section 3, we review the syntax and classical semantics of
timed automata. In Section 4, we recall the AASAP semantics and summarize its
properties. In Section 5, we present our compositional construction. In Section 6,
we present our tool set. In Section 7, we show how to apply the AASAP semantics
to synthesize provably correct code for a real-time protocol.

2 Preliminaries

Definition 1. [STTS] A structured timed transition system T is a tuple 〈S, ι,Σin,
Σout, Στ ,→〉, where S is a (possibly infinite) set of states, ι ∈ S is the initial

Systematic Implementation of Real-Time Models 141

state, the set of labels is structured in three disjoint components: Σin is the finite
set of incoming labels, Σout is the finite set of outgoing labels, Στ is the finite
set of internal labels, and →⊆ S × Σin ∪ Σout ∪ Στ ∪ R≥0 × S is the transition
relation.

A state s ∈ S of a STTS T = 〈S, ι,Σin, Σout, Στ ,→〉 is reachable if there
exists a finite sequence s0s1 . . . sn of states such that s0 = ι, sn = s and for any
i, 0 ≤ i < n, there exists σ ∈ Σin ∪ Σout ∪ Στ ∪ R≥0 such that (si, σ, si+1) ∈→.
The set of reachable states of T is noted Reach(T).

Some More Notions. Due to the lack of space, we only present intuitively other
notions that are useful in the sequel. The reader will find formal definitions
in [DDR05]. We use a natural definition of the composition T 1‖T 2 of two STTS
T 1 and T 2 with synchronizations similar to the ones in the input-output au-
tomata framework [LT87]: a common label must be an output label (sending)
in one of the STTS and an input label (receiving) in the other. The composition
T 1‖T 2 is a STTS where synchronized labels are considered as internal.

Such syncronizations is a blocking communication mechanism. This may be
problematic as on one hand we want to verify that the controller does not control
the environment by refusing to synchronize on its output, and on the other hand,
we do not want our controller to issue outputs that can not be accepted by the
environment. To avoid such problems we impose input enabledness of the STTS
that we compose, which means that input labels have the property of being
enabled in every state. In this point, the presentation differs from [DDR04].

Finally, given two input enabled STTS T 1 (the controller) with state space
S1, T 2 (the environment) with state space S2 and a set B ⊆ S2 of bad states,
we say that T 1 controls T 2 to avoid B if Reach(T 1‖T 2) ∩ S1×B is empty.

3 Timed Automata and Urgency

Let X be a finite set of real-valued variables. A valuation for X is a function
v : X → R. We write [X → R] for the set of all valuations for X. Let Δ be a
parameter. Define the set of terms to be T = Q∪{+∞}, and the set of parametric
terms to be PT = T ∪ {c + Δ, c − Δ | c ∈ Q}. A (parametric) rectangular
constraint over X is a formula of the form ϕ ≡ a ∼1 x ∼2 b where x ∈ X,
∼1,∼2∈ {<,≤} and a, b are (parametric) terms. Let lb(ϕ) = a and rb(ϕ) = b
denote the left (resp. right) bound of ϕ. A (parametric) rectangular predicate is a
finite set of (parametric) rectangular constraints interpreted as a conjunction. A
(parametric) multirectangular predicate is a finite set of (parametric) rectangular
predicates interpreted as a disjunction. Given δ ∈ Q and a parametric term a,
let �a�δ = a if a ∈ T and �a�δ = c + δ (resp. c − δ) if a = c + Δ (resp. c −Δ).
For a parametric rectangular predicate p, a valuation v and a rational δ ∈ Q, we
write v |=δ p iff �a�δ ∼1 v(x) ∼2 �b�δ for all “a ∼1 x ∼2 b” in p. For a parametric
multirectangular predicate q, we write v |=δ q iff there exists p ∈ q such that
v |=δ p. For a parametric (multi)rectangular predicate p, let �p�δ denote the set
{v | v |=δ p}. We sometimes write v |= p instead of v |=0 p.

142 M. De Wulf, L. Doyen, and J.-F. Raskin

We say that a rectangular predicate over X is in normal form if it con-
tains at most one rectangular constraint for each variable x ∈ X, with the
convention that the empty predicate p (such that �p� = ∅) is represented by
{x ∈ [+∞,+∞] | x ∈ X}; any rectangular predicate can be put in that normal
form. Let g be a rectangular predicate in normal form, then g(x) denotes the
rectangular constraint “a ∼1 x ∼2 b” if it is the constraint over x in g and true
if there is no constraint over x in g. We defined predicates as sets because it is
useful in the sequel for manipulating the predicates that appear in timed au-
tomata. However, some operations are easier to represent with classical boolean
operations (∧, ∨, ¬). It is easy to extend the definition of such operators to our
set-predicates. For example, for two multirectangular predicates q and r, the
multirectangular predicate q ∧ r is the set

⋃
p1∈q,p2∈r{p1 ∪ p2}.

We note PRect(X) the set of parametric rectangular predicates, MultPRect(X)
the set of parametric multirectangular predicates and Rectc(X) the set of rectan-
gular predicates containing only closed rectangular constraints (∼1,∼2∈ {≤}).

Let v : E1 → R be a valuation, let E2 ⊆ E1, and c ∈ R, then v[E2 := c]
denotes the valuation v′ such that v′(e) = c if e ∈ E2 and v′(e) = v(e) if e �∈ E2.
In the sequel, we sometimes write v[e := c] instead of v[{e} := c]. Let v : X → R

be a valuation, for any t ∈ R≥0, v − t is a valuation such that for any x ∈ X,
(v−t)(x) = v(x)−t. We define v+t in a similar way. We extend this definition to
valuations v in [X → R≥0 ∪{⊥}] as follows: (v + t)(x) = v(x)+ t, if v(x) ∈ R≥0,
and (v + t)(x) = ⊥ otherwise. We are now equipped to define our flavor of
timed automata [AD94] (with one parameter and a urgency flag Asap) and their
classical semantics.

Definition 2. [Single parametric timed automata] A single parametric timed
automaton1 is a tuple 〈Loc, l0,Var, Inv, Lab,Edg,Asap〉 where (i) Loc is a finite
set of locations representing the discrete states of the automaton. (ii) l0 ∈ Loc
is the initial location. (iii) Var = {x1, . . . , xn} is a finite set of real-valued clocks
whose values continuously increase as time passes with first derivative equal to
one. (iv) Inv : Loc → MultPRect(Var) is the invariant condition. The automaton
can stay in location l as long as the tuple of values of the variables x1, . . . , xn

lies in Inv(l). To ensure the existence of an initial state, we require that the
valuation v0 such that v0(x) = 0 for every x ∈ Var lies in Inv(l0). (v) Lab =
Labin ∪ Labout ∪ Labτ is a structured finite alphabet of labels, partitioned into
input labels Labin, output labels Labout, and internal labels Labτ . (vi) Edg ⊆
Loc × Loc × PRect(Var) × Lab × 2Var is a set of edges. An edge (l, l′, g, σ,R)
represents a discrete transition from location l to location l′ with guard g, event
σ and a subset R ⊆ Var of the variables to be reset. The guard g is a rectangular
predicate. (vii) Asap : Edg → {	,⊥} is a special flag used to model urgency.

Definition 3. [Semantics of single parametric timed automata] Let A = 〈Loc, l0,
Var, Inv, Lab,Edg,Asap〉 be a timed automaton and δ ∈ Q≥0. The semantics of A
is the STTS �A�δ = (S, ι,Σin, Σout, Στ ,→) where: (i) S = {(l, v) | l ∈ Loc∧ v ∈

1 In this paper, single parametric timed automata always use the parameter Δ.

Systematic Implementation of Real-Time Models 143

�Inv(l)�δ}. (ii) ι = (l0, v0) such that for any x ∈ Var : v0(x) = 0. (iii) Σin = Labin,
Σout = Labout, and Στ = Labτ . (iv) the transition relation→ is defined as follows:

(a) For the discrete transitions, ((l, v), σ, (l′, v′)) ∈→ iff there exists an edge
(l, l′, g, σ,R) ∈ Edg such that v |=δ g, v′ = v[R := 0].

(b) For the continuous transitions ((l, v), t, (l′, v′)) ∈→ iff: first l = l′, second for
any edge e = (l1, l2, g, σ,R) ∈ Edg: if l1 = l then Asap(e) = ⊥ and third
∀x ∈ Var : v′(x) = v(x) + t and ∀t′ ∈ [0, t] : v + t′ ∈ �Inv(l)�δ

For simplicity, we often say timed automaton instead of single parametric
timed automaton. We use the classical definition of the synchronized product
A1 ×A2 of two timed automata. For the urgency flag, an edge in the product is
flagged Asap if one of the corresponding edges in A1 or A2 is flagged. This is the
semantics used in the HyTech tool for the Asap flag [HHWT95]. Notice that (in
the final product only), the Asap flag can be replaced by a clock which is reset on
every transition, and forced by an invariant to stay nil in every location with an
outgoing Asap edge, showing that Asap is a feature that does not add expressive
power to timed automata, but just allows us to design timed automata in a
modular way.

4 Elastic Controllers and AASAP Semantics

Controllers are specified using a subclass of timed automata, called Elastic2,
without invariants and with only closed guards. In general, invariants are used
to express urgency but in Elastic urgency is implicit : a controller shall make
an action (almost) as soon as it becomes possible. Formally, this almost urgency
is defined in the AASAP semantics of the controller by allowing some delay
(bounded by a parameter Δ) before forcing an enabled transition.

Definition 4. [Elastic Controllers] An Elastic controller A is a tuple 〈Loc,
l0,Var, Lab,Edg〉 where Loc is a finite set of locations, l0 ∈ Loc is the initial
location, Var = {x1, . . . , xn} is a finite set of clocks, Lab is a finite structured
alphabet of labels, partitioned into input labels Labin, output labels Labout, and
internal labels Labτ , Edg is a set of edges of the form (l, l′, g, σ,R) where l, l′ ∈ Loc
are locations, σ ∈ Lab is a label, g ∈ Rectc(Var) is a guard and R ⊆ Var is a set
of clocks to be reset.

Notations. We define the function TrueSince: [Var → R≥0]×Rectc(Var) → R≥0∪
{−∞}, noted TS, as follows: either v |= g and TS(v, g) = t where t is s.t.
v − t |= g ∧ ∀t′ > t : v − t′ �|= g, or v �|= g and TS(v, g) = −∞.

Let p ≡ a ∼1 x ∼2 b be a rectangular constraint. Given Δ1,Δ2 ∈ PT, the
symbol 〈 standing either for [or (and the symbol 〉 standing either for] or), we
define the notation Δ1〈p〉Δ2 for the parametric rectangular constraint:

a−Δ1 ∼′
1 x ∼′

2 b + Δ2

2 Event-based LAnguage for Simple TImed Controllers.

144 M. De Wulf, L. Doyen, and J.-F. Raskin

where ∼′
1 stands either for ≤ if 〈 is [, or for < if 〈 is (, and ∼′

2 is interpreted
symetrically. For example, let p ≡ 2 ≤ x ≤ 5, then − 1

3
(p]Δ ≡ 2+ 1

3 < x ≤ 5+Δ.
The notation is naturally extended to rectangular predicates.

With those two additional notations we are now ready to define the AASAP
semantics [DDR04].

Definition 5. [AASAP semantics] Given an Elastic controller A=〈Loc, l0,Var,
Labin, Labout, Labτ ,Edg〉 and δ ∈ Q≥0, the AASAP semantics of A is the STTS

�A�AAsap
δ = 〈S, ι,Σin, Σout, Στ ,→〉 where:

(A1) S is the set of tuples (l, v, I, d) where l∈ Loc, v ∈ [Var→R≥0], I ∈ [Σin→
R≥0 ∪ {⊥}] and d ∈ R≥0;

(A2) ι = (l0, v, I, 0) where v is such that for any x ∈Var :v(x)=0, and I is such
that for any σ ∈ Σin, I(σ) = ⊥;

(A3) Σin = Labin, Σout = Labout, and Στ = Labτ ∪ Labin ∪ {ε};
(A4) The transition relation is defined as follows:

• for the discrete transitions, we distinguish five cases:
(A4.1) let σ ∈ Labout. We have ((l, v, I, d), σ, (l′, v′, I, 0)) ∈→ iff there exists

(l, l′, g, σ,R) ∈ Edg such that v |=δ Δ[g]Δ and v′ = v[R := 0] ;
(A4.2) let σ ∈ Labin. We have ((l, v, I, d), σ, (l, v, I ′, d)) ∈→ iff

· either I(σ) = ⊥ and I ′ = I[σ := 0];
· or I(σ) �= ⊥ and I ′ = I.

(A4.3) let σ̄ ∈ Labin. We have ((l, v, I, d), σ̄, (l′, v′, I ′, 0)) ∈→ iff there exists
(l, l′, g, σ,R) ∈ Edg, v |=δ Δ[g]Δ, I(σ) �= ⊥, v′ = v[R := 0] and
I ′ = I[σ := ⊥] ;

(A4.4) let σ ∈ Labτ . We have ((l, v, I, d), σ, (l′, v′, I, 0)) ∈→ iff there exists
(l, l′, g, σ,R) ∈ Edg, v |=δ Δ[g]Δ, and v′ = v[R := 0] ;

(A4.5) let σ = ε. We have for any (l, v, I, d) ∈ S : ((l, v, I, d), ε, (l, v, I, d))
∈→.

• for the continuous transitions:
(A4.6) for any t ∈ R≥0, we have ((l, v, I, d), t, (l, v + t, I + t, d + t)) ∈→ iff

the two following conditions are satisfied:
· for any edge (l, l′, g, σ,R) ∈ Edg with σ ∈ Labout ∪ Labτ , we have

that: ∀t′ : 0 ≤ t′ ≤ t : (d + t′ ≤ δ ∨ TS(v + t′, g) ≤ δ)
· for any edge (l, l′, g, σ,R) ∈ Edg with σ ∈ Labin, we have that:
∀t′ : 0 ≤ t′ ≤ t : (d + t′ ≤ δ ∨ TS(v + t′, g) ≤ δ ∨ (I + t′)(σ) ≤ δ)

Comments on the AASAP Semantics. Rule (A1) defines the states that are tuples
of the form 〈l, v, I, d〉. The first two components, location l and valuation v,
are the same as in the classical semantics; I and d are new. The function I
records, for each input event σ, the time elapsed since its oldest “untreated”
occurrence. The treatment of an event σ happens when a transition labelled with
σ̄ is fired. Once this oldest occurence is treated, the function returns ⊥ for σ until
a new occurence of σ, forgetting about the σ’s that happened between the oldest
occurence and the treatment. The time elapsed since the last location change in
the controller is recorded by d. Rule (A2) and (A3) are straightforward. Rules

Systematic Implementation of Real-Time Models 145

(A4.1− 6) require more explanations. Rule (A4.1) defines when it is allowed for
the controller to emit an output event. The only difference with the classical
semantics is that we enlarge the guard by the parameter Δ. Rules (A4.2) defines
how inputs from the environment are received by the controller. The controller
maintains, through the function I, a list of events that have occurred and are
not treated yet. An input event σ can be received at any time, but only the
age of the oldest untreated σ is stored in the I function. Note that the rule
ensures input enabledness of the controller. Rule (A4.3) defines when inputs
are treated by the controller. An input σ is treated when a transition with an
enlarged guard and labelled with σ̄ is fired. Once σ has been treated, the value
of I(σ) goes back to ⊥. Rule (A4.4) is similar to (A4.1). Rule (A4.5) expresses
that the ε event can always be emitted. Rule (A4.6) specifies how much time
can elapse. Intuitively, time can pass as long as no transition starting from the
current location is urgent. A transition labeled with an output or an internal
event is urgent in a location l when the control has been in l for more than δ
time units (d + t′ ≥ δ) and the guard of the transition has been true for more
than δ time units (TS(v + t′, g) ≥ δ). A transition labeled with an input event σ
is urgent in a location l when the control has been in l for more than δ time
units (d+ t′ ≥ δ), the guard of the transition has been true for more that δ time
units (TS(v + t′, g) ≥ δ) and the last untreated occurrence of σ event has been
emitted by the environment at least δ time units ago (I +t′(σ) ≥ δ) (we define ⊥
to be smaller than any rational value). This notion of urgency parameterized by
Δ is the main difference between the AASAP semantics and the usual ASAP
semantics.

Properties. We informally recall the main properties of the AASAP semantics
which have been established in [DDR04].

First, the AASAP semantics has the desirable property that ”faster is better”:
if a controller with reaction time bounded by δ1 safely controls an environment,
then so does the same controller with a reaction time bounded by any δ2 < δ1.

Second, we can implement a controller that has been proven correct (that is,
such that for some δ > 0 its AASAP semantics safely controls the environment).
The correctness of the controller is preserved by the implementation provided the
hardware is sufficiently fast and has a sufficiently precise digital clock. This has
been formally proven by showing that the AASAP semantics can simulate (in the
formal sense) a program semantics which defines what is an implementation of an
Elastic controller. Intuitively, it is a procedure that repeats forever execution
rounds defined as follows: (i) first, the current time is read in the clock register
of the CPU and stored in a variable, say T; (ii) the list of input events to treat is
updated: the input sensors are checked for new events issued by the environment;
(iii) guards of the edges of the current locations are evaluated with the value
stored in T. If at least one guard evaluates to true then take nondeterministically
one of the enabled transitions; (iv) the next round is started. All we require
from the hardware is to respect the following two requirements: (i) the clock
register of the CPU is incremented every ΔP time units and (ii) the time spent
in one loop is bounded by a fixed value ΔL. We choose this semantics for its

146 M. De Wulf, L. Doyen, and J.-F. Raskin

simplicity and also because it is obviously implementable. The condition for the
preservation of the correctness is that δ > 3ΔL + 4ΔP .

Third, the AASAP semantics can be encoded by a classical single parameter
timed automaton, so that it can by analyzed automatically by timed automata
model-checkers like HyTech or Uppaal. However, this encoding has a limited
interest in practice because its size is always exponential in |Labin|, the number
of input labels of the controller. We solve this problem in the next section by
giving a new translation which is compositional and at most quadratic in the
size of the controller.

5 Compositional Construction for the AASAP Semantics

The main idea underlying our compositional construction is to treat the incoming
events (issued by the environment) independently of the control structure of
the Elastic controller, with a network of automata. This leads to technical
difficulties we explain and address in this section.

Following the rule (A4.6) defining almost urgency of the AASAP semantics,
there are essentially three reasons for allowing time to pass: (i) either the con-
troller has been in its current location for less than Δ time units, (ii) or all
last untreated occurences of an event have been issued by the environment less
than Δ time units ago, (iii) or finally the guard of the outgoing transitions
have not been enabled for more than Δ time units. Roughly, those conditions
will be checked in our compositional construction by respectively A2, which is
a transformation of the Elastic controller A, and two types of widgets: the
event-watchers and the guard-watchers.

In timed automata, there is essentially one way for modeling urgency: invari-
ants on locations. Roughly, if we have a transition guarded by a lower bound
constraint g, it can be forced as soon as it is enabled by adding as invariant in
its source location the closure of ¬g. E.g. for a guard x ≥ 3 we can add the
invariant x ≤ 3. This way, time is blocked when the guard is satisfied and the
discrete transition is forced. If we enlarge the invariant by Δ (x ≤ 3+Δ), we get
the almost urgency we need. To formalize this idea, we will need to introduce
some more notations:

Additional Notations. (i) Given an Elastic controller A = 〈Loc, l0,Var, Lab,Edg〉
and a location l ∈ Loc, let Gact(l) = {g | (l, l′, g, σ,R) ∈ Edg∧σ ∈ Labout ∪Labτ}
be the set of guards labelling output transitions or internal transitions, and for
α ∈ Lab1

in, let Gevt(l, α) = {g | (l, l′, g, α,R) ∈ Edg} be the set of guards labelling
event transitions. (ii) Then define ϕ̄act(l) =

∧
g∈Gact(l)

¬(−Δ(g)0) and ϕ̄evt(l, α) =∧
g∈Gevt(l,α) ¬(−Δ(g)0). For example, let Gact(l) = {2 ≤ x ≤ 5, 0 ≤ y ≤ 1}, then

ϕ̄act(l) ≡ (x ≤ 2 + Δ ∨ x ≥ 5) ∧ (y ≤ Δ ∨ y ≥ 1).

Those constraints will be used as invariant to match the third part of rule
(A4.6). The constraint ϕ̄act(l) will be used as an invariant for location l in A2

to force an output transition when it becomes possible. The constraint ϕ̄evt(l, α)

Systematic Implementation of Real-Time Models 147

W0

zα ≤ Δ

W1

W2

α

zα := 0

ε

α

ᾱ α

Asap

Fig. 1. Event-Watcher Wα

U0

U1 U2

ϕ̄evt(l, α)

U3

u = 0

ᾱ

inl
outl

ε

ε

ᾱ

u := 0

outl

Fig. 2. Guard-Watcher W l
α(ϕ̄evt(l, α))

will be used in the guard-watchers, to ensure that when a guard has been true
for enough time, the corresponding transition becomes urgent (as long as it is
allowed by other parts of rule (A4.6)).

Those invariants are central to our construction, but if we want a compo-
sitional construction (a product of automata), invariants are too restrictive to
express urgency since urgency also depends on the current state of the other au-
tomata offering enabled synchronizations in the product. Hence, we should not
block time simply when a transition is enabled in one automaton but only when
it is enabled in every automaton of the product. Therefore, some compositional
mechanism is needed to model urgency in a product: we will use the Asap flag.
Remember that this flag expresses the fact that a transition is urgent as soon as
it is enabled in the whole product.

The formal definition of our construction is given in Definition 6. From an
Elastic controller A and a parameter Δ we construct F(A,Δ) as a prod-
uct of three types of components: event-watchers, guard-watchers and A2 di-
rectly obtained from A. We omitt the formal definitions of event-watchers and
guard watchers which should be clear from the figures and anyway can be found
in [DDR05].

Event-Watcher. Associated to an event α ∈ Σin, we define Wα (see Fig. 1) that
records the event α. It has a clock zα encoding the value of I(α) in the AASAP
semantics. zα records the time elapsed since the last untreated event α was issued
by the environment. When I(α) �= ⊥, the value of the clock zα is equal to I(α).

This widget is intended to record the occurrence of the events α (as expressed
by rule (A4.2) in the definition of the AASAP semantics), and then to propose
a synchronization on ᾱ with an Asap flag in location W2. Remember that the
notation ᾱ corresponds to the detection of event α by the controller. From the
invariant of location W1, this synchronization will not become urgent before Δ
time units.

Guard-Watchers. We introduce Guard-Watchers (see Fig. 2) to monitor the
truth value of a set of guards. They are associated to an event α ∈ Σin and a

148 M. De Wulf, L. Doyen, and J.-F. Raskin

l

l′

l′′

σ!

y ≥ 3

α?

x ≥ 2

Fig. 3. An Elastic controller A

Inl

d ≤ Δ

Outl

d ≤ Δ ∨
y ≤ 3 +Δ

d = 0

PostOutl,l′

d = 0

PostOutl,l′′

d = 0

PreInl′

d = 0

PreInl′′

Inl′

Inl′′

τ

σ

y ≥ 3 −Δ
d := 0

ᾱ

x ≥ 2 −Δ
d := 0

Outl

Outl

Inl′

Inl′′

Fig. 4. The timed automaton A2 associated to the Elastic controller A of Fig. 3

location l ∈ Loc. When the controller is not in location l, the guard-watchers
W l

α(G) do not influence the execution, being in location U0 and offering a self-
loop synchronization on ᾱ. When location l is reached, the synchronization on
inl forces W l

α(G) enter location U1 and to become active. The watcher get back
in U0 as soon as l is exited by outl. Thus, it is active when it is not in U0. Its role
is then to prevent the label ᾱ to become urgent whenever there is no transition
labeled with ᾱ that has been enabled for more than Δ units of time. Hence, we
use W l

α(G) with the set of guards G = ϕ̄evt(l, α).

Controller Transformation. We illustrate the transformation of the Elastic
controller with an example. The timed automaton A2 corresponding to the
Elastic controller A of Fig. 3 is depicted on Fig. 4. The automaton A2 has
a similar structure to A. It is used to (i) guarantee a maximum delay of Δ
when location changes (as modeled by the variable d in the AASAP semantics)
(ii) make transitions labeled with actions σ ∈ Labout ∪ Labτ urgent when their
guard has been satisfied for more than Δ time units (through invariant of Outl)
and (iii) enlarge the guards of the controller’s transitions (as expressed by rules
(A4.1), (A4.3) and (A4.4)).

Definition 6. [Compositional construction F] Let A=〈Loc1, l10,Var1, Lab1,Edg1〉
be an Elastic controller. The compositional construction F(A,Δ) is the syn-
chronized product of the following timed automata:

– the event-watchers Wα for every α ∈ Lab1
in,

– the guard-watchers W l
α(Gevt(l, α)) for every α ∈ Lab1

in, l ∈ Loc1,
– and the timed automaton A2 = 〈Loc2, l20,Var2, Inv2, Lab2,Edg2,Asap2〉 where:

(i) Loc2 = {PreInl, Inl, Outl, PostOutl,l′ | l, l′ ∈ Loc1}; (ii) l20 = Inl10
;

Systematic Implementation of Real-Time Models 149

(iii) Var2 = Var1 ∪ {d}; (iv) Lab2
out = Lab1

out, Lab2
in = ∅ and Lab2

τ =
Lab1

τ∪Lab1
in∪{τ, inl, outl}; (v) Edg2 contains (a) the edges (Outl, PostOutl,l′ ,

Δ[g]Δ, σ,R∪{d}) such that there exists (l, l′, g, σ,R) ∈ Edg1 with σ ∈ Lab1
out∪

Lab1
τ (b) the edges (Outl, PostOutl,l′ , Δ[g]Δ, ᾱ, R ∪ {d}) such that there ex-

ists (l, l′, g, α,R) ∈ Edg1 with α ∈ Lab1
in and (c) the edges (PostOutl,l′ ,

P reInl′ , ∅, outl, ∅) for each l, l′ ∈ Loc1, and the edges (PreInl, Inl, ∅, inl, ∅)
and (Inl, Outl, ∅, τ, ∅) for each l′ ∈ Loc1. (vi) Asap2(e) = ⊥ for every
e ∈ Edg2; (vii) The function Inv2 is defined as follows. For each l, l′ ∈ Loc1,
(a) Inv2(Inl) = {{d ≤ Δ}} (b) Inv2(Outl) = {{d ≤ Δ ∨ ϕ̄a(l)}} and (c)
Inv2(PreInl) = Inv2(PostOutl, l′) = {{d = 0}}.

In summary, F(A,Δ) = A2 ×
∏

α∈Lab1
in

Wα ×
∏

α∈Lab1
in,l∈Loc1 W l

α(Gevt(l, α)).

The correctness of our compositional construction is established by the fol-
lowing theorem.

Theorem 1. For any Elastic controller A, for any environment STTS E and
a set Bad of its states, for any δ ∈ Q>0, �A�AAsap

δ controls E to avoid Bad iff
�F(A,Δ)�δ controls E to avoid Bad.

Since the correctness of AASAP semantics of A implies its implementability, we
can verify the compositional construction with an automatic tool and generate
systematically the implementation code. In the second part of this paper, we
show how we have applied this methodology in practice on a real-world protocol.

6 Tool Set

We briefly describe the tool set that we have implemented. The structure of the
tool set is depicted in Fig. 5 and it consists of three tools: (i) ELASTIC2HYTECH,
(ii) HYTECH2UPPAAL, and (iii) ELASTIC2BRICK.

Parameter Value Environment Elastic Controller

ELASTIC2HYTECHHYTECH2UPPAAL ELASTIC2BRICK

HyTech spec.Uppaal spec. BrickOs C code

Fig. 5. Structure of our tool set

150 M. De Wulf, L. Doyen, and J.-F. Raskin

ELASTIC2HYTECH is the main component of the tool set: it implements the
compositional construction of Section 5. Given an Elastic controller Cont (ex-
pressed in an HyTech like syntax), it produces a one-parameter HyTech spec-
ification Cont′(Δ) following the construction defined in the previous section. To
obtain a model of the entire system, this specification of the controller has to be
composed with a model of the environment (in which the controller is embed-
ded). This is given as a product of rectangular automata (in HyTech syntax).
The environment is noted Env in the sequel. We can then use HyTech to reason
about the system. The following three correctness problems can be formulated
and answered with HyTech (if the analysis terminates):

– [Fixed] Given a set of bad states Bad, a value δ ∈ Q≥0, does the con-
troller, when reacting within δ, control the environment to avoid Bad, that
is: Reach(�Cont′(Δ)‖Env�Δ) ∩ Bad = ∅

– [Existence] Given a set of bad states Bad, does there exist a value δ ∈ Q

such that when the controller reacts within δ, it controls the environment to
avoid Bad, that is: ∃δ > 0 : Reach(�Cont′(Δ)‖Env�δ) ∩ Bad = ∅

– [Maximization] Given a set of Bad, what is the largest value for δ ∈ Q≥0

such that when the controller reacts within δ, it controls the environment to
avoid Bad, that is: max{δ > 0 : Reach(�Cont′(Δ)‖Env�δ) ∩ Bad = ∅}

To tackle large examples, we also use Uppaal. The tool HYTECH2UPPAAL
translates HyTech specifications into Uppaal specifications. As Uppaal is
restricted to the analysis of timed automata (and it does that very efficiently),
it is only applicable if the environment can be modeled as a product of timed
automata and the parameter Δ is fixed. Obviously, this allows us to answer
the [fixed] version of the correctness problem. Thanks to the “faster is better”
property of the AASAP semantics, by doing a binary search on the value space
of the parameter δ, we can approximate the maximal value of δ for which the
controller is correct up to any precision.

The main purpose of the AASAP semantics is to give a way to synthesize
executable code for a controller from its model and to ensure that the properties
that have been proved on the model are preserved on the code (without making
the synchrony hypothesis). To obtain executable code from the Elastic model
of a controller, we use the tool ELASTIC2BRICK that produces C-code from an
annotated Elastic specification. The annotations assign to each transition a
piece of code that has to be executed when the transition is fired. The transla-
tion is very simple: we assign to each edge of the Elastic controller a thread
that is ran when the associated input event is perceived or when the associated
output event has to be produced. We have chosen to produce code for Lego
MindstormsTM running BrickOs3. Lego MindstormsTM are toys but the
internals are a fully functional micro-computer linked with sensor and actuators.
When running BrickOs, we can use priorities to ensure real-time properties of
the code that is executed on the Brick. Details can be found in [Doy03].

3 http://brickos.sourceforge.net/

Systematic Implementation of Real-Time Models 151

7 Case Study: The “Philips Audio Control Protocol”

Introduction. Bosscher et al study in [BPV94] “a simple protocol for the physical
layer of an interface bus that connects the devices of a stereo equipment”. This
protocol was proposed by Philips engineers. The protocol is based on Manchester
encoding to transmit binary sequences on a wire between a single sender and a
single receiver.

In our case study, we will use Lego MindstormsTM Bricks to implement
the sender and the receiver. To connect the two Bricks, we use a wire plugged to
an output gate of the sender and to an input gate of the receiver. The difficulties
here to implement the protocol are similar to the ones that the engineers in
Philips were facing: (i) although the receiver knows the length of a time slot,
it does not know when it begins (the two Bricks are running asynchronously);
(ii) a receiver does not know the length of the bit string it is receiving; (iii)
only UP signals can be reliably detected by our sensors (this constraint is taken
to fit with the case study of [BPV94]); (iv) the sender and the receiver have
digital clocks that have finite granularity, so there will be imprecision in both
sending and receiving times; (v) in BrickOs sensors are polled periodically. As
a consequence, the moment at which a bit is perceived can be substantially later
than the moment it has been sent. The first three difficulties should be solved
by the logic of the protocol. The last two difficulties are much lower level and
we would like to forget them when designing a high level version of the protocol.
This is exactly what the AASAP semantics allows us to do.

Next, we present the idealized version of the protocol and how we modeled it
with two Elastic controllers: one for the sender and one for the receiver. Here,
the environment is an observer that compares the sequence of bits sent by the
sender with the sequence of bits decoded by the receiver. The observer reaches
the location error whenever the two sequences do not match.

Afterwards, we explain how we can use the AASAP semantics during the
verification process and verify the robustness of the protocol. The verification
phase allows us to generate code that is correct by construction.

Elastic Models. An idealized version of the protocol uses evenly spaced time
slots. To transmit a 1, the sender must let the signal go from low voltage to high
in the middle of a slot and from high to low for a 0. To repeat a bit, the sender
is thus forced between two slots to turn the signal off for a 1 or on for a 0. The
receiver is not able to detect precisely moments when the signal goes down and
then only relies on the UP signals to decode the messages. This implies that a
message has to begin by a 1 and that messages ending in 10 or in 1 are not
distinguishable without adding information bits. Rather than adding bits, the
protocol restricts messages to be either odd in length or to end in 00.

Our modelisation of the protocol can be found in Fig. 6 for the sender and
Fig. 7 for the receiver. There is an additional observer automaton playing the
role of the environment on Fig. 8 that allows us to verify the correct transmission
of the bits (this observer was proposed by Ho and Wong-Toi in [HWT95]). The

152 M. De Wulf, L. Doyen, and J.-F. Raskin

Idle OneSent

ZeroSent

WaitOne

WaitZero

x := 0
p := 0

leng := 0

x := 0, p := 0
doublezero := 0
c := 1, leng := 1

UP!
x ≥ 12

DOWN!
i = 1 ∧ x = 2

x := 0

UP!
x = 2

x := 0, p :=¬p
c := 2c + 1, leng++

i = 0 ∧ x = 2 UP!

x := 0

DOWN!
x = 2

x := 0, p :=¬p
c := 2c, leng++
doublezero := 1

DOWN!

i = 0 ∧ x = 4
x := 0, p :=¬p

c := 2c, leng++

UP!i = 1 ∧ x = 4
x := 0, p :=¬p

c := 2c + 1
leng++

doublezero := 0

p = 1

x := 0, p := 0

p = 1 ∨ doublezero = 1
x := 0, p := 0

doublezero := 0

Fig. 6. The Sender automaton

Idle last is 1

last is 0

y := 0
m := 0
r := 0

y := 0
m := 1, r := 1

UP?

UP?
3 ≤ y ≤ 5

y := 0
m :=¬m, r := 1

UP?
7 ≤ y
y := 0

m :=¬m
r := 2

UP?
5 ≤ y ≤ 7

y := 0
m :=¬m

r := 0

9 ≤ y ∧ m = 1

y := 0

FINALZERO
9 ≤ y ∧ m = 0

y := 0
m =¬m, r := 0

UP?
3 ≤ y ≤ 5

y := 0
m :=¬m

r := 0

UP?
5 ≤ y ≤ 7

y := 0
r := 2

FINALZERO
7 ≤ y
y := 0
r := 0

Fig. 7. The Receiver automaton

unit of time of the model, noted U , is a quarter of the time slot. This unit is not
written in the constraints, to alleviate the presentation.

One can easily check that the sender automaton can send any sequence con-
forming to the protocol restrictions. Arrival in location OneSent (ZeroSent)

Systematic Implementation of Real-Time Models 153

check

z ≤ 0

treating error

rcvOk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(r = 0 ∧ leng = 1 ∧ c = 0)
∨ (r = 0 ∧ leng = 2 ∧ c ≤ 1)
∨ (r = 0 ∧ leng = 3 ∧ c ≤ 3)
∨ (r = 1 ∧ leng = 1 ∧ c = 1)
∨ (r = 1 ∧ leng = 2 ∧ c > 1)
∨ (r = 1 ∧ leng = 3 ∧ c > 3)
∨ (r = 2 ∧ leng = 2 ∧ c = 1)
∨ (r = 2 ∧ leng = 3 ∧ c = 2)
∨ (r = 2 ∧ leng = 3 ∧ c = 3)

updates =

⎧⎨
⎩

z := 0
leng := leng − (1 + (r div 2))
erase leftmost bit of c

FINALZERO
z := 0

UP
z := 0

rcvOk

updates

¬ rcvOk

Fig. 8. The Observer automaton

means the signal for a 1 (a 0) has just been sent. The clock x is used for the
timing of the sequence. The discrete variable i is non-deterministically set to
1 or 0 each time a bit is sent (not shown on the figures). Its value determines
which shall be the next bit. The discrete variables p and doublezero encode re-
spectively if the current sequence is odd in length and if it ends in 00. Finally,
the discrete variables c and leng are used to encode the bits that have been sent
but not decoded by the receiver yet. c simply encodes in an integer the binary
word composed of the last such bits and leng is the number of those bits. The
decrementing of c and leng is done by the observer automaton every time it
succeeds in matching a sent bit with a received bit.

The receiver automaton decodes its incoming UP signals by rounding its
local time for when it received the signal to the nearest possible time it expects
a signal. This is what makes the protocol robust. If no signal is received in due
time, the sequence is interpreted as being complete. The discrete variable m is
used to encode parity of the received sequence. It allows the receiver to know if
it has to complete a sequence with an additional 0 to conform to the protocol
restrictions. The discrete variable r encodes the one or two bits that were last
received. This variable is checked by the observer automaton against c and leng
of the sender to verify if the sent bits are the same as the received ones. The
label FINALZERO does not correspond to an event. It is an internal action done
when the receiver understands it must add a 0 to the sequence to end it. The
observer automaton then synchronizes on this label to know a new bit has been
decoded. As said before, the receiver does not synchronize on DOWN signals.

This modelisation uses finite range discrete variables, which are not present
in the formal definitions. This is not a problem since all those discrete variables
are bounded and thus could be encoded in locations. For the sake of clarity, we
did not do this. Furthermore, the tools that we are using allow the use of such
finite range discrete variables.

Parametric Verification. Let us now turn to the use of the AASAP semantics
during the verification phase. We take the opportunity here to present some
methodological aspects too.

154 M. De Wulf, L. Doyen, and J.-F. Raskin

Using ELASTIC2HYTECH, we generate for the sender and the receiver the
HyTech specification of their AASAP semantics following Definition 6. Those
two semantics are noted �Sender(Δ)�AAsap

δ1
and �Receiver(Δ)�AAsap

δ2
.

We can first check that if the protocol executed in an idealized setting, that
is for δ1 = 0 and δ2 = 0, is correct. This is formalized by the following question:
Reach(�Sender(Δ)�AAsap

0 ‖�Receiver(Δ)�AAsap
0 ‖�Observer�)∩Bad =? ∅, where Bad are

the states in which the observer is in location error. With HyTech (or Uppaal),
we can easily show that this test is passed successfully by our modelisation of
the protocol. If this verification had failed then we should have concluded that
the protocol was flawed in its logic.

To continue the study of the protocol and determine if it can be implemented,
we should check its robustness. In our context, we must determine what are the
maximum values of δ1 and δ2 which ensure that the system �Sender(Δ)�AAsap

δ1
‖

�Receiver(Δ)�AAsap
δ2

‖�Observer�∩Bad = ∅. Those maximal value will be expressed
in the unit of time U of the system that we have not fixed so far. Remember U
is a quarter of a timeslot. By tuning this value, we can then maximize the
throughput of the protocol. We should then look for the smallest implementable
U on our implementation platform. For BrickOs, the value ΔLU (length of the
loop in the execution procedure) and ΔP U (precision of the clocks) can be set
to as low as 6 ms and 1 ms. To guarantee a correct implementation of Sender(Δ)
(and Receiver(Δ)), we need to have Δ > 3ΔL + 4ΔP , and so ΔU > 22ms.

So, we know that δ1U and δ2U should be srictly below 22 ms. If δ1 ≤ δ2,
the infimum for U is 22 ms

δ1
else it is 22 ms

δ2
. Now if we increase the value of one

of the parameters δi, the correct value for the other decreases. This is because
increasing the parameter value for the AASAP semantics of a controller strictly
increases its looseness, forcing the other to be more precise as compensation,
which corresponds to a smaller value for its parameter. Using this fact, we can
conclude that the best U for the system will be obtained when δ1 and δ2 are
equal.

Guiding HyTech with this information, by a parametric search, we found
that, for ensuring correctness, the parameters must be strictly less than 1

4U .
In fact, we proved that a sufficient condition to avoid the error state is that
δ1+δ2 < 1

2 . Execution times of different analysis are given in Fig. 9. Note that to
make HyTech terminate, we needed to give some initial constraints. Execution
times with Uppaal are very encouraging: the problems solved are simpler as the
models are not parametric but this problems are those to be solved in practice
as a precise parametric analysis is nice in theory but not required in practice (if
the target platform is fixed).

Implementation. From annotated models of the sender and the receiver, we have
generated, using ELASTIC2BRICK the C-code for the sender and the receiver. The
C files are about 500 lines long for each controller. The annotations of the models
are very natural. Here are some examples of annotations. Assume that we want
to use the protocol to exchange variable length strings of bits that are stored in
an array, say A in the sender and B in the receiver. Instead of assigning the bit
variable i non-deterministically, we should execute the annotation {i := A[j];

Systematic Implementation of Real-Time Models 155

Tool Constraint Result Time

HyTech

δ1 + δ2 < 1/2 Safe 55s
δ1 = δ2 = 1/5 Safe 50s
δ1 = δ2 = 1/4 Unsafe 90s

Uppaal
δ1 = δ2 = 1/5 Safe < 1s
δ1 = δ2 = 1/4 Unsafe < 1s

Fig. 9. Execution times for the different models

j++;}, and in the Receiver automaton, we add the code {B[k]:= α; k++;} to
transitions setting r to α ∈ {0, 1}, and the code {B[k]:=0; B[k+1]:=1; k+=2;}
to the transition setting r to 2.

Evaluation. The code that we have obtained is correct by construction and can
safely be executed on Lego MindstormsTM Brick as an alternative communi-
cation mean with real-time guarantees. For that, it suffices to give the highest
level of priority to the protocol to ensure its real-time behavior. This should not
spoil the behavior of other applications running on the Brick as the resources
needed by the protocol are very low. Now, let us look at the performance of
the protocol in our implementation. The throughput obtained, when the length
of the sequence goes to infinity, is around 2.84 bits per seconds. This may look
quite low and we could think that far better throughput could be obtained by a
hand-made implementation. But this is not the case. Indeed, we can show using
the results of Ho and Wong-Toi [HWT95] and by taking into account only the
imprecision due to reading on digital clocks every time slice, that the throughput
of the protocol on Lego MindstormsTM is bounded from above by around 4.16
bits per seconds. So, the price in term of performance loss to obtain automati-
cally generated and correct code is not too high in our opinion. Let us also note
that we were only able to find error by testing when the throughput was set
around 7 bits per seconds. That shows the limit of testing at least when done in
a naive way.

References

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[BPV94] D. Bosscher, I. Polak, and F. Vaandrager. Verification of an Audio
Control Protocol. In H. Langmaack, W.-P. de Roever, and J. Vytopil,
editors, Formal Techniques in Real-Time and Fault-Tolerant Systems,
volume 863, pages 170–192, Lübeck, Germany, 1994. Springer-Verlag.

[CHR02] F. Cassez, T.A. Henzinger, and J.-F. Raskin. A comparison of control
problems for timed and hybrid systems. In HSCC 02: Hybrid Systems—
Computation and Control, Lecture Notes in Computer Science 2289,
pages 134–148. Springer-Verlag, 2002.

156 M. De Wulf, L. Doyen, and J.-F. Raskin

[DDR04] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics:
From timed models to timed implementations. In HSCC 04: Hybrid
Systems—Computation and Control, Lecture Notes in Computer Science
2993, pages 296–310. Springer-Verlag, 2004.

[DDR05] M. De Wulf, L. Doyen, and J.-F. Raskin. Systematic implementation
of real-time models (extended version). Technical Report 543, U.L.B.,
2005. http://www.ulb.ac.be/di/publications/.

[Doy03] Laurent Doyen. A systematic implementation of simple timed con-
trollers. Technical Report 504, U.L.B., 2003.

[HHWT95] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hytech:
The next generation. In 16th Annual Real-Time Systems Symposium
(RTSS), pages 56–65. IEEE Computer Society Press, 1995.

[HWT95] P.-H. Ho and H. Wong-Toi. Automated analysis of an audio control pro-
tocol. In P. Wolper, editor, Proceedings of the 7th International Con-
ference On Computer Aided Verification, volume 939, pages 381–394,
Liege, Belgium, 1995. Springer Verlag.

[LT87] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In 6th ACM Symp. on Principles of Distributed Computing,
pages 137–151, 1987.

[PL00] Paul Pettersson and Kim G. Larsen. Uppaal2k. Bulletin of the European
Association for Theoretical Computer Science, 70:40–44, February 2000.

Timing Tolerances in Safety-Critical Software

Alan Wassyng�, Mark Lawford , and Xiayong Hu

Software Quality Research Laboratory, Department of Computing and Software,
McMaster University, Hamilton, Canada
{wassyng, lawford, huxy}@mcmaster.ca

Abstract. Many safety-critical software applications are hard real-time
systems. They have stringent timing requirements that have to be met.
We present a description of timing behaviour that includes precise defi-
nitions as well as analysis of how functional timing requirements interact
with performance timing requirements, and how these concepts can be
used by software designers. The definitions and analysis presented ex-
plicitly deal with tolerances in all timing durations. Preliminary work
indicates that some requirements may be met at significantly reduced
CPU bandwidth through reduced variation in cycle time.

Keywords: safety-critical, real-time, timing tolerances, requirements.

1 Introduction

Specifying, implementing and verifying real-time requirements for embedded
software systems can be a difficult and time consuming task. Hence real-time
systems have become an active area of research in the formal methods commu-
nity. Practical implementations have to worry about sampling rates, schedula-
bility, computation time, latency, and jitter, all of which involve tolerances in
some form when interfacing a physical plant and a software control system. In
this paper we make the case that several different types of tolerances need to
be fully specified at the requirements level in order to properly deal with the
timing tolerances that are inherent in the system implementation. These include
tolerances on functional timing requirements, and tolerances that allow for de-
viation from the idealized behaviour specified by the requirements models. This
work builds on analysis and definitions that were used in safety-critical software
applications over many years at Ontario Power Generation in Canada [9].

The extensive survey of formal methods for the specification and verification
of real-time systems in [1] contains references to over 200 publications. The
overwhelming majority of the cited works are dedicated to the specification and
validation of real-time requirements. Despite this intensity of research, relatively
little work has been done on formally modeling timing tolerances.

Recent work has begun to address the issue of timing tolerances required to
verify implementations of requirements modeled as timed automata with ASAP

� Partially supported by NSERC.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 157–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

�

158 A. Wassyng, M. Lawford, and X. Hu

semantics [2, 3]. Wulf, et al, consider the case of implementing a continuous-
time controller with a discrete-time system, assuming that there is a delay Δ
associated with the controller’s reaction to the environment. Both the controller
and the plant are first modeled as timed automata. Their control objective is to
ensure that the closed-loop system satisfies a safety property by avoiding bad
states. Provided that all control actions can be delayed by up to some fixed
Δ > 0 without violating the safety property, they say that the controller is “im-
plementable”. A PSPACE-complete decision procedure to test implementability
is described in [3], while [2] provides a semi-decision procedure to compute the
maximal reaction delay Δ allowable by the implementation that still preserves
the correctness of the closed loop system. It further shows that the system is
implementable by a cyclic executive with loop time upper bound ΔL and a finite
precision clock with a resolution of ΔP , provided that Δ > 3ΔL + 4ΔP . In this
work response allowance ra and sample interval ts correspond most closely to Δ
and ΔL in [2] and implicitly we assume a clock resolution of 1 time unit. Based
on our definitions, and using simple mathematical arguments, we are able to
come to a somewhat surprising result that allows some timing requirements to
be verifiably implemented at a significantly lower CPU bandwidth.

The remainder of this paper is organized as follows: Section 2 provides the
notation and definitions of terms and operators, and specifically differentiates
between functional and performance timing requirements. Section 3 describes
the relationship between the two performance timing requirements, while Sec-
tion 4 details the interaction of functional and performance timing requirements.
Conclusions are provided in Section 5.

2 Definitions

2.1 The Requirements Model

The requirements model we use is a finite state machine with an arbitrarily small
clock-tick. This enables us to straddle the time continuous and time discrete
domains. Many other models could be used and would require minimal changes
in the following definitions.

Stimuli are referred to as monitored variables, and responses are controlled
variables.

The finite state machine is assumed to describe idealized behaviour, i.e. re-
sults are produced instantaneously. If C(t) is the vector of values of all controlled
variables at time t, M(t) is the vector of values of all monitored variables at time
t, S(t) is the vector of values of all state variables at time t, we can define rela-
tions R (requirements) and NST (next state) as follows:

C(tk) = R(M(tk), S(tk))
S(tk+1) = NST(M(tk), S(tk)), for k = 0, 1, 2, . . .

(1)

where the time of initialization is t0, and the time between tk and tk+1 is an
arbitrarily small time, δt. It is almost always necessary to decompose the con-
struction of R and NST into a number of intermediate functions. NST in our

Timing Tolerances in Safety-Critical Software 159

f name

Condition1 result1
Condition2 result2

.
Conditionn resultn

≡

if Condition1 then f name = result1
else if Condition2 then f name = result2
else if ... then ...
else if Conditionn then f name = resultn

Disjointness: Conditioni ∧ Conditionj ⇔ False, ∀i, j = 1..n, i �= j, and
Completeness: Condition1 ∨ . . . ∨ Conditionn ⇔ True.

Fig. 1. Horizontal Condition Tables

formulations is usually trivial since we strive to keep state data at the require-
ments level to a very simple form, namely the previous values of intermediate
functions and variables.

2.2 Notation

Current time is denoted by tnow. We indicate elements of state data by sub-
scripting the identifiers. variable−n means the value of variable, n clock-ticks
prior to the current one.

Where possible, we use tabular expressions to define functions. We are con-
vinced that tabular expressions (function tables) are a superb notation for de-
scribing software functions. Disjointness and completeness criteria help us in
ensuring that the functional descriptions are unambiguous and complete [6].
There have been a number of publications on the semantics and usage of tabu-
lar expressions (e.g. [7, 8, 9]). The tabular expressions we use here are particular
simple (they are called horizontal condition tables). Fig. 1 presents an example
table together with its informal semantics.

2.3 Functional Timing Requirements

Functional timing requirements are timing requirements that are directly related
to the required behaviour of the application. Some of the more common func-
tional timing requirements are described below, and mathematical definitions
are provided.

Sustained Timing Requirements: A common functional timing requirement
is one that specifies that a condition must be sustained over a particular time
duration. For example, to filter out the effect of a noisy signal we may specify
that an event in which a sensor signal is above its setpoint should be sustained
for 300 ms before it can cause a “trip”. This means that the implementation
must guarantee that if the sensor event is sustained for less than 300 ms, the
trip must not occur. Similarly, if the sensor event is sustained for 300 ms or
longer, the trip must be generated. Without tolerances on the time duration,
these requirements would be impossible to meet.

Many of the concepts and analyses we present are best illustrated when ap-
plied to sustained timing requirements. For this reason we discuss this example
in detail.

160 A. Wassyng, M. Lawford, and X. Hu

time (ms)

notTrip
trip

setpoint

m_signal

0 100 200 300 400

Two compliant implementations

Sensor event in physical domain

250 - 350

notTrip
trip

notTrip
trip

c_result

c_result

c_result

One strange implementation

Fig. 2. Two Valid Implementations of a Sustained Timing Requirement

We can introduce tolerances on the time duration in the above example.
Assume that the sensor trip condition should be sustained for 300 ±50 ms.

Fig. 2 shows an implementation of the behaviour specified above for a con-
trolled variable c result and sustained condition m signal ≥ setpoint. The
strange behaviour in the top implementation is almost certainly not what the
specifier intended, but it may be compliant with its specification. How should
we interpret this specification? A logical interpretation is that c result should
not equal trip until m signal ≥ setpoint has been True for at least 250 ms, and
that c result must equal trip if m signal ≥ setpoint has been True for 350 ms.

The problem is: what happens in the range 250–350 ms? Fig. 2 shows an-
other two possible implementations that really would be compliant with this
requirement. The difference here is that for each event we have effectively re-
stricted ourselves to a single representative duration inside the specified range.
There are a number of important points to emphasize. i) The time duration

is measured from when the event started in the physical application domain. It
is not measured from the time it is detected. Since the requirements are (sup-
posed to be) developed by the domain experts, and should be independent of
any implementation, it does not make sense to define timing requirements with
reference to when events are detected. ii) Many different implementations are
valid. The behaviour in the dark shaded interval representing time in the in-
terval [250, 350] ms is not deterministic. It is vital that everyone has the same
understanding of what the requirement means. iii) Even though we have intro-
duced tolerances into the requirement, the requirement still describes idealized
behaviour understood within the constraints of the requirements model. For in-
stance, it does not take into account that processing time is not infinitely small,
and it makes no reference to how often the application samples the values of the
sensor.

Timing Tolerances in Safety-Critical Software 161

Condition

T

F

(Condition) Held for (d, δL, δR)

T

F

duration duration

d d

d+δR

d-δLd-δL

d+δR

time

Fig. 3. “Held for” Functional Timing Requirement

(Condition :bool) Held for (d: R>0, δL, δR : R≥0) :bool
where duration(Condition: bool): [d − δL, d + δR]

Event start time(Condition :bool) : R≥0

Initially: duration = any value in [d − δL, d + δR]
Event start time−1 = 0
Condition−1 = False

duration Event start time

(Condition = True) & (Condition−1 = False)
Any value in
[d−δL, d+δR]

tnow

(Condition = False) OR (Condition−1 = True) No Change No Change

Held for

Condition = True
tnow− Event start time≥ duration True
tnow− Event start time< duration False

Condition = False False

Fig. 4. Formal Definition of “(Condition) Held for (d, δL, δR)”

To model sustained events, we developed an infix operator, (Condition)
Held for (d, δL, δR), which uses a duration defined by the constant time d (> 0),
with tolerances −δL, +δR, 0 ≤ δL < d, 0 ≤ δR. “Held for” is illustrated in Fig. 3,
and is defined formally using tabular expressions in Fig. 4. A critical concept is
that although duration can be any value in the interval [d− δL, d + δR], it must
be constrained so that duration has only a single value throughout an event. An
event in this case means that Condition changes from False to True. Without

162 A. Wassyng, M. Lawford, and X. Hu

this constraint, many different bizarre behaviours are possible, all of them clearly
not the intent of the function.

Periodic Timing Requirements: Periodic timing requirements are common
in hard real-time systems. To help us model periodic timing requirements we
developed a function, Periodic(Condition, d, δL, δR). This function (Periodic)
is True for 1 clock-tick at the instant that Condition changes from False to True,
and, as long as Condition remains True, the function is True again, some time
“period” after the most recent time it changed from False to True. The effective
period of the function is defined by the constant duration d (> 0), with tolerances
−δL,+δR, 0 ≤ δL < d, 0 ≤ δR. Periodic is illustrated in Fig. 5, and is defined
formally using tabular expressions in Fig. 6. A different kind of periodic function
is one that is synchronized with an external clock as illustrated in Fig. 7.

If the periodic functional requirement is synchronized with an external clock,
definitions equivalent to t mod period = 0 are useless when the period involves
tolerances. The requirement t mod 400±50 ms = 0 results in milli-second in-
tervals of [350-450], [700-900], [1050-1350], [1400-1800], [1750-2250], [2100-2700],
..., and after a relatively short time period the requirement does not constrain
behaviour much at all. A practical, formal specification of this periodic func-
tional requirement can be developed from ∀n : N · tn ∈ [n · d − δL, n · d + δR],
and is defined using tabular expressions in Fig. 8. This definition does not deal
explicitly with a consistent clock drift, but this could be included by specifying
d as a constrained function of time.

2.4 Performance Timing Requirements

Functional behaviour of the application is (typically) described using a model
that describes the ideal behaviour of the application. It totally ignores the fact
that an implementation cannot continuously monitor sensor values and requires
a finite, non-zero amount of time to process its results. To complete the descrip-
tion of the required behaviour, a requirements document must also specify the
performance tolerances that are allowed in meeting functional timing require-
ments. There are two different performance timing requirements, timing resolu-
tion and response allowance. These are defined and discussed in the following
two sections.

Timing Resolution: Each monitored variable has a timing resolution associ-
ated with it. The definitions for this interval are different for time continuous
and time discrete monitored variables.

The timing resolution (TR) for a time continuous monitored variable is the
minimum time duration of an initiating event dependent on that monitored
variable for which the application must guarantee that it will detect that event.
Thus, the TR is also an indication of the maximum time interval that the trip
computer can allow between successive sampling instances for that stimulus.

The TR for a time discrete monitored variable is the smallest time inter-
val separating two events dependent on that monitored variable, in which the
application must guarantee that it will detect both events.

Timing Tolerances in Safety-Critical Software 163

d d d

d

δL δL δLδR δR δR

Condition

Periodic(Condition, d, δL, δR)

T

T

F

F

δL δR

period period period period

time

Fig. 5. A Periodic Functional Timing Requirement

Periodic(Condition :bool, d :R>0, δL, δR : R≥0) :bool
where period(Periodic−1: bool): [d − δL, d + δR]

previous pulse time(Condition :bool) : R≥0

Initially: period = any value in [0, δR]; previous pulse time−1 = 0; Periodic−1 = False

period

Periodic−1 = True Any value in [d-δL, d+δR]
Periodic−1 = False No Change

Periodic previous pulse time

Condition =
True

Condition−1 = False True tnow

Condition−1 =
True

tnow ≥ previous pulse time−1 + period True tnow

tnow < previous pulse time−1 + period False No Change
Condition = False False No Change

Fig. 6. Formal Definition of “Periodic(Condition, d, δL, δR)”

These situations are illustrated in Fig. 9. Note that if a monitored variable
is used in determining the behaviour of two (or more) controlled variables, it
is probable that at least two different events (one on each controlled-monitored
variable path) are dependent on that monitored variable, and that the monitored
variable could have two different TRs associated with it. In general, we assign a
TR for each controlled-monitored variable pair in which the controlled variable
value can be affected by the value of the monitored variable.

164 A. Wassyng, M. Lawford, and X. Hu

timed d d

period period period

δLδR δL δLδR δR δR

SyncPeriodic(d, δL, δR)

T

F

0

Fig. 7. Synchronized Periodic Functional Timing Requirement

SyncPeriodic(d : R>0, δL, δR : R≥0) : bool
where n: N, and Δ : R

Initially: n = 0; Δ = any value in [0, δR]; SyncPeriodic−1 = False

Δ n

SyncPeriodic−1 = True Any value in [-δL, δR] n + 1
SyncPeriodic−1 = False No Change No Change

SyncPeriodic

tnow ≥ n·d + Δ True
tnow < n·d + Δ False

Fig. 8. Formal Definition of “SyncPeriodic(d, δL, δR)”

Response Allowance: The Response Allowance (RA) for a controlled-
monitored variable pair specifies an allowable processing delay. Each controlled
variable must have an RA specified for it. The RA applies to the controlled vari-
able and the particular monitored variable on which the controlled variable’s
behaviour depends. The RA is measured from the time the event actually oc-
curred in the physical domain, until the time the value of the controlled variable
is generated and crosses the application boundary into the physical domain.

Some important considerations:

1. The RA for the pair c-m is meaningless if c does not change its value in
response to a change in the value of m (the effect must be visible externally).

2. The time sequence of externally generated values of a controlled variable c
cannot be altered by consideration of the RAs for each c-m pair. For instance,
we cannot allow c to change from trip = True (evaluated at time t) to trip

Timing Tolerances in Safety-Critical Software 165

time

time

TR

TR TR

TR

k_setpoint

m_signal

M_signal M_signalM_signal

May miss
this event

Must detect
this event

May
miss
this

event
Must detect
this event

Timing Resolution for Time Continuous Monitored Variables

Timing Resolution for Time Discrete Monitored Variables

k_setpoint

Fig. 9. Timing Resolution

= False (evaluated at time t− δt, δt is an arbitrarily small positive number)
simply because the RA was large enough to allow this.

3 Relationship Between Response Allowance and Timing
Resolution

Consider the case where c, a controlled variable, depends solely on m, a mon-
itored variable. We must specify both a TR (value tr) and RA (value ra) for
the c-m pair. Now, in the implementation, let ts represent the sampling interval
used for m, and tp the processing time required to output c, measured from the
instant that the value of m was sampled. Then, if the implementation is to com-
ply with its timing requirements, it is clear that we must insist that ts+ tp ≤ ra.
Since tp > 0 and ts ≤ tr (it is permitted to equal ra), it follows that tr < ra.
So, unless there is a reason to use a more restrictive TR for m, we can assume
a default upper limit for TR equal to the RA for the c-m pair. This is the least
restrictive requirement that we can place on the software design. It leaves the
designer free to choose a sampling interval anywhere in the range [0, ra) as long
as the RA is satisfied.

In most real applications, the TR for a monitored variable would be de-
termined, initially, from a study of the possible transients associated with the
particular monitored variable. If the physically motivated TR is larger than the
associated RA then the TR would have to be constrained by the value of the
RA. If the physically motivated TR is smaller than the associated RA, then that
smaller value must be used as the specified TR.

The RA itself is always derived from consideration of the physical application.
In safety-critical applications, absolute compliance with the RA is clearly just
as important as compliance with any other requirement.

166 A. Wassyng, M. Lawford, and X. Hu

In the following section we see that both the TR and RA may need to be
modified once we consider the effect of functional timing requirements.

4 Interaction Between Functional and Performance
Timing Requirements

There are a number of interactions between functional and performance timing
requirements. Some of them affect the timing resolution by imposing restric-
tions on sampling intervals in the implementation. Other interactions force us
to consider exactly how to specify response allowances for controlled-monitored
variable pairs that are also involved in functional timing behaviours.

We use sustained events to illustrate these interactions.

4.1 Timing Resolution for Sustained Events

Given a sustained timing requirement we need to consider whether it is possible
to implement a design so that the requirement can be met. We can identify two
different categories of sustained events. The first one, as discussed in Section 2.3,
is where the behaviour depends on values of one or more monitored variables.
In this case the event is timed from the time at which the event was initiated
in the physical domain. The second kind is one in which the sustained event
depends only on the values of controlled variables (or is synchronized in some
way with an external clock). In this case the event is timed from the instant at
which the event is initiated within the software domain. This kind of event is
typically easier to deal with since the inherent uncertainty of when the event
actually occurred is removed from consideration.

The following two sections present analyses of these cases.

Sample Intervals for Events That Depend on Monitored Variables:
We know from earlier discussion (Section 2.3) that if we specify behaviour in the
form of (Condition) Held for (d, δL, δR), and duration ∈ [d − δL, d + δR],
then the requirement means that we cannot make the final decision as to whether
“Held for” generates True or False based on values that were sampled before we
are sure that d − δL time has elapsed since the event occurred in the physical
domain. We also cannot delay the decision past d + δR.

The situation is illustrated in Fig. 10. Let us assume that the sample intervals
are ts0, ts1, ts2, etc. Since our analysis has to hold for real industrial applications,
we do not assume a constant sample interval. We do assume that we can place
limits on the sample intervals. We call these limits ts min and ts max. Once
we have these limits, we know that ts min ≤ tsj ≤ ts max for each j ∈ {0..n}.
We will see later that any variation in sample intervals results in fewer feasible
implementations. If the event is detected at sample time 1, then we know that
the event must have occurred sometime between sample time 0 and sample time
1. We can now assume that Condition remains True at sample times 2, 3, ,..., n-
2. (If it does not remain True, we simply terminate the event and the “Held for”
value becomes False.)

Timing Tolerances in Safety-Critical Software 167

If we study the situation in Fig. 10, we see that the only way we can be certain
that we base our decision on values sampled in the time interval [d− δL, d+ δR]
is to ensure that we have at least two sample points inside that interval. It turns
out this is a necessary condition, but it is not sufficient.

ts0 ts1 ts2 tsn-1 tsn

δL + + δR

d − δL d + δR

0 1 2 3 n-2 n-1 n

Event detected at this time

event must
have

occurred in
this interval

sample times decision must be
made based on
values current at

this time

tsts0

decision must not be based on
values from this time interval

decision must be based on
values from this time interval

d
measured from earliest time event could have occurred

δRδL

Legend:

Fig. 10. Sample Intervals Required for Sustained Events

The earliest the event could have occurred is immediately after values were
sampled at sample point 0. The latest the event could have occurred is imme-
diately prior to sample point 1. We choose to measure all relevant times from
sample point 0, i.e. from the earliest time it could have occurred. Now we can
consider the two sample points in the interval [d − δL, d + δR] (assuming we
manage to get two samples in that interval). The later time in the interval (sam-
ple point n in Fig. 10) must be to the left of the d + δR boundary because the
times are measured from the earliest time the event could have occurred. So we
know that decisions based on values sampled at sample point n are not too late.
For it to be too early, the actual event would have had to occur immediately
prior to sample point 1. In this case, we should subtract ts0 from the time at
sample point n and check to see if the resulting time is less than d − δL. If all
sample intervals were equal, having two sample points in the interval would be
sufficient to prove that sample point n could not be too early. However, since
tsn ≤ ts max, there is a chance that (sample point n)− ts0 could lie outside the
interval, in which case the decision would be made based on values that are too
early. The following analysis copes with all the questions we have raised. Note
that we could have chosen to measure times from time of detection. The analysis
would have to be adjusted accordingly.
Case 1: 0 < ts max ≤ 1

2
(δL + δR): In this case it is easy to see that it is

always possible to implement the sustained event.
Case 2: 1

2
(δL + δR) < ts max ≤ (δL + δR): It may happen that the

hardware platform is not fast enough for us to arrange a sample interval that

168 A. Wassyng, M. Lawford, and X. Hu

always works as defined in Case 1. It is still possible to find sample intervals that
allow us to implement the sustained event.

It is crucial to realize that if ts max > 1
2 (δL+ δR) then the only way we can

ensure that two samples, ts max apart, fall in the duration interval, is if the last
sample point to the left of the interval is not “too close” to d− δL.
Let kmin = int(d−δL

ts max), and kmax = int(d−δL
ts min), where int(r) truncates r to an

integer.
kmin �= kmax implies that kmax · ts min ≤ d− δL and
kmax · ts max > d− δL, since kmax > kmin.

This means that there is always some combination of sample intervals such
that

∑k
j=1 tsj = d− δL− ε, where ε is arbitrarily small. This implies that there

are always sample intervals within the range [ts min, ts max] such that there
is only one sample point within [d − δL, d + δR]. Thus we can conclude that if
kmin �= kmax then there is no feasible implementation.
So, kmin = kmax is a necessary condition for a feasible implementation. Unfor-
tunately it is not sufficient. Let k = kmin = kmax. Then

∑k
j=1 tsj ≤ d − δL,

and
∑k+1

j=1 tsj ≥ d − δL, for any combination of sample intervals within
[ts min, ts max]. The worst case is when tsj = ts max for each j ∈ {1, 2, ..., k +
2}. So, a sufficient condition when kmin = kmax is that (k+2) ·ts max ≤ d+δR.

Case 3: (δL + δR) < ts max: The sustained event cannot be implemented.

Examples of Feasible Sample Interval Ranges for Sustained Events:
It is instructive to examine the ranges of sample intervals that result in feasible
implementations of sustained events that are dependent on monitored variables.
The analysis from Case 2 was implemented in a spreadsheet and graphs show-
ing the feasible sample intervals were generated (Fig. 11). Each graph lists [d-
δL, d+δR]. It also shows the nominal sample intervals as labels along the x-axis,
and lists the deviations as (−�,+r). So, for ts=50, with deviation (−3,+2) we
have ts min=47 and ts max=52. A deviation of (−0,+0) indicates a constant
sample interval (pretty much impossible to achieve).

Fig. 11 shows that in the case when duration ∈ [400 − 50, 400 + 60], rather
than requiring the code to run with every ts ≤ 50ms (a 20Hz or faster task),
it is possible to detect the event with every ts ∈ [74-1, 74+2] ms (roughly a
13.5Hz task). This represents an approximately 32% reduction in CPU time
required for the task! This pattern results in a positive cycle. Making execution
times more precise may present the opportunity to reduce the CPU load, which
in turn should make it easier to meet timing requirements. While scheduling
conflicts may be more difficult to resolve with the tighter constraints on a larger
ts, we note that the tolerances only restrict when the sample of input m must be
taken, not when output c must be updated, which is specified by the response
allowance.

Intuitively, when tolerances are allowed on the sample time (non-zero jitter),
it is more difficult to detect sustained conditions of longer duration with the
same precision. E.g., as the duration changes from [200-50, 200+60] to [300-50,
300+60] to [400-50, 400+60] in Fig. 11, the available sample times in [50,110]
are first significantly reduced then completely eliminated.

Timing Tolerances in Safety-Critical Software 169

Fig. 11. Feasible Sample Intervals for Various Durations and Tolerances

Sample Intervals for Events That Depend on Controlled Variables:
In this case the uncertainty as to when the event occurred has been removed.
Thus, any sample interval less than or equal to (δL + δR) suffices since we need
only a single sample point in the interval. Smaller sample intervals allow us to
define the boundaries of the interval more precisely, but any point in the interval
satisfies the requirement. However, larger sample intervals are also possible. For
instance, sample intervals in the range d − δL ≤ ts ≤ d + δR also work, giving
us two sample points, one at the start of the event and another in the desired
interval. We have called these “sample points”, however, it is more accurate
to term them “evaluation points”, since no monitored variable is sampled, the
current value of a controlled variable is simply used in a function evaluation. We
can see therefore, that this kind of sustained event is affected by specified RAs
rather than TRs. This is discussed further in Section 4.2.

170 A. Wassyng, M. Lawford, and X. Hu

Specifying Timing Resolution Affected by Sustained Events: We have
presented analyses that show how sample intervals must be restricted to be
able to implement sustained events. Since timing resolution specifies a maximum
sample interval for time continuous monitored variables, it is clear that sustained
events may affect the timing resolution we must specify for monitored variables
involved in those events.

The restrictions imposed on the sample intervals however, are not enforceable
by specifying a more or less restrictive timing resolution. If we look at Cases 1, 2
and 3 for the sustained events dependent on monitored variables, we see that all
sample intervals in Case 1 are feasible, there are disjoint ranges of feasible sample
intervals for specific events for Case 2, and no feasible sample intervals for Case
3. We can specify a timing resolution of (δL + δR) since we know that anything
greater than that results in an infeasible implementation, but in fact, this is not
sufficient. One way of dealing with this problem is to shift the responsibility of
determining exactly what sample intervals are feasible to the software design
phase.

In the case of sustained events that are not dependent directly on monitored
variables, timing resolution is not an issue since monitored variables cannot
directly affect the event.

4.2 Response Allowance for Sustained Events

There are two specific concerns related to specifying the response allowance
for variables involved in sustained events. The first is a general one. How do
we cope with specifying the RA for a sustained event so that it is clear what
the requirement allowance is for both the successful continuation of a sustained
event, as well as the cancellation of a sustained event. The second concern is
what restrictions must be placed on RAs so that the sustained event can be
implemented.

1. We begin by assuming that monitored variable m and controlled variable
c are involved in the sustained event. If the functional requirement does not
involve a sustained event the RA is based on a physical analysis of the required
behaviour. We call this rac−m. This is a suitable RA to use for the case when
the sustained event is canceled. In other words, given a sustained event speci-
fied by (Condition) Held for (d, δL, δR), if Condition changes from True to
False, the application must generate the value of c within rac−m measured from
the time the event occurred in the physical domain. Now what if the sustained
event is successful? We know that we have d + δR within which to determine
that fact (measured from the initiation of the event in the physical domain).
We also have some time in which to calculate the value of c. The problem
is that we do not know how much of rac−m to add to d + δR. One solution
is to add the entire rac−m, in spite of the fact that this “double counts” any
portion of rac−m that was allocated to detecting the event. We are examining
alternative strategies but this is the best we have to date. Thus, the RA for sus-
tained events is specified in the form: ratrue Held for (d, δL, δR)/rafalse.
This is interpreted as specifying a response allowance of ratrue when the

Timing Tolerances in Safety-Critical Software 171

event continues to completion (because of that “Held for” event), and rafalse

when the event is canceled. Example: an RA of 250 ms is specified for a c-
m pair, and the event “(f sentrip = e trip) Held for (k delay)” also in-
volves that pair, where k delay = 500 ms ± 25 ms. rac−m is documented
as: 775 ms Held for (k delay) / 250 ms. We could specify rac−m simply by
775 ms/250 ms, but the Held for (k delay) provides useful information.

2. In the case of a sustained event that depends on controlled variables, we
saw earlier that it is relatively easy to arrange that at least one evaluation point
lies in the interval of interest. Since the evaluation depends on the previous value
of a controlled value, the RA for that variable serves the same purpose as the
timing resolution does for monitored variables. Thus, to ensure that a “fresh”
value of the controlled variable is used in the evaluation, we specify that the
RA for that controlled variable must be no larger than d + δR. Of course, it
may already have been specified to be more restrictive than that by the domain
experts. In such cases the more restrictive value is used.

5 Conclusion

We have presented precise definitions for timing requirements that include tol-
erances on the time durations. Our analysis, based on these definitions, shows
that it is possible to specify and verify critical timing requirements using simple
mathematics that is accessible to both software engineers and domain experts.
These definitions and related analyses can form the basis of a comprehensive,
practical approach to specifying timing requirements in high reliability real-time
and embedded systems.

In many safety-critical applications, when operating at the limits of the avail-
able hardware, sampling faster is simply not an option. Thus in order to meet all
system deadlines, we may be forced into a situation where ts max > 1

2 (δL+δR)
for a given requirement. We have shown that it is still possible to find imple-
mentable sampling intervals that satisfy the relevant timing requirements. Our
analysis also demonstrates that even low jitter in the sampling can prevent our
being able to design an implementation that satisfies its timing requirements.

Acknowledgments

The work presented in this paper is based on the efforts of many current and
former employees and consultants of Ontario Power Generation Inc., and AECL,
including: Glenn Archinoff, Dominic Chan, Peter Froebel, Rick Hohendorf, David
Lau, Jeff McDougall, Greg Moum, Mike Viola, and Alanna Wong. We also ac-
knowledge and thank David Parnas. This work reflects the successful application
of many of his pioneering and fundamental ideas regarding software engineering.

172 A. Wassyng, M. Lawford, and X. Hu

References

1. Wang, F.: Formal verification of timed systems: A survey and perspective. Pro-
ceedings of the IEEE 92 (2004) 1283–1307

2. Wulf, M.D., Doyen, L., Raskin, J.F.: Almost asap semantics: From timed models
to timed implementations. In: HSCC04. Vol. 2993 of LNCS. (2004) 296–310

3. Wulf, M.D., Doyen, L., Markey, N., Raskin, J.F.: Robustness and implementability
of timed automata. In: FORMATS04,. Vol. 3253 of LNCS., Grenoble (2004) 152–166

4. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM Transactions
on Programming Languages and Systems 16 (1994) 1543–1571

5. Shankar, N.: Verification of real-time systems using PVS. In Courcoubetis, C., ed.:
CAV ’93. Vol. 697 of LNCS., Elounda, Greece, Springer-Verlag (1993) 280–291

6. Parnas, D.L., Madey, J.: Functional documents for computer systems. Science of
Computer Programming 25 (1995) 41–61

7. Janicki, R., Khédri, R.: On a formal semantics of tabular expressions. Science of
Computer Programming 39 (2001) 189–213

8. Wassyng, A., Janicki, R.: Using tabular expressions. In: Int. Conf. on Software and
Systems Engineering and their Applications. Vol. 4., Paris (2003) 1–17

9. Wassyng, A., Lawford, M.: Lessons learned from a successful implementation of
formal methods in an industrial project. In Araki, K., Gnesi, S., Mandrioli, D.,
eds.: FME 2003. Vol. 2805 of LNCS., Springer-Verlag (2003) 133–153

Timed Testing with TorX

Henrik Bohnenkamp� and Axel Belinfante

Formal Methods and Tools,
Department of Computer Science, University of Twente,
Postbus 217, NL-7500 AE Enschede, The Netherlands

{bohnenka, belinfan}@cs.utwente.nl

Abstract. TorX is a specification-based, on-the-fly testing tool that
tests for ioco conformance of implementations w.r.t. a formal specifi-
cation. This paper describes an extension of TorX to not only allow
testing for functional correctness, but also for correctness w.r.t. timing
properties expressed in the specification. An implementation then passes
a timed test if it passes according to ioco, and if occurrence times of out-
puts or of quiescence signals are legal according to the specification. The
specifications are described by means of non-deterministic safety timed
automata. This paper describes the basic algorithms for ioco, the nec-
essary modifications to standard safety timed automata to make them
usable as an input formalism, a test-derivation algorithm from timed
automata, and the concrete algorithms implemented in TorX for timed
testing. Finally, practical concerns with respect to timed testing are dis-
cussed.

Keywords: Model-based on-the-fly Testing, Timed Automata, Real-
Time Testing, TorX, Tools.

1 Introduction

Testing is one of the most natural, intuitive and effective methods to increase
the reliability of software. Formal methods have been employed to analyse and
systematise the testing idea in general, and to define notions of correctness of
implementations with respect to specifications in particular. Moreover, practical
approaches to testing have been derived from testing theories [4, 15, 8, 9]. The
ioco testing theory [14] reasons about black-box conformance testing of software
components. Specifications and implementations are modeled as labelled tran-
sition systems (LTS) with inputs and outputs. An important ingredient of the
theory is the notion of quiescence, i.e., the absence of output, which is considered
to be observable. Quiescence provides additional information on the behaviour
of the implementation under test (IUT) and therefore allows to distinguish bet-
ter between correct and faulty behaviour. The ioco theory defines a notion of
correctness, the ioco implementation relation, and defines how to derive sound

� This work is supported by the Dutch National Senter project TANGRAM.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 173–188, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

174 H. Bohnenkamp and A. Belinfante

test-cases from the specification. The set of all ioco test-cases (which is usually
of infinite size) is exhaustive, i.e., in theory it is possible to distinguish all faulty
from all ioco-correct implementations by executing all test-cases. In practice,
ioco-test-cases can be used to test software components and to find bugs. The
testing tool TorX has been developed [4, 15] to derive ioco test-cases automat-
ically from a specification, and to apply them to an IUT. TorX does on-the-fly
testing, i.e., test-case derivation and execution is done simultaneously. TorX
has been used successfully in several industry-relevant case-studies [2, 3].

This paper is about an extension of TorX to allow testing of real-time prop-
erties: real-time testing. Real-time testing means that the decisions whether an
IUT has passed or failed a test is not only based on which outputs are observed,
given a certain sequence of inputs, but also on when the outputs occur, given a
certain sequence of inputs applied at predefined times. Our approach is influenced
by, although independent of, the tioco theory [6], an extension of ioco to real-
time testing. Whereas the tioco theory provides a formal framework for timed
testing, we describe in this paper an algorithmic approach to real-time testing,
inspired by the existing implementation of TorX. We use as input models non-
deterministic safety timed automata, and describe the algorithms developed to
derive test-cases for timed testing.

Related Work. Real-time testing has recently come more and more into focus
of research. In [11, 12] approaches are described in which timed automata are
used as specification formalism, and algorithms are described to do on-the-fly
timed testing based on these specifications. These approaches are most similar
to the one we describe in this paper. However, the big difference is that we take
in our approach quiescence into account.

TorX itself has in fact already been used for timed testing [2]. Even though
the approach was an ad-hoc solution to test for some timing properties in a
particular case study, the approach has shown a lot of the problems that come
with practical real-time testing, and has provided solutions to many of them.
This early case-study has accelerated the implementation work for our TorX
extensions immensely.

Structure of the Paper. In Section 2, we introduce ioco, describe the central
algorithms of TorX, and comment on tioco. In Section 3, we introduce the class
of models we use to describe specifications, and describe the algorithms neces-
sary to do testing. In Section 4, we describe an abstract algorithm to derive
test-cases from timed automata, and describe how we have implemented this
in TorX. In Section 5, we address practical issues regarding timed testing. We
conclude with Section 6.

Notational Convention. We will frequently define structures by means of
tuples. If we define a tuple T = (e1, e2, . . . , en), we often will use a kind of
record notation known from programming languages in order to address the
components of the tuple, i.e., we will write T.ei if we mean component ei for T ,
for i = 1, . . . , n.

Timed Testing with TorX 175

2 Preliminaries

2.1 The ioco Way of Testing

In this section we give a summary of the ioco theory (ioco is an abbreviation for
“IO-conformance”). Details can be found in [14].

The ioco Theory. A labelled transition system (LTS) is a tuple (S, s0, Act ,→),
where S is a set of states, s0 ∈ S is the initial state, Act is a set of labels, and→ ⊆
S×Act∪{τ}×S is the transition relation. Transitions (s, a, s′) ∈ → are frequently
written as s

a→s′. τ is the invisible action. The set of all transition systems over
label set Act is denoted as L(Act). Assume a set of input labels LI , and a set
of output labels LU , LI ∩ LU = ∅, τ �∈ LI ∪ LU . Elements from LI are often
suffixed with a “?” and elements from LU with an “!” to allow easier distinction.
An LTS L ∈ L(LI ∪ LU) is called an Input/Output transition system (IOTS) if
L is input-enabled, i.e., ∀s ∈ S,∀i? ∈ LI : ∃s′ ∈ L.S : s

i?→s′. Input-enabledness
ensures that IOTS can never deadlock. However, it might be possible that from
certain states no outputs can be produced without prior input. This behaviour
is described by the notion of quiescence: let L ∈ L(LI ∪ LU), and s ∈ L.S.
Then s is quiescent (denoted δ(s)), iff ∀a ∈ LU ∪ {τ} : ¬∃s′ ∈ L.S : s

a→s′. We
introduce the quiescence label, δ �∈ LI∪LU∪{τ}, and define the δ-closure Δ(L) =
(L.S, L.s0, LI ∪ LU ∪ {τ} ∪ {δ},→′), where →′ = L.→ ∪ {(s, δ, s) | s ∈ L.S ∧
δ(s)}. It is this definition of quiescence which makes it necessary to postulate
strongly convergent LTS, i.e., which do not have infinite computations with only
a finite trace. We introduce some more notation to deal with transition systems.
Assume LTS L. For a ∈ Act ∪ {τ}, we write s

a→, iff ∃s′ ∈ L.S : s
a→s′. We

write s
a1,...,an−−→ s′ iff ∃s1, s2, . . . , sn−1 ∈ L.S : s

a1→s1
a2→s2 · · · sn−1

an→s′. We write
s =⇒ s′ iff s

τ,...,τ−−→ s′, and s
a=⇒ s′ iff ∃s′′, s′′′ ∈ L.S : s =⇒ s′′ a→s′′′ =⇒ s′. Let

L ∈ L(LI∪LU). For a state s ∈ L.S, the set of suspension traces from s, denoted
by Straces(s), are defined as Straces(s) = {σ ∈ (LI ∪LU ∪{δ})∗ | s σ=⇒}, where
=⇒ is defined on top of Δ(L).→. We define Straces(L) = Straces(L.s0). For
L ∈ L(LI ∪LU) and s ∈ L.S, we define out(s) = {o ∈ LU | s o→}∪{δ | δ(s)}, and,
for S′ ⊆ L.S, out(S′) =

⋃
s∈S′ out(s). Furthermore, for s ∈ L.S, s after σ =

{s′ ∈ L.S | s
σ=⇒ s′}, and for S ⊆ L.S, S after σ =

⋃
s∈S s after σ. We define

L after σ = L.s0 after σ.
Let Spec, Impl ∈ L(LI ∪ LU) and let Impl be an IOTS. Then we define

Impl ioco Spec ⇔ ∀σ ∈ Straces(Spec) : out(Impl after σ) ⊆ out(Spec after σ).

Testing for ioco Conformance: Test-Case Derivation. To test a real sys-
tem, we need a specification of it. From the specification test-cases can be de-
rived that are sound with respect to ioco, i.e., their execution will never lead
to a test failure if the implementation is ioco-correct. Test cases are determin-
istic, finite, non-cyclic LTS with two special states pass and fail, which are
supposed to be terminating. Test-cases are defined in a process-algebraic no-
tation, with the following syntax: T −→ pass | fail | a;T |

∑n
i=1 aiTi, for

176 H. Bohnenkamp and A. Belinfante

Specification Explorer Driver IUTAdapterPrimer

Fig. 1. The TorX tool architecture

a, a1, . . . , an ∈ LI ∪ LU ∪ {δ}. Assuming an LTS L ∈ L(LI ∪ LU) as a speci-
fication, test cases are defined recursively (with finite depth) according to the
following rules. Starting with the set S = {L.s0},

1. T := pass is a test-case;
2. T := a;T ′ is a test-case, where a ∈ LI and, assuming that S′ = S after a

and S′ �= ∅, T ′ is a test-case derived from set S′;
3. For out(S) = (LU ∪ {δ}) \ out(S),

T :=
∑

x∈out(S)

x; fail +
∑

x∈out(S)

x;Tx

is a test-case, where the Tx for x ∈ out(S) are test-cases derived from the
respective sets Sx = S after x.

2.2 On-the-Fly ioco Testing: TorX

In Figure 1 we see the tool structure of TorX. We can distinguish four tool
components (not counting the IUT): explorer, primer, driver and adapter.
The explorer is the software component that takes a specification as input
and provides access to an LTS representation of this specification. The primer
is the software component that is ioco specific. It implements part of the test-
case derivation algorithm for the ioco theory. In particular, the primer interacts
directly with the explorer, i.e., the representation of the specification, in order
to compute so-called menus. Menus are sets of transitions with input, output or
δ labels, which according to the model are allowed to be applied to the IUT or
allowed to be observed.

The primer is triggered by the driver. The driver is the only active com-
ponent and acts therefore as the motor of the TorX tool chain. It decides
whether to apply a stimulus to the IUT, or whether to wait for an observation
from the adapter, and it channels information between primer and adapter.

The adapter has several tasks: i) interface with the IUT; ii) translate ab-
stract actions to concrete actions and and apply the latter to the IUT; iii) observe
the IUT and translate observations to abstract actions; iv) detect absence of an
output over a certain period of time and signal quiescence.

The recursive definition of test-cases as described in Section 2.1 allows to
derive and execute test-cases simultaneously, on-the-fly. The core algorithm is
the computation of menus from a set of states S. The output menu contains
transitions labeled with the actions from the out-set out(S). The input menu
contains all inputs that are allowed to be applied to the IUT, according to the

Timed Testing with TorX 177

specification. The reason to keep transitions, rather than actions, in menus is
that it is necessary to know the destination states which can be reached after
applying an input or observing an output. The computation of a menu requires
for each state in S the bounded exploration of a part of the state-space. Recursive
descent into the state-space is stopped if a transition with an input or output
label is seen.

Algorithm Compute Menu
1 input: Set of states S
2 output: Set of transitions in, out
3 in := ∅
4 out := ∅
5 already explored := ∅
6 foreach s ∈ S
7 already explored := already explored ∪ {s}
8 S := S \ {s}
9 is quiescent := true
10 foreach q

a→q′ ∈ Spec.→∩ ({s} ×Act ∪ {τ} × L.S)
11 if a = τ
12 is quiescent := false
13 if q′ �∈ already explored : S := S ∪ {q′}
14 else :
15 if a ∈ LI : in := in ∪ {q a→q′}
16 else :
17 out := out ∪ {q a→q′}
18 is quiescent := false
19 end

20 if is quiescent : out := out ∪ {s δ→s}
21 end
22 return(in,out)

Fig. 2. Menu computation

The algorithm for the computa-
tion of menus is given in Fig. 2. We
assume an LTS Spec ∈ L(LI ∪ LU).
Input to the algorithm is a set S of
states. Initially, S = {L.s0}. After
trace σ ∈ (LI∪LU∪{δ})∗ has been ob-
served, S = L after σ. Note that the
transitions with δ labels are implic-
itly added to the out set when appro-
priate. Therefore, the explorer does
not have to deal with the δ-closure of
the LTS it represents.

Given the computed menus in, out ,
the driver component decides how
to proceed with the testing. The algo-
rithm is given in Fig. 3. In principle,
the driver has to choose between the
three different possibilities that have
been given for the ioco test-case algorithm in Section 2.1: i) termination, ii)
applying an input in set in, or iii) waiting for an output.

Algorithm Driver Control Loop
1 input: —
2 output: Verdict pass or fail
3 (in, out) = Compute Menu({s0})
4 while ¬stop :
5 if adapter.has output() ∨ wait:
6 if out after adapter.output() = ∅: terminate(fail)
7 (in, out) = Compute Menu(out after adapter.output())
8 else:
9 choose i? ∈ {a | q

a→q′ ∈ in}
10 if adapter.apply input(i?) :
11 (in, out) = Compute Menu(in after i?)
12 end
13 terminate(pass)

Fig. 3. Driver Control Loop

With the variables wait
and stop we denote a proba-
bilistic choice: whenever one
of them is references they
are either false or true. The
driver control loop therefore
terminates with probability
one. The choice between ii)
and iii) is also done prob-
abilistically: if the adapter
has no observation to offer
to the driver, the variable
wait is consulted. To describe the algorithm of the driver, we enhance the def-
inition of · after · to menus. If M is a menu, then we define M after a =
{q′ | (q a→q′) ∈M}.

Quiescence in Practice. From the specification point-of-view, quiescence is
a reachability property. In the real world, a non-quiescent implementation will
produce an output after some finite amount time. If an implementation never
produces an output, it is quiescent. Therefore, from an implementation point-

178 H. Bohnenkamp and A. Belinfante

of-view, quiescence can be seen as a timing property, and one that can not be
detected in finite time. In theory, this makes quiescence detection impossible.
However, in practice it is possible to work with approximations to quiescence. A
system that is supposed to work at a fast pace, like in the order of milli-seconds,
can certainly be considered as being quiescent, if after two days of waiting no
output has appeared. Even two hours, if not two minutes of waiting might be
a sufficient to conclude that the system is quiescent. It seems to be plausible
to approximate quiescence by waiting for a properly chosen time interval after
the occurrence of the latest event. This is the approach chosen for TorX. The
responsibility to detect quiescence and to send a synthetic action, the quiescence
signal, lies with the adapter.

2.3 tioco Testing Theory

Even though development of the tioco theory and our own work described here
has been mostly independent from each other, some important decisions made
for tioco have been adapted for our own approach.

In tioco, the formalism used to model specification and implementation of
timed systems are so-called timed transition systems with input and output la-
bels (TIOTS). Timed transition systems are LTS with an explicit notion of time
and delay. An implementation relation tioco is defined, and also a test-case
derivation algorithm. tioco is meant as an extension of ioco to timed testing.
Therefore, the theory has to deal with quiescence. As explained in Section 2.2,
quiescence is in real life a property related to time, and the methods to ap-
proximate the occurrence of quiescence is reused from the approach chosen for
TorX. However, since TIOTS have an explicit notion of time, the quiescence
approximation approach has to be taken explicitly into account in the definition
of test-cases. It is in principle straightforward to define quiescence on the level of
TIOTS in terms of reachability, but the derived test-cases must define explicitly
when a δ is allowed to be observed. In order to define this unambiguously, an
assumption is made which must be met by an implementation in order to ensure
the soundness of tioco testing.

Definition 1 (tioco Quiescence Prerequisite). For an implementation Impl
there is an M ∈ IR such that

– Impl produces an output within M time units, counted from the last input or
output, or,

– if it does not, then Impl is quiescent.

It is in general the responsibility of the system designer to ensure that this
assumption holds and to provide a reasonable value for M . In general, there
will be systems which can never fulfil this property. Quiescence for TIOTS is
(informally) defined as follows.

Definition 2 (tioco Quiescence). A state in a TIOTS is quiescent iff there
is no state reachable by τ -steps or by delaying, where a transition with an output
label is enabled.

Timed Testing with TorX 179

Note that this definition of quiescence is more general than the one for ioco. A
state that can make a τ -step can in tioco still be considered as quiescent, whereas
in ioco not.

Related to the handling of quiescence is another property in the tioco theory
which we adopt: the no-forced-input property. A system must not be forced to
get inputs at a certain time in order to proceed. This basically states that if a
state is quiescent, i.e., if it can only proceed by accepting inputs, it must be
ensured that there is no urgency requirement on the application of an input. If
a state in an TIOTS specification waits for inputs, it must be allowed to wait
for these inputs forever.

3 Absolute-Time Timed Automata

The input formalism chosen for our timed-testing extensions of TorX are non-
deterministic safety timed automata [10]. In this section we will introduce the
necessary background needed to describe our testing approach.

3.1 From Timed Automata to Zones

Our approach makes use of zone-based semantics of timed automata known from
the literature. A comprehensive treatment on semantics and algorithms for timed
and zone automata is given in [5]. In the following we will give a nano-tutorial
on this subject.

A time domain T is a totally ordered, well-founded additive monoid with
neutral element 0 that is also the minimum in the ordering, and with d + d′ ≤ d
iff d′ = 0, for all d ∈ T. In the following we assume a fixed time domain T. Let
C be a set of clock variables. An atomic clock-constraint is an inequality of the
form bl ≺ x − y ≺ bu or bl ≺ x ≺ bu , for x, y ∈ C, ≺∈ {<,≤}, and bl, bu ∈ T
with bl ≤ bu. Clock constraints are conjunctions of atomic clock constraints.
The set of all clock constraints over clock set C is denoted by B(C). Atomic clock
constraints of the form bl ≺ x−y ≺ bu are also called clock-difference constraint.

Definition 3 (Timed Automaton). A timed automaton T is a tuple
(N, C, Act , l0, E, I), where

– N is a finite set of locations,
– C is a set of clock variables,
– Act is a set of labels,
– l0 ∈ N is the initial location,
– E ⊆ N × B(C)×Act ∪ {τ} × 2C ×N is the set of edges
– I : N → B(C) assigns invariants to locations.

We define A(Act) to be the set of timed automata over the label set Act.

The edges (l, g, a, r, l′) ∈ E are abbreviated l
g,a,r−−→ l′, where g ∈ B(C) is called

guard of the edge, and r ⊆ C clock reset. Guards and invariants are clock con-
straints. Note that in the literature the set of clocks is usually not explicitly

180 H. Bohnenkamp and A. Belinfante

mentioned in the definition of a timed automaton, but in the following it is nec-
essary to remember on which set of clocks the semantics of a timed automaton
is defined.

A clock valuation is a function u : C → T. For d ∈ T, we define (u + d)(c) =
u(c) + d. If a valuation u satisfies a clock constraint C ∈ B(C), i.e., if the
relational expression obtained by replacing all occurrences of clock names c by
u(c) evaluates to true, we write u ∈ C. If r ⊆ C , then u[r �→ 0](c) = 0, if c ∈ r,
and u[r �→ 0](c) = u(c), otherwise.

The semantics of a timed automaton is a transition system where states are
pairs (l, u) of locations and clock valuations. Initial state is (l0, {c �→ 0 | c ∈ C}).
Transitions are defined as follows.

u∈I(l) (u+d)∈I(l)

(l,u)
d−−→(l,u+d)

(d ∈ T) l
g,a,r−−→l′ u∈g u′=u[r �→0] u′∈I(l′)

(l,u)
a−−→(l′,u′)

(1)

If T is a continuous set, like IR+, the transition system defined by the two rules
have a continuous state-space. It is well known, however, that under certain con-
ditions it is possible to abstract from the continuous transitions defined above,
and derive a discrete representation of the timed automaton, the region automa-
ton [1]. More efficient in time and space however is the construction of a zone au-
tomaton [5], which is an abstraction of the region automaton. A clock zone is the
maximal set of clock valuations that satisfy a given clock constraint. In order to
define the semantics of a timed automaton in terms of a zone automaton, a num-
ber of operations on clock zones are defined (in decreasing order of precedence).
The time-passing operator ⇑z, which is defined as ⇑z = {u + d | u ∈ z, d ∈ T};
Conjunction of clock zones z ∧ z′, defined as z ∧ z′ = z ∩ z′. Clock reset z[r �→ 0]
for r ⊆ C, defined as z[r �→ 0] = {u[r �→ 0] | u ∈ z}.

We denote the set of all clock zones on clocks in C as Z(C), or just Z, if C is
clear from the context. We define Succ(z, i, g, r, i′) = (⇑z ∧ i∧ g)[r �→ 0]∧ i′) for
clock zone z ∈ Z, clock resets r ⊆ C and clock constraints i, g, i′.

The state space of a zone automaton underlying a timed automaton T =
(N, C, Act , l0, E, I) is a sub-set of N × Z, and, following [5], its elements are
called zones (without “clock-”). The zone automaton ZA(T) of T is a labelled
transitions system (S, s0, Act ,−�) ∈ L(Act), where S ⊆ N × Z, s0 = (l0, {c =
0 | c ∈ C}), and −� is defined by the following rule:

l
g,a,r−−→ l′ z′ = Succ(z, I(l), g, r, I(l′)) �= ∅

(l, z) a−� (l′, z′)
. (2)

Zone automata derived by this rule are discrete, but in general still infinite. For
a certain class of timed automata it is however possible to construct a finite
quotient of zones by so-called normalisation (cf. [5]). The use of normalisation
will however not be necessary for our purposes.

3.2 Absolute Time in Zone Automata

For our testing approach we have decided to measure time absolutely, i.e.,
testing-relevant events like the application of an input to the IUT or the ob-
servation of an output from the IUT is time stamped in absolute time, measured

Timed Testing with TorX 181

from “system start”. When “system start” is, is an arbitrary choice. Using abso-
lute time does not have any particular advantage or disadvantage. Our approach
would work equally well with relative time, i.e., with measurements of the time
that passes between two observable events. The choice for absolute time was the
fact that some simple computations on time stamps were not necessary.

We have therefore to introduce a notion of absolute time in timed automata.
We do this by introducing a special clock, denoted by Abs, a clock which is
never referenced in the considered timed automaton, and which therefore is
never reset. So, if T = (N, C, Act , l0, E, I) is a timed automaton, we define the
absolute-time version Abs(T) of T as T = (N, C ∪ {Abs}, Act , l0, E, I). Note
that clock zones are defined relative to a clock set. All clocks in the clock set
are considered in order to compute successor clock zones. Adding Abs to the
clock set adds therefore one more dimension to the clock zones. We define the
absolute-time zone automaton of a timed automaton T with clock set T.C as the
zone automaton ZA(Abs(T)). Given a zone q = (l, z) of Abs(T), the valuations
of the absolute time clock Abs in clock zone z describes the time interval in
which it is allowed to sojourn in zone q. In the following, we will denote the
projection of a clock zone z ∈ Z(C ∪ {Abs}) on the absolute times scale as z↓,
i.e., z↓ = {u(Abs) | u ∈ z}.

3.3 Inputs and Outputs in Timed Automata

We distinguish again a set of input labels, LI , and a set of output labels, LU ,
and special symbol δ to denote quiescence. We consider now the set of timed
automata A(LI ∪ LU).

The semantics of timed automata, as defined with (1) defines a timed tran-
sition system (TTS), and assuming the label sets LI and LU for the timed
automaton, this TTS is a TIOTS. Therefore, we can apply in principle the qui-
escence definition of [6] to define quiescence for Timed Automata with inputs
and outputs. The definition is however not useful to detect quiescence algorith-
mically. Fortunately, it is possible to express the conditions for quiescence on the
level of the timed automaton itself, by modifying and adding switches. Similar
to the ioco case, we will call such a modified version of a timed automaton T the
δ-closure of T . The definition of the δ-closure below takes the tioco definition of
quiescence as well as the tioco Quiescence Prerequisite (cf. Definitions 1 and 2)
into account. We therefore assume the existence of a real number M which is
mentioned in Definition 1, and denote the δ-closure of T as ΔM (T).

Definition 4 (δ-closure of a timed automaton). Let T = (N, C, Act , l0, E, I)
be a timed automaton with Act = LI ∪LU , and let M ∈ IR,M > 0. Then the δ-
closure ΔM (T) of T is a timed automaton (N ′, C′, Act ′, l′0, E

′, I ′), where N ′ = N ,
C′ = C ∪ {qc}, Act ′ = Act ∪ {δ}, l′0 = l0, I ′ = I, and E′ = E1 ∪ E2 ∪ E3 ∪ E4

with E1 = {(e.l, e.g ∧ (qc < M), e.a, e.r ∪ {qc}, e.l′) | e ∈ E ∧ e.a ∈ LU},
E2 = {(e.l, e.g, e.a, e.r∪{qc}, e.l′) | e ∈ E∧e.a ∈ LI}, E3 = {e | e ∈ E∧e.a = τ}
and E4 = {(l,qc > M, δ, ∅, l) | l ∈ N}.
The idea behind this definition is the following. The assumption is that the
IUT fulfils the tioco Quiescence Prerequisite. Therefore, it will only produce

182 H. Bohnenkamp and A. Belinfante

outputs within M time units since the last input or output has been seen. This
means that in the specification every location in which it is allowed to stay after
M time units have passed, a δ should be accepted. Moreover, if more then M
time units have passed, no output in the timed automaton needs to be enabled
anymore. Therefore, we add the clock qc �∈ C. It measures the time since the
last observable behaviour of the IUT has happened. Consequently, every switch
which has an input or output label resets clock qc. The δ label is added to the
action set, and every location in N gets a self-loop switch with δ label, which is
only enabled if qc > M . The set E′ thus comprises the disjoint sets E1, . . . , E4.
E1 contains all edges of E with output label, where the guards are extended
with the constraint qc < M . qc is reset if the switch is taken. E2 contains all
edges of E with an input label, but with the clock reset extended by qc again.
E3 contains all (unmodified) switches of E with a τ label. E4 contains only self-
loops with δ label. These switches denote the occurrence of a quiescence signal.
The guard for all of these switches is qc > M . Note that the clock qc is not
reset, since otherwise switches with output labels could become enabled again.

Similar to the tioco theory, we postulate the no-forced-input property (see
Section 2.3, cf. [6]). In the context of timed automata, we thus require that,
whenever it is possible to accept quiescence in a location, it must always be
possible to stay in that location forever.

4 Timed Automata Testing with TorX

The timed testing approach we have implemented in TorX is based on the
absolute-time zone automata, derived from δ-closed timed automata.

4.1 Test-Cases

In order to define the test-cases we are executing with TorX, we adapt the
definition of · after · (cf. Section 2.1) to work on zones.

Definition 5 (· aftert ·). Let T = (N, C, LI ∪ LU , l0, E, I) be a timed automa-
ton, and let ZA(Abs(Δ(T))) = (S, s0, LI ∪LU ∪{δ},−�) the absolute-time zone
automaton derived from its δ-closure. Let S′ ⊆ S. Then, for a ∈ LI ∪ LU ∪ {δ}
and t ∈ T,

S′ aftert a@t = {(l′, z′′) | ∃(l, z) ∈ S′ : (l, z) a−� (l′, z′)
and z′′ = (z′ ∧Abs = t) �= ∅} (3)

The set S′ aftert a@t contains all those zones which can be reached by executing
action a at time t from clock zones in S′. Moreover, the successor zones reflect
the fact that Abs = t at the time of entering.

Based on this definition, we can give a semi-formal definition of the timed
test-cases that are being executed with TorX. As for ioco (cf. Section 2.1), we

Timed Testing with TorX 183

Table 1. Computation of menus from timed automata

Algorithm Compute Menu TA
1 input: Set of zones S
2 output: Set of zone automata transitions in, out
3 in := ∅
4 out := ∅
5 already explored := ∅
6 foreach s = (l, z) ∈ S
7 already explored := already explored ∪ {s}
8 S := S \ {s}
9 foreach e ∈ {e′ ∈ E | e.l = l}
10 if z′ = Succ(z, I(e.l), e.g, e.r, I(e.l′)) �= ∅ :
11 if e.a = τ : S := S ∪ {(e.l′, z′)}
12 else :
13 if e.a ∈ LI : in := in ∪ {s a−� (e.l′, z′)}
14 else : out := out ∪ {s a−� (e.l′, z′)}
15 end
16 end
17 return(in,out)

express the test-cases in a process-algebra-like notation1. We distinguish again
three steps.

1. T := pass is a test-case;
2. Application of input:

T := i@t;T ′ +
∑

t′<t∧o∈LU
S aftert o@t′=∅

o@t′; fail +
∑

t′<t∧o∈LU
S aftert o@t′ �=∅

o@t′;To@t′

for i ∈ LI and for t ∈ T chosen such that S′ = S aftert i@t �= ∅, and for
T ′ being a test-case derived from S′, and the To@t′ test-cases derived from
S aftert o@t′. Note that it is necessary to take outputs into account which
do arrive at the time t′ < t.

3. Waiting for outputs or signalling of quiescence:

T :=
∑

o∈LU∪{δ}
S aftert o@t=∅

o@t; fail +
∑

o∈LU ∪{δ}
S aftert o@t�=∅

o@t;To@t.

Here, all outputs including δ are considered. The outputs o@t which yield
an empty successor set S after o@t result in a test failure. All other outputs
lead to a test-case To@t, where To@t is derived from S after o@t �= ∅.

1 semi-formal: we do abuse the Σ sign to denote non-deterministic choice over a po-
tentially continuous set of possibilities, which is not well-defined.

184 H. Bohnenkamp and A. Belinfante

Table 2. driver control loop for timed systems

Algorithm Driver Control Loop TA
1 input: —
2 output: Verdict pass or fail
3 (in, out) = Compute Menu TA({(l0, {x = 0 | x ∈ C})})
4 while ¬ stop:
5 if adapter.has output() ∨ wait:
6 o@t := adapter.output()
7 if out aftert o@t = ∅: terminate(fail)
8 (in, out) := Compute Menu TA(out aftert o@t, t)
9 else:

10 choose i@t ∈ {a@t′ | (l, z) a−� (l, z′) ∈ in ∧ t′ ∈ z′↓}
11 if adapter.apply input(i@t):
12 (in, out) = Compute Menu TA(in aftert i@t, t)
13 end
14 terminate(pass)

4.2 Menu Computation

In Table 1 the algorithm for menu computation Compute Menu TA is given.
We assume a timed automaton Spec ∈ A(LI ∪ LU) and consider its δ-closure
ΔM (Spec) for an appropriately chosen value M . The input of the algorithm is a
set of zones S derived from (ZA(Abs(ΔM (Spec)))) (line 1). The output comprises
two sets, the in menu and the out menu. (lines 3, 4, 17). The set already explored
is used to keep track of zones already explored (line 5). We have an outer loop
over all states (i.e., zones (l, z)) in the set S (lines 6–16). The contents of S
varies during the computation. All states considered inside the loop are added
to already explored and removed from S (lines 7, 8). The inner loop (line 9 – 15)
considers every switch e with source location l. First, the successor clock zone z′

of z according to switch e is computed (line 10). If z′ is not empty, transitions
of the zone automaton are added to the sets in or out , depending on the labels
of switch e (lines 11–14). Note that transitions with label δ are added to the
out menu. In case of a τ label, the resulting zone is added to set S (line 11). In
essence, the menu computation is a bounded state-space exploration of the zone
automaton with sorting of the generated transitions according to their labels.

4.3 Driver Control Loop

We enhance the definition of · aftert · to menus.

Definition 6 (· aftert ·). Let T = (N, C, Act , l0, E, I) be a timed automaton,
and let ZA(Abs(T)) = (S, s0, Act ,−�) be its absolute-time zone automaton. Let
M ⊆−�. Then, for a ∈ Act and t ∈ T,

M aftert a@t = {(l′, z′′) | (l, z) a−� (l′, z′) ∈M

and z′′ = (z′ ∧Abs = t) �= ∅} (4)

Timed Testing with TorX 185

If the set M is a menu computed by Compute Menu TA, each transition
(l, z) a−� (l′, z′) contains the interval of all times at which a us allowed to
happen: the interval z′↓. The set M aftert a@t then computes a set of successor
zones from M which can be reached by executing a at exactly time t. For a zone
(l, z) ∈M aftert a@t, z↓ = [t, t] holds.

In Table 2, we see the algorithm for the driver control loop of TorX,
enhanced to deal with time. Menus are computed with Compute Menu TA,
and the successor states are computed with · aftert ·. When an input is applied,
not only an input i? ∈ in is chosen, but also a time instance t ∈ z′↓ (line 10), at
which time to apply the input.

The variables wait and stop have the same meaning as in the ioco algorithm
(cf. Section 2.2).

4.4 ioco, tioco, and TorX

The algorithms for menu computation and test execution are very similar to the
ones implemented for untimed TorX. However, there are some slight differences,
which we will comment here.

The most important difference is that the δ-closure of the timed automaton
can not be computed anymore by the primer. Rather, the δ-closure is done
beforehand, and the primer does not need to distinguish anymore between a δ
label and arbitrary outputs. The reason for this is that quiescence is a timing
property that has to be dealt with on zone-automaton level. These computations
are however in the responsibility of the explorer. As a consequence, contrary
to our initial hopes, the algorithms that existed for untimed TorX can not be
reused. However, the changes are simple and the principle remains the same.

Another big difference is that we allow for the more general definition of qui-
escence from the tioco theory. Attempts to use the more restricted ioco definition
turned out to be not successful, since unsound test-cases could be produced.

5 Timed Testing in Practice

5.1 Notes on the Testing Hypothesis

The Testing Hypothesis is an important ingredient in the testing theory of Tret-
mans [14]. The hypothesis is that the IUT can be modelled by means of the
model class which forms the basis of the testing theory. In case of ioco the as-
sumption is that the IUT can be modelled as an input-enabled IOTS. Under this
assumption, the results on soundness and completeness of ioco-testing do apply
to the practical testing approach. In this paper, we have not defined a formalism
that we consider as model for an implementation, so we can not really speak of
a testing hypothesis. Still, it is important to give some hints on what properties
a real IUT should have in order to make timed testing feasible. We mention four
points.

First, we require input enabledness, as for the untimed case. That means,
whenever it is decided to apply an input to the IUT, it is accepted, regardless

186 H. Bohnenkamp and A. Belinfante

of whether this input really does cause a non-trivial state-change of the IUT or
not.

Second, it is plausible to postulate that all time measurements are done
relative to the same clock that the IUT refers to. In practice this means that the
TorX adapter should run on the same host as the IUT and reference the same
hardware clock. If measurements would be done by different clocks, measurement
errors caused by clock skew and drifts might spoil the measurement, and thus
the test run.

Third, as has been pointed out in Section 2.3, the system designer has to
ensure that the implementation behaves such that quiescence can be detected
according to Section 2.3, Def. 1.

Fourth, up to now we left open which time domain T to choose for our
approach. The standard time domain used for timed automata are real numbers,
however, in practice only floating-point numbers, rather than real numbers can
be used. Early experiments have however shown that floats and doubles quite
quickly cause numerical problems. Comparisons of time stamps turn out to be to
inexact due to rounding and truncation errors. In the TorX implementation we
use thus fixed-precision numbers, i.e., 64 bit integers, counting micro-seconds.
This happens to be the time representation used for the UNIX operating system
family.

5.2 Limitations of Timed Testing

Even though the timed testing approach described in this paper seems to be
easy enough, timed testing is not easy at all. Time is a complicated natural
phenomenon. It can’t be stopped. It can not be created artificially in a lab
environment. Time runs forward, it runs everywhere, and, leaving Einstein aside,
everywhere at the same pace. For timed testing this means that there is no time
to waste. The testing apparatus, TorX, in this case, must not influence the
outcome of the testing approach. However, the execution of TorX does consume
time, and the question is when the execution time of TorX does influence the
testing.

– Assume that input i? is allowed to be applied at time 0 ≤ t ≤ b. Assume
that the testing tool needs b/2 to prepare to apply the input. Then the input
can never be applied between time 0 and b/2. If there is an error hiding in
this time interval, it will not be detected.

– Assume that the tester is too slow to apply i? before b. Then this input can
not be applied, and some behaviour of the IUT might never be exercised.

This basically means that the speed of the testing tool and the speed of commu-
nication between tester and IUT determine the maximal speed of the IUT that
can be reliably tested.

Springintveld et al. [13] define an algorithm to derive test-cases for testing
timed automata. They prove that their approach to test timed automata is
possible and even complete, but in practice infeasible, due to the enormous
number of test-cases to be run. This is likely also the case for our approach and

Timed Testing with TorX 187

thus limits the extend to which timed testing can be useful. Automatic selection
of meaningful test-cases might be an important ingredient in future extensions
of our approach. For the time being, our goal is to find out how far we can get
with timed testing as is in practice. This will be subject of our further research.

6 Conclusions and Further Work

In this paper we have presented Timed TorX, a tool for on-the-fly real-time
testing. We use non-deterministic safety timed automata as input formalism to
describe system specifications, and we demonstrate how to use standard algo-
rithms for zone-computations in order to make our approach work. It turns out
that the existing TorX algorithms, especially in the primer and driver can
in principle be reused in order to deal with time. The major difference is that
the δ-closure of the specification is now an explicit step, and cab not be done
implicitly in the primer anymore.

Our approach is strongly related to the tioco testing theory [6]. Esp. the no-
tion of quiescence we have defined in Section 3.3 is strongly motivated by the
tioco definition. We have much confidence that the δ-closure we have defined
for timed automata ensures that the test-cases and the on-the-fly testing algo-
rithm as presented in this paper are indeed an instantiation of the tioco theory.
However, a formal proof of this assertion has still to be provided.

Timed testing relies on precise measurement of time stamps, but measure-
ment errors can never be avoided. Timed automata live in an ideal world. It is
perfectly normal to specify that a particular output should occur exactly two
seconds after a certain input. But what if the output comes after 2.001 seconds?
Should this considered to be a failure or not? One approach would be to allow
for slack, i.e., don’t allow for discrete values but for intervals in the specification
of occurrence times. However, this defers the problem only to the boundary of
the intervals. An approach that is currently considered is to go away from hard
pass/fail verdicts, but to define continuous metrics which allow to express quan-
titatively how far an implementation deviates from the specification. Work on
this is based on [7].

Acknowledgements. We thank Conrado Daws, Ed Brinksma and Laura Bran-
dán Briones for discussions on timed automata, tioco theory and timed testing
in general. Furthermore we thank Jan Tretmans for helpful comments on quies-
cence. Tim Willemse pointed out a mistake in an earlier approach to implement
quiescence.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comp. Science,
126(2):183–235, 1994.

2. A. Belinfante. Timed testing with TorX: The Oosterschelde storm surge barrier.
In M. Gijsen, editor, Handout 8e Nederlandse Testdag, Rotterdam, 2002. CMG.

188 H. Bohnenkamp and A. Belinfante

3. A. Belinfante, J. Feenstra, L. Heerink, and R. G. de Vries. Specification based for-
mal testing: The easylink case study. In 2nd Workshop Emb. Systems (PROGRESS
’01), pages 73–82, 2001.

4. A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw,
and L. Heerink. Formal test automation: A simple experiment. In G. Csopaki,
S. Dibuz, and K. Tarnay, editors, 12th Int. Workshop on Testing of Communicating
Systems, pages 179–196. Kluwer, 1999.

5. Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.
In J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures on Concurrency and
Petri Nets:, volume 3098 of LNCS, pages 87–124. Springer–Verlag, 2004.

6. Laura Brandán Briones and Ed Brinksma. A test generation framework for quies-
cent real-time systems. In J. Grabowski and B. Nielsen, editors, Formal Approaches
to Testing of Software (FATES ’04), volume 3395 of LNCS, pages 64–78, 2005.

7. L. de Alfaro, M. Faella, and M. Stoelinga. Linear and branching metrics for quan-
tatative transition systems. In Proc. ICALP’04, volume 3142 of LNCS, pages
97–109. Springer–Verlag, 2004.

8. J-C. Fernandez, C. Jard, T. Jeron, and C. Viho. Using on-the-fly verification
techniques for the generation of test suites. In R. Alur and T.A. Henzinger, editors,
Computer Aided Verification (CAV ’96), volume 1102 of LNCS, pages 348–359.
Springer-Verlag, 1996.

9. J-C. Fernandez, C. Jard, T. Jeron, and C. Viho. An experiment in automatic gener-
ation of test suites for protocols with verification technology. Science of Computer
Programming, 29(1–2):123–146, 1997. Special Issue on COST 247, Verification and
Validation Methods for Formal Descriptions.

10. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Journal Inf. and Comp., 111(2):193–244, 1994.

11. M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems.
In S. Graf and L. Mounier, editors, Proc. 11th Int. SPIN Workshop (SPIN 2004),
volume 2989 of LNCS, pages 109–126. Springer-Verlag, 2004.

12. M. Mikucionis, B. Nielsen, and K. G. Larsen. Real-time system testing on-the-
fly. In K. Sere and M. Waldén, editors, 15th Nordic Workshop on Programming
Theory, number 34, pages 36–38. Abo Akademi, Department of Computer Science,
Finland, 2003.

13. J.G. Springintveld, F.W. Vaandrager, and P.R. D’Argenio. Testing timed au-
tomata. Theoretical Computer Science, 254(1–2):225–257, 2001.

14. J. Tretmans. Test Generation with Inputs, Outputs and Repetitive Quiescence.
Software—Concepts and Tools, 17(3):103–120, 1996.

15. J. Tretmans and H. Brinksma. Torx: Automated model based testing. In A. Hart-
man and K. Dussa-Ziegler, editors, Proc. 1st European Conf. on Model-Driven
Software Engineering, Nürnberg, 2003.

�

�

©

〈D,Θ,Q, q0, Σ, T 〉

D V
P d ∈ D type(d) d

Θ V
Q q0 ∈ Q
Σ Σ?

Σ! a ∈ Σ
(a) = 〈p1, . . . , pk〉 ∈ P k k ∈ N

T 〈q, a,G,A, q′〉
• q ∈ Q
• a ∈ Σ
• G V ∪ (a)
• A (x := Ax)x∈V

x ∈ V Ax

x := Ax V ∪ (a)
• q′ ∈ Q

START p p
x x

MSG m x
0 STOP

x := p
START?(p)

STOP !
x = 0

m = x ∧ x > 0
MSG!(m)
x := x− 1

S

〈S, S0, Λ,→〉 S
S0 ⊆ S Λ = Λ? ∪Λ!

→⊆ S × Λ× S

〈D = V ∪ P,Θ,Q, q0, Σ, T 〉

P V V V
Π P
E V ∪P ν ∈ V π ∈ Π E(ν, π)

E ν
π P ′ ⊆ P ΠP ′

Π P ′

S = 〈D,Θ,Q, q0, Σ, T 〉
[[S]] 〈S, S0, Λ,→〉

S = Q× V
S0 = q0 × V0 V0 = {ν ∈ V| Θ(ν) = true}

Λ = {〈a, π〉|a ∈ Σ, π ∈ Π }
Λ? Λ!

∈ {?, !} Λ# = {〈a, π〉|a ∈ Σ#, π ∈ Π }
→ S × Λ× S

〈q, ν〉, 〈q′, ν′〉 ∈ S 〈a, π〉 ∈ Λ t = 〈q, a, G, A, q′〉 ∈ T G(ν, π) = true ν′ = A(ν, π)

〈q, ν〉 〈a,π〉→ 〈q′, ν′〉

〈a, π〉 〈q, ν〉
〈q′, ν′〉 t = 〈q, a,G,A, q′〉 G
true ν

a π A
(ν, π) ν′

s1
α1→ s2

α2→ · · · sn−1
αn−1→ sn

σ =
α1α2 · · ·αn s

σ→ s′ ∃s1, . . . sn+1 ∈
S. s = s1

α1→ s2
α2→ · · · sn

αn→ sn+1 = s′ S′ ⊆ S

s
σ→ S′ s′ ∈ S′ s

σ→ s′

ρ ρ Λ! ∪ Λ?

S (S)

F ⊆ Q S ρ F
F×V F Λ!∪Λ?

(S, F)

j = 1, 2 Sj = 〈Dj =
Vj ∪ Pj , Θj , Qj , q

0
j , Σj , T j〉 Dj Σj = Σ?

j ∪ Σ!
j

V1 ∩ V2 = ∅ P1 = P2 Σ!
1 = Σ!

2 Σ?
1 = Σ?

2

S = S1||S2

S1,S2 〈D,P,Θ,Q, q0, Σ, T 〉
V = V1 ∪ V2 P = P1 = P2 Θ = Θ1 ∧Θ2 Q = Q1 ×Q2

q0 = 〈q01 , q02〉 Σ? = Σ?
1 = Σ?

2 Σ! = Σ!
1 = Σ!

2 T

〈q1, a,G1, A1, q
′
1〉 ∈ T1 〈q2, a,G2, A2, q

′
2〉 ∈ T2

〈〈q1, q2〉, a,G1 ∧G2, A1 ∪A2, 〈q′1, q′2〉〉 ∈ T

(S1||S2) = (S1) ∩ (S2)
(S1||S2, F1 × F2) = (S1, F1) ∩ (S2, F2)

S
Sδ S q Sδ

δ
q

S = 〈D = V ∪P,Θ,Q, q0, Σ = Σ!∪Σ?, T 〉
Sδ 〈D = V ∪ P,Θ,Q, q0, (Σ! ∪

{δ}) ∪Σ?, T ∪
⋃

q∈Q〈q, δ,Gδ,q, (v := v)v∈V , q〉〉

Gδ,q :
∧

a∈Σ!

¬Ga,q Ga,q :
∨

t=〈q,a,G,A,q′〉∈T
∃sig(a).G.

S Sδ

x < 0 δ
¬(x = 0 ∨ ∃m,m = x ∧ x > 0)

p < 0

δ!

x := p
START?(p)

STOP !
x = 0

m = x ∧ x > 0
MSG!(m)
x := x− 1

δ! δ!

δ!
x < 0

Sδ

S
ψ S ψ

ω

ω ⊆ Qω

(ω, ω) M ω
M M Ω(M)

ω ∈ Ω(M) (Λ!
M ∪ Λ?

M)∗

(Λ!
M ∪Λ?

M)∗ \ (ω, V iolateω)
M Sδ

S (Λ!
S ∪ {δ} ∪ Λ?

S)∗

MSG?(m)

p ≥ 0

START?(p)

STOP !

∗ ∗MSG?(m)

p > 0

START?(p)

STOP !

∗ ∗

ω1 ω2

ω1

p > 0

{ }
δ ω2

p ≥ 0

S
(ω, ω) ∈ Ω(S) S (ω, ω)

S |= (ω, ω) (S) ∩ (ω, ω) = ∅

Q S (S) = (S, Q)
(S‖ω,Q× ω) = (S, Q)∩ (ω, ω)

S |= (ω, ω)
(S‖ω,Q × ω)

S‖ω
Q × ω

Q × ω

Q× ω

ω||S

Sδ ω1

Sδ ω2

Sδ ω2 p = 0
MSG

(ω, ω)
(ϕ, ϕ)

ω||ϕ
ω × ϕ (ω||ϕ, ω ×

ϕ) = (ω, ω) ∩ (ϕ, ϕ)

(ω, ω) (ϕ, ϕ)
ω × (Qϕ \ ϕ)

(Qω \ ω)× ϕ

I

I

I
S I S (Sδ) · (Λ! ∪ {δ}) ∩ Traces(Iδ) ⊆ (Sδ)

I S
Sδ

Sδ

START?(1) ·STOP !
S

Sδ START?(1) · δ!

S START?(1)·
START?(1) · STOP ! Sδ

Σ!(M) M
Sδ

S

S
Σ!(Sδ)

(ω, ω) S
(ω, ω)

M = 〈D,Θ,Q, q0, Σ, T 〉
M Σ!(M) = 〈D,Θ,Q∪

{ M}, q0, Σ, T ∪
⋃

q∈Q,a∈Σ!〈q, a,
∧

t=〈q,a,Gt,At,q′
t〉∈T ¬Gt, (x := x)x∈V , M 〉〉

Σ!(M) M M /∈
Q q ∈ Q a ∈ Σ! q

M a
∧

t=〈q,a,Gt,At,q′
t〉∈T ¬Gt

M Σ!(M)
M M
{ M}

S
(Σ!(Sδ), {FailSδ})

I S Iδ |= (Σ!(Sδ), {FailSδ}))

Σ!(Sδ)
S Iδ |= (Σ!(Sδ), {FailSδ)}

Σ!(Sδ) I

I S

M (ω, ω) ∈ Ω(M)
ω||Σ!(M) M

ω × { M}
ω||Σ!(M)

(ω, ω) ∈ Ω(Sδ) (S, ω) � ω||Σ!(Sδ)

(S, ω)
(ω, ω)

I S
∀(ω, ω) ∈ Ω(Sδ). Iδ |= ((S, ω), S ω)

(S, ω)
I

S ω ω×{ Sδ}
(ω, ω)

S

(S, ω)|(ω, ω) ∈ Ω(Sδ)}

S

ω||Σ!(M)
(Qω \ ω)×

{ M} ω||Σ!(M) (Qω \
ω)× { M}

S (ω, ω) ∈ Ω(Sδ)
Iδ �|= ((S, ω), S ω) ⇒ ¬(I S)

(S, ω) S ω

Qω \ ω)× { Sδ} I I
S ω ω

ω||Σ!(M)
ω ×QM

ω||Σ!(M)

S (ω, ω) ∈ Ω(Sδ) Iδ �|=
((S, ω), S ω) ⇒ Iδ �|= (ω, ω) ∧ Sδ �|= (ω, ω)

(S, ω) S ω

I

(S, ω)

(S, ω)

S
ω2

S ω2

(ω, ω)

(S, ω) s
q s q

v s
σ→ 〈q, v〉

∪

q
l q

l, q
S 〈l, ϕl→q〉 q ϕl→q

〈l, v〉
q v |= ϕl→q

〈l, ϕl→q〉 l
q

x = 0
STOP?

x = 0
STOP?

x := x− 1

MSG?(m)
m = x ∧ x > 0

m = x ∧ x > 0
MSG?(m)
x := x− 1

δ?
x < 0

δ?
x < 0
δ?

x �= 0
STOP?

p ≥ 0

x := p
START !(p)

δ?

S (ω, ω)
Ω(Sδ) (S, ω)

mirror((S, ω)) L
T Σ = Σ! ∪ Σ?

Σ! = Σ?
S Σ? = Σ!

S ∪ {δ} /∈ L
l ∈ L 〈l, ϕl→q〉

q ∈ ∪ ϕl∨
q ∈ ∪ ϕl→q

l ∈ L t ∈ T
l G a

• a ∈ Σ!

∗ G ∧ ϕl t T
∗ t G ∧ ϕl

• a ∈ Σ?

∗ t G ∧ ϕl

∗ T l
a G ∧ ¬ϕl

(S, ω) (S, ω)

(S, ω2)
p

p

p > 0 START (p) · STOP

p = 0 START (p) ·STOP
ω2

START !(p)
x := 0

p ≥ 0

STOP?
x = 0x > 0

STOP?

MSG?(m)

S ω2

S P
S S′ S

S
S′

P S′ S P

S P
S

¬P S
P S

n

n

Adding Conflict and Confusion to CSP

Christie Bolton

Department of Computer Science
University of Warwick
Coventry CV4 7AL

christie@dcs.warwick.ac.uk

Abstract. In the development of concurrent systems two differing ap-
proaches have arisen: those with truly concurrent semantics and those
with interleaving semantics. The difference between these two approaches
is that in the coarser interleaving interpretation parallelism can be cap-
tured in terms of non-determinism whereas in the finer truly concurrent
interpretation it cannot. Thus processes a ‖ b and a.b + b.a are identi-
fied within the interleaving approach but distinguished within the truly
concurrent approach.

In this paper we explore the truly concurrent notions of conflict,
whereby transitions can occur individually but not together from a given
state, and confusion, whereby the conflict set of a given transition is
altered by the occurence of another transition with which it does not
interfere. Having provided a translation from Petri nets, a truly concur-
rent formalism, to CSP, an interleaving formalism, we demonstate how
the CSP model-checker FDR can be used to detect the presence of both
conflict and confusion in Petri nets.

This work is of interest for two reasons. Firstly, from a practical point
of view: to the author’s knowledge, no existing tool for modelling Petri
nets can perform these checks and we address that issue. Secondly, and
perhaps more significantly, we bridge the gap between truly concurrent
and interleaving formalisms, demonstrating that true concurrency can be
captured in what is typically considered to be an interleaving language.

Keywords: True Concurrency; Interleaving Concurrency; Petri Nets;
CSP; Conflict; Confusion; Automatic Verification.

1 Introduction

In the development of critical systems standards dictate that it is necessary to
first design and analyse abstract models of the system. For such systems, testing
alone is inadequate as it can only detect errors not verify their absence. Rather,
we must formally, and preferably automatically, prove that the system satisfies
the required properties. Formal verification is especially important when mod-
elling concurrent, distributed and communicating systems; their high complexity
level makes them especially vulnerable to errors.

Within concurrency theory two distinct approaches can be identified: those
with truly concurrent semantics and those with interleaving semantics. The dif-

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 205–220, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

206 C. Bolton

ference between these two approaches is that in the coarser interleaving inter-
pretation parallelism can be captured in terms of non-determinism whereas in
the finer truly concurrent interpretation it cannot; only in true concurrency
can we distinguish between the concurrent execution of actions and the non-
deterministic choice between the possible orders of their executions. Thus pro-
cesses a ‖b and a.b + b.a as illustrated in Figure 1 are identified within the
interleaving approach but distinguished within the truly concurrent approach.
Examples of truly concurrent formalisms include trace theory [9], Petri net
theory [13], prime event structures [19], pomsets [14], and others (cf. e.g., [12, 3]).
Examples of interleaving formalisms include CSP [8], CCS [10, 11] and ACP [2].
Motivations for the need for the finer truly concurrent model are given in e.g. [14].

Three notions central to true concurrency are causal dependency, conflict,
and confusion: the first is when one action is enabled only after another has
occured; the second is when two or more actions can occur individually but
not together from a given state; and the third is when the conflict set of a given
action, that is the set of actions with which the given action conflicts from a given
state, is altered by the occurence of another action with which the first action
does not interfere. Confusion can arise when there is a mixture of concurrency
and conflict.

In this paper we use the truly concurrent formalism of Petri nets [13, 16], a
formalism that has both graphical and mathematical representations and hence
is both formal and intuitive, to explore the above notions. There are many dif-
ferent types of net (cf. [15]) but here we restrict ourselves to safe Petri nets in
which each place contains at most one token.

Having provided a translation from Petri nets to process algebra CSP [8, 17],
an interleaving formalism, we demonstate how the CSP model-checker FDR [7]
can be used to detect the presence of both conflict and confusion in Petri nets.
The increasing importance of model-checking as a technique for verifying and
validating the correctness of systems is fully discussed by Clarke et al. in [6].
It should be noted that neither the translation from Petri nets to CSP nor the
structure of the CSP tests for conflict and confusion are unique up to isomor-
phism: the definitions presented here have been chosen for ease of understanding
for those not familiar with CSP rather than for speed of verification.

The contribution of this paper is two-fold. Firstly, and from a practical per-
spective, we demonstrate how conflict and confusion, ideas central to true con-
currency, can be automatically detected in Petri nets: to the author’s knowledge,
no existing tool for modelling Petri nets can perform these checks [18, 1]. Sec-

�
��

�
��

�
��

�
��

a b

b a

Fig. 1. A labelled transition system modelling both a ||b and a.b + b.a

Adding Conflict and Confusion to CSP 207

ondly, and perhaps more significantly, from a theoretical perspective, we demon-
strate how the gap between truly concurrent and interleaving formalisms can be
bridged. Moreover, true concurrency can be captured, and truly concurrent prop-
erties reasoned about, in what is traditionally considered to be an interleaving
language.

The paper begins with a brief introduction to Petri net theory followed by
a discussion of the concepts of concurrency, causal dependency, conflict and
confusion. After a brief introduction to the subset of the language of CSP that
is needed for the rest of the paper we present a translation from Petri nets to
CSP. This is followed by tests for using the CSP model-checker to automatically
detect conflict and both conflict-increasing and conflict-decreasing confusion in
Petri nets. We conclude with a discussion of this and related work.

2 Petri Nets

Petri net theory was first proposed by Carl Petri in the early 1960s [13]. His
intention was to develop a technique for modelling distributed systems and in
particular notions of concurrency and non-determinism, that was at the same
time both graphical and intuitive, and formal and mathematical.

2.1 Graphical Representation

Petri’s nets comprise of: a set of circles or places denoting local state; a set
of boxes or transitions denoting actions; and a set of arrows from places to
transitions and transitions to places denoting flow. Thus a net is an ordered
bipartite directed graph.

In addition, a set of marked places, that is places containing tokens and from
which transitions are enabled, may be identified. Marked places are indicated
by a filled circle within the circle representing the place. By way of an example,
Figure 2 illustrates the Petri nets corresponding to a ‖ b, the parallel composition
of a and b, and a.b + b.a, the non-deterministic choice between their possible
orderings. This example will be of particular interest throughout the paper: it is
the simplest example of two processes that are distinguished in true concurrency

��

�
a

��

��

�
b

��

��

�� ��
a b

� �� �

� �
b a

� �� �

s

u

t

v

s

t u

v w

Fig. 2. Petri nets modelling a ||b and a.b + b.a

208 C. Bolton

but not in the interleaving approach. Places may or may not be named within
the graphical representation of a Petri net.

A transition is enabled only if there is a token in each of its preconditions
and no token in any of its postconditions. If this is the case and the transition
occurs then each such token is removed and a token is added to each place in
the transition’s post-conditions. For instance, if transition a fires in the nets
illustrated in Figure 2 then they will be transformed to the nets illustrated in
Figure 3.

�

�
a

���

��

�
b

��

�

�� ��
a b

� ��� �

� �
b a

� �� �

s

u

t

v

s

t u

v w

Fig. 3. Petri nets modelling a ||b and a.b + b.a after transition a occurs

Provided they do not interfere, that is they share no common preconditions
or postconditions, a set of transitions all of which are enabled may fire together
in a single atomic step. Tokens are removed from all places in the disjoint union
of their preconditions and put in all places in the disjoint union of their post-
conditions.

2.2 Formal Representation

As well as the intuitive graphical form illustrated in Figure 2, Petri nets can be
captured formally and mathematically.1 NetN is the quadruple (PN ,TN ,FN ,LN)
where PN is the set of places, TN is the set of transitions, and the flow relation
FN ⊆ (PN × TN) ∪ (TN × PN) links places and transitions. The total function
LN : TN → Action identifies, or labels, transitions with their associated actions.
This enables one set of behaviours to follow a certain occurrence of an action
and another set of behaviours to follow another occurrence of the same action.
Where the function LN is injective we represent it as the identity function.

The healthiness conditions are as follows:
• PN ∩ TN = ∅; (P1)
• dom FN ∪ ran FN = PN ∪ TN ; and (P2)
• dom LN = TN . (P3)

The first condition (P1) states that no place is also a transition, and the second
(P2) states that every place is attached to at least one transition and every

1 A variety of different models have been used for formally capturing Petri nets
(cf. [15]). Throughout this paper we will use that described in this section.

Adding Conflict and Confusion to CSP 209

transition is attached to at least one place. The third condition (P3) states that
every transition has an associated action.

A marked net is a pair (N ,MN) where N is a net and MN records the
number of tokens in each place. Typically MN is represented as a total function
from places to integers, however, since we are concerned in this paper only with
safe nets, nets in which places can contain at most one token, we simply take
MN ⊆ PN to be the set of all marked places.

The marked nets modelling a ‖ b and a.b + b.a, as illustrated in Figure 2
can therefore respectively be captured as (N , {s, t}) and (N ′, {s}) where

N = ({s, t , u, v}, {a, b}, {(s, a), (a, u), (t , b), (b, v)}, id[{a, b}])
N ′ = ({s, t , u, v ,w}, {a1, a2, b1, b2},

{(s, a1), (a1, t), (t , b1), (b1, v), (s, b2), (b2, u), (u, a2), (a2,w)},
{(a1, a), (a2, a), (b1, b), (b2, b)}).

The definition of N ′ illustrates how the labelling function is used to capture
varying behaviour after different occurences of the same transition. In particular,
although transitions a1 and a2 both correspond to action a in a.b + b.a, no
transition can occur after a2 whilst transition b1 can occur after transition a1.

3 Concurrency, Conflict and Confusion

In this section we formally define the notions such as conflict and confusion in
concurrent systems that we will be using throughout the rest of the paper.

3.1 Presets, Postsets, Purity and the Availability of Transitions

Given transition t ∈ TN , we write •
Nt to represent the preset or preconditions

of t in N , and t •
N to represent the postset or postconditions of t in N . More

formally, given net N and transition t ∈ TN , •
Nt = {p : PN | (p, t) ∈ FN } and

t •
N = {p : PN | (t , p) ∈ FN }. A Petri net N is pure provided no place lies in the

preset and the postset of the same transition, that is (∀ t)TN [•Nt ∩ t •
N= ∅].2 In

this paper we are concerned only with pure Petri nets.
A transition t ∈ TN is enabled in marked net (N ,MN) precisely when

all of its preset and none of its postset is marked, or equivalently •
Nt⊆ MN

and t •
N ∩MN = ∅. If t occurs then the net is transformed to (N ,M ′

N) where
M ′

N = (MN \ •
Nt)∪ t •

N . Given pure net N , transition t ∈ TN and set of markings
C ⊆ PN , we write C [t〉N to indicate that t is enabled from state C inN . Further,
we write C [t〉NC ′ to indicate not only that t is enabled from state C but also
that N will be transformed from state C to state C ′ if t occurs. The above
notation can be used in Boolean expressions. For instance ¬ C [t〉N states that
transition t is not enabled if the only marked places are those in C .

2 We use (∀ x)X [bool] to denote that Boolean bool holds for all x in X .

210 C. Bolton

3.2 Interference and Concurrency

Two transitions t1, t2 ∈ TN interphere with one another in netN when a member
of the preset or postset of one lies in the preset or postset of the other: thus
Interfere(N , t1, t2) is the predicate t1 �= t2 ∧ (•

Nt1 ∪ t1 •
N)∩(•

Nt2 ∪ t2 •
N) �= ∅. For

later use we define the function IntFree for net N and set of transitions ts ⊆ TN
that returns true precisely when there is no interference between members of ts.

IntFree(N , ts) = (∀ t1, t2)TN [(t1 �= t2) ⇒ ¬ Interfere(N , t1, t2)]

The set of transitions U ⊆ TN can occur individually and without interference
at C ⊆ PN in N , written C [U 〉N , precisely when predicates (∀ t)U [C [t〉N] and
IntFree(N ,U) both hold. Thus C [U 〉N indicates that the transitions in set U
can all occur concurrently at C in N .

3.3 Causal Dependency, Conflict and Confusion

We say that transitions t1, t2 ∈ TN are causally dependent or in sequence at
C ⊆ PN in net N if t1 is enabled at C but t2 is not although it is then enabled
after t1 has occured. More formally, predicates C [t1〉N , ¬ C [t2〉N and C ′[t2〉N
all hold where C [t1〉NC ′.

Conversely, transitions t1, t2 ∈ TN are in conflict at C ⊆ PN in N if they
can occur individually but not together at C . In particular, predicates C [t1〉N
and C [t2〉N both hold but ¬ C [{t1, t2}〉N : equivalently,

t1 �= t2 ∧ (•
Nt1 ∪ •

Nt2) ⊆ C ∧ (t1 •
N ∪ t2 •

N) ∩ C = ∅ ∧ Interfere(N , t1, t2).

Given net N , transition t ∈ TN and state C ⊆ PN such that C [t〉N , we define
Conflicts(N ,C , t) to be the set of transitions that are in conflict with t at C .
More formally, Conflicts(N ,C , t) = {t ′ ∈ TN : C [t ′〉N ∧ ¬ C [{t , t ′}〉N }.

A mixture of concurrency and conflict may result in a situation called con-
fusion whereby the conflict set of one transition is altered by the occurence
of another apparently unrelated transition. In particular, transition t is con-
fused at state C from which it is enabled if there is another transition t ′

also enabled at C and with which it does not interfere such that the con-
flict set of t before the occurence of t ′ is not equal to the conflict set of t
after the occurence of t ′. More formally, transition t ∈ TN is confused at state
C ⊆ PN in N precisely when there exists t ′ ∈ TN such that C [{t , t ′}〉N and
Conflicts(N ,C , t) �= Conflicts(N ,C ′, t) where C [t ′〉NC ′.

There are two types of confusion: conflict-increasing (asymmetric) confusion
and conflict-decreasing (symmetric) confusion. The former occurs when addi-
tional conflict is introduced, or Conflicts(N ,C , t) ⊂ Conflicts(N ,C ′t), and the
latter occurs when some of the conflict is eliminated, or Conflicts(N ,C , t) ⊃
Conflicts(N ,C ′, t). Examples of these are respectively illustrated in Figures 4
and 5.

Adding Conflict and Confusion to CSP 211

��

�
c

��� �

�� �� ��
a

��

b

��

�

�
c

��� ��

�� �� ��
a

��

b

��

Conflict-Increasing
Confusion

Fig. 4. Initially, transitions a and b are not in conflict. However after the occurrence

of c, b becomes enabled and conflict between a and b is introduced

�� ��

�� �� �� ��
a

��

b

��

c

��

�� �

�� �� �� ��
a

��

b

��

c

���

Conflict-Decreasing
Confusion

Fig. 5. Transitions a and b are initially in conflict. After the occurrence of c they are

no longer in conflict since b is no longer enabled

A single net can contain instances of both conflict-increasing and conflict-
decreasing confusion.

4 CSP

The process algebra Communicating Sequential Processes (CSP) [8, 17] is a
mathematical language for capturing the behaviour of systems by the record-
ing the occurrence of events. Analysis of the system can then be performed by
using the model-checker FDR to compare a formal specification SPEC , a sim-
ple process capturing specific desired properties of the system, with the process
describing the model itself.

4.1 Syntax

In this section we give a brief introduction to the subset of the CSP syntax that
we will be using throughout the rest of the paper, as well as the traces semantic
model for the language [17].

A process, as defined in [8], is a pattern of communication that describes the
behaviour of a system. Behaviour is described in terms of events or synchronous
atomic communications, marking points in the evolution of the system. Com-
pound events can be constructed using ‘ . ’ the dot operator, and a family of
compound events is called a channel. Channels can be used to represent the
passing of values between components. Simple processes may be combined to
create more complex composite processes. Moreover processes can be defined in
terms of mutually-recursive equations.

212 C. Bolton

The simplest process is Stop, the process that denotes deadlock. No events
can be performed and this process marks the end of a pattern of communication.
For any event a and process P , the process a → P is willing to communicate
event a and, if that event occurs, will subsequently behave as P .

The choice operator3 comes in two forms: the binary operator, and the choice
over an indexed set of processes. Given processes P and Q , a set of processes R(i)
indexed over some set I , and a predicate p(i) for i ∈ I , the following processes
are as described:

P � Q a choice between P and Q ;
� i : I | p(i) • R(i) a choice over the set of processes R(i) such that p(i).

There are various representations of the parallel operator in CSP. Through-
out the paper we will use the following: given processes P and Q and set of
events X , the process P ‖X Q denotes the parallel combination of P and Q
synchronised on set X . Events in the alphabet of P but not in X can be per-
formed without the cooperation of Q and similarly events in the alphabet of Q
but not in X can be performed without the cooperation of P . No event in X can
occur without the cooperation of both P and Q . We write ‖ i : I • [A(i)] P(i)
to denote an indexed parallel combination of processes in which each process
P(i) can evolve independently but must synchronise upon every event from the
set A(i). In an interleaving parallel combination no synchronisation is required;
therefore in the combination P ||| Q , processes P and Q evolve independently.

Renaming is a useful technique. The process P [[a ′/a]] behaves exactly as
process P except that every occurrence of the event a is replaced by the event
a ′. Multiple renamings are performed in the natural way.

4.2 Semantics

There are various ways of describing the behaviour of CSP processes: we may
give them an algebraic semantics defined by a set of algebraic laws; we may give
them an operational semantics describing programs using transition diagrams;
or we may give them a denotational semantics mapping the language into an
abstract model based on sets of behaviours.

Various denotational semantic models have been proposed for CSP. Three es-
tablished models are the traces model, the stable failures model and the failures-
divergences model as defined by Roscoe [17]. In addition the singleton failures
model was introduced in [4] and a further family of failures-based models was
discussed in [5]. In this paper we are concerned only with the traces model, T .

3 There are in fact two choice operators in CSP: one denoting internal choice and the
other denoting external choice. An internal choice is resolved between the processes
involved without reference to the environment, whereas an external choice may be
influenced by the environment and is resolved by the first event to occur. These
operators are indistinguishable within the traces semantic model with which we
are concerned here and which we will formally introduce in Section 4.2. Hence we
consider only external choice throughout this paper.

Adding Conflict and Confusion to CSP 213

The Traces Model. A trace records a history of behaviour. It is expressed
as a sequence of events in which the process has engaged with the head of the
sequence being the first event that was communicated. Given a process P , the
set T [[P]] is the set of all possible finite traces of P . Thus the semantic domain
of the traces model is the set P(Σ∗) where Σ is the set of all events.

Healthiness Conditions The healthiness conditions of T are given below:

• 〈〉 ∈ T [[P]], (T1)
• tr � tr ′ ∈ T [[P]] ⇒ tr ∈ T [[P]]. (T2)

Condition (T1) states that the empty trace is a possible trace of every process
and condition (T2) states that the set of traces of any process is prefix-closed.

Semantic Laws The semantic laws for the traces model are then as follows:

T [[Stop]] = {〈〉}
T [[a → P]] = {tr : T [[P]] • 〈a〉� tr} ∪ 〈〉
T [[P � Q]] = T [[P]] ∪ T [[Q]]

T [[P ‖X Q]] = {tr : Σ∗ | ran tr ⊆ α(P) ∪ α(Q) ∧
tr � (α(P) ∪X) ∈ T [[P]] ∧
tr � (α(Q) ∪X) ∈ T [[Q]] }

where α(P) is the alphabet of process P and where sequence tr �X is the longest
subsequence of tr containing only elements from the set X .

4.3 Refinement

The refinement ordering induced by the traces model is based upon reverse
containment. One process is traces-refined by another if every trace of the second
is also a trace of the first. Given processes P and Q we write

P �T Q ⇔ T [[Q]] ⊆ T [[P]].

The model-checker FDR [7] is used for automatically analysing large or com-
plex systems in CSP. Typically a process IMPL modelling the system in question
is compared with a more abstract model SPEC : thus SPEC �T IMPL. Model-
checker FDR will perform an exhaustive breadth-first search identifying any
trace of IMPL that is not also a trace of SPEC .

5 Capturing Marked Petri Nets as CSP Processes

Used in the conventional manner, the process algebra CSP which adopts an
interleaving approach to concurrency cannot model truly concurrent systems.
However, in this section we demonstrate that this restriction, the inability to dis-
tinguish between the concurrent execution of actions and the non-deterministic

214 C. Bolton

choice between the possible orders of their executions, can be overcome if presets
and postsets are taken into consideration.

We model a net as the parallel combination of a collection of simple pro-
cesses, one for each place. Each such process permits the execution of an event
corresponding to a transition it lies in the preset of only if it contains a token;
similarly, it permits the execution of a transition it lies in the postset of only if it
does not contain a token. In fact, to fully mirror the truly concurrent behaviour
of Petri nets, we permit the atomic execution of sets of transitions provided
there is no interference. Thus the process corresponding to each place p ∈ PN in
a safe net can be captured by the following pair of mutually recursive processes.

FullPlace(N , p) = � ts : P TN | p ∈
⋃
t∈ts

•
Nt • trans.ts → EmptyPlace(N , p)

EmptyPlace(N , p) = � ts : P TN | p ∈
⋃
t∈ts

t •
N • trans.ts → FullPlace(N , p)

Initially all marked places p ∈ MN behave as FullPlace(N , p) and all unmarked
places p ∈ PN \MN behave as EmptyPlace(N , p). Thus

Place(N ,MN , p) = if p ∈ MN then FullPlace(N , p) else EmptyPlace(N , p).

To ensure the choice of ts ∈ P TN is restricted to interference-free sets we define

NoInterfere(N) = � ts : P TN | IntFree(N , ts) • trans.ts → NoInterfere(N)

where IntFree is as defined in Section 3.2. Thus process N(N ,MN) corresponding
to marked safe net (N ,MN) is given by the alphabetized parallel combination

N(N ,MN) = (‖p∈PN [α(N , p)]Place(N ,MN , p)) ‖ΣN NoInterfere(N)

for ΣN = {trans.ts | ts ∈ P TN } where the set α(N , p) contains the trans event
for all sets of transitions and where p lies in the preset or the postset of at least
one transition: α(N , p) = {trans.({t}∪ ts) | t ∈ TN , ts ∈ P TN , p ∈ (•

Nt ∪ t •
N) }.

Experienced CSP users will observe that the above definition is an efficient
model: parallel processes will not spawn other parallel processes. Moreover, re-
cursive nets are no more complex than non-recursive nets.

6 Testing for Conflict

We observed in Section 3.3 that conflict occurs in a net when a pair of transitions
that are both enabled from a reachable state interfere: thus we have conflict in
marked net (N ,MN) modelled by process N(N ,MN) if we can find a sequence of
place and transition events, tr ∈ ΣN ∗ and a pair of transitions t1, t2 ∈ TN such
that tr � 〈trans.{t1}〉 ∈ T [[N(N ,MN)]] and tr � 〈trans.{t2}〉 ∈ T [[N(N ,MN)]]
and Interfere(N , t1, t2).

Adding Conflict and Confusion to CSP 215

6.1 Using CSP to Capture Conflict

Recall that the model-checker FDR compares two processes, the “SPEC” and
the “IMPL”, or “LHS” and “RHS” as we will find it more convenient to call
them for the rest of this paper. FDR identifies any traces in process RHS that
are not present in process LHS. Therefore, if we construct LHS and RHS to be
almost identical processes that differ precisely when conflict is present, we can
guarantee that FDR will flag all such instances. We achieve this by interleaving
two copies of the process corresponding to the net, one primed and one unprimed,
and putting them in parallel with a control process. The reason for having two
copies is that FDR cannot perform backtracking; thus we keep the two copies in
step and then demonstate that from the same state they can separately perform
distinct conflicting transitions.

Until the occurence of a special event check , the control processes on both
sides keeps the two copies in step: every unprimed event trans.ts is followed
directly by the corresponding primed event trans ′.ts. After the check event the
behaviour of RHS and LHS may differ. In particular the right-hand control pro-
cess allows the unprimed copy to perform an event corresponding to a singleton
transition, say trans.{t1} for t1 ∈ TN . Then, if such a conflicting transition
t2 ∈ TN where Interfere(N , t1, t2) exists, this is followed by event trans ′.{t2}.
Conversely, after the check event the left-hand control process permits only a
single transition event trans.{t1} for t1 ∈ TN before deadlocking. Thus, if con-
flict is present, process RHS will be able to perform a final event that process
LHS cannot perform, and FDR will flag the error.

Before formally defining LHS and RHS we introduce the primed variant
of N(N ,MN), that is N ′

(N ,MN) = N(N ,MN)[[trans ′.ts/trans.ts | ts ∈ P TN]], with
alphabet Σ′

N = {trans ′.ts | ts ∈ P TN }.4 The left-hand and right-hand processes
for detecting conflict are then expressed as the parallel combination of their
respective control processes with an interleaving of primed and unprimed copies
of the process corresponding to the given net.

LHSconflict (N ,MN) = (N ||| N ′) ‖ΣN∪Σ′
N

ControlLc(N)

RHSconflict (N ,MN) = (N ||| N ′) ‖ΣN∪Σ′
N

ControlRc(N)

Before the check event occurs both control processes simply keep in step the
unprimed and primed copies of the process corresponding to the net.

ControlLc(N) = � ts : P TN • trans.ts → trans ′.ts → ControlLc(N)
�

check → AfterCheckLc(N).

ControlRc(N) = � ts : P TN • trans.ts → trans ′.ts → ControlRc(N)
�

check → AfterCheckRc(N).

4 In Sections 7 and 8 we will use a double primed variant of process N(N ,MN),
that is N ′′

(N ,MN) = N(N ,MN)[[trans ′′.ts/trans.ts | ts ∈ P TN]] with alphabet
Σ′′

N = {trans ′′.ts | ts ∈ P TN }, as well as set Σ′′′
N = {trans ′′′.ts | ts ∈ P TN }.

216 C. Bolton

After the check event, the controling process on the left-hand side, ControlLc

permits one trans event, trans.{t1} for some t1 ∈ TN , before deadlocking. Con-
versely, the controling process on the right-hand side, ControlRc permits one
trans event, trans.{t1} and then, if there exists a transition t2 ∈ TN that con-
flicts with t1, allows a further event trans ′.{t2}.

AfterCheckLc(N) = � t1 : TN • trans.{t1} → Stop

AfterCheckRc(N) = � t1 : TN • trans.{t1} →
� t2 : TN | Interfere(N , t1, t2) • trans ′.{t2} → Stop

Thus, if conflict is present, the right-hand side will be able to execute a trace
that the left-hand side can not. Model-checker FDR will detect this discrepancy
and the following refinement check will fail.

LHSconflict (N ,MN) �T RHSconflict (N ,MN)

7 Testing for Conflict-Decreasing Confusion

As observed in Section 3.3, conflict-decreasing confusion can arise when there is a
mixture of concurrency and conflict. We need to demonstrate that the conflict set
of a given transition is reduced by the occurence of another transition with which
it does not interfere. Equivalently, we have conflict-decreasing confusion in netN
modelled by process N(N ,MN) after sequence of transitions tr ∈ T [[N(N ,MN)]]
if we can find transitions t1, t2, t3 ∈ TN where t1 and t3 do not interfere such
that t1, t2 and t3 are all enabled after tr and such that t1 and t2 conflict after
trace tr but not after trace tr � 〈trans.{t3}〉.

Recall that in Section 6 we needed two copies, one primed and one unprimed,
of the process corresponding to the given net in order to detect conflict: processes
N(N ,MN) and N(N ,MN)

′ are needed to demonstrate that there is conflict between
t1 and t2 after trace tr ∈ T [[N(N ,MN)]]. It follows that we need a third
copy, N(N ,MN)

′′, to demonstrate that t2 is no longer enabled after transition t3
and hence that some of the conflict has been eliminated: observe that t1 is still
enabled after t3 since it was enabled before t3 and they do not interfere.

When detecting conflict in Section 6 we constructed processes LHS and RHS
that differed only if conflict was present. Each was built from the parallel com-
bination of a control process and interleaved copies of the process corresponding
to the given net. Similarly, here we construct processes LHS and RHS that differ
only if conflict-decreasing confusion is present and build them from the parallel
combination of a control process and (this time three) interleaved copies of the
process corresponding to the given net.

LHSd(N ,MN) = (N ||| N ′ ||| N ′′) ‖ΣN∪Σ′
N∪Σ′′

N
ControlLd(N)

RHSd(N ,MN) = (N ||| N ′ ||| N ′′) ‖ΣN∪Σ′
N∪Σ′′

N
ControlRd(N)

Adding Conflict and Confusion to CSP 217

Before the occurence of the check event, both control processes keep in step the
three copies of the process corresponding to the net.

ControlLd(N) = � ts : PTN • trans.ts → trans ′.ts → trans ′′.ts → ControlLd(N)
�

check → AfterCheckLd(N)

ControlRd(N) = � ts : PTN • trans.ts → trans ′.ts → trans ′′.ts → ControlRd(N)
�

check → AfterCheckRd(N)

After the check event, the controling processes on both sides permit one trans
event, trans.{t1} for some t1 ∈ TN , followed by a trans ′ event, trans.{t2} for
some t2 ∈ TN such that t1 and t2 conflict, followed in turn by a trans ′′ event,
trans ′′.{t3} for some t3 ∈ TN that does not interfere with t1. Only after this
point might the behaviour of the two sides differ. The control process on the
left-hand side permits the event trans ′′.{t2}, although this will be blocked by
process N(N ,MN)

′′ if t2 is not enabled after t3. Conversely, the process on the
right-hand side always permits without obstruction from N(N ,MN)

′′ the event
trans ′′′.{t2} which will subsequently be renamed to trans ′′.{t2}.5

AfterCheckLd(N) =
� t1 : TN • trans.{t1} →

� t2 : TN | Interfere(N , t1, t2) • trans ′.{t2} →
� t3 : TN | IntFree(N , {t1, t3}) • trans ′′.{t3} → trans ′′.{t2} → Stop

AfterCheckRd (N) =
� t1 : TN • trans.{t1} →

� t2 : TN | Interfere(N , t1, t2) • trans ′.{t2} →
� t3 : TN | IntFree(N , {t1, t3}) • trans ′′.{t3} → trans ′′′.{t2} → Stop

Thus, if one side can perform trace tr�〈check , trans.{t1}, trans ′.{t2}, trans ′′.{t3}〉
then so can the other. However, the right-hand side can always extend this trace
with the event trans ′′′.{t2}, to be renamed to trans ′′.{t2} but the left-hand side
can it extend it with trans ′′.{t2} only if t2 is still enabled after t3, that is if
conflict-decreasing confusion is not present.

Hence, whenever conflict-decreasing confusion is present, the right-hand side
will be able to execute a trace that the left-hand side can not. Model-checker FDR
will detect this discrepancy and the following refinement check, incorporating the
necessary renaming, will fail.

LHSd(N ,MN) �T (RHSd (N ,MN))[[trans ′′.ts/trans ′′′.ts | ts ∈ P TN]]

8 Testing for Conflict-Increasing Confusion

Conflict-increasing confusion, like conflict-decreasing confusion, can arise when
there is a mixture of concurrency and conflict. This time the conflict set of a

5 The purpose of the renaming is to avoid synchronisation with N(N ,MN)
′′.

218 C. Bolton

given transition is augmented by the occurence of another transition with which
it does not interfere. Equivalently, we have conflict-increasing confusion in net N
modelled by process N(N ,MN) after sequence of transitions tr ∈ T [[N(N ,MN)]]
if we can find transitions t1, t2, t3 ∈ TN where t1 and t3 do not interfere but t1
and t2 do, such that t1 and t3 are all enabled after tr and such that t2 is enabled
after trace tr � 〈trans.{t3}〉 but not after trace tr .

The techniques for demonstrating the presence of conflict-increasing confu-
sion are similar to those for demonstrating the presence of conflict-decreasing
confusion. Once more both the left-hand side and the right hand side are built
from the parallel combination of a control process and an interleaving of the un-
primed, primed and double-primed variants of the process corresponding to the
given net. This time the unprimed process is used to demonstrate the availability
of t1, the double-primed process is used to demonstrate the availability of t2 af-
ter t3 whilst the primed process concerns the possible availability of t2 before t3:
the right-hand side will guarantee the execution of trans ′.{t3} through renaming
whilst this event will be unavailable on the left-hand side when conflict-increasing
confusion is present.

The identical behaviour of the left-hand side and the right-hand side before
the check event can therefore be captured by

LHSi(N ,MN) = (N ||| N ′ ||| N ′′) ‖ΣN∪Σ′
N∪Σ′′

N
ControlLi(N)

RHSi(N ,MN) = (N ||| N ′ ||| N ′′) ‖ΣN∪Σ′
N∪Σ′′

N
ControlRi(N)

where
ControlLi(N) = � ts : PTN • trans.ts → trans ′.ts → trans ′′.ts → ControlLi(N)

�

check → AfterCheckLi(N)

ControlRi(N) = � ts : PTN • trans.ts → trans ′.ts → trans ′′.ts → ControlRi(N)
�

check → AfterCheckRi(N).

After the check event the behaviour may vary. Having shown that t1 is enabled
and that t3 and t2 are enabled in sequence, the processes may differ if t2 is not
enabled before t3 since the right-hand side is constrained to synchronise with
N(N ,MN)

′ whilst the left-hand side is not.

AfterCheckLi(N) =
� t1 : TN • trans.{t1} →

� t2, t3 : TN | Interfere(N , t1, t2) ∧ IntFree(N , {t1, t3}) •
trans ′′.{t3} → trans ′′.{t2} → trans ′.{t2} → Stop

AfterCheckRi(N) =
� t1 : TN • trans.{t1} →

� t2, t3 : TN | Interfere(N , t1, t2) ∧ IntFree(N , {t1, t3}) •
trans ′′.{t3} → trans ′′.{t2} → trans ′′′.{t2} → Stop

If one side can perform trace tr�〈check , trans.{t1}, trans ′′.{t3}, trans ′′.{t2}〉 then
so can the other. However, the right-hand side can always extend this trace with

Adding Conflict and Confusion to CSP 219

the event trans ′′′.{t2}, to be renamed to trans ′.{t2}, but the left-hand side can
it extend it with trans ′.{t2} only if t2 is enabled before t3, that is if conflict-
increasing confusion is not present.

Hence, whenever conflict-decreasing confusion is present, the right-hand side
will be able to execute a trace that the left-hand side can not. Model-checker FDR
will detect this discrepancy and the following refinement check, incorporating the
necessary renaming, will fail.

LHSi(N ,MN) �T (RHSi(N ,MN))[[trans ′.ts/trans ′′′.ts | ts ∈ P TN]]

9 Discussion

In this paper we have presented a translation from Petri nets to CSP and shown
how this translation might be used to automatically detect instances of conflict
and confusion in CSP. This is a slightly surprising result since the interleaving
semantic models of CSP cannot distinguish between the concurrent execution
of actions and the non-deterministic choice between the possible orders of their
executions. It is only because we include flow information, or presets and postsets
of transitions, that these notions can be captured and hence detected.
Why Confusion is of Concern. As observed in Section 1, motivations for truly
concurrent models over their interleaving counterparts are given in many papers
on Petri nets, trace theory and pomsets e.g. [14]. Here we consider a simple ex-
ample, an unfortunate model of a control system that might have been developed
from a component concerning safety and another concerning maintenance, that
illustrates why the presence of confusion might be of concern. The parallel com-

Automatic
Shut Down

Activate
Emergency System

Update
System

Set Mode To
Maintenance

Set Mode To
Normal

Alarm

� � �

� �

� �� �

��

�

�

��

�

�

�

�

�		
 ���

Fig. 6. A simplified model of a control system

bination of these components lead to confusion: the emergency system cannot
always be activated whenever the system might be automatically shut down.
Tractability of Verification. State space explosion is always of paramount con-
cern when model-checking. Even though, as we have observed, clarity has been
chosen over efficiency in our CSP models as presented here, the state space will
grow at a reasonable rate as we only have three interleaved copies of the net.

220 C. Bolton

Conclusions. As systems get more and more complex there is a move towards
building separate components for managing distinct parts of a system. Whilst
factorisation is a useful technique, our simple example in Figure 6 illustrates the
increasing importance this will place on the detection of confusion.

Acknowledgements. The author like to thank Bill Roscoe, Michael Goldsmith
and Gavin Lowe for helpful comments leading to cleaner and more efficient CSP
definitions. In addition thanks go to Doron Peled who initially suggested that
this might be an interesting avenue to explore.

References

1. Petri nets tool database. Available via URL.
http://www.daimi.au.dk/PetriNets/tools/.

2. J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 37(1), 1985.

3. E. Best, F.S. de Boer, and C. Palamidessi. Partial order and sos semantics for
linear constraint programs. In Proceedings of Coordination 97, volume 1282 of
LNCS. Springer-Verlag, 1997.

4. C. Bolton. On the Refinement of State-Based and Event-Based Models. D.Phil.,
University of Oxford, 2002.

5. C. Bolton and G. Lowe. A hierarchy of failures-based models. In Proceedings of
the 10th International Workshop on Expressiveness in Concurrency: EXPRESS’03,
2003.

6. E. Clarke, O. Grumberg, and D. Peled. Model-Checking. The MIT Press, 1999.
7. Formal Systems (Europe) Ltd. Failures-Divergence Refinement FDR 2 User Man-

ual, 1999. Available via URL http://www.fsel.com/fdr2_manual.html.
8. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
9. A. Mazurkiewicz. Introduction to trace theory. In V. Diekert and G. Rozenberg,

editors, The book of traces. World Scientific, 1995.
10. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in

Computer Science. Springer-Verlag, 1980.
11. R. Milner. Communications and concurrency. Prentice Hall, 1989.
12. E.-R. Olderog. Nets, Terms and Formulas: Three Views of Concurrent Processes

and Their Relationship. Cambridge University Press, 1991.
13. C.A. Petri. Fundamentals of a theory of asynchronous information flow. In Pro-

ceedings of IFIP, Congress’62, pages 386–390, 1962.
14. V. Pratt. On the composition of processes. In Proceedings of 1982 ACM Symposium

on Principles of Programming Languages (POPL), 1982.
15. W. Reisig. Petri Nets. Springer, 1982.
16. W. Reisig and G. Rozenberg. Informal introduction to petri nets. Lecture Notes

in Computer Science, 1491, 1998.
17. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.
18. H. Störrle. An evaluation of high-end tools for petri-nets. Technical Report 9802,

Ludwig-Maximilians-Universität München, 1997.
19. G. Winskel. Events in Computation. D.Phil, University of Edinburgh, 1980.

Combining CSP and B for Specification and
Property Verification�

Michael Butler1 and Michael Leuschel1,2

1 School of Electronics and Computer Science,
University of Southampton,

Highfield, Southampton, SO17 1BJ, UK
{mjb,mal}@ecs.soton.ac.uk

2 Institut für Informatik, Heinrich-Heine Universität Düsseldorf,
Universitätsstr. 1, D-40225 Düsseldorf
leuschel@cs.uni-duesseldorf.de

Abstract. ProB is a model checking tool for the B Method. In this
paper we present an extension of ProB that supports checking of spec-
ifications written in a combination of CSP and B. We explain how the
notations are combined semantically and give an overview of the imple-
mentation of the combination. We illustrate the benefit that appropriate
use of CSP, in conjunction with our tool, gives to B developments both
for specification and for verification purposes.

Keywords: B-Method, Tool Support, Model Checking, Animation, Logic
Programming, Constraints.

1 Introduction

The B-method, originally devised by J.-R. Abrial [1], is a theory and method-
ology for formal development of computer systems. It is used by industries in
a range of critical domains, most notably railway control. B is based on the
notion of abstract machine and the notion of refinement. The variables of an
abstract machine are typed using set theoretic constructs such as sets, relations
and functions. Typically these are constructed from basic types such as inte-
gers and given types from the problem domain (e.g., Name, User, Session, etc).
The invariant of a machine is specified using predicate logic. Operations of a
machine are specified as generalised substitutions, which allow deterministic and
nondeterministic state transitions to be specified. There are two main proof ac-
tivities in B: consistency checking, which is used to show that the operations of a
machine preserve the invariant, and refinement checking, which is used to show

� This research is being carried out as part of the EU funded research projects: IST
511599 RODIN (Rigorous Open Development Environment for Complex Systems)
and IST-2001-38059 ASAP (Advanced Specialization and Analysis for Pervasive Sys-
tems).

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 221–236, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

222 M. Butler and M. Leuschel

that one machine is a valid refinement of another. These activities are supported
by industrial strength tools, such as Atelier-B [19] and the B-toolkit [3]. In this
paper, we focus on consistency checking.

In previous work [11], we have presented the ProB animator and model
checker. Based on Prolog, the ProB tool supports automated consistency check-
ing of B machines via model checking [5]. For exhaustive model checking, the
given sets must be restricted to small finite sets, and integer variables must be
restricted to small numeric ranges. This allows the checking to traverse all the
reachable states of the machine. ProB can also be used to explore the state
space non-exhaustively and find potential problems. The user can set an upper
bound on the number of states to be traversed or can interrupt the checking at
any stage. ProB will generate and graphically display counter-examples when
it discovers a violation of the invariant. ProB can also be used as an animator
of a B specification. So, the model checking facilities are still useful for infinite
state machines, not as a verification tool, but as a sophisticated debugging and
testing tool.

In the Event B approach [2], a B machine is viewed as a reactive system that
continually executes enabled operations in an interleaved fashion. This allows
parallel activity to be easily modelled as an interleaving of operation executions.
However, while B machines are good at modelling parallel activity, they can be
less convenient at modelling sequential activity. Typically one has to introduce
an abstract ‘program counter’ to order the execution of actions. This can be
a lot less transparent than the way in which one orders action execution in
process algebras such as CSP [9]. CSP provides operators such as sequential
composition, choice and parallel composition of processes, as well as synchronous
communication between parallel processes.

Our motivation is to use CSP and B together in a complementary way. B can
be used to specify abstract state and can be used to specify operations of a system
in terms of their enabling conditions and effect on the abstract state. CSP can
be used to give an overall specification of the coordination of operations. To
marry the two approaches, we take the view that the execution of an operation
in a B machine corresponds to an event in CSP terms. Semantically we view
a B machine as a process that can engage in events in the same way that a
CSP process can. The meaning of a combined CSP and B specification is the
parallel composition of both specifications. The B machine and the CSP process
must synchronise on common events, that is, an operation can only happen in
the combined system when it is allowed both by the B and the CSP. There is
much existing work on combining state based approaches such as B with process
algebras such as CSP and we review some of that in a later section.

In [10] we presented the CIA (CSP Interpreter and Animator) tool, a Prolog
implementation of CSP. As both ProB and CIA are implemented in Prolog,
we were provided with a unique opportunity to combine these two to form a
tool that supports animation and model checking of specifications written in a
combination of CSP and B. This paper reports on the combined tool. In Section 2

Combining CSP and B for Specification and Property Verification 223

we provide an overview of the ProB and CIA tools. In Section 3 we describe
how the tools are combined and what the effect of the combination is.

We envisage two main uses of the combined tool. Firstly it can be used
to animate and model check specifications which are a combination of B and
CSP. We illustrate this in Section 4. The second use of the tool, described in
Section 5, is to analyse trace properties of a B machine. In this case the behaviour
is fully specified in B, but we use CSP to specify some desirable or undesirable
behaviours and use ProB to find traces of the B machine that exhibit those
behaviours.

2 Background

ProB. ProB [11] is an animation and model checking tool for the B method.
ProB ’s animation facilities allow users to gain confidence in their specifications,
and unlike the animator provided by the B-Toolkit, the user does not have
to guess the right values for the operation arguments or choice variables. The
undecidability of animating B is overcome by restricting animation to finite sets
and integer ranges, while efficiency is achieved by delaying the enumeration of
variables as long as possible. ProB also contains a model checker [5] and a
constraint-based checker, both of which can be used to detect various errors in
B specifications.

The ProB system has been developed mainly in SICStus Prolog, with graph-
ical user interfaces implemented in Tcl/Tk and also Java. ProB uses the JBTools
package to translate abstract machine notation (AMN) [1] specifications into XML,
while the Pillow package allows the conversion of XML files into a Prolog term
representation. The ProB front end then postprocesses the general Prolog term
tree representation of the Pillow library output into a more structured represen-
tation that serves as the input to the ProB interpreter. The ProB interpreter
recurses through this structured representation of B machines and makes calls to
the ProB kernel, which implements support for the basic datatypes and opera-
tions of the B-language. The ProB kernel itself is written in SICStus Prolog with
co-routining (i.e., when declarations) and constraints (finite domain constraints
using CLP(FD)). The ProB animator, and the various checking tools described
below all make use of the ProB interpreter in various ways.

ProB provides two ways of systematically checking a B machine: 1. a tempo-
ral model checking [5] which tries to find a sequence of operations that, starting
from an initial state, leads to a state which violates the invariant (or exhibits
some other error, such as deadlocking, assertion violations, or abort conditions);
and 2. a constraint-based checking, which finds a state of the machine that sat-
isfies the invariant, but where we can apply a single operation to reach a state
that violates the invariant (or again exhibits some other error). More details can
be found in [11]. Recently refinement checking has also been added, which can
be used to check refinement between two B specifications. In case refinement is
violated, ProB displays a sequence of operations that can be performed by the
“refinement” machine but not by the specification machine.

224 M. Butler and M. Leuschel

The CSP Interpreter and Animator. CSP is a process algebra defined by
Hoare [9]. The first semantics associated with CSP was a denotational seman-
tics in terms of traces, failures and (failure and) divergences. An operational
semantics has later been developed [15], which forms the basis of the interpreter
and animator presented in [10]. This interpreter was also developed in SICStus
Prolog. No CLP (Constraint Logic Programming) primitives were used but co-
routining (i.e., when declarations) were used to ensure that channel constraints
are delayed until they are sufficiently instantiated to evaluate them. The imple-
mentation presented in [10] covers a large part of CSP, see Figure 1. In the light
of integration with ProB we have improved the parser (which uses Prolog’s Def-
inite Clause Grammars) and we have moved much closer to the CSP-M syntax
as employed by FDR [16, 7].1

As the CSP interpreter is also written also in SICStus Prolog, at least from
a technical point of view, it is now feasible to integrate CSP and B. In the
following section we describe how this was done, starting out from the theoretical
underpinnings and then leading on to the practical aspects.

Operator Syntax Ascii Syntax

stop STOP STOP

skip SKIP SKIP

prefix a → Q a->P

conditional prefix a?x : C → P a?x:C->P

external choice P � Q P [] Q

internal choice P
 Q P |~| Q

interleaving P |||Q P ||| Q

parallel composition P [|A]| Q P [| A |] Q

sequential composition P ; Q P ; Q

hiding P\A P \ A

renaming P [R] P [[R]]

timeout P � Q P [> Q

interrupt P �i Q P /\ Q

if then else if C then P else Q if C then P else Q

let expressions let v = e in P let V=E in P

agent definition A = P A = P;

Fig. 1. Summary of syntax of CSP

3 Combining B and CSP

In our work we have adopted and developed the approach of integration depicted
in Figure 2. (How this compares to earlier work is discussed later in the paper.) In

1 But there are still a few differences and extra features. For example, multiple process
definitions are allowed and treated like an external choice and process definitions can
be terminated by a double semicolon to ease error recovery during parsing. However,
variable names still have to start with an uppercase letter or an underscore and
channel declarations are ignored.

Combining CSP and B for Specification and Property Verification 225

essence, the B and CSP specifications are composed in parallel. The B operations
must synchronize with channel events of the CSP specification having the same
name as the B operation. Channel events of the CSP which have no counterpart
in the B (such as channel D in Figure 2) can occur independently, while B
operations that have no CSP counterpart are prevented from being executed.
Below we present more formally how this synchronization is achieved, starting
out from the state information of a combined B/CSP specification and then
progressing on to how to formally perform the synchronization.

Operation
A

Operation
B

Operation
C

B Machine
Channel

A

Channel
B

Channel
C

Channel
D

CSP
Specification

Process
1

Process
2

Fig. 2. Illustrating the synchronisation of B and CSP specifications

Combining State Information. The state of a B machine is a mapping from
variables to values, while the state of a CSP process is a syntactic process expres-
sion. So, for example, the state of the simple B machine in Figure 3 immediately
after executing Set(cc) would be represented as {xx �→ cc}, while the state of
the simple CSP specification in Figure 4 would be Get .cc→ MAIN . A state of
a combined B/CSP specification is thus simply a pair, whose first component
is a B state and second component a CSP process expression. For example, the
state of the combination of Figures 3 and 4 immediately after executing Set(cc)
would be ({xx �→ cc},Get .cc→ MAIN).

Mapping Operations to Channels. The approach we have chosen is to trans-
late every argument and return value of a B operation into a separate data value
of a CSP channel. To ease the writing of succinct CSP specifications, we do not
require the CSP to provide all channel values. If channel values are missing any
B value is allowed for synchronization on that argument.

For a B operation of the form X←−op(Y)=̂S, we refer to a←−op(b) as an
operation call. We first define a function channel which maps B operation calls

226 M. Butler and M. Leuschel

MACHINE Simple
SETS

AA = {aa, bb, cc}
VARIABLES

xx
INVARIANT

xx ∈ AA
INITIALISATION

xx := aa

OPERATIONS

Set(newval)=̂
PRE newval ∈ AA
THEN xx := newval
END;

res ←− Get =
BEGIN res := xx
END

Fig. 3. Simple B machine

Set?Val → Get !Val → MAIN

Fig. 4. Simple CSP Specification

to possible CSP channel events. Let op be an operation of a B machine taking
n ≥ 0 arguments and returning m ≥ 0 values, and let a1, . . . , an be arguments
to that operation and let r1, . . . , rm be return values. We then define

channel(r1, . . . , rm ← op(a1, . . . , an)) = { op.a1.ak | 0 ≤ k ≤ n} ∪
{ op.a1.an.r1.rk | 1 ≤ k ≤ m}

(If m is 0 we take the liberty of not writing the result arrow “←”.)
For example for the B machine in Figure 3, we have

channel(Set(aa)) = {Set ,Set .aa}
channel(aa←Get) = {Get ,Get .aa}

Intuitively, this means that a channel event Set will synchronise with all possible
executions of the B operation Set , whereas Set .aa will synchronise only with the
execution of Set for the particular argument aa.

Deriving an Operational Semantics. We suppose that the B operational
semantics is given by a ternary relation → (in practice computed by ProB),
where σ →o σ′ with o = r1, . . . , rm ← op(a1, . . . , an) means that in the state
σ of a B machine we can execute the operation op with arguments a1, . . . , ak

giving the return values r1, . . . , rm and producing the new state σ′.
The CSP operational semantics is given by a similar relation →, where

P →ch.a1.....an
P ′ denotes the fact that the process expression P can produce

the channel event ch.a1.an and evolve into the new process expression P ′.
We can now define our new operational semantics of a combined B and

CSP specification by (σ, P) →A (σ′, P ′) iff σ →O σ′ and P →A P ′ and A ∈
channel(O).

Computing the Operational Semantics. The question now is: how can we
compute (σ, P) →A (σ′, P ′) in practice? The first part, σ →O σ′, is computed

Combining CSP and B for Specification and Property Verification 227

by ProB, while P →A P ′ is computed by the CSP interpreter. The remaining
final part, checking A ∈ channel(O) has been implemented by unifying the B
operation arguments with the CSP channel values (those provided). So, synchro-
nisation is achieved by Prolog unification. This means we have a very flexible
way of combining CSP and B as information can flow in both directions. In
other words, the CSP can drive the B or vice-versa or a combination thereof.
The use of co-routining in both ProB and the CSP interpreter not only makes
this kind of synchronization possible but also efficient. Indeed, both the B and
CSP parts can provide concrete data values, and as soon as those are available
the co-routining mechanism will trigger the relevant tests in either the B or the
CSP part (or both). If any of those tests fail the search space is immediately
pruned, resulting in a (possibly considerable) efficiency gain, when compared to
computing the B and CSP operational semantics in isolation.2

Observe that in this translation, no distinction is made between arguments
and return values. Indeed, ProB itself makes little distinction between argu-
ments and return values (the only difference is that it is easier to extract typing
for arguments). This allows for a very flexible way of synchronising, e.g., giving
the CSP the option of imposing return values or just retrieving them.

The Implementation. The above described combination of B and CSP has
been integrated into the latest release of ProB. Many of ProB’s features spe-
cific to B continue to work for combined B/CSP specifications: backtrackable
automatic animation, graphical visualization possibly with optional state space
reduction [12], temporal model checking with detection of invariant, assertion
violations or deadlocks, refinement checking, and many more.

Figure 5 shows the state space, as visualized by the new version of ProB,
for the combination of the B machine from Figure 3 and the CSP specification
from Figure 4. The figure clearly shows how the CSP has imposed that every
Set operation is followed by a Get operation. The CSP also imposes that the
Get operation must return the same value as was given to the Set operation.
Hence, the absence of deadlocks in Figure 5 (formally verified by ProB) can be
viewed as proving a temporal property of the B machine: whenever one does a
Set operation with argument x one can perform a Get operation and the result
is equal to x.3 We will return to this usage of combining CSP and B in Section 5.

To conclude this section, let us use the same B machine from Figure 3 but
use the following CSP specification:

MAIN = Set→ Cst Cst = Get→ Cst

Here, we have used the CSP to restrict the B machine so that its variable can
only be assigned once, and that the variable value can only be read after it has

2 In the worst case if both B and CSP wait for each other to provide concrete data
values the ProB enumeration of the B datatypes will be triggered and drive the
interpreter.

3 In CTL one could write ∀x.(AG Set(x) ⇒ X(x ← Get)).

228 M. Butler and M. Leuschel

xx=aa

initialise_machine(aa)

xx=aa

Set(aa)

xx=bb

Set(bb)

xx=cc

Set(cc)

Get-->(aa)

xx=bb

Get-->(bb)

xx=cc

Get-->(cc)Set(aa)

Set(bb)

Set(cc)

Set(aa)

Set(bb)

Set(cc)

Fig. 5. The state space of combination of the two simple B and CSP specifications

been assigned. This is a simple illustration of how one can use the combination
of B and CSP for specification purposes, and the state space computed by ProB
can be found in Figure 6. In the next section we will illustrate this usage on a
more interesting example.

4 Specifying Using B and CSP

In this section we illustrate the use of a combination of B and CSP to specify a
system. The example we use to illustrate this concerns a service for distributing
tokens to customers via offices and is based on [8]. The B part of our specification
models a database mapping customers to the number of available tokens (Fig-
ure 7). It provides operations for creating and deleting customers which add or
remove mappings for a customer to or from the database. There are operations
for allocating a token to a customer as well as operations for requesting tokens
and collecting tokens. Requesting tokens has no effect on the database. If there
is more than one token available for a customer, the number of tokens collected

Combining CSP and B for Specification and Property Verification 229

xx=aa

initialise_machine(aa)

xx=aa

Set(aa)

xx=bb

Set(bb)

xx=cc

Set(cc)

Fig. 6. The state space of Simple when using another CSP specification

is nondeterministically chosen to be less than or equal to the number of tokens
available for that customer.

The finiteness of the sets OFFICE and CUST in Figure 7 is required for
exhaustive model checking. Finiteness is also imposed by restricting the max-
imum number of tokens allocated to a customer using the constant mx. The
AllocToken operation is guarded to ensure that this allocation is never exceeded.

We wish to impose a certain coordination protocol on the operations of the
system in Figure 7. Operations such as CollectToken and AllocToken should
only be available after a customer has been added to the system. Furthermore,
before a customer can collect tokens, they must first request those tokens at an
office. This coordination is described by the CSP process MAIN of Figure 8. This
process consists of three parallel instances of the Cust process, one for each cus-
tomer. In a Cust process, AddCust is the only operation available initially. Once
AddCust has been performed, allocation and collection of tokens can proceed
in parallel, modelled by the process (Collection(C)[|RemCust |]Allocation(C)).
Collection and allocation synchronise on the RemCust event because both are
terminated by this event. Collection of tokens by a customer is intended to take
place at offices to which customers have access. Before customers can collect to-
kens from an office, they must first request tokens at that office via a ReqToken
operation. Only then can they collect some (or all) of the tokens available for
them. The definition of Collection also ensures that a customer cannot be re-
moved in between requesting some tokens and collecting those tokens.

The overall behaviour of the service is determined by the parallel composi-
tion of the B and CSP parts. In this case, the CSP specification ensures that

230 M. Butler and M. Leuschel

MACHINE Tokens
SETS

OFFICE = {o1, o2};
CUST = {c1, c2, c3}

CONSTANTS mx
PROPERTIES mx ∈ N ∧ mx = 3
VARIABLES tokens
INVARIANT tokens ∈ CUST �→ (0..mx)

INITIALISATION tokens := {}

OPERATIONS

AddCust(cc)=̂
PRE cc ∈ CUST ∧ cc �∈ dom(tokens)
THEN tokens := tokens ∪ {cc �→ 0}
END;

RemCust(cc) =
PRE cc ∈ CUST
THEN tokens := {cc}�− tokens
END;

AllocToken(cc) =
PRE cc ∈ CUST ∧ cc ∈ dom(tokens)
SELECT tokens(cc) < mx THEN

tokens(cc) := tokens(cc) + 1 END
END;

ReqToken(cc, pp) =
PRE cc ∈ CUST ∧ pp ∈ OFFICE
THEN skip
END;

toks ←− CollectToken(cc, pp) =
PRE cc ∈ CUST ∧ pp ∈ OFFICE ∧

cc ∈ dom(tokens)
THEN

IF tokens(cc) = 0
THEN toks := 0
ELSE

ANY nn WHERE nn : N∧
1 ≤ nn ∧ nn ≤ tokens(cc)

THEN toks := nn ||
tokens(cc) := tokens(cc)− nn

END END END

Fig. 7. Tokens B machine

the AddCust operation must be invoked before any of the other operations are
allowed, and that tokens must be requested before they can be collected. The
ProB tool allows the combined specification to be animated so that the overall
behaviour can be explored interactively.

Now consider the preconditions of the operations of Figure 7. The AddCust
operation has cc �∈ dom(tokens) as a precondition, while the AllocToken and
CollectToken operations have cc ∈ dom(tokens) as a precondition. The precon-
ditions represent assumptions about the conditions under which these operations
will be invoked but are not enforced by the B machine on its own. Normally,
when checking the consistency of a B machine using ProB, operation precon-
ditions are used to restrict the reachable states by treating them in exactly the
same way as operation guards. This form of checking detects no errors in the
machine of Figure 7. An alternative form of checking can be applied in ProB
which treats a violation of a precondition as an error. That is, an error is raised
if a machine can reach a state which violates an operation precondition. With
this second form of model checking, when the machine of Figure 7 is checked, an
error is detected straightaway because the initial state violates the preconditions
of AllocToken and CollectToken. However, when this form of checking is applied
to the combined B and CSP specification, no violation of preconditions is de-
tected by ProB. This is because the CSP enforces an order on the invocation
of the operations which guarantees that the preconditions are always satisfied.

Combining CSP and B for Specification and Property Verification 231

MAIN = Cust(c1) ||| Cust(c2) ||| Cust(c3)

Cust(C) = AddCust .C → (Collection(C)[|RemCust |]Allocation(C)) ; Cust(C)

Collection(C) = (ReqToken.C?O → CollectToken.C.O → Collection(C)

� RemCust .C → SKIP)

Allocation(C) = (AllocToken.C →Allocation(C)

� RemCust .C → SKIP)

Fig. 8. Tokens CSP equations

5 Verifying Properties of B Machines Using CSP

In the previous section, we illustrated how a system could be specified as a
combination of CSP and B. In this section we illustrate how CSP specifications
can be used to analyse trace properties of specifications written purely in B. With
this approach we use CSP to specify some desirable or undesirable behaviours
and use ProB to find traces of the B machine that exhibit those behaviours.
To specify a desirable property, we use a special CSP process called GOAL. A
desirable trace is one that leads to the GOAL process. An undesirable trace is
one that leads to the ERROR process.

To illustrate the use of GOAL and ERROR, we consider a simple mobile
agent system. Once agents have been created they can have a location or be
in transit between locations. When an agent is at some location, it can send
and receive messages to and from other agents. Messages can be sent to agents
even if they are in transit in which case the messages can be received when the
receiving agent reaches a location. The simple agent system is specified by the
B machine of Figure 9. In this specification, agents represents the set of created
agents, msgs(a) represents the set of messages waiting to be received by agent
a, and loc(a) represents the location of agent a. If a is in agents but not in the
domain of loc, then a is in transit.

A desirable property of the agent system is that it is possible for an agent
to receive a message since this is an important service for agents. Clearly some
sequence of operations must happen before an agent can receive a message. There
is a danger that our specification of the operations is too restrictive so that a
trace leading to receipt of a message would not be possible. Figure 10 contains a
CSP process which leads to the GOAL process when a Receive event is executed.

We do not want the CSP process to place any constraints on the Create,
Send , Arrive or Depart operations. To achieve this we use the special RUN
process. RUN takes a list of events and continually iterates over the choice of
those events. For example, we have

232 M. Butler and M. Leuschel

MACHINE MobileAgents
SETS MSG = {m1, m2};

AGENT = {a1, a2};
LOC = {l1, l2}

VARIABLES agents, loc, msgs
INVARIANT

agents ∈ P(AGENT)∧
msgs ∈ agents → P(MSG)∧
loc ∈ agents �→ LOC

INITIALISATION
agents := {} || msgs := {} || loc := {}

OPERATIONS

Create(aa)=̂
PRE

aa ∈ AGENT \ agents
THEN

agents := agents ∪ {aa} ||
msgs := msgs ∪ {aa �→ {}}

END;

Arrive(aa, ll)=̂
PRE

aa ∈ agents \ dom(loc)∧
ll ∈ LOC

THEN
loc(aa) := ll

END;

Depart(aa, ll)=̂
PRE

aa : agents ∧ ll : LOC∧
(aa| �→ ll) ∈ loc

THEN
loc := {aa}�− loc

END;

Send(aa, bb, ll, mm)=̂
PRE

aa ∈ agents ∧ bb ∈ agents∧
mm ∈ MSG ∧ ll ∈ LOC∧
aa �= bb ∧ (aa �→ ll) ∈ loc

THEN
msgs(bb) := msgs(bb) ∪ {mm}

END;

mm ←− Receive(bb, ll)=̂
PRE

bb ∈ agents ∧ ll ∈ LOC ∧(bb �→ ll)∈ loc
THEN

ANY m1 WHERE
m1 ∈ MSG ∧m1 ∈ msgs(bb)

THEN
msgs(bb) := msgs(bb)−m1 ||
mm := m1

END
END

Fig. 9. Mobile agents B machine

MAIN = Test1 ||| RUN [Create,Send ,Arrive,Depart]

Test1 = Receive →GOAL

Fig. 10. Goal test for agents

MAIN = TEST2 ||| RUN [Create,Arrive,Depart ,Send?A?B?L.m2,Receive]

TEST2 = Receive?A?L.m1→ ERROR

Fig. 11. Error test for agents

RUN [A,B] = (A→ RUN [A,B] � B→ RUN [A,B])

We interleave the Test1 process with RUN [Create,Send ,Arrive,Depart]. If RUN
was not interleaved with the test process, then the Create, Send , Arrive and
Depart operations could never take place in the combined system.

Combining CSP and B for Specification and Property Verification 233

agents={},msgs={},loc={}

initialise_machine({},{},{})

agents={a1},loc={},msgs(a1,{})

Create(a1)

agents={a1},msgs(a1,{}),loc(a1,l1)

Arrive(a1,l1)

agents={a1,a2},msgs(a1,{}),msgs(a2,{}),
loc(a1,l1)

Create(a2)

agents={a1,a2},msgs(a1,{}),msgs(a2,{m1}),
loc(a1,l1)

Send(a1,a2,l1,m1)

agents={a1,a2},loc={},msgs(a1,{}),
msgs(a2,{m1})

Depart(a1,l1)

agents={a1,a2},msgs(a1,{}),msgs(a2,{m1}),
loc(a2,l1)

Arrive(a2,l1)

agents={a1,a2},msgs(a1,{}),msgs(a2,{}),
loc(a2,l1)

Receive(a2,l1)-->(m1)

Fig. 12. Trace leading to GOAL process as displayed by ProB

234 M. Butler and M. Leuschel

Figure 12 is generated by ProB and it illustrates a trace of events and
corresponding machine states which lead to a message being received by an
agent. All of the events leading to the receipt are required because both agents
need to exist before one can send a message to the other and an agent needs to be
at a location in order to send or receive. As well as the event trace, the diagram
allows us to see the evolution of the state of the B machine. This is useful for
helping to validate the specification. To find the desirable trace, ProB checks
the parallel composition of the B machine and the CSP process, attempting to
find a trace leading to the GOAL process. In this case it finds the trace illustrated
in Figure 12.

An undesirable behaviour of agent system would be that an agent receives a
message without the message having been sent to the agent. This behaviour is
encoded in the CSP process of Figure 11. The main constraint imposed by this
CSP process is that the Send operation is prevented from sending message m1.
An error arises when message m1 is received by an agent. Receipt of message
m1 represents an error since it could not have been preceded by a send of m1
because of the constraint on sending. In this case, ProB performs an exhaustive
search but fails to find a trace leading to the ERROR process. This is as expected
since the Receive operation requires a recipient to have some message in their
message set, and messages only get added to a message set through the Send
operation.

There is a very significant difference between a GOAL test and an ERROR
test. Success of a GOAL test gives us a single trace leading to the goal. It tells us
nothing about all possible behaviours of the system. Nonetheless the existence
of the goal trace can increase our confidence in the validity of the B model
and can be used to provide guided automatic animation of a B machine. We
deem an ERROR test to be successful when ProB finds no trace leading to
the error process through exhaustive search. In the case of the error test for the
agent system, the only constraint the CSP process places on the B machine is to
prevent sending of message m1. The absence of any error traces means there is
no trace of the agent system which contains a receipt of m1 but does not contain
a send of m1.

6 Related Work and Conclusion

Our combined CSP and B tool is most strongly related to the csp2B tool [4] and
the CSP‖B approach [17]. The csp2B tool allows specifications to be written in
a combination of CSP and B by compiling the CSP to a pure B representation
which can be analysed by a standard B tool. The CSP support by csp2B is more
restricted than that supported by ProB: csp2B does not support internal choice
and allows parallel composition only at the outermost level unlike the arbitrary
combination of CSP operators supported by ProB. The work of [17] is focused
on a style of combining CSP and B where the B machines are passive and all
the coordination is provided by the CSP. This means the operations of their
B machines cannot be guarded though they can have preconditions. They have

Combining CSP and B for Specification and Property Verification 235

developed compositional rules for proving that CSP controllers do not lead to
violation of operation preconditions. Also, we now have a all-in-one animation
and model checking tool; a considerable practical advantage.

There has been much work on combining CSP with Z and Object-Z, includ-
ing [6], [18] and [13]. Like our approach, these treat Z specifications as CSP
processes and model the composition of the CSP and Z parts as parallel com-
position. The work described in [14] describes an approach to translating Z to
CSP so that CSP-Z specifications can be model checked. This translation is not
automated though. The Circus language is a rich combination of Z and CSP al-
lowing Z to be easily embedded in CSP specifications and providing refinement
rules for development [20]. We are not aware of any tools that allow for model
checking of Z and CSP specifications directly.

The combined model checker for CSP and B is an enhancement of the exist-
ing ProB checker allowing for automated consistency checking of specifications
written in a combination of CSP and B. We have shown how ProB can now be
used to automatically check consistency between B and CSP specifications (i.e.,
checking that no B preconditions are ever violated). We have also shown how
ProB can be used to check whether a pure B specification satisfies trace prop-
erties expressed in CSP. This form of checking serves to increase our confidence
in the validity of B models.

ProB also supports refinement checking between B models and between com-
binations of CSP and B. Further work is required to enhance the scalability of
the model checking approach, especially for refinement checking (although some
quite large, realistic specifications have already been successfully verified). Our
view is that ProB is a valuable complement to the usual theorem prover based
development in B. Wherever possible there is value in applying model check-
ing to a size-restricted version of a B model before attempting semi-automatic
deductive proof.

Acknowledgements

We would like to thank anonymous referees for their helpful feedback.

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
2. J.-R. Abrial and L. Mussat. Introducing dynamic constraints in B. In D. Bert,

editor, Second International B Conference, April 1998.
3. U. B-Core (UK) Limited, Oxon. B-Toolkit, On-line manual, 1999. Available at

http://www.b-core.com/ONLINEDOC/Contents.html.
4. M. J. Butler. csp2B: A Practical Approach to Combining CSP and B. Formal

Asp. Comput., 12(3):182–198, 2000.
5. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
6. C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowmann and

J. Derrick, editors, Formal Methods for Open Object-Based Distributed Systems
(FMOODS’97), pages 423–438. Chapman & Hall, 1997.

236 M. Butler and M. Leuschel

7. Formal Systems (Europe) Ltd. Failures-Divergence Refinement — FDR2 User
Manual.

8. P. Hartel, M. Butler, A. Currie, P. Henderson, M. Leuschel, A. Martin, A. Smith,
U. Ultes-Nitsche, and B. Walters. Questions and answers about ten formal meth-
ods. In Proc. 4th Int. Workshop on Formal Methods for Industrial Critical Systems,
Trento, Italy, Jul 1999.

9. C. Hoare. Communicating Sequential Processes. Prentice–Hall, 1985.
10. M. Leuschel. Design and implementation of the high-level specification language

CSP(LP) in Prolog. In I. V. Ramakrishnan, editor, Proceedings of PADL’01, LNCS
1990, pages 14–28. Springer-Verlag, March 2001.

11. M. Leuschel and M. Butler. ProB: A Model Checker for B. In K. Araki, S. Gnesi,
and D. Mandrioli, editors, Proceedings FME 2003, Pisa, Italy, LNCS 2805, pages
855–874. Springer, 2003.

12. M. Leuschel and E. Turner. Visualizing larger states spaces in ProB. In Proceedings
ZB’2005, LNCS. Springer-Verlag, April 2005. To appear.

13. B. P. Mahony and S. Dong. Blending Object-Z and Timed CSP: An introduction
to TCOZ. In 20th International Conference on Software Engineering (ICSE’98),
pages 95–104, 1998.

14. A. Mota and A. Sampaio. Model-checking CSP-Z: strategy, tool support and
industrial application. Sci. Comput. Program., 40(1):59–96, 2001.

15. A. Roscoe. The Theory and Practice of Concurrency. Prentice–Hall, 1998.
16. J. B. Scattergood. Tools for CSP and Timed-CSP. PhD thesis, Oxford University,

1997.
17. S. Schneider and H. Treharne. Verifying controlled components. In E. A. Boiten,

J. Derrick, and G. Smith, editors, Proceedings Integrated Formal Methods, IFM
2004, Canterbury, UK, LNCS 2999, pages 87–107. Springer, 2004.

18. G. Smith. A semantic integration of Object-Z and CSP for the specification of con-
current systems. In J. S. Fitzgerald, C. B. Jones, and P. Lucas, editors, Proceedings
FME ’97, LNCS 1313, pages 62–81. Springer, 1997.

19. F. Steria, Aix-en-Provence. Atelier B, User and Reference Manuals, 1996. Available
at Available at http://www.atelierb.societe.com/index uk.html.

20. J. Woodcock and A. Cavalcanti. The semantics of Circus. In D. Bert, J. P. Bowen,
M. C. Henson, and K. Robinson, editors, Proceedings ZB 2002, Grenoble, France,
LNCS 2272, pages 184–203. Springer, 2002.

Operational Semantics for
Model Checking Circus

Jim Woodcock, Ana Cavalcanti, and Leonardo Freitas

Department of Computer Science,
University of York, UK

{jim, alcc, leo}@cs.york.ac.uk

Abstract. Circus is a combination of Z, CSP, and the refinement cal-
culus, and is based on Hoare & He’s Unifying Theories of Programming.
A model checker is being constructed for the language to conduct refine-
ment checking in the style of FDR, but supported by theorem proving for
reasoning about the complex states and data types that arise from the
use of Z. FDR deals with bounded labelled transition systems (LTSs),
but the Circus model checker manipulates LTSs with possibly infinite
inscriptions on arcs and in nodes, and so, in general, the success or fail-
ure of a refinement check depends on interaction with a theorem prover.
An LTS is generated from a source text using an operational interpreta-
tion of Circus; we present a Structured Operational Semantics for Circus,
including both its process-algebraic and state-rich features.

1 Introduction

Circus [31, 32, 1, 23, 2, 3] is a state-rich process algebra based on Z [11, 33] and
CSP [21], with a refinement calculus for deriving implementations from their
specifications. Current work involves constructing a tool-set for supporting the
language, including a theorem prover and a model checker. The development
of the model checker is inspired by FDR, the model checker for CSP [19, 5];
however, a significant and novel aspect of the Circus model checker is the need
to address the state-rich aspects of the language. The resulting procedure is
refinement checking supported by theorem proving.

In its internal computations, FDR uses finite, labelled transition systems that
are derived from source texts using the operational semantics of CSP. In order
to construct the Circus model checker, we first need to explore the operational
semantics of the language, including those state-based features not found in CSP.
This leads to transition systems where the diagram is finite, but where the arcs
and nodes may carry inscriptions involving infinite data types. This operational
semantics must be proved congruent to the denotational semantics of Circus,
which is different from the set-based presentation of the failures-divergences
model used for CSP: it uses the unifying theories of programming (UTP) [10].

We present a Plotkin-style Structured Operational Semantics [17] for Circus,
also based on UTP and using Z as a metalanguage [33], hence knowledge of

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 237–252, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

238 J. Woodcock, A. Cavalcanti, and L. Freitas

Z is assumed. The operational semantics is inspired by the implementation of
CSPM [24] in FDR [5], but has been adapted and extended to accommodate the
state-rich features of Circus. The underlying automata theory and its properties
have been formalised using the Z/Eves theorem prover [14].

In the next section, we give a brief overview of Circus and the UTP. Fol-
lowing this, we present the operational semantics for basic actions, declarations,
synchronisation, schema expression, external choice, and interleaving; other op-
erators are omitted for lack of space. In our final section, we discuss our results,
put them in context, and look forward to future work.

2 Circus and the UTP

Circus is a forum for exploring the combination of process algebra and model-
based abstract data types, and it is distinguished from similar combinations [4,
26] by being based firmly on the notion of refinement. Thus, the process algebra
used is CSP and data types are specified in Z, since failure-divergences refine-
ment and schema structuring have both proved their usefulness in describing
industrial-scale development. Current experience is showing that when the re-
finement calculus is extended to include the operators of the process algebra,
then its use also scales up to address large-scale architectural issues.

Unifying Theories of Programming [10] provides a single theoretical frame-
work, based on an alphabetised relational calculus, that can be used for unifica-
tion of many programming language paradigms. A theory in UTP is composed of
an alphabet of names, a signature of language constructs, and a set of healthiness
conditions. Programs, designs, and specifications are all interpreted as relations
between an initial and an intermediate or final observation of behaviour. The
following programming theories have all been modelled in the UTP: imperative,
reactive, parallel, higher-order, and declarative [10, 30]; object oriented [6, 7, 8];
real-time [27]; and mobility [28, 29].

The semantics of Circus is defined in the UTP, where Z and the refinement
calculus inhabit the theory of designs (pre-post specifications), and where CSP
is the embedding of designs in the theory of reactive processes. Thus, everything
that one might write in Z, CSP, or the refinement calculus may be freely mixed
in a Circus specification. This is in contrast with other approaches, where the
appropriate Z, VDM, or B specification is interpreted as a communicating ab-
stract data type [4, 26]. The result is a rigid system architecture, which has its
advantages: the abstract data type and the process algebra remain orthogonal
throughout development, and so can be analysed separately using existing tools.
It also has its disadvantages: every program that can be developed will have to
adopt this architecture, and clearly many desirable programs do not.

A Circus program consists of a network of processes, each with encapsulated
data and channels for communication and synchronisation. Within a process,
there is a rich state with its attendant operations and process-algebraic be-
haviours, called actions ; a distinguished main action defines the behaviour of
the process. An action has no encapsulated data: it operates on a data space

Operational Semantics for Model Checking Circus 239

shared with other actions inside the same process. Parallel composition defines
partitions to avoid the usual problems of reasoning about shared data.

In the UTP denotational semantics, four kinds of observations may be made
of Circus actions: (i) the wait variable distinguishes intermediate states from final
ones; (ii) the okay variable distinguishes terminating states from non-terminating
ones; (iii) the tr variables records the trace of past events; and (iv) the ref
variable describes a set of events that are being refused by the process while it
waits. For example, if a process has been started in a state where the events a and
b have already occurred (in that order), and the process is waiting to perform
the event c (but not a or b), then the following observations will hold: okay ∧
¬ wait ∧ okay ′ ∧ wait ′ ∧ tr ′ = tr = 〈a, b〉 ∧ ref ′ ⊆ {a, b}. The components of
the process state also appear in the alphabet.

Circus programs satisfy all the healthiness conditions for CSP processes found
in [10], many of which are familiar from the failures-divergences semantics of
CSP [9, 21, 25], and they form a complete lattice ordered by reverse implication.
Thus, a process S is refined by another process I with the same alphabet S � I ,
providing that [S ⇐ I], where the brackets denote universal closure. In this
paper, we provide an operational semantics for Circus actions.

3 Transition Relation

We define a transition relation capturing the operational semantics of Circus.
An earlier abstract version has been formally mechanised in detail using the
Z/Eves theorem prover [22]. All definitions and proof scripts that have guided
our implementations are available from [34]. We introduce names, and well-
formed Z expressions and predicates: Name, ZExpr , ZPred . Values and types
are made from Z expressions: Value == ZExpr , and Type == P ZExpr .

As usual, our transition relation connects one node to another using an arc;
so it is a tertiary relation: P(Node × Arc × Node). The arcs in our relation are
labelled with sets of events, and correspond to a communication permitted by a
channel type definition; events range over the set Σ, and are channel-name/value
pairs: Σ == Name × Value and Arc == PΣ. These sets may be infinite. An
empty arc represents a silent transition: either successful termination or internal
progress. This is in contrast to the operational semantics of CSPM , where two
special events are used for silent transitions: � (tick) and τ (tau). The former
represents successful termination, whereas the latter represents internal progress.
Deadlock in CSPM is represented by lack of available events, and divergence is
represented by an infinite sequence of τ ’s (a τ -loop in the automaton).

Nodes are configuration/environment pairs. The former contains the process’s
state and the action yet to be executed; the latter contains various declarations.
The state St =̂ ASt ∧ USt contains both observational of the UTP ASt and the
process state USt . In the following definition, Boolean ::= t | f .

ASt =̂ [okay ,wait : Boolean; tr : seq Σ]

Refusals are not explicitly recorded; instead, they may be deduced from the
outgoing arcs from each node. The schema Obs =̂ [ΔSt | tr prefix tr ′] defines

240 J. Woodcock, A. Cavalcanti, and L. Freitas

all allowed observations between before and after states during the evaluation
of the semantics; its invariant requires that no process can change the history of
past events (a healthiness condition).

As said above, a configuration comprises a state and an action that remains
to be executed: Config == St × Action, where

Action ::= Ω | Skip | Stop | Chaos | N | μ X • A | let LocalEnv • A
| var x : T • A | c → A | c!v → A | c?x : P→ A | c?x : P!e → A
| A ; B | SExpr | g & A | A � B | A � B | A \ hs | A ||[ns0 | ns1]||B
| A [ns0 | cs | ns1] B

Following ideas from CSPM tools [18, 5], we have included an action Ω to denote
a final configuration; it is not part of the user’s syntax.

The declaration environment contains the names of channels, variables, ac-
tions, and unused names, which partition the given set of names.

Env
chs, vars, acts, fresh : P Name
cType, vType : Name � �→ Type
aCtx : Name � �→ Action

〈chs, vars, acts, fresh〉 partition Name
dom cType = chs ∧ dom vType = vars ∧ dom aCtx = acts

Now we can define a node as a pair: Node == Config × Env .
The declared type of a channel or variable name is determined by the func-

tions cType and vType, respectively. The function aCtx records the syntax that
is associated with an action name. Environments are updated to include new
declarations; we give only the function for adding new channel declarations.

cDecl : Env × Name × Type �→ Env

dom cDecl =
= {Env ; N : Name; T : Type | N ∈ fresh • (θEnv ,N ,T) }

∀Env ; N : Name; T : Type; A : Action | N ∈ fresh •
cDecl(θEnv ,N ,T)

= θEnv [cType := (cType ⊕ {N �→ T }), fresh := (fresh \ {N })]

In Z/Eves’ syntax, substitution of expressions for variables is denoted by “:=”, so
the function updates exactly two components: cType and fresh. More generally,
we give the semantics of a theta expression θS [x := e] within a predicate P
using existential quantification and standard renaming, provided y is fresh and
e has the same type as x .

P (θS [x := e]) ≡ ∃ y : { e } • P(θS [y/x])

We define a transition system only for certain configurations: stable states
are those in which okay is true (Stable =̂ [St | okay = t]); and normal states
are stable states in which wait is false (Normal =̂ [Stable | wait = f]).

Operational Semantics for Model Checking Circus 241

Two key functions in the definition of the operational semantics are enabled ,
which gives the set of enabled arcs for a node, and arcStep, which returns the
set of nodes that can be reached from a given node by following a given arc.
These functions are defined piecewise over the syntax of Circus actions. Their
domains are defined as the nodes where the states are in normal configurations;
the domain of arcStep insists that we are interested in stepping only through
arcs that are enabled.

enabled : Node � �→ P Arc
arcStep : Node × Arc � �→ P Node

dom enabled = {A : Action; Normal ; Env • ((θSt ,A), θEnv) }

dom arcStep = {A : Action; a : Arc; Normal ; Env |
a ∈ enabled((θSt ,A), θEnv) • (((θSt ,A), θEnv), a) }

These functions abstractly define a general theory of automata, where the edges
are sets of events (arcs) and the configurations are nodes. Therefore, the op-
erational semantics of Circus is given in terms of these semantic functions for
each available operator in the BNF syntax. As mentioned before, this is close to
the operational semantics of CSPM in FDR, where similar semantic functions
named inits and after are defined.

There is a relationship between these two functions. The domain of arcStep
is a relation (a set of pairs), which may be lifted to a set-valued function using
relational image. This function is almost exactly enabled : we have to remove all
pairs that arcStep would have mapped to the empty set, since these pairs can
have no enabled arcs.

∀n : Node • enabled(n) = (dom(arcStep −� {∅}))(| {n} |)

The following well-formedness theorem is proved as a consequence of this rela-
tionship, and each definition below is proved to respect it.

Theorem 1 (Well-formedness). An arc a is enabled in node n formed by an
action A in a stable before state (θSt [okay := t]) and an environment (θEnv)
exactly when it is possible to reach at least one target node through n via a.

∀ St ; Env ; A : Action; a : Arc; n : Node •
n = ((θSt ,A), θEnv) ∧ okay = t ⇒ a ∈ enabled n ⇔ arcStep(n, a) �= ∅

If the process diverges, the well-formedness theorem is no longer guaranteed.
We have proved this theorem for our underlying abstract automata theory,

which is important for the implicit relationship between refusals sets and enabled .
An observation is stable whenever it has started (okay), and has not diverged

(okay ′). Valid observations are those where the trace history has been preserved
(tr prefix tr ′), as well as the state invariant. An observation is normal whenever
its before state is normal and the after state is stable.

StableObs =̂ Obs ∧ ΔStable
NormalObs =̂ StableObs ∧ Normal

242 J. Woodcock, A. Cavalcanti, and L. Freitas

A stable observation can make progress initially (okay ∧ ¬ wait), reach a stable
valid observation in an after state (okay ′ ∧ wait ′ ∧ tr prefix tr ′), but nothing is
known about its termination yet (wait ′ is unconstrained).

In the following sections, we define enabled and arcStep for a representative
subset of Circus actions.

4 Basic Actions

Skip has only one possible behaviour—termination—so it has exactly one tran-
sition.

∀Normal ; Env • enabled((θSt ,Skip), θEnv) = { ∅ }

A Terminating observation is normal with wait ′ false. Silent termination does
not change tr . Read-only observations are normal.

Terminating =̂ [NormalObs | wait ′ = f]
SilentlyTerminating =̂ [Terminating | tr ′ = tr]
ReadOnly =̂ [NormalObs | Ξ USt]

Since the initial state in the semantics of Skip is normal, the empty arc leads to
a final configuration with action Ω in an after state that silently terminates.

∀Normal ; Env •
arcStep(((θSt ,Skip), θEnv), ∅)

= {SilentlyTerminating ; ReadOnly • ((θSt ′,Ω), θEnv) }

For the final configuration (θSt ,Ω) from a normal before state we have that

∀Normal ; Env • enabled((θSt ,Ω), θEnv) = ∅

and since enabled gives the empty set of arcs, so the domain of arcStep for Ω
is also empty. Finally, we observe the difference between an empty set being
enabled , and enabled returning a singleton set containing just the empty set.
The former is related to termination or internal progress; the latter is a final
configuration with no outgoing arcs.

Stop represents a final action (Ω) in a waiting after state, where neither com-
munication nor user state updates have happened. Waiting defines read-only ob-
servations where the after state is waiting for interaction (wait ′). SilentlyWaiting
defines waiting observations where no communication has taken place.

Waiting =̂ [ReadOnly | wait ′ = t]
SilentlyWaiting =̂ [Waiting | tr ′ = tr]

Like Skip, the definition of Stop also uses a silent transition through an empty
arc; the final state is given by SilentlyWaiting with the original environment.

∀Normal ; Env • enabled((θSt ,Stop), θEnv) = {∅}
∀Normal ; Env •

arcStep(((θSt ,Stop), θEnv), ∅) = {SilentlyWaiting • ((θSt ′,Ω), θEnv) }

Operational Semantics for Model Checking Circus 243

A deadlocked configuration accepts nothing, whereas a waiting configuration can
progress whenever some arc becomes enabled . FDR has a similar representation.

Chaos has every possible behaviour, and this is represented as the power set
of Σ.

∀Normal ; Env • enabled((θSt ,Chaos), θEnv) = P Σ

An observation is unpredictable whenever we move from a normal before state
to an after state where only the minimal constraints hold. Leaving the value of
okay ′ unconstrained allows the possibility of divergence.

UnpredictableObs =̂ Normal ∧ Obs

The behaviour after any transition is not entirely arbitrary, even in the presence
of divergence: the state invariant will continue to hold and the trace will not be
corrupted (the minimal constraints). In the semantics of Chaos, each arc leads
back to Chaos in an after state with these two constraints.

∀Normal ; Env ; a : Arc •
arcStep(((θSt ,Chaos), θEnv), a)

= {UnpredictableObs • ((θSt ′,Chaos), θEnv) }

Thus, divergence is characterised by an unstable after state (okay ′ false) that
might occur after an unpredictable observation. This is different from FDR,
where divergence is recorded as a τ -loop in the transition system. These loops are
detected by restricting the transition system to τ events, and then calculating the
transitive closure [19], where the standard implementation is depth-first search
(DFS). Research on a parallel version of FDR using graph pruning to detect
divergence is under development [13].

An interesting side-effect of using the UTP characterisation of divergence
might give an important performance improvement for the implementation of
divergence detection, because no DFS is needed. Instead, a more efficient search
such as parallel variations of breadth-first search (BFS) are being analysed. The
outcome of this investigation and the parallel implementation of other model-
checking algorithms are left as future work.

5 Channel Declarations

Channel declarations are not permitted in Circus actions, but instead, they are
evaluated during the contextual analysis that builds the initial environment. We
define the syntax for declaration of channels and actions using a free-type Decl .

Decl ::= channel N : T | channel N | N =̂ A

Next, the function declare is defined; it updates an original environment with a
given declaration of a channel.

244 J. Woodcock, A. Cavalcanti, and L. Freitas

declare : Env × Decl �→ Env

dom declare = {Env ; D : Decl ; N : Name | N ∈ fresh • (θEnv ,D) }

This function is partial, since some declarations might not be well-formed. Unlike
in CSP, Circus channels are strongly typed; thus, a channel declaration includes
the new channel name with its declared type in the given environment; it is
defined using the function cDecl defined in Section 3.

∀ΔEnv ; N : Name; T : Type •
declare(θEnv , channel N : T) = cDecl(θEnv ,N ,T)

Events are formed from a channel name and a communicated value; but for
synchronisation events, where no value is communicated, we define a special
value Synch: it cannot be referred to by the user. Synchronisation channels are
included in environments with the given name and the singleton type {Synch }.

∀ΔEnv ; N : Name • declare(θEnv , channel N) = cDecl(θEnv ,N , {Synch})

This allows a homogeneous declaration of channel types in the environment.

6 Input Prefixing: c?x : P → A

The enabled arcs of input prefixing contains events formed by the channel name
and all values allowed by the declared channel type filtered by predicate P.

∀Normal ; Env •
enabled((θSt , c?x : P → A), θEnv) = { { v : cType c | P = t • (c, v) } }

The transition for a synchronisation is defined using the schema Communicating ,
which requires that: (i) the before and after states are normal; (ii) the state
invariant and the trace history are maintained; (iii) no modifications happen
in the user state; (iv) the set of possible synchronisations includes the one in
question; and (v) the after state trace is extended with the synchronisation
event. Progressing =̂ [ReadOnly | wait ′ = f] specifies (i)–(iii). The declaration
of available events on input variable given?, and the selection of an event using
output variable e! from given? specify (iv). The extension of tr specifies (v).

Communicating =̂
[Progressing ; given? : Arc; e! : Σ | e! ∈ given? ∧ tr ′ = tr � 〈e!〉]

These two definitions can now be used in the clause for arcStep.

∀Normal ; Env •
let allowed == { v : cType c | P = t • (c, v) } •

arcStep(((θSt , c?x : P → A), θEnv), allowed)
= {Communicating [given? := allowed] •

let lEnv == ((x, ran allowed), second e!) •
((θSt ′, (let lEnv • A)), θEnv) }

Operational Semantics for Model Checking Circus 245

The state is updated according to the Communicating schema where the given
events are those allowed; however, the communicated value must be available for
the evaluation of the following action A. This is achieved by introducing a new
local variable x implicitly declared through the special syntax (let lEnv • A),
where the type is just that of c. Its value is that communicated: second e!.

The evaluation of the local environment for input communication is similar to
that for variable declarations. The only difference is that the implicitly declared
variable x must have a value from the communication that just took place.

∀Normal ; Env •
enabled((θSt , (let IEnv == ((x,T), v) • A)), θEnv)

= enabled((θSt ,A), vDecl(θEnv , x,T))

The function vDecl extends the environment to include x ; its definition is omitted
for lack of space. For arcStep, we do something similar. We enrich the state in
order to evaluate the action; removing the local variable from the environment
afterwards ensures that the scope is indeed local. This is achieved using vRemove.

∀Normal ; Env ; a : Arc •
arcStep(((θSt , (let IEnv == ((x,T), v) • A)), θEnv), a)
= let ExtSt =̂ [x, x′ : T | x′ = x = v] •
{A′ : Action; UnpredictableObs; Env ′ |

((θSt ′,A′), θEnv ′) ∈
arcStep(((θ(St ∧ ExtSt),A), vDecl(θEnv , x,T)), a) •
((θ(St ′ \ (x, x′)), (let lEnv == ((x,T), x′) • A′),

vRemove(θEnv ′, x)) }
Schemas cannot be written in let clauses as shown above. For clarity, we have
used this notation, but in Z/Eves ExtSt has to be defined separately. In calcu-
lating the semantics of a Circus program, this results in a proliferation of small
schemas that need to be introduced, and nested scope has to be eliminated in
advance. This does not lead to problems when reasoning about the semantics.

7 Schema Expression: SExpr

Successful evaluation of schema expressions is represented with a silent transition
via an empty arc enabled ; however, as schema expressions can diverge if executed
outside their preconditions, we allow any arc to be enabled.

∀Normal ; Env •
enabled((θSt ,SExpr), θEnv) = P Σ

Provided the precondition holds, a schema expression successfully terminates
silently performing the operation in the user state. This leads to a final config-
uration that is terminating on the same environment.

∀Normal ; Env | pre SExpr •
arcStep(((θSt ,SExpr), θEnv), ∅)

= {SilentlyTerminating | SExpr • ((θSt ′,Ω), θEnv) }

246 J. Woodcock, A. Cavalcanti, and L. Freitas

When the precondition does not hold, evaluation of schema expressions leads to
an after state with unpredictable observations, where the only guarantees are
that the state invariant holds, and the trace history is not forgotten.

∀Normal ; Env ; a : Arc | ¬ pre SExpr •
arcStep(((θSt ,SExpr), θEnv), a)

= {UnpredictableObs • ((θSt ′,SExpr), θEnv) }

There is an implicit contextual analysis assumed on the unpredictable case. In
order to calculate pre SExpr, both input (?) and output (!) variables on the
schema expression must be in context in the given environment.

8 External Choice: A � B

External choice has the arcs of both actions initially enabled. This includes empty
arcs meaning either internal progress or termination, and visible communication
on nonempty arcs.

∀Normal ; Env ; A,B : Action •
enabled((θSt ,A � B), θEnv)

= enabled((θSt ,A), θEnv) ∪ enabled((θSt ,B), θEnv)

External choice is rather complex with respect to progress on the transition
system. Intuitively, there are many cases to consider: visible communication,
silent termination, internal progress, and the possibility of deadlock or divergence
on either action, and deadlock on both actions. We analyse the cases separately.

Firstly, visible communication (tr ′ �= tr) happens only when a prefixing is
communicating. This communication represents the choice being resolved; it is
formally defined by the schema Choosing as a normal observation that changes
the trace. That is, from a normal before state (okay ∧ ¬ wait) it reaches a
stable after state (okay ′) with valid observations (tr prefix tr ′), where the trace
has been extended (tr ′ �= tr).

Choosing =̂ [NormalObs | tr ′ �= tr]

Whenever a visible communication happens, the choice is resolved to the follow-
ing action that arises from either A or B. A first definition for arcStep, considering
the case in which A is chosen, is as follows.

∀Normal ; Env ; a : Arc •
arcStep(((θSt ,A � B), θEnv), a)

= {C : Action; Choosing |
((θSt ′,C), θEnv) ∈ arcStep(((θSt ,A), θEnv), a) •

((θSt ′,C), θEnv) }∪

That is, from a normal before state, A leads to C on a stable after state according
to the schema Choosing on the same environment.

Operational Semantics for Model Checking Circus 247

Silent termination on either action also resolves the choice. The difference is
that silent termination always leads to the final action Ω.

{Terminating | ((θSt ′,Ω), θEnv) ∈ arcStep(((θSt ,A), θEnv), a) •
((θSt ′,Ω), θEnv) }∪

This models the fact that termination cannot be refused. It is a direct conse-
quence of the denotational semantics of Circus. This approach is also taken in
Roscoe’s CSP [21] and FDR [24, 5]. Alternatively, Hoare’s CSP [9] forbids the
choice of termination in an external choice, and Schneider’s CSP [25] requires
cooperation with the external environment when termination is offered in an
external choice.

Now we consider internal progress in either action, say A again. Action
(A � B) leads to (A′ � B) in an after state that is ready for further progress
(A′ �= Ω), provided that A leads to A′ in an after state as defined by the schema
SilentlyProgressing =̂ [Progressing | tr ′ = tr].

{A′ : Action; SilentlyProgressing |
A′ �= Ω ∧ ((θSt ′,A′), θEnv) ∈ arcStep(((θSt ,A), θEnv), a) •

((θSt ′,A′ � B), θEnv) }∪

Internal (silent) progress happens on the resolution of internal choice, evaluation
of variable declaration, action call, and so forth. Additionally, although after
states observed due to internal progress are the same as those observed due
to successful termination, the ambiguity is cleared because we insist that A′ is
different from final action Ω.

The possibility of deadlock in either action is defined next. Whenever action
A leads to action A′ in an after state that is silently waiting, deadlock might
occur if the enabled arcs of A′ is the empty set because A′ is refusing every
possible event.

{A′ : Action; SilentlyWaiting |
((θSt ′,A′), θEnv) ∈ arcStep(((θSt ,A), θEnv), a) •

((θSt ′,A′ � B), θEnv) }∪

Whenever either action is already deadlocked (Stop � B), the choice is resolved
to the remaining action, since the deadlocked action will have no arcs enabled
(arcStep on the right-hand side is empty, and so the result is also empty). Of
course, when both actions of the choice are deadlocked, so is the external choice.

Next, we need to consider divergence in either action, say A once more. If
A leads to A′ on an unpredictable after state, the external choice might be
divergent; the result is A′ in a possibly divergent state.

{A′ : Action; UnpredictableObs |
((θSt ′,A′), θEnv) ∈ arcStep(((θSt ,A), θEnv), a) •

((θSt ′,A′), θEnv) }

Putting all these cases together for both actions of the choice, we get the complete
definition for arcStep of external choice.

248 J. Woodcock, A. Cavalcanti, and L. Freitas

9 Interleaving: A ||[ns0 | ns1]|| B
Interleaving synchronises only on successful termination. In our semantics, suc-
cessful termination happens whenever we reach a final configuration with Ω in
an after state according to the observations of Terminating . An empty arc repre-
sents termination. Therefore, this is the only place where the original refusals (or
acceptances) sets need to be readjusted. An empty arc can be allowed initially
only if both actions are willing to terminate successfully. One possibility for the
semantics is similar to that used in CSPM [24].

∀Normal ; Env •
enabled((θSt ,A ||[ns0 | ns1]||B), θEnv)

= (enabled((θSt ,A), θEnv) ∪ enabled((θSt ,B), θEnv)) \ { ∅ }
∪ enabled((θSt ,A), θEnv) ∩ enabled((θSt ,B), θEnv) ∩ { ∅ }

However, since an enabled empty arc also represents other transitions such as
internal progress, this would wrongly enforce synchronisation in this case as well.

We cannot exploit the observational variables, as we do not yet know the
possible after states of the enabling configuration for either action. Instead, the
differentiation of these cases must be in the arcStep function. Soundness is guar-
anteed by the well-formedness theorem.

a ∈ enabled((θSt ,A), θEnv) ⇔ arcStep(((θSt ,A), θEnv), a) �= ∅

Therefore, the enabled arcs of interleaving are those enabled on either action,
and the distinction on distributed termination is left to arcStep.

∀Normal ; Env ; A,B : Action •
enabled((θSt ,A ||[ns0 | ns1]||B), θEnv) =

enabled((θSt ,A), θEnv) ∪ enabled((θSt ,B), θEnv)

In the case of distributed termination, both A and B reach Ω through an empty
arc in a final configuration with Terminating observations.

∀Normal ; Env ; a : Arc •
arcStep(((θSt ,A ||[ns0 | ns1]||B), θEnv), a)

= {Terminating |
((θSt ′,Ω), θEnv) ∈ (arcStep(((θSt ,A), θEnv), ∅)

∩ arcStep(((θSt ,B), θEnv), ∅)) •
((θSt ′,Ω), θEnv) }

In the absence of divergence, an enabled event is accepted by (A ||[ns0 | ns1]||B)
whenever it is accepted by either A or B. We define the schema Interleaving0,
which describes the observations allowed when A makes its independent progress;
the schema Interleaving1 is defined similarly. We need three versions of the
state: (i) the before state shared by both actions and the resulting interleaving;
(ii) the after state of the action being evaluated independently; and (iii) the after
state of the interleaving.

Operational Semantics for Model Checking Circus 249

Interleaving0
UnpredictableObs
UnpredictableObs[okay0/okay ′,wait0/wait ′, tr0/tr ′, userVars0/userVars ′]
ns? : P Name

okay ′ = okay0 ∧ wait ′ = wait0 ∧ tr ′ = tr0

θUSt ′ = θUSt

UnpredictableObs describes valid observations (tr prefix tr ′) from a normal before
state (okay ∧ ¬ wait), where either divergence (¬ okay ′), visible communication
(tr ′ �= tr), internal progress (¬ wait ′ ∧ tr ′ = tr ∧ Ξ USt), or waiting (wait ′ ∧
tr ′ = tr ∧ Ξ USt) are possible on the after sate.

After state variables of A are 0-subscripted to distinguish them from the after
state variables of the interleaving. In Interleaving1, we use 1 as a subscript to
distinguish the after state.

We have the case where independent progress is made on one action (say
A). Action (A ||[ns0 | ns1]||B) reaches (A′ ||[ns0 | ns1]||B) whenever A leads to A′

through the arc a.

∀Normal ; Env ; a : Arc •
arcStep(((θSt ,A ||[ns0 | ns1]||B), θEnv), a)

= {A′ : Action; Interleaving0[ns0/ns?] |
((θSt0,A′), θEnv) ∈ arcStep(((θSt ,A), θEnv), a) •

((θSt ′,A′ ||[ns0 | ns1]||B), θEnv) }

The effect on the after state of the interleaving is defined according to observa-
tions allowed by the Interleaving schema with appropriate substitution for the
input name set.

10 Discussion

Our Circus model checker will permit the checking of certain kinds of infinite
state processes using an algorithm inspired by FDR. We require the LTS to
have a finite diagram bounded in size, but inscriptions on the nodes and arcs
can involve infinite states and transitions. To see how our operational semantics
compresses the graph of an LTS, consider the following two examples.

The process c?x : N → SKIP communicates a natural number and then
terminates: the CSPM LTS branches infinitely; the Circus LTS has just a single
arc to a node that is followed by termination.

The CSPM process P(i) = a!i → P(i+1) outputs the natural numbers, start-
ing at i . The parametrised process P(0) has an infinite number of nodes, each in-
dexed with a natural number, and a long thin LTS with transitions between suc-
cessor nodes. The state-based process var i := 0 • (μX • a!i → i := i + 1; X)
has the same behaviour, but without the infinite graph. ¿From its start node,
the declaration enriches the environment with the variable i . From this node,
there is a single transition labelled with the set of events { i : N • a.i }, followed

250 J. Woodcock, A. Cavalcanti, and L. Freitas

by two transitions in sequence representing the assignment and recursive call.
This makes a total of four nodes and four transitions. Both processes can be
written in Circus, but the state-based style encourages the second.

The Circus model-checking algorithm tries to establish similarity between two
LTSs: an implementation and its putative specification. It can confirm refinement
or generate counterexamples for systems with modest data types, but in general
it requires the proof of verification conditions to distinguish the outcome of
model checking attempts and to compute counterexamples.

The verification conditions may be easily decidable, as would be the case when
the programs involved are data independent in the sense of Lazić and Roscoe [21].
Other programs give rise to infinite state machines, but with bounded arcs, like
the data flow example in [9]. In such cases, certain checks can be made with
economical effort. For example, freedom from deadlock can be checked using the
LTS, with the possibly infinite nodes giving rise to verification conditions that
all partial functions have been applied within their domains (Z/Eves’ domain
checks [22]), which can be made automatic when appropriate preconditions are
present in the Z specification.

Most model checking attempts fail, as a user debugs both the specification
and the implementation, and we envisage a similar pattern with our tool. At
first, many verification conditions are generated, which the user must scrutinise
and judge. As the cycle of attempts continues, a pattern emerges, and similar
verification conditions are generated in individual attempts. It is now worth-
while developing an appropriate theory and tuning its automation so that the
stable set of verification conditions are discharged mechanically. New verifica-
tion conditions appear in subsequent attempts, and most are dealt with by the
theory. In this way, as the debugging converges to a correct refinement, the level
of automation converges with it.

One of our guiding principles is to take our own medicine in building the
tool, and so to develop crucial parts of the program using formal specification
and refinement. Indeed, the formal model in UTP makes precise the connec-
tion between model checking and theorem proving, and this use of formalism
is important for credibility as well as for soundness. The operational semantics
presented in this paper is one of the departure points for the formal derivation
of the algorithms used in the tool. Publication gives an opportunity for pub-
lic scrutiny of the tool’s development, as well as making its specification and
algorithms available for other tool builders.

Our operational semantics is inspired by that for CSPM used in FDR. Our
most important contribution is the treatment of infinite constructions such as
schema expressions and other state-related features of Circus. Our operational
and denotational semantics are presented in a uniform theoretical framework,
making their proof of congruence much easier. Finally, the two operational se-
mantics differ in various details, particularly to do with silent transitions, dis-
tributed termination, and divergence.

The two functions enabled and arcStep are used to define a transition relation
between configurations (states and action pairs) (s,P) → (t ,Q). As described

Operational Semantics for Model Checking Circus 251

in [10], this may be interpreted as saying that an implementation that is re-
quired to execute P in state s is permitted to execute the shorter action Q in
state t . This gives us an independent correctness criterion for the operational
semantics: (s ; P) must be refined by (t ; Q), where (s ; P) is the program P
started in state s. In this context, the state is represented by an assignemnt.

We have used the Z/Eves theorem prover to analyse the soundness of our
description by proving refinement using the denotational semantics. This check
for soundness is not yet complete, since there is no mature version of UTP
embedded in a theorem prover yet. Nevertheless, research on this front is well
advanced: the works in [15, 16] describe deep embeddings of the UTP in the
theorem provers Z/Eves [14] and ProofPowerZ [12]. Eventually, this will enable
us to mechanise the proof of the correctness of all of our operational semantics
with respect to Circus’s denotational semantics.

Acknowledgements

We are grateful to QinetiQ Malvern for their long-term support of the Circus
project, to the Royal Society for an Industry Fellowship, and jointly to the
Universities of Kent and York for a Circus studentship. We are thankful to Peter
Mosses for several illuminating discussions.

References

1. A.L.C. Cavalcanti, A.C.A. Sampaio, and J.C.P. Woodcock. Refinement of actions
in Circus. REFINE 2002. Electronic Notes in Theor. Comp. Sci. 70(3) 2002.

2. A.L.C. Cavalcanti, A.C.A. Sampaio, and J.C.P. Woodcock. A refinement strategy
for Circus. Formal Aspects of Computing 15(2–3):146–181 2003.

3. A.L.C. Cavalcanti and J.C.P. Woodcock. Predicate transformers in the semantics
of Circus. IEE Proceedings Software 150(2):85–94 2003.

4. C. Fischer. Combining CSP and Z. Technical Report. Univ. Oldenburg. 1996.
5. Michael Goldsmith. FDR2 User’s Manual version 2.67. FSEL. May 2000.
6. He Jifeng, Zhiming Liu, and Xiaoshan Li. A Relational Model for Object-Oriented

Programming. Tech. Rep. 231. UNU/IIST, P. O. Box 3058, Macau, May 2001.
7. He Jifeng, Zhiming Liu, and Xiaoshan Li. Towards a Refinement Calculus for

Object Systems. Procs ICCI2002 pp.69–77. IEEE Computer Society Press 2002.
8. He Jifeng, Zhiming Liu, and Xiaoshan Li. Modelling Object-oriented Programming

with Reference Type and Dynamic Binding. Tech. Rep. 280. UNU/IIST. 2003.
9. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall 1985.

10. C.A.R. Hoare and He J. Unifying Theories of Programming. Prentice Hall 1998.
11. Information Technology — Z Formal Specification Notation — Syntax, Type Sys-

tem and Semantics. ISO/IEC 13568:2002.
12. Lemma-One. ProofPower Tutorial, 2003.
13. Jeremy M. R. Martin and Yvonne Huddart. Parallel Algorithms for Deadlock and

Livelock Analysis of Concurrent Systems. Commun. Proc. Archs. IOS Press 2000.
14. Irwin Meisels and Mark Saaltink. Z/Eves 1.5 Reference Manual. Technical Report

TR-97-5493-03d. ORA Canada, September 1997.
15. Gift Nuka and Jim Woodcock. Mechanising the alphabetised relational calculus.

WMF2003. Electronic Notes in Theoretical Computer Science 95 2004.

252 J. Woodcock, A. Cavalcanti, and L. Freitas

16. Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. Unifying theories in Proof-
PowerZ. Draft. University of York. January 2005.

17. G. D. Plotkin. A Structural approach to Operational Semantics. Journal of Logic
and Algebraic Programming 60–61:19–140 2004.

18. ProBE User’s Manual version 1.28. Formal Systems (Europe) Ltd. May 2000.
19. A. W. Roscoe. Model Checking CSP. In [20] chapter 21 pp.353–378 1994.
20. A.W. Roscoe. A Classsical Mind: Essays for C.A.R. Hoare. Prentice Hall 1994.
21. A. W. Roscoe. Theory and Practice of Concurrency. Prentice Hall 1997.
22. Mark Saaltink. Z/Eves 2.0 User’s Guide. Technical Report TR-99-5493-06a. ORA

Canada 1999.
23. A.C.A. Sampaio, J.C.P. Woodcock, and A.L.C. Cavalcanti. Refinement in Circus.

FME 2002 Lecture Notes in Computer Science 2391:451–470 2002.
24. B. Scattergood. The Semantics and Implementation of Machine Readable CSP.

PhD thesis. Oxford University 1998.
25. S. Schneider. Concurrent and Real-Time Systems: The CSP Approach. Wiley 2000.
26. S. Schneider and H. Treharne. Communicating B Machines. ZB2002. Lecture Notes

in Computer Science 2272:415–435. 2002.
27. Adnan Sherif and He Jifeng. Toward a Time Model for Circus. ICFEM 2002.

Lecture Notes in Computer Science 2495 pp.613–624. Springer-Verlag.
28. Xinbei Tang and Jim Woodcock. Towards mobile processes in unifying theories.

SEFM 2004. IEEE Computer Society 2004.
29. Xinbei Tang and Jim Woodcock. Travelling processes. Mathematics of Program

Construction. Lecture Notes in Computer Science 3125:381–399 2004.
30. J. C. P. Woodcock. Unifying Theories of Parallel Programming. In Logic and

Algebra for Engineering Software. IOS Press, 2002.
31. Jim Woodcock and Ana Cavalcanti. A Concurrent Language for Refinement. 5th

Irish Workshop on Formal Methods, 2001.
32. Jim Woodcock and Ana Cavalcanti. The Semantics of Circus. ZB 2002. Lecture

Notes in Computer Science:184–203 Springer-Verlag 2002.
33. Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof.

Prentice Hall 1996.
34. www-users.cs.york.ac.uk/~leo.

Control Law Diagrams in Circus

1 Department of Computer Science, University of York
York, England

2 Systems Assurance Group, QinetiQ
Malvern, England

Abstract. Control diagrams are routinely used by engineers in the de-
sign of control systems. Yet, currently the formal verification of programs
that implement the diagrams is a challenge. We present a strategy to
translate block diagrams to Circus, a notation that combines Z, CSP, and
a refinement calculus. This work is based on existing tools that produce
Z and CSP specifications from discrete-time block diagrams. By using a
combined notation, we provide a specification that considers both func-
tional and behavioural aspects of these diagrams, and can cover a wider
range of blocks. Moreover, the Circus refinement calculus can be used to
verify implementations, and reason about the block diagrams.

Keywords: Z, CSP, Simulink, refinement.

1 Introduction

A popular and intuitive representation for expressing control system specifica-
tions is that of block diagrams. In this notation, a system is modelled by a,
possibly cyclic, directed graph of blocks interconnected by wires. This graph in-
cludes inputs and outputs to the system, which are signals carried by the wires.
Roughly speaking, the blocks represent functions that determine how the outputs
are calculated from the inputs. In a continuous-time model, signals continuously
vary with time. In a discrete-time model, signals are sampled at discrete time
intervals; input and output take place in cycles.

Due to the criticality of many control systems, analysis has been a major
concern; numerical modelling and simulation are the established techniques. Re-
cently, there have been efforts to use logic to capture the meaning of control dia-
grams and to support reasoning [4, 3, 10]. Our work has a different focus: deriva-
tion and verification of implementations, as opposed to validation of systems.

Discrete-time diagrams written using Simulink are considered in [2]. Simulink
is a popular tool that is part of the Matlab environment [1]; its use in the
avionics and automotive sectors is standard. In [2] we find the description a
tool, ClawZ, that translates control law diagrams to Z. The translation is based
on an extensive Z library that formalises the meaning of many of the blocks. The
version of Z used is that implemented in the theorem prover ProofPower [11].

ClawZ has been extensively and successfully used at the Systems Assurance
Group at QinetiQ in the proof of correctness of Ada programs with respect to

Ana Cavalcanti1, Phil Clayton2, and Colin

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 253–268, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

O’Halloran2

Simulink specifications. As described in [14], the output of ClawZ is used to
construct a refinement conjecture (called a compliance argument) that can be
formally verified using tools integrated with ProofPower.

In Z, reactivity and concurrency cannot be modelled directly; ClawZ cap-
tures only the functional behaviour of one cycle of a control system. Basically,
the Z specification that it generates defines how the outputs of a cycle can be
determined in terms of the inputs (and possibly, state information).

QinetiQ developed another tool, called ClaSP, to support the definition of
a CSP [16] specification that captures the parallelism inherent in a control law
diagram. In principle, the computation embedded in the blocks can be performed
in parallel; order is imposed only by the wiring. ClaSP is used in the verification
by model checking of distributed cyclic scheduling.

Circus [19, 6] is a combination of Z and CSP with a refinement calculus; it
aims at the specification and design of state-rich reactive systems. Circus includes
a theory and a technique of refinement that support the calculation of concurrent
implementations from centralised specifications. The semantics is based on Hoare
and He’s unifying theories of programming [9].

In this work, we give a semantics to control diagrams using Circus, so that we
can capture functionality and concurrency. We reuse ClawZ and ClaSP, which
capture a partial semantics of these diagrams. Our semantics is a strategy to
translate the outputs of extended versions ClawZ and ClaSP to a Circus specifi-
cation: extensions are needed to enlarge the subset of the diagrammatic notation
that is covered. Even so, the existing experience with ClawZ and ClaSP improves
our confidence in the suitability of the Circus semantics.

Using Circus, we can model blocks whose output can be disabled or depends
on the order of arrival of input signals. Moreover, the Circus specification can
capture the behaviour of the system over any number of cycles; our model of a
diagram is a process that proceeds recursively executing cycle after cycle.

With a Circus model, we are able to use refinement to reason about diagrams
and their implementations. Separate analyses that consider functionality and
concurrency independently are not needed. Properties that are based on both the
functionality and the scheduling policies of an implementation can be handled.

In the next section, we present a brief introduction to Simulink control law
diagrams. In Section 3 we describe ClawZ, ClaSP, and Circus; the extensions of
ClawZ and ClaSP are described in Sections 4 and 5. Our translation strategy is
presented in Section 6; refinement is discussed and exemplified in Section 7. In
Section 8 we summarise our results, and discuss future and related work.

2

Our work is based on the Simulink notation; an example is presented in Figure 1.
That diagram specifies a PID (Proportional Integral Derivative) controller that
is being used to control a fuel metering valve of an aircraft. Each box in a
diagram is called a block; the wires carry signals. The inputs and outputs of a

254 A. Cavalcanti, P. Clayton, and C. O Halloran

Control Law Diagrams

’

1

FMTMCD

Sum5

Sum4

Sum3

Sum2

Sum1

Product1

Product

limit

Limit2

limit

Limit1

integrator

Integrator

differentiator

Differentiator
1

Constant1

1

Constant

8

CFMCMN

7

CFMCMX

6

DFM2MX

5

DFM2MN

4

DFMVGF

3

FMVPV

2

DFMVGI

1

FMVPE

1

output

z

1

Unit Delay

Sum

Product

2

z

1

x

y

system are represented by rounded boxes containing numbers. In our example,
there are eight inputs and one output.

Typically, a block takes some input signals and produces some outputs ac-
cording to a function determined by the kind of block in question. There are
libraries of blocks in Simulink, and they can also be user-defined.

The rectangular boxes without inputs output the constant value they dis-
play. The circles are sum blocks. Boxes enclosing names are subsystems; they
denote control systems defined in other diagrams. For example, the diagram that
corresponds to the Differentiator block is presented in Figure 2.

Blocks can have state. For instance, blocks labelled 1/z are unit delay blocks.
They store the value of the input signal, and output the value stored in the
previous cycle. In each cycle, the output depends on the values of the inputs and
of the state that may be held in the blocks, but other factors may be relevant.

For example, subsystems may be conditionally executed: an action subsystem
has an activate input and is executed when it is true; an enabled subsystem has

Fig. 1. PID (Proportional Integral Derivative) controller

Fig. 2. PID Differentiator

Control Law Diagrams in Circus 255

an enabling input and is executed when its value is greater than zero. When a
subsystem is not executed, its outputs can either be held at their previous value
or reset to an initial value. Any state contained in blocks within the subsystem
is held until the subsystem is about to be executed again, at which point the
state can be held or reset to an initial value. Merge blocks take a number of
inputs and produce one output: the most recently calculated input.

In the next section, we present two models for control diagrams provided by
two tools. ClawZ uses Z to provide a relational model for blocks, which covers
state, but not concurrency and the behaviour of conditionally executed subsys-
tems and merge blocks. ClaSP, on the other hand, cannot capture functionality.

3 ClawZ, ClaSP, and Circus

ClawZ characterises each block of a Simulink diagram, including constants, as a
set of bindings, typically defined as a schema. In the Z specification of a diagram,
there is a set of bindings for each block, and a set of bindings corresponding to
the whole diagram. Part of the output of ClawZ for the PID diagram in Figure 1
is presented in Figure 3; the Z notation is that adopted by ProofPower.

The schema pidspec declares the inputs and the outputs of the diagram, and
includes (the schemas that specify) the blocks. The predicate of pidspec (omitted)
specifies how the inputs and outputs of the diagram and of each of the blocks
are connected. The type U is a universal type in ProofPower.

We present only the definition of the Differentiator; it is a schema that declares
the inputs and outputs of the Differentiator block, and each of the blocks in its
diagram (Figure 2). The predicate, which is similar to that of pidspec, equates,
for instance, the inputs of the Product block to an input of the whole Differentiator

and the output of the Sum block.
ClawZ includes a library of block definitions. The Product block of the Dif-

ferentiator is defined in terms of the library block Product M 2. The Unit Delay

block specification uses UnitDelay g ; it is a function that takes a binding that
defines the initial value of the unit delay state, and gives a set of bindings. In
ProofPower, there is support for real numbers: 0 e 0 is the real number 0.

ClaSP provides a simple characterisation of the wiring in a diagram; it ignores
the calculations performed by the blocks. The output of ClaSP is not really a
CSP specification, but a set of pairs that is used as argument for a CSP process
that defines the concurrent behaviour of the diagram. The set includes one pair
for each block in the diagram: the first element of the pair is the set of input
signals of the block, and the second element is a sequence of output signals.

The output of ClaSP for the PID is shown in Figure 4. To make model
checking practical, the CSP process that uses this set of pair determines an order
of execution for the blocks; this is why the outputs are identified by sequences.
The massive parallelism intrinsic in a block diagram leads to processes that have
a large number of states and are difficult to model check.

Circus is a language for refinement; it includes specification constructs from
Z and Morgan’s refinement calculus [13], CSP constructs to model communica-

256 A. Cavalcanti, P. Clayton, and C. O Halloran’

Z

pidspec Differentiator Product =̂ Product M2

Z

pidspec Differentiator UnitDelay =̂ UnitDelay g (X0 =̂ 0 e 0)

Z

pidspec Differentiator

In1? : U ; In2? : U ;

Product : pidspec Differentiator Product;

Sum : pidspec Differentiator Sum;

UnitDelay : pidspec Differentiator UnitDelay;

Out1! : U

Out1! = Product.Out1!;

Product.In1? = In2? ∧ Product.In2? = Sum.Out1!;

Sum.In2? = UnitDelay.Out1!;

UnitDelay.In1? = Sum.In1? = In1?

Z

pidspec

In1? : U ; In2? : U ; In3? : U ; In4? : U ; In5? : U ; In6? : U ; In7? : U ; In8? : U ;

Constant : pidspec Constant; Constant1 : pidspec Constant1;

Differentiator : pidspec Differentiator;

...

Out1! : U

...

tion and concurrency, and Dijkstra’s language of guarded commands. A Circus

program is a sequence of paragraphs, just like in Z, but they also include channel
and process declarations. Section 6 gives examples.

A process encapsulates state and exhibits behaviour. Like a Circus program,
an explicit definition of a process is a sequence of paragraphs; Figure 6 has an
example. A distinguished paragraph introduces the state schema. At the end,
a main action specifies the behaviour of the process. Actions are (composed
of) Z operations, CSP processes, and guarded commands. Typically, a process
includes several paragraphs to define actions that are combined in the main
action to specify the behaviour of the process. Processes can be combined using
CSP operators: choice, parallelism, hiding, and others.

Communications are events, just like in CSP; if their occurrence entails a
state change, a state operation needs to be used. If a Z operation is used outside
its precondition, it diverges, just like in Z. Guards can be explicitly defined.

Parallelism is alphabetised; we can either define a synchronisation set or the
alphabet of the parallel processes. A synchronisation set determines the channels
for which communication requires synchronisation. The alphabet of a process is

Fig. 3. ClawZ output for the PID (ProofPower notation)

Control Law Diagrams in Circus 257

{ ({FMVPE }, 〈Differentiator out 〉), ({FMVPE ,DFMVGI }, 〈Product1 out 〉),
({FMVPE ,Sum3 out }, 〈Sum2 out 〉), ({FMVPV ,DFMVGF }, 〈Product out 〉),
({Product1 out }, 〈 Integrator out 〉), ({DFM 2MN ,Product out }, 〈Sum4 out 〉),
({DFM 2MX ,Product out }, 〈Sum5 out 〉),
({CFMCMX ,CFMCMN ,Sum1 out }, 〈FMTMCD 〉),
({ differentiator out ,Sum2 out }, 〈Sum1 out 〉),
({ integrator out ,Sum5 out ,Sum4 out }, 〈Limit1 out 〉),
({Limit1 out ,Product1 out }, 〈Sum3 out 〉) }

the set of channels that it can use; synchronisation is required for the channels
in the intersection of alphabetised parallel processes. In the case of actions, there
is a concern about conflicting access to the state. The parallel composition of
actions A1 and A2 with a synchronisation set cs is written A1 |[ns1 | cs | ns2]|A2,
where ns1 and ns2 are disjoint sets of names of state components. Both A1 and
A2 have access to the initial value of all state components; however, A1 can only
modify the components named in ns1, and A2 can only modify those in ns2. The
same concerns apply for interleaving of actions.

A refinement calculus and strategy is available for Circus [6]. The strategy
aims at calculating concurrent implementations from centralised specifications.
Using the Circus refinement theory, we can implement and reason about the
Circus model of a diagram. Examples are considered in Section 7.

4 Extensions to ClawZ

The translation of diagrams to Circus is based on the output of extended versions
of ClawZ and ClaSP. ClawZ is extended to include action and enabled subsys-
tems, and merge blocks; they are representative in the treatment of conditional
execution and order of arrival of inputs. In the translation of an action subsys-
tem, we need a record of the enabling condition and the value of its outputs
separately. The schema that records the enabling condition is named after the
block with the suffix Enabling . Schemas with suffix Enabled and Disabled
define the values of the outputs in the case the system is enabled and in the case
the system is disabled. The schema that defines the subsystem combines these
schemas. For enabled subsystems, the strategy is similar.

The definition of a merge block requires information about whether the inputs
have been computed or not, and their order of arrival. Below, we present the
definition of a merge block with two inputs In1? and In2?. Two extra inputs
In1Computed? and In2Computed? determine whether the values input have been
freshly calculated or are just default or held values. The boolean type BOOL is
available in ProofPower, although it is not part of Standard Z. The component
arrOrder is a sequence of input indexes that defines the order of arrival of the
inputs. The single output is Out1!.

If a block has a state, its Z specification would typically involve three schemas
to define the state, the initial state, and the calculation of outputs. The ClawZ

Fig. 4. ClaSP output for the PID

258 A. Cavalcanti, P. Clayton, and C. O Halloran’

library, however, includes many block definitions, and, for clarity and simplicity,
it groups the definition of each block in a single schema. Components state,
state ′, and initial state record the value of the state at the beginning of each
cycle, and its initial value. This is the approach we adopt in Merge2.

Merge2
In1?, In2? : U

In1Computed?, In2Computed? : BOOL
arrOrder : seq 1 . . . 2
state, state ′, initial state : U

Out1! : U

initial state = (0 e 0)
In1Computed? ∧ ¬ In2Computed? ⇒ Out1! = In2? = state ′

In2Computed? ∧ ¬ In1Computed? ⇒ Out1! = In1? = state ′

¬ In1Computed? ∧ ¬ In2Computed? ⇒ Out1! = state = state ′

In1Computed? ∧ In2Computed? ⇒
last arrOrder = 1 ⇒ Out1! = In1? = state ′ ∧
last arrOrder = 2 ⇒ Out1! = In2? = state ′

The extra information (In1Computed?, In2Computed?, and arrOrder) required
by Merge2 is determined in the Circus specification.

5 Extensions to ClaSP

ClaSP is extended to incorporate a more elaborate view of blocks, since it consid-
ers that a block produces all its outputs once it receives all its inputs. There are,
however, even basic blocks, like the unit delay, which can produce its output be-
fore it receives its input. (This is currently handled by assuming some arbitrary
input.) Although ClaSP models all the possible flows of execution, it cannot
show the relationship between the order of input signals and an output value.
This means that some information about parallelism in a Simulink diagram can
be lost making automated verification impossible in some circumstances.

We use Z to characterise the form of the output of the extended version
of ClaSP. Again, it is not actually a CSP process, but information about the
structure of the diagram that is used to define the Circus specification.

We use given sets NAME , Signal , and Block to represent the valid specifi-
cation names, and the sets of signal and block names used in the diagram. For
a given diagram, the output produced by ClaSP gives the name of the diagram,
its inputs and outputs, and a characterisation of each of its blocks.

ClaSPOutput
spec : NAME
inputs, outputs : P Signal
blocks : Block → BlockWiring

Control Law Diagrams in Circus 259

The wiring of a block defines its inputs, outputs, and the dependencies between

them; these determine the independent flows of execution that can arise to cal-
culate different outputs.

Values of a free type Enabled are used to record whether a flow of execution
is always enabled or enabling depends on the values of some special input sig-
nals: Enabled ::= always | esigs << P Signal >>. In a flow, the order in which
the signals are received may be relevant. We also need to know the signals that
a flow requires (rinps), and the outputs that it produces (pouts).

Flow =̂ [enabled : Enabled ; ordered : BOOL; rinps, pouts : P Signal]

The block wiring information includes the order of the inputs and outputs to
establish a correspondence between the inputs and outputs of the ClawZ schema
that defines the functionality of the block and the signals in the diagram.

BlockWiring
inps, outs : seqSignal
flows : P Flow

∀ f : flows | f .enabled ∈ ran esigs • (esigs∼ f .enabled) ⊆ ran inps
(∀ f : flows • f .rinps ⊆ ran inps) ∧

⋃
{ f : flows • f .pouts } = ran outs

∀ f1, f2 : flows • f1 �= f2 ⇒ f1.pouts ∩ f2.pouts = ∅

The invariant establishes that the enabling signals and the required inputs of a
flow are inputs of the block, and every output of the diagram is an output of a
flow. For inputs, we do not have the same restriction, as there may be inputs
that are not required to produce outputs; a unit delay block is a simple example.
Finally, different flows should produce distinct outputs.

Part of the extended ClaSP output for the PID diagram is in Figure 5.
The blocks are very simple: they have one flow, which is always enabled, and
whose output does not depend on the input order. The constants are also blocks,
with no inputs, and just one output. Even though blocks like the Differentiator

represent a diagram, from the point of view of the PID, it is just a block. The
internal communications that take place inside the Differentiator are ignored.

This does not mean, however, that ClaSP does not need to inspect the sub-
systems to determine the model of a diagram. A subsystem can, for example,
have several flows of execution, or have a behaviour that depends on the order of
the inputs are received. This information can only be determined by analysing
the blocks of the subsystem.

6

The starting points for the translation are a ClaSPOutput which we call clasp,
and a Z specification, called clawz, produced by the extended version of ClawZ.
We refer to a definition D in clawz as clawz.D.

The Circus specification of a diagram first declares all signals as channels.
It also declares a synchronisation channel end cycle; after taking all its inputs

260

Translation Strategy

A. Cavalcanti, P. Clayton, and C. O Halloran’

〈| spec �→ pidspec,

inputs �→ {FMVPE ,DFMVGI ,FMVPV ,DFMVGF ,

DFM 2MN ,DFM 2MX ,CFMCMX ,CFMCMN },
output �→ {FMTMCD },
blocks �→ {Differentiator �→ 〈| inps �→ 〈FMVPE ,Constant1 out 〉,

outs �→ 〈Differentiator out 〉
flows �→ { 〈| enabled �→ always, ordered �→ false

rinps �→ {FMVPE ,Constant1 out },
pouts �→ {Differentiator out } |〉 } |〉,

Constant1 �→ 〈| inps �→ 〈 〉, outs �→ 〈Constant1 out 〉
flows �→ { 〈| enabled �→ always, ordered �→ false

rinps �→ { },
pouts �→ {Constant1 out } |〉 } |〉,

Sum1 �→ 〈| inps �→ 〈Differentiator out ,Sum2 out 〉, outs �→ 〈Sum1 out 〉
flows �→ { 〈| enabled �→ always, ordered �→ false

rinps �→ {Differentiator out ,Sum2 out },
pouts �→ {Sum1 out } |〉 } |〉, . . . } |〉

and producing all its outputs, each block of a diagram waits to synchronise on
end cycle before proceeding to the next cycle. In this way, all blocks are kept in
phase. The Circus specification corresponding to the PID starts as follows.

channel FMVPE ,Differentiator out , . . . ,CFMCMX ,CFMCMN , . . . : U

channel end cycle;

Next, the Circus specification includes the ClawZ library, which is used in clawz.

6.1

Blocks and diagrams are defined as processes. The whole diagram is a process
called clasp.spec, which is defined as the parallel execution of all the blocks.

process clasp.spec =̂
(‖B : Block • B) \ (Signal \ (clasp.inputs ∪ clasp.outputs))

The alphabet of each block includes its inputs and outputs, and end cycle. For
conciseness, we use sets and sequences of signals to define channel sets in Circus.

αB = ran(clasp.blocks B).inps ∪ ran(clasp.blocks B).outs ∪ { end cycle }

The synchronisation required by the parallelism determines the possible flows of
execution for the diagram. For the PID , we have the process sketched below.

process pidspec =̂
(Differentiator {|FMVPE ,Constant1 out ,Differentiator out , end cycle|}

||
Sum1 {|Differentiator out ,Sum2 out ,Sum1 out , end cycle |} . . .)

\ {|Constant1 out ,Differentiator out ,Sum2 out , . . . , end cycle |}

Fig. 5. Extended ClaSP output for the PID

Control Law Diagrams in Circus 261

The Diagram

The processes that represent the Differentiator and the Sum1 blocks are required

to synchronise on the channels Differentiator out and end cycle (the intersec-
tion of their alphabets); the processes for Sum1 and Limit2 are required to syn-
chronise on Sum1 out and end cycle; and so on. Because the internal channels
are hidden, in an implementation, we do not need to have a separate process for
each block; refinement can lead to combination and splitting of blocks.

6.2

The process that corresponds to a block B is defined explicitly, independently
of whether the block is simple, like Sum1, or a subsystem, like Differentiator.
In clasp we have a record of the outputs of a subsystem that may be produced
independently and in parallel, but not of internal communications. For example,
to model the interaction between the blocks of the Differentiator in Figure 2, we
need to translate that diagram; the translation of the PID diagram in Figure 1
does not include them. In the next section we discuss the relation between the
Circus process that models the Differentiator in the translation of the PID and
the Circus process obtained by translating the Differentiator diagram itself.

We first consider the translation of a block whose flows are always enabled
and do not depend on the order of the inputs. The state of the B process includes
a component for each component named state used in the definition of B in clawz.

process B =̂ begin

state B State
def1 state : T1; . . .defn state : Tn

Each defi is a definition in clawz such that clawz.B involves defi, and defi is a set
of bindings with a component of type Ti called state. We define formally what
it means for clawz.B to involve defi.

Definition 1. A type T1 involves a type T2 if and only if (i) T1 = T2; or
(ii) exits a type T3 such that T1 = P T3, and T3 involves T2; or (iii) there are
types T3, . . . ,Tn , such that T1 = T3 × . . .Tn , and any of the Ti involves T2; or
(iv) T1 is a schema with a component whose type involves T2.

For example, the schema pidspec Differentiator characterises the PID Differen-

tiator; it has a component UnitDelay of type pidspec Differentiator UnitDelay ,
which is a set of bindings with a component called state defined by UnitDelay g .
So, the process pidspec Differentiator , which is defined in Figure 6, has a state
component called pidspec Differentiator UnitDelay state.

After the state declaration, we include clawz.B and all the definitions in clawz

that it uses. The initialisation of the state is based on the clawz specification.

Init
B State ′

∃ b : defi • defi state′ = b.initial state

262

The Blocks

A component defi state, corresponding to a state component of a definition defi

A. Cavalcanti, P. Clayton, and C. O Halloran’

process pidspec Differentiator =̂ begin

state

pidspec Differentiator State =̂ [pidspec Differentiator UnitDelay state : U]

pidspec Differentiator UnitDelay from Figure 3 and other definitions it uses.

Init

pidspec Differentiator State ′

∃ b : pidspec Differentiator UnitDelay •
pidspec Differentiator UnitDelay state ′ = b.initial state

Calculate pidspec Differentiator

Δpidspec Differentiator State; In1?, In2?,Out1! : U

∃ b : pidspec Differentiator •
b.In1? = In1? ∧ b.In2? = In2? ∧
b.UnitDelay .state = pidspec Differentiator UnitDelay state ∧
b.UnitDelay .state ′ = pidspec Differentiator UnitDelay state ′ ∧
b.Out1! = Out1!

Calculate pidspec Differentiator out =̂
Calculate pidspec Differentiator \ (pidspec Differentiator UnitDelay state ′) ∧
Ξpidspec Differentiator State

Execute Differentiator out =̂
var In1, In2 : U •

(FMVPE?x → In1 := x) ||[{In1} | {In2}]|| (Constant1 out?x → In2 := x);
var Out1 : U •

Calculate pidspec Differentiator out ; Differentiator out !Out1 → Skip

Calculate pidspec Differentiator State =̂
Calculate pidspec Differentiator \ (Out1!)

StateUpdate =̂
var In1, In2 : U •

(FMVPE?x → In1 := x) ||[{In1} | {In2}]|| (Constant1 out?x → In2 := x);
Calculate pidspec Differentiator State;

• Init ;
μX • (Execute Differentiator out |[{ }

| {|FMVPE ,Constant1 out |} |
{ pidspec Differentiator UnitDelay state }]| StateUpdate);

end cycle → X

end

Fig. 6. Circus process for the block Differentiator

Control Law Diagrams in Circus 263

in clawz, is initialised with the value of the component initial state of that
definition. We identify a binding b of type defi, whose value for initial state
defines the initial value of defi state. For example, if defi is a unit delay, defi is a
set whose bindings all have the same value for initial state: that in the diagram.

The main action starts with the initialisation, and recursively proceeds in
parallel to execute each of the flows and update the state, before synchronising
on end cycle. The flows proceed independently, but a block can only start a new
cycle when all the flows, (and all the blocks of the diagram) have finished.

• Init ;
μ X • (Flows |[{ } | rInps | {|αB State|}]| StateUpdate); end cycle → X

end

The flows do not update the state, and so the action Flows is associated with
the empty set of state component names; on the other hand, StateUpdate is
associated with the set B State including all state components. When an input
is received, it needs to be made available to the flows and to the action that
updates the state, and so they synchronise. The set rInps contains all the inputs
required by at least one flow of B .

rInps =̂
⋃
{ f : (clasp.blocks B).flows • f.rinps }

As already observed, not all inputs are required by a flow; the input of a unit
delay block is a simple example.

The action Flows executes the flows in (clasp.blocks B).flows in parallel.

Flows =̂ ||| f : (clasp.blocks B).flows { } | f.rinps ∪ f.pouts • Execute f

They do not change any of the state components; they only produce outputs.
Their alphabets are the required inputs and the produced outputs.

In the Differentiator, there is only one flow, so the interleaving in Flows is re-
duced to a single process Execute Differentiator out (Figure 6). It synchronises
with the action StateUpdate on the inputs FMVPE and Constant1 out .

For each flow f, the action Execute f takes the required inputs, and then
calculates and produces the outputs.

Execute f =̂ var Ini : U •

||| inp : f.rinps { Ini } • inp?x → Ini := x;
var Outj : U •

CalculateOutputs; ||| out : f.pouts • out!Outj → Skip

First, Execute f declares variables to record the values of the inputs; we declare
Ini when the i-th input is required by the flow: (clasp.blocks B).inps i ∈ f.rinps.
Similarly, to calculate the outputs, Execute f declares variables Outj for each
output produced by f: those in f.pouts. In Execute Differentiator out there are
two input variables In1 and In2, and one output variable Out1.

The inputs are received in any order, through each of the channels inp in
f.rinps. The value x of the input is recorded in the corresponding variable Ini.

264 A. Cavalcanti, P. Clayton, and C. O Halloran’

Similarly, outputs are sent in any order through the channels in f.pouts. In our
example, since there is only one output, the interleaving is reduced to one action.

The definition clawz.B specifies the state changes and the outputs of B, but it
is not an operation over the state B State. We define a schema Calculate B that
lifts clawz.B to B State. It includes the input and output variables; Z decorations
are used, since Circus allows us to keep the Z style and refer to local variables as
inputs or outputs. In Calculate B, we identify a binding b of type clawz.B using
the input values in Ini to determine the value of the Ini? components of b, and
the state components to determine the value of the corresponding components
of b. The new value of the state and the outputs are defined by b.

Calculate B

ΔB State; Ini?,Outj! : U

∃ b : clawz.B • b.Ini? = Ini? ∧ b.defi.state = defi state ∧
b.defi.state′ = defi state′ ∧ b.Outj! = Outj!

If B has a state component defi state, it is because clawz.B includes a component
defi with a state component. To define the schema CalculateOutputs, we hide the
final value of the state in Calculate B, and conjoin the result with Ξ B State so
that the state is not modified (see Calculate pidspec Differentiator out).

The action that updates the state takes all the inputs.

StateUpdate =̂ var Ini : U •

||| inp : (clasp.blocks B).inps{ Ini } • inp?x → Ini := x;
CalculateState;

In principle, all the inputs in (clasp.blocks B).inps are needed. The definition of
CalculateState uses Calculate B; it simply hides the output variables. An example
is presented in Figure 6: Calculate pidspec Differentiator State.

6.3

For flows that have enabling conditions or depend on the order of the inputs,
Execute f needs to be changed. For lack of space, we do not present the defini-
tions in detail. To capture the order of the inputs, the interleaving in Execute f

needs to be replaced with a recursive action that takes any of the outstanding
inputs at each step and records its value and index in a sequence. It terminates
once all inputs have been received. The resulting sequence of indexes is used as
an extra parameter for the calculation of outputs and state updates.

The presence of action and enabled subsystems leads to the possibility that
some outputs are not computed. In this case, for every output signal o, we
need two channels: o, as explained before, and oComputed of type BOOL. The
communication of outputs in Execute f needs to be defined as follows.

||| o : f.pouts • o!Outj → oComputed!true → Skip

Control Law Diagrams in Circus 265

Enabling Conditions and Order of Inputs

If o is an internal channel, so should be oComputed. If f is a flow that is not

always enabled, it needs to use the Enabling schema produced by ClawZ to
determine whether an output should be computed or not. Blocks that need that
information should declare oComputed in its alphabet.

7 Refinement

In the translation of a diagram, a block that corresponds to a subsystem is
regarded mostly as a black box. As already said, even though we consider flows
of execution and requirements to record the order of arrival of the inputs of
a subsystem, we do not model its internal communications. We can, however,
translate the diagram that corresponds to the subsystem. For example, in the
PID diagram, Differentiator is a block; in the translation of the PID, it is defined
as a single process (Figure 6). If, on the other hand, we consider the diagram
that specifies this block (Figure 2), we get the following Circus output.

process Differentiator =̂
(Sum{| a, b,Sum out , end cycle |}

||
Product{| c,Sum out , output , end cycle |}

||
UnitDelay{| a, b, end cycle |}) \ {|Sum out , b |}

For lack of space, we have to omit the processes Sum, Product , and UnitDelay
that model the blocks in Figure 2. This new process refines pidspec Differentiator
in Figure 6, given that the channels are renamed properly.

pidspec Differentiator

Differentiator [a, output := FMVPE ,Differentiator out]

The renaming is needed because the diagram of a block does not keep the original
names of inputs and outputs. The Circus refinement calculus can be used to prove
this refinement; it is a typical derivation of a distributed implementation from
a centralised specification. The state does not require refinement; the major
effort is in expressing the recursive main action of pidspec Differentiator as a
parallelism. In [15] we tackle a similar problem in an industrial case study.

A refinement relationship should hold every time we translate a diagram and
a subsystem corresponding to one of its blocks. The implementation obtained for
the subsystem follows the architecture of the diagram, with a process for each of
the blocks. As already said, however, this is not the only possible implementation.

Refinement can also be used to reason about diagrams. For example, an
action subsystem that takes its input from a block whose output always satisfies
the condition of the action subsystem can become a simple subsystem. To prove
that, we can calculate the Circus model, refine it to simplify the process that
defines the action subsystem, and translate it back to a diagram. We can use the
same approach to eliminate unnecessary blocks. To make this approach appealing
to engineers, however, we need to provide a lot of automation. The algebraic
approach of a refinement calculus is, therefore, very appropriate.

266 A. Cavalcanti, P. Clayton, and C. O Halloran’

8 Conclusions

We have presented a semantics for discrete-time Simulink diagrams using a com-
bination of Z and CSP called Circus. Our model captures the functionality of a
diagram over any number of cycles, and the inherent parallelism between blocks.
Cyclic diagrams involving feedback loops are also covered. There are several com-
binations of Z with a process algebra [8]; Circus is distinctive in its refinement
theory. Our semantics opens the possibility of reasoning about control law dia-
grams using refinement. We discussed some examples, based on a PID controller.

PID controllers are considered in [3], where weakest preconditions are used for
reasoning about control systems; the technique can be extended to handle static
analysis of programs and concurrency. In [12], Mahony used Isabelle/HOL tools
to mechanise an assertion reasoning technique based on predicate transformers
for dataflow networks with feedback loops. This is a graphical notation like
control law diagrams; however, parallelism needs to be indicated explicitly.

The technique proposed in [4] is a Hoare logic to reason about the frequency
response of continuous-time control systems. Continuous systems are also stud-
ied in [10], with a focus on timing analysis, as opposed to functionality and
concurrency. Our interest is on program verification, rather than system analy-
sis; extension of our model to include multirate diagrams is in our plans.

We are working on the implementation of CliC, a tool to automate the trans-
lation strategy presented here. We are also working on a theorem prover and a
model checker for Circus, all based on ProofPower. These tools will be a powerful
resource in the analysis of control diagrams and their implementation.

In [5], a translation from discrete-time Simulink diagrams to Lustre is pre-
sented. It formalises the typing system of Simulink and type-checks diagrams
before the translation; it also handles multirate diagrams. The results seem to
be complementary to those obtained with ClawZ, which assumes that all signals
have type double, and can only cope with single rate diagrams, but with a larger
number of block types. Lustre is a functional programming language, and ClawZ
aims at supporting verification by refinement of Ada programs.

Additional experience with refinement of Circus models for control law dia-
grams will lead to a suite of refinement laws that are adequate to this domain of
application. For example, powerful laws should be available to prove the refine-
ment of pidspec Differentiator discussed in the previous section. The proposal,
proof, and tool support for the application of these laws is in our agenda of work.

A Simulink model can include a stateflow block, which is defined by a diagram
that has local data and includes finite state machines, flow-diagram notations,
and state-transition diagrams. The finite state machine reacts to events trig-
gered in the Simulink model; the reactions lead to state changes that affect the
behavior of the Simulink model. Stateflow diagrams are studied in [18, 17]. We
will investigate the use of Circus to model stateflow diagrams; it seems promis-
ing as Circus can cope with both the data and reactive aspects of the problem.
Ultimately, we want to cover the whole of the Simulink notation in a uniform
framework for program verification based on Circus.

Control Law Diagrams in Circus 267

Acknowledgements

This work is funded by the Royal Society. We discussed it with Mark Adams,
Alfred Smith, Ian Toyn, Karen Stephenson, Gaius Wilson, and Jim Woodcock.
We are also grateful to anonymous referees for useful suggestions.

References

1. The MathWorks. Simulink. http: //www.mathworks.com/products/simulink.
2. R. Arthan, P. Caseley, C. O’Halloran, and A. Smith. ClawZ: Control laws in Z. In

ICFEM 2000, pages 169 – 176. IEEE Press, 2000.
3. J. Blow and A. Galloway. Generalised Substitution Language and Differentials. In

ZB 2002, volume 2272 of LNCS, pages 396 – 415. Springer-Verlag, 2002.
4. R. J. Boulton, R. Hardy, and U. Martin. 6th International Workshop on Hybrid

Systems. In A Hoare-Logic for Single-Input Single-Output Continuous-Time Con-

trol Systems, volume 2623 of LNCS, pages 113 – 125. Springer-Verlag, 2003.
5. P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. Translating Discrete-

Time Simulink to Lustre. In EMSOFT 2003, volume 2855 of LNCS, pages 84 –
99. Springer-Verlag, 2003.

6. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2 - 3):146 — 181, 2003.

7. A. L. C. Cavalcanti and J. C. P. Woodcock. ZRC—A Refinement Calculus for Z.
Formal Aspects of Computing, 10(3):267—289, 1999.

8. C. Fischer. How to Combine Z with a Process Algebra. In ZUM’98. Springer-
Verlag, 1998.

9. C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall,
1998.

10. M. Jersak, D. Ziegenbein, F. Wolf, K. Richter, and R. Ernst. Embedded System
Design using the SPI Workbench. In 3rd International Forum on Design Languages,
2000.

11. D. J. King, R. D. Arthan, and I. C. L. Winnersh. Development of Practical Veri-
fication Tools. ICL Systems Journal, 11(1), 1996.

12. B. Mahony. Workshop on Formalising Continuous Mathematics. In The DOVE

Approach to the Design of Complex Dynamic Processes, pages 167 – 187, 2002.
13. C. C. Morgan. Programming from Specifications. Prentice-Hall, 2nd edition, 1994.
14. C. O’Halloran and A. Smith. Verification of Picture Generated Code. In ASE

1999, pages 127 – 136. IEEE Press, 1999.
15. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. Refining Industrial

Scale Systems in Circus. In CPA 2004, pages 281–309. IOS Press, September 2004.
16. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in

Computer Science. Prentice-Hall, 1998.
17. C. Spencer. Model Checking for Stateflow Diagram with Floating Point Variables

and Complex Expressions. Master’s thesis, Carnegie Mellon University, 2002.
18. A. Tiwari. Formal Semantics and Analysis Methods for Simulink Stateflow Models.

Technical report, SRI International, 2002. http://www.csl.sri.com/∼tiwari/-

stateflow.html.
19. J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of Circus. In ZB 2002,

volume 2272 of LNCS, pages 184—203. Springer-Verlag, 2002.
20. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.

Prentice-Hall, 1996.

268 A. Cavalcanti, P. Clayton, and C. O Halloran’

Verification of a Signature Architecture with
HOL-Z

David Basin1, Hironobu Kuruma2, Kazuo Takaragi2, and Burkhart Wolff1

1 ETH Zurich, CH-8092 Zurich, Switzerland
{basin,bwolff}@inf.ethz.ch

2 Hitachi Systems Development Laboratory, Yokohama Japan
{kuruma,takara}@sdl.hitachi.co.jp

Abstract. We report on a case study in using HOL-Z, an embedding
of Z in higher-order logic, to specify and verify a security architecture
for administering digital signatures. We have used HOL-Z to formal-
ize and combine both data-oriented and process-oriented architectural
views. Afterwards, we formalized temporal requirements in Z and car-
ried out verification in higher-order logic.
The same architecture has been previously verified using the SPIN model
checker. Based on this, we provide a detailed comparison of these two
different approaches to formalization (infinite state with rich data types
versus finite state) and verification (theorem proving versus model check-
ing). Contrary to common belief, our case study suggests that Z is well
suited for temporal reasoning about process models with rich data. More-
over, our comparison highlights the advantages of this approach and pro-
vides evidence that, in the hands of experienced users, theorem proving
is neither substantially more time-consuming nor more complex than
model checking.

1 Introduction

While there is increasing consensus about the usefulness of formal methods for
developing and validating critical systems, there are many options and schools
of thought on how best to do this. Formal methods can be loosely characterized
along different dimensions in terms of what views of the system they empha-
size, the proof techniques used, etc. When most of the complexity of the system
stems from the way that processes interact, and the data manipulations are com-
paratively simple, then the use of a process-oriented modeling language, like a
process algebra or some kind of communicating automata, is typically favored
and model checking is the preferred means of verification. On the other hand,
when data is structured into rich data types (e.g., formalizing problem domains,
interface requirements, and the like) that are subject to complex manipulations,
then data-oriented modeling languages are considered superior and verification is
carried out by theorem proving. But what about systems whose design encom-
passes both complex data and nontrivial interaction and whose requirements
speak about both the operations on data and their temporal sequencing? Here

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 269–285, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

there is less consensus and the options available include using abstraction to
simplify the data model to enable model checking, theorem proving, and even
combining formal methods.

In this paper, we look at an example of one such system: a security archi-
tecture used for a digital signature application. The architecture is based on
the secure operating system DARMA (Hitachi’s platform for Dependable Au-
tonomous hard Realtime MAnagement) [2], which is used to control the inter-
action between different subsystems, running on different operating platforms.
In particular, DARMA is used to ensure data integrity by separating user API
functions, which run on a potentially open system (e.g., connected to the In-
ternet), from those that actually manipulate signature-relevant data, which run
on a separate, protected system. Any model of this architecture must formalize
both the processes that run on the different platforms and the data that the
processes manipulate to produce signatures. Moreover, the modeling formalism
must be capable of formalizing data-integrity requirements, expressed as tempo-
ral properties about how the different data stores can change.

Here we present a model of the signature architecture that combines data-
oriented and process-oriented aspects. We describe the system’s state and its
state transitions in the specification language Z [14]. As Z is a very rich speci-
fication language, we also use it to formalize a simple process model describing
the system’s semantics in terms of the set of its traces, i.e., those state sequences
possible. This provides a basis for naturally formalizing the system’s integrity
requirements as trace requirements and carrying out verification by induction
over the set of traces. Our first contribution in this paper is to show how the
use of a sufficiently expressive data-modeling language provides a foundation for
formalizing a trace-based model of process interaction. Thus, there is no need to
resort to different formal methods to formalize and combine the different system
views since this can all be done within Z itself. Moreover, via the embedding of
Z in higher-order logic (HOL-Z), we can prove system correctness by theorem
proving within the Isabelle/HOL system [6, 12].

In a previous case study [5], the same architecture was formalized and veri-
fied using the SPIN model checker [10]. Our second contribution is to provide a
detailed comparison of these two different approaches to formalization (infinite
state with rich data types versus finite state) and verification (theorem prov-
ing versus model checking). Perhaps surprisingly, our experience shows that in
the hands of an experienced user, theorem proving is neither substantially more
time-consuming nor more complex, and in some regards it is considerably sim-
pler, than working with a process-oriented view alone using a model checker.
Moreover we document a number of tradeoffs where the additional complexity
is counterbalanced by additional benefits, for example, a more general architec-
ture, stronger theorems, and an increased confidence in the system gained by
formalizing and proving system invariants.

Overall, our modeling and verification of signature architecture is one of the
largest case studies made using HOL-Z. Previous case studies also include a secu-
rity architecture (for controlling access to a repository) [7], but there the empha-

270 D. Basin et al.

sis was on data refinement, rather than the verification of temporal properties
of system runs. The studies are complementary in that together they illustrate
how HOL-Z can be used to formalize, verify, and refine architectures at different
levels of abstractions, covering both data and process-oriented aspects.

Organization. In Section 2, we provide an informal overview of both the signature
architecture and its security requirements. We describe our formalization of the
architecture in Section 3 and its properties and correctness proofs in Section 4. In
Section 5, we conclude with an in-depth comparison with a previous case study
based on model checking. Note that all definitions and complete proof scripts
for this case study are given in [4].

2 The Signature Architecture

2.1 Overview

The signature architecture is based on two ideas. The first is that of a hystere-
sis signature [15], which is a cryptographic approach designed to overcome the
problem that, for some applications, digital signatures should be valid for very
long time periods. Hysteresis signatures address this problem by chaining signa-
tures together so that the signature for each document signed depends on hash
values computed from all previously signed documents. These chained signatures
constitute a signature log and to forge even one signature in the log an attacker
must forge (breaking the cryptographic functions behind) a chain of signatures.

The signature system reads the private keys of users from key stores, and
reads and updates signature logs. Hence, the system’s security relies on the con-
fidentiality and integrity of this data. The second idea is to protect these using a
secure operating platform. For this purpose, Hitachi’s DARMA system [2] is used
to separate the user’s operating system (in practice, Windows) from a second
operating system used to manage system data (e.g., Linux). This compartmen-
talization plays a role analogous to network firewalls, but here the two systems
are protected by controlling how functions in one system can call functions in
the other. In this way, one can precisely limit how users access the functions and
data for hysteresis signatures that reside in the Linux operating system space.

Our model is based on a 13 page Hitachi document, which describes the
signature architecture using diagrams (like Figures 1 and 2) and text, as well as
discussions with Hitachi engineers.

2.2 Functional Units and Dataflow

The signature architecture is organized into five modules, whose high-level struc-
ture is depicted in Figure 1. The thick-lined boxes represent modules and the
thin-lined boxes represent individual functions.

The first module contains three functions, which execute in the user op-
erating system space. We call this the “Windows-side module” to reflect the

Verification of a Signature Architecture with HOL-Z 271

AuthenticateUserW

LogoutW

GenerateSignatureW

Linux−side module

AuthenticateUserL

GenerateSignatureL

LogoutL

Windows−side module

D
A

R
M

A

S
essio

n
 M

an
ag

er

A
ccess C

o
n
tro

ller

Fig. 1. The Signature Architecture

Log
Signature

Private−Key

Session ManagerAccess Controller

Access control
list

ReadSignatureRecord

ReadPrivateKey

AuthenticateUser

AppendSignatureRecord

Logout

FreeSessionInformation

CheckValidofSession

RegistSessionInformation

Session Table

Fig. 2. The Access Controller and Session Manger Modules

(likely) scenario that they are part of an API available to programs running
under the Windows operating system. These functions are essentially proxies.
When called, they forward their parameters over the DARMA module to the
corresponding functions in the second, protected system, which is here called
the “Linux-side module”, again reflecting a likely implementation. There are
two additional (sub)modules, each also executing on the second system, which
package data and functions for managing access control and sessions.

To create a hysteresis signature, a user takes the following steps on the Win-
dows side:

1. The user application calls AuthenticateUserW to authenticate the user and
generate a session identifier.

2. The application calls GenerateSignatureW to generate a hysteresis signature.
3. The application calls LogoutW to logout, ending the session.

As explained above, each of these functions uses DARMA to call the correspond-
ing function on the Linux side and DARMA serves to restrict access from the

272 D. Basin et al.

Parameters
Input:

username: Name of the user who generates the hysteresis signature.
password : The password for username

Output:
SessionID : If the user authentication is successful, SessionID > 0,

otherwise SessionID ≤ 0.

Details

1. Sends username, password and command to Linux side using CommunicateW. The
command is information used by the Linux-side module to distinguish the type of
data that it receives.

2. Outputs SessionID returned by CommunicateW .

Fig. 3. Interface Description for AuthenticateUserW

Parameters
Input:

username: Sent by AuthenticateUserW through Darma.
password : Sent by AuthenticateUserW through Darma.

Output:
SessionID : If the user authentication is successful, then SessionID > 0,

otherwise SessionID ≤ 0.

Details

1. Calculate the hash value of password using the Keymate/Crypto API. If successful,
go to step 2, otherwise set SessionID to CrypotErr (≤0) and return.

2. Authenticate the user using the function AuthenticateUser of Access Controller.

3. Output SessionID returned by AuthenticateUser.

Fig. 4. Interface Description for AuthenticateUserL

Windows side to only these three functions. The Linux functions themselves may
call any other Linux functions, including those of the Access Controller , which
controls access to data (private keys, signature logs, and access control lists).
The Access Controller in turn uses functions provided by the Session Manager ,
which manages session information (SessionID, etc.), as depicted in Figure 2.

The Hitachi documentation provides an interface description for each of these
functions. Two representative examples are presented in Figures 3 and 4. These
are the descriptions of the functions AuthenticateUserW and AuthenticateUserL.
The former calls DARMA and returns a session identifier while the latter does
the actual work of checking the password and communicating with the access
controller.

Verification of a Signature Architecture with HOL-Z 273

2.3 Properties

The Hitachi documentation also states three requirements that the signature
architecture should fulfill. These state that authenticated users are limited to
generating one signature (with their private key) per authentication.

R1. The signature architecture must authenticate a user before the user gener-
ates a hysteresis signature.

R2. The signature architecture shall generate a hysteresis signature using the
private key of an authenticated user.

R3. The signature architecture must generate only one hysteresis signature per
authentication.

3 Formal Model

3.1 Formal Method Used

For our work, we have used Z as our modeling language and the environment
Isabelle/HOL-Z for theorem proving. As Z is well established and extensively
documented, e.g., [11, 14, 16], we will assume the reader’s familiarity with it.
HOL-Z [6] is a system built upon Isabelle/HOL [12]. It provides a front end for
creating “literate specifications”, where specifications are mixed with informal
explanations and are constructed as LATEX documents, typeset using standard Z
macros and idioms. These specifications are processed by HOL-Z and translated
into a conservative shallow embedding of Z in HOL. HOL-Z also provides tactic
support tailored to reasoning about Z specifications and implements various
verification and refinement techniques.

3.2 The Data Model

Our formalization of the system state and operations is basically standard and
closely follows Hitachi’s informal specification: we formalize a state schema for
each of the different modules and an operation schema for each function.

State Schemas. As examples, we present two state schemas: the session manager
and DARMA. The session manager maintains a session table, which associates
user names and session identifiers to information on access permissions for keys
and the signature log.

SESSION TABLE ==
(USER ID \ {NO USER}) �→

(SESSION ID \AUTH ERRORS) �→
[pkra : PRI KEY READ ACCESS ;
slwa : SIG LOG WRITE ACCESS]

274 D. Basin et al.

In this definition, USER ID, SESSION ID, PRI KEY READ ACCESS,
and SIG LOG WRITE ACCESS are the types of user identifiers, session iden-
tifiers, and permissions on private keys and signature log access, respectively.
NO USER and AUTH ERRORS are constants representing error elements.
The session manager also stores the set of session identifiers currently in use.

SessionManager

session table : SESSION TABLE
session IDs : FSESSION ID

∀x, y : dom(session table) •
(∃s : SESSION ID • s ∈ dom(session table(x))

∧ s ∈ dom(session table(y)))⇒ x = y
∀x : dom(session table) •

∀s : dom(session table(x)) • dom(session table(x)) = {s}

The predicate part of this schema states that a session identifier is associated
with at most one user identifier and, conversely, that each user identifier is
associated with at most one session identifier. From this predicate, it follows
that each authenticated user has exactly one, unique session identifier.

The DARMA module serves as a communication medium. Its state records
which of the three Windows-side functions are called along with its arguments
and the return value from the Linux side. Part of this schema is given below,
where we have elided declarations for the arguments and return values for the
signature generation and logout functions.

DARMA
Command : COMMAND
User authentication uid : USER ID \ {NO USER}
User authentication pw : seq CHAR
Authentication : SESSION ID \ {x : SESSION ERROR • Inr(x)}

...

Operation Schemas. Each of the module functions is associated with an opera-
tion schema. The association is mostly straightforward, although one aspect that
requires explanation is the way that we model DARMA’s use as a communica-
tion medium. To formalize this, each operation schema includes a copy of the
DARMA state and explicitly relates the schema’s local input/output variables
(respectively postfixed by “?” and “!”, following the standard Z convention) with

Verification of a Signature Architecture with HOL-Z 275

The schema AuthenticateUserW models the identically named function, given
in Figure 3. This function is quite simple and essentially acts as a proxy, forward-
ing values over DARMA. Hence the only thing to model is this communication.

AuthenticateUserW
userid? : USER ID
password? : seqCHAR
session id! : SESSION ID
DARMA

User authentication uid = userid?
User authentication pw = password?
Command = authenticate user
session id! = Authentication

Here the variables User authenticate uid, User authenticate pw, Command,
and Authentication are state variables from the DARMA state schema. The
first two are assigned the input values userid? and password?, coming from
the user. Command represents the name of the function called, named here by
the constant authenticate user. Finally the output of the schema, session id!,
is assigned Authentication, representing communication from DARMA (as we
will see below, this represents the output of AuthenticateUserL).

The actual work in authenticating users and registering session information is
carried out on the Linux side by AuthenticateUserL. Our operation schema here
formalizes the description given in Figure 4. Step 1 of the informal description is
reflected in the test of the hash value. Step 2 is modeled in the first else branch,
using an auxiliary function for user authentication, which returns either a new
session identifier or an error value. The remainder of the specification formalizes
how to proceed, depending on whether the hash calculation and authentication
succeeded or failed. In the former case (Authentication /∈ AUTH ERRORS),
the session manager’s state is updated: the session table records, for this user
identifier and session identifier, the right to read the user’s private key and to
update the signature log, and the set of session identifiers is updated with the
new session identifier. In the latter case (Authentication ∈ AUTH ERRORS),
the session manager’s state is unchanged. Note that the result of Authentica-
teUserL is stored both in the output SessionID! and in the DARMA variable
Authentication.

outputs. Note too that, as it is standard for Z, reference to input and output, as
well as other imperative notions like assignment, is just a conceptual convenience;
the semantics of Z schemas is, of course, the standard declarative one, given by sets
of bindings.

276 D. Basin et al.

their DARMA counterparts. We illustrate this below, for the module functions
AuthenticateUserW and AuthenticateUserL, which were described in Section 2.2.

1

Logically, the input and output variables are determined by the DARMA state and
could be eliminated. However, not only do they clarify the information flow, they also
help to maintain the correspondence between our formal specification and Hitachi’s
informal interface descriptions (see Figures 3 and 4) with their explicit inputs and

1

AuthenticateUserL
ΔSessionManager
ΞHysteresisSignature
ΞAccessController
username? : USER ID
password? : seqCHAR
SessionID! : SESSION ID
DARMA

Command = authenticate user
Authentication = if hashFailure(User authentication pw)

thenCRY PT ERR
elseAuthenticateUser(User authentication uid,

hash(User authentication pw), access control list,
session table, session IDs)

session table′ = if Authentication /∈ AUTH ERRORS
then session table ∪

{User authentication uid �→ {Authentication �→
〈|pkra == accept read prikey, slwa == accept write siglog|〉}}

else session table
session IDs′ = if Authentication /∈ AUTH ERRORS

then session IDs ∪ {Authentication} else session IDs
username? = User authentication uid
password? = User authentication pw
SessionID! = Authentication

identifier and the hashed password against an access control list. In the case of
a successful authentication, a new session identifier is generated.

3.3 The Process Model

In general, there are many possible ways of enriching a data model with process-
oriented aspects, ranging from the use of combined (data/process-oriented) for-
mal methods, e.g., [8, 13], to working with a fixed notion of abstract machine
and execution semantics, e.g., [1]. In our case, we proceed by formalizing the
system traces within Z.

Architecture as Transition System. We use Z’s schema calculus to “wire to-
gether” the parts of our data model into an architectural description by speci-
fying how the Windows-side operations interact with the Linux-side operations
over DARMA. First, we separately collect all the client-side and server-side op-
erations. We use schema disjunction here to model nondeterministic choice: This
transition relation models a system where the Windows-side functions may be
called in any order and with any values, valid or invalid. Afterwards, we use

Verification of a Signature Architecture with HOL-Z 277

In this schema, the functions hashFailure and AuthenticateUser are defined sep-
arately by axiomatic definitions. For example, AuthenticateUser checks the user

schema conjunction to model the parallel composition of the client-side opera-
tions with the server-side operations and we use existential quantification (again
in Z’s schema calculus) to hide the shared DARMA state. This models syn-
chronous internal communication between the sides. (Internal communication
within each side is not modeled here.) The resulting architectural description
defines a global transition relation.

ClientOperation ==
AuthenticateUserW ∨GenerateSignatureW ∨ LogoutW

ServerOperation ==
AuthenticateUserL ∨GenerateSignatureL ∨
LogoutL ∨NopOperationL

System == ∃DARMA • ClientOperation ∧ ServerOperation

Note that NopOperationL models a “no-op” operation on the Linux side by
simply stuttering the Linux-side state. It results when DARMA is called from
the client side, but a client-side error occurs and the step is aborted.

Afterwards, we specify the global state of the system by composing the
states of the system components (HysteresisSignature formalizes the part of
the Linux-side module’s state that manages the signature logs). Similarly, we
specify the initial state, given schemas (not shown here) specifying the initial
states of the different modules.

GlobalState ==
SessionManager ∧HysteresisSignature ∧AccessController

Init ==
SessionManagerInit ∧HysteresisSignatureInit ∧AccessControllerInit

System Traces. The schema System formalizes a transition relation, whose state
variables range over the input/output variables of all operation schemas (e.g.,
variables like username? and SessionID! from AuthenticateUserW). To reason
about the system behavior, what we actually need is a transition relation ex-
pressed in terms of just those variables in GlobalState (e.g., state variables such
as session table and session IDs from the state schema SessionManager).
Hence, to proceed, we project the transition relation System to those state vari-
ables in GlobalState by existentially quantifying over the remaining variables.
This construction can be elegantly formalized using Z’s schema comprehension:

Next == {System • (θGlobalState, θGlobalState′)} .

This builds the relation that consists of pairs (θGlobalState, θGlobalState′),
whose components formalize the variable tuples (so-called characteristic bind-
ings in Z) in the pre-state and post-state.

278 D. Basin et al.

Afterwards, we define the set of traces. Each trace is represented by a function
that describes how the global state of the system can evolve over time.

Traces ==
{f : N→GlobalState | f(0) ∈ Init ∧ (∀i : N • (f(i), f(i+ 1)) ∈ Next)}

4 Properties and Proofs

4.1 Formalizing the Security Requirements

The architecture’s informal requirements, given in Section 2.3, are phrased in
terms of temporal relationships between events. For example, (R1) states that
“the signature architecture must authenticate a user before the user generates a
hysteresis signature.” This, and the other two requirements, can be formalized as
a set of traces that constitutes a safety property over a set of events and we can
formalize the correctness of the architecture by stating that each such property
holds for every system trace.

First we must formalize the relevant events. In model checking, it is common
to associate events with different states in a transition system, which correspond
to execution events like calls to particular functions. Unfortunately, this leaves
open the question of where these events are actually generated. Moreover, it is
not well suited to a more abstract, declarative approach to modeling where there
are no program points, only sequences of program states. Here we will take an
alternate, less operational approach. We introduce abstract event predicates that
characterize the state changes associated with events, i.e., they specify the effect
of events rather than their cause. An event predicate, therefore, is a (possibly
parameterized) relation over pairs of states that characterizes when a relevant
state change occurs.

Let us now turn to (R1), our first requirement. The formalizations of the
other two requirements are similar. (R1) can be formalized in terms of three
event predicates: the session table changes due to a user authenticating himself
by logging in; the session table changes due to a user logging out; and the
signature log changes (due to a generated hysteresis signature), for some user.
Below is an axiomatic definition formalizing the first of these predicates.

userDoesLogin : USER ID→ (GlobalState↔GlobalState)

∀uid : USER ID ; s1, s2 : GlobalState •
(s1, s2) ∈ userDoesLogin(uid)

⇐⇒
uid /∈ dom(s1.session table) ∧ uid ∈ dom(s2.session table)

We can now directly formalize (R1) in terms of the relative positions (re-
flecting the relative time) where these predicates hold in the system traces. Our
requirement states that at every point where a user changes the signature log,

Verification of a Signature Architecture with HOL-Z 279

there exists a previous time point where the user logged in, and moreover he
has not logged out since then. In other words, there must be a login for the user
before the associated signature log entry is changed and his session must still be
valid.

� ∀t : Traces ; n : N ; uid : USER ID •
(t(n), t(n+ 1)) ∈ siglogChanges(uid)

⇒
(∃k : 0 . . (n− 1) • (t(k), t(k + 1)) ∈ userDoesLogin(uid)

∧ (∀j : (k + 1) . . (n− 1) •
(t(j), t(j + 1)) /∈ userDoesLogout(uid)))

Note that we have formalized our requirement in terms of consecutive pairs of
time points and relationships between time points. An alternative, also possible
in Z, would be to embed the operators of a temporal logic like LTL over our
traces in order to express these dependencies using temporal modalities.

4.2 Proofs

All three requirements were proved using the proof environment for HOL-Z.
In Section 5, we provide statistics on our verification effort. Here we restrict
ourselves to a few comments on its overall structure.

The verification required proving 173 theorems. Many of these were simple
lemmas, for example, for simplifying expressions, which were then incorporated
into Isabelle’s automatic proof procedures. The bulk of the preparatory work
centered around formalizing and proving (1) properties of operation schemas,
(2) architecture decomposition theorems, and (3) global invariants.

With respect to (1), for each operation schema we stated and proved lemmas
that characterize its preconditions, postconditions, and invariants in terms of its
inputs, outputs, pre-state, and post-state. The theorems proven were of the form

OP (in, out, σ, σ′) ⇒ COND(in, out, σ, σ′) ⇒ Φ(σ, σ′) ,

where OP is an operation schema, COND a side-condition and Φ is one of:

INV (σ, σ′), expressed in terms of (state variables from) the pre-state σ and the
post-state σ′;

PRE(σ), expressing a condition on the pre-state σ; or
POST (σ′), expressing a condition on the post-state σ′.

An example of such a lemma is the invariant

� AuthenticateUserL⇒ uid : dom(session table)
⇒ session table′(uid) = session table(uid) ,

stating that when a user identifier is in the session table, its entries remain
unchanged after another user is authenticated. Note that, as this example illus-
trates, HOL-Z is syntactically more liberal than Z. This invariant is a HOL-Z

280 D. Basin et al.

formula, but strictly speaking not a Z formula, since it combines Z schema ex-
pressions and predicate calculus expressions and it is not closed.

In general, the complexity of proving these lemmas ranged from easy (as
in this case) to very high, both in terms of the conceptual work required to
understand why they hold and in terms of the proof effort required in Isabelle.

With respect to (2), one of the main lemmas proved was an architecture
decomposition theorem, which states that the signature architecture can make
progress in exactly four ways:

1. an AuthenticateUserW step occurs in parallel with an AuthenticateUserL
step;

2. a GenerateSignatureW step starts and aborts due to an internal error while
running in parallel with NopOperationL (a stuttering step on the Linux
side);

3. a GenerateSignatureW step occurs in parallel with a GenerateSignatureL
step; or

4. a LogoutW step occurs in parallel with a LogoutL step.

By using the Z schema calculus, this theorem can be compactly expressed as:

� (∃DARMA • AuthenticateUserW ∧AuthenticateUserL) ∨
(∃DARMA • GenerateSignatureW ∧NopOperationL) ∨
(∃DARMA • GenerateSignatureW ∧GenerateSignatureL) ∨
(∃DARMA • LogoutW ∧ LogoutL)

⇔ System .

This theorem explains in which ways synchronous communication over DARMA
is possible. We use it in the right-to-left direction as a kind of “elimination rule”
that decomposes assumption over steps in traces by case-splitting: if we have a
trace t and a system transition (s, s′) = (t(n), t(n+1)), a property P (s, s′) holds
if it holds for the four possible system transitions.

With respect to (3), we proved a large number of global invariants, i.e.,
formulas of the form ∀t : traces•INV (t(n), t(n+1)). Examples of such invariants
are that the signature log monotonically increases, and that the domain of the
session table and signature log are always bounded by the domain of the table
of private keys. These lemmas, as well as the proofs of the three requirements,
were proven by induction over the positions in a trace. In the inductive case,
the architecture decomposition theorem was applied to decompose the step into
possible cases. In each case, either other global invariants or relevant lemmas
about properties of operation schemas were used to reason about the consecutive
states. Hence, induction and decomposition served as the primary mechanism to
reduce the reasoning about global invariants to standard reasoning about local
preconditions, postconditions and invariants of operations.

Verification of a Signature Architecture with HOL-Z 281

5 Theorem Prove or Model Check?

In previous work [5], we used the SPIN model checker [10] to verify a PROMELA
model of the signature architecture. There, we formulated an executable model
in terms of synchronously communicating processes, one for each of the different
system modules. The requirements were formalized either in linear temporal
logic or by augmenting the model (e.g., adding monitor processes) and SPIN
was used to verify the result. While there have been other general comparisons
of theorem proving versus model checking, e.g., [9], and considerable work on
their integration, there appear to be few studies that examine their relationship
concretely on an in-depth case study. We take up this challenge here and make
both quantitative and qualitative comparisons between our two formalizations.
The results, we believe, help shed light on the relative strengths and weaknesses
of the different approaches.

Note that any such comparison must be made and interpreted with care. The
conclusions can differ considerably depending, for example, on the expertise of
those carrying out the verification, the specific formalisms and tools used, and
what is actually measured (see [3] for a discussion of these points). To ensure
an accurate comparison, we have kept statistics on both efforts (times spent
are estimates) and also ensured that each verification was made on an equal
footing: Both verifications were carried out by a team consisting of an expert in
the formal method and an engineer with limited initial knowledge in the formal
method.

Figure 5 provides a quantitative comparison of two approaches. We explain
the differences below.

Size. In PROMELA, we built an initial model of the system, which we adapted
afterwards for each of the three properties that we verified. The 647 lines of
specification is the average size of the four models created. Despite the fact that
the HOL-Z model differs substantially from the PROMELA models, they are

282 D. Basin et al.

Measurement PROMELA/SPIN HOL-Z/Isabelle

Model Variants 4 1
Model Size 647 lines (average) 550 lines
Model Bounds 2 users, 2 sessions unbounded
Property Size 184 lines 50 lines
Proof Size none 3662 lines

Property Specification Time 6 days 2 days
System Modeling Time 17 days 12 days
Verification Time (included above) 19 days
Proof Checking Time 14 hours 12 minutes
Total Time 23 days 33 days

Expert Input Required 10% 60%

Fig. 5. Statistics on the Two Verifications

all of roughly similar size. This stems from the fact that the HOL-Z model is
more detailed than the PROMELA models in some respects and more abstract
in others. For example, HOL-Z state schemas are more detailed since they define
not only data types, but also invariants. On the other hand, HOL-Z operation
schemas are typically smaller as they abstractly specify the relationship between
states, rather than the sequence of operations used to change states.

In contrast, the HOL-Z property specifications are considerably more concise,
due to their greater generality. In the PROMELA models, all of the relevant data
domains (messages, keys, users, etc.) were bounded to support finite-state model
checking. Hence all statements quantifying over these sets must be translated
into finite, but large, conjunctions or disjunctions. Moreover, rather than using
event predicates as in HOL-Z, we had to formulate state changes in terms of
explicit statements about program points as well as manipulated data. This too
results in a more voluminous specification. So here we see one of the advantages of
working with a general, behavioral model as opposed to a programing language-
based (PROMELA) model.

Time. More time was spent in the theorem-proving approach than in the model-
checking approach. The main difference is due to the fact that model checking
is automatic as opposed to interactive (the 19 days reflects the time spent inter-
acting with the theorem prover). Folk wisdom is that, because of automation,
model checking is much less time consuming than theorem proving. While this is
indeed the case for the verification time itself, the overall time reduction, about
30%, is not so significant. Moreover, this difference is even less significant when
one accounts for the fact that, in the HOL-Z verification, 5 of these days were
spent proving stronger formalizations of the properties (see below).

However, the numbers point only indirectly to what is probably the most
interesting difference: how the time was spent. With SPIN, once a model and a
property are specified, the verification effort is focused on simplifying the prob-
lem so that the model checker terminates. This involves tuning constants as
well as introducing abstractions and other simplifications. In some cases, the
complexity of the model may even increase, due to the addition of auxiliary
variables, assertions, and new (monitor) processes. All of these additions were
necessary during our verification and hence the need to create three additional
model variants, one for each property verified. The time spent with these activi-
ties was substantial and is reflected both in the increased time taken for system
modeling and for property specification.

Note that these efforts are quite different from those required for verification
in HOL-Z. Our HOL-Z verification was based on only one model, the general
system model. We neither had to work out any abstractions or restrictions in
advance nor to make subsequent changes during verification. Hence the spec-
ification time was shorter. In return, substantially more time was required for
verification. Although some of this time was spent pushing low-level proof details

Proof checking times, measuring the times taken by the SPIN and Isabelle systems,
are on a 3 gigaherz Pentium IV computer with 1 gigabyte of RAM.

Verification of a Signature Architecture with HOL-Z 283

2

2

through the Isabelle system, as explained in Section 4.2, much of it concerned
discovering, formalizing, and proving auxiliary system invariants, which were
required to prove the properties of interest.

Although discovering and proving invariants is a more time-consuming activ-
ity than (PROMELA) model simplification, it is certainly also a more insightful
one. Many of the invariants are interesting in their own right as they lead to a
better understanding of why the architecture actually works. Moreover, in our
work, they also led to our discovering problems in our formalization of Hitachi’s
requirements. For example, a direct formalization of the first requirement (that
signature generation requires a prior login) overlooks the fact that the login ses-
sion must still be valid, in other words, there cannot be a logout between these
events. This weaker statement (i.e., omitting the last conjunct in the theorem
statement in Section 4.1) is what we formalized and verified in SPIN. In HOL-
Z, working through the necessary invariants led us to realize that the stronger
theorem was actually intended and held.

Expertise needed. In both case studies, expert input was needed, albeit to a
different degree and in different places. In both approaches, it was possible for
an engineer with limited initial knowledge of the formal method to build the
first model after receiving some training for the task. In the SPIN case study,
most of the expert help required was in formulating properties (which turned out
to be surprisingly tricky) and simplifying the PROMELA models so that SPIN
would terminate. For the HOL-Z model, an expert review and restructuring
of the model was needed. Finding suitably abstract formulations in Z appears
to require more expertise than finding “natural” formulations in PROMELA,
which was perceived as a kind of programming language. While formulating the
security properties in Z was possible without expert advice, this was not so with
theorem proving, where considerable hands-on work by the expert was necessary.
This is reflected by the 60% expert contribution reported in Table 5.

What was modeled and verified. Finally, the numbers given do not reflect that
there were substantial differences in what was modeled and verified. A standard
benefit of using a rich logic, like HOL-Z, is that one can directly model infinite
data domains in their full generality, rather than settling for some finite ap-
proximation. This was also the case here, where PROMELA modeling required
bounding all of the relevant data domains. Hence, the HOL-Z model is both
more general and the theorems proven are significantly stronger.

A more subtle difference stems from the use of a declarative versus an op-
erational approach. In HOL-Z we did not need to commit to either particular
data types or concrete procedures for data manipulation. This leaves us consid-
erably more flexibility in how the architecture can be refined and for exploring
changes. As an example, in the Hitachi architecture, a user may only log in once
before logging out again, i.e., a user may be associated with only one session.
However, an alternative architecture is one that supports multiple sessions per
user. Modeling these kinds of changes in our architecture is trivial. Here, we can
specify this alternative simply by deleting the second constraint in the predicate

284 D. Basin et al.

part of the session manger schema (Section 3.2), which requires that each user
identifier is associated with at most one session identifier. In this case, almost
all of the system invariants proven go through, unchanged.

References

1. J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University
Press, 1996.

2. T. Arai, T. Sekiguchi, M. Satoh, T. Inoue, T. Nakamura, and H. Iwao. Darma:
Using different OSs concurrently based on nano-kernel technology. In Proc. 59th-
Annual Convention of Information Processing Society of Japan, volume 1, pages
139–140. Information Processing Society of Japan, 1999. In Japanese.

3. D. Basin and M. Kaufmann. The Boyer-Moore Prover and Nuprl: An experimental
comparison. In G. Huet and G. Plotkin, editors, Logical Frameworks, pages 90 –
119. Cambridge University Press, 1991.

4. D. Basin, H. Kuruma, K. Takaragi, and B. Wolff. Specifying and
verifying hysteresis signature system with HOL-Z. Technical Re-
port 471, ETH Zürich, January 2004. Available at the URL
http://kisogawa.inf.ethz.ch/WebBIB/publications/papers/2005/HSD.pdf.

5. D. Basin, K. Miyazaki, and K. Takaragi. A formal analysis of a digital signature
architecture. In S. Jajodia and L. Strous, editors, Integrity and Internal Control
in Information Systems, IV, pages 31–48. Kluwer Academic Publishers, 2004.

6. A. D. Brucker, F. Rittinger, and B. Wolff. HOL-Z 2.0: A proof environment for
Z-specifications. Journal of Universal Computer Science, 9(2):152–172, Feb. 2003.

7. A. D. Brucker and B. Wolff. A case study of a formalized security architecture.
In Electronic Notes in Theoretical Computer Science, volume 80. Elsevier Science
Publishers, 2003.

8. C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In Proceedings of
FMOODS’97: Formal Methods for Open Object-Based Distributed Systems, vol-
ume 2, pages 423–438. Chapman & Hall, 1997.

9. A. Gupta. Formal hardware verification methods: A survey. Journal of Formal
Methods in System Design, 1:151–238, 1992.

10. G. J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279–295,
1997.

11. International Standard ISO/IEC 13568:2002. Information technology — Z formal
specification notation — syntax, type system and semantics.

12. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer,
2002.

13. G. Smith and J. Derrick. Refinement and verification of concurrent systems speci-
fied in Object-Z and CSP. In Proceedings of the International Conference of Formal
Engineering Methods, pages 293–302. IEEE Computer Society Press, 1997.

14. J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall International,
New Jersey, second edition, 1992.

15. S. Susaki and T. Matsumoto. Alibi establishment for electronic signatures. Infor-
mation Processing Society of Japan, 43(8):2381–2393, 2002. In Japanese.

16. J. Woodcock and J. Davies. Using Z. Prentice-Hall International, New Jersey,
1996.

Verification of a Signature Architecture with HOL-Z 285

End-to-End Integrated Security and
Performance Analysis on the DEGAS

Choreographer Platform

Mikael Buchholtz 1, Stephen Gilmore 2, Valentin Haenel 2,
and Carlo Montangero 3

1 Informatics and Mathematical Modelling, The Technical
University of Denmark, Lyngby, Denmark

mib@imm.dtu.dk
2 Laboratory for Foundations of Computer Science,

The University of Edinburgh, Scotland
stg@inf.ed.ac.uk, valentin.haenel@gmx.de

3 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
carlo.montangero@di.unipi.it

Abstract. We present a software tool platform which facilitates secu-
rity and performance analysis of systems which starts and ends with
UML model descriptions. A UML project is presented to the platform
for analysis, formal content is extracted in the form of process calculi
descriptions, analysed with the analysers of the calculi, and the results
of the analysis are reflected back into a modified version of the input
UML model. The design platform supporting the methodology, Chore-
ographer, interoperates with state-of-the-art UML modelling tools. We
illustrate the approach with a well known protocol and report on the
experience of industrial users who have applied Choreographer in their
development work.

Keywords: security analysis, performance analysis, process calculi, UML.

1 Introduction

The safety and reliability of networked software applications becomes a highly
significant matter as such systems play an ever-increasing role in society and pub-
lic life. Software systems win the trust of users by being secure against attack
and by remaining available and responsive under increasing workload. Security
and quality-of-service valuations such as these give rise to subtle and complex
questions about these complex systems. Determining the answers to these ques-
tions necessitates careful modelling and analysis of these systems in well-founded
formal calculi. Such reasoning is both too detailed and too arduous to be under-
taken by hand and so modelling and design tools play a crucial role in designing
and evaluating the computing applications of today and tomorrow.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 286–301, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Choreographer is an integrated design platform for qualitative and quanti-
tative modelling of software systems. The main idea is to cater for formal veri-

End-to-End Integrated Security and Performance Analysis 287

fication of properties of system models through application of existing analysis
tools and techniques. However, these analysis tools will largely be hidden from
the developer, who only needs to relate to the analysis at the level of a model of
the system, which is already familiar. To this end, the Choreographer processes
UML models as its input, and writes modified versions of these as its output.
The many stages of model manipulation and transformation which take place
between input and output will be performed fully automatic and, consequently,
are of no concern for the developer.

The architecture of the Choreographer tool as illustrated in Figure 1 is to
consider the interface to a specification environment (SENV) and a processing
interface to a verification environment (VENV). Models which are input for
analysis are channelled from the SENV to the VENV via software connectors
known as extractors. The extracted formal content is passed to the VENV for
analysis. The results of the analysis are recombined with the input model and
channelled from the VENV back to the SENV via software connectors known as
reflectors. The extraction, the verification, and the reflection are all automated
and can therefore run without input from the user of Choreographer.

In this paper we discuss a specific configuration of the architecture in which
the SENV is the Poseidon UML platform from Gentleware [1] and both the
LySatool [2] and the PEPA Workbench [3, 4] are VENVs. The software tool
chain which is formed when these are connected is also depicted in Figure 1.

The qualititative analysis is deployed to investigate the security of the com-
munication protocols used in the application. The analysis guarantees there are
no successful attacks on the authentication of the communicated messages pro-
vided that there are no attacks on the underlying crypto-system used to protect
messages. In the case where authentication may be breached the analysis reports
where the breach may occur.

Fig. 1. Software architecture of the tool chain used by Choreographer

The quantitative analysis which is provided is a performance analysis of
the system model. This identifies components which are under-utilised or over-

288 M. Buchholtz et al.

utilised indicating poor deployment of computational resources. The identifica-
tion of these problems prompts the developer to revisit the design in order to
improve its score on the performance metrics of greatest importance.

In the development of the Choreographer platform we were concerned to
support not only the UML notation but the UML design process in order that
UML developers would be comfortable with working with the platform. That is,
we devoted considerable effort in the design of the extractors to ensuring that
the UML was being used as more than just a graphical syntax for the process
calculi beneath.

Structure of this paper: In the next section we discuss the methodology behind
the Choreographer platform, explaining how it has been used in practice. In
Section 3 we describe the security properties which Choreographer can verify,
and how this is achieved. In Section 4 we progress to a description of using
Choreographer for performance evaluation based on the generation and solution
of continuous-time Markov chains. Section 5 details the extraction and reflection
operations which connect the UML input and output to the analysis routines
beneath. Section 6 is a small example, making the foregoing descriptions con-
crete. Section 7 relates our experience of building the Choreographer platform.
Section 8 reports on the experiences of our industrial users. A description of
related work and conclusions follow.

2 Methodology

The methodology which we follow is to first attempt a security analysis and then,
if this is successful, progress to a performance analysis. The reasoning behind
this methodology is that the security analysis rests on static analysis procedures
which have a lower asymptotic complexity than the state-space generation and
iterative numerical procedures which are needed for the performance analysis.
Thus, ordering them in this way potentially gives a significant saving in the
overall computation time by avoiding the performance analysis of an erroneous
protocol.

To use the Choreographer platform a modeller first composes a UML model
in the Poseidon modelling tool. A UML model is represented by a collection of
diagrams describing parts of the system from different points of view; there are
seven main diagram types. For example, there will typically be a static structure
diagram (or class diagram) describing the classes and interfaces in the system
and their static relationships (inheritance, dependency, etc.). State diagrams, a
variant of Harel state charts, can be used to record dynamic behaviour. Interac-
tion diagrams, such as sequence diagrams, are used to illustrate the way objects
of different classes interact in a particular scenario.

Having described a security protocol using a UML sequence diagram we ap-
ply the For-LySa extractor to generate a LySa model which we analyse with
the LySatool. If the LySatool detects errors in the protocol, indicating that it is
insecure, the results are reflected back to the UML level, so that we can view the
results in the Poseidon tool. Having identified these flaws we can repair the pro-

End-to-End Integrated Security and Performance Analysis 289

tocol and continue with performance analysis. Here, we extract a PEPA process
algebra model from the UML input. We solve this for its equilibrium probability
distribution using successive over-relaxation (SOR), then reflect. The informa-
tion returned from the analysis quantifies the percentage of time that the prin-
cipals and the server spend in their local states, pointing to performance-related
problems such as under- or over-utilisation, starvation, bottlenecks, or hotspots
in the system. We can investigate the potential benefits to be obtained by im-
proving the implementation of the activities in the system, thereby identifying
the place or places where it will be most profitable to spend developer effort.

Evidently, it is possible to discover at this stage that the required improve-
ments in the execution of the activities of the system might be infeasible to
achieve, especially in the setting of weak computing devices such as smartcards
or low-end PDAs or in a thin client context with intermittent or very narrow
bandwidth connections between devices. If this is the case, then a developer
working at the early modelling stage of the system development process would
need to revisit the initial protocol design and perhaps re-design this to involve
fewer message exchanges or reduce the amount of asymmetric cryptography used.
This will initiate another cycle of security analysis and performance analysis in
pursuit of the levels of security and performance demanded of the system.

3 Security Analysis

For our security analysis we rely on techniques from data and control flow analy-
sis. These are analysis techniques that automatically compute information about
the entire behaviour of a software system including its behaviour when the sys-
tems is under attack. A trademark of these techniques is that they are automatic
and complexity-wise efficient, which makes them well-suited as back-end analysis
tools for Choreographer.

In more detail, the analysis techniques work by finding conservative over-
approximations to system behaviour. That is, the analysis computes an over-
approximation of the behaviour of a system under attack from any arbitrary
attacker. With regards to security, this means that the analysis can guaran-
tee the absence of attacks because they provide information about the entire
behaviour of a system. However, because the analysis techniques are approxi-
mative they cannot guarantee the presence of attacks and may report warnings
about possible attacks that in fact do not exist. In the following, we discuss
a control flow analysis that guarantees authentication properties for encrypted
network communication.

3.1 Protocols and Authentication

The usual remedy to protect network protocols from intervention by malicious
attackers is to apply cryptography so that parts of the messages may be kept out-
side the control of the attacker. Cryptography may be applied to attain many dif-
ferent security properties such as confidentiality, authenticity, non-repudiation,
etc. Here, we focus on checking an authentication property, namely that “mes-
sages protected by encryption should only be decrypted at the right places”.

290 M. Buchholtz et al.

The verification technique we use builds on the modelling of protocols in
LySa, which is a process calculus in the π-calculus tradition. LySa is specifi-
cally tailored to model central aspects of security protocols [5] such as (perfect)
cryptography, nonces, network communication, etc. A protocol modelled in LySa
will be analysed in a scenario with several kinds of principals: an initiator of the
protocol, a responder, and a server, referred to as a trusted third party, a key
distribution centre, a certificate authority, etc. Additionally, there can be many
principals acting as initiators and as responders.

To specify the authentication property that encrypted messages end up at the
right places, the LySa process is annotated: each encryption and decryption point
is named �, �′, etc., and is furthermore annotated with its intended destinations
and origins.

Our verification relies on a control flow analysis [5] of LySa, which is im-
plemented in the LySatool [2]. The analysis tells whether the authentication
properties are satisfied for all executions of the LySa process executed in paral-
lel with an arbitrary attacker process. The analysis reports all possible breaches
of the authentication properties in an error component ψ: a pair (�, �′) in ψ
means that something encrypted at � was decrypted at �′ breaking the specified
authentication property. The analysis computes over-approximations of ψ, i.e. it
may report an error that is not actually there. However, [5] illustrates that this
is not a big problem in practice.

3.2 Modelling Protocols in UML

To model security protocols in UML consistently, we have defined a specific
profile [6]. The profile introduces stereotypes for core concepts like principals,
keys, and messages, and for the concepts needed for the analysis.

To specify a protocol in UML so that the ForLySa extractor [6] can feed the
LySatool analyser [2], the designer exploits the stereotypes in a class diagram
to present the structure of the protocol. This involves first of all specifying
the intended communications and the involved messages. The structure of each
message type is specified in a distinct diagram that includes the decorations
needed to specify the authentication property. Then, the local information of
each principal must be introduced, like session keys or temporary storage, and
their operations to build and dissect messages.

Then, the designer presents the dynamics of the protocol in a sequence di-
agram, which formally specifies a canonical run of the protocol (see 3 for an
example). Each message exchange in the protocol is divided into three steps: 1.
the sender packages the message, 2. the message is communicated, and 3. the
recipient processes the incoming message. Each step is described by one or more
UML stimuli in the sequence diagram, each associated to an operation of their
target. Each operation is specified by pre- and post-conditions, for instance to
specify how to decrypt part of a message, what to check in an incoming mes-
sage, or what to store for later usage in the principal. The language [6] used
in these conditions is presented to the designer with a semantics in term of the
UML modelling concepts. This semantics reflects the precise one given by the
translation in LySa.

End-to-End Integrated Security and Performance Analysis 291

analysis reports an error being the pair (�, �′) in ψ, the note introducing � will
be modified by the reflector to list �′, thereby signalling the error reported by
the analysis.

4 Performance Evaluation

Well-engineered, safe systems need to deliver reliable services in a timely fashion
with good availability. For this reason, we view quantitative analysis techniques
as being as important as qualitative ones. The quantitative analysis of computer
systems through construction and solution of descriptive models is a hugely prof-
itable activity: brief analysis of a model can provide as much insight as hours of
simulation and measurement [7]. Jane Hillston’s Performance Evaluation Process
Algebra (PEPA) [8] is an expressive formal language for modelling distributed
systems. PEPA models are constructed by the composition of components which
perform individual activities or cooperate on shared ones. To each activity is at-
tached an estimate of the rate at which it may be performed.

Using such a model, a system designer can determine whether a candidate
design meets both the behavioural and the temporal requirements demanded of
it. That is: the protocol may be secure, but can it be executed quickly enough
to complete the message exchange within a specified time bound, with a given
probability of success?

Rather than composing process calculus models directly—although Chore-
ographer also supports this mode of operation—we extract these from UML
class, state and collaboration diagrams. For the purposes of performance anal-
ysis we extract a process calculus model in PEPA. The extractor for PEPA is
documented in [9].

4.1 Analysis Process

We automatically generate a Continuous-Time Markov Chain (CTMC) from
the PEPA model and solve it for its equilibrium probability distribution using
procedures of numerical linear algebra such as the pre-conditioned biconjugate
gradient method or successive over-relaxation implemented in the PEPA Work-
bench. The relationship between the process algebra model and the CTMC rep-
resentation is the following. The process terms (Pi) reachable from the initial
state of the PEPA model by applying the operational semantics of the language
form the states of the CTMC (Xi). For every set of labelled transitions between
states Pi and Pj of the model {(α1, r1), . . . , (αn, rn)} add a transition with rate r
between Xi and Xj where r is the sum of r1, . . . , rn. The activity labels (αi) are
necessary at the process algebra in order to enforce synchronisation points, but
are no longer needed at the Markov chain level.

Finally, the places mentioned by the authentication properties are specified as
notes associated with the stimuli in steps 1 and 3 above, to provide the necessary
hooks for the feedback from the LySatool. These notes are placeholders which
will support the notification of eventual errors resulting from the analysis. If the

292 M. Buchholtz et al.

Under conditions on the form of the model where every state is positive-
recurrent, every such CTMC has a stationary probability distribution over the
states of the chain. Knowing the rates associated with the activities of the sys-
tem this stationary probability distribution can be obtained using procedures of
numerical linear algebra such as Gaussian elimination, conjugate gradient meth-
ods, or over-relaxation methods such as Jacobian over-relaxation or successive
over-relaxation.

Such a stationary probability distribution is rarely the desired end result of
the performance analysis process but meaningful performance measures such as
throughput and utilisation can be directly calculated from the stationary dis-
tribution. State-space generation and numerical solution is the computationally
expensive part of performance analysis. The size of the state-space of the system
is bounded by the product of the sizes of the sequential components in the model
and thus modelling with continuous-time Markov chains is subject to the famil-
iar state-space explosion problem, requiring the modeller to abstract in order to
reduce model complexity.

4.2 Representing Model Components in UML

Markov chain modelling is based on finite-state representations of systems. The
requirement to generate a finite state-space for the CTMC leads PEPA mod-
els to be structured as a concurrent composition of finite-state sequential pro-
cesses. This led to a natural representation of the sequential process part of
these models within the UML via the use of state diagrams, a variant of Harel’s
statecharts [10], together with a class diagram for each category of component.
To represent a concurrent composition of those we used a collaboration diagram
to specify an operational configuration of the system with some numbers of in-
stances of each class of component synchronising over the activity names which
they had in common. This diagram type provided the concurrent composition
of the sequential components.

Class diagrams are used for other purposes in the model. A class with the
reserved name Rates is used to store the values of the rate variables used in the
model to quantify the time cost of performing any activity in the model. All
activities are timed, and quantified by a rate variable which governs a negative
exponential distribution, as used throughout Markovian modelling.

5 Extraction and Reflection

Process calculus content is automatically extracted from input UML models and
analysis results are automatically re-integrated into UML models. The categories
of software tools which perform these operations are extractors and reflectors,
which we describe briefly here.

The transport format for UML content is XML in the XML Metadata Inter-
change format (XMI) used for exchanging UML models between UML tools. Our
extractors and reflectors are implemented in the Java programming language us-
ing its native API for XML parsing. Before the XMI format of the model can be

End-to-End Integrated Security and Performance Analysis 293

processed, it must first be retrieved from the archive format of the UML tools
which we support (primarily the Poseidon [1] tool from Gentleware). We have
written data loaders for the NetBeans platform which open these archive files to
find the XMI content inside, and correspondingly close such archives.

The extractors traverse the object instance graph of the XML document
following the UML metamodel structure to retrieve the diagram content of rel-
evant type. This graph traversal involves following cross-references within the
XMI content to find class diagrams referenced by a collaboration diagram, or
state diagrams associated with a class, or the local states within a state diagram.

The tree traversal performed by the extractors inspects the tree only, without
modifying it. In contrast, the tree traversal performed by the reflectors modifies
the tree to update states with additional analysis results, adding or modifying
child elements of the model as necessary. Finally, this passes the modified XML
tree to the output routines of Choreographer for serialisation and archival.

6 Example: Checking a Simple Authentication Protocol

As a simple example, we apply Choreographer to analyse variations on the Wide-
Mouthed-Frog protocol, originally presented in [11].

Fig. 2. Invoking the LySatool on a security model in Choreographer

294 M. Buchholtz et al.

The protocol describes key exchange between two principals A and B through
a trusted server. The principals A and B have no prior communication history
with each other but both have previously contacted the server and have retained
keys KAS and KBS respectively. The protocol has three steps.

1. Principal A sends a message to the server including the name of B and the
new session key KAB , encrypted under KAS .

2. The server decrypts this and sends the name of A and the new key KAB

to B, encrypted under KBS .
3. Principal A sends a message to B encrypted under KAB .

Fig. 3. Viewing the sequence diagram describing the protocol in Poseidon with the

result from the LySatool reflected into the UML model (changes circled)

The first step in checking such a protocol with Choreographer is to formalise
the protocol in a UML model, using primarily a sequence diagram to express
the protocol as shown in Figure 3. The UML model includes annotations of the

End-to-End Integrated Security and Performance Analysis 295

diagram, reporting the errors, as circled on Figure 3. For example, the decryption
at Bcp3 may decrypt messages coming from the attacker (denoted CPDY) instead
of coming only from Acp2 as intended. Based on these errors the modeller may
pin-point the problem, modify the protocol description in UML, and re-run the
analysis until the analyser guarantees that there are no errors in the protocol.

authentication properties that the protocol is intended to have. These annota-
tions take the form of notes attached at points of encryption and decryption
along with information on where encryptions and decryptions are intended to
take place. For example, the content of the third message will be encrypted at a
point called Acp2 and is intended to be decrypted at Bcp3.

We open this UML model in Choreographer and extract a LySa process
calculus representation of the protocol, and apply the LySatool to check the
authentication properties as shown in Figure 2. The LySatool finds that the
properties may be violated and, consequently, the reflector modifies the sequence

Fig. 4. Reflecting the results of performance analysis back to UML using Choreogra-

pher

At this point the user is able to continue with a performance analysis of the
model. Again, the process calculus representation is extracted by Choreographer
from the UML model and processed by the analysis tool — in this case, the
PEPA Workbench. The Workbench derives the reachability graph underlying

296 M. Buchholtz et al.

is reflected back into the UML model as circled on Figure 5. Each state now is
tagged with a record of the probability of being in this state in the long run.

computes the stationary probability distribution for this chain. The commentary
from the Workbench on this calculation can be seen in the tabbed pane at the
bottom of the screenshot in Figure 4. These results can again be reflected back
to the UML level.

Viewed in the Poseidon modelling tool, the performance model is described
by a UML state diagram as the one shown in Figure 5 where rate(rAB) and
rate(rBA) describes transition rates of moving between the states. Furthermore,
a UML collaboration diagram (not shown) describes the parallel composition of
a number of instances of these sequential components. The results of the analysis
tell the user the probability of being in each of the local states. This information

the process algebra model, interprets this as a continuous-time Markov chain and

Fig. 5. Viewing the modified performance model in Poseidon (with the changes circled)

At this point the modeller is able to consider the consequences of these rela-
tive probabilities and to decide whether or not they indicate acceptable levels of
performance with respect to these rates of performance of the activities of the
model.

End-to-End Integrated Security and Performance Analysis 297

these because it reads from and writes into this import/export format. This
data portability requirement was the more difficult problem, and one which
we have not been able to solve perfectly. There are many versions of the XMI
standard for UML, and different UML tools implement their chosen version to
a more or less satisfactory extent. Some releases of the UML tools which we
tried wrote non-well-formed XMI output, even according to their own criteria.
Such inconsistency makes interoperation essentially a matter of writing a custom
reader/writer pair for every version of every UML tool with which one wants to
interoperate, which is the trap which standards such as XMI were intended to
prevent developers falling into.

A configuration which we considered for Choreographer was XDE and Eclipse
together. The XDE UML tool is provided as an Eclipse plug-in, so this is a natu-
ral coupling. We rejected this combination because the XDE tool is not available
in a Linux release. We chose not to interoperate with MagicDraw because it is
not freely available. We could not work with Argo/UML because it did not rep-
resent some aspects of the UML diagrams in the XMI format, thus crippling its
use as an import/export model exchange format.

A potential source of non-portability might have been the formal analysis
tools which we used. These had been implemented in Java or the functional
programming language Standard ML. However, we discovered that the Stan-

and the LySa security analysis tool (the LySatool [2]). In addition, it needs to
interoperate with a fully-featured UML tool.

Our non-functional requirements on the platform were that we wanted to de-
velop a professional quality tool in a constrained time, with a modest budget for
developer effort. We also had the requirement that the tool should be available
across platforms (in our case, Windows and Linux). We evaluated the generic
IDEs of Eclipse and NetBeans and the Argo/UML, XDE, MagicDraw and Posei-
don UML tools. We took the decision to build the Choreographer platform on top
of NetBeans on the Java platform and have it interoperate with Poseidon. This
decision was a complex engineering compromise between a number of conflict-
ing tensions. Our choice went a considerable way towards addressing portability
concerns but the portability issue was impacted also by the availability of the
analysers and UML drawing tools we wanted to integrate with.

We wanted Choreographer to have two dimensions of portability. The first
is the most obvious one, that it should run successfully on both Windows and
Linux. This requirement for code portability has been successfully addressed.
The second dimension of portability was that we wanted the Choreographer
platform to interoperate with many UML tools via the standard XML Inter-
change format (XMI) for UML diagrams. Choreographer needs to deal with

7 Engineering Issues

Our functional requirements for the Choreographer design platform were that
it should provide access to the analysis procedures of the PEPA performance
analysis tool (the PEPA Workbench in both its ML and Java editions [3, 4])

298 M. Buchholtz et al.

dard ML of New Jersey compiler which we used had very closely conforming
versions for Linux and Windows, making the portability of these formal analysis
tools essentially only a matter of working around small differences in the ver-
sions of the standard library for the two platforms. This level of minor tuning
is also required for application development in the Java language, which has
given more effort to ensuring cross-platform portability than perhaps any other
programming language.

8 Experiences of the Industrial Users

The Choreographer design platform has been used by the industrial partners
in our project on two separate developments. In the first, the partner was a
large multi-national company designing a web-based micro-business portal. In
the second, the partner was a small developer targeting telecommunications ser-
vices designing a multi-player on-line role-playing game for mobile applications.
Both used the Choreographer platform independently, consulting us when they
had problems but otherwise operating without an expert on formal specification
or verification on-hand.

The industrial partners had no previous experience of using the LySatool and
the PEPA Workbench and their use of them was solely via the Choreographer
extraction/reflection discipline. The most significant potential sources of error
along the tool chain are i) in the UML constructs used in the input model;
ii) communication of the UML model from the UML tool to the extractor; iii)
model exchange between the extractor and the process calculus analyser; iv) in
the use of the analyser; and v) from the analyser to the reflector. Almost all of
the problems reported by our industrial users were of type i), ii) or iii).

Errors of the first kind included choosing the wrong type of connections
between class instances in the collaboration diagrams, or omitting to include
collaborations between instances of classes which needed to collaborate. Errors
of the second kind included the UML tools writing non-well-formed archive files
with missing or corrupt XMI content. Errors of the third kind are found because
the process calculus analysis tools check the well-formedness of the model before
continuing with the analysis. This is to ensure that as many problems as possible
with the model are caught before a potentially expensive analysis process begins.

8.1 Reflections on the Experience

Our anticipation of the difficulties for the industrial users was quite far removed
from the actual difficulties encountered. The fact that many of the errors were
related to UML processing surprised us. We had assumed that the asymptotic
complexity of the analysis procedures used in performance analysis would be
a problem for models of industrial scale. The PEPA Workbench uses sparse
matrices to store CTMCs internally but other representations such as multi-
terminal binary decision diagrams (MTBDDs) allow the representation of much
larger state spaces. Thinking that this would be a problem, we had previously
developed a compiler from PEPA into the input language of the MTBDD-based

End-to-End Integrated Security and Performance Analysis 299

model-checker Prism [12]. We developed a custom reflector for this tool which
we tested with the PEPA extractors and reflectors to analyse our own UML
models [13].

In fact, the state-space explosion proved not to be a problem for the use of
Choreographer by our industrial partners. The models which they built were
much smaller than we had anticipated. So much so, that using sparse matrices
is perhaps not even necessary and dense matrices and direct solution methods
might even have been applicable.

9 Related Work

Tool support for the automated analysis of security requirements in the UMLsec
framework [14] is described and accessible at [15]. The relevant elements of the
UML specification are translated in the input language of the model-checker
SPIN and the dynamic property to be verified is translated in Linear Temporal
Logic. The UML models are stored in a MDR library, and accessed via the
generated JMI interface.

Work which is similar in spirit to our own approach is that of Petriu and
Shen [16] where a layered queueing network model is automatically extracted
from an input UML model with performance annotations in the format specified
by a special-purpose UML profile [17]. We do not follow the same UML profile
because it is not supported by our modelling tool. Additionally, the performance
evaluation technology which we deploy (process algebras and CTMC-based so-
lution) is quite different from layered queueing networks.

Another performance engineering method which is similar to ours is that
of López-Grao, Merseguer and Campos [18] where UML diagrams are mapped
into GSPNs which can be solved by GreatSPN. We use different UML diagram
types from these authors and, again, a different performance evaluation tech-
nology. Stochastic Petri nets and stochastic process algebras have different, but
complementary, modelling strengths [19].

One feature of our work which is distinctive from both of the above is the role
of a reflector in the system to present the results of the performance evaluation
back to the UML modeller in terms of their input model. We consider this to be
a strength of our approach. We do not only compile a UML model into a model
amenable for analysis, we also present the results back to the modeller in the
UML idiom.

10 Conclusions

Strong and justified belief in the networked software applications is engendered
via formal analysis using well-founded calculi and tools. Such apparatus for for-
mal reasoning is often daunting to those who most need to make use of, and
benefit from, formal analysis techniques, namely systems designers and software
developers working on state-of-the-art systems. To this community, and their
colleagues in project management and product development, a graphical nota-

300 M. Buchholtz et al.

tion such as the UML has much greater appeal than the blunt, cold formality of
process calculi. By establishing a two-way connection between the UML and cal-
culi such as LySa and PEPA, the Design Environments for Global ApplicationS
(DEGAS) project has elevated the analysis process to the UML level, thereby
bringing the benefits of the analysis without exposing the unfamiliar languages
used.

It is not the case that an inexperienced modeller can use the Choreographer
platform to verify any security property of interest or to compute any perfor-
mance measure that they wish without needing any understanding of the ab-
straction, modelling and mathematical analysis beneath. However, we hope that
we have gone some way to providing automated support for useful security and
performance properties and to circumventing an unnecessary notational hurdle
if this was acting as an impediment to the understanding and uptake of modern
static and dynamic analysis technology.

Acknowledgements. The authors are supported by the DEGAS (Design En-
vironments for Global ApplicationS) project IST-2001-32072 funded by the FET
Proactive Initiative on Global Computing. We thank Matthew Prowse for help-
ful discussions on his extraction algorithm for PEPA. The work reported here
builds on a number of prior works by the members of the DEGAS project. It is
a pleasure to thank the other members of the project for their contributions and
comments on the work reported here.

References

1. Gentleware AG systems. Poseidon for UML web site, November 2004.
http://www.gentleware.com/.

2. Mikael Buchholtz. LySa — a process calculus. Web site hosted by Informatics
and Mathematical Modelling at the Technical University of Denmark, April 2004.
http://www.imm.dtu.dk/cs LySa/.

3. S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process
Algebra-based Approach to Performance Modelling. In Proceedings of the Seventh
International Conference on Modelling Techniques and Tools for Computer Per-
formance Evaluation, number 794 in Lecture Notes in Computer Science, pages
353–368, Vienna, May 1994. Springer-Verlag.

4. N.V. Haenel. User Guide for the Java Edition of the PEPA Workbench—Tabasco
release. LFCS, Edinburgh, October 2003.

5. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H.R. Nielson. Automatic val-
idation of protocol narration. In Proc. of the 16th Computer Security Foundations
Workshop (CSFW 2003), pages 126–140. IEEE Computer Security Press, 2003.

6. M. Buchholtz, C. Montangero, L. Perrone, and S. Semprini. For-LySa: UML for
authentication analysis. In C. Priami and P. Quaglia, editors, Proceedings of the
second workshop on Global Computing, volume 3267 of Lecture Notes in Computer
Science, pages 92–105. Springer Verlag, 2004.

7. Isi Mitrani. Probabilistic Modelling. Cambridge University Press, 1998.
8. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge

University Press, 1996.

End-to-End Integrated Security and Performance Analysis 301

9. C. Canevet, S. Gilmore, J. Hillston, M. Prowse, and P. Stevens. Performance
modelling with UML and stochastic process algebras. IEE Proceedings: Computers
and Digital Techniques, 150(2):107–120, March 2003.

10. D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.
Programming, 8:231–274, 1987.

11. M. Burrows, M. Abadi, and R.M. Needham. A logic of authentication. ACM
Transactions on Computing Systems, 8(1):18–36, February 1990.

12. D. Parker. PRISM 1.3 User’s Guide. University of Birmingham, February 2003.
http://www.cs.bham.ac.uk/∼dxp/prism.

13. S. Gilmore and L. Kloul. A unified tool for performance modelling and prediction.
In B. Littlewood S. Anderson and M. Felici, editors, Proceedings of the 22nd Inter-
national Conference on Computer Safety, Reliability and Security (SAFECOMP
2003), volume 2788 of LNCS, pages 179–192. Springer-Verlag, 2003.

14. Jan Jürjens. Secure Systems Development with UML. Springer, 2004.
15. Jan Jürjens. Umlsec webpage. Accessible at http://www.umlsec.org, 2002–04.
16. D.C. Petriu and H. Shen. Applying the UML performance profile: Graph grammar-

based derivation of LQN models from UML specifications. In A.J. Field and P.G.
Harrison, editors, Proceedings of the 12th International Conference on Modelling
Tools and Techniques for Computer and Communication System Performance
Evaluation, number 2324 in Lecture Notes in Computer Science, pages 159–177,
London, UK, April 2002. Springer-Verlag.

17. B. Selic, A. Moore, M. Woodside, B. Watson, M. Bjorkander, M. Gerhardt, and
D. Petriu. Response to the OMG RFP for Schedulability, Performance, and Time,
revised, June 2001. OMG document number: ad/2001-06-14.

18. J.P. López-Grao, J. Merseguer, and J. Campos. From UML activity diagrams to
stochastic Petri nets: Application to software performance analysis. In Proceed-
ings of the Seventeenth International Symposium on Computer and Information
Sciences, pages 405–409, Orlando, Florida, October 2002. CRC Press.

19. S. Donatelli, J. Hillston, and M. Ribaudo. A comparison of Performance Evaluation
Process Algebra and Generalized Stochastic Petri Nets. In Proc. 6th International
Workshop on Petri Nets and Performance Models, Durham, North Carolina, 1995.

Formal Verification of Security Properties of
Smart Card Embedded Source Code

June Andronick1, Boutheina Chetali1, and Christine Paulin-Mohring2

1 Axalto, Smart Cards Research
{jandronick, bchetali}@axalto.com

36-38, rue de la Princesse, BP45, 78431 Louveciennes Cedex, France
2 Université Paris-Sud,

Laboratoire de Recherche en Informatique, UMR 8623 CNRS,
Bâtiment 490, F-91405 Orsay Cedex, France

paulin@lri.fr

Abstract. This paper reports on a method to handle the verification of
various security properties of imperative source code embedded on smart
cards. The idea is to combine two program verification approaches: the
functional verification at the source code level and the verification of
high level properties on a formal model built from the program and its
specification. The method presented uses the Caduceus tool, built on top
of the Why tool. Caduceus enables the verification of an annotated C
program and provides a validation process that we used to generate a
high level formal model of the C source code. This method is illustrated
by an example extracted from the verification of a smart card embedded
operating system.

Keywords: Theorem Proving, Smart Card, Security, Source code ver-
ification, Formal Methods.

Introduction

In domains where security is a major issue, as in the smart card world, the need
of confidence in the programs developed is increasing dramatically. This leads
to a strong development of methodologies and tools which aim at strengthening
this confidence. In particular, formal methods are proposed to provide formal
verification of the correctness of crucial and sensitive programs.

Several approaches have been studied for the formal verification of systems.
A first approach consists in building a model of the target system in a formal
framework and in reasoning about the model in the same framework. The weak-
ness of this approach lies in the confidence in that the model actually represents
the system. However, some methods, like the automatic generation of source
code, enable to strengthen this link between the model of the system and the
code implementing it.

Another approach consists in verifying directly the source code of the system
implementation. Functional properties of the system are defined by inserting

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 302–317, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Formal Verification of Security Properties of SC Embedded Source Code 303

annotations in the code and a proof obligation generator is used to verify these
properties.

The idea presented in this paper is to combine the two approaches, in order
to prove global security properties on a verified model. In other words, the model
consists in the code specification, that is the set of annotations, and the source
code verification method is used to prove that the specification, i.e. the model,
is verified by the implementation. This proof constitutes a formal link between
the model and its implementation. Hence, the high level verification can be done
on the verified model.

Our approach is somehow similar to the one proposed by the JCVM tool
(see [7]) generating a formal model from a Java Card source code. The main
difference, besides the fact that we are here interested in the C language, is that
we use only the formal specification, whereas the JCVM tool build a model of
the program itself, which may make the proofs heavier.

We use the Caduceus tool ([21, 22]), built on top of the Why tool ([19, 20]),
which provides a multi-prover formal framework for the verification of C pro-
grams. Its architecture enables the definition of an automatic generation of a
high level model in a formal environment (the proof assistant Coq [32]) where
the verification of security properties is possible.

We use this method for the formal verification of an operating system module
embedded on a smart card. Due to its central position in the architecture of
smart cards, its validation is crucial for the confidence in the whole system. For
intelligibility reasons, only a simplified case study will be presented in this paper,
though a real embedded operating system module has been verified.

The paper is organised as follows. Section 1 points out the different formal
verification approaches, their limitations and the approach proposed in this pa-
per. Section 2 presents the case study used in this paper in order to illustrate
our approach. Section 3 starts with a presentation of the Caduceus tool and then
describes in detail our validation method.

1 Formal Verification

1.1 Model Verification Approach

A classical approach of formal verification consists in building a model of the
system in a formal framework, for instance a theorem prover language, and target
properties are proved to be satisfied by this model. This approach can be found
for instance in industrial domains, when formal methods are used to increase
the security level of products. A model of a given sensitive system is usually
built from the system requirements specification. Security policies can then be
translated into security properties and proved in the same formal framework.

In this approach, the implementation is generally developed in parallel with
the verification process. Therefore the main problem is to justify the link between
the verified model and the implementation. This correctness of the model with
respect to the source code is mandatory to claim that the code verifies the target
properties. An usual way to strengthen this link is to refine the high level model

304 J. Andronick, B. Chetali, and C. Paulin-Mohring

in lower level models, until a low level model whose link with the code is as
straightforward as possible, in terms of data structures and functions. The link
between two levels is proved using an abstraction property.

Such a “top-down” refinement approach has been used to prove the correct-
ness of the Java Card Virtual Machine embedded into smart cards (see [16]).
A high level formal model of the JCVM has been developed in the Formavie
Project and security properties such as the confidentiality and the integrity of
the embedded applets have been proved on this model (see [3, 2]).

A first weakness of the verification at the model level, using refinement, is
in terms of optimisation, maintenance, and reusability. Indeed, any modification
of the source code needs an update of all the models and formal links. Another
weakness is that the last step between the lowest level and the implementation
is informal. This missing link can be provided by the automatic generation of
source code from the formal models, when it is possible. It enables to derive
code from the specification after having verified properties on this specification.
Such method has been investigated in [8, 29, 23] with the B tool to generate Java
Card or C programs. Also, [14] and [10] proposes an embedded Java Card byte-
code verifier, generated from formal models. But this method is not well suited
for low level programs, close to the hardware layer, such as operating system
programs. These programs are usually written by smart card experienced devel-
opers, since some very technical optimisations are usually needed, for instance
when managing the memory.

A way to avoid those weaknesses is to consider the source code as the starting
point of the verification.

1.2 Source Code Verification Approach

Several tools for the verification at the source code level exist. One possible
approach, taken for instance in the BALI project (see [4] and e.g. [33]), consists in
modelling the syntax and semantics of the source code in a proof assistant, using
a so-called deep embedding, and in proving general theorems on the language.
This approach is well suited for meta-theoretical studies but is less practical for
actual development of verified code by developers.

An alternative approach consists in inserting annotations into source code
and in using a proof tool to verify, automatically or interactively, that the code
implements the properties defined by the annotations. Annotations are usually
special comments inserted in the source file which can be ignored by the compiler
but recognised by the verification tool. They may usually express preconditions
and postconditions of functions, variables modified by functions, loop invariants,
global invariants, etc. Annotations may be defined by the programmer, or gen-
erated, entirely or partially, from the code. For instance, properties specific to
the language, such as out-of-bounds array access, can be statically deduced from
the code.

Following this idea, several tools have been developed, in particular for pro-
grams written in Java. The Java Modeling Language JML ([25]) is a formal
annotation language, that can be analysed by different tools in order to pro-

Formal Verification of Security Properties of SC Embedded Source Code 305

duce documentation, perform dynamic tests and handle properties verification.
It is used for the verification of Java programs in the tools ESC/Java ([17, 18]),
LOOP ([26]), Jack ([12, 11]) or Krakatoa ([27]). On the other hand, the Key
tool ([1]) proposes an UML based specification for the verification of Java Card
applications, while the Jass tool ([5]) is a Design by Contract extension for Java,
enabling run-time checks of specification violation, with a possible specification
of global properties using traces.

We are interested in a similar approach for C programs. A lot of tools allow
to do static analysis of C code (see [31]) but few of them handle explicit pre-
conditions and postconditions. However, the Caveat tool ([15]) provides semi-
automatic verification of C programs, where the annotations are built separately
from the code. In this paper, we shall use the Caduceus tool which is a direct
adaptation of the Java/JML technology for C programs.

All these tools offer the guarantee that given properties are verified at the
source code level. But the fact that these properties have to be expressed in the
annotation language gives rise to several limitations:

– the annotation language is a first-order predicate logic. Therefore the defi-
nition of some properties, such as reachability in data structures, becomes
heavy whereas it would be immediate in a higher order language. However,
some tools allow to use predicates in the annotations that may be instanti-
ated only in the higher order theorem prover used;

– if the proof of several properties is needed, each function annotation will con-
tain the conjunction of all these properties. Thus the code is more “polluted”
and the verification process can be heavier;

– properties expressed using annotations are local to the function considered.
This is well suited for the verification of functional properties, such as “the
result of a function must be null”. But it is often necessary to prove global
properties over combination of several functions or high level temporal prop-
erties, such as the absence of dead-lock. However, existing methods propose
a way to express such global properties in a local way, either within the
annotation language, using some variables to represent a global state of the
program (see [6, 24]), or by introducing new annotated code to be proved,
representing the global properties.

1.3 Our Approach

This paper presents a combination of the previous approaches. We use the an-
notations in order to define a model of the system and we prove that the given
implementation of this system corresponds to its model. Then the expected se-
curity properties can be checked directly on the verified model, which provides
a certain level of abstraction with respect to the code.

This method is used to model and verify an operating system module by
annotating each function by the description of its behaviour. The case study is
described in the following section.

306 J. Andronick, B. Chetali, and C. Paulin-Mohring

2 Case Study

2.1 Context

Smart cards are devices where the confidence in the embedded software is crucial.
Besides, a smart card needs to be inserted into a reader to obtain power. So if
the card is suddenly removed from the reader, the program that was running
on card is interrupted. Such a tearing, or power off, must give rise to coherence
verification, stability checks, recovery properties proof, etc. For all these reasons,
formal verification is becoming an essential step.

A tearing may have no consequence for some operations. But other operations
must be processed atomically, i.e., either all instructions of the operation are
executed, or none are. This is the case of a transaction: if a tearing occurs during
the processing of a transaction, all the operations done from the beginning of
the transaction must be aborted. Other operations, such as the erasing of a
memory segment, need to be complete in the sense that they must be resumed
or processed again if a power off occurred.

In order to ensure this kind of properties of the “tearing sensitive” operations,
variables are usually used to store the current state of the operations. A variable
indicates either that the operation has started and is currently ongoing, or that
it has been committed. The variables may also be unused if no such operation
has yet occurred. In order to model this, we could introduce a set of possible
states state = {ongoing — committed — unused } and different variables, such as
transaction state or erase state, keeping track of the status of the corresponding
operations. Then when the card is reset, all states are checked and if some are
ongoing, specific measures are taken.

2.2 The Source Code

In our case study, an array all states is used to store the states of all the
“tearing sensitive” operations:

For capacity and optimisation reasons, only the smallest space needed to store
this information is used. For instance, two bits are sufficient to represent a state:

#define STATE_UNUSED 0 /* 00b */

#define STATE_ONGOING 1 /* 01b */

#define STATE_COMMITTED 2 /* 10b */

Therefore, an unsigned char which contains eight bits may represent four states.
The array all states can thus be defined as follows:

unsigned char all_states[DIM];

where 4*DIM is large enough to contain states of all tearing sensitive operations.

This optimisation implies that to access a given state in the array, a byte number
and a slot number must be given:

Formal Verification of Security Properties of SC Embedded Source Code 307

The access functions are defined as follows:
unsigned char getState(int byteNb, int slotNb)

{ return GETBITS(all_states[byteNb], 2*slotNb, 2);}
void setState(int byteNb, int slotNb, unsigned char newst)

{ all_states[byteNb] =

SETBITS(all_states[byteNb], 2*slotNb, 2, newst);}
The macros GETBITS and SETBITS used are defined with bit operations:

#define GETBITS(X,P,N) (X>>(8-N-P)&~(~0<<N))

#define SETBITS(X,P,N,Y)

((X|(Y<<(8-N-P)))&(~((~Y&~(~0<<N))<<(8-N-P))))

Actually, the macro GETBITS(X,P,N) gives the N bits from position P in the byte X.
The macro SETBITS(X,P,N,Y) returns the byte X with the N bits that begin at
position P, set to the rightmost N bits of Y, leaving the other bits unchanged.
More precisely, the leftmost bits of X are unchanged if Y has at most N significant
bits, i.e. if the integer Y is less than 2N.

2.3 Verification Using Existing Approaches

Let us illustrate the approaches presented in Section 1, and more specially their
limitations, on the case study presented in the previous section.

Model verification approach. Let us show here that the missing formal link
between the model and the code allows to verify properties on the model that are
not verified by the code. Usually, for easiness reason, a high level model is used,
since it allows to verify high level properties without taking into account low
level aspects such as memory allocation. But making this choice increases the
risk of an incorrect abstraction. For instance, in our example, an intuitive way
to build a model is to define all states as an array of states, where a state is an
union set of three values: ongoing, committed and unused. The low level aspects of
bit manipulation used to retrieve or modify some bits of a byte are abstracted.
Therefore some source code bugs may not be detected by any verification on
the model. For instance, in the source code, the SETBITS macro has the following
comment :

/* return X with the N bits that begin at position P set to

the rightmost N bits of Y, leaving the other bits unchanged */

This comment is not correct since it does not mention the condition that Y

must be less than 2N. If this condition is not satisfied, the leftmost bits of X are

308 J. Andronick, B. Chetali, and C. Paulin-Mohring

modified. In particular, if the function setState is called with a newst greater
or equal than 22, the slots adjacent to the slotNb are also modified. In our
operating system module, the function setState is actually called only with one
of the three defined states that are less than 22. But if the program is reused,
one could define:

#define STATE_ABORT_STARTED 3 /* 11b */

#define STATE_ABORT_DONE 4 /* 100b */

and use setState(byteNb,slotNb,STATE ABORT DONE). This would overwrite the
adjacent slots in all states:

This undesirable behaviour would not be detected with a verification on the high
level model since the bit operations are not represented after the abstraction:

Actually the model is even incorrect since the adjacent state in the array remains
unused in the model whereas it becomes ongoing in the source code.

Source Code Verification Approach. As already mentioned, the difficulty
in handling the verification using inserted annotations consists in the definition
of global properties. To illustrate this in our case study, here is an example of
global property that may not be easily proved using only annotations:

“if getState(byteNb,slotNb) is called just after a call to
setState(byteNb,slotNb,newst), then the result is newst”

Another example of temporal property is the following: let commit next ongoing

be a function which sets to committed the first occurrence of ongoing in the array
all states. This function would be called at reset and we would like to prove
properties such as: “for any initial configuration of all states, there exists a
finite sequence of calls to commit next ongoing ending with all states containing
no ongoing state”.

3 Source Code Verification of Global Properties

As already mentioned, the idea presented in this paper is to combine the two
approaches presented in Section 1 in order to prove that the source code verifies
some high level and global security properties. Our method is based on four steps:

1. a specification step: the program is annotated by the specification of its
functions. This specification becomes the local model of the program.

2. a validation step: the soundness of the local model with respect to the source
code is proved using a source code verification tool.

Formal Verification of Security Properties of SC Embedded Source Code 309

3. a high level modelling step: a memory state transition model, or global model,
is formally generated from the local model of the code.

4. a security verification step: high level and global security properties are de-
fined and proved to be satisfied by the global model.

We use the Caduceus tool since it offers an architecture which enables such
a verification method and meets the requirements needed for our verification
of embedded operating system. Indeed it handles C programs and generates
explicitly the local model. Caduceus is built on top of the back-end verification
tool Why. However, in this paper, we will not do the distinction between the two
levels of analysis and refer only to Caduceus for actually the combination of both
systems. In the following, we present the main aspects of Caduceus (for more
details see [21, 22, 19, 20]) and then detail each step of our approach, illustrated
on the case study.

3.1 The Caduceus Tool

Annotations. Caduceus is a verification tool at the source code level. It is based
on Hoare logic with preconditions and postconditions, but with an additional ex-
plicit interpretation of both the specification and the code as state functions. The
programs handled are ANSI C source code, annotated with a specification lan-
guage inspired by the Java Modelling Language (JML, see [25]). Annotations are
used to define functional properties of each function. Formulae are expressed in a
first-order language where C expressions without side-effects can be used as well
as predicate variables (to be interpreted later) and specific keywords. They may
express functions preconditions (with the keyword requires), side-effects (with
assigns), postconditions (with ensures), global invariants, loop invariants, loop
variants and loop side-effects, logical functions (logic) or predicate (predicate),
etc. Moreover, in the postcondition, the construction \result may be used for
the result returned by the function and \old for the initial state of the function.
Finally, the keyword \nothing can be found in the assign clause to state that the
function has no side-effect.

Translation. Caduceus interprets a C program using a memory model. Instead
of modelling the memory as a big array, Caduceus follows Burstall and Bornat’s
approach (see [9, 13]) where a spatial separation divides the memory into disjoint
memory locations whenever it is possible: for instance, two different fields of a
structure will be in separated memory locations. This separation ensures “for
free” that changes made in one memory location do not affect the other locations.
Within a single memory location, the separation of variables is also ensured, in
the sense that a proof obligation is generated whenever the separation is not
clearly established.

The model identifies the notions of pointer and array. Hence, the basic values
are either direct values in numeric types (integers or reals) or pointers. A value
p of type pointer is either the null pointer or a pair (base addr(p),offset(p))

made of the address of the memory block containing p and the offset of p within
this block. Then, the memory state of the C program is represented by a set

310 J. Andronick, B. Chetali, and C. Paulin-Mohring

of global variables corresponding to statically separated memory spaces. Each
memory space maps pointers to values. For instance, a variable intP may be used
to represent the part of memory where arrays of integers are allocated. We can
visualise intP as a function which associates each base address corresponding to
an allocated array of size n to a piece of memory of size n containing the integer
values in the array.

Caduceus provides an access function acc(intP,p) retrieving the value pointed
by p in the state intP and a modification function upd(intP,p,3) whose result
is a new memory state intP’ where the value pointed by p becomes 3. More-
over, as shown in the figure, a pointer arithmetic function shift(p,i) allows
to represent the C expression p+i or p[i]. Finally an additional variable alloc

represents an allocation store which tells which addresses are allocated and the
size of the block it points to. This allows annotations such as (valid alloc p),
or (valid range p i j), etc.

Another aspect that must be taken into account by Caduceus is the effects
inference. Caduceus computes for each C function the set of memory variables
and global variables which are read and/or modified.

To conclude, Caduceus interprets each C construction as a functional trans-
formation of values of memory states, using a monadic interpretation.

Verification. The Caduceus tool generates verification conditions. These are
the missing parts of the verification process that must be proved in order to
ensure the soundness of the program with respect to the specification given in
the annotations. A specific aspect of Caduceus is its independence with respect
to the prover. Therefore the verification conditions may be checked in any of the
theorem provers proposed (PVS [28], Simplify [30], Coq [32], ...)

Due to its interactive and higher order aspects, the Coq theorem prover
(see [32]) has been chosen for our verification method. Moreover, when used
with Coq, Caduceus provides a validation term ensuring the correctness of each
function in the program, which is useful for our method, as explained Section 3.4.
The validation term is a proof of ∀x. P re(x) → ∃x’. Post(x,x’) where x and x’
represents the values of memory variables modified by the function before and
after the function call. Assuming the input memories x satisfies the precondition,
an output state can be reached which satisfies the postcondition. In the Coq
system, which is based on Type Theory, the validation term corresponds to
an executable functional term which represents our semantics of the given C
program. Type checking this validation term therefore ensures the correctness
of the program with respect to its specification1. See [20] for a more detailed
analysis of this technology.

1 This is of course under the condition of the correctness of Caduceus functional in-
terpretation of C programs.

Formal Verification of Security Properties of SC Embedded Source Code 311

3.2 Specification Step

The annotations are used in order to describe the function behaviour, i.e., its
specification. In our case study, the postcondition of getState must indicate that
the result of the function contains the two bits at position 2*slotNb in the byte
all states[byteNb]. Talking about a given bit of an integer in the annotation
language is quite impossible. Moreover, a Coq library provides support for binary
representation of integers. Therefore, we define a logical function GetBits, which
is declared in the annotations, and will be instantiated in the Coq language:

/*@ logic int GetBits(int b,int p,int n) */

This function represents the same operation as the GETBITS macro, i.e., it gives
the n bits from position p in the byte b. Once declared, this function can be used
in any annotation. On the other hand, the precondition of getState indicates
that the indexes byteNb and slotNb are valid in the array all states. Finally,
getState does not modify any global variable. The specification of getState can
thus be expressed as follows:

/*@ requires (0<=byteNb<DIM) && (0<=slotNb<8/2)

@ assigns \nothing
@ ensures \result == GetBits(all states[byteNb],2*slotNb,2)*/

unsigned char getState(int byteNb, int slotNb)

{ return GETBITS(all states[byteNb], 2*slotNb, 2);}

For the setState function, an additional precondition must be added men-
tioning that the new state must be less than 22. Concerning what is modified
by setState, it consists of two bits of all states[byteNb]. However, the assign
clause may not represent the bits of an integer. Therefore the assigns clause
will contain the whole byte all states[byteNb] and the postcondition is used to
indicate that the two bits at position 2*slotNb become equal to the newst given
and that the other bits are unchanged:

/*@ requires (0<=byteNb<DIM) && (0<=slotNb<8/2)

@ && (0<=newst<2^2)

@ assigns all states[byteNb]

@ ensures (GetBits(all states[byteNb],2*slotNb,2)==newst)

@ && (\forall int j; 0<=j<8/2 && (j!=slotNb) =>

@ GetBits(all states[byteNb],2*j,2) ==

@ GetBits(\old(all states[byteNb]),2*j,2)) */

void setState(int byteNb, int slotNb, unsigned char newst)

{ all states[byteNb] =

SETBITS(all states[byteNb], 2*slotNb, 2, newst);}

3.3 Validation Step

The validation step consists in proving the verification conditions generated by
Caduceus. When used with Coq, the verification conditions are lemma state-
ments that may be proved interactively. In our example, the main goals to be
established concern the postconditions of the two functions. For the getState

function, the following goal has to be proved:

312 J. Andronick, B. Chetali, and C. Paulin-Mohring

\result == GetBits(all_states[byteNb],2*slotNb,2)

where \result is built by the macro GETBITS, i.e., it consists in a combination of
binary operations. Concerning setState, two goals have to be proved:

1. (GetBits(all_states[byteNb],2*slotNb,2) == newst)

2 \forall int j; 0<=j<8/2 && (j!=slotNb) =>

GetBits(all_states[byteNb],2*j,2) ==

GetBits(\old(all_states[byteNb]),2*j,2))

All these goals are equality statements between two bytes. The idea is to do
the analysis at a bit level, using Coq libraries defining binary representation of
integers and binary operations. In other words the goals are proved using an aux-
iliary lemma stating that two bytes are equal if all their bits are pairwise equal.
This needs the definition of a function computing the ith bit of a given byte.
Moreover, lemmas are needed to compute the ith bit for all binary operations,
in order to obtain the ith bits of \result.

Finally, the function GetBits that has been only declared is defined using
the Coq library. Then we need to know the ith bits of the byte resulting from
the GetBits operation: (ith (GetBits x p n) i) = (ith x (i+(8-n-p))) for any
x, p, n and i such that (0≤p¡8), (0≤n¡8-p), and (0≤i¡n).

3.4 High Level Modelling Step

Our goal is to be able to express high level global properties. Such properties are
defined in terms of states at function call and states resulting from the function
execution. Examples of higher order properties are:

- “if the state before the call to the function f satisfies P , then there
exists a state resulting from a finite sequence of calls to f which satis-
fies Q”
- “if the state s before the call to the function f satisfies P and s′ is
the state resulting from the execution of f from s, then the call to the
function g from the state s′ results in a state satisfying Q”.

Therefore we would like to model a function as a transition relation between two
memory states. In other words, we would like to define, for each given function f ,
a binary relation f transition such that x is in relation with x’ by this relation
(denoted by (f transition x x′)) if x’ is the state resulting from the execution
of f from the state x.

The identification of the memory states x and x’ depends on the memory
model. The memory model chosen here is the one defined in Caduceus, described
in Section 3.1. A memory state is made of the global variables of the program

Formal Verification of Security Properties of SC Embedded Source Code 313

(numeric values or references), the global variables corresponding to the memory
segments (e.g. intP) and a variable alloc storing the allocated addresses.

More precisely, for each function f with a list −→a of parameters, Caduceus
computes the set −→z of “read-only” variables (variables of the program and vari-
ables representing memory segments) and the set −→t of “read-written” vari-
ables. Caduceus also computes the precondition Pref (−→a ,−→z ,−→t) from the re-
quires clause of the annotation and the memory states computed. In the same
way, the postcondition Postf (result,−→a ,−→z ,−→t@,−→t) is computed, where −→t cor-
responds to the values after the function call and −→t@ to the values at function
call. The postcondition also includes the assign clause of the function.

For instance, for the function setState, a single state variable intP is intro-
duced, corresponding to the memory segment where all states is allocated. The
list of parameters −→a is (byteNb, slotNb, newst), the list of read-only variables
−→z is (all states, alloc) and the list of read-written variables −→t is (intP). The
precondition contains the requires clause, together with a validity condition of
the variable all states in the allocation table alloc:

(0 ≤ byteNb < DIM) and (0 ≤ slotNb < 8/2) and (0 ≤ newst < 22) and

(valid states all states alloc)

Finally the postcondition combines the assigns and the ensures clauses:

(GetBits(acc(intP, shift(all states, byteNb)), 2 ∗ slotNb, 2) = newst) and

(∀ j : int. (0 ≤ j < 8/2 and j �= slotNb) →
(GetBits(acc(intP, shift(all states, byteNb)), 2 ∗ j, 2) =

GetBits(acc(intP@, shift(all states, byteNb)), 2 ∗ j, 2))) and

assigns(alloc, intP@, intP, pointer loc(shift(all states, byteNb)))

Using the memory states computed by Caduceus, there are two approaches for
the transitional definition of a function f : we may use the code of the function or
only its specification. Using the code means defining the resulting state x’ as the
translation of the code: x’=f̄(x), where f̄ represents the functional translation
of the C program. This approach may be useful if some computational aspects
of the function are needed to prove a specific property and are not represented
in the specification of the function. However this needs an explicit functional
interpretation f̄ of the code, which may be huge, giving rise to heavy proofs. Let
us note that, in addition, this model of the code is provided by Caduceus only
when used with the Coq prover (see Remark below).

We choose a more abstract approach following the idea that since we proved
that the specification represents the program, the function can be modelled only
by its specification. In other words, x and x’ are in relation by f transition if
x verifies the precondition of f and x’ verifies its postcondition:

(f transition x x’) ≡ Pref (x) ∧ Postf (x,x’)

More precisely, using the work performed by Caduceus in order to identify x
and x’, f transition has the following form:
(f transition result −→a −→z −→

t@
−→
t) ≡ Pref (−→a ,−→z ,

−→
t@) ∧ Postf (result,−→a ,−→z ,

−→
t@,

−→
t)

314 J. Andronick, B. Chetali, and C. Paulin-Mohring

notations are first order formulae. However, targeted properties will have to be
expressed in the chosen prover. Therefore, in the case of complex temporal prop-
erties, such as properties on transitive closures, higher order provers will be more
suited.

Going further into technical aspects, Caduceus does not actually give access
to the functional translation of the precondition and the postcondition directly,
but only to the validation term, and only when used with the Coq theorem
prover. The validation term has the following type:

f valid : ∀x. P ref (x) → ∃x′. Postf (x,x′)

However, a trick of the Coq language using type inference allows to express the
property Pref (x) ∧ Postf (x,x’) as a simple expression only using f valid.

Remark: in the first approach mentioned, using the functional interpretation
of the code, the memory state x’ is actually the witness built by the validation
term. Therefore, this approach is also possible only when Caduceus is used with
the Coq prover.

The fact that the validation term is only provided with the Coq prover is a
major argument in our choice of Coq. Another argument being an easier defini-
tion of global or temporal properties.

3.5 Security Verification Step

In this final section, we show that the global properties mentioned in Section 2.3
can be expressed and proved using our global model.

The first property was: “if getState(byteNb,slotNb) is called just after a call
to setState(byteNb,slotNb,newst), then the result is newst”. This property has
the following statement in Coq:

Lemma get_set :

forall (byteNb slotNb newst:Z)(all_states:pointer)

(alloc:alloc_table)(intP:memory Z)(intP0:memory Z),

(setState_transition byteNb slotNb newst all_states alloc

intP intP0)

-> (getState_transition byteNb slotNb all_states alloc

intP0 newst).

The proof is straightforward after unfolding the transition definition.
The second property was: “ for any initial configuration of all states, there

exists a finite sequence of calls to commit next ongoing ending with all states

containing no ongoing state”. The specification of commit first ongoing states
that either there was already no ongoing state in all states and then nothing
is done, or the first ongoing state of all states before the call is changed into
a committed state. In Coq, a finite sequence of calls to such a function can be
defined inductively using the transitional formal model of the function. Then
the Coq statement of the property states that for any array all states and
initial state intP, there exists a memory state intP0 such that this state results
from the successive calls to commit first ongoing from intP and that there is no

Of particular note is the prover independence of the method itself, since an-

Formal Verification of Security Properties of SC Embedded Source Code 315

ongoing state in all states in the state intP0. The memory state intP0 given in
the proof is the witness of the validation term and the proof is done inductively
on the size of the sequence of calls: one step of the function makes the number
of ongoing states decrease by one, therefore, after a finite number of calls, this
number reaches zero.

We presented here simple global properties since the case study has been
shortened for the illustration. Thus only few functions were presented. But once
the whole system is specified and its model is generated, other global security
properties concerning the behaviour of the entire system may be proved.

4 Conclusion

In the smart cards world where security and performance are the main business
criteria, formal verification activity becomes a mandatory step. Building high
level models of the system being developed to prove correctness properties is
useful but is still expensive, as it requires experts. Moreover, a formal link be-
tween the models and the actual system implementation is lacking. The goal
is then to build tools generating secure code from verified high level models.
But those tools have to be improved to take into account the scarce resources
of smart cards. Another immediate solution is to reason directly on the source
code. This method could be handled by the developer, but reasoning at this low
level limits the expressiveness of the properties to prove.

The method we proposed here allows to combine the two approaches and
to take benefits from both. A functional verification is performed at the source
code level by the insertion of annotations describing the expected behaviour of
the program. This step strengthen the confidence in the code by providing a
proof that its execution will have the expected behaviour. The originality of our
method is to use the program specification already defined in the annotations,
to derive a high level model allowing the definition and verification of high level
security properties. The model is thus automatically generated from an existing
formal specification. Moreover, the missing formal link between the model and
the code is provided by the formal derivation of the model from a formal speci-
fication, together with the formal proof that this specification is verified by the
code. Therefore global security properties concerning the behaviour of the whole
system can be proved on the model, in a independent way.

Our future work will consist in generalising the method in order to handle
a wider class of embedded programs and to be able to express a wider range
of smart card security properties. For instance, casts of pointer or structure are
used in our embedded source code, but this is the main unsupported feature
of Caduceus. This is due to the memory separation model used in Caduceus,
that becomes incorrect in the presence of such casts. The memory model must
therefore be adapted to handle any embedded source code. Another extension
would be to represent the tearing in the annotation language. This would allow to
define the conditions that must hold even if a tearing occurs. Since the high level
model is derived from the annotations, global properties could then be proved

316 J. Andronick, B. Chetali, and C. Paulin-Mohring

concerning the global behaviour of the system in the case of a power off. An
interesting direction would also be to investigate an automatic transformation of
temporal security properties into properties expressed on our high level model. In
this context, a comparison with model checking based methods, which is missing
in this paper, should be made.

Finally, our method allows a faster transfer of the tools to the developers,
giving them the possibility to define properties directly on their source code. This
will help us to achieve our main goal of a wide deployment of formal verification
tools to the developers to produce automatically a secure embedded code.

Acknowledgements. We would like to thank Jean Christophe Filliâtre, Thierry
Hubert and Claude Marché for their useful help and support in using Caduceus.

References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. Software
and System Modeling, 2004. Online First issue, to appear in print. http://www.
key-project.org/.

2. J. Andronick, B. Chetali, and O. Ly. Formal Verification of the Integrity Property
in Java Card Technology. In International Conference on Research in Smart Cards
(Esmart’03), September 2003.

3. J. Andronick, B. Chetali, and O. Ly. Using Coq to Verify Java Card Applet
Isolation Properties. In International Conference on Theorem Proving in Higher
Order Logics (TPHOLs’03), volume 2758 of LNCS, pages 335–351. Springer-Verlag,
September 2003.

4. The Bali project. http://isabelle.in.tum.de/bali/.
5. D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim. Jass - Java with Assertions.

In K. Havelund and G. Rosu, editors, Workshop on Runtime Verification 2001,
volume 55 of Electronic Notes in Theoretical Computer Science. Elsevier Science,
July 2001. http://csd.informatik.uni-oldenburg.de/∼jass/.

6. G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and M. Pavlova. Enforcing High-
Level Security Properties For Applets. In Sixth Smart Card Research and Advanced
Application IFIP Conference (CARDIS’04), August 2004.

7. G. Barthe, G. Dufay, L. Jakubiec, B. P. Serpette, and S. Melo de Sousa. A Formal
Executable Semantics of the JavaCard Platform. In D. Sands, editor, Proceed-
ings of the 10th European Symposium on Programming Languages and Systems
(ESOP’01), volume 2028 of LNCS, pages 302–319. Springer-Verlag, 2001.

8. D. Bert, S. Boulmé, M.-L. Potet, A. Requet, and L. Voisin. Adaptable Translator
of B Specifications to Embedded C Programs. In K. Araki, S. Gnesi, and D. Man-
drioli, editors, FME 2003: Formal Methods, volume 2805 of LNCS, pages 94–113.
Springer-Verlag Heidelberg, October 2005.

9. R. Bornat. Proving Pointer Programs in Hoare Logic. In Proceedings of the 5th In-
ternational Conference on Mathematics of Program Construction (MPC’00), pages
102–126. Springer-Verlag, 2000.

10. L. Burdy, L. Casset, and A. Requet. Formal Development of an Embedded Verifier
for Java Card Byte Code. In Proceedings of the 2002 International Conference
on Dependable Systems and Networks (DSN’02), pages 51–58. IEEE Computer
Society, 2002.

Formal Verification of Security Properties of SC Embedded Source Code 317

11. L. Burdy, J.-L. Lanet, and A. Requet. Java Applet Correctness: A Developer-
Oriented Approach. In K. Araki, S. Gnesi, and D. Mandrioli, editors, International
Symposium of Formal Methods Europe (FME’03), volume 2805 of LNCS, pages
422–439. Springer-Verlag, September 2003.

12. L. Burdy and A. Requet. Jack : Java Applet Correctness Kit, November 2002.
13. R. Burstall. Some Techniques for Proving Correctness of Programs which Alter

Data Structures. Machine Intelligence, 7:23–50, 1972.
14. L. Casset. Development of an Embedded Verifier for Java Card Byte Code Using

Formal Methods. In L.-H. Eriksson and P. Lindsay, editor, Proceedings of the
International Symposium of Formal Methods Europe (FME’02), volume 2391 of
LNCS, pages 290–309. Springer-Verlag, 2002.

15. The Caveat Project. http://www-drt.cea.fr/Pages/List/lse/LSL/Caveat/

index.html/.
16. B. Chetali, C. Loiseaux, E. Gimenez, and O. Ly. An Interpretation of the Common

Criteria EAL7 level : Formal Modeling of the Java Card Virtual Machine. In 3rd
International Common Criteria Conference (ICCC’02), May 2002.

17. ESC/Java. http://research.compaq.com/SRC/esc/.
18. ESC/Java2. http://www.sos.cs.ru.nl/research/escjava.
19. J.-C. Filliâtre. The Why Verification Tool. http://why.lri.fr/.
20. J.-C. Filliâtre. Verification of Non-Functional Programs using Interpretations in

Type Theory. Journal of Functional Programming, 13(4):709–745, July 2003.
21. J.-C. Filliâtre and C. Marché. The Caduceus tool for the Verification of C Pro-

grams. http://why.lri.fr/caduceus/.
22. J.-C. Filliâtre and C. Marché. Multi-Prover Verification of C Programs. In Sixth

International Conference on Formal Engineering Methods (ICFEM), volume 3308
of LNCS, pages 15–29, Seattle, November 2004. Springer-Verlag.

23. A. Hammad, A. Requet, B. Tatibouët, and J.-C. Voisinet. Java Card Code Gen-
eration from B Specifications. In J. S. Dong and J. Woodcock, editors, 5th Inter-
national Conference on Formal Engineering Methods (ICFEM’03), volume 2885 of
LNCS, pages 306–318. Springer-Verlag Heidelberg, November 2003.

24. M. Huisman and K. Trentelman. Extending JML Specifications with Temporal
Logic. In Algebraic Methodology And Software Technology (AMAST’02), volume
2422 of LNCS, pages 334–348. Springer-Verlag, 2002.

25. G. T. Leavens, K. Rustan M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML: Nota-
tions and Tools Supporting Detailed Design in Java. In OOPSLA 2000 Companion,
pages 105–106. ACM, October 2000.

26. Loop. http://www.sos.cs.ru.nl/research/loop.
27. C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa Tool for Java Pro-

gram Verification, 2002. http://krakatoa.lri.fr/.
28. The PVS system. http://pvs.csl.sri.com/.
29. A. Requet and G. Bossu. Embedding Formally Proved Code in a Smart Card:

Converting B to C. In Third International Conference on Formal Engineering
Methods (ICFEM’00), pages 15–24. IEEE Press, 2000.

30. The Simplify decision procedure (part of ESC/Java). http://research.compaq.

com/SRC/esc/simplify/Simplify.1.html.
31. Static Source Code Analysis Tools for C. http://www.spinroot.com/static/.
32. The Coq Development Team LogiCal Project. The Coq Proof Assistant Reference

Manual. http://pauillac.inria.fr/coq/doc/main.html.
33. D. von Oheimb and T. Nipkow. Machine-checking the Java Specification: Prov-

ing Type-Safety. In J. Alves-Foss, editor, Formal Syntax and Semantics of Java,
volume 1523 of LNCS, pages 119–156. Springer-Verlag, 1999.

A Formal Model of Addressing for
Interoperating Networks

Pamela Zave

AT&T Laboratories—Research, Florham Park, NJ 07932, USA
pamela@research.att.com

Abstract. Designing network address spaces for interoperation among
domains is a challenging task. A formal model in Alloy is used to clarify
the problems and explore solutions. Basic connectivity requirements are
proposed, and two different sets of constraints are shown to satisfy them.

Keywords: networks, network design, network requirements, Alloy.

1 Introduction

Universal connectivity is an important goal of networking. Today the world-wide
network is divided into a vast and diverse collection of administrative domains.
These domains include topologically distinct networks such as cellular networks,
WiFi networks, and private IP subnetworks. They also include overlay networks
such as virtual private networks and protocol-specific voice-over-IP networks.

To achieve the goal of universal connectivity, administrative domains must
interoperate. By definition, an administrative domain controls its own address
space. Yet interoperation requires that a client attached to one domain be able
to produce and use an address identifying a client attached to another domain.

This paper concerns the problem of designing address spaces and interop-
eration mechanisms that satisfy basic connectivity requirements. This is more
difficult than it sounds at first hearing. Addresses1 can be non-unique, syntacti-
cally constrained, scarce, transient, and used for many purposes at many levels
of abstraction. There is no established notion of “good addressing” [4].

Equally important, interoperation is an inherently confusing subject. This
work was motivated by my experience designing an overlay voice-over-IP network
[1]. Our team had seemingly endless discussions about interoperation, which
never led to any clarity or comfort with the subject. I built the formal model
described here in the hope of dispelling that confusion. Unfortunately, now that
the confusion is gone, it is impossible to recreate what was so confusing. For-
tunately, now that the model exists, no one need experience that particular
confusion again.

1 The identifiers used in networking are known as as names, addresses, and locators,
among other things. This paper uses the term addresses, because it is most general
and fits well with an emphasis on routing.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 318–333, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Formal Model of Addressing for Interoperating Networks 319

Another difficulty is that very little is known about the user-level require-
ments on connection networks. Networking has always been and still is, to an
overwhelming extent, a bottom-up engineering activity. Researchers are just be-
ginning to look at the global properties they might try to satisfy with better
network designs, which makes any contribution in this area especially timely.

The formal model is written in the Alloy language, which offers a powerful
combination of relational and predicate logic [8]. The language is also attractive
because of the Alloy Analyzer [7], which was used extensively in this study.

The model shown here is both simplified and abbreviated. The full model is
available on the Web [3].

2 Connections

The model is concerned with networks that form persistent connections between
agents. Agents represent either hardware devices, particularly I/O devices, or
software systems. Most of the concepts in this section are illustrated in Figure 1.

The set of agents is partitioned into clients, which are the users of networking,
and servers, which are part of the network infrastructure. The signatures of these
object types in Alloy are:

abstract sig Agent { attachments: set Domain }
sig Server extends Agent { }
sig Client extends Agent { knownAt: Address -> Domain }

Each agent has a set attachments of domains to which it is attached so it can
use their facilities. If an address, domain pair appears in the knownAt field of
a client, then address is published as a way of reaching the client from domain.
An extra fact (Alloy constraint) says that each such pair can be published by at
most one client.

Addresses are primitive objects. Each domain has an address space (set of
usable addresses) and a map from its address space to agents:

sig Domain { space: set Address, map: space -> Agent }

An additional fact says that if an agent is in the range of a domain’s map, it
is attached to the domain. At this stage of modeling there is no relationship
between knownAt and map, because map is in the network infrastructure and
knownAt is in the user environment.

The persistent connections created by domains are called hops. A hop has
fields containing the domain that created it, its initiating agent initiator, its
accepting agent acceptor, and its source and target addresses. If a field declaration
in an object does not have an explicit set or relation marking, the value of the
field is always a single object.

sig Hop { domain: Domain,
initiator, acceptor: Agent, source, target: Address }

320 P. Zave

hop 0 hop 1
client 0 client 1

domain 1domain 0

link
server

Fig. 1. A connection through two domains. The server is attached to both domains

Additional facts say that both agents are attached to hop’s domain, and that
both addresses are in the space of the hop’s domain. In Figure 1, the arrow
representing hop 0 shows that its initiator is client 0 and its acceptor is the
server.

Most important of all, a fact says that the hop domain’s map relation maps
the hop’s target address to the hop’s acceptor agent. A domain’s map models
routing in the domain.

Servers can form multi-hop connections by creating internal links between
hops they are participating in. Like a hop, a link is expected to transmit data
more or less transparently.2 A link has fields representing the server creating it
and the two distinct hops oneHop and anotherHop it connects:

sig Link { server: Server, oneHop, anotherHop: Hop }

Additional facts say that the server of a link is a participant (initiator or ac-
ceptor) in both of its hops. Also, a hop belongs to at most one link in each
server. This ensures that each connection between clients will be a linear chain
of alternating hops and links, without forks or joins.

Because hops and links work together to form connections, it is convenient
to have a direct representation of their closure. This is contained in two fields
of a connections object. A pair of hops is in the binary relation atomConnected
if and only if they are linked together. The binary relation connected on hops is
the transitive closure of atomConnected.

one sig Connections { atomConnected, connected: Hop -> Hop }

The modifier one indicates that there is exactly one connections object.
This basic model is extremely simple for something as complex as networking,

but it is sufficient to study many questions, particularly those related to routing
and addressing. It allows servers to be gateways between domains, as in Figure 1,
or to link hops within domains.

For simplicity, it completely eliminates the temporal dimension of network
protocols. It ignores the possibility that an agent might refuse a connection, or be
unable to accept one because it is busy. It also ignores multipoint connections,

2 Part of the function of a server might be to filter or transform the data in some way,
in which case it will be less than fully transparent.

A Formal Model of Addressing for Interoperating Networks 321

because these are formed using point-to-point connections as building blocks,
and are not directly relevant to routing.

An instance of this model is a snapshot of network state. Thus agent mobility
is not represented directly, but is reflected by changes in agents’ attachments and
domains’ maps.

3 Interoperation

In this model, interoperation between domains is viewed as a feature that can
be added to networks, along with many other types of feature not discussed in
this paper. Any feature is installed in a domain and has some set of servers that
implement it:

abstract sig Feature { domain: Domain, servers: set Server }

An additional fact says that every feature has at least one server, and every
server implements exactly one feature.

A server of an interoperation feature is a gateway from its domain to a second
domain called its toDomain. When the server accepts a hop in its domain, it
initiates a corresponding hop in its toDomain, and links the two hops together.
The source and target addresses of the initiated hop are obtained by applying an
interoperation translation relation interTrans to the source and target addresses
of the accepted hop.

If a client wishes to connect to a client attached to a different domain, it must
have a target address it can use in its own domain to request the connection.
Conversely, a client must have an address in every domain from which it is
reachable. The presence of interTrans reflects the fact that a client’s addresses
in foreign domains may look very different from its native addresses in domains to
which it is attached. These differences can arise because of syntactic restrictions,
overlapping native address spaces, and historical factors.

The relationships among address spaces are illustrated by interoperation of
the PSTN and two Internet overlay networks for telecommunications, the ones
defined by SIP [10] and BoxOS [1].

The PSTN was the first domain to be designed. Its address space allows only
digit strings of limited length, so a typical native address is 12223334444.

SIP was the second domain to be designed (history is often important because
newer domains usually bear the burden of interoperating with older domains).
The SIP address space is based on URI syntax. A typical native address is
sip:alice@host1. In SIP all addresses have the prefix sip, so a foreign PSTN
address has the form sip:12223334444?user=phone.

BoxOS was the third domain to be designed. Its address space is also based
on URI syntax, and a typical native address is boxos:bob@host2. A foreign
PSTN address has the form pstn:12223334444. A foreign SIP address has the
form sip:alice@host1.

Note that native addresses of a domain can be contained in the address space
of another domain, as SIP addresses are contained in the BoxOS address space, or

322 P. Zave

pstn:
12223334444

source=

target =

source=
12223334444

sip:source=

12223334444

target =

sip:alice@

BoxOS SIPPSTN

host1

target =
15556667777 sip:alice@

host1

?user=phone
client

sip:alice@

host1

client

12223334444
server

s0
server

s1

Fig. 2. Interoperation of two domains through a third domain

encoded in the address space of another domain, as PSTN addresses are encoded
in the BoxOS address space. This distinction determines whether translation is
an identity or not.

Figure 2 shows how the PSTN and SIP domains would interoperate if they
were attached to each other only through a BoxOS domain. The three source
addresses are addresses of the initiating client in three different domains. The
target addresses are addresses of the accepting client in different domains. Note
that server s1 must know how to translate the address of a PSTN client, even
though the PSTN is neither its domain nor its toDomain.

The PSTN address space has no encoding of SIP addresses. There are two
ways that a PSTN client can request a connection to a SIP client. The first
possibility is to dedicate a PSTN address to each reachable SIP client, so that
interoperation translation of addresses is one-to-one. This is the method illus-
trated by Figure 2, where PSTN 15556667777 corresponds to sip:alice@host1
in both BoxOS and SIP.

A more common method is to dedicate a single PSTN address to an interop-
eration server. The interoperation server prompts the user for a foreign address;
because it has full use of the voice channel, it can use speech recognition or digit
codes to get the alphabetic characters and punctuation of a URI. The server
then translates its target PSTN address to the entered foreign address, so it
is performing a one-to-many translation. This situation is discussed further in
Section 5.3.

An example of a many-to-one translator is a dynamic, single-address Net-
work Address Translator (NAT). This is an interoperation server that translates
many private, unregistered IP addresses to a single public, registered IP address
representing the entire subnetwork served by the NAT (see also Section 6).

The signature of an interoperation feature is as follows. The constraints
within the signature apply separately to each interoperation feature.

sig InteropFeature extends Feature { toDomain: Domain,
exported, imported, remote, local: set Address,
interTrans: exported some -> some imported } {
domain != toDomain

A Formal Model of Addressing for Interoperating Networks 323

exported in domain.space && remote in exported
imported in toDomain.space && local in imported
remote.interTrans = local }

Four address sets play a role in interoperation. The sets exported and imported
are in the address spaces of the domain and toDomain, respectively. They are
the true domain and range of the feature’s interTrans relation. This is indicated
by the declaration of interTrans, whose keywords say that each element of ex-
ported corresponds to some element of imported, and each element of imported
corresponds to some element of exported,

The subset remote of exported contains those addresses that trigger the fea-
ture because they point to agents in domains other than the domain of the
feature. The set local is the relational image of remote under interTrans. Note
that “local” is a relative term; for example, in Figure 2, server s0 translates
remote 15556667777 to sip:alice@host1, which is more local to BoxOS than
to the PSTN, but only truly local to SIP.

An address is defined as foreign in a domain if it triggers some interoperation
feature in that domain. An address is defined as native in a domain if it maps
to a client in that domain. An unused address is neither foreign nor native.

A fact in the model says that if an address is foreign in a domain, it maps
to some agent in that domain, and every agent it maps to is a server of an
interoperation feature triggered by it. The constraint allows a domain to have
more than one interoperation feature triggered by the same address.

The primary function of an interoperation server is described by this fact:

fact { all f: InteropFeature, g: Agent, h1: Hop |
g in f.servers && h1.acceptor = g &&
h1.domain = f.domain && h1.target in f.remote

=> (some l: Link, h2: Hop |
l.agent = g && l.oneHop = h1 && l.anotherHop = h2 &&
h2.domain = f.toDomain && h2.initiator = g &&
h2.target in (h1.target).(f.interTrans) &&
(h1.source in f.exported =>

h2.source in (h1.source).(f.interTrans))) }

Note that the relational composition operator (dot) is also used for field selection
in Alloy, because a field in a signature is really a function from objects of the
signature type to field values. Note also that there is no distinction between
an individual and a singleton set, nor between a set and a unary relation, so
individuals can participate in relational composition.

The fact determines what an interoperation server must do if it is the acceptor
of a triggering hop, meaning a hop in its feature’s domain and with a target
address in its feature’s remote set. The server must initiate a corresponding hop
in its toDomain, and link the two hops together. Note that if the source of the
triggering hop is not in exported, it cannot be translated by interTrans, and the
source of the initiated hop is unconstrained.

324 P. Zave

4 Requirements on Interoperation

Now we come to the most interesting question: What requirements should inter-
operation satisfy? As mentioned in Section 1, this territory is largely unexplored.

One complication in formulating requirements is that a connection network
can be modified by a wide variety of features, as mentioned in Section 3. Because
the purpose of many features is to alter network behavior in ways that are
observable by users (and presumably serve the needs of users), it seems almost
impossible to find properties that should be satisfied regardless of which features
are present.

For one example, many addresses used to request connections represent, not
particular clients, but more abstract concepts [12]. An abstract address might
represent a group of interchangeable clients, or it might represent a person who
might be located near, and thus able to use, different devices (clients) at different
times. A request for a connection to an abstract address is routed to a feature
server that chooses a target client appropriate to the time or other circumstances,
and does whatever else is necessary to redirect the request to that target. Thus
features that support abstract addresses can make routing nondeterministic.

To understand interoperation, it seems necessary to isolate it from the effects
of features that might interact with it, such as those supporting abstract ad-
dresses. Its requirements can then be based on the assumption that an address
should point to at most one client.

In the absence of a classification of other network features that would tell us
which ones can interact with interoperation, we simply eliminate them all with
a fact stating that all features are interoperation features.

Other constraints on the model (not shown here) say that an interoperation
server cannot do anything but perform its primary function as described in Sec-
tion 3. A hop with an unused target address can be routed to an interoperation
server, but the server cannot link it to any other hop.

As an incidental result of these restrictions, in any connection between two
clients, one client is the initiator of its hop and the other client is the accep-
tor of its hop. This incidental result is employed to facilitate formalization of
interoperation requirements.

The most obvious requirement is that an address, domain pair published
as a way of reaching a client always reaches that client. The formalization of
the reachability requirement says that if a client is requesting a connection to
an address in a domain in another client’s knownAt set, then the first client is
connected to the second client through that request. As explained above, we can
assume that the second client is the acceptor of its hop:

assert Reachability { all c: Connections,
g1, g2: Client, h: Hop, a: Address, d: Domain |

g1 = h.initiator && d = h.domain && a = h.target &&
(a->d) in g2.knownAt

=> (some h2: Hop | g2 = h2.acceptor && (h->h2) in c.connected) }

A Formal Model of Addressing for Interoperating Networks 325

The second requirement concerns the returnability of connections. It is de-
sirable that a client accepting a connection should be able to take the source
address it has received, request a second connection to it, and get a connection
to the same client that initiated the first connection. Many telecommunication
features for automatic callback rely on an assumption of returnability. Naturally,
real callback features operate in a temporal context, so the second connection
exists at a later time than the first connection.

The formalization of the returnability requirement postulates a connection
between two clients, and identifies a return-request hop h3 with the necessary
relation to a hop h2 from which it is derived. It then asserts that a complete
return connection exists.

assert Returnability { all c: Connections,
g1, g2: Client, h1, h2, h3: Hop |
h1.initiator = g1 && h2.acceptor = g2 &&
(h1->h2) in c.connected &&
h3.initiator = g2 &&
h3.domain = h2.domain && h3.target = h2.source

=> (some h4: Hop | h4.acceptor = g1 && (h3->h4) in c.connected) }

The third requirement considered in this paper is motivated by the fact that
many real address spaces overlap. The non-uniqueness requirement means that
an address for a client need not be globally unique. Formally, the requirement is
satisfied if the following predicate can be instantiated in a model that satisfies
the other requirements.

pred NonUniqueness (g1, g2: Client, d1, d2: Domain, a: Address) {
(a->d1) in g1.knownAt && (a->d2) in g2.knownAt }

5 Satisfying the Requirements

5.1 Methods of Reasoning

Satisfying the requirements entails adding constraints to the model, checking
that the model with the additional constraints is still consistent and allows
the expected useful instances, and proving that the model with the additional
constraints satisfies the requirements.

The Alloy Analyzer finds instances of predicates, for example the non-
uniqueness predicate above. Such instances show that a model is consistent,
and that it does, indeed, allow the expected configurations and behavior.

The Alloy Analyzer also searches for counterexamples of assertions. Although
the search is limited to instances of a bounded size, within those limits it is
exhaustive. Every theorem and lemma was checked in this way by the Alloy
Analyzer, and no counterexamples to them were found. With respect to the
thoroughness of the search, there are two cases.

If an assertion refers to no recursive concepts, then the searchable instance
set is satisfactorily large. A typical search space would allow up to 3 domains,

326 P. Zave

6 features, 10 agents, 6 addresses, 4 hops, and 3 links, which is large enough to
include all conceivable counterexamples with three domains. For these assertions,
Alloy analysis is more convincing than a manual proof (see Section 7).

If an assertion includes recursive concepts, on the other hand, the search
bounds must be smaller. Also, Alloy analysis of this model has a fundamental
limitation associated with recursive concepts (see Section 7). For these assertions
analysis is less convincing, and is supplemented by manual inductive proofs.

5.2 Satisfying the Requirements with Generic Constraints

This section shows how to satisfy the requirements with a set of general-purpose
constraints. While the constraints are plausible, they may be too stringent in
some circumstances. Section 5.3 show a special case might be handled with looser
constraints.

In Section 2, connections was introduced as a signature for a unique object
containing only derived fields. A previously unmentioned field of connections is
a ternary relation reachedBy, defined so that a client, address, domain triple
is present if and only if the address in the domain can reach the client, either
directly or through interoperation:

one sig Connections {... reachedBy: Client -> Address -> Domain } {
...
all g: Client, a: Address, d: Domain | (a->d) in g.reachedBy iff
(g in a.(d.map) ||

some f: InteropFeature |
f.domain = d && a in f.remote &&
some ((a.(f.interTrans) -> f.toDomain) & g.reachedBy)

) }

An address in a domain reaches the client directly if the address maps to the
client in the domain. An address in a domain reaches the client indirectly if it
triggers an interoperation feature in the domain, and if the feature can map it to
an address, domain pair that reaches the client. An arrow is a Cartesian product
operator, so (a.(f.interTrans) → f.toDomain) is the set of all pairs that can be
produced by f from a. The last expression intersects this with g.reachedBy, and
evaluates to true if the intersection is nonempty.3

The general-purpose strategy for guaranteeing reachability is straightforward.
First, constraints ensure that if an address, domain pair can be used to reach a
client, then routing to that pair is deterministic, and always reaches the client.
The constraints for deterministic routing are:

fact Constraint1 { all a: Address, d: Domain |
some (a.(d.map) & Client) => one a.(d.map) }

fact Constraint2 {

3 The actual Alloy code for reachedBy has an additional constraint to guarantee that
the value is a least fixed point.

A Formal Model of Addressing for Interoperating Networks 327

all f: InteropFeature, a: Address | lone a.(f.interTrans) }
fact Constraint3 { all a: Address, d: Domain |

lone f: InteropFeature | f.domain = d && a in f.remote }

Constraint 1 says that if the agents that a domain maps an address to, intersected
with the set of all clients, is nonempty (some), then the domain maps that
address to exactly one agent. In other words, if an address maps to a client in a
domain, it maps only to that client in that domain. Constraint 2 says that the
address translation performed by an interoperation feature is a partial function
(the quantifier lone means one or zero). Constraint 3 says that an address triggers
at most one interoperation feature in a domain.

The second part of the strategy is to constrain a client’s reachedBy set to
contain its knownAt set:

fact Constraint4 {
all c: Connections, g: Client | g.knownAt in g.(c.reachedBy) }

This relates its published addresses to network routing.
Constraints 1 through 3 are easy to apply, because they constrain individual

domains. Constraint 4 is not localized, because of the recursive definition of
reachedBy. This is not surprising, as reachability demands a routing path from
any domain in which in which a client has a known address to a domain where
the client is directly accessible.

The reachedBy set of a client is often larger than its knownAt set. For one
example, a mobile device might be attached temporarily to a domain where its
address is not published. For another example, a domain might provide con-
nections among other domains without having any clients of its own, in which
case there is no need to publish any of its addresses. When resource alloca-
tion changes, interoperation routes can change without any change observable
to clients.

Returnability is much more difficult to satisfy. It depends on every previous
constraint except Constraint 4. In addition, to begin with the obvious, the return
address of a hop is its source address, so we need constraints to guarantee that
the information in the source address is accurate and complete:

fact Constraint5 { all h: Hop | h.initiator in Client =>
h.source in ((h.domain).map).(h.initiator) }

fact Constraint6 {
all f: InteropFeature | f.domain.space in f.exported }

Constraint 5 says that if a hop is initiated by a client, its source must be an
address of the client in the domain. Constraint 6 says that every interoperation
feature’s exported set must include the address space of its domain. This prevents
the loss of source information during interoperation.

The core constraints for returnability require that each interoperation feature
have a partner feature that provides its return path. The constraints are obvious,
while the definition of an adequate partner feature is not:

328 P. Zave

pred PartnerTo (f1, f2: InteropFeature) {
f1.domain = f2.toDomain && f1.toDomain = f2.domain &&
(f1.imported - f1.local) in f2.remote }

fact Constraint7 { all f1: InteropFeature |
some f2: InteropFeature | PartnerTo(f1,f2) }

fact Constraint8 { all f1, f2: InteropFeature |
PartnerTo(f1,f2) => (f1.interTrans).(f2.interTrans) in iden }

Constraints 7 and 8 say that each interoperation feature has a partner, and that
the interTrans relations of partners invert each other.

Figure 3 provides the intuition to understand the definition of partnership,
and how it supports returnability. This figure describes a network in which the
domains could be pictured in a horizontal line, with each domain interoperating
only with the domains on its immediate left and right.

The figure shows the address spaces of two neighboring domains, except for
unused addresses. Each address space is divided into native addresses of the
domain, addresses that encode native addresses of domains to the left (Lnative),
and addresses that encode native addresses of domains to the right (Rnative).
These two domains have interoperation features f1 and f2 that are partners of
each other.

f1.remote

f2.local

Rnative1

native1

Lnative1

domain2domain1

Lnative2
f1.interTrans

f2.interTrans

f2.interTrans

f1.interTrans
native2

Rnative2

f2.remote

f1.local

Fig. 3. Partner interoperation features

If a hop in domain1 is routed to a server of f1, its target will be in Rnative1.
Its source will be in Lnative1 or native1. Its source cannot be in Rnative1 because
if it were, the connection path would have passed through the native domain of the
target on its way to domain1. Because routing is deterministic, the path would
have ended in the native domain of the target.

Because of Constraint 8, the partition of the address space of domain1 corre-
sponds to a partition of the address space of domain2. The hop target translates
to an address in f1.local. The hop source translates to an address in f1.imported
- f1.local. If f2 satisfies (f1.imported - f1.local) in f2.remote then any hop in do-
main2 targeting the translated source address will trigger f2, and will be linked
by f2 to a continuing hop in domain1.

The actual proof of returnability encompasses all connection topologies, in-
cluding rings and grids. Its essence is a generalization of the above argument,

A Formal Model of Addressing for Interoperating Networks 329

a0,a2

a2,a0

c0.knownAt = c1.knownAt =
{ (a1−>d0),

d2

a0,a1

d1

(a2−>d2) }

a2,a1
a1,a0

{ (a0−>d0),
(a1−>d1),

source,target =

c2.knownAt =

domain d0

a1,a2

(a0−>d1),

c0

{ (a2−>d0),

(a1−>d2) } (a0−>d2) }

c2

(a2−>d1),

client
c1

Fig. 4. The requirements do not depend on global uniqueness of addresses

PSTN VPN

c2

c1

a2,a1

a1,ax[a2]

a1,a2

a1,a2

Fig. 5. Interoperation of a VPN with the PSTN

which can be summarized as follows: From any address, domain pair reaching a
client, there is a unique path (sequence of domains) to the client. If an address
source is the source of a hop in a domain then the path of the connection from
its originating client to the hop is the reverse of the unique path from source,
domain to the client. If the hop’s target triggers a feature f in domain, and if
source is in f.remote, then the unique path to the client of target, domain retraces
at least one step of the path routing so far. This contradicts the assumption of
deterministic routing, so source cannot be in f.remote.

The model instance in Figure 4, generated by the analyzer with all constraints
in force, shows that the non-uniqueness requirement is satisfied. Each of the three
clients is attached to one domain and has address a0 in that domain. Yet each
client is known in every domain. In the figure, a hop is labeled with a source,
target pair of addresses. Either path could be the return path of the other.

330 P. Zave

Because returnability does not require Constraint 4, it can be satisfied even
when reachability is not. A real-world example of this is a dual-mode cellphone4

at a WiFi hotspot, placing voice-over-IP calls. If the WiFi domain has no cooper-
ative agreement with the device’s home cellular domain, then it does not inform
the home cellular domain of the device’s presence at the WiFi hotspot. In this
case there is no forwarding from its known address in the home cellular domain
to its temporary WiFi address, and the device is not reachable. At the same
time, if the constraints for returnability are satisfied, the device’s outgoing calls
will be returnable at the temporary address until it leaves the WiFi hotspot.

5.3 A Special Case

Figure 5 shows a Virtual Private Network (VPN) interoperating with the PSTN.
The picture is not geographically accurate, as the two clients are on opposite
coasts of the U.S. The VPN belongs to a corporation which provides it so em-
ployees can make long-distance business calls at low cost. PSTN hops to and
from the interoperation servers are local, while VPN hops are long-distance.

In the figure, client c1 at PSTN address a1 is using access address ax to
reach the VPN gateway, then entering address a2 using touch tones on the voice
channel. The gateway translates ax to a2 and makes the long-distance connection
to client c2 at PSTN address a2. The figure also shows the connection when c2
(not an employee of the VPN owner) returns the call to c1.

We wish to know if this network satisfies the requirements, and the results
in the previous section are not suitable. As in an example in Section 3, address
translation from the PSTN to the VPN is one-to-many, violating Constraint 1.

We can create a formal model that is closer to the truth by extending the
PSTN address space to include pairs of numbers, where the first number is
dialed, and the optional second number is entered through touch tones. Then
interoperation translation from the PSTN to the VPN projects a pair of numbers
ax[an] onto its second number an, and is a function. But now Constraint 8
is violated, because interoperation translation applied to number pairs is not
invertible.

Fortunately, there is additional information that can be brought to bear:
number pairs are never used as source addresses. Because the basic Alloy model
is already available, it is quick work to try a version in which the targetOnly
addresses of a domain are never used as source addresses in the domain, and
Constraint 8 does not apply to them.

This version does not satisfy returnability, and examination of a counterex-
ample shows why. The interoperation feature f1 from the PSTN to the VPN
translates both a2 and the targetOnly address ax[a2] to a2. The address a2
must be in the f2.remote set of its partner f2, but it is not, because ax[a2] is
in f1.remote, and therefore a2 is in f1.local. The solution is to remove the influ-
ence of the targetOnly address ax[a2] from the computation of the partnership
constraint on f2.remote.

4 A dual-mode cellphone is a WiFi device as well as a cellphone.

A Formal Model of Addressing for Interoperating Networks 331

With the definition of partnership modified appropriately, analysis shows
quickly and convincingly that returnability is satisfied for this network.
The reachedBy set of client c2 consists of (a2→PSTN), (a2→VPN), and
(ax[a2]→PSTN).

6 Related Work

The most prominent address-related networking problem is understanding reach-
ability at the level of Internet routing, which is “staggeringly complex” [6]. At
this level of abstraction, routing information is distributed dynamically by the
policy-driven Border Gateway Protocol (BGP) and other local protocols. A path
from one point to another includes multiple hops within the same domain. There
are packet filters to block packets, and packet transformers to modify them.

While it does not seem feasible to capture all of this in an Alloy model,
important aspects of it do seem approachable. For example, Feamster and Bal-
akrishnan study routing only in steady BGP states, taking the position that
important requirements can be violated by steady states as well as transient
states [6].

The model presented here is valid for packet routing in the sense that only
connection requests are really manipulated, and a connection request is equiv-
alent to a packet. In [11] reachability is defined directly for packet routing: for
any pair of points, there is a reachable set containing the packets that can travel
from the first to the second point. It would be interesting to see how an Alloy
model based on this definition compares to the present one. The goal of [11]
is polynomial computation of reachable sets in a stable configuration of a spe-
cific network, taking into account routing information, packet filters, and packet
transformations.

It seems clear that logic-based modeling and analysis has something to con-
tribute to these efforts. The proofs in [6] are informal, yet my experience suggests
that network routing has subtleties that only the precision of a completely formal
model is likely to expose. The algorithm in [11] might be made even more useful
if it were possible to explore invariant relationships among various architectural
constraints. Certainly Feamster argues for continuing, broad-spectrum research
on correctness and verification of network routing [5].

It is well-known that NATs cause problems in the Internet by allowing ad-
dresses that are not globally unique. Currently the worst problems are dynamic
and protocol-specific [2]: How does a NAT know that a protocol is finished us-
ing an address, so that it can re-use the address while maintaining a one-to-one
interoperation translation? How does a NAT find and apply interoperation trans-
lation to addresses embedded in the payloads of packets? Nevertheless, general
principles of addressing and interoperation should be a sanity check on all specific
proposals.

332 P. Zave

7 Evaluation and Future Work

As a modeling language, Alloy is very pleasant to use. The combination of rela-
tional logic and predicate logic is a powerful one. Although Alloy is first-order,
quantification over objects with relation-valued fields provides many of the bene-
fits of a second-order language. Typing is strong but avoids unnecessary distinc-
tions. The syntax is highly streamlined, with a few operators applied uniformly
in many contexts to do many jobs. The extended quantifier vocabulary no, lone,
one, some and all provides major shortcuts in writing logical and relational
expressions. The complete model is 190 lines of Alloy code.

Analysis by model enumeration is often exhilarating and illuminating, and
equally often tedious and frustrating. The Alloy team is working on features and
capabilities in the Analyzer that will reduce tedium and frustration. Many of
them are already installed, but because they are not yet documented, they are
not really available to most users.

Recursion in the definition of reachedBy corresponds, in a network, to ex-
tending a connection path with additional hops. If the routing data contains a
closed loop, the effect on routing will be a path that is extended indefinitely
(until terminated by some external mechanism).

Alloy analysis of this model cannot reveal a problem of this kind. Any analysis
will impose a maximum length on paths. If a model instance contained a request
for a connection to an address that caused such a problem, the connection could
not be completed according to the model’s constraints within the maximum path
length. Thus there cannot be a model instance containing such a request, and its
absence tells us nothing about whether there is a routing problem of this kind.

Despite this limitation, the research was undertaken in an analyze-first-prove-
last style, which worked fairly well. Alloy’s push-button analysis was extremely
helpful in building intuition, encouraging experimentation, and finding errors at
all levels. It was also a huge reassurance that a continually evolving model was
improving as well as changing. The entire experience causes me to trust bounded
model enumeration more than manual proof, when enumeration is known to be
reasonably comprehensive or at least representative.

All the discoveries were made using analysis alone—proofs served only to
confirm and explain. Considering the most difficult result in this paper, which
is the satisfaction of returnability, this had good and bad sides. On the good
side, experimentation gave me a hypothesis and the confidence to try to prove
it. On the bad side, I did not really understand why the hypothesis worked until
I proved it, although I believed that I understood it before.

Of course, this is not a controlled experiment. It is likely that a practitioner
of a prove-first-analyze-last style would find that proof attempts detect most
errors. And a person who was able to find an optimal interleaving of the two
techniques, particularly with the help of an automated proof checker, would have
the best results of all. Above all, it is important to remember that all of these
tools are aids to thought, and none of them is a substitute for it.

Experience suggests that Alloy models with many more object types and
facts could be written and read easily. As model enumeration became less con-

A Formal Model of Addressing for Interoperating Networks 333

vincing, proof could take a larger role. This is fortunate, because there is an
unlimited supply of unanswered questions about networking. Section 6 hints at
the richness of packet routing at the resource level. At the level of features and
services, [12] shows how to manage interactions among features that manipulate
abstract addresses. The results are limited, however, by the assumption that
every address is globally unique. It would be valuable to have a single model
combining interoperation features, which remove the limitation, with abstract-
address features.

Other areas of networking in which addresses have semantics and are manipu-
lated include directory lookup (including DNS and a growing number of protocol-
specific Internet name spaces), security (including uses of self-authenticating
names and trusted domains), and mobility [9]. Experience shows that almost
any two functions that translate addresses can interact, so the likelihood of
address-related problems in these areas is high.

References

1. G. W. Bond, E. Cheung, K. H. Purdy, P. Zave, and J. C. Ramming. An open
architecture for next-generation telecommunication services. ACM Transactions
on Internet Technology, 4(1):83–123, February 2004.

2. R. Bush and K. Moore. NATs are evil—Well, maybe just bad for you. https://

rip.psg.com/ ∼randy/ 040226.apnic-nats.pdf, 2004.
3. The Distributed Feature Composition (DFC) Web site. http:// www.research.

att.com/projects/dfc.
4. P. Faltstrom and G. Huston. A survey of Internet identities. Internet Architecture

Board, draft-iab-identities-00.txt, 2004.
5. N. Feamster. Practical verification techniques for wide-area routing. In Proceedings

of the ACM SIGCOMM Workshop on Hot Topics in Networks, 2003.
6. N. Feamster and H. Balakrishnan. Towards a logic for wide-area internet routing.

In Proceedings of the ACM SIGCOMM Workshop on Future Directions in Network
Architecture, 2003.

7. D. Jackson. Automating first-order relational logic. In Proceedings of the Eighth
ACM SIGSOFT International Symposium on the Foundations of Software Engi-
neering, pages 130–139. ACM, 2000.

8. D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodularity mechanism. In
Proceedings of the Ninth ACM SIGSOFT International Symposium on the Foun-
dations of Software Engineering, pages 62–73. ACM, 2001.

9. G.-C. Roman, G. P. Picco, and A. L. Murphy. Software engineering for mobility:
A roadmap. In Proceedings of the Twenty-second International Conference on
Software Engineering, pages 241–258. IEEE Computer Society, June 2000.

10. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. IETF Network
Working Group Request for Comments 3261, 2002.

11. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson, and J. Rex-
ford. On static reachability analysis of IP networks. Technical report, AT&T
Research, 2004.

12. P. Zave. Address translation in telecommunication features. ACM Transactions
on Software Engineering and Methodology, 13(1):1–36, January 2004.

An Approach to Unfolding Asynchronous
Communication Protocols

Yu Lei1 and S. Purushothaman Iyer2

1 Department of Computer Science and Engineering,
University of Texas at Arlington, Arlington, TX 76019

ylei@cse.uta.edu
2 Department of Computer Science,

North Carolina State University, Raleigh, NC 27695
purush@csc.ncsu.edu

Abstract. We present an approach to directly unfold asynchronous
communication protocols that are modeled as a group of Extended Fi-
nite State Machines (EFSMs) communicating through shared message
queues. A novel aspect of our approach is that we reduce the redun-
dancy in representing the states of message queues by storing individual
messages separately in our unfolding representation. Our approach can
also take advantage of the compositional nature of these protocols to
minimize the size of a complete finite prefix of their potentially infinite
unfoldings. Our empirical results indicate that our approach can produce
very compact state space representations.

Keywords: Software Verification, State Space Search, Unfolding, EFSM.

1 Introduction

One common strategy to analyze the behavior of communication protocols is
to search through their state space. This strategy can be easily automated.
However, it suffers from the state explosion problem, i.e., the number of states
to be searched can be enormous for many protocols. One approach to dealing
with this problem is unfolding, which involves transforming a protocol modeled
as a Petri net to an acyclic net that preserves the behavior of the original net.
Since the acyclic net is simpler in structure, it is amenable to protocol analysis.
In addition, the acyclic net preserves the partial order semantics, i.e., allowing
independent events to be left unordered. This avoids a major source of state
explosion due to interleaving of independent events. As a result, unfolding can
produce a very compact state space representation.

A major challenge with unfolding is that a naive unfolding process will pro-
duce an infinite representation for protocols that have a finite state space but
exhibit infinite behaviors. McMillan [1] described an algorithm to construct a
complete finite prefix of a potentially infinite unfolding of a Petri net by iden-
tifying nodes of the acyclic net, called cut-off points, where unfolding can be

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 334–349, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Approach to Unfolding Asynchronous Communication Protocols 335

terminated while still representing all the reachable states of the original net.
McMillan’s algorithm was later improved by Esparza et al. [2], where a new
condition to determine cut-off points was defined. The new condition allows un-
folding to be terminated earlier, which results in a smaller complete finite prefix.
In [3], Esparza and Romer provided another new condition for determining cut-
off points for unfolding synchronous transition systems. The new condition takes
advantage of the compositional nature of these systems to further reduce the size
of their complete finite prefixes.

In this paper we describe an approach to unfolding asynchronous commu-
nication protocols. These protocols consist of processes that interact with each
other by sending and receiving messages through shared queues. Existing ap-
proaches can be applied by first modeling these protocols as a Petri net and
then unfold the net. However, protocols are typically described at a higher level
of abstraction than Petri net. In our approach, we model these protocols as a
group of communicating Extended Finite State Machines (EFSMs), and then
directly unfold them, i.e., without any intermediate transformation to a Petri
net. Directly working with EFSMs allows us to exploit the full power of variables
and arithmetic/logic expressions at the specification level. A novel aspect of our
approach is that in our unfolding representation, we store individual messages
separately while still preserving the FIFO semantics of shared queues. This im-
plicit encoding of message queues reduces the redundancy in representing the
states of these queues. Moreover, our approach can take advantage of the com-
positional nature of these protocols to minimize the size of their complete finite
prefix. As a proof-of-concept, we have developed a prototype tool and conducted
several case studies. The empirical results indicate that our approach can pro-
duce very compact state space representations.

Road map: Section 2 introduces the EFSM model. Section 3 defines our un-
folding representation, namely, labeled occurrence net. Section 4 presents our
unfolding algorithm. Section 5 discusses how to construct a complete finite pre-
fix. Section 6 reports our case studies. Section 7 provides the concluding remarks.

2 The EFSM Model

The EFSM model is a widely used notation for describing the behavior of pro-
tocols. Informally, an EFSM is a finite state machine extended with the use of a
set V of (local) variables. The extension allows us to add a guard and a compu-
tation block to each transition. We will interpret V over a finite set of integers
I to simplify the formalism.

Definition 1. An extended finite state machine W over V and I is a 5-tuple
(S,Q, s0, γ0, δ), where

– S is a finite set of control states.
– Q is a finite set of bounded queues.
– s0 ∈ S is the initial control state.
– γ0 : V → I is the initial assignment of values to variables.

336 Y. Lei and S.P. Iyer

– δ is a set of transitions such that for each transition t, the source control state
head(t) ∈ S and target control state tail(t) ∈ S are defined. Additionally,
every transition t should have at least one of the following components:
• a boolean expression (i.e., a guard) pred(t) over V and I.
• a computational block comp(t) consisting of a sequence of assignment

statements, which involves boolean and/or arithmetic expressions over
V and I.

• a send operation (q!e) or a receive operation (q?x), where q ∈ Q, e is a
boolean and/or arithmetic expression over V and I, and x ∈ V . We will
refer to q as que(t).

A transition t is called a silent transition if t does not contain a send or receive
operation, a send transition if t contains a send operation, and a receive transition
if t contains a receive operation. In the following, we will abbreviate a transition
t as s

p,A,c−→ s′ where s = head(t), s′ = tail(t), p = pred(t), A = comp(t), and c is
a send or receive operation. Furthermore, we will treat p : (V → I) → bool and
A : (V → I)→ (V → I) as functions that denote the semantics of the predicate
and the computational block. That is, p maps an assignment of V to a boolean
value, and A maps one assignment of V to another. Since the valuation function
γ : V → I is a finite function, we will write γ[x �→ v] as a function which equals
γ on all variables other than x, where it equals v.

We model an asynchronous communication protocol as an EFSM system
consisting of a group of EFSMsW1,W2, . . ., andWn. These EFSMs communicate
by sending and receiving messages through shared queues. We assume that a
queue is unidirectional and can be accessed by one sender and one receiver. To
simplify the notations, we also assume that these EFSMs are fully connected,
i.e., given two EFSMs Wi and Wj , there exists a queue qij that has Wi as its
sender and Wj as its receiver and a queue qji which has Wj as its sender and
Wi as its receiver.

Let W = (W1,W2, . . . ,Wn) be an EFSM system. We will explain the seman-
tics of W in terms of its global states and transitions. We first define a local
state of a EFSM W = (S,Q, s0, γ0, δ) as a pair l = (s, γ), where s ∈ S is a
control state of W and γ : V → I is a valuation function. A global state of
W is a tuple g = (l1, . . . , ln;w12, w13, . . . , wn(n−1)), where li is the local state
of Wi, 1 ≤ i ≤ n, and wij denotes the content of the message queue qij , where
1 ≤ i, j ≤ n, i �= j. The initial global state g0 of W contains the initial local
state li0 = (si0, γi0) for each EFSM Wi and wij = ε for all 1 ≤ i, j ≤ n, i �= j,
where ε represents an empty queue.

Let t = head(t)
p,A,c−→ tail(t) be a transition of a participating EFSM W .

Define t to be open at a local state l = (s, γ) of W provided that (1) s = head(t);
and (2) p(γ) = true. Furthermore, let g be a global state of W and l be the local
state of W at g. Then, a send or silent transition t of W is enabled at g if t is
open at l. A receive transition t of W is enabled at g if t is open at l, and que(t)
is not empty at g.

Let t be a transition of an EFSM Wi that is enabled at a global state g =
(l1, . . . , ln;w12, . . . , wn(n−1)) of W. Let li = (s, γ) be the local state of Wi at

An Approach to Unfolding Asynchronous Communication Protocols 337

g. Let · be the normal concatenation operator. We define a global transition,
g

t⇒ g′, where g′ = (l1, . . . , li−1, l
′
i, li+1, . . . , ln;w′

12, . . . , w
′
n(n−1)), as follows:

– if t = s
p,A−→ s′ is a silent transition, then l′i = (s′, A(γ)), and ∀1 ≤ u, v ≤

n, u �= v, w′
uv = wuv.

– if t = s
p,A,qij !e−→ s′ is a send transition, then l′i = (s′, A(γ)), and ∀1 ≤ u, v ≤

n, u �= v, w′
uv = wuv, except that w′

ij = wij · γ(e), where γ(e) is the result of
evaluating e in the environment of γ.

– if t = s
g,A,qji?x−→ s′ is a receive transition, and m is the message at the front

of qji, then l′i = (s′, γ′), where γ′ = A(γ[x �→ m]), i.e., m is bound to x
before the evaluation of A, and ∀1 ≤ u, v ≤ n, u �= v, w′

uv = wuv, except
that m · w′

ji = wji, i.e., v is removed from qji.

Let ω = t1t2 . . . tm be a sequence of transitions. ω is an enabled transition
sequence at a global state g if there exists a sequence of states g = g0, g1, . . .,
and gm = g′ such that ti is enabled at gi−1 and gi−1

ti⇒ gi, where 1 ≤ i ≤ m.
Furthermore, we will use , g ω⇒∗ g′ to denote that ω is enabled at g and that its
execution results in g′. A global state g is a reachable state of an EFSM system
W if there exists a transition sequence ω such that g0

ω⇒ ∗ g, where g0 is the
initial global state of W.

Figure 1 shows an example EFSM system that models a simplified version of
the alternating bit protocol, where W1 is the sender process and W2 the receiver
process. Between W1 and W2 are two message queues q12 (from W1 to W2) and
q21 (from W2 to W1). The initial states of W1 and W2 are s1,1 and s2,1. The
two variables s and r, whose initial values are 0, represent the sequence and
acknowledgment number, respectively. The two numbers must match before W1

(or W2) sends (or receives) the next message. Note that t1,2 is used to simulate
data corruption, and t2,3 sends a negative acknowledgment.

s1, 2

s1,1

s1, 3

t1,2: q1,2 ! -1t1,1: q1,2 ! s

t1,3: q2,1 ? r

t1,4: s == r

s = 1 – s;

r = 0

t1,5: s != r

r = 0

W1

s2,1

s2, 2

t2,1: q1,2 ? s

t2,2: s == r

q2,1 ! s;

r = 1 – r;

s = 0

t2,3: s != r

q2,1 ! -1;

s = 0

W2

Fig. 1. An example EFSM system

338 Y. Lei and S.P. Iyer

3 Labeled Occurrence Net

Our unfolding representation is a restricted form of Petri net called an occurrence
net. A Petri net, or simply a net, is a tuple (P, T, F), where P is a set of places
and T is a set of transitions such that P ∩ T = ∅, and F ⊆ (P × T) ∪ (T × P)
is the flow relation. Places and transitions are also generically called nodes. The
preset of a node x, denoted as •x, is {y ∈ P ∪ T |(y, x) ∈ F}. The postset of x,
denoted as x•, is {y ∈ P ∪ T |(x, y) ∈ F}. The notions of preset and postset can
be naturally extended to a set of nodes.

Let (P, T, F) be a net and x1 and x2 be two nodes in P ∪ T . Let F ∗ be
the reflexive and transitive closure of F . The nodes x1 and x2 are said to be
in conflict, denoted as x1#x2, if there exist distinct transitions t′1 and t′2 such
that •t′1 ∩ •t′2 �= ∅, (t′1, x1) ∈ F ∗ and (t′2, x2) ∈ F ∗. Informally, x1 and x2 are in
conflict if there exist two paths leading to x1 and x2 which start at the same
place and immediately branch off. If x is in conflict with itself, then x is said to
be in self-conflict.

An occurrence net is a Petri net N = (B,E, F) that satisfies the following
constraints:

– Every place has at most one input transition, i.e., for every b ∈ B, |•b| ≤ 1;
– F has no cycles, i.e., the transitive closure of F is a partial order;
– No element in E is in self-conflict.

The elements of B and E are called conditions and events, respectively. We
will refer to the partial order induced by the transitive closure of F as the causal
order of N , denoted as <. Two nodes x1 and x2 are said to be concurrent, written
x1‖x2, provided neither x1 < x2 nor x2 < x1 nor x1#x2.

Occurrence nets can be infinite. We will restrict ourselves to those that are
well-founded, i.e., every node is finitely preceded, and in which every event has
at least one input condition. Note that this restriction implies the existence of
minimal conditions, i.e., conditions with no input events.

Let N = (B,E, F) be an occurrence net. A configuration C of N is a set of
events that are causally closed and conflict free. Formally, C is a subset of E
such that (1) ∀e ∈ C, e′ ∈ E : e′ < e =⇒ e′ ∈ C; and (2) ∀e, e′ ∈ C : ¬(e#e′). A
set of conditions is a co-set if its elements are pairwisely concurrent. A maximal
co-set with respect to set inclusion is called a cut. Let Min(N) be the minimal
conditions of N . Let C be a configuration of N . Then, the cut associated with
C is defined as Cut(C) = (Min(N) ∪ C•) \ •C. Finally, we define the local
configuration [e] of event e such that [e] = {e}∪{e′ ∈ E|e′ < e}, i.e., [e] includes
e and all the events that happen before e. Obviously, [e] is a configuration.

Let W = (W1,W2, . . . ,Wn) be an EFSM system. Unfolding of W consists of
building a set of labeled occurrence nets Σ = (B,E, F ;L), where (B,E, F) is an
occurrence net and L is a labeling function as explained below:

– A condition c of Σ is labeled by a local state l of an EFSM Wi, i.e., L(c) = l,
or a message m sent by Wi, i.e., L(c) = m. In the former case, c is called a
control condition. In the latter case, c is called a message condition. In both

An Approach to Unfolding Asynchronous Communication Protocols 339

c1: (s1,1, 0, 0)

c3: (s1,2, 0, 0)

c5: (s1,2, 0, 0)
c4: (-1)

c6: (0)

e1: t1,2 e2: t1,1

e3: t2,1 e5: t2,1

c2: (s2,1, 0, 0)

c7: (s2,2, -1, 0) c8: (s2,2, 0, 0)

c10: (s2,1, 0, 0)

e4: t2,3

c9: (-1)

e6: t2,2

c11: (0)

c12: (s2,1, 0, 1)

e7: t1,3 e8: t1,3

c13: (s1,3, 0, -1) c14: (s1,3, 0, 0)

e9: t1,5

c15: (s1,1, 0, 0)

e10: t1,4

c16: (s1,1, 1, 0)

e11: t1,2 e12: t1,1

c17: (s1,2, 0, 0)

c18: (-1)

c19: (s1,2, 0, 0)

c20: (0)

Fig. 2. An example labeled occurrence net

cases, we refer to Wi as owner(c). Also, for a message condition c, we use
que(c) to denote the queue to which m is sent.

– An event e of Σ is labeled by a transition t of an EFSM Wi, i.e., L(e) = t. If
t is a silent/send/receive transition, e is called a silent/send/receive event.
We also refer to Wi as owner(e) and que(t) as que(e).

Figure 2 shows a labeled occurrence net of the EFSM system in Figure 1. Each
circle represents a condition; each box represents an event. A control condition
(empty circle) is labeled with a local state of W1 or W2, which is in the form of
(control state, s, r). A message condition (solid circle) is labeled with its message
value. Note that on the left side of the dashed line are conditions/events of W1,
and on the right side are those of W2.

To illustrate some concepts introduced earlier, consider events e1 and e7,
which are in conflict because •e1∩•e2 = {c1}, and (e1, e1) ∈ F ∗ and (e2, e7) ∈ F ∗.
Also {e1, e3, e4} is a configuration, say C, with Cut(C) = {c3, c9, c10}. Note that
C is also the local configuration of e4, i.e., [e4] = C.

340 Y. Lei and S.P. Iyer

4 Unfolding an EFSM System

In this section we describe an approach to directly unfolding an EFSM system.
Our approach is iterative: it builds a sequence of labeled occurrence nets that
preserve the semantics of a given EFSM system. We call those occurrence nets
as branching processes of the given system. In the following, we first define the
notion of branching process, and then present our unfolding algorithm.

We start with the notion of a synchronizable pair. Intuitively a synchronizable
pair consists of a control condition cc and a message condition mc such that there
exists at least one receive transition that is open at the local state labeling cc
and can receive the message labeling mc. We wish to stress that the notion
of a synchronizable pair is the key to enforce the FIFO semantics of shared
queues. Note that these queues are not explicitly represented in our unfolding
representation.

Definition 2. Let W be an EFSM system and Σ a labeled occurrence net of
W. Let cc be a control condition and mc be a message condition of Σ. Let ec

and em be the input event of cc and mc, respectively. Then p = (cc,mc) is a
synchronizable pair in Σ provided that the following conditions are satisfied:

– cc and mc are concurrent, i.e., cc ‖ mc;
– There exists a receive transition t that is open at local state L(cc) and
que(t) = que(mc); and

– Let mc′ be a message condition such that owner(mc′) = owner(mc) and
que(mc′) = que(mc). Let e′m be the input event of mc′. If e′m < em, there
must exist a (receive) event e′c with owner(e′c) = owner(ec) such that mc′ ∈
•e′c and e′c = ec or e′c < ec.

The third condition in the definition deserves some explanation. Informally,
mc′ represents a message condition whose message would have been placed before
the message of mc in the same queue if the queue were explicitly represented,
and e′c represents the event that consumes the message of mc′. The condition
demands that all the messages sent before mc must have already been consumed
before cc is reached, which enforces the FIFO semantics of message queues.

Now we are able to make the following observations about evaluating a tran-
sition t that is open at the local state l labeling a control condition cc.

– If t is a send or silent transition, then t can be evaluated at l locally, i.e., its
execution only requires the information encoded at l.

– If t is a receive transition, then for each message conditionmc with que(mc) =
que(t) such that (cc,mc) forms a synchronizable pair, we can evaluate t at l
with t receiving the message of mc.

Now we are ready to define the notion of branching process. We will encode
a condition c as (α, e), where α is the local state or message labeling c and
e the input event of c if exists or a special symbol ⊥ otherwise . Similarly,
we will encode an event e as (t, β), where t is the transition labeling e and β

An Approach to Unfolding Asynchronous Communication Protocols 341

the preset of e. Note that these notations encode the flow relation F and the
labeling function L implicitly. Therefore, we can encode a labeled occurrence net
(B,E, F ;L) simply as a pair (B,E).

Definition 3. LetW = (W1, . . . ,Wn) be an EFSM system. Let g0 =(l01, . . . , l0n;
ε, ..., ε) be the initial global state of W. Then, the set of branching processes of
W are a set of labeled occurrence nets that are inductively defined as follows:

– ({(l01,⊥), . . . , (l0n,⊥)}, ∅) is a branching process of W;
– Let (B,E) be a branching process of W. Let t be a transition with owner(t) =
Wi. We consider three cases: (1) t is an internal transition; (2) t is a send
transition; (3) t is a receive transition.
• Case (1): If there exists a control condition cc = (l, e) ∈ B such that t is

open at l, (B ∪ {(l′, e′)}, E ∪ {e′}) is a branching process of W, where l′

is the local state reached by Wi after evaluating t at l and e′ = (t, {cc}).
• Case (2): If there exists a control condition cc = (l, e) ∈ B such that t is

open at l, (B ∪ {(l′, e′), (m, e′)}, E ∪ {e′}) is a branching process of W,
where l′ is the local state reached by Wi after evaluating t at l, m is the
message sent by t and e′ = (t, {cc}), .

• Case (3): If there exists a control condition cc = (l, ec) ∈ B and a
message condition mc = (m, em) ∈ B such that t is open at l and (cc,mc)
is a synchronizable pair, (B ∪ {(l′, e′)}, E ∪ {e′}) is a branching process
of W, where l′ is the local state reached by Wi after evaluating t at l with
m and e′ = (t, {cc,mc}).

If we define union of branching processes component-wise on conditions and
events, then branching processes of W are closed under union. Therefore, there
exists a unique maximal branching process of W, which is called the unfolding
of W. Note that the labeled occurrence net in Figure 2 is a branching process of
the example EFSM system in Figure 1.

Next we show that a branching process of an EFSM system preserves the
semantics of the system.

Proposition 1. Let Σ = (B,E, F ;L) be a branching process of an EFSM sys-
tem W. Let e1 and e2 be any two events such that owner(e1) = owner(e2).
Then, e1 and e2 cannot be concurrent.

Intuitively, the above proposition means that there is no parallelism within
a single EFSM.

Proposition 2. Let W = (W1,W2, . . . ,Wn) be an EFSM system. Let Σ be a
branching process of W. Let C be a configuration of Σ. Then, ∀1 ≤ i ≤ n, there
is exactly one (control) condition ci ∈ Cut(C) such that L(ci) is a local state of
Wi.

Intuitively, the above proposition means that every cut contains exactly one
control condition from each EFSM.

342 Y. Lei and S.P. Iyer

Definition 4. Let W = (W1,W2, . . . ,Wn) be an EFSM system. Let Σ be a
branching process of W. For any configuration C of Σ, define GState(C) =
(l1, . . . , ln; w12, . . . wn(n−1)), where

– li is the label of a control condition cci in Cut(C).
– wij, for 1 ≤ i, j ≤ n and i �= j, is a sequence of messages m1 · . . . ·mnij

such
that there are exactly nij message conditions mc1, . . .mcnij

in Cut(C), where
mck = (mk, ek), 1 ≤ k ≤ nij, such that (a) for 1 ≤ k ≤ nij, que(mk) = qij;
and (b) 1 ≤ k1 < k2 ≤ nij, ek1 < ek2 .

The above definition, which is well-defined due to Propositions 1 and 2, in-
dicates that every configuration of a branching process defines a global state.
For example, as mentioned earlier, C = {e1, e3, e4} is a configuration with
Cut(C) = {c3, c9, c10} in Figure 2. Then, GState(C) = ((s1,2, 0, 0), (s2,1, 0, 0);
ε,−1).

Theorem 1. let W be an EFSM system.

– Let Σ = (B,E, F ;L) be a branching process of W. For every configuration
C of Σ there exists a reachable global state g of W so that GState(C) = g.

– Let Σ = (B,E, F ;L) be the unfolding of W. For every reachable global state
g of W there exists a configuration C of Σ so that GState(C) = g.

Proof. Part I: This part follows from the fact that events and conditions are
added into a branching process by evaluating transitions and each transition is
evaluated in a way that preserves the semantics of W.

Part II: This part can be easily proved by induction on the length of a
transition sequence that reaches g from the initial state of W, considering that
any enabled transition can be evaluated to create a new branching process.

Algorithm 1 shows our unfolding algorithm, which takes as input an EFSM
system W and produces the unfolding Σ of W. The algorithm is iterative: It
starts with the initial branching process and creates a new branching process at
each iteration by adding new events into the branching process created at the
previous iteration. In the algorithm, V is a queue used to keep the conditions
that are yet to be expanded. In each iteration, we pull off a condition c from V .
If c = (l, e) is a control condition, we evaluate all the transitions that are open
at l, as indicated in Definition 3. If c = (m, e) is a message condition, we find
control conditions (l, e′) that can form a synchronizable pair with c and then
evaluate all the transitions that are open at l.

The labeled occurrence net in Figure 2 is a branching process of W con-
structed by algorithm Unfold. We use the first few steps to illustrate the proce-
dure. The initial branching process consists of conditions c1 and c2, which are
kept in V . Then, we pull off c1 from V . There are two transitions, namely, t1,1

and t1,2, that are open at s1,1. Evaluating t1,1 adds event e2 and conditions c5
and c6. Evaluating t1,2 adds events e1 and conditions c3 and c4. This process
can be continued to construct the unfolding of W.

An Approach to Unfolding Asynchronous Communication Protocols 343

Algorithm 1 Algorithm Unfold

input: a system W consisting of EFSMs W1, W2, . . ., Wn;
output: the unfolding Σ = (B, E, F ; L) of W;
let V be an empty queue;
let g0 = (l01, . . . , l0n; ε, ..., ε) be the initial global state;
add (l0i,⊥) for all 1 ≤ i ≤ n into B and V ;
while V �= ∅ do

c = deque(V);
if c is a control condition then

let c = (l, e), where l is a local state of EFSM Wi;
for each silent or send transition t of Wi open at l do

let l′ be the local state of Wi resulted by evaluating t at l;
add an event e1 = (t, c) to E;
add a control condition c1 = (l′, e1) to B and V ;
if t is a send transition then

let m be the message sent by t;
add a message condition (m, e1) to B and V ,

end if
end for
for each synchronizable pair (c, c′) that has not been processed do

for each open receive transition r at l with que(r) = que(c′) do
let l′ be the local state of Wi resulted by evaluating t at l;
add an event e1 = (r, {c, c′}) to E;
add a control condition c1 = (l′, e1) to B and V ;

end for
end for

else
/*c is a message condition*/
let c = (m, e);
for each synchronizable pair (c′, c) that has not been processed do

let c′ = (l′, e′), where l′ is a local state of EFSM Wi;
for each open receive transition r at l′ with que(r) = que(c) do

let l′ be the local state of Wi resulted by evaluating t at l;
add an event e1 = (r, {c′, c}) to E;
add a control condition c1 = (l′, e1) to B and V ;

end for
end for

end if
end while

5 Constructing a Complete Finite Prefix

Algorithm Unfold does not terminate for systems that have finite state space
but infinite behaviors. This situation has been dealt with by the notion of cut-
off event in [1] [2] [3]. In this section, we summarize the main results on cut-off
events, and show that the conditions identified in [3] can also be used to identify
cut-off events in our context.

344 Y. Lei and S.P. Iyer

Let W be an EFSM system and Σ the unfolding of W. A finite prefix of Σ is
complete if for every reachable global state g of W, there exists a configuration
C in the prefix so that (1) GState(C) = g and (2) for every transition t enabled
at g there is a configuration C ∪ {e} such that e �∈ C and e is labeled by t.

To construct a complete finite prefix, we need to identify places where unfold-
ing can be safely terminated without loss of information. Intuitively, if two con-
figurations C1 and C2 of Σ lead to the same global state ofW, i.e., GState(C1) =
GState(C2), then the continuations from Cut(C1) and Cut(C2) in Σ, i.e., the
portions of Σ that lie below the two cuts, are isomorphic, i.e., they differ only
in the identities of conditions and events. The motivation for identifying cut-off
events is to avoid computing isomorphic continuations, since it suffices to only
explore one of them.

Before we formally define a cut-off event, we first introduce the notion of an
adequate order. Let C be a configuration. An extension of C, denoted by C⊕E,
is another configuration C ∪ E, where C ∩ E = ∅. A well-founded partial order
≺ on the configurations of Σ is adequate if it satisfies the following conditions:

– it refines the inclusion order, i.e., C1 ⊂ C2 implies C1 ≺ C2;
– it is preserved by isomorphic extensions, i.e., if C1 ≺ C2 and GState(C1) =
GState(C2), then C1⊕E ≺ C2⊕E′, where E and E′ are isomorphic exten-
sions of C1 and C2, respectively.

Now we are ready to present the definition of a cut-off event.

Definition 5. Let W be an EFSM system and Σ the unfolding of W. Let ≺ be
an adequate order on the configurations of Σ. An event e is a cut-off event if Σ
contains another event e′ such that GState([e′]) = GState([e]) and [e′] ≺ [e].

Note that the condition [e′] ≺ [e] is important to guarantee the completeness
of a finite prefix, as shown in [2]. Also note that the identification of a cut-
off event depends on a chosen adequate order. In the following, we present two
adequate orders that were originally proposed for synchronous transition systems
[3]. The two orders take into account the compositional nature of these systems
in order to minimize their complete prefixes. We formally show that the two
orders can also be applied to our EFSM model.

LetW = (W1, . . . ,Wn) be an EFSM system and Σ the unfolding ofW. Let C
be a configuration of W. The projection of C onto Wi, denoted as C↓i, is the set
of events e such that owner(e) = Wi. It is easy to see that the events in C↓i can
be put into a sequence based on the causal order <. Let C↓i = e1e2 . . . eki

. Then,
the local view of C seen by Wi, denoted as Vi(C), is the sequence t1t2 . . . tki

,
where tj = L(ej), 1 ≤ j ≤ ki. We use V (C) = (V1(C), . . . , Vn(C)) to denote the
n-tuple of local views of C.

Theorem 2 shows that a configuration can be characterized by its local views.

Theorem 2. LetW = (W1, . . . ,Wn) be an EFSM system and Σ the unfolding of
W. Let C1 and C2 be two configurations of Σ. If V (C1) = V (C2), then C1 = C2.

An Approach to Unfolding Asynchronous Communication Protocols 345

Proof. Let C = C1∩C2. We will prove that C1 = C2 by showing that C1 = C and
C2 = C. By symmetry, it suffices to prove C1 = C. We proceed by contradiction.

Assume that C �= C1. Then C can be extended by an event e1 ∈ C1\C. We
prove that e1 ∈ C2, a contradiction to C = C1∩C2. Let t = L(e1) be a transition
of EFSM Wi. Then, Vi(C) · t is a prefix of Vi(C1), and since V (C1) = V (C2)
by assumption, also a prefix of Vi(C2). So C can also be extended by an event
e2 ∈ C2 such that t = L(e2).

Next we show e1 = e2 and thus e1 ∈ C2. Let c = (l, e) be the control condition
of Wi after executing the events in C ↓ i. Consider the following two cases:

– If t is a send or internal transition, the execution of t at l solely depends
on l. In other words, there can only be a single execution instance of t at l.
Therefore, e1 = e2.

– If t is a receive transition, the execution of t at l also depends on the message
in the front of que(t). In other words, e1 and e2 could be different execution
instances of t at l which receive different messages. We show that this is
impossible. Assume that e1 and e2 receive the message sent by events s1
and s2, respectively. Since a message queue has a single sender, s1 and s2
must belong to the same EFSM, say Wj . This means that s1 and s2 cannot
be concurrent. Also note that s1 and s2 cannot be in conflict; otherwise,
Vj(C1) must be different from Vj(C2). Therefore, s1 < s2 or s2 < s1. Let
c1 = (m1, s1) and c2 = (m2, s2) be the message condition in the postset of
s1 and s2, respectively. Then, either (c, c1) or (c, c2) is a synchronizable pair,
but not both, leading to a contradiction. Therefore, e1 = e2.

Next we will introduce an auxiliary order between two transition sequences,
called the silex order, which is used to define the two adequate orders we will
present. Let σ and τ be two transition sequences. σ is smaller than τ with respect
to the silex order if |σ| < |τ | or |σ| = |τ | and σ is lexicographically smaller than
τ w.r.t. an arbitrary total order among the transitions. Now we are ready to
present the two adequate orders:

Definition 6. Let W = (W1, . . . ,Wn) be an EFSM system and Σ the unfolding
of W. A (total) order ≺1 on the configurations of Σ is defined such that given
two configurations C1 and C2, C1 ≺1 C2 if there exists an index i, 1 ≤ i ≤ n,
such that Vj(C1) = Vj(C2) for all 1 ≤ j < i, and Vi(C1) is smaller than Vi(C2)
w.r.t. the silex order.

Definition 7. Let W = (W1, . . . ,Wn) be an EFSM system and Σ the unfolding
of W. A (total) order ≺2 on the configurations of Σ is defined such that given
two configurations C1 and C2, C1 ≺2 C2 if one of the following conditions is
satisfied:

– there exists an index i, 1 ≤ i ≤ n, such that |Vj(C1)| = |Vj(C2)| for all
1 ≤ j < i, and |Vi(C1)| < |Vi(C2)|; or

– for all 1 ≤ k ≤ n, |Vk(C1)| = |Vk(C2)|, and there is an index i, 1 ≤ i ≤ n,
such that Vj(C1) = Vj(C2) for all 1 ≤ j < i, and Vi(C1) is lexicographically
smaller than Vj(C2) w.r.t. an arbitrary total order among the transitions.

346 Y. Lei and S.P. Iyer

Theorem 3 allows us to use the two orders to determine cut-off events.

Theorem 3. The two orders ≺1 and ≺2 are adequate orders.

Proof. The adequacy proof in [3] only depends on the property that a config-
uration can be characterized by its local views. By Theorem 2, the same proof
can apply here without modification.

As an example,consider e10 in Figure 2.Note that [e10]={e1, e3, e4, e7, e9,e11}.
Therefore, GState([e11]) = ((s12, 0, 0), (s21, 0, 0);−1, ε), and V1([e11]) = t1,2 ·
t1,3 · t1,5 · t1,2, and V2([e11]) = t2,1 · t2,3. Also note that [e1] = {e1}, and thus
GState([e1]) = ((s12, 0, 0), (s21, 0, 0);−1, ε), V1([e1]) = t1,2 and V2([e1]) = ε.
Therefore,GState([e11]) = GState([e1]). In addition, since |V1([e1])| < |V1([e11]),
[e1] ≺ [e11], where ≺ can be ≺1 or ≺2. Hence, e11 is a cut-off event. We note that
in Figure 2, e12 is also a cut-off event because (1) GState([e12]) = GState([e2]);
and (2) [e2] ≺ [e12].

We comment that the choice between the two adequate orders is an issue of
efficiency. The experiments in [3] seem to suggest that ≺2 is more efficient than
≺1, in the sense that the former is likely to result in smaller prefixes.

Algorithm Unfold can be modified to construct a complete finite prefix as
follows. When we expand a condition in V , we create a new event and one or
two successor conditions. In the original algorithm, we always add the successor
conditions into bothΣ and V . Now we modify the algorithm so that the successor
conditions are added into both Σ and V if and only if the new event is not a cut-
off event. Otherwise, we will only add those condition(s) into the Σ. For example,
conditions c17, c18, c19, and c20 will not be added to V . Since we assume that
we are analyzing finite state systems, this modification guarantees termination
of our unfolding algorithm.

6 Case Studies

As a proof-of-concept, we implemented our unfolding algorithm in a prototype
tool. We analyzed several commonly used protocols using our prototype tool
and Spin: (1) A leader election (LE) protocol, which determines the leader
among a set of processes on a unidirectional ring; (2) A sliding window (SW)
protocol, which exercises flow control to ensure reliable data transfer between
two processes; (3) A readers and writers (RW) protocol, which implements the
concurrent-read-exclusive-write policy to ensure the consistency of shared data;
(4) A distributed mutual exclusion (ME) protocol, which ensures that at most
one process can enter its critical section at any given time.

For each protocol, we analyzed several instances with a varying number of
processes, except with a varying window size for the SW protocol. All the analy-
ses are conducted on a PC running Windows XP with 1.2G HZ CPU and 512MB
RAM. The Spin tool used in our studies is the standard distribution (version
4.1.2). The partial order reduction option as well as the option for checking xr/xs
assertions in Spin are enabled for all the test runs.

An Approach to Unfolding Asynchronous Communication Protocols 347

Table 1. Results for the LE protocol

Unfolding SPIN
Num of Procs

NoC NoE MEM Time NoS NoT MEM Time

5 95 70 0.020 0.02 97 97 0.102 0.031

10 190 140 0.078 0.1 187 187 0.205 0.037

15 285 210 0.177 0.27 277 277 0.351 0.047

20 380 280 0.315 0.38 367 367 0.782 0.064

25 470 350 0.493 0.5 457 457 1.47 0.094

Table 2. Results for the SW protocol

Unfolding SPIN
Window Size

NoC NoE MEM Time NoS NoT MEM Time

1 64 50 0.006 0.01 74 79 0.102 0.121

2 1206 988 0.12 0.29 1151 1454 0.102 0.131

3 12081 9939 1.51 8.191 14694 20742 1.099 0.24

The results of our studies are reported in Tables 1, 2, 3, and 4. The first
column shows the size of each protocol instance, in terms of the number of
processes (for LE, RW, DME) or the window size (for SW). Note that NoR
and NoW stand for the number of readers and writers, respectively. The other
columns report two groups of data: one from our prototype tool, and the other
from Spin. The size of unfoldings (i.e., LONs) generated by our tool is reported
in terms of the number of conditions (NoC) and the number of events (NoE), and
the size of state graphs generated by Spin is reported in terms of the number of
states (NoS) and the number of transitions (NoT). The memory usage (MEM)
is measured in Megabytes. The execution time (Time) is measured in seconds.

The memory usages reported are the total amount of memory, including the
memory used for the actual state space representation and for auxiliary data
structures, e.g., the working list in our tool or the search stack and hashtable in
Spin. Note that Spin pre-allocates memory for the search stack and hashtable
based on user-provided estimates. To accurately measure the actual memory
usage, each protocol instance is analyzed twice in Spin. We intentionally over-
estimate the memory needed in the first run, which reports the actual search
depth and the number of states searched, and then adjust the estimates in the
second run.

In Tables 1, the results from our tool and Spin are both optimal, in the
sense that the memory requirements grow linearly with the problem size. In
Table 2, the results from our tool and Spin are similar. Our tool uses slightly more
memory than Spin. In Table 3, we reported two scenarios. In the first scenario,
the number of readers is fixed as 1 and the number of writers is increased from 1
to 4. In the second scenario, the number of writers is fixed as 1 and the number
of readers is increased from 1 to 4. In both scenarios, the sizes of the unfoldings
increase significantly slower than the sizes of the state graphs, and our tool uses

348 Y. Lei and S.P. Iyer

Table 3. Results for the RW protocol

Unfolding SPIN
NoR + NoW

NoC NoE MEM Time NoS NoT MEM Time

1 + 1 164 132 0.023 0.04 135 192 0.102 0.213

1 + 2 997 861 0.187 0.32 1526 2301 0.512 0.269

1 + 3 4978 4450 1.154 1.60 18750 28673 6.275 0.698

1 + 4 21231 19377 5.83 16.32 263482 399682 99.521 5.143

2 + 1 1132 935 0.21 0.42 1434 2296 0.410 0.258

3 + 1 7715 6432 1.77 11.57 14276 26520 4.813 0.818

4 + 1 22940 19063 6.27 78.80 149042 312401 57.337 3.918

Table 4. Results for the ME protocol

Unfolding SPIN
Num of Procs

NoC NoE MEM Time NoS NoT MEM Time

3 147 133 0.032 0.02 638 126 0.307 0.17

4 3806 3690 1.192 0.63 38710 47863 18.899 0.915

significantly less memory than Spin. In Table 4, we reported two instances of
the ME protocol. When we increase the number of processes to 5, neither our
tool nor Spin can complete the search on the same computer. For ME with 4
processes, the unfolding is significantly smaller than the state graph.

The above results suggest that when there is a high degree of parallelism, the
unfolding representations generated by our tool are much more compact than
the state graphs generated by Spin. However, we note that this space reduction
comes at the expense of time. We comment that the most time-consuming tasks
in our tool are determining the cutoff events and computing the SC set. To obtain
some empirical evidence, we profiled the longest execution in our experiments,
i.e., the one that analyzes the RW protocol instance for 4 readers and 1 writer.
The results indicate that 37% of the execution time are spent on determining
the cutoff events, and 35% of the execution time spent on computing the SC set.

7 Conclusion

In this paper we have presented an approach to unfolding asynchronous com-
munication protocols. We have been able to directly work with EFSMs, which
allows us to exploit the full power of variables and arithmetic/logic expressions
at the specification level. We have demonstrated that in our unfolding repre-
sentation, we can store individual messages separately while still preserving the
FIFO semantics of the message queues. This implicit representation of message
queues reduces the size of our unfolding representation. We have also shown that
two adequate orders, which were originally proposed for synchronous transition
systems, can also be used to determine cut-off events in our context. These two

An Approach to Unfolding Asynchronous Communication Protocols 349

orders help to minimize the size of a complete finite prefix of a potentially in-
finite unfolding. Our empirical results indicate that our algorithm can produce
very compact state space representations.

The ultimate goal of unfolding is to analyze protocol properties. Deadlock
freedom can be checked using techniques reported in [1] [4] [5]. Algorithms for
model checking, which can be used to check general properties specified in some
logic formalism, based on unfoldings can be found in [6] [7]. Since there exists
a trade-off between the compactness of a state space representation and the
time complexity of subsequent analysis based on the representation, we plan to
conduct a study on the effectiveness of these algorithms based on our unfolding
representation.

References

1. McMillan, K.L.: A technique of state space search based on unfolding. Formal
Methods in System Design 6 (1995) 45–65

2. Esparza, J., Romer, S., Vogler, W.: An improvement of McMillan’s unfolding al-
gorithm. In: Proc. TACAS ’96 Vol. 1055 of Lecture Notes in Computer Science.
(1997) 87–106

3. Esparza, J., Romer, S.: An unfolding algorithm for synchronous products of transi-
tion systems. In: International Conference on Concurrency Theory. (1999) 2–20

4. Melzer, S., Romer, S.: Deadlock checking using net unfoldings. In: Int. Conf. on
Computer Aided Verification. (1997) 352–363

5. Heljanko, K.: Using logic programs with stable model semantics to solve dead-
lock and reachability problems for 1-safe petri nets. In: Int. Conf. on Tools and
Algorithms for Construction and Analysis of Systems TACAS. (1999) 240–254

6. Esparza, J.: Model checking using net unfoldings. Science of Computer Program-
ming 23 (1994) 151–195

7. Esparza, J., Heljanko, K.: A new unfolding approach to LTL model checking. In:
Intl. Conf. on Automata, Languages, and Programming. Volume 1853. (2000) 475–
486

Semantics of BPEL4WS-Like Fault and
Compensation Handling�

QiuZongyan , WangShuling , PuGeguang , and ZhaoXiangpeng

LMAM and Department of Informatics, School of Math.,
Peking University, Beijing 100871, China

zyqiu@pku.edu.cn

{joycy, ggpu, zxp}@math.pku.edu.cn

Abstract. BPEL4WS is one of the most important business process
modelling languages. One distinct feature of it is the fully programmable
fault and compensation handling mechanism, which allows the user to
specify the compensation behaviors of processes in application-specific
manners. In this paper, we present a formal operational semantics to a
simplified version of BPEL4WS, with some important concepts related
to fault and compensation handling proposed and discussed, especially,
the compensation closure and the compensation context. We also dis-
cuss some insights into the BPEL4WS language and its implementation
obtained from this study.

Keywords: Business Process, Language, Semantics, BPEL4WS, Com-
pensation handling, Fault handling.

1 Introduction

In recent years, many business process modelling languages (also known as chore-
ography languages) have been introduced and used in the business application
fields, such as XLANG [3], WSFL [4], BPEL4WS [5], and StAC [7]. These lan-
guages are used to define the services composed by a set of processes across
networks, especially over the Internet. The complex services are defined in term
of the interaction among simpler services, which might be still a composition in
the same manner. Now, BPEL4WS is the most accredited candidate for becom-
ing a standard of this field.

Some of these languages are aimed to describe services with long duration,
based on communication of distributed processes, and manipulate sensitive busi-
ness data in back-end databases, to support the concept of Long-Running (Busi-
ness) Transactions (LRTs). Here, the ordinary assumptions about primitive op-
erations (Atomicity, Consistency, Isolation, Durability, ACID) are not applicable
in general, because that locks and isolation cannot be maintained for the long
periods, and technical and business errors and fault conditions can occur in

� Supported by National Natural Science Foundation of China (No. 60173003).

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 350–365, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Semantics of BPEL4WS-Like Fault and Compensation Handling 351

any business process instance, propagate to other processes via interactions, and
cause them to go into troubles. In [5], the authors wrote:

As a result, the overall business transaction can fail or be cancelled af-
ter many ACID transactions have been committed, and the partial work
done must be undone as best as possible. Error handling in business
processes therefore relies heavily on the well-known concept of compen-
sation, that is, application-specific activities that attempt to reverse the
effects of a previous activity that was carried out as part of a larger unit
of work that is being abandoned.

The concept compensation has, of course, become one of the most important
elements of the languages of this category.

Although the compensation can be regarded as a kind of exception handling
mechanism, however, it has the distinct feature that compensation handlers are
installed dynamically during the execution. There is still no standard definition
for the compensation mechanism. [9] defined the compensation as the action
taken to recover from error or cope with a change of plan, while [6] proposed a
formal framework for the automatic invocation of compensation handlers in the
reverse order with respect to the order of their installation.

Aimed to be a language for web services and the LRTs, BPEL4WS provides a
special form of compensation mechanism. In combination with its fault handling
mechanism, it offers the full ability to define fault and compensation handling
in application-specific manners. The characters of the compensation mechanism
in BPEL4WS include:

Scope-based (not activity-based). The compensation handlers can only be
attached to the scopes;

Fault trigged. A compensation handler can only be invoked directly or indi-
rectly by some fault handler, which is triggered by a fault in the execution;

Fully programmable. The compensation handlers are named. The installed
handlers can be invoked in any order, interweaved with any other activities.

Although some works have been done on the semantics of BPEL4WS, e.g. [12],
or on the compensation mechanisms, e.g. [7] and [6], there have not been for-
mal studies on the BPEL4WS-like compensation mechanisms. As an industrial
language aimed to be a standard language with seminal features, formal stud-
ies may clear the opaque points in the languages, and even uncover inadequate
combinations or inconsistencies there. This is the aim of our work.

In this paper, we defined a simple language BPEL in Section 2, which is
a simplification of BPEL4WS, and covers the most important features related
to the fault and compensation handling mechanisms of the language. We pre-
sented a formal semantics for BPEL in Section 3, and developed the concepts
of compensation closure and compensation context, which form a clear frame-
work to the BPEL4WS-like fault and compensation handling mechanisms. We
also proved two theorems to validate the semantics defined, and presented some
examples for the demonstration. In Section 4, some issues related to the com-
pensation features of BPEL4WS were discussed, including some unclear points

352

in the language specification. We also proposed a possible dynamic resource op-
timization technique for the implementation of BPEL4WS compensation and
fault handling mechanisms. We discussed some issues related to the extensions
of our framework, with respect to the features omitted in BPEL. In the last two
sections, some relative works were discussed, and then the conclusion.

2 The BPEL Language

BPEL is a subset of BPEL4WS. It includes the most important features related
to the fault and compensation handling mechanism of BPEL4WS. We omit all
details of BPEL4WS on the data handling level. A complete program written in
BPEL is called a Business Process, or BP for the abbreviation. The syntax of
BP and its components are defined as follows:

P ::= A (basic activities)
| skip (do nothing)
| � (throw)
| P ;P (sequence)
| P � b � P (conditional)
| P ‖ P (flow, parallel composition)
| n :{P ?C :F} (scope)

C,F ::= �n (compensation invocation with name)
| � (compensation all)
| . . . (similar to P)

BP ::= {|P :F |} (business process)

Here n stands for names, b for boolean expressions. Their definitions are omitted.
P stands for the process. A scope n :{P ?C :F} has the name n and the primary
activity P . F and C stand for the fault handler and compensation handler of the
scope, respectively, that have the same structures as processes, except that they
may include basic activities �n and � additionally. We ask that the � appearing
in a fault handler F is not in a branch of a parallel composition in F . The reason
of this requirement will be discussed in Section 4.

The basic activities in BPEL4WS include assignment, various communication
activities, and some others. These activities have effects on the data state or the
environment. The details here are out of the concentration of this paper. We use
A to represent them. The basic activity � throws a fault explicitly. We assume
that any fault will be caught by the fault handler of the immediately enclosing
scope. We will not consider the named fault until Section 4.

In BPEL4WS, the compensation or fault handler of a scope can be omitted.
In these cases, the language specification assumes that the scope has the default
fault and/or compensation handler with the behaviors as follows:

C0
def== � the default compensation handler

F0
def== �; � the default fault handler

Z. Qiu et al.

Semantics of BPEL4WS-Like Fault and Compensation Handling 353

The handler C0 runs all compensation handlers for immediately enclosed scopes
in the reverse order of completion of those scopes. The handler F0 runs all avail-
able compensation handlers for immediately enclosed scopes in the reverse order
of completion of the corresponding scopes, and rethrows the fault to the next
enclosing scope. Here we simply assume that every scope has the two handlers
defined, perhaps some of them are C0 or F0.

The compensation handling mechanism in BPEL (as in BPEL4WS) is scope-
based, fault triggered and programmable. The compensation handlers become
active only when they are invoked, directly or indirectly, by a fault handler after
a fault occurs during the execution. A compensation handler C, when installed
by the normal completion of the primary activity of its scope, has the same
name as the scope. The name of a handler is visible only in the immediately
enclosing scope, thus, C can be invoked only in the fault handler or compensation
handler of the scope. Furthermore, a set of compensation handlers installed
can be selected as desired, invoked in any order. That is why we say that the
compensation is fully programmable.

3 Semantics

Now we present the semantics of BPEL, with the focus on the fault and com-
pensation handling. We adopt the big-step operational semantics here.

Some standard sequence operators are used in the definitions:

a0 · 〈a1, . . . , an〉 = 〈a0, a1, . . . , an〉
hd(〈a1, a2, . . . , an〉) = a1

tl(〈a1, a2, . . . , an〉) = 〈a2, . . . , an〉
〈a1, , . . . , an〉̂〈b1, . . . , bm〉 = 〈a1, . . . , an, b1, . . . , bm〉

Here we consider only the interactive activities that communicate with other
services or clients, assuming that all basic activities are different from each other,
while they may contain unique identities. The execution of a basic activity might
complete (terminate successfully) or fail (terminate with a fault). We use

A �→ 	 A completes
A �→
 A fails

respectively, to denote the two cases. We call 	 and
 the termination marks,
and will use � to represent either of them, � ∈ {	,
}. Note that the termination
status of an activity is determined by the environment of the BP. We will use Γ ,
possibly with subscript, to represent the environment under consideration. An
environment Γ is of the form A1 �→ �, . . . , An �→ �. We assume that in any valid
environment, Ai �= Aj when i �= j, and use Γ1 ∪Γ2 to represent the combination
of environments, assuming there is no confliction between Γ1 and Γ2.

The configuration of the transition system includes a process or a mark to
denote the termination status, and a compensation context α:

P, α or �, α

354

We call configurations of the form �, α the terminated configurations. A com-
pensation context is a sequence (possibly empty) of compensation closures of
the form (n :C :α1), where n is a name, which is actually the same as that of
the scope where compensation handler C is defined, and α1 is a compensation
context. When compensation handler C is invoked, it will run in company with
the context α1. When c = (n :C :α), we use c.1, c.2 and c.3 to obtain the name,
the compensation handler, and the context, respectively.

The semantics of a process is given by the relation Γ � cfg1 → cfg2 , where
cfg2 is a terminated configuration. Now we list the rules that define the semantics
with brief explanation.

3.1 Sequential Process

We consider the sequential part of BPEL in this section.
The activity skip always completes, in any environment:

Γ � skip, α→ 	, α (SKIP)

The basic activity � (throw) fails in any environment,

Γ � �, α→
, α (THRW)

In BPEL4WS, the throw activity carries a globally defined name, to transfer the
control to a specific fault handler. We omit this facility and suppose that a fault
is always caught by the fault handler of its immediately enclosing scope. It is
not hard to extend the definitions here to deal with named faults.

An interactive activity will complete or fail depending on the environment.
It has no effects on the compensation context:

A �→ � � A,α→ �, α (BASIC)

Here we use � to represent those two different cases, � ∈ {	,
}.
We introduce following rule for the environment extension:

Γ1 � P, α→ �, β
Γ1 ∪ Γ2 � P, α→ �, β (EXTD)

From now on, whenever we write Γ � cfg1 → cfg2, we will always assume that
the environment Γ provides enough information for all basic activities in cfg1,
to determine their termination status.

The semantics of the sequential composition P1;P2 is defined by two rules,
depending on the completion or failure of P1:

Γ1 � P1, α→ 	, γ Γ2 � P2, γ → �, β
Γ1 ∪ Γ2 � P1;P2, α→ �, β

Γ � P1, α→
, β
Γ � P1;P2, α→
, β (SEQ-S)

When P1 completes, the termination status is determined by P2. If P1 fails, P2

will not be taken into the execution. The execution of P1 (and P2, in the first
case) may extend the compensation context α to another compensation context
β, by adding some compensation closure(s) in the front of α.

Z. Qiu et al.

Semantics of BPEL4WS-Like Fault and Compensation Handling 355

For the conditional, we suppose that the boolean expression b gives a value
of true or false, and determines which branch is chosen. In a more detailed se-
mantics, we will need a data state to support the evaluation of b.

b = true Γ � P1, α→ �, β
Γ � P1 � b � P2, α→ �, β

b = false Γ � P2, α→ �, β
Γ � P1 � b � P2, α→ �, β (COND-S)

The compensation handler and fault handler are defined in a scope s, in addi-
tion to the primary activity P of s. When the execution comes to s, the primary
activity P is executed with an empty context initially. When P completes, the
compensation handler is installed with its context accumulated during the exe-
cution of P , which forms a compensation closure, and put in the front of α. A
sequence of compensation closures will accumulate in this way:

Γ � P, 〈〉 → 	, β
Γ � n :{P ?C :F}, α→ 	, (n :C :β) · α (SC-SUC)

When P fails, the execution switches to the fault handler, and the termination
status of the fault handler F is the termination status of the scope:

Γ1 � P, 〈〉 →
, β Γ2 � F, β → �, γ
Γ1 ∪ Γ2 � n :{P ?C :F}, α→ �, α (SC-FLT)

Please note that, when P fails, compensation handler C will never be installed.
The operations � and � n can appear only in the body of the fault and

compensation handlers. The operation � invokes each handler in the related
compensation context sequentially. There are two rules for the cases that α is
not empty, and one for α = 〈〉:

Γ ��, 〈〉 → 	, 〈〉 (CP-ALL0)

Γ � C, β → 	, γ Γ � �, α→ �, 〈〉
Γ � �, (n :C :β) · α→ �, 〈〉 (CP-ALL1)

Γ � C, β →
, γ
Γ � �, (n :C :β) · α→
, 〈〉 (CP-ALL2)

Because the compensation closures are accumulated in the front of the context,
� will invoke them in the reverse order of their installation.

The execution of a series of compensation closures is not the same as the
execution of a sequential composition process. There is no accumulated com-
pensation context, and the context need to switch each time. A compensation
handler is always invoked directly or indirectly as part of the processing of some
fault handler. If the behavior of a compensation handler C ′ invoked by F ′ causes
a fault, and the fault is uncaught by scopes within the chain of compensation
handlers invoked by F ′, it is treated as being a fault within F ′. Above semantic
rules reflect this situation, as the definition of BPEL4WS specification.

356

Operation �n looks up the compensation closure with the name n in current
compensation context. If no closure with the name is found, it acts like a skip,
otherwise, the handler in the closure is executed in company with its context:

Γ � gp(n, α), ge(n, α) → �, β
Γ � �n, α→ �, α (CP-NM)

where gp(n, α) and ge(n, α) extract the process and the context of the compen-
sation closure with name n from α, respectively:

gp(n, 〈〉) = skip ge(n, 〈〉) = 〈〉
gp(n, (n :C :β) · α′) = C ge(n, (n :C :β) · α′) = β
gp(n, (m :C :β) · α′) = gp(n, α′) ge(n, (m :C :β) · α′) = ge(n, α′)

when n �= m when n �= m

The compensation context accumulated in the invocation is abandoned.
Here are the rules for the complete business process:

Γ � P, 〈〉 → 	, α
Γ � {|P :F |}, 〈〉 → 	, 〈〉

Γ1 � P, 〈〉 →
, α Γ2 � F, α→ �, β
Γ1 ∪ Γ2 � {|P :F |}, 〈〉 → �, 〈〉 (BP)

3.2 Parallel Process

The parallel operator ‖ allows more than one activities to be executed concur-
rently. This brings new problems into the semantics. If we have P0; (P1 ‖ P2);P3,
two branches P1 and P2 start simultaneously after P0 completes, and only when
both of them complete, can P3 start its execution. In fact, BPEL4WS offers
further mechanism to control the execution order of the parallel activities—the
link dependencies. We omit this feature and put it into the further study.

From the BPEL4WS specification, when one of the branches fails, the fault
handler of the innermost surrounding scope begins its behavior by implicitly
terminating all other (concurrent) activities enclosed in the scope, and then
starts the execution of its body. This mechanism is called the forced termination
(by a fault occurring in another activity). To define the forced termination,
a new termination mark
 is introduced to describe that a process is forced
to terminate. We should modify some rules defined before for the sequential
processes, to take the forced termination into account.

Firstly, all basic activities will be allowed to complete their work as before1.
But the completion can be thought as a forced termination:

Γ � A,α→ 	, α
Γ � A,α→
, α

(FORCE)

The rules for the sequential composition are modified as follows:

Γ1 � P1, α→ 	, γ Γ2 � P2, γ → τ, β

Γ1 ∪ Γ2 � P1;P2, α→ τ, β
where τ ∈ {	,
,
} (SEQ-SUC)

1 In BPEL4WS, simple basic activities, e.g., assignment, are allowed to complete their
work, but the activities involving communication are interrupted and terminate pre-
maturely. We can have other choices, and will discuss the issues in Sec. 4.

Z. Qiu et al.

Semantics of BPEL4WS-Like Fault and Compensation Handling 357

and

Γ � P1, α→ τ, β

Γ � P1;P2, α→ τ, β
where τ ∈ {
,
} (SEQ-FLT)

The rules for conditionals are modified to (where τ ∈ {	,
,
}):

b = true Γ � P1, α→ τ, β

Γ � P1 � b � P2, α→ τ, β

b = false Γ � P2, α→ τ, β

Γ � P1 � b � P2, α→ τ, β
(COND)

The original rules for the scope are kept. One new rule is added:

Γ1 � P, 〈〉 →
, β Γ2 � F, β → �, γ
Γ1 ∪ Γ2 � n :{P ?C :F}, α→
, α

(SC-FORCE)

When a scope is forced to terminate, its primary activity P is forced to terminate,
and the control transfers to the fault handler. The language forbids the fault
handler to re-throw a fault. In the other word, in this case, the fault occurring
during the execution of F will not be propagated out of F . With above rule,
a fault handler F will terminate with either 	 or
, but never with
. Thus,
it can always finish its work, whatever it is invoked by a fault occurring in the
normal execution, or invoked by the forced termination.

Now we can have a rule for parallel composition:

Γ1 � P, α→ τ1, α
′̂α Γ2 � Q,α→ τ2, α

′′̂α
Γ1 ∪ Γ2 � P ‖ Q,α→ τ1 ⊗ τ2, (α′ ‖ α′′) · α where τ1, τ2 ∈ {	,
,
} (PAR)

The operator ⊗ is defined in the following table:

⊗ 	

	 	

It is similar to the corresponding operator defined in [6].
A new form of elements is introduced into the compensation context to sup-

port parallel compensation. In this case, we should add two rules for �:

Γ1 ��, α′ → 	, β′ Γ2 ��, α′′ → 	, β′′ Γ3 ��, α→ �, β
Γ1 ∪ Γ2 ∪ Γ3 � �, (α′ ‖ α′′) · α→ �, 〈〉 (CP-PAR1)

and

Γ1 ��, α′ → τ1, β
′ Γ2 ��, α′′ → τ2, β

′′

Γ1 ∪ Γ2 � �, (α′ ‖ α′′) · α→
, 〈〉 either τ1 =
 or τ2 =
 (CP-PAR2)

The rule for � n remains the same, but the functions used in it should be
revised by adding two rules as follows:

gp(n, (α′ ‖ α′′) · α) = gp(n, α′̂α′′̂α)
ge(n, (α′ ‖ α′′) · α) = ge(n, α′̂α′′̂α)

358

In a scope, the names for the immediately enclosed sub-scopes must not be the
same. Thus, we can simply concatenate the compensation contexts.

The technique for the forced termination here is enlightened by the work
in [6], and modified according to our needs. Please note that, in the execution
of P ‖ Q, if P fails, Q should be forced to terminate. BPEL4WS has a detailed
definition of forced termination on each type of activities. All activities other
than the simplest ones are immediately interrupted and finished prematurely.
The exact termination points depend on the relative speed of the processes.
The semantics defined here, and also what in [6], is at an abstract level, which
guarantees that the active activities in Q will turn to the forced termination at
some points. This brings a form of non-determinism.

3.3 Two Theorems

Theorem 1 (Completeness). The big-step semantics for the BPEL language
defined above is complete, i.e., for each well-formed process {|P :F |}, there exists
a finite deduction (with a suitable environment Γ):

Γ1 � p1, α1 → τ1, β1

· · · · · ·
Γn � pn, αn → �1, βn

Γn+1 � q1, γ1 → τn+1, βn+1

· · ·
Γn+m � qm, γm → �2, βn+m

Γ � {|P :F |}, 〈〉 → �3, 〈〉

for some n and m, where Γi ⊆ Γ, τj ∈ {	,
,
},�k ∈ {	,
}, pn = P , qm = F ,
and each formula in the sequence is deduced from some formula(e) before it in
the sequence using the operational rules defined above.

Here pi and qj are some texts. We use the different names for them to empha-
sis that there is a deduction sequence for the primary activity P and a deduction
sequence for the fault handler F . The second sub-sequence can be empty.

Proof. Suppose we can construct a deduction sequence ds1 for P with the initial
compensation context 〈〉. If the termination mark of the last formula in ds1 is
	, then from the rule (BP), the deduction sequence of {|P :F |} is

ds1 Γ � {|P :F |}, 〈〉 → 	, 〈〉 (written horizontally to save space)

If the termination configuration of the last formula in ds1 is
, α, and suppose
we can construct a deduction sequence ds2 for F with the initial compensation
context α, and the termination mark of the last formula in ds2 is �, then the
deduction sequence of {|P :F |} is

ds1 ds2 Γ � {|P :F |}, 〈〉 → �, 〈〉

Thus, what we really need to prove is that the deduction sequences for P and
F can be constructed. We will prove this by induction on the structure of P

Z. Qiu et al.

Semantics of BPEL4WS-Like Fault and Compensation Handling 359

and F . Because the only difference between P and F is that there can be some
compensation invocations in F , additionally, thus, we can prove the most of cases
of them together. In the following, when we say P (possibly with subscription),
it always means P or F . And we will suppose the current compensation context
is α all the while.

– Case P = A, P = skip, or P =�. The proof is trivial.
– Case P = P1;P2. By induction hypothesis, P1 has a deduction sequence ds1,

with the termination status of P1. If P1 completes, by the hypothesis, we
can construct a deduction sequence for P2 and denote it by ds2. Thus, from
rule (SEQ-S), the complete deduction sequence for P will be:

ds1 ds2 Γ � P1;P2, α→ �, β

where � and β are the same as in the last formula of ds2. In the case when
P1 fails, the construction of the deduction for P is simpler.

– Case P = P1 � b � P2. The deduction sequence for P depends on the value
of b. If b is true, we can have a deduction sequence for P1, and denote it as
ds1. According to rule (COND-S), the deduction sequence for P is:

ds1 Γ � P, α→ �, β

where � and β are the same as in the last formula of ds1. The construction
is similar when b is false.

– Case P1 ‖ P2. By hypothesis, we can construct a deduction sequence for P1

where the termination status has two possibilities: 	 or
 till now. Here
we must notice that from rule (PAR), P1 may be forced to terminate. So
we must consider the construction of a deduction sequence with the forced
termination at end. We will not list them here. In fact, the construction is the
same as above except that in some places, � should be extended to include

and the corresponding rules for parallel processes are used instead. We should
also note that, the forced termination can only be triggered ultimately by a
real fault. In general, each real fault may cause a forced termination “tree”
down and backwards. Suppose the deduction sequences for P1 and P2 are
ds1 and ds2 respectively, then the deduction sequence for P1 ‖ P2 is:

ds1 ds2 Γ � P1 ‖ P2, α→ �1 ⊗�2, β

where �1 and �2 are the termination marks of the last formulae in ds1
and ds2, respectively. And β can also be formed from them too. When the
parallel operator is the outmost one in P , �i equals
 iff another �j equals

, so P can has only two possibly termination states: 	 or
.

– In order to construct the deduction sequence for n : {P ′ ?C ′ :F ′}, We must
first consider the compensation invocations that can appear in fault handlers.
Also, here we can solve the problem when P fails in the cases above.
• Case F =� n. Suppose the process and compensation context of the

closure with name n are c and γ respectively. By hypothesis, we suppose

360

a deduction sequence for c in context γ is ds. From rule (CP-NM), we
can get a deduction sequence for P :

ds Γ � P, α→ �, α

where � is the termination mark of the last formula in ds.
• Case F =�. The deduction sequence of � is a series of deduction sequences

corresponding to the compensation handlers, constructed by the rules
(CP-ALL1), (CP-ALL2), (CP-PAR1), and (CP-PAR2).

The construction of the deduction sequence for a fault handler F is the
same as for a normal process P , and this statement is applicable to the
compensation handlers as well. We omit the details here. In the following,
we will prove that the deduction sequence for a scope can be constructed.

– Case P = n :{P ′ ?C ′ :F ′}. By hypothesis, we can get a deduction sequence
for P ′, and denote it by ds1. If P ′ completes, according to rule (SC-SUC),
we get the deduction sequence for P:

ds1 Γ � P, α→ 	, β

Otherwise, the fault is caught by F ′. By hypothesis, we denote the deduction
sequence for F ′ by ds2. Then the deduction sequence for P is:

ds1 ds2 Γ � P, α→ �, β

where � is the termination mark of the last formula in ds2.

At the outmost level, the forced termination can appear only in the parallel
composition. At the inner levels, we need to consider it for other cases. This will
not make real trouble to us, thus, we will not restate that here. �$

BPEL4WS asks that “the fault handler for scope C begins by implicitly
terminating all activities directly enclosed within C that are currently active”.
With our semantics, we have a theorem as follows. We omit the details of the
proof here.

Theorem 2 (Forced Termination). The behavior of any fault handler F for
scope n : {P ?C :F} begins by terminating all activities directly enclosed within
the scope that are currently active.

3.4 Examples

Example 1: A Sequential Process. Consider process b1 = {|n : {A1;m :
{A2 ?C2 :F2};A3 ?C ′ :�m;A4} :F |}, where all basic activities but A3 complete,
i.e., the environment Γ is: A1 �→ 	, A2 �→ 	, C2 �→ 	, A3 �→
, A4 �→ 	. For
simplicity, let P def== n : {A1;m : {A2 ?C2 : F2};A3 ?C ′ :� m;A4}, P ′ def== A1;m :
{A2 ?C2 :F2};A3, and F ′ def==�m;A4. In the following, we use the semantic rules
for BPEL above to reason about the execution of b1.

(1) A1 �→ 	 � A1, 〈〉 → 	, 〈〉 (BASIC)

(2) A2 �→ 	 � A2, 〈〉 → 	, 〈〉 (BASIC)

(3) A2 �→ 	 � m :{A2 ? C2 :F2}, 〈〉 → 	, (m :C2 :〈〉) (SC-SUC, (2))

Z. Qiu et al.

Semantics of BPEL4WS-Like Fault and Compensation Handling 361

(4) A3 �→
 � A3, (m :C2 :〈〉) →
, (m :C2 :〈〉) (BASIC)

(5) A1 �→ 	, A2 �→ 	, A3 �→
 � P ′, 〈〉 →
, (m :C2 :〈〉) (SEQ-S, (1), (3), (4))

(6) C2 �→ 	 � C2, 〈〉 → 	, 〈〉 (BASIC)

(7) C2 �→ 	 ��m, (m :C2 :〈〉) → 	, (m :C2 :〈〉) (CP-NM, (6))

(8) A4 �→ 	 � A4, (m :C2 :〈〉) → 	, (m :C2 :〈〉) (BASIC)

(9) C2 �→ 	, A4 �→ 	 � F ′, (m :C2 :〈〉) → 	, (m :C2 :〈〉) (SEQ-S, (7), (8))

(10) Γ � P, 〈〉 → 	, 〈〉 (SC-FLT, (5), (9))

(11) Γ � b1, 〈〉 → 	, 〈〉 (BP, (10))

Although some activity fails in the execution of b1, the whole business process
completes because of proper compensation.

Example 2: A Parallel Process. We add an activity B1;B2 to Example 1,
that is parallel with the activity A3, then have a process b2 = {|n : {A1;m :
{A2 ?C2 : F2}; (B1;B2) ‖ A3 ?C ′ : F ′} : F |}. P , P ′ are defined as before except
that all appearances of A3 are replaced by (B1;B2) ‖ A3, and Γ is extended to
include B1 �→ 	, B2 �→ 	. However, we may also modify F ′. Here we omit the
details and suppose that Γ � F ′, (m :C2 : 〈〉) → 	, β. According to rule (PAR),
activity B1;B2 is forced to terminate because of the fault occurring in A3. With
the semantics, we can build two derivations shown below, where the branch
B1;B2 is forced to terminate before or after the start of B2. The execution of b2
is based on the results of Example 1. In the first case, we have

(1) B1 �→ 	 � B1, (m :C2 :〈〉) → 	, (m :C2 :〈〉) (BASIC)

(2) B1 �→ 	 � B1, (m :C2 :〈〉) →
, (m :C2 :〈〉) (FORCE, (1))

(3) B1 �→ 	 � B1; B2, (m :C2 :〈〉) →
, (m :C2 :〈〉) (SEQ-FLT, (2))

In the second case,

(1) B1 �→ 	 � B1, (m :C2 :〈〉) → 	, (m :C2 :〈〉) (BASIC)

(2) B2 �→ 	 � B2, (m :C2 :〈〉) → 	, (m :C2 :〈〉) (BASIC)

(3) B2 �→ 	 � B2, (m :C2 :〈〉) →
, (m :C2 :〈〉) (FORCE, (2))

(4) B1 �→ 	; B2 �→ 	 � B1; B2, (m :C2 :〈〉) →
, (m :C2 :〈〉) (SEQ-SUC, (1), (3))

Both of them have the fact below:

B1 �→ 	, B2 �→ 	, A3 �→
 � (B1; B2) ‖ A3, (m :C2 :〈〉) →
⊗
, (m :C2 :〈〉)
B1 �→ 	, B2 �→ 	, A3 �→
 � (B1; B2) ‖ A3, (m :C2 :〈〉) →
, (m :C2 :〈〉) (PAR)

From the example, we can see that when a branch in parallel process fails, the
time when the other activities that are currently active are forced to terminate
is non-determinate.

4 Discussion

4.1 Language Issues

The intention of this work is to make our language BPEL as close as possible
to what of BPEL4WS [5], within the issues considered here. With this idea, we

362

meet many problems, with the language specification, and with how to formally
define it. We discuss some problems related to the language in this subsection.

Within this work, we uncovered some problems which are not clearly defined
in the BPEL4WS specification, or probably defined not adequately. We list some
of them here with brief discussions:

– The BPEL4WS specification says that, the operator � (operator compensate
in [5]) runs “all available compensation handlers for immediately enclosed
scopes in the reverse order”. It says nothing about the handlers installed
parallelly. In our definition, we assume that these handlers will execute par-
allelly. Another choice is to linearize them arbitrarily.

– The operator � goes not very well with parallel structures. For example,
could we write a fault handler of the form P1; (Q1 ‖ (Q2; �;Q3));P2? What
happens when Q1 fails, or a handler called by � fails? Beware that a se-
quence of handler invocations is not the same as a sequential composition,
because the compensation context should be switched for each of the han-
dlers. When one of the parallel branches fails, should the other branches be
forced to terminate? The language specification does not define this. In fact,
any definition will bring some problems. Under this consideration, we simply
forbid that � runs in parallel with other processes.

– BPEL4WS is announced to become a language to specify business processes
and protocols, and support LRTs. We are ready to think about a business
process that needs to run over days, or even over months or years. As shown
very clearly in our semantics, the longer the process runs, the bigger the
compensation contexts accumulate. This accumulation will consume much
resource. What we think is that, when a transaction in a process comes to its
real end, the programmers need a means to clear the compensation context
related to it, for example, the accept operator of StAC [7].

The last point above raises some implementation issues as well. When a sub-
task P in a business process comes to its real end, we could enclose it in a scope
n : {P ? skip : . . .}, i.e., with an empty compensation handler. In this form, all
the compensation handlers in the enclosed scopes (including those in the even
nested scopes) will never be invoked. Thus, the implementation can clear the
compensation context accumulated in the execution of P . We hope that the
implementation is smart enough to recognize this situation.

Furthermore, if a compensation handler is not invoked directly or indirectly
by a fault handler, it will never have a chance to run. Then, when a scope
completes, we might have a chance to abandon some compensation handlers
and their companion contexts. For example, if for the scope n : {P ?C : F}, P
completes and produces a context 〈c1, c2, c3〉, and C calls only c2, then we can
make a closure of the form (n :C :〈c2〉), and release all resources occupied by c1
and c3. This is a kind of dynamic resource optimization. We can also think it as
a kind of garbage collection.

Z. Qiu et al.

Semantics of BPEL4WS-Like Fault and Compensation Handling 363

4.2 Other Problems

If a fault occurs in a scope, the fault handler terminates all activities in the
scope that are currently active. The rule (FORCE) allows basic activities to
complete their work. In BPEL4WS, with the same situation, the activities in-
volving communication are interrupted and terminate prematurely. We can use
the rule below to replace rule (FORCE), to simulate the premature termination:

A �→ 	 � A,α→
, α
This means that, even if A can complete, it might be forced to terminate in some
situation. Furthermore, we can divide the basic activities into two categories, in
which one is interruptable, while the other is not.

There are some other structures in BPEL4WS, including the choice, iteration,
wait operation, etc. Dealing with the choice and wait operation asks us to include
data state into the framework described here.

We can include the iteration by extending the syntax with a form b ∗ P . If
there are scopes in an iteration, and the scopes complete, more than one com-
pensation closures with the same name may be installed into the corresponding
context. This brings no problem to operator �. However, what is the meaning
when we invoke such handlers by �n? BPEL4WS specification does not make it
clear. If what we want is to call all the closures with name n in the reverse order
of the installation, we can modify the rule (CP-NM) to implement that. In fact,
as we think, the iteration goes not very well with the named compensation in
BPEL4WS. For example, if we have b ∗ (. . . ; (n1 : {P1 ?C1 :F1}); (n2 : {P2 ?C2 :
F2}); . . .) and the body of it is executed a number of times, a series of compen-
sation closures named n1 and n2 alternately will be installed. In this case, could
we write �n1 afterward? And what is the meaning of it? Any answer will not be
very satisfactory.

It seems that the fully programmable compensation handling is a good idea,
and indispensable in some cases. The authors of BPEL4WS give an example
in the [5], Section 13.2. On the other hand, the allowance of any structures
and combinations in the fault and compensation handlers might bring troubles
to the semantics, the implementation and the use of the language. A bundle
of mechanisms to provide enough powerful, safe and easy-use programmable
compensation is still a topic to investigate.

5 Relative Works

The concept compensation has its root to the seminal work of Saga [8] and open
nested transactions [11], and has been studied for a long time in the transaction
processing world. In recent years, some works have been done towards the formal
definition of the concept. M. Mazzara et al. suggested to merge the fault and
compensation handling into a general framework of event handling [10], and
presented an operational semantics for their language. They also explained how
to program manually the processes of exception handling and nested transactions
with compensation handlers in their language.

364

In the recent paper [6], R. Bruni, et al. presented the operational semantics
for a series of languages, and some additional features. The compensation in
these languages is basic-activity-oriented (each basic activity is in company with
a compensation) with no name. The compensation is triggered by a special com-
mand, and always executed in the reverse order with respect to the installation.
Although there is a simple discussion about programmable compensation, that
is not really programmable—at least not as what in BPEL4WS.

The paper [7] showed the recent work of M. Butler et al. on their language
StAC (Structured Activity Compensation), where the language and its formal
operational semantics were presented. The semantics of StAC was defined on
its semantic language StACi, which had a complex operational semantics based
on the indexed compensation tasks. The authors suggested to use their indexed
compensation to model the compensation of BPEL4WS.

L. Bocchi, et al. presented in their paper [2] an extension of the asynchronous
π-calculus with long-running transactions. The language has a structure called
failure bag, which plays the similar role as the compensation context in our
semantics, but presents at another level.

On the other hand, paper [1] proposed a general framework to systemati-
cally evaluate the capabilities and limitations of the language, and presented a
detailed, but informal analysis of the language BPEL4WS. The author of [12] de-
veloped a process algebra to derive the interactive behavior of a business process
out from a BPEL4WS specification. However, the paper focus on the detailed se-
mantics of BPEL4WS, and intentionally neglects a number of aspects, including
timeouts, fault handlers, compensation handlers, and so on.

6 Conclusion

BPEL4WS is one of the most important business process modelling languages,
aimed to specify the business services which are formed by distributed, inter-
operational and heterogeneous components (processes) over networks. One dis-
tinct feature of BPEL4WS is the fully programmable fault and compensation
handling mechanism, which allows the user to specify the compensation behav-
iors of processes in application-specific manners. The compensation is scope-
based, fault-triggered. Each compensation handler belongs to a scope, and can
be active only when it is invoked directly or indirectly by a fault handler.

In this paper, we studied the semantics of the fault and compensation han-
dling in the BPEL4WS vein. A simple language BPEL is defined, which covers
the features of BPEL4WS related to fault and compensation handling. Then
a formal operational semantics for the language is presented. In this semantics,
we proposed the concepts compensation closure and compensation context, which
capture the execution structure and the process of the programmable compensa-
tion, and form a good framework to the semantics, and perhaps, to the structures
of implementation of BPEL4WS.

We defined first a set of rules for the semantics of the sequential part of the
language, and then extended it to deal with the parallel parts, with an additional

Z. Qiu et al.

Semantics of BPEL4WS-Like Fault and Compensation Handling 365

concept of forced termination. Then we proved that the semantics is complete,
and it follows the requirement that before a fault handler starts its work, the
activities of the same scope which are active will all terminate (as defined by
the BPEL4WS specification). At last, some examples are given to show how this
semantics works. From this study, we obtain good insights into something of the
BPEL4WS-like compensation, which are related to the language design and the
implementation. We proposed a dynamic resource optimization technique for the
implementation, and discussed some subtleties of the language.

As the further work, we are going to integrate the link mechanism into this
framework, which is an important way supporting the synchronous of parallel
structures in BPEL4WS specification. This will help us to capture and under-
stand all the control flow of the BPEL4WS-like languages. We have already
started the work on the semantics of the detailed level of BPEL4WS, and plan
to integrate these works together, to form a complete semantics of the language.

References

1. W. Aalst, M. Dumas, and A. Hofstede, and P. Wohed, Analysis of web services
composition languages: the case of BPEL4WS. LNCS 2813, pp. 200-215. Springer,
2003.

2. L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long-running transactions.
Proc. of FMOODS’03, LNCS 2884, pp. 124-138. Springer, 2003.

3. S. Thatte. XLANG: Web Service for Business Process Design, http:www.gotdotnt.
com/team/xmlwsspecs/xlang-c/default.html.

4. F. Leymann. WSFL: Web Serices Flow Languag, http://www-3.ibm.com/ soft-
ware/solutions/webservices/pdf/WSDL.pdf.

5. BPEL4WS, Business Process Execution Language for Web Service, http://www.
siebel.com/bpel, 2003.

6. Roberto Bruni, Hernán Melgratti, and Ugo Montanari, Theoritical foundations for
compensation in flow composition languages, POPL’05, ACM, 2005.

7. M. Butler and C. Ferreira. An operational semantics for StAC, a language for
modelling long-running business transactions. LNCS 2949, pp. 87-104. Springer,
2004.

8. H. Garcia-Molina and K. Salem. Sagas, Proc. of ACM SIGMOD’87, pp. 249-259.
ACM Press, 1987.

9. J. Gay and A. Reuter. Transaction Processing: Concepts and techniques, Morgan
Kaufmann, 1993.

10. M. Mazzara and R. Lucchi. A framework for generic error handling in business
processes. Proc. WS-FM’04, ENTCS Vol. 105, pp. 133-145, Elsevier, 2004.

11. J. Moss. Nested Transactions: An Approach to Reliable Distributed Computing.
PhD thesis, Dept. of Electrical Eng. and Computer Sci., MIT, 1981.

12. M. Viroli. Towards a formal foundation to orchestration languages. Proc. of WS-
FM’04, ENTCS Vol. 105, pp. 51-71, Elsevier, 2004.

On Some Galois Connection Based Abstractions
for the Mu-Calculus

Dragan Bošnački

Eindhoven University of Technology,
Den Dolech 2, P.O. Box 513, 5612 MB Eindhoven, The Netherlands

d.bosnacki@tue.nl

Abstract. In this paper we give some abstractions that preserve sublan-
guages of the universal part of the branching-time μ-calculus Lμ. We first
extend some results by Loiseaux et al. by using a different abstraction for
the universal fragments of Lμ which are treated in their work. We show
that this leads to a more elegant theoretical treatment and more practical
verification methodology. After that, we define an abstraction for a uni-
versal fragment of Lμ in which the formulas can contain the �-operator
only under an even number of negations. The abstraction we propose is
inspired by the work of Loiseaux et al., and Kesten and Pnueli. From the
former we use the approach based on Galois connections, while from the
latter we borrow the idea of “rewriting” the original formula using con-
tracting/expanding abstractions. We argue that, besides removing some
unnecessary syntactic restrictions, our approach leads to more compact
and practical solutions to the abstraction problems.

Keywords: abstraction, property preservation, mu-calculus, model
checking.

1 Introduction

Probably the main obstacle in the practical applications of the automated formal
verification methods, like model checking, is the state-explosion problem, i.e.,
the excessive memory and time requirements caused by the size of the analyzed
systems. Property preserving abstractions (c.f. [3, 10, 7]) are among the most
successful techniques for tackling this problem. The idea behind these techniques
is to construct, based on the original system model and the checked property, a
smaller finite model by abstracting from the non-essential features of the system.
Usually, the abstraction is designed such that the property is preserved in at least
one direction: if the property holds for the obtained abstract model, than it also
holds in the original (concrete) one.

An approach that addresses such a preservation is the Abstract Interpreta-
tion framework. Originally introduced for sequential programs [4], it was later
extended to concurrent systems (e.g. [10, 5, 7]). Our paper can be seen as an
extension of the work by Loiseaux et al. from [10]. Inspired by the ideas from

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 366–381, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Some Galois Connection Based Abstractions for the Mu-Calculus 367

Abstract Interpretation [4], in [10] a framework is developed to treat abstrac-
tions on the level of transition systems, which is based on the formal machinery
of Galois connections between the concrete and abstract state spaces.

In this paper we give abstractions that preserve some universal fragments of
the branching-time μ-calculus Lμ. Although the specifications in the μ-calculus
are probably less comprehensible compared to other temporal logics, like LTL
or CTL∗, the advantage of the μ-calculus is that it is strictly more expressive
than those logics. Thus, all results about the μ-calculus automatically transfer
to those logics.

We first improve on the results of [10] by introducing an abstraction for
the two universal fragments of Lμ, �Lμ and �L+

μ , which differs from the one
from [10]. (�Lμ allows negations only in front of atomic propositions, i.e., the
formulas are in the so called positive normal form, while �L+

μ does not allow
negations at all.) Such an abstraction results with a verification methodology
which is simpler and more direct than the one presented in [10]. For example, the
obtained results were implemented successfully in practice for timer abstractions
in [2].

In technical terms, our abstraction is expressed by means of α̃, the dual of the
abstraction function α as defined in [10]. We show that the natural assumption
that each state of the abstract state space must be related to a state of the
concrete state space simplifies the proofs as well as the formulation of the results.

The second contribution of this paper is an abstraction for a universal frag-
ment of the μ-calculus, which we denote with �eLμ and which is syntactically
more general then the above mentioned fragments. In �eLμ the formulas may
contain the �-operator only under even number of negations. The abstraction we
propose for �eLμ is a combination of [10] and the work of Kesten and Pnueli [8].
From the former we reuse the basic methodology based on Galois connections,
while from the latter we borrow the idea of “rewriting” the original formula us-
ing contracting/expanding abstractions. In fact, the “rewriting” amounts to just
determining whether the atomic propositions are under an even or odd number
of negations.

The abstraction of [10] cannot handle the fragment �eLμ, because the latter
allows negations. As �eLμ is a proper superset of �L+

μ and �Lμ, which can be
handled by the abstraction of [10], our abstraction is obviously more general.
But even if restricted to �L+

μ and �Lμ our approach has advantages compared
to [10], because it it is more direct/automated and imposes less strict conditions
on the abstraction. More liberal conditions often imply smaller abstract state
spaces and therefore, more efficient verification. With regard to [8] our approach
is an improvement because �eLμ is strictly more expressive than LTL which is
used there. For example, the property “proposition p holds for all even execution
steps along all executions of some process” can be expressed in �eLμ, but not
in LTL. We postpone the more detailed discussion about the contributions and
the comparison with these references and other related work until the end of
Section 4.

368 D. Bošnački

Paper layout. The next section provides the necessary background about tran-
sition systems, predicate transformers, and Galois connections, as well as defini-
tions and results about the μ-calculus and abstractions. The main contributions
of the paper are in Sections 3 and 4. Section 3 contains the first set of results
as anticipated above, i.e., some preservation results about the universal frag-
ments �Lμ and �L+

μ . In Section 4 we describe the abstraction that preserves
the more general fragment �Le

μ. The last section concludes and discusses some
possibilities for future work.

2 Preliminaries

In the first part of this section we recall some definitions and results from [10]
about transition systems, predicate transformers and Galois connections.

2.1 Transition Systems, Predicate Transformers

Definition 1 (Transition Systems). A transition system is a pair S = (Q,R),
where Q is a set of states and R ⊆ Q×Q is a transition relation.

As we deal with μ-calculus in the rest of the paper we consider all properties to
be state properties, i.e., interpreted as sets of states.

Definition 2 (Predicate Transformers pre and post). Given a relation
ρ ⊆ Q1 ×Q2, we define pre[ρ] : 2Q2 → 2Q1 and post[ρ] : 2Q1 → 2Q2 as

– pre[ρ]
def
= λX.{q1 ∈ Q1 : ∃q2 ∈ X.q1ρq2}

– post[ρ]
def
= λX.{q2 ∈ Q2 : ∃q1 ∈ X.q1ρq2}

Thus, for Q′
2 ⊆ Q2, pre[ρ](Q′

2) gives the set of “predecessors” of the states of
Q′

2 with regard to the relation ρ and, similarly, for Q′
1 ⊆ Q1, post[ρ](Q′

2) is the
set of “successors” of the states of Q′

1 via ρ.

Definition 3 ((De Morgan) Dual Function).

Given a function α : 2Q1 → 2Q2 we define its dual α̃
def
= λX.α(X), where Q

denotes the complement of Q.

2.2 Galois onnections

Here we give some standard definitions and properties about Galois connections.
See [10] for the proofs and more properties.

Note 4. We denote with IdQ the identity function on 2Q. Given two functions
f : Q→ Q′ and g : Q′ → Q′′, and q ∈ Q we denote their composition g(f(q)) as
g ◦ f .

Definition 5 (Galois connection and Galois preinsertion). Given two sets
of states Q1 and Q2, a Galois connection from 2Q1 to 2Q2 is a pair of monotonic

C

On Some Galois Connection Based Abstractions for the Mu-Calculus 369

functions (α, γ), where α : 2Q1 → 2Q2 and γ : 2Q2 → 2Q1 , such that IdQ1 ⊆ γ ◦α
and α ◦ γ ⊆ IdQ2 . (Here we assume that ⊆ is a pointwise extension of the
standard ⊆ to functions.) A Galois connection (α, γ) is a Galois preinsertion iff
α(Q1) = Q2 and γ̃(Q2) = Q1.

Proposition 6 (Some Basic Galois Connection Properties). For any Ga-
lois connection (α, γ) from 2Q1 to 2Q2 the following properties hold:

– α(∅) = ∅,
– α distributes over ∪ and γ distributes over ∩.
– (γ̃, α̃) is a Galois connection from 2Q2 to 2Q1 ,

The following propositions show the links between the binary relation ρ from
Q1 to Q2 and the (functions of the) Galois connections from 2Q1 to 2Q2 .

Proposition 7 (Galois connections generated by relations). Given a re-
lation ρ ⊆ Q1 ×Q2, the pair (post[ρ], p̃re[ρ]) is a Galois connection from 2Q1 to
2Q2 and (pre[ρ], p̃ost[ρ]) is a Galois connection from 2Q2 to 2Q1 .

Proposition 8 (Relations induced by Galois connections). If (α, γ) is
a Galois connection from 2Q1 to 2Q2 , then there exists a unique relation ρ ⊆
Q1 ×Q2 such that α = post[ρ] and γ = p̃re[ρ].

Notice that if (α, γ) is a Galois preinsertion, because of α(Q1) = Q2, each q2
in Q2 is an image under ρ of some q1 from Q1 and also, because of γ̃(Q2) = Q1,
each q1 from Q1 has an image q2 in Q2, i.e. ρ is total both on its domain and
range.

2.3 Abstractions

We define the notion of abstraction as a simulation based on Galois connections.
The whole approach is inspired by the notion of abstract interpretation originated
by Cousot [4]. We first give an intuition behind the definition (see [1, 10] for
more detail).

Let us consider a (concrete) system S1 = (Q1, R1). Designing an abstraction
boils down to choosing an abstract state space Q2 and a description relation
ρ ⊆ Q1 × Q2 . Since we want that each concrete state has at least one abstract
counterpart and there is no much sense having abstract states that are not
related to any concrete state, we require that ρ is total on both Q1 and Q2.
Intuitively, as we want to preserve the dynamic aspects of the system, we have
to define the abstract transition relation R2 in accord with ρ, such that the latter
induces a simulation relation between S1 and S2 (c.f. [10]).1 Then, because of
easier formal treatment, we substitute ρ with a pair of (monotonic) functions α
and γ, where α : 2Q1 → 2Q2 is the point-wise lifting of ρ to the sets of states,

1 The way of choosing/computing the above mentioned sets and relations is beyond
the scope of this paper. We refer the reader for more detail to, for instance, 4.4.1
from [5] or 4.2 from [10].

370 D. Bošnački

i.e. α = post[ρ], and γ : 2Q2 → 2Q1 is the dual of the inverse image of ρ, i.e.
γ = p̃re[ρ]. (See Propositions 7 and 8.) Thus, in the following definition the
simulation requirement is given in terms of α, γ, R1 and R2:

Definition 9 (Abstraction). Let S1 = (Q1, R1) and S2 = (Q2, R2) be two
transition systems and let (α, γ) be a Galois preinsertion from 2Q1 to 2Q2 . We
define

S1 �(α,γ) S2 iff α ◦ pre[R1] ◦ γ ⊆ pre[R2].

We say that S2 is an abstraction of S1.

The abstraction definition from [10] allows a more general Galois connection
instead of a Galois preinsertion. However from a practical point of view using a
Galois preinsertion, i.e., requiring that each state in the abstract state space Q2

is an image of some concrete state from Q1, is natural because we always try to
work with an abstraction which is as “small” as possible. Having abstract states
which are not related to some concrete state does not make much sense, because
such states would introduce an extra behavior which has no counterpart in the
concrete system. This could lead to spurious counterexamples (false negatives)
which is one of the main problems in the practical application of abstractions.

Intuitively, as a consequence of the simulation and with properly chosen in-
terpretations I1, I2, a given formula f of some logic holds on S1 if it holds on S2 ,
under the condition that γ̃(I2(f)) ⊆ I1(f). In other words, the concretization
of each interpretation which satisfies f in the abstract system “falls” in the set
of interpretations that satisfy f in the concrete system. The preservation re-
sult holds for formulas of temporal logics without existential quantification over
paths, e.g. the universal fragments of the μ-calculus or LTL [10, 6]. We give later
a more formal treatment of these issues.

2.4 The Propositional μ-Calculus

We briefly recall the syntax and the semantics of the propositional μ-calculus
Lμ and we define the fragments that we are going to consider in the sequel.

Definition 10 (Lμ syntax). Let P be a set of atomic propositions, X a set of
variables, and let p ∈ P and X ∈ X . The set of the formulas of the propositional
μ-calculus Lμ is defined by the following grammar:

f ::= & | p | X | �f | f ∨ f | ¬f | μX.f

where in the last clause (μX.f) f is syntactically monotonic on X, i.e., each
occurrence of X in f is under an even number of negations.

We extend Lμ in a standard way with the formulas ⊥, f ∧ g, f ⇒
g, νX.f(X) and �f which are defined as abbreviations for ¬&,¬(¬f ∨¬g),¬f ∨
g,¬μX.¬f(¬X), and ¬�¬f , respectively.

Intuitively, the meaning of a formula �f is that f is true for some immedi-
ate successor of a given state, while �f means that f is true in all immediate

On Some Galois Connection Based Abstractions for the Mu-Calculus 371

successors. Variables can be considered as formulas that have to be interpreted
depending on some environment that maps variables to sets of states. In a sense
they are auxiliaries in the context of the fix point operators. The meaning of
μX.f (resp. νX.f) the least (resp. the greatest) fix point, is the smallest (resp.
greatest) set X of states for which f holds, where f usually depends on X. For
instance, assuming transition systems in which every state has a successor, the
claim “proposition p is true in all states that are reachable from a given state”
is expressed by the formula νX.(p ∧ �X), while μX.(p ∨�X) expresses “there
exists a path along which p eventually holds”.

Formally, the semantics of the formulae is defined for a given transition system
S = (Q,R) and an interpretation function for the atomic propositions IP :
P → 2Q. A formula f with n free variables is interpreted via a function I :
Lμ× (2Q)n → 2Q. In particular, a closed formula is interpreted as a subset of Q.

Definition 11 (Semantics of the μ-Calculus).
For a valuation V = (V 1, . . . , Vn) ∈ (2Q)n of the variables, the interpretation

function I is defined by induction on the formula structure as follows:

– I(&) = Q,
– I(p) = IP(p),
– I(Xj)(V) = Vj,
– I(f1 ∨ f2)(V) = I(f1)(V) ∪ I(f2)(V),
– I(¬f)(V) = I(f)(V),
– I(�f)(V) = pre[R](I(f)(V)),
– I(μX.f)(V) =

⋂
{Q′ ⊆ Q : I(f)[Q′/X](V) ⊂ Q′}.

where I(f)[Q/X](V) means that each occurrence of X in I(f) is replaced by Q.
(For brevity, in the first two clauses we omit the valuation V .)

We say that a formula of the (extended) language Lμ is in positive normal
form iff all the negations occur only applied to atomic propositions. Often one
needs to consider fragments of Lμ that involve only universal (resp. existential)
computation over the computation sequences. The former are achieved by allow-
ing only the usage of the � (resp. �) operator in the formulas. More formally, the
universal and existential fragments of Lμ, �Lμ and �Lμ, are defined respectively
with the following grammars:

g ::= & | ⊥ | p | ¬p | X | �g | g ∨ g | g ∧ g | μX.g | νX.g

h ::= & | ⊥ | p | ¬p | X | �h | h ∨ h | h ∧ h | μX.h | νX.h
Notice that both �Lμ and �Lμ allow only formulas in positive normal form.
So called positive fragments of �Lμ and �Lμ, denoted by �+Lμ and �+Lμ,
respectively, are obtained by totally forbidding the usage of ¬ – even in front of
atomic propositions.

Note 12. One can consider the interpretation I as being parameterized by the
transition system S, the set of atomic propositions P, and their interpretation
IP . When we need to emphasize this we write I[S,P, IP] for the interpretation
function.

372 D. Bošnački

Definition 13 (Satisfaction and Preservation of Formulas). Given a for-
mula f ∈ Lμ and a transition system S = (Q,R) with an interpretation function
I as in Def. 11 we say that S satisfies f (denoted as S |= f) iff I(f) = Q, i.e.,
the formula holds in each state of S.

Lemma 14 (Satisfaction and Preservation of Formulas).
Let S1 = (Q1, R1) and S2 = (Q2, R2) be two transition systems such that

S1 �(α,γ) S2. Then, for all formulas f, g ∈ Lμ and corresponding interpretation
functions I1, I2:

– γ̃(I2(f)) ⊆ I1(g) implies S2 |= f ⇒ S1 |= g, and
– α(I1(g)) ⊆ I2(f) implies S1 |= g ⇒ S2 |= f .

Proof. Suppose S2 |= f . According to Def. 13 this means that I2(f) = Q2. Since
(α, γ) is a preinsertion γ̃(I2(f)) = Q1. Using the condition of the lemma this
gives Q1 ⊆ I1(g). On the other hand, it is easy to see from the interpretation
definition (Def. 11) that I1(g) ⊆ Q1. Thus, I1(g) = Q1, which is equivalent to
S1 |= g.

The second implication can be proved in an analogous way. �$

3 Some Preservation Results About �Lμ and �L+
μ

This section and the next contain the main contributions of this paper. In this
section we give some results related to the preservation of the sublanguages �Lμ

and �L+
μ which expand the material from [10]. We show that, for our abstraction

definition based on Galois preinsertion instead of Galois connection, α̃ coincides
with what is known in the literature as contracting abstraction. This significantly
simplifies the theory and leads to its more efficient application, which is discussed
at the end of the section.

As the interpretation function I in Def. 11, which defines the μ-calculus
semantics, is parameterized by the interpretation of the atomic propositions, the
latter is in the core of the preservation results.

Definition 15 (Consistency). Let Q1 and Q2 be two sets of states and IP :
P → 2Q1 an interpretation of the atomic propositions. A given function α :
2Q1 → 2Q2 is consistent with IP iff

∀p ∈ P.α(IP(p)) ∩ α(IP(p)) = ∅.

The definition of consistency can be lifted in an obvious way for an interpre-
tation function I of a μ-calculus formula over Q1 which is parameterized with
a given interpretation of propositions IP according to Def. 11. In that case we
also write I(p) instead of IP(p).

Intuitively, α is consistent with IP if for all atomic propositions the images
under α of the interpretations of p and ¬p are not contradictory. Note that, in
this case, for all s1 ∈ Q1, s2 ∈ Q2 such that s2 ∈ α({s1}), s1 ∈ I1(p) iff s2 ∈ I2(p),
where I1(p) = IP(p) and I2(p) = α(I1(p)). Or, intuitively, s2 satisfies p iff each

On Some Galois Connection Based Abstractions for the Mu-Calculus 373

image s1 satisfies p. The notion of consistency coincides with the notion of precise
abstraction from [8].

Besides the consistent (precise) interpretation of the atomic proposition in
the abstract domain, we use also contracting (also called universal, underapprox-
imation) and expanding (existential, overapproximation) interpretations of the
atomic propositions defined by I2(p) = α(I1(p))−α(I1(p)) and I2(p) = α(I1(p)),
respectively. For all s1 ∈ Q1, s2 ∈ Q2 such that s2 ∈ α({s1}), s1 ∈ I1(p) if
s2 ∈ I2(p) in case of the contracting abstraction, and s2 ∈ I2(p) if s1 ∈ I1(p), for
the expanding one.

Intuitively, in a contracting abstraction, if p holds in s2, all the states which
are concretizations of s2 have to satisfy p too, while in case of expanding abstrac-
tion one requires that at least one concretization satisfies p. Notice the duality of
the contracting and expanding abstractions with respect to the negation, which
is one of the key aspects of the abstraction we define later in Section 4.

Proposition 16 (Contracting Abstraction via α̃). Let (α, γ) be a Galois
preinsertion from 2Q1 to 2Q2 . Then for all Q ⊆ Q1, α(Q)− α(Q) = α̃(Q).

Proof. By the definition of Galois preinsertion (Def. 5) α(Q1) = Q2. Since Q ∪
Q = Q1 and by the distributivity of α over ∪ (Prop. 6) we have that α(Q) ∪
α(Q) = Q2, which is equivalent to α(Q) ⊆ α(Q). Using this further we get
α(Q)− α(Q) = α(Q) ∩ α(Q) = α(Q) = α̃(Q). �$

Note 17. In view of the above proposition, we can also state the condition for the
contracting abstraction as I2(p) = α̃(I1(p)). This seemingly trivial observation
leads to much more elegant proofs and many properties of the abstraction become
direct consequences of the basic properties of Galois connections.

Proposition 18 (Consistency of γ̃). Let S1 and S2 be transition systems such
that S1 �(α,γ) S2, I1 and I2 their corresponding interpretation functions, P a
set of propositions. And let us assume a contracting abstraction for the atomic
propositions, i.e., for all p ∈ P, I2(p) = α̃(I1(p)). Then, if α is consistent with
I1, then γ̃ is consistent with I2.

Proof. Using the definition of I2 we obtain γ̃(I2(p)) ∩ γ̃(I2(p)) = γ̃(α̃(I1(p))) ∩
γ̃(α̃(I1(p))) = γ̃(α̃(I1(p))) ∩ γ̃(α(I1(p))).

By α(Q1) = Q2 (because (α, γ) is a Galois preinsertion) we have α(I1(p)) ∪
α(I1(p)) = Q2. Together with the fact that α(I1(p)) ∩ α(I1(p)) = ∅, (which
follows from the consistency of α (Def. 15)) and the definition of α̃ this gives
α(I1(p)) = α(I1(p) = α̃(I1(p)).

Thus, γ̃(α̃(I1(p)))∩ γ̃(α(I1(p))) = γ̃(α̃(I1(p)))∩ γ̃(α̃(I1(p))) ⊆ I1(p)∩I1(p) =
∅ which establishes the claim. �$

As sometimes the proofs of consistency of the abstraction α are more intuitive
than the proofs of consistency of the concretization γ̃, the last property could
be quite important in practice.

The following theorem from [10] is a basis for the preservation results in this
subsection.

374 D. Bošnački

Theorem 19 (Preservation of �L+
μ and �Lμ). Let S1 = (Q1, R1) and

S2 = (Q2, R2) be two transition systems such that S1 �(α,γ) S2, P a set of
atomic propositions, and IP : P → Q2 an interpretation function for the atomic
propositions in S2. Further, let I1 = I[S1,P, γ̃ ◦ IP] and I2 = I[S2,P, IP], where
I is as in Def. 11. Then

γ̃(I2(f)) ⊆ I1(f)

– for any formula f of �L+
μ , and

– if α is consistent with IP , also for any formula f of �Lμ.

Proof. The theorem is Theorem 2, item 1B, from [10] rephrased with our deno-
tations and terminology. �$

Thus, the interpretation function of the atomic propositions of the concrete
system is γ̃ ◦ IP – a concretization of its counterpart from the abstract system.
Using Theorem 19 we can formulate the following preservation result:

Theorem 20 (Preservation of �L+
μ and �Lμ under α̃). Let S1 = (Q1, R1)

and S2 = (Q2, R2) be two transition systems such that S1 �(α,γ) S2, P a set of
atomic propositions, and IP : P → Q1 an interpretation function for the atomic
propositions in S1. Further, let I1 = I[S1,P, IP] and I2 = I[S1,P, α̃ ◦ IP)] be
the interpretation functions for S1 and S2, respectively. Then,

S2 |= f ⇒ S1 |= f,

– for any formula f of �L+
μ

– and, if α is consistent with IP , also for any formula f of �Lμ.

Proof. By Theorem 19 γ̃(I2(f)) ⊆ I ′1(f), where I ′1 = I[S1,P, γ̃ ◦ α̃◦IP] and I2 =
I[S2,P, α̃◦IP], for I as in Def. 11. As f (of �L+

μ) is syntactically monotonic (no
negations) also the interpretation function I ′1 is monotonic (on the interpretation
of the atomic propositions). Thus, as because of the Galois connection (γ̃, α̃), γ̃ ◦
α̃(IP) ⊆ IP , we obtain I ′1(f) = I[S2,P, γ̃ ◦ α̃(IP)](f) ⊆ I[S2,P, IP](f) = I1(f).
The preservation claim in the theorem follows by transitivity and Lemma 14.

Like in the proof of Prop. 18, one can show that for a consistent α: α ◦ IP =
α̃ ◦ IP . Also by Prop. 18 if α is consistent with IP , then γ̃ is consistent with
α̃ ◦ IP . The definition of consistency implies that α is defined on the whole
set 2Q1 . As a consequence, the relation ρ implied by Prop. 8 is defined for each
element of Q1, which further implies that α̃(Q2) = Q1. Using a reasoning dual
to the one we used in the proof of Prop. 18 to show that α = α̃ we obtain that
γ̃ ◦ α̃ ◦ IP = γ ◦ α̃ ◦ IP . Now taking into account the above and by the basic
Galois properties that γ̃ ◦ α̃ = γ ◦ α ⊇ IdQ1 and γ̃ ◦ α̃ ⊆ IdQ1 we conclude
γ̃ ◦ α̃ ◦ IP = IP . By substituting the last equality in I ′1 above one can show that
I ′1(f) = I1(f) which implies the preservation of the formulas of �Lμ. �$

Application. Based on Theorem 20 one can develop a straightforward verifica-
tion method. Given a system S1 = (Q1, R1), a set of atomic propositions P
occurring in a formula f ∈ �L+

μ (�Lμ) and an interpretation function for the

On Some Galois Connection Based Abstractions for the Mu-Calculus 375

propositions IP , we first give an abstraction relation ρ which is total on Q1 and
Q2, and compute the abstract system S2. Then we verify if S2 satisfies f with
interpretation (of the atomic propositions) α̃◦IP . If f holds for S2, then it holds
for S1 too (with the original interpretation IP).

This method has an advantage over the one suggested in [10] (Section 6.3)
in the sense that with their method, in general, one only shows that f holds for
S1 with the interpretation function γ̃ ◦ α ◦ IP . This is a disadvantage compared
to the method described above, because if one wants to further show also the
correctness under IP , one has to use an additional arguments, which is often not
obvious.

4 Contracting-Expanding Abstraction for the μ-Calculus

In this section we give an abstraction which preserves formulas from the language
�eLμ which is a superset of �Lμ. In �eLμ negation operators are not applied
only to atomic propositions. As we want to stay within the universal fragment,
the only constraint (besides the standard syntactic monotonicity on variables)
is that the � operator is under an even number of negations. (Otherwise, one
gets implicit existential fragments, i.e., the � operator which is dual to �.)

Definition 21 (�eLμ syntax). Let P be a set of atomic propositions, X a set
of variables, and let p ∈ P and X ∈ X . The set of the formulas of �eLμ is defined
by the following grammar:

f ::= & | p | X | �f | f ∨ f | ¬f | μX.f

where in the last case each occurrence of X is under an even number of negations.
Also, each f of �eLμ is syntactically monotonic on the � operator, i.e., each
occurrence of the latter is under an even number of negations.

In order to obtain preservation abstraction for the formulas of �eLμ, we take
the approach from [8] in the sense that the original formula f is first “rewrit-
ten” into its contraction f−, and the interpretation in the abstract state space
is defined on the latter. In that regard, we slightly depart from [10] where the
same formula f is interpreted by means of two different interpretation functions
(actually, one function parameterized by the atomic proposition interpretation)
in the abstract and concrete state spaces.2 Given a formula f ∈ �eLμ interpreted
via an interpretation I1 on the concrete system S1, we want to define a corre-
sponding formula f− with interpretation I2 on the abstraction S2 such that if
f− holds on S2 then f holds on S1.

The contracting and expanding operators, (·)− and (·)+, respectively, which
map f into its contraction f− and expansion f+, resp., are defined as below.

2 An equivalent alternative approach which is more in the spirit of [10] is also possible:
One can give only a new interpretation function defined inductively via two functions
I−
2 and I+

2 for the abstract domain. We decided to take the approach in the paper
mainly because of the sake of clarity - the denotation is more compact.

376 D. Bošnački

The new formulas f− and f+ are defined over the same set of variables X , but
with a new set of propositions P∓ = {p− | p ∈ P}∪{p+ | p ∈ P}. In other words,
P∓ is obtained by replacing in P each proposition p with its two superscripted
versions p− and p+.

Definition 22 (Contracting/expanding abstraction of formulas). Given
a formula f of �eLμ we define inductively its contraction f− and expansion f+

as follows:

– (&)− = (&)+ = &,
– (p)− = p−, (p)+ = p+,
– (X)− = (X)+ = X,
– (¬f)− = ¬f+, (¬f)+ = ¬f−,
– (�f)− = �f−, (�f)+ = �f+,
– (f1 ∨ f2)− = f−

1 ∨ f−
2 , (f1 ∨ f2)+ = f+

1 ∨ f+
2 ,

– (μX.f)− = μX.f−, (μX.f)+ = μX.f+.

where p−, p+ ∈ P∓ are as defined above.

Note that structure remains preserved and only the atomic propositions of the
original formula f are replaced with their contractions or expansions p− and p+.
Intuitively, the latter represent the contracting and expanding abstractions of
the original proposition p. Thus, assuming a proposition interpretation function
IP : P → 2Q1 for the concrete system S1, we define the proposition interpretation
function IP∓ : P∓ → 2Q2 for the abstract system S2 for a given p ∈ P as
IP∓(p−) = α̃(IP(p)) and IP∓(p+) = α(IP(p)).

Now we can define the interpretation function of the formulas as I2 =
I[S2,P∓, IP∓] where I is defined as in Def. 11, or in an unfolded form:

Definition 23 (Interpretation in the abstract domain). For a valuation
V = (V 1, . . . , Vn) ∈ (2Q2)n of the variables, the interpretation function I2 is
defined by induction on the formula structure as follows:

1. I2(&) = Q2;
2. I2(p−) = α̃(I1(p)), I2(p+) = α(I1(p));
3. I2(Xj)(V) = Vj;
4. I2(g1 ∨ g2)(V) = I2(g1)(V) ∪ I2(g2)(V);
5. I2(¬g)(V) = I2(g)(V);
6. I2(�g)(V) = �I2(g)(V) = p̃re[R](I2(g)(V));
7. I2(μX.g)(V) =

⋂
{Q′ ⊆ Q2 : I2(g)[Q′/X](V) ⊆ Q′}

where I1 is the interpretation function defined on the concrete system as in
Def. 11.

The fact that interpretation I2 differs from the standard interpretation only
in the interpretation of the atomic propositions is important from a practical
point of view because it means that we can apply standard methods (designed
for non-abstracted systems) for the verification of abstract systems.

On Some Galois Connection Based Abstractions for the Mu-Calculus 377

The main property that we want to show is

Theorem 24. Given two transition systems S1 = (Q1, R1) and S2 = (Q2, R2),
such that S1 �(α,γ) S2, and a formula f of �eLμ,

– S2 |= f− ⇒ S1 |= f and
– S1 |= f ⇒ S2 |= f+.

This follows, via Lemma 14, from the following result:

Lemma 25 (Preservation of �eLμ).
Let S1 = (Q1, R1) and S2 = (Q2, R2) be two transition systems such that

S1 �(α,γ) S2, and I1 and I2 their corresponding interpretation functions, as they
are defined in Def. 11 and 23, respectively. Then, for a given formula f in �eLμ

and a valuation (vector) V we have

– γ̃(I2(f−)(α̃(V))) ⊆ I1(f)(V) and
– α(I1(f)(V)) ⊆ I2(f+)(α(V))

Proof. The proof is by mutual induction on the formula structure for the prop-
erties γ̃(I2(f−)) ⊆ I1(f) and α(I1(f)) ⊆ I2(f+). For simplicity, we omit the
valuation V in the cases in which it is not relevant.

1. γ̃(I2(&)) = γ̃(Q2) = Q1 = I1(&), because (α, γ) is a Galois preinsertion.
Similarly, α(I1(&)) = α(Q1) = Q2 = I2(&).

2. γ̃(I2(p−)) = γ̃(α̃(I1(p))) ⊆ I1(p), because by Prop. 6 (γ̃, α̃) is a Galois
connection and using the basic properties of Galois connections from Def. 5.
The second property (co-property) holds trivially: α(I1(p)) = I2(p+).

3. γ̃(I2(Xj)(α̃(V))) = γ̃(α̃(Vj)) ⊆ Vj = I1(Xj)(V), by a similar reasoning like
for the atomic propositions case. Also, immediately by the interpretation
definitions, α(I1(Xj)(V)) = α(Vj) = I2(Xj)(α(V)).

4. γ̃(I2((f1 ∨ f2)−)) = γ̃(I2((f1)−) ∪ I2((f2)−)) by the definition of the con-
tracting/expanding operators and interpretation function. As γ̃ distributes
over ∪ (Prop. 6), we have γ̃(I2((f1 ∨ f2)−)) = γ̃(I2((f1)−)) ∪ γ̃(I2((f2)−)).
By the induction hypothesis γ̃(I2((f1∨f2)−)) ⊆ I1(f1)∪I1(f2) = I1(f1∨f2).
As α too distributes over ∪ (Prop. 6), the co-property can be shown in an
analogous way.

5. By applying the definition of the contracting/expanding operators as well as
the definition of I2 one gets: γ̃(I2((¬f)−)(α̃(V))) = γ̃(I2(¬f+)(α̃(V))).
For the next step we need the observation that ¬f+ is syntactically mono-
tonic on the occurrences of the variables from X , i.e. each variable in f+

is under an odd number of negations. This is because on the top level we
begin with the formula f− which by definition is syntactically monotonic
on the variables of X . Each time a negation occurs also the superscript of
the subformulae toggles which implies that a subformula of the form f−

1

always contains an even number of negations (i.e. it is always syntactically
monotonic), while formulas of the form f+

2 contain an odd number of nega-
tions. Similarly, knowing that we start with a formula which is syntactically

378 D. Bošnački

monotonic on the � operator, we can conclude that each occurrence of the
� operator in formulas of the form f−

1 is under an even number of negations
and in those of the form f+

2 under an odd number of negations. Thus in a
formula of the form ¬f the subformula f cannot be of the form �f1. This
is important to note because, as we will see below, one cannot show the co-
property α(I1(¬f)) ⊆ I2(f+) (see below) for the case �f , and on the other
hand the co-property is used in the proof of the current case (¬f).
The syntactic monotonicity of ¬f+ on the variables of X implies the mono-
tonicity of I2(¬f+). Therefore, by the monotonicity of γ̃ and α̃(Q) ⊆ α(Q),
we have further γ̃(I2(¬f+)(α̃(V))) ⊆ γ̃(I2(¬f+)(α(V))) = γ̃(I2(f+)(α(V))),
where the last equality follows by the definition of I2. By negating both
sides of the co-property from the induction hypothesis we get α(I1(f)) ⊇
I2(f+)(α(V)). Thus, using the monotonicity of γ̃ one obtains
γ̃(I2(f+)(α(V))) ⊆ γ̃(α(I1(f))(V)) = γ̃(α̃(I1(f)(V))) ⊆ I1(f)(V) =
I1(¬f)(V).
The second set inequality is implied by the Galois connection (γ̃, α̃).
The proof of α(I1(¬f)(V)) ⊆ I2((¬f)+)(α̃(V)) goes analogously by starting
with the first part of the induction hypothesis γ̃(I2(f−)(α̃(V))) ⊆ I1(f)(V),
with the roles of α and γ̃ swapped.

6. By the definition of S1 �〈α,γ〉 S2 (Def. 9) we have

α ◦ pre[R1] ◦ γ ⊆ pre[R2]

or, equivalently, by applying complement on both sides,

pre[R2] ⊆ α ◦ pre[R1] ◦ γ.

Using the last set inclusion we get
I2((�f)−) = p̃re[R2](I2(f−)) = pre[R2](I2(f−)) ⊆
α(pre[R1](γ(I2(f−)))) =
α̃(pre[R1](γ(I2(f−)))) = α̃(p̃re[R1](γ(I2(f−)))) = α̃(p̃re[R1](γ̃(I2(f−))))
⊆ α̃(p̃re[R1](I1(f))).
The last set inclusion follows by the induction hypothesis and the mono-
tonicity of α̃ and p̃re. Further, continuing from the property we have shown
above, i.e., I2((�f)−) ⊆ α̃(p̃re[R1](I1(f))), by the monotonicity of γ̃ and
the basic properties of the connection (γ̃, α̃) we get
γ̃(I2((�f)−)) ⊆ γ̃(α̃(p̃re[R1](I1(f)))) ⊆ p̃re[R1](I1(f)) = I1(�f).
Note that for this case the co-property α(I1(�f)) ⊇ I2((�f)+) does not hold.
However, we can prove that α(I1(�f)) ⊇ I2((�f)+), by using a reasoning
dual to the one for the � operator.

7. As γ̃ does not distribute over ∩, which occurs in the definition of the fixed
point operator, in this case we use the fact that γ̃(I2(f−) ⊆ I1(f) is equiva-
lent to I2(f−) ⊆ α̃(I1(f)) (an easy check using the basic Galois connection
properties). Thus, we effectively replace γ̃ with α̃ which does distribute over
∩ (Prop. 6).

On Some Galois Connection Based Abstractions for the Mu-Calculus 379

By the interpretation definition we have

I1(μX.f(V)) =
⋂
{P1 ⊆ Q1 : I1(f)[P1/X](V) ⊆ P1}.

By the monotonicity of α̃ and the syntactic monotonicity of f

I1(f)[P1/X](V) ⊆ P1(∗)

implies

α̃(I1(f)[P1/X](V)) ⊆ α̃(P1).

Applying the induction hypothesis

I2(f−)[α̃(P1)/X](α̃(V)) ⊆ α̃(I1(f)[P1/X](V))

which by transitivity gives

I2(f−)[α̃(P1)/X](α̃(V)) ⊆ α̃(P1)(∗∗).

Thus, every P1 that satisfies (*) satisfies also (**), which means that that for
the corresponding sets of sets it holds {P1 : (∗)} ⊆ {P1 : (∗∗)}. This implies
∩{P1 : (∗∗)} ⊆ ∩{P1 : (∗)}, or in an unfolded form⋂
{P1 : I2(f−)[α̃(P1)/X](α̃(V)) ⊆ α̃(P1)} ⊆ {P1 : I1(f−)[P1/X](V) ⊆ P1}

= I1(μX.f−(V).
By distributivity of α̃ over ∩ we get

⋂
{α̃(P1) : I2(f−)[α̃(P1)/X](α̃(V)) ⊆ α̃(P1)} ⊆ α̃(I1(μX.f−(V))

It remains to show that
⋂
{α̃(P1) : I2(f−)[α̃(P1)/X](α̃(V)) ⊆ α̃(P1)} ⊇ I2(μX.f−(α̃(V))).

This follows from the observation that

{α̃(P1) : I2(f−)[α̃(P1)/X](α̃(V)) ⊆ α̃(P1)} ⊆ {P2 : I2(f−)[P2/X](α̃(V)) ⊆ P2}.

Similarly as above, we have for the corresponding intersections defined over
these two set families:⋂
{α̃(P1) : I2(f−)[α̃(P1)/X](α̃(V)) ⊆ α̃(P1)} ⊇⋂
{P2 : I2(f−)[P2/X](α̃(V)) ⊆ P2} = I2(μX.f−(α̃(V))),

which finally gives the wanted result I2(μX.f−(α̃(V))) ⊆ α̃(I1(μX.f(V))).
The co-property can be shown in an analogous way, by replacing it with its
equivalent I1(f) ⊆ γ(I2(f+), because γ distributes over ∩.

In a straightforward way one can define a verification method based on the
results of this section (we omit the details for the sake of brevity).

380 D. Bošnački

4.1 Comparison with Related Work

Obviously, we impose less syntactic restrictions on the fragment of the universal
μ-calculus that we deal with than [10]. Since any �Lμ formula can be rewritten
into an equivalent �L+

μ formula, and any formula of the universal unrestricted μ-
calculus has a semantically equivalent formula in �Lμ (see e.g. [10]), this might
seem to have only a syntactical significance. However, our approach is also easier
from practical point of view because it is more general and more automated.

For instance, in order to preserve the fragment �Lμ in [10] one is obliged
to find a consistent abstraction, which could be a difficult task. Besides, the
additional requirement on the abstraction function can result in bigger abstract
state spaces than in our case. We also improve the verification method given
in 6.3 of [10] with regard to formulas of �+Lμ – at the end of Section 3 we
already discussed the benefits of using the contracting abstraction α̃ instead of
the expanding α for that purpose.

With regard to [8] we are also semantically more general because they deal
only with propositional LTL which is a proper subset of the universal fragment
�eLμ. For instance, the property “proposition p holds for all even execution steps
along all executions of the system” can be expressed in �eLμ as νX.p ∧ ��X.
However, the same property is impossible to express in LTL. (See, for instance, [9]
for more such examples).

Once the methodology based on the Galois connection is well developed, with
the same effort – sometimes even easier – one can prove more general results.
The proofs become more symbolic and less operational in the sense of being more
independent from the logic models (execution sequences, in the case of LTL).
The arguments often boil down to symbolic (algebraic) manipulations of the
abstraction/concretization functions using basic Galois connection properties.

Besides the works discussed above, another relevant reference is [7]. The
main similarity with our work is that they also deal with abstraction of the
μ-calculus, using Galois connections between concrete and abstract state spaces.
However, their connections are defined between 2Q1 andQ2, whereQ1 andQ2 are
the concrete and the abstract state spaces, respectively, while we use the more
general approach of having connections from 2Q1 and 2Q2 . They also assume
a structure (ordering) on the abstract state space Q2. In [7] there is also a
similar approach of contracting/expanding abstractions, but they are applied to
the transition relations instead of the atomic propositions. In this way mixed
abstract transition systems are obtained that preserve the formulas in positive
normal form of both the universal and the existential parts of Lμ. However, the
drawback of this generality is that there are many formulas such that neither
they nor their negations hold in the mixed abstract systems.

In temporal algebras (e.g. [11]) algebraic tools, among them Galois connec-
tions, are used to characterize temporal logics. It could be an interesting avenue
for future work to relate our results to such a framework.

On Some Galois Connection Based Abstractions for the Mu-Calculus 381

5 Conclusions and Future Work

In this paper we presented some abstractions for universal fragments of the
branching time μ-calculus Lμ. We first gave some results by reusing the formal
machinery developed in [10]. After that we combined [10] with the ideas of [8]
in order to define an abstraction for a fragment of Lμ, denoted as �eLμ, that
allows the universal operator � only under an even number of negations. We
showed that such an abstraction preserves the formulas of this fragment.

It would be interesting to see how our framework fits in the compositionally
topics of [10]. We conjecture a seamless transfer of the concepts, but this still re-
mains to be checked. Also, one can try to improve the abstraction of �eLμ along
the lines of [8] where actually one uses as a basis for (a contracted/expanded) in-
terpretation not the atomic propositions, but instead state formulas. The latter
approach can give better reductions.

References

1. K. Baukus, Y. Lakhnech, and K. Stahl. Verifying universal properties of parame-
terized networks. In Proceedings of FTRTFT 2000, Puna, India, 2000.

2. D. Bošnački, N. Ioustinova, and N. Sidorova. Using fairness to make abstractions
work. In 11th Spin Workshop on Model Checking of Software SPIN 2004, volume
2989 of Lecture Notes in Computer Science. Springer-Verlag, 2004.

3. E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. ACM
Trans. Prog. Lang. Sys., 5(16):1512–1542, 1994.

4. P. Cousot and R. Cousot. Abstract interpretaion: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of POPL ’73. ACM, January 1973.

5. D. Dams. Abstract Interpretation and Partition Refinement for Model Checking.
PhD dissertation, Eindhoven University of Thechnology, July 1996.

6. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive sys-
tems: Abstraction preserving ∀CTL∗,∃CTL∗, and CTL∗. In E.-R. Olderog, editor,
Proceedings of PROCOMET ’94. IFIP, North-Holland, June 1994.

7. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Transactions on Programming Languages and Systems (TOPLAS), 19(2),
1997.

8. Y. Kesten and A. Pnueli. Control and data abstraction: The cornerstones of prac-
tical formal verification. International Journal on Software Tools for Technology
Transfer, 2(4):328–342, 2000.

9. O. Kupferman. Augmenting branching temporal logics with existential quantifica-
tion over atomic propositions. Journal of Logic and Computation, 7:1–14, 1997.

10. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6(1):11–44, 1995.

11. B. von Karger. Temporal algebra. In Algebraic and Coalgebraic Methods in the
Mathematics of Program Construction, volume 2297 of Lecture Notes in Computer
Science, pages 309–385, 2002.

Retrenching the Purse: Finite Sequence Numbers,
and the Tower Pattern

Richard Banach1, Michael Poppleton2, Czeslaw Jeske1, and Susan Stepney3

1 School of Computer Science, University of Manchester,
Manchester M13 9PL, UK

{banach, cj}@cs.man.ac.uk
2 Department of Electronics and Computer Science,

University of Southampton, Highfield,
Southampton SO17 1BJ, UK
mrp@ecs.soton.ac.uk

3 Department of Computer Science, University of York,
Heslington, York YO10 5DD, UK

susan.stepney@cs.york.ac.uk

Abstract. The Mondex Electronic Purse system [18] is an outstanding example
of formal refinement techniques applied to a genuine industrial scale application,
and notably, was the first verification to achieve ITSEC level E6 certification. A
formal abstract model including security properties, and a formal concrete model
of the system design were developed, and a formal refinement was hand-proved
between them in Z. Despite this success, certain requirements issues were set
beyond the scope of the formal development, or handled in an unnatural manner.

Retrenchment is reviewed in a form suitable for integration with Z refinement,
and is used to address one such issue in detail: the finiteness of the transaction
sequence number in the purse funds transfer protocol. A retrenchment is con-
structed from the lowest level model of the purse system to a model in which
sequence numbers are finite, using a suitable elaboration of the Z promotion [21]
technique. We overview the lifting of that retrenchment to the abstraction level
of the higher models of the purse system. The concessions of the various re-
trenchments generated, formally capture the dissonance between the unbounded
sequence number idealisation and the bounded reality. Reasoning about when the
concession can become valid influences the actual choice of sequence number
bound. The retrenchment-enhanced formal development is proposed as an exam-
ple of a widely applicable methodological pattern for formal developments of this
kind: the Tower Pattern.

1 Introduction

The Mondex Electronic Purse [18], produced by the NatWest Development Team, is
a system of Smartcard-based electronic purses carrying currency for electronic com-
merce applications. Clearly, this is a security-critical application. For this reason, the
developers of Mondex (formerly a part of NatWest Bank), employed state of the art
methods to ensure the implementation was as robust as possible. At the time of its cre-
ation (in the late 1990s), the Mondex Purse achieved an ITSEC [14] rating of E6. This

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 382–398, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Retrenching the Purse: Finite Sequence Numbers, and the Tower Pattern 383

requires a formal abstract model, a formal concrete model, and a proof of correspon-
dence between them. (In the case of Mondex, the correspondence proof was a proof of
refinement.) This is the the highest possible ITSEC level (corresponding these days to
a Common Criteria EAL7 rating), and the development was a trailblazer for showing
that fully formal techniques could be applied within realistic time and cost limitations
to industrial scale applications.

The abstract model of the Mondex Purse system describes a world of purses which
exchange value through atomic transactions, and specifies the security properties: purse
authentication, preservation of overall system value, and correct processing of both
transferred and lost value. The concrete model describes a distributed system of purses,
transferring value via an insecure and lossy medium using an n-step protocol. Security
features are implemented locally on each purse. In the field the purse is self-sufficient,
logging any lost value from failed transactions locally, for intermittent central archiving.

The Mondex Purse verification of the security properties remains an impressive
achievement, both as a landmark industrial development, and as a contribution to the
theory of refinement. The separation between the abstract and concrete levels is signif-
icant, in a logical as well as a functional sense. The refinement is a composition of two
simpler refinements, a “backward” refinement to, and a “forward” refinement from, an
intermediate “between” model. [17] gives a readable account of how the then existing
forward refinement rules in Z were insufficient to prove refinement, and how certain
backward rules from the more general theory of refinement, e.g. [9], had to be imple-
mented in Z, in order to deliver the two-stage proof. The clue to the need for this was the
fact that the concrete, n-step value transfer protocol resolved certain non-determinism
later than the abstract system; this is an instance of a classical counterexample by Milner
[9] showing the incompleteness of the forward rules as a proof method for refinement.

Nevertheless, the necessity of having a refinement, meant that a number of require-
ments issues, legitimately the concern of the formal development, had to be passed over
in silence, since they would strictly speaking have broken the validity of the refinement
had they been incorporated in the models that were used. One can argue that curtailing
the ideal scope of the refinement to some extent always happens: for example, it is never
practical to prove refinement all the way to the physical hardware. The refinement might
be pushed to source code level, then to machine code (if the compiler is not trusted); if
that were insufficient one could try to refine down to the hardware design and even to
the physics of the constituent devices.

Retrenchment [3, 4] has been proposed as a theory that generalizes refinement, es-
sentially in allowing the refinement relation (classically, an invariant) to be weakened
in the postcondition by a defined concession clause. This is inevitably a more intricate
theory, offering less than the simulation property of refinement, unless extra application-
specific assumptions are made. It was motivated originally by the impossibility of re-
fining infinite to finite types, or the continuous variables of real-world physical models
to discrete ones. Further work has revealed the utility of retrenchment both as antici-
pated [15], and as a vehicle for the flexible layering in of contrasting, even conflicting
requirements in a formal development [5].

We regard the requirements issues identified in the Mondex verification – those set
beyond the scope of the formal development, or handled in an unnatural manner – as

384 R. Banach et al.

“retrenchment opportunities”. The aim of this paper is to show that by incorporating
retrenchment as a formal transformation of models, one can broaden the scope and
accuracy of the formal modelling in a manner sympathetic to the existing refinement-
based development. This yields a way of getting the best of both worlds: the clarity and
rigour of the original refinement-based development, without an artificial denial of the
existence of the attendant other issues.

The rest of the paper is structured as follows. In section 2 we give an overview of the
Mondex development, and identify the requirements issues that motivate the applica-
tion of retrenchment. Section 3 reviews the proof rules for refinement and retrenchment
in a Z setting. Section 4 focuses on one of these aspects, the finiteness of the sequence
number. A retrenchment is defined between the concrete purse and a new purse model,
identical to the former in all but making the sequence number finite. This retrenchment
is then extended to the world of purses by a suitable adaptation of the Z promotion used
in [18]. Section 5 overviews how this retrenchment of the concrete model of the Purse
system can be lifted to the abstract model of the system. Section 6 gives a probabilistic
validation of the lifted retrenchment, assessing the risk of the purse sequence num-
ber breaching its bound, deriving an acceptable value for the bound thereby. Section
7 concludes and recapitulates. It is observed that the structure of refinements and re-
trenchments derived in the present paper is more widely applicable than just the present
work, and we elevate it to status of a generally applicable methodological pattern for
widening the remit of formal developments using retrenchments: the Tower Pattern.

2 The Mondex Purse: From Refinement to Retrenchment

The Mondex Electronic Purse described in [18] consists of three models: A(abstract),
B(between), and C(concrete). The A model is a highly abstract expression of atomic
value transfer between purses, allowing an atomic notion of loss in transit. It is a model
targetted purely at the security properties of the system; it does not capture all the many
other system requirements. Model B captures the elements of the value transfer pro-
tocol, and is thus nonatomic; it is also enhanced with extra structure and constraints
needed to achieve a backward refinement from model A. Model C is model B with-
out the extra structure and constraints. These can be established by an induction on the
length of the execution, leading to a forward refinement between models B and C. It is
thus shown that model C is a refinement of model A.

We have indicated that [18] is a development of the security properties of the Mon-
dex Purse, not a full specification of the system. Even within these limitations, some
requirements aspects, in principle deserving to be included within the formal devel-
opment, were omitted or handled unnaturally in modelling, in order to establish the
refinement between models. One of the aims of this paper is to show that by incorpo-
rating retrenchment into the formal development armoury, the tension that arises about
whether some feature should be included or not in the refinement-based development
is eased. This is because versions with and without the feature may be formally re-
lated via a retrenchment and the development paths with and without the feature may
be drawn together, in part automatically. Here then is a brief summary of the Mondex
“retrenchment opportunities”:

Retrenching the Purse: Finite Sequence Numbers, and the Tower Pattern 385

ret

ret

B−etween

C−oncrete D−iscrete

ref

ref

id

ref ; retref

ref

E−levated

F−ilteredA−bstract

Fig. 1. A development pattern for refinement with retrenchment

– Sequence Number: The integrity of the protocol depends partly on the sequence
number of the transaction in progress. Sequence numbers occur in the B, C models
where they are naturals; in reality they are bounded numbers.

– Log Full: Transfers completing abnormally are logged by purses. The concrete
model implements the abstract “lost value” component in terms of an off-card ex-
ception archive into which purses’ log contents are saved. A purse needs to be
assured that the data is safely in the archive before it can clear it from its own,
highly constrained, log memory. Logs occur in the B, C models where they are
unbounded; in reality they are finite.

– Hash Function: Clearing a purse’s log after its contents are centrally archived is
done via a message containing a “clear” code. The purse log contents are assumed
to be in total injective correspondence with the clear codes, as that property is
required in the proof. In reality of course a cryptographic hash function is used,
which is neither total, nor injective, but is informally argued to be “sufficiently
injective”.

– Balance Enquiry: Each purse has a balance enquiry operation. If this is invoked at a
particular point in the middle of a B model value transfer, a discrepancy can occur
between the model A and model B balances due to differences in where nonde-
terminism is resolved in the two models. This is handled formally by a modelling
trick, using finalisation instead of the enquiry operation to observe the state.

In this paper we focus on the sequence number in detail, leaving the others to be ex-
plored elsewhere. Our strategy is to build a tower of models D, E, F which retrench C,
B, A respectively, and so that the obvious refinement/retrenchment squares commute.
See Fig. 1 which shows the models, the epithets that accompany them, and their inter-
relationships. Since the variables involved in the sequence number retrenchment do not
appear in the A model, if we take a sufficiently “noninvasive” approach to the construc-
tion of model D, it turns out that models A and F can subsequently be identified, though
this is a fragile property.

Briefly, model D retrenches model C to take into account the boundedness of actual
sequence numbers. Model D is then lifted to the abstraction level of model B, yielding
model E; this is essentially model D but with the additional invariants. Noting that
model E is refinable from model A, yields model F (the top of the tower) as a copy of
model A.

386 R. Banach et al.

3 Refinements and Retrenchments

In this section we briefly review the notions of refinement and retrenchment used in
this paper. For refinement, we adopt the formulation in [8] as used in the Mondex de-
velopment. We give only the forward rules for refinement, since these formed the basis
for the definition of retrenchment [3]; we do not need to consider the backward rules
further here. The nomenclature in our definitions will be in line with that needed for the
various models in our discussion of the Mondex development below.

The A to B refinement is a backward refinement. The B to C refinement is a for-
ward refinement. We call the between model B “abstract” in this context; it is given
by the ADT (B,BInit, {BOp | BOp ∈ Ops}), and the concrete model C is given
by the ADT (C,CInit, {COp | COp ∈ Ops}). So schemas B,C give the abstract
and concrete state spaces, and the corresponding per-operation I/O spaces are given
by schemas BIOp,BOOp and CIOp,COOp. We assume a retrieve relation RBC : [B ; C]
between the two state spaces, and for each operation Op, input and output mapping re-
lations RIBC,Op : [BIOp ; CIOp] and ROBC,Op : [BOOp ; COOp]. Forward refinement is
given by three proof obligations (POs), initialization, applicability and correctness:

∀C ′ • CInit ⇒∃B′ • BInit ∧ R ′
BC (1)

∀B; BIOp; C; CIOp • RBC ∧ RIBC,Op ∧ pre BOp⇒ pre COp (2)

∀B; BIOp; C; CIOp; C ′; COOp • RBC ∧ RIBC,Op ∧ pre BOp∧ COp

⇒∃B ′; BOOp • BOp∧ R ′
BC ∧ ROBC,Op (3)

Note that (1)-(3) do not mention finalisation. We deal with the issue of observation,
and specifically of relating the outputs of the abstract and concrete models (normally
handled via finalisation) “on the fly”, in line with the tack taken in retrenchment.

The C to D development step is a forward retrenchment. For this, the abstract model
is the C ADT, and the concrete model is given by ADT (D,DInit, {(DOp,DIOp,DOOp) |
Op ∈ Ops}). Similar notational conventions apply. The retrenchment is given by firstly
a retrieve relation RCD : [C ; D] between the state spaces; and secondly we have the
within, output and concedes relations on a per-operation basis. The within relation is
between the input-state spaces WCD,Op : [CIOp ; C ; DIOp ; D]. The output and con-
cedes relations are normally defined over both full input-state-output frames with types
OCD,Op ; CCD,Op : [CIOp ; C ; C ′ ; COOp ; DIOp ; D ; D ′ ; DOOp], though in practice, we
often omit such parts of these signatures as are not needed. We call these three relations
the retrenchment data.

Two POs define a retrenchment between two models: initialisation as for refine-
ment (1), and correctness which is analogous to refinement correctness (3); note that
applicability issues are understood to be subsumed in (5) via the within relation:

∀D ′ • DInit ⇒∃C ′ • CInit ∧ R ′
CD (4)

∀C; CIOp; D; DIOp; D ′; DOOp • RCD ∧WCD,Op ∧ DOp

⇒∃C ′; COOp • COp∧ ((R ′
CD ∧ OCD,Op)∨ CCD,Op) (5)

Retrenching the Purse: Finite Sequence Numbers, and the Tower Pattern 387

4 The Sequence Number Retrenchment

The starting point for the sequence number retrenchment is the C model of the world
of purses. We concentrate on just the simplest operation of [18] that is nontrivially
affected, the single purse CConPurse operation CIncreasePurseOkay. This is an ab-
straction (for an individual purse and at C level) of a number of lower level operations
that do or do not need to increment the purse transaction sequence number. It is implicit
that sequence number CnextSeqNo is a natural, thus unbounded.

We retrench CIncreasePurseOkay to operation DIncreasePurseOkay of new D model
purse DConPurse1, where DConPurse ‘is as’ CConPurse apart from DnextSeqNo, which
is of finite type BN == 0..BIGNUM. We assume the usual arithmetic operations for BN
defined by restriction, where we liberally coerce when necessary, and where BIGNUM
is a matter of implementation choice. CConPurseIncrease hides the C purse sequence
number CnextSeqNo, thus ΞCConPurseIncrease denotes skip, i.e. no change on all
state apart from CnextSeqNo. DConPurseIncrease ‘is as’ CConPurseIncrease.

CConPurseIncrease ==

CConPurse \ (CnextSeqNo)

CIncreasePurseOkay
ΔCConPurse
Cm?,Cm! : CMESSAGE

ΞCConPurseIncrease
CnextSeqNo′ ≥ CnextSeqNo
Cm! = ⊥

DIncreasePurseOkay
ΔDConPurse
Dm?,Dm! : DMESSAGE

ΞDConPurseIncrease
(DnextSeqNo < BIGNUM ⇒

DnextSeqNo′ ≥ DnextSeqNo ∧
Dm! = ⊥)

(DnextSeqNo = BIGNUM ⇒
DnextSeqNo′ = DnextSeqNo ∧
Dm! = DpurseBlocked Dname)

⊥ is a general purpose message used in Mondex which is of-no-concern here, and
DpurseBlocked Dname is a special message emitted when BIGNUM is reached, identi-
fying the purse in question, Dname.

The above constitutes a minimally invasive retrenchment of CIncreasePurseOkay,
in that not only is it the case that inside a guard the C model behaviour is preserved,
but even outside the guard there are no new purse states to threaten the validity of
the reasoning about the refinements in [18]. Far more aggressive D model designs are
obviously possible.

We come to the retrenchment data itself. CDConPurseIncreaseEquality is shorthand
for equalities between corresponding C and D variables in CConPurseIncrease and
DConPurseIncrease respectively. Under the vacuous within WCD,IncreasePurseOkay con-
straint on before states and inputs, the pair of operation instances CIncreasePurseOkay,

1 We augment the common convention of pre-capitalizing the names of Z types (schema and
other) by prefixing a single character A, B, ... to a name as required, to denote the model in
question. Thus CThing is a schema or other type in the C model, whereas Dthing is a variable,
usually a schema component, in the D model. A further lexical schema convention we employ,
to save space, is to say DSchema ‘is as’ CSchema to indicate that the text of DSchema can be
generated from that of CSchema by replacing all Cthings by Dthings.

388 R. Banach et al.

DIncreasePurseOkay establishes either R ′
CD ∧ OCD,IncreasePurseOkay (retrieve and output

relations), or CCD,IncreasePurseOkay (concedes relation). This concession states the possible
inequality between C, D sequence numbers and uses the D level error message.

RCD

CConPurse; DConPurse
CDConPurseIncreaseEquality

CnextSeqNo = DnextSeqNo

OCD,IncreasePurseOkay

Cm! : CMESSAGE
Dm! : DMESSAGE

Cm! = Dm!

WCD,IncreasePurseOkay

CConPurse; DConPurse
Cm? : CMESSAGE
Dm? : DMESSAGE

CCD,IncreasePurseOkay

CConPurse ′; DConPurse ′

CDConPurseIncreaseEquality ′

Cm! : CMESSAGE
Dm! : DMESSAGE

CnextSeqNo′ ≥ DnextSeqNo′

Cm! = ⊥
Dm! = DpurseBlocked Dname

4.1 Promotion of the Purse Retrenchment

We review the Z technique of promotion [21, 10] of a local-state (purse) to a global-
state (world) operation. The global state schema, say World, is defined as an indexing
function from some index set Ind to the space of all possible local state elements, these
being given by schema LS. To enable concise world-level description of an operation
working on only a single copy of the local state, the promotion framing schema ΦLSOp
is defined. ΦLSOp contains both a global state schema World and a local state schema
LS, and also an input parameter i? of type Ind, identifying the required local state el-
ement for access or update. An equality identifies the target LS element f (i?) through
the index function f with the local state binding θLS. The final predicate ensures that all
elements other than f (i?) remain unchanged.

ΦLSOp is generic insofar as it allows the mechanical definition of a world-level
operation WorldOp corresponding to a local operation LSOp without constraining the
behaviour of that local operation in any way:

World
f : Ind �→ LS

WorldOp ==

∃ΔLS • ΦLSOp∧ LSOp

ΦLSOp
ΔWorld
ΔLS
i? : Ind

i? ∈ dom f
θLS = f (i?)
f ′ = f ⊕ {i? �→ θLS ′}

The above is the classical, index-function-based form of promotion. Recently certain
promotion patterns [19, 20] have been proposed for various forms of local-to-global
structuring, some having been based on promotion use in Mondex.

Retrenching the Purse: Finite Sequence Numbers, and the Tower Pattern 389

As in the C world, individual D model purses are promoted to the D world of purses,
as given in the schemas that follow. DConWorld ‘is as’ CConWorld. Beyond the (purse-
NAME-)indexed map of purses, the world contains the Dether of all messages ever
sent between purses, and the Darchive of all transaction exception logs uploaded from
purses. There are two DConWorld constraints: we equate each internal purse name to its
corresponding index, and we ensure each archive entry identifies its originating purse.

Promotion of the D model ‘is as’ that of the C model of [18]: ΦDOp ‘is as’ ΦCOp,
where Dm?,Dm! are the input and output messages to and from DIncreasePurseOkay.
DIncrease, the promoted and wrapped operation, ‘is as’ CIncrease. N.B. DIgnore ‘is
as’ CIgnore, and just skips at world level.

DConWorld
DconAuthPurse : NAME � �� DConPurse
Dether : P DMESSAGE
Darchive : P DLogbook

∀ n : dom DconAuthPurse • (DconAuthPurse n).Dname = n
∀ nld : Darchive • first nld ∈ dom DconAuthPurse

ΦDOp
ΔDConWorld; ΔDConPurse
Dm?,Dm! : DMESSAGE
Dname? : NAME

Dm? ∈ Dether
Dname? ∈ dom DconAuthPurse
θDConPurse = DconAuthPurse Dname?
DconAuthPurse′ = DconAuthPurse⊕ {Dname? �→ θDConPurse ′}
Darchive′ = Darchive
Dether′ ⊆ Dether ∪ {Dm!}

DIncrease == DIgnore∨ (∃ΔDConPurse • ΦDOp∧ DIncreasePurseOkay)

Having defined the D model, the next job is to promote the retrenchment of individual
purse operations such as CIncreasePurseOkay to a retrenchment at the CConWorld-
to-DConWorld level, between CIncrease, (not quoted but with the same syntax as)
DIncrease. Any theory of promotion of retrenchments must be grounded in the pro-
motion of refinements. A good treatment is given by [10], including presentation of
a simple world-level retrieve relation resulting from the distribution of the local re-
trieve relation through promotion. We base our approach on this form. Given a retrieve
relation R between local states Abs and Conc, the promoted retrieve relation RP [10] be-
tween AbsWorld and ConcWorld (with index functions Absf ,Conf respectively) simply
asserts the local one for all local state elements:

390 R. Banach et al.

RP

AbsWorld; ConcWorld

dom Concf = dom Absf
∀ n : dom Concf • ∃R • θAbs = Absf (n)∧ θConc = Concf (n)

The promotion of retrenchments offers a choice of approaches, depending on what one
wishes to emphasise. In [6] we explore this in some detail, but space limitations here do
not permit us to show the full variety of possibilities on the present example. Instead, we
apply just one of the approaches, perhaps the most interesting one: precise promotion.

The essential point is this. Let us imagine the system has been running for some
time and that some or many elements have already engaged in operations. In terms of
the retrenchment, some elements will be in the local state element retrieve relation R,
while others may have already conceded (and so may no longer be in R). Assuming all
elements are in R (as for refinement) thus gives an unduly restricted syntactic picture
of the correspondence between the dynamics of the abstract and concrete worlds. In
precise promotion, we introduce an extra world variable good to keep track of which
elements are doing what, regarding the retrenchment.

Since there are two worlds, there are two obvious places in which to put the ex-
tra variable, the abstract or the concrete world. For most retrenchments the concrete
world is the most natural place to put the extra information, and we do so here; so
the extra variable is Dgood. Moreover, for this to work effectively, we require a sep-
arability axiom (6) to hold for all common operations Op. Given a concrete D model
step, DEstRetPP

DOp/DNotEstRetPP
DOp assert the existence/non-existence respectively of an

abstract C world step that witnesses the refinement. Given a D step, DEstConPP
DOp asserts

the existence of a C step that witnesses the concession. The separability axiom is:

DEstRetPP
DOp ∧ DEstConPP

DOp ⇔ false (6)

where

DEstRetPP
DOp == D; DIOp; D ′; DOOp | DOp ∧

(∃C; CIOp; C ′; COOp • RCD ∧WCD,Op ∧ COp∧ (R ′
CD ∧ OCD,Op))

DEstConPP
DOp == D; DIOp; D ′; DOOp | DOp ∧

(∃C; CIOp; C ′; COOp • RCD ∧WCD,Op ∧ COp∧ CCD,Op)

DNotEstRetPP
DOp == D; DIOp; D ′; DOOp | DOp ∧

¬(∃C; CIOp; C ′; COOp • RCD ∧WCD,Op ∧ COp∧ (R ′
CD ∧ OCD,Op))

Given a C-to-D retrenchment (5), and axiom (6), it can be deduced from a given con-
crete step alone, whether RCD is reestablished or CCD,Op holds. This allows the concrete
promotion to accurately maintain the Dgood variable as follows.

We need suitable enhancements to: the promoted operations (which become DOpPP),
to the promoted world construction itself (which becomes DConWorldPP), and to the

Retrenching the Purse: Finite Sequence Numbers, and the Tower Pattern 391

framing schema (which becomes ΦDOpPP). The latter differs from ΦDOp only in the
replacment of DConWorld by DConWorldPP, so we do not reproduce it in full.2

DConWorldPP

DConWorld
Dgood : P NAME

Dgood ⊆ dom DconAuthPurse

DIncreasePP == DIgnore∨ (∃ΔDConPurse • ΦDOpPP ∧ DIncreasePurseOkay
∧ (DEstRetPP

DIncrease ⇒ Dgood′ = Dgood)
∧ (DNotEstRetPP

DIncrease ⇒ Dgood′ = Dgood \ {Dname?}))

It is clear that DIncreasePP is a refinement of DIncrease via a retrieve relation that
simply projects away Dgood, as DIncreasePP arises from DIncrease by the addition of
Dgood, whose value is never used in the update of any DIncrease variable.

With these details in place, we can write down the precisely promoted retrenchment
between the CConWorld and DConWorldPP Increase operations. For this, it is easy
to see that (6) holds, in particular, by examining whether the output of DIncrease is
⊥ or DpurseBlocked Dname?. For ⊥, R ′

CD ∧ OCD,IncreasePurseOkay is established by
the identity of outputs, and the ‘is as’ identity of the seqence number predicates. For
DpurseBlocked Dname?, CCD,IncreasePurseOkay is established by definition of the outputs
and by the skip on DnextSeqNo.

The retrenchment below employs a focused pattern of precise promotion, in that the
within, output, concedes relations only refer to the named local state element Dname?.
Since the promoted operation acts on only one element, implicitly all other elements in
Dgood maintain the local retrieve relation R ′

CD. An inclusive pattern is also available
which covers all Dgood elements, explicitly claiming R ′

CD in the concession for the
elements in Dgood \ {Dname?}; for brevity we present the focused pattern here. Since
archive entries are tagged with the originating purse’s name, we can identify those C/D
archive subsets corresponding to purses in Dgood?, and we assume for simplicity that
all messages in the ether are tagged with originator’s and addressee’s names as the first
two fields of the message.3 “ CDnamedConPurseIncreaseEquality name ” is (not legal
Z, for brevity, but) shorthand for equalities of named other purses’ of-no-concern data
in the following:

2 Note that there is a somewhat philosophical question regarding the nature of the Dgood vari-
able: should it be viewed as a genuine system variable or not? In this paper we do not go
beyond saying that the viability of the precise promotion’s using Dgood, attests to the ability
of the concrete model’s being able to keep track of the retrieving elements should it so choose.

3 Note that this is a considerable simplification compared to [18]. In [18] it is the case that: (i)
the models do not concern themeselves with details of physical message transmission, (ii) the
relevant data can nevertheless be inferred indirectly from the contents of the message body.

392 R. Banach et al.

RPP
CD

CConWorld; DConWorldPP

dom CconAuthPurse = dom DconAuthPurse
∀Dnm : Dgood •

(CconAuthPurse Dnm).CnextSeqNo = (DconAuthPurse Dnm).DnextSeqNo
∧ “ CDnamedConPurseIncreaseEquality Dnm ”

Dgood Carchive = Dgood Darchive
(Dgood × Dgood) Cether = (Dgood × Dgood) Dether

WPP
CD,Increase

CConWorld; DConWorldPP

Cm? : CMESSAGE
Dm? : DMESSAGE
Cname?,Dname? : NAME

Cname? = Dname?
Cname? ∈ Dgood

OPP
CD,Increase

ΔDConWorldPP

Cm! : CMESSAGE
Dm! : DMESSAGE
Dname? : NAME

Dgood′ = Dgood
Cm! = Dm!

CPP
CD,Increase

CConWorld ′; ΔDConWorldPP

CDConPurseIncreaseEquality′

Cm! : CMESSAGE
Dm! : DMESSAGE
Dname? : NAME

Dgood′ = Dgood − {Dname?}
“ CDnamedConPurseIncreaseEquality Dname? ”
(CconAuthPurse′ Cname?).CnextSeqNo ≥ (DconAuthPurse′ Dname?).DnextSeqNo
Cm! = ⊥
Dm! = (DpurseBlocked Dname?)
Dgood′ Carchive′ = Dgood′ Darchive′

(Dgood′ × Dgood′) Cether′ = (Dgood′ × Dgood′) Dether′

5 Lifting the Retrenchment

The previous section described in fair detail how, despite its awkwardness, the real
world finiteness of the sequence number can be taken account of, in a model that could
be appended to the preexisting development. In this section we sketch rather briefly
how this new D model can be related to the other models in the Mondex development,
clarifying the relationship between sequence number finiteness and the concerns of
these higher level models.

Essentially, the level of abstraction of the D model is first lifted to the level of the
B model (this giving the E model) and then it is observed that there is a refinement

Retrenching the Purse: Finite Sequence Numbers, and the Tower Pattern 393

from the A model to the E model, due to the nonintrusiveness of the D model. So the
construction of the F model becomes just a rebadging of the A model. See Fig. 1.

The lifting of the D model to the E model makes use of a generic construction
[1] for lifting the concrete model of a retrenchment to the level of abstraction of the
retrenchment’s abstract system; the model generated, typically called U, then refines
to the retrenchment’s concrete system. This generic construction builds U out of the
two original systems in the retrenchment. The required level of abstraction is defined
indirectly via a collection of properties specific to the construction, and U captures
this level by being refinable to any system that also enjoys these properties. Thus U
is the most abstract such system. As far as the construction goes, any suitable system
interrefinable with U is just as good as U, so we have the option of replacing U with
something more convenient if we wish.

In the Mondex case we build the E model, which matches the level of abstraction
of the B model. The retrenchment that we are lifting is the composition of the B to C
forward refinement and the C to D retrenchment, such compositions themselves being
a matter for careful definition; see [2] for details.

For clarity and simplicity let us examine how this works for the individual purse
operation IncreasePurseOkay. Essentially, for the IncreasePurseOkay operation of the
generated U system we have:

protoEIncreasePurseOkay
BIncreasePurseOkay; ΔDConPurse
Dm?,Dm! : DMESSAGE

(RBD ∧ R ′
BD ∧ OBD,IncreasePurseOkay)∨ (RBD ∧ CBD,IncreasePurseOkay)

In the above, BIncreasePurseOkay ‘is as’ CIncreasePurseOkay, and RBD ‘is as’ RCD.
Similarly OBD,IncreasePurseOkay ‘is as’ OCD,IncreasePurseOkay, and CBD,IncreasePurseOkay ‘is as’
CCD,IncreasePurseOkay. In protoEIncreasePurseOkay, BIncreasePurseOkay contributes the
steps of the B model and ΔDConPurse contributes all legal D changes of state. The B-
to-D retrenchment tells us that any DIncreasePurseOkay step satisfies the retrenchment
correctness PO in terms of some witnessing B-step. In protoEIncreasePurseOkay it is
clear that precisely the same witness establishes the E-to-D refinement correctness PO.

We note that there is considerable duplication of state and other information in
protoEIncreasePurseOkay; the B and D parts of the state say practically the same thing
via the BDConPurseIncreaseEquality in RBD and R ′

BD, and the I/O is similarly either
irrelevant or discernable from the D element alone.

Since, as noted above, it is sufficient to fix on a system that is interrefinable with
what the construction routinely generates, it is worth reflecting on the details of the U
system, to see if the duplication can be avoided. Examining the details reveals that we
can replace protoEIncreasePurseOkay with the simpler:

EIncreasePurseOkay ‘is as’ DIncreasePurseOkay

a welcome simplification, attributable to the nonintrusive nature of our D construction.
Of course our real focus of interest is on DIncrease and its lifting to EIncrease. The

single purse operation just treated provides an indication of what to expect, in that the
IncreasePurseOkay lifting should be discernable within the Increase one.

394 R. Banach et al.

The B world Increase operation has the same shape as the D world one:

BIncrease == BIgnore∨ (∃ΔBConPurse • ΦBOp∧ BIncreasePurseOkay)

The subtlety here is that in BIgnore and ΦBOp, instead of ΔBConWorld (as would be
expected) we have ΔBetweenWorld, where BetweenWorld features additional structure
and constraints imposed on BConWorld in order to enable the A-to-B backward re-
finement to cary through. Aside from this, the constituents of BIncrease ‘are as’ their
corresponding CIncrease ones.

For lack of space, the reader will have to take our word for it that the constraints
in BetweenWorld do not materially affect our discussion; they express the consistency
between the cryptographically protected messages in the ether and the purses’ states;
doubters can refer to [18]. We now retrace the earlier lifting construction and obtain:

protoEIncrease
BIncrease; ΔDConWorldPP

Dm?,Dm! : DMESSAGE

(RPP
BD ∧ R ′PP

BD ∧ OPP
BD,Increase)∨ (RPP

BD ∧ CPP
BD,Increase)

It turns out that we can argue as before and replace protoEIncrease by EIncrease where:

EIncrease ‘is as’ DIncreasePP

except that DetweenWorld (which now ‘is as’ BetweenWorld) replaces occurences of
DConWorld in DIgnore and ΦDOp in DIncreasePP. Thus DIncreasePP is at the right
level of abstraction after all, again due to the minimalist nature of the D construction.

Having dealt with the E model, the final step consists of observing that there is a
(backward) refinement from the A model to the E model. The D level purse blocking
behaviour when the sequence number overflows is simulated at A-level by the purse
skipping; the A world has no sequence numbers. Aside from the fact that the details of
this are beyond the scope of this paper, some points are worth making. Firstly, this is not
a further instance of the lifting construction just used to build the E model. Secondly, the
truth of it depends rather delicately on a suitable choice of retrieve and output relations,
not to mention the precise notion of refinement employed and of course the minimalist
nature of the D construction. Thus it is not a robust property, though it is a very pleasing
one.

6 Validating the Retrenchment

In the preceding sections, we have designed the D model to do nothing useful once
the limit on the sequence number has been reached. Since doing nothing is unlikely to
satisfy users, it is incumbent on us to validate this design in the light of wider system
requirements, which we do in this section. The argument now swings to showing that the

Retrenching the Purse: Finite Sequence Numbers, and the Tower Pattern 395

limit in fact never arises. This can be crystallised as saying the concession of the relevant
retrenchment does not become true within the lifetime of the use of the product.4

The validation of the concession of the C to D retrenchment depends on the value
of BIGNUM, a quantity we have hitherto left unspecified. Our analysis will generate a
value for BIGNUM leading to acceptable overall system properties. Note that the lifted
E model’s dependence on BIGNUM is like that of the D model’s so we can focus on
just the C to D retrenchment. Roughly speaking, we want to know how long it will take
before BIGNUM is reached, which we analyse as follows.

First of all, the increments of the sequence number are not deterministic, to prevent
the values of the sequence number being exploited as a covert channel in any potential
cryptographic attack. Thus the increments are random variables drawn from a probabil-
ity distribution Θ. Let us say that Θ has a mean μ and variance σ both about 10. From
here there are two approaches, the naive and the sophisticated.

In a naive approach, we expect the accumulated total sequence number after n trials
to be approximately nμ. Now consider the determined shopper, making the order of 100
transations per day using the purse, resulting in a daily sequence number increment of
about 103. Taking a year to be about 103 days, leads to an approximate annual sequence
number increment of about 106. On this basis, we can estimate how different choices of
BIGNUM fare against the requirement that the BIGNUM limit is never in fact reached.

Suppose BIGNUM is about 216 which is about 64 × 103. The limit is encountered
within a couple of months, so this value of BIGNUM is clearly unsatisfactory. Similarly,
choosing 264 for BIGNUM gives a limit of about 16×1012 years, which is a little more
conservative than necessary.

Suppose then that BIGNUM is about 232 which is about 4 × 109. Dividing by 106

shows that the limit is reached in about 4000 years. Putting aside considerations of
whether the purse will physically withstand that much use, it is certainly the case that
the financial system underpinning the purse will have collapsed by that time. So a 32 bit
BIGNUM provides plenty of room for even determined use, while safeguarding against
overflow, and while still not being ridiculously overconservative.

Of course one can take a more cautious approach than the above, supposing that
a determined attacker will go all out to breach the sequence number limit by subject-
ing the purse to as many transactions as it is possible to invoke, potentially leading to
different estimates. Then again, it is hard to see what such an attacker stands to gain
by disabling the purse in this way, locking in the value he has managed to put into it,
since the system’s security properties ensure that every purse operation leaves the whole
system in a state that is at best equitable, at worst in the bank’s favour.

Let us now turn to a more sophisticated treatment of the same situation. We note that
the individual increments of the sequence number are the “arrivals” of a renewal process
[11, 16, 13]. Thus if δSNn is the n’th increment, then as n varies, we are interested in the
behaviour of the random variables:

4 Note how the retrenchment framework has produced specific objects within the formal models,
namely the concessions, that carry the information pertaining to the undesired state of affairs.
A purely refinement based approach to the development could say nothing about such matters,
disconnecting the formal world from the requirements level validation needed beyond.

396 R. Banach et al.

nextSeqNon = δSN0 + δSN1 + . . .+ δSNn

In particular, we are interested in the random variable N(t) given by:

N(t) = max{n | nextSeqNon ≤ t}

whose distribution describes how many increments of the sequence number are needed
to reach the value t. Fortunately this is all standard material that can be found in loc. cit.
The first order theory of N(t) says that as t tends to infinity, N(t) tends to the constant
distribution t/μ almost surely. Furthermore the mean of N(t) tends to the number t/μ.
This agrees with the values obtained naively, and in particular, for a 32 bit BIGNUM,
we again derive an overflow time of four thousand years.

To ensure the random characteristics of the situation do not lead to gambler’s ruin
type outcomes, we check out also the second order theory of renewals. This says that as
t tends to infinity,

N(t)− t/μ√
tσ2/μ

3

converges in distibution to N(0, 1), the standard normal distribution. This in turn means
that the variance of N(t) itself scales to (tσ2/μ

3)
1
2 . When the numbers are substituted,

this is of the order of a week or two. So in the end, the sophisticated story fully supports
the naive one.

7 Conclusions, and the Tower Pattern

Above, we briefly reviewed the Mondex development and its “retrenchment opportuni-
ties.” We then took the purse sequence number and showed how a more faithful treat-
ment could be integrated with the existing refinement based development. The result
was the collection of models related by refinements and retrenchments shown in Fig. 1.

One of the advantages of the retrenchment approach in dealing with model evolution
situations, which the sequence number case study can be viewed as, is that it fits natu-
rally with the idea that such evolutions often tend to be focused on judicious changes
to one or more operations. In the limit, we can consider the change in each operation as
a separate evolution step, expressed using a separate retrenchment, and compose them,
e.g. as per [2]. For lack of space, we have not pursued this aspect here.

Note that Fig. 1 is a commutative diagram. Therefore it can be navigated in different
ways with equivalent effect. For example, one can (as we did) start at the bottom of the
tower, build the bottommost retrenchment, and build towards the top (it turned out that
with a judicious choice of bottommost model, the top level blended seamlessly with
the existing development). Alternatively one can start with the topmost retrenchment
(an identity in our case), and proceed downwards, utilising different but compatible
algebraic results on the combination of refinements and retrenchments [12]. This raises
the general structure embodied in Fig. 1 to the level of a broadly applicable pattern for
the deployment of retrenchment as a means of, (on the one hand) reconciling real world
detail with an idealised but more transparent refinement development, or (on the other)

Retrenching the Purse: Finite Sequence Numbers, and the Tower Pattern 397

propagating a top level requirements change down through a refinement stack, towards
implementation. Of course, middle out deployments are also compatible with Fig. 1.
Note that the structure in Fig. 1 remains equally useful regardless of the specific re-
quirements issue(s) handled by the retrenchments that comprise it, which lie buried in
the details of the various retrenchment data. Its elevation to a methodological generality,
the Tower Pattern, is therefore eminently justified.

References

[1] R. Banach. Maximally abstract retrenchments. In Proc. IEEE ICFEM2000, pages 133–142,
York, August 2000. IEEE Computer Society Press.

[2] R. Banach, C. Jeske, and M. Poppleton. Composition mechanisms for retrenchment. 2004.
submitted, http://www.cs.man.ac.uk/˜banach/some.pubs/Retrench.Composition.pdf.

[3] R. Banach and M. Poppleton. Retrenchment: An engineering variation on refinement. In
D. Bert, editor, 2nd International B Conference, volume 1393 of LNCS, pages 129–147,
Montpellier, France, April 1998. Springer.

[4] R. Banach and M. Poppleton. Sharp retrenchment, modulated refinement and simulation.
Formal Aspects of Computing, 11:498–540, 1999.

[5] R. Banach and M. Poppleton. Retrenching partial requirements into system definitions: A
simple feature interaction case study. Requirements Engineering Journal, 8(2), 2003. 22pp.

[6] R. Banach, M. Poppleton, and C. Jeske. Retrenchment and promotion in Z. submitted for
publication, 2004.

[7] D. Bert, J.P. Bowen, S. King, and M. Waldén, editors. Proc. ZB2003: Formal Specification
and Development in Z and B, volume 2651 of LNCS, Turku, Finland, June 2000. Springer.

[8] D. Cooper, S. Stepney, and J. Woodcock. Derivation of Z refinement proof rules. Technical
Report YCS-2002-347, University of York, 2002.

[9] W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Methods and
their Comparison. Cambridge University Press, 1998.

[10] J. Derrick and E. Boiten. Refinement in Z and Object-Z. FACIT. Springer, 2001.
[11] G. Grimmett and Stirzaker D. Probability and Random Processes. O.U.P., 3 edition, 2001.
[12] C. Jeske. Algebraic Integration of Retrenchment and Refinement. PhD thesis, University of

Manchester, 2005.
[13] S. Karlin and H.M. Taylor. A First Course in Stochastic Processes. Academic, 1975.
[14] Department of Trade and Industry. Information Technology Security Evaluation Criteria,

1991. http://www.cesg.gov.uk/site/iacs/itsec/media/formal-docs/Itsec.pdf.
[15] M. Poppleton and R. Banach. Controlling control systems: An application of evolving

retrenchment. In D. Bert, J.P. Bowen, M.C. Henson, and K. Robinson, editors, Second
International Conference of B and Z Users, volume 2272 of LNCS, pages 42–61, Grenoble,
France, January 2002. Springer.

[16] S.L. Resnick. Adventures in Stochastic Processes. Birkhauser, 1992.
[17] S. Stepney, D. Cooper, and J. Woodcock. More powerful Z data refinement: Pushing the

state of the art in industrial refinement. In J.P. Bowen, A. Fett, and M.G. Hinchey, editors,
11th International Conference of Z Users, volume 1493 of LNCS, pages 284–307, Berlin,
Germany, September 1998. Springer.

[18] S. Stepney, D. Cooper, and J. Woodcock. An electronic purse: Specification, refinement
and proof. Technical Report PRG-126, Oxford University Computing Laboratory, 2000.

398 R. Banach et al.

[19] S. Stepney, F. Polack, and I. Toyn. An outline pattern language for Z. In Bert et al. [7],
pages 2–19.

[20] S. Stepney, F. Polack, and I. Toyn. Patterns to guide practical refactoring. In Bert et al. [7],
pages 20–39.

[21] J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof. Prentice-Hall,
1996.

Strategic Term Rewriting and Its Application to a
VDM-SL to SQL Conversion

T.L. Alves, P.F. Silva, J. Visser, and J.N. Oliveira

Dep. Informática, Universidade do Minho,

Campus de Gualtar, 4700-320 Braga, Portugal

Abstract. We constructed a tool, called VooDooM, which converts datatypes in

VDM-SL into SQL relational data models. The conversion involves transforma-

tion of algebraic types to maps and products, and pointer introduction.

The conversion is specified as a theory of refinement by calculation. The im-

plementation technology is strategic term rewriting in Haskell, as supported by

the Strafunski bundle. Due to these choices of theory and technology, the road

from theory to practise is straightforward.

Keywords: Strategic term rewriting, program calculation, VDM, SQL.

1 Introduction

The information system community is indebted to Codd for his pioneering work on the

foundations of the relational data model [9]. Since then, relational database theory has

been thoroughly studied [24, 34, 12]. At the heart of this we find normalization, a theory

whereby efficient collections of (relational) files are derived from the original design,

which can be encoded in a data-processing language such as SQL [16].

Functional dependency theory and normalization deviate from standard model-ori-

ented formal specification and reification techniques [17, 10]. In the latter, designs start

from abstract models which are abstract enough to dispense with normalization. Does

one arrive at similar database designs by using data reification techniques?

References [29, 30, 31, 32] address a formal calculus which has been put forward

as an alternative to standard normalization theory, by framing database design into the

wider area of data refinement [17]. Data models, such as described by E-R diagrams,

for instance, are turned into systems of equations involving set-theoretic notions such as

finite mappings, sets, and sequences. Integrity constraints and business rules are iden-

tified with abstraction invariants [25] and datatype invariants [17], respectively, whose

structural synthesis (analysis) by calculation is at the core of the calculus.

The main purpose of this paper is to describe the design of a database schema
calculator which, inspired by [32], infers SQL relational meta-data from abstract data

models specified in the ISO standard VDM-SL formal modelling notation [10]. The cal-

culus is implemented using Haskell-based strategic term rewriting [23], and embedded

in a full fledged source code processing tool following a grammar-centered approach to

language tool development [18]. This database calculator, named VooDooM, is being

used in the Information Knowledge Fusion (Σ!2235) project, to generate the database

of a knowledge representation management system.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 399–414, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

400 T.L. Alves et al.

1.1 Related Work

Most work on formal methods in relational database design is concerned with formal

models of relational data. This interest dates back to (at least) [6], where a formalization

of a relational data model is given using the VDM notation.

The formal specification and design of a program implementing simple update op-

erations on a binary relational database called NDB is described in [38]. This single

level description of NDB is the starting point of [11], where a case study in the mod-

ular structuring of this “flat” specification is presented. The authors present a second

specification which makes use of an n-ary relation module, and a third one which uses

an n-ary relation module with type and normalization constraints. They demonstrate

the reusability of their modules, and also outline specifications of an n-ary relational

database with normalization constraints, and an n-ary relational database with a two-

level type hierarchy and no normalization constraints. However, their emphasis is on

the modularization techniques adopted to organize VDM specifications into modules.

Samson and Wakelin [33] present a comprehensive survey about the use of algebraic

methods to specify databases. They compare a number of approaches according to the

features covered and enumerate some features not normally covered by such methods.

Barros [5] describes an extension to the traditional database design aimed at for-

malizing the development of (relational) database applications. A general method for

the specification of relational database applications using Z is presented. A prototype is

built to support the method. It provides for editing facilities and is targeted at the DBPL

database management system.

The purpose of Baluta [4] is to rigorously specify the basic features of the relational

data model version 2 (RM/V2) as defined by Codd [8], using the Z language.

More recently, Necco [26] exploits aspects of data processing which are functional

in nature and can take advantage of recent developments in the area of generic func-
tional programming and calculi. Generic Haskell is used to animate a generic model

of a subset of the standard relational database calculus, written in the style of model-

oriented formal specification.

2 Strategic Term Rewriting

In traditional term rewriting, one can distinguish the rewriting equations of a particular

term rewriting system (TRS) from the strategy that is used to apply these equations

to an input term. Most commonly, term rewriting environments have a fixed rewriting

strategy, such as the leftmost-innermost strategy. In some rewriting environments, for

instance those where the equations may be governed by conditions and may be stratified

into default and regular equations, more sophisticated strategies may be employed. But

in any case, these strategies are fixed, i.e. hard-wired into the environment.

By contrast, strategic term rewriting generalizes the traditional term rewriting para-

digm by making rewriting strategies programmable, just as the equations are. Among

the first rewriting environments to offer such programmable rewriting strategies are

Stratego [35] and the Rewriting Calculus [7]. Such environments offer a small set of

basic strategy combinators, which can be combined with each other and with rewrit-

ing equations to construct term rewriting systems with arbitrarily complex strategies.

Strategic Term Rewriting and Its Application to a VDM-SL to SQL Conversion 401

Combinators
s ::= id Identity strategy

| fail Failure strategy

| seq(s, s) Sequential composition

| choice(s, s) Left-biased choice

| all(s) All immediate components

| one(s) One immediate component

| adhoc(s, a) Type-based dispatch

Notation
d ... data

c ... data constructors

d ... data with failure “↑”

a ... type-specific actions

s ... strategies

a@d ... application of a to d
s@d ... application of s to d

d ⇒ d ... big-step semantics

a : t ... type handled by a
d : t ... type of a datum d
[d] ... indivisible data

c(d1 · · · dn) ... compound data

Meaning
id@d ⇒ d
fail@d ⇒ ↑
seq(s, s′)@d ⇒ d if s@d ⇒ d′ ∧ s′@d′ ⇒ d
seq(s, s′)@d ⇒ ↑ if s@d ⇒ ↑
choice(s1, s2)@d ⇒ d′ if s1@d ⇒ d′

choice(s1, s2)@d ⇒ d if s1@d ⇒ ↑ ∧ s2@d ⇒ d
all(s)@[d] ⇒ [d]
all(s)@c(d1 · · · dn) ⇒ c(d′

1 · · · d′
n) if s@d1 ⇒ d′

1,. . . ,s@dn ⇒ d′
n

all(s)@c(d1 · · · dn) ⇒ ↑ if ∃i. s@di ⇒ ↑
one(s)@[d] ⇒ ↑
one(s)@c(d1 · · · dn) ⇒ c(· · · d′

i · · ·) if ∃i. s@d1 ⇒ ↑ ∧ · · · ∧ s@di−1 ⇒ ↑ ∧ s@di ⇒ d′
i

one(s)@c(d1 · · · dn) ⇒ ↑ if s@d1 ⇒ ↑,. . . ,s@dn ⇒ ↑
adhoc(s, a)@d ⇒ a@d if a : t and d : t
adhoc(s, a)@d ⇒ s@d if a : t ∧ d : t′ ∧ t �= t′

Identities
[unit] s ≡ seq(id, s) ≡ seq(s, id) ≡ choice(fail, s) ≡ choice(s, fail)
[zero] fail ≡ seq(fail, s) ≡ seq(s, fail) ≡ one(fail)
[skip] id ≡ choice(id, s) ≡ all(id)
[nested type dispatch]

adhoc(adhoc(s, a), a′) ≡ adhoc(s, a′) if a : t ∧ a′ : t
adhoc(adhoc(s, a), a′) ≡ adhoc(adhoc(s, a′), a) if a : t ∧ a′ : t′ ∧ t �= t′

adhoc(adhoc(fail, a), a′) ≡ choice(adhoc(fail, a), adhoc(fail, a′)) if a : t ∧ a′ : t′ ∧ t �= t′

Fig. 1. Specification of a guideline set of basic strategy combinators

Figure 1 shows a set of such basic strategy combinators, along with their operational

semantics.

Using the basic strategy combinators, more elaborate ones can easily be constructed.

Consider for instance the following definitions:

try(s) = choice(s, id)
repeat(s) = try(seq(s, repeat(s)))

402 T.L. Alves et al.

full topdown(s) = seq(s, all(full topdown(s)))
innermost(s) = seq(all(innermost(s)), try(seq(s, innermost(s))))

The try combinator takes a potentially failing strategy as argument, and attempts to

apply it. When failure occurs, the identity strategy id is used to recover. The repeat
combinator repeatedly applies its argument strategy, until it fails. The full topdown
combinator applies its argument once to every node in a term, in pre-order. Finally, the

innermost strategy applies its argument in left-most innermost fashion to a term, until

it is not applicable anywhere anymore, i.e. until a fixpoint is reached.

The challenge of combining strategic term rewriting with strong typing was first met

by the Haskell-based Strafunski bundle [23], which we will use in this paper, and the

Java-based JJTraveler framework [36, 19]. A formal semantics of typed strategic pro-

gramming was constructed subsequently [20]. Further generalizations were provided in

the Haskell context [22, 21].

Strategic term rewriting has several benefits over traditional term rewriting. The

most important benefits derive from the fact that many applications require rewrite

equations that together do not form a confluent and terminating TRS. A program refac-

toring system, for instance, may require equations both for “extract method” and for

“inline method”. A document processing system may include equations that change

mark-up only inside the context of certain document tags. In a traditional term rewriting

environment, the only option to obtain sufficient control over when and where equations

are applied, is to switch to so-called ‘functional style’. This means that every rewrite

rule t �→ . . . s . . . is reformulated to include function symbols to control rewriting:

f(t) �→ . . . g(s) This way, the rewriting strategy in fact becomes explicit in the

additional function symbols, but is thoroughly entangled with the rewrite equations.

In strategic programming, the rewrite equations can stay as they are, the strategy can

be specified separately, and both equations and strategies can be used and reused in

different combinations to obtain different TRSs. So, apart from full control over when

and where equations are applied, strategic rewriting enhances separation of concerns,

reusability, and understandability.

In this paper, we will rely on strategic term rewriting to cleanly separate the indi-

vidual conversion rules from the strategy of applying them to the abstract syntax terms.

We will use the Strafunski bundle as strategic term rewriting environment in which to

implement the conversion tool.

3 Database Design by Calculation

The calculation method which underlies our VDM-SL to SQL conversion tool finds its

roots in a “data refinement by calculation” strategy which originated in [29, 30] and

has been focussed towards relational database design more recently [31, 32]. Reference

[28] describes its application to reverse engineering legacy databases.

3.1 Abstraction and Representation

The calculus consists of inequations of the formA ≤ B (read: “data type B implements,
or refines data type A”) which abbreviates the fact that there is a surjective, possibly

Strategic Term Rewriting and Its Application to a VDM-SL to SQL Conversion 403

partial function A B
F�� (the abstraction relation) and an injective, total relation

A
R �� B (the representation relation) such that

F ·R = idA (1)

where idA is the identity function on datatype A. (F is traditionally referred to as a re-
trieve function [17].) Since the equality R = S of two relations R and S is bi-inclusion

R ⊆ S∧S ⊆ R, we have two readings of equation (1): idA ⊆ F ·R, which ensures that

every inhabitant of the abstract datatypeA gets represented atB-level; and F ·R ⊆ idA,

which prevents “confusion” in the representation process:

〈∀ b ∈ B, a ∈ A : b R a : 〈∀ a′ ∈ A : a′ F b : a′ = a〉〉
(“Never forget whom you are representing”.)

Below we will present a series of particular ≤-equations which together specify a

data model refinement calculus. The types of the refinement relations will be mapped

onto rewrite rules in the implementation.

3.2 Preorder

It can be shown that≤ is a preorder, reflexivity meaning that any datatype represents it-

self (R = F = id) and transitivity meaning that≤-steps can be chained by sequentially

composing abstractions and representations:

A

R

��≤ B

F

�� ∧ B

S

��≤ C

G

�� ⇒ A

S·R
��≤ C

F ·G

�� (2)

This suggests that one may calculate implementations from specifications

Spec = X ≤ X ′ ≤ X ′′ ≤ · · · ≤ Imp

by adding implementation details in a controlled manner. This also makes sense wher-

ever the representation of a parameter of a datatype needs to be promoted to the overall

parametric datatype by structural data refinement:

A

R

��≤ B

F

�� ⇒ FA

F R

��
≤ FB

F F

�� (3)

where F is such a parametric type, e.g. setofA in VDM-SL notation. (Technically, F
is named a relator [3].) This is valid also for parametric types of higher arity, such as

those of standard VDM-SL:

– binary product types A × B and n-ary ones
∏n

i=0 Ai, which can be specified in

VDM-SL as (nested) tuples or via record types, (semantically equivalent modulo

selectors). E.g. A*B or compose AB of a: A b: B end, respectively.
– sum types A + B, which in VDM-SL are specified by writing A | B for suitably

specified (disjoint) A and B, extensible to finitary sums
∑n

i=0 Ai.
– finite mappings A ⇀ B, written map A toB in VDM-SL, in which case the ab-

straction of the domain datatype is required to be injective (otherwise the outcome

may not be a mapping).

404 T.L. Alves et al.

3.3 Conversion Laws

It is often the case that the abstraction (resp. representation) relation is a (total) function,

in which case it is an injection (resp. surjection). As an example of this we present law

A	

seq2index

��
≤ IN ⇀ A

list

�� (4)

which indexes a finite sequence, for instance,

seq2index([a, b, a]) = {1 �→ a, 2 �→ b, 3 �→ a}
list({11 �→ a, 12 �→ b, 33 �→ a}) = [a, b, a]

A more structural law is

A ⇀ (B + C)

uncojoin
		

≤ (A ⇀ B)× (A ⇀ C)

cojoin

(5)

whereby mappings of sums are represented as products of mappings. (Definitions for

cojoin and uncojoin are easy to guess.) In a situation where the abstraction is also a

representation and vice-versa we have an isomorphism A ∼= B, a special case of the

≤-law which works in both directions. For example, the abstraction/representation pair

of the following isomorphism

A× (B + C)

distr
		

∼= (A×B) + (A× C)

undistr

(6)

(product distributes through sum) is well-known from set-theory.

The VDM-SL finite mapping dom function witnesses a very useful isomorphism

between finite sets and partial finite mappings,

2A

set2fm

��∼= A ⇀ 1

dom

�� (7)

which expresses the equivalence between data models set of A and map A to
nil. (The inhabitants of A ⇀ 1, often called right-conditions [13], obey a number

of interesting properties.) Another basic isomorphism tells us how “singleton” finite

mappings disguise “pointers” (guess opt-intro and opt-elim):

A+ 1

opt-intro

��∼= 1 ⇀ A

opt-elim

�� (8)

Strategic Term Rewriting and Its Application to a VDM-SL to SQL Conversion 405

The following isomorphism law

(B + C) ⇀ A

unpeither
		

∼= (B ⇀ A)× (C ⇀ A)

peither

(9)

is a companion of (5).

Two important ≤-rules from [32] are still missing from our catalog: the representa-

tion function of one of these,

A ⇀ (B × (C ⇀ D))

unnjoin
		

≤ (A ⇀ B)× (A× C ⇀ D)

njoin

(10)

enables us to infer composite keys out of nested finite mappings. (See [30, 31] concern-

ing abstraction njoin and representation unnjoin.) In the abstraction direction (from

right to left) it merges two tables which share a common (sub)key.

The other rule missing has to do with datatype “derecursivation”. Suppose we are

given a recursive datatype definition μF ∼= FμF where F is polynomial [3, 30]. Then

any “tree” in μF can be represented by a “heap” and a “pointer” to it,

μF

rec-elim
��

≤ (K ⇀ FK)×K

rec-intro

 (11)

for K a data type of “heap addresses”, keys or “pointers”, such that K ∼= IN . For

example, the binary tree on the left-hand side of (12) below will be represented — via

(11) followed by (5) — by address 5 pointing at the tables on the right-hand side:

(12)

See [30, 31, 32] for several important details we have to skip at this point about

this generic data representation technique, in particular in what concerns the complex

abstraction invariant imposed by (11), which requires “well-founded heaps”.

3.4 Normal Form

A pattern common to equations (4, 5, 7, 8, 9, 10 and 11) is that right-hand-sides do not

involve functors other than product (×) and finite mapping (⇀). It so happens that these

are exactly the functors admissible in the following abstract model

DB =
n∏

i=1

(
ni∏

j=0

Kj ⇀

mi∏
k=0

Dk) (13)

406 T.L. Alves et al.

of a relational database, whereby every db ∈ DB is a collection of n relational tables

(index i = 1, n) each of which is a mapping from a tuple of keys (index j) to a tuple of

relevant data (index k). Wherever mi = 0 we have
∏0

k=0 Dk
∼= 1, meaning — via (7)

— that we have a finite set of tuples in
∏ni

j=0 Kj . (These are called entity relationships
in the standard terminology.) Wherever ni = 0 we are in presence of a singleton rela-

tional table. Last but not least, all Kj and Dk are “atomic” types, otherwise db would

fail first normal form (1NF) compliance [24].

To derive such normal forms, the above calculation laws can be used in combination

with appropriate laws for commutativity and associativity of tuples, and laws for intro-

duction and elimination of empty tuples. To avoid these additional bookkeeping laws,

we can generalize law (10) to:

A ⇀ (
∏

i Bi×
∏

j(Cj⇀Dj))

g-njoin
��

≤ (A⇀
∏

i Bi)×
∏

j(A×Cj ⇀ Dj)

g-unnjoin

��
(14)

In the implementation, we will make use of this generalization.

Thus, with this collection of calculation rules we are able to unravel (polynomial)

recursive datatypes and decompose complex/nested mappings or sequences into tuples

of simpler mappings, leading to models in relational normal form (13). In the upcoming

section we will show how a term rewriting system can be constructed and implemented

that performs such unraveling in a deterministic and confluent manner.

4 Design and Implementation of the VooDooM Tool

This section describes the implementation of the VooDooM tool, which uses strategic

term rewriting to apply the refinement laws described above to VDM-SL source code.

The overall architecture of the tool is shown in Figure 2. The architecture mirrors the

phases needed to tackle the problem:

1. Recognize a specification file written in VDM-SL and convert it to a format that can

be used for processing: abstract syntax tree (AST);

2. Apply transformations to the AST to convert the input model into its relational

equivalent; and

3. Output the transformed specification either as VDM-SL or to SQL concrete syntax.

Fig. 2. Overall architecture of the VooDooM tool

Strategic Term Rewriting and Its Application to a VDM-SL to SQL Conversion 407

Fig. 3. Grammar-centric approach diagram

To handle each of these steps, the following modules were developed:

VDM-SL and SQL front-ends Deal with the language issues, namely parsing, pretty-

printing and abstract representation.

Transformation engine Receives a VDM-SL AST representing the original specifica-

tion and applies the calculation laws in order to compute a relational model that

refines it (also a VDM-SL AST).

VDM-SL to SQL translator Maps a relational model in VDM-SL AST format to an

equivalent SQL AST.

In the upcoming sections we will describe the implementation of these modules in more
detail. We will use the following specification of a tiny bank account management sys-
tem (BAMS) as example input1:

types
BAMS = map AccId to Account;
Account :: H: set of AccHolder

B: Amount;
AccId = seq of char;
AccHolder = seq of char;
Amount = int

4.1 Technology

We followed a grammar-centered approach to language tool development, where vari-

ous kinds of functionality are automatically generated from concrete syntax definitions

of the languages involved [18]. In particular, we relied on the Haskell-based Strafun-

ski [23] bundle to generate parsers, pretty-printers, and support libraries for abstract

syntax representation and traversal from SDF grammars of VDM-SL and SQL. Figure 3

illustrates this approach. SDF is the formalism in which both grammars are expressed.

Parse tables are automatically generated by the sdf2table tool from the SDF software

1 The intermediate steps will be presented in concrete VDM-SL syntax for clarity, although the

tool actually uses ASTs.

408 T.L. Alves et al.

Table 1. Catalog of rewriting rules. These rules are based on the various equations and inequa-

tions of the calculational data refinement theory presented in Section 3

Function Rewrite rule Law

seq2index A� ⇒ IN ⇀ A (4)

unconjoin A ⇀ (B + C) ⇒ (A ⇀ B)× (A ⇀ C) (5)

distr A× (B + C) ⇒ (A×B) + (A× C) (6)

set2fm 2A ⇒ A ⇀ 1 (7)

opt-elim A + 1 ⇒ 1 ⇀ A (8)

unpeither (B + C) ⇀ A ⇒ (B ⇀ A)× (C ⇀ A) (9)

unnjoin A ⇀ (B × (C ⇀ D)) ⇒ (A ⇀ B)× (A× C ⇀ D) (10)

rec-elim μF ⇒ (K ⇀ F K)×K (11)

bundle, which corresponds to the Parser ellipses of Figure 3. The AST Haskell data

type definition and the pretty-printer are generated with the Sdf2Haskell tool from Stra-

funski. They correspond to the Syntax and SyntaxPP ellipses from the picture.

From the abstract syntax, further components are generated in the form of Haskell

Class instances, using the DrIFT tool. The ATerm instances support serialization to

the ATerm format, which is used as interchange format between the generated parser

and other components. The Term instances support generic traversal and strategic term

rewriting over ASTs. The last two (Eq and Show), are not mandatory: they add compar-

ison and printing functions to the Haskell data types.

As SQL grammar, we were able to employ a previously developed grammar. The

VDM-SL grammar was developed by reconstructing the concrete syntax definition of

the ISO standard [15] in SDF, as reported elsewhere [2].

4.2 Transformation

The transformation engine is the core module of the VooDooM tool. It is responsible

for the refinement of the VDM-SL data types to a relational form, in accordance with

the refinement laws presented above.

We make ample use of strategic term rewriting techniques in its implementation.

The overall approach is as follows. First, we formulate individual term rewriting rules

on the basis of the type signatures of the representation functions of the refinement laws.

Table 1 lists these individual rules. Secondly, we use strategy combinators to compose

these individual rules into a transformation engine that applies the individual rules in a

way that a normal form is reached in a deterministic and confluent manner.

Before transformation begins, a single traversal is made over the AST that represents

the complete VDM-SL input specification, to collect all sub-ASTs that represent data

type definitions into a list. The transformation process itself operates on this collection.

The transformation process is organized into the following sequential phases:

Inlining and Recursion Removal. The rewrite rules for conversion operate on datatypes,

not on systems of named data type definitions. To avoid needing to perform lookups of

data type names during transformation, we start by inlining, i.e. replacing all data type

names by their definitions. This technique leads to the loss of the top level data type

Strategic Term Rewriting and Its Application to a VDM-SL to SQL Conversion 409

names, which in some cases are useful. To overcome this problem, singleton composes

are introduced before inlining those types.

Of course, this substitution process would run into cycles if we did not treat recursive

definitions differently. For this reason, the recursion removal rewrite rule rec-elim is

used in combination with inlining. After these rules have exhaustively been applied,

a set of non-recursive, independent datatypes is obtained that is amenable to further

transformation. Exhaustive application is realized by using the repeat combinator.
After the inlining step, our example specification will look as follows:

types
BAMS = map compose AccId of seq of char end to

compose Account of
H: set of compose AccHolder of seq of char end
B: compose Amount of int end

end

Though our example does not contain recursive datatypes, the tree example of Section 3

illustrates recursion removal. More examples are given in [30, 31].

Desugaring. We limit the language of data type definitions by removing those con-

structs for which we have a simple elimination rule: sets, sequences, and optionals.

Sequences of characters are viewed as atomic and excluded from desugaring, because

we want to map them to native SQL strings (varchar). Also, we rewrite all tuples to

VDM-SL’s compose construct. This desugaring step is performed by applying the rules

seq2index, set2fm, and optElim, in a single traversal.

In the same traversal, we rewrite tuples to VDM-SL compose constructs. Alterna-

tively, we could have desugared composes to nested tuples, but that would lead to the

loss of names of composes and their fields. Of course, if all tuples are eliminated in

favour of composes, this has the consequence that all calculation laws involving prod-

ucts should be mapped to rewrite rules involving composes. This has as additional ben-

efit that various rules (e.g. 14) can be generalized, because composes are n-ary, rather

than binary.
After desugaring, our example specification looks as follows:

types
BAMS = map compose AccId of seq of char end to

compose Account of
H: map compose AccHolder of seq of char end to NIL
B: compose Amount of int end

end

This expression contains only maps and products (compose), but is not yet in relational

form.

Conversion to Relational Form. After having the desugared structure, further trans-

formation rules can now be applied. At this stage, the needed rules are unconjoin, un-
peither, and the generalized version of unnjoin. In addition, a rule for flattening nested

composes is needed to bring expressions into the best form to be rewritten with that

410 T.L. Alves et al.

Table 2. Correspondence between VDM-SL and SQL92 data types

VDM-SL data type SQL data type SQL Constraint

bool SMALLINT CHECK (.. IN (0,1))

nat INT CHECK .. >= 0

nat1 INT CHECK .. >= 1

int INT

rat REAL

real REAL

char CHAR (1)

token VARCHAR (128)

seq of char VARCHAR (128)

generalized rule. These rewrite rules need to be applied exhaustively throughout the

AST. The innermost combinator is suitable for this.
After conversion, our example specification is in the relational normal form which

follows:

types
BAMS = compose mapAggr of

map compose AccId of seq of char end
to compose Amount of int end
map compose tuple of

seq of char
seq of char

end
to NIL

end

Resugaring. Finally, sets are reintroduced into the expression, using the dom rule.

Thus, any occurrence of the form map x to NIL is converted to set of x. This

occurs when further simplification was not possible. This is justified, because these can

be represented directly in SQL. When VDM-SL is targeted as output language, tuples

are reintroduced where binary composes with anonymous fields occur.

4.3 SQL Translation

During transformation, an initial specification is transformed into a relational normal

form. In the translation process these VDM-SL data types are converted to SQL tables

and attributes.

The translation of normal forms to SQL is straightforward. The relational equivalent

of a map is a table in which the domain of the map is the primary key. The relational

counterpart of a set is a table with a compound primary key on all columns to guarantee

uniqueness. The elements of maps and sets, which are products of elementary VDM-SL

data types, are converted to SQL column attributes (that are also of elementary types).

Because basic VDM-SL and SQL data types are not compatible, a correspondence

between them must be made. Table 2 shows the correspondence implemented in the

Strategic Term Rewriting and Its Application to a VDM-SL to SQL Conversion 411

VooDooM tool. The table also shows constraints to be added to the SQL data model to

better preserve the semantics of some VDM-SL data types. Only Standard SQL92 [16]

data types were chosen, to provide a solution that works for all SQL vendor dialects.
The SQL generated for our running BAMS example is as follows:

CREATE TABLE table1 (CREATE TABLE table2 (
AccId VARCHAR (128) NOT NULL, Attr1 VARCHAR (128) NOT NULL,
Amount INT NOT NULL, Attr2 VARCHAR (128) NOT NULL,
PRIMARY KEY (AccId) PRIMARY KEY (Attr1, Attr2)

))

As can be seen, a composite type (the outer compose) with a map and a set (reintro-

duced for map ... to NIL) is translated to two tables in SQL. Because none of

the compose elements have tags, they have been automatically generated as table1
and table2. The fields of the inner composes have been converted to SQL attribute

columns. In case of the map there are two tags: AccId and Amount. This led to the

creation of two attributes with those names. The primary key of the generated table is

AccID because it represents the domain of the map. In case of the set there are no

tags, so attribute names are automatically generated: Attr1 and Attr2. These two

attributes together form a compound primary key, because combined they represent the

domain of the set.

Thus, table1 associates an amount to the identifier of each account in the system,

while table2 uniquely relates accounts identifiers with account holders. These two

tables implement the original specification in which account identifiers are mapped to

accounts, and each account has a set of account holders and an amount. The actual

retrieve function that witnesses the abstraction relation between the original VDM-SL

specification and this pair of SQL tables is given in [1].

5 Concluding Remarks

A decade ago, Barros [5] referred to the derivation of database programs directly from

formal specifications as an unsolved problem. By contrast, deriving the database struc-

ture was regarded as a trivial aspect. However, his specifications are Z schemata whose

internal states are already close to the relational model (e.g. power-sets of products).

This is in contrast with our approach, in which the source data-model can be arbi-

trarily complex (as far as VDM-SL data constructors are concerned), including recursive

datatypes. Our “derecursivation” law (rec-elim), which relationally expresses the main

result of [37], bears some resemblance (at least in spirit) with “defunctionalization”

[14], a technique which is used in program transformation and compilation.

On the other hand, our approach shares with [5] the view that database design should

be regarded as special case of data refinement. It is orthogonal to [5] in the sense that

we are not concerned with database dynamics (transactions, etc).

Another advantage of our approach is the prospect of synthesizing abstraction in-

variants generated by each refinement step, which is still in the to-do list of the project.

These include abstraction / representation functions and concrete invariants. The former

can be used for data-migration between the original VDM-SL source and the generated

412 T.L. Alves et al.

relational model, in a way similar to [28] and to what is done manually in [1]. The latter

can be (at least in part) incorporated as SQL constraints.

Strategic term rewriting provides a realistic solution to database schema calcula-

tion when compared with previous attempts to animate the same calculus using genetic
algorithm-based term-rewriting techniques [27].

5.1 Future Work

We plan to extend the VooDooM tool in several ways. Firstly, in addition to the con-

version of VDM-SL to SQL, we want to support the reverse process of obtaining an

algebraic set of datatypes from a relational model, as already suggested by the dashed

lines in the architecture overview in Figure 2.

Reversing a database to VDM-SL is not a novelty. This problem was already tackled

in [28], in which the authors describe an implemented functional prototype and its appli-

cation using a real world example. However that implementation has several drawbacks.

The process has to be assisted manually, the initial relational model must be specified in

VDM-SL, the transformation rules were coded with explicit recursion, and all traversals

were hard-coded leading to a inflexibility in the implementation. With the strategic term

rewriting approach, the same problem can be solved in a more pragmatic way.

Secondly, we intend to offer better support for invariants to the tool. The transfor-

mation and translation processes in both directions lack support for VDM-SL invariants.

To more accurately preserve semantics, invariants should be added during the transfor-

mation process when a data type is split in two or more. However, invariants pose some

difficulties when performing transformations since the data definitions which they refer

are changing. Thus, invariants need also to reflect this change. When the transforma-

tions are simple rearrangements of data fields this can be easy but, since invariants can

be as complicated as any function mapping the type to a boolean, the general case is not.

Transforming arbitrary functionality in an automated manner is a challenging subject

which would involve investigation beyond the scope of this tool. However, we intend to

develop some invariant support, namely to referential integrity constraints, by providing

a small subset of VDM-SL that can be mapped into SQL constraints in an automated

way.

Availability

The VooDooM tool is developed as open source software and is available from its

project web page: http://voodoom.sourceforge.net/.

Acknowledgments

The work reported in this paper has been carried out in the context of the Eureka

project Σ!2235 IKF: Information Knowledge Fusion funded by Agência de Inovação
S.A, and of the project Program Understanding and Re-engineering: Calculi and Ap-
plications (PURe) funded by Fundação para a Ciência e a Tecnologia, grant number

POSI/ICHS/44304/2002.

Strategic Term Rewriting and Its Application to a VDM-SL to SQL Conversion 413

References

1. J.J. Almeida, L.S. Barbosa, F.L. Neves, and J.N. Oliveira. Bringing Camila and SetCalc To-

gether — the bams.cam and ppd.cam Camila Toolset demos. Technical report, DI/UM,

Braga, December 1997. [45 p. doc.].

2. T. Alves and J. Visser. Development of an industrial strength grammar for VDM. Technical

Report DI-PURe-05.04.29, Universidade do Minho, 2005.

3. R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans, and J. van der

Woude. Polynomial relators. In 2nd Int. Conf. Algebraic Methodology and Software Tech-
nology (AMAST’91), pages 303–362. Springer LNCS, 1992.

4. D. D. Baluta. A formal specification in Z of the relational data model, Version 2, of E.F.

Codd. M. Sc. thesis, Concordia University, Montreal, QC, Canada, 1995.

5. R.S.M. de Barros. Deriving relational database programs from formal specifications. In

Maurice Naftalin, B. Tim Denvir, and Miquel Bertran, editors, FME ’94: Industrial Benefit
of Formal Methods, Second International Symposium of Formal Methods Europe, Barcelona,
Spain, October 24-18, 1994, Proceedings, volume 873 of Lecture Notes in Computer Sci-
ence, pages 703–723. Springer, 1994.

6. D. Bjorner and C.B. Jones. Formal Specification and Software Development. Series in

Computer Science. Prentice-Hall International, 1982. C.A.R. Hoare, ed.

7. H. Cirstea, C. Kirchner, and L. Liquori. The Rho Cube. In Furio Honsell, editor, Foundations
of Software Science and Computation Structures, ETAPS’2001, Lecture Notes in Computer

Science, pages 166–180, Genova, Italy, April 2001. Springer-Verlag.

8. E. F. Codd. Missing Information. Addison-Wesley Publishing Company, Inc., 1990.

9. E.F. Codd. A relational model of data for large shared data banks. Communications of the
ACM, 13(6):377–387, June 1970.

10. J. Fitzgerald and P.G. Larsen. Modelling Systems: Practical Tools and Techniques for Soft-
ware Development . Cambridge University Press, 1st edition, 1998.

11. J.S. Fitzgerald and C.B. Jones. Modularizing the formal description of a database system,

volume 428 of Lecture Notes in Computer Science. Springer, 1990.

12. H. Garcia-Molina, J. D. Ullman, and J. D. Widom. Database Systems: The Complete Book.

Prentice Hall, 2002. ISBN: 0-13-031995-3.

13. P. Hoogendijk. A Generic Theory of Data Types. PhD thesis, University of Eindhoven, The

Netherlands, 1997.

14. G. Hutton and J. Wright. Compiling exceptions correctly. In Dexter Kozen and Carron

Shankland, editors, Mathematics of Program Construction, 7th International Conference,
MPC 2004, Stirling, Scotland, UK, July 12-14, 2004, Proceedings, volume 3125 of Lecture
Notes in Computer Science, pages 211–227. Springer, 2004.

15. ISO. Information technology — programmming languages, their environments and system

software interfaces — Vienna Development Method — specification language — part 1:

Base language, Dec. 1996. (ISO/IEC 13817-1, Geneva).

16. ISO. Information Technology – Database languages – SQL. Reference number ISO/IEC

9075:1992(E), Nov. 1992.

17. C.B. Jones. Software Development — A Rigorous Approach. Series in Computer Science.

Prentice-Hall International, 1980. C.A. R. Hoare.

18. M. de Jonge and J. Visser. Grammars as contracts. In Proceedings of the Second Interna-
tional Conference on Generative and Component-based Software Engineering (GCSE 2000),
volume 2177 of Lecture Notes in Computer Science, pages 85–99. Springer, 2000.

19. T. Kuipers and J. Visser. Object-oriented tree traversal with JJForester. In M. van den

Brand and D. Parigot, editors, Electronic Notes in Theoretical Computer Science, volume 44.

Elsevier Science, 2001. Proc. Workshop on Language Descriptions, Tools and Applications.

414 T.L. Alves et al.

20. R. Lämmel. Typed Generic Traversal With Term Rewriting Strategies. Journal of Logic and
Algebraic Programming, 54, 2003.

21. R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design pattern for generic

programming. ACM SIGPLAN Notices, 38(3):26–37, March 2003. Proc. ACM SIGPLAN

Workshop on Types in Language Design and Implementation (TLDI 2003).

22. R. Lämmel and J. Visser. Strategic polymorphism requires just two combinators! Technical

Report cs.PL/0212048, arXiv, December 2002.

23. R. Lämmel and J. Visser. A Strafunski Application Letter. In V. Dahl and P. Wadler, editors,

Proc. of Practical Aspects of Declarative Programming (PADL’03), volume 2562 of LNCS,

pages 357–375. Springer-Verlag, January 2003.

24. D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

25. C. Morgan. Programming from Specification. Series in Computer Science. Prentice-Hall

International, 1990. C.A. R. Hoare, series editor.

26. C. Necco. Polytypic data processing. Master’s thesis, Facultad de Cs. Fı́sico Matemáticas y

Naturales, University of San Luis, Argentina, 2005. (Submitted.).

27. F.L. Neves and J.N. Oliveira. ART — Um Laborat=rio de Reificatpo “GenTtica”. In IB-
ERAMIA’98 — Sixth Ibero-Conference on Artificial Intelligence, pages 201–215, Lisbon,

Portugal, October 5-9 1998. (in Portuguese).

28. F.L. Neves, J.C. Silva, and J.N. Oliveira. Converting Informal Meta-data to VDM-SL: A

Reverse Calculation Approach . In VDM in Practice! A Workshop co-located with FM’99:
The World Congress on Formal Methods, Toulouse, France, September 1999.

29. J.N. Oliveira. A reification calculus for model-oriented software specification. Formal As-
pects of Computing, 2(1):1–23, April 1990.

30. J.N. Oliveira. Software reification using the SETS calculus. In Tim Denvir, Cliff B. Jones,

and Roger C. Shaw, editors, Proc. of the BCS FACS 5th Refinement Workshop, Theory and
Practice of Formal Software Development, London, UK, pages 140–171. ISBN 0387197524,

Springer-Verlag, 8–10 January 1992. (Invited paper).

31. J.N. Oliveira. Data processing by calculation, 2001. 108 pages. Lecture Notes for the 6th

Estonian Winter School in Computer Science, 4-9 March 2001, Palmse, Estonia.

32. J.N. Oliveira. Calculate databases with ‘simplicity’, September 2004. Presentation at the

IFIP WG 2.1 #59 Meeting, Nottingham, UK.

33. W.B. Samson and A.W. Wakelin. Algebraic Specification of Databases: A Survey from a
Database Perspective. Workshops in Computing. Springer Verlag, Glasgow, 1992.

34. J. D. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science

Press, 1988.

35. E. Visser and Z. Benaissa. A Core Language for Rewriting. In C. Kirchner and H. Kirchner,

editors, Proc. International Workshop on Rewriting Logic and its Applications (WRLA’98),
volume 15 of ENTCS, Pont-à-Mousson, France, September 1998. Elsevier Science.

36. J. Visser. Visitor combination and traversal control. ACM SIGPLAN Notices, 36(11):270–

282, 2001. Proceedings of the ACM Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA 2001).

37. E. G. Wagner. All recursive types defined using products and sums can be implemented using

pointers. In Clifford Bergman, Roger D. Maddux, and Don Pigozzi, editors, Algebraic Logic
and Universal Algebra in Computer Science, volume 425 of Lecture Notes in Computer
Science. Springer, 1990.

38. A. Walshe. NDB: The Formal Specification and Rigorous Design of a Single-User Database
System. Prentice Hall, ISBN 0-13-116088-5, 1990.

Synthesis of Distributed Processes from Scenario-Based
Specifications

Jun Sun and Jin Song Dong

School of Computing, National University of Singapore
{sunj, dongjs}@comp.nus.eud.sg

Abstract. Given a set of sequence diagrams, the problem of synthesis is of de-
ciding whether there exists a satisfying object system and if so, synthesize one au-
tomatically. It is crucial in the development of complex systems, since sequence
diagrams serve as the manifestation of use cases and if synthesizable they could
lead directly to implementation. It is even more interesting (and harder) if the
synthesized object system is distributed. In this paper, we propose a systematic
way of synthesizing distributed processes from Live Sequence Charts. The ba-
sic idea is to first construct a CSP specification from the LSC specification, and
then use CSP algebraic laws to group the behaviors of each object effectively.
The key point is that the behaviors of each object can be decided locally without
constructing the global state machine.

Keywords: LSC, CSP, Synthesis.

1 Introduction

Sequence diagrams have been a popular means of specifying scenarios of reactive sys-
tems for decades. They have found their ways into many methodologies, e.g. Sequence
Diagrams in Unified Modelling Languages (UML [12]), Messages Sequence Charts
(MSCs) in Specification and Description Language (SDL) [18]. They are used in the
early stage of system development to describe possible communication scenarios. Given
a set of sequence diagrams, the problem of synthesis is of deciding whether there ex-
ists a satisfying object system and if so, synthesize one automatically. The problem is
crucial in the development of complex systems, as sequence diagrams serve as the man-
ifestation of use cases and if synthesizable they could lead directly to implementation.
The problem has been long recognized as a hard problem and tackled by many re-
searchers [2, 1, 21]. The conclusion is that for reactive distributed systems, synthesizing
a distributed object system with precisely the set of behaviors is in general impossi-
ble. Detailed discussions on why distributed systems are hard to synthesize and why
unspecified behaviors are unavoidable can be found in [24] and [1] respectively.

Live Sequence Charts (LSCs) are proposed by Damm and Harel [8]. They are
rapidly recognized as a rather rich and useful extension of MSCs. A rich set of con-
structs are provided for specifying not only possible behaviors, but also mandatory be-
haviors. For instance, a universal chart, possibly preceded with a pre-chart, specifies
mandatory behaviors globally, i.e. once the system behavior matches its pre-chart, the

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 415–431, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

416 J. Sun and J.S. Dong

subsequence behavior must follow the chart. On the level of a chart, events and con-
ditions and locations are also labelled with modalities. LSCs also provides structuring
constructs, like sub-charts, branching and iterations, to build scenarios hierarchically.
In a nutshell, LSCs provide a far more powerful means for setting requirements for
complex system than classic sequence diagrams. Therefore, they serve as the basis of
tool supporting analysis of scenarios, for example, the study of the synthesis problem.

The synthesis problem of LSCs is discussed by Harel and Kugler in [14], in which
they tackled the problem by defining the notion of consistency between LSCs. Their
approach starts with constructing a global system automata and decompose it by dif-
ferent means (refer to [14] for details). Their approach suffers from the state explosion
problem due to the construction of the global system automata, which is often of huge
size because of the distributed nature of LSCs and the underlying weak partial order-
ing semantics. In this paper, we present a systematic way of synthesizing distributed
processes directly from LSCs. The basic idea is to first construct a Communicating
Sequential Process (CSP [17]) specification from the LSC specification, and then use
CSP algebraic laws to group the behaviors of each object effectively. The key point is
that the behaviors of each object can be decided locally without constructing the global
state machine. In our previous work [27], we explored the semantic-based equivalence
relations between CSP and LSCs. We prove that we may capture the semantics of LSC
specifications using CSP. The practical implication is that CSP supporting tools like
FDR [10] can be reused to validate LSC specifications. The construction of CSP speci-
fications in this work, however, is different because our aim is to synthesize refinements
of consistent LSC specifications. Only distributed processes that are not only consistent
with the LSC specification but also regular (so that they lead to finite state machine im-
plementations) and minimally restrictive (if possible) are interested. Our work in [27]
can be viewed as a necessary precedence of this work. Our approach is experimented
with an automated tool developed using JAVA and XML.

We remark that the same result can be derived using Büchi Automata [6] with a
painfully complicated procedure. In [3], Bontemps and Heymans use Büchi automata
to define the language expressed by a set of LSCs. They claim that standard algorithm
for automata can be used to check consistency and refinement and etc. As one of the
future works, they mentioned the synthesis of state-based implementations from LSCs.
However, as Büchi automata are low-level and not structured, flattening high-level LSCs
into automata suffers from the state explosion problem. Whereas CSP provides a rich
set of compositional constructs. Therefore, our work preserves the structure of the LSC
specification and avoids constructing the global state machine both at the chart level or
globally. In [4], Bontemps and Schobbens and Löding discussed the synthesis problem
for a small subset of LSCs (LSCs without conditions, structuring constructs, modalities
on locations and messages). They proposed a game-based semantics for LSCs, which
leads to the notion of consistency between their LSCs. However, their discussion on the
problem of synthesis is limited to a single universal chart. In our approach, almost all
LSC constructs are supported except timing constructs, which we leave to the future
works. In addition, there is the work described in [19], which synthesizes a timed Büchi
Automata from a single chart only. What makes our goal both harder and more inter-
esting is in the treatment of a set of charts, not just a single one. As far as the limited

Synthesis of Distributed Processes from Scenario-Based Specifications 417

case of classical MSC goes, there have been quite some works on formalizing and then
synthesizing from them. This includes the works by Alur mentioned earlier and others,
evidenced in [20, 21, 22, 16].

The rest of the paper is organized as follows. Section 2 introduces LSCs and CSP.
Section 3 presents our approach to synthesize distributed processes from a set of LSC
universal charts. Section 4 discusses relevant issues of the synthesis, i.e. how to handle
modalities on locations. Section 5 concludes the paper with possible future works.

2 Background

2.1 Live Sequence Charts

MSCs are widely used to describe scenarios of interaction between processes or objects.
However, MSCs suffer from the rather weak partial-order semantics that makes it inca-
pable of capturing many kinds of behavioral requirements. LSCs are introduced in [8] to
overcome the shortcomings of MSCs by adding liveness or universality, i.e. something
desired must be observed.

There are two kinds of charts in LSCs. Existential charts are mainly used to de-
scribe possible scenarios of a system in the early stage of system development, i.e. the
same role played by classic MSCs. In later stage, knowledge becomes available about
when a system run has progressed far enough for a specific usage of the system to be-
come relevant. Universal charts are then used to specify behaviors that should always
be exhibited. In this work, we assume that an LSC specification consists of a set of uni-
versal charts, and existential charts are used to specify test cases. A universal chart may
be preceded by a pre-chart, which serves as the activation condition for executing the
main chart. Whenever a communication sequence matches a pre-chart, the system must
proceed as specified by the main chart. Due to pre-charts, a system run may activate a
universal chart more than once and some of the activation might overlap [23].

Each chart is associated with a set of visible events. Only the set of visible events
are constrained by the chart. A chart typically consists of multiple instances, which
are represented as vertical lines graphically. Along with each line, there are a finite
number of locations. A location carries the temperature annotation for progress within
an instance. A location may be labelled as either cold or hot. A hot location means that
the system has to move beyond. Whereas the system may stay at a cold location forever.
Similarly, messages and conditions are also labelled. A hot message must be received,
whereas a cold one may get lost. A hot condition must be met, whereas a cold condition
terminates the chart if it is evaluated to false.

Example 1. We introduce a mobile phone system as a running example to explain and
illustrate the main ideas and results. This example is partially inspired by the phone
system specification presented in [7]. The system consists of six participating objects,
a user , the cover , the display , the speaker , the chip and the environment where the
incoming calls are from. Due to the page limit, we only introduce a self-containing
set of scenarios. Scenario OpenCover illustrates the interaction between the objects
when the user opens the cover , i.e. the chip is notified that the cover is opened, it then
requests the display to display the menu. The display then carries out a local action

418 J. Sun and J.S. Dong

displayMenu

coverOpened

open

OpenCover

DisplayChipCoverUser

setDisplayMenu

displayTime

coverClosed

close

CloseCover

DisplayChipCoverUser

setDisplayTime

Fig. 1. Mobile Phone System Scenario: OpenCover, CloseCover

setDisplayMenu to initialize the menu screen. The upper chart in Figure 1 illustrates
the scenario. Figure 1, 2 illustrates the scenarios where the user closes the cover, an
incoming call arrives and the user picks up the phone and talk. These scenarios are self-
explanatory. Note that all vertical lines in the charts are dotted, which means that all
locations along the lines are cold and, therefore, the system may pause at any point of
execution forever. This is possible because unexpected events like the battery runs out or
the system breaks down may occur at any time. The set of visible events for each chart
are exactly those appeared in the diagram except the scenario Talk, which includes a
forbidden event close. We remark that the message from the user to the cover close is
forbidden in the scenario Talk, i.e. in order to carry out the scenario successfully, the
user should not close the cover before the scenario completes. Figure 3 illustrates the
typical usage of the phone. Note that implicit assumptions are captured by hot locations,
for example an incoming call will eventually trigger the ring, the user will eventually
pick up the call and hand up the call and etc.

LSCs also support advanced MSC features like co-region, hierarchy and etc. Sym-
bolic instances and messages are adopted to group scenarios effectively. For a detailed
introduction on a complete list of features of LSCs, refer to [15]. LSCs are far more
expressive than MSCs, which makes them capable of expressing complicated scenario-
based requirements. However, we remark that the ability to specify hot and cold mes-
sages, i.e. whether a message is required to be received or may get lost, is redundant

Synthesis of Distributed Processes from Scenario-Based Specifications 419

displayCallerID

startRing

incomingCall

SpeakerChipEnv

Receive

Display

setDisplayCaller

User Cover Chip SpeakerEnv Display

open

coverOpened

startRing

speakerOff

displayTimer

Talk

talk

closeLSC

Forbidden Elements

setDisplayTimer

Fig. 2. Mobile Phone System Scenario: Receive, Talk

close

open

coverClosed

coverOpened
talk

incomingCall

Phone

Env ChipCoverUser

Fig. 3. Mobile Phone System Scenario: Phone

420 J. Sun and J.S. Dong

because of the facility for describing hot and cold locations. Essentially, the tempera-
ture of the locations takes precedence over the temperature of messages, so whether or
not the message is received is determined entirely by the temperature of the message
input. This questionable feature of LSCs is recognized by Harel and Marelly who list
the possible cases and conclude that the temperature of the message has no semanti-
cal meaning [15]. Thus, in the following discussion, the temperature of all messages is
discarded.

2.2 Communicating Sequential Process

Hoare’s CSP [17, 25] is a formal specification language where processes proceed from
one state to another by engaging in events. Processes may be composed by operators
which require synchronization on events, i.e. each component must be willing to partic-
ipate in a given event before the whole system makes the transition. A CSP process is
defined by process expressions. Let P denote all possible CSP processes. The relevant
syntactic class of process expression is defined as:

P ::= RUNΣ | STOP | SKIP | P1
 P2 | P1 � P2 | P1; P2 | P1 ||| P2 |
P1 X||Y P2 | P1 X||Y P2 | P1 �e P2 | · · ·

CSP defines a rich set of operators to create processes. RUNΣ is a process always
willing to engage any event in Σ. STOP denotes a process that deadlocks and does noth-
ing. A process that terminates is written as SKIP. A process e → P is initially willing
to engage in event e and behaves as P afterward. CSP allows a hierarchical description
of a system by offering various operators to compose processes. The sequential com-
position, P1; P2, behaves as P1 until its termination and then behaves as P2. A choice
between two processes is denoted as P1 | P2. The choice is made either internally
(P1 � P2) or externally (P1 � P2). Often, choices are guarded by prefixing or condi-
tionals. A choice that depends on the truth value of a boolean expression b is written as
P1 <| b>| P2. If b is true, this process proceeds as P1, otherwise P2. Parallel composi-
tion of two processes is denoted as P1 ‖ P2, where common events are synchronized. If
X is an empty set, the two processes interleaves, denoted as P1 ||| P2. The generalized
form of synchronization is denoted as P1 X ||Y P2, the alphabetized parallel composi-
tion where common events in X and Y are synchronized. ‖n

k=1
(Pk , Σk) is a replicated

alphabetized parallel denoting parallel composition of n processes, where each process
Pk synchronizes with the rest of the system on events in Σk . P1 �e P2 behaves as P1

until event e is engaged and then P2 takes control.
Three mathematical models for CSP are defined. In the traces model, a process is

represented by the set of finite sequences of communications it can perform, denoted as
traces(P). In the stable failures model, a process is represented by its traces and also by
its failures. A failure is a pair (t , Σ), where t is a finite trace of the process andΣ is a set
of events it can refuse after t (refusal). The set of P ’s failures is denoted as failures(P).
In the failures/divergences model [5], a process is represented by its failures, together
with its divergences. A divergence is a finite trace during or after which the process can
perform an infinite sequence of consecutive internal actions. Failure/divergence model
and stable failure model make no difference for divergence-free systems. A detailed
discussion on the three semantics models can be found in [25]. The well-established

Synthesis of Distributed Processes from Scenario-Based Specifications 421

failure semantics is used to establish equivalence relations between processes by appeal
to algebraic laws of CSP. We quote the relevant laws below. The proof of each law can
be found in either [17] or [25].

P |[Σ]|RUNΣ = P [L1]
P ‖ STOP = STOP [L2]
P ‖ P = P [L3]
P1 X||Y P2 = P2 Y ||X P1 [L4]
(P1 X||Y P2) X∪Y ||Z P3 = P1 X||Y∪Z (P2 Y ||Z P3) [L5]

The following laws are derived. Law [L6] is a directly consequence of law [L4] and
[L5]. Law [L7] is the generalized form of law [L6].

(P1 X||Y P2) X∪Y ||Z∪W (P3 Z||W P4) = (P1 X||Z P3) X∪Z||Y∪W (P2 Y ||W P4) [L6]

‖m

i=1
(‖n

j=1
(P j

i , Σ
j
i),

⋃
j
Σj

i) = ‖n

j=1
(‖m

i=1
(P j

i , Σ
j
i),

⋃
i
Σj

i) [L7]

3 Synthesizing Distributed Processes

Our discussion in this section assumes that the LSC specification is well-formed and
consistent, i.e. the weak event relation is acyclic, existential charts trace-refine the uni-
versal charts and etc. Additional assumptions are discussed in the following. We assume
that all locations are cold and all conditions are distributed. The former is due to the lack
of “liveness” in the original CSP semantics. This problem is addressed in Section 4. The
latter gets rid of shared condition, which we think is a problematic feature of LSCs. In
LSCs, a condition is a boolean expression over the visible variables of the chart. There-
fore, some form of global variables is presupposed. This doesn’t match the reality of dis-
tributed system. Indeed, objects in distributed systems have their own state space (local
variables) and all communication between objects would be via messages. Therefore,
we are only interested in local conditions in this work. However, shared condition can
be (partially) supported by rewriting it to a set of distributed condition with additional
proper synchronization. Without loss of generality, we also assume that no co-region
is allowed and all messages are synchronized. There is nothing interesting about co-
region except it complicates the presentation of the synthesis. Asynchronous message
passing is supported by explicitly modelling the behavior of the buffers, e.g. FIFO. A
consequence of this assumption is that a message loss is captured by an infinitely long
delay of the forwarding by the buffer instead of a traditional lost message symbol.

The principles of the synthesis are that, the synthesized processes should be min-
imally restrictive (if possible) so that further refinement is possible, the global state
machine should never be constructed so that state explosion is avoided, and above all,
the synthesized processes should be consistent with the LSC specification. The basic
idea of our approach is to first construct a CSP specification from the LSC specification
(a refinement), and then use CSP algebraic laws to group the behaviors of each object
effectively. The key point of our synthesis is that the behaviors of each object can be
determined locally and, therefore, the global state machine is never constructed. In the
following, we present the synthesis in a bottom-up fashion using synthesis rules (SR).

422 J. Sun and J.S. Dong

The most primitive building blocks of LSCs are locations. Along an instance in a
chart, there are a finite number of locations. A location contains exactly one event and an
optional condition. Let S be an LSC specification. Let c, i be a chart and a participating
object (instance) in S respectively. Let Location,Condition,Event be all locations,
condition and events respectively. Let cond : Location → Condition be the condition
observer. Let event : Location → Event be the event observer. We denote the process
synthesized for the location l on instance i in the main chart of chart c as MainLocai

c(l).
Let MainLocai

c(l + 1) be the process synthesized for the next location.

– SR1: The condition labelled with location l is cold and location l is not the last.
If the condition labelled with l evaluates to true, the system engages the event and
proceeds to the next location, otherwise, its engages a special event αc to signal all
other instances in the chart before termination. Processes for all other instances in
the chart are interrupted by αc and terminate so that the chart terminates.

MainLoca i
c(l) =̂ (event(l) → MainLoca i

c(l + 1)) <| cond(l)>| (αc → SKIP)

– SR2: The condition is cold and the location is the last. After engaging the event,
a special event γc is synchronized by all instances in the chart before any of them
terminates.

MainLoca i
c(l) =̂ (event(l) → γc → SKIP) <| cond(l)>| (αc → SKIP)

– SR3: The condition is hot and the location is not the last. A special event βc is
engaged if the hot condition is violated so that all other instances in the chart are
signaled and deadlock.

MainLoca i
c(l) =̂ (event(l) → MainLoca i

c(l + 1)) <| cond(l)>| (βc → STOP)

– SR4: The condition is hot and the location is the last.

MainLoca i
c(l) =̂ (event(l) → γc → SKIP) <| cond(l)>| (βc → STOP)

Each chart is associated with a set of visible events. Let Σc be the set of visible events
of chart c. Let Σi

c be the set of events associated with Instance i in chart c, including
forbidden events. Special events are added to Σi

c to carry out the synthesis systemati-
cally. The number of special events is bounded by the number of charts if we are only
interested in regular implementations (discussed later). In particular, we associate each
chart with three special events, αc , βc , γc . Event αc is engaged only when a cold condi-
tion is violated, either in the pre-chart or the main chart. Event γc is used to synchronize
the entering or exiting of a chart or a sub-chart among all participating instances. For
example, in the above construction, a γc event is engaged when the last location has
been traversed. Event βc is engaged only when a hot condition is violated so as to force
the system to fail. This reflects the semantics of hot conditions. However, this is slightly
problematic as the intention of hot conditions is to make sure they are never violated in
the scenario. A hot condition is violated either because there is inconsistency in the LSC
specification, i.e. wrong implementation of the local action and etc., or the system is in-
sufficiently specified. A model checker, e.g. FDR, would help refine LSC specifications
step by step so that all hot condition holds all the time [27].

Synthesis of Distributed Processes from Scenario-Based Specifications 423

A location could be a structuring construct, e.g. a sub-chart or a branching. We
remark that all LSC structuring constructs have their exact images in CSP, e.g. choice
in CSP for branching, process reference for sub-charts and etc. This is a clear advantage
why CSP is better than unstructured automata for our discussion.

Similarly, we may synthesize the process for a location l in the pre-chart. We denote
the process synthesized for the location l on instance i in the pre-chart of chart c as
PreLoca i

c(l). An instance not in the pre-chart is treated as if it is in the pre-chart with
one empty location.

– SR5: Location l is neither the first location nor the last. If the condition evaluates to
false, then the process signals all other instances in the chart and terminates. Oth-
erwise, if the expected event is engaged, the process proceeds to the next location,
else, the process engages the unexpected event and puts no further constraints on the
system ([L1]). Note that we do not distinguish hot or cold condition in pre-charts
as hot conditions have no semantical meaning in pre-charts.

PreLoca i
c(l) =̂ ((event(l) → PreLoca i

c(l + 1))

� (� e : Σi
c \ {event(l), αc , βc , γc} → RUN))

<| cond(l)>| (αc → SKIP)

– SR6: The location is not the first location but is the last. After engaging the event,
the instance waits for the synchronization for termination and proceeds to the first
location of the main chart.

PreLoca i
c(l) =̂ ((event(l) → γc → MainLoca i

c(0))

� (� e : Σi
c \ {event(l), αc , βc , γc} → RUN))

<| cond(l)>| (αc → SKIP)

– SR7: The location is the first but not the last. A new process is forked whenever
an expected event is engaged. This way, we allow system runs that may trigger
multiple overlapping activation of the same chart. Note that the special events are
not synchronized between different activation.

PreLoca i
c(0) =̂ ((event(0) → PreLoca i

c(1) |[Σi
c \ {αc , βc , γc}]|PreLoca i

c(0))

� (� e : Σi
c \ {event(0), αc , βc , γc} → RUN))

<| cond(0)>| (αc → PreLoca i
c(0))

– SR8: The location is the only location of the instance in the pre-chart.

PreLoca i
c(0) =̂ ((event(0) →

(γc → MainLoca i
c(0)) |[Σi

c \ {αc , βc , γc}]|PreLoca i
c(0))

� (� e : Σi
c \ {event(0), αc , βc , γc} → RUN))

<| cond(l)>| (αc → PreLoca i
c(0))

– SR9: The chart is not preceded with a pre-chart.

PreLoca i
c(0) =̂ MainLoca i

c(0)

424 J. Sun and J.S. Dong

Whenever a chart is activated by a system run, the subsequence behavior of the system
is constrained by both the process and the newly forked process and, therefore, remains
valid. However, the process PreLoca i

c(0) allows, in general, irregular languages that
cannot be realized by finite state machines. A similar problem is recognized by Harel
and Kugler [14]. We may synthesize systems with possible overlapping activation of
the same chart using the above set of rules. Nevertheless, in most cases, only regu-
lar processes which lead to finite state implementations are interested. If we assume
that activation of the same chart never overlaps, i.e. the chart is not re-activated till its
completion, we may augment SR1-2, SR4-8 as the following so that a chart can be re-
activated only after its completion. The same assumption is made by Harel and Kugler
in [14].

SR1’: MainLoca i
c(l) =̂ (event(l) → MainLoca i

c(l + 1)) <| cond(l)>| (αc → PreLoca i
c(0))

SR2’: MainLoca i
c(l) =̂ (event(l) → γc → PreLoca i

c(0)) <| cond(l)>| (αc → PreLoca i
c(0))

SR4’: MainLoca i
c(l) =̂ (event(l) → γc → PreLoca i

c(0)) <| cond(l)>| (βc → STOP)

SR5’: PreLoca i
c(l) =̂ ((event(l) → PreLoca i

c(l + 1)) �

(� e : Σi
c \ {event(l), event(0), αc , βc , γc} → PreLoca i

c(0)))

<| cond(l)>| (αc → PreLoca i
c(0))

SR6’: PreLoca i
c(l) =̂ ((event(l) → γc → MainLoca i

c(0)) �

(� e : Σi
c \ {event(l), event(0), αc , βc , γc} → PreLoca i

c(0)))

<| cond(l)>| (αc → PreLoca i
c(0))

SR7’: PreLoca i
c(0) =̂ ((event(0) → PreLoca i

c(1)) �

(� e : Σi
c \ {event(0), αc , βc , γc} → PreLoca i

c(0)))

<| cond(l)>| (αc → PreLoca i
c(0))

SR8’: PreLoca i
c(0) =̂ ((event(0) → γc → MainLoca i

c(0)) �

(� e : Σi
c \ {event(0), αc , βc , γc} → PreLoca i

c(0)))

<| cond(l)>| (αc → PreLoca i
c(0))

Rule SR1-2,4 are augmented so that the process proceeds to the first location after
completing the last location or whenever a cold condition is violated. Rule SR5-8 are
augmented so that the initial event which may activate a chart (event(0)) is not engaged
before the chart completes. As a result, no new processes need to be forked under our
assumption. For simplicity, the subsequent discussion assumes that there is no overlap-
ping activation of the same chart. The process synthesized for instance i in chart c is
denoted as Instancei

c .

– SR10: The process terminates whenever a cold condition is violated in the chart,
and deadlocks whenever a hot condition is violated. Both are captured using inter-
rupt operators.

Instance i
c =̂ (PreLoca i

c(0) �αc Instance i
c) �βc STOP

Each chart consists of a finite number of interacting instances. Let Chartc be the process
for chart c.

– SR11: The process is an alphabetized parallel of the processes of all instances in the
chart. Note that in case a hot condition is violated, the process deadlocks and, there-
fore, the system deadlocks (L2). In case a cold condition is violated, the process
restores to its initial state.

Synthesis of Distributed Processes from Scenario-Based Specifications 425

Chartc =̂ ‖
i
(Instance i

c , Σ
i
c)

An LSC specification consists of a finite number of universal charts, each constraining
a set of visible events. Let I be the process synthesized from the LSC specification.

– SR12: I =̂ ‖
c
(Chartc , Σc)

We claim that I is an implementation of S. From the construction of Chartc , it is clear
that only behaviors satisfying the chart are allowed. Therefore, I only allows behaviors
that satisfies all the charts (because of the parallel composition). Moreover, Chartc only
constraints its visible events (as it is alphabetized) and, therefore, other events are free
to occur. We skip the case-by-case proof in this paper. The main result of our work is
that we may group the behaviors of an object in the system effectively by transforming
I using CSP algebraic laws, in particular, the distributivity law of alphabetized parallel
composition.

I =̂ ‖
c
(Chartc , Σc) =̂ ‖

c
(‖

i
(Instance i

c , Σ
i
c), Σc) [SR11,12]

=̂ ‖
i
(‖

c
(Instance i

c , Σ
i
c),

⋃
i
Σi

c) [L7]

We remark that the underlying portion of the process is the behavior of an object in
isolation, and

⋃
i Σ

i
c is its alphabet with a number of special events. Thus, the behaviors

of each objects can be determined locally without ever constructing the global state
machine. Each object is composed with the rest of the system by alphabetized parallel
composition. There is a subtle difference between alphabetized parallel composition
and traditional common event synchronization between state machines. For the former,
an event in the alphabet but not in the process indicates a forbidden event. Whereas
the alphabet of a state machine always contains exactly the set of events in the state
machine. Other than that, the process of each object is realized by traditional finite state
machines straightforwardly.

Example 2. We show the synthesized processes for the lower chart in Figure 2 (as it is
the most complicated one) in detail. For the talk scenario,

InstanceEnv
Talk =̂ (γTalk → talk → γTalk → InstanceEnv

Talk) � (talk → InstanceEnv
Talk)

InstanceUser
Talk =̂ (open → γTalk → talk → γTalk → InstanceUser

Talk)
� (talk → InstanceUser

Talk) � (close → InstanceUser
Talk)

InstanceCover
Talk =̂ (open → coverOpened → γTalk → γTalk → InstanceCover

Talk)
� (coverOpened → InstanceCover

Talk) � (close → InstanceCover
Talk)

InstanceChip
Talk =̂ (startRing → coverOpened → γTalk → speakerOff →

displayTimer → γtalk → InstanceChip
Talk)

� (coverOpened → InstanceChip
Talk) � (speakerOff → InstanceChip

Talk)

� (displayTimer → InstanceChip
Talk)

InstanceSpeaker
Talk =̂ (startRing → γTalk → speakerOff → γTalk → InstanceSpeaker

Talk)

� (speakerOff → InstanceSpeaker
Talk)

InstanceDisplay
Talk =̂ (γTalk → displayTimer → setDisplayTimer →

γTalk → InstanceDisplay
Talk)

� (displayTimer → InstanceDisplay
Talk)

� (setDisplayTimer → InstanceDisplay
Talk)

426 J. Sun and J.S. Dong

Phone

incomingCall

talk

talk

incomingCall

talk

β

βReceive

βReceive

βTalk

βTalk

Fig. 4. Finite State Machine Implementation of Env

Before the main chart is activated, all visible events are free to occur (captured by
the external choices). Once the instances synchronize the entering of the main chart,
only event sequences specified by the main chart are allowed. This example also illus-
trates how forbidden events are handled. For instance, event close is in the alphabet of
InstanceUser

Talk and InstanceCover
Talk . It can occur before the main chart is activated but not

after. Similarly, we may synthesize the processes for the instances in the other charts.
The behavior of the same instance is then composed using an alphabetized parallel op-
erator as discussed. The following example shows the behaviors of the Env instance in
the system.

InstanceEnv
Receive =̂ incomingCall → γReceive → γReceive → InstanceEnv

Receive

InstanceEnv
Talk =̂ (γTalk → talk → γtalk → InstanceEnv

Talk) � (talk → InstanceEnv
Talk)

InstanceEnv
Phone =̂ incomingCall → talk → γphone → InstanceEnv

Phone

InstanceEnv =̂ InstanceEnv
Receive ‖ InstanceEnv

Talk ‖ InstanceEnv
Phone

The behaviors of Env in Receive, Talk, Phone are captured by the three processes
above. The finite state machine implementation of the Env instance is illustrated in
Figure 4. The three state machines are running concurrently, where common events are
synchronized. We remark that all the synthesized processes are regular and, therefore,
can be implemented by finite state machines.

4 Discussion

In Section 3, we ignore the modalities on locations because CSP lacks the expressive-
ness to capture liveness, i.e. certain events must be observed in the future. Globally, a
system run satisfies an LSC specification only if no instance is stuck at a hot location. In
this section, we amend the traditional CSP failure semantics with “signals” to capture
liveness. We show that modalities on locations can be captured naturally using signals
and the result in Section 3 remains. That is, we show that global behaviors satisfying
liveness condition associated with locations can be determined locally.

The name, “signal”, is suggested by Davies [9], where signal are used to express
broadcast effectively in CSP and they must be observed in the future. In this work,
signals are simply events that must be observed in the future. Naturally, events on hot

Synthesis of Distributed Processes from Scenario-Based Specifications 427

locations are mapped to signals. In the following discussion, we focus on failure seman-
tics only because there could be nondeterminism in LSCs (therefore trace semantics is
insufficient) and there is no hiding operator in LSCs (therefore the synthesized pro-
cesses are divergence-free). If we use Σ̂ to denote the set of all signals, then the set of
all events is given by Σ̃ =̂ Σ ∪ Σ̂. For each event a in Σ, we add a signal â . We remark
that except they must be engaged eventually, signals play the same role as ordinary
events, e.g. synchonizing with signals or events obeying the CSP rules. The set of ex-
tended processes is denoted as P̃ . To ease the discussion (i.e. ensure type consistency),
we assume that a process in P̃ is uniquely identified by a set of failures.

P̃ == P P(Σ̃∗ × P Σ̃)

To ensure the additional constraint caused by signals, we define a filter function to
eliminate behaviors from the original CSP failure definitions so that the mature semantic
models of CSP are maintained. The filter function F : P̃ → P P̃ satisfies the following
condition:

∀ p : P̃; s : Σ̃∗; E : P Σ̃ •
(s,E) ∈ F(p) ⇔ (s,E) ∈ p ∧ ∃(s,E ′) : p • Σ̂ ⊆ E ′

This axiom insists that any observation that can be extended by engaging a signal
must be extended into the future. This way, we augment CSP semantics with a simple
fairness condition. Intuitively, it captures the idea that events labelled with a hot loca-
tion must be engaged. The failures calculation for the compositional CSP constructs
remain unchanged and, therefore, the relevant algebraic laws remain valid, including
the associativity and symmetry laws for alphabetized parallel ([L4,L5]) and, therefore,
law [L6,L7]. The goal of our discussion is to show that the modalities associated with
locations can be captured using signals by the processes in a distributed fashion, so that
a local process can be implemented by a finite state machine with a set of accepting
states. Equivalently, we want to show that in our context the following laws hold.

F(P̃1 X||Y P̃2) = F(P̃1) X||Y F(P̃2) [L8]

F(‖m

i=1
(‖n

j=1
(P̃ j

i , Σ̃
j
i),

⋃
j
Σ̃j

i)) = ‖n

j=1
(F(‖m

i=1
(P̃ j

i , Σ̃
j
i)),

⋃
i
Σ̃j

i) [L9]

Intuitively, if two traces, one for each component, both cannot be extended by en-
gaging a signal, then the composed trace cannot be extended with the signal either. The
reserve is not true in general (counter example in Appendix A). However, if a shared
signal is always ready to be engaged or refused by both components, then the reverse
is also true and, therefore, law [L8, L9] are true. The proof is left to Appendix A. We
remark that for consistent LSC specifications, the assumption is safe because graphi-
cally a message output event is always connected to a message input events and vice
versa due to the absence of lost message symbol. The above result is crucial to our
work because it guarantees that equipping the global process with liveness conditions
is equivalent to equip the liveness conditions locally. Behaviors of each component,
therefore, can be decided locally.

Example 3. For example, the CSP process synthesized from Env instance in the chart
presented in Figure 3 is the following:

428 J. Sun and J.S. Dong

InstanceEnv
Phone =̂ ̂incomingCall → t̂alk → γphone → InstanceEnv

Phone

Processes with signals can be implemented as finite state machines equipped with
simple fairness conditions, namely, accepting states. A state is accepting if there is no
outgoing transition labelled with a signal. For example, in the right-most state machine
in Figure 4, only the state after the talk event is accepting, indicated by a double-lined
circle. A global accepting state is a state where all its components’ states are accepting.

5 Conclusion and Future Works

The main contribution of our work is that we present a systematic way of synthesizing
distributed processes from LSC specifications. The key point of our method is that the
global state machine is never constructed. Therefore, our method can handle system
with complicated interactive behaviors. By constructing a CSP specification first and
then rewriting it using CSP algebraic laws, we address some of the challenges of such
synthesis discussed in [24, 1, 14]. For instance, we prove that the behaviors of each
object can be determined without ever constructing the global state machines [14]. We
guarantee that no unspecified behaviors are allowed by using only CSP equivalence
laws [1]. Moreover, we developed a JAVA application to automatically synthesize CSP
expression from LSCs. The tool extends the one reported in [27] with the new way of
constructing CSP processes.

There are a couple of possible extensions to our work. First, we may investigate
whether our result holds for LSCs with qualitative timing behaviors. Timed CSP [26]
seems to be a promising media to carry out the discussion. We may as well transform
the synthesized CSP processes to executable models, e.g. SystemC [11], Statechart in
Rhapsody [13], so that users may execute the distributed implementations.

Acknowledgements

We thank Steffen Andersen and Dines Bjørner and Steffen Holmslykke for their in-
sightful comments and discussion on early versions of this paper.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Inference of Message Sequence Charts. In Proc.
of the 22nd International Conference on Software Engineering, pages 304–313. ACM Press,
2000.

2. R. Alur and M. Yannakakis. Model Checking of Message Sequence Charts. In Proc. of
the 10th International Conference on Concurrency Theory, pages 114–129. Springer-Verlag,
1999.

3. Y. Bontemps and P. Heymans. Turning High-Level Live Sequence Charts into Automata. In
ICSE’02 Workshop: Scenarios and State Machines: Models, Algorithms and Tools, 2002.

4. Y. Bontemps, P. Schobbens, and C. Löding. Synthesis of Open Reactive Systems from
Scenario-Based Specifications. Fundamenta Informaticae, 62(2):139–169, July 2004.

Synthesis of Distributed Processes from Scenario-Based Specifications 429

5. S. D. Brookes and A. W. Roscoe. An Improved Failures Model for Communicating Pro-
cesses. In Proc. of the Pittsburgh seminar on concurrency LNCS 197, pages 281–305, 1985.

6. J. R. Buchi and L. H. Landweber. Solving Sequential Conditions by Finite State Strategies.
Trans. on American Math. Soc., 138:295–311, 1969.

7. D. Harel and R. Marelly. Play-Engine User’s Guide, 2003.
8. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts. Formal

Methods in System Design, 19(1):45–80, 2001.
9. J. Davies. Specification and Proof in Real-Time CSP. Cambridge University Press, 1993.

10. Formal System Europe. Failure Divergence Refinement. http://www.fsel.com/, 2003.
11. T. Grotker, S. Liao, G. Martin, and S. Swan. System Design with SystemC. Kluwer Academic

Publishers, 2002.
12. UML Group. OMG UML v1.5. http://www.uml.org/, June 2002.
13. D. Harel and E. Gery. Executable Object Modeling with Statecharts. Computer, 30(7):31–42,

1997.
14. D. Harel and H. Kugler. Synthesizing State-Based Object Systems from LSC Specifications.

In Proc. of CIAA, volume 2088 of LNCS, pages 1–26, 2001.
15. D. Harel and R. Marelly. Come, Let’s Play - Scenario-Based Programming Using LSCs and

Play-Engine. Springer-Verlag, 2003.
16. O/ . Haugen and K. Stølen. STAIRS C Steps to Analyze Interactions with Refinement Seman-

tics. In Proc. Sixth International Conference on UML (UML’2003), volume 2863 of LNCS,
pages 388–402, 2003.

17. C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer
Science. Prentice-Hall, 1985.

18. ITU. Message Sequence Chart(MSC), Nov 1999. Series Z: Languages and general software
aspects for telecommunication systems.

19. J. Klose and H. Wittke. An Automata Based Interpretation of Live Sequence Charts. In
TACAS, pages 512–527, 2001.

20. P. Kosiuczenko and M. Wirsing. Formalizing and Executing Message Sequence Charts via
Timed Rewriting. Electr. Notes Theor. Comput. Sci., 25:1–25, 1999.

21. K. Koskimies and E. Mäkinen. Automatic Synthesis of State Machines from Trace Diagrams.
Softw. Pract. Exper., 24(7):643–658, 1994.

22. X. S. Li, Z. M. Liu, and J. F. He. A Formal Semantics of UML Sequence Diagram. In Aus-
tralian Software Engineering Conference, pages 168–177. IEEE Computer Society, 2004.

23. R. Marelly and H. Kugler. Multiple Instances and Symbolic Variables in Executable Se-
quence Charts. In Proceedings of OOPSLA’02, pages 83–100, 2002.

24. A. Pnueli and R. Rosner. Distributed Reactive Systems are Hard to Synthesis. In Proc. of
31st IEEE Sypm. on Foudation of Computer Science, 1990.

25. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
26. S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. N. Reed, and A. W. Roscoe. Timed

CSP: Theory and practice. In Real-Time: Theory in Practice, volume 600, pages 640–675.
Springer-Verlag, 1992.

27. J. Sun and J. S. Dong. Model Checking Live Sequence Charts. In ICECCS’05, to appear,
2005.

Appendix A: Proof of L8

Given two processes P̃1 and P̃2 and their alphabets X ,Y respectively, the alphabetized
parallel composition is denoted as P̃1 X ||Y P̃2.

430 J. Sun and J.S. Dong

P̃1 X ||Y P̃2 = {(u,M ∪N) : (X ∪Y)∗ × P(X ∪Y) |
u ∈ traces(P̃1 X ||Y P̃2) ∧ M \ (X ∩Y) = N \ (X ∩Y)
∧ (u � X ,M) ∈ P̃1 ∧ (u � Y ,N) ∈ P̃2} [Def1]

An event sequence u is a trace of P̃1 X ||Y P̃2 if and only if there exists a trace s :
traces(P̃1) and t : traces(P̃2) such that u ∈ s X ||Y t . The definition of s X ||Y t can
be referred in [25].

Lemma 1. ∀(s,E) • (s,E) ∈ F(P̃1) X ||Y F(P̃2) ⇒ (s,E) ∈ F(P̃1 X ||Y P̃2)

Proof. (s,M ∪N) ∈ F(P̃1) X ||Y F(P̃2)
⇒ s ∈ trace(F(P̃1) X ||Y F(P̃2)) ∧ M \ (X ∩Y) = N \ (X ∩Y)

∧ (s � X ,M) ∈ F(P̃1) ∧ (s � Y ,N) ∈ F(P̃2) [Def1]
⇒ s ∈ trace(P̃1 X ||Y P̃2) ∧ M \ (X ∩Y) = N \ (X ∩Y)

∧ (s � X ,M) ∈ P̃1 ∧ ∃(s � X ,M ′) : P̃1 • Σ̂ ⊆ M ′

∧ (s � Y ,N) ∈ P̃2 ∧ ∃(s � Y ,N ′) : P̃2 • Σ̂ ⊆ N ′ [Def. of F]
⇒ (s,M ∪N) ∈ P̃1 X ||Y P̃2

∧ ∃(s,M ′ ∪N ′) : P̃1 X ||Y P̃2 • Σ̂ ⊆ M ′ ∪N ′

⇒ (s,M ∪N) ∈ F(P̃1 X ||Y P̃2) [Def. of F]

Intuitively, this lemma states that if both components cannot engage a signal (all signals
are refused) at certain point of execution, then the composition cannot engage a signal
either. Unfortunately, the reverse is not true. The following illustrates a counter example
where P̃1 can be extended by engaging a shared signal and P̃2 cannot.

P1 =̂ (â → STOP � b → STOP) X =̂ {â, b}
P2 =̂ c → STOP Y =̂ {â, c}

It is easy to verify that (〈〉, {â}) is in F(P̃1 X ||Y P̃2) but not F(P̃1) X ||Y F(P̃2).
However, if we assume that whenever the two components agree on the set of refused
local events, they also agree on the set of shared events, i.e. if one component is ready
to engage a shared event, the other is ready too and vice versa, then the reverse is true.
Formally, we assume

∀(s,M) ∈ P̃1 ∧ (t ,N) ∈ P̃2 • M \ (X ∩Y) = N \ (X ∩Y) ⇒ M = N

Lemma 2. ∀(s,E) • (s,E) ∈ F(P̃1 X ||Y P̃2) ⇒ (s,E) ∈ F(P̃1) X ||Y F(P̃2)

Proof. (s,M ∪N) ∈ F(P̃1 X ||Y P̃2)
⇒ (s,M ∪N) ∈ (P̃1 X ||Y P̃2) ∧ ∃(s,E ′) : (P̃1 X ||Y P̃2) • Σ̂ ⊆ E ′ [Def. of F]
⇒ s ∈ trace(P̃1 X ||Y P̃2) ∧ M \ (X ∩Y) = N \ (X ∩Y)

∧ (s � X ,M) ∈ P̃1 ∧ (s � Y ,N) ∈ P̃2

∧ ∃(s,E ′) : (P̃1 X ||Y P̃2) • Σ̂ ⊆ E ′ [Def1]

From the healthiness conditions of CSP, there exists (s�X ,M ′) in P̃1, and (s�Y ,N ′) in
P̃2 with maximal refusal set. By the definition of the alphabetized parallel composition,
M ′ \ (X ∩Y) = N ′ \ (X ∩Y) and, therefore, by our assumption M ′ = N ′ = E ′.

Synthesis of Distributed Processes from Scenario-Based Specifications 431

⇒ s ∈ trace(P̃1 X ||Y P̃2) ∧ M \ (X ∩Y) = N \ (X ∩Y)
∧ (s � X ,M) ∈ P̃1 ∧ (s � Y ,N) ∈ P̃2

∧ (s � X ,E ′) ∈ P̃1 ∧ Σ̂ ⊆ E ′ ∧ (s � Y ,E ′) ∈ P̃2 ∧ Σ̂ ⊆ E ′ [By assump.]
⇒ s ∈ trace(P̃1 X ||Y P̃2) ∧ M \ (X ∩Y) = N \ (X ∩Y)

∧ (s � X ,M) ∈ F(P̃1) ∧ (s � Y ,N) ∈ F(P̃2) [Def. of F]
⇒ (s,E) ∈ F(P̃1) X ||Y F(P̃2) [Def1]

Thus, by Lemma 1 and 2 we conclude L8. Law L9 is a direct consequence of law L8
and the symmetry and associativity laws of alphabetized parallel.

Verifying Scenario-Based Aspect Specifications

Emilia Katz and Shmuel Katz

Department of Computer Science,
The Technion, Haifa 32000, Israel
{emika, katz}@cs.technion.ac.il

Abstract. Software systems specifications are often described as a set
of typical scenarios. Some of the desired scenarios are crosscut by other
requirements, called aspects, also naturally described as scenarios. As-
pect descriptions are independent of the description of the non-aspectual
scenarios, but the crosscutting relationship between them has to be spec-
ified, so for each aspect a description of its join-points is provided. When
aspectual scenarios are added to the system, we need to prove that ev-
ery execution is equivalent to one in which the aspectual scenarios oc-
cur as blocks of operations immediately at their join-points, and all the
other operations form a sequence of non-aspectual scenarios, interrupted
only by the aspectual scenarios. We extend an existing method of au-
tomatic verification for non-aspect systems to the case of systems with
scenario-based aspect specifications. A prototype implementation based
on Cadence SMV is also extended accordingly.

Keywords: Aspects, scenarios, model-checking, conformance, convenient
executions.

1 Introduction

1.1 Scenario-Based Specifications

Often, when describing a system, it is natural to think of its desired behavior as
a collection of finite sequences of events, called scenarios. That can be done by
using use-cases or sequence charts of UML [12], or the variant of Live Sequence
Charts (LSCs) defined in [3]. For example, let us think of an ATM system of a
bank, consisting of one central computer with a database, asynchronously com-
municating with several ATM machines. It would be natural to describe the
system behavior as possible scenarios, such as money withdrawal, bill payment,
or checking the account balance. System computations in which only the de-
scribed scenarios occur, one after another in some order, obviously satisfy such a
specification, and will be called convenient (using the notation of [1], [2]). How-
ever, an execution of the system does not have to consist of the scenarios only,
because sometimes computations differ only in that independent operations oc-
cur in a different order. Moreover, often operations of one computation can be
re-ordered by exchanging places of independent operations, in such a way that
a convenient execution is obtained. In that case the original execution and the

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 432–447, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Verifying Scenario-Based Aspect Specifications 433

obtained convenient one are considered equivalent. A system conforms with a
scenario-based specification if every computation is equivalent to a convenient
one.

1.2 Aspects and Scenarios

When stating requirements for a system behavior, it is often the case that some
of the requirements crosscut the others. Those crosscutting requirements are
called aspects. The best way to deal with crosscutting requirements is to model
them separately from other requirements, and then weave them into the main
system in programming notations like AspectJ [7]. For each aspect, a set of join-
points, called a pointcut, is defined, identifying the states where the aspect code
(called advice) should be executed. When it is natural to describe a system by
a scenario-based specification (e.g., for communication protocols, or electronic
funds transferring systems), aspects such as security, privacy, or monitoring are
also naturally described as scenarios. This approach is seen in [6] and also used
here. Thus, a specification of a system is a set of scenarios, and aspectual and
non-aspectual scenarios are described independently.

In our bank system example above, several aspectual scenarios might be
needed. For example, we might need to count all the ATM operations for every
account, in order to make the client pay for the operations performed. This
concern is naturally solved by introducing an aspect scenario that will be run
any time an ATM operation is completed successfully. The join-points of this
scenario will be all the places in the system executions at which the last operation
of the money-withdrawal scenario, the bill payment, or the scenario of checking
the account balance is performed. To treat this aspect, the state of the system
will be extended by a new variable - a counter. Applying the aspect scenario
changes only the value of the counter and does not affect the projection of the
state on the previously defined ATM system: if the scenario is applied at some
state s of the system execution, after the aspect finishes to run, the system will
pass to a state s′ that differs from s by the value of the counter only. Such an
aspect is called spectative, as defined in [14].

Another example of a cross-cutting requirement might treat communication
failures: when a failure is detected, the interaction of the user with the relevant
machine is stopped, the magnetic card is returned, and a warning message ap-
pears. After applying this scenario the ATM system will not return to the state
it was before, but will return to its initial state - waiting for a magnetic card to
be inserted. Thus it is a regulative aspect, changing the control of the system.

Aspects can also be categorized as invasive. Such an aspect changes the state
of the original system, but if it appears in the middle of some non-aspectual
scenario, the scenario proceeds after the advice finishes. That is the case, for
example, if we want the user to immediately pay for every ATM operation.
After applying such a scenario, the amount of money in the user’s account will
change, but the interrupted scenario will proceed from the place where it was
interrupted.

We are interested in the verification of systems containing aspects, i. e., sys-
tems in which the code implementation of aspects is already woven in. Actually,

434 E. Katz and S. Katz

it would be better to separate the aspects from the base system, both in the de-
scription and in the verification, but unfortunately, sometimes this is impossible.
One example of such a situation is a system that does not use any aspect-oriented
language at the implementation stage. Another possibility is that our goal is to
check the weaver itself, and thus we need to examine the result of its application,
which is the system with the aspect code woven in. Also when there are complex
interactions between the aspect code and the original program, techniques do
not exist to separately analyze the aspect. In those cases the verification of the
augmented system as a whole is necessary.

For such an augmented system, the definition of the convenient executions
should be refined. The new convenient executions are those in which the aspec-
tual scenarios appear always as a block of operations, and exactly at the place
they are needed. The non-aspectual scenarios also appear as a block, but with one
difference: each block can be interrupted with blocks of the appropriate aspec-
tual scenarios. Depending on the aspect description, the interruption can either
cancel the continuation of the interrupted scenario (then it will be called strict
interruption), or let the scenario proceed, possibly after some invasive changes
(then it will be called a weak interruption). In a general execution the operations
of an aspectual scenario might not appear immediately after a join-point, and
could be interleaved with some other operations of aspectual or non-aspectual
scenarios. So in order to prove that a system conforms with a scenario-based
specification that includes aspectual scenarios, it is enough to show that ev-
ery computation is equivalent to a convenient one (where the definition of the
convenient executions is refined as above).

We extend the model-checking approach and the CNV tool in [2] (described
below in Section 2) with key modifications to automatically verify conformance of
systems containing aspects with scenario-based specifications. Note that unlike
some attempts for verification of aspects that restrict themselves to spectative
aspects only [8], we do not pose such a restriction, but in this version we do not
treat the case of aspects applied on other aspects. Our method consists of three
parts. First of all, the join-points of the aspectual scenarios are found. Then the
appearance of the scenarios is predicted at those points. This kind of prediction
will be fulfilled only if the needed aspect scenario indeed appears somewhere in
the continuation of the execution, and it could have appeared immediately at the
join-point (i.e., all the operations of the aspect scenario are independent of all
the other operations occurring between the join-point and the actual occurrence
of the aspect operations in the advice). To treat the strictly-interrupting aspects,
additional legal scenarios are defined: for each previously specified scenario some
prefix of which ends by a possible last operation of a pointcut, a new scenario will
be defined as that prefix in which the last operation is indeed the last operation
of that pointcut. The third part of the verification is to show that if we ignore
the appearance of the aspectual scenarios in the executions, the operations left
can be organized as blocks of non-aspectual scenarios.

This paper is organized as follows: In Section 2 the existing method of veri-
fication for non-aspect systems is described, and some basic definitions needed

Verifying Scenario-Based Aspect Specifications 435

for equivalence-based verification appear. In Section 3 we present our method
of verification for systems with aspects, and outline the soundness proof. An
application example appears in Section 4, and we conclude in Section 5.

2 Background: Verification of Conformance for
Non-aspect Systems

In [2], the CNV tool for automatically verifying conformance with non-aspectual
scenario-based specifications has been presented. In CNV, the original system
is automatically augmented by additional constructions and temporal logic as-
sertions, converted to the input-format of Cadence SMV [10], and then model-
checked. When all the properties are verified by the model-checking, it follows
that every computation of the original system is equivalent to some convenient
one, and thus the original system conforms to the specification. Although the
method is sound, it is incomplete, and a negative answer does not necessarily
mean the original system does not conform to the specification.

The verification is based on proving equivalence of executions, so before de-
scribing the method, we list the formal definitions needed for such a proof. The
definitions are taken from [2]. The systems we are working on are Fair Transition
Systems (FTS), as defined in [9].

Definition 1. A computation of FTS M is an infinite sequence of state-transition
pairs σ = (s0, τ0), (s1, τ1), . . . such that s0 satisfies the initial state condition of
M , ∀i : si+1 ∈ τi(si), and the fairness requirements are not violated in σ (i.e.,
for each weakly fair transition τ it is not the case that τ is continually enabled
beyond some position j in σ, but not taken beyond j).

Definition 2. Transitions τ1, τ2 are conditionally independent in state s (de-
noted CondIndep(s, τ1, τ2))) iff τ1 �= τ2 ∧ τ2(τ1(s)) = τ1(τ2(s)).

Definition 3. Let σ = (s0, τ0), (s1, τ1), . . . be a computation of M , such that for
some i, CondIndep(si, τi, τi+1) holds. Then the sequence
σ′ = (s0, τ0), . . . , (si, τi+1), (τi+1(si), τi), (si+2, τi+2), . . . is also a legal computa-
tion of M , and we say that σ and σ′ are one-swap-equivalent (σ ≡1sw σ′). We
also define the swap-equivalence (≡sw) relation as the reflexive-transitive closure
of one-swap-equivalence.

Now let us give a more detailed description of the method for systems with-
out aspects. Given a fair transition system M , together with the list of the
desired scenarios and the independence relation between the operations of M ,
an augmented system M ′, called the transducer, is built. The transducer is a
composition of M with a bounded history window H - a queue of fixed length
L, and an ω-automaton C, called the chopper, which reads its input from H and
accepts only the desired scenarios. M ′ also has an error flag, initially false. The
initial state of M ′ is the state in which M is at its initial state, H is empty, and

436 E. Katz and S. Katz

error is false. The chopper has only one state, in which it is waiting for the next
scenario to be formed at the head of the history. The transitions of M ′ are as
follows:

– All the transitions of M . When a transition of M , τ , is performed at a state
s of M , the state of M ′ changes according to τ , and the pair (s, τ) is inserted
into H. If there is no place in the history, the insertion is impossible, and
the error flag is raised. Once raised, it never goes down again.

– chop operation. If some scenario appears at the head of the history, it can
be removed from the queue.

– swap operation. A pair of consecutive entries of H, (s1, τ1) and (s2, τ2), can
be swapped, if τ1 and τ2 are conditionally independent at the state s1, and
the states at those entries are updated according to the result of applying
the operations, so that the two entries become (s1, τ2), (τ2(s1), τ1).

– predict operation. Sometimes there is only one way to complete the prefix
of the history to a whole scenario. Then we may predict the remaining op-
erations and chop the prefix of the scenario from the history. (The cases
when such prediction is possible are defined by the user.) The prediction is
done by inserting to the history the anti-transitions of the remaining transi-
tions of the scenario after its prefix, in the reversed order, with appropriate
states. Then the anti-transitions are swapped backwards in the history by
the swap− pred (see below) operation to meet the remaining transitions of
the scenario and to annihilate together with them after the cancel operation.

– swap− pred operation. Swapping two consecutive entries in H, (s1, τ1) and
(s2, τ2), such that τ1 is the anti-transition of τ (denoted τ), and τ2 is some
transition of M that is independent of τ at s2.

– cancel operation. Removing a pair of consecutive entries of H, (s1, τ1) and
(s2, τ2), such that τ1 is the anti-transition of τ2.

Now let us describe the added temporal assertions to be checked for the trans-
ducer by SMV. (We will give only a brief verbal description here, a fuller version
is in [2].)

1. Legal progress of the computation is guaranteed: it is always possible to pro-
ceed without overflow of the history queue, by chopping one more scenario,
and a place can always be reached at which the already performed prefix of
the computation is equivalent to some convenient one.

2. The predictions are correct: whenever a prediction is made, it is always
fulfilled.

3. No operation is “lost”: Every action performed in the computation appears
in the convenient computation built, i.e., whenever an operation enters the
history, it is eventually chopped (either explicitly - as a part of the head of
the history queue, or implicitly - as a part of some prediction).

4. The user-defined independence relation is legal: the operations that are de-
clared independent indeed satisfy the CondIndep condition, and their swap-
ping preserves the values of the enabling conditions of operations so that a
fair computation can be equivalent only to another fair computation.

Verifying Scenario-Based Aspect Specifications 437

This system is proven to be sound: if M ′ is the above augmentation of M , and
all the above assertions hold in M ′, it implies that every computation of M is
equivalent to some convenient one.

3 Verification of Systems with Aspects

First, we give a more formal definition of aspects. An aspect consists of two
parts: a pointcut and an advice, where the advice is a scenario that should be
executed whenever the pointcut occurs, and the pointcut is defined as follows:

Definition 4. A pointcut is a sequence of operations op1, . . . , opn together with
an LTL past formula ϕ. An occurrence of the pointcut in a computation π is
a sequence of states of π, s1, . . . , sn (possibly interleaved by other states) such
that:

– opi is the operation performed at the state si

– ϕ holds at the state opn(sn)

Our verification problem consists now of three parts, treated separately:

– To recognize the appearance of the pointcuts in the computation.
– To ensure that the operations of the appropriate aspect advice can be brought

to appear as a block immediately at the pointcuts.
– To examine the computation we get after arranging all the aspect advice as

blocks, and show that all the non-aspectual scenarios can also be arranged
in blocks of consecutive operations interrupted only by advice blocks.

We extend the CNV system to provide automatically generated solutions to
the problem. In fact, the changes mostly arise from the last two parts, because
some known techniques (partly described in Section 3.1) already exist for point-
cut recognition, and we will assume that the given system M has already been
pre-processed by one of them. The main change to the CNV system is the auto-
matic creation of a new module, the advisor, as a part of the augmented system,
M ′. The advisor is in charge of arranging the aspect advice. Some changes to
the swapper module are also needed for that purpose - as will be seen in Sec-
tion 3.2, the swapping of the end-of-pointcut operations should differ from the
regular one. Finally, as will be seen from Section 3.3, arranging the non-aspectual
scenarios requires changing the chopper module.

3.1 Recognizing the Pointcuts: Three Options

Cross-Product Automaton. If ϕ is the past formula of a pointcut, we may build
a finite automaton Aϕ that recognizes ϕ, as in [9] or [11], and take the cross-
product of M ′ with Aϕ. In this new system, each time a transition is inserted
into the history, the automaton updates its state. If an accepting state is reached,
a pointcut is recognized in that state, and the state becomes a join-point of the
appropriate aspect. This is obviously a correct solution, but also a very costly
one. Several optimizations are possible, all based on pre-processing of the system
M in order to mark the states that are join-points.

438 E. Katz and S. Katz

Static Analysis. One possibility is to perform static analysis, as in [13]. The
pointcuts are restricted to be described by regular expressions over the call stack.
Such expressions are called pointcut designators (PCDs). The call graph of the
system is built: the set of paths from the start vertex v to a node representing
procedure call p is the set of all possible call stacks at point p during program
execution. For each procedure call p, if all the possible stacks satisfy a PCD of
some advice a, then this procedure call is recognized as a place where a should
always be applied, and if none of the possible stacks satisfies the PCD of a, this
procedure call is recognized as a place where a should never be applied. The
advantage of this approach is its simplicity and relative cheapness, but there are
many cases when the analysis is inconclusive. Moreover, the class of the possible
pointcuts recognized is rather narrow.

Model-Checking Analysis. This approach is proposed by [8]. Here the pointcuts
are described by temporal logic formulas. The algorithm is based on model-
checking using future time CTL over a modified program state machine with
reversed transitions (arrows). The result of the model-checking is identifying
the states corresponding to each join-point. A state is marked as a join-point
if there is an execution in which this state is the join-point, even if there is
another possibility of reaching this state, in which the pointcut does not occur.
Thus, this algorithm detects potential pointcuts, rather than real ones. So, in
cases in which the previous algorithm would be inconclusive, this algorithm will
give a positive answer, which might be wrong for the concrete computation we
are interested in, but in the cases in which the previous algorithm was able to
give an answer, this algorithm will give a correct answer too. The advantage
of the model-checking algorithm is the ability to deal with a much wider class
of pointcuts than the previous one can handle. It is also efficient, though less
simple than the static analysis algorithm.

3.2 Ensuring the Appearance of the Aspects

Let us suppose a pointcut p of the aspect a was recognized as described above.
Let t be its last transition, performed at a state s of M . We will modify M ′ in
such a way that in the above case when t is performed by M ,instead of inserting
the pair (s, t) into the history, the pair (s, t_ptc) will be inserted. The transition
t_ptc is automatically created for every t that is the last transition of some
pointcut. The t_ptc has the same enabling condition as t, and changes the state
of M in the same way as t does. The only difference between t and t_ptc should
be that whenever t_ptc occurs, we should be able to ensure the following:

– It is followed by the advice of a, σa, somewhere later in the computation.
– The operations of σa can be brought by legal swap operations to appear as

a block immediately after t_ptc.

Let σa = a1, . . . , an be the advice of a. To ensure the first property above, we
make a prediction of σa immediately after inserting the t_ptc entry to the history,
i.e., the anti-transitions an, . . . , a1 are inserted into the history after the t_ptc
entry. If some predicted transition does not appear later in the computation, or

Verifying Scenario-Based Aspect Specifications 439

can not be brought to the place where prediction was made, then the prediction
fails. Thus the first property is guaranteed. The prediction mechanism also would
be enough to ensure the second property, if we knew that t_ptc would never be
swapped with any other operation. But if t_ptc is swapped with some transition
τ , we need to show that all the operations of σa can be swapped with τ in
the same direction, to be re-unified with t_ptc, because even if it is swapped
with some independent operation, t_ptc continues to be the last operation of the
pointcut, due to the correctness of the independence relation. Let us show two
examples when such a swapping is needed:

– Let σ1, t, σ2 be a legal scenario. Let the following sequence of operations be a
prefix of H: < σ1, σ2, t_ptc, a1, . . . , an >, such that σ2 and t are independent
in the state where σ2 appears. In order to chop the scenario σ1, t, σ2 from the
history, we need the sequence < σ1, σ2, t_ptc, a1, . . . , an > to be equivalent
to the convenient sequence < σ1, t_ptc, a1, . . . , an, σ2 >. Thus we would like
to enable the swap of σ2 with t_ptc only if σ2 is independent of t and of all
the ai-s at the relevant states.

– Let σ1, σ2, t be a legal scenario. Let the following sequence of operations be a
prefix of H: < σ1, t_ptc, a1, . . . , an, σ2 >, such that σ2 and t are independent
in the state where t_ptc appears. In order to chop the scenario σ1, σ2, t
from the history, we need the sequence < σ1, t_ptc, a1, . . . , an, σ2 > to be
equivalent to the convenient sequence < σ1, σ2, t_ptc, a1, . . . , an >. Thus
again the swap of t_ptc with σ2 is possible only if t and all the ai-s are
independent of σ2 at the relevant states.

As we see from the examples above, the independence relation of t_ptc should
be different from the one of t.
If the sequence 〈(s1, τ), (s, t_ptc)〉 appears in the history in some computation
of M ′, we would like to enable the swap of τ1 and t_ptc only when the following
sequence of swaps is possible: first, the swap of τ and t, and then the swap of τ
with each of a1 . . . an. Thus we will say that τ and t_ptc are independent at s1
(I(s1, τ, t_ptc)) iff the following conditions hold:

1. I(s1, τ, t) is true
2. I(t(s1), τ, a1), I(a1(t(s1)), τ, a2) and
∀(2 ≤ i ≤ n− 1).I(ai(. . . (a1(t(s1))) . . .), τ, ai+1).

If the sequence 〈(s, t_ptc), (s2, τ)〉 appears in the history, we would like to enable
the swap of t_ptc and τ only when the following sequence of swaps is possible:
first, the swap of each of an . . . a1 (notice the reversed order!) with τ , and then
the swap of t with τ . There are two possible cases. The first possibility is that
τ occurred after t_ptc in the original computation of M . This case is handled
by the prediction of σa, because τ could be brought to appear next to t_ptc in
the history only if it was possible to swap τ with the prediction of σa first. The
remaining possibility is that τ occurred before t_ptc in the original computation
of M . This case is already handled by the treatment of the case when τ preceded
t_ptc in the history: to bring t_ptc to occur before τ in the history, we had to

440 E. Katz and S. Katz

swap them, and now we just swap them back, bringing t_ptc closer to the place
at which σa was originally predicted. (Notice that there is no contradiction here
with the second example of needed swapping: in the example, σ2 will never
occur next to t_ptc if the swapping of an . . . a1 with σ2 is not possible.) Thus,
to swap t_ptc with a following operation, no strengthening is needed beyond the
prediction, and we have that I(s, t_ptc, τ) iff I(s, t, τ).

3.3 Arranging Non-aspectual Scenarios

If a given computation g is swap-equivalent to some computation c in which each
aspect advice appears only immediately after its pointcut, then each time an ad-
vice operation enters the history, its anti-transition already appears somewhere
in the tail of H and will be brought to it by the swap− pred operations of M ′,
so that both operations will annihilate. Thus, none of the advice transitions will
appear inside any prefix of the history examined by the chopper. Due to that
fact, and also because the recognition of the scenarios by the chopper is based
only on the operations appearing at the head of the history (and not on the
states corresponding to those operations), we can, for the purpose of scenarios
recognition, ignore the advice transitions in the executions. Now there will be
two types of scenarios to be recognized by the chopper: the regular scenarios
specified by the system M , and the prefixes of regular scenarios that are cut by
strictly interrupting aspects. Thus we will add those prefixes to the list of legal
scenarios to be recognized by the chopper, by the following algorithm:

For every aspect advice a that is defined as strictly interrupting
For every scenario σ = 〈op1, . . . , opn〉

For every 1 ≤ i ≤ n
If opi = t where t is the last operation of the pointcut of a then

add scenario σ′ = 〈op1, . . . , opi−1, t_ptc〉 to the scenario list.

Note that the new chopper recognizes prefixes of scenarios as legal scenarios
only if they are indeed cut by some strictly interrupting aspect advice, because
only in that case was t_ptc substituted for t.

3.4 Proving Soundness

First of all, let us give some definitions needed to state and prove the soundness
of the system. Here we ignore predictions added by non-aspectual scenarios,
since they can be shown equivalent to a version without predictions, but with a
longer history.

Definition 5. A computation g′ of M ′ follows a computation g of M if the error
flag is never raised in g′, and g is the projection of g′ on M , projM (g′) (i.e., g
is obtained from g′ by deleting all the operations that are not operations of M ,
and all the assignments to state variables that are not defined in M).

Given a computation g′ that follows g, we can say that any moment i in g′
naturally divides all the operations of g′ to three subsequences: chopped(g′, i) -

Verifying Scenario-Based Aspect Specifications 441

the sequence of operations already chopped, h(g′, i) - the contents of the history,
and suffix(g′, i) - all the rest of g′. Now let us look at a sequence of executions
R(g′) = {ri}i=∞

i=0 , where ri = chopped(g′, i) · h(g′.i) · projM (suffix(g′, i)). We
have r0 = g and the only difference between ri and ri+1 can be one swap of
consecutive independent operations, so ∀i.ri ≡1sw ri+1. R(g′) is a special case of
a reduction sequence from g, which is defined as a sequence of swap-equivalent
executions starting from g. We will say that a reduction sequence {ri}∞i=0 con-
verges to some computation c iff for any prefix of c, we can find an index j such
that for every i ≥ j, every ri will have the same prefix.

We also need to define formally equivalence of infinite computations. For that
we will first define that c � g for infinite computations g, c iff from every finite
prefix c1 of c there exists a continuation h such that c1 · h ≡sw g.

Definition 6. Two infinite computations g and c are conditional trace equiva-
lent (c ≈ g) iff c � g and g � c.

Notation: Let g be a computation of M . Let g′ be any computation of M ′ that
follows g. We will denote by g−a the sequence of history entries that are added
to the history during the run of g′, excluding all the entries corresponding to the
operations of aspect advice.

Note that g−a is well defined, since for all the computations of M ′ that follow g
the same entries are added to the history, and in the same order. However, the se-
quence g−a does not necessarily represent a legal computation of M in case some
of the removed aspect advice subsequences are non-spectative. For example, let
the following sequence be a part of g: . . . , (s1, t1),(s2, a1),. . . , (sn+1, an),(sn+2, t2), . .
where σ = a1, . . . , an is an invasive aspect advice. Then when passing from g
to g−a, σ is removed from the computation, and we get the following subse-
quence in g−a: (s1, t1), (sn+2, t2). Since σ was invasive, it can be the case that
sn+2 �= t1(s1), and thus g−a is not a legal computation of M .

Definition 7. A computation g of M is convenient iff the following holds:

– whenever a pointcut appears in g, it is immediately followed by the corre-
sponding aspect advice, and no operations of the system appear between the
operations of the aspect

– g−a is comprised of blocks of (non-aspectual) scenario operations.

Clearly, by construction, if the chopper recognizes a sequence, it is comprised of
blocks of (non-aspectual) scenario operations, including prefixes added earlier.
In order to show the soundness of the new system, we need to prove:

Theorem 1. When M ′ is the transducer defined from M , and the convenient
executions are defined as in Definition 7, the temporal assertions described in
Section 2 imply that every computation of M is conditionally trace equivalent to
some convenient one.

Here we will bring the outline of the proof to show a key property - the existence
of a convenient computation c such that c � g. First we will show that we can

442 E. Katz and S. Katz

restrict our discussion only to the case when in g whenever a pointcut occurs it
is immediately followed by the corresponding aspect advice as a block (Step1 of
the proof outline). Then we will show that if the non-aspectual part of g, g−a, is
reducible to some sequence c1 recognized by the chopper (c1 � g−a), then there
exists a convenient computation c as needed (Step2). Finally, we will prove that
in our case there indeed exists a sequence c1 recognized by the chopper such that
c1 � g−a (Step3: Lemma 1).

Step1: Let g′ be a computation of M ′ that follows a computation g of M . The
CorrectPredictions property holds in M ′, and whenever a pointcut occurred in g′
the appropriate aspect advice was predicted. Thus there exists a computation g′′
of M ′ such that g′′ ≈ g′ and whenever a pointcut occurs in g′′ it is immediately
followed by the appropriate aspect advice as a block. Let g1 be the computation
obtained from g′′ by deleting all the operations that are not operations of M
(notice that in g1 all the aspect advice are applied correctly). The error flag
is never raised in g′′, as it is a computation of M ′, and M ′ satisfies the first
property from Section 2. Thus, g′′ follows g1. As g′′ ≈ g′, we have that also
g1 ≈ g, and so it is enough to show that there exists a convenient computation
c such that c � g1. It follows that we indeed can assume that in the original
computation g all the aspect advice are applied correctly.

Step2: Here we will extract the blocks of the aspect advices from the computa-
tion, and show that the resulting sequence, g−a, can be brought by legal swap
operations to one recognized by the chopper,c1 (c1 � g−a). Analogously to the
proof in [2], it can be shown that given a computation g1 of M without any
aspect advice operations, if there exists a computation g1′ of M ′ that follows g1,
then there exists a computation c1 recognized by the chopper such that c1 � g1.
Let us notice that this statement stays true also for operation sequences that
are not legal computations, because the chopper recognizes scenarios only by
their operations, and the problem of detecting swap-equivalence of computation
sequences with missing aspect advice operations was treated in the definition of
the independence relation for t_ptc, which took the aspect advice into account.
Our sequence g−a is followed by the sequence g′′−a, so we can apply the above
statement and thus, indeed, there exists c1 recognized by the chopper such that
c1 � g−a.

Step3: The following lemma completes the proof of the existence of the conve-
nient computation needed.
Lemma 1. Let g be a computation of M such that whenever a pointcut appears
in g, it is immediately followed by the corresponding aspect advice, and no op-
erations of the system appear between the operations of the aspect. Let us also
suppose that c1 � g−a for some c1 recognized by the chopper. Then there exists
a convenient computation c such that c � g.

Proof. As c1 � g−a, there exists a reduction sequence R starting from g−a

that converges to c1. Let us build a reduction sequence R′ starting from g and
following R:

Verifying Scenario-Based Aspect Specifications 443

1. r′0 = g; last used step of R is 0.
2. If the last built element of R′ is r′i, and the last used element of R is rk,

– If in the swap performed to obtain rk+1 from rk no last operation of a
pointcut is involved, then the same swap is performed to pass from r′i
to r′i+1 . The last built element of R′ becomes i + 1, and the last used
element of R becomes rk+1.

– Otherwise, let t and t′ be the swapped operations, and let t be the last
operation of a pointcut, and a = a1, . . . , an be the aspect advice that
follows t. Then not only t and t′ are swapped, but also t′ is swapped
with every aj , 1 ≤ j ≤ n. After that the last built element of R′ becomes
i+ n+ 1, and the last used element of R becomes rk+1. If t′ is also the
last operation of some pointcut, then the operations of its advice are also
swapped with t and a1, . . . , an, and the index of the last built element
of R′ is updated accordingly.

From the definition of the independence relation it follows that the last operation
of a pointcut is independent of some operation op only if all the operations of
the corresponding advice are also independent of op in the relevant states. Thus
all the swaps performed while building R′ were legal, and thus R′ is indeed
a reduction sequence from g. We are left to show that R′ converges to some
convenient computation c. The construction of R′ followed that of R, and at
every step i the “frozen” part of r′i was at least as long as that of ri, thus, R′
indeed converges to some computation c. It is also seen from the construction,
that the only difference between c and c1 is that in c blocks of aspect advice
operations are added whenever the corresponding pointcut occurs. Thus we have
that c is indeed a convenient computation (with c−a = c1 recognized by the
chopper). Q. E. D.

Now the soundness theorem will follow if the other direction, g � c, holds.
This is true, because from the temporal properties in Section 2 it follows that all
the operations of g are either chopped or predicted, so the operations performed
in c are exactly the operations that appear in g.

4 Example

We return to the example of the ATM system, and describe the part of the
system involved in money withdrawal in more detail. Let the system consist of
two ATM machines and one server. First let us give a list of operations of the
system. The operations of a user will appear in italic style, the operations of a
machine - in bold, and the operations of the server - in bold italic.

– user operations: ic - insert card and code; es(sum) - enter sum.
– machine operations: cm - send “check code” message to the server and

update connection status (boolean variable “cs”);
wm(sum) - send “withdraw(sum)” message to the server and update cs;
mr - perform money return and eject card;
ec - eject card;

444 E. Katz and S. Katz

fm - send “take fee” message to the server and update cs;
rf - print report on communication failure between the ATM and the server;

– server operations: gc - check the code, send “good code” message to the
machine, update cs;
bc - check the code, send “bad code” message to the machine, update cs;
gs - check that the sum can be withdrawn leaving a non-negative balance,
update the balance, send “good sum” message to the machine, update cs;
bs - check the sum, do not update the balance, send “bad sum” message to
the machine, update cs;
tf - take management f ee from an account;
pc - promote by 1 the operations counter for the relevant account;

The non-aspectual system behavior can be described by the following scenarios:

– Successful withdrawal: 〈 ic; cm; gc; es(sum); wm(sum); gs; mr〉
– Erroneous code: 〈 ic; cm; bc; ec〉
– Erroneous sum withdrawal:〈 ic; cm; gc; es(sum); wm(sum); bs; ec〉

The aspectual scenarios are:

– Operations fee: Applies whenever an ATM operation is completed success-
fully, in order to take the fee for the operation performed from the relevant
account. It is a weakly interrupting aspect. In the above described scenar-
ios, there is only one possibility for its application - the case when mr is
performed. Thus the pointcut is (〈mr〉,ϕ = (op = mr1 ∨ op = mr2)). The
advice is 〈pc; fm; tf 〉.

– Communication failure: Applies whenever a communication failure between
an ATM and the server is detected, in order to stop the current interaction
with the ATM machine (but when the communication is restored, the next
user will be able to interact with the machine). It is a strictly interrupting
aspect. The cs variable is updated by the message-sending operations, thus
the pointcut here is (〈cm or wm or fm or gc or bc or gs or bs〉,ϕ = (cs =
false)). The advice is 〈ec; rf〉.

Let us consider some examples of executions, and check their equivalence to
convenient ones. When it is necessary to explicitly specify the account and/or
the user relevant for some operation, they appear in parentheses: op(user,acc).
When there is more than one participant of some kind (for example, two ATM
machines), their operations will be indexed, e. g., an operation op of the first
machine will be written as op1.

Example1. In this example we have a computation in which two “successful
withdrawal” scenarios start one after another. The scenario for user1 and acc1 is
completed when the remainder of the scenario for user2 and acc2 (starting from
the second operation) is performed, and then the aspectual scenarios of taking
the operation fee are executed - first for acc1 and then for acc2.

Verifying Scenario-Based Aspect Specifications 445

〈ic(user1, acc1); ic(user2, acc2); cm1(user1); gc(user1); es(user1, sum1);

wm1(acc1, sum1); gs(acc1);mr1; cm2(user2); gc(user2); es(user2, sum2);

wm2(acc2, sum2); gs(acc2);mr2;pc(acc1); fm1(acc1); tf (acc1);

pc(acc2); fm2(acc2); tf (acc2) . . .〉
Let us show that this computation can be brought to a convenient one.

1. The operations of the “successful withdrawal” scenario for user1 and acc1
enter the history, but are mixed together, so the scenario cannot be chopped
immediately. Immediately after the mr1 operation enters the history, the
prediction tf (acc1), fm1(acc1),pc(acc1) is inserted.

2. The accounts acc1 and acc2 are different, thus the operation ic(user2, acc2)
can be swapped with all the operations of the “successful withdrawal” sce-
nario for acc1, including the pointcut mr1 (as it is also independent of the
operations of “operations fee” advice for acc1).

3. Now the operations of the “successful withdrawal” scenario for acc1 appear
as a prefix of the history, and are chopped. What is left in the history is only
the operation ic(user2, acc2) followed by the prediction of the ‘operations
fee” advice for acc1.

4. The operations cm2(user2); gc(user2); es(user2, sum2);wm2(acc2, sum2);
gs(acc2);mr2 enter the history. Immediately after the mr2 operation the
prediction tf (acc2), fm2(acc2),pc(acc2) is inserted.

5. The accounts acc1 and acc2 are different, thus all the operations of the “suc-
cessful withdrawal” scenario for acc2 (again, including the pointcut mr2),
can be swapped with the prediction of the “operation fee” advice for acc1.

6. After the swapping is performed, the “successful withdrawal” scenario for
acc2 appears as a prefix of the history, and is chopped.

7. The operations of the advice of ”Operations fee” aspect for account 1,
pc(acc1); fm1(acc1); tf (acc1), enter the history one after another, are
swapped with the prediction of the advice of ”Operations fee” aspect for
account 2, and cancelled with their prediction.

8. The operations of the advice of ”Operations fee” aspect for account 2,
pc(acc2); fm2(acc2); tf (acc2), enter the history one after another, and are
cancelled with their predictions. The history becomes empty, as needed.

Example2. Consider a computation identical to the previous one except that
the same account number acc1 is used by the two withdrawals, and the account
balance of acc1 is initially equal to (sum1 + sum2). Let us show that this com-
putation cannot be brought to a convenient one.

1. The history develops as previously, until the operation gs of the second
withdrawal enters the history. It is successfully swapped with fm1,pc, but
it cannot be swapped with tf . The reason is that after tf is performed,
the account balance becomes smaller than the sum needed for the second
withdrawal, and thus gs is not enabled any more. Thus the chop operation

446 E. Katz and S. Katz

cannot be performed and the history will never become empty during the ex-
ecution, which violates the property of never “losing” operations, and means
that this execution cannot be brought to a convenient one.

Example3. In this example, user1 starts a “successful withdrawal” scenario at
ATM1, and it is interrupted by communication failure. Meanwhile, user2 per-
forms an “erroneous code” scenario at ATM2.

〈ic(user1, acc1); ic(user2, acc2); cm1(user1); cm2(user2); gc(user1);

es(user1, sum1); bc(user2); ec2;wm1(sum1)[cf = false]; ec1; rf1; . . .〉
This computation can be brought to a convenient one:

1. The operations of the interrupted “successful withdrawal” scenario at ATM1
are independent from those of the “erroneous code” scenario at ATM2, and
they will be swapped so that the interrupted “successful withdrawal” sce-
nario will appear at the head of the history. It will be chopped, as its last
operation is marked as the last operation of the pointcut, and it was added
to the chopper scenarios when M ′ was constructed. The operations of the
advice will be predicted immediately after it, and the prediction will imme-
diately be fulfilled.

2. Only the head of the “erroneous code” scenario at ATM2 now appears in
the history. Then the tail of the scenario will arrive, and be chopped.

Note that the modified CNV system automatically checks all possible com-
putations of the transformed system as part of the model checking tasks, and
would list the second example above as a counter-example to the properties to
be checked.

5 Conclusions

Formal methods will be useful for software development only if they both deal
with specification methods actually used, and treat real languages and program-
ming techniques. Software model checking systems such as Bandera [4] or Java
Pathfinder [5] already can turn Java code into input for standard model checking.
In this paper, we show how specifications based on scenarios, like those seen in
UML, can be extended to treat aspect scenarios, and how systems with aspects
woven into them (e.g., the result of the AspectJ precompiler into Java bytecode)
can be proven to conform with such a specification using model checking. The
model produced by a software model checker applied to a woven system actually
is a machine M which is the input to our system.

The efficiency of the resultant model checking tasks is an obvious problem,
due to the extended state of the transformed model. However, optimization
techniques described in [2] can be used to separate this task into several smaller
stages. This work thus provides another step towards the goal of integrating
formal methods into practical software development.

Verifying Scenario-Based Aspect Specifications 447

References

1. M. Glusman and S. Katz, A mechanized proof environment for the convenient
computations proof method, Formal Methods in System Design 23 (2003), 115–
142, Available at http://www.cs.technion.ac.il/Labs/ssdl/pub/conv_PVS.

2. , Model checking conformance with scenario-based specifications, Computer-
Aided Verification, (CAV’03) (W.A. Hunt and F. Somenzi, eds.), LNCS,
vol. 2725, Springer-Verlag, 2003, pp. 328–340, Full version and system at
http://www.cs.technion.ac.il/Labs/ssdl/pub/CNV.

3. D. Harel and R. Marelly, Come, let’s play : Scenario-based programming using
LSC’s and the play-engine, Springer-Verlag, 2003.

4. J. Hatcliff and M. Dwyer, Using the Bandera Tool Set to model-check properties
of concurrent Java software, Proc. 12th Int. Conf. on Concurrency Theory, CON-
CUR’01 (K. G. Larsen and M. Nielsen, eds.), LNCS, vol. 2154, Springer-Verlag,
2001, pp. 39–58.

5. K. Havelund and T. Pressburger, Model checking Java programs using Java
PathFinder, International Journal on Software Tools for Technology Transfer
(STTT) 2 (2000), no. 4.

6. J.Arajo, J. Whittle, and D. Kim, Modeling and composing scenario-based require-
ments with aspects, The 12th IEEE International Requirements Engineering Con-
ference (RE2004) (Kyoto, Japan), September 2004, pp. 58–67.

7. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Gris-
wold, An overview of AspectJ, Proceedings ECOOP 2001, LNCS 2072, Jun 2001,
http://aspectj.org, pp. 327–353.

8. S. Krishnamurthi, K. Fisler, and M. Greenberg, Verifying aspect advice modularly,
SIGSOFT FSE, 2004, pp. 137–146.

9. Z. Manna and A. Pnueli, The temporal logic of reactive and concurrent systems -
safety, Springer-Verlag, 1995.

10. K. L. McMillan, Getting started with SMV, Cadence Labs, March 1999.
11. D. Peled, Software reliability methods, Springer-Verlag, 2001.
12. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language reference

manual, second edition, Addison-Wesley, 2004.
13. D. Sereni and O. de Moor, Static analysis of aspects., AOSD, 2003, pp. 30–39.
14. M. Sihman and S. Katz, Superimposition and aspect-oriented program-

ming, BCS Computer Journal 46 (2003), no. 5, 529–541, Available at
http://www.cs.technion.ac.il/∼katz/cj.ps.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 448 – 464, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An MDA Approach Towards
Integrating Formal and Informal Modeling Languages

Soon-Kyeong Kim, Damian Burger, and David Carrington

School of Information Technology and Electrical Engineering,
The University of Queensland, St. Lucia, 4072, Australia
{soon, damian, davec}@itee.uq.edu.au

Abstract. The Model Driven Architecture (MDA) involves automated trans-
formations between software models defined in different languages at different
abstraction levels. This paper takes an MDA approach to integrate a formal
modeling language (Object-Z) with an informal modeling language (UML) via
model transformation. This paper shows how formal and informal modeling
languages can be cooperatively used in the MDA framework and how the trans-
formations between models in these languages can be achieved using an MDA
development environment. The MDA model transformation techniques allow us
to have a reusable transformation between formal and informal modeling lan-
guages. The integrated approach provides an effective V&V technique for the
MDA.

1 Introduction

Integration between formal and informal or semi-formal visual modeling (or specifi-
cation) languages is a well-known topic in the literature [8, 11, 12, 14]. There are
many advantages to be gained from integrating formal techniques with informal or
semi-formal approaches in the field of software development. Integration can make
formal methods easier to apply and informal methods more precise, aiming towards
“the best of both worlds”. Despite the potential for taking benefits from both types of
techniques, the integrated approach is seldom used in practice. Several drawbacks we
have identified are: transformations between formal and informal models are often not
explicitly defined [1, 8, 13, 14, 15, 23], which makes it difficult to know on what se-
mantic basis the transformation has taken place, whether semantics of models are pre-
served during the transformation and whether the transformation is complete and con-
sistent. Also a lack of tool support for the actual transformation is a drawback in this
area. In order to contribute to this area, this paper presents an MDA approach towards
the integration of a formal modeling language Object-Z [4] with the Unified Model-
ing Language (UML) [19], a semi-formal visual modeling language.

The Model Driven Architecture (MDA) [18] is a new software development
framework that aims to separate business logic from underlying platform technology.
It involves automated transformations between software models defined in different
languages. In MDA, a Platform Independent Model (PIM) of a system is specified
and a Platform Specific Model (PSM) is derived from the PIM using transformations.
MDA model transformation can be applied to the integrated approach. In the MDA,

 An MDA Approach Towards Integrating Formal and Informal Modeling Languages 449

models are integrated by their common basis in the Meta Object Facility (MOF) [16],
which is the meta-language standard for UML and the other OMG modelling lan-
guages. That is, each modeling language is defined in terms of a metamodel using the
MOF. Given the metamodels of different modeling languages, a set of transformation
rules is defined explicitly using a transformation language, which is also a MOF
model. Actual transformations are then achieved automatically using a transformation
tool that understands the transformation language. In this paper, we use this reusable
MDA transformation framework for modeling language integration with Object-Z and
UML. For this, we first define Object-Z in terms of a metamodel based on the MOF.
Given the metamodels of UML and Object-Z, we then define transformation rules us-
ing a transformation language1. The metamodel-based MDA transformation frame-
work allows us to define transformations precisely and explicitly in terms of trans-
formation rules, which is critical for rigorous model evolution from informal to for-
mal and vice-versa. It also allows us to have a reusable transformation that can be ap-
plied to any models in the two languages. Actual transformations are achieved using
tools supporting MDA.

Additionally our integrated approach can deliver benefits to MDA. To get the full
potential of the MDA, the MDA transformation infrastructure (currently being stan-
dardized [18]) should include the ability to use modelling notations that are the most
appropriate to capture different aspects of a system, and should have a capability of
transforming between models in these different notations. Also there must exist effi-
cient ways to check the models for properties such as consistency and correctness.
Currently UML is proposed as the central modelling language by OMG in the MDA.
However, using only UML has limitations to provide these capabilities required for
the MDA. Our integrated approach with formal and informal modeling techniques can
contribute to this area. For example, it provides the convenience to choose appropriate
modeling techniques to capture different aspects. Formal techniques provide effective
means to check models providing increased quality for both specification and imple-
mentation. In this integrated MDA modeling framework, models are corrected and
evolved via model transformation from informal to formal and vice-versa. In fact, the
integrated approach can be a V&V technique for the MDA. For example, an Object-Z
model derived from a UML model is a V&V model of the UML model. Any formal
reasoning techniques available for Object-Z can be used to validate the UML model.

It should be noted that in this paper it is not our intention to present a complete
definition of Object-Z or UML, or a complete set of transformation rules between the
two languages. Rather we focus on explaining how the MDA model transformation
framework can be applied to the integration of the two languages. The transformation
presented in this paper should pave the way for others to follow the same transforma-
tion approach towards integrating different formal and informal modeling languages.

The structure of the rest of this paper is as follows. Section 2 discusses relevant
background information. Section 3 presents the model transformation environment

1 In this paper, we use the Distributed Systems Technology Centre (DSTC)’s transformation

language [3] that has been submitted to respond to the OMG’s MOF 2.0
Query/Views/Transformations (QVT) Request for proposals [17], and its transformation en-
gine Tefkat [2]. Once the OMG finalizes a standard transformation language, the transforma-
tion rules can be converted into the standard language.

450 S.-K. Kim, D. Burger, and D. Carrington

used in this work and its rationale. Section 4 discusses the transformation itself in de-
tail with an example. Finally, Section 5 concludes and discusses further work.

2 Background Information

In this section, we present a metamodel of Object-Z and a metamodel of UML. The
Object-Z metamodel presented in this section is an enhanced version of the one pre-
sented in [9, 10]. The UML metamodel presented in this section is a simplified ver-
sion of UML 2.0 [19].

2.1 Object-Z Metamodel

Figure 1 is a UML class diagram showing core model elements in Object-Z and their
structure (we add OZ to the names of the model constructs to distinguish them from
the UML modeling constructs). Figure 2 shows types in Object-Z (see [10]).

OZElement is a top-level metaclass from which all possible model elements in Ob-
ject-Z can be drawn. OZNamedElement represents all model elements with names
(e.g. attributes, classes, operations, and parameters). OZNamespace is an element that
can own other named elements (e.g. classes or operations).

Fig. 1. Object-Z model elements

OZElement

OZNamedElement

name : String

OZNamespace

OZMultipl ici ty

isOrdered : Boolean
upper : Unl imitedNatural [0..1]
lower : Integer [0..1]

PureAttribute

initialValue : OZValue

BooleanExp

OZExpression

body : String

0..n

0..1

0..n

0..1

OZPredicate

10..1

+specification

10..1

RelationshipAttribute

isContainment : Boolean

Invariant

OZAttribute

isStatic : Boolean
visibil ityKind : Visibil i tyKind

OZParameter

parameterKind : ParameterKind

OZClass

+type
{subsets type}

0..n

0..1

0..n

0..1
0..n

0..n

+general

0..n

+special

0..n

0..n 0..10..n 0..1

OperationPredicate

OZOperation

visibil ityKind : Visibil i tyKind

0..n 0..10..n 0..1

0..n

0..1

+precondition

0..n

0..10..n

0..1

0..n

0..1

0..n

0..1

+postcondition

0..n

0..1

OZTypedElement

OZValue

OZTypedElementOZType 0..1 +type0..1

OZSpecification

0..n

0..1

0..n

0..1

 An MDA Approach Towards Integrating Formal and Informal Modeling Languages 451

Fig. 2. Object-Z types

OZTypedElement presents elements with types (e.g. attributes and parameters) and
the type of a typed element constrains the set of values that the typed element may re-
fer to. OZMultiplicity is an abstract metaclass of elements with multiplicity informa-
tion that specifies the allowable cardinalities for an instantiation of the elements (e.g.
attribute values and parameter values). It also has an attribute (isOrdered) to define
whether the values in an instantiation of this element must be ordered.

OZPredicate is a metaclass to define a condition in classes or operations. Condi-
tions defined in a class are invariants and conditions defined in an operation are either
a precondition or a postcondition of the operation. Predicates contain expressions that
will have a set (possibly empty) of values when evaluated in a context. Boolean ex-
pressions are one type of expression in Object-Z.

UML is a visual modelling language and does not provide a language for specify-
ing expressions al-though OCL [19] is recommended as a constraint language for
UML by OMG. Consequently UML treats expressions as an uninterpreted textual
statement (see the meta-class OpaqueExpression in the UML metamodel) and the se-
mantics of expressions depends on the language. For this reason, we do not further
clarify expressions in Object-Z in this paper focusing on transforming the structural
constructs of the two languages and leave this issue as further work to map Object-Z
expressions to a specification language such as OCL.

Classes: In Object-Z, classes are the major modeling construct for specifying a sys-
tem. A Class is a template for objects that have common behaviors. A Class has a set
of attributes (PureAttibute) and a set of operations. Each attribute has a name, a type,
a visibility and an attribute (isStatic) specifying whether the attribute is static. By spe-
cializing multiplicity element, an attribute supports a multiplicity that specifies valid
cardinalities for the set of values associated with the attribute. An operation has a
name, a visibility and a set of parameters, each of which also has a name, a type and
the multiplicity information for the set of values associated with the parameter.

Relationships and instantiation: Classes can be instantiated in other classes as at-
tributes. In Object-Z, instantiation is used as a mechanism for modeling relationships

OZNamedElement

name : String

GivenType

SchemaType

BasicType

CartesianType

OZType

0..n

0..1

0..n

0..1

OZTypedElement

0..1

+type

0..1

OZClass PolimorphicType

0..n

0..n+sub

0..n

0..n
1

0..n

+super

1

0..n

Natural
<<BasicType>>

Integer
<<BasicType>>

Visibi li tyKind
<<enumeration>>

ParameterKind
<<enumeration>>

Boolean
<<BasicType>>

OZValue

Enumeration
Li teral

EmunerationType

0..n

0..1

0..n

0..1

452 S.-K. Kim, D. Burger, and D. Carrington

between objects, which in UML is modeled using a separate modeling construct, As-
sociation. Objects that instantiate other classes as their attributes (RelationshipAttrib-
ute) can refer to the objects of the instantiated classes. The values of these attributes
are object-identities of the referenced objects. Each relationship attribute has an at-
tribute (isContainment) specifying whether the referenced objects are owned by their
referencing object (a containment relationship).

Inheritance: Classes in Object-Z can be used in defining other classes by inheritance.
A class can inherit from several classes (multiple inheritance). In the Object-Z meta-
model, inheritance is defined with an association between classes.

2.2 A implified UML Metamodel

Figure 3 presents class modeling constructs in UML. In this paper, we are concerned
with only a subset of the UML modeling constructs that are relevant to the discussion
of transformation with Object-Z. For a full description of the UML 2.0 metamodel re-
fer to [19].

Classes: A class in UML is a descriptor of a set of objects with common properties in
terms of structure, behavior, and relationship. Class is a kind of classifier whose fea-
tures are attributes and operations. Attributes of a class are represented by instances of
Property that are owned by the class. Some of these attributes may represent the navi-
gable ends of binary associations. An attribute has a name, a visibility, a type, and
amultiplicity. An operation also has a name, a visibility and parameters. Each parame-

Fig. 3. A simplified UML metamodel

+ownedAttribute

Feature

isStatic : Boolean

StructuralFeatureBehavioralFeature

ParameterDirectionKind
<<enumeration>>

Generalization

isSubstitutable : Boolean

Parameter

name : String
direction : ParameterDirectionKind
lowerValue : Integer
upperValue : UnlimitedNatural

Operation

name : String
visibility : VisibilityKind
isOrdered : Boolean

*

0..1

+formalParameter*

0..1

AggregationKind
<<enumeration>>

Class

name : String
isAbstract : Boolean

1+general 1

*

1

*

+specific1

*

0..1

+ownedOperation
*

+owner 0..1

Property

name : String
aggregation : AggregationKind
lowerValue : Integer
upperValue : UnlimitedNatural
visibility : VisibilityKind
isOrdered : Boolean

*

0..1

*+owner

0..1

Association

0..1

2..n

+association 0..1

+memberEnd 2..n *

0..1

+ownedEnd
*

0..1

DataType

PrimitiveType

Enumeration

VisibilityKind
<<enumeration>>

S

 An MDA Approach Towards Integrating Formal and Informal Modeling Languages 453

ter of an operation has a name and a given type. Attributes and operations have a visi-
bility. Visibility in UML can be private, public, or protected.

Associations: In UML, relationships between classes are represented as associations.
An association specifies a semantic relationship that can occur between typed in-
stances. It has at least two ends represented by properties, each of which is connected
to the type of the end. When a property is owned by an association, it represents a
non-navigable end of the association. In this case the property does not appear in the
namespace of any of the associated classifiers. When a property at an end of an asso-
ciation is owned by one of the associated classifiers, it represents a navigable end of
the association. In this case the property is also an attribute of the associated classi-
fier. Only binary associations may have navigable ends. A property of an association
has attributes indicating whether the property has an aggregation (aggregation) and if
it is compositionally aggregated (isComposite).

Generalizations: In UML, a generalization is a taxonomic relationship between a
more general class and a more specific class. Each instance of the specific class is
also an indirect instance of the general class. Thus, the specific classifier inherits the
features of the more general class. An attribute, isSubstitutable, indicates whether the
specific class can be used wherever the general class can be used.

3 Transformation Environment

Sendal and Kozaczynski [20] identify a number of challenges in model transforma-
tion. Most importantly, defining a model transformation requires a clear understand-
ing of the abstract syntax and the semantics of both the source and target models. In
the metamodel-based approach, each modelling notation is precisely defined in terms
of its metamodel (using the OMG’s MOF). Model transformations are then defined in
terms of the relationship between a source MOF metamodel and a target MOF meta-
model. Previously the authors defined a set of formal mapping functions between Ob-
ject-Z and UML 1.4 based on their metamodels [9]. We implement these formal map-
ping functions using a transformation language in a MDA development environment.
This section covers background information of the implementation.

3.1 DSTC Transformation Language Overview

In 2002, OMG issued a Queries, Views and Transformations (QVT) Request For Pro-
posals (RFP) [17] and is currently in the process of selecting a standard MDA model
transformation language. Several proposals have been submitted to the request. The
Distributed Systems Technology Centre (DSTC)’s transformation language [3] is one
of them and is used in this paper to define mappings between UML and Object-Z.

Figure 4 illustrates how an Object-Z model is transformed into a UML model using
the DSTC’s transformation language. At the meta-level, we have four metamodels:
the UML metamodel, an Object-Z metamodel, a Transformation metamodel defining
the concepts in the DSTC’s trans-formation language and a Tracking metamodel de-
fining the mapping relationships between model elements in Object-Z and UML. The
diagram in Figure 5 is a Tracking metamodel used in our work.

454 S.-K. Kim, D. Burger, and D. Carrington

Fig. 4. Model Transformation with the DSTC’s Transformation Language

For example, an Object-Z class maps to a UML class, an Object-Z attribute maps
to a UML attribute, an Object-Z operation maps a UML operation and an Object-Z at-
tribute modelling a relation maps to an association in UML. Since both the languages
share common concepts in object technology, mappings between these two languages
are mostly straightforward.

Fig. 5. Tracking model for UML and Object-Z

At the model-level, an Object-Z model (an instance of the Object-Z metamodel)
and a transformation model are input to a transformation engine. The transformation
model includes a set of transformation rules specifying how to convert an Object-Z
element into a UML model element. These rules are based on the mapping relation-

Transformation Engine

Input Output

A UML model

MOF
metamodel

UML
metamodel

Object-Z
metamodel

Transformation
metamodel

A Object-Z
model

A Transformation
model (Rules)

Tracking metamodel
(Between Object...

UMLToOZ
Tracking model

Meta-Level

Model-Level

 An MDA Approach Towards Integrating Formal and Informal Modeling Languages 455

ships defined in the Tracking metamodel. Then the transformation engine populates a
target UML model based on the source model according to the transformation rules.
During the transformation, a tracking model is created and used to store correspon-
dences between source elements and target elements. These correspondences can then
be used to link transformation rules together. For example, the OZClassToUMLClass
tracking class records the corresponding UML class for each Object-Z class. This is
stored so that the UML class generated from a particular Object-Z class can be looked
up from other transformation rules. For example, a UML operation generated for an
Object-Z operation can be inserted into the right UML class by querying the tracking
model.

The DSTC’s transformation language consists of three major concepts: pattern
definitions, transformation rules, and tracking relationships [3]:

• Pattern definitions can be used to define common structures to be reused through-
out a transformation.

• Transformation rules are used to describe the elements to be created in a target
model based on the elements in a source model. Transformation rules can be ex-
tended or superseded allowing for modularity and reusability.

• Tracking relationships are used to associate target elements with the source ele-
ments that led to their creation, important for rule reuse.

Currently the DSTC’s Transformation language uses a concrete syntax in the style
of SQL [3]. An example transformation rule (OZSpec2UMLModel) in the DSTC
transformation language is given below. It simply maps each Object-Z specification
to a UML Model. Line 1 declares the rule name and variables to be used in the rule.
Lines 2 and 3 then express that for each Object-Z specification found in the source
model (FORALL statement), a UML Model should be created in the target model
(MAKE statement). Line 4 preserves the tracking relationship between the UML
Model that was created and the Object-Z specification it was created from. This is
done by using a LINKING...WITH statement and setting the ozspec and umlmodel
references of the tracking model class OZSpecToUMLModel (see Figure 5). This
tracking will allow other rules to find the corresponding UML Model for an OZ speci-
fication. We present other rules in detail in Section 4.

1 RULE OZSpec2UMLModel(ozs, umlm)
2 FORALL OZSpecification ozs
3 MAKE Model umlm
4 LINKING OZSpecToUMLModel WITH ozspec = ozs, umlmodel = umlm;

3.2 Model Transformation Tool Environment

Figure 6 shows the overall tool architecture used in our work. The Eclipse Platform
[5] is a universal tool platform – an IDE that allows tool developers to add functional-
ity through tool plug-ins. It is used as a tool integration environment for transforma-
tion. The plug-ins we use are: EMF [7] and Tefkat [2].

3.2.1 Eclipse Modeling Framework (EMF)
EMF is a Java framework for building applications based on simple class models [7].
It allows developers to turn the models into customizable Java code. EMF plays a

456 S.-K. Kim, D. Burger, and D. Carrington

very important role in our transformation tool architecture as it is used to construct the
metamodels and instances that are used as input to the Tefkat Transformation Engine.

Fig. 6. Tool Architecture used in this work

The metamodels for Object-Z and UML defined using EMF are Ecore models (e.g.
the Object-Z metamodel Object-Z.ecore, the UML metamodel UML2.ecore2, and the
Tracking metamodel OZToUMLTracking.ecore), which then allows the automatic
generation of an editor to create Object-Z (instance) models, stored in XMI format, to
be transformed into UML. The Ecore language used to create models in EMF is a
core subset of the OMG’s MOF [16] that provides a common basis of models in the
MDA. However, to avoid any confusion, the MOF-like core meta model in EMF is
called Ecore. In fact, EMF can generate an Ecore model from Rational Rose (.mdl
file), which is the approach taken in this paper to construct the Object-Z metamodel.
Alternatively, we could create an Ecore model using an EMF supporting tool such as
Omondo EclipseUML [6] which is a visual modelling tool that allows users to visu-
ally create and edit both UML and Ecore models, or from XML schema and other
inputs.

Figure 7 shows the editor generated by EMF from the Object-Z metamodel pre-
sented in Section 2.1. When we click on the right button at the top of the tree editor,
we can see all the model elements definable at the Object-Z specification level such
as classes and data types. To create an Object-Z class instance, we simply choose
Class from the list and fill in properties such as name in the property window. Once
an instance of an Object-Z class is created, we can define attributes and operations us-
ing the editor. Once an Object-Z instance specification is created, EMF will generate
an output in XMI that is an input to the Tefkat transformation engine. The example
Object-Z model created using the editor in Figure 7 specifies a key system containing
four classes resulting in the KeySystem.oz file. To view the Object-Z model in its
concrete syntax (see Figure 8), we need to map the abstract syntax to a concrete syn-
tax such as [21]. This work is under investigation.

2 In this work, we use the UML2.ecore file supplied by the UML2 project [22].

Open Open

 An MDA Approach Towards Integrating Formal and Informal Modeling Languages 457

3.2.2 Tefkat Transformation Engine
Tefkat is DSTC’s prototype model transformation engine [2]. It is built on EMF, in
that it works with Ecore models and corresponding XMI instances, and implements
the DSTC’s transformation language [3].

Fig. 7. Object-Z editor generated by EMF Fig. 8. Object-Z model in its concrete syntax

The user creates a Tefkat project containing the required Object-Z and UML
metamodels, Object-Z source model, transformation rules file and possibly a tracking
model. Tefkat includes a configuration editor which is used to create a configuration
file specifying the locations of the required files. The transformation is set to run
automatically each time the project is updated, creating a target UML instance. Tefkat
also provides a textual editor for transformation rule files (.qvt), which highlights syn-
tax and dynamically reports any syntax errors in the Eclipse Problems View.

4 Transformation Rules from Object-Z to UML

In this section, we describe how to convert Object-Z constructs to UML constructs us-
ing the DSTC transformation language and its Transformation Engine. The mapping
is based on the metamodels of Object-Z and UML, and the tracking model defined in
previous sections. Currently the DSTC’s transformation language does not support bi-
directional transformations [3]. For this reason, in this paper we define a set of trans-
formation rules from Object-Z to UML, but the rules will be readily redefined when
the transformation language supports the bi-directional feature.

458 S.-K. Kim, D. Burger, and D. Carrington

4.1 Transformation Rule for Object-Z Classes

Semantically, an Object-Z class represents a set of objects of that class. This seman-
tics is the same as that of a UML class, so we convert an Object-Z class to a UML
class. The OZClass2UMLClass rule implements this mapping by creating a UML
class for each OZClass. Line 5 declares the rule name and variables to be used in the
rule. Line 7 introduces a WHERE...LINKS statement. This is the way in which the
tracking relationship created in the OZSpec2UMLModel rule presented in Section 3.1
can be queried in order to find the correct UML model into which to place the created
UML Class. Lines 7 and 8 effectively find the Object-Z specification that is contain-
ing the source Object-Z class (ozc.owner), and then look up and store the correspond-
ing UML model (umlm) for use later in the rule. Line 9 creates the target UML class,
while Line 10 introduces a SET statement, which is used to set the attributes and ref-
erences of created target elements. In this case, the UML class name is set to the same
name as the Object-Z class, and the UML class is added to the UML model. Note that
umlc is being added to the ownedMember collection of the UML model, umlm3. Line
11 preserves the tracking relationship, also storing the corresponding Object-Z speci-
fication and UML model as these will be used in other rules.

5 RULE OZClass2UMLClass(ozs, umlm, ozc, umlc)
6 FORALL OZClass ozc
7 WHERE OZSpecToUMLModel LINKS ozspec = ozs, umlmodel = umlm
8 AND ozc.owner = ozs
9 MAKE Class umlc
10 SET umlc.name = ozc.name, umlm.ownedMember = umlc
11 LINKING OZClassToUMLClass WITH ozclass = ozc, umlclass = umlc,

ozspec = ozs, umlmodel = umlm;

4.2 Transformation Rule for Object-Z Operations

Each Object-Z operation is converted to a UML operation. The OZOpera-
tion2UMLOperation rule implements this mapping. This rule has a similar structure
to OZClass2UMLClass, except that a UML Operation is created for each OZOpera-
tion and placed inside the correct UML Class (Line 19). However, the rule is different
in that it demonstrates the use of two patterns in Lines 14 and 16. Many rules pre-
sented in this paper need to find the corresponding UML class for an Object-Z class.
The lookupClass pattern on Line 21 simplifies this by defining the common
WHERE...LINKS statement as a pattern so that it can be used in many rules. Also the
pattern convertVisibility in Line 24 matches visibilities in both languages and it is
used in the rules presented in this paper4.

12 RULE OZOperation2UMLOperation(ozc, umlc, ozo, umlo, vis)
13 FORALL OZOperation ozo
14 WHERE lookupClass(ozc, umlc)
15 AND ozo.owner = ozc
16 AND convertVisibility(ozo.visibilityKind, vis)
17 MAKE Operation umlo
18 SET umlo.name = ozo.name, umlc.ownedOperation = umlo,

umlo.visibility = vis

3 In the DSTC transformation language the syntax is the same for setting the value of a single-

valued attribute or reference as it is for adding an element to a collection.
4 Due to the page limits, we omit details of some pattern definitions.

 An MDA Approach Towards Integrating Formal and Informal Modeling Languages 459

19 LINKING OZOpToUMLOp WITH ozop = ozo, umlop = umlo,
 ozclass = ozc, umlclass = umlc;

20 // look up correct UML classes
21 PATTERN lookupClass(ozc, umlc)
22 WHERE OZClassToUMLClass LINKS ozclass = ozc, umlclass = umlc;
23 // convert Object-Z visibility kinds into UML visibility kinds
24 PATTERN convertVisibility(ozvis, umlvis) …;

4.3 Transformation Rule for Object-Z Operation Parameters

Prior to describing the transformation of parameters, we explain how to convert data
types. While types of attributes and parameters in UML are a language-dependent
specification of the implementation types, those in Object-Z are language-
independent specification types. For this reason, we define a rule to match only those
types that are common in both languages such as Integer and Boolean (see the rule
OZBasicType2UMLPrimitiveType) and we do not define a specific rule for other data
types in Object-Z.

25 RULE OZBasicType2UMLPrimitiveType(bt, pt, ozs, umlm)
26 FORALL BasicType bt
27 WHERE OZSpecToUMLModel LINKS ozspec = ozs, umlmodel = umlm
28 AND bt.owner = ozs
29 MAKE PrimitiveType pt
30 SET pt.name = bt.name, umlm.ownedMember = pt
31 LINKING BasicTypeToPrimitiveType WITH basic = bt, prim = pt;

Due to the differences in data types in both languages, we apply different rules for
parameters with different types. OZBasicParam2UMLParam is the rule to map the pa-
rameters of Object-Z operations with basic types to UML operation parameters with
primitive types. Again, a WHERE...LINKS statement is used to find the correct UML
operation for the created UML parameter in Line 34 and 35; to check the type (using
the pattern isBasicType in Line 36); to find the correct matching UML type (using the
pattern lookupBasicType in Line 37); to find the correct matching UML parameter
kind (using the pattern convertParamKind in Line 38). Parameters in both languages
have several equivalent properties that are mapped including name, isOrdered and
upper and lower multiplicity values. The LiteralInteger and LiteralUnlimitedNatural
classes must be used to set the upper and lower multiplicity values of the UML pa-
rameter because they are the types of the lowerValue and upperValue references re-
spectively in the MultiplicityElement class of the UML2 metamodel (UML2.ecore).

32 RULE OZBasicParam2UMLParam(ozo, umlo, ozp, umlp, int, nat,
pkind, umltype)

33 FORALL OZParameter ozp
34 WHERE OZOpToUMLOp LINKS ozop = ozo, umlop = umlo
35 AND ozp.owner = ozo
36 AND isBasicType(ozp.type)
37 AND lookupBasicType(ozp.type, umltype)
38 AND convertParamKind(ozp.parameterKind, pkind)
39 MAKE Parameter umlp, LiteralInteger int,

LiteralUnlimitedNatural nat
40 SET umlp.name = ozp.name, umlp.isOrdered = ozp.isOrdered,

umlo.ownedParameter = umlp, int.value = ozp.lower,
nat.value = ozp.upper, umlp.lowerValue = int,
umlp.upperValue = nat, umlp.direction = pkind,
umlp.type = umltype;

41 // convert Object-Z parameter kinds into UML parameter kinds
42 PATTERN convertParamKind(ozparkind, umlparkind)…;
43 // match OZ basic types with UML primitive types
44 PATTERN lookupBasicType(oztype, umltype)

460 S.-K. Kim, D. Burger, and D. Carrington

45 WHERE BasicTypeToPrimitiveType LINKS basic = oztype,
prim = umltype;

46 // check Basic types
47 PATTERN isBasicType(oztype)
48 FORALL BasicType oztype;

Rules for transforming parameters with other types are very similar to this rule ex-
cept for the mapping of types. We omit these rules due to the page limits.

4.4 Transformation Rule for Object-Z Pure Attributes

Object-Z pure attributes (attributes with types that are not class types) are converted
to a UML attribute. The OZBasicPureAttr2UMLProperty rule implements the map-
ping of pure attributes with basic types, setting the name, isStatic, isOrdered, lower-
Value and upperValue properties of the created UML Property appropriately. Again a
WHERE...LINKS statement is used to find the corresponding UML class for an Ob-
ject-Z class in Line 51; to check the type in Line 52; to find the correct matching
UML type in Line54; to find the correct matching UML visibility kind in Line 55.

49 RULE OZBasicPureAttr2UMLProperty(ozc, umlc, oza, umlp, int,
nat, vis, umltype)

50 FORALL PureAttribute oza
51 WHERE lookupClass(ozc, umlc)
52 AND isBasicType(oza.type)
53 AND oza.owner = ozc
54 AND lookupBasicType(oza.type, umltype)
55 AND convertVisibility(oza.visibilityKind, vis)
56 MAKE Property umlp, LiteralInteger int,

LiteralUnlimitedNatural nat
57 SET umlp.name = oza.name, umlc.ownedAttribute = umlp,

int.value = oza.lower, nat.value = oza.upper,
umlp.isStatic = oza.isStatic, umlp.isOrdered =
oza.isOrdered, umlp.lowerValue = int, umlp.upperValue =
nat, umlp.visibility = vis, umlp.type = umltype;

4.5 Transformation Rule for Relationship Attributes

Object-Z RelationshipAttribute defines relationships between objects. This semantics
of relationship attributes in Object-Z maps to that of associations in UML. The OZ-
ConRelAttr2UMLAssoc rule implements the mapping of relationship attributes with a
containment property to UML Associations. Lines 60 - 62 are required to find the cor-
responding UML classes for the Object-Z class owning the relationship attribute and
also the Object-Z class that is the type of that attribute (oza.classType). Line 63
matches the visibility, and Lines 64 and 65 match the containment property. An Asso-
ciation and two Properties are created as a result of the transformation rule. When an
Object-Z class has a relationship attribute, the attribute is navigable by the owning
class. In this rule, the nav property represents the navigable end of the association,
while the non property is the non-navigable end. The SET statement in this rule ac-
complishes the following:

1. The name of the navigable end of the association is set to be the same as the name
of the relationship attribute.

2. The type of the navigable end is set to the UML class corresponding to the Object-
Z class that is the type of the relationship attribute.

3. The isStatic, isOrdered, lowerValue and upperValue properties of the navigable
end are matched with the corresponding properties of the relationship attribute.

 An MDA Approach Towards Integrating Formal and Informal Modeling Languages 461

4. The type of the non-navigable end is set to the UML class corresponding to the
Object-Z class that is the owner of the relationship attribute.

5. The navigable end property is added to the attributes of the UML class correspond-
ing to the Object-Z class that is the owner of the relationship attribute. This is done
because in the UML2.0 [19], a navigable end property of an association is also an
attribute of the associated UML class.

6. In UML an Association has at least two memberEnd properties representing the
ends of the association, and non-navigable ends are owned by the Association. This
is accomplished at the end of Line 67 as both association ends are added to the
memberEnd collection of the Association and the ownedEnd is set to the non-
navigable end.

7. Finally, the new association is placed in the UML model by adding it to the
ownedMember collection.

58 RULE OZContRelAttr2UMLAssoc(ozc, umlc, umlm, oza, umla, non,
nav, umlt, int, nat, vis, agg)

59 FORALL RelationshipAttribute oza
60 WHERE lookupClass(ozc, umlc)
61 AND oza.owner = ozc
62 AND OZClassToUMLClass LINKS ozclass = oza.classType,

umlclass = umlt, umlmodel = umlm
63 AND convertVisibility(oza.visibilityKind, vis)
64 AND isContainment(oza)
65 AND convertContainment(oza.isContainment, agg)
66 MAKE Association umla, Property non, Property nav,

LiteralInteger int1, LiteralUnlimitedNatural nat1,
LiteralInteger int2, LiteralUnlimitedNatural nat2

67 SET nav.name = oza.name, nav.type = umlt,
nav.isStatic = oza.isStatic, nav.isOrdered =
oza.isOrdered, int1.value = oza.lower, nat1.value =
oza.upper, nav.lowerValue = int1, nav.upperValue = nat1,
nav.visibility = vis, non.aggregation = agg,
int2.value = 0, nat2.value = 1,
non.lowerValue = int2, non.upperValue = nat2,
non.type = umlc, umlc.ownedAttribute = nav,
umla.ownedEnd = non, umla.memberEnd = nav,
umla.memberEnd = non, umlm.ownedMember = umla;

68 // check containment property
69 PATTERN isContainment(ozattr)
70 WHERE ozattr.isContainment = true;

The rule for mapping relationship attributes with a non-containment property is ba-
sically the same as this rule except for the mapping of the containment property.

4.6 Transformation Rule for Inheritance

In Object-Z, inheritance is a mechanism to incrementally extend an Object-Z model.
Sub-classes inherit all features defined in its super classes. We convert Object-Z in-
heritance to generalization in UML. The OZInherit2UMLGeneral rule achieves this
mapping. For each pair of Object-Z classes where one is a superclass of the other, a
UML Generalization is created. The lookupClass pattern is used twice to find the cor-
responding UML classes in Line 73 and 74. In the UML2.0 [19], a Generalization has
specific and general references to store the subclass and superclass respectively, and
the Generalization itself is owned by the subclass. These values are set appropriately
in the SET statement. Since inheritance in Object-Z does not support subtyping auto-
matically, we leave the isSubstitutable property of the generalization undefined.

462 S.-K. Kim, D. Burger, and D. Carrington

71 RULE OZInherit2UMLGeneral(ozc, umlc, ozg, umlg, umlgen)
72 FORALL OZClass ozc, OZClass ozg
73 WHERE lookupClass(ozc, umlc)
74 AND lookupClass(ozg, umlg)
75 AND ozc.general = ozg
76 MAKE Generalization umlgen
77 SET umlgen.specific = umlc, umlc.generalization = umlgen,

umlc.generalization.general = umlg;

4.7 Transformation Example

Figure 9 shows the target UML model generated from the example source Object-Z
model presented in Figure 8 according to the transformation rules defined in this sec-
tion. The actual output (KeySystem.uml2) is in XMI but we visualize it using a UML
class diagram.

Fig. 9. A target UML model

5 Conclusion and Future Work

This paper has presented an MDA approach to integrating formal and informal mod-
eling languages within the Eclipse tool integration environment. Using the MDA
model transformation approach, we define a metamodel of Object-Z using the MOF.
Given the metamodels of UML and Object-Z, we then define transformation rules us-
ing a transformation language, the DSTC’s Transformation Language.

The metamodel-based MDA transformation framework allows us to define trans-
formation rules precisely and explicitly, which is essential to be able to know the se-
mantic basis of the transformation, to check the completeness and consistency of the
transformation, and to provide the traceability of notations. It also allows us to have a
reusable transformation that can be applied to any models in the two languages. Fi-
nally we achieve an automatic transformation using existing tools supporting MDA.
In addition, the integrated approach with formal and informal techniques incorporates
an effective V&V mechanism into the MDA and it supports model evolution that is
concerned with correcting errors in the model.

The transformation rules presented in this paper are from Object-Z to UML. When
the transformation language supports multi-directional transformation, the rules will
be refined accordingly to support the bi-directional transformation between the two

MaterKey

Key

keyNumber : Integer

accessGranted(in rm : Room)
accessDenied(in rm : Room)

Room

locked : Boolean

Lock()
Unlock()

0..n0..n

SingleRoomKey

1

0..1

1

0..1

 An MDA Approach Towards Integrating Formal and Informal Modeling Languages 463

languages. Mapping the abstract syntax of Object-Z to its concrete syntax and con-
verting Object-Z expressions to OCL expressions are under investigation.

Acknowledgements

This research is funded by an Australian Research Council Discovery Grant:
DP0451830. We wish to thank Keith Duddy, Michael Lawley and other DSTC staff
for their assistance with their transformation language [3] and their Tefkat tool [2].

References

1. S. Dascalu and P. Hitchcock, An approach to integrating semi-formal and formal notations
in software specification, ACM symposium on Applied computing, pp. 1014–1020, 2002.

2. DSTC, Tefkat: The EMF transformation engine. http://www.dstc.edu.au/Research/Projects/
Pegamento/tefkat/index.html

3. DSTC Transformation Language, MOF query/views/ transformations: Second revised sub-
mission, 2004. http://www.omg.org/docs/ad/04-01-06.pdf

4. R. Duke and G. Rose, Formal Object-Oriented Specification Using Object-Z, Macmillan,
2000.

5. Eclipse Foundation. http://www.eclipse.org/
6. EclipseUML, Omondo http://www.eclipsedownload.com/
7. EMF, The eclipse modeling framework. http://download.eclipse.org/tools/emf/scripts/

docs.php?doc=references/overview/EMF.html
8. R. France, J. Wu, M. M. Larrondo-Petrie, and J.-M. Bruel, A Tale of Two Case Studies:

Using Integrated Methods to Support Rigorous Requirements Specification, Proc. BCS
FACS Methods Integration Workshop, 1996.

9. S-K. Kim and D. Carrington, A Formal Mapping between UML Models and Object-Z
Specifications, ZB2000, LNCS 1878, pp. 2-21, 2000.

10. S-K. Kim, A Metamodel-based Approach to Integrate Object-Oriented Graphical and For-
mal Specification Techniques, PhD Thesis, ITEE, The University of Queensland, 2002.

11. R. Laleau and F. Polack. Coming and going from UML to B: A proposal to support trace-
ability in rigorous IS development. Proc. ZB’2002, LNCS 2272, pp. 517–534, 2002.

12. K. Lano, D. Clark and K. Androutsopoulos, UML to B: Formal Verification of Object-
Oriented Models, Proc. IFM’04, LNCS 2999, pp. 187 - 206 2004.

13. J. Lilius and I. P. Paltor, Formalizing UML state machines for model checking, Proc.
UML'99, LNCS 1723, pp. 430-445, 1999.

14. W. McUmber and B. Cheng. A General Framework for Formalizing UML with Formal
Languages. in IEEE Conference on Software Engineering, pp. 433–442, 2001.

15. M. Y. Ng and M. Butler. Tool Support for Visualizing CSP in UML. Proc. ICFEM’02,
LNCS 2495, pp. 287–298. 2002.

16. OMG, Meta Object Facility (MOF),1.4, OMG Document ad/02-04-03, 2002.
17. OMG, MOF 2.0 Query/Views/Transformations RFP, OMG Document ad/02-04-10, 2002.
18. OMG, MDA Guide Version 1.0.1, 2003. http://www.omg.org/docs/omg/03-06-01.pdf
19. OMG, UML 2.0 Superstructure Specification, OMG Document ptc/03-08-02.

http://www.omg.org/docs/ptc/03-08-02.pdf, 2003.
20. S. Sendall and W. Kozaczynski, Model Transformation: The Heart and Soul of Model-

Driven Software Development, IEEE Software, pp. 42-45, Sep/Oct 2003.

464 S.-K. Kim, D. Burger, and D. Carrington

21. J. Sun, J. S. Dong, J. Liu, and H. Wang. Z family on the web with their UML photos.
http://nt-appn.comp.nus.edu.sg/fm/zml/

22. UML2, The eclipse UML2 project. http://www.eclipse.org/uml2/
23. R. Wieringa, E. Dubois, and S. Huyts. Integrating Semi-formal and Formal Requirements.

in Advanced Information Systems Engineering, LNCS 1250, pp. 19-32, 1997.

Model-Checking of Specifications Integrating Processes,
Data and Time�

Jochen Hoenicke1 and Patrick Maier2

1 Universität Oldenburg, Department für Informatik, 26111 Oldenburg, Germany
hoenicke@informatik.uni-oldenburg.de

2 MPI für Informatik, Programming Logics Group, 66123 Saarbrücken, Germany
maier@mpi-sb.mpg.de

Abstract. We present a new model-checking technique for CSP-OZ-DC, a com-
bination of CSP, Object-Z and Duration Calculus, that allows reasoning about
systems exhibiting communication, data and real-time aspects. As intermediate
layer we will use a new kind of timed automata that preserve events and data
variables of the specification. These automata have a simple operational seman-
tics that is amenable to verification by a constraint-based abstraction-refinement
model checker. By means of a case study, a simple elevator parameterised by the
number of floors, we show that this approach admits model-checking parame-
terised and infinite state real-time systems.

1 Introduction

Complex computing systems exhibit various behavioural aspects such as communica-
tion between components, state transformation within components, and real-time con-
straints on the communications and state changes. This observation has led research
to combine and semantically integrate specification techniques. In [13] and [14] we
introduced CSP-OZ-DC, the combination of three well-investigated specification tech-
niques: CSP [11], Object-Z [21, 22] and Duration Calculus [26, 25]. Due to its expres-
siveness, however, CSP-OZ-DC is not suited for automated verification.

In this paper, we present an approach to automatically verify CSP-OZ-DC specifi-
cations by model-checking. To this end, the specifications are translated to transition
constraint systems (transition systems whose transitions are labelled by constraints ex-
pressed in first-order logic), which are model-checked using constraint-based symbolic
techniques [5] plus predicate abstraction [9] with counterexample-driven abstraction
refinement [3, 10, 4].

The translation from CSP-OZ-DC to transition constraint systems is via a novel
class of timed automata, called phase event automata, providing an essential prereq-
uisite for model-checking: an operational semantics for CSP-OZ-DC specifications.
These automata describe the behaviour of instantaneous events that stem from the CSP

� This work was partly supported by the German Research Council (DFG) as part of the Tran-
sregional Collaborative Research Center “Automatic Verification and Analysis of Complex
Systems” (SFB/TR 14 AVACS). See www.avacs.org for more information.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 465–480, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

466 J. Hoenicke and P. Maier

world, states with durations that model the Object-Z state variables, and clocks used for
real-time constraints defined by Duration Calculus. The translation to phase event au-
tomata is compositional, i. e., the translation of a CSP-OZ-DC specification is a parallel
product of several automata, each corresponding to one part of the specification. Thus,
our phase event automata provide the first compositional operational semantics for (a
subclass of) CSP-OZ-DC.

The translation from phase event automata to transition constraint systems follows
an “old-fashioned recipe for real-time” [1, 15] by splitting continuous runs into discrete
sequences of intervals. Moreover, the translation is compositional with respect to paral-
lel products. All in all, the process of translating CSP-OZ-DC specifications via phase
event automata into transition constraint systems and model-checking these systems
can be automated completely. In all steps the structure of the original specification is
preserved, so that counterexamples found by the model-checker can easily be translated
back to the CSP-OZ-DC world.

For being able to model-check, we have to pay a price. We have to restrict the CSP-
OZ-DC specifications such that the CSP part is finite state, the constraints in the OZ
part fall into a decidable class, and the DC part consists of so-called counterexample
formulae only. Nevertheless, this subclass of CSP-OZ-DC still admits non-trivial spec-
ifications, as we show in a small case study.

The paper is organised as follows. Section 2 introduces the main constructs of CSP-
OZ-DC via a case study. Section 3 describes phase event automata. Section 4 sketches
the translation from CSP-OZ-DC to phase event automata. In section 5 we will intro-
duce transition constraint systems and give the translation from automata to transition
constraints. Section 6 presents the results of applying our approach to the case study
and verifying an invariant. Finally, we conclude with section 7.

2 Case Study

In this section we introduce the combined formalism CSP-
start

stop

newgoal
passed

Fig. 1. Elevator

OZ-DC [13] and the case study of a controller for an eleva-
tor, see Fig. 1. The case study is kept very simple and only
contains the core of the controller. It is separated into three
aspects, each of which is specified in one of the three lan-
guages. The control and communication aspects are spec-
ified with CSP and encompass the interaction with the en-
vironment abstracting from concrete values transmitted.
Data aspects specified with Object-Z involve the calcula-
tion of current and goal floor. The real-time behaviour is
specified with Duration Calculus.

Communication Aspects. are described with CSP [11], a language for communicating
sequential processes. It is used to define the admissible sequences of events:

main
c= newgoal → start → Drive

Drive
c= (passed → Drive) � (stop → main)

Model-Checking of Specifications Integrating Processes, Data and Time 467

The elevator has a cyclic behaviour switching between the processes main and Drive.
The keyword main names the process that will be entered initially. The elevator first
chooses a new goal floor, then it starts the engine and switches to the Drive process. It
can then either pass a floor and keep on driving, or stop and return to the main process.
The symbol � denotes an external choice, which means that the environment deter-
mines which of these event will be taken. In this case it is determined by the interaction
with the Object-Z and Duration Calculus part of the specification.

Data Aspects. The representation of data state and the algorithmic part of the eleva-
tor is described with Object-Z. The floors are modelled by integers ranging from the
constants Min to Max. No concrete values for the boundaries are given but the only
requirement is Min < Max. These bounds can be seen as parameters of the elevator. In
Z these constants are declared in a so called axiomatic definition. The internal state of
the elevator is given by the following state schema. It contains two variables for current
and goal floor and a variable dir, which describes the direction the elevator is heading
to (1 for upwards, −1 for downwards). The initial values for the variables are given by
a schema with the special name Init.

Min,Max : Z

Min < Max

current, goal : Z

dir : {−1, 0, 1}

Init
goal = current = Min
dir = 0

In CSP-OZ-DC the link between events and states is established by communication
schemas. By naming convenience, the following schema describes the change that the
passed event induces:

com passed
Δ(current)

current′ = current + dir

The Δ list on the first line mentions the variables that are changed by the operation.
In this case only current is changed by adding the value of dir, which increases or
decreases the floor counter depending on the value of dir.

For simplicity the set of requested floors and the algorithm to choose the next goal
floor is abstracted from. Instead the goal floor is chosen non-deterministically from the
range of all floors except the current one. When the elevator starts, it will choose the
direction in accordance with the position of the new goal floor. Finally the elevator is not
allowed to stop before reaching the goal floor. This can be stated by a communication
schema with an empty delta list. These schemas are given Fig. 2.

Real-Time Aspects. are described with Duration Calculus (DC). This is a logic that al-
lows specifying real-time behaviours. Unfortunately the full logic of Duration Calculus
is too powerful to be checked automatically. Therefore only a restricted class of for-
mulae, called counterexample formulae, may be used in CSP-OZ-DC specifications1.

1 In [13] we used implementables for Duration Calculus but that are just abbreviations for certain
counterexample formulae.

468 J. Hoenicke and P. Maier

Elevator
chanstart, passed, stop, newgoal
main

c
= newgoal → start → Drive

Drive
c
= (passed → Drive) � (stop → main)

Min, Max : Z

Min < Max

current, goal : Z

dir : {−1, 0, 1}

Init

goal = current = Min
dir = 0

com newgoal
Δ(goal)

Min ≤ goal′ ≤ Max
goal′ �= current

com start
Δ(dir)

goal > current ⇒ dir′ = 1

goal < current ⇒ dir′ = −1

com passed
Δ(current)

current′ = current + dir

com stop
Δ()

goal = current

¬ �(� passed ; � ≤ 3 ; � passed)

¬ �(�current �= goal� ; (�current = goal� ∧ � ≥ 2 ∧ � stop))

Fig. 2. Elevator specification

A counterexample formula describes a specific undesired behaviour in form of a linear
trace. This formula is negated as it is a forbidden behaviour. Restricting ourself to these
types of formulae makes over-specification less likely: It is easy to see that a certain
behaviour should not occur and this is all the formula states.

The general shape of a counterexample formula is as follows:

¬ �(phase1 ; . . . ; phasen)

Here the formula �F states that there is a subinterval (DC formulae describe the shape
of trajectories in a given time interval) where F holds. This interval is then chopped up
into n subintervals (this is denoted by ;) each satisfying phasei, which must be a simple
formula restricting the current state of the system, the events that may or may not occur
during this interval, and either the minimum or the maximum length of this interval.
The whole formula is negated as it is a counterexample.

To restrict the state of a variable the standard Duration Calculus notation is used:
For example, +dir = 1, holds for intervals satisfying dir = 1. For each event a new
Boolean variable is introduced that changes every time the event occurs. The formula
- ev holds for a point interval, at which the Boolean variable ev changes2. The formula
� ev states that an event does not occur during a non-empty interval3.

In the case study real-time properties are used to ensure that the elevator stops when
it reaches the goal floor before passing the next floor. To achieve this, a minimum time

2 It is defined as � ev = ↑ ev ∨ ↓ ev with the operators ↑, ↓ as defined in [25]
3 It is defined as � ev := �ev� ∨ �¬ ev�

Model-Checking of Specifications Integrating Processes, Data and Time 469

of three seconds between two adjacent passed events is demanded. This is expressed
by a negated counterexample where two passed events occur after each other, with an
interval in between that has a duration (denoted by �) of at most three seconds.

¬ �(- passed ; � ≤ 3 ; - passed)

Furthermore it is claimed that the elevator stops within two seconds. The following
formula states the impossibility of the stop event not occurring even after the goal has
been reached for more than two seconds.

¬ �(+current �= goal, ; (+current = goal, ∧ � ≥ 2 ∧ � stop))

The complete specification of the elevator is shown in Fig. 2. The specification is
framed and given a name. It starts with the interface specification that lists the names
of the communication events. The interface is followed by the CSP and Object-Z part.
Then follows the DC part, which is separated by a short horizontal line.

The property to verify for this specification is Min ≤ current ≤ Max. Note that it is
not obvious that this property holds at all, as there is no such check in com passed. It
only holds because of the interaction between the CSP process, the data transformation
and the real-time properties of the specification. As a matter of fact, every single line
of the above specification contributes to this property. In the remainder of this paper
this combined specification is translated into a certain kind of timed automata and the
invariant property above is proven.

3 Phase Event Automata

In this section a new type of timed automata is introduced, so called phase event au-
tomata, that can characterise the behaviour of state- and event-based systems. These
automata serve as a bridge between CSP-OZ-DC described in section 2 and transition
constraint systems that will be described in the next section. They possess the notion of
events, variables and clocks.

Fig. 3 shows an example of a phase event automaton. This automaton corresponds to
the second Duration Calculus formula of the case study specifying that the automaton
should stop when the destination floor has been reached. Initially it can be either in

p0

current �= goal

p1

current = goal

p2

current = goal
c1 < 2

true stop

c1 := 0

true

¬ stop

true

true

Fig. 3. A phase event automaton

470 J. Hoenicke and P. Maier

phase p0 (if current �= goal holds) or in phase p1 (otherwise). There are no restrictions
of what may happen next. As soon as a change from current �= goal to current = goal
occurs, the automaton switches to phase p2, resets the clock c1 to zero and makes sure
that the elevator will stop within two seconds. Due to the invariant c1 < 2, phase
p2 must be left in time. One possibility is to back to p1, which can only be done if
current �= goal holds. The other possibility is by a stop event.

3.1 Notation

The states of the systems are described by first-order formulae. We work in many-
sorted first-order logic with equality denoted by ≈. The set of variables is denoted by
V̂ . With each variable x ∈ V̂ a sort type(x) is associated, which restricts the possible
values for x. The logic uses typed functions and predicate symbols. From this terms
and formulae are defined inductively. By L, we denote the class of first-order formulae
that are allowed in the specification. L(V) denotes the set of those formulae in L that
only refer to variables in V ⊆ V̂ . To be able to formulate the translations in Section 5,
we demand that L contains at least the class of quantifier-free formulae involving only
Booleans variables and linear arithmetic expressions over the reals. For the case study,
L should moreover contain linear arithmetic expressions over the integers.

The set of variables V̂ is partitioned into two disjoint sets V and V ′ such that V ′ is
a copy of V . We call the variables in V ′ primed, those in V unprimed. The unprimed
variables refer to the state before a transition while the primed variables refer to the post
state.

Semantically, variables are interpreted by valuations and all syntactic symbols ex-
cept variables by a fixed algebra. Given a subset V ⊆ V̂ , a V-valuation α is a mapping
that assigns a value in Utype(x) to each variable x ∈ V , the domain of that type. Some-
times, we denote a V-valuation α by the expression {x �→ α(x) | x ∈ V}. The set of all
V-valuations is denoted by Val(V). Given two subsets V1,V2 ⊆ V̂ and a V1-valuation
α, we denote the restriction of α to a (V1 ∩ V2)-valuation by α|V2

. Given two sub-

sets V1,V2 ⊆ V̂ , a V1-valuation α1 and a V2-valuation α2 with α1|V2
= α2|V1

, we
write α1 ∪ α2 to denote the (V1 ∪ V2)-valuation α with α|V1

= α1 and α|V2
= α2.

Given a subset V ⊆ V and a V-valuation α, we write α′ to denote the V ′-valuation with
α′(x′) = α(x) for all x ∈ V . Given a V-valuation α and a formula ϕ with free(ϕ) ⊆ V ,
we write α |= ϕ to denote that α satisfies ϕ. We write |= ϕ to denote that ϕ is valid.

To introduce the timed automata notion of clocks, we distinguish a sort Time, inter-
preted by the (non-negative) real numbers. Let Clocks ⊆ V be a set of time variables,
i. e., type(c) = Time for all c ∈ Clocks, which we call clocks. Let C ⊆ Clocks be a
set of clocks. Given two C-valuations α and β, a non-negative real number t ≥ 0 and a
subset of clocks X ⊆ C, we define α+β, α+ t, tα as the C-valuations that are obtained
by addition resp. multiplication of the clock values and α[X := 0] as the C-valuation
that assigns all clocks in X the value zero and leaves all other unchanged. We call a
formula ϕ ∈ L(C) convex if (1− t)α + tβ |= ϕ for all real numbers 0 ≤ t ≤ 1 and all
C-valuations α and β with α |= ϕ and β |= ϕ.

The events are modelled by a set Events ⊆ V of boolean variables, i. e., type(e) =
Bool for all e ∈ Events. However, here events are not modelled by changes of this

Model-Checking of Specifications Integrating Processes, Data and Time 471

variable, but the variable is true if the event occurs, false otherwise. Let E ⊆ Events
be a set of events. By χE, we denote the characteristic function of E, i. e., the mapping
from Events to UBool = B such that for all e ∈ Events, χE(e) = true iff e ∈ E. Note
that χE is an Events-valuation.

3.2 Formal Definition

A phase event automaton (PEA) is defined as a tupleA = (P,V,A,C,E, s, I,P0) of the
following components:

– P is a set of states (phases).
– V ⊆ V \ (Events ∪ Clocks) is a finite set of (state) variables.
– A ⊆ Events is a finite set of events.
– C ⊆ Clocks is a finite set of clocks.
– E ⊆ P×L(V ∪V ′∪A∪C)×P(C)×P is a set of edges. An edge (p1, g,X, p2) ∈ E

represents a transition from phase p1 to phase p2 under guard g. All clocks in X are
reset when this transition is taken.

– s : P → L(V) is a labelling function that associates each phase with a predicate
that must hold during this phase.

– I : P → L(C) is a function assigning to each phase a clock invariant that has to
hold while the automaton is in this phase.

– P0 ⊆ P is a set of possible initial phases.

We impose the extra requirements that

– for all p ∈ P, the clock invariant I(p) is convex, and
– for all p ∈ P, E contains a stuttering edge (p,¬e1 ∧ . . . ∧ ¬ek ∧ v1 = v′1 ∧ . . . ∧

vj = v′j ,∅, p) for some particular {e1, . . . , ek} ⊆ A, {v1, . . . , vj} ⊆ V .

To make the intuitive meaning of phase event automata precise we define the traces
of an automaton as sequences of variable and clock evaluations, time delays and com-
municated events. Let A = (P,V,A,C,E, s, I,P0) be a PEA. A state of A is a triple
(p, β, γ) of a phase p ∈ P, a V-valuation β and a C-valuation γ. A duration is a positive
real number. A run of A is an infinite sequence

〈(p0, β0, γ0), t0,Y0, (p1, β1, γ1), t1,Y1, . . .〉

alternating states (pi, βi, γi), durations ti and sets of events Yi ⊆ A such that the follow-
ing holds:

1. p0 ∈ P0.
2. For all c ∈ C, γ0(c) = 0.
3. For all i ≥ 0, βi |= s(pi).
4. For all i ≥ 0 and all 0 ≤ δ ≤ ti, γi + δ |= I(pi).
5. For all i ≥ 0 there is an edge (pi, g,X, pi+1) ∈ E such that

(a) βi ∪ β′
i+1 ∪ (γi + ti) ∪ χYi |= g and

(b) γi+1 = (γi + ti)[X := 0].

472 J. Hoenicke and P. Maier

We denote the set of runs by Run(A). We call a state (p, β, γ) reachable if there is a run
〈(p0, β0, γ0), t0,Y0, (p1, β1, γ1), t1,Y1, . . .〉 of A such that (p, β, γ) = (pi, βi, γi + δ)
for some i ≥ 0 and 0 ≤ δ ≤ ti. By Reach(A), we denote the set of reachable states of
A.

The stuttering edge (pi,¬e1 ∧ . . . ∧ ¬ek ∧ v1 = v′1 ∧ . . . ∧ vj = v′j ,∅, pi) is
required to make the definition invariant against stuttering. This simplifies the definition
of parallel composition, because automata can step synchronously.

Lemma 1. Let A be a PEA and r = 〈(p0, β0, γ0), t0,Y0, (p1, β1, γ1), t1,Y1, . . .〉 a
run of A. Then for all i ≥ 0, stuttering the i-th state in r yields another run of A;
more precisely for all 0 < δ < ti, replacing the subsequence 〈(pi, βi, γi), ti,Yi〉 in r by
〈(pi, βi, γi), δ,∅, (pi, βi, γi + δ), ti − δ,Yi〉 yields a run of A.

Given a run 〈(p0, β0, γ0), t0,Y0, (p1, β1, γ1), t1,Y1, . . .〉 of A, we call the infinite
sequence (β0, t0,Y0, β1, t1,Y1, . . .) a trace of A, i. e., a trace is a sequence alternating
V-valuations, durations and sets of events. By Trace(A), we denote the trace language
(i. e., set of traces) of A.

3.3 Parallel Composition

To build a larger system from multiple automata a parallel composition operator has to
be defined. Here, it also plays an important role in defining semantics for CSP-OZ-DC.
Each part is translated separately into an automaton and they are put in parallel. In [13]
the CSP and Object-Z part are joined by the CSP synchronised parallel operator and the
Duration Calculus part is joined with logical conjunction. To define equivalent seman-
tics with phase event automata the parallel composition is required to have the same
property. To achieve this, the automata are synchronised on both events and states: An
event that is in the alphabet of both automata may only be taken if both automata agree,
which is the same as CSP synchronisation. Likewise a variable of both automata may
only be changed if both automata allow it, which corresponds to logical conjunction.
The clocks need to be disjoint, so they do not interfere with each other. The parallel
composition A1 ‖ A2 of two automata A1 and A2, Ai = (Pi,Vi,Ai,Ci,Ei, si, Ii,P0i),
is the PEA A = (P,V,A,C,E, s, I,P0) defined as follows:

– P := P1 × P2. This is a standard product automata construction.
– V := V1 ∪ V2.
– A := A1 ∪ A2. The new alphabet is the union of the two alphabets.
– C := C1 ∪ C2 and C1 ∩ C2 = ∅. The clock set is the disjoint union of C1 and C2,

that is clocks that appear in both sets need to be renamed.
– s((p1, p2)) = s(p1) ∧ s(p2). The states are labelled with the conjunction of the

corresponding state predicates in A1 and A2.
– I((p1, p2)) = I(p1) ∧ I(p2). Likewise the clock invariant is the conjunction of the

clock invariants in A1 and A2.
– P0 := P01 × P02.
– The set of edges E contains ((p1, p2), g1 ∧ g2,X1 ∪ X2, (p′1, p

′
2)) for each two edges

(pi, gi,Xi, p′i) ∈ Ei, i = 1, 2 in the corresponding automataAi. Note that the stutter-
ing edges of one automaton allow the other automaton to do a step independently
from the first automaton. This is the reason why stuttering edges are required.

Model-Checking of Specifications Integrating Processes, Data and Time 473

This is a product automaton construction. Both automata must agree on the state space
and events must occur synchronously, therefore the state predicates and transition guards
are the conjunction of the predicates for the two automata. It is obvious from this defi-
nition that parallel composition is commutative (modulo renaming of phases) and that
it preserves the extra requirements of convexity and stuttering edges. The traces of the
parallel automaton are exactly those that are allowed by both automata:

Lemma 2. LetA1 andA2 be PEA. Then 〈β0, t0,Y0, . . .〉 ∈ Trace(A1 ‖A2) if and only
if 〈β0|V1

, t0,Y0 ∩ A1, . . .〉 ∈ A1 and 〈β0|V2
, t0,Y0 ∩ A2, . . .〉 ∈ A2.

This can be easily seen by comparing the runs of the three automata. This lemma sug-
gests the following verification method for properties that are satisfied if they hold for
every trace. To prove such a property for a system of automata A1 ‖ . . . ‖ An, one can
choose some automata that seem to be related to the property. The hope is that for this
small subsystem it is much easier to prove than for the full system. If the smaller sub-
system satisfies the property, the complete system does also, because it has only fewer
traces. Otherwise the model-checker gives a counterexample that can be examined. If
it is prevented by one of the remaining automata the automaton is added to the parallel
product and the model checking is repeated.

4 PEA Semantics for CSP-OZ-DC

In this section we will give semantics for CSP-OZ-DC based on phase event automata.
They are equivalent to the semantics given in [13]. The semantics is compositional: The
CSP, Object-Z and Duration Calculus part are translated separately into phase event
automata and then run in parallel. The semantics of the complete elevator specification
is

A(Elevator) = A(CSPElevator)‖A(OZElevator)‖A(DCElevator)

Translation of CSP. The translation of the CSP part to a phase event automaton is
straightforward. The operational semantics of CSP [17] is used to construct an equiva-
lent phase event automaton. The phases are labelled by CSP processes, the alphabet A is
the alphabet of main. There are no state variables V and no clocks C. For each transi-
tion p

a→ p′ of the operational semantics there is an edge (p, a ∧
∧

e∈A\{a} ¬e,∅, p′) ∈
E, which allows only event a and forbids all other events in the alphabet. For a τ tran-
sition p

τ→ p′ the corresponding edge is (p,
∧

e∈A ¬e,∅, p′) communicating no events.
And finally there is the stuttering edge (p,

∧
e∈A ¬e,∅, p) for every p ∈ P. The initial

phase is the phase corresponding to the main-process. Fig. 4 shows the phase event
automaton for the CSP process given in section 2.

Translation of Object-Z. The Object-Z part is translated into a two-phase automaton.
The initial phase restricts the state with the predicates in Init. This phase is connected
with the main phase by a single edge allowing no events or variable changes. The main
phase has one edge for each event that allows exactly this event, keeps all variables not
in the Δ-list constant, and restricts the variables in accordance with the communication
schema. Every phase further has the stuttering edge, disallowing all events and variable
changes.

474 J. Hoenicke and P. Maier

Translation of Duration Calculus. Despite their expressiveness it is possible to translate
each DC counterexample formula to a phase event automaton. The basic algorithm is
the same that is used for negating a finite automaton, namely the power set construction.
As defined in section 2, a counterexample formula consists of several phases phase1 ;
. . . ; phasen. The idea is to remember for each of these phases, whether the time interval
from the start of the system to the current time satisfies the formula

true ; phase1 ; . . . ; phasei, 1 ≤ i ≤ n

A phase of the PEA is labelled by a set of those phases of the counterexample, for
which the above formula holds. For a phase with a lower bound on its duration there is
an additional flag that signals if the above formula would only hold without the lower
bound. Each phase phasei with a time bound needs a clock ci that measures the duration
of the phase. Because only either an upper or a lower bound on the duration is allowed
it is obvious, when to reset those clocks (as often as possible for upper bounds; only
when we have to reenter the phase for lower bounds).

p0 (main)
true

p1

true
p2 (Drive)

truenewgoal
∧ ¬start
∧ ¬stop
∧ ¬passed

start
∧ ¬newgoal
∧ ¬stop
∧ ¬passed

stop ∧ ¬newgoal ∧ ¬start ∧ ¬passed

¬ . . . ¬ . . . ¬ . . .

passed
∧ ¬newgoal
∧ ¬start
∧ ¬stop

Fig. 4. Translation of CSP part

We implemented a tool that converts a counterexample formula into a phase event
automaton. Due to space limitations the algorithm cannot be explained in full detail
here. One of the resulting automata was already shown in Fig. 3. The automaton for the
other formula is given in [12].

5 A Constraint-Based Semantics for PEA

To give semantics for CSP-OZ-DC (and phase event automata) in a domain where
model-checking is possible, we use an “old-fashioned recipe for real-time” [1, 15]. The
runs are described by sequences of states, where each state gives the values of all vari-
ables for a given time interval. Lamport adds one variable to denote the time since the
start of the system. As we are not interested in absolute time, we have a variable len
instead, denoting the length of the time interval. Events are represented by changes of
Boolean variables as in section 2. Since we want to verify safety properties of phase
event automata using a discrete time model checker, we translate the automata into
discrete transition systems (with constraints) in such a way that the transition system
generate as runs exactly the above sequences of interval states.

Model-Checking of Specifications Integrating Processes, Data and Time 475

5.1 Transition Constraint Systems

A transition constraint system (TCS) T = (Loc,Var, Init,Trans) is a 4-tuple such that

– Loc is a set (of locations),
– Var ⊆ V is a finite set of unprimed (state) variables,
– Init : Loc → L(Var) assigns a (state) constraint to every location, and
– Trans : Loc × Loc → L(Var ∪ Var′) assigns a (transition) constraint to every pair

of locations.

We can view Init, which is a vector of state constraints, as vector of sets of initial states
of a transition system. Likewise, Trans is matrix of transition constraints, which can be
viewed as a matrix of relations between pre-states (valuations of the unprimed variables)
and post-states (valuations of the primed variables) of a transition system. See [12] for
examples of transition constraint systems.

We define the parallel composition T1 ‖ T2 of two transition constraint systems T1

and T2 (where Ti = (Loci,Vari, Initi,Transi), i = 1, 2) as the TCS T = (Loc1 × Loc2,
Var1 ∪ Var2, Init,Trans) such that for all locations (�1, �2), (�′1, �

′
2) ∈ Loc1 × Loc2,

– Init((�1, �2)) = Init1(�1) ∧ Init(�2), and
– Trans((�1, �2), (�′1, �

′
2)) = Trans1(�1, �′1) ∧ Trans(�2, �′2).

Let T = (Loc,Var, Init,Trans) be a TCS. A state of T is a pair (�, α) of a location
� ∈ Loc and a Var-valuation α. Taking states as vertices, the TCS T can be viewed
as a (potentially infinite) directed graph (where two states are connected by an edge
if they satisfy the respective transition constraint). This graph gives rise to the usual
notions of run and reachable state. Formally, a run of T is an infinite sequence of states
〈(�0, α0), (�1, α1), . . .〉 such that

1. α0 |= Init(�0), and
2. for all i ≥ 0, αi ∪ α′

i+1 |= Trans(�i, �i+1).

We call a state (�, α) reachable if there is a run 〈(�0, α0), (�1, α1), . . .〉 of T such that
(�, α) = (�i, αi) for some i ≥ 0. By Reach(T), we denote the set of reachable states of
T . As is easily seen, the notion of run is compatible with parallel composition.

Lemma 3. For TCS T 1 and T 2, 〈((�10, �20), α0), ((�11, �
2
1), α1), . . .〉 is a run of T 1 ‖ T 2

if and only if 〈(�10, α0|Var1), (�
1
1, α1|Var1), . . .〉 and 〈(�20, α0|Var2), (�

2
1, α1|Var2), . . .〉 are

runs of T 1 and T 2, respectively.

5.2 Translation of PEA to TCS

We now present a translation of a phase event automaton A = (P,V,A,C,E, s, I,P0)
into a transition constraint system T (A) = (Loc,Var, Init,Trans). There are two key
features of this translation. First, continuous transitions of the automaton (which are
implicit in the timed automata model) are translated into explicit discrete transitions.
Second, the distinction between state and event variables is given up in favour of state
variables; events are modelled by state change. To this end, we transform formulas
ϕ ∈ L(V) into formulas ϕ[e �≈ e′/e]e∈Events ∈ L(V ∪ Events′) by replacing each event
variable e ∈ Events with a disequation e �≈ e′. Furthermore, we introduce two auxiliary

476 J. Hoenicke and P. Maier

variables, disc of type Bool (indicating whether the next transition is a discrete one) and
len of type Time (recording the length of the time interval of a continuous transition).
These auxiliary variables are reserved specially for translating PEA to TCS, therefore
they may not be used by any PEA. Formally, the translation T (A) is given by:

– Loc = P.
– Var = V ∪ A ∪ C ∪ {len,disc}.
– For all p ∈ P,

Init(p) =

{
¬disc ∧

∧
c∈C c≈ 0 ∧ s(p) ∧ I(p) ∧ len > 0 if p ∈ P0,

false otherwise.

– For all p1, p2 ∈ P,

Trans(p1, p2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Inv(p2)
′ ∧

⎛
⎝Cont ∨

∨
(p1,g,X,p2)∈E

Disc(g, X)

⎞
⎠ if p1 = p2,

Inv(p2)
′ ∧

⎛
⎝ ∨

(p1,g,X,p2)∈E

Disc(g, X)

⎞
⎠ if p1 �= p2,

where the formulas Inv(p2), Cont and Disc(g,X) are given by:

Inv(p2) = len > 0 ∧ s(p2) ∧ I(p2)

Cont = ¬disc ∧ disc′ ∧
∧
c∈C

c′ ≈ c + len ∧
∧

x∈V∪A

x′ ≈ x

Disc(g,X) = disc ∧ ¬disc′ ∧ g[e �≈ e′/e]e∈Events ∧
∧
c∈X

c′ ≈ 0 ∧
∧

c∈C\X

c′ ≈ c

Here, Inv(p) expresses the invariant constraints (state and clock) associated with phase
p, Cont relates pre- and post-states in a continuous transition, and Disc(g,X) relates
pre- and post-states of a discrete transition (with guard g and resetting the clocks in X).
See [12] for samples of PEA translated to TCS.

5.3 Semantical Correctness of the Translation

We show that the translation T (A) of a PEA A preserves the semantics in the
sense that there is a correspondence between the runs of A and T (A). Given a
run r = 〈(�0, α0), (�1, α1), . . .〉 of the TCS T (A), we define an infinite sequence
rA = 〈(p0, β0, γ0), t0,Y0, (p1, β1, γ1), t1,Y1, . . .〉 such that for all i ≥ 0, pi = �2i,
βi = α2i|V , γi = α2i|C, ti = α2i(len) and Yi = {e ∈ A | α2i+1(e) �= α2i+2(e)}. As
the following theorem shows, this translation maps runs of the TCS T (A) to runs of
the PEA A. Furthermore, the translation is surjective, so for every run of A there is a
corresponding run of T (A). See [12] for a proof.

Theorem 4. Let A be a PEA and T (A) its TCS translation.

1. For all runs r of T (A), rA is a run of A.
2. For every run r of A there is a run r̂ of T (A) such that r̂A = r.

Model-Checking of Specifications Integrating Processes, Data and Time 477

Note that the proof of the first half of the theorem requires convexity of the clock in-
variants of the PEA. In fact, without convexity, T (A) might show runs that are artefacts
of the translation and do not correspond to runs of A.

As a corollary, we obtain a correspondence between the reachable states of A and
T (A), which justifies doing reachability analysis on the discrete system T (A) instead
of the timed automaton A. To state the correspondence formally, we translate a state
(�, α) of T (A) into a state (�, α)A = (�, α|V , α|C) of A. The corollary claims that this
translation is a surjective mapping from the reachable states of T (A) to the reachable
states of A; see [12] for a proof.

Corollary 5. Let A be a PEA and T (A) its TCS translation.

1. For all states (�, α) of T (A), if (�, α) ∈ Reach(T (A)) then (�, α)A ∈ Reach(A).
2. For all states (p, β, γ) of A, if (p, β, γ) ∈ Reach(A) then there is state (�, α) ∈

Reach(T (A)) such that (�, α)A = (p, β, γ).

Note that the translation of the reachable states of the TCS T (A) ignores variables
that are not state variables of the PEA A, i. e., the event variables in A and the auxiliary
variables disc and len. However, the reachable states of T (A) are not more informative
than the reachable states of A, because the values of the event variables are irrelevant
for reachability in T (A).

6 Model Checking TCS

We verify temporal properties of CSP-OZ-DC specifications by translating them to
transition constraint systems, which we can model check. In this paper, we confine
ourselves to the verification of state invariants, i. e., to checking whether a set of unsafe
states (violating the invariant) is reachable from the initial states. It is well known that
this implies the ability to verify arbitrary safety properties by augmenting the system
with suitable monitors or test-automata [6].

For verification, we decided to use the constraint-based model checker ARMC [18],
because its constraint solver can handle linear arithmetic over the reals, which is crucial
for our approach to real-time. The model checker takes as input a transition constraint
system and a set of unsafe states (given as a vector of constraints, like the initial states).
Going backwards from the unsafe states, it tries to determine whether the initial states
are reachable by alternating the following two steps.

1. Over-approximating the reachable states using predicate abstraction (w. r. t. a cur-
rent set of abstraction predicates) in order to disprove reachability, i. e., to prove the
invariant.

2. Under-approximating the reachable states using a bounded (yet precise) symbolic
backwards reachability analysis in order to prove reachability, i. e., to detect real
counterexamples (and to refine the set of abstraction predicates to exclude spurious
counterexamples).

In general, this abstraction-refinement loop may not terminate. However, in practice it
does terminate on numerous examples after a small number of iterations.

478 J. Hoenicke and P. Maier

We would like to stress that the effectiveness and the performance of the model
checker crucially depend on the constraints in the input. Both steps in the abstraction-
refinement loop, computing a predicate abstraction and doing a symbolic reachability
analysis, require to decide satisfiability of formulae in L. Therefore, L should be a
decidable class of constraints, e. g., linear arithmetic over the integers and reals as in
our case study. Moreover, the solver for L should be performant in practice, since one
run of the model checker may trigger thousands of calls to the solver.

6.1 Verification of the Case Study

To demonstrate our approach, we verified that our parameterised elevator never drives
below the lowest or above the highest floor, i. e., we verified the invariant

Min ≤ current ≤ Max . (1)

In order to model check, we translated the CSP-OZ-DC specification according to sec-
tion 4 into a parallel product of four PEA, one for the CSP part, one for the OZ part
and one for each DC formula. As described in section 5, each PEA was translated to
a TCS; see [12] for the details. The parallel composition of these TCS together with
the negation of the invariant were fed into the model checker ARMC, which proved
the invariant in about 2 minutes4 with two iterations of the abstraction-refinement loop.
Recall that the CSP-OZ-DC specification as well as the invariant were parameterised
by the symbolic constants Min and Max. Thus, we have verified the invariant for all
elevators that are instances of the specification, independent of the actual size the state
space of those instances.

Note that even the simple invariant (1) is a real-time property, despite it does not
contain timing constraints. However, the invariant does depend on the timing constraints
enforced by the DC formulas; in fact, erasing any of the two DC formulas from the
CSP-OZ-DC specification causes (1) to be violated, which ARMC can demonstrate
with counterexample traces in less than 20 seconds.

7 Conclusion

We presented a technique to model-check a combined specification written in CSP-OZ-
DC by translating it into phase event automata. The semantics of CSP-OZ-DC used
here is equivalent to the original one given in [13], however, it is defined in a different
way. The three parts of the specification are separately translated into phase event au-
tomata, which are then joined by parallel composition. These automata have the notion
of events, data variables and clocks, which allows to represent these concepts without
encoding. Their special parallel composition is equivalent to CSP synchronised par-
allel composition and logical conjunction in Object-Z and Duration Calculus. These
automata are further translated into transition constraint systems that are then checked
by a constraint-based model-checker using the abstraction-refinement paradigm. The

4 Measured on a standard Linux PC (2.6 GHz Pentium 4, 512 MB RAM).

Model-Checking of Specifications Integrating Processes, Data and Time 479

model-checker can work with symbolic values, thus admits checking parameterised
specifications.

7.1 Related Work

In [13] we already presented a model-checking algorithm using the model-checker Up-
paal for timed automata. However, it could only handle a very restricted set of Duration
Calculus that could not refer to state variables. Also it could only handle finite system.

In [7] a translation from TCOZ, a combination of Timed-CSP and Object-Z, to
Timed Automata is presented. In TCOZ timing behaviour is not separated but mixed
with the CSP part and the translation closely follows the structure of the Timed-CSP
part. This approach lacks support for infinite data.

A bounded model-checking (BMC) approach for checking validity of dense-time
Duration Calculus was first presented in [8] and is the basis for the tool IDLVALID [19].
However, BMC can only find counter-examples upto a given length and also does not
support infinite data.

Closest to our model of phase event automata are the timed automata of Kronos [24],
which use the same model of clocks and the same synchronisation on events but lack
the data part, and phase automata [23], where the idea of synchronisation over states
is taken from. In many other automata models, e.g., state charts, there is a shared data
space in the form of global variables, that can be read from and written to by any
component. This leads to unexpected side-effects though, for example, if a component
that writes to the variable is added later.

HyTech [2] can also check parameterised systems. However the approach used there
is complementary: HyTech finds the parameter values for which the system is safe,
while in our approach safety is checked for all possible parameters values. Also HyTech
can only have parameters in timing constraints.

There exist a number of other abstraction-refinement model checkers, for example
BLAST [10], MAGIC [4] and SLAM [3]. These model checkers are tailored to check
properties of sequential or multi-threaded imperative programs, often operating systems
code, and they generally deal well with arrays and linear arithmetic over the integers.
However, to our knowledge, none of the above model checkers supports reals, which
are essential for model checking real-time systems.

7.2 Future Work

Currently the model-checker can only check for reachability. We would like to use the
technique of test-automata [6] to reduce model-checking of DC-formulae to reacha-
bility. In this approach a parallel automaton checks the formula and reaches a certain
state if the formula is violated. We are currently researching the class of Duration Cal-
culus formulae that can be checked by this approach. It is even larger than the set of
counterexample formulae.

The above approach only allows safety properties. However, there exists an exten-
sion of ARMC, the model-checker used here, that allows to check liveness proper-
ties [16]. It can only check for fair termination, but with the idea of test automata it is
possible to check for liveness properties given in Duration Calculus extended by live-
ness [20].

480 J. Hoenicke and P. Maier

References

1. M. Abadi and L. Lamport. An old-fashioned recipe for real time. In Real-Time: Theory in
Practice, volume 600 of LNCS, pages 1–27. Springer, 1992.

2. R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded sys-
tems. IEEE Trans. Software Engineering, 22:181–201, 1996.

3. T. Ball and S. K. Rajamani. The SLAM toolkit. In CAV’01, pages 260–264. Springer, 2001.
4. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software com-

ponents in C. In ICSE’03, pages 385–395, 2003.
5. G. Delzanno and A. Podelski. Model checking in CLP. In TACAS’99, pages 223–239, 1999.
6. H. Dierks and M. Lettrari. Constructing test automata from graphical real-time requirements.

In FTRTFT’02, volume 2469 of LNCS, pages 433–454, 2002.
7. J.S. Dong, P. Hao, S.C. Qin, J. Sun, and W. Yi. Timed patterns: TCOZ to timed automata. In

ICFEM’04, volume 3308 of LNCS, pages 483–498. Springer, 2004.
8. M. Fränzle. Take it NP-easy: Bounded model construction for duration calculus. In

FTRTFT’02, volume 2469 of LNCS, pages 234–264. Springer, 2002.
9. S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. In CAV’97, pages

72–83, 1997.
10. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL’02, pages

58–70. ACM Press, 2002.
11. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
12. J. Hoenicke and P. Maier. Model-checking of specifications integrating processes, data and

time. Technical Report 5, SFB/TR 14 AVACS, http://www.avacs.org/, 2005.
13. J. Hoenicke and E.-R. Olderog. Combining specification techniques for processes data and

time. In IFM’02, volume 2335 of LNCS. Springer, May 2002.
14. J. Hoenicke and E.-R. Olderog. CSP-OZ-DC: A combination of specification techniques for

processes, data and time. Nordic Journal of Computing, 9(4), 2002.
15. L. Lamport. The temporal logic of actions. ACM TOPLAS, 16:872–973, 1994.
16. A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair termination. In

POPL’05, pages 132–144. ACM Press, 2005.
17. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
18. A. Rybalchenko. A model checker based on abstraction refinement. Master’s thesis, Univer-

sität des Saarlandes, Saarbrücken, Saarland, September 2002.
19. B. Sharma, P.K. Pandya, and S. Chakraborty. Bounded validity checking of interval duration

logic. In TACAS’05, volume 3440 of LNCS, pages 301–316. Springer, 2005.
20. J. U. Skakkebæk. Liveness and fairness in duration calculus. In CONCUR’94, pages 283–

298, 1994.
21. G. Smith. The Object-Z Specification Language. Kluwer Academic Publisher, 2000.
22. J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall International Series in

Computer Science, 2nd edition, 1992.
23. J. Tapken. Model-Checking of Duration Calculus Specifications. PhD thesis, University of

Oldenburg, June 2001.
24. S. Yovine. Kronos: A verification tool for real-time systems. International Journal of Soft-

ware Tools for Technology Transfer, 1(1+2), October 1997.
25. C. Zhou and M.R. Hansen. Duration Calculus: A Formal Approach to Real-Time Systems.

EATCS: Monographs in Theoretical Computer Science. Springer, 2004.
26. C. Zhou, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. Information Processing

Letters, 40(5):269–276, 1991.

Automatic Symmetry Detection for Model
Checking Using Computational Group Theory

A.F. Donaldson	 and A. Miller

Department of Computing Science,
University of Glasgow,

Glasgow, Scotland
{ally, alice}@dcs.gla.ac.uk

Abstract. We present an automatic technique for the detection of struc-
tural symmetry in a model directly from its Promela specification. Our
approach involves finding the static channel diagram of the model, a
graphical representation of channel-based system communication; com-
puting the group of symmetries of this diagram; and computing the
largest possible subgroup of these symmetries which induce automor-
phisms of the underlying model. We describe a tool, SymmExtractor,
which, for a given model and LTL property, uses our approach to find
a group of symmetries of the model which preserve the property. This
group can then be used for symmetry reduction during model check-
ing using existing quotient-based methods. Unlike previous approaches,
our method can detect arbitrary structural symmetries arising from the
communication structure of the model.

Keywords: Promela/SPIN; symmetry reduction; model checking; com-
municating processes; distributed systems; formal modelling; GAP; con-
currency.

1 Introduction

Model checking [5] is an increasingly popular technique for the formal verification
of concurrent systems. The application of model checking is limited due to the
state-space explosion problem—as the number of components represented by a
model increases, the size of the associated state-space grows exponentially. As
such, models of realistic systems are often too large to feasibly check. Symmetry
reduction techniques [3, 7, 15] can be used to combat this problem for models
of systems with many replicated components. Symmetry in a system can result
in portions of the state-space of a model of the system being equivalent up to
rearrangement of component ids. If symmetry is known to be present in a model
then model checking of certain properties can be performed over a quotient state-
space, which is generally smaller than the full state-space of the model. Most

� Supported by the Carnegie Trust for the Universities of Scotland.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 481–496, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

482 A.F. Donaldson and A. Miller

work on exploiting symmetry during model checking assumes that symmetries
of a model are either known a priori [7], or are coded into the model through
the use of special keywords [3, 15]. Both approaches require the modeller to
provide information on the presence of symmetry in a model. This is potentially
error prone, and compromises the automation of model checking, which is one
of its main strengths as a verification technique. The challenge of automatic
symmetry detection is to infer symmetries of the state-space underlying a model
without explicitly constructing the state-space. The inferred symmetries must
be guaranteed to be valid, otherwise the results of symmetry-reduced model
checking are untrustworthy.

In this paper we present a method for the automatic detection of symmetry
directly from the source code of a model, requiring no additional input from
the user. Our approach applies to models written using the Promela specifica-
tion language (used as input to the SPIN model checker [14]). Given a Promela
model, generators for a group of candidate symmetries are found by analysing
the static channel diagram of the model. These generators are checked indi-
vidually against the model to see if they induce valid automorphisms of the
underlying state-graph. Starting with the set of candidate generators which are
valid, the largest possible subgroup of candidate symmetries which are all valid
is computed. Unlike previous approaches to specifying symmetry using scalarsets
[3, 15], our method can detect arbitrary structural symmetries arising from the
communication structure of a model. A scalarset can only be used to specify
full symmetry between a set of components of a model. The symmetry group
computed using our approach is, by construction, an invariance group for a
specified linear temporal logic (LTL) formula (contained within the Promela
model). As such, the group can be used safely for symmetry reduction during
model checking. Static channel diagrams were introduced in previous work [11].
The significant additional contributions of this paper include some detailed the-
oretical results to determine valid automorphisms, and the implementation of
our approach via a tool, SymmExtractor, which makes use of the computational
group theory package GAP [13]. We provide experimental results for a variety of
models, and discuss how our approach can be extended. We conclude by briefly
discussing some of the issues which will be involved in future work, implementing
symmetry reduction techniques into SPIN based on our approach to symmetry
detection.

2 Preliminaries

Model checking involves checking the correctness of a temporal logic formula
φ over a Kripke structure M = (S,R,L, s0) and a set of atomic propositions
AP , where S is a finite set of states, R ⊆ S × S is a total transition relation,
L : S → 2AP labels each state with the propositions that are true at the state,
and s0 ∈ S is an initial state. The Kripke structure M represents a model of a
concurrent system. In practice M is obtained from a high level specification P
written in a language such as Promela [14].

Automatic Symmetry Detection for Model Checking 483

2.1 Promela

Promela (Process meta language) is a high level specification language for mod-
elling concurrent, distributed systems, and Promela programs are used as input
to the SPIN model checker [14]. A Promela program consists of a series of proc-
type definitions, global variable and channel declarations, an init process (used
to initialise the model), and (optionally) a never claim process (used to verify a
LTL formula). A proctype defines a parameterised process type, of which multi-
ple copies can be instantiated by the init process. A proctype definition has the
form proctype name(param_list) {body}. The body of a proctype consists of
local variable declarations, as well as expressions and statements over local and
global variables, and channels. A statement of the form

if :: seq_1
:: seq_2

...
:: seq_m

fi

is used to model nondeterministic branching (branching in which any executable
sequence seq_i may be chosen). Similarly, a do...od statement is used to model
repeated nondeterministic branching.

Global variables, and variables local to a proctype can be declared of type
bit, byte, short, int, pid, chan, or mtype. A variable of type chan refers to a
system channel, which has the form [x] of {field_1,field_2,...,field_m},
where x ≥ 0 is the capacity of the channel, m > 0 is the number of fields
which a message must contain to be sent on the channel, and for 1 ≤ i ≤ m,
field i ∈ {bit, byte, short, int, pid, chan,mtype} specifies the type of the ith field
of a message. A send operation on channel c is denoted c!msg, where msg is a
list of values or variables, one for each field of the message. Similarly, a receive
operation on channel c is denoted c?msg. Variables of type pid should only be
assigned values that correspond to the instantiation number (process id) of an
executing process. Each process has a predefined, read-only, local variable pid
which stores its instantiation number The value 0 may be used as a default value
for variables of type pid. This is the instantiation number of the init process.

In this paper we consider models where all processes are instantiated simul-
taneously by the init process, and where processes do not themselves instantiate
child processes (we discuss the implications of this in Section 5.5). In such models
the init process has the form

init { atomic { run proctypename_1(params_1);
... run proctypename_m(params_m) } }

The keyword atomic ensures that the statements enclosed in the pair of braces
immediately following the keyword are executed in sequence as a single transition
of the system (provided that the statements do not block). In a Promela model,
the init process is assigned process id 0 by default, and the other processes are
assigned process ids in order, starting from 1. Two processes have the same

484 A.F. Donaldson and A. Miller

chan box_1 = [1] of {pid,pid}; chan box_2 = [1] of {pid,pid};
chan box_3 = [1] of {pid,pid}; chan box_4 = [1] of {pid,pid};
chan box_5 = [1] of {pid,pid}; chan network = [5] of {pid,pid};
pid received_from

proctype mailer(chan in) {
 pid source, dest;
 pid blocked_client = 3;
 chan out;
 do :: in?source,dest;
 if :: source==blocked_client -> skip
 :: else ->
 if :: dest==1 -> out = box_1 :: dest==2 -> out = box_2
 :: dest==3 -> out = box_3 :: dest==4 -> out = box_4
 :: dest==5 -> out = box_5
 fi;
 out!source,dest
 fi
 od
}

proctype client(chan in) {
 pid source, dest;
 do :: in?source,dest; assert(dest==_pid); received_from = source
 :: atomic { nfull(network) -> source = _pid;
 if :: dest = 1 :: dest = 2 :: dest = 3 :: dest = 4 :: dest = 5 fi;
 network!source,dest }
 od
}

init {
 atomic {
 run client(box_1); run client(box_2); run client(box_3);
 run client(box_4); run client(box_5); run mailer(network)
 }
}

never { /* !([] (received_from!=3)) */
T0_init:
 if :: (! (received_from!=3)) -> goto accept_all
 :: (1) -> goto T0_init
 fi;
accept_all: skip }

(1)

(2)

(3)

(4)

(5)

Fig. 1. Promela model of an email system

process type if they are instantiations of the same proctype. To verify an LTL
property, SPIN converts the negation of the property into a Büchi automaton,
expressed as a never-claim. A never-claim is an additional process in the Promela
model, specifying system behaviour that should never occur [14], i.e. behaviour
which violates the given property.

Figure 1 shows Promela code for a model of an email system, adapted from
[4]. The system consists of 5 instantiations of a parameterised client process,
running in parallel with a mailer process. The client processes can send messages
to each other via the mailer process, but all messages sent by the process with
id 3 are blocked by the mailer process. Labels (1)—(5) have been added to the
code for explanatory reasons and should otherwise be ignored. An example LTL
property of interest for this model is:

Automatic Symmetry Detection for Model Checking 485

Property 1. [](received from �= 3)

which states that no client ever receives a message from client 3. Note that
received from is a global variable which is reset by a client process each time
a message is received. The never-claim for Property 1 has been included at the
end of the Promela code shown in Figure 1. As properties are included within
the model in this way, the automorphism groups computed by our approach to
symmetry detection are, by construction, property preserving (see Section 2.2).

Let P be a Promela program. Let Loc be the set of local variables, Glob
the set of global variables, and Chan the set of channels of P. Let D be the
set of data values for the program. To denote a local variable of a process with
process id i we write xi where x is the name of the variable. For example, in the
email example, sourcei denotes the local variable source of a client process with
process id i. If xi is a local variable of process i, and if processes i and j have
the same process type, then xj is the corresponding local variable of process j.

We now define the set AP of atomic propositions for a Promela program.
Let APlocal = {(xi = val) : xi ∈ Loc, val ∈ D}, the set of propositions relating
to local variables, and define APglobal and APchannel, the set of propositions
relating to global variables and channels respectively, similarly. Then AP =
APlocal ∪APglobal ∪APchannel. The underlying Kripke structure M over AP for
the program P is generated by exploring all possible behaviours of P. States of
M are uniquely identified by a labelling of atomic propositions, and transitions
between states are derived from the statements of the program. Note that each
process in P has its own program counter variable which indicates the statements
which may be executed in the next transition. Thus two states, for which all other
variables are assigned identical values, may be distinguished due to assignments
of the associated program counters.

We say that two programs P1 and P2 are equivalent, and write P1 ≡ P2,
if they are the same up to rearrangement of: options in if...fi and do..od
statements; operands to commutative operators; and run statements within the
init{atomic{...}} block. Equivalent programs have identical behaviour, and
thus the underlying Kripke structures for equivalent programs are the same.

2.2 Group Theory and Symmetry in Model Checking

Let G be a group, and let α1, α2, . . . , αn ∈ G. The smallest subgroup of G
containing the elements α1, . . . , αn is denoted 〈α1, α2, . . . , αn〉, and is called the
subgroup generated by α1, α2, . . . , αn. The elements αi (1 ≤ i ≤ n) are called
generators for this subgroup. Let X = {α1, . . . , αn} be a finite subset of G. Then
we use 〈X〉 to denote 〈α1, . . . , αn〉, the subgroup generated by X.

Let H be a subgroup of G, and let α ∈ G. The set Hα = {βα : β ∈ H} is
called a right coset of H in G. The set of all right cosets of H in G partitions G
into disjoint equivalence classes. In particular, for α ∈ H, we have Hα = H [16].

Let M = (S,R,L, s0) be a Kripke structure. An automorphism of M is a
bijection α : S → S which satisfies the following conditions:

486 A.F. Donaldson and A. Miller

– ∀s, t ∈ S, (s, t) ∈ R⇒ (α(s), α(t)) ∈ R,
– α(s0) = s0

In a model of a concurrent system with many replicated processes, Kripke struc-
ture automorphisms usually involve the permutation of process identifiers of
identical processes throughout all states of a model. The set of all automorphisms
of the Kripke structure M forms a group under composition of mappings. This
group is denoted Aut(M). A subgroup G of Aut(M) induces an equivalence
relation ≡G on the states of M thus: s ≡G t ⇔ s = α(t) for some α ∈ G. The
equivalence class under ≡G of a state s ∈ S, denoted [s], is called the orbit of
s under the action of G. The orbits can be used to construct a quotient Kripke
structure MG as follows:

Definition 1. The quotient Kripke structure MG of M with respect to G is a
tuple MG = (SG, RG, LG, [s0]) where:

– SG = {[s] : s ∈ S} (the set of orbits of S under the action of G),
– RG = {([s], [t]) : (s, t) ∈ R},
– LG([s]) = L(rep([s])) (where rep([s]) is a unique representative of [s]),
– [s0] ∈ SG (the orbit of the initial state s0 ∈ S).

In general MG is a smaller structure than M, but MG and M are equivalent in
the sense that they satisfy the same set of logic properties which are invariant
under the group G (that is, properties which are “symmetric” with respect to
G). For a proof of the following theorem, together with details of the temporal
logic CTL∗, see [5].

Theorem 1. Let M be a Kripke structure, G a subgroup of Aut(M) and φ a
CTL∗ formula. If φ is invariant under the group G then

M, s |= φ⇔MG, [s] |= φ

Thus by choosing a suitable symmetry group G, model checking can be per-
formed over MG instead of M, often resulting in considerable savings in mem-
ory and verification time [3, 7]. Consider Property 1 for our email example. The
property explicitly refers to the id of client 3, so an invariance group for this
property is any subgroup of Aut(M) which fixes client 3.

If automorphisms of a Kripke structure can be identified in advance, then
a quotient structure can be incrementally constructed using an algorithm given
in [15]. This means that it may be possible to construct the quotient structure
even if the original structure is intractable. In the next section we show that
symmetries of the Kripke structure associated with a Promela program can be
detected by analysing the static channel diagram of the program.

3 Finding Automorphisms via Static Channel Diagrams

In this section we define the static channel diagram C(P) associated with a
Promela program P, and show how automorphisms of the corresponding Kripke
structure M can be obtained by finding the automorphisms of C(P).

Automatic Symmetry Detection for Model Checking 487

box_5box_4box_3box_2box_1

client_1 client_2 client_3 client_4 client_5

network

mailer_6
[5] of {pid,pid}

[1] of {pid,pid}

Key to channel types:

init_0

Fig. 2. Channel diagram of the message passing model

3.1 Static Channel Diagrams

Let P be a Promela program. A static channel of P is a channel which is declared
globally, out of the scope of any proctype definition. Let VP be the set of process
identifiers for P, and let VC be the set of names of static channels of P. For
i ∈ VP let proctype(i) be the name of type proctype of which process i is an
instantiation, and for i ∈ VC let chantype(i) denote the type of channel i (see
Section 2.1).

Definition 2. The static channel diagram of P is a coloured, bipartite digraph
C(P) = (V,E,C), where:

– V = VP ∪ VC ;
– For i ∈ VP , j ∈ VC , (i, j) ∈ E iff process i has a send statement j!msg,

(j, i) ∈ E iff process i has a receive statement j?msg;
– For x ∈ V , C(x) = proctype(x) if x ∈ VP , and C(x) = chantype(x) if
x ∈ VC .

The static channel diagram of a program represents the potential communication
links that can be detected from the program by considering only static channels.
Figure 2 illustrates the static channel diagram for the email model of Figure 1.
Processes are represented by ovals and channels by rectangles. The type of a
process is indicated by the name preceding its process id in the diagram. The
type of a channel is indicated by the shading of the rectangle. Note that although
the mailer process sends messages to the client processes, it does so using its
local channel, out, which is not a static channel. Thus this communication is not
indicated in the static channel diagram.

An automorphism of the static channel diagram C(P) is a bijection α : V → V
which satisfies the following conditions:

– ∀i, j ∈ V, (i, j) ∈ E ⇒ (α(i), α(j)) ∈ E
– ∀i ∈ V, C(i) = C(α(i))

488 A.F. Donaldson and A. Miller

Note that the second condition ensures that channels can only be mapped on to
one another if they have the same capacity. It can be shown that the set of auto-
morphisms of a static channel diagram C(P) forms a group under composition of
mappings. We denote this group Aut(C(P)). Although our technique exploits the
static communication declared within a Promela model, dynamic communication
(in which messages are passed on channels whose names are received by other
processes during program execution) which cannot be determined statically, is
still permissible. This is because, if processes i and j are otherwise shown to
be symmetrically equivalent (via static analysis), any dynamic communication
involving process i will be reflected by corresponding dynamic communication
involving process j.

Consider the static channel diagram for our email example, shown in Fig-
ure 2. Let α = (1 2)(box 1 box 2), the mapping which swaps client 1 with
client 2, and simultaneously swaps box 1 with box 2 in the diagram. Clearly
α is an automorphism of C(P). In fact any permutation of the client pro-
cesses and their incoming channels which leaves box i connected to client i is
an automorphism of C(P). The group Aut(C(P)) can be generated by the set
{(1 2)(box 1 box 2), (2 3)(box 2 box 3), (3 4)(box 3 box 4), (4 5)(box 4 box 5)}.

We now show how the elements of Aut(C(P)) act on the source text of the
Promela program P, and on the Kripke structure underlying the program.

3.2 Action of Aut(C(P)) on P
Let P be a Promela program with static channel diagram C(P), let n > 0
be the number of processes instantiated by P, and let α ∈ Aut(C(P)). The
program α(P) is the same as P, except that every applied occurrence of a static
channel name c is replaced by the static channel name α(c), and every assignment
statement of the form x = val, boolean expression of the form x == val or
val == x, where type(x) = pid and val ∈ {1, . . . , n}, is replaced by x = α(val),
x == α(val) or α(val) == x respectively.

Consider the element α = (1 2)(box 1 box 2) ∈ Aut(C(P)) where P is our
email example. Applying α to the code given in Figure 1 results in an identi-
cal program, except for the ordering of the options at labels (2) and (3), and
the ordering of the run statements at label (4). Therefore P ≡ α(P). If we
take the element α = (2 3)(box 2 box 3) then the programs P and α(P) are
not equivalent, since the statement blocked client = 3 in P shown at label (1)
of Figure 1 is replaced by the statement blocked client = 2 in α(P). Neither
statement appears in both programs. Similarly, applying α to the expression
(!(received from ! = 3)) shown at label (5) of Figure 1 results in the expression
(!(received from ! = 2)). This inconsistency between P and α(P) shows that
the given LTL property is not invariant under α.

For an element α ∈ Aut(C(P)), we say that α is valid (for P) if α(P) ≡ P.
We say that a subgroup H of Aut(C(P)) is valid (for P) if every α ∈ H is valid.

3.3 Action of Aut(C(P)) on M
For an element α ∈ Aut(C(P)) we define a corresponding mapping α∗ which
is a permutation of the Kripke structure M underlying P. For any s ∈ S, let

Automatic Symmetry Detection for Model Checking 489

L(α∗(s)) = {α(p) : p ∈ L(s)}. For a proposition p ∈ AP , the proposition α(p) is
defined as follows:

If p = (xi = val) ∈ APlocal for some xi ∈ Loc, and type(xi) ∈ {pid, chan}
then α(p) = (xα(i) = α(val)), otherwise α(p) = (xα(i) = val). If p = (x = val) ∈
APglobal for some x ∈ Glob, and type(x) ∈ {pid, chan} then α(p) = (x = α(val)),
otherwise α(p) = p. If p = (c[i] = msg) ∈ APchannel for some c ∈ Chan, i.e.
msg is at position i on channel c, then α(p) = (α(c)[i] = α(msg)). Here α acts
on msg by permuting the value of each field of msg which has type pid or chan,
and leaving all other fields unchanged.

The following theorem shows that in certain cases the permutation α∗ of M
defined by an element α ∈ Aut(C(P)) is an automorphism of M.

Theorem 2. Let P be a Promela program with static channel diagram C(P)
and associated Kripke structure M. Let α ∈ Aut(C(P)). If α is valid for P then
α∗ ∈ Aut(M).

For a proof of this theorem see [11]. The theorem shows that automorphisms of
the Kripke structure underlying a Promela program can be obtained by finding
symmetries of the static channel diagram for the program. Note that for any LTL
property φ under investigation, the never claim for φ is included with a model
(see Section 2.1). It follows that φ is invariant under all valid automorphisms
constructed in this way. Thus, by Theorem 1, the set of valid automorphisms is
suitable for checking the property φ over a quotient structure.

The static channel diagram of a program is typically a small graph which
can be easily extracted from the program. Additionally, checking for an ele-
ment α of Aut(C(P)) whether or not α(P) ≡ P, can be implemented effi-
ciently (see Section 5.2). Thus, using Theorem 2, it is possible to quickly ob-
tain a group of Kripke structure automorphisms, generated by the set {α∗ :
α ∈ S, α(P) ≡ P}, where S is the set of generators for Aut(C(P)). How-
ever, this group may not be as large as possible. Consider the generating set
for Aut(C(P)) given in Section 3.1, where P is the Promela description of the
email example. The generators (2 3)(box 2 box 3) and (3 4)(box 3 box 4) are
clearly not valid for P. Let G be the group generated by the remaining gener-
ators. Thus G = 〈(1 2)(box 1 box 2), (4 5)(box 4 box 5)〉. Consider the group
G′ = 〈(1 2)(box 1 box 2), (2 4)(box 2 box 4), (4 5)(box 4 box 5)〉. Each generator
of G′ is valid for P, and G ⊂ G′ since (2 4)(box 2 box 4) /∈ G. Thus G is not the
largest valid subgroup of Aut(C(P)).

4 Finding the Largest Valid Subgroup of Aut(C(P))

In this section we establish that, for a Promela program P, there is a unique,
largest valid subgroup of Aut(C(P)). We then present an algorithm to find this
subgroup. First we state some preliminary results, omitting the (very straight-
forward) proofs for space reasons.

Lemma 1. Let α, β ∈ Aut(C(P)). Suppose α and β are both valid for P. Then
αβ is valid for P.

490 A.F. Donaldson and A. Miller

Corollary 1. Let S be a set of generators for Aut(C(P)). Let S′ = {α ∈ S :
α is valid for P}. Then 〈S′〉 is valid for P.

Corollary 2. Suppose H ≤ Aut(C(P)) is valid for P. Let α ∈ Aut(C(P)), α /∈
H be valid for P. Then 〈H ∪ {α}〉 is valid for P.

Using Lemma 1 we can prove that there is a unique largest valid subgroup of
Aut(C(P)).

Theorem 3. There is a group K ≤ Aut(C(P)) such that K is valid for P, and
for any H ≤ Aut(C(P)) which is also valid for P, H ≤ K.

Proof. Let X be the set of all valid subgroups of Aut(C(P)). Since Aut(C(P))
is finite, Aut(C(P)) has a finite number of subgroups, therefore X is finite. Let
K = 〈

⋃
H∈X H〉. Since every generator of K is valid for P, it follows by Lemma 1

that K is valid for P. Clearly H ≤ K for every H ∈ X , i.e. H ≤ K for every
valid subgroup H of Aut(C(P)).

Our algorithm for finding the largest valid subgroup of Aut(C(P)) involves start-
ing with a known valid subgroup H of Aut(C(P)), and adding valid coset repre-
sentatives to the generators of H to obtain successively larger valid subgroups.
The following lemma is used to determine when the largest possible valid sub-
group has been found.

Lemma 2. Suppose H ≤ Aut(C(P)) and H is valid for P. Let {α1, α2 . . . , αk}
be a set of right coset representatives for H in Aut(C(P)), where α1 ∈ H, αi ∈
Aut(C(P)) \H for 2 ≤ i ≤ k and k = |Aut(C(P))|/|H|. Suppose α2, . . . , αk are
not valid for P. Then H is the unique largest valid subgroup of Aut(C(P)).

Proof. Let K be the unique, largest valid subgroup of Aut(C(P)). By Theorem 3,
H ≤ K. Suppose H ⊂ K. Then there exists α ∈ K with α /∈ H. So Hα is a
right coset of H in Aut(C(P)), Hα �= H, and αi ∈ Hα for some 2 ≤ i ≤ k. By
hypothesis, αi is not valid for P. However, Hα ⊆ K and αi ∈ Hα, so we have
αi ∈ K. This is a contradiction since K is valid for P. Hence H = K.

Algorithm 1 shows how the unique largest valid subgroup of Aut(C(P)) can be
computed.

Theorem 4. Algorithm 1 computes the largest valid subgroup of Aut(C(P)).

Proof. By Corollaries 1 and 2, the group H computed by Algorithm 1 is valid
for P. The group H is the largest subgroup of Aut(C(P)) which is valid for P
by Lemma 2.

We discuss the implementation and efficiency of Algorithm 1 in Section 5.3.

5 The SymmExtractor Tool

Given a Promela program P, the SymmExtractor tool finds the largest subgroup
of Aut(C(P)) which is valid for P. By Theorem 2 this group induces a group

Automatic Symmetry Detection for Model Checking 491

Algorithm 1 Algorithm to find the largest valid subgroup of Aut(C(P))
S := generators of Aut(C(P))
H := 〈{α ∈ S : α is valid for P}〉
C := representatives of right cosets of H in Aut(C(P)) except H
while C �= ∅ do

C := C \ {α}
if α is valid for P then

H := 〈H ∪ {α}〉
if |Aut(C(P))|/|H| < |C| then

C := representatives of right cosets of H in Aut(C(P)) except H
end if

end if
end while

of automorphisms of the underlying Kripke structure which can be used for
symmetry reduction while model checking.

Our tool parses a Promela model and stores its abstract syntax tree using a
set of Java classes generated by the SableCC compiler generation tool [12]. The
grammar for Promela given in [14] was used as input to SableCC, and the SPIN

source distribution was used to resolve ambiguities in this grammar.
SymmExtractor operates in four stages. In the first stage the given program

is type-checked to ensure that variables of type pid and chan are used appropri-
ately: for example that pid variables should only be assigned to, or compared
for equality with, other pid variables or values. These restrictions are similar
to those applied to variables of type scalarset in previous work on symmetry
[15]. In the second stage the static channel diagram C(P) is constructed. In the
third stage, the saucy program [9] is used to compute a set of generators for
Aut(C(P)). Finally each generator α is checked for validity. Using Algorithm 1,
the largest valid subgroup of Aut(C(P)) is computed.

5.1 Obtaining Static Channel Diagram Automorphisms from a
Promela Program

Extracting the static channel diagram from a Promela program is straightfor-
ward, and involves one pass over the abstract syntax tree. Each time a proctype
definition appears in the program, the formal names of outgoing and incom-
ing channels for that proctype are recorded. A new channel node is added to
the static channel diagram for each static channel in the program. For each
run statement, a new process node is added to the static channel diagram. The
formal parameters of the proctype for the new process are substituted for the
actual parameters provided in the run statement, and edges between processes
and channels are added to the channel diagram according to the substituted
outgoing and incoming channel names for the proctype.

Generators for Aut(C(P)) are computed using saucy [9]. The saucy program
has been specifically designed for finding automorphisms of sparse graphs which
correspond to instances of satisfiability problems. Since static channel diagrams
are relatively sparse, the performance of saucy is generally very good.

492 A.F. Donaldson and A. Miller

5.2 Checking the Validity of an Element of Aut(C(P))

Applying a channel diagram automorphism α to P as described in Section 3.2
is trivial. Determining whether or not P ≡ α(P) requires the use of a nor-
malisation function. Recall that programs P1 and P2 are equivalent if they are
identical up to rearrangement of: options in choice statements; operands to com-
mutative operators; and run statements within the init{atomic{...}} block.
The function normalise sorts the options in a choice statement, the operands
of a commutative operator, and the sequence of run statements of the init pro-
cess, using the natural ordering on strings. It is clear that if two programs are
equal after normalisation then they are equivalent. The notions of equivalence
and normalisation which we use here are basic but practical. It is easy to con-
struct an example of an obscure program P such that an element α ∈ Aut(C(P))
would not be deemed valid for the program, but would actually induce a valid
automorphism of the Kripke structure for the program. However, for all Promela
programs our lightweight approach to checking symmetries is safe and very fast,
and is sufficient for sensibly written programs.

Checking the validity of an element α against P involves two passes over the
abstract syntax tree for the program: one to apply the permutation, and one
to normalise the program after the symmetry has been applied. The original
program only needs to be normalised once when checking a set of generators.

5.3 Using GAP to Compute the Largest Valid Subgroup

The computational group theory package GAP is used to implement Algorithm 1.
The Java and GAP components of the tool communicate using redirected stan-
dard input and output. Given a group G and a subgroup H of G, GAP provides
a function to efficiently compute right coset representatives of H in G. The num-
ber of generators of Aut(C(P)) is typically small, and so initial generators for
the valid group H are found quickly by checking each generator of Aut(C(P))
for validity against the program P.

The algorithm performs badly if the initial group H is small, and Aut(C(P))
is very large. In such cases the number of right coset representatives to consider
is, in the worst case, |Aut(C(P))|/|H|. Our implementation includes a heuristic
which can be applied to try to combat this problem. If the size of the initial valid
subgroup H can be increased, fewer coset representatives need to be considered.
An initial approach involved taking a set X of random elements of Aut(C(P))\H
and checking the validity of each element of X against P, adding the valid ones
to the generators of H. However, when Aut(C(P)) is large, the probability of a
random element being valid for P may be small. In this case a better approach
is, for each β ∈ X and each generator α of H, to check the validity of the
element β−1αβ (the conjugate of α by β), adding each valid element β−1αβ to
the generators of H. Adding random conjugates to the generators of H works
well in practice, because discarding invalid generators of Aut(C(P)) may result
in a group which can permute disjoint sets of processes and channels, but cannot
permute processes/channels which are in different sets. For example, if P is the
email model, we found in Section 3.3 that the valid generators of Aut(C(P))

Automatic Symmetry Detection for Model Checking 493

are (1 2)(box 1 box 2) and (4 5)(box 4 box 5). The group generated by these
elements can swap processes 1 and 2, and processes 4 and 5 (similarly channels
box 1, box 2 and box 4, box 5), but cannot swap e.g. process 2 with process 4
and box 2 with box 4, even though this permutation is valid for P. The element
(2 4)(box 2 box 4) is a valid element of Aut(C(P)) which bridges the gap between
processes 1, 2 and 4, 5 (and their associated channels). While a random element
drawn from Aut(C(P)) is unlikely to bridge this gap, a random conjugate of
(1 2)(box 1 box 2) (for example) is more likely to do so, since a conjugate of
an element which exchanges two processes (and associated channels) will also
exchange two processes (and associated channels).

5.4 Applying SymmExtractor to the Email Example

Running SymmExtractor with our email example as input yields the following
output:
>symmextractor email.pml

Program is well typed.
Finding the static channel diagram C(P).
Computing the group Aut(C(P)) using saucy.

Aut(C(P)) = <(box2 box4)(2 4),(5 4)(box4 box5),(box2 box3)(3 2),(3 1)(box3 box1)>
H = <(box2 box1)(2 1),(5 4)(box4 box5),(box2 box4)(2 4)>

is a valid group for symmetry reduction.

The generators of Aut(C(P)) found by SymmExtractor agree with our discussion
in Section 3.1. Observe that the generator (2 3)(box 2 box 3) which we identified
to be unsuitable for symmetry reduction in Section 3.2 does not belong to the
group H of valid symmetries.

5.5 Extending SymmExtractor

As discussed in Section 2.1, our current approach only applies to models where
all processes are instantiated by the init process: processes do not themselves
instantiate child processes. Large classes of distributed systems can be mod-
elled without dynamic process creation, so this restriction is not too limiting.
However, the modelling of multi-threaded software applications often requires
dynamic processes to model dynamic thread creation. Extending our approach
to handle dynamic process creation will be challenging since the definition of a
static channel diagram assumes a constant set of running processes. (Note that
our approach can handle systems with dynamic communication structures, see
Section 3.1.)

SymmExtractor cannot detect data symmetries, which arise as a result of
indistinguishable data values in a protocol. We do not see this as a practical lim-
itation. It is common practice when designing a verification model to abstract
away from data [8] and to model only control messages. Indeed, a verification
model which allows a range of data values to be communicated between pro-
cesses, but for which the behaviour of processes is independent of the data values
communicated, is usually a badly designed model [14].

Structural symmetries arising due to channel-based communication are de-
tected by SymmExtractor. Promela also allows communication by shared vari-
ables. To capture symmetry between shared variables, the definition of a static

494 A.F. Donaldson and A. Miller

channel diagram can be extended to include additional nodes for shared vari-
ables. In this case we add an edge from a process node to a variable node for
each process that may write to the variable; and an edge from a variable node
to a process node for each process that may read from the variable. The group
Aut(C(P)) then indicates permutations of processes, channels, and shared vari-
ables which preserve the communication structure of the program P. The check
for validity described in Section 5.2 can be extended to deal with shared variables
in a straightforward manner, and the group-theoretic approach of Section 4 can
be used to find the largest valid subgroup of Aut(C(P)).

6 Experimental Results

We have tested SymmExtractor on a variety of Promela models of distributed
systems in addition to the email example described earlier. These models include:
a token ring network [18]; a client-server system with load balancing [2]; control
flow in a three-tiered architecture [18]; and a resource allocation system with
two priority levels [17]. Table 1 shows the time taken for symmetry detection
in each model, and the size of the resulting symmetry group. Experiments were
performed on a PC with a 2.4GHz Intel Xenon processor, 3Gb of available main
memory, running Linux (2.4.18), with GAP version 4.3. In all cases, the time
taken for symmetry detection would be an acceptable overhead before search.
All models have non-trivial symmetry groups of significant order. The theoret-
ical maximum factor of reduction which may be obtained through symmetry
reduction with a group G is |G|, since the orbit of a state s under G may have
at most |G| elements. The results of Table 1 show that the theoretical maximum
factors of reduction for the models we have tested are large, though the results
do not indicate the factors of reduction which will be achieved in practice.

There is no clear relationship between the time taken for symmetry detection
and the number of symmetries detected. This is because the approach to sym-
metry detection depends on the number of generators of Aut(C(P)) rather than
on the size of Aut(C(P)), and there is no direct relationship between the size of
a group and the size of its generating set. Symmetry detection for the resource
allocator example took longer than for the other models due to asymmetry in the
model resulting from priority levels. Applying our “random conjugates” heuristic
for this model reduced the time for symmetry detection to 4.4s. The overhead
of launching GAP in each experiment was less than 1s.

Table 1. Symmetry detection results for some example models

model time (s) |G|
Token ring 2.52 10

Load balancer 2.70 432

Three-tiered 3.56 144

Resource allocator 7.44 576

Automatic Symmetry Detection for Model Checking 495

7 Related Work

The SymmSpin package [3] implements symmetry reduction techniques for SPIN

based on an approach using scalarsets [15]. Symmetry reduction techniques for
SPIN have also been implemented by adding extra keywords to the Promela lan-
guage [10]. Neither approach to symmetry reduction can automatically detect
symmetries of a model—the user needs to identify symmetry and annotate the
model to indicate what symmetry is present. Our approach to symmetry detec-
tion is fully automatic. Deriving symmetry from the communication structure
of a shared variable concurrent program is proposed, but not automated, in [6].
The idea of detecting symmetries by finding graph automorphisms has also been
applied to boolean satisfiability problems [1].

In certain cases, partial symmetries of a model can be safely exploited to
combat state-explosion during model checking [17]. Our tool cannot currently
detect these partial symmetries.

8 Conclusions and Future Work

We have described an approach for detection of structural symmetry in Promela
models, and presented a tool, SymmExtractor, to detect these symmetries auto-
matically. Although our approach is specific to models specified in Promela, it
can clearly be generalised to any graph-based modelling method.

Future work includes the implementation of symmetry reduction techniques
based on these structural symmetries for the SPIN model checker. Although
symmetry reduction packages for SPIN exist [3, 10], they are limited with respect
to the kinds of symmetry they can exploit. Since our detection method can
handle systems with arbitrary structural symmetries, it will be necessary to
write a new symmetry reduction package for SPIN. In particular, techniques
for efficiently computing orbit representatives during model checking will be
required for arbitrary symmetry groups. The SymmSpin tool [3] makes use of
various heuristics in systems where there is full symmetry between components.
We plan to use a computational group theory package such as GAP to classify the
symmetry group of a model so that a suitable heuristic for symmetry reduction
can be chosen.

Acknowledgments

The authors would like to thank Simon Gay, Warwick Harvey and Colva Roney-
Dougal for their useful comments on this work.

References

1. F. Aloul, A. Ramani, I. Markov, and K. Sakallah. Solving difficult SAT instances
in the presence of symmetry. IEEE Transactions on Computer Aided Design,
22(9):1117–1137, 2003.

496 A.F. Donaldson and A. Miller

2. J. Balasubramanian, D. Schmidt, L. Dowdy, and O. Othman. Evaluating the
performance of middleware load balancing strategies. In EDOC’01, pages 135–
146. IEEE Computer Society Press, 2004.

3. D. Bosnacki, D. Dams, and L. Holenderski. Symmetric Spin. International Journal
on Software Tools for Technology Transfer, 4(1):65–80, 2002.

4. M. Calder and A. Miller. Generalising feature interactions in email. In Feature
Interactions in Telecommunications and Software Systems VII, pages 187–205. IOS
Press, 2003.

5. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
6. E. Clarke, E. Emerson, S. Jha, and A. Sistla. Symmetry reductions in model-

checking. In CAV’98, LNCS 1427, pages 147–158. Springer-Verlag, 1998.
7. E. Clarke, R. Enders, T. Filkhorn, and S. Jha. Exploiting symmetry in temporal

logic model checking. Formal Methods in System Design, 9(1–2):77–104, 1996.
8. E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. In

POPL’92, pages 343–354. ACM Press, 1992.
9. P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov. Exploiting structure

in symmetry detection for CNF. In DAC’04, pages 530–534. ACM Press, 2004.
10. F. Derepas and P. Gastin. Model checking systems of replicated processes with

Spin. In SPIN’01, LNCS 2057, pages 235–251. Springer-Verlag, 2001.
11. A. Donaldson, A. Miller, and M. Calder. Finding symmetry in models of concurrent

systems by static channel diagram analysis. In AVoCS’04, ENTCS 128(6), pages
161–177. Elsevier Science Publishers B.V, 2005.

12. E. Gagnon and L. J. Hendren. SableCC, an object-oriented compiler framework.
In TOOLS’98, pages 140–154. IEEE Computer Society Press, 1998.

13. The Gap Group. GAP–Groups Algorithms and Programming, Version 4.2. Aachen,
St. Andrews, 1999. http://www-gap.dcs.st-and.ac.uk/˜gap.

14. G. J. Holzmann. The SPIN model checker: primer and reference manual. Addison
Wesley, 2003.

15. C. Ip and D. Dill. Better verification through symmetry. Formal Methods in System
Design, 9:41–75, 1996.

16. J. Rose. A Course in Group Theory. Dover Publications, 1964.
17. A. P. Sistla and P. Godefroid. Symmetry and reduced symmetry in model checking.

ACM Transactions on Programming Languages and Systems, 25(4):702–734, 2004.
18. A. S. Tanenbaum and M. van Steen. Distributed Systems Principles and Paradigms.

Prentice Hall, 2002.

On Partitioning and Symbolic Model Checking

Subramanian Iyer1, Debashis Sahoo2, E. Allen Emerson1, and Jawahar Jain3

1 University of Texas at Austin, Austin, TX 78712, USA
2 Stanford University, Stanford CA 94305, USA

3 Fujitsu Laboratoies of America, Sunnyvale CA 94085, USA

Abstract. State space partitioning-based approaches have been pro-
posed in the literature to address the state-space explosion problem in
model checking. These approaches, whether sequential or distributed,
perform a large amount of work in the form of inter-partition (cross-
over) image computations, which can be expensive. We present a model
checking algorithm that aggregates these expensive cross-over images by
localizing computation to individual partitions. It reduces the number
of cross-over images and drastically outperforms extant approaches in
terms of cross-over image computation cost as well as total model check-
ing time, often by two orders of magnitude.

Keywords: Symbolic Model Checking, BDD, state partitioning, CTL.

1 Introduction

Model checking is performed by means of successive backwards image computa-
tions. Image computation becomes difficult as the data structures representing
the state sets grow larger. Large state sets are a direct consequence of the state-
space explosion problem. Model checking is unable to handle data structures
when their size exceeds (roughly by an order of magnitude) what can be rea-
sonably handled in main memory. This frequently happens when handling large
designs.

From a practical standpoint, representing the state sets during model check-
ing symbolically using BDDs fails due to this excessive memory requirement.
Partitioned symbolic data structures have been proposed in the literature to
handle this memory explosion problem. Partitioning of the state space is found
to balance the trade-off between compactness and canonicity of symbolic BDD
representations. In such a framework, each partition of the state space may obey
a different variable order.

In a partitioned approach, the state space S is partitioned into subspaces
S1, S2, . . . Sn. This induces a disjunctive partitioning on the transition relation
T into the parts Tij which represents the set of transitions from states in a source
partition i to states in the destination partition j. The size of each such transition
relation can be further reduced by an implicitly conjoined implementation.

Each partition can be thought of as being the owner of a set of states. Tran-
sitions from each partition naturally comprise of two components - ones that

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 497–511, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

498 S. Iyer et al.

are wholly local to individual partitions, and ones that span multiple partitions.
Correspondingly, the computed image X comprises of a local component Xl and
a cross-over component Xc. The states corresponding to Xl may be computed
locally in each partition. On the other hand, the states in Xc arise out of tran-
sitions that originate at a state in one partition and terminate at a state in
another, thus, “crossing over” into the destination partition.

Computing cross-over component of the image is often significantly more
expensive than the local component for various reasons. Firstly, the cross-over
component involves transitions into a potentially larger subspace. Secondly, this
incurs the overhead of transporting these states to the partition that “owns”
them. Thirdly, the source and destination partitions likely obey different vari-
able orders, and therefore the communicated state set needs to be reordered,
which is a known difficult problem as representation sizes become large. Hence
even a small reduction in the number of cross-over images can result in a drastic
reduction in the total amount of time spent in cross-over images. Our experi-
mental results show that this is indeed the case.

The simplistic way of combining partitioning with the classical model check-
ing algorithm [1, 5], for instance, the distributed model checking algorithm
of [2], performs repeated exact images. Each such image computation requires a
quadratic number of image computations during each cross-over image compu-
tation.

Notice that the set obtained by performing operation EXl is a subset of the
actual image, and in this sense, can be thought of as an under-approximation
to EX. This allows for an efficient analysis of reachability [6] and a subset of
CTL [3] by replacing a sequence of EX operations by a sequence of the less
expensive EXl operations, interspersed with an occasional EXc to maintain
completeness.

The problem is trickier with greatest fix-points, e.g. the EG operator. The
EG operator and its dual AF are important in falsifying and verifying liveness
properties. In this case, the final result is the conjunction of successively smaller
supersets of the result. If operation EXc is ignored in pre-image computations,
then the result is a subset of the actual pre-image EX. Consequently, some states
get pruned early in the greatest fix-point computation for computing the set EG.
Since the convergence is on a sequence which is monotonically decreasing, these
states pruned early may be lost for ever. Consequently, EX cannot be replaced
by EXl as it compromises on soundness. An important question arises as to how
to compute greatest fix-points in the partitioned framework without having to
perform repeated frequent cross-over image computations.

In this paper, we propose an alternative piece-wise algorithm for model check-
ing CTL formulae in a partitioned setting that addresses these concerns. Our
approach exploits the separability of the local and cross-over components of im-
age computation. It performs a number of image computations locally within
each partition, and synchronizes occasionally by doing cross-over image compu-
tations only when a fix-point is reached locally in each partition.

On Partitioning and Symbolic Model Checking 499

If during state space traversal, each partition requires many steps of image
computation to reach a local fix-point, then the proposed algorithm shows sig-
nificant gain (which is proportional to the depth of the fix-point).

In section 2, we recall the notions of state space partitioning and the definition
of model checking. We present a simple partitioned version of the classical model
checking algorithm in section 3. Section 4 describes our modified algorithm de-
signed to localize computation by postponing cross-over image computations. In
the final section, we present our experimental results documenting the increased
efficiency of our technique.

Note that the set of states that are incorrectly pruned early in the above
computation of EG comprises of states, each of which lies in a different partition
from its predecessor, and can therefore be discovered only by performing the
operation EXc between partitions, which is expensive. Instead the algorithm
maintains an over-approximation to EXc in each partition. This superset of
EXc is used to calculate a superset of EX at every image. This superset is
updated only when each partition reaches a fix-point with respect to local images
EXl. We prove that these over-approximations are monotonically decreasing,
and therefore the computed set eventually converges to the desired set EG.

2 Preliminaries

In this section, we briefly look at some background related to state space par-
titioning and image computation, leading up to a description of the classical
model checking algorithm in a partitioned framework.

2.1 State Space Partitioning

The idea of partitioning was used to discuss a function representation scheme
called partitioned-ROBDDs in [4] which was further extensively developed in [7].
Definition. [7] Given a Boolean function f : Bn → B, defined over n inputs
Xn = {x1, . . . , xn}, the partitioned-ROBDD (henceforth, POBDD) representa-
tion χf of f is a set of k function pairs, χf = {(w1, f1), . . . , (wk, fk)} where,
wi : Bn → B and fi : Bn → B, are also defined over Xn and satisfy the following
conditions:
1. wi and fi are ROBDDs respecting the variable ordering πi, for 1 ≤ i ≤ k.
2. w1 ∨ w2 ∨ . . . ∨ wk = 1
3. wi ∧ wj = 0, for i �= j
4. fi = wi ∧ f , for 1 ≤ i ≤ k The set {w1, . . . , wk} is denoted by W . Each
wi is called a window function and represents a partition of the Boolean space
over which f is defined. Each partition is represented separately as an ROBDDs
and can have a different variable order. Most ROBDD based algorithms can be
adapted easily for POBDDs.

Partitioned-ROBDDs are canonical and various Boolean operations can be
efficiently performed on them just like ROBDDs. In addition, they can be ex-
ponentially more compact than ROBDDs for certain classes of functions. The
practical utility of this representation is also demonstrated by constructing ROB-
DDs for the outputs of combinational circuits [7].

500 S. Iyer et al.

In the rest of this paper, we only consider such window-based state parti-
tioning. The reason for this is that this representation is canonical, and allows
negation to be performed locally in each partition. Other schemes for dividing
the state sets, notably that of [2], need to perform a global synchronization
operation to perform negation and this can be expensive.

2.2 Model Checking

We omit the syntax of CTL as it is widely known and readily available in the
literature. We shall only note that it is possible to express any CTL formula in
terms of the Boolean connectives of propositional logic and the existential tem-
poral operators EX, EU and EG. Such a representation is called the existential
normal form.

Model Checking is usually performed in two stages: In the first stage, the finite
state machine is reduced with respect to the formula being model checked and
then the reachable states are computed. The second stage involves computing
the set of states falsifying the given formula. The reachable states computed
earlier are used as a care set in this step. These two stages can be performed
either one after the other by -computing the reachable states first, or in an
interleaved manner, where the reachable states are computed on demand. For
the purpose of this paper, and to keep the discussion restricted to the model
checking algorithm, we shall assume that the set of reachable states is computed
and provided a priori.

Since there exist computational procedures for efficiently performing Boolean
operations on symbolic BDD data structures, including POBDDs, model check-
ing of CTL formulas primarily is concerned with the symbolic application of the
temporal operators. EXq is a backward image and uses the same machinery as
image computation during reachability, with the adjustment for the direction.
EpUq (resp. EGp) has been traditionally represented as the least (resp. greatest)
fix-point of the operator τ(Z) = q ∨ (p ∧EXZ) (resp. τ(Z) = p ∧ EXZ).

We now examine the classical model checking algorithm, modified for a par-
titioned representation of the state sets. This is a simple algorithm, along the
lines of the distributed model checking algorithm of [2].

3 Classical Model Checking with Partitioning

First, a word on our terminology. Each partition owns states that are in its
subspace, as defined by its window function. Conversely, such states belong to
the partition. We say that a partition performs operations on sets that it owns.
The result of such operations may lie in a different subspace and may then
need to be transferred to one or more other partitions. It is important to make
this distinction between the partition where the operation is performed and the
partition to whom the result finally belongs, because they may obey different
variable orders1 and variable reordering is known to be expensive.

1 Further, in case of a parallel implementation, such partitions may be physically on
different processors. For now, we ignore this detail.

On Partitioning and Symbolic Model Checking 501

Since backward image computation is the basic unit operation in performing
model checking, we first examine image computation in the presence of parti-
tioning.

3.1 Partitioned Image Computation

Given a set of states, R(s), that the system can reach, the set of next states,
N(s′), is calculated using the equation N(s′) = ∃s,i[T (s, s′, i)∧R(s)]. This calcu-
lation is also known as image computation. Similarly, the backward image compu-
tation, which calculates the set of states N(s) from which the system can reach
given set of states R(s′), uses the equation N(s) = ∃s′,i′ [T (s, s′, i) ∧R(s′)]. The
computation of EXp can be done using the backward image computation. State
space partitioning into n disjoint parts induces a partitioning of the transition
relation T into n2 parts Tjk consisting of transitions from a state in partition j
to a state in partition k. We can derive Tjk by conjoining T with the respective
window functions as Tjk(s, s′, i) = wj(s)wk(s′)T (s, s′, i). Thus we can express
the transition relation T (s, s′, i) =

∨
j

∨
k Tjk(s, s′, i) as an induced disjunctive

partitioning.

ComputeEX(Set R, Transition Relation T) {
foreach (partition j)

foreach (partition k)
PreImgjk(s) = ∃s′,i[Tjk(s, s′, i) ∧Rk(s′)]
reorder BDD PreImgjk(s) from partition order k to order j

end for
Nj(s) =

∨
k

PreImgjk(s)
end for
output N

}

Fig. 1. Backwards Image Computation with Partitioning

Figure 1 shows how to calculate EXp separately on each partitions. Here the
set Rj is the set of states that represent p in partition j, and the set Nj represents
EXp in partition j which are computed by application of the transition relation
Tjk(s, s′, i).

To compute the pre-image, the n2 computations Tjk(Rk) need to be
performed, followed by n disjunctions as shown. Recall that when using a
partitioned-BDD to represent the set of states, each partition is maintained sep-
arately in memory, under differing variable orders. It is therefore natural that the
pre-image of states in partition k under the transitions leading to each partition
j, i.e. the computation Tjk ∧ (Rk), is performed in partition k. Each partition
k thus computes states that potentially belong to every other partition. Subse-
quently the disjunction to obtain the pre-image lying with partition j, i.e. the
computation of

∨
k PreImg

jk, is performed by partition j. As a consequence,
the set PreImgjk needs to be transferred from partition k to partition j, when
j and k differ.

502 S. Iyer et al.

We call these n2 − n computations as cross-over image computations, in
the sense that the source and destination partitions are different. It must be
emphasized that Cross-over image computation is expensive for various reasons:
First, a quadratic number of image computations need to be performed as above
and the BDDs need to be accessed from every partition. In the case of large
designs, where the BDDs of even a single partition can run into millions of
nodes, this usually means accessing stored partitions from secondary memory.
Then, the BDD variable order of the computed image set must be changed from
the order of the source partition to that of each of its target partitions, before
the new states can be added to the reached set in the target. Reordering large
BDDs can be very expensive. Finally, there may also be other overhead, for
eg., in the case of a parallel implementation there is the overhead of physically
transmitting a large number of these BDDs over the network.

Thus the cost of a cross-over image computation may be significantly greater
than that of a local image computation.

Next, we consider a simple partitioned model checking algorithm for the fix-
point operators.

computeEU(p, q) {
S := q and S.old := φ
repeat

S.old := S
temp := computeEX(S)
forall (partitions j)

Sj := qj ∨ (pj ∧ tempj)
end for

until(S = S.old)
output S

}
a) Least fix-point, E(pUq)

computeEG(p) {
S := p
repeat

S.old := S
temp := computeEX(S)
forall (partitions j)

Sj := pj ∧ tempj

end for
until(S = S.old)
output S

}
b) Greatest fix-point, EGp

Fig. 2. Classical Model Checking of Fix-points in presence of Partitioning

3.2 Partitioned Computation of Fix-Points

The classical fix-point algorithms for E(pUq) and EGp as modified to use a
partitioned data structure are illustrated in Fig. 2. Notice that these rely on
the partitioned image computation and therefore perform one set of cross-over
images in each iteration. In other words, each iteration until the fix-point is
reached performs a number of image computations, quadratic in the number of
partitions. As discussed in Section 3.1, this can get rather expensive.

In the next section, we present a model checking algorithm that localizes
computation to individual partitions by postponing these cross-over image com-
putations.

On Partitioning and Symbolic Model Checking 503

4 Partitioned Model Checking

In this section we present a new partitioned model checking algorithm which
works by postponing cross-over image computations. When the design is defec-
tive and is falsified, this algorithm discovers bugs faster, by virtue of computa-
tions being localized to individual partitions. Even when the design is correct and
is verified, this algorithm converges after fewer cross-over image computations.
We show that in the worst case, this algorithm has at most as many cross-
over image computations as the partitioned version of the classical algorithm,
presented in the previous section.

Model checking of boolean connectives is well-known for the partitioned ap-
proach, so we will only describe the image and fix-point computations. It must
however be mentioned that all boolean operations - conjunction, disjunction as
well as negation - are local to individual partitions2 and involve no interaction
between them. Also, it suffices to consider the existential temporal operators
EX, EG and EU , as these with the propositional connectives form a basis for
all CTL formulae.

4.1 Image Computation

The main computation in the partitioned form of the classical model checking
algorithm is image computation. As noted in the previous section, the computa-
tion of EXp from p comprises of n2 image computations, re-orderings and state
set transfers between partitions and this can get expensive. Even though our
focus is on trying to avoid computing the entire image at every step, it may still
be necessary to perform the full image computation in two cases – firstly, for
the occasional cross-over images, and secondly, when the property is expressed
in terms of the EX or AX operators. In this section, we look at some of the
issues in computing the image.

We find that performing the cross-over images one partition at a time is
memory intensive and often the intermediate BDDs get very large for many ex-
amples. Therefore, we advocate performing these cross-over image computations
from each partition into many partitions at a time.3

In order to perform cross-over images efficiently, we maintain a transfer man-
ager M . Given the set p, in order to compute EXp, each partition i computes the
image Tii(pi) which it keeps locally and the set of unowned states Ui = Tii(pi)
which is communicated to the manager M . M uses the window functions wj to
calculate the sets Sj =

∨
i�=j Ui ∗ wj and then transmits the states Sj to parti-

tion j. Thus EXp is computed by doing 2n image computations and 2n transfers
between partitions, although the number of re-orderings remains n2.

It should be mentioned here that in a multiprocessor environment, such a
manager can become a bottleneck, and should perhaps be dispensed with. But

2 This is an important consequence of window-based partitioning.
3 Here, it must be noted that we address the case of verification using uniprocessor sys-

tems. The partitioned approach easily extends to distributed and parallel computing
environments and our improvements are expected to scale accordingly.

504 S. Iyer et al.

ComputeEXl(R) {
foreach (partition j)

PreImgjj(s) =
∃s′,i[Tjj(s, s

′, i) ∧Rj(s
′)]

Nj(s) = PreImgjj(s)
end for
output N

}

a) Local, EXlp

ComputeEXc(R) {
foreach (partition j)

foreach (partition k �= j)
PreImgjk(s) =

∃s′,i[Tjk(s, s′, i) ∧Rk(s′)]
reorder BDD PreImgjk(s)

from partition order k to order j
end for
Nj(s) =

∨
k

PreImgjk(s)
end for
output N

}
b) Cross-over, EXcp

Fig. 3. Local and Cross-over Components of Image Computation with Partitioning

the point is that, in each partition, only a constant number of image compu-
tations be performed, rather than a number linear in the number of partitions.
Thus the total number of image computations is linear rather than quadratic in
the number of partitions.

We call the fraction Tii(pi) that is computed locally using Tii as the ith

projection of the local image EXl. The rest of the images comprise the cross-over
image EXc. The algorithms to compute EXl and EXc are shown in Figure 3.

4.2 Fix-Point Computations

The main idea for model checking fix-points is that the computations can be
significantly localized to individual partitions by postponing the cross-over im-
age computations EXc, which are then aggregated and performed infrequently.
Accordingly, we define the fix-point operators in terms of two operations – local
image computations EXl and cross-over image computations EXc, rather than
the classical definition in terms of just the image computation operation, EX.

The algorithms for computing E(pUq) and EGp are shown in Figure 4. The
key idea is to create an under-approximation (resp. over-approximation) to EXp,
which can be wholly calculated locally within individual partitions, so that the
least (resp. greatest) fix-point computation can be localized.

Definition 1. Each iteration of the outermost repeat-until loop in Algo.2 (shown
in Fig. 2) and Algo.4 (resp. Fig. 4) is called a phase of the respective algorithm.

From this definition, we note the following.

Lemma 1. Every phase has one and only one cross-over image.

We will show that Algo.4 terminates with the correct result and that the
number of its phases is at most the number of phases in Algo.2. Since each
such phase has precisely one cross-over image computation, we have that the
number of cross-over images computed by the new algorithm is, in the worst
case, no more than that for the existing algorithm. However in practice, the

On Partitioning and Symbolic Model Checking 505

computeEU(p, q) {
S := q
S.old := φ
repeat

S.old := S
forall (partitions j)

repeat
Sj .old := Sj

Sj := Sj ∨ (pj ∧ EXl(Sj , j))
until(Sj = Sj .old)

end for
S := S ∨ (p ∧ EXc(S))

until(S = S.old)
output S

}
a) Least fix-point, E(pUq)

computeEG(p) {
S := p
Border := p ∧ EXc(S)
repeat

S.old := S
forall (partitions j)

repeat
Sj .old := Sj

Sj := pj ∧ (EXl(Sj , j) ∨Borderj)
until(Sj == Sj .old)

end for
Border := p ∧ EXc(S)

until(S == S.old)
output S

}
b) Greatest fix-point, EGp

Fig. 4. Fix-point Computations localized by postponing cross-over images

new algorithm computes a number of “local” images in each phase. Therefore
it has fewer phases than the algorithm of Fig.2 almost always. As noted before,
even a small reduction in the number of cross-over images can result in a drastic
reduction in the total amount of time spent in cross-over images.

Theorem 1. a)[3] The procedure computeEU of Fig 4a, given the set of states
corresponding to formulas p and q as inputs, terminates with the output S being
precisely the set of states that model the formula E(pUq).
b) The number of its phases does not exceed the number of phases for Algo.2a.

Proof: Let the set of states S at the end of the ith phase be called Si. The
termination is guaranteed because the sequence of sets Si is strictly monotonic
increasing.

We first show the soundness of Algo.4a, i.e., at all times S |= E(pUq). We
show this by induction on the sets Sk. This clearly holds for any state in S0, since
every state in S0 satisfies q and therefore E(pUq). Assume that Si |= E(pUq).
Consider a state s ∈ Si+1 − Si. Then, by construction of Si+1 from Si, we have
s |= p. Either s is added in the local image computation EXl for some partition
j or in the cross-over image computations EXc. In either case, s |= p. It remains
to show that s is the predecessor of a state that models E(pUq). In the first case,
such a state is in the same partition as s and in the second case, such a state
exists in partition k such that s was added in the cross-over image computation
from k to j. Thus in either case, s models EX(E(pUq)). Consequently, Algo.3a
is sound.

Next, we show completeness, i.e., that every state of E(pUq) is indeed in set
S. For every state s |= E(pUq), there exists a sequence of states s0, s1, . . . , sk

that has the smallest length k ≥ 0 such that s0 = s, sk |= q, ∀i < k : si |= p
and ∀i < k : si ∈ EX(si+1). This sequence of states is called a witness for
the inclusion of s in E(pUq), and k is its length. Let T k be the set of states
whose inclusion in E(pUq) is witnessed by a path of length at most k. We

506 S. Iyer et al.

prove by induction on k that T k ⊆ S. In the base case, this trivially holds
because T 0 = q = S0 ⊆ S. Now, assume that T i ⊆ S. For any state s ∈ T i+1

consider the sequence of states s0 = s, s1, . . . , si+1 that witnesses its inclusion
in E(pUq). The sequence s1, . . . , si+1 is a witness for s1, therefore s1 ∈ T i ⊆ S.
In particular, there exists a smallest j so that s1 ∈ Sj . We know that s |= p and
s ∈ EX(s1) ⊆ EX(Sj). From the definition of Sj and Algo.4a, we have that
s ∈ Sj+1, whereby T i+1 ⊆ Sj+1 ⊆ S. By induction, this gives us E(pUq) ⊆ S.

This proves that Algo.4a terminates with the set S = E(pUq). Notice that
the set of states at the end of the kth phase of Algo.2a is precisely T i. As
above, ∀i, T i+1 ⊆ Sj+1 ⊆ Si+1. Hence Algo.4a has at most as many phases as
Algo.2a.

Before proving an analogous result for the greatest fix-point operatorEGp, we
briefly motivate its construction. As EXlp is a subset of EXp, the result of local-
izing the computation by performing repeated EXl operations yields an under-
approximation at every step. Since the greatest fix-point operator converges by
a sequence of monotonically decreasing sets, under-approximation leads to some
states being pruned too early and being lost for ever. States that may be incor-
rectly pruned early in the computation of EG comprises of states, each of which
lies in a different partition from its predecessor, and can therefore be discovered
only by performing the operation EXc, which is the expensive component of
image computation.

Algo.4b compensates for this by maintaining a set Border, which is the set of
all states which have a successor in a different partition than themselves. This is,
clearly an over-approximation to EXc in each partition. This superset of EXc is
used to calculate a superset of EX at every image. This Border is updated only
once in each phase, when each partition has reached a fix-point with respect to
local images EXl. These over-approximations are monotonically decreasing, and
so the computed set eventually converges to the desired set EG.

We now prove the following theorem.

Theorem 2. a) The procedure computeEG of Fig 4b, given the set of states
corresponding to formula p as input , terminates with the output S being precisely
the set of states that model the formula EGp.
b) The number of its phases does not exceed the number of phases for Algo.2b.

Proof: Again, let the set of states S at the end of the ith phase be called Si. The
termination is guaranteed because the sequence of sets Si is strictly monotonic
decreasing.

We first show the soundness of Algo.4b, i.e., the algorithm only deletes states
which do not satisfy EGp. Note that a state can be deleted only in the two
circumstances. The first is if it does not satisfy p and is deleted in the very
beginning. We can therefore assume that all states under consideration satisfy
p. The second way a state may be deleted is during some phase, when it is not a
predecessor to any state in its own partition, and it is not on the Border, i.e., it
has been determined previously that this state is not a predecessor to any state
in another partition. Thus all successors to such a state satisfy ¬p, and therefore
any deleted state is not in EGp.

On Partitioning and Symbolic Model Checking 507

Next we show completeness, i.e., the algorithm deletes all states that do not
satisfy EGp. Consider a state s �|= EGp. Then there exists a sequence of states
s0, s1, . . . , sk, which is cycle-free that has the greatest length k ≥ 0 such that
s0 = s, sk |= ¬p, ∀i < k : si |= p and ∀i < k : si ∈ EX(si+1). This sequence
of states is called a witness for the exclusion of s from EGp, and k is its length.
Now, let T k be the set of states whose exclusion from EGp is witnessed by a
longest cycle-free path of length at most k. We prove by induction on k that
T k ∩ Sk = φ. In the base case, this trivially holds because T 0 = ¬q and S0 = q.
Now, assume that T i ∩ Si = φ. For any state s ∈ T i+1 consider the sequence of
states s0 = s, s1, . . . , si+1 that witnesses its exclusion from EGp. The sequence
s1, . . . , si+1 is a witness for s1, therefore s1 ∈ T i, and therefore s1 �∈ Si. In
particular, there exists a smallest j so that s1 was deleted in the jth stage of
the algorithm. Two cases arise, either both s0 and s1 are in the same partition
or they are in different partitions. If they are in the same partition, then s0
is deleted in the jth stage also when a fix-point is computed locally in that
partition. If they are in different partitions, then s0 is in the border set for its
partition, and is deleted from this border set at the end of the jth stage because
its last successor s1 is deleted and no other successors can exist because this is
the longest witness. Therefore s is deleted in the j+ 1th stage, as required to be
proved.

This proves that Algo.4b terminates with the set EGp. Notice that the set
of states T i is precisely the set of states deleted in phase i of Algo.2b. As above,
states in Ti have all been deleted by the end of i phases of the algorithm. Hence
Algo.4b has at most as many phases as Algo.2b.

4.3 Comparison

In the worst case, Algo.4 requires at most as many phases as Algo.2. However,
in practice, Algo.4 outperforms Algo.2, because when computing the least (resp
greatest) fix-point by localizing computation to individual partitions, Algo.4
often discovers (resp. prunes) many more states than when performing just one
image computation in each phase. Thus the postponement of cross-over images
affords a significant benefit in overall faster convergence of the model checking
algorithm, often reducing the number of phases.

We now analyze the benefit of reducing the number of cross-over images.
Consider a simple model where the number of image computations performed is
the same in each partition, say n. Further, assume the time for computing EXl

is L and that for EXc is C.
Thus Algo.2 performs n phases, each with one computation of EXl and EXc,

and incurs a total time Cold = n∗(L+C). Algo.4 needs potentially fewer phases,
say m ≤ n. Each such phase has one EXc computation and a number of EXl

computations, for concreteness say there are k ≥ 1 of them. This gives a total
time Cnew = m ∗ (k ∗ L+ C).

Recall from Section 3.1 that C >> L. Thus for reasonable k, the reduction
in the number of cross-over images is directly reflected in the reduction of the
total model checking time. Further, in the best case scenario, when m ∗ k = n,
the reduction may be by as much as a factor of k.

508 S. Iyer et al.

In practice a significant gain is observed, as borne out by the experimental
results that are described in the next section.

If operation EXc is ignored in pre-image computations, then the result is a
subset of the actual pre-image EX, and this means that some states get pruned
early in the greatest fix-point computation for computing the set EG. Since the
convergence is on a sequence which is monotonically decreasing, these states
pruned early may be lost for ever.

The new algorithm is shown in the following figure. Here preImgComm refers
to the fraction of the pre-image that needs to be communicated via a commu-
nications manager EXc and preImgPart refers to the fraction of the image that
is computed locally within each partition EXl.

5 Experimental Results

We implemented the algorithm of Fig. 3 on top of the CUDD package for BDDs
using the VIS-2.0 verification environment, which is a state-of-the-art public do-
main BDD-based formal verification package. We have chosen VIS for its Verilog
support and its powerful OBDD-package (i.e. CUDD [8]). As our techniques af-
fect only the BDD-data structures and algorithms, they can – with moderate
effort – be implemented in other packages as well. These techniques work with
any method of image computation; all experiments here are conducted using the
IWLS95 method.

We use the partitioning scheme detailed in [3] for performing reachability
analysis. Once the reachable states are computed, the model checking algorithms
use the same partitions created during reachability analysis.

Benchmarks
We chose the public domain circuits and their model checking properties from
the VIS-Verilog [9] benchmark suite. For sake of brevity, results are omitted for
some of the smaller examples.

Results
We notice that crossover image computation is indeed a bottleneck in verifica-
tion. On a uniprocessor machine, in the VIS-Verilog benchmark suite, there are
examples where the program runs out of memory while performing the crossover
images. Thus a reduction in the number and frequency of such cross-over im-
ages is critical for the full utilization of computing resources in a multi-processor
environment.

The run-times for our sequential implementation are shown in Table 1. The
first column of Table 1 has the name of the circuit and the property being
checked. This is followed by the data for cross-over image computation. Firstly,
the number of cross-over images is shown for the Naive algorithm, labeled Old
and for our proposed algorithm, labeled New. The next two columns show the
respective time taken. This is followed by the speedup achieved by the proposed
algorithm over the older one. The last two columns show the total time taken
by the model checking, after reachability has finished.

On Partitioning and Symbolic Model Checking 509

Cross-over images Model Checking
Circuit Number Time (s) time(sec)
Property Old New Old New Speedup Old New
bpbs 4 1 24 1 24 398 313
gcd 1 15 7 19.11 .7 27 68.97 108.07
gcd 2 15 7 18.27 .16 114 27.56 9.06
gcd 3 10 8 37.13 4.29 8.6 134.65 56.32
gcd 4 10 8 37.41 3.44 11 108.76 42.11
gcd 5 11 9 37.13 46.3 0.8 107.31 92.19
gcd 6 12 9 42.96 3.79 11 121.66 53.69
gcd 7 13 9 42.98 3.99 11 132.7 50.51
gcd 8 14 9 35.68 1.41 25 128.04 48.94
gcd 9 15 9 31.77 0.91 35 119.63 48.04
gcd 10 16 9 28.72 0.57 50 111.89 46.47
ghg 9367 6 166.12 0.15 1107 280.75 27.31
idu32 1 3 3 12.35 89.96 0.13 294.49 406.61
idu32 2 2 2 0.07 0.02 3.5 0.12 0.03
idu32 3 3 3 0.07 0.02 3.5 0.06 0.02
idu32 4 8 4 0.61 0.02 30 0.82 0.1
idu32 5 8 4 0.61 0.03 20 0.83 0.11
idu32 6 7 2 0.83 0.02 41 1.27 0.1
idu32 7 7 4 1.31 0.02 65 2.11 0.22
idu32 8 8 4 13.63 0.03 454 14.15 0.28
idu32 9 8 4 0.38 0.02 19 0.52 0.05
idu32 10 23 9 0.58 0.04 14 0.8 0.15
luckySeven 64 35 80.12 55.89 1.4 114.64 82.03
nosel 7 3 106.01 10.2 10 270.18 130.87
product 1 1 3 3 1 1798 418
s1269b 1 1 1 9.42 0.01 942 15 13
s1269b 2 8 8 67 1.01 67 93 1
soap 44 53 5 592.09 1.2 493 714.81 28.24
soap 45 80 8 106.76 1.86 57 224.19 104.11
soap 46 53 5 92.9 1.14 81 187.79 28.76
soap 47 52 5 41.87 1.11 37 94.89 31.83
soap 48 60 5 42.3 0.76 55 98.91 56.41
soap 49 79 9 94.68 1.61 58 207.18 73.78
soap 50 60 5 199.6 1.05 190 299.4 22.9
sppint2 1 5 4 86.26 45.06 1.9 100.39 58.26
sppint2 4 1 1 2.8 0.01 280 3.06 2.82
sppint2 5 7 3 4.4 0.01 440 4.94 0.75
sppint2 6 5 3 0.2 0.13 1.5 0.68 0.28
sppint2 7 16 6 4.23 0.7 6 24.66 2.27
sppint2 8 5 4 1.22 0.37 3.3 1.87 0.71
sppint2 9 14 6 1.29 0.74 1.7 5.01 1.81
sppint2 10 5 4 1.31 0.17 7.7 1.83 0.32
two 38 24 30.6 18.8 1.6 46 28
usb phy 1 49 23 16 19 0.8 43 29
usb phy 3 40 19 108.51 11.83 9 24.89 28.97
usb phy 4 21 11 5.6 2.32 2.4 12.01 8.26
usb phy 6 5 5 0.97 1.05 0.9 2 2.99
usb phy 7 39 17 10.96 2.14 5 24.32 8.72

Table 1. Comparison of existing and proposed algorithms for partitioned model check-

ing CTL properties on circuits in the VIS Verilog benchmark suite. For each circuit

and property, the first pair of columns shows the number of inter-partition cross-over

images performed by the two methods, the second set shows the time required for these

cross-over images, and the speedup achieved by the new method and the final set shows

the total model checking time

510 S. Iyer et al.

Experimentally, the proposed algorithm converges faster, both in terms of
total time, as well as in terms of number of expensive cross-over image compu-
tations that are performed. Further, the time taken by cross-over images as a
percentage of total time is reduced. These are demonstrated in the table that fol-
lows. In numerous cases (e.g. s1269, soap, ghg, etc.), we find that total cross-over
image time is reduced by two orders of magnitude or more.

Using the data in Table 1, we can compare the total time taken for model
checking by the two methods. Notice that the proposed algorithm reduces, often
dramatically, the number of cross-over images and the proportion of the total
time that is spent in doing them. In almost all the examples, this leads to a
direct improvement in the total time.

6 Conclusion

We have presented a model checking algorithm in the presence of state space
partitioning, that aggregates and postpones cross-over image computations, al-
lowing for significant localization of image computations. This is also found in
practice to reduce the number of iterations in fix-point computations.

If during state space traversal, each partition requires many steps of image
computation to reach a local fix-point, then the proposed algorithm shows sig-
nificant gain (which is proportional to the depth of the fix-point). In the worst
case, this method would be identical to the naive one, with strict alternation
between localized (EXl) and cross-over (EXc) image operations in every fix-
point calculation. However, this is extremely unlikely because it corresponds to
a case where every “path” corresponding to a formula comprises of states each
of which lies in a different partition from its predecessor. This does not happen
in practice when partitioning is done properly.

Our experiments have been conducted on uniprocessor machines, but this
algorithm can be easily parallelized and we believe its benefits would scale to an
implementation in a multi-processor environment.

We believe this algorithm can be generalized to more expressive logics like
the full μ-calculus with a few modifications. A parallel form of the proposed
algorithm can also provide better resource usage than existing distributed model
checking algorithms.

References

1. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Proc. IBM Workshop on Logics of Programs,
volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer-Verlag,
1981.

2. Orna Grumberg, Tamir Heyman, and Assaf Schuster. Distributed symbolic model
checking for μ-calculus. In Computer Aided Verification, pages 350–362, 2001.

3. S. Iyer, D. Sahoo, C. Stangier, A. Narayan, and J. Jain. Improved symbolic Verifi-
cation Using Partitioning Techniques. In Proc. of CHARME 2003, volume 2860 of
Lecture Notes in Computer Science, 2003.

On Partitioning and Symbolic Model Checking 511

4. J. Jain. On analysis of boolean functions. Ph.D Dissertation, Dept. of Electrical
and Computer Engineering, The University of Texas at Austin, 1993.

5. Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

6. A. Narayan, A. Isles, J. Jain, R. Brayton, and A. Sangiovanni-Vincentelli. Reacha-
bility Analysis Using Partitioned-ROBDDs. In Proc. of the Intl. Conf. on Computer-
Aided Design, pages 388–393, 1997.

7. A. Narayan, J. Jain, M. Fujita, and A. L. Sangiovanni-Vincentelli. Partitioned-
ROBDDs - A Compact, Canonical and Efficiently Manipulable Representation for
Boolean Functions. In Proc. of the Intl. Conf. on Computer-Aided Design, pages
547–554, 1996.

8. Fabio Somenzi. CUDD: CU Decision Diagram Package ftp://vlsi.colorado.edu/pub,
2001.

9. VIS. Vis verilog benchmarks http://vlsi.colorado.edu/ vis/, 2001.

Dynamic Component Substitutability Analysis�

Natasha Sharygina, Sagar Chaki, Edmund Clarke, and Nishant Sinha

Carnegie Mellon University
{nys, chaki}@sei.cmu.edu

{emc, natalie, nishants}@cs.cmu.edu

Abstract. This paper presents an automated and compositional procedure to
solve the substitutability problem in the context of evolving software systems.
Our solution contributes two techniques for checking correctness of software up-
grades: 1) a technique based on simultaneous use of over and under approxima-
tions obtained via existential and universal abstractions; 2) a dynamic assume-
guarantee reasoning algorithm – previously generated component assumptions
are reused and altered on-the-fly to prove or disprove the global safety properties
on the updated system. When upgrades are found to be non-substitutable our so-
lution generates constructive feedback to developers showing how to improve the
components. The substitutability approach has been implemented and validated
in the COMFORT model checking tool set and we report encouraging results on
an industrial benchmark.

Keywords: Software Model Checking, Verification of Evolving Software, Learn-
ing Regular Sets, Assume/Guarantee Reasoning.

1 Introduction

Software systems evolve throughout the product life-cycle. For example, any software
module (or component) is inevitably transformed as designs take shape, requirements
change, and bugs are discovered and fixed. In general such evolution results in the
removal of previous behaviors from the component and addition of new ones. Since
the behavior of the updated software component has no direct correlation to that of its
older counterpart, substituting it directly can lead to two kinds of problems. First, the
removal of behavior can lead to unavailability of previously provided services. Second,
the addition of new behavior can lead to violation of global correctness properties that
were previously being respected.

In this context, the substitutability problem has been defined [7] as the verification
of the following two criteria: (i) any updated portion of a software system must continue
to provide all services offered by its earlier counterpart, and (ii) previously established

� This research was conducted as part of the CMU/SEI IRAD project on Verification of Evolving
Software and partially sponsored by the Office of Naval Research (ONR). The views and
conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of ONR, the U.S. Government
or any other entity.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 512–528, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Dynamic Component Substitutability Analysis 513

system correctness properties must remain valid for the new version of the software
system.

Model checking can be used at each stage of a system’s evolution to solve both the
above problems. However, conventionally model checking is applied to the entire sys-
tem after every update irrespective of the degree of modification involved. The amount
of time and effort required to verify an entire system can be prohibitive and repeat-
ing the exercise after each (even minor) system update is therefore impractical. In this
article we present an automated framework that localizes the necessary verification to
only modified system components, and thereby reduces dramatically the effort to check
substitutability after every system update. Note that our framework is general enough
to handle changes in the environment since the environment can also be modeled as a
component.

In our framework a component is essentially a C program communicating with other
components via blocking message passing. An assembly is a collection of such concur-
rently executing and mutually interacting components. We will define the notion of a
component’s behavior precisely later but for now let us denote the set of behaviors of a
component C by Behv(C). Given two components C and C ′ we will write C � C ′

to mean Behv(C) ⊆ Behv(C ′).
Suppose we are given an assembly of components: C = {C1, . . . ,Cn}, and a safety

property ϕ. Now suppose that multiple components in C are upgraded. In other words,
consider an index set I ⊆ {1, . . . , n} such that for each i ∈ I there is a new component
C

′
i to be used in place of its old version Ci. Our goal is to check the substitutability of

C
′
i for Ci in C for every i ∈ I with respect to the property ϕ. This paper presents a

framework that satisfies this goal by establishing the following two tasks:

Containment. Verify, for each i ∈ I, that every behavior of Ci is also a behav-
ior of C

′
i , i.e., Ci � C

′
i . If Ci �� C

′
i , we also construct a set Fi of behaviors in

Behv(Ci) \ Behv(C
′
i) which will be subsequently used for feedback generation. Note

that the upgrade may involve the removal of behaviors designated as errant, say B. In
this case, we check Ci \B � C

′
i since behaviors of B will clearly be absent in C

′
i .

Compatibility. Let us denote by C′ the assembly obtained from C by replacing the old
component Ci with its new version C

′
i for each i ∈ I. Since in general it is not the

case that for each i ∈ I, C
′
i � Ci. Therefore, the new assembly C′ may have more

behaviors than the old assembly C. Hence C′ might violate ϕ even though C did not.
Thus, our second task is to verify that C′ satisfies the safety property ϕ (which would
imply that the new components can be safely integrated).

Note that checking compatibility is non-trivial because it requires the verification of
a concurrent system where multiple components might have been modified. Moreover,
this task is complicated by the fact that our goal is to focus on the components that have
been modified.

The component substitutability framework is defined by the following new algo-
rithms: 1) a technique based on simultaneous use of over and under approximations
obtained via existential and universal abstractions for the containment check of the
substitutable components; 2) a dynamic assume-guarantee algorithm developed for the
compatibility check. The algorithm is based on automata-theoretic learning for regular

514 N. Sharygina et al.

sets. It is dynamic in the sense that it learns appropriate environment assumptions for
the new components by reusing the environment assumptions for their older versions.

The framework uses an iterative abstraction/refinement paradigm for both the con-
tainment and compatibility check procedures. The abstraction-based approach is es-
sential since it not only enables the extraction of finite-state models from software
programs but also reduces the complexity of software verification. Details of the ab-
straction procedure and the abstraction/refinement process are beyond the scope of this
article and can be found in [4]. In summary, the developed component substitutability
framework has several advantageous features:

– It allows multiple components to be upgraded simultaneously. This is crucial since
modifications in different components often interact non-trivially to maintain over-
all system safety and integrity. Hence such modifications must be analyzed jointly.

– It identifies features of an old component which are absent in its updated version.
It subsequently generates feedback to localize the modifications required to add the
missing features back.

– It is completely automated and uses dynamic assume-guarantee style reasoning to
scale to large software systems.

– It allows new components to have more behaviors than their old counterparts in
order be replaceable. The extra behaviors are critical since they provide vendors
with flexibility to implement new features into the product upgrades. Our frame-
work verifies if these new behaviors do not violate previously established global
specifications of a component assembly1.

We employ state/event-based modeling techniques [5] to model and reason about
both the data and communication aspects of software. In particular we use the
state/event computational structures, called Doubly Labeled Automata (DLA) to model,
as well as to specify, software systems. We have implemented the substitutability frame-
work as part of the COMFORT [6] reasoning framework, which is based on the C model
checker MAGIC [4, 15]. We experimented with an industrial benchmark and report en-
couraging results in Section 7.

2 Related Work

Related projects often impose the restriction that every behavior of the new component
must also be a behavior of the old component. In such a case the new component is said
to refine the old component. For instance, de Alfaro et al. [11, 8] define a notion of in-
terface automaton for modeling component interfaces and show compatibility between
components via refinement and consistency between interfaces. However, automated
techniques for constructing interface automata from component implementations are
not presented. In contrast, our approach automatically extracts conservative DLA mod-
els (which are similar to finite state interface automata) from component implementa-

1 Verification of these new features remains a responsibility of designers of the upgraded sys-
tems.

Dynamic Component Substitutability Analysis 515

tions. Moreover, we do not require refinement among the old components and their new
versions.

Ernst et al. [16] suggest a technique for checking compatibility of multi-component
upgrades. They derive consistency criteria by focusing on input/output component be-
havior only and abstract away the temporal information. Even though they state that
their abstractions are unsound in general, they report success in detecting important er-
rors. In contrast, our abstractions preserve temporal information about component be-
havior and are always sound. They also use a refinement-based notion on the generated
consistency criteria for showing compatibility.

The application of learning is extremely useful from a pragmatic point of view since
it is amenable to complete automation, and is gaining rapid popularity [14] in formal
verification. The use of learning for automated assume-guarantee reasoning was pro-
posed originally by Cobleigh et al. [10]. The use of learning along with predicate ab-
straction has also been applied in the context of interface synthesis [1] and various types
of assume-guarantee proof rules for automated software verification [3].

This work is related to our earlier project [7] that solves the component substi-
tutability problem in the context of verifying individual component upgrades. A major
improvement of the current work is that it is aimed at verifying the component substi-
tutability in the presence of simultaneous upgrades of multiple components. Another
distinction of this work is that it provides an innovative dynamic assume-guarantee rea-
soning framework for the compatibility check. The dynamic nature of the compatibility
check allows reusing previously computed assumptions to prove or disprove the global
properties of the updated system.

Additionally, this paper gives a new solution to the containment check problem
presented in [7]. In our earlier work, the containment step is solved using learning
techniques for regular sets and handles finite-state systems only. In contrast, the new
approach is extended to handle infinite-state C programs. Moreover, this paper defines
a new technique based on simultaneous use of over and under approximations obtained
via existential and universal abstractions.

3 Background and Notation

Let • denote the concatenation operator over sequences and X∗ denote zero or more
applications of • over X as usual. For any two sets X and Y we will denote the set
{x • y | x ∈ X ∧ y ∈ Y } by X • Y .

Definition 1 (Words and Traces). Given an alphabet Σ and a set of atomic proposi-
tions AP we often say that (Σ,AP) is a state/event (SE) alphabet. For an SE alpha-
bet Σ̂ = (Σ,AP), the set of words over Σ̂ is denoted by Word(Σ̂) and defined as
Word(Σ̂) = (Σ •2AP)∗. The set of traces over Σ̂ is denoted by Trace(Σ̂) and defined
as Trace(Σ̂) = 2AP •Word(Σ̂).

Thus a word or a trace is an alternating sequence of subsets of AP and elements of
Σ. However a word always begins with an action and ends with a set of propositions
and can be empty. In contrast, a trace begins and ends with a set of propositions and
cannot be empty.

516 N. Sharygina et al.

Definition 2 (Doubly Labeled Automaton). A doubly labeled automaton (DLA) is a
7-tuple (S , Init ,AP ,L, Σ, δ,F) such that: (i) S is a finite set of states, (ii) Init ⊆ S
is a set of initial states, (iii) AP a finite set of (atomic) state propositions, (iv) L : S →
2AP a state-labeling function, (v) Σ a finite set of events or actions (alphabet), (vi)
δ ⊆ S × Σ × S a transition relation, and (vii) F ⊆ S is a set of final or accepting
states.

For any DLA with transition relation δ we write q
α−→ q′ to mean q′ ∈ δ(q, α). A

DLA is said to be deterministic (DDLA) iff for any q ∈ S , α ∈ Σ and p ⊆ AP there
is at most one q′ ∈ S such that q

α−→ q′ and L(q′) = p. DLAs are not more expressive
than standard finite automata since propositional labelings can always be rewritten in
terms of actions [9]. However, we choose to use the DLA formalism for the sake of
simplicity since it captures the essence of the state/event-based notation.

Definition 3 (Language). Let M = (S , Init ,AP ,L, Σ, δ,F) be a DLA and Σ̂ =
(Σ,AP). A trace t ∈ Trace(Σ̂) is accepted by M iff t = p1, α1, p2, . . . , αn−1, pn

and there exists a sequence s1, s2, . . . , sn of states of M such that: (i) s1 ∈ Init , (ii)
sn ∈ F , (iii) for 1 ≤ i ≤ n, L(si) = pi, and (iii) for 1 ≤ i < n, si

αi−→ si+1. The
language of M is denoted by L(M) and defined as the set of all traces accepted by M .

A language is said to be regular iff it is accepted by some DLA. The set of regular
languages is closed under union, intersection and complementation. DDLAs are equiva-
lent to DLAs as far as language acceptance is concerned. In other words for any regular
language L there is a DDLA M such that L(M) = L. Also every regular language L
is accepted by a unique (up to isomorphism) minimal DDLA.

Definition 4 (Abstraction). Given two DLAs M1 and M2 we say that M2 is an ab-
straction of M1, denoted by M1 �M2, iff L(M1) ⊆ L(M2).

Definition 5 (Parallel Composition). Let M1 = (S1, Init1,AP1,L1, Σ1, δ1,F1)
and M2 = (S2, Init2,AP2,L2, Σ2, δ2,F2) be two DLAs. The par-
allel composition of M1 and M2, denoted by M1 ‖M2, is the DLA
(S1 × S2, Init1 × Init2,AP1 ∪AP2,L, Σ1 ∪Σ2, δ,F1 × F2), where: (i)
L(s1, s2) = L1(s1) ∪ L2(s2), and (ii) δ is such that (s1, s2)

α−→ (s′1, s
′
2) iff:

∀i ∈ {1, 2} � (α �∈ Σi ∧ si = s′i)
∨

(α ∈ Σi ∧ si
α−→ s′i)

In other words, DLAs must synchronize on shared actions and proceed indepen-
dently on local actions. This notion of parallel composition is derived from CSP [19].

Definition 6 (Weakest Assumption). For any DLA M , and any safety property, ex-
pressed as a DLA ϕ, there exists a weakest (w.r.t. the � preorder) DLA WA with the
following property: for any DLA E, M ‖ E � ϕ iff E � WA [12]. In fact it can be
shown that WA is a DLA accepting the language L(M ‖ ϕ).

Dynamic Component Substitutability Analysis 517

4 Containment

Recall that in the containment step we verify for each i ∈ I, that Ci � C
′
i , i.e., ev-

ery behavior of Ci is also a behavior of C
′
i . If Ci �� C

′
i , we also construct a set Fi

of behaviors in Behv(Ci) \ Behv(C
′
i) which will be subsequently used for feedback

generation. This containment check is performed iteratively and component-wise as de-
picted in Figure 1 (CE refers to the counterexample generated during the verification
phase). For each i ∈ I, the containment check proceeds as follows:

1. Abstraction. Construct finite models M and M ′ such that (C1) Ci � M and (C2)
M ′ � C

′
i . Note that M is an over-approximation of Ci and can be constructed by

standard predicate abstraction [13]. However M ′ is constructed from C
′
i via a modified

predicate abstraction which produces an under-approximation of its input C compo-
nent. We give an overview of predicate abstraction and then the modified predicate
abstraction. Complete details of our predicate abstraction procedure can be found else-
where [4].

Predicates and Valuations. Suppose we are given a set of predicates (pure C ex-
pressions) P . Each valuation V of P is simply a mapping from P to {0, 1}. Thus if
P = {x < 1, y ≥ 0} then the set of valuations of P is {(0, 0), (0, 1), (1, 0), (1, 1)}.
Let P = {p1, . . . , pn} and V be a valuation of P . Then the concretization of V is de-
noted by γ(V) and defined as: γ(V) ≡

∧n
i=1 Xi where Xi = pi iff V(pi) = 1 and

¬pi otherwise. For example consider P = {x < 1, y ≥ 0} and V = (0, 1). Then
γ(V) = ¬(x < 1) ∧ (y ≥ 0).

Predicate Abstraction. Suppose that Ci comprises of a set of C statements Stmt =
{st1, . . . , stk}. Without loss of generality we assume that each statement of Ci is either
an assignment, an if-then-else or a goto. Also we are given a set of predicates P
with set of valuations Val . The general idea behind predicate abstraction is to represent
a set of concrete states symbolically using a formula. Thus the predicate abstraction

True

No All behaviors are preserved

No

Over−approximate Under−approximate

Report Feedback

False + CE

Yes

M′
iMi

C′iCi

RefineRefine

Build: F ←CE

Check: CE �∈C′i

Check: CE ∈CiVALIDATION1

VALIDATION2

Check: Mi ⊆M′
iVERIFICATION

ABSTRACTION

Yes⇒CE ∈Ci \C′i

Fig. 1. The containment phase of the substitutability framework

518 N. Sharygina et al.

Ci w.r.t. P is an DLA M whose set of states = Stmt × Val . Intuitively each state
s = (st ,V) of M represents the set of all concrete execution states c of Ci such that
st is the next statement to be executed at c and the expression γ(V) is satisfied by the
memory configuration at c. In such a case we often say c ∈ s to highlight the fact that
each state of M can be thought of as a set of concrete execution states of Ci.

The transitions of M are defined such that M is an over-approximation of Ci via
existential abstraction. For example, let s1 = (st1,V1) and s2 = (st2,V2) be two states
of M such that st1 is an assignment. Then M contains a transition from s1 to s2 if there
is a transition from some concrete state c1 ∈ s1 to some concrete state c2 ∈ s2. It turns
out that this is equivalent to: (i) st2 being the next statement to be executed after st1,
and (ii) the formulaWP{γ(V2)}[st1]∧γ(V1) being satisfiable whereWP{γ(V2)}[st1]
denotes the weakest precondition of γ(V2) w.r.t. st1. Other kinds of statements are
handled analogously.

Modified Predicate Abstraction. In contrast our modified predicate abstraction con-
structs an under-approximation of the concrete system via universal abstraction. More
precisely suppose C

′
i comprises of a set of C statements Stmt ′ and we are given a set of

predicates P ′ with set of valuations Val ′. Then the modified predicate abstraction of C
′
i

w.r.t.P ′ is an DLAM ′ whose set of states = Stmt ′×Val ′. The correspondence between
the states of M ′ and the execution states of C

′
i is exactly as in the case of predicate ab-

straction. The difference is in the way the transitions of M ′ are defined. More precisely,
let s1 = (st1,V1) and s2 = (st2,V2) be two states ofM ′ such that st1 is an assignment.
Then M ′ contains a transition from s1 to s2 if there is a transition from every concrete
state c1 ∈ s1 to some concrete state c2 ∈ s2. This is equivalent to: (i) st2 being the next
statement to be executed after st1, and (ii) the formula γ(V1) =⇒ WP{γ(V2)}[st1]
being valid. Other kinds of statements are handled analogously. The satisfiability and
validity of formulas are checked using an automated theorem prover.

2. Verification. Verify if M � M ′ (or alternatively M \ B � M ′ if the upgrade
involved some bug fix and the bug was defined as a DLA B). If so then from (C1) and
(C2) above we know that Ci � C

′
i and we terminate with success. Otherwise we obtain

a counterexample CE .

3. Validation 1. Check if CE is a real behavior of Ci. To do this we first compute
the set S of concrete states of Ci that can simulate CE . This is done via symbolic
simulation and the result is a formula φ that represents S. Then CE is a real behavior
of Ci iff S �= ∅, i.e., iff φ is satisfiable. If CE is a real behavior of Ci, we proceed to the
next step. Otherwise we refine model M by constructing a new set of predicates P and
repeat from Step 2. The refinement step is done according to the procedure implemented
in the MAGIC [4] tool.

4. Validation 2. Check if CE is not a real behavior of C
′
i . To do this we first compute

the set S′ of concrete states of C
′
i that can simulate CE . This is done as above and the

result is again a formula φ that represents S′. Then CE is not a real behavior of C
′
i

iff S′ = ∅, i.e., iff φ is unsatisfiable. If CE is not a real behavior of C
′
i , we know that

CE ∈ Behv(Ci) \ Behv(C
′
i). We add CE to Fi and stop. Otherwise we refine M ′ by

Dynamic Component Substitutability Analysis 519

constructing a new set of predicates P ′ and repeat from Step 2. This refinement step
is an antithesis of standard abstraction-refinement since it adds the valid behavior CE
back to M ′. However it is conceptually similar to standard abstraction-refinement and
we omit its details in this article.

Note that the above process terminates as soon as it adds a single behavior to Fi.
However it can be extended to generate a set of behaviors in Fi as follows. First a set of
counterexamples ĈE is constructed in Step 2. Then each element of ĈE is processed
via Steps 3 and 4 and every counterexample which belongs to Ci but not to C

′
i is added

to Fi. The use of Fi to provide feedback to developers showing how to correct the
updated components is discussed in Section 6.

5 Compatibility

Recall that the compatibility check is aimed at ensuring that the upgraded system sat-
isfies global safety specifications. Our compatibility check procedure involves two key
paradigms - dynamic regular set learning and assume guarantee reasoning. We first
present these two techniques and then describe their use in our overall compatibility
algorithm.

5.1 Dynamic Regular Set Learning

Central to our compatibility check procedure is a new dynamic algorithm to learn reg-
ular languages. Our algorithm is based on the L∗ algorithm developed by Angluin [2].
The compatibility check uses a state/event version of the L∗ that is a straight forward
extension of the original algorithm (for simplicity we will refer to both as L∗). The
detailed description of the state/event L∗ algorithm and the proof of its correctness and
complexity analysis can be found in [20]. We will first present the state/event learning
algorithm and then describe a dynamic version of it that we actually use for checking
compatibility. We will denote the symmetric difference of two sets X and Y by X⊕Y ,
i.e, ρ ∈ X ⊕ Y iff ρ ∈ X \ Y or ρ ∈ Y \X .

The L∗ Algorithm. Let U be an unknown regular language over some SE alphabet
Σ̂ = (Σ,AP). In order to learn U , L∗ interacts with a minimally adequate teacher
MAT for U , which can provide Boolean answers the following two kinds of queries:

1. Membership. Given a ρ ∈ Trace(Σ̂), MAT returns TRUE iff ρ ∈ U .
2. Candidate. Given a DDLA D, MAT returns TRUE iff L(D) = U . If MAT returns

FALSE, it also returns a counterexample trace w ∈ L(D)⊕ U .

Given an unknown regular language U ⊆ Trace(Σ̂) and a MAT for U , the L∗

algorithm iteratively constructs a minimal DDLA D such that L(D) = U . It maintains
an observation table (S,E, T) where: (i) S is a prefix-closed set over Trace(Σ̂) labeling
the rows of the table, (ii) E a suffix-closed set over Word(Σ̂) labeling the columns of
the table, and (iii) T : (S ∪ S • Σ̂) × E → {0, 1} is the valuation of the table entries
such that:

∀s ∈ S ∪ S • Σ̂ � ∀e ∈ E � T [s, e] = 1 ⇐⇒ s • e ∈ U

520 N. Sharygina et al.

Additionally, for any s ∈ S ∪ S • Σ̂, let us define a function rs as follows:

∀e ∈ E � rs(e) = T [s, e]

Given a trace t ∈ Trace(Σ̂) we write Last(t) to mean the last set of propositions in t.
L∗ always ensures that the following invariant holds on the table: for any two distinct
s1, s2 ∈ S either rs1 �= rs2 or Last(s1) �= Last(s2). The table is said to be closed if
for every t ∈ S • Σ̂, there exist an s ∈ S such that rs = rt and Last(s) = Last(t).

Let us denote the empty word by λ. Then L∗ starts with a table (S,E, T) such
that S = 2AP , E = {λ} and in each iteration proceeds as follows. It first updates the
table using membership queries till it is closed. Next L∗ builds a candidate DDLA D
from the table and makes a candidate query with D. If the MAT returns TRUE to the
candidate query, L∗ returns D and stops. Otherwise, L∗ updates E with a single word
(constructed from the CE returned by the candidate query) and proceeds with the next
iteration. The complexity of L∗ is expressed by the following theorem [2, 20].

Theorem 1. If n is the number of states of the minimum DDLA accepting U and m
is the upper bound on the length of any counterexample provided by the MAT , then
the total running time of L∗ is bounded by a polynomial in m and n. Moreover, the
observation table is of size O(m2n2 +mn3).

Dynamic L∗. Normally L∗ initializes with: S = 2AP and E = {λ}. This can be a
drawback in cases where a previously learned candidate (and hence a table) exists and
we wish to restart learning using information from the previous table. In the follow-
ing, we show (Theorem 2) that if L∗ begins with any non-empty valid table then it
must terminate with the correct result. In particular, this allows us to perform our com-
patibility check dynamically by restarting L∗ with any previously computed table by
re-validating it instead of starting from an empty table2.

Definition 7 (Agreement). An observation table (S,E, T) is said to agree with a reg-
ular language U iff: ∀(s, e) ∈ (S ∪ S • Σ̂) × E, T (s, e) = 1 iff s • e ∈ U . Also,
(S,E, T) agrees with a candidate DDLA D if it agrees with L(D).

Definition 8 (Validity). An observation table T = (S,E, T) is said to be valid for a
language U iff (S,E, T) agrees with U . We say that a candidate derived from a closed
table T is valid if T is valid.

Theorem 2. L∗ terminates with a correct result for any unknown language U starting
from any valid table for U .

Proof. Let n be the number of states in the minimal DDLA MU such that L(MU) = U .
Note that both Theorem 1 and Lemma 5 from Angluin’s correctness proof for L∗ [2]
hold for valid and closed tables and candidates consistent with them. It follows from
Theorem 1 and Lemma 5 that L∗ can always make a valid table closed and hence is

2 A similar idea was also proposed in the context of adaptive model checking [14].

Dynamic Component Substitutability Analysis 521

able to construct a candidate, say D, with at most n states. We now show that every
subsequent candidate must have at least one more state than D.

A candidate query with D either returns TRUE or a counterexample CE ∈ L(D)⊕
U . Note that the table must agree with D since D is consistent with it. Also since the
table is valid, it must agree with U . Therefore, CE �∈ (S ∪ S • Σ̂) • E and will be
added to S. Again, a valid and closed table (S′, E′, T ′) must be obtained eventually
after adding CE . Let D′ be the corresponding candidate.

Now, D′ is consistent with T since T ′ extends T . Also D′ agrees with MU as far
accepting CE is concerned while D does not. Hence D′ is inequivalent to D and by
Theorem 1 in Angluin’s proof, must have at least one more state than D. Hence, starting
from D, L∗ can make at most n− 1 incorrect candidates, since the number of states is
initially at least one, always increases monotonically and may not exceed n− 1. Since
L∗ must keep making new candidates as long as it is running, it must terminate with a
correct candidate MU . �$

Suppose we have a table T which is valid for an unknown language U and we have
a new unknown language U ′ different from U . Suppose we want to learn U ′ by starting
L∗ with table T . Note that in general T will not be valid for U ′ and hence starting from
T will not be appropriate. However, we can first validate T against U ′ and then start L∗

from the validated T . Theorem 2 provides the key insight behind the correctness of this
procedure. As we shall see, this idea forms the backbone of our dynamic compatibility
check procedure (cf. Section 5.3).

5.2 Assume-Guarantee Reasoning

Along with dynamicL∗, we also use assume-guarantee style compositional reasoning to
check compatibility. Given a set of component DLAs M1, . . . ,Mn and a specification
DLA ϕ, the following non-circular rule AG [17] can be used to verify M1 ‖ · · · ‖
Mn � ϕ:

M1 ‖ A1 � ϕ
M2 ‖ · · · ‖Mn � A1

M1 ‖ · · · ‖Mn � ϕ

In the above, A1 is an DLA representing the assumption about the environment
under which M1 is expected to operate correctly. As also observed by Cobleigh et
al. [10], the second premise is itself an instance of the top-level proof-obligation with
n− 1 component DLAs. Hence, AG can be applied to decompose it further.

5.3 Compatibility Check for C Components

The procedure for checking compatibility of new components in the context of the
original component assembly is presented in Figure 2. Given an old component as-
sembly C = {C1, . . . ,Cn}, and a set of new components C′ = {C ′

i | i ∈ I} (where
I ⊆ {1, . . . , n}), it checks if a safety property ϕ holds in the new assembly. We first
present an overview of the compatibility procedure and then discuss its implementation
in detail. The procedure uses a DynamicCheck algorithm, and is done in an iterative
abstraction refinement style as follows:

522 N. Sharygina et al.

1. Use predicate abstraction to obtain finite DLA models Mi, where Mi is constructed
from Ci if i �∈ I and from C ′

i if i ∈ I. The abstraction is carried out component-
wise. LetM = {M1, . . . ,Mn}.

2. Apply DynamicCheck on M. If the result is TRUE the compatibility check termi-
nates successfully. Otherwise we obtain a counterexample CE .

3. Check if CE is a valid counterexample. Once again this is done component-wise.
If CE is valid, the compatibility check terminates unsuccessfully with CE as coun-
terexample. Otherwise we go to the next step.

4. Refine a specific model, say Mk, such that the spurious CE is eliminated. Repeat
from Step 2.

Overview of DynamicCheck. We first present an overview of the algorithm for two
DLAs and then generalize it to an arbitrary collection of DLAs. Suppose we have two
old DLAs M1,M2 and a property DLA ϕ. We assume that we previously tried to verify
M1 ‖ M2 � ϕ using DynamicCheck. The algorithm DynamicCheck uses dynamic
L∗ to learn appropriate assumptions that can discharge the premises of AG. In particular
suppose that while trying to verify M1 ‖M2 � ϕ, DynamicCheck had constructed an
observation table T .

Now suppose we have new versions M ′
1,M

′
2 for M1,M2. Note than in general it

could be that either M ′
1 or M ′

2 is identical to its old version. DynamicCheck will now
reuse T and invoke the dynamic L∗ algorithm to automatically learn an assumption
A′ such that: (i) M ′

1 ‖ A′ � ϕ and (ii) M ′
2 � A′. More precisely, DynamicCheck

proceeds iteratively as follows:

New Components

L*

True

CE spurious

No
CE provided

False + CE
Yes

Old Components

Predicate Abstraction

Refine M

M = {M1, . . . ,Mn}

Check: M � ϕ

New Components are Substitutable

New Components are not Substitutable

{Ci | i �∈ I} {C′i | i ∈ I}

Fig. 2. The compatibility phase of the substitutability framework

1. It checks if M1 = M ′
1. If so, it starts learning from the previous table T , i.e., it sets

T ′ := T . Otherwise it re-validates T against M ′
1 to obtain a new table T ′.

2. It derives a conjecture A′ from T ′ and checks if M ′
2 � A′. If this check passes

it terminates with TRUE and the new assumption A′. Otherwise it obtains a coun-
terexample CE .

Dynamic Component Substitutability Analysis 523

3. It analyzes CE to see if CE corresponds to a real counterexample to M ′
1 ‖ M ′

2 �
ϕ. If so, it constructs such a counterexample and terminates with FALSE. Otherwise
it updates T ′ using CE .

4. It makes T ′ closed by making membership queries and repeats from Step 2.

Generalized DynamicCheck. We first describe the key ideas that enable us to reuse
the previous assumptions and then present the complete DynamicCheck algorithm for
multiple DLAs. Note that due to its dynamic nature, the algorithm will be able to locally
identify the set of assumptions that need to be modified to re-validate the system.

Incremental Changes between Successive Assumptions. Recall that the L∗ algo-
rithm maintains an observation table (S,E, T) corresponding to an assumption A for
every component M . During an initial compatibility check, this table stores the infor-
mation about membership of the current set of traces in an unknown language U (i.e.,
the language of the weakest assumption for M). Upgrading the component M modifies
this unknown language for the corresponding assumption from U to say, U ′. There-
fore, checking compatibility after an upgrade requires that the learner must compute a
new assumption A′ corresponding to U ′. In most cases, the languages L(A) and L(A′)
may differ only slightly and hence the information about behaviors of A is reused in
computing A′.

Table Re-validation. The original L∗ algorithm computes A′ starting from an empty
table. However, as mentioned before, a more efficient algorithm would intend to reuse
the previously inferred set of elements of S and E to learn A′. The result in Section 5.1
(Theorem 2) precisely enables the L∗ algorithm to achieve this goal. In particular, since
L∗ terminates starting from any valid table, the assumption learner first obtains a valid
table by reusing words in S and E: update T by asking membership queries w.r.t. U ′

for each ρ ∈ (S∪S • Σ̂)•E. The valid table (S,E, T ′) hence obtained is subsequently
made closed and then learning proceeds in the normal fashion. This allows the compat-
ibility check to restart from any previous set of assumptions by re-validating them. The
GenerateAssumption module implements this feature.

Overall DynamicCheck Procedure. The DynamicCheck procedure instantiates the
AG rule for n components and enables checking multiple upgrades simultaneously by
reusing previous assumptions and verification results. In the description, we denote the
previous and the new versions of a component DLA by M and M ′ and the previous and
the new versions of a component assemblies by M and M′ respectively. For ease of
description, we always use a property, ϕ, to denote the right hand side of the top-level
proof obligation of the compositional rule. We denote the modified property3 at each
recursion level of the algorithm by ϕ′. The old and new assumptions are denoted by A
and A′ respectively.

Figure 3 presents the pseudo-code of the algorithm DynamicCheck to perform
the compatibility check. Lines (1-4) describe the case whenM contains only one com-
ponent. In Line 5, an assumption A′ corresponding to M ′ and ϕ′ is generated using

3 Note that under the recursive application of the compatibility check procedure the updated
property ϕ′ corresponds to an assumption from the previous recursion level

524 N. Sharygina et al.

DynamicCheck (M′, ϕ′) returns counterexample or TRUE

1: let M ′ = first element of M′;
2: if (M′ = {M ′})
3: if (M �= M ′ or ϕ �= ϕ′) return (M ′ # ϕ′);
4: else return M # ϕ;
5: A′ := GenerateAssumption(M ′, ϕ′);
6: if (A �= A′ or M\M �= M′ \M ′)
7: CE := DynamicCheck(M′ \M ′, A′);
8: else CE := DynamicCheck(M\M , A);
9: while(CE is non-empty)
10: if (M ′ ‖ CE # ϕ′)
11: A′ := UpdateAssumption (A′,CE);
12: A′ := GenerateAssumption (M ′, ϕ′);
13: CE = DynamicCheck (M′ \M ′, A′);
14: else return a witness counterexample CE to M ′ ‖ CE �# ϕ′;
15: return TRUE;

Fig. 3. Pseudo-code for efficient compatibility check

dynamic L∗ such that M ′ ‖ A′ � ϕ′. Lines (6-8) describe recursive invocation of
DynamicCheck on M\M against property A′. Finally, lines (9-15) show how the
algorithm detects a counterexample CE and updates A′ with it or terminates with a
TRUE/FALSE result. The salient features of this algorithm are the following:

– GenerateAssumption (line 5) does not generate new assumptions every time
DynamicCheck is invoked. Instead, it reuses (by re-validating if necessary) the
assumption A computed in the previous compatibility check. When CE is used to
update A, GenerateAssumption (line 12) does not need to re-validate A since
it must be validated previously.

– Verification checks are repeated on a component M ′ (or a collection of components
M′ \M ′) only if it is (they are) found to be different from the previous version M
(M\M) or if the corresponding property ϕ has changed (lines 3,7,12). Otherwise,
the previously computed result is re-used (lines 4,8).

The correctness of DynamicCheck follows from the following theorem.

Theorem 3. Given modifiedM′ and ϕ′, DynamicCheck algorithm always terminates
with either TRUE or a counterexample CE toM′ � ϕ′.

We use the notion of weakest assumptions in proving the correctness of Dynam-
icCheck. We know that for any DLA M , there must exist a weakest environment
assumption DLA WA such that M ‖ Eϕ iff E � WA. Suppose, we have a sys-
tem of components M1, . . . ,Mn and a global property ϕ. Consider rules of form
Mi ‖ Ai � Ai−1(1 ≤ i ≤ n − 1, A0 = ϕ) and Mn � An−1 as used in our recursive
procedure to show that M1 ‖ .. ‖ Mn � ϕ. It is clear that a weakest assumption WA1

exists such that M1 ‖ WA1 � ϕ. Given WA1, it follows that WA2 must exist so that
M2 ‖ WA2 � WA1. Therefore, by induction on i, there must exist weakest assump-
tions WAi for 1 ≤ i ≤ n−1, such thatMi ‖ WAi � WAi−1(1 ≤ i ≤ n−1,WA0 = ϕ)

Dynamic Component Substitutability Analysis 525

and Mn � An−1. Also, by Theorem 2, UpdateAssumption(A,CE) must termi-
nate starting from any valid assumption A′ with respect to U ′ and a counterexample
CE ∈ L(A′)⊕ U ′.
Proof. Suppose, without loss of generality, that component DLAM ′, is upgraded. Note
that after an upgrade, a weakest assumption WA′ (possibly different from WA) must
exist for every M ′ ∈ M′. We proceed by induction over the size k of M′. In the base
case, it is clear that we need to model checkM ′ against ϕ′ only if eitherM or ϕ changed
(line 3). This either returns a counterexample to M ′ � ϕ′ or the previous M � ϕ (line
4) result holds.

Assume for the inductive case that DynamicCheck(M′\M ′, A′) terminates with
either TRUE or a counterexample CE . It is clear from its definition that A′ computed
by GenerateAssumption (line 5) is valid. If line 6 holds, i.e, A′ �= A orM\M �=
M′\M ′ then by inductive hypothesis, execution of line 7 terminates with either a TRUE

result or a counterexample CE . Otherwise, the previously computed CE result is used
(line 8). It remains to be shown that lines (9-15) compute the correct return value based
on this result.

If this result is TRUE then it follows from the soundness of the assume-guarantee
rule that M′ � ϕ′ and DynamicCheck returns TRUE (line 15). If M ′ ‖ CE �� ϕ′

(line 10), then by set-theoretic arguments based on the definitions of A′ and CE ,
we know that M′ �� P ′ and a suitable witness CE ′ (line 14) is returned by the
algorithm. Otherwise, since A′ is valid, both UpdateAssumption (line 11) and
GenerateAssumption (line 12) must terminate by learning a new assumption, say
A′′, such that M ′ ‖ A′′ � ϕ′. It follows from the proof of correctness of L∗ that
|A′| < |A′′| and from the definition of weakest assumptions that |A′′| ≤ |WA′|. Also,
by inductive hypothesis, line 13 must terminate with the correct CE result. Hence,
lines 9-13 of the while loop may be executed only a finite number of times until
|A′′| = |WA′|, when (by set-theoretic arguments) either the result is TRUE (line 15)
or a witness counterexample CE ′ (line 14) forM′ �� P ′ is returned.

�$

Further optimizations. Recall that our procedure reuses assumptions generated dur-
ing previous compatibility checks. We further optimize it by identifying a subset of
assumptions that have to be re-validated at the initialization of the next check. This
optimization is enabled by the following lemma whose proof follows directly from
Theorem 3 and definition of weakest assumptions.

Lemma 1. Let M = {M1, . . . ,Mn} be an assembly of components, A =
{A1, . . . , An−1} be a set of previously computed assumptions and I ⊆ {1, . . . , n} be
an index set. Also, let {M ′

i | i ∈ I} be the set of new components. If k is the minimum
index of I, then it is sufficient for DynamicCheck to re-validate only the assumptions
in the set {Aj | j ≥ k ∧ j ≤ n}.

6 Feedback

Recall that for some i ∈ I, if our containment check detects that Ci �� C
′
i , it also

computes a set Fi. Intuitively each element of Fi represents a behavior of Ci which is

526 N. Sharygina et al.

not a behavior of C
′
i . We now present our process of generating feedback from Fi. In

the rest of this section we will write C , C
′

and F to mean Ci, C
′
i and Fi respectively.

Consider any behavior π in F . Recall that π is a trace of a DLA M obtained by
predicate abstraction of C . By simulating π onM , we construct an alternating sequence
Rep(π) = 〈s1, α1, . . . , sn〉 of states and actions of M corresponding to π. Recall from
our earlier discussion of predicate abstraction (cf. Section 4) that each si is of the form
(st i,Vi) where st i is a statement of C and Vi is a predicate valuation. Thus, Rep(π) =
〈(st1,V1), α1, . . . , (stn,Vn)〉.

We also know that π represents an actual behavior of C but not an actual behavior
of C

′
. Thus, there is a prefix Pref (π) of π such that Pref (π) represents a behavior of

C
′
. However any extension of Pref (π) is no longer a valid behavior of C

′
. Note that

Pref (π) can be constructed by simulating π on C
′
. Let us denote the suffix of π after

Pref (π) by Suff (π). Since Pref (π) is an actual behavior of C
′

we can also construct
a representation for Pref (π) in terms of the statements and predicate valuations of C

′
.

Let us denote this representation by Rep′(Pref (π)).
As our feedback we output, for each π ∈ F , the following representations:

Rep(Pref (π)), Rep(Suff (π)) and Rep′(Pref (π)). Note that such feedback allows us
to identify the exact divergence point of π beyond which it ceases to correspond to any
concrete behavior of C

′
. Since the feedback refers to program statement, it allows us to

understand at the source code level why C is able match π completely but C
′

is forced
to diverge from π beyond Pref (π). This makes it easier to modify C

′
so as to add back

to it the missing behavior π.

7 Implementation and Experimental Evaluation

We implemented and evaluated the compatibility check phase for checking component
substitutability in the COMFORT framework. COMFORT extracts abstract component
DLA models from C programs using predicate abstraction. It also serves as a MAT
(cf. Section 5.1) for learning assumptions in the compatibility check. If the compati-
bility check returns a counterexample, the counterexample validation and abstraction-
refinement modules of COMFORT are employed to check for spuriousness and do re-
finement, if necessary.

We validated the component substitutability framework while verifying up-
grades of a benchmark provided to us by our industrial partner, ABB Inc.
(http://www.abb.com). The benchmarks consist of seven components which to-
gether implement an interprocess communication (IPC) protocol. The combined state-
space is over 106.

We used a set of properties describing functionality of the verified portion of the
IPC protocol. We used upgrades of the write-queue (ipc1) and the ipc-queue (ipc2 and
ipc3) components. The upgrades had both missing and extra behaviors compared to
their original versions. We verified two properties (P1 and P2) before and after the
upgrades. We also verified the properties on a simultaneous upgrade (ipc4) of both the
components. P1 specifies that a process may write data into the ipc-queue only after it
obtains a lock for the corresponding critical section. P2 specifies an order in which data
may be written into the ipc-queue. Table 1 shows the comparison between time required

Dynamic Component Substitutability Analysis 527

Table 1. Comparison of times required for original verification (Torig) and verification on up-
grade (Tug) by DynamicCheck. #Mem. Queries denotes the total number of membership
queries made during verification of the original assembly

Upgrade#(Prop.) # Mem. Queries Torig (msec) Tug (msec)
ipc1(P1) 279 2260 13
ipc1(P2) 308 1694 14
ipc2(P1) 358 3286 17
ipc2(P2) 232 805 10
ipc3(P1) 363 3624 17
ipc3(P2) 258 1649 14
ipc4(P1) 355 1102 24

for initial verification of the IPC system with the time taken by DynamicCheck for
verification of upgrades. We observed that the previously generated assumptions in all
the cases were sufficient to prove the properties on the upgraded system also. Hence,
the compatibility check succeeded in a small fraction of time (Tug) as compared to the
time for compositional verification (Torig) of the original system.

8 Conclusions and Future Work

We proposed a solution to the critical and vital problem of component substitutabil-
ity consisting of two phases: containment and compatibility. The compatibility check
performs compositional reasoning with help of a dynamic regular language inference
algorithm and a model checker. Our experiments confirm that the dynamic approach
is more effective than complete re-validation of the system after an upgrade. The con-
tainment check detects behaviors which were present in each component before but not
after the upgrade. These behaviors are used to construct useful feedback to the develop-
ers. We observed that the order of components used to discharge the assume-guarantee
rules has a significant impact on the algorithm run times and hence needs investigation.
We would further like to investigate a modification of it based on a more efficient L∗ al-
gorithm by Rivest et al. [18] in order to improve the performance of DynamicCheck.

References

1. R. Alur, P. Cerny, G. Gupta, P. Madhusudan, W. Nam, and A. Srivastava. Synthesis of
interface specifications for Java classes. In Symp. on Principles Of Programming Languages
(POPL), 2005.

2. D. Angluin. Learning regular sets from queries and counterexamples. In Information and
Computation, volume 75(2), pages 87–106, 1987.

3. S. Chaki, E. Clarke, D. Giannakopoulou, and C. S. Pasareanu. Abstraction and assume-
guarantee reasoning for automated software verification. Technical Report 05.02, Research
Institute for Advanced Computer Science (RIACS), 2004.

528 N. Sharygina et al.

4. S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichman, and K. Yorav. Efficient verification
of sequential and concurrent C programs. Formal Methods in System Design, 25(2–3), 2004.

5. S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/event-based software
model checking. In Integrated Formal Methods, volume 2999, pages 128–147. LNCS, 2004.

6. S. Chaki, J. Ivers, N. Sharygina, and K. Wallnau. The ComFoRT reasoning framework. In
Proceedings of Computer Aided Verification (CAV), 2005.

7. S. Chaki, N. Sharygina, and N. Sinha. Verification of evolving software. In 3rd Workshop
on Spec. and Ver. of Component-based Systems, ESEC/FSE, 2004.

8. A. Chakrabarti, L. de Alfaro, T. A. Henzinger, M. Jurdzinski, and F. Y. C. Mang. Inter-
face compatibility checking for software modules. In Proceedings of the 14th International
Conference on Computer-Aided Verification, pages 428–441. LNCS 2404, Springer-Verlag,
2002.

9. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
10. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions for com-

positional verification. In Tools and Algorithms for Construction and Analysis of Systems,
volume 2619. LNCS, Springer-Verlag, 2003.

11. L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the Ninth Annual
Symposium on Foundations of Software Engineering. ACM Press, 2001.

12. D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Assumption generation for software
component verification. In Proceedings of the ASE, 2002.

13. S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. In Proceedings of
Computer Aided Verification, 1997.

14. A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. In Tools and Algorithms
for Construction and Analysis of Systems, pages 357–370. Springer-Verlag, 2002.

15. MAGIC. http://www.cs.cmu.edu/ chaki/magic.
16. S. McCamant and M. D. Ernst. Early identification of incompatibilities in multi-component

upgrades. In ECOOP 2004 — Object-Oriented Programming, 18th European Conference,
Oslo, Norway, 2004.

17. A. Pnueli. In transition from global to modular temporal reasoning about programs. In Logics
and Models of Concurrent Systems, pages 123–144, New York, NY, USA, 1985. Springer-
Verlag New York, Inc.

18. R. L. Rivest and R. E. Schapire. Inference of finite automata using homing sequences. In
Information and Computation, volume 103(2), pages 299–347, 1993.

19. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Int., 1997.
20. Learning for software. http://www.sei.cmu.edu/staff/chaki/publications/learn-se-trace.pdf.

Floating-Point Verification

John Harrison

Intel Corporation, JF1-13, 2111 NE 25th Avenue,
Hillsboro OR 97124

johnh@ichips.intel.com
http://www.cl.cam.ac.uk/users/jrh

1 Introduction

Only in a few isolated safety-critical niches of the software industry (e.g. avionics)
is any kind of formal verification widespread. But in the hardware industry, formal
verification is widely practised, and increasingly seen as necessary. We can perhaps
identify at least three reasons:

– Hardware is designed in a more modular way than most software, with refinement
an important design method. Constraints of interconnect layering and timing means
that one cannot really design ‘spaghetti hardware’.

– More proofs in the hardware domain can be largely automated, reducing the need
for intensive interaction by a human expert with the mechanical theorem-proving
system.

– The potential consequences of a hardware error are greater, since such errors often
cannot be patched or worked around, and may in extremis necessitate a hardware
replacement.

To emphasize the last point, an error in the FDIV (floating-point division) instruc-
tion of some early Intel® Pentium® processors in 1994 resulted in a charge to Intel of
approximately $475M. Given this salutary lesson, and the size and diversity of its mar-
ket, it’s therefore understandable that Intel should be particularly interested in formal
verification.

Moreover, it is not surprising that a considerable amount of effort has been in the
floating-point domain, not just at Intel [17, 10, 9], but also at AMD [15, 19] and IBM [9].
Floating-point algorithms have proven themselves difficult to get right. Yet in marked
contrast to some other targets for formal verification, it is not hard to come up with
widely accepted formal specifications of how floating-point operations should behave.
In fact, many operations are specified almost completely by the IEEE Standard gov-
erning binary floating-point arithmetic [12]. However, in some other respects, floating-
point operations present a difficult challenge for formal verification.

2 The Role of Theorem Proving

In many other areas of verification, significant success has been achieved using highly
automated techniques, usually based on a Boolean model of the state of the system.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 529–532, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

530 J. Harrison

For example, efficient algorithms for propositional logic [1, 5, 21] and their aggres-
sively efficient implementation [16] have made possible a variety of techniques ranging
from simple Boolean equivalence checking of combinational circuits to more advanced
model checking of sequential systems [3, 18, 2, 20].

But it is less easy to verify non-trivial floating-point arithmetic operations using
such techniques. The natural specifications, including the IEEE Standard, are based on
real numbers, not bit-strings. While simple adders and multipliers can be specified quite
naturally in Boolean terms, this becomes progressively more difficult when one consid-
ers division and square root, and seems quite impractical for transcendental functions.
So while model checkers and similar tools are of great value in dealing with low-level
details, at least some parts of the proof must be constructed in general theorem proving
systems that enable one to talk about high-level mathematics.

There are many theorem proving programs,1 and quite a few have been applied
to floating-point verification, including at least ACL2, Coq, HOL Light and PVS. We
will concentrate later on our own work using HOL Light [6], but this is not meant to
disparage other important work being done at Intel and elsewhere in other systems.

3 Examples

We will now give a brief overview of some of our verification projects using HOL Light.
Of course, a significant component is the formalization of background theories of pure
mathematics [7] and floating-point arithmetic [8]. We will not dwell on that in much
detail, but it is an essential prerequisite for the verifications that are described.

Division

The Intel® Itanium® architecture performs division in software or microcode using
sequences of ‘fused multiply-adds’, an approach pioneered by Markstein [14]. There
are numerous variants depending on the required performance and accuracy charac-
teristics (e.g. IEEE double-precision division with maximum throughput), and quite a
few recommended sequences are made available by Intel so that they can be inlined
by compilers, used as the core of mathematical libraries, or called on as macros by
assembly language programmers. We have verified a large number of such algorithms
[10], giving a much higher degree of assurance than had been provided by earlier hand
proofs. A particularly gratifying experience was that as part of the process of formal-
ization we observed that one of the hypotheses in a key theorem of [14] was stronger
than necessary. As a result, we were able to design some more efficient algorithms [13].

Square Root

Similarly, the Intel® Itanium® architecture defers square roots to software, and we have
verified a number of sequences for the operation [11]. The process of formal verification

1 See http://www.cs.ru.nl/∼freek/digimath/index.html for a list, and
http://www.cs.ru.nl/∼freek/comparison/index.html for a comparison of
the formalization of an elementary mathematical theorem in several.

Floating-Point Verification 531

follows a methodology established by Cornea [4]. A general analytical proof covers
the majority of cases, but a number of potential exceptions are isolated using number-
theoretic techniques and dealt with using an explicit case analysis.

Proofs of this nature, large parts of which involve intricate but routine error bound-
ing and the exhaustive solution of diophantine equations, are very tedious and error-
prone to do by hand. In practice, one would do better to use some kind of machine
assistance, such as ad hoc programs to solve the diophantine equations and check the
special cases so derived. Although this can be helpful, it can also create new dangers
of incorrectly implemented helper programs and transcription errors when passing re-
sults between ‘hand’ and ‘machine’ portions of the proof. By contrast, we perform all
steps of the proof in HOL Light, and can be quite confident that no errors have been
introduced.

Transcendentals

We have also proven rigorous error bounds for implementations of several common
transcendental functions [9]. It is here that we really start to see the need for non-trivial
mathematics. This proof, for example, involves verifying the accuracy of polynomial
approximations to transcendental functions (optimal Remez polynomials rather than
simply truncated Taylor series), precisely bounding rounding errors in sophisticated
floating-point computations, and even diophantine approximation theory in order to
deal with difficult cases where the input number is close to a multiple of π/2.

4 Conclusions

Formal verification in this area is a good target for theorem proving. The work outlined
here has contributed in several ways: bugs have been found, potential optimizations
have been uncovered, and the general level of confidence and intellectual grasp has
been raised. In particular, two key strengths of HOL Light are important: (i) available
library of formalized real analysis, and (ii) programmability of special-purpose infer-
ence rules without compromising soundness. Subsequent improvements might focus on
integrating the verification more tightly into the design flow as in [17].

References

1. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transac-
tions on Computers, C-35:677–691, 1986.

2. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98:142–170, 1992.

3. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In D. Kozen, editor, Logics of Programs, volume 131 of
Lecture Notes in Computer Science, pages 52–71, Yorktown Heights, 1981. Springer-Verlag.

4. M. Cornea-Hasegan. Proving the IEEE correctness of iterative floating-point square root,
divide and remainder algorithms. Intel Technology Journal, 1998-Q2:1–11, 1998. Available
on the Web as http://developer.intel.com/technology/itj/q21998/
articles/art 3.htm.

532 J. Harrison

5. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Com-
munications of the ACM, 5:394–397, 1962.

6. J. Harrison. HOL Light: A tutorial introduction. In M. Srivas and A. Camilleri, editors,
Proceedings of the First International Conference on Formal Methods in Computer-Aided
Design (FMCAD’96), volume 1166 of Lecture Notes in Computer Science, pages 265–269.
Springer-Verlag, 1996.

7. J. Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998. Revised
version of author’s PhD thesis.

8. J. Harrison. A machine-checked theory of floating point arithmetic. In Y. Bertot, G. Dowek,
A. Hirschowitz, C. Paulin, and L. Théry, editors, Theorem Proving in Higher Order Logics:
12th International Conference, TPHOLs’99, volume 1690 of Lecture Notes in Computer
Science, pages 113–130, Nice, France, 1999. Springer-Verlag.

9. J. Harrison. Formal verification of floating point trigonometric functions. In W. A. Hunt
and S. D. Johnson, editors, Formal Methods in Computer-Aided Design: Third International
Conference FMCAD 2000, volume 1954 of Lecture Notes in Computer Science, pages 217–
233. Springer-Verlag, 2000.

10. J. Harrison. Formal verification of IA-64 division algorithms. In M. Aagaard and J. Harrison,
editors, Theorem Proving in Higher Order Logics: 13th International Conference, TPHOLs
2000, volume 1869 of Lecture Notes in Computer Science, pages 234–251. Springer-Verlag,
2000.

11. J. Harrison. Formal verification of square root algorithms. Formal Methods in System Design,
22:143–153, 2003.

12. IEEE. Standard for binary floating point arithmetic. ANSI/IEEE Standard 754-1985, The
Institute of Electrical and Electronic Engineers, Inc., 345 East 47th Street, New York, NY
10017, USA, 1985.

13. P. Markstein. IA-64 and Elementary Functions: Speed and Precision. Prentice-Hall, 2000.
14. P. W. Markstein. Computation of elementary functions on the IBM RISC System/6000 pro-

cessor. IBM Journal of Research and Development, 34:111–119, 1990.
15. J. S. Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof of the correctness

of the kernel of the AMD5K86 floating-point division program. IEEE Transactions on
Computers, 47:913–926, 1998.

16. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of the 38th Design Automation Conference (DAC 2001),
pages 530–535. ACM Press, 2001.

17. J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. Formally verifying IEEE compliance
of floating-point hardware. Intel Technology Journal, 1999-Q1:1–14, 1999. Available
on the Web as http://developer.intel.com/technology/itj/q11999/
articles/art 5.htm.

18. J. P. Queille and J. Sifakis. Specification and verification of concurrent programs in CESAR.
In Proceedings of the 5th International Symposium on Programming, volume 137 of Lecture
Notes in Computer Science, pages 195–220. Springer-Verlag, 1982.

19. D. Rusinoff. A mechanically checked proof of IEEE compliance of a register-transfer-level
specification of the AMD-K7 floating-point multiplication, division, and square root instruc-
tions. LMS Journal of Computation and Mathematics, 1:148–200, 1998. Available on the
Web via http://www.onr.com/user/russ/david/k7-div-sqrt.html.

20. C.-J. H. Seger and R. E. Bryant. Formal verification by symbolic evaluation of partially-
ordered trajectories. Formal Methods in System Design, 6:147–189, 1995.

21. G. Stålmarck and M. Säflund. Modeling and verifying systems and software in propositional
logic. In B. K. Daniels, editor, Safety of Computer Control Systems, 1990 (SAFECOMP ’90),
pages 31–36, Gatwick, UK, 1990. Pergamon Press.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 533 – 536, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Preliminary Results of a Case Study:
Model Checking for Advanced Automotive Applications

Stefan Eisler1, Christian Scheidler1, Bernhard Josko2,
Guido Sandmann3, and Joachim Stroop4

1 DaimlerChrysler AG, Alt-Moabit 96A,
D-10559 Berlin, Germany

{Stefan.Eisler, Christian Scheidler}@DaimlerChrysler.Com
2 OFFIS, Escherweg 2,

D-26121 Oldenburg, Germany
Bernhard.Josko@Offis.de

3 OSC - Embedded Systems AG, Industriestraße 11,
D-26121 Oldenburg, Germany

Guido.Sandmann@osc-es.de

4 dSPACE GmbH, Technologiepark 25,
D-33100 Paderborn, Germany
jstroop@dspace.de

Abstract. Model checking is a promising formal verification technique success-
fully applied in several industrial environments, such as in chip design and in
the telecommunication industry. In this paper, preliminary results of an automo-
tive case study are presented as performed in the context of the European pro-
ject EASIS1.

1 Introduction

The formal verification technique model checking (MC) was initially proposed by
Clarke and Emerson [1] to check the complete state space of a finite state machine
and to determine if a certain property is true or false. In contrast to testing, model
checking provides exhaustive coverage of all possible input scenarios for a formally
specified requirement. The requirements may be straightforward Boolean expressions
or more sophisticated ones expressing temporal and causal properties.

2 EmbeddedValidator™

EmbeddedValidator (EV) is a commercial tool suite for performing model-based
automatic formal verification by model checking for reactive embedded systems. EV
is distributed by OSC-ES [2], a spin-off of the OFFIS Institute at the University of
Oldenburg, Germany. EV is a fully integrated solution for the tool chain of The

1 EASIS – Electronic Architectures and System Engineering for Integrated Safety Systems - is

partly funded by the European Commission under contract No IST-507690.

534 S. Eisler et al.

MathWorks and dSPACE (Stateflow/Simulink/TargetLink) and is based on two estab-
lished proof engines:

− VIS [3] has been developed jointly at the University of California at Berkeley, the
University of Colorado at Boulder, and the University of Texas, Austin. The VIS
engine provides complete model checking, meaning that the system is explored
with regard to all reachable system states. Only when all reachable states have been
visited does the verification procedure terminate.

− Prover, distributed by Prover Technologies [4], is a bounded engine which ex-
plores the system states only up to a user-defined number of steps. Counterexam-
ples detected within this number of steps are design errors of the complete system.
Errors which require a larger number of steps cannot be considered. This implies
that if a counterexample is not detected within the given range, it cannot be con-
cluded that the model fulfills the requirement.

Both technologies have their advantages and shortcomings. The complete technology
suffers from complexity problems to a greater extent than the bounded one does. On
the other hand, the bounded one only detects errors and cannot certify an implementa-
tion regarding a specification, as the complete engine can. EV supports two types of
verification methods, referred to as Robustness Checks and Standard Analyses and
Proofs:

1. The Robustness Checks and Standard Analyses cover checks like Drive-to-States,
Drive-to-Configuration, Drive-to-Property and Range Violation. These verifica-
tions are very simple to use and require no knowledge of temporal logic.

2. Proofs address the formal verification of user-defined system properties. For ease
of use, a Pattern Template Library for specifying temporal-logical requirements is
provided. Eight-teen core proof patterns, like inv_P,
P_implies_Q_X_steps_later or Q_not_before_P are supported. The
abstract variables P and Q used in the formulas have to be substituted by concrete
expressions of states and/or variables of the system model. The Pattern Template
Library cannot be extended by the user. However, first experiences show that the
given patterns cover a broad spectrum of proofs. More than 70 proofs have been al-
ready performed based on the current Pattern Template Library (see chapter 3).

The compilation of the model behavior into the verification language is based upon
generated C code by TargetLink. The benefit of this approach is a smaller semantic
gap between the “proven unit” (generated C code) and the “final system” (ECU),
compared to the alternative method of getting the model data out of the Simulink
model files (*.mdl). However, additional costs for the TargetLink code generator have
to be considered.

3 Evaluation

For the purpose of evaluation, an advanced automotive assistance system, which will
come to market in 2006, has been chosen as DaimlerChrysler Pilot Application #1.
For confidentiality reasons, only limited information about this application can be

 Preliminary Results of a Case Study 535

given in this publication. The system model of Pilot Application #1 offers several
advantages:

− Pilot Application #1 is an in-house development; therefore all artifacts of this ap-
plication (requirements, models, etc.) are available at DaimlerChrysler.

− The main control flow logic of the application is represented explicitly in Stateflow
state charts, which is a fundamental prerequisite for model checking.

− The system model is represented as TargetLink fix-point model, which is a re-
quirement of the EV (see chapter 2).

− Textual requirements associated with state charts exist already, which eases the
preparation of system properties to be proven.

However, the model is not purely based on Stateflow subsystems, which raises the
limitations of the model checking technology. Several parts of the application are
represented by Simulink subsystems that consist of TargetLink blocks not supported
by EV and hence cannot be analyzed. These subsystems have to be verified by con-
ventional testing technologies.

The evaluation requires the following steps. Firstly, relevant Stateflow subsystems
of the system model and all related requirements have to be identified. Secondly, the
extraction procedure of EV has to be started. Floating-point numbers have to be con-
verted to fix-point representations; here the TargetLink property manager can be ap-
plied. Finally, analyses and proofs can be configured. The configuration of proofs is
the intellectually most demanding task. Some experience is needed to transform tex-
tual requirements into temporal logic formulas.

We would like to distinguish between methodology and tool evaluation. Criteria for
methodology evaluation are:

− Maturity - covering the size/ type of system models which can be analyzed,
− Limitations - typically characterized by system models which cannot be analyzed

due to their size,
− Process conformity - how to integrate the methodology into an established system

engineering process.

Typical criteria for tool evaluation are:

− Usability – covering all GUI aspects, like user friendliness, etc.,
− Ease of formalization – how much expert knowledge on formal methods/model

checking, respectively, is needed to prove a certain requirement,
Maturity – absence of bugs, etc.

Table 1 covers preliminary yet promising results of the automotive case study.
Sixty-seven requirements associated with four different subsystems have been already
analyzed; sixty-two requirements have been proven successfully. Five requirements
have been disproven; the counterexamples bring up slight mismatches between re-
quirements specification and system model. None of these counterexamples could
have been found easily using conventional testing technologies; which demonstrates
the power of model checking technology. However, the effects found are negligible,
because they do not change the system behavior in such a way that can be experi-
enced by the driver/customer.

536 S. Eisler et al.

Table 1. Preliminary results of the case study

State chart No. of re-
quirements

Provable
(Requirement

represented in model)

TRUE FALSE
(counterexample

exists)
#1 9 6 5 1
#2 17 14 14 0
#3 16 11 11 0
#4 39 36 32 4

Sum 81 67(83%) 62(93%) 5(7%)

Four counterexamples are associated with a minimal change of the timing behav-
ior, which might be illustrated by state chart #1. The disproven requirement says “that
the system has to go to the inactive state if a certain kind of driver activity has been
sensed.” This property holds in nearly all cases; however, there is one input sequence
where the activation of the inactive state is delayed by two steps, causing a deceler-
ated system behavior. This effect is associated with the Stateflow clock rule, because
the delayed path corresponds to an out transition of a superstate, which is of higher
priority than the out transition corresponding to the direct path to the inactive state.

4 Summary and Outlook

Preliminary yet promising results of an automotive case study for model checking
have been presented. We can conclude that the methodology and the supporting tool
fit to the model-based development process, which has become a de-facto standard in
the automotive domain. Future short-term activities cover the proof of further
Stateflow subsystems in Pilot Application #1 and the analysis of the semantic gap
between the proven C code and the C code compiled for the target ECU. The com-
parison of the methodology model checking and testing is a further research issue.
Here we would like to examine whether model checking substitutes or complements
conventional testing. A fundamental problem of model checking is the lack of trace-
ability in the case that a property has been proven. Here, concepts are needed to in-
crease confidence in model checking results.

References

1. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching-time temporal logic. Lecture Notes in Computer Science, Vol. 131. Springer-
Verlag, Berlin Heidelberg New York (1981).

2. http://www.osc-es.de
3. The VIS Group: VIS: A system for Verification and Synthesis. Proceedings of the 8th Inter-

national Conference on Computer Aided Verification. Lecture Notes in Computer Science,
Vol. 1102. Springer-Verlag, Berlin Heidelberg New York (1996) 428-432.

4. Prover Technologies. http://www.prover.com/, 2003.

Model-Based Testing in Practice

Alexander Pretschner

Information Security, ETH Zürich, 8092 Zürich, Switzerland

1 Introduction

Testing comprises activities that aim at showing that the intended and actual
behaviors of a system differ, or at gaining confidence that they do not. The goal
of testing is failure detection: observable differences between the behaviors of
implementation and specification. Classical estimates relate one half of the over-
all development effort to testing. Even if Fagan [1] suspects that this percentage
includes activities such as finding the causes of failures in the code and removing
them, testing is an important and expensive activity in the development process.

Model-based testing (MBT) relies on models (specifications) that encode the
intended behavior of a system. Runs of the model are interpreted as test cases (in
this paper, tests for short) for a system under test (SUT): input and expected
output. Activities in MBT have attracted a major interest in the past years.
In addition to the appeal of the concept, we see the major reasons (a) in a
gain of momentum of model-based languages and technologies (UML, MDA)
and their seemingly direct connection to testing activities, (b) in the increasing
popularity of test-centered development processes such as TDD or XP, and (c)
in the possibility of promoting research activities and results under the umbrella
of “lightweight” formal methods. Yet, despite numerous efforts in the area, it is
not clear if the use of this technology pays off and, if so, in which niches.

This overview paper summarizes the ideas, promises, assumptions, and evi-
dence of the benefits of MBT in Sec. 2. Sec. 3 argues for empirical studies.

2 Model-Based Testing

We describe the fundamentals of MBT, convey the appeal of the concept, pin
down assumptions for successful deployment, and report on evidence.

Fundamentals. Testing consists of three stages: generation of tests, execution
of tests, and derivation of verdicts. When applied to non-deterministic systems,
the first two stages are likely to collapse. Models are used for the generation of
tests and test harnesses. Since tests already comprise input and expected output
we do not need models for assigning verdicts. Test harnesses are pieces of code
that actually execute tests. Models that can be used to derive test harnesses are
usually of a structural nature. These are not the subject of this paper; we will
focus on behavior models instead.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 537–541, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

538 A. Pretschner

The number of possible tests is normally very large or even infinite. For
economical reasons, it should be reduced to a minimum. For quality reasons,
it must be sufficiently high as to reduce the number of remaining failures in
the field to an acceptable number. This means that test case generation, be
it model-based or not, must face the problem of selecting “good” tests in the
following sense. They are cheap to derive and cheap to execute; they are cheap
to evaluate in that they help detecting faults on the grounds of failures; they
find all “serious” and “frequent” failures.

Respective selection criteria can be divided into structural, functional, fault-
based, and stochastic criteria. Structural criteria require that, upon execution of
the SUT or the model, a certain coverage of data domains and of the nodes and
edges in control flow and data flow graphs be obtained. Their ability to detect
failures is subject to ongoing disputes [2], and particularly so when compared
to random testing. On the other hand, structural criteria lend themselves to the
automated generation of tests (test selection criteria are also quality indicators
[3]), and they are measurable. This is relevant from a management point of view.
Functional criteria try to capture isolated functionalities or requirements of a
system, and define tests accordingly. This is usually achieved by defining models
of the environment, or by other dedicated constraints on the set of all executions
of the model. In general, MBT is hence concerned with models of both the SUT
and the environment. Alleviating the task of defining concrete functional criteria
seems to be possible from a methodological perspective, but not from a techni-
cal point of view. Fault-based criteria rely on knowledge of typically occurring
failures. Finally, stochastic criteria rely on input probability distributions. If the
distribution is uniform, then testing is random. Other distributions are based on
user profiles [4] which is particularly appealing from an economic point of view
since it caters for the frequency of potential failures.

Given a model and an adequately operationalized test selection criterion—
constraints or environment models—a test case generator, human or automatic,
then derives traces of the model, i.e. tests for the SUT. Test case generators use
the technologies of model checkers, symbolic execution, satisfiability checkers, or
deductive theorem provers. In addition to the practical difficulties with verifying
large systems, model checking or theorem proving of the programs alone are
not sufficient because these activities cannot transcend the assumptions on the
environment (hardware, operating systems, legacy systems).

Methodologically, MBT makes sense only if the model is more abstract than
the SUT. Otherwise, the effort of validating the model would exactly match the
effort of validating the SUT itself. This implies (a) that only behavior encoded
in the model can be tested and (b) that the different levels of abstraction must
be bridged [5]: the input part of the test is concretized before it is fed into the
SUT, and the output of the SUT is abstracted before it is compared to the
expected output part of the test. For instance, the output of a model can be as
abstract as “exception thrown” or “not thrown”. Concretization and abstraction
are performed by dedicated driver components. Coming up with the adequate
abstraction continues to be an art.

Model-Based Testing in Practice 539

Testing requires redundancy. Except for stress and performance testing, it is
questionable to use one single model for the generation of both tests and code:
the model would be tested against itself. In such a setting, only assumptions on
the environment of the SUT and the code generator can be tested [5].

Promises and Benefits. Then dubbed “specification-based testing”, the ideas
of MBT have been around for about three decades. Traditionally, engineers form
a vague understanding of the system by reading the specification. They build a
mental model. Inventing tests on the grounds of these mental models is a creative
process that is often implicit, barely reproducible, not motivated in its details
and bound to the ingenuity of single engineers. Proponents of MBT claim that
by making the mental model explicit, it is possible to generate sufficiently many
tests of a sufficient quality at an acceptable cost in a structured manner. Even
if it is rarely explicitly stated, the claim is that MBT yields better and cheaper
tests than strategies that do not rely on explicit models (we do not discuss the
relationship with reviews here; McConnell as well as Rombach and Endres have
compiled studies that relate them to traditional testing [6, 7]).

The mere act of building behavior models in itself helps understand and
clarify the requirements. This is because one is forced to thoroughly think about
the system. In this vein, MBT can be seen as add-on to an activity the benefits
of which usually go unchallenged, at least if cost is not an issue.

Assumptions. We will now make explicit three major assumptions that, usually
concealed, go along with the first promise of the last paragraph.

The first assumption concerns models as abstractions. We have argued above
that some loss of information is methodologically indispensable. The assumption
consists of two parts. (1) Because models are simplifications, they are simpler
to check than the SUT. (2) Sufficiently large parts of the omitted information
can be re-inserted by the driver components that perform concretizations and
abstractions: complexity can be distributed among model and driver.

The second assumption is concerned with the cost-effectiveness of the ap-
proach. It reads as follows. When compared to traditional forms of testing, the
resulting high quality of a SUT that was tested on the grounds of a model justifies
the cost of building the model and generating tests.

The third assumption concerns reuse. Recognizing the high cost of building
models, it comes in two forms. One states that changes in the model as a con-
sequence of changing requirements are (1) easy to validate, and, provided that
MBT is a push-button technology, (2) re-generating tests is cheaper than chang-
ing existing test suites. The second form states that reusing models and test
selection criteria in product lines automatically implies a reuse of tests.

Evidence. As far as we know, there is no published evidence that the promises
of MBT are kept. Horstmann et al. have recently provided a compilation of case
studies [8]. Roughly, all report on successful applications of MBT with auto-
mated test case generation in that “failures were found”. With the exception
of a recent study [2], comparative studies do not exist: MBT is not measured
against random or manual testing (in fact, some studies do vaguely state that

540 A. Pretschner

“model-based tests covered hand-written tests”, without explicitly stating what
exactly this means). Subject of the cited study [2] is the comparison of several
test suites generated automatically/manually/randomly, all with and without
a model. Comparison was done w.r.t. the number of detected failures, model
coverage, and implementation coverage (condition/decision coverage). The main
results of that study are (1) with a distinction between programming and spec-
ification errors, model-based tests detect significantly more specification errors
than the other suites, (2) hand-crafted model-based tests detected roughly as
many failures as a significantly larger number of automatically generated tests,
and (3) inconclusive findings on the relationship between coverages and failure
detection. The study is concerned with one single embedded system only, and it
does not take into account the cost of building the model.

3 Conclusions

The ideas of MBT are appealing, in particular when testing is just one activity
in an overall model-based development process. Numerous studies have shown
that MBT does help with revealing errors, even in products that have been in
the field for several years. We are convinced that MBT is a promising technology,
but most studies leave the following questions open. (1) How many errors were
detected during the modeling phase and before testing, i.e. during the careful
review of the requirements or specification documents? (2) How many errors
were detected by competitive technologies, in particular, testing without models
and MBT with manual derivation of tests? (3) How do cost and benefits relate?

It is true that not all successful technology had had prior empirical evidence
on its side (e.g. OO technology). To date, the question of whether or not struc-
tural test selection yield “better” tests than random tests remains undecided.
We are convinced that an array of empirical studies on MBT for single systems
will help find out where the technology is promising from a cost-benefit point
of view, where it is not, and why. Further, comparative studies that take into
account different technical approaches to MBT as well as different (kinds of) sys-
tems will help with identifying potential areas of successful application of MBT.
This is even if the design of such studies is intricate, and even if, in sum, results
of comparable work in the domain of error classifications are rather inconclusive
[6]. A suite of benchmark problems with manually derived tests, known errors,
and known cost of these errors could be a starting point.

References

1. Fagan, M.: Reviews and Inspections. In: Software Pioneers–Contributions to Soft-
ware Engineering, Springer Verlag (2002) 562–573

2. Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner, M., Zölch,
R., Sostawa, B., Stauner, T.: One evaluation of model-based testing and its au-
tomation. In: Proc. 27th Intl. Conf. on Software Engineering. (2005) To appear.

3. Zhu, H., Hall, P., May, J.: Software Unit Test Coverage and Adequacy. ACM
Computing Surveys 29 (1997) 366–427

Model-Based Testing in Practice 541

4. Musa, J.: Software Reliability Engineering. AuthorHouse, 2nd ed. (2004)
5. Pretschner, A., Philipps, J.: Methodological Issues in Model-Based Testing. Springer

LNCS 3472. In: Model-Based Testing–a tutorial volume. (2005) 281–291
6. McConnell, S.: Code Complete. Microsoft Press (1993)
7. Endres, A., Rombach, D.: A Handbook of Software and Systems Engineering—

Empirical Observations, Laws and Theories. Pearson Addison Wesley (2003)
8. Horstmann, M., Prenninger, W., El-Ramly, M.: Case Studies. Springer LNCS 3472.

In: Model-Based Testing–a tutorial volume. (2005) 439–461

Testing Concurrent Object-Oriented
Systems with Spec Explorer

Extended Abstract

Colin Campbell, Wolfgang Grieskamp, Lev Nachmanson,
Wolfram Schulte, Nikolai Tillmann, and Margus Veanes

Microsoft Research, Redmond, WA, USA

Abstract. We describe a practical model-based testing tool developed at Mi-
crosoft Research called Spec Explorer. Spec Explorer enables modeling and au-
tomatic testing of concurrent object-oriented systems. These systems take inputs
as well as provide outputs in form of spontaneous reactions, where inputs and
outputs can be arbitrary data types, including objects. Spec Explorer is being
used daily by several Microsoft product groups. The here presented techniques
are used to test operating system components and Web service infrastructure.

Transition Systems Formalize Reactive and Distributed Systems. Reactive and dis-
tributed systems are inherently nondeterministic. No single agent (component, thread,
etc.) controls all state transitions, and even external entities like the operating systems
scheduler or the network may play a role.

A practical and theoretically sound way to test the evolution of semi-independent
state spaces is to use a kind of transition system known as an interface automaton [3].
Interface automata make a distinction between input transitions and output transitions.
In some states, input is enabled and we can drive the system forward by giving it new
things to do; at other times the system and its environment choose what happens next.
This is like a game where players take turns. Sometimes it is our turn to make a move;
sometimes it is the systems.

To illustrate how this works we will use a network-based chat system as an example.
In the chat system there are multiple clients that may post messages. The system deliv-
ers pending messages in FIFO order with local consistency. Figure 1 shows a typical
scenario of the chat systems’ behavior as an interface automaton. The nodes of the graph
represent distinct states of the system. The arcs represent actions that change the sys-
tems state. Each state in the graph is either input enabled or output enabled. The states
drawn with ovals represent active, input-enabled states where a client may give the sys-
tem new work to do. States drawn with diamonds are passive, output-enabled states
where the system reacts to input or spontaneously makes a move of its own choosing.
The Post action is said to be controllable because it can be invoked by a user to provide
system input. The Deliver action is only observable; that is, it is an output message.
The names of observable actions in the graph are prefixed by the ? symbol. Note that in
some passive states there is a race between what the user may do and what the system
may do. The Timeout transition, here represented by a transition that carries no label,
indicates that no output was seen in the time the user was willing to wait. This causes a
transition from an output-enabled state to an input-enabled state.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 542–547, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Testing Concurrent Object-Oriented Systems with Spec Explorer 543

[c1->[c0->[]], [c0->[c1->[]]

[c1->[c0->["hi"]], c0->[c1->[]]

[c1->[c0->"hi"]], [c0->[c1->[]]

?Deliver("hi", c0, c1)

[c1->[c0->"hi"]], [c0->[c1->"hi"]]

Post(c1, "hi")

Post(c0, "hi")

[c1->[c0->[]]}, [c0->[c1->"hi"]]

Post(c1, "hi") ?Deliver("hi", c1, c0)

[c1->[c0->[]], [c0->[c1->["hi"]

?Deliver("hi", c1, c0)

?Deliver("hi", c0, c1)

Post(c0, "hi")

Fig. 1. Exploration of the Chat model with two clients (c0 and c1), a fixed message (“hi”) under
the restriction that at most 1 message from each sender must still be delivered to a client

Model Programs Compactly Encode Large Transition Systems. Interface automata
describe fixed scenarios. But we are not only interested in modeling and testing a fixed
scenario; we want to have a general description for a protocol, like a chat server. This is
where model programs can help. Rather than coding our system description directly as
a transition system, we use a model program to express system behavior as an “abstract
state machine”. Tools like Spec Explorer that analyze the states of the machine can
produce the transition system needed for testing.

Here is a model program that describes the chat system shown above, written in
the Spec# language. The state of the system consists of instances of the class Client
that have been created so far, and a map Members that for each client specifies the
messages that have been sent but not yet delivered to that client as sender queues. Each
sender queue is identified by the client that sent the messages in the queue. In the initial
state of the system there are no clients and and Members is an empty map.

class Client
type Message = string;
type SendersQueue = Map<Client,Seq<Message>>;
type MemberState = Map<Client,SendersQueue>;

MemberState Members = new Map();

We give two actions of the system. Actions are methods with preconditions that
say in which state of the system they may occur and for which input parameters. A
member of the chat session may post a message for all members except himself to
receive. When a sender posts a message, the message is appended at the end of the
corresponding sender queue of each of the other members of the session.

void Post(Client sndr, Message msg)
requires sndr in Members && Members.Size > 1;

{ foreach(rcvr in Members)
if (rcvr != sndr) Members[rcvr][sndr].Add(msg); }

544 C. Campbell et al.

A message being delivered from a sender to a receiver is an observable action or a
notification callback that occurs whenever the chat system forwards a particular mes-
sage to a particular client. When a delivery is observed, the corresponding sender queue
of the receiver has to be nonempty, and the message must match the first message in
that queue or else local consistency is violated. If the preconditions of the delivery are
satisfied then the delivered message is simply removed from the corresponding sender
queue of the recipient.

void Deliver(Message msg, Client sndr, Client rcvr)
requires rcvr in Members && sndr in Members[rcvr];
requires Members[rcvr][sndr].Length > 0 &&

Members[rcvr][sndr].Head == msg;
{ Members[rcvr][sndr] = Members[rcvr][sndr].Tail; }

When a client joins the session, the related message queues are initialized appropriately.
To encode a specification of the system’s intended behavior in machine-executable

form is not the same as writing a second implementation. The model program does less
than the implementation. Its purpose is to capture the states of the system that affect the
observable behavior of interest.

Exploration can Reveal the Interface Automaton of a Model Program. The inter-
face automaton defined by a model program is a complete unwinding or expansion of
the program. An explicit state model checking algorithm is used to compute the (possi-
bly infinite) space of all possible sequences of method invocations that 1) do not violate
the pre- and postconditions and invariant of the system’s contracts and 2) are relevant
to a user-specified set of test properties [4].

If the model is infinite state, unwinding doesn’t terminate. Spec Explorer thus in-
cludes practical features that control how the state space is explored. We mention two
of these: State groupings allow the exploration to prune away states that are distinct but
indistinguishable under a user-provided equivalence relation [1]. Avoiding isomorphic
cases that differ in the choice of input but have identical runs results in a body of tests
with a better chance of detecting a conformance discrepancy. State-dependent parame-
ter generation allows to compute the parameter domains of each action with respect to
the current state. This can make exploration more efficient by reducing the search for
input parameters to feasible cases.

Interface Automaton Provides the Basis for Model-Based Test Case Generation.
Test cases can be automatically generated by traversing the graph of the interface au-
tomaton. The graph also serves as a test oracle: a test fails if observed transitions of the
implementation under test do not match transitions in the graph. Additionally, success-
ful test runs must begin in the initial state and terminate in an accepting state. Accepting
states are states that satisfy a user-specified logical condition that says whether the sys-
tem is in a final, deinitialized state. In this example, the accepting state occurs whenever
the message queues are empty.

Differences between the predicted and actual system behavior are called confor-
mance failures. What constitutes a difference is mathematically defined in terms of
alternating refinement of interface automata. Alternating refinement means that the sys-
tem under test must accept at least as many inputs as the interface automaton defines

Testing Concurrent Object-Oriented Systems with Spec Explorer 545

(it may accept more inputs) and that, conversely, the test harness must accept at least as
many outputs as the system may produce (it may accept more outputs than the system
is capable of producing) [2].

Our test graphs are also used to automatically harness the implementation for con-
formance testing. Spec Explorer can instrument a .NET assembly and cause implemen-
tation methods corresponding to model actions to be invoked as needed.

Running a test results in a trace log that shows a comparison of expected versus
actual behavior. Here is an example:

Step Invocation From State To State Status
1 Post(c0, ”Hi”) S0 S1 Succeeded
2 ?Timeout S1 S1’ Succeeded
3 Post(c0, ”Bye”) S1’ S7 Succeeded
4 ?Deliver(”Bye”, c0, c1) S7 S2 FAILED: observed Deliver(”Bye”, c0, c1),

expected Deliver(”Hi”, c0, c1)

This test run observed that the particular chat system implementation being tested did
not deliver messages in the order posted, as required by the specification. The server
delivered in LIFO order instead of FIFO.

Game Strategies Help Achieve Test Goals. Although any traversal of the graph is a
possible trace of the system, we can only choose moves in the active states (i.e., those
drawn as ovals in the graph). A state where the system can choose from among more
than one move represents nondeterminism from the observers point of view. This means
a test case is not a just sequence of actions but a tree of actions and possible system
responses. Executing a test is like a so-called game against nature where a players
opponent chooses moves randomly. Spec Explorer implements game strategies using
Markov decision processes as a technique for intelligently choosing input actions that
broaden the coverage of nondeterministic tests [5].

On-the-Fly Conformance Checking Scales to Very Large State Spaces. When deal-
ing with model programs that have very large state spaces, we can combine the state
exploration and test case generation into an online algorithm called on-the-fly testing
[6].

When testing in its on-the-fly mode, Spec Explorer’s exploration makes moves
based on the observed history of the test run. This allows it to omit exploration of non-
deterministic branches that were not taken by the implementation during the test run.
It can also be run in a way that attempts to match the distribution of actions exercised
during testing to an application profile given as input.

Spec Explorer users rely on both pre-generated, offline tests with complete behav-
ioral coverage over a restricted domain of system inputs and online tests generated on
the fly which randomly sample a larger number of system inputs.

Empirical Evidence Shows that Spec Explorer is Effective. Spec Explorer was in-
ternally released in summer 2004. Since then approx. 100 testers use it on a daily basis.
In fact, most of Microsoft’s forthcoming Web service infrastructure was tested with
Spec Explorer and so are components of the Windows operating system.

546 C. Campbell et al.

For instance, recently the Windows test team split a feature set into 4 components
and decided to test 2 of them traditionally and 2 with Spec Explorer. The modeling
team build (1) a system-level object-model consisting of approx. 200 and another one
(2) of approx. 3500 lines of non-blank Spec# code. The multi-threaded implementations
under test have 2000 and 20000 lines of non-blank C++ code respectively.

In this particular setting, the model-based approach helped to discover 10 times
more errors than traditional test automation. Also the kind of bugs discovered were
deep system-level bugs (i.e. bugs that were only found after the system performed many
steps), for which manual test cases would have been hard to construct.

The effort in developing the models took roughly the same amount of time as devel-
oping the traditional test automation. The biggest impact that the modeling effort had
was during the design phase, the process helped to discover and resolve 2 times more
design issues than bugs that were found afterwards.

Microsoft developers typically can only check in code, which unit tests achieved
already more than 60% feasible branch coverage. It is the testers task to improve this
coverage. For (1) and (2) the testers refined the models so that they achieved 100% and
70% feasible branch coverage, respectively. While this improved the statistics, it does
not reflect on how well a concurrent implementation is tested. In most cases when bugs
were found, at least two or more threads and a shared resource were involved, although
the same code coverage could often be achieved with a single thread.

When developing new versions of the code, models need to be adjusted, but such
changes are typically local, whereas manual test cases have to be redesigned and some-
times completely rewritten. We have repeatedly observed that this is where model-based
testing substantially reduces test case development time.

But caution: When customers discover discrepancies between model and implemen-
tation using our tool, typically about half of them originate from the informal require-
ments specification, the model, or bugs in the test harness, and half are due to coding
errors in the implementation under test. But so far every team agreed that the modeling
effort was helpful – not only for test, but also, and in particular for design.

References

1. C. Campbell and M. Veanes. State exploration with multiple state groupings. In D. Beauquier,
E. Börger, and A. Slissenko, editors, 12th International Workshop on Abstract State Machines,
ASM’05, March 8–11, 2005, Laboratory of Algorithms, Complexity and Logic, University
Paris 12 – Val de Marne, Créteil, France, pages 119–130, 2005.

2. L. de Alfaro. Game models for open systems. In N. Dershowitz, editor, Verification: The-
ory and Practice: Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday,
volume 2772 of LNCS, pages 269 – 289. Springer, 2004.

3. L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the 8th European
Software Engineering Conference and the 9th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE), pages 109–120. ACM, 2001.

4. W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating finite state machines
from abstract state machines. In ISSTA’02, volume 27 of Software Engineering Notes, pages
112–122. ACM, 2002.

Testing Concurrent Object-Oriented Systems with Spec Explorer 547

5. L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, and W. Grieskamp. Optimal strategies
for testing nondeterministic systems. In ISSTA’04, volume 29 of Software Engineering Notes,
pages 55–64. ACM, July 2004.

6. M. Veanes, C. Campbell, W. Schulte, and P. Kohli. On-the-fly testing of reactive systems.
Technical Report MSR-TR-2005-03, Microsoft Research, January 2005.

ASD Case Notes: Costs and Benefits of Applying Formal
Methods to Industrial Control Software

Guy H. Broadfoot

Verum Consultants BV

guy.broadfoot@verum.com

1 Introduction

Software is now an essential component that is embedded in an ever-increasing array of

products. It has become an important means of realising product innovation and is a key

determinant of both product quality and time-to-market. For many businesses, software

has become business-critical and software development is a strategic business activity.

At the same time, software development continues to suffer from poor predictability.

Existing development methods appear to have reached a quality ceiling that incremental

improvements in process and technology are unlikely to breach. To break through this

ceiling, a different, more formal approach is needed, but one which can be introduced

within existing development organisations.

In this extended abstract, we summarise the costs and benefits of applying Analytical

Software Design (ASD), an approach that combines formal techniques with existing

industrial methods, to an industrial software development project.

2 An Overview of ASD

ASD uses the Sequence-based Specification method (SBS) [PP03] to specify functional

requirements and designs as total black box functions mapping every possible sequence

of input stimuli to a response. SBS partitions the domain into a finite set of equiva-

lence classes, each of which is characterised by a minimal length sequence called a

canonical sequence. This approach differs fundamentally from informal methods using

exemplary sequences, for example based on Sequence Diagrams or Use Case analysis,

by guaranteeing completeness. The specifications are fully traceable to the original re-

quirements specifications and because they are free from mathematical notation, they

remain completely accessible to critical project stakeholders and existing project teams.

This satisfies the industrial requirement that existing project personal retain a key role in

verifying and controlling the specifications. At the same time, the specifications provide

the degree of rigour and precision necessary for subsequent mathematical analysis.

The ASD Model Generator generates CSP [Hoa85, Ros98] models from these spec-

ifications and designs automatically and these can be formally analysed and verified

using the model checker FDR [For03]. For example, we use the model checker to ver-

ify (i) whether a design satisfies its functional requirements; and (ii) whether the design

uses other components according to their external functional specifications.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 548–551, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

ASD Case Notes: Costs and Benefits of Applying Formal Methods 549

The ASD Code Generator can generate significant amounts of program source code

in C++, C or other similar languages automatically from these specifications. The major

advantage of code generation is correctness; the code is generated automatically from

specifications already formally verified. The percentage of the total code that can be

generated this way varies from project to project. Experience suggests this is typically

between 70% and 90%, leading to significant efficiency gains.

3 The Case: The MagLev Stage

The MagLev Stage is a new product developed by the Department of Mechatronics of

Philips Applied Technologies in the Netherlands. It is a subsystem designed to be in-

corporated in a variety of industrial systems that require medium speed, highly accurate

positioning, scanning or contouring for applications in a broad range of semiconductor

related environments. The control software coordinates the actions of two multi-axis

controllers and provides an Application Program Interface (API) to customer-developed

domain specific application software. Due to the complexity of the software and the

high defect rate of an earlier “proof of concept” version, ASD techniques were applied

to develop a production quality version.

Fig. 1. MagLev Software Overview

3.1 Technical Details

The MagLev Stage consists of two substages called the Intermediate Substage and Car-
rier Substage. Each substage is controlled by its own dedicated multi-axis controller

(MAC). Figure 1 shows the overall organisation of the software into two major compo-

nents, namely the Manipulator and the SubStage. In the diagram, software components

are depicted by rectangles; major interfaces are depicted by the labelled ovals.

550 G.H. Broadfoot

The diagram shows two instances of the SubStage component, one controlling the

Intermediate Substage and one controlling the Carrier Substage. The SubStage compo-

nent is responsible for controlling a single substage via its dedicated MAC. The Ma-

nipulator component coordinates and controls the two substages. All actions that are

specific to a single MAC are implemented in the SubStage component; all actions re-

quiring coordination between the substages, such as most movements and all exception

and error handling, are implemented in the Manipulator component.

The Manipulator component implements its client API (IStage), sending asynchron-

ous call-back notifications to the client application (IStageCB), using the SubStage API

(ISubStage) and receiving notifications from the two substages via the ISubStageCB

interfaces. All the ISubStageCB events are routed to the Manipulator via a queue and are

executed under the context of a separate deferred procedure call (DPC) server thread.

The SubStage implements the ISubStage and ISubStageCB interfaces and accesses its

MAC via the IMac and IMacCB interfaces. Notifications from the MAC are received

asynchronously via the IMacCB interface and decoupled via a queue.

ASD was applied as follows: firstly, sequence-based specifications (SBS) were made

of the MAC interface (IMac and IMacCB) and the Client interface (IStage and IStageCB).

During this process, a significant number of interface ambiguities, omissions and incon-

sistencies were uncovered and resolved with the domain experts. The resulting black

box functions were plotted as state transition diagrams and reviewed by the team.

The architecture was then developed, partitioning the major functions of the con-

trol software between the Manipulator component and the two instances of the Sub-

Stage component and an SBS specification of the SubStage interfaces (ISubStage, ISub-

StageCB) was made, reflecting the first “guess” at the SubStage abstraction.

Next, the design of the Manipulator was specified using the SBS method and the

ASD Model Generator was used to generate the CSP models of the client interfaces

(IStage, IStageCB), the SubStage interfaces (ISubStage, ISubStageCB) and the Manip-

ulator design. The design was model checked to ensure freedom from internal inconsis-

tencies (for example, Manipulator behaviour in conflict with the specified SubStage In-

terface) and deadlocks. Then, the parallel composition of the Manipulator design model

plus two instances of the SubStage Interface models (one each for the Intermediate and

Carrier SubStages) was model checked to ensure it was a divergence free, failures re-

finement of the Client Interface (IStage and IStageCB) model.

The SubStage design was similarly specified using SBS. The implemented inter-

face is the SubStage interface (ISubStage, ISubStageCB) and the used interface is the

MAC interface (IMac, IMacCB). The CSP models were generated and model checked

to verify that the parallel composition of the SubStage design model and the MAC inter-

face (IMac, IMacCB) was a divergence free, failures refinement of the same SubStage

interface (ISubStage, ISubStageCB) model used to verify the Manipulator design.

When both the Manipulator and SubStage designs were completed and verified by

model checking, the C++ code of both the Manipulator and the SubStage was generated

using the ASD Code Generator.

ASD Case Notes: Costs and Benefits of Applying Formal Methods 551

3.2 Results

The specification of the MAC interfaces, the client API interface and the SubStage

interface took about 2 weeks. The design and verification of the Manipulator took about

4 weeks to complete. Due to its complexity, the Manipulator design was hierarchically

decomposed into a top level design together with 3 significant lower level sub-designs.

The design has 1,700 transition rules and 28 canonical sequences. This hierarchical

design structure was carried through into the generated CSP models and the generated

C++ code, providing full traceability between these different views. During the design

verification, about 200 errors were detected by model checking. Most of these fell into

one of two categories: i) internal inconsistencies where the design violated the interface

specifications of the used components or was unable to react correctly to notifications

arriving asynchronously from the used interfaces; ii) complex race conditions.

The ASD design and verification of the SubStage took about 4 weeks to complete.

Due to its complexity, the design was hierarchically decomposed into a top level design

plus 5 lower level sub-designs. The design has 4,700 transition rules and 84 canonical

sequences. More than 100 errors were detected by model checking and removed.

In total 18,000 executable lines of C++ were generated, representing 90% of the

code. The hand written code was either concerned with domain specific issues such

as coordinate transformations or “glue” code interfacing the software to the rest of the

run-time environment.

4 Conclusions

Applying ASD to the specification and design phases of this project was cost neutral as

compared to conventional specification and design methods. That is, there was no ad-

ditional cost. Including all specification, design, design verification, coding and testing

effort, this project produced 18,000 executable lines of code in 35 man weeks of effort,

which equates to a production rate of 12 executable lines of C++ per hour, more than a

factor three increase over the typical rate for an equivalent project.

In addition, the delivered code commanded very low defect rates; nearly 400 de-

fects were removed during design verification before programming started. On a simi-

lar project developed in the conventional way, 60 defects were discovered during initial

integration testing. So far, testing on the MagLev stage has detected 5 defects (hand

written code errors, under-specification issues), all of which were simple to find. This

is a defect rate of 0.28 defects per thousand lines of delivered code.

References

[For03] Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2 User Manual,
2003. See http://www.fsel.com.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[PP03] S. J. Prowell and J. H. Poore. Foundations of sequence-based software specification.

IEEE Transactions of Software Engineering, 29(5):417–429, 2003.

[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

The Informal Nature of Systems Engineering

Gerrit Muller

Embedded Systems Institute, Den Dolech 2, 5612 AZ Eindhoven
gerrit.muller@esi.nl

http://www.extra.research.philips.com/natlab/sysarch/

Abstract. This is a position paper about the relation between Formal
Methods and Systems Engineering for complex computerized systems.
We will argue that Formal Methods are well suited to prescribed homo-
geneous domains, and that systems engineering, which integrates more
specialized engineering disciplines, is inherently much more informal.

We will use the waferstepper as a typical complex computerized sys-
tem, the case is described at the beginning. Next we explain the discipline
of Systems Engineering. In a short intermezzo the overloaded meaning
of the word “formal” is discussed. The real positioning is given in two
steps: first we elaborate the informal nature of Systems Engineering and
then we discuss the relation to Formal Methods.

1 An Example of a Complex Computerized System

The development of a new generation of wafersteppers, the ASML Twinscan
family, is used as illustrative case. A waferstepper is a large (ca. 30 m3), costly
(ca. 10M USD) and complex system used in the lithographic process of a semi-
conductor fab. The main function of the system is to replicate a circuit pattern
many times on a wafer, by stepwise exposing the wafer. The early wafersteppers
exposed fields sequentially, where the wafer is not moving during the exposure.
The actions are then simply to move, stop, and expose. The most recent wafer-
steppers use the scanning principle. Scanning is based on exposure through a
slit, while the reticle with the original and the wafer move harmoniously. Time
and position are much more directly coupled in the scanning exposure.

The key drivers of lithography are Critical Dimension (CD) control, overlay,
and productivity. CD control is the variation of the line width or gate size, for
130 nm line width a typical CD control value is 10 nm. Less variation is better,
minor variations may cause a significant power consumption problem in the
final integrated circuit. Overlay is typical 45 nm for 130 nm line width. Smaller
overlay values are better, allowing a denser design and hence more chips per
wafer. Productivity for these systems is expressed in terms of exposed wafers per
hour, typical 100 300 mm wafers per hour. The productivity of the waferstepper
is directly related to the cost effectiveness of the semiconductor fab, the value
of the waferstepper is more or less proportional with the productivity.

Characteristic for the semiconductor equipment market is the fast evolution,
expressed in Moore’s law. The exponential performance improvements dictated

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 552–556, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Informal Nature of Systems Engineering 553

by this law translate in exponential improvements of CD control and overlay. A
twofold improvement is required every four years.

The customer level performance is achieved by budgeting the most impor-
tant performance targets. For example the overlay budget for wafersteppers in
1997 was decomposed in 5 decomposition steps in individual contributions. For
instance tracking error contributions and stability requirements are specified in
nanometers. Such a budget is an abstraction of the actual machine behavior. A
typical overlay budget contains about 25 numbers, while hundreds of components
and parameters have somehow impact on the final overlay.

2 Systems Engineering

The Systems Engineering discipline, see [2], is an integrating discipline. Systems
Engineering integrates and guides mono-disciplines, such as mechanical engineer-
ing, electrical engineering, and software engineering, to create reliable systems.
The Systems Engineering discipline comprehends multiple approaches:

– well defined formalized Systems Engineering methods
– strong process focused
– “common sense”, based on human experience and intelligence

A balance of these three approaches yields successful products. In this docu-
ment we will discuss this balance and especially the, often underrated, informal
side of Systems Engineering.

3 What Is “Formal”?

Industrial discussions about the use of formal methods often derail due to the
ambiguity of the word formal itself. In industrial context formality is often used
in organizational sense: what are the formalized processes, responsibilities, roles,
et cetera. Formalized processes facilitate well-known problems of heterogeneous
nature. The scientific based formal methods use the mathematical sense of for-
mality. Science based formal methods facilitate specialized well-known prob-
lems of homogeneous nature. These formal methods provide proven solutions
to problems fitting in the limited specialized area covered by the method. For
instance Rate Monotonic Scheduling guarantees real-time performance for rep-
etitious tasks with well-defined processing times and deadlines.

The Systems Engineering community is strongly focused on (formal) pro-
cesses. However, most system level problems are ill defined and very hetero-
geneous. The overlay specification of 45 nm, for example, sounds quite well
defined. However, this specification is only valid in unique well-defined measure-
ment circumstances. The realized overlay in actual production lots is a function
of hundreds or thousands of parameters. Customer satisfaction is determined by
actual overlay performance, not by the artificially defined acceptance specifica-
tion. We will discuss the consequences of these characteristics in relation with
formal methods.

554 G. Muller

4 The Informal Side of Systems Engineering

The key performance of the waferstepper, in terms of CD control, overlay and
productivity and the design choices depend on many context aspects, such as the
production environment, the business, the human stakeholders, and the many
involved technical disciplines.

The yield and productivity of a lithography cell depends on the waferstepper,
but also on many other aspects in the context of the waferstepper. For example,
the wafer and the reticle themselves influence the performance as well as the
measurement, processing and logistics of wafers and reticles.

In the business context a balancing act is performed between yield and CD
control with a significant impact on the final chip performance (power and
speed). The business context is a complex playing field with many players, such
as equipments vendors, system integrators, lease companies, fab designers, con-
sultants, mask makers, resist makers, and wafer makers and many different kinds
of customers: design houses, foundries, and vertical integrated companies.

The human context is full of stakeholders, both internal as well as external.
According to IEEE 1471 [3] all stakeholders have their particular concerns. We
add on top of concerns that stakeholders also have their particular interests,
rhythms, and contributions. The design emerges from a complex psychosocial
interaction between all these stakeholders.

Problems arising from the complexity of this context become visible in a
rather late stage of development: during integration or worse in the customer’s
fab. The dynamics, the uncertainties, the unknowns and the heterogeneity of
these systems engineering aspects do not fit with rigorous formal methods. In-
formal, “common sense” and experience-based methods are used mostly here.
See also the Systems Architecting book by Rechtin [1].

5 Where Do Systems Engineering and Formal Methods
Meet?

In industrial practice some huge gaps exist between tools and methods of the
involved disciplines. Worse is that the involved engineers are often unaware of
these gaps and use their own frame of reference in the discussion with other
disciplines. For example, software people claim to have a proven implementa-
tion, but at the same time cannot answer the simple, but crucial, question how
much time is needed per function. The ideal situation would be that disciplines
have sufficient mutual understanding to communicate and cooperate. The gap
between Systems Engineering and Formal Methods in Software Engineering in
industrial practice is rather large at this moment.

Conventional disciplines, such as mechanical engineering, electrical engineer-
ing, and computer science, have a rich collection of formalisms, techniques, tools
and methods. The elements in this collection work on well defined problems
in a well-defined manner. In product creation less well-defined problems occur
when multiple disciplines jointly realize some functionality. Techniques, tools

The Informal Nature of Systems Engineering 555

and methods exist at the multi-disciplinary level. These techniques, tools and
methods are less well defined than at the mono-disciplinary level. When the fo-
cus is limited to a single objective the problems and means are well defined, but
soft. At the system level, where multiple objectives have to be achieved simulta-
neously, the problems are ill defined and the methods become rather soft. The
natural habitat of formal methods is in the category of well-defined problems,
while Systems Engineering is heavily involved with the ill-defined problems, with
multiple objectives and many contributing disciplines. Systems Engineering and
formal methods can be complementary, when formal methods remove risks of
well-defined problems.

A system can be described and analyzed at different levels of abstraction.
The static description of today’s embedded systems contains tens of millions
of details, such as lines of code, components, and connections. The challenge
of product creation is to translate a few key requirements in several design
steps in the tens of millions details at the lowest level of abstraction. The most
detailed design steps are mono disciplinary, for example transforming an interface
and behavior specification of a class into hundreds to thousands lines of code.
However, at a higher abstraction level design trade-offs are made to allocate
functionality to technologies and components, typical multi-disciplinary design.
System engineers have the responsibility for the integral system performance and
functionality: the integration of multi-disciplinary components and subsystems
into a system. For example the system engineer reasons at the highest abstraction
level about exposure in terms of a light source, reticle, lens and wafer, and
about system functionality in terms of 3 key parameters: overlay, CD control,
and productivity. The higher-level abstraction is transformed into models and
budgets with tens of contributing elements. Finally, the waferstepper contains
10 million lines of code to realize the required system behavior and performance.

In the following postulates we position formal methods in relation to systems
engineering. The purpose of this positioning is to create mutual understanding
of the contribution of these disciplines.

Postulate 1: Formal Methods in industrial context work only at the more de-
tailed mono-disciplinary abstraction levels, with well-defined problems. Ex-
amples are communication protocols and scheduling strategies.

Postulate 2: Inventors of formal methods are capable to apply their personal
strengths also at a much higher abstraction level. These inventors are: an-
alytical, structural, firm of principle, and consistent. The formal methods
themselves do not really contribute to the Systems Engineering means; the
personal strength of formal people can contribute.

The research field of multi-disciplinary design is tackled with three research
approaches. The scientific approach is to extend the existing body of knowledge
with small increments. Every increment is well founded. A lot of the methods
and techniques available in the existing body of knowledge can be used with
adaptations at the multi-disciplinary design level. We call this approach borrow
& adapt. The third approach is heuristic: observe the system engineers in the

556 G. Muller

industrial context and make the implicit experience explicit. Based on the con-
solidation of the state-of-practice many research questions can be formulated.
Such a consolidation starts with observations and descriptions, and in the long
term, after a lot of research, will be turned into well-structured methods with
clear fundaments.

6 Conclusions

Systems engineering takes place in a very heterogeneous environment, Systems
engineering is the art of ignoring details. Formal Methods provide a systematic
and accurate approach, and works on well-defined homogeneous problems.

Systems engineering can use formal thinking: borrow & adapt. An example
is System Level modeling; systematic and structured like formal methods, but
not proven or very accurate due to the inherent uncertainties at the system
level. Formal methods, applied at specific homogeneous niches, provide input to
Systems Engineering work at multi-disciplinary level. Systems Engineering sets,
the other way around, the boundaries for the application of Formal Methods for
partial system problems.

References

1. Rechtin, Eberhardt and Maier, Mark W., The Art of Systems Architecting CRC
Press (1997)

2. Martin, James N.: Systems Engineering Guidebook A Process for Developing Sys-
tems and Products. CRC Press (1996)

3. Architecture Working Group (AWG): IEEE Recommended Practice for Architec-
tural Description of Software-Intensive Systems The Institute of Electrical and Elec-
tronics Engineers, Inc. (2000)

Author Index

Alves, T.L. 399
Andronick, June 302

Banach, Richard 382
Basin, David 269
Belinfante, Axel 173
Bohnenkamp, Henrik 173
Bolton, Christie 205
Bošnački, Dragan 366
Bouquet, Fabrice 75
Broadfoot, Guy H. 548
Buchholtz, Mikael 286
Burger, Damian 448
Butler, Michael 221

Cachera, David 91
Campbell, Colin 542
Carrington, David 448
Cavalcanti, Ana, 237 253
Celiku, Orieta 107
Chaki, Sagar 512
Chetali, Boutheina 302
Clarke, Dave 59
Clarke, Edmund 512
Clayton, Phil 253

Dadeau, Frédéric 75
de Boer, Frank S. 59
De Wulf, Martin 139
Donaldson, A.F. 481
Dong, Jin Song 415
Doyen, Laurent 139

Eisler, Stefan 533
Emerson, E. Allen 497

Freitas, Leonardo 237

Gaudel, Marie-Claude 2
Gilmore, Stephen 286
Grieskamp, Wolfgang 542

Haenel, Valentin 286
Harrison, John 529

Hoenicke, Jochen 465
Hu, Xiayong 157

Iyer, S. Purushothaman 334
Iyer, Subramanian 497

Jain, Jawahar 497
Jensen, Thomas 91
Jéron, Thierry 189
Jeske, Czeslaw 382
Johnson, C.W. 9
Joseph, Mathai 1
Josko, Bernhard 533

Kassios, Ioannis T. 43
Katz, Emilia 432
Katz, Shmuel 432
Kim, Soon-Kyeong 448
Kuruma, Hironobu 269

Lawford, Mark 157
Legeard, Bruno 75
Lei, Yu 334
Leino, K. Rustan M. 26
Leuschel, Michael 221

Maier, Patrick 465
Marchand, Hervé 189
McIver, Annabelle 107
Miller, A. 481
Montangero, Carlo 286
Muller, Gerrit 552
Müller, Peter 26

Nachmanson, Lev 542

O’Halloran, Colin 253
Oliveira, J.N. 399

Paulin-Mohring, Christine 302
Pichardie, David 91
Pierik, Cees 59
Poppleton, Michael 382
Pretschner, Alexander 537
Pu, Geguang 350

558 Author Index

Qiu, Zongyan 350

Raskin, Jean-François 139
Roşu, Grigore 123
Rusu, Vlad 189

Sahoo, Debashis 497
Salverda, Pierre 123
Sandmann, Guido 533
Scheidler, Christian 533
Schneider, Gerardo 91
Schulte, Wolfram 542
Sharygina, Natasha 512
Silva, P.F. 399
Sinha, Nishant 512
Stepney, Susan 382
Stroop, Joachim 533
Sun, Jun 415

Takaragi, Kazuo 269

Tillmann, Nikolai 542

Utting, Mark 75

Veanes, Margus 542

Visser, J. 399

Wang, Shuling 350

Wassyng, Alan 157

Wolff, Burkhart 269

Woodcock, Jim 237

Zave, Pamela 318

Zhao, Xiangpeng 350

Zilles, Craig 123

	Frontmatter
	Keynote Talks
	Formal Aids for the Growth of Software Systems
	Formal Methods and Testing: Hypotheses, and Correctness Approximations
	The Natural History of Bugs: Using Formal Methods to Analyse Software Related Failures in Space Missions

	Object Orientation
	Modular Verification of Static Class Invariants
	Decoupling in Object Orientation
	Controlling Object Allocation Using Creation Guards
	Symbolic Animation of JML Specifications

	Resource Analysis and Verification
	Certified Memory Usage Analysis
	Compositional Specification and Analysis of Cost-Based Properties in Probabilistic Programs
	Formally Defining and Verifying Master/Slave Speculative Parallelization

	Timing and Testing
	Systematic Implementation of Real-Time Models
	Timing Tolerances in Safety-Critical Software
	Timed Testing with TorX
	Automatic Verification and Conformance Testing for Validating Safety Properties of Reactive Systems

	CSP, B and Circus
	Adding Conflict and Confusion to CSP
	Combining CSP and B for Specification and Property Verification
	Operational Semantics for Model Checking {\sf Circus}
	Control Law Diagrams in $<$Emphasis FontCategory={\textquotedbl}SansSerif{\textquotedbl} Type={\textquotedbl}Italic{\textquotedbl}$>$Circus$<$/Emphasis$>$

	Security
	Verification of a Signature Architecture with HOL-Z
	End-to-End Integrated Security and Performance Analysis on the DEGAS Choreographer Platform
	Formal Verification of Security Properties of Smart Card Embedded Source Code

	Networks and Processes
	A Formal Model of Addressing for Interoperating Networks
	An Approach to Unfolding Asynchronous Communication Protocols
	Semantics of BPEL4WS-Like Fault and Compensation Handling

	Abstraction, Retrenchment and Rewriting
	On Some Galois Connection Based Abstractions for the Mu-Calculus
	Retrenching the Purse: Finite Sequence Numbers, and the Tower Pattern
	Strategic Term Rewriting and Its Application to a {\sc Vdm-sl} to {\sc Sql} Conversion

	Scenarios and Modeling Languages
	Synthesis of Distributed Processes from Scenario-Based Specifications
	Verifying Scenario-Based Aspect Specifications
	An MDA Approach Towards Integrating Formal and Informal Modeling Languages

	Model Checking
	Model-Checking of Specifications Integrating Processes, Data and Time
	Automatic Symmetry Detection for Model Checking Using Computational Group Theory
	On Partitioning and Symbolic Model Checking
	Dynamic Component Substitutability Analysis

	Industry Day: Abstracts of Invited Talks
	Floating-Point Verification
	Preliminary Results of a Case Study: Model Checking for Advanced Automotive Applications
	Model-Based Testing in Practice
	Testing Concurrent Object-Oriented Systems with Spec Explorer
	ASD Case Notes: Costs and Benefits of Applying Formal Methods to Industrial Control Software
	The Informal Nature of Systems Engineering

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

