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Preface

The ICANNGA series of Conferences has been organised since 1993 and has a long history of promoting the
principles and understanding of computational intelligence paradigms within the scientific community and
is a reference for established workers in this area. Starting in Innsbruck, in Austria (1993), then to Ales in
Prance (1995), Norwich in England (1997), Portoroz in Slovenia (1999), Prague in the Czech Republic (2001)
and finally Roanne, in France (2003), the ICANNGA series has established itself for experienced workers in
the field. The series has also been of value to young researchers wishing both to extend their knowledge and
experience and also to meet internationally renowned experts.

The 2005 Conference, the seventh in the ICANNGA series, will take place at the University of Coimbra
in Portugal, drawing on the experience of previous events, and following the same general model, combining
technical sessions, including plenary lectures by renowned scientists, with tutorials.

In a rapidly advancing world, where technology and engineering change dramatically, new challenges in
modern informatics compel us to broaden the Conference themes in order to take into account new develop-
ments. Nevertheless we have kept the acronym ICANNGA, which now stands for International Conference
on Adaptive and Natural ComputiNG Algorithms

It is interesting to note that the themes of this conference have their origins in attempts to obtain
understanding of natural processes. Indeed, Nature itself seems capable of providing a source of inspiration
both for new research areas and new methodologies. Thus the focus of ICANNGA is on both the theoretical
aspects and also on the practical applications of computational paradigms inspired by adaptive and natural
processes, with special emphasis on adaptive and machine learning systems, neural networks, evolutionary
algorithms, fuzzy systems, support vector machines, biological computation and quantum computing.

Amongst the papers accepted for presentation, there are contributions reporting theoretical developments
as well as practical applications both for neural networks, genetic algorithms and evolutionary computation.
Unsupervised and clustering techniques as well as self-organising maps are also the subjects of a substan-
tial number of papers. Also, the relevance of computational neuroscience with a strong biological trend is
evidenced by the number of papers submitted. It is pleasing to observe the number of contributions report-
ing successful applications of the technology to the solution of industrial problems. Predominantly, there
are applications of neural networks to process engineering and to robotics and control which may reflect
the maturity reached by the methodology. Contributions also abound in the field of evolutionary computa-
tion particularly in combinatorial and optimisation problems. They range from evolutionary computation
theory to real-world applications, from global numerical optimisation to combinatorial optimisation, from
evolutionary learning to multi-agent systems. The topics covered by the accepted papers reflect the breadth
and depth of these fields. It is worth noting that they are inherently interdisciplinary. They interact closely
with computer science, engineering, biology, mathematics, economics, and many papers at this conference
illustrate such interdisciplinarity quite clearly.

Contributed papers in the field of natural computing, swarm optimisation and bioinformatics and compu-
tational biology are no less compelling. The awareness in the academic communities that hybrid approaches
of intelligent systems will be necessary if the real challenges in computational intelligence are to be tackled
is a fundamental stimulus to their investigation and has been acknowledged for the many papers with cross
fertilising ideas submitted. Many papers are dedicated to machine learning and heuristics and others to
soft computing applications. Some papers are devoted to the theory of computation in which traditional
information is replaced by its quantum physical counterpart showing that it is an interesting challenge to
study quantum computation. In addition, kernel based algorithms, able to solve tasks other than classifica-
tion, represent a revolution in pattern recognition bridging existing gaps. Some papers either theoretical or
application oriented are dedicated to pattern recognition, intelligent signal processing and computer vision.

We would like to express our gratitude to everyone who contributed in any way to the completion of this
volume. In particular, we thank the members of the Programme Committee for reviewing the submissions
and making the final decisions on the acceptance of papers, and the additional reviewers Mika Hirvensalo,
Jorge Tavares, Pino Buzzanca, Jose Neto, Armando Vieira and Miguel Rocha for their work. We thank also



VI

Jorge Tavares and Pedro Martins (University of Coimbra) for their difficult and time consuming task of
checking paper source files for correctness and preparing the WT^K.volume initial pages, Silvia Schilgerius
(Springer-Ver lag) and finally to all authors for their valuable research work and for their submissions.

B. Ribeiro University of Coimbra, Portugal
R. Albrecht University of Innsbruck, Austria
A. Dobnikar University of Ljubljana, Slovenia
D. W. Pearson Jean Monnet University of Saint-Etienne, France
N. C. Steele Coventry University, England
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ADFUNN: An Adaptive Function Neural Network

Dominic Palmer-Brown, Miao Kang

Computational Intelligence Research Group, School of Computing, Leeds Metropolitan University, UK
E-mail: {d.palmer-brown, m.kang}@leedsmet.ac.uk

Abstract
An adaptive function neural network (ADFUNN) is introduced.
It is based on a linear piecewise artificial neuron activation
function that is modified by a novel gradient descent supervised
learning algorithm. This Af process is carried out in parallel
with the traditional Aw process. Linearly inseparable problems
can be learned with ADFUNN, rapidly and without hidden
neurons. The Iris dataset classification problem is learned as an
example. An additional benefit of ADFUNN is that the learned
functions can support intelligent data analysis.

1 Motivation
True to its name the artificial neuron derives from a joint
biological-computational perspective. Taking the sum of
weighted inputs is biologically plausible, and adapting a
weight is a reasonable model for modifiable synaptic
efficacy. But the common assumption that the output
activation function is fixed is for computational rather
than biological reasons. A fixed analytical function
facilitates mathematical analysis to a greater degree than
an empirical one. Nonetheless, there are some
computational benefits to modifiable activation functions,
and they may be biologically plausible as well.
Recent work in computational neuroscience is beginning
to suggest that neuromodulators play a role in learning by
modifying the neuron's activation function [1,2]. From a
computational point of view, it is surprising that real
neurons could be essentially fixed entities with no
adaptive aspect, except at their synapses, since such a
restriction leads to non-linear responses typically
requiring many neurons.
MLPs with an appropriate number of nodes are very
effective, but if the activation function is not optimal,
neither is the number of hiddens which in turn depends
on the function. Training, which is typically slow on
linearly inseparable data, always requires hidden nodes.
In some cases it may help to adapt a slope-related
parameter of the activation function, but not if the
analytic shape of the function is unsuited to the problem,
in which case many hidden nodes may be required. In
contrast, with an adaptive function approach it should be
possible to learn linear inseparable problems fast, even
without hidden nodes. The simplest test case is the two

input exclusive-OR. A single classic artificial neuron is
incapable of solving it, yet by choosing or learning the
appropriate activation function, the solution is readily
Iearnable with one neuron.

2 Related Approaches to Iris Dataset
There are many neural network methods for solving
linearly inseparable problems, such as the popular Iris
plants dataset. Most of them use a network of multi-
player perceptions (MLPs), so they require hidden
neurons.
A reinforcement learning method called SANE [3]
(Symbiotic, Adaptive Neuro-Evolution) uses an
evolutionary algorithm. It searches for effective
connections and/or connection weights within a neural
network. The dynamic components (i.e. weights and/or
architecture) of the neural networks are encoded in
structures that form the genetic chromosomes. With the
Iris dataset, SANE constructs a network of 5 inputs, 3
hidden and 3 output units, and the transfer function of the
network is the sigmoid. The level (averaged over 50 runs)
of the learning and generalisation abilities is about 90%.
Cantu-Paz [5] also achieved about 90% accuracy with 5
hidden unites, and a spiking neural network with 4
hiddens has achieved more than 96% accuracy [6].
It is possible to solve the problem quite well without a
hidden layer, by transforming the input space, but this
involves many extra input neurons. For example,
Eldracher [4] use several units for each of the four
measurements, in a form of coarse coding, and with 90
training and 60 test patterns they achieve an overall
misclassification rate of 2.5%.

3 A Single Layer Adaptive Function Network
In this paper, we describe how to solve linearly
inseparable problems using a simple adaptive function
neural network (ADFUNN) which is based on linear
piecewise function neurons, and has no hidden layer.

3.1 XOR Experiment
The XOR is a simple binary example of linear
inseparability, and therefore serves as a good basic test to
establish that linearly inseparable problems can be solved
by ADFUNN. Two weights are needed for the two inputs



and there is one output. Weights are initialized randomly
between -1 and 1, they are then normalized. F point
values are also initialized randomly between -1 and 1.
Each F point is simply the value of the activation function
for a given input sum. F points are equally spaced, and
the function value between points is on the straight line
between them. This network is adapted as follows:

A = input node activation, E = output node error.
Step 1: calculate output error
Step 2: adapt weights:

Aw = learning rate * A * E
wf = w + Aw
weights normalization

Step 3: adapt function:
Af = learning rate * E
f = f+Af

Step 4: repeat step 1 to step 3 until the output error is
close to 0.

The ADFUNN learns the problem very fast with a
learning rate of 0.5. Too low a learning rate makes the
network learn very slowly, but too high a learning rate
makes the weights and objective function diverge.
An example of the weights after learning is: wl = 0. 60,
w2 = 0.80, and therefore, the summed inputs are:

input pattern (0, 0): wl * 0 + W2 * 0 = 0,
input pattern (0, 1): wl * 0 + w2 * 1 = 0.80,
input pattern (1, 0): wl * 1 + w2 * 0 = 0.60,
input pattern (1, 1): wl * 1 + w2 * 1 = 1.40.

5.0

4.0

3.0

2.0

1.0

-1.0

-2.0

-3.0

-4.0

-5.0

Fig. 1. XOR problem solved using ADFUNN

As can be seen in Fig 1, a characteristic curve of XOR is
learned. The line between two borders of the curve marks
the learned region, within which adaptation has occurred.
The data all projects onto this range, so beyond it none of
the points are relevant in the final analysis.

From the above curve, we can see that when input pattern
is (0, 1), the corresponding f(x) = 1.0 where x = 0. 80.
Similarly, the other three inputs give the expected correct
answer. In the region projected onto between (0, 1) and
(1,0), the slope of the activation is nearly 0 and f = 1, and
beyond this region, the function slopes down towards 0.
Thus, we have a continuous, or fuzzy, XOR.

3.2 Iris Experiments
The iris dataset [7] consists of 150 four dimensional data.
Four measurements: sepal length, sepal width, petal
length, and petal width, were made by Fisher on 50
different plants from each of three species of Iris (Iris
Setosa, Iris Versicolor and Iris Virginica). One class is
linearly separable from the other two, but the other two
are not linearly separable from each other.

Input Output

wll

Fig. 2. ADFUNN for the Iris dataset experiment

Because the weights are initialized randomly between [-1,
1], the £awj has a known range [-11, 11]. The iris dataset
has a precision of 0.1, so this range can be coded with a
resolution of 0.1 as the F-point interval. Therefore, 221
points ((ll+ll)/0.1+l=221) are sufficient to encode the
data precisely.
Clearly, every dataset will have its own range. To cope
with this, we need two learning constants, WL and FL.
WL depends on input data range and the F point interval,
whereas FL just depends on the required output range.
We use WL = 0.01, FL = 0.1 to adapt weights and
functions respectively.
Although we did not do so for the simple XOR case, from
basic calculus, we should take into account the fact that
we have a variable function slope. Hence, Aw =
WL*Fslope*A*error, Thus, the algorithm becomes:

Step 1: calculate output error
Step 2: adapt weights for each output neuron:

Aw = WL*Fslope*A*E
w1 = w + Aw
weight normalization

Step 3: adapt function for each output neuron:



Af=FL*E
f = f+Af

Step 4: randomly select a pattern in Iris-dataset to train
Step 5: repeat step 1 to step 4 until the output error goes
to 0 or tends to a steady state.

-6.6 -4.4 -2.2 0|0 J2
-1.0-

Fig. 3. Iris-Setosa function using ADFUNN

8:8 11.

Fig. 4. Iris- Versicolor function using ADFUNN

A

Fig. 5. Iris- Virginica function using ADFUNN

4 Results
In this case, after 25 epochs, the average error for these
three classes tends to a steady state, which is always
around 0.065. We ran more than 100 simulations (it
learns the task in no more than 30 epochs in each run).
The average final error is consistently in the range [0.05,
0.15]. In addition, from the weights for each class, which
are consistent across the simulations, we can conclude
that, for Iris-Setosa, petal length and petal width are the
two most important measurements, whilst for Iris-
Versicolor, petal length is the most important
measurement. The same for Iris-Virginica, petal length is
the most important measurement. After many
comparisons between the weights for the three classes, we
found sepal width is the least important measurement.
The problem is learned with 100% successful
classification when all patterns are used in training, and
also with only 120, whilst 90 patterns were insufficient to
achieve complete generalization. Results are tabulated in

figure 9. Comparing figures 3, 4, 5 and 6, 7, 8 we can see
that there are only slight differences in the functions,
showing that they have solved the problem in
approximately the same manner, irrespective of the
number of training patterns. The functions are clearly
non-linear and non-monotonic, illustrating the value of
the adaptive function method which is able to acquire
these functions.

Fig. 6. Iris-Setosa function with 120 training patterns.

Fig. 7. Iris-Versicolor function with 120 training patterns.

Fig. 8. Iris-Virginica function with 120 training patterns.

Performance

Average error

Generalisation
90 train 60 test

Generalisation
120 train 30 test

Best

0.05

(55/60)
93.33%

(30/30)
100%

Average

0.10

89.17%

95%

Worst

0.15

(51/60)
85%

(27/30)
90%

Fig. 9. Evaluation of ADFUNN for Iris dataset (100 runs)

We can interpret the data by considering weights and
functions together. To identify Setosa, both petal width
and petal length must be taken into account as they both
have equally strong weights. In contrast, Iris-Versicolor
and Iris-Virginica are most dependent on petal length, but
it is their activation functions which show that Virginica
has longer petals.



Setosa
Versicolor
Virginica

Sepal
length

0.32
0.31
0.43

Sepal
width

0.19
0.30
0.38

Petal
length

0.42
0.52
0.45

Petal
width

0.40
0.39
0.31

Fig. 10. Typical weight values for the iris dataset

5 Conclusion and Future Work

One of the main conclusions is that an effective
ADFUNN can be realized using the following general
learning rules:

Aw = WL*Fslope*A*E
wf = w + Aw (normalized)
Af=FL*E
f = f+Af

Thus, ADFUNN performs supervised learning. In related
work, we are exploring unsupervised and reinforcement
learning regimes that combine complimentary adaptation
rules within a single network: namely, the snap-drift
algorithm [8]. It is proposed that snap-drift be followed
by a supervised phase acting on the activation functions
alone, to perform classification.
Related work on connectionist natural language parsers
[9, 10] will allow ADFUNN to be compared to MLPs and
SRNs on phrase segmentation and recognition tasks, and
this may lead to the creation of multilayer ADFUNN.
Intelligent data analysis with neural networks requires
analysis of the weights to establish the most important
factors and generate simplified equations to explain
network decisions [11]. In ADFUNN, the learned
functions offer insights into the data, in addition to the
weights. We will investigate algorithms for replacing
learned functions with matched analytical ones to
automatically generate mechanistic models from trained
networks.
In complex domains, there will be a need to use hidden
nodes in a ML-ADFUNN to represent arbitrary concave
decision functions. However, just as the single layer
ADFUNN is more powerful than the SLP, so the
multilayer ADFUNN will be more powerful in learning
than MLPs, and may well require fewer hidden neurons.
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Abstract

The process of data preparation for neural networks
based modelling is examined. We are discussing sam-
pling, preprocessing and decimation, finally urguing for
orthonormal input preprocessing.

1 Introduction

In a very first step of input/output modelling of a phys-
ical plant one selects several variables named inputs and
others outputs. Those variables are functions of time
and they are usually called signals. The process of mod-
elling requires expressing of dependencies between the
input and output variables. Usual building blocks for
modelling consist of specially selected static or linear
dynamical systems and universal function approxima-
tors. Contemporary, the role of funtion approximators
is usually fulfilled by neural networks. Those mentioned
preselected systems may be viewed as preprocessors for
neural networks [1].

The neural feedforward architecture is know to be
universal function approximator. Even with only one-
hidden layer, it can approximate any function (from
a class) with any degree of accuracy, provided that
sufficiently large number of hidden units is used, [2].
So a natural question arises: why input preprocessing
is needed when the feedforward neural architecture is
used? There are several answers to it.

Traditionally input preprocessing was used to scale in-
put signals. There were some intuitive and formal argu-
ments for that, but practical results was that with scaled
signals, the learning process was significantly faster.
This kind of preprocessing is widely used and is imple-
mented via linear transformation.

But really important input preprocessing has to be
done if the input and output signals have significantly
different spectrum and they cannot be effectively sam-
pled with the same sampling time [3].

The third role of input preprocessing is to transform
a set of input signals which cannot span desired output

(the output is not described by a function of inputs), into
a new set of signals which exactly or approximately can.
The input signals are preprocessed thus by a dynamical
system. The simplest and the most widely used is a line
of delays, others could be considered [1], [4], [5] as well.

In this paper data preparation for neural based mod-
elling is considered. We will be examining sampling,
preprocessing and decimation processes. The concept
of almost linearly dependent signals will be introduced
and used. Finally some arguments for orthonormal input
preprocessing will be presented.

This paper is organized as follows. In Section 2 gen-
eral scheme of data preparation for neural modelling is
presented. In Section 3 almost linearly dependent sig-
nals concept is formulated and discussed, then in Section
4 sampling process is examined. Dynamic preprocessing
is briefly discussed in Section 5. Finally conclusions are
drawn in Section 6.

2 Neural network teaching data preparation

Majority of processes modelled by using neural net-
works are continuous in time. Process variables carrying
information about their inputs u(t) and outputs y(t) are
continuous-time signals. Throughout this paper we will
be considering only one output signal. Continuous-time
signals before being used must be sampled with suffi-
ciently high sampling rate. Since that a finite number
of samples represent the signals. The process of data
preparation for neural networks based input/output mod-
elling is shown in Fig. 1. The ll\ ll' , Y\ U and Y
are matrices of numbers. Along each column ofU and
Y' matrices the samples of input and output signals are
located. Thus, the preprocessing can be applied to the
matrix U 'columns resulting with Jj'.

The signal samples contained in the columns of U
and Y' matrices are characterized by the sampling time
T. For U and Y the sampling time is n times larger,
where n is a decimation constant. Number of columns
in Uf is usually larger than in £/". This is due to pre-



Fig. 1. The process of data preparation for neural modelling.

processing. In order to be able to approximate the rela-
tionship between Uf and Y columns by a feedforward
neural networks the relationship must be static i.e. be
described by a function U' —> Y'. More precisely let
U' £ ft"+1'm, Y' G MN+1>1 such that

U =

u(0)

u(N) _

andY =

L y(N) J
(i)

then the set of input/output pairs I (u (i),y (i)
should be a function. The role of preprocessing block
is to ensure that. At least for some type of preprocess-
ing (for instance line of delays), allowed sampling time
is bounded from both sides [6], [7]. Too large and too
small sampling time should be avoided. So usually after
preprocessing, the samples are taken with much lower
sampling rate. This is done via so called decimation
process. An important property of this process is that,
it does not destroy static relationship between the data
set as demonstrated in the following Proposition.

Proposition 1 If the relationship between U' and Y is
static then the relationship between U and Y is also sta-
tic.

Proof: The U and Y matrices are created
from Uf and Y by deleting certain rows from both
or in other words deleting certain pairs from the set

{ ^ iv f

(u (i),y (i))> • If relationship between Uf and Y
J i=0

is static i.e. it is a function, it means that for any i and
3, 0 < i,j < N, there does not exist such situation
that u(i) 7̂  u (j) —> y (i) — y'(j), so if some pairs

r ' ' } N

from the set < (u (i),y (i)) > are deleted, such situa-

tion does not exist either. •

3 Continuous-time signals: almost linearly depen-
dent signals

Let assume that the system to be modelled is ex-
cited by the input continuous signals denoted as u(t),
t G [0, tmax] being collection of m measurable signals

u(t) = (2)

Ui(i) £ £2 , i = 1,..., 77i.Similarly assume that the out-
put signal is y(t), y(t) e £2 .

Let construct the following matrix

p — \<r w u- >] (3}
c L̂ - ii j H,j=l,...,m v '

where < .,. > denotes scalar product which for C2

space is usually defined as

— / ' Ui(t)uj{t)dt, i,j =

(4)
Matrix Fc property is used to define linear indepen-

dence of signals. Is said that the signals iii(t),..., um(t)
are linearly independent if matrix (3) is nonsingular i.e.
rank(Tc) = m.

In practice signals are measured with errors and com-
puter operations are error prone. If two signal samples
are located well within measurement error they can be
treated as indistinguishable [6] reducing rank of the ma-
trix Fc . Here it is a certain generalization of that concept
and further development.

Let select only two input signals. Two opposite situ-
ations might be distinguished. The first one takes place
when two signals are very different in their amplitudes.
We may put such case into mathematical framework
I \u>211 < < | \u\ 11. In engineering practice U2 is then often
neglected. In the second case the signals are the same
magnitude say ||iX2|| — ll^ill — 1 a nd thy are very
closed one to another, say ||ui — U2II < £» where e is
a small number.

If ||ui — 1x211 = O7 then u\ = u2 and both of signals
are carrying the same information and the one is useless.
If however distance between two signals is not zero but
a very small, in practice the two signals could be treated
as indistinguishable from measurement point of view.
One may say e—indistinguishable [8]. For tapped delay
neural architecture these two signals fulfill the follow-
ing condition u2(t) = u\(t + T) where T is a sampling
time. Thus for small sampling time u\ (t) and 1x1 (t + T)
become indistinguishable.

If one considers general input preprocessing involving
various dynamic transformations, also u2(t) = —ui(t)



should be avoided. In such case of course the two signals
are distinguishable, but linearly dependent. Let note that

0 whenwi = u2, <ui,u2 > = 1
2 when < u\, u2 >— 0

4 when wi = — u2, < ^1,^2 > = —1

We need to place our observation in a more formal
framework.

Definition 1 Two normalized signals ui,u2, \\ui\\ =
\\u2\\ = 1 are almost linearly dependent with accuracy
5, 0 < 8 < 1, Sf |< uuu2 >\ > 1 - 8.

Note that for normalized signals ui,u2, the scalar
product < u\,u2 > expresses cosines of an angle be-
tween u\ and u2. So if two signals are approximately
linearly dependent with accuracy 5, it means that the an-
gle (p between the two fulfills condition |cos <p\ > 1 — 8

If one denotes

<pQ = arccos(l — 8) (5)

then (f0 could be interpreted as "safety margin". If 8 is
a small number then <p0 « 8. To avoid liner dependence
the angle <£>, <p G [0, TT] between two signals should be

< ^ < ^ {f\\

Proposition 2 Two signals uuu2 € C2 and \\u\\\ =
\\u2\\ — 1 are almost linearly dependent with accuracy
8,0 <8 < ljff

1. \\ux -u2\f < 28or\\u1 - u2\\
2 > 4-28, or

2. cond(Fc) > ^~-

Proof: ad 1) Because \\ui — u2\\
2 = \\ui\\2 — 2 <

ui,u2 > +||^211 = 2 — 2 < u\,u2 >, then <

iff \\u\ — u2\\
2 < 28 or | |u\ — ^2 | |2 > 4 — 28.

ad 2) Because F c matrix is symmetric positive semi-
definite then its singular values are the same as its
eigenvalues. Eigenvalues of Fc matrix in this case are
the following Ai)2 = 1 ± |< ui,u2 > | and Amax =
1 + |< u\,u2 > | and Amin = 1 — |< u\,u2 > | . Thus
Amax > 2 - 8, Amin < 8 and cond(Fc) > ^ . And
vice versa, starting with the last condition we obtain eas-
ily definition property. •

One can acknowledge from Proposition 2 that approx-
imately linearly dependent signals will give large condi-
tion number of F c matrix.

An interesting and important case is when two signals
are shifted by sampling time i.e. u2{t) =u\{t + T). Of
course, when T is equal to zero both signals are indistin-
guishable.

Example 1 Let ui(t) = ^=sin(§?£) and u2(t) =

4= sin(|lL(t 4- T)).where Tp denotes obserwationalpe-

riod and T is the sampling time. Let denote also f = jr.

Thus IMOII = ll«2(*)ll = 1, < «i(*W«) >=
cos(2?r/T) and the two signals will be linearly indepen-
dent with margin <p0 = arccos(l — 5), if

-!- arccos(l - 8) < fT < I - ^- arccos(l - 8) (7)

4 Sampled signals
Contemporary measurement and information process-

ing technology requires that the signals are sampled.
Correctness and quality of modelling of a physical plant
is also influenced by choice of sampling time.

Suppose that within range of time [0, tmax] we col-
lected u(k) and y(k), k — 0,1, ...signals, sampling con-
tinuous signals u and y with period T and achieving the
following vectors

u(0)

u(N)

(8)

where

u(k) = [iii(/t),...,

i — 1,..., m and k = 0,..., AT.
Similarly

' 2/(0) '

. y(N) _

Let define F^ matrix

rd = [<uuUj

(9)

(10)

= j^fiUTU and
where < UuUj > = iv t l

Note that
ronA:(£/).

The following two Propositions demonstrate that
while sampling one can loose linear independence of
continuous-time variables.

Proposition 3 [8] rank(Td) < rank{Tc)

Proposition 4 lim Yd = Tc
T—>0
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Proof: Let distinguish N + 1 points in
the range of time [0,tmax] enumerated 0,1, . . . , AT as
in (8). Thus the scalar product (4) can be ap-
proximated through sampled signals < Ui,Uj > =
lim j^fiJ2^=oUi(kjf^)uj(k^^-) and note that

T~^°0 as N oo.

5 Dynamic preprocessing
A feedforwad neural network being the universal ap-

proximator may approximate well some complicated
nonlinear functions. But a simple, single input/ single
output lag to be approximated by such network - it is an
impossible task. In such case a dynamic transformation
of the input signals has to be used. This is shown in Fig.
2

G3
ooo

3

Fig. 2. A line of dynamic transformations of the input signal.

Instead of the input signal u only, the signal X —
(it, it1, u2,..., un) will be an input to the neural net. We
hope that now y could well be described as a function of
X. In each case however it must be checked that a static
relationship between given X and y exists [9].

As an input preprocessing for dynamic systems a line
of delays could be used which together with the neural
network form so called tapped delay neural architecture.
In this case Gi from Fig. 2 is

and T denotes sampling time. Such tapped delay neural
architecture has number of performance limitations [6].

A better way of input preprocessing is to introduce
allpass transfer functions chain with the following cells

1 —
1+jo/Zi

_ e_j2arctan(u;T0

(or its discrete time version). Note that the magnitude of
Gi(juj) is always equal to l.The time delay of each cell
could now be controlled.

There are several reasons why to use input signals or-
thonormalization, so the signals from the blocks shown
in Fig. 2 are mutually orthogonal i.e. < it*, wJ > = O.But
from our considerations, it comes out directly that ac-
cording to formula (6), for two signals orthonormality

ensures the largest angular distance (i.e. §—<p0) between
two signals. It gives also the largest distance between the
two signals i.e. ||wi — U2II = \/2-

A good preprocessing will generate a number of or-
thonormal signals inputting the neural net [5]. One has
to noticed that the output signals are orthonormal only
for pariculary particular inputs.

6 Conclusions
The process of data preparation for neural based mod-

elling was presented and discussed. We have distin-
guished and examined some properties of sampling, in-
put preprocessing and decimation, demonstrating partic-
ular usefulness of almost linear dependence signals con-
cept. Finally our arguments for orthonormal preprocess-
ing were presented.
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Abstract
When feedforward neural networks of multi-layer perceptron
(MLP) type are used as black-box models of complex processes,
a common problem is how to select relevant inputs from a large
set of potential variables that affect the outputs to be modeled.
If, furthermore, the observations of the input-output tuples are
scarce, the degrees of freedom may not allow for the use of a
fully connected layer between the inputs and the hidden nodes.
This paper presents a systematic method for selection of both
input variables and a constrained connectivity of the lower-layer
weights in MLPs. The method, which can also be used as a
means to provide initial guesses for the weights prior to the final
training phase of the MLPs, is illustrated on a class of test
problems.

1 Introduction

When neural networks of multi-layer perceptron (MLP)
type are used in black box modeling, e.g., for prediction
of variables in a complex industrial process, a frequently
occurring problem is that there are numerous factors that
may potentially influence the variables to be modeled
(predicted). Furthermore, it is also common that the
number of observations is limited. The second problem
has the consequence that the number of inputs and/or the
number of hidden nodes has to be restricted to yield a
meaningful parameter estimation problem (with, say, the
number of network weights not exceeding a tenth of the
number of output residuals [1]). This also means that all
potential inputs cannot be included in the model. A
remedy would be to limit the dimension of the input space
by considering only meaningful variables. If knowledge
of the system studied exists, it is possible to use such for
the elimination of superfluous inputs or for preprocessing
of the inputs, thus reducing the input variable dimension.
In cases where there is no such knowledge, one has to
resort to automatic methods for selection of relevant input
variables. In nonlinear modeling, there are no general
criteria for making such choices, even though papers have
been published on how to tackle the problem [2,3]; an
excellent review on pitfalls in measuring the importance
of inputs is provided in [4]. A way to tackle the problem
is to use constructive methods based on a growing neural
network [5,6], but these techniques are often not well

suited for problems where the input variables are
correlated. Furthermore, their ability to solve problems
with a low signal-to-noise ratio is also limited. On the
other hand, pruning of large trained networks have also
been proposed as a remedy [7,8], and in more recent
papers the possibility to use genetic algorithms for a
simultaneous optimization of network weights and
structure has been explored [9-11]. However, most
pruning methods are hampered by a laborious retraining
process. Furthermore, the risk of getting stuck in local
minima, which is always present in MLP training, may
result in "wrong decisions" concerning the usefulness of
certain network connectivities.

The present paper proposes a simple pruning approach,
where a large single-layer sigmoid network with random
initial weights in the lower layer of connections is used as
a starting point. The complexity of this network part is
gradually decreased by removing, on each iteration, the
least significant connection. In comparing the networks
with each other, the upper layer weights are determined
by linear least squares. This makes the method simple,
efficient, rapid and robust. The method is described in the
next subsection, followed by an illustration of it in
Section 3. The final section presents some concluding
remarks.

2 The Method

The method proposed in this paper is based on the
following assumptions: We confine our study to
feedforward neural networks of MLP type with a single
layer of hidden nonlinear (typically sigmoidal) units and a
single linear output node. The former limitation is
motivated by the fact that such networks have been
shown to be able to approximate any continuous
differentiable function to arbitrary accuracy, if the
number of hidden nodes is large enough, while an
extension to networks with multiple outputs is obvious.

The approach is based on the practical observation that
for an arbitrary, but known, choice of weights in the
lower layer of connections, W, (cf. Fig. 1) there are
generally a corresponding set of weights, w, to the output
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node that will lead to a relatively good solution of the
approximation problem at hand. After propagating the K
input vectors through the first layer of connections and
through the hidden nodes, the corresponding outputs of
each of the n hidden nodes, can be determined. Collecting
these together in a matrix, Z, where a first column of ones
(for the bias) is included, the upper-layer weights can be
easily determined by solving the linear problem

mirK F = (1)

where

f =

1 Z2A

1 Z , ,
(2)

by, e.g., Householder reflections using an orthogonal-
triangular factorization [12].

Figure 1. Schematic of the networks used in the study.

The fact that an arbitrary (but well scaled) weight matrix
W is sufficient is also in agreement with the seemingly
odd observation, reported by numerous investigators, that
a large network trains more rapidly than a small network,
despite its larger weight space. The reason is that in a
large network the likelihood increases of initially finding
hidden nodes that operate in a proper region for solving
the problem at hand. Obviously, such a large network is
over-sized in a parametric sense, so it should be possible
to remove superfluous connections in its lower part
without major loss of accuracy of the fit. This brings us
into the basic pruning step of the method that in a nutshell
can be condensed into the following algorithm:

4.

Select a (sufficient) maximum number of hidden
nodes, n, and generate a random weight matrix,
Wo, for the lower layer of connections. Introduce
a set of indices to its weights, 70 (excluding the
biases), and set the iteration index to / = 1.
Reset, in turn, a weight j in the set It.u and
determine the corresponding optimal upper-layer
weights w . by Eqs. (1) and (2) and determine

the value of the objective function, F/y.
Set W/ = WM and 1/ = IM. Remove the weight,

J) that corresponds to the minimum value of the

objective function, i.e., /*=argmin{/^ } from

both W, and I,-.
Set i = /+1. If i < n-N, go to 2. Else, end.

3 Illustration of the Method

In order to illustrate the method outlined above, the
following function with N = 3 inputs, (xi , x2 and X3) and
one output (y) is used.

y = a(xf + 0.5x,x2)+ (1 - tf)(o.5x2x3 + x\ )+ be (3)

Obviously, the function is designed to yield a varying and
nonlinear dependence between inputs and the output for
different values of the parameter a e (0,1): The output, y,
is independent of X3 for a = 1, for a = 0 it is independent
of Xj, while for 0 < a < 1 it depends on all input variables.

A few runs of the algorithm next illustrate its possible
use. In the analysis the inputs as well as the noise term, 8,
are taken to be normally distributed random variables
with zero mean and unit variance, i.e., e, xt = W(0,l),
while the non-negative parameter b is used to control the
signal-to-noise ratio. The analysis is started from a
network with six hidden nodes, which was considered
sufficient for the task at hand.

3.1 Reference case
The model was first run with Ktr = 100 observations in the
training set, using an additional Kte = 100 observations in
a test set for verification of the resulting models, using the
parameter values a = 0.5 and b = 0.2. Figure 2 shows an
example of the inputs and the output of a training set.

Figure 3 illustrates a typical evolution of the method on
the training (solid lines) and test (dashed lines) sets,
where the root-mean square errors Fitj* (cf. Eq. (1)) have
been depicted as a function of the remaining weights
(excluding biases) in the lower part of the networks. Note
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that the "iterations" progress from right to left in the
figure. In summary, five to seven non-zero weights (to
five active hidden nodes) are sufficient to produce an
acceptable fit, and the corresponding networks generalize
well on the test set. This is also seen in Fig. 4, which
shows the resulting fit on the test set for the network with
five remaining lower-layer weights.
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Figure 2. Inputs and output in a training set of the
reference case.

Remaining lower-layer weights

Figure 3. Evolution of the errors with the number of
remaining weights (excluding biases) in the lower part of
the network ( training set, — test set).

Figure 5 shows the errors on the training set for networks
evolved from four random weight matrices. Even though
the levels of the errors are seen to differ between the
networks, the general features are very similar, especially
as far as the minimum connectivity for achieving a good
fit is concerned. A noteworthy fact is also that the fits for
the largest networks are worse than those of the
somewhat pruned networks, even on the training set.
Thus, superfluous lower-layer connections can be directly
detrimental for the model. This is the result of the fact
that the lower-layer weights are not retrained, but it still

serves to illustrate the impact of the initial weights on the
conditioning of the training problem. Therefore, the
proposed technique can also be seen as a method for
initializing a (sparse) network.

Figure 4 Example on the model fit on the test data using
five non-zero weights in the lower part of the network
( observations, model).

Remaining lower-layer weights

Figure 5. Evolution of the training errors with the
number of remaining weights (excluding biases) in the
lower part of the networks from four random weight
matrices.

3.2 Detection of relevant inputs
The capability of the model to detect and remove
irrelevant inputs is next evaluated by creating a data set
with identical parameters to those of the previous
subsection, except a = 0.1. This gives rise to a function y
that only slightly depends on x\. The algorithm was used
to detect the one of the inputs that would be first
eliminated, i.e., would lose all its connections to the
hidden layer.
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Starting from 20 random initial weight matrices, Wo, the
first input variable to be eliminated was always x\. Table
1 shows the "frequency" of the number of remaining
weight connections at the point where the final
connection to JCI was excluded. Even though there is some
scattering, it is interesting to note that the required lower-
layer complexity at this point corresponds quite well to
the one required for solving the task with a = 0.5.
Another interesting observation is that the generalization
ability of the networks at these very points turns out to be
close to optimal for many of the runs. Figure 6 illustrates
this behavior for four of the runs, where the test set errors
have been depicted. The arrows in the figure indicate the
network complexity where the first input variable (x\)
was excluded from the model. Moving from left to right,
these are the points where a further added complexity
does not improve the function approximation provided by
the network.

Table 1. Frequency of remaining lower-layer weights at
the point where the first input (x\) was eliminated by the
pruning method for the function (3) with a = 0.1.

Remaining
weights

3
4
5
6
7
8
9

Frequency

2
5
4
6
1
1
1

lowe r—(sycr wdQhts

Figure 6. Test set errors of four networks trained on y
generated by Eq. (3) with a = 0.1. Arrows denote the
points where JCI was excluded from the model.

4 Conclusions

The paper has described a systematic method for selection
of both input variables and a constrained connectivity of
the lower-layer weights in MLPs. It also provides initial
guesses for a gradient based training. The method has
been illustrated on a class of test problems, where it has
shown promising performance.

REFERENCES
[I] Principe J. C, N. R. Euliano and W. C. Lefebvre, (1999)

Neural and adaptive systems: Fundamentals through
simulations, John Wiley & Sons, New York.

[2] Sridhar, D.V., E. B. Bartlett and R. C. Seagrave, (1998)
"Information theoretic subset selection for neural
networks", Comput Chem. Engng. 22, 613-626.

[3] Bogler, Z., (2003) "Selection of quasi-optimal inputs in
chemometrics modeling by artificial neural network
analysis", Analytical Chimica Acta 490, 31-40.

[4] Sarle, W.S., (2000) "How to measure importance of
inputs", ftp://ftp.sas.com/pub/neural/importance.html

[5] Frean, M., (1989) "The Upstart Algorithm. A method for
Constructing and Training Feed-forward Neural
Networks", Edinburgh Physics Department, Preprint
89/469, Scotland.

[6] Fahlman, S.E. and C. Lebiere, (1990) "The Cascade-
Correlation Learning Architecture", in Advances in Neural
Information Processing Systems II, (Ed. D.S. Touretzky),
pp. 524-532.

[7] Le Chun, Y., J. S. Denker and S. A. Solla, (1990) "Optimal
Brain Damage", in Advances in Neural Information
Processing Systems 2, ed. D.S. Touretzky, pp. 598-605,
(Morgan

[8] Thimm, G. and E. Fiesler, (1995) "Evaluating pruning
methods", Proc. of the 1995 International Symposium on
Artificial Neural Networks (ISANN'95), Hsinchu, Taiwan,
ROC.

[9] Maniezzo, V., (1994) "Genetic Evolution of the Topology
and Weight Distribution of Neural Networks", IEEE
Transactions on Neural Networks 5, 39-53.

[10] Gao, F., M. Li, F. Wang, B. Wang and P. Yue, (1999)
"Genetic Algorithms and Evolutionary Programming
Hybrid Strategy for Structure and Weight Learning for
Multilayer Feedforward Neural Networks", Ind. Eng.
Chem. Res. 38, 4330-4336.

[II] Pettersson, F. and H. Saxen, (2003) "A hybrid algorithm
for weight and connectivity optimization in feedforward
neural networks", in Artficial Neural Nets and Genetic
Algorithms (eds. Pearson, D. et al.), PP- 47-52, Springer-
Verlag.

[12] Golub, G., (1965) "Numerical methods for solving linear
least squares problems", Numer. Math. 7, 206-216.



13

The Concept and Properties of Sigma-if Neural Network

M. Huk, H. Kwasnicka
Department of Computer Science, Wroclaw University of Technology, Poland

E-mail: {maciej.huk, halina.kwasnicka}@pwr.wroc.pl

Abstract
Our recent works on artificial neural networks point

to the possibility of extending the activation function of
a standard artificial neuron model using the conditional
signal accumulation technique, thus significantly en-
hancing the capabilities of neural networks. We present
a new artificial neuron model, called Sigma-if, with the
ability to dynamically tune the size of the decision space
under consideration, resulting from a novel activation
function. The paper discusses construction of the pro-
posed neuron as well as training Sigma-if feedforward
neural networks for well known sample classification
problems.

1 Introduction
The basic constituent of a classic artificial neural net-

work (ANN) is the neuron, used to process signals pre-
sented as input, through an activation function and a
nonlinear output (threshold) function. The former func-
tion, hereafter referred to as A, determines the activa-
tion level of the neuron, while the latter (F) bases on
the result returned by A to construct the neuron's output
value. [1,2] The importance of the threshold function as
well as of the weights attached to individual interneural
connections is well discussed in numerous publications.
[1,3,4,5] However almost all of them assume the acti-
vation function to be a simple weighted sum of neuron
input values and connections weights. In fact, analyz-
ing the behavior of artificial neurons with nonstandard
activation functions may lead us to develop new classifi-
cation structures, with interesting and useful properties.
[6-13]

2 Sigma-if Neuron
The authors propose a special type of neuron, whose

activation function can be clearly interpreted from a bi-
ological perspective. In the case of real neurons, indi-
vidual dendrites differ in length, allowing a biological
neural network to associate incoming signals with par-
ticular connections and processing areas. Such a prop-
erty can be incorporated into classic feedforward neural
network models through connections grouping and con-
ditional signals accumulation technique. [11,14]

More specifically, the M dendrites of a Sigma-if neu-

ron are divided into K distinct groups, by complement-
ing each i-th input connection with an additional integer
parameter 0;€ {0,1,..,lf-1}, determining membership in
one of the groups. This allows us to divide the process of
signals accumulation into K steps, where K is a function
of neuron's grouping vector 8T=\6\, #2>..., 0MV-

K{0) = (1)

During each step k (from 0 to KA) the neuron accumu-
lates data belonging to one selected group, such that

0% — k. (2)

Within each k-th group, partial activation Ag(k) is de-
termined as a weighted sum of input signals and the ap-
propriate Kronecker's delta:

M

, 0) =

where Wi and X{ are coefficients of the neuron's weight
vector w and input vector x. This process is repeated
until the activation derived from respective groups ex-
ceeds a preselected activation threshold net*. It can be
described by the following recursive formula (vectors w,
JC and 8 are omitted for clearness):

,(Ag(k)H(net*-net(k-l))+net(k-l) : fc>0
M 0 :fc<0 (4)

where H is Heaviside's function. This sum is then treated
as the neuronal activation value. Input from remaining
(heretofore unconsidered) groups is neglected. Thus, the
proposed form of activation function A is:

A(w, x, 0) = net(K, w, x, 0). (5)

For completeness, it is also important to note that in the
final stages of determining the output value Y of the neu-
ron, function (5) serves as a parameter of the nonlinear
threshold function F:

Neurons of the presented type can easily be used for
building network structures. One can choose architec-
tures similar to classic synchronous feedforward neural
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networks, but recurrent realizations are also possible.
While there are no special restrictions regarding net-
work architecture, Sigma-if neurons can work in fully-
connected as well as in sparse structures.

3 Training the Sigma-if Neural Network

The Sigma-if network requires a suitable training pro-
cedure. To characterize the influence of neuron modi-
fications on network capabilities, we have separated the
problem of grouping vector coefficients selection from
that of connections weights calculation.

While in our study we use fully-connected feedfor-
ward Sigma-if networks with one hidden layer, the
weights vector can be determined through a slightly
modified back propagation algorithm. Its modification
involves adding an assertion stating that during each
weight adjustment cycle, only those weights can be
changed, which have recently influenced the output val-
ues of the network. The reason for such an approach is as
follows: the training algorithm should limit the influence
of immediately-recognizable patterns on network struc-
tures used in categorizing data which rely on connections
with greater Oi values.

The selection of coefficients of the grouping vector
should also be adjusted to the problem considered by the
network. Yet, looking for an optimal grouping vector
is generally a very difficult task. In practice it involves
computationally expensive multidimensional and multi-
modal optimization. Thus use of reasonable heuristics is
hence justified.

Following preliminary experiments we have decided
to use the random walk technique. When the random
grouping vector selected at the beginning of the learning
process doesn't enable the backpropagation algorithm to
reduce the network classification error below an assumed
target level, we randomly select all theta values again.
This process is repeated for every hundred backpropa-
gation cycles until the network is successfully trained.
Experience shows that the typical number of grouping
vector selection attempts required to properly train the
network is on the order of 10. Considering that, and re-
membering that our main goal was to check the basic
properties of the Sigma-if model, the proposed solution
seems to be acceptable.

4 Properties of the Sigma-if network

It is worth mentioning that proper selection of connec-
tion 6i parameters between the input and hidden layers
is very important. If the selection of grouping vector
coefficients is highly disadvantageous, some highly im-
portant data attributes served through connections with
high 8i values, may end up not being considered at all.
This is a particularly pressing issue when the low-theta

connections carry strong noise, exceeding the activation
threshold net* of the neuron. Nevertheless, it is not a
hopeless situation, due to another property of the Sigma-
if network. It can perform reactivation of inactive and
important attributes through minimization of active con-
nection weights. This is achieved through the back prop-
agation algorithm by lowering the weights of dendrites
which distort the classification process.

The above property suggests that diversification of
theta values may have other positive consequences. It
enables neurons to separate disruptive input signals from
those that carry useful information, thus increasing the
signal-to-noise ratio. This can act as very effective noise
filter, but only when noised connections have greater
theta values than inputs required for proper classification

The next consequence of neuronal inputs grouping
is that simple analysis of the activity of input to hid-
den layer connections in a properly trained network may
yield information about subsets of data attributes impor-
tant for the classifier. This analysis is reduced to observ-
ing which neuronal inputs are considered when estab-
lishing the network output as a response to a particular
test input patterns.

However the most important feature of the proposed
network is the ability to discriminate the input space in
an adaptive manner. The conditional signal accumu-
lation technique enables it to partition the data space
with hypersurfaces using an increasing number of di-
mensions, where the number of attempts is determined
by the number of distinct theta values assigned to neu-
ronal inputs. This can easily be observed in the case
of a single Sigma-if neuron. Despite the use of a sig-
moid threshold function in its body, the Sigma-if neuron
- unlike the classic neuron - can solve simple linearly
inseparable problems, since it is able to use (depending
on the circumstances) all or just some of the information
present on its inputs.

It should, however, be noted that the presented ap-
proach fails for the XOR function. In this case, each
straight line perpendicular to one of the dimensions of
the data space and passing through a selected point cor-
responding to a training pattern from class zero contains
a point belonging to a class different than zero. It is
therefore impossible to separate both points by means of
straight lines perpendicular to selected normal vectors of
data spaces (hypersurfaces reduced to one dimension).
In this case, a different solution may be utilized: rotat-
ing the coordinate set by a preselected acute angle. Fol-
lowing such a transformation, a single Sigma-if neuron
will be able to properly classify points defining the XOR
function.
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5 Results of Experiments
The main goal of our experimental study was to find

evidence for the basic theoretical expectations concern-
ing the presented Sigma-if neuron model. The second
goal was to compare classification capabilities of Sigma-
if and classic neural networks, and to show that con-
ditional signal accumulation technique can be useful in
data mining applications. At the end we wanted to check
if there are any differences between classic and Sigma-if
networks in the context of knowledge extraction.

The tested networks were trained using the previously
described modified back propagation algorithm, with
randomly selected theta values, controlled by a separate
algorithm which oversaw the space of convergence of
the learning process. Behind tests with single neuron,
the number of neurons in the hidden layer was set to the
value assuring best training results for the classic net-
work model. All neurons used a bipolar sigmoid thresh-
old function and the activation threshold level was set to
a value of net* =0.4.

5.1 Single Sigma-if Neuron

The basic functionality test of the Sigma-if network
involved gauging the properties of a single neuron. Ac-
cording to theoretical analysis, this neuron is not able
to properly dissect the data space of the XOR problem
(over the real number space). However, even a slight
repositioning on one of the points defining the data space
enables rapid training of the neuron. Such a modification
allows the Sigma-if neuron to dissect the decision space
with two different hypersurfaces, one of which must be
a straight line perpendicular to one of the dimensions.

1
Fig. 1. Sample shape of trained Sigma-if neuron decision bor-

ders for the modified XOR function.

Fig. 1 presents a fragment of the decision space of
a sample Sigma-if neuron trained to properly classify
points belonging to the following function:

D(r r ) - J ° :(xi,x2)G{(0,0),(0.8,0.8)}
[ 1 :(xi,iC2) € {(0,1), (1,0)}

The parameters of this trained neuron are as follows:

weight vector w =[1.3, 2.5] and grouping vector #=[0,
1]. Thus since 0\ is less than 02, input #2 will be consid-
ered only if the partial neuron activation Ag(0) (equal
to the product of W\ and x\) is less than the activation
threshold net*. It can be seen that when the neuron's
output values less or equal to 0.5 and greater than 0.5 are
treated as classes 0 and 1 respectively, the Sigma-if neu-
ron with the presented parameters correctly solves the
linearly inseparable problem defined by (eq. 7).

This experimental confirmation of the theoretical po-
tential of the Sigma-if neuron is further strengthened by
achieving positive results for a training set which in-
cludes XOR function points, rotated by 45° around point
(1,0). It is , however, important to note that training re-
sults depend on the activation threshold level. For the
presented problem positive results were obtained only
for net* between 0 and 1. Outside that range, successful
training was not possible.

5.2 Sigma-if performance for artificial problems

The promising results described in the previous sec-
tion have led us to check the performance of the pro-
posed model for more complicated artificial problems.
For this purpose we have chosen the well known nested
spirals testbed, and the two-class 10x10 checkerboard
classification task. [15,16] Both problems have been
used to train a fully-connected classic neural network
with two inputs, 50 neurons in one hidden layer and two
outputs. The obtained results have been compared with
the outcome of analogous tests of a Sigma-if neural net-
work with an identical architecture.

Test results have shown that in the case of the nested-
spirals testbed, the Sigma-if network acts very similarly
to the standard feedforward neural network. Both net-
works have been able to properly solve the two-spirals
problem at similar computational cost. The differences
between both types of neural networks only became ap-
parent during the second test. While the standard model
was unable to reduce the classification error below 50%,
the Sigma-if network reached a stage where almost 70%
of patterns were classified correctly.

5.3 Minimization of the number of active attributes

Another experiment involved training the Sigma-if
network to minimize the number of attributes required
for proper classification of selected data sets from the
UCI Machine Learning Repository. This necessitated
extending the mechanism which controlled the random
selection of grouping vector parameters with facilities
for analyzing changes in the number of active input con-
nections. Thus, when the number of active input at-
tributes exceeds 50%, the training algorithm forces ran-
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dom selection of the grouping vector.
Such a mode of operation, for a limited number of

neurons in the hidden layer (2 to 4, depending on the
training set), enabled us to extract subsets of data at-
tributes which had the greatest impact on the classifi-
cation process. Table 1 presents the capabilities of the
process, assuming at least 80% classification accuracy
with the limited attribute set. The best results have
been achieved for those training sets which can be ex-
pected to contain a lot of redundant data (i.e. Sonar
and Breast-Cancer-W). Surprisingly, for the latter set it
was possible to reduce the number of active attributes to
just two, while retaining a 92% accuracy (the two rele-
vant attributes are Uniformity-of-Cell-Shape and Single-
Epithelial-Cell-Size).

Table 1. Trimming data attribute sets with Sigma-if network.

Training set

Heart
Hypothyroid

Iris
Breast-Cancer-W

Monk I
Monk2
Monk3
Sonar
Vote

No. of
attributes

(total)
13
29
4
9
6
6
6

60
16

No. of
attributes

(limited set)
9
19
3
2
6
6
6
10
9

Mean

Gain
[%1

30.7
34.5
25.0
77.7

0
0
0

83.3
43.7
32.7

On average, the conducted tests permitted a 30% re-
duction in the number of attributes used in classification.
We can therefore conclude that the proposed solution is
well adapted to real-life applications, where data gather-
ing can often be costly.

5.4 Extraction of knowledge from the Sigma-if net-
work

The promising results of the above experiments raise
questions about whether such networks process and store
knowledge in a way that differs from classic neural net-
works. To shed some light on that problem, it is neces-
sary to use a knowledge extraction method. The task of
extracting knowledge from such an atypical neural net-
work as the Sigma-if network essentially limits the selec-
tion of applicable algorithms to black-box-type methods.
Such methods are scarce, so we have come to rely on the
Trepan algorithm, since the available sources strongly
recommend it. [17, 18]

Just like in the previous experiments, the results ob-
tained are very interesting. It appears that, when com-

pared to decision trees extracted from classic neural net-
works, the Sigma-if trees are much more readable - they
are less complex and use a smaller number of decision
attributes. They also more accurately represent the func-
tioning of the network from which they have been de-
rived as well as the properties of data being classified. It
seems advisable to further study the possibility of apply-
ing Sigma-if networks in data mining applications.

6 Summary

The theoretical considerations presented in this paper
and confirmed by experimental results clearly point to
the fact that conditional signal accumulation is a use-
ful technique in the area of neuronal data processing. In
light of its potential benefits, the proposed modifications
of classic artificial neural networks require further ex-
tensive study. It is, for example, difficult to explain why
Monk training sets have proven more difficult to classify,
even though they also include redundant data attributes.

It is also worth to underline that full exploitation of
the Sigma-if model's potential is possible only when a
suitable method of selecting grouping vector coefficients
is used. The heuristic approach, mentioned earlier, has
yielded some interesting results, but no definitive solu-
tion can yet be presented. This problem determines fur-
ther directions of Sigma-if network research.

While the Sigma-if neuron is only a simple computa-
tional model, not designed for modeling biological neu-
rons, it would nevertheless be interesting to research the
relations between the properties of Sigma-if networks
and those of biological processing systems.
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Abstract
Wavelet neural networks (WNN) have recently attracted great
interest, because of their advantages over radial basis function
networks (RBFN) as they are universal approximators. In this
paper we present a novel wavelet neural network, based on
Beta wavelets, for 1-D and 2-D function approximation. Our
purpose is to approximate an unknown function f: Rn -> R
from scattered samples (xt; y{ - f(x)) i=l n, where:
S we have little a priori knowledge on the unknown
function f which lives in some infinite dimensional smooth
function space,
S the function approximation process is performed
iteratively: each new measure on the function (x;; f(Xj)) is

used to compute a new estimate f as an approximation of
the function f.
Simulation results are demonstrated to validate the
generalization ability and efficiency of the proposed Beta
wavelet network.

1 Introduction

Combining the wavelet transform theory with the basic
concept of neural networks [1-3], a new mapping
network called wavelet neural network or wavenets
(WNN) is proposed as an alternative to feedforward
neural networks for approximating arbitrary nonlinear
functions. Kreinovich proved in [14] that if we use a
special type of neurons (wavelet neurons), then the
resulting neural networks are optimal approximators in
the following sense: as e —> 0, the number of bits that is
necessary to store the results of a 3-layer wavelet neural
network approximation, increases slower than for any
other approximation scheme.
Wavelets occur in a family of functions and each is
defined by dilation at which controls the scaling
parameter and translation tt which controls the position
of a single function, named the mother wavelet \|/(x).
Mapping functions to a time-frequency phase space,
WNN can reflect the time-frequency properties of
function more accurately than the RBFNN. Given an n-
element training set, the overall response of a WNN is:

y(w) = wo + (1)

where Np is the number of wavelet nodes in the hidden
layer and wt is the synaptic weight of WNN. A WNN

can be regarded as a function approximator which
estimates an unknown functional mapping:
y =f(x) +£ (2)
where / i s the regression function and the error term s
is a zero-mean random variable of disturbance. There
are a number of approaches to WNN construction (a
brief survey is provided in [9-12] ), we pay special
attention on the model proposed by Zhang [1, 6, 8].

2 The Beta wavelet

The Beta function [13] is defined as:
if p>0, q>0, (p, q) e IN

P(x) = Xc-XO }

r i
\xo,x\

(3)
else

where, xc =
P + 9

2.1. The derivatives of Beta function
We proved in [4, 5] that all derivatives of Beta function
e L2(IR) and are of class C00. The general form of the
nth derivative of Beta function is:

" W dxn

where: px(x)=-I. SL.
x-xo x\-x

n\p n\qand Pn(x)=(-l)n
r

The first (BW1), second (BW2) and third (BW3)
derivatives of Beta wavelet are shown graphically in
Figure 1.
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Fig, 1. First, second and third derivatives of Beta function.
Fig.2. Result of interpolation by Mexican hat.

2.2. Proposition
if p = q , for all n e IN and 0 < n < p the functions

(5)
dxn are wavelets [4, 5].

3 Experiments

In this section, we present two experimental results of
the proposed Beta Wavelet Neural Networks (BWNN)
on approximating two functions using the Stepwise
selection by orthogonalization training algorithm. First,
simulations on the 1-D function approximation
f(x)=:0.5xsin(2x)-^cos2(2x) are conducted to validate and
compare the proposed BWNN with some other wavelets.
The input x is constructed by the uniform distribution on
[-2.5, 2.5], and the corresponding output y is functional
of y = f(x) and is artificially contaminated by random
errors. The training and test data are composed of 50
points and 500 points, respectively. Beta wavelet is
chosen as the mother wavelet for training network.
Second, the two-dimension function:

~[{x\ - 0.5)2 + ( x2 - 0.5)2]
16

IS

approximated to illustrate the robustness of the proposed
wavelets family. The training set D contains 11x11
uniform spaced points, and 1 lxl 1 stochastic points. The
test set V is constructed by evenly spaced 21x21 grid on
[-1.1M-1.1].

3.1 1-D interpolation using the stepwise selection by
orthogonalization algorithm
These results are given, using the Stepwise selection by
orthogonalization algorithm, on a Neural Wavelet
Networks using 9 wavelets, 4 levels decomposition, 500
iterations, 50 points for training and a uniform spaced
points. f(x)=0.5xsin(2x)+cos2(2x).

Fig.3. Result of interpolation by BW2.

Approximated functions are displayed in Figures 2 and
3. The Normalized Root Mean Square Error NRMSE of
the Mexican hat WNN is 0.0138434 compared to
0.009344716 the BW2 WNN achieved. From these
simulations we can deduce the efficiency of Beta
wavelet in term of function interpolation. The table
below gives the normalized square root mean square
error and mean square error using traditional wavelets
and Beta wavelet:

Wavelets

Mexican hat
Beta 1
Beta 2

Stepwise selection by
orthogonalization algorithm

NSRMSE

0.0138434
0.0295078
0.00934716

MSE (e-005)

10.7061
48.6430
4.88097

Table. 1 Comparison of NSRMSE and MSE for Beta wavelets
and some others in term of 1 -D approximation.

3.2 1-D interpolation of noisy data using the stepwise
selection by orthogonalization algorithm
These results are given, using on a Neural Wavelet
Network using 9 wavelets, 4 levels decomposition, 500
iterations, 50 points for training, uniform spaced
points.

J{x)=0.5xsin(2x)+cos2(2jc)+4x) (6)
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Fig.5. Result of interpolation of noisy data by Mexican hat Fig.8. Result of 2-D interpolation by Mexican hat wavelet
wavelet. after training using uniform spaced input patterns.

Fig.6. Result of interpolation of noisy data by BW2 wavelet. Fig.9. Result of 2-D interpolation by BW2 wavelet after
training using uniform spaced input patterns.

We display in figure 5 the result of approximation of a
noisy signal using Mexican hat WNN and in figure 6
the Beta WNN one. From these simulations we can see
that Beta 2 WNN is more efficient than the Mexican
hat wavelet on noisy data approximation.

3.3 2-D interpolation using the stepwise selection by
orthogonalization algorithm
These results are given, using the Stepwise selection by
orthogonalization algorithm on a Neural Wavelet
Networks using 4 wavelets, 4 levels decomposition,
200 iterations, 11 xl 1 points for training. Ff10- R e s u l t o f 2"D ' " R a t i o n by Mexican hat wavelet

O1 ° after training using randomly input patterns.
-fi[(xl-0.5)2+(;c2-0.5)2]

(*.
f(xi Xl) = r (7)

Fig.l 1. Result of 2-D interpolation by BW2 wavelet after
training using randomly input patterns.

Fig.7. 2-D data to be interpolated.
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We display in Figure 7 the 2-D data we use in our tests,
in figure 8 the result of 2-D interpolation using Mexican
hat WNN on which we see some distortion in amplitude
and at the edges. In figure 9 using Beta 2 WNN we
reduce the amplitude distortion. In figure 10 we display
the result of interpolation using Mexican hat WNN on
which distortion becomes greater than its homolog using
Beta 2 WNN displayed in figure 11.

4 Conclusion

We present two experimental results of the proposed
Beta Wavelet Neural Networks (BWNN) on
approximating two functions using the Stepwise
selection by orthogonalization training algorithm. First,
simulations on the 1 -D function approximation on which
we prove the superiority of Beta wavelets in term of
NSRMSE. Second, the two-dimension function is
approximated with the second derivative of Beta wavelet
and the Mexican hat wavelet to illustrate the robustness
of the proposed wavelets family. The training set D
contains 11x11 uniform spaced points, and 11x11
random points, the test set V is constructed by evenly
spaced 21x21 grid on [-1, l]x[-l, 1]. So the new Beta
wavelets family has the superiority of approximation in
the 1-D and the 2-D case. This new wavelet family can
be used to approximate volume using the 2-D 1-D 2-D
technique.
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Abstract
Updating steps in a backpropagation neural network

with multiplicative factors u > 1 and d < 1 has been
presented by several authors. The istatistics field of Sto-
chastic Approximation has a close relation with back-
propagation algorithms. Recent theoretical results in this
field show that for functions of one variable, different
values of u and d can produce very different results: fast
convergence at the cost of a poor solution, slow conver-
gence with a better solution, or produce a fast move to-
wards a solution but without converging. To speed up
backpropagation in a simple manner we propose a batch
step adaptation technique for the online backpropagation
algorithm based on theoretical results on simple cases.

1 Introduction
Speeding up backpropagation has been a constant

challenge and several techniques has been applied like
using second order information [4].

Also several works on multiplicative step update
where developed [5,6,8] and each of them uses the com-
mon update algorithm

It =
It-i

It-i

if condition C
otherwise

where u > 1 and 0 < d < 1 are real parameters. Pos-
sibly variable j t is guaranteed to be limited 0 < Yd <
it < r u .

Condition C could be a gradient condition [5] or a
condition on the quadratic error [6,8]. In both cases the
quadratic error

Et = E(Wt,x,d) = -d)2

i l
(2)

is to be minimized, with (x, d) being the pattern pre-
sented at the iteration, Wt is the weight vector that de-
scribes net state, and NET; is the ith output of the neural
network.

Gradient condition uses change of signs: if

SEt

Sw Sw
(3)

then step must be incremented otherwise reduced. Dif-
ferent updates are going to occur for each weight w in
the net parameters W = (w0, wi,...,wn).

Another type of condition is the error condition which
is based on increases or decreases of global error AEt

causing the step to change.
We propose an algorithm that uses a gradient condi-

tion for step update. Next we present theoretic results
that are guides to the proposed algorithm.

2 Stochastic Approximation and New results
Many problems in Stochastic Approximations are de-

scribed as the following. Consider the problem of
searching for the zero point of a function, according to
the stochastic approximation procedure

(4)

(5)Vt = <p(xt) +

where <p is the function under consideration, xt means
the tth approximation of the zero x* of <p, yt is the tth
disturbed observation of <p with random disturbance &.

If step size values j t of the procedure (4), (5) are de-
terministic and satisfy oo, Yllt < °°» m e

sequence of xt is proved to converge to x* [2]. There
are various versions of (4) and (5) aiming at accelerat-
ing convergence of xt. We are concentrating here on the
methods using step size adaptation in the course of algo-
rithm, decreasing j t every time that the two consecutive
differences Ax t - i = jt-iVt-i and Axt = 7tVt have
the same sign, and increasing *yt, otherwise.

Consider the following update rule

It =
djt-i

if
if

yt-iyt > o,
yt-iyt < o,

(6)

t = 2 , 3 , . . . is used. Here 0 < d < I < u, 0 < 7 0 <
r u , 71 e {min{u7O,r},d7o}, r

u is a positive con-
stant. Let us point out the main differences with standard
algorithm. Suppose that {ft} is a sequence of i.i.d.r.v.
with zero mean, besides P(ft > 0) = P(& < 0). Under
some additional assumptions on ip, f u and F u , stated be-
low, the process defined by (4), (5), (6) a.s. diverges if
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ud > 1, and converges if ud < 1. In fact this algorithm
can converge to a region near one of the zeros of (p. See
[7] for details.

3 Batch Step Update and Backpropagation
Using the above algorithm with feed forward neural

networks is not possible since partial derivatives changes
sign very frequently indicating a non smooth surface and
this cause a fast step decrease and a very poor solution is
reached.

However, using constant step, one can observe two
facts about a weight w. We use wt to indicate the se-
quence of values of some predetermined weight of the
vector of parameters W. First fact is that during pattern
presentation wt oscilates frequently, causing the training
to freeze. The second fact is that observing wt values
after the full training set has been used one notice that
Wt doesn't oscilate, doing some progression on the same
direction each batch time. Change of weight direction
occurs but not frequently as after each pattern presenta-
tion.

Consider the following 'time' definitions: time T indi-
cate the batch number and is incremented after B pattern
presentations; time t is incremented after each pattern
presentation.

We propose the following batch update rule for step

r_ J min{7T_i x u,Tu}
max{7T_i x d,Fd}

forT= 1,2, ...with

1. w > 1 andO < d < 1;

if AWT X AWT-I > 0
if AWT X AWT-I < 0

(7)

2. 7 T is bounded by F^ and F u constants;

3. 7o some constant that could be much less than F u

since step can grow.

After the step update rule we define the weight update
rule. It is known that online training has been shown to
produce better solutions than weight batch update. So,
each weight is going to be updated after each pattern pre-
sentation. We propose the following update algorithm
for a single weight w

wt =wt-i-
6E{Wt-i,xudt)

(8)

with t = 1,.. .,and where t/B uses integer division, and
E(W, x, d) is defined in (2).

4 A numerical study
We use the MNIST digit database [3] to study the new

algorithm performance but using only digits {0,1,2,3}.

Four identical shape neural networks where used, one
for each digit. Each net has the following structure:
28 x 28 inputs, 10 hidden units and two outputs (first
output is 1 when a good pattern is presented, otherwise
is valued —1, and bad patterns are classifiyed 1 in the
second output, otherwise —1).

Each digit has aproximatly 6000 exemplars (called
good patterns). The remaning digits are 54000 bad pat-
terns). So, the training set has 60000 patterns. The test
set has 1000 patterns (approximately 1000 samples of
each digit).

Each net was trained using the 6000 'good patterns'
against other 6000 randomly choosen 'bad patterns'. So,
total training set is 12000. We used these parameters:
the number oft iterations was 5 x 12000, the step was
updated every B = 3000 (1/4 of training set dimen-
sion) and Tu = 0.001 (that is l/(large fan in), and
Td = 10"7. Initial step was 70 = 0.0001. This two
values where randomly set.

Figure 1 describes the minimum wrong values on the
test set in all the 5 x 12000 iterations. The step schedules
where: Bar 1 u = 1.1 and d = 0.9/1.1 (ud < 1), Bar
2u=l.l and d = 1/1.1 (ud = 1), Bar 3 u = 1.1 and
d = 1.08/1.1 (ud > 1) and last Bar 4 with constant step
7 = 7 o = 0.0001 (u = d = ud= 1).

Fig, 1. Number of wrong classifications vs. step schedule in a
short period of training steps. The dark bar is ud < 1
case, then ud = 1, ud > 1 and finally constant step.

The main observation is that the algorithm with step
update rule ud < 1 behaves better in 3 cases: digits
{0,2,3}.

The number of wrong classifications are very high
for two reasons: small number of iterations and the de-
scribed method of training makes harder for the net to
classify with the simple structure.

As a conclusion of this work we can say that a very
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simple familly of algorithms for step update was pre-
sented and these simple results are encouraging. How-
ever, more work on these methods should be done.
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Abstract

The important task of generating the minimum number of
sequential triangle strips (tristrips) for a given triangulated sur-
face model is motived by applications in computer graphics.
This hard combinatorial optimization problem is reduced to
the minimum energy problem in Hopfield nets by a linear-size
construction. The Hopfield network powered by simulated an-
nealing (i.e. Boltzmann machine) which is implemented in a
program HTGEN can be used for computing the semi-optimal
stripifications. Practical experiments confirm that one can ob-
tain much better results using HTGEN than by a leading stripi-
fication program FTSG although the running time of simulated
annealing grows rapidly near the global optimum.

1 Sequential triangular strips

Piecewise-linear surfaces defined by sets of triangles
(triangulation) are widely used representations for geo-
metric models. Computing a succinct encoding of a tri-
angulated surface model represents an important prob-
lem in graphics and visualization. Current 3D graph-
ics rendering hardware often faces a memory bus band-
width bottleneck in the processor-to-graphics pipeline.
Apart from reducing the number of triangles that must
be transmitted it is also important to encode the triangu-
lated surface efficiently. A common encoding scheme is
based on sequential triangle strips which avoid repeating
the vertex coordinates of shared triangle edges. Trian-
gle strips are supported by several graphics libraries (e.g.
IGL, PHIGS, Inventor, OpenGL).

In particular, a sequential triangle strip (hereafter
briefly tristrip) of length m — 2 is an ordered sequence of
m > 3 vertices a = (v\,..., vm) which encodes m — 2
different triangles {vp, vp+i, Vp+2} for 1 < p < m — 2
so that their shared edges follow alternating left and right
turns as indicated in Figure 1 by a dashed line. Thus
a triangulation consisting of a single tristrip with n tri-
angles allows transmitting of only n + 2 (rather than
3n) vertices. In general, a triangulated surface model
T with n triangles that is decomposed into k tristrips
£ = {oi,..., ak} requires only n + 2k vertices to be

transmitted. A crucial problem is to decompose a tri-
angulated surface model into the fewest tristrips. This
stripification problem has recently been proved to be NP-
complete in article [1] which also contains relevant ref-
erences. In the present paper a new method of generat-
ing tristrips S for a given triangulated surface model T
with n triangles is proposed which is based on a linear-
time reduction to the minimum energy problem in Hop-
field network HT having O(n) units and connections.
This approach has been inspired by a more complicated
and incomplete reduction (sequential cycles were not ex-
cluded) introduced in [2].

Research partially supported by projects 1M0021620808,
LN00A056 of The Ministry of Education of the Czech Republic.

Fig. 1. Tristrip (1,2,3,4,5,6,3,7,1).

The paper is organized as follows. After a brief re-
view of the basic definitions concerning Hopfield nets
in Section 2, the main construction of Hopfield network
HT for a given triangulation T is described in Section 3.
The correctness of this reduction has formally been veri-
fied [3] by proving a one-to-one correspondence between
the optimal stripifications of T and the minimum energy
states in WT- Thus, %T combined with simulated an-
nealing (i.e. Boltzmann machine) has been implemented
in a program HTGEN which is compared against a lead-
ing stripification program FTSG in Section 4. Practical
experiments show that HTGEN can compute much bet-
ter stripifications than FTSG although the running time
of HTGEN grows rapidly when the global optimum is
being approached.

2 The minimum energy problem
Hopfield networks [4] having well-constrained con-

vergence behavior represent a very influential associative
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memory model which is connected to the much-studied
Ising spin glass model in statistical physics [5]. Part of
the appeal of Hopfield nets also stems from their natu-
ral hardware implementations using electrical networks
or optical computers, and their application in combina-
torial optimization [6].

Formally, a Hopfield network is composed of s com-
putational units or neurons, indexed as l , . . . , s , that
are connected into undirected graph or architecture, in
which each connection between unit i and j is labeled
with an integer symmetric weight w{i^j) = w(i, j).
The absence of a connection within the architecture indi-
cates a zero weight between the respective neurons, and
vice versa. For example, w(j,j) = 0 is assumed for
j = 1 , . . . , s. The sequential discrete dynamics of such a
network is here considered, in which the evolution of the
network state y<*> = (j/f \ . . . , y]p) G {0,1}S is deter-
mined for discrete time instants t = 0 , 1 , . . . , as follows.
The initial state y(°) may be chosen arbitrarily, e.g.
y(°) = ( 0 , . . . , 0). At discrete time t > 0, the excitation

of any neuron j is defined as £J ' = Xw=i w(^J)Vi ~
h(j) including an integer threshold h(j) local to unit j .
At the next instant t + 1, one (e.g. randomly) selected
neuron j computes its new output yj = H(£j ) by
applying the Heaviside activation function H, that is, j is
active when H(£) = 1 for £ > 0 while j is passive when
H(£) = 0 for f < 0. The remaining units do not change
their states, i.e. yj*+1) = y^ for i ^ j . In this way the
new network state y^+ 1 ) at time t + 1 is determined.

Also macroscopic time r = 0 ,1 ,2 , . . . is intro-
duced during which all the units in the network are
updated. A computation of a Hopfield net converges
or reaches a stable state y(r*^ at macroscopic time
r* > Oify ( T* J = y ( r * + 1 ) . The well-known fun-
damental property of a symmetric Hopfield net is that
its dynamics is constrained by energy function E(y) =

- | £ ; = i £ ; = i w ( U t o + ES=iMi)% which is
a bounded function defined on its state space whose
value decreases along any nonconstant computation path
(f W zfz 0 is assumed without loss of generality). It fol-
lows from the existence of such a function that start-
ing from any initial state the network converges towards
some stable state corresponding to a local minimum of
E [4]. Thus the cost function of a hard combinatorial
optimization problem can be encoded into the energy
function of a Hopfield net which is then minimized in
the course of computation. Hence, the minimum energy
problem of finding a network state with minimum en-
ergy is of special interest. Nevertheless, this problem is
in general NP-complete [5] (see [7] for related results).

A stochastic variant of Hopfield model called the
Boltzmann machine [8] is also considered in which ran-

domly selected unit j becomes active at time t + 1, i.e.
yf+l) = 1, with probability P{tf) which is com-
puted by applying the probabilistic activation function
P : R —> (0,1) defined as P(f) = 1/(1 + e - 2 ^ T ( r ) )
where T^ > 0 is a so-called temperature at micro-
scopic time r > 0. This parameter is controlled by
simulated annealing, e.g. T ( r ) = T (°Vlog(l + r) for
sufficiently high initial temperature T^°\ The simulated
annealing is a powerful heuristic method for avoiding the
local minima in combinatorial optimization.

3 The reduction
For the purpose of reduction the following definitions

are introduced. Let T be a set of n triangles that rep-
resents a triangulated surface model homeomorphic to a
sphere in which each edge is incident to at most two tri-
angles. An edge is said to be internal if it is shared by
exactly two triangles; otherwise it is a boundary edge.
Denote by / the set of internal edges in triangulation T.
Furthermore, a sequential cycle is a "cycled tristrip", that
is, an ordered sequence of vertices C = (vi,..., vm)
where m > 4 is even, which encodes m - 2 different
triangles {vp,vp+i,vp+2} for 1 < p < m — 2 so that
vm-i = vi and vm — V2. Also denote by Ic and Be
the sets of internal and boundary edges of sequential cy-
cle C, respectively, that is Ic — {{vP, ^p+i} ; 1 < P <
m - 2} and Be = {{vp, Vp+2} ; 1 < p < m - 2}. An
example of the sequential cycle is depicted in Figure 2
where its internal and boundary edges are indicated by
dashed and dotted lines, respectively. In addition, let C
be the set of all sequential cycles in T.

For each sequential cycle C G C one unique represen-
tative internal edge ec £ Ic c a n t>e chosen as follows.
Start with any cycle C G C and choose any edge from Ic
to be its representative edge ec- Observe that for a fixed
orientation of triangulated surface any internal edge fol-
lows either left or right turn corresponding to at most two
sequential cycles. Thus denote by C the sequential cy-
cle having no representative edge so far which shares its
internal edge ec G Ic H Ic with C if such C exists;
otherwise let C be any sequential cycle with no repre-

Fig. 2. Sequential cycle (1,2,3,4,5,6,1,2).



27

sentative internal edge or stop if all the sequential cycles
do have their representative edges. Further choose any
edge from Ic \ {ec} to be the representative edge ec
of C" and repeat the previous step with C replaced by
C". Clearly, each edge represents at most one cycle be-
cause set Ic \ {ec} ¥" $ always contains only edges that
do not represent any cycle so far. If it were not the case
then another sequential cycle C" different from C would
obtain its representative edge ec from Ic n Ic and
hence a representative edge would already be assigned
to C" before C is considered.

Hopfield network HT corresponding to triangulation
T will now be constructed. With each internal edge
e = {v\yV2} G / two neurons £e and re are asso-
ciated whose states either yte = 1 or yre = 1 indi-
cate that e follows the left or right turn, respectively,
along a tristrip according to the chosen orientation of
triangulated surface. Let Le = {e3ei,e2,e3,e4} with
d = {^1,^3}, e2 = {^2,^3}* e3 = {v2,v4}9 and
e4 = {^1,^4} be the set of edges of the two triangles
{^1,^2,^3}, {VI,V2,VA} that share edge e. Denote by
Je = {tf,rf ; / G Le n / } the set of neurons local
to e that are associated with the internal edges from Le .
Unit £e is connected with all neurons from Je via neg-
ative weights except for units re2 (if e2 G / ) , £e, and
re4 (if e4 G / ) whose states may encode a tristrip that
traverses edge e by the left turn. Such a situation (for
Le C / ) is depicted in Figure 3 where the edges shared
by triangles within the tristrip together with associated
active neurons re2, £e,re4 are marked. Similarly, unit re

is connected with neurons from Je except for units £ei

(if e\ G / ) , re, and £e3 (if e$ G / ) corresponding to
the right turn. Thus for each internal edge e G / define
weights w(i,£e) = - 7 for i G Je \ { r e 2 , 4 , r e 4 } and
w(i,re) = - 7 f o r z G Je \ { 4 i , r e , 4 3 } - Hence, the
states of Hopfield network HT with the negative sym-
metric weights which enforce locally the alternation of
left and right turns encode tristrips. Furthermore, for
each representative edge ec (C G C) define jc = £ec

if ec follows the left turn along sequential cycle C or
j c = rec if ec follows the right turn along C. Let
J = [jc ; C G C} be the set containing all such neu-
rons whereas J' = {£e,re # J; e G / } denotes its
complement. The thresholds of neurons associated with
internal edges are defined as h(j) = - 5 -f 2be^ for
j G J ' and h(j) = 1 + 26cy) forj G J where e(j) = e
for j G { 4 , r e } and&e = \{C G C; e G fl^}| < 2 for

Nevertheless, Hopfield network H T rnust also avoid
the states encoding cycled strips of triangles around se-
quential cycles [1]. Such infeasible states would have
less energy E than those encoding the optimal stripifica-
tions [3]. For this purpose, two auxiliary neurons dc> ac

Fig. 3. The construction of HT related to e € I.

are introduced for each sequential cycle C G C. Unit dc
computes the disjunction of outputs from all neurons i
associated with boundary edges e(i) G B'c of C which,
being active, enables the activation of unit jc associated
with representative edge e<?. Hence, any tristrip may
pass through edge ec along the direction of C only if a
boundary edge of C is is a part of another tristrip cross-
ing the sequential cycle C. This ensures that the states of
Hopfield network HT do not encode sequential cycles.
In addition, unit ac balances the contribution of dc to
energy E when jc is passive. As depicted in Figure 4
this is implemented by thresholds h(dc) = h(ac) = 1
and symmetric weights w(i,dc) = w(dc,i) = 2 for
e(i) G B'c, w(dc,jc) = w(jc,dc) = 7, w(dc,ac) =
w(ac,dc) = 2, and w(jc,ac) = w(acjc) = -2,
for each sequential cycle C G C. This completes the
construction of Hopfield network HT-

Moreover, observe that the number of units s = 2 | / | +
2\C\ (similarly the number of connections) in HT is lin-
ear in terms of triangulation size n — \T\ because the
number of sequential cycles \C\ can be upper bounded
by 2 | / | = O(n) since each internal edge can belong to

Fig. 4. The construction of HT related to C G C.
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Table 1. The average number of tristrips for "grid" models obtained by HTGEN and FTSG

n I HTGEN I FTSG

392

1152

2312

T ( 0 ) = 5, e = 0.3
88
r* = 2 3 (0.10s)
T ( 0 ) =5,6 = 0.1
243
T* = 442 (0.76s)
T ( 0 ) =7,e = 0.1
404
r* = 117 (5.31s)

T ( 0 ) = 10, e = 0.05
63
T* = 166 (0.72s)
T ( 0 ) = 10, 6 = 0.05
172
r* = 347 (6.01s)
T ( 0 ) = 10, e = 0.05
337
r* =489 (21.29s)

T ( 0 ) = 18, e = 0.01
53
r* = 1648 (7.21s)
T ( 0 ) = 15,6 = 0.1
151
r* = 1107 (18.99s)
T ( 0 ) = 15,6 = 0.1
297
r* = 1967 (86.28s)

67

187

373

at most two cycles. In addition, it has been proved [3]
that the classes of equivalent optimal stripifications of T
are mapped one to one to the minimum energy states that
are reached during any sequential computation by HT
starting at the zero initial state (or %T can be initialized
arbitrarily if one asymmetric weight is introduced).

4 Experiments
A C++ program HTGEN has been created to automate

the reduction from Section 3 including the simulation
of Hopfield network %T using simulated annealing (see
Section 2). The input for HTGEN is an object file (in
the Wavefront .obj format) describing triangulated sur-
face model T by a list of geometric vertices with their
coordinates followed by a list of triangular faces each
composed of three vertex reference numbers. The pro-
gram generates corresponding HT which then computes
stripification of T. This is extracted from final stable
state ŷ 7"*) ofHr at microscopic time r* into an output
.obj file containing a list of tristrips together with vertex
data. The user may control the Boltzmann machine by
specifying the initial temperature T(o) and the stopping
criterion e given as the maximum percentage of unstable
units at the end of stochastic computation.

Program HTGEN has been compared against a lead-
ing practical system FTSG that computes stripifica-
tions [1]. Apart from other data, experiments have been
conducted using "grid" models which are generated by
randomly triangulating each square in a b x b regular grid
containing of n = 2(6 - 1 ) 2 triangles. The average num-
ber of tristrips obtained by HTGEN and FTSG are sum-
marized in Table 1 where 10 random models were used
for each grid size b = 15,25,35. The results from HT-
GEN were further averaged for each model over 10 tri-
als of simulated annealing applied for three different ini-
tial temperatures T^ and stopping criteria e. The cor-
responding average convergence times r* together with
the running times in seconds (on common PC) increase
as T ( o ) increases (and e decreases). Thus T ( o ) controls

the trade-off between the running time and the quality
of stripification. One can achieve much better results
by HTGEN than by using FTSG with its most success-
ful options (-dfs, -alt) although the running time of HT-
GEN grows rapidly when the global optimum is being
approached. As concerns the time complexity, system
HTGEN cannot compete with real-time program FTSG
providing the stripifications within a few milliseconds.
Nevertheless, HTGEN can be useful if one is interested
in the stripification with a small number of tristrips at a
preprocessing stage.

References
[1] Estowski, R., Mitchell, J.S.B., Xiang, X. (2002) Optimal

decomposition of polygonal models into triangle strips. In:
Proceedings of the 18th Annual Symposium on Computa-
tional Geometry. ACM Press, pp. 254-263.

[2] PospiSil, D. (2002) Generating triangle strips by Hopfield
network. Student's project (in Czech), Faculty of Infor-
matics, Masaryk University, Czech Republic.

[3] Sima, J. (2004) Tristrips on Hopfield networks. Technical
report V-908, Institute of Computer Science, Academy of
Sciences of the Czech Republic.

[4] Hopfield, J.J. (1982) Neural networks and physical sys-
tems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences USA
79(8): 2554-2558.

[5] Barahona, F. (1982) On the computational complexity of
Ising spin glass models. Journal of Physics A: Mathemat-
ical and General 75(10): 3241-3253.

[6] Hopfield, J.J., Tank, D.W. (1985) "Neural" computation of
decision in optimization problems. Biological Cybernetics
52(3): 141-152.

[7] Sima, J., Orponen, P. (2003) General-purpose computa-
tion with neural networks: A survey of complexity theo-
retic results. Neural Computation 75(12): 2727-2778.

[8] Ackley, D.H., Hinton, G.E., Sejnowski, TJ. (1985) A
learning algorithm for Boltzmann machines. Cognitive
Science 9(1): 147-169.



29

The Linear Approximation Method to the Modified Hopfieid
Neural Network Parameters Analysis

S. I. Bauk1, S. M. Perovich2, A. Lompar

faculty of Maritime Studies, University of Montenegro
2Department of Electrical Engineering, University of Montenegro

Abstract

The dynamic of Hopfieid network is usually described by the
system of differential equations. Our idea is to modify
Hopfieid network in aim to allow its behavior description by
the system of transcendental exponential equations solvable
analytically by the Special Trans Function Theory (STFT).
Furthermore, the linear approximation method to the system
of transcendental exponential equations describing the
modified Hopfieid network, based upon the STFT, has been
discussed in some details.

1 Introduction

The Hopfieid type neural network is an important one
due to its applicability in solving associative memory,
pattern recognition and optimization problems [l]-[3].
The segment of the nonlinear active electronic circuit in
Figure 1 represents classical Hopfieid neural network
consisting of n neurons. This circuit contains resistors,
capacitors, ideal current sources and amplifiers with
activation functions, which are often differentiable
monotonically increasing ones [4],

Fig. 1. The classical Hopfieid network electronic model
consisting of n neurons

In the paper capacitors at the amplifiers inputs have
been replaced with the inverse polarized diodes with

large capacity of approximately 0.5+0.9\iF (Figure 2).
By these replacements, the classical Hopfieid model
analysis come to be moved from the field of linear
differential equations to the field of exponential
equations solvable easily by the linear approximation
method proposed throughout the next sections.

X| Fig. 2. The modified Hopfieid network architecture
consisting of n neurons

2 The differential equations transforma-
tion into the exponential ones

The electronic circuit segment of Hopfieid network
with n neurons is given in Figure 1 and its dynamic
can be expressed with the linear differential equation of
type:

duc. uc.

Rdt Jlj Ry

where / / is an external input signal (or bias) gained

from the ideal current source, uc. is i-th capacitor

voltage, f\pc. j is a neuron output voltage, R is the

same resistance for each amplifier, while Ry are the

resistors representing network weights. By replacing
capacitors (Figure 1) with the inverse polarized diodes
(Figure 2) with large capacity, at the amplifiers inputs,
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becomes possible to replace the system of the linear
differential equations (1) with a system of exponential
equations:

J-eyT (2)

where // is i-th external current or bias, is\s diode

saturation current, ujj is i-th neuron input signal, that

is diode voltage, Vj is the thermal voltage, and

/(«</.) is i-th neuron activation function. The system

of exponential equations (2) is to be linear
approximated by the Special Trans Function Theory
(STFT) approach, in the manner being described in the
next section.

3 The linear approximation method
based on STFT

Let us suppose that i-th neuron activation function, that
is i-th amplifier transfer function, has the simplest form
/ ( W t / / ) = Q / = const. Under this assumption equation
(2) can be rewritten as follows:

l-eVT
RU

.

Now, the term e T can be approximated with:

= y .
VT

where 5, is a linear approximation error. By taking into
account this linear approximation, equation (3) takes
the form:

(5)

It is to be pointed out that equation (4) can be solved
analytically by the Special Trans Function Theory [5]-
[7]. Namely, for given 8 / and Vj, we can obtain value
of uj. in analytical closed-form:

/, Vj ); i- l,n (6)

where transit i,Vf) ls n e w t r a n s function defined as
follows:

transit itVT)= Hm

i = l.n (7)

The equation (7) is obtained by classical STFT
approach [8]. By using in this manner obtained uj. ,

we can now determine the new value of 8/ , that is

' ^ 8 / , as remain part of MacLaurin series:

+...(«)
2! 4! 5!

By means of this new value for 8/ , i.e. * ' 8 / , the new

one for u^., that is for W«w., can be calculated on

the base of transformed equation (5), which after some
elementary transformations takes the form:

(9)

VT R

The above procedure is to be continued until not the

inequalities ^ 8 / - 8 / <e and

enough small real e and £ , be satisfied.

3.1 The numerical example

Some numerical results related to previously described
method to the uj. estimation, for given values of

R, R], is ,Vj ,Cj and I, in the case of one neuron, are

presented in Table 1.

The same method could be applied to two or more
neurons forming the network. The iterative procedures
should be performed independently, for each neuron,
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until all 5 / and «</. (i = J,n) be obtained with the

appropriate accuracy.

Table 1. The numerical results obtained through
15 iterations, for

R = 0.7 MO.; Rj = 0.5MQ.; is = 1\\A; I = inA; Cj = 0.5V

and F r

It

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

It.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

8

0.300000
0.299393
0.298790
0.298191
0.297597
0.297006
0.296419
0.295836
0.295257
Q.294682
0.294111
0.293543
0.292979
0.292419
0.291862

0.022222
0.022196
0.022170
0.022145
0.022120
0.022094
0.022069
0.022044
0.022020
0.021995
0.021971
0.021947
0.021922
0.021898
0.021875

0.299393
0.298790
0.298191
0.297597
0.297006
0.296419
0.295836
0.295257
0.294682
0.294111
0.293543
0.292979
0.292419
0.291862
0.291309

%
0.019729
0.019718
0.019706
0.019694
0.019683
0.019672
0.019660
0.019649
0.019638
0.019627
0.019616
0.019605
0.019594
0.019583
0.019572

0.606883 E-03
0.602752 E-03
0.598671 E-03
0.594636 E-03
0.590649 E-03
0.586707 E-03
0.582809 E-03
0.578957 E-03
0.575148 E-03
0.571383 E-03
0.567660 E-03
0.563978 E-03
0.560337 E-03
0.556736 E-03
0.553175 E-03

2.492305 E-03
2.478252 E-03
2.464277 E-03
2.450378 E-03
2.436556 E-03
2.422808 E-03
2.409135 E-03
2.395536 E-03
2.382010 E-03
2.368556 E-03
2.355173 E-03
2.341861 E-03
2.328619 E-03
2.315447 E-03
2.302343 E-03

4 The capacitor and the diode equaliza-
tion

The basic question related to the proposed Hopfield
neural network modification is undoubtedly: under
which condition(s) the capacitor can be replaced with
an inverse polarized diode? The equalization can be
realized under the assumption that the current i(t)
(Figure 3) takes the form:

(10)
where

Y , =
CVT

I I
Fig. 3. The capacitor and the inverse polarized diode

equalization

The expression (10) for current i(f) is obtained through
following steps:

(a) by equalizing capacity (C) voltage uc with an

inverse polarized diode (D) voltage uj :

C
(11)

that is

^0

(b) by differentiation the above equalization, we get:

(13)

(c) now, we are performing some elementary
transformations (formulae (14)-(17)):

i'(t) I tit)

CVT is

(14)

(15)

(16)

CVT
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d) by using replacements a, = ,*\ ' , as well as
i(O)+is

P/ = — — , we finally obtain expression for i(t) in the
CVT

following form:

The further investigation should be oriented toward
modified Hopfield architecture stability and energy
function analysis, which are of prior importance in
improving system performance and in solving some
difficult problems, like some of the associative
memory, the pattern recognition and the optimization
problems are.

(18) References

which is identically the same as (10). By supplying the
current in the circuit representing Hopfield modified
structure, changing in time in accordance with (10), the
capacitor and inverse polarized diode equalization can
be performed. In other words, the condition of the
capacitor and the diode equalization is provided in this
manner rather theoretically. This equalization is of up-
most importance in stability and network energy
function analysis. It is to be noted that the stability and
energy function analyses of the modified Hopfield-type
neural network are to be the subjects of further more
rigorous investigation.

5 Conclusions

The idea of Hopfield neural network electronic model
modification by the capacitor replacement with the
inverse polarized diode with great PN junction capacity
has been proposed in the paper. It has been done in aim
to enable Hopfield network architecture analysis in the
domain of exponential equations instead of in the
domain of differential ones. Besides, the exponential
equations, describing modified Hopfield architecture,
have been linear approximated and solved analytically
by STFT approach. The obtained numerical results
confirm in a way the validity and applicability of
proposed method.

The equalization between the capacitor and the diode at
the neuron input has been examined in the paper, as
well. It is shown that this equalization can be
established under the condition that the current in the
modified Hopfield structure has the appropriate
continuous-time form.
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Abstract

The subject of the theoretical analysis presented in the paper
is Hopfield neuron electronic model modification based upon
capacitor replacement with an inverse polarized diode. The
modified neuron parameters have been analytically analyzed
by application of the Special Trans Function Theory (STFT).
The obtained results are presented numerically and
graphically.

1 Introduction

Well known Hopfleld network can be thought of as a
single-layer neural network of continuous nonlinear
units mutually completely connected with feedback [1].
The nonlinear active electronic circuit shown in Fig. 1
represents this network active unit, that is one neuron.
As obvious this circuit consists of resistors, capacitor,
an ideal current source and a nonlinear amplifier. Our
idea is to replace the capacitor (C) with an inverse
polarized diode (D), as shown in Fig. 2. Namely, in this
manner, our intention is to shift in a way Hopfleld
neuron parameters analysis from the domain of linear
differential equation to the domain of exponential
transcendental equation solvable analytically by the
application of Special Trans Function Theory (STFT)

Fig. 1. Hopfield neuron model

Fig. 2. Modified Hopfield neuron model

2 On Hopfield neuron model
transformation

The electronic circuit segment of Hopfield network
representing one neuron is given in Fig. 1. The
equation describing the evolution of its output state can
be obtained by applying Kirchoff s current law to the
node (1) in the form:

cdUcL+u£_=uL+I

dt R Rj K }

where / is an external input signal (or bias) gained
from an ideal current source, uc is capacitor voltage
and F(uc) is an activation function ( amplifier transfer

function), which is usually of type: F(uc) = .
~U

By replacing capacitor (Fig. 1) with an inverse
polarized diode (Fig. 2) with large capacity of
approximately 0.9fiF, we are in position to replace
differential equation (1) with an exponential equation
of type:

l-eyr
R Rj

(2)

where is is the saturation current; u^ is the neuron
input signal, i.e. diode voltage; Vj is the thermal
voltage; / is an external current or bias.
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n

The multiplication of equation (2) by the term —
VT

gives the following equation:

udRis Ris

VT VT Rj VT
 K )

By introducing several transformations of the form:

y~vT'a~~ vT ' ~~VT"R^ VT~

we get transcendental equation of type:

ae~y-a +y = Q +p . (4)
Finally, by the replacement: aj = a + Q, the

transcendental equation:

ae~y +y = aj +p (5)
appears.
This equation is directly solvable by application of the
Special Trans Function Theory (STFT). Thus, by
solving (5) in analytical closed form becomes possible
to analyze analytically diode voltage u^ with respect to
values M;, R}, R and (or) /. Besides, by STFT application
it becomes possible to obtain analytically

gradients:
AM, AR

and (or)
AI

3 Genesis of the analytical closed form
solution to the equation (5)

According to the Special Trans Function Theory [2]-
[13], in aim to solve equation (5) analytically in closed-
form, first of all, an appropriate equation for
identification (EQID), to (5), is to be found. The
theoretical method to the genesis of EQID is the
intuitive or analogy. Thus, in this case, EQID is linear
differential equation and takes the following form:

<p'(z)+ a<p{z -1)- cc2(p{z) = 0 (6)

where a2 =aj + P . The asymptotic solution of this

equation has the form

Vas^e* (7)
and it is essential to the EQID genesis. Consequently,
by the replacement of this asymptotic solution into the
equation (6), the equation (5) is to be obtained. On the
other hand, equation (6) is solvable analytically by
Laplace transform. Thus, after applying Laplace
transform equation (6) takes the form

where

or

®{s)\s + ae s-a2)=<p{0)

0{s)= L{<p{z))

^ . - ) - *fr) .
s - a 2 + ae s

Finally,

0{s + a2) = 2fe) - ffel

(8)

(9)

(10)

or

(11)

under the condition — "s
e~~* «1 .

s
Now, inverting term by term, in original z domain,
we obtain

and finally,

#1=0

. (13)

According to the unique solution principle from
equations (7) and (13) follows:

(14)

or

lim I \ z .=<>y (15)
<P0ase'

From the above equalization we have:

so, the final expression for y becomes:

= a 2 + trans N (a, O,fi) (17)
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where

and

The error function is defined as:

(18)

G = ae~y + y-aj - J3 (20)

for y derived by (17), and it must satisfy the inequality

G < go, where go is enough small real positive

number. Therefore, the diode voltage ud, as neuron

input signal, could be obtained by using special trans
function, instead of linear differential equation (1)
(applicable to the classical Hopfield neuron model) in
the following manner:

where trans^{a,a2) is a new neuron trans function
defined as:

trans fj (a, a 2)= Hm In

4 The neuron input signal derivation
function

The partial derivation function of the neuron input
signal Urf upon voltage uj value, can be defined on the

base of the equation (21). Let us note, that a2 is a

function of voltage uj, so:

Aw,

Aa2 AtransN(a,a2) Aa2

Aw, Aa2 Aw,
(22)

since,
R follows that:

Aw, VTRX

Aa, AM, *-** S-»r(«-
a y (z + l-nf

1 (1,-1)1

fcy (z-fl-w)" (23)

and finally, it is observed that

Aw,
= F r - yv v ' 2

Aa,

lim

'_!)•*'(ae-jT.kllz^. • (24)

n\

R_

R,

Consequently, it is possible to track changes of
uj analytically with respect to the voltage w/,
changing for small arbitrary chosen positive values.
The appropriate numerical results and graphical
presentations are given in the next section.

5 The numerical results analysis

In this section some simulation results obtained by
previously performed theoretical analysis to the
equation (5) are presented. Thus, in the Table 1 are
given some numerical results of y, that is, of diode

voltage ud and error |G| for different values of integer
[z] controlling number of the solution accurate digits.
The other values being involved in proposed Hopfield
neuron model analysis are given:

R = 0.!MJO;R} = 0.5MO;is = ljuA;

VT = 25mV;uj = 0.5V and I = inA*

Table 1. Values for y,ud and \G\ obtained by STFT

for various [z]

\?\
5
10
15

y
1.20502516381988
1.20398526249551
1.20398516473426

ud[mV]
30.125629095497
30.099631562388
30.099629118356
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20
25

[--]
5
10
15
20
25

1.20398516603802
1.20398516603764

30.099629150950
30.099629150941

P\
2.28733096933276 E-03
2.12205883757394 E-07
2.86742806929197 E-09
8.27563712002544 E-13
2.89004931097736 E-15

0.16

0.14

0.12

Some other results for ud and error \G\ » obtained for

various values of voltage Uj and resistance Rj, while

parameters R, is, Vj and / take the same values as in

the previous example, are shown in Table 2.

The essential advantage of the STFT approach is the
possibility of the partial derivation of the diode voltage ud.

Namely, by using a fixed value of uj, we are in

position to calculate Aud IAuxon the basis of

equation (24). Some derivation Aud I Aux results, for

uj taking discrete values from the interval (0.1 +0.5V),

are presented in Figure 3.

Table 2. The values of ud and |G| for different u\ and

/?,([_-] =25)

Rj =0.5[MJO]

u,[v]
0.1
0.2
0.3
0.4
0.5

ud[mV]
4.29953528
9.22965817
14.99410535
21.84172434
30.09962915

M
2.11292764263141 E-06
3.86432836806117 E-08
7.57895527586649 E-10
5.53645670975378 E-12
2.89004931097736 E-15

uj =0.5[v]

RJ[MJO]

0.50
0.55
0.60
0.65
0.70

ud[mV)
30.0996291
26.1471403
23.1101060
20.7055690
18.7552700

P
2.89004931097736 E-15
8.21911982917811 E-15
2.19401927181728 E-12
6.46926609504384 E-12
5.86914995770460 E-ll

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fig. 3. The partial derivation \Aud I Aul | graphical

presentation (obtained by equation (24))

6 Conclusions

The paper has proposed an original approach to the
modified Hopfield neuron electronic model parameters
analytical analysis by the application of recently
developed Special Trans Function Theory (STFT). The
obtained numerical results confirm applicability and
validity of the proposed method. Namely, the
architecture of Hopfield electronic neuron model has
been changed by replacing capacitor at the amplifier
input (representing neuron body) with an inverse
polarized diode whose capacity is to be similar to
biological neuron membrane capacity (order of JJF ).
This modification comes to remove Hopfield neuron
parameters analysis from the field of the linear
differential equation to the field of the exponential
transcendental equation solvable analytically by STFT
approach.
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Abstract
This paper proposes a general method that transforms known
neural network MSA algorithms, into MCA algorithms. The
method uses two distinct time scales. A given MSA algorithm is
responsible, on a faster time scale, for the "behavior" of all
output neurons. On this scale minor subspace is obtained. On a
slower time scale, output neurons compete to fulfill their "own
interests". On this scale, basis vectors in the minor subspace are
rotated toward the minor eigenvectors. Actually, time-oriented
hierarchical method is proposed. Some simplified mathematical
analysis, as well as simulation results are presented.

1 Introduction
Neural networks provide a way for parallel on-line
computations of the principal/minor component analysis
(PCA/MCA) or principal/minor subspace analysis
(PSA/MSA). Due to their parallelism and adaptivity to
input data, such algorithms and their implementations in
neural networks are potentially useful in feature
extraction and data compression. Generally speaking, the
purpose of PCA is to derive a relatively small number of
deccorelated linear combinations (principal components)
of a set of random zero-mean variables while retaining as
much of the information from the original variables as
possible. Among the objectives of PCA are:
dimensionality reduction, determination of linear
combinations of variables, feature selection, visualization
of multidimensional data, identification of underlying
variables of identification of groups of objects or outliers

Nevertheless, it has been clearly shown that computing
the last principal components of a data sequence, i.e.
those principal components endowed with the smallest
(non-zero) powers, may be very useful as well, for
instance in moving target following [2], frequency
estimation [3], adaptive array processing, emitter location
and signal parameter estimation [4], biological data
analysis and understanding [5], noise reduction problems,
function approximation like curve fitting and surface
fitting [6] or robust constrained beamforming [7].

A layer of parallel linear artificial neurons shown in Fig.
1.

Input vector x

YN

Output vector y

Fig. 1. The linear layer of artificial neurons

The output of the n-th unit (/i=l, 2, ..., N) is yn = w/x,
with x denoting a AT-dimensional input vector of the
network and wn denoting a weight vector of the n-th unit.
This network, together with appropriate learning rule,
could be used as a powerful technique for learning and
tracking principal/minor information in time series.
Within last years various MCA and MSA learning
algorithms have been proposed and mathematically
investigated [1-12]. Most of them are based on local
Hebbian learning. Due to their locality it has been argued
that these algorithms are biologically plausible. MSA
algorithms are useful for the problems in which only a
minor subspace identification is of interest and not the
decorellation property. In this paper we propose a simple
method for converting MSA algorithms to MCA
algorithms. It is named Time-Oriented Hierarchical
Method (TOHM). Of course, all the time we are talking
about parallel algorithms for estimation of MCA and
related MSA. Algorithms which discuss sequential
extraction of minor components are not considered (for
review of those algorithms see e.g. [1]).
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2 Time-Oriented Hierarchical Method
A general method for transformation of MSA algorithms
to MCA algorithms will be introduced. The main idea is
that
Each neuron tries to do what is the best for his family,
and then what is the best for himself
We shall call this idea "the family principle". In other
words, the algorithm consists of two parts: the first part is
responsible for the family-desirable feature learning and
the second part is responsible for the individual-neuron-
desirable feature learning. The second part is taken with a
weight coefficient which is, by absolute value, smaller
than 1. This means that some time-oriented hierarchy in
realization of the family and individual parts of the
learning rules is made.
In order to realize "the family principle", we propose the
following general method, which transforms MSA
algorithm, denoted by FPMSA (defines AWPSA) to a MCA
algorithm, denoted by LAMCA (defines AWPCA)'-

LA,[MCA ~ ' wT
kwk = 1, (1)

where D is a diagonal matrix with nonzero elements dn

and such that | ^ | < 1 . IP denotes an individual part of the
learning rule (defines Aw/p). This is an algorithm for
achieving maximization of E((Dy)Ty) under the
constraints wkwk=\ for k=\,2,...,N. If all dn are equal to
a, we have the homogenous case. It is not difficult to see
that if homogenous MSA algorithm is used and all dn are
equal, then we have fully homogenous MCA algorithm.

3 Neural Learning on Grassman/Stiefel
Submanifold

In this paragraph it will be explained how proposed
learning method can be related to the neural learning on a
Grassman minor submanifold (it will be defined later in
the section). Only homogeneous case (all dn are equal to
a) will be analyzed. In the inhomogeneous case,
algorithm can be related to a neural learning on a Stiefel
minor submanifold. All definitions can be made
analogously.
First, we define a Grassman on-submanifold (similar to
definition of Grassman manifold):
The space of matrices We O **" c R **N (N<K) such that
WTW=I and a function J: O **"-> R such that
J(W)-J(WQ) for any NxN orthonormal matrix Q is called
the Grassman on-submanifold.
Neural network algorithms frequently can be seen as
algorithms that maximize/minimize cost function under

some constraint, which is usually orthogonality
constraint. In other words it can be written as:
Find Weh such that: J{Weks) =max/min J{W), We O KxN.
A standard way to obtain desired solutions is to define the
Lagrangian function:

where / is so-called Lagrangian multiplier, and to look for
free extremes of the function .//(W), for instance by means
of gradient ascent/descent technique, that is

AW
(3)

In order to ensure orthonormality, the iterative
orthogonalization of the columns of W could be employed
as well, for instance by the Gram-Schmidt
orthogonalization of the matrix updated by gradient
optimisation of J{W) or projection onto orthogonal group
[13]. However, imposing the orthonormality constraint
iteratively may be problematic in practice (see e.g. [8,9]).
That is the reason why the researchers started to study
learning paradigms that keep the weight matrix
orthogonal at any time. Such algorithms are known as
SOC (Orthonormal Strongly-Constrained) algorithms.
First a SOC MCA algorithm will be introduced. Let's
analyze the following system of equations:

y2 = max, (4)

, .

where x represents input vector for the single layer single
output (y) neural network and w represents weight vector.
Now, we can easily see that equation (5) can be written as

T T
W XX W

(6)

If we directly construct gradient ascent algorithm taking
the gradient of y2 with respect to w, we have the
following learning algorithm:

,. lx />x , xyJw(i)Tw(i)-y2w(i)
W{1 + 1) = VV\j) + /(O l =; . (7)

w(i) w(i)
Time index /, for x and y is omitted in order to shorten
equations. It is not difficult to see that if w(i)Tw(i)=\ we
directly have famous Oja's learning rule. If we extend
this to multiple output case we have

-Xy

where yk represents the k-th output neuron and wk

represents the k-th column of W. Learning rule for weight
vectors is given as
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v * (0 T wk (0 - wk (0
(9)

R **N (N<K) such that
Now, we define Grassman minor submanifold:
The space of matrices We O KxN

WTW-l and W spans the minor subspace defined by the TV
minor eigenvectors of matrix C, and a function J: O KxN—>
R such that J(W)=J(WQ) for any NxN orthonormal matrix
Q will be called the Grassman minor submanifold.
If algorithm (9) is applied under strict constraint for W -
W is such that WTW-l and W spans the minor subspace
defined by matrix C, we actually have learning algorithm

(10)wk(i)
and

yk=wkx. (11)

Now, our cost function in compact notation is
J = E(tr(yyT)) = E(tr{WT xxTW) = tr(WT CW) = max. (12)
It is not difficult to see that function J satisfies
J(W)=J(WQ) for any NxN orthonormal matrix Q. In other
words we can say that our algorithm (10) performs
neural learning on Grassman minor submanifold. So, we
have one SOC algorithm. Using stochastic approximation
[14] we can relate (10) to following ordinary differential
equation (in compact notation)

— = (cw- Wdiag(wTClv]}, (13)

where dia.g(WrCW) is a diagonal matrix which consists of
diagonal elements of WTCW. If we write this equation for
each column wk, we have

—— = \Cwk — Xk wk), (14)

where Xk is the k-X\\ element of diag(WrCW). We can
easily conclude that the stationary points of these
equations are minor eigenvectors of the matrix C. Since
we are performing neural learning on minor subspace the
resulting wk will be equal to minor eigenvectors of matrix
C. If the wk(i) of the corresponding discrete algorithm
visits infinitely often a compact subset of the domain of
attraction of the solution of (14), then the solution of (14)
is also a solution for the corresponding discrete algorithm
(10). The proof is lengthy and won't be presented here. It
can be done by the approach used in [15].
Proposed method is not easy to implement in practice.
The reason is that in online methods for MCA, minor
Grasmman submanifold is not known. So, we have to
apply Lagraingian method to our learning rule which
results in the following algorithm:
wk(i + \) = wk(i) + y(i)(xyk-yk

2wk(i))+/]y(i)AWMSA, (15)

where AWMSA represents part of the learning rule that is
contributed by the adopted MSA learning rule which
makes "weak" constraint. Equation (15) can be written as

-yk
2wk{i)\ry(i)AWMSA. (16)

If a is small enough we can consider that part multiplied
by a does not affect the MSA learning part and
appoximately we have a learning on Grassman minor
submanifold. Now, we can see that equation (16) actually
represents a method proposed in this paper, in the
homogenouus case. If a is small enough, we can assume
that analysis performed for SOC algorithm (10) can be
valid for (16). It must be said that it is necessary to
perform stability analysis for any particular selection of
MSA. Only after such analysis it is possible to select
proper a.

4 Simulation results
In order to illustrate effectiveness of the proposed TOHM
we shall consider the small-scale numerical simulations
whose results are given in Table 1-4 . The number of
inputs was K = 5 and the number of output neurons was N
= 3. Artificial zero-mean vectors with uncorrelated
elements were generated by the following equations:

= (rem(i,23)-ll)/9)5;

= (rem(i,27)-13)/9);

= ((rand(U)<.5)*2-l)*log(rand(l,l) + .5

In such case, eigenvectors are C\ = (01000)T, c2 =
(00100)T, c3 = (10000)T, c4 = (00010)T and c5 = (00001)T

(sorted in such way that Cj corresponds to the largest
eigenvalue and c5 corresponds to the smallest
eigenvalue). Let d be the vector which consists of
diagonal elements dk of matrix D in (1).
Tables 1-4 contain simulation results for MCA derived by
implementation of TOHM on some of the stable MSA.
MCA algorithm derived from some of the MS Ax
(xe{ 1,2,3}) by the TOHM is denoted by the TOHM
MSAx.

Table 1 Weight vectors of the TOHM MLA1
after 66000 iterations; d={0.36, 0.09, 0.018}

w
-1.0001
0.0191
-0.0737
-0.0217
-0.0621

-0.0337
0.0326
-0.0496
-1.0043
0.0644

-0.0905
-0.0461
-0.0395
0.2019
0.9972

Tables 1, 2 and 3 contain simulation results for
inhomogeneous TOHM-MSA1, TOHM-MSA2 and
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T0HM-MSA3, respectively. MSA1-3 are defined in refs.
10, 11 and 12, respectively. Table 4 contains results for
TOHM MSA2 algorithm in homogeneous case.

Table 2 Weight vectors of the TOHM MLA2
after 5000 iterations; d={0.36, 0.09, 0.018}

w
0.0177
0.0103
-0.0199
1.0015
0.0059

1.0032
-0.0232
-0.0188
-0.0135

0.0393

0.0437
-0.0227
-0.0068
0.0028
-1.0042

Table 3 Weight vectors of the TOHM MLA3
after 20000 iterations; d={-0.005, -0.0025,- 0.00125}

w
-0.0067
0.0957
0.0385
-0.0651
0.9925

0.9971
-0.0728
0.0177
0.0057
0.0147

0.0031
-0.0507
-0.0293
-0.9966
-0.0577

Table 4 Weight vectors of the TOHM MLA2
after 4500 iterations; d={0.36, 0.36, 0.36}

w
0.0040
-0.0069
0.0300
1.0004
-0.0621

0.9967
0.0778
-0.0659
0.0035
-0.0416

0.0440
-0.0179
-0.0076
0.0715
0.9989

The simulation results show that the TOHM is useful.

5 Conclusion
In this paper, a general method (named time-oriented
hierarchical method - TOHM) that transforms the MSA
learning rules for a single layer linear neural network into
MCA learning rules is analyzed. Introduction of the two
distinct time bases is the novelty of the proposed
algorithm. This indirectly means that possible biological
implementation of the network requires two types of the
neurotransmitters. On a faster time scale, MSA algorithm
is responsible for the "behavior" of the all output neurons
(family). On a slower scale, output neurons will compete
for "fulfillment of their own interests". On this scale,
basis vectors in the minor subspace are rotated toward the
minor eigenvectors. Some simplified mathematical
analysis, as well as simulation results are presented.

References
[1] A. Chichocki, S.-I. Amari (2003) Adaptive Blind

Signal and Image Processing - Learning Algorithms
and Applications. John Wiley and Sons, New York

[2] R. Klemm (1987) Adaptive airborne MTI: an
auxiliary channel approach. IEE Proceedings 134:
269-276

[3] G. Mathew and V. Reddy (1994) Orthogonal
Eigensubspace estimation using neural networks.
IEEE Trans. On Signal Processing: 42: 1803-1811

[4] R. Schmidt (1986) Multiple emitter location and
signal parameter estimation. IEEE Trans. On
Antennas and Propagation 34: 276-280

[5] L. Wiscott (1998) Learning invariance manifolds.
International Conference on Artificial Neural
Networks: 555-560

[6] L. Xu, E. Oja, C.Y. Suen (1992) Modified Hebbian
learning for curve and surface fitting. Neural
Networks 5:441-457

[7] S. Fiori (2003) A Neural Minor Component Analysis
Approach to Robust Constrained Beamforming. IEE
Proceedings - Vision, Image and Signal Processing
150:205-218

[8] T.-P. Chen and S. Amari (2001) Unified stabilization
approach to principal and minor components. Neural
Networks 14: 1377-1387

[9] T.-P. Chen, S. Amari, and Q. Lin (1998) A unified
algorithm for principal and minor components
extraction. Neural Networks 11: 385-390

[10] S. Fiori (2002) A minor subspace algorithm based on
neural Stiefel dynamics. International Journal of
Neural Systems 12: 339 - 350

[11]S.C. Douglas, S.Y. Kung and S. Amari (1998) A
self-stabilized minor subspace rule. IEEE Signal
Processing Letters 5: 328-330

[12] K. Abed-Meraim, S. Attallah, A. Ckheif and Y. Hua
(2000) Orthogonal Oja algorithm. IEEE Signal
Processing Letters 7: 116-119

[13] S. Fiori (2001) A theory for learning by weight flow
on Stiefel-Grassman Manifold. Neural Computation
13: 1625-1647

[14] L. Ljung (1977) Analysis of recursive stochastic
algorithms. IEEE Trans. Automat. Contr. 22, 551-
575

[15] E. Oja, J. Karhunen (1985) On stochastic
approximation of the eigenvectors and eigenvalues of
the expectation of a random matrix. J. Math. Anal.,
Appl. 106: 69-84



42

Evolution versus Learning in Temporal Neural Networks

Hedi Soula, Guillaume Beslon, Joel Favrel *

*PRISMa Lab., National Institute of Applied Sciences (INSA), Lyon, France, e-mail:hed@prisma.insa-lyon.fr

Abstract

In this paper, we study the difference between two
ways of setting synaptic weights in a "temporal" neu-
ral network. Used as a controller of a simulated mo-
bile robot, the neural network is alternatively evolved
through an evolutionary algorithm or trained via an heb-
bian reinforcement learning rule. We compare both ap-
proaches and argue that in the last instance only the
learning paradigm is able to exploit meaningfully the
temporal features of the neural network.

1 Introduction

When trying to control a robot with a neural network,
the evolutionist paradigm is one of the most widespread
approaches [1]. It becomes even more important when
dealing with temporal neural networks1 [2, 3,4]. Indeed,
lacking an obvious learning paradigm for such kind of
networks, the evolutionary approach is generally consid-
ered as the only alternative.

We argue that looking for a learning paradigm for this
kind of neurons can be very fruitful. By putting its effi-
ciency aside, we can find it more interesting in its quali-
tative expressions (although not in its quantitative ones).

Indeed, evolutionist robotic is based on the robot's
ability to do a task globally. It has to learn a global pol-
icy losing thereby the local (here temporal) properties of
the network. Hence it becomes unclear that a genetic
algorithm is able to make an actual exploitation of this
temporal feature.

2 Temporal Artificial Neural Networks
In the last decade, many discoveries have changed

our views about the neural treatment of information.
The "firing rates" models of neural nets are widespread
among the neural networks community. However, while
what mattered in these models is the firing frequency of
the neurons, contemporary neurobiology suggests that
the temporal factor (i.e. the exact time of a spike) is used
by real neurons in a brain.

Indeed, temporal synchronizations between far neu-
rons have been detected in most of cerebral areas (see

!By temporal networks we mean networks of neurons that use the
time of firing as a mean of coding and not only the firing rates (e.g.
spiking neurons)

[5] for a review). Shortly after, other authors ([6, 7])
have showed that the exact time of firing of a neuron can
code precisely the nature of a stimulus. It is then useless
to wait for more spikes to transmit the neural informa-
tion to the remaining of the net (for a review of all these
arguments see [8]). All this strongly supports the need
to introduce time in the network. In the next section we
propose a very simple model that allows the time to ap-
pear.

3 The Scheduled Mode
We present here briefly (see [9, 10] for more de-

tails) the Scheduled Mode. Relying on a specific asyn-
chronous update rule in a network of Boolean neurons,
we define the neural imbalance di as the difference be-
tween the state of a neuron i and its incoming stimula-
tion.

di(t) = (1- 2xi(t))

where Xi(t) is the state of the neuron i (i G [l..n]) at
a given time t (Xi(t) 6 {0,1}, 1 < i < n), Wik is
the synaptic weight between neuron A: and neuron i and
a(s2, z, t) is a centred Gaussian noise of variance s2.

The imbalance characterizes the network's influence
on the neuron. A high value indicates a high pressure for
the neuron to change its state. In order to take this into
account, only the most imbalanced neuron is updated at
given time step. That is :

di(t) = MAX]=1(dj(t))

The main difference between scheduled mode and
classical update modes in neural networks (syn-
chronous/asynchronous modes) is that, in general, the
cells state are not all checked. Thus, the neural activity
quickly propagates into the network through most im-
balanced neurons and an output can be computed with-
out taking into account lower imbalances. Sensorial in-
puts can thereby change while only some neurons have
changed their state.

Then, a neural flow is created whose relative speed de-
pends on the strength of the synaptic connexions. More-
over, the neurons involved in this flow will change their
state in order (starting from the most stimulated ones).
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As such, the Scheduled Mode is one of the simplest
possible implementation of a temporal neural network.

4 The Task and Architecture

A "food and nest" task (i.e. moving to catch a moving
prey and bring it back to its nest) will serve as test.

The robot has to learn to step over a prey in order to
capture it and deliver it to its nest (see figure 1). At each
catch a new prey is created but the robot cannot carry
more than one. When it steps over the nest, its captured
prey is destroyed and the process starts again. The prey
is moving (slower than the robot) sideways and bounces
off the wall.

Figure 1. Left: The simulated environment. The big circle on the
right is the nest. The robot is displayed besides the nest
and the small black circle is the prey. The two squares are
fixed obstacles. Right: Agent's perceptions

The robot is round shaped with six perception sectors.
Each of them contains a binary proximity sensor and a
target detector that indicates which kind of object faces
this sector (see figure 1). It means that it can distinguish
the nest and the prey but it can actually "see" them only
with a 60° precision. Moreover, the robot is aware of an
obstacle at a very short distance. However, neither the
prey nor the nest are considered as obstacles. Two bi-
nary "proprioceptive" inputs are added and inform the
robot of its own state (empty or full). The robot has
two propulsion wheels (differential propulsion) whose
straight and angular speed are noised.

Lastly, the neural controller is consisting of 20 input
neurons (6 neurons are set to code for the proximity sen-
sors value, 6 neurons for the prey's direction, 6 neurons
for the nest's direction and remaining 2 neurons for the
proprioceptive sensors). This input layer is connected
to an all-to-all connected hidden layer made of 40 neu-
rons. The 2 motoneurons are also connected to this hid-
den layer.

If both motoneurons are in the same state the robot
move forward, else it turns left or right depending on
which neurons is "on". The motor occurrence is updated
at each time step whatever the neuron state is (remember
that the update rule is asynchronous).

5 Learning algorithms
5.1 Evolutionary synaptic modification

We use a simple genetic algorithm to evolve the neural
controller. Each population is composed of 100 geno-
types. Each genotype codes for the (20 x 40 -I- 40 x 40 -f
2 x 40 = 2480) synaptic weights of the neural net. The
other states variables are constant through the adaptation
process. The synaptic weights are chosen between -1.0
and 1.0 in the initial genotype set.

At each generation, we evaluate all the robots during
100000 time steps according to a fitness function which
depends on the number of capture and homing and on the
average distance made after the last capture (or homing).

The first 20 individuals are selected and reproduced to
obtain the next generation. At this stage, all the geno-
types are altered through mutation and crossover.

5.2 Hebbian Learning

In order to use the temporal aspect of the Sched-
uled Mode we used a local learning paradigm with re-
inforcement. As such, the Hebbian [11] paradigm rests
mainly on temporal correlations between pairs of neu-
rons. Thus, by tracing the neurons activities, we are able
to measure the influence of a neuron over one another.
Let Tji be a trace of the connection between pre-synaptic
neuron i and post-synaptic neuron j . In order to record
the correlation between i and j , we set:

Tji(t) = - 1) + (Xi{t) - Si

Where t[ was the last time step where the neuron Xi(t)
changed its state. The weights are updated via :

Where r(t) is the reinforcement received by the con-
troller at the current time t and a a learning factor. Note
that when a neuron is in the same state for a long time,
its influence in the learning equation vanishes - it has
no influence on the variation of the postsynaptic weights
anymore. o{s2,j,t) is the same value that was calcu-
lated for imbalance for neuron j at time t (the noise).
We set r = 1 whenever the robot catches a prey or de-
livers it in the nest, r = — 1 when it hits an obstacle
and r = 0 otherwise, a, s and the values of the rein-
forcement were constant during the learning trials of 20
random networks - the distribution of the initial weights
followed an uniform law between -0.1 and 0.1 for the
2480 weights.

6 Results and comparison
6.1 Quantitative success of evolutionary algorithm

We conducted the evolutionary process over a hundred
generations (that is a billion step time in all). Figure 2
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shows the fitness results.
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Figure 2. Average (plain line) and maximum (dashed line) fitness.

As usual in this kind of task, the first generations (here
50) are used to learn the basic task (i.e. one capture and
one return). A "hunting" behaviour is then consolidated
during the second period since the selection pressure is
directed toward an optimization of the task (more and
more capture/return pairs). The fitness is more or less
equal to the sum of capture plus homing. At the end, the
best individual is able to make 50 capture and homing
within 100 000 time steps. It is very near the optimal.
Indeed, the small difference with optimality comes from
the fact that all the robots turned in the same direction.
The evolution converges to a local maximum. Forced
to optimize a behaviour, the robots didn't actually man-
age to turn in both direction making u-turns to reach the
preys.

Figure 3. A typical behavior of an efficient evolved individual. It
moves from "A" to "E"

Figure 3 displays a typical behavior of an efficient in-
dividual at the end of the adaptation process. The prey
(not showed) was taken in "D". As it was said before,
the robot always turns in the same direction (left in this
case). The prey approach is made via straight lines.
Since the target sensor's precision is only 60 degrees,

this kind of approach is made possible by moving very
quickly. Moreover its obstacle avoidance strategy seems
stereotypical (90 degrees turn whether in "A", "B" or
"C"). It shows the same stereotypical feature during its
curious nest approach (the loops from "D" to "E" how-
ever far it is from the nest).

This entire means that the evolution algorithm did not
enable a temporal learning but a "macro" learning. It
was able to extract the invariant dynamics of the whole
environment.

6.2 Qualitative result of hebbian learning

The resulting behaviours of the learning experiments
are strikingly different. For instance, the efficiency is
weak compared to the evolution experiment. Figure 4
shows the score of an average individual after a learn-
ing session. The session runs over 1 million time steps
and the final results are the same (50) as the genetically
created best individual (over 100 000 time steps)2!

0 100000 £90000 900000 40O0OQ 500000 600000 700000 &00000 900000 14+06

TIME STEP

Figure 4. Learning curve of an average robot. The number of cap-
ture or homing vs time

At the start of learning process, the robot is to roam
randomly inside the environment. So the first 370 000
time steps are devoted to hit obstacles and fall, by
chance, on a prey then a nest. After that period it learns
and quickly manage to make the task (between 370 000
and 430 000 for example). At this moment, it is able to
make an average of 4615 time steps for one capture or
one return. That is a bit more than twice the time needed
by the best genetically created individual.

Unfortunately, if the learning process goes on, the
scores decreased. This is mostly due to weight satura-
tion and a flaw in the hebbian algorithm. This question
will be handled in the next section. However it is obvious
that the task is learned. Moreover, the robot managed to
be quite efficient - during a part of its "life" at least.

2Here we don't take into account here that to obtain that best indi-
vidual we needed 1 billion step time of simulation
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Figure 5. A typical behavior during the learning process. It moves
from "A" to "D".

But the most striking difference appears on the be-
haviours. Indeed, in the case of learning, the robots did
not move in straight lines and their behaviours were not
stereotypical. They did turn in both directions. Figure 5
shows an example of how they behaved. The robot takes
the prey (not showed) in "B", avoids the walls in two dif-
ferent ways (between "A" and "B"). It begins an elliptic
nest approach between "B" and "C".

Furthermore, almost all the robots made this kind of
strange approach toward the prey and the nest - we
named it the "leaf" approach.

In doing this, the robots made micro-movements
(small variations around its average "head" direction).
These micro-movements were not constant. They ap-
peared at the beginning of an approach and their rates
increased at the end. All were to keep the target (prey or
nest) on the limit of is "front eye". To evade the com-
bined limitations of the controller (the Scheduled Mode
imposes a time of reaction) and of the actual precision of
the sensors, the robots learned to keep the target around
the border of their inputs.

An indirect consequence is that the robots are much
slower than with a straight line approach. This impedes
significantly the overall performance but leaves more
room for an eventual adaptiveness. Since nothing has
been done to make such behaviours appear, they emerged
from this temporal learning.

7 Discussion

As said before, the scheduled mode is not a perfect
implementation of temporal neural networks. Its funda-
mental flaw lies in the fact that it induces just one flow
of update sequence of neurons. The hebbian learning re-
inforces indefinitely this sequence then leads to a satura-
tion and a degeneration of the sequence itself. Thus, the
robots cannot stabilize what they had already learned.

Nevertheless, the results are still interesting when
compared with the evolutionary approach. Micromove-
ments and non-stereotypical behaviours could not be ob-
served in the latter. The fundamental fact lies in the ex-

ternal relation of a robot and its environment. Indeed
the fitness driven evolution emphasizes a global and op-
timized behavior while reinforcement learning empha-
sizes a local and temporal behaviour. Thus, while the
overall performance seems poor, the temporal coherence
of this learning enables the robot to extract a tempo-
ral relation between itself, its environment and the task.
Because learning and optimizing can be two different
things, we showed in this paper that a non-optimal but
coherent policy could give some adaptation results that
may have not arisen if we had just looked at the perfor-
mance.

References
[1] D. Floreano and F. Mondada. Evolutionary neuro-

controllers for autonomous mobile robots. Neural
Networks, (11):1461-1478, 1998.

[2] D. Floreano and C. Mattiusi. Evolution of spik-
ing neural controllers for autonomous vision-based
robots. In T. Gomi, editor, Evolutionnary Robotics.
Berlin: Springer-Verlag, 2001.

[3] E. Di Paolo. Spike timing dependent plasticity
for evolved robots. Adaptive Behavior, 10(3):243-
263, 2002.

[4] H. Soula, G. Beslon, and J. Favrel. Evolving
spiking neurons nets to control an animat. In
Proc. of ICANNGA 20003, Roanne, pages 193-
197. Springer Verlag, 2003.

[5] F. Varela, J-R Lachaux, E. Rodriguez, and J. Mar-
tinerie. The brainweb: Phase synchronization an
large-scale integration. Nature Neuroscience Re-
view,2:229-239, 2001.

[6] S. Thorpe, D. Fize, and C. Marlot. Speed of
processing in the human visual system. Nature,
381:520-522,1996.

[7] J.J. Hopfield. Pattern recognition computation us-
ing action potential timing for stimulus representa-
tion. Nature, 376(6535):33-36, July 1995.

[8] W. Maas and C. Bishop, editors. Pulsed Neural
Networks. MIT Press, Cambridge, Massachusetts,
2001.

[9] G. Beslon, H. Soula, and J. Favrel. A neural model
for animats brain. In Proc of ICANNGA 2001,
Prague, pages 352-355, 2001.

[10] H. Soula, G. Beslon, and J. Favrel. Controlling an
animat with a self-organized modular neural net-
work. In Proc. ofEWLR'2001, Prague, pages 39-
46,2001.

[11] D.O. Hebb. The Organization of Behavior. J. Wiley
and Sons, New York, 1949.



46

Minimization of empirical error over perceptron networks

Vera Kurkova l

Institute of Computer Science, Academy of Sciences of the Czech Republic
E-mail: vera(5)cs.cas.cz

Abstract

Supervised learning by perceptron networks is inves-
tigated a minimization of empirical error functional. In-
put/output functions minimizing this functional require
the same number m of hidden units as the size of the
training set. Upper bounds on rates of convergence to
zero of infima over networks with n hidden units (where
n is smaller than m) are derived in terms of a variational
norm. It is shown that fast rates are guaranteed when
the sample of data defining the empirical error can be in-
terpolated by a function, which may have a rather large
Sobolev-type seminorm. Fast convergence is possible
even when the seminorm depends exponentially on the
input dimension.

1 Introduction

The goal of supervised learning is to adjust parame-
ters of a neural network so that it approximates with a
sufficient accuracy a functional relationship between in-
puts and outputs known only by a sample of input/output
pairs. It is desirable that the system also generalizes well,
i.e., it satisfactorily processes new data that were not
used for training. Learning from data with generalization
capability was studied theoretically in the framework of
regularized optimization [4], [14], [10]. Theoretical re-
sults describing optimal solutions can be applied to ker-
nel models, a special case of which are radial-basis func-
tion networks with constant width. But the most com-
mon neural networks built from perceptrons cannot be
represented as kernel models.

In this paper, we investigate minimization of empirical
error functionals over sets of functions computable by
perceptron networks. We estimate rates of convergence
of infima over networks with n hidden units to the global
infimum achievable by a network with the same number
of hidden units as the size of the training set.

2 Approximate minimization of empirical error

Let 1Z denote the set of real numbers, Vt be a non-
empty set and z = { (^ , vi) G Q x 71, i = 1 , . . . , m}
be a sample of input/output pairs of data. A stan-
dard approach to learning from empirical data used,

1This work was partially supported by GA CR grant 201/05/0557.

e.g., in back-propagation, is based on minimization of
the empirical error functional defined as £z,v(f) =

hTZiVUiui)^i\ w h e r e V ' K x n "* [0,oo),
satisfying for all y G 1Z, V(y, y) = 0, is called a loss
function. The most common loss function is the square
loss V{f(u),v) = {f(u) — v)2, we denote by £z the
empirical error functional with this loss function, i.e.,

M/) = £E™i(/K)-o;)2-
Let M be a subset of a normed linear space (X, ||.||)

and $ : X —> 1Z be a functional. Using standard nota-
tion from optimization theory, we denote by (M, $) the
problem of minimization of $ over M; M is called the
hypothesis set. Elements of the set argrain (M, $) =
{g G M : $(g) = inf^M $(#)} are called solutions (or
minimum points) of the problem (M, $) . For e > 0, el-
ements of the set argmine(M, 3>) = {g G M : $(g) <
infgzM $(#) + ^} a r e called e-near minimum points of
(M, $) . A sequence {gn} of elements of M is called
^-minimizing if limn^oo $(#n) = inf^€M $(#)•

Typical hypothesis sets used in neurocomputing
are sets of functions computable by neural networks
with n hidden units of a given type and one lin-
ear output. Such sets are of the form spann G =
(Zir=i wt9i : wi ^H, 9i € G}> where G is the set of
functions computable by the computational units.

Standard hidden units are perceptrons. For Q C lZd

and ip : H -> U we denote by Pd(^,f2) = PdW =
{/ :Q-+n\ f(x) = ip(ai • x + 6*), a* G 1ld, h G 11}
the set of functions on Q, computable by perceptrons
with the activation function ip (we write P«*(V0 when
Q is clear from context). The most common activation
functions are sigmoidals, which are monotonic increas-
ing functions a :1Z-^1Z (i.e., for all t\,t2 G 7£, t\ < t2

implies cr(ti) < crfa)) satisfying limt_>-oo &(t) = 0
and limt_>oo c(£) = 1-

An important type of a sigmoidal is the Heaviside
function d{t) = 0 for t < 0 and tf(t) = 1 for t > 0. To
shorten notation, we write Hd(Q) instead of Pd(#, fi).
Note that Hd{tt) is the set of it characteristic functions
of closed half-spaces of1Zd intersected with £1

Ito [6, p.73] proved that any function defined on a fi-
nite subset of 1Zd can be exactly represented as a function
computable by a perceptron network with any sigmoidal
activation function. The following theorem is a reformu-
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lation of Ito's result in terms of optimization theory.

Theorem 2.1 (Ito) For all positive integers d, m, all
samples of data z = {{ui,Vi) G lZd x 1Z, i =
1 , . . . , m} with all ui distinct and all sigmoidal func-
tions a, the problem (spanmVd{&),£z) has a solution
andmmfesparl7nPd{(T) £z(f) = 0.

A drawback of this result is that the number of hid-
den units in the network interpolating the sample of data
is equal to the size of the sample. For large samples,
such networks might not be implementable. Moreover
in typical applications of neural networks, a number of
hidden units much smaller than the size of the train-
ing set is chosen before learning. Using such networks,
only suboptimal solutions can be achieved. To compare
such suboptimal Solutions with the optimal one given
by Theorem 2.1 we estimate rates of convergence of
{inf / € s p a n n / f d (n) £z(f)} to zero as n goes to m.

A useful property that allows application of several
tools for investigation of approximate minimization of a
functional is its continuity. The next proposition shows
that continuity of the empirical error defined by a sample
z follows from continuity of the evaluation functionals at
the input data u\,..., um. For a normed linear space
(X, ||.||) of functions on some set ft and x e ft, the
evaluation functional at x9 denoted by Tx, is defined for
a l l / € * as ^ ( / ) = /(*).

Proposition 2.2 Let {X, \\.\\) be a normed linear space
of functions on a nonempty set ft, m a positive integer,
z = {(iii, Vi) G ft x 71, i = 1 , . . . , m}, V : ft x ft - • U
a loss function and f G X. If for all i = 1 , . . . , m, TUi

is continuous at f and V is continuous at (f(ui),Vi),
then £zy is continuous at f.

Proof. By continuity of V we get for every e > 0
some r\ > 0 such that \\f(ui) - </(«*)|| < r\ implies
\V(f(ui)7Vi) - V(g(ui):Vi)\ < e. As all TUi are con-
tinuous at / , there exists S > 0 such that \\g - f\\ < 6
implies ||/(u<) - g(ui)\ < rj and hence \£zy{J) -

£*,v(g)\ = \^ZT=i(y(fM^i)-vigiu^vi))] <
e. U

It is easy to show that £z is continuous on the space
M(ft) of bounded measurable functions on ft C 7ld

with the supremum norm ||.||Sup a^d that it is convex.

Proposition 2.3 Let ft C Hd
f z = {(w»,Vi) G ft x

Then £z : (M(ft), ||.||SuP) -* 11 is continuous and
its modulus of continuity at any f G M(ft) satisfies

for span2Hd{[0y l]d): denoting by Xn the characteris-
tic function of [0, £] x [0, l ] d ~ \ we get a sequence
{nXn} C spari2Hd([0, l]d) with all elements having
£ 2 -norms equal to 1, on which the evaluation func-
tional at zero is not bounded (and thus it is not contin-
uous). Similarly, one can disprove continuity of eval-
uation functionals on span2Pd(o', ft) for any sigmoidal
function a.

Recently, a class of Hilbert spaces of point-wise de-
fined functions, on which all evaluation functionals are
continuous, became popular in learning theory. Such
spaces are called reproducing kernel Hilbert spaces
(RKHS) and they can be represented as completions of
linear combinations of "translations" of kernels (sym-
metric positive semidefinite functions) [1], [4], [14].
Continuity of empirical error functionals on RKHSs al-
lows one to apply theory of generalized inversion and
regularization in infinite dimensional Hilbert spaces to
describe solutions of the problem of minimization of the
empirical error over RKHSs [10]. Moreover, continuity
of empirical errors is essential for derivation of estimates
of rates of approximate optimization over kernel models
of bounded complexity [11], [12].

However, it is not clear, whether there exist kernels,
for which sets Pd{?) are contained in the corresponding
RKHSs. So in investigation of minimization of empirical
errors over perceptron networks, we focus on the space
of bounded measurable functions with the supremum
norm. To derive rates of approximate optimization over
spannHd{ft) we take advantage of a result from nonlin-
ear approximation theory [2] giving an upper bound on
supremum norm rates of approximation by spannHd(ft)
in terms of a norm called variation with respect to half-
spaces. It is a special case of G-variation [9] defined
for any bounded nonempty subset G of a normed linear
space (X, ||.||) as the Minkowski functional of the closed
convex symmetric hull of G, i.e.,

| | / | |G = i n f { c > 0 : c"1 / G cl conv (G U -G)} ,
where the closure cl is taken with respect to the topology
generated by the norm ||.||. Note that G-variation can be
infinite (when the set on the right-hand side is empty).

Here we consider #d-variations with respect to the
topology generated by the supremum and £2 -norm (we
indicate the norm by the notation ||.||Hd,suP> IUItfd,£2>
resp. It is easy to check that ||.||jfd,£2 < ||.||Hd,sup as
well as ||.||pd(<7),£2 < \\-\\pd(a),SUp and that \\.\\Hd,C2 =

In contrast to the supremum norm, in the £ 2-
norm evaluation functionals need not to be continu-
ous. Lack of continuity can be easily demonstrated

Barron [2] estimated rates of approximation by
spannHd in the supremum norm (see also [3, p. 201]
and [5, p. 25]).

Theorem 2.4 (Barron) For all positive integers d, n,
every compact ft C 1Zd and every f G A4(ft),
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\\f - spannHd(Q)\\sup <

where c is an absolute constant.

The next theorem estimates rates of convergence of
infima of a continuous functional over spannHd to the
global minimum.

Theorem 2.5 Let ft C lZd be compact, 3> :
(Ai(fl), ||.||sup) —* 72- a functional such that there ex-
ists a solution f° of the problem (Ai(fl),$) at which
$ is continuous with the modulus of continuity LJ,
{sn} a sequence of positive real numbers converging
to zero, and {fn} a sequence of en-minimum points of
(spann Hd(ft), 3>). Then for every positive integer n:
(i) inf /GspannjF/d(Q)<

00 */||/°||jfd(ft),sup <
sequence and $( /n) —

J
o, then {/n} is a ^-minimizing

Proof, (i) For every e > 0, let /^ G spannHd be such
that \\f° - /£||8Up < \\f° - spann Hd\\sup + e. Then
inf/€spann „,<!>(/) - *(/«) < *(/«) - *(/«) <
"(ll/n - f°) < u (||/° - 5pannifd|| + e). By Theo-
rem 2.4, infimizing over e we get inf/Gspann Hd

(ii) By the definition of £n-minimum point,
en. So by (i),

^ . AS

= 0 and ||/o||/fd,suP is finite, {/n} is
minimizing. D

Combining Theorems 2.1, 2.5 and Proposition 2.3 we
get the following upper bound on rates of approximate
minimization of £z over spannHd(Q).

Corollary 2.6 Let fi c lZd be compact, z = {(u», v*) G
Q x n,i = l , . . . , m } , / ° G A4(fi) 5wc/z /to^
£z(f°) = 0, { n̂} ^ sequence of positive reals converg-
ing to zero, {fn} a sequence of en-minimum points of
(spannHd(Q),£z). Then for every n:
(i) mifespariri #d(Q) £z(f) <
(d-n)c2nriif/d)Sup v^+i(2ciirn^iSUP+i;maxiiriiHd,sup)>

00 {fn} is £ ̂ minimizing and £z(fn) <
2 ^ ^

en, where c is an absolute constant.

3 Estimates of variation with respect to half-spaces
Corollary 2.6 shows that the speed of convergence of

suboptimal solutions of the problem of minimization of

£z over the set of functions computable by networks with
n Heaviside perceptrons depends on the smallest value
of i/^-variation on the set of functions interpolating the
data z.

To estimate H^-variations of smooth elements of this
set we take an advantage of a result from [8] bounding
from above i/d-variation of a smooth function by a prod-
uct of its certain Sobolev-type seminorm with

d-i Jy J
which as a function of d is decreasing exponentially fast.

For a function / G Cd(7ld) define

For d odd and / sufficiently rapidly vanishing at infinity,
an upper bound

l,oo (1)

was derived in [8].
Thus by Corollary 2.6, for any sample of data z,

which can be interpolated by a function f° satisfying
II foil < 1 (d2d~2nd-1\1/2

11/ Hi,d,oo < rd ~ \ Td ) >
infima of £z over spannHd converge to zero wi th rate

^1E
as by (1) f° has Hd -variation at most 1.

However, there exist samples of data, which cannot
be interpolated by functions with small if^-variations.
Such samples z = {(ui, Vi), i = 1 , . . . , m} can be ob-
tained from real-valued Boolean functions h : {0, l}d —>
72 by setting {0, l}d = {ui,..., u2d} and Vi = h(ui).
If/ : ft —• IZ is an extension of h, then ||/||/fd(Q),Sup >

To show that there exist functions on {0,1 }d with
Hd({0, l}d)-variations depending on d exponentially,
we use a geometric characterization of G-variation from

II/IIG >
9'f\'

(2)

So functions that have small inner products with all el-
ements of G (are "almost orthogonal" to G) have large
G- variations.

For a Hilbert space (X, ||.||) we define on its unit ball
S\ a pseudometrics px(f,g) = arccos|/ • g\, which
measures the distance as the minimum of the two an-
gles between / and g and between / and — g (it is a
pseudometrics as the distance of antipodal vectors is
zero). For a > 0, let ATa(Si) denote the a-covering
number of Si with respect to px, i.e., the size of the
smallest a-net in Si. The next proposition shows that
when for some a close to TT/2, the cardinality of G is
smaller than fifa(Si)9 then in Si there exists a function
with a "large" G-variation. It also guarantees existence a
function with G-variation at least ^ for any subset G of
the unit sphere Sm~1 in 71™ of smaller cardinality than
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the e-quasiorthogonal dimension dim£m of lZm. For
e > 0, dim£m was defined in [7] as the maximal number
of vectors which are pairwise e-quasiorthogonal, i.e.,

Proposition 3.1 0) V G is a subset of the unit sphere
S\ in a Hilbert space X and a £ [0, n/2] is such that
cardG < Afa(Si) with respect to the pseudometrics
px, then there exists f G Si with \\J\\G > 1/cosa.
00 ¥G C S171'1 C 7lm such that cardG < dim£m,
then there exists f £ S™'1 with \\f\\G > \.

Proof, (i) If card G < J\fa(Si), then there exists/ e Si
such that for all g € G, px (/, g) > ot and hence \f-g\ <
cos a. Then by (2) | | / | |G > 1

G\f-g\ - 1/cosa-
(ii) follows from (i) as dim£m < A/*arccos(£)(Sm~1). •

Theorem 3.2 For every positive integer d there exists a
sample z = {{uu v{) : i = 1 , . . . , 2d} C {0, l}d x n
such that for every Q D {0, l}d and every f : lZd -> K

such that £z(fy=O,\\f\\Hd(Qhsup>
2(d-l)/2

OnProof. It was shown in [7] that dim£m > e™
the other hand, cardHd({0,l}d) = 2d2-dlo

[15]. Denoting H%({0,l}d) the set of normalized
elements of Hd({0,l}d) with respect to /2-norm on

1Z2\ we get ||.||//d({o,i}d),sup > ll-IUd({o,i}d),i2 ^
d < 2d\ for e =

< e ^ £ 2 ) / 2 and hence by

Proposition 3.1 (ii) there exists a function h e S2 ~1

With ||fc||H<l({0tl}'),Bup > \\h\\H°({0,l}),l2 >

and
i) : i — 1 , . . . , m}. Then for every f : ft -> K,

for which £ , ( / ) = 0,1|/||Hd(n)|Bup > ^ S f • •

Note that by (1) for every d odd and f° e Cd{Ud)
sufficiently rapidly vanishing at infinity interpolating
the sample described in Theorem 3.2, ||/°||i,d,oo >

/
dedln2

4 Discussion
We have shown that fast convergence of in-

fima of the empirical error functional £z over net-
works with n Heaviside perceptrons to zero can be
achieved for samples that can be interpolated by func-
tions f° with the Sobolev seminorm ||/°||d,itOo =
maxj a |= d \\Docfo\\Cl(<JZd) depending exponentially on
the input dimension. Note that the seminorm ||/°||i,d,oo
is much smaller than the Sobolev norm ||/o||d,i =
S|a|<d ll^a/oll£iCfcd) a s ms teac^ °f summation of it-
erated^ partial derivatives of / over all a with \a\ < d
only their maximum over a with |a| = d is taken.

We have also shown that there exist samples of data
constructed using special Boolean functions, for which
the Sobolev seminorms of interpolating functions are
even larger than the exponential size allowed for fast
convergence described in Corollary 2.6.

The proof of Proposition 3.1 is existential, but in [13]
a lower bound O(2d/6) on Hd({0, l}d)-variation was
derived for a concrete function, namely the "inner prod-
uct modulo 2".
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Abstract
The paper introduces a new type of ontogenic neural networks
called Interval Basis Neural Networks (IBNNs). The IBNN
configures the whole topology and computes all weights after a
priori knowledge collected form training data. The training
patterns are grouped together producing intervals separately for
all input features for each class after statistical analyses of the
training data. This IBNNs feature make possible to computed all
network parameters without training. Moreover, the IBNN takes
into account the distances between patterns of the same classes
and builds the well-approximating model especially on the
borders between the classes. Furthermore, the IBNNs are
insensitive for quantity differences in patterns representation of
classes. The IBNNs always correctly classify training data and
very good generalize other data.

1 Introduction
Though neural networks are very modern computational
tool they are not always easy to use because of many
unknown configuration parameters. Many ontogenic
neural networks [1,3-8] can help to solve problems of
architecture construction but many times their
generalization is poor. The generalization is a
fundamental problem of ontogenic neural networks use.
This paper introduces a new type of ontogenic neural
networks - called Interval Basis Neural Networks
(IBNNs). The IBNNs are non-linear three-layers partially
connected ontogenic neural networks constructed after
the statistical analyses of the training data. The
construction of IBNNs is deterministic. Training data are
analyzed separately for each input feature searching for
intervals characteristic for each class. Such separable
intervals are completed with non-linear concave functions
with controlled shape of descend that make possible to
achieve good approximation especially on the borders
between different classes. The shape of these concave
functions (fig. 2) are computed after the quantity and
distances of other training data of the same class from the
hyperregions and sub-hyperregions borders. The
hyperregions and sub-hyperregions are produced after the
intervals computed for all training patterns of the same
class.

The adaptation of RBF networks by Lowe [6] also
enables to change the shape of radial basis functions.
Lowe describes the importance of the adaptation of RBF
function in view of generalization. The shape of slopes
can be regulated also for bicentral functions [2].

2 IBNN Construction Process
For any given training data

U = {(u\Cmx),..., (uN,Cmx)} consisting of the pairs: the

input vector u" = \u"9...,u^\ (u"k e<R), the adequate

class Cm e{c\...9C
M} of this input vector u" eCm"

and input features 1, ..., K, the intervals (for each feature)
of patterns of the same class can be computed (fig. 1).
Different intervals are characteristic for different groups
of patterns of each class and can partially identify them.
The model of each class can be defined by combining
such intervals for all input features into hyperregions and
sub-hyperregions in the input space. In order to find out
such intervals effectively training data have to be sorted
after each input feature.

Fig. 1. Extraction of intervals and computation of transfer
function for these intervals in view of hyperregions.

In order to generalize correctly especially outside the
computed intervals the concave slopes (fig. 1.-2.) are
added at the borders of such intervals. These concave
slopes are functions that project the quantity and the
distances of other input patterns of the same class from
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the considered intervals. The training patterns are
classified always as 100% similar to their classes. Each
interval defines a single neuron in the 1-st layer of the
constructed neural network (fig. 3.). Such a neuron is
connected to the input related with feature of its interval.
The transfer function fT of the 1-st layer neurons is
defined as follows:

/,(*)=

\-tgh-
+ ak

-x

if x >xR

U xk > xk

ifxL
k<xk<x« (1)

ifxk<4
where
XL - is a left limit of the concerned interval,

xR - is a right limit of the concerned interval,

aL - is a left slope parameter of the transfer function,

aR - is a right slope parameter of the transfer function,

The slope parameters of the transfer function (fig. 2) are

defined as follows:
i

ieL

where
L = {u":u"eUnCm&u"k<xL

k]

R = {u":uneUnCm&u"k>x«}

(2)

(3)

(4)

(5)

« (6)
K-Nm

N - is a number of training data,

Nm - is a number of training data that define class Cm ,
K - is a number of classes defined in the training data.
The slope parameters (2) and (3) define the slopes of the
transfer function (1). They depend on other training
patterns of the same class. The more training patterns in
the left (L) or in the right (R) direction of the interval are
the less sharp the suitable slope is. This feature of the
IBNN is very important in view of generalization. The
specifically computed slopes of transfer functions contain
information about other training patterns that define the
same classes. Such intervals of each class define models
of classes for each feature separately.
Coefficient qm makes the computations of slope
parameters (fig. 2) insensitive for differences in patterns

quantity representating classes, for quantity of training
data and for quantity of classes defined in the training
data.

Fig. 2. The transfer function for the 1-th layer neurons.

Fig. 3. The 3-layer topology of the IBNN for hyperregions.

Each neuron of 1-st layer is always connected to a single
input corresponding with a certain input feature. The
weights of 1-st layer neurons are always equal 1. The 2-
nd layer contains neurons (fig. 3) that compute (limited -
for sub-hyperregions) products of some combinations of
output values of the 1-st layer neurons producing
hyperregions or sub-hyperregions. Only these
combinations given by training data that are related to
intervals of different existing input features are
transformed to connections. Each 2-nd layer neuron
represents a group of training patterns of the same class.
Such neurons can correctly approximate the values of
classification inside the intervals (hyperregions or sub-
hyperregions) and outside them after the specific
information came from the computed value of slope
parameters. Moreover, the advanced analyses of the
sorted input data for all features lead to find out the
separate sub-hyperregions for each class. The sub-
hyperregions in data subspace can not include patterns of
other classes. The sub-hyperregions are easy to find
because they are convex. The sub-hyperregions are
finally grouped together creating different sub-
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hyperfigures as shown in the figures 4-5. Theoretically,
there could exist many possible sub-hyperflgures in the
hyperspace that consist of the different sub-hyperregions
covering the training data in different ways as shown in
the figure 6. Each training pattern has to be closed in at
least one sub-hyperregion. The smallest sub-hyperregions
can consist of single point in the input space representing
single pattern. In order to avoid the problem of ambiguity
of sub-hyperfigures there are used two criteria:
1. Criterion of the density of the patterns of the same

class: the longer distances between patterns the lower
density in the space and the lower probability to create
the sub-hyperregion.

2. Criterion of maximum quantity of training samples
closed in sub-hyperregions taking into account the
quantity of patterns representing different classes. The
sub-hyperregions for different classes are compared
regarding the quantity of patterns they contain divided
by the quantity of patterns representing appropriate
classes they represent in order to make the IBNN
insensitive for differences in quantity representation
of different classes.

The described criteria are used to define the k-th sub-
hyperregion coefficient computed as follows:

nk

RC*=:-~ (7)
where
Q - quantity of patterns included in the given sub-

hyperregion,
V - volume of the sub-hyperregion.
where k-th sub-hyperregion consists of patterns of m-th
class.

o <>

Fig. 4. Producing multiple sub-hyperregions after the intervals.

In order to IBNN classify properly using concave
functions at boarders of sub-hyperregions forming sub-
hyperfigures representing classes two important
conditions have to be true:

1. The sub-hyperregions for the patterns of the same
class should overlap if only possible.

2. The sub-hyperregions for the patterns of different
classes have to be always separate.

Finally, the overlapped sub-hyperregions of different
classes are compared together using coefficients
computed for them after the described criteria in order to
choose this one which has the maximal value of this
coefficient. Other overlapping sub-hyperregions should
be omitted or cut off by the winning sub-hyperregion.

o <>

Fig. 5. Connected sub-hyperregions producing sub-hyperfigures
for the presented classes.

The transfer function of the 2-nd layer neurons is defined
as follows:

fn{y)=f[yk (8)
*=l

The weights of 2-nd layer neurons are always set to 1.
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Fig. 6. The use of the criterion (7) prevent the possible
collisions of sub-hyperregions.

The 3-rd layer neurons choose the maximum value of the
2-nd layer neurons of the same class. The output values
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of the 3-rd layer neurons measure the similarities to the
classes defined in the training data set. The transfer
function of the 3-rd layer neurons is defined as follows:

fe} (9)
The result classification is defined by the function:

fc{s) = arg max k : sm = f"{z)} (10)
/M=1,...,M

This function can be optionally transformed to the neuron
of 4-th layer of IBNN. If there is no maximum value for
3-rd layer neurons the output can be defined as zero. The
zero output suggest that the network can not univocally
qualify the input vector to any of the trained classes.

3 Comparison to other methods
The IBNNs are easy to use ontogenic neural networks.
They don't need to be trained because all network
parameters are computed in the configuration process
automatically. They work similarly to RBF networks
(KNN), bicentral based networks and PNN [1, 4, 10, 15]
creating a specific hyperregions in the input data space. In
comparison to well-known RBF networks which are
partially configured and partially trained the IBNNs are
only configured after a priori knowledge about training
data. Only some statistical analyses are needed to find out
specific intervals for each class and each feature. For big
training data sets computation of IBNN could be
sometimes time consuming because the training data have
to be sorted for each input feature in order to separate
intervals. Intervals as well as RBF neurons group together
input data of the same class. In MLP networks the hard-
limiter neuron the boundary is a hyperplane, in RBF
networks the boundary is the circumference of a
hypervolume (hypersphere with Euclidean distance)
centered around class samples, while in IBNNs the
boundary is hyperregion outspreaded on some subset of
class samples. The hyperregions are completed with
specific slope functions that are necessary to approximate
and generalize outside the IBNN hyperregions and sub-
hyperregions. The IBNN is also a good alternative for
automatically configured ontogenic SONN [4-5] because
SONNs demand binary data for configuration of the
networks and computation of weights parameters. IBNN
as well as SONN are deterministic and fully automatic.
They do not demand any configuration parameters.

4 Conclusions
The described IBNNs can be used as an alternative
method to other kernel neural networks (KNN). The
deterministic IBNNs configuration process is based on
some specific statistical analyses of the training data. The
introduced method finds out intervals specific for each

training class and constructs specific sub-hyperregions for
them. Each hyperregion and sub-hyperregion define the
data of one of the trained class and can be used to
approximate and generalize data in-between the
boundaries of a considered hyperregion. There are
defined new specific slope functions that help to
generalize outside the hyperregions. The training data are
always correctly classified. Moreover, the IBNNs are not
sensitive for differences in patterns quantity
representation of classes, for quantity of classes. While
the IBNNs need to sort training data for each input
feature the computations can be time-consuming for big
training data sets. On the other hand, big data sets can be
better optimized and the IBNN model can be better
created.
Acknowledgements: Support from research funds of
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Abstract
Traditional measurement systems are designed with tight con-
trol over the time and place of measurement of the device or
environment under test. This is true whether the measurement
system uses a centralized or a distributed architecture. Currently
there is considerable interest in using mobile consumer devices
as measurement platforms for testing large dispersed systems.
There is also growing activity in developing concepts of ubiqui-
tous measurement, such as "smart dust." Under these conditions
the times and places of measurement are random, which raises
the question of the validity and interpretation of the acquired
data. This paper presents a mathematical analysis that shows it
is possible under certain conditions to establish dependence
between error bounds and confidence probability on models
built using data acquired in this manner.

1 Introduction
Traditionally measurements are made on systems to gain
insight into their behavior, as inputs to optimize opera-
tion, and for fault detection. As systems become physi-
cally large and dispersed traditional measurement tech-
niques become more difficult and expensive. Examples of
such systems are cellular phone systems, the internet, and
epidemic control. For large dispersed systems, traditional
measurement techniques, both centralized and distributed,
typically spatially undersample due to the cost and diffi-
culty in installing and communicating with a sufficient
number of probes.
Currently there is considerable interest in using mobile
consumer devices such as cell phones, as measurement
platforms for testing and monitoring these large dispersed
systems. Such devices are appealing because of their
large numbers, physical dispersion, and inherent comput-
ing and communication capabilities. Increasingly these
devices are also becoming suitable platforms for sensors.
For example many of today's cell phones can measure
their location, characteristics of the cellular infrastructure,
and have the ability to take a picture or to access external
devices.
However unlike a traditional measurement system, a
measurement system based on mobile consumer devices
will at best have limited ability to specify the time and
place of measurement. Instead these systems will depend
on random spatial and temporal distribution of these de-

vices relative to the phenomenon being measured. As a
result we have a large number of randomly distributed
inherently inaccurate measurements. This raises interest-
ing questions as to the validity and interpretation of data
gathered using these devices.
This paper presents a mathematical analysis that shows it
is possible under certain conditions to place error bounds
and confidence probability on mathematical models built
using data acquired in this manner. The measurement of
the spatial variation of the RF fields associated with the
cellular phone infrastructure is used as an example. The
main body of this paper is focused on the theorem that
allows the specification of accuracy and confidence prob-
ability for appropriate spatial models constructed from the
experimental data, given certain constraints. This theorem
will be a probably approximately correct (PAC) model of
the underlying data. Following this development, the
theorem is applied to the RF field example to illustrate its
practical use.

2 Mathematical Setting
Consider a space variable z e D, where D is a domain in
DRk. Assume there is a family of random variables (meas-
urements) £(z), and they are conditionally independent
upon any finite subset of the z's where measurements
take place. We suppose that D can be represented as a
union of open balls of a fixed radius r. Let r*>0 be the
exact upper bound of values of r for which the representa-
tion is possible. Hence, r* is a characteristic of "smooth-
ness" of the boundary of D. The space variable z, as
viewed in the distributed measurements environment, is
also random with a distribution function F(b)=P(zeb),
where b is a measurable subset of D in BorePs sense [1].
In the context of RF field measurement k = 2. £(z) repre-
sents the value of an individual observation, i.e. a meas-
urement result at point z. Let mean value E£(x) = m(x) be
an unknown function of x, to be estimated, based on spa-
tially distributed observations £(ZJ) at n points, repre-
sented by the set: A = {zi,..., zn}. A is assumed to be a set
of independent random points, generated by a certain
underlying random process as, e.g. in case of mobile
measurement. A framework to our approach to "learn"
m(x) from random observations f(Zj) is influenced by
Statistical Learning Theory (SLT) [3], [6]. In SLT, how-
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ever, a hypothesis space [6] of candidate functions to
approximate the unknown m(x) does not depend on sam-
ple A = {zi,..., zn} as, e.g. in polynomial regression,
where a typical hypothesis space is the set of polynomials
of a fixed degree. Instead, we deal with sets of functions
each of which is sample dependent as, e.g. in the case of
histograms. Due to sample dependency our approach is
essentially non-parametric and the hypothesis space is
infinite dimensional. This sample dependency leads to
first deriving bounds for conditional, upon sample A,
probabilities of all events of interest and later averaging
them to achieve the final result.
Assumption 1: Measurement Points Distribution Regu-
larity
If d, dc D is a ball of a radius r then:
- The probability distribution of measurement locations

F(») is absolutely continuous with respect to a planar
Lebesgue measure on R2. In particular, support of F
cannot have IR2 Lebesgue measure zero.

- F(d)>y>0
where y = y(r) depends only on the radius of a ball but
not on the location of its center.

Assumption 2: Smoothness
We assume that unknown underlying, subject to meas-
urement, function m(z) is sufficiently smooth, i.e. we
exclude from consideration all excessively volatile func-
tions with, e.g. unbounded change over bounded domain.

|m(x) - m(y)|<Kp*(x,y)
for all x,y e D; where K and a are positive constants,
p(x,y) is the Euclidean distance between x and y.
Assumption 3: Bounded Measurement Range
The random variable f(z) that represents a measurement
result at point z has a limited range:

a < f (z) < b

2.1 Problem Statement
We want to construct such an estimator M(x) for m(x),
i.e. a function M(x) = M(x; £(zi),..., f(zn)) o f x e D and
measurements £(ZJ) such that large deviations of M(x)
from m(x) with respect to a given metric are unlikely if n
is sufficiently large. In the case of a uniform metric this
can be specified as follows: for any e>0, 6>0 there is n
such that
P{ sup |M(x;f(z,), . . . ,«zn))-m(x)|<€}>l-« (1)

xeD
If (1) is satisfied for an estimator M(x), it enables us to
build a Confidence Blanket(CB) for m(x). In case of RF
strength measurements CB at the confidence level \-6 is
defined as a subset in the functional space of functions
over D with the uniform metric, i.e.:
{f: M(x; flz,),..., f(zn)) - e < f(x) < M(x;

and (1) holds. The latter can be interpreted as a claim that
probability that CB contains an unknown function m(x) is
at least 1-5. Alternatively, in the functional space with
integral metric the subset is defined as: {f:

D
P{ j|M(x) - m(xp(dx) <€}>\-S. Here <&(•) is a prob-

D
ability measure/weight on a class of Borel's measurable
subsets of D i.e. \Q>(dx) = 1. Weight $ reflects a relative

D
importance of the level of approximation of m(x) by M(x)
in different parts of D. In this formulation the choice of
M(x) is similar to one in the density estimation problem
[2].

3 Confidence Blanket
We will derive a confidence blanket for two different
metrics: uniform and integral.
Estimator M(x) for m(x). For every subset s of A of

cardinality \s\ we define

if |s| * 0

if s = 0

(2)

Let d(x) = d(x;r) be an open ball of radius r centered at
point x and s = s(x;r) be defined as A 0 d(x;r), i.e. a sub-
set of measurement points within d(x;r). Let S = S(r) be a
class of all such subsets. One simple candidate for an
estimator of m(x) can be obtained as an average value of
observations that happened at points inside d(x;r), i.e.

M(x)=G(f,And(x;r)) (3)
where kn=kn(x;r) = |s|, i.e. the cardinality of measurement
points inside d(x;r). Due to the nature of the set A, kn(x,r)
can be viewed as the number of successes in n Bernoulli's
trials ( p=F(d(x))) for every x e D and r. Notice that by
(3), M(x) is effectively defined as a function on S, i.e.
M(x) = M(s(x;r)) = M(s). There is an inconvenience in
the definition of M(x) when kn = 0. Let us correct it by
breaking the probability of the complement to the event in
(1) into summands related to two, properly chosen, mutu-
ally exclusive events, i.e. if
fl={ sup | M(x; ?(z,),..., f(zn)) - m(x) | > e}, then

X€D

sup | kn(x)/n-F(d(x)) |
xeD

sup | kn(x)/n-F(d(x)) |
xeD

(4)
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Here semicolon between events stands for intersection
and (3 is an arbitrary non-negative constant. If p is small
enough, e.g. p < y, event kn(x)=0 may affect only the sec-
ond summand. Noticing that E(kn(x)/n) = F(d(x)) the sec-
ond term in (4) is bounded as in the Vapnik-
Chervonenkis theorem [3], [4]:

P{ sup | kn(x)/n-F(d(x)) |
XeD

< 8 |S| exp(-n£2/32) (5)

We will see later (Lemma 1) that |S| = n2-n+2.

Remark: Generally speaking, set fl, as uncountable un-

ion of events: ft = | J {| M(x; £(zj),..., f(zn)) - m(x) | >
xeD

e}, may not be a measurable set, i.e. not an event, itself.
However, function |M(x; • , . . . , • ) - m(x)|, as defined by
(3), is a random map from separable subset Dn+1 of R2(n+1)

(two coordinates for every argument) into compact
[a,b]c(R and, therefore, has a stochastically equivalent
separable modification [7]. The latter will be used instead
without a change in the notation. The existence of such
modification means, in particular, that H can be repre-
sented as a union over an everywhere dense countable
subset of x's in D and, thus, become an element of the
corresponding sigma-algebra, i.e., a measurable subset,
i.e. an event [7].

Hereafter, until stated otherwise, all expectations and
probabilities are conditional upon A={zl5..., zn}, i.e. E(»)
and P{»} will stand for £(• /A) and P{» /A} respectively.
We will return to unconditional probabilities at the end of
the derivation for CB bounds based on the Total Expecta-
tion/Probability Formnla(TEF)\ E(-)=E(E(-/A)) [1],
which is transformed into P{»}=E(P{«/A}), when applied
to indicators of events. It follows from Assumption 2 that
kn->oo along with n, for any x and r, i.e. measurements
visit every sub domain of D infinitely often when n-»oo.
If rh(x) is the mean value of M(x) then (3) yields:

— Y m ( w ) , if kn * 0 ,
m(x) = E(M(x))= k n w £ x / (6)

[0, if kn =0 j

The natural way to assess P{H;sup| kn(x)/n-F(d(x)) | <
xeD

/?} is to approximate the difference M(x) - m(x) by M(x) -
m(x) and then deal with the latter which is a centralized
sum of independent random variables (see (3), (6)).
Let B^ = { sup |kn(x)/n-F(d(x))|< /?}. Straightforward ma-

xeD
nipulations result in:

P{sup|M(x)-m(x) |>e;B^}
xeD

= P{ sup |M(x) m(x) + m(x) - m(x)| > e;
xeD

< P{ sup |M(x) - m ( x ) |+ sup I m ( x ) - m(x)| > 6; ]
xeD xeD

= P{ sup |M(x) - rh(x) | > e- sup | m ( x ) - m(x)|; B^} (7)
xe D xe D

It follows from the definition of M(x) and r h ( x ) , which

also can be viewed as functions on S, that

sup |M(x) - rh(x) | = sup |M(s) - m(s) |
xe D seS

(8)

This way we are able to reduce the original definition of
"sup" from over an infinite number of points x in D to
over a finite number of different subsets of S which can
be obtained by intersecting it with the set B(r) = {d(x;r)}
of all balls of fixed radius r. The upper bound on the car-
dinality |S| of S will play a critical role in the accuracy of
the estimate of P{fl}.

4 Main Results
We establish confidence bounds for the uniform and inte-
gral metrics.

4.1 Uniform metric

We first find the maximum number |S| of different sub-

sets of a set of n points in IR2 that can be cut off by circles

of the same radius.

Bounds on |S | . We can derive an upper bound for S

from Sauer's Lemma [2]. Let V be the Vapnic-
Chervonenkis (VC) [3] dimension of the set of balls of the
same radius and U be the VC dimension of the set of all
balls. Then obviously V < U= k+l=3, in the case of the
Euclidean plane [5]. On the other hand, for example, a set
of three points at the vertices of the equilateral triangle
can be shattered by a set of balls with a fixed radius r

greater t h a n v 3 / 3 , if the distance between vertices is 1.

Therefore V> 3 and, hence, V=3. Sauer's Lemma now

implies: |S| < (ne/3)3< n3. However, we can do better. The

maximal achievable value of |S| over all sets of n points

is called the shatter coefficient [2]. Certainly, this value
does not depend on r. Let N(n) stand for this value.
Lemma 1. N(n) = n2-n+2
Proof. We start with a simple construction to prove a
lower bound. Let n points be equidistantly placed on the
circumference of a ball of radius h. Then, for any integer
I <k<n, all n subsets of k consecutive points can be cut
off by balls of a fixed radius r>h. In addition, if we ac-
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count for an empty set and the entire set of n points, the
total number of thus generated subsets is n(n-l)+2 = n2-
n+2.
For the idea of the following proof of the upper bound we
are indebted to professor Shakhar Smorodinsky [8].
At each point of A place a ball centered at this point with
the same radius, say one, as is used to achieve N(n) dis-
tinct subsets. This arrangement of balls partitions the
plane into a number of components, usually referred to as
faces. The claim is that the quantity of components is an
upper bound for N(n). Let c be one of the centers of unit
balls, which generate S. Generally speaking c£A. A cor-
responding subset s(c)cS consists of all points whose
distance to c is less than 1. By construction those are ex-
actly ones whose corresponding balls bound the compo-
nent to which c belongs. It means that every component
in the arrangement contains no more than one c. There-
fore N(n) < {maximum number of components} = n2-n+2.
The latter can be proven, e.g. by induction arguments.
We can now state the bounds under the uniform metric:
Theorem 1. Under assumptions 1-3,

xeD

> l-2(n2-n+2)(exp(-A2h2(n))+4exp(-n)S2/32)) (9)
where A=V2/(b-a), j3 < y is an arbitrary positive number

1/2

Proof. Sensible bounds for P{ sup |M(x) -rh(x)|> e-
xeD

sup | rh(x) - m(x)|; B^ } require sup | rh(x) - m(x)| to be
xeD xeD
limited by e . Given B^has occurred,

sup | rh(x) - m(x)| = sup | £ (m(w) - m(x))| (10)
xeD xeD kn wes
can be assessed, due to the definition (6) and Assumption
2 (smoothness). All terms |m(w)-m(x)| in (10) are
bounded uniformly, since w and x are inside a certain ball
d(x;r) of radius r: |m(w)-m(x)|< Kpa(x,w) < Kra. This
leads straight to:

|m(x)-m(x)| = | — Im(w)-m(x) |
kn wes

< J L Z |m(w)-m(x)| < Kr*
kn wes

Therefore, a choice for r such that Kra < e is feasible. Two
more observations are needed to bound the probability in
(7). First, the reduction in (8) allows for representing
probabilities in (7) in terms of a new variable, s. Second,
the event { sup |M(s) - m(s) |>t; Bp } is equivalent to the

seS

union U (|M(s)-m(s)| > t; Bg}. These observations

yield the chain of inequalities:

P{ sup |M(s) - m(s) | > €- sup | m(z) - m(z
s€S zeD

<; P{ sup |M(s) - m(s) I > e- Kr"; B }̂
seS

<^P{|M(s)-m(s)|>£-Kra;Bp} (11)
seS

The number of summands in (11) is not greater than

|S| < n2-n+2, hence Hoeffding's inequality applied to

every term in (11) implies:

P{ sup |M(s)- m(s) |> e-Kra; Bp}
seS

< 2(n2-n+2) max {exp(-2 j^-r ( e- Kr")2)}
seS \V-&)

= 2(n2= 2(n2-n+2)exp(-A2( e- Kr°)2 kn (12)
where kn is such that B^ = { sup | kn(x)/n-F(d(x)) | < f$)

xeD
holds. Let us return now to unconditional probabilities in
(12)via7£F, i.e.

P{ sup |M(s> m(s) |> s-Kra; Bp}
seS

< 2(n2-n+2)E{exp(-A2( e- Kra)2 min k n ) ; B }̂ (13)

where E{X(w); A} stands for jX(co(co)P(d, X(a>) is a
A

random variable, A is a measurable subset of a probabil-
ity space and P(») is a probability measure on this space.
Remember that random variable kn is a function of x.
Since

E{exp(-A2( e-Kra)2 min k n ) ;B^}
se o

= E{exp(-A2(e-Kr<')2minkn);B/!}

on Bp the value of — -̂ > y-p and consequently,
n

E{exp(-A2( e- Kra)2 min kn) ;B^}

)p
<exp(-A2h2(n)).

Finally (4), (5) and (11) yield the following bound:
P{n}<2(n2-n+2)(exp(-A2h2(n))+4exp(-n^2/32)).
Now the confidence probability for CB can be estimated
as:

P{ sup |M(x;f(Z l)v . . ,«zn))-m(x)|<e}
xeD

> 1 -2(n2-n+2)(exp(-A2h2(n))+4exp(-n^2/32)) (14)
Remark 1. This bound holds for an arbitrary r and ft
within the interval 0<f3<y. Recall that y is a function of r
and therefore there are optimal values for r and ft that
maximize the bound in (14).
Remark 2. Assumption 3 can be relaxed in favor of any
condition on the distribution of £(z) that preserves, for
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example, an exponential decay of the density's tail. The
finiteness of E(exp(v£(z))) for some v > 0, uniformly over
z, for instance, is sufficient. It permits using Hoeffding's
inequality to estimate the probability in (7).

4.2 Integral Metric
We start with some preliminary preparations similar to
the previous case. As before, a set A = {zb..., zn} of
measurement points' locations is treated as fixed and all
expectations / probabilities are conditional upon A unless
stated otherwise. Let us centralize M(x) with

rh(x): P{ J|M(x) - m(x)| <D(dx) > e}
D

< P{ j|M(x)-m(x)|<D(dx)+ j|m(x)-m(x)|O(dx)>£}(15)
D D

and estimate | m(x) - m(x)| as:

| K r a , if k n ^ 0 I
(16)| m(x) - m(x)|

[m(x) < a, if k n = Oj
Since
j|m(x)-m(x)|<D(dx) =

D

J|m(x) - m(x)| O(dx) + j|m(x) - m(x)| O(dx), the

{kn(•)*()} {k (•) = (>}

inequality (16) leads to the bound

D
|kn(x)*0) + (b-a)O(x|kn(x)=0)

With the last remark, Markov's inequality
EY

P(Y>t)< (t,Y> 0) [1], applied to the random variable
t

j|M(x) - m(x)| O(dx) + aOO(: k n (x) = 0) implies:
D

P{ j|M(x)-m(x)|O(dx) + u 2 ^ e - U j }
D

Ej|M(x)-m(x)|(D(dx) + u 2

^ D (17)
8-U,

where u,=Kra#(x | kn(x)*0) and u2=(b-a)<D(x | kn(x)=0).
Naturally, r should be such that KraO(x: kn(x)*0)< e.
By Fubini's theorem one can swap /and E in (17). To

oo

treat E|M(s) -rh(s)| we use the fact EY= J P { Y > t}dt,
o

which holds for any nonnegative random variable Y if
EY exists. That way the assessment of E|M(s) - rh(s) I is

reduced to finding a bound for the corresponding prob-
ability. Hoeffding's inequality applied to P{|M(x) -m(x)|
> t} bounds the numerator of the right hand side in (17)

by J(j2exp(-2tZk r

D 0
- a)2 )dt) O(dx) +u2

d>(dx)
+u2 and, con-

sequently inequality (17) now looks as follows:

P{ j|M(x) - m(x)| O(dx) + u 2 > e - u 1

(18)

Remark: This derivation is true only for those x's where
kn(x) ^ 0. Such x's do not contribute to the value of the
integral on the right hand side of (17) due to the defini-
tion of M(x) and rh(x). The latter is reflected on of the
domain of integration in (17) and (18). In order not to
have these reservations in the future and for the conven-
ience in applying Fubini's theorem again, let us define
random, with respect to set A= {zi,..., zn}, variable jn(x)

We can now

return to actual probabilities via TEF by taking expecta-
tions over all possible sets A = {zt,..., zn} from both sides
of the inequality

P{j|M(x)-m(x)|<D(dx)>8}
D

D (19)
6 - U

which follows from (15) and 18). Indeed if Fubini's theo-
rem is applied to the right hand side of (19), we can
evaluate Ejn(x) first and then estimate the integral over D.
Following the definition of j n , the calculation of Ejn can
be represented as :

Ejn= E{jn; MO} +E{jn; kn=0}= E{jn; kn*0}
= E{l/Vkn;kn*0}

In its own order, set {kn^0}can be further split into two
subsets

}= {kn(x)/n-F(d(x))>-# kn(x)*0}
U{kn(x)/n-F(d(x))<-# kn(x)*0}

and therefore
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E{l/Vkn;kn(x)*O}
= E{l/Vkn; {kn(x)/n-F(d(x))>-/?}n{kn*O}}
+ E{l/Vkn; {kn(x)/n-F(d(x))<-/?}n{kn#O}}

Let us work with each of two terms separately. Since
{kn(x)/n-F(d(x))>yS}c{kn(x)*O}, for the first term, we
have

E{ 1/Vkn; {kn(x)/n-F(d(x))>-/?}n{kn*O}}
= E{l/Vkn;kn(x)/n-F(d(x))>-j8}

* P(kn(x)/n - F(d(x)) > -pp
Vn(F(d(x))-p)

1

Vn(F(d(x))-P)

1

"Vn(v-P)
and for the second

E{l/Vkn;{kn(x)/n-F(d(x))<-y8}n{M0}}
( n ( )

< exp(-2n/?2)
The last is Hoeffding's bound for Bernoulli's random
variable kn(x). Here j3<y is an otherwise arbitrary con-
stant. As the result of this observation we have:

Ejn<-
1 exp(-2n£2) (20)

/n(Y-p)

Notice that this bound depends on r, since y=y(r), but
does not depend on x. The next step is to estimate Ut=
KrtrE<J>(x; kn(x)=£0). Since <f> is a probability measure
U|<Kra. In order to estimate Eu2 we introduce the random
indicator function I[kn(»)=0] (x) and by applying Fubini's
theorem we obtain:

E<D(x; kn(x)=0)

k r^ oi
D n

By the definition of indicator function E(I[kn(-)=0](x)) =

P(kn(x)=0)=(l-F(d(x)))n. Finally, J(l-F(d(x)))nd>(dx)

D
< (l-y)n. The latter can now be combined with (17), (19)
and (20) to enable the bound

P{ ||M(x)-m(x)|O(dx)>e}

D

V
•+exp(-2np2

2n(y-P)

e - K r

(22)
E-Kra

We can summarize this derivation as:
Theorem 2. For arbitrary e >0, r < (e/K)1/a and J3 < y, if
conditions 1-3 are true the following bound holds:

P{

D

(b-a)(exp(-2np

8-Kr a

)
(23)

Remark 1. To bring the formulation of CB to the form
similar to the uniform case, let us observe the inclusion of
events E,={0>{x: |M(x)-m(x)| > t}> e/t }c E2

= { j|M(x) - m(x)| O(dx) > e} and consequently

D

In other words, under the conditions of Theorem 2, one is
unlikely to observe large (> t) absolute deviations of the
model M(x) from an unknown phenomenon m(x) over a
significant (in terms of <I>) portion of the domain D.
Remark 2. The bounds in both cases of uniform (14) and
integral (23) metrics are functions of r, p, e and n. Since
the left hand side of these inequalities depends on e as
well, a value for e is usually picked beforehand by some
practical concerns. It is obvious that only by raising n can
bounds be made arbitrarily close to 1. For the two other
variables there exist optimal values r = r(n) and /3 = j3(n)
to tighten the bound in (22). On the other hand, that is the

"slowest" term which sets the rate of conver-
|2n(y-P)

gence in (22) and (23) as a function of n. Therefore it
makes sense to set f3(n) such that exp(-2np2) = O(n1/2),

l/2

4.3 Rate comparison for two metrics

We compare the convergence rates for bounds using the
integral metric and uniform metric. To simplify calcula-
tions we set K=or=l.With constant values for e, r, a n d #
convergence of the bound is faster for the uniform metric
case. However, a scenario when all parameters e, r, and P
are functions of n can produce an asymptotic feature with
the opposite tendency, i.e. convergence is faster with in-
tegral metric. Because the rate of convergence to zero of a
sum is not faster then that of a summand, it is sufficient,
for instance, to show that with proper choice of e(n), r(n),
and /3(n) every term in (5) goes to zero faster than, say,
the first term, n2exp(-A2h2(n)), up to the O(») equivalence,
in (4). The choice of h(n) should strike a balance: h(n)
must grow fast enough to offset a second degree multi-
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plier n2 = exp(21n(n)), but not too fast, so that all terms in
(5) converge to zero faster than exp(21n(n)-A2h2(n)). If,
for example, r(n) is chosen such that y(n)
= (21n(n)+lnlnln(n))/n)1/3, e(n) is set as r(n) + ^2X]y(n)
and fi(ri) = (l/2)y(n) then it can be verified that the bound
in (5) is O(l/ln(n)X1/2 which is oCOnlnCn))-1), whereas the
asymptotic behavior of the first term in (4) is like

5 Numerical Simulation
We performed an analysis using simulated measurements
of RF energy at varying distances from a single tower,
following the Lee model of RF propagation [9]. Because
of space constraints, we present results only for the uni-
form metric.

5.1 Choice of parameter values

We set the signal strength to range between a minimum
and maximum which we have observed experimentally,
and set the received signal level to r"3 4, a common value
for even terrain and moderate clutter. The distance from
the tower was varied from 1 mile to 15 miles. Simulated
measurements were made at uniformly distributed points.
Their values were obtained by perturbing the true func-
tion with normally distributed noise having zero mean
and a of 0.15 times the range of actual values. A repre-
sentative set of measurements is shown in Figure 1.
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Figure 1: Function and simulated measurements

The effect of dimension k of D appears in the upper
bound on |S| (see Lemma 1). Consider an interval I of
fixed width r, initially positioned to the left of all n meas-
urement points, and sliding to the right until it is to the
right of all the points. Each point will make a transition
from the right of I to inside it, and another from inside to
the left of it; and it can make each transition only once.
There is a different set of measurements only when a
point makes a transition. There can be at most 2n transi-

tions, and thus at most 2n+l states (counting the initial
state). Thus |S| is 2n+l in the 1-dimensional case rather
than n2-n+2. We have made that substitution in what fol-
lows.
In evaluating equation (4) we chose e = 8 dB, an error
bound commonly accepted for drive tests and model op-
timizations. Parameters a and b are -40 dBm and -125
dBm, respectively, as described above. We chose the rate
of signal decay as 34 dB/decade, consistent with our
choice of received signal level = r'34 above. In choosing a
value for y we make use of the fact that measurement
locations are uniformly distributed: y = (xmax-xmin)/2r.
Once y is known, we choose the value for p which mini-
mizes an upper bound for 5 (see (1)), given all the other
parameters. We are interested in the behavior of 5 for
different n, in particular, what value of n is required to
give acceptable confidence (say, 95%) for realistic values
of the other parameters. We will thus vary n over a range
of values. It remains to choose r.
When all other parameters are fixed, there is a value of r
which minimizes an upper bound for 5: If r is small, y and
P both approach 0. Thus exp(-np2) and exp(-n/l(y-/?)) both
approach 1 and (4) is approximately n2. If r is large, it
approaches a limit imposed by the Hoeffding inequality,
so e - K p " , X approaches 0, exp(-nA(y-/?)) approaches 1,
and again (4) is approximately n2. For intermediate values
the exp(...) terms balance the n2 terms and (4) can be <1.
We swept a ball of optimum radius over the range of dis-
tances from the tower, and observed that the values esti-
mated from (3) are stepwise-constant over varying inter-
vals, as shown in Figure 2.

Estimated function. n=100, nu=34, epsllon=8, r=0.21
- 4 Q

-6C

-8C

g-iod

- 1 2 C

- 1 4 C

Actual
Estimated
Blanket

10 15

Figure 2: Estimated values are stepwise-constant

To estimate the actual confidence, we ran 100 trials with
fixed n, randomly generated measurements, and optimum
r. In each trial we compared the modeled signal level with
M(x) as given in (3), and observed the fraction of the time
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that the error exceeded e. We repeated this for a variety of
values of n. The results are given in Table 1.

Uniform metric Integral met-

Actual
lxlO2

lxlO3

lxlO4

lxlO5

5xlO5

lxlO6

5xlO6

6.2xlO5

4.6xlO7

2.4xlO8

1.6xlO5

ZOxlO"1

5.9xlOn

5.0xl0"91

0.7
0.5
0.4

0
0
0
0

12.06
3.94
1.37
0.41
0.18
0.12
0.05

0.99
0
0
0
0
0
0

Table 1: Confidence bound vs. actual confidence

6 Conclusion
The Confidence Blanket appears to be an adequate
mathematical concept to make statistical inferences from
distributed inaccurate data. Though not tight, explicit
lower bounds for confidence probability were established
for two different metrics. These bounds were confirmed
by numerical simulation. This approach can be extended
in a variety of directions, e.g. for metrics in different
functional spaces such as Sobolev's, to include infinite
dimensional measurements such as images, and to use a
different local approximation method.
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Abstract
Combining different knowledge representation languages is one
of the main topics in Qualitative Spatial Reasoning (QSR). In
this paper, we combine well known RCC8 calculus (RCC8) and
cardinal direction calculus (CDC) based on regions and give the
interaction tables for the two calculi. The interaction tables can
be used as a tool in solving constraint satisfaction problems
(CSP) and consistency checking procedure of QSR for
combined spatial knowledge.

1 Introduction
Qualitative spatial reasoning is very useful in improving
the reasoning efficiency in answering spatial queries, and
can avoid time-consuming quantitative geometry
computation. But reasoning with only one aspect of
spatial knowledge is not realistic, combining and
integrating different kinds of knowledge is an emerging
and challenging issue in QSR. [1] has dealt with the
combination of topological knowledge and metric size
knowledge in QSR, and [2] has combined the cardinal
direction knowledge and the relative orientation
knowledge.
We first introduce the two formalisms of topological and
cardinal directional relations, respectively. The region
considered in this paper is non-empty, connected point-
set homeomorphic to a unit disk in 9? .

1.1 RCC8 Calculus (RCC8)

Topology is perhaps the most fundamental aspect of
space. Topological relationships are invariant under
topological transformations, such as translation, scaling,
and rotation. Examples are terms like neighbor and
disjoint [3]. The RCC-8 (Figure 1) is a set of eight jointly
exhaustive and pairwise disjoint (JEPD) relations, called
base relations, denoted as DC, EC, PO, EQ, TPP, NTPP,
TPPi, NTPPi, with the meaning of Disconnected,
Extensionally Connected, Partial Overlap, Equal,
Tangential Proper Part, Non-Tangential Proper Part, and
their converses. Exactly one of these relations holds
between any two spatial regions. A reasoning system has
been derived according to the property that a situation

involving a number of topological relations is possible if
and only if the set of model-constraints associated with all
of the relations does not entail any of the entailment
constraint formulae. A composition table has been
obtained by a spatial reasoner using the above technique.
For details about the reasoner and composition table,
please refer to [4].

DC(r.y) EC(.r.«,) TPP(r)y)TPP-'(x.»)

y
EQ(.r,,y)NTPP(,-,y) . y)

Figure 1. Two-dimensional examples for the eight basic
relations of RCC-8

An alternative approach to representing and reasoning
about topological relations has been put forward [5],
which is based on point-set topology.

1.2 Cardinal Direction Calculus (CDC)

Direction-also called orientation-relationships are
important and common-sense linguistic and qualitative
properties used in everyday situations and qualitative
spatial reasoning.
[6] introduced a direction-relation model for extended
spatial objects that considers the influence of the objects'
shapes. It uses the projection-based direction partitions
and an extrinsic reference system, and considers the exact
representation of the target object with respect to the
reference frame. The reference frame with a polygon as
reference object has nine direction tiles: north ( NA ),
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northeast ( NE A ), east ( E A ), southeast ( S E A ), south

(S A ), southwest (SWA ), west (WA ), northwest ( NWA),

and same ( OA ). The cardinal direction from the

reference object to a target is described by recording

those tiles into which at least one part of the target object

falls (Figure 2).

M>B) =

NW,
WA

SWA

, 0 5

ns
ns

NA

oA
SA

ns
D5
0 5

NE.
EA

SE,

<f)B
f)B

,f)B

Figure 2. Capturing the cardinal direction relation between two
polygons, A and B, through the projection-based partitions

around A as the reference object.

For cardinal directions between two polygons, a 3 x 3
matrix captures the neighborhood of the partition around
the reference object and registers the intersections
between the target and the tiles around the reference
object (Equation 1). The elements in the direction-relation
matrix have the same topological organization as the
partitions around the reference object. We consider the
emptiness and non-emptiness of the nine intersections
between the nine tiles formed around the reference object
and the exact representation of the target object to
describe coarse cardinal directions.

2.Reasoning about combined knowledge of
RCC8 and CDC relations
Our main goal is to combine the topological and cardinal
direction relation knowledge, which is motivated and
inspired by the work of [2]. They try to combine the
cardinal direction relations and relative orientation
relations based on 2D points. We think our work is more
practical, because in the real world we are often faced
with regions, not points. And our work is different from
theirs in the following aspects:
(1) we investigate two kinds of binary region-based
relations; they focus on combining binary and ternary
relations, which are all point-based.

(2) We derive additional interaction rules between RCC8
and CDC.
(3) In our procedure, we use two queues instead of one
queue used by their work, which can be computed
parallel.
Reasoning within the combined knowledge of RCC8 and
CDC can be divided into two parts: internal reasoning
within the RCC8 and CDC and interaction reasoning
between them.
To facilitate the representation of the interaction rules, we
denote a basic cardinal direction relation by a set SB
including at most nine elements, i.e. the nine single-tile [7]
cardinal direction relations. For example, B:S:SE:SN can
be denoted by {B,S,SE,SN}. The general cardinal
direction relation can be regarded as a set GB, whose
element is the set SB. So we have the relation: SB e GB .
The universal relation is the set BIN={B, N, NE, E, SE, S,
SW, W, NJV}, and the universe, i.e. the set of all possible
cardinal relations, is denoted by U.
For two arbitrary regions X and Y, we use RCC8(X, Y) to
denote the topological relation of X to Y, and we stipulate
that GB(X, Y) represents the general cardinal direction
relation of the primary region X to the reference region Y,
and that SB(X, Y) represents any basic cardinal relation
that belongs to GB(X, Y).

2.1 Reasoning within RCC8 and the interaction from
RCC8 to CDC (RCC8-T0-CDC)

For the internal reasoning within the RCC8, the
composition table for pairs of atoms can be found in [8]
and [9].
The interaction from the atomic relations of RCC8 to
CDC relations has been described in Table 1, where the
left column is the eight atomic RCC8 relations (see Fig. 1)
and the right column is the cardinal direction relations
induced by the left column RCC8 relations. We now give
interpretation for this table.
For arbitrary regions X and Y, the table is divided by the
value of RCC8(X, Y) into eight case as follows:
(1) DC(X, Y): the induced cardinal direction relation
GB(X, Y) is the universe, i.e. U.
(2) EC(X, Y): every basic cardinal direction relation
SB(X, Y) that belongs to GB(X, Y) must includes the
relation B.
(3) PO(X, Y): every basic cardinal direction relation
SB(X, Y) that belongs to GB(X, Y) must include the
relation B and an atomic relation that belongs to BIN.
(4) TPP(X, Y): the induced cardinal direction relation
GB(X, Y) includes only one element B.
(5) TPPi(X, Y): every basic cardinal direction relation
SB(X, Y) that belongs to G£(X, Y) must include the
relation B and an atomic relation that belongs to BIN.
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(6) NTPP: the induced cardinal direction relation GB(X,
Y) includes only one element B.
(7) NTPPi(X, Y): the induced cardinal direction relation
GB(X, Y) includes only one element BIN, i.e. the tiles
formed by reference object Y are all occupied by the
primary object X.
(8) EQ(X, Y): it is obvious that the induced cardinal
direction relation GB(X, Y) can only include the relation
B.
We use R-to-C to denote the operation that captures the
above interaction between RCC8 knowledge and CDC
knowledge, in the direction RCC8-T0-CDC, by inferring
CDC knowledge from given RCC8 knowledge.
The induced cardinal direction relation by a general
RCC8 relation (i.e. the disjunction of atomic RCC8
relations), say Q (X, Y), is the union of cardinal direction
relations induced by all atomic RCC8 relations that
belong to the general RCC8 relation; namely:

GB(X9 Y)=\jR-to- C(r(X, Y)) .
reQ

Table 1. The interaction table from the basic relations of CDF
to RCC8 relations

Atomic RCC8
relation

DC

EC

PO

TPP

TPPi

NTPP
NTPPi

EQ

Induced cardinal direction relation

U

\/SBeGB:BeSB
VSB G GB,

3ReBIN:ReSBf]BeSB
{{B}}

VSB e GB,
3ReBIN:ReSBf]BeSB

\{B}}
{BIN}
{{B}}

2.2 Reasoning within CDC and the interaction from
CDC to RCC8 (CDC-T0-RCC8)

The converse operation and the composition operation
have been investigated in [10] and [7] respectively.
The RCC8 knowledge induced from the basic cardinal
direction relations, denoted by SB, is presented in the
table 2, which describes the interaction between RCC8
knowledge and CDC knowledge, in the direction CDC -
To- RCC8, in four cases:
(])SB={B}: the induced RCC8A relation is the
disjunction of DC, EC, PO, TPP, NTPP, EQ and TPPi.
(2) 3ReBIN:RzSBf)BeSB : the induced
RCC8A relation is the disjunction of DC, EC, PO TPPi
and NTPPi.
(3) Universal relation: the induced RCC8A relation is the
disjunction of DC, EC, PO, TPPi and NTPPI

B<£SB: the induced RCC8A relation is only DC.
We use C-to-R to denote the operation that captures the
above interaction between RCC8 knowledge and CDC
knowledge, in the direction CDC -To- RCC8, by inferring
RCC8 knowledge from given CDC knowledge.
The induced RCC8 relation by a general CDC relation
(i.e. the disjunction of basic cardinal direction relations),
say Q (X, Y), is the union of RCC8 relations induced by
all basic cardinal direction relations that belong to the
general CDC relation; namely:

RCC8(X, Y)=[JC-to- R(r(X, Y)).
reQ

Table 2. The interaction table from the basic relations of CDF
to RCC8 relations

Basic cardinal direction
relation (SB)

{B}

3ReBIN:ReSBHB<=S
or BIN

B£SB

RCC8 relation

DCVECV POVTPP

VNTPPVEQV TPF1

DCVECV POVTPP'1

V NTPF1

DC

3 Summary
We have presented the combination of two calculi of
spatial relations well-known in Qualitative Spatial
Reasoning (QSR): RCC8 calculus and R. Goyal and M.
Egenhofer's cardinal direction calculus. In this paper, the
interaction between the two kinds of knowledge has been
handled, and we have also given two interaction tables.
The work in this paper can be applied to the research field
of Geographic Information System (GIS), image
understanding and computer vision, etc. The fuzzy
spatial reasoning with fuzzy knowledge of topological
and directional relations can be of very interest in the
future.
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Abstract

Ensemble design techniques based on resampling the
training set are successfully used to improve the clas-
sification accuracies of the base classifiers. In Boost-
ing technique, each training set is obtained by drawing
samples with replacement from the available training set
according to a weighted distribution which is iteratively
updated for generating new classifiers for the ensemble.
The resultant classifiers are accurate in different parts of
the input space mainly specified the sample weights. In
this study, a dynamic integration of boosting based en-
sembles is proposed so as to take into account the hetero-
geneity of the input sets. In this approach, a Dempster-
Shafer theory based framework is developed to consider
the training sample distribution in the restricted input
space of each test sample. The effectiveness of the pro-
posed technique is compared to AdaBoost algorithm us-
ing nearest mean type base classifier.

1 Introduction

Boosting is a popular ensemble creation technique
which takes into account the classification results of the
previous classifiers to construct additional ones. The se-
quential structure of the algorithm allows to create new
classifiers which are more effective on the training sam-
ples that the current ensemble has a poor performance.
In order to achieve this, weighting is applied on the train-
ing samples where a training sample with a high weight
has a larger probability of being used in the training set
of the next classifier. The weights are updated in an it-
erative manner so that new classifiers mainly focus on
the samples difficult to classify. AdaBoost is the most
popular boosting algorithm.

In AdaBoost technique, the reliability of the classifier
outputs is dependent on the input due to the weighted
resampling [1]. For instance, the decision of a classi-
fier for an input lying in a restricted space that is resam-
pled by a large number of times is expected to be reli-
able. However, this may not be true for the input spaces
which have no representatives in the resampled training
set. Hence, the fact that the classifiers developed using
AdaBoost may be accurate in some regions of the in-

put space should be considered during the combination
operation. The weighted majority voting rule used in the
AdaBoost algorithm does not take into account this input
dependent information. Dynamic combination schemes
that take into account the distribution of the training sam-
ples in the restricted space where the given test sample
lies may provide better results.

In order to take into account the distribution of
the training samples in different parts input space, a
Dempster-Shafer theory based (evidential) pattern clas-
sification technique is proposed by Denaeux [2]. In that
approach, each neighbor of a given test sample in the
training set is considered as a piece of evidence support-
ing the class that the training sample belongs. The ba-
sic probability assignments from all neighbors are then
combined to predict the class of the tested sample. In
boosting technique, weights for different samples are
naturally available where the ultimate aim is analogous;
each training sample has a different influence on the de-
cision depending on the difficulty of its classification
since, more replicas of difficult samples are used than
easier ones in classifier training. However, the sample
weights are explicitly considered only in the training
phase. In this study, an evidence-theoretic framework
for boosting is proposed so as to take into account the
weights and distances of the neighboring training sam-
ples in both training and testing boosting based ensem-
bles. In the proposed approach, the weight update mech-
anism of AdaBoost is preserved where a weight and
distance dependent belief structure assignment is devel-
oped. The proposed approach is used for boosting near-
est mean classifier (NMC) where better accuracies than
AdaBoost are obtained.

2 Evidential Pattern Classification

Let Q denote the set of class labels and S —
{(#n> Vn)}, n = 13 • • •»N be the set of training sam-
ples where xn denotes the nth input sample and yn 6 fl
is its label. Given a test sample x, each training sample
is considered to provide a piece of evidence about the
class label of x. In other words, each xn e S induces a
belief structure mn with two focal elements, {wq} and
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fl where wq e ft is the class that the training sample xn

belongs as,

mn({wq}) = a<t>q{\\xn - x\\) =

mn(ft) = 1 -mn({wq})
(1)

where | |x n — x| | is the Euclidean distance between xn

and x. The class-independent design parameter a and
the class-dependent parameter j q determine the way ba-
sic probability values are assigned to {wq} and fl. As
a increases, the evidence provided is considered to be
more certain. The influence of the distance on basic
probability assignments is class dependent and it is ad-
justed by 79 . As the distance increases, more probability
mass is assigned to ft. These belief structures are com-
bined using Dempster's rule of combination [3]. In or-
der to make a joint decision, pignistic probabilities can
be computed as PBet(wi) = E ^ c s 7 ^ > v ^ € ^
where B denotes the focal elements getting nonzero ba-
sic probability value [4]. Then, the class getting the max-
imal PBet(-) value can be selected as the joint decision.

In summary, the main idea is to treat each neighboring
sample as a piece of evidence for the class label of the
tested sample. In this paper, this idea is used to propose
an evidence-theoretic framework for boosting where the
sample weights are explicitly used to compute the mea-
surement level classifier outputs.

3 Evidence Theoretic Framework for Boosting

Let Wt{n) denote the weight of the nth training sam-
ple in S initialized to 1/N and t denotes the iteration
count, fl = {wa,Wb} since a 2-class problem is con-
sidered. Let St denote bootstrap sample set obtained
by drawing with replacement N samples from S using
distribution Wt. dn(j) is defined as the Euclidean dis-
tance of xn to its j th nearest neighbor in S denoted by
neign(j). dn(l) is zero which is the distance of the sam-
ple with itself and dn{2) is the distance from the closest
different sample.

The proposed algorithm named as E-Boost is given
below. The initial classifier makes use of equal sam-
ple weights. In each iteration, the weights of the cor-
rectly classified training samples are decreased. Given
the current weight vector Wt, the training set is resam-
pled to generate a new ensemble member. Then, each
training sample xn is classified by taking into account its
/c-nearest neighbors. For this purpose, each neighboring
sample having the same class label as the classifier deci-
sion (totally, kf ^ k) induces a belief structure rrij with
focal elements {wq} being the decision of the trained
classifier and fl. The main idea behind this is to com-
pute the total support on the output of the classifier. It
should also be noted that k' is different for each training
sample.

fort = 1,...,T
Build classifier Ct using sample set <St resampled from S using
distribution Wt.
for n = 1 to N

Compute the most likely class, wq = Ct(xn)
Compute the k-nearest neighbors of xn in S using

for j = 1 to k' II consider neighbors of the same class as wq

mj({wq}\neign(j)) = f(qtWt(neign(j))>dnU))
mj(Sl\neign{j)) = 1 - rrij({wq}\neign{j))

end
m^m6(.) = mi(.\neign(l)) 0 . . .®mk< {.\neign{k'))
Compute pignistic probability as,

PBet(wq) = m^omb(wq) + m™ornh{Q.)/2

The combined decision is computed as,

c fx \ =
 W(i lf \pBet(wq) - PBetWq)\ > r

rand({wa,vJb}) otherwise
(2)

p Calculate the weighted error using et =
jf ^=1 wt(n){l - qn,t) where qn>i - 1 if x n is correctly
classified and zero otherwise.

Compute at = \ ln( x ~ e t ) , et E (0,0.5) and update the
weights using

Wt+\(n) = —T^-e~at \fCt{xn) = yn, where Zt is a
normalization factor so that Wt+i is a distribution,

end

end

The basic probability assignment is defined as,

mj({wq}\neign(j)) = ± ^ _ , , ,„_„ , (3)

where Wt^max is the maximum weight value at the tth
iteration. dq

avg used in the denominator is the within-
class average of /c-nearest neighbor Euclidean distances
for the class wq. As seen in the equation, the basic proba-
bility value is proportional to the weight of the neighbor;
higher weights correspond to stronger evidence. The
weights are normalized by their maximum values so that
mj({wq}\nei9n(j)) < 1. The denominator also de-
pends on the decided class. As the distance increases
above the average dq

avg, the evidence provided is consid-
ered to decrease whereas a smaller distance corresponds
to an increasing evidence.

kf belief structures are then combined using Demp-
ster's rule of combination to compute the combined be-
lief structure, mj o m 6( . ) . The pignistic probabilities ob-
tained from the combined belief structure are used to
select the most likely pattern class. If the decision of
the classifier is wat it is expected that Pseti^a) »
PBet{wb) where the support on wt> comes from the ba-
sic probability assigned to ft. In the proposed algo-
rithm, the threshold r is used to make sure that there
is enough support on the decision of the classifier. If
PBet(wa) ~ PBet{wb), the classifier is not considered
to provide reliable information about the class of the
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sample under concern. Also, it may be the case that
PBet(wa) — PBet(wb) = 0 due to no local support.
In both of these cases, the decision is randomly selected.

The decisions generated by the tth classifier after
combining the evidence from each fc'-nearest neighbors
are used to compute the weighted error, et as in Ad-
aBoost. If et € (0,0.5), the weights of the correctly clas-
sified samples are updated. In the proposed approach,
the weights of misclassified samples are not increased
since, it is observed that this may easily lead to classi-
fiers with higher error rates than 0.5. Such an update
was also considered for AdaBoost and named as conser-
vative AdaBoost. When the condition that et 6 (0,0.5)
is not satisfied, the algorithm is terminated. The output
of the algorithm is a set of T different weight vectors,
T classifiers and the at values obtained for each weight
vector.

During testing an unseen input vector, combined be-
lief structures racom&(.) are computed for each different
member classifier. The input vector is firstly tested by
each classifier and then each kl nearest neighbors hav-
ing the same class label as the most likely class gener-
ated by the classifier induces a belief structure, k' belief
structures are then combined using Dempster's rule of
combination to compute the combined belief structure,
mc o m5(.). The pignistic probabilities obtained from the
combined belief structures, {Pl

Bet}J=l are aggregated
to compute the resultant pignistic probabilities using
weighted averaging as,

(4)

Then, the class assigned to the tested pattern is the one
getting the highest P#g?(.) value. Since different belief
structures are obtained using resampling from the same
training set, Dempster's rule of combination cannot be
used. Due to the commutativity property of averaging
and the linear relationship between credal level informa-
tion (using basic probability values) and pignistic prob-
abilities, averaging is considered to be a good candidate
for bagging evidential fc-NN classifiers [5]. Following
this reasoning, the weighted form of averaging as given
above is used in this study.

4 Experiments

In order to investigate the benefits of the proposed ev-
idential framework for boosting, experiments are con-
ducted on artificial and real data sets from UCI machine
learning repository and ELENA database.

Fig. 1. The scatter plot of training samples for 2-D Lithuanin
classes.

4.1 Experiments on Artificial Data Sets

Two different artificial data sets are generated using
the PRTOOLS toolbox [6]. In both of these experiments,
we set k = 5 and r = 0. For the first 2-D classification
problem, Lithuanin classes are generated. For each class,
200 samples are used for training and 200 for testing.
AdaBoost is run to generate an ensemble of three nor-
mal densities based quadratic classifiers. The developed
classifiers are illustrated on the scatter plot of the train-
ing data in Figure 1. The first class is represented using
+'s and the second class samples are represented using
*'s. The test samples that are correctly classified by the
proposed algorithm but misclassified by AdaBoost are
also marked on the figure. D's represent such test pat-
terns from the first class and O's represent those belong-
ing to the second class. As seen in the figure, the pro-
posed technique is more effective on the difficult sam-
ples lying on the border of the classes. Three of the
differently classified test samples belonging to the first
class and five belonging to the second class are misclas-
sified by two of the three classifiers. This is the main rea-
son for AdaBoost to be unsuccessful for these samples.
However, they are correctly classified by E-boost due to
the support from their neighbors. In this experiment the
classification accuracy of the base classifier is 91.25%,
where 93.50% and 95.75% accuracies are achieved by
AdaBoost and proposed algorithm respectively.

For the second 2-D classification problem, 'banana'
classes are generated where the same number of training
and test samples are considered. Figure 2 illustrates ten
NMC type ensemble members obtained using AdaBoost.
Since the NMC type classifier is a weak one, it is less
sensitive to changes in the training set providing deci-
sion boundaries that may be close to some others leading
to correlated decisions and only 1% improvement. How-
ever, making use of the different weights of the training
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Table 1. Experimental results for T = 10 classifiers.

Fig. 2. Ten NMC type ensemble members obtained for 'ba-
nana' data set using AdaBoost algorithm.

Data set

monks-1
monks-2
monks-3

wdbc
breast-cancer-w

sonar
ionosphere

liver
heart

phoneme
clouds

Average

Base

65.97
53.47
80.56
88.30
95.76
65.32
74.29
55.53
61.87
71.73
75.25
71.64

AdaBoost

65.74
54.17
82.64
88.42
95.71
71.77
87.05
61.75
66.37
71.91
75.27
74.62

E-Boost

70.83
64.81
89.35
92.28
96.54
80.48
90.67
62.82
67.47
83.73
77.51
79.68

Fig. 3. Average accuracies achieved by E-boost and AdaBoost
for T = 5, 10, 15 and 20 over eleven data sets.

samples explicitly during testing reduces the correlations
providing 14.75% improvement over the base classifier.

4.2 Experiments on Real Data Sets

In order to evaluate the proposed algorithm, experi-
ments are conducted on nine different data sets in the
UCI machine learning repository and two in the ELENA
data set. The experiments are repeated ten times and the
average accuracies are computed. In order to evaluate
the proposed framework on real data sets, nearest mean
classifier (NMC) is selected as the base classifier. The
experimental results for T = 10, k = 5 and r = 0
are presented in Table 1. As seen in the table, E-Boost
provided much better accuracies compared to AdaBoost.
The experiments are repeated also for T = 10, 15 and
20, and the average accuracies over eleven data sets are
presented in Figure 3. The figure show that better ensem-
bles are obtained as the number of classifiers is increased
up to 20 which is not the case in AdaBoost.

5 Conclusions

In this study, an evidence theoretic framework is pro-
posed for boosting. Experimental results have shown
that the use of local information is highly useful for

boosting based classifier ensembles. The proposed ap-
proach should also be evaluated for other types of clas-
sifiers such as fisher's linear discriminant. Also, the ef-
fect of k and r should be investigated. Our preliminary
experiments have shown that the average accuracy in-
creases to 80.82% for r = 0.15. Also, the performances
achieved are observed to be better for smaller k value
in some of the data sets. Analysis of the proposed al-
gorithm in terms of these parameters and estimation of
their best fitting values are the main topics our current
research.
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Abstract
I propose a norepinephrine- (NE-) neuromoduiatory system,
which I call "enhanced-excitatory and enhanced-inhibitory (E-
E/E-I) system". The E-E/E-I system enhanced excitatory and
inhibitory synaptic connections between cortical cells, modified
their ongoing background activity, and influenced subsequent
cognitive neuronal processing. When stimulated with sensory
features, cognitive performance of neurons, signal-to-noise
(S/N) ratio, was greatly enhanced, for which one of the three
possible S/N enhancement schemes operated under the E-E/E-I
system, namely; i) signal enhancement more than noise increase,
ii) signal enhancement and noise reduction, and iii) noise
reduction more than signal decrease. When a weaker (or
subthreshold) stimulus was presented, the scheme (ii)
effectively enhanced S/N ratio, whereas the scheme (iii) was
effective for enhancing stronger stimuli. I suggest that a release
of NE into cortical areas may modify their background neuronal
activity, whereby cortical neurons can effectively respond to a
variety of external sensory stimuli.

1 Introduction
It is well known that a release of norepinephrine (NE)
into target brain areas through noradrenergic (e.g., locus
coeruleus (LC)) pathways facilitates the efficacies of
excitatory and inhibitory synaptic transmissions within
the targeted neuronal circuits [1]. NE binds to a and P
adrenoceptors of neurons, activates second messenger
systems, and augments the efficacies of excitatory (e.g.,
glutamatergic) and inhibitory (e.g., GABAergic) synaptic
transmissions [2]. Such NE-induced neuromodulation has
been well demonstrated for cortical pyramidal cells [3].
Although many experiments have demonstrated that NE-
release in certain cortical areas modifies neuronal
excitation and/or inhibition, little is known about how
these neuronal modulations affect the cognitive
performance of the cortices [2,3].

The purpose of the present study is to propose a neural
network model whose dynamic behavior is altered when
dosed with NE. By simulating the model, I investigate
how NE modulates the dynamic behavior of neurons and
what neural mechanisms are essential for NE-mediated

cognitive enhancement. We use "signal-to-noise (S/N)"
ratio as a cognitive performance measure.

2 Neural Network Model
I construct a neural network model for the cortex (Figure
la). The model consists of an input (IP) and an output
(OP) network. Feature stimuli Fn (n = 1, 2, 3, 4, 5)
activate their corresponding groups of IP neurons
("ellipses"), whose action potentials are sent to the OP
network via divergent/convergent feedforward
projections ("solid lines") and activate corresponding cell
assemblies ("circles"). As shown in Figure lb, the OP
network consists of neuron units, each of which contains
a pyramidal cell (PYC) ("large triangle"), a small basket
cell (SBC) ("small circle") and a large basket cell (LBC)
("large circle"). In each unit, the PYC and the SBC are
reciprocally connected via a positive (PYC-to-SBC) and a
negative (SBC-to-PYC) synapse. The PYC positively
synapses on the LBC. Groups of PYCs form cell
assemblies. PYCs within cell assemblies are connected
with each other via positive synapses, and there is no

I
Fig. 1. Structure of the neural network model, (a)
Feature stimuli Fn (n = 1, 2, 3, 4, 5) are applied to
corresponding groups of IP neurons ("ellipses"),
whose action potentials are sent to the OP network via
divergent/convergent feedforward projections ("solid
lines") and activate corresponding cell assemblies
("circles"). NE (norepinephrine) is dosed into the OP
network, (b) PYC, SBC and LBC denote,
respectively, pyramidal, small basket and large basket
cell. "Open" and "filled" small triangles denote
excitatory and inhibitory synapses, respectively.



71

connection between PYCs across cell assemblies. LBCs
negatively synapse on the PYCs of the other cell
assemblies through lateral (LBC-to-PYC) connectios.

I assume here a primary cortical area whose neurons
have tuning properties to specific sensory features. To
make the PYCs feature-selective, I create in the output
(OP) network multiple dynamic cell assemblies that are
spatially separated from each other (see Figure la). Due
to such separable property, the dynamics of the OP
network allows a given cell assembly to be selectively
activated against others when its corresponding feature
stimulus is presented to the input (IP) network. For
simplicity, the IP network contains only projection
neurons (PNs) between which there is no connection.
That is, the IP network works exclusively as an input
layer. These neurons are an integrate-and-fire type of
neurons (for detail, see ref. [4]).

The efficacies of both excitatory and inhibitory
synapses are enhanced as a function of a dose level of
norepinephrine, or concentration of NE ([NE]).
Neuromodulation of excitatory (WjjPY'PY: PYC-to-PYC)
and inhibitory ( w / ^ 8 : LBC-to-PYC, w/*'^: SBC-to-
PYC) synaptic efficacies are described by the following
equations.

at

dt

dt

(i)

(3)

Equation 1 defines the excitatory synaptic modulation
between PYCs, which is based on observed results [5].
Equations 2 and 3 define the inhibitory synaptic
modulation from LBC to PYC and from SBC to PYC,
respectively, which are simple hypothetical
representations based on observed results [2]. In the
present study, I focused especially on the postsynaptic
(PYC-to-PYC, LBC-to-PYC and SBC-to-PYC) actions of
NE on the activities of PYCs that play, in general, major
roles in cognitive information processing in the cortex.
For simplicity, I did not modulate the other excitatory
synapses, PYC-to-LBC and PYC-to-SBC. Unless
otherwise stated elsewhere, w0

PYPY = 7.0, wo
PY'LB =0.1 ,

WQPY,SB = 3 0 Q) a p v = 3 Q? a L f i = 0 8> a § B = 6 Q Q j ppy = pLB

= pLB = 1.0 and [NE]0 = 2.0.

3 Results

As shown by the raster plots of action potentials in Figure
2a, the PYCs have ongoing (background) activity, when
no external stimulus and no dose of NE are applied. The
random and brief emergence of the five (Fl-5) dynamic
cell assemblies, or population activation of PYCs,
characterizes the present ongoing neuronal activity. The
temporal formation of each dynamic cell assembly arises
from mutual excitation between the PYCs within cell
assemblies. The brief nature of the dynamic cell
assemblies arises largely from the self-inhibition
mediated through their accompanying SBCs. Due to such
a self-inhibitory mechanism, the more the PYCs emit
action potentials, the greater the activities of the PYCs
tend to be suppressed.

When the IP network is stimulated with a sensory
feature (F2), whose duration is indicated by a "horizontal
bar" in Figure 2a, the PYCs of the cell assembly
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Fig. 2. Dependence of the dynamic behavior of the OP
network on dose levels of NE ([NE]). Raster plots of
PYC action potentials of cell assemblies that are
sensitive to features Fl-5 are shown, (a) NE is not
dosed, or [NE] = 0.0. A "horizontal bar" indicates a
stimulation (F2) presentation period, (b)-(c) NE-
induced neuromodulation operated under the E-E/E-I
system.
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corresponding to the stimulus are activated and emit a
long burst of action potentials. After switching off the
input, the state of the OP network returns to the ongoing
state. Note that the other dynamic cell assemblies (Fl, F3,
F4 and F5) tend to frequently emerge during the
stimulation period. This indicates that the lateral
inhibition across dynamic cell assemblies, which is
mediated through LBC-to-PYC inhibitory connections, is
not so strong under the original condition, or at [NE] =
0.0.

Figure 2b-c shows how the dynamic behavior of the
network is modulated by the E-E/E-I system. The period
of each brief burst under the ongoing state is deceased as
the dose level of NE ([NE]) increases (Figure 2a -> 2b ->
2c), which is due largely to the enhanced self-inhibition
of PYCs through SBC-to-PYC feedback connections.
Note that the activation of the dynamic cell assemblies
tends to be temporally separated from each other as [NE]
increases, that is, they are not likely to overlap in the time
course. This is due largely to the enhanced lateral
inhibition through LBC-to-PYC connections.

Such temporal segregation of dynamic cell assemblies
is essential for processing the applied feature stimulus
(F2) in that as "feature-detection neurons" of an early
sensory cortex the PYCs must respond selectively to a
specific feature stimulus, while the other PYCs are not
allowed to respond, or emit fewer action potentials. Note
that although the ongoing PYC activity is decreased as
[NE] increases, the synchronous PYC activity within cell
assemblies is well preserved (e.g., see Figure 2c). The
term, "synchronous activity", implies that the PYCs
within cell assemblies generate action potentials almost at
the same time.

I evaluated the cognitive performance of the network in
terms of "evoked-to-background" PYC activity ratio, or
[stimulus-induced firing rate of PYCs]/[ongoing firing
rate of PYCs]. I applied the same feature (F2) stimulus
with various stimulus intensities; s = 0.3 (strong: Figure
3a), e = 0.05 (weak: Figure 3b) and e = 0.02 (too weak:
Figure 3c). In Figure 3a-c, the ongoing ("circles") and
stimulus-induced ("triangles") PYC activities are shown
("left"). The evoked-to-background activity is shown
("right"), which I call here signal-to-noise (S/N) ratio in a
practical sense.

Background neuronal activity itself could contain
significant information as internal representations. Hence,
we cannot straightforwardly call the background activity
as "noise", and therefore should use the term "evoked-to-
background" activity ratio rather than "signal-to-noise"
ratio (S/N ratio) in a strict sense. The reason why I used
the term S/N ratio instead of evoked-to-background ratio
is to evaluate the present simulation results in relation to
experimental (neurophysiological) observations [1,2,3,5],

in which evoked-to-background activity ratio was
preferentially called S/N ratio. Nevertheless, such a use of
S/N ratio is unusual in such a field of engineering,
because noise is not allowed to involve any significant
information (or signal). I understand that the term "signal-
to-noise" ratio in experimental neuroscience might be
used in a more practical sense than in engineering. In the
present study, I employed these terms (signal, noise and
S/N ratio) based on a neurophysiological use but not on
an engineering use.
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Fig. 3. Neuronal behavior (left) and S/N ratio (right)
of PYCs. The model is presented with a feature
stimulus with strong (a), weak (b) and too weak (c)
intensity. In each figure, the left shows the ongoing
firing rate ("circles") and stimulus-induced firing rate
("triangles") of a PYC. Regions marked by "I", "II"
and "III" indicate that three distinct types of S/N
enhancements take place.



73

For stronger stimuli (see the right of Figure 3a), S/N
ratio is enhanced at an intermediate level of [NE] ([NE] =
-1.0). The stimulus-induced PYC-activity is
progressively depressed at [NE] = -1.0 (see the
"triangles" of Figure 3a). This implies that S/N
enhancement is possible provided that noise (or
background PYC activity) is reduced more than signal (or
evoked PYC activity). That is, noise reduction is as fairly
effective as signal enhancement for improving S/N ratio.
For weaker stimuli (see the right of Figure 3b), S/N ratio
is enhanced at lower levels of [NE]. Figure 3c (right)
shows fewer S/N enhancements for too weak stimuli.

Fig. 4 shows NE-mediated S/N enhancement for the
same stimulus whose intensity is changed between 0.02
and 1.0. There are few S/N enhancements for too weak
intensities (e < 0.03). A greater S/N enhancement occurs
for weaker intensities (0.03< s < 0.1) at lower levels of
NE ("arrow" of Fig. 4). For strong intensities (s = -1.0),
significant S/N enhancement occurs at higher levels of
NE,[NE] = -1.5.

activity and influences subsequent cognitive performance.
The efficacies of the excitatory and inhibitory synaptic
connections among pyramidal cells, small basket cells
and large basket cells were modulated depending on the
concentration of NE. I have found three possible schemes
for S/N enhancement, namely; i) signal enhancement that
surpasses noise increase, ii) signal enhancement and noise
reduction, and iii) noise reduction that surpasses signal
decrease. For weaker (or subthreshold) stimuli, signal-
enhancement and noise-reduction scheme worked well,
where NE application at lower concentration effectively
improved the cognitive performance (S/N ratio) of the
cortical network.

In these schemes, noise reduction played an essential
role for the enhancement of S/N ratio. The reduction of
noise could be established through neuromodulation of
the inhibitory synaptic (SBC-to-PYC and/or LBC-to-
PYC) efficacies. The SBC-to-PYC synapses contribute to
suppressing PYC activity through feedback inhibition,
and therefore reduce the ongoing PYC activity as [NE]
increases. The LSBC-to-PYC synapses contribute to
suppressing other PYCs through lateral inhibitory
connections. This means that when one PYC assembly is
active, the other assemblies tend to be suppressed,
whereby the overall firing rate of the PYCs (or the
ongoing PYC activity) can be reduced.

Fig. 4. Dependence of S/N enhancement on stimulus
intensity and the dose level of NE, [NE]. An "arrow"
indicates a peak in S/N enhancement.

It might be that scheme (ii), or signal enhancement and
noise reduction, is quite effective for improving the S/N
ratio for the weak stimulus. For the strong stimulus,
scheme iii), or noise reduction that surpasses signal
decrease, might work. Although the level of S/N
enhancement is low for the too weak stimulus (see Fig.
2a), scheme (i) (or signal enhancement that surpasses
noise increase) contributes to S/N enhancement.

4 Conclusions
I have proposed here a NE neuromodulatory system,

investigated how NE alters ongoing background cortical
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Abstract
In this paper we report experiments designed to find the
relationship between the different parameters of sparsely
connected networks of perceptrons with small world
connectivity patterns, acting as associative memories.

1 Introduction
It is possible to build associative memory models
from networks of simple perceptrons. These networks
perform much better than the canonical Hopfield
model, both in terms of capacity and pattern
completion. It is also possible to use such networks
of perceptrons with sparse or diluted connectivity,
and the performance is relatively robust, even at high
rates of dilution. Of course real neural networks have
sparse connectivity (for example in the cortex of the
mouse each neuron is connected to about 0.1 % of the
other neurons [1]), which motivates the investigation
undertaken here. It is also known that in biological
systems the networks have a small world
characteristic [2, 3]. That is they exhibit short path
lengths (the minimum number of nodes on a path)
between any pair of neurons, as in a random network,
but also show a cliquish behaviour, with locally
clustered connections. The advantage of such
clustering is apparent in the mean connection length
(the average wiring length), which is far smaller than
in an equivalent random network, see Figure 1. A
further benefit is that the wiring complexity is much
reduced in networks with predominantly local
connections. Recent research has shown that a small
world Hopfield network could be a relatively
effective associative memory [4]. In our earlier paper
[5] we showed how the high capacity model could
benefit from small world connectivity. Here we
investigate the detailed relationship between the
nature of the connection graph, the size of the
network and the resulting performance. Sections 2
and 3 describe the background and the computational
model. After the performance measure is explained
in Section 4 the results are given in Section 5. The
paper finishes with a discussion.

2 Background
The simple small world model of Watts and Strogatz
[2] consists of a regular N-node ring lattice. Each
node is connected to k/2 neighbours on either side,
where k is typically small compared to N. The mean
path length between any pair of random points is
therefore high. A fraction, /?, of these local
connections is then rewired to randomly selected
nodes, see right diagram in Figure 1. They showed
that at surprisingly low values of p, the mean path
length in the network dropped dramatically, resulting
in a small world regime: highly clustered but with low
path lengths. Many real networks have been shown
to have a small world architecture, including the
internet, human acquaintance networks and real
networks of neurons [2]. Theoretical work [6] has
now shown the detailed relationship between the
characteristics of such networks.
Much is known about the effect of sparse connectivity
on the standard Hopfield neural network. Some work
has also been undertaken on diluted Hopfield
networks with modular and small world connectivity
[4, 7-9].

For the higher capacity version of the Hopfield
network, trained using perceptron learning much less
is known about the effect of connectivity patterns. It
was shown in [10] that capacity falls linearly with
dilution and in [11] that structured local connectivity
could help in storing locally correlated data.
The sparse network with only local connectivity can
be considered as a simple example of a Cellular
Neural Network and it has been proposed [12] that
such networks can be used as associative memories.

Fig. 1. A ring, with random connectivity on the left and
small world connectivity on the right.
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3 Network Model
The high capacity models studied here are a
modification of the standard Hopfield network. The
net input, or local field, of a unit, is given by:
hi = £vVyS; where S (±1) is the current state and

wtJ is the weight on the connection from unit j to unit

i. The dynamics of the network is given by the
standard update: 5, = ©(/*,), where 0 is the
heaviside function. Unit states may be updated
synchronously or asynchronously. Here we use
asynchronous, random order updates. If a training
pattern £M is a fixed point of the dynamics then it is
successfully stored, and is said to be a fundamental
memory. A network state is stable if, and only if, all
the local fields are of the same sign as their
corresponding unit, equivalently the aligned local
fields, hiSi, should be positive.
We examine sparse networks with small world
connectivity. The network topology is similar to the
original Watts and Strogatz model. We start with an
N-ring regular lattice, with each unit connected to its
k nearest neighbours, and then rewire with probability
p. However as a network of perceptrons is not
necessarily constrained to have symmetric
connections we can generalize the network to a
weighted directed graph (as is the case for real neural
networks). The rewiring does not therefore maintain
the symmetry of connectivity of the original regular
lattice. In fact it has been shown [5] that for sparse
networks of this type, symmetric weights give rise to
poor performance.
The networks are trained using the normal perceptron
training rule:

Begin with zero weights
Repeat until all local fields are
correct
Set state of network to one of the %p

For each unit, i, in turn:

Calculate hp%f . If this is less

than T

then change the weights to unit i
according to:

Where %p denotes the training patterns, and T is the

learning threshold which here has the value of 10.

4 Performance Measure
We are interested in how well the small world
networks and random networks, trained using the
perceptron style learning rule described above,

perform as associative memories. The capacity of
such networks is determined by the number of
incoming connections (k) that each perceptron has.
For random pattern sets a perceptron can learn up to
2k patterns [13]. Assuming roughly regular
connectivity graphs (as is the case here) the capacity
will be determined by the level of dilution and not the
specific pattern of connections, and hence is not
subject to empirical investigation.
We use /?, the normalised mean radius of the basins
of attraction, as a measure of attractor performance in
these networks. It is defined as:

where mo is the minimum overlap an initial state must
have with a fundamental memory for the network to
converge on that fundamental memory, and m\ is the
largest overlap of the initial state with the rest of the
fundamental memories. The angled braces denote a
double average over sets of training patterns and
initial states. Details of the algorithm used can be
found in [10]. A value of R = 1 implies perfect
performance and a value of R = 0 implies no pattern
correction.

5 Results
In this paper we report experiments designed to find
the relationship between the different parameters of
the model. We summarise these parameters in Table
1.

Table 1: Parameters of the Model

N The size of the network
The number of connections each unit makes
The loading per connection: size of training set I k
The proportion of rewired connections

5.1 Fixed Size Networks

The first set of experiments fixes the network size, N,
at 1000 units, arranged in a ring as described earlier.
Initially each unit is connected to its k = 20, 40 or 60
neighbours. Random training sets of 1000-ary
vectors are created. The number of vectors in the
training set is determined by the specific values of a
and k. For example with a = 0.3, k = 20 implies a
training set of 6 vectors, k = 40 12 vectors and k = 60
18 vectors (as used in Figure 3). The attractor
performance {R value) is then measured as the
network is progressively rewired, as described above.
All results presented are averages over 10 runs.
Figure 2 gives the results. Considering first the
overall pattern, it can be seen that, in all cases, as the
amount of rewiring is increased the performance of
the network is also improved. In fact all the networks
reach a point at which pattern correction behavior is
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perfect. It is also apparent that higher levels of
rewiring are required as the loading, a, of the
networks is raised.

network performs. Figure 3 gives a different view of
this, fixing the loading at 0.3, and plotting R for
different k values on the same graph.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3. A different view of the results in Figure 2. a is
fixed at 0.3. It can be seen how the higher values of k give
better performance.

Fig. 2. Networks of size N = 1000. The attractor
performance R is reported for different values of
connectivity k, and at varying loadings, a, as the networks
are progressively rewired, by amount p. Results are
averages over 10 runs.

Now examining the comparative performance at
different levels of connectivity it can be seen that, for
a given loading, the larger the value of k the better the

5.2 Size Effects

The next set of results examines how increasing the
size of the network by an order of magnitude affects
the performance of the network. Figure 4 summarises
the results, here the loading on the networks is fixed
at a = 0.3. The lower two plots on the graph show
the performance of networks of sizes N = 1000 and N
= 10,000 with purely local connectivity (p = 0). As
observed above increasing the level of (local)
connectivity improves performance. The larger
network has a poorer attractor performance than the
N = 1000 version, although when k reaches 800 a
point of good performance is reached. The
explanation for both these observations is probably
that if the size of the network is relatively large, when
compared to the local neighbourhood of each unit,
then it is progressively harder for information to
propagate through the network. In other words the
more local the connectivity relative to the size of the
network the more difficult is it to make a successful
global computation such as pattern correction.
The upper pair of lines shows the dramatic effect of
just 10% rewiring. Once again the smaller network
initially has better performance, but by k = 180 the N
= 10,000 network is performing almost perfectly. In
this configuration the network is storing 54 10,000-
ary vectors, with each unit having only 180, mostly
local, connections and is still able to perform almost
perfect pattern completion. This architecture is
extremely parsimonious. The mean wire length is
only about 12% of that of a random network with the
same level of connectivity.
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Fig. 4. Networks of size N= 1000 and N = 10,000, either
with local connectivity only p = 0 (lower two plots), or
with p = 0.1, (upper two plots). The attractor performance
R is reported for different values of connectivity k. In all
cases the loading of the network is a = 0.3. Results are
averages over 10 runs.

6 Discussion
The fully connected models of associative memory,
such as the standard Hopfield network are difficult to
realize in VLSI implementations and are not viable as
abstract models of real neural networks, which have
sparse connectivity. Locally connected associative
memories have been proposed as possible solutions to
the first of these issues [12]. However as our results
show the pattern correction ability of networks with
only local connections is compromised. In order to
restore the performance of locally connected
networks to that of an equivalent random network it is
necessary to introduce some rewiring - to change the
pattern of connectivity to one of a small world graph.
The results show that the amount of rewiring required
is dependant upon both the relative level of
connectivity and the loading on the network. More
rewiring is required with either increased loading or
decreased relative connectivity. However the very
large networks of 10,000 units performed very well
with only 10% rewiring at a loading of 0.3. In fact
looking at relative connectivity the 10,000 unit
network can be thought of as performing better than
the 1000 unit network, since it produces perfect
pattern completion with a much lower ratio of
connections to network size.
Perhaps the most interesting feature of these small
world networks is that they suggest how global
computation is accomplished in real networks of
neurons where distal connectivity comes at
considerable cost.
Further work will explore other types of small world
connectivity patterns, such as scale free networks [8].
We are also interested in finding the pattern of

connectivity that maximizes performance whilst
minimizing wiring cost.
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Abstract
One of the difficulties in reinforcement learning (RL)

is that an optimal policy is acquired through enormous
trials. As a solution to reduce waste explorations in
learning, recently the exploitation of macro-actions has
been focused. In this paper, we propose a memory-based
reinforcement learning model in which macro-actions
are generated and exploited effectively. Through the ex-
periments for two standard tasks, we confirmed that our
proposed method could decrease waste explorations es-
pecially in the early training stage. This property con-
tributes to enhancing training efficiency in RL tasks.

1 Introduction
Recently, in order to avoid waste explorations in rein-

forcement learning (RL) tasks, several researchers have
studied learning algorithms that allow agents to find a
series of useful actions called macro-actions [1,2]. For
example, when we stand in front of a door we have never
seen, first we recognize the knob, reach out our hand for
it, and then try to push and pull the door to open. We
often attempt to apply some acquired macro-actions to
a new task, instead of searching for all combinations of
possible actions. Clearly, even when we search for ap-
propriate actions, we exploit some knowledge on actions
learned from the past experiences. This fact indicates
that we should introduce a mechanism of generating and
exploiting macro-actions into reinforcement learning.

On the other hand, we have proposed an RL agent
model based on function approximation, in which a
value function is approximated by Resource Allocat-
ing Network with Long-Term Memory (RAN-LTM)
[4]. In RAN-LTM, several representative input-output
pairs (called memory items) on the approximated value
function are stored in long-term memory. Although
this learning scheme can be categorized into memory-
based learning, the differences from the conventional ap-
proaches lie in the number of memory items and their
embedded information. In RAN-LTM, memory items
are restricted to the minimum number that can suppress
the interference caused by incremental learning, and the
memory items can store not only the information on an
approximated value function but also some other infor-

mation (e.g., complexity of approximated functions).
In this paper, we propose a new version of RAN-LTM

which has a mechanism of generating and exploiting
macro-actions to enhance the learning efficiency in RL
tasks. To realize this mechanism, new information on
the usefulness of state-action pairs as a component of
a macro-action is added to the memory items. This in-
formation is accumulated in all of the retrieved mem-
ory items during an episode. The degree of usefulness
is decided depending on how much a series of retrieved
memory items contribute to receiving high reward; if this
usefulness is high, the corresponding state-action is re-
garded as a component of a macro-action. Thus, this in-
formation is exploited to control the randomness of ac-
tion selection; that is, when a memory item with high
usefulness is retrieved, the probability function of action
selection is changed such that a greedy action is taken.

This paper is organized as follows. In Section 2, we
present an Actor-Critic model in which function approx-
imators are implemented by RAN-LTM. Section 3 de-
scribes how to introduce a mechanism of generating and
exploiting macro-actions into RAN-LTM. In Section 4,
several experiments are carried out in the two standard
tasks. Finally, we state conclusions in Section 5.

2 Actor-Critic Model Using RAN-LTM
Actor-Critic model is one of the most frequently used

RL models [3]. In Actor, an action is selected based on
a preference value Pk(x(t), a(t)), while Critic is used to
estimate a state value V(x(t)). After selecting an action,
Critic evaluates a new state x(t + 1) based on TD error
e(t) shown below:

e(t) <- r(t -yV(x(t + 1)) - V(x(t)) (1)

where 7 is a discount factor. The preference value for a
selected action is updated as follows:

Pk>{x(t),a(t)) *- Pk>(x(t),a(t)) (2)

where k' is the index of the action selected in Actor and
(3 is a positive constant.

To approximate a value function V(x(t)) and a prefer-
ence Pk(x(t), a(t)), RAN-LTM is adopted as a function
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Fig. 1. Structure of Actor-Critic model using RAN-LTM.

approximator in both Actor and Critic. The structure of
the Actor-Critic model is shown in Fig. 1. The outputs
of the two RAN-LTMs correspond to V(x(t)) in Critic
and Pk(x{t), a(t)) in Actor.

The inputs of RAN-LTM in Actor and Critic at time t
is denoted as x(t) — {xi(t), • • • , xi(i)}f and they cor-
respond to the agent's states s(i) = {si(i), • • • , si(t)}f.
Here / is the number of input units (states). As shown in
Eq. (3), the hidden outputs y{t) = {yx(t), • - - ,yj(t)}'
are given by

j ( t ) = e x p H
(7 i

(3)

where Cj and a? are a center vector and a width para-
meter of the jth radial basis function; J is the num-
ber of hidden units. The hidden outputs y(t) =
{yi(t), • • • , yj(t)}f are normalized by the sum of hid-
den outputs. Then, the network outputs z(t) are obtained
from

(4)

where yj, wkj and 7*. are a normalized hidden output, a
connection weight from the jth hidden unit to the kth
output unit and a bias of the kth output unit, respec-
tively; K is the number of output units. As stated before,
the outputs of Critic correspond to state values V(x(t))9

while the outputs of Actor correspond to the preference
of actions Pk(x(t),a(i)). In the softmax strategy, the
agent actions are selected based on the following proba-

Pr{a{t) = a} =
eP(X(t),a)/r(t)

(5)

where r(t) is a temperature to control the randomness
of agent actions. Note that K is equal to the number of
actions to be selected by agents.

In reinforcement learning, a training sample is given
incrementally. In such a situation, neural networks can
easily forget the knowledge acquired before. To sup-
press unlearning, we utilize memory items that are ex-
tracted from the approximated function. When learning
a new training sample, some memory items are simulta-
neously trained with the new sample in RAN-LTM to
keep input-output relations as much as possible. The
readers who want to know the detail training procedures
in RAN-LTM can refer to [4].

3 Generating and Exploiting Macro-Actions
In this section, we introduce a mechanism of gen-

erating and exploiting macro-actions into Actor-Critic
model described in the previous section. As stated in
Section 1, we define macro-actions as a deterministic se-
ries of useful actions that lead to large rewards with high
possibility. To generate such macro-actions, an agent has
to retain all the state-action pairs leading to high rewards
in some way. However, if the agent's states are continu-
ous, it is obvious that all the possible pairs cannot be held
in memory. Considering that memory items in RAN-
LTM are distributed over the state space, we easily come
upon to add extra information on successful experiences
to these memory items.

Let us introduce a new index Lm in the mth memory
item in Actor. When an agent receives a reward TT at
time T, L m of all memory items retrieved during the
current episode are updated as follows:

rNEW (6)

where r, tm and 77 are the average reward, the time to re-
call the mth memory item, and a decay constant, respec-
tively. This update is based on the profit sharing method.
Note that L m of the mth memory item becomes large
when an action taken in the corresponding state leads
to a high reward to the end and an agent frequently en-
counters the state. This suggests that a state with large
Lm should be considered as the component of a macro-
action. On the other hand, if an agent encounters a state
with large Lm , the action with the highest preference
should be taken deterministically.

Based on this idea, we propose the following al-
gorithm of selecting agent's actions which gives a
mechanism of generating and exploiting macro-actions
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for the agent model shown in Fig. 1. Let us denote
this agent model RAN-LTM-MA. Note that RAN-
LTM-MA does not generate and exploit macro-actions
explicitly; macro-actions are generated as a result of
controlling the temperature r(t) in the action selec-
tor that is determined by L m of the nearest memory item.

[Algorithm]

1. Recall a memory item Mm : (xm, Lm,tm) whose
Am has the nearest distance to the state xt.

2. If the distance between xt and £ m is smaller than
a threshold, set tm = t.

3. Update r(t) as follows: r(t) «- r(t)/Lm. Select
action a i + i according to the probability in Eq. (5).
If the agent receives no reward, go back to Step 1.
Otherwise, go to Step 4.

4. Update L7n for all retrieved memory items M m

based on Eq. (6).
5. Reset t, then go back to Step 1.

4 Experiments
To see the usefulness of introducing macro-actions in

RAN-LTM, RAN-LTM-MA is applied to the following
two standard problems: Mountain-Car Task and Grid-
World Task [3].

4.1 Mountain-Car Task
Mountain-Car Task is a task in which a car driver

(agent) learns an efficient policy to reach a goal located
on a hill. In this task, the goal of a car agent is to suc-
cessfully drive up a steep slope and to reach the goal as
soon as possible. There are three actions to be selected:
full throttle to the goal, zero throttle, full throttle in the
opposite direction. These actions are represented by the
following values: a(t) — (+1,0 , -1) . A car agent is
positioned at random when starting an episode. The po-
sition u(t) and velocity ii(i) are updated based on the
following equations:

u(t+ 1) = B[u + ii(t)]
u(t + l) = B[u(t)+0.07a(t)- 0.0025 cos(3ix(t))]

where B is a function to restrict the working area, {u -
1.2 < u < 0.5}, {u | -0.07 < ii < 0.07}. u(t) andw(t)
are given as inputs of Actor and Critic, and the value of
-1 is given at every step as rewards to all actions taken.

The training is carried out through 200 episodes,
which are divided into the 4 learning stages: 1-50, 51-
100, 101-150 and 151-200. Since we expect that the in-
troduction of macro-actions contribute to enhancing the
training speed, the average steps needed to reach the
goal is examined at the above 4 stages. For compar-
ative purposes, the average steps are evaluated for the

Table 1. The average steps at the 4 learning stages.

Episodes
1-50

51-100
101-150
151-200

RAN
980
586
480
327

RAN-LTM
814
451
324
245

RAN-LTM-MA
490
206
210
258

Actor-Critic models in which Resource Allocating Net-
work (RAN) [5] and RAN-LTM are adopted as function
approximators. The results are shown in Table 1.

As seen from Table 1, at the early stage (1-100
episodes), the average steps in RAN-LTM-MA are
greatly reduced as compared with those in the other two
models. This result suggests that RAN-LTM-MA can
find a proper policy with less experiences by generating
and exploiting macro-actions. However, at the last stage
(151-200 episodes), the differences in the performances
of RAN-LTM and RAN-LTM-MA are not clear. This
shows that there are no significant differences in the ac-
curacy as a function approximator; thus one can say that
introducing macro-actions contribute to avoiding waste
exploration in the early stage of learning.

4.2 Grid-World Task
In this task, the purpose of an agent is to find the short-

est path from a start point to a goal in a 10 x 10 grid-
world. Here we adopt 6 grid-world tasks as shown in
Fig. 2. In these tasks, an agent can move in 4 direc-
tions (east, south, west, north). At the beginning of an
episode, an agent is placed at each start point. The re-
ward (+1) is only given to the agent when reaching the
corresponding goal.

The training is carried out through 100 episodes, and
in each episode the agent's policy is evaluated by the
number of steps to the goal. To remove the dependency
on random seeds, the training is repeated 30 times and
the average steps are evaluated.

Figure 3 shows the time courses of the average steps
taken by an agent and the action probability in Task
1. This action probability is obtained by averaging the
probability of selecting optimal actions on the three typ-
ical shortest paths. If this value is high, one can say
that the agent takes optimal actions deterministically. As
seen from Fig. 3, the average steps of RAN-LTM-MA
rapidly decrease from the 20th episode; at the same time,
the action probability rapidly increases. This result sug-
gests that some useful macro-actions are generated on
the optimal paths in RAN-LTM-MA and the exploitation
of these macro-actions leads the decrease of the average
steps. To verify this, we examine the actions selected
with 99% and 90% probability. The result is shown in
Fig. 4 where black and white arrows correspond to the
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directions of selected actions with 99% and 90%, respec-
tively. In Fig. 4, we can see that some series of deter-
ministic actions are generated in RAN-LTM-MA after
the 20th episode.

Table 2 shows the number of needed episodes to get
a proper policy in the 6 grid-world tasks. Here we de-
fine that an agent acquire a proper policy when the steps
to a goal is less than the following value: (steps of the
shortest path) x 1.2. From the results in Table 2, we
can conclude that RAN-LTM-MA can get a proper pol-
icy promptly in all tasks.

5 Conclusions
In this paper, we proposed a new agent model in

which macro-actions were generated and exploited ef-
fectively. Through the experiments, we verified that our
proposed model could decrease waste explorations espe-
cially at the early stage of training. Further experiments
are needed to ensure whether such macro-actions really
contributes to enhancing the training efficiency in any
RL tasks.
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Abstract

A fundamental problem with layered neural networks
is the loss of information about the relationships among
features in the input space and relationships inferred by
higher order classifiers. Information about these rela-
tionships is required to solve problems such as discrimi-
nation of simultaneously presented objects and discrimi-
nation of feature components. We propose a biologically
motivated model for a classifier that preserves this infor-
mation. When composed into classification networks,
we show that the classifier propagates and aggregates in-
formation about feature relationships. We discuss how
the model should be capable of segregating this infor-
mation for the purpose of object discrimination and ag-
gregating multiple feature components for the purpose
of feature component discrimination.

1 Introduction

Classical Artificial Neural Networks (ANNs) are typ-
ically arrayed in layers, with each layer sending its re-
sponses to higher layers. This arrangement permits
each successive layer to respond to increasingly complex
combinations of features or attributes in the input space.

These layered networks, however, have fundamen-
tal limitations. Consider an array of ANN's that have
been trained with visual inputs to realize an orientation-
selective, topographically organized map, as in the pri-
mary visual cortex [4]. Each ANN effectively encodes
two pieces of information: edge location and edge ori-
entation. These two pieces of information are implicitly
related to each other by their shared classifier response.
Now consider four additional ANN classifiers that re-
spond to: 1) a vertical edge at any location, 2) horizontal
edge at any location, 3) an edge of any orientation in the
top half of the image, and 4) an edge of any orientation
in the bottom half of the image. Finally, assume that a
final ANN classifier exists that responds when a horizon-
tal edge is present in the top half of the image based on
the responses of the four classifiers.

If edges can only be horizontal or vertical, this exam-
ple network will respond properly in each of the four

cases where a single edge is present in the image. When
two edges are present, however, an erroneous response
can occur. In particular, when a vertical edge is present
in the top of the image and a horizontal edge is present
in the bottom, both attributes will be simultaneously
present and the response will be ambiguous. This is
Rosenblatt's "superposition catastrophe" [5].

The root of the superposition catastrophe is that the
implicit relationship between an edge's orientation and
location is lost when these two attributes are indepen-
dently classified by the set of four classifiers. Since this
lost information is not propagated forward through the
network, an ambiguity regarding the sources of attributes
can exist at the output.

A related problem is the "component discrimination"
problem. This problem involves generating an output
response specific to an initial classifier when that clas-
sifier contributes to a second classifier giving rise to the
final output response. For example, let us modify the
previous network such that the horizontal and vertical
edge classifiers instead recognize squares and triangles
in the image. Let us also modify the output objective
such that it is to respond only when a particular edge is
active and the edge contributed to the recognition of a
square. In this case, implicit information is also lost: the
relationship between the edge and the other edges giv-
ing rise to the square. This information is subsumed into
the "square" classifier. To respond properly, the relation-
ship between the output response and the square classi-
fier must be propagated back to each contributing edge
and then forward to the output response. In this manner,
the relationship between the edge and the square classi-
fier can be tested by the output response.

2 Solution Requirements

Both the superposition catastrophe and the component
discrimination problems result from the loss of informa-
tion about the relationships among features in the input
space or the relationships inferred by higher order clas-
sifiers. To solve these problems, therefore, this informa-
tion must be preserved and made available for classifica-
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tion tasks throughout the network.
One approach for preserving this relationship infor-

mation is to represent it explicitly as a relationship value
and couple it with the classifier responses. To solve the
superposition catastrophe and component discrimination
problems with these values, the following requirements
must be met: 1) Uniqueness: relationship values must be
sufficiently distinct to avoid erroneous relationship in-
terpretations, 2) Propagation: relationship values must
propagate forward and backward, 3) Aggregation: clas-
sifiers must take the disparate, but sufficiently similar re-
lationship values of its feedforward and feedback inputs
and produce a unified relationship value; and 4) Selectiv-
ity: relationship values must be used to modulate classi-
fier responses to inputs.

3 A Biologically Motivated Solution

Since the 1989 discovery that neural synchronization
correlates with global visual input properties [3], neural
oscillation and synchronization have been viewed as a
possible means for conveying this implicit relationship
information. While both Choe [2] and Seth [6] have
modelled neural synchronization, neither effort satisfies
the objectives of this paper or operates at the desired
level of abstraction. Choe's work uses a spiking model
and it operates at a lower level of abstraction. Seth's
work does not use self-organizing classifiers and may not
provide a sufficient basis for classifier learning.

Here, we propose a classifier model that operates on
the neocortical minicolumn level of abstraction and uses
minicolumn synchronization as the means to manage
relationship information. At this level of abstraction,
hundreds of neurons are modelled as a single compu-
tational system or unit. Furthermore, communication
between minicolumns is modelled as an aggregation of
the hundreds or thousands of axons that connect them.
Thalamo-cortical inputs are modelled as a firing rate,
p. Cortico-cortical inputs are modelled as pulses up
to 12.5ms wide and are represented as a tuple (7, T),
where 7 and T are a pulse's amplitude and reference
time, respectively. While not shown here, this model is
based on an analysis of the cortical microcircuit. The
model explains observations of neural oscillations as the
"chopping" of minicolumn inputs. The unique time re-
quired for a minicolumn input to propagate through a
specific minicolumn, j , and "chop" subsequent inputs
determines the natural period, Tj of that minicolumn.

In this model, the classification response, ijjj, of mini-
column j is a weighted sum modulated by the coinci-
dence of each input pulse with the pulse cycle of the
minicolumn. This coincidence-based modulation ad-

dresses the selectivity requirement.

(1)

where Tj is the reference time of the current pulse of
minicolumn j , FFj is the set of feedforward cortical in-
puts to minicolumn j , 7* and Ti are the parameters of
the current pulse for minicolumn i, Wij is the weight
from minicolumn i to j , THj is the set of thalamic in-
puts to minicolumn j , pk is the current firing rate of
thalamic relay cell k, Wkj is the weight from thalamic
relay cell k to minicolumn j , and c\ is the standard de-
viation of the Gaussian. The final amplitude response of

minicolumn j is: 7j = a , o \ where

<T(X, a, (5) = 1+e-i{x-p), the sigmoid function.
Computationally, the aggregation requirement is ad-

dressed with synchronization, and synchronization is
achieved by adjusting each minicolumn's reference time,
Tj, relative to the reference time's of other minicolumns
using a convex mapping (a modulated weighted sum of
reference time differences). The next reference time, Tj,
for a minicolumn's pulse is computed as follows:

n =
1 £
c2 ^

iGFFUF

2 c l ,(2)

where FBj is the set of feedback cortical inputs to mini-
column j and c2 is a constant corresponding to the max-
imum contribution from inputs affecting the timing. The
use of feedforward and feedback inputs for timing ad-
justment addresses the propagation requirement. Finally,
the uniqueness requirement is addressed by using the
natural period, Tj, as a bias that competes with the pull
toward synchronized reference times.

This model provides a basis for learning, but it is
independent of the particular method for updating the
thalamo-cortical and cortico-cortical weights.

4 Results
Our experimental plan was designed to determine how

well the propagation and aggregation requirements are
met while simultaneously supporting classification and
self-organized learning. We will not explore the unique-
ness and selectivity requirements in this paper because
those requirements require multiple inputs and an en-
tirely different experimental set up.

The experimental network we used is shown in Fig-
ure 1. This network consists of three hypercolumn-like
arrays of minicolumns arranged in a hierarchy. At the
lowest hierarchical level, two 10x10 networks, denoted
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MIL and MIR, each receive feedforward inputs from 2
real values (x, y) in the range [0,1]. At the highest hier-
archical level, one 10x10 network, denoted M2, receives
inputs from the MIL and MIR networks. Each M2 mini-
column receives feedforward inputs from every MIL
and MIR minicolumn and each MIL and MIR minicol-
umn also receives feedback connections from every M2
minicolumn. This connectivity mimics slowly varying
projections between hypercolumns. Within each array,
every minicolumn makes a center-excitatory/surround-
inhibitory pattern of connections with its neighbors.

Our first experiment was to determine whether we
could achieve self-organization, both with and without
pulsatile inputs. The MIL and MIR results, shown in
Figure 1, demonstrate that we were successful in achiev-
ing self-organization without pulsatile inputs. Each
minicolumn is shaded to indicate the angular location
of inputs to which it responds best. The shading key
in shown in the bottom of the figure. Similarly, the M2
results demonstrate self-organization based on high di-
mensionality pulsatile inputs.

Our second set of experiments explored the propaga-
tion and synchronization-based aggregation capabilities
of our model. The experiments were executed for 30,288
iterations and each stimulus was presented for 24 itera-
tions. Figures 2A-D illustrates activation and synchro-
nization that occurs when the network is presented with
a stimulus after self-organization has begun, but not yet
completed (completed self-organization is shown in Fig-
ure 1). At this stage, we observed that half of the network
became sensitive to half of the input space in all three
networks. Categories were further subdivided at later
stages. Note that synchronization and self-organization
are learned concomitantly. Figure 2A shows the classi-
fication response of each minicolumn in the three net-
works. Minicolumns in the bottom half of MIL and
MIR are strongly activated by the input, as they are in
the right half of M2. The remaining minicolumns are
weakly activated.

Figure 2B shows the inter-pulse period for each mini-
column in the three networks. The strongly activated
minicolumns, rendered from light gray to white in Fig-
ure 2A, share very similar periods. Even minicolumns
receiving large numbers of weak inputs, such as the left
half of M2, converge to a shared period. Due to the
averaging effects in Equation 2, all shared periods de-
rived from large numbers of inputs have similar values.
Weakly activated minicolumns in MIL and MIR have
diverse periods derived primarily from their unique nat-
ural periods. They do not achieve a shared period due
to weak feedback from the left half of M2. This diver-
sity also shows the basis for satisfying the uniqueness
requirement in our model.

Fig. 1. Experimental Setup. Input space (bottom) and two lev-
els of minicolumn classifiers' (middle, top) preferred-
stimulus maps demonstrating self-organization.

The period alone is insufficient to demonstrate syn-
chronization. Figure 2C depicts the pairwise coinci-
dence of pulse reference times. The shades of the
lines between two minicolumn conveys the percentage
of times their pulse reference times varied by less than
4% during a stimulus. The results demonstrate that mini-
columns within strongly activated areas were highly syn-
chronized with each other. In addition, minicolumns in
weakly activated areas of M2 were synchronized with
each other, but out of phase with the strongly activated
M2 minicolumns.

While Figure 2C shows intra-network synchrony, Fig-
ure 2D similarly shows inter-network synchrony. In this
visualization, the networks are arranged in two planes
and all pairs of minicolumns in the network analyzed.
The shaded connections show that minicolumns in the
strongly activated areas of MIL, MIR, and M2 are
synchronized within and between their networks. Fi-
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Fig. 2. Results. A. Minicolumn classification response.
B. Minicolumn inter-pulse interval in response to a
stimulus; C. Minicolumn synchronization within self-
organized networks; D. Minicolumn synchronization
within and between self-organized networks, dark gray
is weak, white is strong.

nally, minicolumns in the weakly activated area of M2
are strongly synchronized with each other and weakly
synchronized with some minicolumns in the weakly
activated areas of MIL and MIR. This demonstrates
that weakly responding minicolumns do not aggregate,
which is important for achieving uniqueness.

5 Conclusions

Our results demonstrate that we have solved two
key requirements for relationship information preserva-
tion: propagation and aggregation of relationship val-
ues across a classification network. However, the re-
quirements of selectivity and uniqueness were not fully
demonstrated because multiple inputs were not simulta-
neously presented.

While the forced interdependence between classifica-
tion and synchronization is not exploited for selectivity
and uniqueness in these experiments, the achievement
of learning with dynamic inputs is noteworthy and non-
trivial. Purely static learning rules are not easily adapted
to dynamic inputs [7]. We have solved this problem by
learning over those inputs which arrive within a time in-
terval corresponding to a particular phase of an internal
oscillation, and by explicitly controlling the relationship
between timing and amplitude. We have achieved self-
organization, with classification contingent upon syn-
chronization, using both a correlation-based learning ap-
proach (Figure 1) and learning rules derived from Koho-
nen map algorithms [1] (results not shown).

The model also allows for the classification of a fea-
ture during a single presentation to become progressively
more dependent on only those inputs that are related to
the emerging classification. Such a mechanism could
allow for more robust classification in the presence of
noise, as the mechanism dynamically ignores inputs that
do not contribute to the classification. The mechanism
should also allow for segregation of nearby features that
are derived from different objects, because it allows for
classification of a feature to become progressively less
a function of those inputs that become more strongly
synchronized with other emerging classifications. This
selectivity is a requirement for solving Rosenblatt's "su-
perposition catastrophe." By propagating relationship in-
formation inferred by classification, this model estab-
lishes a basis for grouping features with objects and ob-
ject discrimination. Experiments using simultaneously
presented objects to test the full range of capabilities of
our model are ongoing.
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Abstract
Auto-Associative neural networks have limited

memory capacity and no classification capability. We
propose a hetero-associative network consisting of a
cumulative-learned forward 3-layer neural network and
a backward 3-layer neural network, and a
hetero-tandem associative network. The hetero-tandem
associative network has a spindle type single
cyclic-associative network with cumulative learning
and is connected in tandem with the subsequent
hetero-associative network. These hetero-associative
networks with classification ability have high
recognition performance as well as rapid attractor
absorption.

Consecutive codification of outputs in the forward
network was found to produce no spurious attractors,
and coarse codification of converged attractors can be
easily identified as training or spurious attractors.

Cumulative learning with prototypes and additive
training data adjacent to prototypes can also drastically
improve associative performance of both the spindle
type single cyclic- and hetero-associative networks,
allowing them to effectively be connected in tandem.

1 Introduction

Studies have been made of various associative
memories. These studies mainly focused on memory
capacity for storing associative states and recognition
performance in terms of the directly attracted state [1,2].
Conventional associative neural network memories
have a limited and relatively small memory capacity
[2,3,7]. Moreover, they have no classification
capability to allow wide expansion of applications.

This paper proposes neural network architectures for
hetero-associative networks with classification and
attractor discrimination abilities. This paper further
describes approaches for attaining large memory
capacity and superior performance through cumulative
learning of a 3-layer neural network with a large
number of hidden layer units. A cumulative-learned
hetero-tandem associative network with spindle type
single cyclic- and hetero-associative networks in

tandem is also proposed. The spindle type associative
network is different from the sand glass type in that the
number of hidden layer unit is much larger than that of
input layer units.

This paper is organized as follows. In Section 2 we
briefly describe the basic configuration of the proposed
hetero-associative networks. In Section 3, we discuss
hetero-associative network models. In Section 4
simulation results are then discussed for various types
of associative networks. In Section 6 we summarize our
findings and draw some conclusions.

2 Basic Configuration of Proposed
Hetero-Associative Networks

2.1 Hetero-associative networks with classification
ability and attractor discrimination

Figure 1 shows the basic configuration of the
proposed hetero-associative network. This network has
a large memory capacity as well as category
classification capability and attractor discrimination.
The associative network consists of a forward network
for category classification, a backward network to
extract an attractor for an associative input X(0) in the
associative loop process, and a discriminator for
converged attractors. The forward and backward
networks are respectively comprised of a 3-layer neural
network having one hidden layer. A set of prototypes
assigned to categories is initially learned by the forward
network. Cumulative learning is then conducted for the
prototypes and additive training data applied to
improve recognition performance. The backward
network can explicitly recall the prototype as a training
attractor corresponding to the category in the form of
its stable equilibrium state. However, additive training
data having a strong correlation to the prototypes
cannot be directly recalled due to its implicit
embedding in the forward neural network.

A ring memory is therefore prepared to extract these
additive training data by using the corresponding
training attractor. A cyclic-associative network is used
for the ring memory to store a number of sequences.
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Each sequence includes the prototype and the additive
training data adjacent to the prototype.

The attractor discriminator is also prepared for the
forward network with coarse codification of binary
outputs such as winner-takes-all codes to reliably
perform processes in the subsequent higher hierarchical
network by utilizing the category output [4].

A hetero-associative network with classification
capability for abstraction or generalization and recall
capability of prototypes for instantiation or
specialization is an attractive means for allowing
complex information to proceed along paths through
higher and/or lower hierarchical neural networks
having top-down and bottom-up directions.

Bottom Up Path

Top Down Path

Fig. 1. Basic configuration of proposed
hetero-associative network.

2.2 Tandem associative network
In the hetero-tandem associative network, a spindle

type single cyclic-associative network is connected in
tandem with the subsequent hetero-associative network
as shown in Fig.2. Both the spindle type associative
network and the forward network in the
hetero-associative network are cumulative-learned to
drastically improve recognition performance. Both the
attracted and distracted outputs of the cyclic-associative
network through the associative loop process are fed
into the forward network. The classified category and
attractor outputs are respectively derived from the
forward and backward networks.

Associative
input SW4 Spindle

3-layered
Neural

Network

SW1

Attractor
output O 4

Forward
Neural

Network

Category
output

o

Backward
Neural

Network

Fig.2. Hetero-tandem associative network with spindle type
single cyclic- and hetero-associative networks.

3 Design Aspects of Hetero- and Spindle
type Associative Networks

3.1 Learning of Forward and Backward 3-layer
Neural Networks

In supervised learning of the forward neural network,

binary codes are assigned as targets to categories in
classifications. M pairs of a training input vector
corresponding to a prototype as a training attractor and
a target vector for classification, given by
{U(1),T(1)},..,{U(M),T(M), m=l,2,.. M, are stored in
the forward network through initial learning and the
cumulative learning. Here, U(m) and T(m) are vectors
whose elements Ur(m), r=l,..R, and Tk(m), k=l,..K take
a binary value {0,1}, where R and K are respectively
the number of input and output units. In the backward
network, M pairs of training data, {T(I),U(1)},..,
{T(M),U(M)}, m=l,.., M, consisting of components
inversely arranged from those for the forward network
are also used for initial learning.

3.1.1 Modified error back-propagation algorithm:
Storage of training attractors as prototypes requires

complete learning by the forward and backward
networks with rapid and stable convergence in binary
space. A modified error back-propagation algorithm
can meet these conditions.

The modified portions in the error back-propagation
algorithm are given in A.

A. Modified error back-propagation algorithm
The modified portions in the error back-propagation
algorithm are only given as follows.
The change of AW\n(ni) to be made to the weight
of Ws

k>n(
m) between n-th unit of the hidden layer (v)

and k-th unit of output layer (s) for the m-th training
input data is given by
AWs

k;n(m)=a(l-7])6s
k(m)Ov

n(m)+r? AWs
k,n(m-l), (1)

where a is the learning rate, 77 is the momentum
rate, and Ov

n(m) is the unit output of n-th unit of the
hidden layer. When the binary unit output of the k-th
unit of the output layer is correct, compared with the
target, Tk(m) {0,1},
8 S

k(m) = (Tk(m) - Os
k(m))(0.25)',0 - g)

{O5
k(m)(l - Os

k(m))}8, (2)
where g is the emphasis rate in the range 0 to 1,
Os

k(m) is the unit output of k-th unit of the output
layer for the m-th training input data.
When the binary output of the k-th unit the output
layer is false, compared with the target, Tk(m), then
8 \(m) = (Tk(m) - Os

k(m)){Os
k(m)(l - Os

k(m))},
if Os

k(m)(l - O s
k(m))^D l i m i t , (3)

= (Tk(m) - Os
k(m)){D l imit},

if Os
k(m)(l - Os

k(m)) < D,imit, (4)
where Diimit is the threshold value for the limiter in
the range 0 to 0.25. The sigmoid function was used
as an activation function.

The limited value of 8 s
k(m) given by Eq.3 and 4 for

the false unit output can easily prevent for the network
to be trapped into a state having tenacious local minima.
The emphasis rate of g given by Eq.2 also accelerates
the convergence speed for the correct unit output.
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The modified back-propagation algorithm in the
3-layer neural network always achieves further more
rapid and ensure stable convergence of very large
numbers of prototypes and additive training data than
does the error-perturbation algorithm [5,6]. The 3-layer
neural network can successfully lean more than 8192
prototypes by using the modified updating algorithm.

3.1.2 Cumulative learning: After the initial
learning of prototypes (prototype-learning), adjacent
data to the prototypes that provide false outputs due to
the generalization property are cumulatively added to
the prototypes as additive training data in the repetitive
cumulative-learning of the forward network. The
cumulative learning is a very attractive method for
significantly improving the rate of generalization [5],
and results in higher performance in hetero-associative
networks. Here, HD1 test data providing false outputs
are extracted by utilizing the generalization property
and cumulatively added as the additive training data.
The cumulative learning is repetitively proceeded until
the HD1 test data becomes entirely correct through the
3-layer neural network.

3.2 Detection of Attractor Convergence
Table 1 lists the relations of inputs, X(j) and outputs,

Y(j) of the forward network for the associative input
X(0) in the j-th associative loop process, and for
discrimination of the converged attractors.

Table 1 Relations of inputs and outputs of forward and
backward networks for associative input in the associative

loop process and for discriminating the attractor.

Number of
associative
loops j

J >j >1

Where J= 10

States of inputs and
outputs of forward
ana backward nets

Converged state
X(0)=X(l),
Y(0)=Y(l),
X(1)=X(2)

Generalized output of
the forward net

Just before
convergence

XG-O * X(j),
Y(j-D = YG),
xo)=x(j+i)

Generalized output of
the backward net

Just before
convergence

X(j-l)*X(j),
YG-1)*YG),
X(j)=X(j+i)

Non-converged state
atJ

X(J-l) *X(J),
Y(J-1)*Y(J),
X(J)*X(J+1)

Index of
code
Y(j)

Allocated

Non-
Allocated

Allocated

Non-
Allocated

Allocated

Non-
Allocated

Non-
Allocated

Attractor

One-Shot
Training

One-Shot
Spurious

Training

Spurious

Training

Spurious

Diverged

At a stable equilibrium state,
Xa-l)=X(j),Y(j-l)=Y(j),andXG)-XG+l) (5)

are respectively satisfied, indicating an attracted state.
Just before converging to this state, either of the
forward or backward network always have the
generalized state at Q-l)th, as shown in Table 1.

If the converged Y(j) is a binary code allocated to the
target, then the output of the backward network, X(j+1)
is discriminated to a one-shot training attractor at j=l or
a training attractor generalized at j>l. If not, the output
is discriminated to a one-shot spurious attractor at j=l
or a spurious attractor generalized at j>l.

The associative input X(0) is training input data only
when the one-shot training attractor is detected. In the
other case, X(0) is always unseen input data.

3.3 Discrimination of Detected Attractor
Spurious attractors generally appear, depending on

the coarse codification for targets in the forward
network and the single cyclic-associative network. The
literal index of binary output of the forward network is
therefore utilized to discriminate whether the binary
output is allocated to a target, or not by the code index
discrimination algorithms given in B.

B. Code Index Discrimination Algorithms
I. Distributed binary codes
The index of a distributed binary code allocated to a
target, Cidx, is generally given by

Cidx = Lidx + CidxMin, (6)
where Lidx is the literal index of a pure-binary code, and
CidxMin and CidxMax are the respective minimum and
maximum numbers among Cidxes.
For distributed binary codification having the
discontinuous index step Q, where Q is a integer larger
than 0,
IF CidxMin ^Oidx(j)^ CidxMax, (7)
Then IF (Oidx(j) - CidxMin) Mod Q = 0, (8)

Then the output is one of the allocated binary codes,
Else the output is a non-allocated binary code,

Else the output is a non-allocated binary code,
where Oidx(j) is the index derived from the binary output
of the forward network in the j-th associative loop
process.

II. Winner-takes-A11 codes (Place codes)
IF Hamming weight = 1 , (9)

Then the output is one of allocated the binary codes,
Else the output is a non-allocated binary code.

If the binary output of Y(j) is one of binary codes
allocated to the targets, then the converged attractor is a
training attractor. If not, then this is a spurious attractor
as summarized in Table 1.

Allocation of binary codes having consecutive literal
indexes to the targets corresponding to categories, such
as pure-binary distributed codes with a compact density,
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are especially effective in preventing the appearance of
spurious attractors, whereas allocatiing of binary codes
with discontinuous indexes produces many spurious
attractors. A coarse codification called Winner-takes-all
or Place Code (One out of M codes) is an attractive
means for achieving higher generalization performance,
though spurious attractors still appear.

4. Simulations

4.1 Simulation Models
In the forward network having R=75 input units, 140

hidden units and K=7 output units, a pure-binary output
representation with the index step Q=l and CidxMin=0
was prepared for a dense codification. The backward
network has K=7 input units, 140 hidden units and
R=75 output units.

To make performance comparisons, 8 bit codes
(K=8) having Q=l with CidxMin=10, and Q=2 with
CidxMin=0 were also prepared for the equivalently
consecutive codification. Furthermore, 9 bit codes
(K=9) of Q=3, and 10 bits of 0=5 with CidxMin=0
were prepared for the discontinuous codification.

A forward network with Place codes was also
prepared as a coarse codification.

Sand glass type and spindle type single
cyclic-associative networks that have the output layer
directly connected to the input layer in the 3-layer
neural network with R=75 input and output units were
used. The spindle type network has 200 hidden units,
whereas the sand glass type network has 75 hidden
units.

4.2 Data sets for training, test and validation
Data sets for training, test and validation were

prepared. The training data set had prototypes
composed from feature vectors having M=128 input
samples. A test data set HD1 adjacent to the training
data set was composed from the input data elements
having a Hamming distance of 1 from the
corresponding prototype. Validation data sets of HDp
having a Hamming distance p, where p is from 2 to 10,
were also prepared to validate performance of the
hetero-associative networks. The sizes of these sets
were respectively 9,598 in HD1, 355,040 in HD2 and
128,000 in HDp, 3 ^ p ^ l 0 . Data sets referenced to
prototypes of 16 Chinese characters given in [3] were
also prepared.

5 Simulation Results and Discussions

5.1 Prototype-learning for associative networks
Retrieval dynamics of hetero-associative networks

for the test and validation data are described in Figures
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Fig.3. Recognition rate of hetero-associative networks for
test and validation data. Here, HD0 indicates the set of

prototypes.
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Fig.4. Rate of detected spurious attractors in HD10
validation data versus number of associative loops.
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9bit_Index Step:3
10bit_Index Step:5
Place Code
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Fig. 5. Rate of detected training attractors in HD10
validation data versus number of associative loops.

3 to 5. The recognition rate includes spurious and
diverged attractors as the false recognition and
therefore corresponds to the generalization rate.
Various types of consecutive codification provide
almost the same recognition rate as shown in Fig.3.
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The coarse codification of the Place Code provided a
recognition rate superior to those from consecutive
codification due to the robust mapping from the hidden
layer output to the coarse binary output of the output
layer.

The coarseness however usually produces the
spurious attractors, as shown in Fig.4. Discrimination
of the spurious attractors providing a false category
output can resolve the defect to process them in the
higher-hierarchical network.

The consecutive codification provided very rapid
attracting ability, and produced only training attractors
with no spurious attractors, as shown in Fig. 5. The
discontinuous codification on the other hand produced
a large amount of spurious attractors, resulting in
degradation of the recognition rate. Discontinuous
codification of Q=5 largely degraded the attractor
absorption, resulted in divergence at J=10.

The Place Code always achieved a very high
percentage of correctness of one-shot training attractors
at j=l . This percentage was as hihg as 99% as a result
of drawing almost all ambiguous associative inputs into
spurious attractors.

The sand glass type single cyclic-associative network
storing 128 training attractors yielded poor recognition
rats, even though an optimum number of 75 hidden
units was used for the generalization rate, as shown in
Fig.3. This is a reason why the number of 128 of the
memorized states is larger than the number of 75 of
input layer units, providing a storage greater than the
random memory capacity for the prototypes [7].

The input feature space was not widely and
separately mapped into the space formed by the hidden
layer to provide coarse binary outputs through the
prototype-learning, even if a larger number of 200 of
the hidden units were used in the spindle type network.

5.2 Cumulative learning of associative networks
Table 2 summarizes the simulated results of the

cumulative learning. The 200 hidden units in the
spindle type cyclic-associative network were required
in order for the cumulative learning to achieve
relatively rapid convergence and higher generalization.

Figure 6 shows the effect of cumulative learning on
the recognition rates. The cumulative learning yielded a
drastic improvement in recognition rates of the spindle
type single cyclic-associative network.

Both the successfully separable mapping from the
input feature space to the huge space of the hidden
layer and the robust mapping from the hidden layer
space to the coarse output space were performed by
cumulative learning of ambiguous data adjacent to
prototypes as the additive training data. The huge
amount of additive training data adjusted the category
boundaries in the hidden layer under the modified error

Table 2 Simulated results of the cumulative learning.

Networks

Forward net:
Consecutive codes,
Prototype-learning

Forward net:
Consecutive codes,

Cumulative
learning

Forward net:
Place Codes,

Prototype-learning
Forward net:
Place Codes,
Cumulative

learning
Sand glass type:

Prototype-learning

Spindle type:
Cumulative

learning

Total
number

of
epochs

65

108

157

198

40

1066

Prototypes M

Additive training
data

128

0

128

560

128

0

128

12

128
0

128

3653

—£r- Place Code
-•—Sand Glass
—D— Pure Binary:cumuiatiw learning

A Place Code:cumulati>e learning
—O— Sf>ndte:cumulati\e learning

HD0 HDl HD2 HD3 HIM HD5 HD6 HD7 HD8 HD9 HD10

Test and Validation Data HDp

Fig.6. Recognition rate of hetero- and spindle type
associative networks having cumulative learning for test and

validation data.

back-propagation algorithm with error perturbation [6]
to expand the prototype data storage capacity,
providing superior associative performance. The
improved generalization property also effectively
reduces spurious attractors.

In the hetero-tandem associative network, all outputs
providing spurious attractors and diverged outputs of
the spindle and sand glass type networks were absorbed
into one-shot training attractors by the subsequent
hetero-associative network with consecutive
codification. These results occurred with 68.1% correct
category outputs in spurious attractors and diverged
outputs of the HD2 (Hamming distance) validation data
and 14.1% in them of the HDl data. Here, the
significantly highest recognition rate was achieved,
while maintaining almost the same properties as in the
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spindle type associative network with cumulative
learning.

Recognition rates of hetero-associative networks are
also described in Fig.7 for a Chinese character set given
by Y. Wu [2]. The numbers of prototypes of M and
input elements of R are respectively 16 and 63. Sand
glass type associative networks by LII methods by Y.
Wu have no feedback loop and utilize optimally
computed weights to provide close winner-takes-all
patterns in the hidden layer (17 units) and eliminate all
spurious attractors. An excellent recognition rate was
obtained for data in the vicinity of the prototypes
whereas proportional rapid degradation was however
observed as the Hamming distance from the prototype
increased.

The sand glass type single cyclic-associative network
with 50 units of the hidden layer achieves a very high
recognition rate due to the small number of prototypes
in comparison with the number of input units, and so
requires only a small memory capacity. It is therefore
not necessary to use a spindle type network.

Hetero- and hetero-tandem associative networks with
cumulative learning again achieved a large
improvement and superior performance over a wide
range of Hamming distances from the prototypes. In
the hetero-tandem associative network with cumulative
learning, only 40 additive training data in the sand glass
type network and 91 in the forward network of the
subsequent hetero-associative network were used
respectively.

30

- o - Sand Glass Modified LII method (*)
- o - Sand Glass:Original LII method(*)
- * - Hetero-Net(Pure Binary): Cumulative learning
- D - Place Code: Cumulative learning
- * - Sand Glass:Single cyclic
- A - Hetero-Tandem Net: Cumulative learning

HDO HD1 HD2 HD3 HD4 HD5 HD6

Test and Validation Data HDp

Fig.7. Recognition rate of hetero-associative networks for
Chinese characters given in [2], and sand glass type

associative networks in [2] are also given by *.

7 Conclusion

We propose hetero-associative networks consisting
of 3-layer neural networks with classification, recall of
prototypes and attractor discrimination abilities. These

networks include a hetero-tandem associative network
having a spindle type single cycle-associative network
connected in tandem with the subsequent
hetero-associative network.

Consecutive codification with a compact code
density of outputs of a forward neural network in the
hetero-associative network provides very rapid
attracting ability and produces only training attractors.
Discontinuous codification on the other hand produces
a large amount of spurious attractors that lower the
recognition rate. These spurious and diverged outputs
are successfully discriminated by the literal indices of
the distributed binary output codes.

A spindle type single cyclic-associative network and
hetero-associative networks having coarseness in
binary codification of 3-layer networks with a large
amount of hidden layer units offer large capacity
memory storage and also achieve very high recognition
rate through cumulative learning with a modified error
back-propagation algorithm.

Simulations also indicate that the hetero-tandem
associative network produces only training attractors
with excellent associative properties, along with the
cumulative learning and the consecutive codification.
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Abstract
This paper proposes the use of Artificial Neural Networks
(ANN) for the prediction of the maximum surface crack
width of precast reinforced concrete beams joined by steel
coupler connectors and anchor bars (jointed beams). Two
different training algorithms are used in this study and their
performances are compared. The first approach used Back
propagation (BPANN) and the second one includes Genetic
Algorithms (GANN) during the training process. Input
and output vectors are designed on the basis of empirical
equations available in the literature to estimate crack widths
in common reinforced concrete (RC) structures and
parameters that characterize the mechanical behavior of RC
beams with overlapped reinforcement. Two well-defined
points of loading are considered in this study to demonstrate
the suitability of this approach in both, a linear and a highly
nonlinear stage of the mechanical response of this type of
structures. Remarkable results were obtained, however, in
all cases the combined Genetic Artificial Neural Network
approach resulted in improved prediction performance over
networks trained by error back propagation.

1 Introduction
Previous studies show applications of artificial neural
networks in the civil engineering field However, as
far as the authors know, this is the first time that this
type of approach is applied to the nonlinear cracking
phenomenon of reinforced concrete structures and
particularly to those structures joined by mechanical
connectors.
This paper briefly describes the experimental program.
It then describes the modeling methodology that is
used to forecast the maximum crack width of jointed
beams.

2 Experimental program
2.1 Materials and specimens description
Twenty four full scale precast RC beams joined by sets
of a cast iron coupler and anchor bars which hereinafter
is called AC-system were cast "ref.l". The
specimens have different geometrical properties,
reinforcement and anchor bars configuration according

with Fig.l (a), Fig.l (b). Mechanical properties of
concrete and AC-System are specified in "ref.l".
The specimens were incrementally, vertically and
statically loaded to failure. Cycles of loading and
unloading were applied to simulate a service load
condition in an attempt to study the external cracking
response of jointed beams. Maximum surface crack
width is evaluated at an anchor bars tensile stress of
200 MPa and 300 MPa as well. Herein after, called
200 MPa cycle and 300 MPa cycle respectively.
A summary of the experimental results is shown in
Table 1.

3 Neural network modeling
The first approach makes use of a feed forward
artificial neural network with error back propagation as
training algorithm, chosen primarily for its simplicity.
Genetic Algorithms are used in the second approach to
select the parameters that control learning in the
Artificial Neural Network models. GA's were
implemented to increase the rate of learning "ref.2"
taking into account the complexity of the problem.

3.1 Artificial Neural Network's topology
Similar procedures were run in order to establish an
appropriate ANN topology in both approaches. This
process consists of evaluating the performance of the
network when the number of hidden neurons is
modified. Fig.2 shows the relation between the
number of hidden neurons and BPANN's response
evaluated for the testing stage in terms of the
correlation coefficient(r). As was expected, the
above-mentioned figure demonstrates that not
necessarily a larger number of neurons in the hidden
layer gives as a result a much more accurate neural
network response since over fitting can be caused by a
large number of connections. Table 2 shows the
topology of the BPANN's and GANN's for 200 MPa
and 300 MPa cycles adopted in this study because of
the above-mentioned process.
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Beam EXPERIMENTAL
RESULTS

Mu
[kN.m] [mm] [mm]

No.Ol

No.02

No.03

No.04

No.05

No.06

No.07

No.08

No.09

No.10

No.ll

No.12

No.13

No.14

No. 15

No.16

No.17

No.18

No. 19

No.20

No.21

No.22

No.23

No.24

235

326

215

197

231

128

219

204

230

198

212

139

179

177

168

188

129

231

239

220

306

320

179

173

0.151

0.279

0.181

0.236

0.161

0.038

0.354

0.456

0.483

0.132

0.274

0.031

0.458

0.512

0.421

0.142

0.013

0.227

0.132

0.196

0.315

0.180

0.194

0.249

0.600

0.717

0.414

0.834

0.546

0.120

1.051

1.024

1.045

0.608

0.744

0.575

1.273

1.292

1.035

0.574

0.723

0.641

0.496

0.533

1.008

0.588

0.709

0.667

Table 1 Data sets summary
CRACKS

ANN I/O VECTORS
200 MPa cycle

INPUT

Eq. (1)

w JSCE

0.1068

0.1061

0.1292

0.1180

0.0879

0.0315

0.2140

0.3361

0.2910

0.1159

0.1310

0.0548

0.2952

0.3770

0.2096

0.1210

0.0463

0.113

0.110

0.112

0.224

0.110

0.103

0.126

Eq. (2)

Cs / Cr

0.2375

0.1782

0.3166

0.2500

0.1900

0.3350

0.2010

0.2231

0.2510

0.4068

0.2380

0.1900

0.2010

0.2375

0.4021

0.4020

0.2010

0.258

0.300

0.360

0.300

0.292

0.212

0.243

OUTPUT

Exp.

W200MPa

0.151

0.279

0.181

0.236

0.161

0.038

0.354

0.456

0.483

0.132

0.274

0.031

0.458

0.512

0.421

0.142

0.013

0.227

0.132

0.196

0.315

0.180

0.194

0.249

300 MPa cycle

INPUT

Eq. (1)

w JSCE

0.4270

0.3902

0.4403

0.9107

0.3535

0.1157

0.7328

0.8748

0.7974

0.4661

0.5624

0.5098

0.9172

0.9156

0.6713

0.4507

0.8087

0.286

0.235

0.297

0.256

0.287

0.267

0.281

Eq. (11)

Cs / Cr

0.2375

0.1782

0.3167

0.2500

0.1900

0.3351

0.2011

0.2232

0.251

0.4069

0.2375

0.1900

0.2011

0.2375

0.4021

0.4021

0.2011

0.258

0.300

0.360

0.300

0.292

0.212

0.243

OUTPUT
Exp.

W300MPa / C

0.0104

0.0122

0.0072

0.0145

0.0093

0.0022

0.0178

0.0174

0.0177

0.0106

0.0126

0.0097

0.0209

0.0212

0.0180

0.0100

0.0123

0.0085

0.0066

0.0071

0.0126

0.0078

0.0094

0.0088

Notation: Mu: Ultimate bending moment; w: Maximum surface crack width; I/O: Input/Output vectors
Pa:Crack width at the 200MPa and 300MPa cycle, c: Concrete cover thickness Cs,Cr as Fig. 1 (b)
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Maximum surface crack width - 200MPa cycle
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Table 2

BPANN
GANN

Neural Network Topology
200 MPa

2-12-1
2-60-1

300 MPa
2-24-1
2-72-1

Here, 2-12-1: Neurons in input layer = 2,
Neurons in hidden layer = 12,
Neurons in output layer = 1.

3.2 Data set division
Table 1 reports the summary of experimental results of
ultimate bending moment and maximum surface crack
width at service load conditions. This study follows
the criteria given by Shahin "ref.3"for data set division.
The application of BPANN's and GANN's to study the
flexural response of jointed beams uses seventeen
beams for training and seven beams for verification.
It is about 70% of the available data for training and
about 30% of the data set for testing.

3.3 Mapping relationships
Identical mapping relationships are used for both
models. Due to the nature of the experimental data,
certain differences have been established for the input
and output vectors of the 300MPa cycle.

3.3.1 Crack width prediction - 200 MPa cycle
The design of input and output vectors is based on Eq.
(1) and Eq. (2). Eq. (1) is recommended by the
Japan Society of Civil Engineers (JSCE) "ref.4" to
evaluate maximum surface crack width of conventional
RC beams undergoing flexural actions. The left term
of this equation and the relation between the anchor
bars and main reinforcement spacing evaluated by Eq.
(2) are used to feed the input layer. Eq. (2) is
proposed in this paper to include in the ANN model the
effect of reinforcement spacing in noncontact lap
splices to the cracking response of RC structures. The
experimental value of maximum surface crack width of
jointed beams is utilized as output to train the network.
The aim is to find a mapping relationship between the

input vector and the desired output during training
before forecasting the maximum surface crack width
for an untrained input instance during verification.

{4.c +

S = ^

Where,

0.7

S:
w:
c:
Cs

cr

£<

Reinforcement spacing relation,
maximum surface crack width,
concrete cover thickness,

: anchor bars spacing,
: main reinforcement spacing,
: anchor bars diameter,

{: anchor bars strain at the middle

(i)

(2)

span

Table 3 reports the neural network response for the
testing data set of both training methods. 30000
epochs where used as stopping criteria for the standard
back propagation algorithm and it took 34 seconds on a
1 GHz personal computer. On the other hand, the GA
training obtains its better population of connection
weights at 29000 epochs. However, it took 41
seconds, to achieve this result. As it could have
been expected, longer computer processing time is
required. Nevertheless, the GANN shows a significant
improvement (Average = 3%) with respect to its
counterpart the standard back propagation ANN
regarding the high level of nonlinearity present in this
phenomenon.

3.3.2 Crack width prediction - 300 MPa cycle
The experimental value of maximum surface crack
width for the 300 MPa cycle reported cracks larger
than 1.0mm. This fact introduces an additional step
into the data set processing stage. As can be observed
in Table 3 and Table 5 the output vector was
normalized in terms of the cover thickness (c). It
responds to the fact that the sigmoid function used for
each neuron as transference function modulates their
outputs into the close interval [0,1] "ref.5". The
learning process (Fig. 3) uses the left term of Eq. (1)
evaluated at 300MPa and the value given by Eq. (2) as
input. On the other hand, the experimental value of
maximum surface crack width normalized with respect
to the concrete cover thickness (c) is used as output
vector during training.
In the case of the standard back propagation training,
30000 epochs were used as stopping criteria for the
training process, which took approximately 13 seconds.
Its counterpart the ANN with genetic training needed
30000 epochs and 30 seconds to give its results. Table
4 shows the predicted values of maximum surface
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Table 3 Crack width

No.03
No.04
No.05
No. 13
No. 17
No. 18
No.24

Eq. (1)
Left
term

0.129
0.118
0.088
0.295
0.113
0.110
0.103

Eq. (2)
Cr/Cs

0.317
0.250
0.190
0.201
0.258
0.300
0.212

prediction at 200MPa cycle

\

Exp

0.181
0.236
0.161
0.458
0.227
0.132
0.194

ViooMpJmm]

Prediction

ANN GANN
0.232 0.222
0.217 0.221
0.158 0.160
0.439 0.448
0.200 0.202
0.171 0.171
0.191 0.194

Maximum surface crack width at 200MPa cycle

Table 4 Crack width prediction at 300MPa

No.04
No.08
No. 12
No. 16
No. 19

No.23
No.24

Eq. (1)
Left
term

0.9107
0.8784
0.5098
0.4507
0.235
0.267
0.2810

Eq. (2)
Cr/Cs

0.250
0.223
0.190
0.402
0.300
0.212
0.243

W

experiment

0.0145
0.0174
0.0097
0.0100
0.0066
0.0094
0.0088

300MPa/C

prediction

ANN
0.0145
0.0151
0.0126
0.0107
0.0068
0.0084
0.0082

GANN
0.0145
0.0187
0.0122
0.0100
0.0071
0.0092
0.0088

W3OoMPa- Maximum surface crack width at 300MPa cycle;
C: concrete cover thickness

Input
Layer

Hidden
Layer

Fig. 3 ANN for forecasting crack width at 300MPa

crack width for the 300 MPa cycle, where an average
improvement of 7% achieved with the GANN can be
clearly observed.
The 300MPa case represents a stage of loading close to
the yielding of reinforcement. It presents a much higher
level of nonlinearity than the case of 200MPa, so that
both cases have been treated separately and the larger
number of neurons reported for the 300MPa cycle may
be a consequence of this fact.

4 Conclusions
1) The genetic training resulted in improved
prediction performance over the predictions of its
counterpart the network trained by standard error
backpropagation. An average of 7% for the 300MPa
is significant considering the high level of nonlinearity
present at this level of stresses.
2) A combination of ANN's and equations proposed
for normal beams proved to be suitable to predict a
nonlinear phenomenon such as the cracking behaviour
of jointed beams in spite of the limitations imposed by
those equations.
3) The case of 300MPa requires more neurons than
those required for the 200MPa. It is probably due to
the higher level of nonlinearity presented at the
300MPa case with respect to the 200MPa case.
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Abstract
This paper presents the elaboration and validation of "soft
sensor" using neural networks for on-line estimation of the
coagulation dose from raw water characteristics. The main
parameters influencing the coagulant dosage are firstly
determined via a PCA. A brief description of the
methodology used for the synthesis of neural model is
given and experimental results are included. The training of
the neural network is performed using the Weight Decay
regularization in combination with Levenberg-Marquardt
method. The performance of this soft sensor is illustrated
with real data.

1 Introduction
Drinking water is the most essential element for
mankind. The coagulation process which requires the
addition of chemical coagulant is the critical process
in the drinking water treatment. The control of a good
coagulation is essential for maintenance of
satisfactory treated water quality and economic plant
operation. Basically, coagulant dosage is chosen
empirically by operators based on their past
experience, laboratory jar-testing and various
information on water quality parameters. The jar-test
apparatus simulates mixing, flocculation, setting, and
a single test may take about one hour to be
performed. Disadvantages associated with jar-testing
are that regular samples have to be taken requiring
manual intervention and operators can make
manually in raw water quality. There is no
mechanistic model describing the coagulant dosage
related to the different variables affecting the process.
Consequently, there is a need for a fast and reliable
method for determining the required coagulant rate
which can be used instead of the jar-test analysis.
Artificial neural networks are ideal solution for our
problem because of their features. They take data and
learn underlying relationships, even if the
relationships are difficult to find and describe. They
do not require a priori precise knowledge on the
relationships of the process variables. Various
applications of these models have been recently
reported in the drinking water treatment industry (as

examples: the forecasting of drinking water [1,2], the
prediction of the coagulant dosing [3,4, 5]).
This investigation aims to develop a soft sensor for
the on-line estimation of optimal coagulant dosage
from raw water characteristics. Previous research
show the efficiency of a such approach using neural
networks [3, 4].
This paper is organised as follows: First, a brief
description of neural network is presented. Then the
drinking water treatment process is described. In the
subsequent section, the neural software sensor for the
on-line estimation of the coagulant dosage is
developed. Finally, experimental results are
presented.

2 Neural Networks
Neural networks are known to be able to successfully
represent complex functions in various fields. There
are a wide variety of artificial neural networks
existing in the literature, of which the feedforward
structure is one of the most commonly used in
modelling and control. Feedforward neural networks,
such as the multilayer perceptron, consist usually of
many simple processing elements arranged in layers
as shown in Figure 1. Each element takes its input
from the weighted sum of the outputs of the elements
of the previous layer. This input is then passed
through a nonlinear function, often called the
activation function, to form the element's output.
In this study, a three layer feedforward neural
network has been adopted : it has been shown that is
a network with a single hidden layer ( as shown in
figure. 1) can simulate any continuous function.

Fig 1. Feedforward neural network
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The neural network models consist of the following
set of equations:

where O, denotes the network outputs, Hj the

hidden neurons outputs, /,• the network inputs,

Htythe weights between the input layer and the

hidden layer and w^ the weights between the hidden

layer and the output layer.
Training of the neural network involves adjusting the
weights Wy and w & by using the backpropagation

learning algorithm [6], so that the network emulates
the non-linear function underlying the training data
set. The network weights are adjusted by minimising
the following criteria derived from the difference
between real and neural outputs respectively / and O .

i N

(2)

3 Water treatment process
The plant of drinking water treatment concerned by
this study is the drinking water treatment plant
Rocade located in Marrakech. It provides water to
more than 1,5 millions inhabitants. Raw water is
extracted from the channel Rocade. In case of
resource failure (raw, pollution...), the treatment plant
takes the raw water from a pumping plant
Takerkoust. 60% of city needs are assured by the
treatment plant, the complement is brought by the
underground resources (well, drilling...). It has a
nominal capacity to process 1400 1/sec of water. The
treated water is stored in two tanks and transported
toward the water supply network.
The drinking treatment plant involves physical and
chemical processes. The figure 2 presents a schematic
overview of the various operations necessary to treat
the raw water at the Rocade water treatment plant of
Marrakech. The treatment consists in essentially of
first disinfection, coagulation-flocculation, settling,
filtration and final disinfection.

4 Prediction of Coagulant Dosage
The coagulation process involves many complex
physical and chemical phenomena which are difficult
to model using mechanistic and chemical phenomena
traditional description. The coagulant dose ensuring
optimal treatment efficiency has been shown
experimentally to be non-linearly correlated to raw

water characteristics which are usually available on
line.
A neural soft sensor for the prediction of coagulant
dosage is developed in too stages. The Factorial
Analysis in Principal Component method (APC) is
firstly applied to determine the main parameters
affecting the prediction of the optimal coagulant
dosage. These parameters will be then considered as
the input variables of the neural model for which the
training algorithm will be performed.
As far as the dimensional analysis is concerned, 9
describers of the raw water quality (temperature, pH,
turbidity, total carbonates, total suspend solids (TSS),
oxydability, dissolved oxygen, conductivity and the
coagulant dosage (passive parameter)) are used. A
number of 89 samples have been used like
individuals. Every sample underwent different
physical and chemical analysis as well as to the jar-
testing to determine the coagulant rate. The process
of simplification would allowed in the plan to extract
the following variables: temperature, pH, TSS,
dissolved oxygen and conductivity.

4.1 Neural soft sensor training
The neural network used for modelling of the
coagulant dosage is a MLP type. Note that the
network inputs are the observed values of the retained
raw water quality parameters.
For the determination of the architecture network, the
pruning approach "Weight Decay" [7, 8] is used,
starting from a relatively large network then
removing connections in order to arrive at a suitable
network architecture [9, 10]. This approach, allowing
to eliminate the weak weights, consists in adjusting
the weights using the new performance function
instead of C defined in (2):

Where Y
(3)

(4)

n is the number of weight network, Ct is a parameter
that determines the importance of the two terms in the
new performance function C\w). Using this
performance functions will cause the network to have
smaller weights and biases, and this will force the
network response to be smoother and less likely to
overfit. This method presents the advantage to be
simple to implement, since the gradient of Cf can be
very easily calculated from the gradient of C and
from network weights. It is sufficient to add the
quantity ocw to the gradient vector VC calculated
by the Back-propagation algorithm:

VC=VC+aw (5)
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Fig. 2. Simplified synopsis of water treatment plant
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Fig. 5. Correlation between neural coagulant dosing rate and real data.
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5 Results and discussion
The experimental data of four years (2511 samples,
from January 2000 to July 2003) have been used to
establish the neural model as the basis of a coagulant
dosing estimation software. For the conductivity and
the oxygen dissolved, invalid data have been removed
and missing ones have been replaced.
75% of the global data is used for the network
training and the remainder (25%) for validating the
neural model. The obtained networks consist of five
inputs, a single hidden layer with 18 sigmoidal
neurones and one linear output. The neural model
have been built using the regularisation method in
combination with Levenberg-Marquardt training
algorithm. It has 127 connections in the beginning of
training. The advantage of this algorithm is that it
provides a measure of how many weights of the
network are efficiently used by the network. In our
case, the final qualified network uses approximately
82 weights (fig 3), out of the 127 total weights in the
5-18-1 network.
The figure 4 shows the validation of the neural
model. We notice that the coagulant dosage computed
with the neural network model is very smoothed to
the real data. Consequently, the neural network
generalizes well to new data. The obtained sum of the
squared error is 0.007. Figure 5 shows the correlation
between neural output and real data. The correlation
coefficient computed on the validation set is equal to
0.94.

6 Conclusion
A software sensor based on neural network model has
been described. We showed in this paper that the
coagulant dosing is non-linearly correlated to the raw
water characteristics such as TSS, temperature, pH,
conductivity and dissolved oxygen. Experimental
results using the data raw water plant showed the
efficiency and soundness of this approach. The
performance of the network depend on the quality
and the completeness of data provided for training the
system. To take into account of the uncertainty
bound, we expect to apply the Bootstrap sampling
approach for the evaluation of uncertainty measure
related to the neural prediction.
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Abstract
A silver/alumina catalyst was tested for its NOX

reduction activity during oxygen-rich conditions and
during variation in the input parameters (nitric oxide,
octane and oxygen). A multi-bed approach was tested
where the initial bed was divided into four beds acting
in different temperature rages. The experimental data
were investigated by means of artificial neural
networks that were demonstrated to be able to model
the process.

1 Introduction
Combustion of fossil fuels in vehicle engines produces
environmentally harmful or unwanted exhaust gases,
such as nitrogen and carbon oxides. Fuel-efficient
engines operate under lean conditions, i.e. with a large
excess of oxygen. This results in an enhanced
formation of nitrogen oxides (NOX), mainly nitrogen
monoxide (NO) and nitrogen dioxide (NO2), which
should be converted to nitrogen (N2). We are
investigating a potential method of selective reduction
of NO by hydrocarbons (HC-SCR) in the presence of
excess oxygen, which is capable of removing NOX from
different exhausts.

Among all environmental problems, NOX elimination
from the exhaust of diesel and lean-burn otto engines is
one of the most urgent. As the HC-SCR-method, in
contrast to the alternative, i.e. complicated NOx-storage
technique, can be considered an ultimate solution to the
catalytic after-treatment of exhaust gases from these
lean-burn engines, this is the subject of our present
investigation. We have used artificial neural networks
to model the still complex behavior of the HC-SCR,
some results of which are shown in Figure 1.

2 Experiments and ANN approach

2.1 Setup of the experiments
Initially, separate activity tests were performed with
one catalyst bed and with a multi-bed reactor concept,
where one bed was divided into four beds in the
temperature range 300 °C - 550 °C with steps of 50 °C.
In these experiments data points were obtained by 1)
varying either nitrogen monoxide or octane
concentration, keeping the concentration of O2 constant
and 2) by changing the C8Hi8/NO concentrations pair-
wise, keeping the O2 concentration constant and 3) by
keeping both NO and C8H18 constant but varying the
incoming O2 concentration. The following gas
concentrations were applied: 375 - 500 - 1000 ppm
NO, 134 - 187.5 - 375 - 500 - 750 ppm C8H18 and 1 -
12vol.%O2.

2.2 Reaction mechanism
On the basis of earlier studies [1,2], the simplified
heterogeneous-homogeneous reaction mechanism of
Fig. 3 is proposed for the system at hand. In this
mechanism different surface species, such as nitro-
compounds, R-NCO and nitriles, are formed through
reaction of hydrocarbons with NO and O2 over the
Ag/alumina, and are further transformed into amine
and/or ammonia, which desorb into the gas phase. The
ammonia and amine species react in the gas phase
together with activated NOX species to form N2. The
activation of NO takes place over the catalyst and is
accelerated by suitable reducing agents. Thus, the gas
phase reaction is a crucial part of the complete HC-
SCR mechanism.
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2.3 Neural Network Modeling
The results obtained from the experiments were
investigated using a neural network model. Training of
the networks were performed by means of the NNDT
software [3], using cross validation to verify the
models. The experiments with four beds were divided
into one group with 83 experiments for training and
another group with eight experiments for testing. All
networks used had four inputs and four outputs and
sigmoidal activation of the nodes in the hidden layer.
The inputs were the temperature and the incoming
concentrations of NO, octane and O2, while the outputs
to be predicted were the outgoing concentrations of
N2, CO, O2 and CO2.

In an earlier study with the single-bed concept [4]
neural networks were found to provide a good
description of the one-bed reactor concept. The present
study focuses on the possibilities to further optimise the
reactor by using a more accurate description of the
process. By an accurate (neural) model it is possible to
monitor the measurements during an ongoing
experimental plan, to discover outliers in the data and
to improve and revile reaction structures. The last issue
is important since the interacting gas-phase and the
heterogeneous chemical reaction network can be
continuously improved using different concepts of
structure and chemical properties of the bed.

3 Results and Discussion

Training was performed on data for the bed
temperatures 300, 400, 450, 500 and 550°C, while the
test series were carried out at 350°C using the four bed
concept. The problem was tackled by an architecture
consisting of two parallel networks, one for simple
nitrogen conversion estimation and another more
complex for all the final products. A typical training
result is reported in Table 1, where the weights are
given for the simple network model with nitrogen
conversion as its single output. The fit is good, as can
be seen in Figure 4. Overfitting, which appeared in the
model applied for the single bed concept (cf. Fig. 2) has
been reduced and the novel model is able to explain
also the low- and high-temperature regions well, as is
seen in Fig. 5. However, more experiments should be
made by varying the distance between the beds of

catalyst, before the model is used for a final optimal
reactor construction. Since the area between two beds
of catalyst is of utmost importance for increasing the
low temperature efficiency this must be included in the
model. Another new feature to be considered is to vary
the type of intermediate beds to get the optimum
conditions at each stage.
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Fig. 1. Four-beds of Ag/alumina vs. single bed.
Catalyst mass = 0.4 g, C}/NOX = 6 .
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Average model, temperature effects,
octane 750/500/200 ppm and

NO 1000/500 ppm at 60 000 ppm oxygen

Fig.2. Conversion of NO to N2, using the average value model for the one-catalyst bed.

HC + O2 + NO

Fig. 3. Simplified reaction scheme for C8Hi8-SCR over Ag/alumina catalyst.
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Experimental N-, out scaled

Fig. 4. Comparison between measured and estimated outgoing concentration of N2 in the four-bed concept.
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Two network model, temperature effects.
Octane 750/500/200 ppm.

NO 1000/500 ppm at 6% oxygen.

Figure 5. Results of the model of the conversion of nitrogen oxide at different temperatures.

Table 1 Weights of a 4-5-1 network predicting nitrogen release only. The first weigh "matrix" gives the lower layer weights,

where each row corresponds to the weights to a hidden node (and the first column to biases), while the last row gives the

corresponding upper layer weights to the single output node.

-21.1129

-0.72449

2.292501

4.33179

-0.13595

17.93223

0.189899

-2.68317

-4.58947

-0.76213
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-7.32542
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Abstract
When models are developed to aid the decision making in the
operation of industrial processes, lack of understanding of the
underlying mechanisms can make a first-principles modeling
approach infeasible. An alternative is to develop a black-box
model on the basis of historical data, and neural networks can be
used for this purpose to cope with nonlinearities. Since
numerous factors may influence the variables to be modeled,
and all potential inputs cannot be considered, one may instead
solely focus on occasions where the (input or output) variables
exhibit larger changes. The paper describes a modeling method
by which historical data can be interpreted with respect to
changes in key variables, yielding a model that is well suited for
analysis of how changes in the input variables affect the outputs.

1 Introduction
Industrial processes are generally complex and the
number of variables that potentially affect the product
quality is often large. Mathematical modeling can be used
as a tool for throwing light on the interrelationships
between measured variables in order to improve the
process performance. However, it is not always possible
to develop a first principles model, because the underlying
mechanisms might not be known well enough to make this
approach feasible. On the other hand, perturbation
experiments of the input variables that would shed light
on their relations to the outputs are seldom allowed in
industrial plants. If historical data from the process is
available, an alternative is to make a data-driven approach
where a black-box model is developed; today, neural
networks have become popular tools for such nonlinear
modeling. A drawback is that there are numerous factors
that potentially influence the variables to be modeled
(e.g., product quality) and the number of available
observations ("data points") may, furthermore, be limited.
The low degree of freedom can be tackled by constraining
the input variable dimension and therefore it is no longer
desired to capture all changes in the outputs by the model.
An alternative is to focus the data analysis on occasions
where the (input or output) variables exhibit larger
changes or upsets, and use only such information in the
modeling. This approach is also justified by the fact that
process variables often drift in time, so their absolute
values are not necessary important, but, instead, their

relative changes should be considered. The method
described in this paper is designed to use historical data
from complex processes to interpret changes in key
variables and to use the information in a consecutive
modeling stage. The resulting model is therefore expected
to be well suited for what-if analysis of how changes in
the "input" variables affect the outputs.

2 The Problem

2.1 The Blast Furnace Process
Data from an industrial iron making blast furnace is
studied in this work [1]. Due to the complexity of the
process it is very difficult, if not impossible, to isolate the
effect of changes in a single (input) variable on the
product quality. In general, many variables change more
or less simultaneously so the influence of one variable is
easily lost in the noise of the output signals. The process
is, therefore, well suited to be tackled using the proposed
technique. In this paper, data from a Finnish blast furnace
are used in a study where the effect of the properties of
the main energy source in the process, metallurgical coke,
as well as the injection rate of the auxiliary fuel, oil, on
the quality of the product, pig iron, is analyzed. The
inputs are variables that characterize the energy input,
such as the alkali content, size and strength of coke, while
the outputs are the key alloying components in pig iron,
i.e., carbon, silicon and sulfur.

2.2 Formulation of the problem
Because of the relatively slow dynamics of the blast
furnace process with respect to changes in the charged
material, a change in a variable was expressed as the
difference between three-week mean values separated by a
two-week period. These mean values were considered
sufficient to filter out single odd measurements and also to
make sure that the values reflected a relatively stable state
of the blast furnace. The two-week delay between the
periods was introduced to give time for possible changes
to influence the process. The above filtering method was
also governed by the fact that coke properties were
reported weekly. The blast furnace measurement
variables, in turn, are daily mean values, which were
aggregated to weekly mean values. Denoting the weekly
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mean value of theyth variable at week i by xf(i), the

change is given by

k=i-4

£
Figure 1 illustrates the how the three-week mean values
(depicted by horizontal solid lines) around the present
point, i (=184), are considered in expressing the change in
the coke strength after reaction (CSR).
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Figure 1. Changes in coke strength after reaction, CSR.

A change is calculated for every week in the data for both
the model inputs and outputs. For the available data
period spanning roughly seven years of operation of the
blast furnace, the total number of weekly observations was
about 360. The resulting changes in the values of the coke
strength are illustrated in Fig. 2. Clearly, the variable
exhibits a number of smaller and larger changes in both
directions, characterized by spikes in the figure.

As mentioned earlier, the idea was to concentrate on
major changes only. Therefore, every local minimum and
maximum of the changes in the input variables is selected
for further analysis. At this stage limits can be set for the
accepted minima and maxima, e.g., if ACSR e
(-1%,+1%) it could be considered as insignificant and
rejected from the analysis. Application of this rule (cf.
dashed lines in Fig. 2) yields about 70 major changes in
the CSR values.

After the extreme values have been selected, the
corresponding time instants are noted and combined with
the time instants detected by the same procedure applied
on the other inputs variables. Finally, a data set of changes
of the inputs and outputs for all these time instants can be
created. Figure 3 shows an example of the evolution of the
changes in the five inputs during a period of 30 weeks,
and a time instant (z=196) where the coke strength (CSR)
shows a local maximum. The values of the changes in all

five inputs variables, as well as the changes in the outputs,
correspond to one row in the data series created for the
forthcoming analysis.

50 100 150 200 250 300 350 400 450

Figure 2. Changes in CSR values during the data period.

205 210

Figure 3. Example on A-values for five variables (inputs).

Before the modeling step, each variable (i.e., column of
the data file) is normalized by dividing the values by the
estimated standard deviation, s, of the variable in
question: Thus, the new value of they'th variable at week k
is given by

/ (2)

After normalization, any row (i.e., week) containing at
least one value £ (-3,+3) was removed, because such
values were considered extreme and not meaningful to
include in the model. For the system studied, this implied
a rejection of about 7 % of the observations

3 Modeling
The information extracted by the procedure outlined in the
previous section was used for developing black-box
models of the relations between changes in fuel
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characteristics and in pig iron composition. The modeling
was carried out using feedforward neural networks, with
five inputs (cf. Fig. 3) and three outputs (cf. Fig. 4).
Because of the restricted number of observations in the
training set, the number of hidden neurons was limited to
four. The networks entertained were trained with a hybrid
algorithm that used a genetic algorithm (GA) to optimize
the weights and connections between the input layer and
the hidden layer, while linear least squares was applied to
optimize the weights to the output nodes [2]. A penalty on
the complexity of the network was added to the objective
function, so the algorithm prefers simple networks (i.e.,
with few connections). Therefore, it also takes a stand on
whether inputs are relevant for the model or not. Five
different data sets of training and testing were created, by
excluding a given share of the data from the training set
and using it in the test set instead. The points in this test
set were chosen by random. A neural model was
developed for every such choice of training/test sets,
partly to tackle the problem caused by the limited size of
the available data set, which makes the performance of the
models sensitive to the choice of test data. Another reason
for developing multiple models was that the GA training
of the lower layer weights was expected to yield quite
different models. Figure 4 shows the results of one of the
models on the training data for the three (normalized)
outputs. Clearly, the model has not even been able to
capture the major changes in the outputs, but this is, in
fact, a desired feature, since numerous other factors
(shutdowns, internal disturbances, etc.) also affect the hot
metal chemistry. The fit in the lowest subpanel is poor, for
reasons to be discussed in the next section.

4 Model analysis
The trained networks can next be used to analyze how the
inputs influence the outputs. The analysis was done by
allowing one (normalized) input at a time to change from
-3 to 3 and registering the behavior of the outputs,
keeping all other inputs at zero.

Since both inputs and outputs express (normalized)
changes in the corresponding variables, this analysis will
reveal how a change in, e.g., coke particle size is reflected
in, e.g., pig iron carbon content.

4.1 General results
Figure 5 shows an example of the outcome of such an
analysis, where the five curves in each subpanel
correspond to the results of the models developed on the
five different data sets; the consensus between the
different models is seen to be acceptable. In studying the

results one can note that a horizontal line may imply that
the current input is of little importance or that it has been
excluded from the model by the GA training. Another
noteworthy fact is that behavior at the edges (i.e., close to
±3 for the inputs) is rather uncertain, because such values
are scarce in the training data.

20 40 60 80 100 120 140

Figure 4. Example on the model's fit on the training data (-
desired output, model output).

An analysis of the figure also shows that in some cases the
resulting change is either negative or positive independent
of the value of the input variable. This would imply that
whatever happens to the input, there would be a transition
in the outputs. This is an undesired feature that arises due
to the assumption of independence of the input variables.
A simple way to resolve the problem is to shift the
relations so that no change in the fuel characteristics (i.e.,
an input of zero) will yield a constant composition (i.e., a
zero change in the output). After this correction, the
results of Fig. 6 were obtained, and these will be briefly
analyzed in the following.
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ACSR AAlkali content Alnj. Oil

Figure 5. Interpretation of the interrelations between changes in
the inputs and changes in the outputs provided by the neural
models.
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Figure 6. Interpretation of the interrelations between changes in
the inputs and outputs with removed bias.

pig iron are strongly dependent on the physical conditions
in the lower part of the blast furnace, where coke is the
only remaining solid. Yet another feature is that the
silicon content is not much affected by the inputs (except
CSR), which is in agreement with the fact that the silicon
content is mainly determined by the fuel rate and not so
much by the coke properties. The clear effect of a change
in injected oil on the change in pig iron carbon content
can be explained by the fact that when oil injection is
increased the amount of coke charged into the furnace
decreases, and the contact between liquid iron and coke is
therefore also decreased.

5 Conclusions
The paper has described a modeling method by which
historical data from complex processes can be interpreted
with respect to changes in key variables. Neural networks
have been used as modeling tools and the technique has
been illustrated on process data from ironmaking industry.
The findings of the study are in general agreement with
practical experience, even though some of the detected
interrelations, e.g. the one between ACSR and AC, call for
a deeper analysis. Forthcoming work will include a more
detailed analysis of how coke properties affect other
central blast furnace variables.

Figure 7. Interrelations between changes in the inputs, with lines
representing linear relations.

Since the inputs are not independent linear correlations
between them were determined and considered in the
analysis. Using the correlations depicted by the lines in
Fig. 7, the outcome was, however, almost identical with
the one presented in Fig. 6. The obvious reason for this is
the relatively weak correlations between the inputs (cf.
Fig. 7).

4.2 Specific results

The ash content of the coke is seen to have little influence
on the product quality. Since the ash content changes only
gradually in the plant, the blast furnace operators have
possibilities to consider these changes in time. Another
observation is that the changes in the carbon and sulfur
contents are strongly negatively correlated. This is in line
with practical knowledge of the system at hand [3,4]. It
should be pointed out that the carbon and sulfur content of
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Abstract

Neural network based predictive data mining tech-
niques are used to find relationships between rubber
compound parameters obtained by rheological and me-
chanical tests. The preprocessing methods appropriate
to the problem are also introduced. Good prediction
of different rubber compound parameters evidently indi-
cate that the majority of rubber compounds' mechanical
properties can be devised from the rheological measure-
ments of cross-linking process.

1 Introduction

Data mining, also known as knowledge discovery in
databases (KDD), is an automated extraction of knowl-
edge implicitly stored in large databases [1]. Very often
the goal of data mining is to predict future trends and be-
haviours, allowing businesses to make knowledge-driven
decisions. Predictive data mining tools search databases
for hidden parameters, finding predictive information
that experts may miss. Lately, neural networks as gen-
eral nonparametric and robust models, designed to find
nonlinear relations between specified input-output pairs
[2], are becoming more and more popular in pure data
mining applications. Especially when the prediction is
the ultimate goal of data mining, neural networks can be
seriously considered as an appropriate model [3], mainly
due to their good generalization properties.

In rubber industry, the quality of rubber products sig-
nificantly depends on the quality of rubber compounds.
Therefore, instantly after mixing, the rubber compounds
are rigorously tested in order to determine whether they
are good enough to be released for further production.
The most important parameters that determine the qual-
ity of rubber compounds are measured by variety of rhe-
ological and mechanical tests. While rheological tests
are quickly performed on raw compounds, mechanical
tests performed on vulcanizates are very time consum-
ing. Thus, the main idea of this work is to quest for
strong relationships between rheological and mechani-
cal tests in order to reduce the latter to the minimum or
even completely abandon them.

A brief overview of predictive data mining and neu-
ral networks is given in the next section. In the third
section the data mining on rubber compound database is
outlined. In section four the experimental setup and re-
sults in terms of prediction accuracy are given. The main
findings are drawn in the last section.

2 Predictive data mining and neural networks
The process of predictive data mining consists of three

stages [4]: the initial data exploration, model building
with validation/verification, and deployment, outlined in
Fig. 1. Exploration, as the first stage of data mining, may

Raw data

i
Data selection and

preprocessing

NN predictive
data mining

Evaluation
and interpretation

1 The work is sponsored in part by Slovenian Ministry of Education,
Science and Sport by grants V2-0886, L2-6460 and L2-6143.

Fig. 1. Data mining process

involve data cleaning to remove noise and correct incon-
sistencies in the data [1], extraction of the target data set
or even more target data subsets and data transforma-
tions, such as normalization. The second stage involves
a model building and validation. Depending on the na-
ture of the problem, it may include also a choice of ap-
propriate prediction models. Various models are tested
in this phase and the best one, based on specified crite-
rion function, is chosen. In the last stage, the obtained
model enables prediction and consequent interpretation
of results from new input data.

In our prediction modeling, feed-forward neural net-
works, multilayered perceptrons (MLP), are used. Feed-
forward neural networks [5] are designed to find non-
linear relations between specified input-output pairs
{p(q),d(q)}. Input vectors p(q) are layer by layer prop-
agated through the neural network in order to obtain cor-
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responding output vectors yL(q), where L is the num-
ber of layers. The objective of training algorithm is to
find such set of weights that minimizes the performance
function. The second-order derivative based Levenberg-
Marquardt algorithm [6] is used, where the weights are
iteratively updated in batch mode, i.e., only after apply-
ing the entire set of input-output pairs to the neural net-
work.

3 Rubber compound database
The rheological properties of rubber compounds, af-

fecting its deformation and flowing capabilities, are ex-
tremely important for ascertainment of their behavior
during the production process [7]. In vulcanization
phase of production process, a plastic rubber compound
becomes elastic. In order to estimate the quality of fi-
nal rubber products, the rubber compound is vulcanized
in laboratory and some mechanical test are performed
on obtained vulcanizates. As the vulcanization phase,
lasting about 20 minutes, and the following mechanical
tests, performed on hardness tester and tensile testing
machine (Fig. 2) by versed operator, taking additional
5 minutes, are time consuming, the rubber producers are
trying to reduce this process to a minimum.

In order to meet the foregoing and still obtain enough
information about a compound, a rheological instrument
called moving dye rheometer (MDR) is used (Fig. 2),
performing tests directly on raw rubber compounds in
about 2 minutes. It measures a degree of cross-linking,
manifested in torque, as a function of time during vul-

canization. From the torque curve, presented in Fig 3,
some important parameters like ML, MH, ti0, t50, t90

and tsi are determined.

Fig. 2. Instruments used to measure rubber compound proper-
ties: moving dye rheometer (left), hardness tester (top
right) and tensile tester (bottom right).

"'90

Time [min]

Fig. 3. Torque curve, measured is the effect of cross-linking
during vulcanization process, with indicated meaning
of parameters ML, MH, tio, £50, £90 and ta\.

Although the information about vulcanizates is inher-
ently present in this curve, it is not easy to interpret it
in terms of mechanical tests used by rubber engineers.
Thus, an attempt was made to relate the rheologycal pa-
rameters to the hardness, measured on hardness tester,
and parameters measured by tensile tester, like: M50,
Ml00 and M200 - stresses required to elongate a test
sample for additional 50%, 100% and 200%, respec-
tively, E - the elongation at break and TS - tensile stress
at sample break.

4 Experimental results
Prior to the modeling, the data cleaning was per-

formed to remove inconsistent data. Additionally, rarely
mixed rubber compounds were excluded from model-
ing - only those mixed at least once weekly and hav-
ing at least 150 measurements were kept. Besides, when
the production process of a new rubber compound is re-
strained in quality, the tests on rheological instruments
are shortened. In this case the last maximum on the
momentum curve is missing (Fig. 3), thus substantially
changing the meaning of other parameters. Therefore,
we have used the basic data set (B) and the one from
which the tests having longer test times were removed
(T). Both types of data sets were further used in their
original form with n = 7 input parameters (ML, MH,
1̂0» ̂ 5o> £90? ̂ si and test time) or preprocessed in a spe-

cial way, having rubber compound testing database in
mind with n = 2 x 7 = 14 input parameters (data sets
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BP and TP, respectively). Namely, there are many dif-
ferent rubber compounds in a database and the average
values of their parameters differ substantially. Therefore,
values of each parameter in a chosen input-output sam-
ple were replaced by two values: the average value for a
compound it belongs to, and its relative deviation from
the average. In this case, only the relative deviation from
the average values was predicted.

For each data set the input-output pairs were divided
into two sets: the multilayered perceptron was trained
with input-output pairs included in the training set (80%)
and the performance of the models was tested on the
input-output pairs in test set (20%). The last part of train-
ing set (20%) was used for early stopping in order to re-
duce the effect of overfitting. Proportions of input-output
pairs belonging to each rubber compound were equal in
all three sets.

Multilayered perceptron with one or two hidden lay-
ers was used in our experiments. In the case of multi-
layered perceptron with one hidden layer, the number of
neurons was altered from n to 2 n and in the case of two
hidden layers, the number of neurons was varied from
n to 2 n on first layer and from n/2 to n on the second
layer. To evaluate the models three criteria were used: (i)
the root mean squared error, normalized to the standard
deviation NRMSE, (ii) the mean absolute percentage er-
ror MAPE and (iii) the percentage of correctly classified
samples %OK. Each measurement and/or predicted re-
sult can fall into one of three classes: inside, above or
below the specified limit range. A given sample is cor-
rectly classified when the measurement and the predic-
tion fall in the same class.

In Table 1 the prediction results for hardness are
shown. In this case, the total number of samples is 11592
for data sets B and BP and 11016 for data sets T and TP.
The criteria used for the selection of MLP topologies was
the mean absolute percentage error MAPE obtained on
the training set. Considering the NRMSE, the results
with preprocessed input data (P) are at least 15% bet-
ter in both cases. Even though the results on basic data
set with preprocessing (BP) are better than in data set B,
the effect of variable testing time cannot be completely
overcome.

Table 1. Prediction results for hardness

Data set

B
BP
T
TP

MLP

7-7-1
14-14-1
7-7-1
14-21-1

NRMSE
train
0.18
0.15
0.17
0.13

test
0.28
0.23
0.20
0.17

MAPE
train
0.03
0.03
0.02
0.02

test
0.04
0.04
0.03
0.02

In prediction of tensile tester parameters the number
of data samples in data sets B and BP was 3612 and in
the case of data sets T and TP 3531. The best results
in prediction of parameters M50, M100, TS and E are
summarized in Tables 2, 3, 4 and 5, respectively.

Table 2. Prediction results for stress (M50)

Data set MLP NRMSE MAPE
train test train test

B
BP
T
TP

7-10-1
14-21-1
7-7-1
14-14-1

0.46
0.43
0.39
0.39

0.56
0.42
0.31
0.32

0.11
0.09
0.09
0.09

0.12
0.09
0.05
0.06

Table 3. Prediction results for stress (M100)

Data set MLP NRMSE MAPE
train test train test

B
BP
T
TP

7-7-3-1
14-14-1
7-7-3-1
14-21-1

0.42
0.41
0.31
0.32

0.56
0.43
0.31
0.33

0.15
0.12
0.11
0.10

0.16
0.13
0.09
0.09

Table 4. Prediction results for tensile stress (TS)

Data set MLP NRMSE MAPE
train test train test

B
BP
T
TP

7-12-6-1
14-21-1
7-7-3-1
14-21-1

0.22
0.21
0.21
0.21

0.27
0.23
0.25
0.23

0.13
0.11
0.12
0.11

0.19
0.12
0.17
0.11

Table 5. Prediction results for elongation (E)

Data set MLP NRMSE MAPE
train test train test

B
BP
T
TP

7-9-1
14-16-1
7-8-1
14-21-1

0.73
0.73
0.72
0.70

0.41
0.40
0.32
0.35

0.09
0.09
0.09
0.09

0.10
0.10
0.09
0.09

Similarly as in the case of hardness, the prediction of
all tensile tester parameters is improved by preprocess-
ing of the basic data set B, which is not always the case
when preprocessing is applied on data set T. In case of
parameters M50, M100 and TS the effect of preprocess-
ing on basic data set B is far more expressed than in the
case of data set T. In case of parameter E there was no
significant difference between the results on data sets B
and BP in comparison to the data sets T and TP, respec-
tively. The better prediction results on data set T in com-
parison with data set B show a significant role of input
parameter test time.
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The third criterion, the percentage of correctly classi-
fied samples %OK, was calculated only for compounds
having the limit range defined due to the quality issues.
In Table 6 the prediction of hardness for some com-
pounds is given. The architecture of multilayered per-
ceptron is the same as in the Table 1. In most cases the

Table 6. Prediction results of hardness for some compounds.

Data Compound
set

MAPE
train test

%OK
train test

B

20704
20965
21367
21588
RM1

0.06 0.08
0.02 0.02
0.01 0.01
0.02 0.03
0.02 0.01

93
98
98

81
100
100

99 100
66 98

BP

20704
20965
21367
21588
RM1

0.03
0.02
0.01
0.02
0.02

0.05
0.02
0.01
0.02
0.01

98 97
99 100
98 100

100
98

99
67

20704
20965
21367
21588
RM1

0.02
0.03
0.01
0.02
0.02

0.02
0.02
0.01
0.03
0.01

98 100
97 100

100
100
97

97
98
65

TP

20704
20965
21367
21588
RM1

0.03 0.02
0.02 0.02
0.01 0.01
0.01 0.02
0.02 0.01

99 100
99 100
98 100
99 100
67 98

percentage of correctly classified samples %OK for the
presented compounds is very high. Further analysis of
incorrectly classified samples has confirmed our thesis
that majority of these samples were just inside or outside
boundary lines of specified limit range.

Table 7 shows similar results in prediction of elon-
gation parameter E. As we have already seen in Table
5, the preprocessing in this case does not improve pre-
diction performance. Again, the alteration of %OK cri-
terion can be addressed to the prediction results being
very close to the specified limit boundary. The results of
parameters M50, M100 and TS are very similar for all
types of data sets.

5 Conclusions
The neural network predictive models yielded very

good results in prediction of mechanical parameters
of rubber compounds from their rheological properties.
Two types of preprocessing, i.e. modification of input
parameters and additional cleaning of database, were
used to outline the necessity of proper data preparation.

Table 7. Prediction results of elongation (E) for some com-
pounds.

Data Compound
set

MAPE
train test

%OK
train test

B

21585
215851
21588
21594
RM1

0.10
0.08
0.18
0.13
0.06

0.09
0.06
0.27
0.09
0.07

99 99
100 100
99 100
99 100
99 100

BP

21585
215851
21588
21594
RM1

0.11
0.08
0.13
0.11
0.05

0.10
0.06
0.17
0.11
0.06

99 99
100 100
99 100
98 100
99 99

21585
215851
21588
21594
RM1

0.10
0.08
0.16
0.11
0.05

0.08
0.05
0.23
0.08
0.06

99 99
100 100
99 100
98 100

100 99
21585
215851

TP 21588
21594
RM1

0.10 0.11
0.07 0.06
0.14 0.19
0.11 0.12
0.08 0.09

99 99
100 100
99 100

100 100
99 100

To improve prediction and (above all) the classification
of predicted results, some additional parameters should
be retrieved from the last part of momentum curves,
where the properties of rubber compound are close to
the properties of vulcanizates used in mechanical tests.
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Abstract
An Artificial Neural Network (ANN) using backpropagation

algorithm is applied to solve inverse kinematics problems of
industrial robot manipulator. 6R robot manipulator with offset

wrist was chosen as industrial robot manipulator because
geometric feature of this robot does not allow to solve inverse

kinematics problems analytically. In other words, there is no

closed form solution for this problem. As the number of neurons

at hidden layer is varied between 4 and 32, the robot joint angles

(#i<?>... 06) were predicted with average errors of 8.9°, 7.8°,

8.3°, 13°, 8.5°, and 10.5° for the 1st, 2nd, 3rdA* and 6th joint,

respectively.

1 Introduction
ANN uses data sets to obtain the models of systems in
fields such as robotics, factory automation, and
autonomous vehicles. Their ability to learn by example
makes artificial neural networks very flexible and
powerful. Therefore, neural networks have been
intensively used for solving regression and classification
problems in many fields. In short, neural networks are
nonlinear processes that perform learning and
classification. Recently neural networks have been used
in many areas that require computational techniques such
as pattern recognition, optical character recognition,
outcome prediction and problem classification. The
current focus in learning research lies on increasingly
more sophisticated algorithms for the off-line analysis of
finite data sets, without severe constraints on the
computational complexity of the algorithms.
In robot inverse kinematics learning, however, special
constraints need to be taken into account when
approaching a learning task. The complexity in the
inverse kinematics problem of industrial robot
manipulators arises from their geometry and nonlinear
equations (trigonometric equations) occurring between
Cartesian space and joint space. Some other difficulties in
inverse kinematics problem are : i) kinematic equations
are coupled, ii) multiple solutions and singularities may
exist. Matematical solutions for inverse kinematics
problems may not always correspond to physical
solutions and method of its solution depends on the robot

configuration. Conventional numerical approaches to the
inverse calibration of robots are time-consuming and
suffer from numerical problems of ill-conditioning and
singularities.
The conversion of the position and orientation of a robot
manipulator end-effector from Cartesian space to joint
space is called as inverse kinematics problem. This
relationship between joint space and Cartesian space is
illustrated in Figure 1.

e2—•

Joint
space

Forward kinematics ^>

verse kinematics

— •

Cartesian
space

Fig. 1. The schematic representation of forward and inverse
kinematics.

There are three types of inverse kinematics solution:
complete analytical solution (closed form solution),
numerical solutions and semi-analitical solutions. In the
first type, all of the joint variables are solved analytically
according to given configuration data. Closed form
solution is preferable because in many applications where
the manipulator supports or is to be supported by a
sensory system, the results from kinematic computations
need to be supplied rapidly in order to have control
actions. In the second type of solution, all of the joint
variables are obtained iterative computational procedures.
There are four disadvantages in these: a) incorrect initial
estimations, b) before executing the inverse kinematics
algorithms, convergence to the correct solution can not be
guarantied, c) multiple solutions are not known, d) there
is no solution, if the Jacobian matrix is singular. In the
third type, some of the joint variables are determined
analytically in terms of two or three joints variables and
these joint variables computed numerically.
Disadvantage of numerical approaches to inverse
kinematics problems is also heavy computational
calculation and big computational time.
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When coupling of the position and orientation kinematics
occurs, there may be no exist efficient closed form
solutions. In this case, it is better to use Neural Networks
to solve the inverse kinematics problems since
trigonometric equations in inverse kinematics problems
can not be solved analytically. In other words, it is not
possible to formulate a mathematical model that has a
clear mapping between Cartesian space and Joint space
for inverse kinematics problem. To overcome this
problem, ANN uses the samples to obtain the nonlinear
model of such systems. Their ability to learn by example
makes artificial neural networks very flexible and
powerful when the traditional model-based modeling
techniques break down. Many researchers have
experimented with this approach by applying it to several
robot configurations [1-12]. However, this approach has
not applied to robot manipulator with offset wrist whose
inverse kinematics solution is no exist in efficient closed
form.
In this paper, a neural network using backpropagation
algorithm in Matlab Neural Network Toolbox is
employed to predict the joint angles. Simulation results
show that prediction performance from the approximation
accuracy point of view is satisfactory with over 90%
correlation.

2 Robot Inverse kinematics
For a six jointed robot manipulator, the position and
orientation of the end-effector with respect to the base is
given by

base<j> _
end-effector

0

M2

>*22

^32

0

M3

r 23

^33

0

Px

Py

Pz

1

where r^'s represent the rotational elements of

transformation matrix ( / and j= 1, 2 and 3 ) and px , py

and pz are the elements of position vector. The product

of the link transformations yield forward kinematic of the
robot manipulator.

%T(q5)
 5

6T(q6) (2)

where qt is the joint variable (revolute joint or prismatic

joint) for joint /. This forward transformation matrix is
equated with end-effector transformation matrix. To find
the inverse kinematics solution, it should be solved for qt

as function of the known elements of en

Denavit-Hartenberg (D-H) kinematic parameters of the
robot manipulator used in this study is listed in Table 1
and kinematic structure of this robot is shown in Figure 2.

Table 1. D-H kinematic parameters for robot manipulator.

i
1

2

3

4

5

6

ex
e2
e3
eA

e5

0

90

-90

0

-90

90

an
0

0

0

h
h
0

d{

h\
d2

h
0

0

d6

3 The Structure of Backpropagation Neural
Network

The neural network built in this study was shown in
Figure 3. There is a total of 12 inputs to the network and
there are six outputs from the network. The 12 inputs to
the network are the nine elements of the rotation matrix
O</ ij=l:3) and the Cartesian position of the arm (Px, Py,

Pz). The inputs are arranged in vector form from the
Rotation matrix. On the other hand, the outputs are three
joint angles 0u 02, 03 and three wrist joint angles 04, 95,
and 66.

Fig. 2. Coordinate frame attached to the rigid body of the robot
manipulator.
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A simulation data set for training and testing of neural
network was generated by forward kinematic equation 2.
This data set include$ 106 input-output pairs for every 10°
joint angle. A working data set 4000 data points that was
composed of input-output vector pairs was selected
randomly from the data set. Again, the input vector
consists of 12 input variables from Rotation matrix and
the output vector, or also called as target vector, includes
six joint angles. While 60% of the data set was randomly
assigned as training set, the remaining 40% was
employed for testing. Both the input and output variables
were normalized to the [-1,1] range.
As seen from Fig.3, the neural network consists of an
input layer with 12 neurons, a hidden layer with 20
neurons and an output layer with 6 neurons. While the
neurons at input and hidden layer have sigmoid activation
functions, the output layer has linear neurons so that the
network could produce values outside the range -1 to +1.
Input vectors and the corresponding target vectors from
training set are used to train the network until it can
approximate a function between the input and output
variables. Training procedure adjusted the weighting
coefficients using Levenberg-Marquardt algorithm. In
this procedure, a termination criterion was set as 10"2 and
all the weighting coefficients were initially assigned
randomly. Then input vectors from the test data set are
presented to the trained backpropagation network. The
responses of the network, i.e. joint angles, are compared
to targets in the test data.

Fig. 3. The neural network structure.

4 The Results and Discussion

The main drawback of using neural networks to

approximate the inverse kinematics of robot arms is the
high number of training samples required to attain an
acceptable precision. After training 60 % of the input-
output vector pairs of the data set, the network was tested
on the 40 % of the pairs of data set that are not included
in the training set. Figure 4 shows 10 points of network
output represented by 4x' and corresponding targets
represented by 4o' for each angle. As seen from the
figure, the neural network predicted the actual joint angle,
target, successfully at some angle values. To obtain a
better idea for the performance of the neural network
prediction, the errors of joint angles for 10 test points was
plotted in Fig. 5. Since error values fluctuate around the
origin, effective error, root mean square error, is
calculated for each angle as follows: 8.9°, 7.8°, 8.3°, 13°,
8.5°, and 10.5° for 0,, 02, #3, 04, 05, and 06, respectively.
Note that, the biggest effective error is found for 04. In
fact, when Fig. 4 and Fig. 5 are examined, the worst
prediction performance and bigger error amplitudes are
observed for fourth joint angle.
In order to examine the effects of the number of neurons
at hidden layer on inverse kinematics problem, the
number of neurons at hidden layer is varied between 4
and 32. The results of this are illustrated in Figure 6. The
more hidden neurons are added to hidden layer, the more
powerful networks are obtained. But computation time
gets longer with increasing of hidden neurons.

o target, x: network output

«r 1UU
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2 4 6

L A / ^
2 4 6

8 1

8 1

Test Data Set Point Number Test Data Set Point Number

Fig. 4. The output of the neural network and target values.

5 Conclusion
Neural Networks using backpropagation algorithm has
been applied to inverse kinematics problem for 6R robot
manipulator with an offset wrist which does not have
closed form solution. Inverse kinematics computation
using an artificial neural network that learns the inverse
kinematics of a robot manipulator has been employed by
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many researchers. The inverse kinematics function of the
robot manipulator with an offset wrist, much more
difficult robot structure, is a multi-valued and
discontinuous function. Therefore, it is difficult for a
well-known multi-layer neural network to approximate
such a function. A coarse mapping can be obtained easily,
but an accurate representation of the true mapping is often
not feasible or extremely difficult. In this work, joint
angles 6U #2, #3, #4, #5> and 06, were predicted with root
mean square errors of 8.9°, 7.8°, 8.3°, 13°, 8.5°, and 10.5°,
respectively.
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Fig. 5. Errors of joint angles in Test Data set.
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Fig. 6. The effects of the number of neurons at hidden layer on
the absolute average errors.
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Abstract
The local cluster neural network (LCNN) is an alter-

native to RBF networks that performs well in digital sim-
ulation. The LCNN is suitable for an analog VLSI im-
plementation that is attractive for a wide range of embed-
ded neural net applications. In this paper, we present the
input-output characterisation of LCNN analog chip. The
effect of manufacturing variations on the chip's function
is investigated and analyzed.

1 Introduction

The most common use of feedforward neural nets is
for finding a multivariate function that best interpolates
from a given set of sample points. For this purpose
the neural net designer has a choice of two main ar-
chitectures: the multilayer perceptron (MLP) with sig-
moidal activation functions, and the localised activation
functions, such as radial basis functions (RBF) [1] [2].
In this paper we describe the Local Cluster neural net
(LCNN) architecture (1) proposed by Geva and Sitte
[3] and its analogue VLSI implementation [4] [5]. The
LCNN is a special kind of multilayer perceptron where
the sigmoidal neurons combine in clusters that have a lo-
calised response in input space. LCNN are more general
than RBF neural nets and have all the computational ad-
vantages of the latter, while retaining the analog VLSI
implementation advantages of weighted sums and sig-
moids.

2 Local Cluster Neural Network definition
Like a Multilayer Perceptron (MLP) LCNN uses sig-

moidal neurones in two hidden layers as Fig. 1. Clus-
ters of sigmoids form functions localised in input space.
Each neuron in the second hidden layer outputs such
a local reponse function. The LCNN output is a lin-
ear combination of localised scalar functions in n-
dimensional input space:

(i)

Fig. 1. Network structure of LC net

where v^ is the output weight. The local function LM

is the result of applying a sigmoidal window to a sum
/ ( W , f, A:, x) of n-dimensional ridge functions.

L(W, ?, k, x) = <70(/(W, f, k, x) - b) (2)

The constant 6 allows shifting the function with re-
spect to the window. The ridge functions l(w, f, /c,£)
in

/(W, f, fc, x) = ^2 l{wu rj, /c, xi) (3)

are built out of 2 opposing n-dimensional sigmoid
functions:

l(w,r,k,x) = a(k,h~*~) — cr(k,h~) (4)

Where

h~ — wT(x — r — 1)

For a{k1h) we chose the logistic sigmoid function:
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where k is the slope of the sigmoid.
The generation of a local cluster in analogue electron-

ics requires modules for the following operations:
(i) Subtraction of the position vector f of the cluster

from the input vector subtract.
(ii) Calculation of 2 displaced sigmoid functions (6)

for each dot product eq.(5) as shown in Fig. 2(a).
(iii) Subtraction of the two sigmoids to get the ridge

function (4) as shown in Fig. 2(b).

(a) cr (/c, / i+) , <r (A:, h ~ ) (b) Difference of sigmoids

Fig. 2. Ridge function l(w, ?, fc, x)

(iv) Summation of the ridge functions (3). Fig. 3(a)
shows function / ( W , r,k,x) in two dimensions.

(v) Removal of the ridges by application of output sig-
moids as per eq.(2). Fig. 3(b) shows a local function
L{W, f, h, x) in two dimensions.

and 8-bit digital weight storages. Fig. 4 shows the struc-
ture of a cluster. Each cluster has the same functionality.
Firstly the position of the local function is determined by
x - f. Then dot product wT • (x - f) is computed. The
next step is generating ridges and summing them into
function f(w^f,k,x) and subtracting b. The last step is
getting the sigmoid output L(w, 7\ &, x). The chip output
is the weighted sum of all cluster outputs.

weight r

Input data

Subtraction of r

weight w
Multiplier

Matrix
w

Ridge Generator

weight b Subtract b

Output Sigmoid

Fig. 4. The structure of LC cluster

Fig. 3. Two dimensional combination of ridges (a) and output
of a local function (b)

3 Hardware implementation of LCNN

The LCX is an analogue electronic implementation of
the LCNN. All mathematical functions (1 -6 ) used in
the LCNN are realized in analog current mode CMOS
VLSI circuits. LCX consists of 8 equal clusters which
are sufficient for small applications, 6 inputs, one output

The LCNN output is determined by the digital
weights, refer to LC function (1), which are downloaded
to the 8-bit weight storages. Each cluster has 45 weights,
hence the LCX chip has 360 weights (8 clusters x 45
weights) in total.

4 Test procedures and results for LCNN chip
Analog circuits are much more susceptible to manu-

facturing inaccuracies and fluctuations than digital cir-
cuits. These circuits will not only deviate from their ex-
pected design behavior but each one will deviate differ-
ently. Offsets, deviations and distortions are the result.
Comprehensive test were carried out to determine the
absolute deviation from design specification as well as
the relative intra-chip and inter-chip fluctuations. The
main results of these tests are summarized and discussed
in this section.

4.1 Test procedures for LCNN chip

We used a PC to automate the measurements of the
test process. The personal computer is connected to a
LCNN test board. This board provided DA-converters
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for the output of analog voltages, AD-converters for
measuring input of analogue voltages and digital output
channels for loading digital weights onto the chips.

The software managed and loaded inputs and the dig-
ital weights onto the chip via the digital output channels.
Analog stimuli patterns were generated and the response
of the chip was measured. The measured data is saved to
a file.

4.2 Effect of weight variations on cluster outputs

To analyze the transfer functions we record the out-
puts while varying specific inputs across their range for
different sets of weights. Fig. 5 shows the output func-
tion shape for diagonal weight matrix with value w in
the interval [64, 127] in steps of 8. Only one input is
changed while all other inputs are zero. The width of the
ridge decreases as the weight w increases. Fig. 6 shows
the outputs with weight v variation in [8, 127] in steps of
8. The height of The ridge increases linearly with weight
v. Fig. 7 shows the outputs with weight b variation in [0,
1920] in steps of 128. The height of ridge is varied with
the variation of weight b. Fig. 8 shows the outputs with
weight r variations in [-127, 127] in steps of 32. The
ridge position from input center is varied with the varia-
tion of weight r.

0.75[—

Fig. 5. Cluster 7 output shape variation for different weight w.

Fig. 6. Cluster 7 output shape variation for different weight v.

21 1.2 1.4 1̂ 6 V8 ~ 2 ° 500 1000 1500 2000

Fig. 7. Cluster 4 output shape variation for different weight b.

" / //YyXyX\\\ 1 X
•/ lliW\\\\\ °! ^

Fig. 8. Cluster 4 output shape variation for different weight r.

4.3 Deviations between clusters

Deviation test is in two aspects: the deviations in
LCNN analog output against LCNN theoretical output
and the output fluctuations in different clusters and dif-
ferent input channels.

Fig. 9 shows the fluctuation of ridge height in 4 differ-
ent clusters (cluster 4 to cluster 7) and in different inputs
(No. 0 to No. 5) with the same set of weight (w is 96, v
is 96 and bis 1664).

0.4r
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0.3

§0.25

2 0.2

o.f
0.05

A..
/. A1"'

/•'• 0...

""6

0 1 2 3 4 5
Input channel

Fig. 9. Output fluctuations from height of ridge in 4 different
clusters and 6 different channels.

Table 1 presents the ridge center values. Ridge centers
are determined by weight r € [-127, 127]. The LCNN
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chips are designed to generate center ridge when r is set
to 0. The analog circuits produce deviations on ridge
center position in different clusters and different inputs.

Table 1. Deviation of ridge centers

channelO
channel 1
channel2
channeB
channel4
channel5

cluster4
-13
-6
46
25
88
42

cluster5
-127
-44
-20
59
93
-60

cluster6
-17
96
95
63
70
-70

cluster7
13
-6
63
-47
27
-45

iteration. The training is stopped when current error is
less than objective error.

analog
inputs

LCX chip

DAC

analog
output

digital
weight

ELSY
software

Fig. 11. LCX chip in-loop training

4.4 Two-dimensional visualisation

The previous section showed the effect of varying one
parameter at a time. The output is a function of 6 inputs.
Fig 10 shows the output of the LCNN chip when 2 in-
puts are scanned, with different b values. The measured
outputs are in good accordance with the mathematical
model.

Fig. 10. Two dimensional localised cluster output.

5 Training of Local Cluster Neural Network

LCNN training is the method to seek the minimal er-
ror in the output by comparing to a desired response. We
use gradient decent algorithm for LCNN training.

LCNN training has been demonstrated its good per-
formance in digital computer simulation [3],

The weights obtained by training the mathematical
model (LCNN) on a data set will produce a different
function on the chip due to fluctuations. The lack of
weight transferability can be overcome by in-loop train-
ing as shown in fig. 11. The in-loop training is to connect
a computer with LCNN chip and use neural net software
to train the chip. The computer writes input and weights
into the chip, reads output from the chip, and calculates
and updates the weights in the software. The updated
weights are downloaded to the chip for the next training

6 Conclusions
The Local Cluster Neural Network (LCNN) has good

performance for function approximation in digital com-
puter simulation. The mathematical operations can be
implemented in analog neural net hardware as well.
However, in contrast to digital implementations analog
circuits implementations deviate from the ideal mathe-
matical model. The functionality of LCNN and its accu-
racy are influenced by the fluctuations as shown in this
paper.

In-loop training is the first step to overcome these
fluctuations partly. A better solution could be in-circuit
learning or on-chip training. Therefore our research at
the next stage is the implementation of LCNN on-chip
training.
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Abstract
A Lyapunov based switching control design method for non
linear systems using fuzzy models is proposed. The
switching controller consists of several linear state feedback
controllers; only one of the linear controllers is employed at
each moment according to a switching scheme. The gains of
the linear state feedback controllers are derived based on
Lyapunov stability theory. The fuzzy design model is
represented as a set of uncertain linear subsystems and then
sufficiency conditions for the system to be globally
stabilisable by the switching controller are given. The
proposed design method is illustrated trough numerical
simulations on the chaotic Lorenz system.

1 Introduction
Fuzzy techniques have been widely adapted to model
complex non linear plants. By using a Takagi-Sugeno
fuzzy model, a non linear system can be expressed as a
weighted sum of simple subsystems. This model gives
a fixed structure to some non linear systems and thus
facilitates their analysis. There are two ways to obtain
the fuzzy model: 1) - by applying identification
methods with input-output data from the plant [1] [2],
2)-or directly from the mathematical model of the non
linear plant [3].
In this paper, we propose a Lyapunov based design of a
switching linear controller for a class of fuzzy models.
The rest of the paper is organized as follows. Section 2
reviews the continuous T-S fuzzy models. Section 3
gives the structure of the switching controller and the
controller design method is proposed in section 4.
Then we provide an application example; the control
problem of the chaotic Lorenz system. Finally, we
present our conclusions.

2 Fuzzy model
The continuous-time Takagi-Sugeno fuzzy dynamic
model is a piecewise interpolation of several linear
models through membership functions. The fuzzy
model is described by fuzzy if-then rules. The ith rule

of the fuzzy model for the non linear system is of the
form:
Plant rule i:
if z,(0 is Fn and ... zg(t) is Fjg then

x(t) = A.x(t) + Bu(t)

for i = l,2,.. . ,r (1)

where JC(/) = [x{ (/), x2 (/), ...,*, (t)f e R" denotes the

state vector, u{t) = [ux (/),..., um (t)]7 e Rm is the input

vector. F.. is the fuzzy set, A. e Rm", B. e R™"", r is the

number of if-then rules, and zx(t\z2(/),...,z (/) are

some measurable system variables, i.e. the premise
variables.
The output of the fiizzy model can be expressed as:

Bu(t)} (2)

where ca (z(0) = f l F (z(0)
7=1

F..(z.(t)) is the grade of membership of z.(t) in F...

The TS fiizzy model (2) is a general non linear time
varying equation and has been used to model the
behaviour of complex non linear dynamic systems.
The TS fuzzy model (2) has strong nonlinear
interactions among the fiizzy rules, which complicates
the analysis and the control of the system. In order to
overcome these difficulties, the TS fuzzy model (2) is
represented as a set of uncertain linear systems. Each
sub-space is defined as:

) < } / = l,2,...,r (3)

where 0 < am.m < 1 is a scalar to be determined.

The characteristic function of S, is defined by:
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(4)
Ji *es,

[o xeS{

In each subspace S / ? the fiizzy model (2) can be

represented as:

where

The fiizzy system in subspace S; consists of a

dominant nominal system with matrix At and a set of

interacting systems determining the effect of the
control law on the other non-dominant systems. The
fuzzy model (6) can be viewed as an uncertain linear
dynamical system model [4].

We assume that the matrices AA{ and ABt can be

written as:

(8)

The matrices BrDt (oc'(/))and BrFl(a(t)) model

the matched uncertainties whereas the

term E( ( a ' ( t)) represent the mismatched

uncertainties. We assume that:

F,(a'(O) + F,T(a'(t)) + / >0 (9)

We assume also that the matrix functions Dt (a'(t))

and El ( a ' (0 ) s^ bounded by:

(10)a, = «
«(

for all a ' ( / )e [0,l]'"1.

3 Switching controller approach
A switching controller is employed to control the fiizzy
system (2). The switching controller consists of some
linear state feedback controllers that will be switched
from one to another to control the system. The
switching controller is described by:

with

a n d

= - Z ?,*,*(<)

K/=^BjPi (12)

K( is the local state feedback gain in subspace S, to be

designed. The parameter yt > 0 is a scalar and the

matrix Pt is the positive definite solution of the

following algebraic Ricatti equation:

A]P( + P,A, -x\lPlBlB
T

IPl=-2Ql (14)

where Qt e Rnxn is a symmetric positive definite matrix

and r|/ is any given positive constant.

It can be seen that (11) is a linear combination of r
linear state-feedback controllers.

4 Controller design
In this section, the switching controller will be
designed to guarantee the system stability.
Theorem:
The state feedback controller given by (12) where:

y, = (15)

globally asymptotically stabilise the uncertain sub-

system (6) for arbitrary D{(a(t)), ^ ( a r ( / ) ) and

F( (a / ( / ) ) tha t satisfy the norm bounds (10) and the

conditions (8) and (9) if :

and
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a{t)>x_KAQ,) (17)

Proof: Let define the positive definite function Vt as:

^ (/) = *'*?* (18)

where P( e Rnx" is the solution of algebraic Ricatti

equation (14).

Vt = xTPtx + xTPlX

= xT{^Pl+PlA1)x+2(\-al)x
TPlBlDlx+2{\-al)x

TPlElx

+ 2 (1 - a,) xPfcx - 8;
2 D^PpfiP

(19)

5; l - a

2 .

l - a ,

l - a ,

a, > 1-^

We define:

a™" = maxl 0 , 1 - =KM)

(20)

(21)

a™"1 is the minimum value of a, that guarantee the

stability of the global system using the local

subsystem S, state-feedback gain Kr

In each subspace, the command is given by:

u(t) = -K,x(t) (22)

The boundary of the sub-region S, is determined by

the minimal value that guarantees its stability a*1".

Lemma:
The global system is asymptotically stable if there

exists, at each moment t, at least one valueak(t)

satisfying:

ak(t)>am
k
i",k = l2,...,r (23)

r

or U S = S where S is the global state space.
i=\

In overlapping regions many subsystems may satisfy
this condition. In this case the control is inferred by
selecting the control of the dominant system whose
membership function is of maximum distance from the
boundary of its stability region determined by cc,m/":

(24)

(25)

The design procedure of the switching controller is
summarized in the following steps:
• Step 1: Obtain the fuzzy plant model of the non

linear plant by means of the methods in [1],[2], [4],
or other suitable ways.

• Step 2: Determine the subsystems S,

matrices Al,Bl, AA( and ABt for / = 1,...,r and

check if condition (9) is verified for each
subsystem.

• Step 3: Design the state-feedback gain K{ for each

subsystem S, according to (14), (15) and (16). And

determine the value of a""1 for / = 1,..., r .

• Step 4: Check if the condition (23) is satisfied,
otherwise go to Step 3 and choose other values for
the free design parameters.

5 Simulation example
To show the effectiveness of the proposed method, we
simulate the control of the chaotic Lorenz system. The
control objective is to drive its chaotic trajectory to the
origin. The Lorenz equations are as follows [5]:

(26)d

dt
=
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The nominal values of (a,r,b) are (10,28,8/3) for
chaos to emerge. The system can be described by the
following T-S fuzzy model [5]:
Rule 1: If x, (/) is about Mx then x(t) = A]x(t)

Rule 2: If x, (t) is about M2 then x(t) = A2x(t)

Where

A, =

-GO 0

r -1 -M,

0 M, -6

- a

r

0

a

-1

A/,
M, = -20 and = 30

The membership functions are given by:

(27)

(28)

(29)

M2-Mt M2-Mx

The input matrices Bx and B2 are chosen as:

B,=B2=I3

The fuzzy model can be decomposed into two
subsystems:
Subsystem 1: x(t) = (Al+(l-\i[)AAx)x(t)
Subsystem 2:

W h e r e : AAI = A 2 - AI9 AA2 = A y - A 2 ,

AB{ = A B 2 = 0

For Qx = Q2 = 5073 and n, = rj2 = 0.1 the resolution of

the Ricatti equation (14) gives:

3.1211 1.5040 0.4201

1.5040 3.1526 0.0437

0.4201 0.0437 2.9063

3.0589 1.3771 -0.5838

1.3771 3.1339 -0.0675

-0.5838 -0.0675 2.9162

and

ocp = max (0, -0.4181) = 0, a2
min = max (0, -0.4490) = 0

The state feedback gains:

96.433 46.467 12.981

46.467 97.404 1.350

12.981 1.350 89.794

K =

91.425 41.160 -17.447

41.160 93.668 -2.016

-17.447 -2.016 87.160

The initial values of states arex(o)7 = [20,20,20]. The
simulation time is 40 s. The control input is activated
at t=20s. Before the activation of the control the phase
trajectory of the Lorenz system was chaotic. However,
after the activation of the command the phase
trajectory is quickly directed to the origin as shown in
figures 1 and 2. In this example the boundary of the

two sub-spaces are determined by a|"n = 0 and

a"m = 0 which means that the two sub-spaces are equal

to the global state space and the chaotic system can be
controlled using only one controller.

Fig. 1. The phase trajectory of the controlled Lorenz
system.

Fig. 2. States of the Lorenz system.

6 Conclusion
In this paper a Lyapunov based method has been
proposed to design a fuzzy model based switching
controller for non linear systems. Under some
conditions this switching controller has the ability to
stabilize the non linear system. The control of the
chaotic Lorenz system has been used demonstrate the
effectiveness of this approach.
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Abstract
A simple and effective method is proposed for controlling a
system consists of small processes. Each process is controlled
by a decentralized autonomous neural network controller.
These controllers compete with each other in order to increase
their performances. As a result of the competition, the
performance of whole system is kept at a suboptimal level. A
control of example system consist of lots of processes is
performed.

1 Introduction
A control of a distributed system is essential for the field
of manufacturing, power generation and robotics. A
well-designed distributed autonomous control system can
attain tolerance for malfunction and quick adaptability for
various changes during operation. In previous studies in
[1], [2], a large-scale system that consists of a number of
subsystems is controlled by decentralized control
methods. The decentralized control of each subsystem
has been performed by using only its local information of
each subsystem. Sometimes it is assumed that only local
output feedback is available [3].
Neural networks have been used for decentralized control
by papers [4], [5]. In those studies, learning features of
the neural network have been molded in the known
framework of decentralized control method. The genetic
algorithm is also used for decentralized control on [6].
In this paper, a new strategy to use neural network for the
decentralized control is proposed. This strategy is based
on two simple policies: First, each output of the small
process is calculated by using only the output of whole
system. By adopting this policy, each controller needs
not any common rules or data. Second, the demand for
higher performance of each individual process leads the
higher performance of the whole system. In this strategy,
each controller behaves like stockholder in the stock
exchange market and pursues their benefit.
An example system is adopted, and the characteristics of
the proposed method are discussed based on the control
results.

2 Controlled System
An example controlled system consists of three small
processes in which the output value yt is equal to its input
value u as Eq.(l). The output value of whole system Y is
the sum of the output values of the processes as Eq.(2).
We assumed that the performance index of each process
Pi depends on its output value yt as Eq.(3). In Fig.l, the
profiles of the performance index of the three processes
are shown. For Process 1 and 2, their performances take
the largest value at yx= yf=025, and for Process 3, at
^3=1.0. The sum of the both performance indexes is the
performance of the whole system in Eq.(4).
The objective of the control is to control the output of the
system 7 at a specified target value R, and to let the
performance index of the whole system P as high as
possible.

(i)

(2)

(3)

(4)

0.25 0.5 0.75 1
Output [-]

Fig. 1. Performance index profiles of 3 processes

3 Control Strategy

3.1 Control of output of whole system Y

The control system diagram is shown as Fig.2. The
control of the output of whole system Y is performed by
using the neural net controllers shown in Fig. 3. The
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network has two inputs AY, ai9 and an output Aw, and two
weights of the connections COYA, ®a,i- AF is the difference
between the target value and the present value, and Aw, is
the change in the rth manipulated variable. Since A Y is
used as input and Aw, as output, this control system takes
velocity form. a{ is a preference factor which is used for
the competition with other controllers and mentioned later.

o-p

o-p

A«,

A»2

J

A«N

u2

«N

process
1

process

•

•

process
N

y\

\

Fig. 2. Control system structure

O)Y,i

Fig. 3. Structure of neural net controller

For the set-point control, the input variable AYj at
sampling step./ is the error of the controlled variable Yj
from the target value R.

AYJ=R-YJ (5)

The change in the value A«iy is calculated by the neural
network as following manner.
The product of each input variable and each weight of the
connection is inputted into a sigmoidal function / shown
by (6) and (7).

Autj =

/(*)=

(6)

l-e~x

(7)

The new value for the input of the process uiJ+i is
obtained by adding the value of the output Aw/t/ to the
present value tijj.

(8)

Then the output of each process yiij+\ and the output of the
whole system Yj+\ are obtained by Eq.(l) and Eq.(2),
respectively.
The values of the weights of the connections ma>i are fixed
as 1.0 and only the weights o)Yj are used as modeling
parameters. The initial values of the weights of the
connections, o)Yth are given randomly, and they are
updated at every control action by the following direct
learning method. We use the values, AJy_i,iearning and Aw,y_
i as the data set for learning of the responses of the
process. Since the previous control action Aw/;_i changed
the previous output Yj_\ to the present value Yj, the weight
of the connection o)Y,i should be updated to output Aw/y_i
when the inputs are Aly.i,Naming shown by (9) [7].

J-IM8=YJ-YJ-1 (9)

The output values of the neural network ^w/i7.Uearning are
calculated by using A^.Uearning

Mj-Uearning Y,i,jA gleaming + <»aaiJ-\ ) (10>

Each weight of the connection is updated by the
following delta rule. The weight of connection eoyj is
slightly changed to the direction that the difference
between AUQ.\ and Auij.\^am[ng decrease. A variable a is
the update coefficient and it is specified 0.85.

(11)
dcoY

Figure 4 shows the control result when R=225 when the
initial outputs of processes are zero. The output of whole
system Y reached the target value after 6 iterations. Since
the initial value of weight of 3rd process a>Y, 3 is larger
than others, the output y3 increased faster and finally, j>3

became the maximum value 1.0 and j>i became 0.9. The
control results for whole range of output in Fig. 5 show
that the proposed neural network can control the output of
whole system.
When the learning is not performed, the outputs of
processes oscillated and the output of whole system
cannot be controlled

2.5.

1 / Process 3

'JC
Process 2_

Sum

0 10 20 30 40 50 60
Iteration [-]

(a) Changes in the output
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whole output \AY\ will prevent the process from deviating
from the target value. By using this absolute value, the
first term is kept at zero when the output of whole system
has reached the target value. The second term is a bias
factor used for optimization after the target value is
achieved. Since Ca has constant small value, the output
gradually moves to the optimal point.

Fig. 4. Control result for R=2.25

3

0.75 1.5 2.25 3
Target [-]

Fig. 5. Control results for 101 targets

3.2 Increase in performance index

The second input for the neural network is introduced to
increase the performance index/?, and P.
In Fig.4, since o)Y,2 is smaller than a>Y,u the rate of change
in yx is faster than that of y2. We can use this
characteristic feature to control the competition among
the neural net controllers. When a, is positive, the change
in the output of the controller Aw, is increased on similar
occasions when the weight coY\ increased, and when a{ is
negative, AM,- is decreased. With this property, we can
also change the output ut to increase the performance of
process by setting appropriate value for at. The value of
coai is fixed at 1.0. The variable at is proposed as Eq.(12).

PU*YJ f Ca (12)

This second input at is called the preference factor. The
first term is the product of three variables. The slope of
the performance index profile against the output of the
process is used. This value indicates the direction for
increase in the performance of the process. Since the
value of the slope often takes huge value, the sigmoidal
function in (7) is used for standardization. The value of
the performance index pt is used in order to introduce the
competition with other processes. By employing pij9

priority is given to the process that has higher
performance. The absolute value of the error of the

3.3 Control results

The control result for R=2.25 is shown in Fig. 6. As
mentioned before, the output of the whole system is
controlled satisfactorily. After reached the target value at
6th iteration, the performance of whole system increased
gradually. Since the process 1 increased and the process
2 decreased in Fig. 4(a), the total performance index
increased. This optimization is obtained by the
competition between the process 1 and 2.
The 101 sets for the target value between 0 and 3 are
examined and each examination was performed five
times. The initial values of weights of connections are
specified randomly between 0 and 1. The control results
are shown in Fig.5. Both cases with and without the
preference factor were tested and both gave satisfactory
control of the output of the whole system Y.
Figure 7 shows the achieved values of performance index
of whole system P. The solid line indicates the
theoretical maximum values and the dashed line indicates
the theoretical minimum values. It is found that the
performance became high when the preference factor is
used. When the value of Ca takes 0.0005, the
performance index of the whole system became highest.

U 1.5

0 10 20 30 40 50 60
Iteration [-]

(a) Changes in performance indexes
— 3

2.25

0.75

*• a

x xxj

'0 0.75 1.5 2.25 3
Sum of output [-]

(b) Changes in sum of performance indexes

Fig. 6. Control result for R=2.25
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Target [-]

(a) With preference factor at

^ 3

0.75 1.5 2.25
Target [-]

(b) Without preference factor a,

Fig. 7. Results of performance indexes

4 Application for larger system
The control of the system consists of 50 processes are
performed. From the 1st to 49th process has same
performance index profile as process 1 and 2 shown in
Fig. 1. The 50th process has the profile same as process 3
in Fig. 1. The control of whole output Y is also
accomplished and Fig. 8 shows the results of performance
indexes achieved.
From these results, the proposed method achieved
sufficient result for such a large system.

50

2 40

«sr -S 30

J J 2 0

10 20 30
Target [-]

40 50
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efficient and low-cost operation and the bias factor for
optimization makes remarkable progress.
The example control results shows that the proposed
method is effective. This method can be used in various
field of science.
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Fig. 8. Control results for 50 processes system

5 Conclusion
Proposed competitive decentralized autonomous neural
network controllers are very simple but effective for
controlling the system consists of small processes. Each
neural net controller uses only the error of the whole
system and the preference factor for increasing its
performance. The preference factor is the key to achieve
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Abstract
New modifications in mapping hierarchical fuzzy control
scheme are proposed, to get effective and optimized control.
The scheme was developed so that one can easily understand
and modify fuzzy rules in different levels of the hierarchy. The
presented approach ensures the universal approximation of
functions in a compact domain. To validate this conceptual
approach, we consider a textile data base as a non linear,
multivariable and dynamic system.

1. Introduction
The design of fuzzy system architecture requires an
addition of available information on the system
behaviour, certain human knowledge or expertise, to
define the controller's structure, the fuzzy rules and theirs
necessary parameters. Currently, the problem of
conception of fuzzy controller is treated to reach
optimised computational time, reduced capacity of
storage and number of fuzzy rules.
Introduced in 1974, the fuzzy control like a technology
targeting the industrial applications has in fact, added a
promising dimension to the classics existing control
methods. In his vaguest term, the fuzzy control
methodology benefits from some merits face to other
approaches. The existing fuzzy control Methods can be
classified among those described like intelligent control
methods, as soon as the fuzzy control inserts some
notions of the human expertise.
The human knowledge used in the conception of
controllers is necessary and even advantageous. It is
relatively the new axis of fuzzy technology that has the
tendency to take place in existing control techniques as
neural networks, expert systems...etc. Indeed, the theory
of the fuzzy control can be rigorous while processing
some interpretable analytic structures. However, the
difficulty of this type of control appears in the
development of controller structures.
In fact, the need to minimise the complexity of fuzzy
rules base in order to reduce the computational time and
the number of rules is not new. In this field, Mamdani has
been the first to lead for computational time reduction [1].
His algorithm is based on a cylindrical fuzzy relation

approximation. Other algorithms, as Sugeno, Takagi-
Sugeno, Larsen, Product-Sum-Gravity...etc, have been
developed respectively according to the same idea that is
based on simple applied operations to the fuzzy sets of
every input output parameters. However, these algorithms
endure the exponential growth of computational time and
the storage space demonstrated by Koczy and Hirota [2]
through the expression of the uniform complexity.
Indeed, the number of fuzzy rules of a rule base increases
exponentially according to the number of antecedent's
parameters as fuzzy terms (fuzzy sets) and the number of
input-output system variables. It is the reason for that the
number of inputs doesn't pass the number of five in
general fuzzy applications case. In this context, Moser,
Klement and Tikks demonstrate that for the more fuzzy
algorithms part, the property of universal approximation
of function is not verified in the case where the number of
antecedent terms was limited. Therefore, the conception
of a rule base has two important objectives, the first is to
accomplish a good function approximation, and the
second is to reduce the number of fuzzy rules [3]. The
major difficulty resides in the contradiction generated by
these two constraints. Besides, the hierarchical fuzzy
systems have been created in order to remedy this big
sudden problem by standard multi-variables fuzzy
systems. This problem gives back the implementation of
some theoretical approaches impassable [4] [5] [6] [7].
We are going to present our contribution in the following
parameters improvement: the computational time of an
algorithm based on a TSK description, as well as the
reduction of the rule base size of a fuzzy description
generated by the choice of a certain configuration.
This paper is organised as follows: In section 1, basic
idea for the concept foundation was presented. In section
2, we are giving the eventual problems of this approach,
followed in section 3 by a suggested solution. The
corresponding algorithm steps are shown in section 4. At
least, the conception was tested with a chosen type of
application and results are given. At last, we give
conclusions in the rest of the paper.
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2. Hierarchical fuzzy system formulation
The idea is to conceive a simple system while analysing
the problem in levels and meaningful behaviours.
Otherwise, these behaviours that are functions of input
system variables are characterised by different levels of
complexity. Therefore, we bring the fuzzy description
from his most complex state towards the least complex
even the simplest one. We can define in fact, a complex
behaviour by the association of several simple
behaviours, from which we use a behavioural
decomposition while associating variables linearly by two
in order to construct an elementary behaviour. Of this
fact, the complexity of behaviour decreases from one
level to another. Theoretically, this convergence is
desirable in order to satisfy the property of rule number
minimisation.
The proposed hierarchy proceeds by use of two
successive variables of an input vector (xi,x2,x3,...xn)

T,
two by two by alternation [7] [8]. For a level Li, every
input couple is associated by two intermediate variables
that are the Yy as ie[l L], je[ l n]. These intermediate
variables are used in rules consequences in order to
preserve the rules physical meaning [3]. Of this fact, we
analyse the system so that, if n as the number of input
variables is pair, we don't risk to have a remaining
variable, if no we subdivide variables by pair and the
remaining variable will be added to the last level us
adopted in [4].

(var 1 ,var 2) (varn-2,varn-3)

omportLn^\

(varn-l,varn)

*-- - -
Comport 1 .n

(var 1,var 2) ^ ^ \ f- (var3,var4)

n̂ ^ f f i m n n r t n l ^ (var 1,var 2)

Fig. 1. General behavioral decomposition

The formulation of rules given by the proposed hierarchy
for a given Li level is presented as follows:

Runs*:IF xLyi
 is A'Li and xLi+l is AJ

LJ+l then

2 ^
FLU

3 J FLU

•-»L_J
. =^ FLU

Yu

X21

XT*
*

>

Y14 >

FLU

FLU

Y21

X j ,

X ^

Y22

FLU

X,-,
x ln

FLU

FLU

*Vn/2

FLU

Fig. 2. General proposed conception

3. Existing implementation problems
In [9] we are presenting a reduced representation of fuzzy
rule base systems by proposing a theoretical formulation
of the rule base. This proposal was encountering
problems and presenting disadvantages in some elaborate
points. First, the case of odd number of input variables,
where the last variable was inserted in the last level as
intermediate variable in the consequences parts. Here, the
problem of the parameter evaluation appeared when we
are modelling with Sugeno fuzzy model. Suggested
solution, is to evaluate the rest of parameters with an
artificial added variable.
Second, the operation of inserting intermediate variables
in the consequences. Does it really preserve the rules
physical meaning? Third, if we are modelling with
Mamdani fuzzy representation, what are the criteria for
adopting the universe of discourse of these parameters,
their fuzzy sets and can we justify these choices?

4. Improved hierarchical fuzzy scheme
The scheme so given doesn't apparently present changes,
but we are eliminating the inserted intermediate variables
from the rules consequences in order to evaluate them
separately from the whole rules bases. As a result, all
fuzzy logic units conserve their rules physical meaning,
with no presence of intermediate or artificial variables. In
a first level, all inputs are evaluated in association to
extract outputs or behaviours. These output parameters
would be evaluated after been associated in a chosen
universe of discourse with a given membership functions
configuration. In fact, to overcome the problem of
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physical meaning, of intermediate layers outputs, we
propose separating them in rule blocs in order to check
them with a multi criteria fuzzy decision maker for
deciding which behaviour is dominating. This operation
is redone level to other while deciding in last one which
is the most dominant behavior. From a level to other, all
dominant behaviour benefit from the revaluation of its
input variables in their universe of discourse. The
following scheme was presenting all behavioural fuzzy
units separately in the controller structure.

FLU

FLU

_ ^

FLU

Fig. 3. Multi level fuzzy control scheme

BE 1 BE 2 BE 3 BEN

Fig. 4. Behaviors enhancement

HFLS

Decision Maker

BE
1

BE
2

BE
3

BE
4

BE
L

Fig. 5. Supervised fuzzy control scheme

Corresponding Algorithm:

Step 1 : First level behavioural evaluation
Theoretical formulation:

IfxLiis A? andxLi+1is Af+l

then YLKisf(xLi,xLi+l)
Where, (xLi,xLi+i) are input system associated by two and

( A ? , Af+X) are fuzzy input sets. We are adopting Sugeno

fuzzy model representation for all existing consequences.
In this first step, after associating variables, we generate
behaviours in order to make dominant one.
Step 2 : First level artificial behavioural enhancement
Theoretical formulation:

IfYLmsis B? andYLnss+1is Bf+l.

then DnsSinss+1 is g(YLnss, YLms+1)

where, (YLnss, YLnss+1) are intermediate variables, (B?,

Bf+l) are vague input sets, Dnssnss+i represents the

decision made by the two parameter evaluation and nss is
the subsystem number.
Here, we are manipulating intermediate variables
corresponding to two successive behaviours outputs to
extract the one that is dominating by a choice of certain
evaluation criteria without loss of behavioral interactions.
This operation is totally separated from physical system
behaviours.
Step 3 : Decision Making
Theoretical formulation:

IfDnss.nss+1 « tyD

then (xL+1>iis A" andxL+u+1 is A;+l)

y/D ; represent input fuzzy sets for decisions.
This formulation means that, regarding the decision; we
reselect variables that formulate the dominant behaviour
in order to second re-evaluation. This stage looks like an
eliminatory game, so all non-dominant behaviours should
skip to let place to those that are winners. These three
steps are executed in a looped manner, until sweeping all
hierarchical levels.

5. Simulation and Results
The results are given as follows with a unified number of
fuzzy sets m=5. The mentioned number of fuzzy rules
could be retrieved by a standard fuzzy system
representation based on an association of input variables
by two. Between those results and those calculated in [4],
we mention for the given configuration (data base with 5
inputs, 3 outputs) these points:
Gap of:
Rules number : 125
Membership Functions : 15



131

Rules Block : 1
For the computational time, if we don't take into account
the time for decision or enhancement, the effective period
to calculate output behaviour for one HFLU is equal to
2.2min, so we get a 2.2min gap time.
The MSE calculated with the improved structure on the
outputs are: 8.84 % for output 1, 0.0544 % for output 2,
2.247 % for output 3. The presented solution ensures
efficient optimization of the algorithm parameters as well
as rules number, time of computation, algorithm bloc
decomposition (decomposed structure). Consequently, the
modification of an algorithm part does not affect any
other without loss of dependencies.

6. Conclusion
In this paper, we gave improved structure to model a
fuzzy system. We denote the conservation of the physical
meaning of the system fuzzy rules. The modified
algorithm preserves the propriety of function
approximation in a compact domain. It ensure the
reduction of effective rule base dimension
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Fig. 6. (a),(b),(c) are fuzzy outputs system. These outputs
present a large constant area, a thing that reflect the possibility
of reducing again the rules data bases by reformulating rules in
different levels of the hierarchy.
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Abstract
The most common type of noise in continuous systems of

the real world is Gaussian noise, whereas discrete
environments are usually subject to noise of a discrete type.
The established, original solution for on-line inference of
finite automata that is based on generalized recurrent neural
networks is evaluated in the presence of noise of both types.
It showed quite good performance and robustness.

1 Introduction
An interesting and successful approach to the on-line

identification and extraction of finite automata (FAs) is
introduced in recent years [1], [2], [3]. It is shown that
a FA can be identified in an on-line manner by a
sufficiently large generalized recurrent neural network
completely reliably. The on-line identification of FAs
that is based on neural networks and the corresponding
on-line extraction are original according to our
knowledge. Real environments are often subject to
unexpected situations and to unpredictable phenomena
that are usually denoted as noise. The most natural type
of noise is normally distributed, white, Gaussian noise
with a zero mean and a certain standard deviation. It
has a continuous nature and is superimposed on a pure
signal. On the other hand, a noise in discrete
environments is usually of a discrete nature.

Fig. 1. The process of on-line identification of a FA with a
generalized recurrent neural network in noisy environments.

The generalized architecture of recurrent neural
networks (GARNN) [1], [2], [3] consists of arbitrary
connected neurons that are divided into several groups.
The neurons within each group process simultaneously
and the groups are processed sequentially at each time
moment. A special case of this architecture that
consists of two groups of neurons is selected and the
recurrent neural networks of this type are successfully
applied to the problems of on-line inference of FAs [1],
[2], [3] and to the trajectory tracking problems [4].

It is well known that neural networks possess a nice
property to generalize. Of interest here is how the
proposed solution for the on-line identification and
reconstruction of FAs is resistant to the presence of
noise in the environment. Fig. 1 illustrates how noise is
introduced in the process of on-line identification of
FAs. A particular type of noise is superimposed at the
output of identified FA. This is the most realistic case.
A FA is a discrete system and it is identified on-line by
a GARNN, which has a continuous nature. Therefore,
the robustness of the conceived solution should be
assessed according to both discrete and continuous
types of noise.

The paper is organized as follows. Section 2 defines
the selected noise types. A revision of the on-line
extraction process is given in Section 3. Experiments
are described together with results and comments in
Section 4. The conclusion summarizes the paper.

2 Definition of selected noise types
This paper deals with binary automata. Therefore, the

only possible values at the output of a FA are 0 and 1.
Discrete and continuous types of noise were used to
represent conditions in a noisy environment. Let us
define the applied noise types more specifically.

2.1 Discrete type of noise

A discrete noise event is defined as the realization of
value 1 instead of the correct value 0 or vise versa.
Additionally, a level of discrete, binary noise is defined
as the portion of discrete noise events in the digital data
stream. It is obvious that there is no uncertainty
connected with noise levels 0.0 or 1.0. The most
uncertain binary data contain discrete, binary noise at
level 0.5. These noise levels can be described in terms
of information theory. The entropy of discrete, binary
noise levels 0.0 and 1.0 is equal to 0, which means that
corresponding data contain complete information. On
the other hand, the entropy of discrete, binary noise
level 0.5 is equal to 1, which means that corresponding
data contain no information at all.

2.2 Continuous type of noise
The normally distributed white noise with a zero

mean is applied as the noise of continuous type. The
probability density function of the normal or Gaussian
distribution function is described by the well known
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Gaussian function as

N(x,//,cr) = (1)

where symbol ju denotes its mean value and a is its
standard deviation. The zero mean, fj, = 0, is selected
and the noise level is defined as the standard deviation
<x. This type of noise can be explained in terms of
information theory. There is no noise at noise level 0
because standard deviation of the distribution equals
zero. The entropy of such a data stream is equal to 0.
When the noise level is monotonically increased, the
entropy of the corresponding data approaches one. It
reaches one theoretically at infinite noise level.

3 Extraction process revised
The on-line extraction process was originally

proposed for use in certain environments [1], [2], [3]. It
consists of on-line clustering, on-line extraction and
state minimization stages. It depends on one parameter
named the threshold attraction force, F°. The refs. 1, 2
and 3 are recommended for the detailed description of
the procedure and for a deeper understanding of this
revision. The process has shown very good
performance in many experiments. However, is it
possible for this method to be successfully applied in
the environments with the presence of noise as well?

A brief inspection of the algorithm reveals its
potential pitfall. Namely, the established on-line
extraction method relies on correct desired output
values. However, the desired output values are
uncertain in the noisy environments. This would lead to
the extraction of an incorrect structure of the
underlying automaton in such environments.
Fortunately, the basic extraction algorithm [1], [2], [3]
can be easily generalized to be applicable in noisy
environments.

Information on center c, and mass mt is maintained
for each cluster during the on-line clustering stage of
the extraction process. The required information is
extended on each cluster i with a vector

*=[&&-•,£! ' (2)
where m is number of desired output symbols. This
vector keeps a record of desired output symbol
frequencies. Each time when the cluster / is selected for
updating and when the desired output symbol is d7, the
y'-th component of the vector f* is updated as follows

The value of each component actually counts how
many times the corresponding desired output symbol
was encountered during the process of extraction.
When creating a new state of an automaton in the

extraction stage of the extraction process by using
information on the cluster i, vector f* is used instead of
the current desired value to assign an output symbol to
the newly created state. The assigned output symbol is
the one with the highest frequency1 from the vector f,*.
This ensures correct output function of the extracted
automaton. This extension is sufficient for successful
extraction in the presence of noise of the discrete type.
However, there are infinitely many output symbols
possible in the case of continuous noise and this
extension alone is not sufficient in such environments.

Further generalization of the extraction algorithm is
very natural and it also ensures its applicability in the
environments with continuous noise. Another attraction
force based clustering process is started and performed
in parallel with the clustering of the state space
activities. It clusters the desired output patterns and is
controlled by its own attraction force threshold
parameter. Instead of using the desired output patterns
in the extraction stage, indices of the corresponding
clusters from the desired output space clustering
process are used.

Suitable values for parameters of the extraction
process depend on a structure of the trained neural
network and on input and output sequences. It would
be beneficial to determine these parameters
automatically. An extension to the extraction process
was devised in order to automate it. Records are kept in
the attraction force clustering process on a minimal
force between a data pattern and an existing cluster that
have led to the adaptation of the cluster and on a
maximal attraction force that result in forming a new
cluster. Let these values be described by F+ and F"
respectively. One can start with an arbitrary small
(large) value of the attraction force threshold. If the
extraction is found to be unsuccessful, the process is
restarted now with the selection of parameter F° > F+

(F° < F"). This procedure is then repeated until the
underlying automaton is successfully extracted.

These generalizations and extension result in a very
sophisticated extraction algorithm that is able to extract
the underlying automaton in an on-line manner in noise
free and in noisy environments of both discrete and
continuous types of noise.

4 Experimental work

4.1 Description of experiments

The robustness of the identification process
regarding discrete noise is assessed in the first place.
Each successful experiment of each problem of all

1 The output symbol can be randomly selected in the case of
equal highest frequencies.
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Table 1. Results of on-line identification and extraction in the presence of discrete and continuous noise. The trained neural
networks are tested on data without noise and the numbers of successful identifications and extractions in ten trials at various
noise levels are shown. The second number in some cells describes a possible difference in number of successful trials between
extraction and identification processes. Note that only results at selected noise levels are represented.

Problem

Tomita 1'
Tomita2'
Tomita 3'
Tomita 4'
Tomita 5
Tomita 6
Tomita 7'
T-XOR 0
T-XOR 1
T-XOR 2
T-XOR 3
T-XOR 4

Rivest & Zuckerman Ml-1
Rivest & Zuckerman M2-1
Rivest & Zuckerman Ml-2
Rivest & Zuckerman M1 -3
Rivest & Zuckerman M2-3
Rivest &Zuckerman Ml-4
Rivest & Zuckerman M1 -5
Rivest & Zuckerman M2-5
Rivest & Zuckerman M1 -6

GARNN size

1-3
2-4
3-5
1-3

9-11
7-9
4-6
5-7
7-9

11-13
16-18
16-18
1-3
2-4
4-6
4-6
5-7
6-8

9-11
7-9

9-11

Success at different noise

Discrete noise

0.05
10
10
10
9
7

10
10
10
10
10
9
9

10
10
10
9
6
5
4
1
0

0.10
10
10

7+2
9+1

6
10

7+1
9
9
9
7
3
9

10
10

1
3
1
0
0
0

0.15
10
10
10
10
2
9
6

10
10
9
7
2
9

10
10
0
2
0
0
0
0

0.20
10
10
10
8
2
5
1

10
10
8
3
2
7

10
9
0
0
0
0
0
0

0.45
9

5+2
0
0
0
0
0

2+2
2
0
0
0
0
1
0
0
0
0
0
0
0

levels>

Continuous noise

0.1
10
10
10
9
3
5

9+1
10
10
10
4
2

10
10
10
9

10
10
9
9

3+1

0.2
10
10
10
10
0
0
9

10
10
8
0
0

10
10
10
9

10
9
0
0
0

0.3
10
10
10

6+3
0
0
9
7

10
3
1
0

10
10
10
9

9+1
2
0
0
0

0.4
10
10
10

6+1
0
0
8
6
9
0
1
0

10
10
10

8+2
5-1

0
0
0
0

1.0
10
10
0
0
0
0
0
9
0
0
0
0

10
10
4
0
0
0
0
0
0

problem domains as described in refs. 2 and 1 is
repeated in the presence of discrete noise of different
levels. Discrete noise starts at level 0.05, followed by
experiments at noise levels 0.10, 0.15, until noise level
0.45, increasing the noise level each time by 0.05.

The successful experiments on all problems in all
problem domains are then reconstructed in the
uncertain environments that introduce continuous noise
into the learning process. The noise levels considered
range from 0.1 to 1.0, increasing by steps of 0.1.

The extraction process is again applied at the end of
identification in all these noisy environments in all
experiments that produce successful trials in the same
way as in refs. 2 and 1, where noise was not introduced
in the output function of underlying automaton.

The results of all these experiments and comments
are given in the following subsections. Average hit
ratio is used as the measure of success. The success of
trivial identificators is calculated for each problem of
each problem domain in order that the results of
identification can be interpreted with greater relevance.
A trivial identificator always responds with the most
probable output pattern or symbol for a particular
problem. The overall hit ratios of trivial identificators
for each problem domain can be calculated by
averaging their hit ratios on corresponding problems,

and are: 69.05% for the Tomita problem domain,
50.00% for the temporal XOR problem domain and
82.31% for the Rivest & Zuckerman problem domain.

4.2 Results of experiments
The results obtained in experiments in noisy

environments are given in this subsection. The numbers
of completely successful trials out of ten performed in
each experiment at various noise levels are shown in
Table 1. The extraction succeeded in obtaining the
correct structures of the underlying automata from all
successfully learned GARNNs. Moreover, the
extraction manages to extract a correct automaton even
in many cases where the neural networks are not
completely successful. Differences in number of
successful trials between extraction and identification
processes are shown in the same table. Average hit
ratios of on-line identification in the presence of
discrete and continuous noise of all problems for each
problem domain are compared with the overall success
of trivial identificators and depicted in Fig. 2.

4.3 Comments on results
It can be seen from Table 1 that at least one

successful trial exists for each problem of the first two
problem domains and for the first three problems of the
last problem domain despite the presence of discrete
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Fig. 2. Success of on-line identification of FAs of each problem domain in environments with the presence of: discrete noise (the
left chart) and continuous noise (the right chart). The white columns represent the average success of the trivial identificators, the
light gray columns describe the average success of all experiments in a particular problem domain and the dark gray columns
describe percentages of completely successful trials.

noise at levels 0.05, 0.10, 0.15 and 0.20. All trials at
any noise level are determined to be unsuccessful only
in the case of the most complex problem of the third
domain. It is obvious from the left chart of Fig. 2 that
the most robust problem domain regarding the presence
of discrete noise are Tomita automata. It is followed by
the T-XOR problem domain, which is slightly less
robust. The least robust problem domain is the Rivest
& Zuckerman automata [5], [2].

Similarly, it can be seen from Table 1 that at least
two successful trials exist for each problem of each
problem domain despite the presence of continuous
noise at level 0.1. It is obvious from the right chart of
Fig. 2 that the first problem domain is also the most
robust regarding the presence of continuous noise. The
Rivest and Zuckerman automata problem domain is
now, by a small amount, less robust. The least robust is
the T-XOR problem domain. However, this robustness
is far closer to the performances of the other two
problem domains than the robustness of the least robust
problem domain in the experiments with discrete noise.
It looks like continuous noise events can be easier
predicted on a statistical basis.

It should be noted that the GARNNs are evaluated
that perform successfully in the noiseless environment.
Although more complex problems express smaller
robustness, it is expected on the basis of Cover's
theorem on separability of patterns [1], [2] that larger
structures would produce more reliable solutions in
noisy environments.

5 Conclusion
Our on-line identification and extraction procedures

are evaluated in this paper to assess their robustness
regarding the presence of noise. Discrete and
continuous types of noise are considered. The results
clearly show that on-line identification is quite a robust
process and can successfully identify a FA even in
environments with significant disturbances of noise of

both types. Additionally, it was shown that the
generalized on-line extraction reliably interprets
successfully trained GARNNs, which identify FAs, in
terms of internal structures of the automata.

References
[1] Gabrijel, I., Dobnikar, A. (2003) On-line identification

and reconstruction of finite automata with generalized
recurrent neural networks. Neural networks 16(1): 101-
120.

[2] Gabrijel, I. (2002) Generalized Architecture of
Recurrent Neural Networks and On-Line Identification
of Finite Automata - Ph.D. Thesis. University of
Ljubljana, Faculty of Computer and Information
Science, Ljubljana, Slovenia.

[3] Gabrijel, I., Dobnikar, A. (2001) On-line identification
and rule extraction of finite state automata with
recurrent neural networks. In: Kurkova, V., Steele, N.
C, Neruda, R., Karny, M. (eds.) Proceedings of the
International Conference on Artificial Neural Nets and
Genetic Algorithms. Springer-Verlag, Vienna, Austria,
pp. 78-81.

[4] Gabrijel, L, Dobnikar, A. (2003) Generalized recurrent
neural networks and continuous dynamic systems. In:
Pearson, D. W., Steele, N. C , Albrecht, R. (eds.)
Proceedings of the International Conference on
Artificial Neural Nets and Genetic Algorithms. Springer-
Verlag, Vienna, Austria, pp. 9-12.

[5] Ron, D., Rubinfeld, R. (1997). Exactly learning
automata of small cover time. Machine Learning, 27 (1),
69-96.



136

Improved Clustering by Rotation of Cluster Centres

D. W. Pearson1, M. Batton-Hubert2

^URISE, Jean Monnet University of Saint-Etienne, Saint-Etienne, Prance
E-mail: david.pearson@univ-st-etienne.fr

2Centre SITE, Ecole des Mines de Saint-Etienne, Saint-Etienne, France
E-mail: batton@emse.fr

Abstract
In this paper we present a method that leads to

the improvement of a subtractive clustering model
by modifying the centres. In order to keep within
certain bounds, a centre is modified by rotating it.

1 Introduction
One of the most successful methods of subtractive

clustering is the one that was proposed by Chiu in
1994 [1]. It is based on fuzzy logic and uses poten-
tials calculated for each data point. A data point
is described by a pair of values (x, y) where x is a
vector input and y is a vector output in the general
case, in our specific case y is a scalar. The point
with the highest potential is chosen as a centre, the
potentials are modified and the process repeats un-
til the potentials are all lower than a pre-specified
threshold. When the algorithm terminates, the set
of centres provides the model.

The basic algorithm, with no improvements, at-
tempts to fit the model to a set of training data using
only the provided data points. We are interested in
the case of supervised learning and so "fitting" the
model means that we want the model output to be
as close as possible to the actual output for each
data point in the training set. The model output is
a weighted sum of the outputs associated to the cen-
tres. Improvements to the algorithm can be made
by calculating new outputs and/or moving centres
to provide a better model fit.

Various improvements of the basic algorithm were
proposed by Chiu in [1], these are based on linear
least squares calculations. We have also looked at
how other sorts of improvements can be made [2],
also based on linear least squares ideas. In this pa-
per we present another type of improvement based
on ideas coming from differential geometry and con-
trol theory.

The method that we present in this paper is se-
lective in that it operates on one centre that has to
be user specified. This means that the user should

visualise the results and choose a centre that has an
influence on a badly fitted data point.

2 Subtractive clustering
We have'nt the space here to present the Chiu

algorithm in its entirety, the interested reader is
invited to consult [1]. Basically the model is the
following where x G IRn is a vector of inputs, the
Cfc € IRn are the centres for k = 1,.. . ,p, the uk

are weights, a is a parameter determining the range
of influence of each cluster centre and y £ IR is the
output:

(i)

where

In general, the parameter a is chosen by the user,
usually by trial and error and then the Chiu algo-
rithm is put to work to find the centres and the
weights. In some cases, depending on the data, con-
siderable data reduction can take place when the
algorithm is applied i.e. only a small proportion of
the data points are needed as cluster centres.

3 Rotation
Using the model (1) we choose a centre, c& say,

and let this centre depend upon a parameter t. Then
fix x and let y be a function of Ck{t), we indicate this
by the following

We now think of Ck{t) tracing out some sort of
trajectory which causes the output of (2) to vary.
This is inspired by the problem of output tracking
in control theory [3]. In other words we let Ck(t)
satisfy the following differential equation
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ck(t) = Ack{t)

ck(O) = ck (3)

where ck(t) = ^&- and the matrix A : IRn ->
lRn is to be calculated. For notational convenience
we let <f)*(x) — 9Q^ then we can differentiate (2)
with respect to t and obtain the following expression

U — UT where U is a strictly upper diagonal ma-
trix with zeros on the diagonal, A is easily seen to
be antisymmetric. Substitute this into the above
constraint and we get

but <t>*(xi)UTck is a scalar and so we can trans-
pose it to CkU<j>*(xi)T and so the above becomes

and upon substituting (3) we obtain

Vch{t){*) = 4>*(x)Ack(t) (4)

Now choose a data point of interest, Xi say, for
which the corresponding output, y{xi), is erroneous.
Let yi be the desired output at X{ then if we can
calculate the matrix A in (4) such that

and integrate (3) over [0,1] then, theoretically, we
will have

We will not obtain this result exactly, of course,
because the calculation of A is only local and we
have no control over the second and higher order
derivatives. The change of centre will also affect
other outputs. In order to maximise desired effects
and minimise undesirable effects we place a con-
straint on A. We don't want ck(t) to change dras-
tically because the elements usually correspond to
physical quantities which are themselves naturally
constrained. Therefore we require that ||cfc(£)|| =
||cfc(0)|| i.e. that the modification is just a rotation.
The solution to (3) is ck(t) = etAck(0) and so we
need Q{t) = etA to be an orthogonal matrix.

Let QTQ = 1 where Q is an n x n orthogonal ma-
trix that satisfies the differential equation Q = AQ
and 1 is the n x n identity matrix. Now differenti-
ate the original constraint to get QTQ + QTQ = 0
and substitute Q = AQ to get QT(AT + A)Q = 0
which, for nonzero Q is satisfied by AT — —A i.e.
A is antisymmetric. In general, an antisymmetric
matrix will generate an orthogonal matrix via the
corresponding differential equation.

Thus, we need to calculate A to satisfy the above
constraint and so that A is also antisymmetrical.
Generically, this can be done as follows. Let A =

(5)

Let the vector u e IRn denote the elements of
the matrix U listed in lexicographic order (row by
row), then (5) can be rewritten, by making use of
the Kronecker product (A <g) B) of two matrices [4],
as follows

0 cl)u - (6)

Due to the particular structure of the matrix U
it will contain n^n

2
f1^ zeros. The columns of (6)

corresponding to these zeros can be eliminated and
then, provided at least one of the remaining columns
has a non zero entry, a solution can easily be found
for u. Following that, the solution of (3) will provide
the new centre.

4 Example
We tried our method on some benchmark data

easily accessible via Internet [5]. The data are con-
tinuous and concern wine characteristics. There are
13 input variables (all positive) and 1 output vari-
able taking the value of 1, 2 or 3 depending on the
class of the particular wine. There are 178 data sam-
ples in total, 59 in class 1, 71 in class 2 and 48 in
class 3. Our aim is to develop a method of centre
modification and so we used all the data when we
applied Chiu's method. We normalised all the in-
put data to be inside the interval [0,5]. After some
experiments we found that a = 1 gave good results.
After clustering we were left with 26 clusters. The
correlation between the desired outputs and the ac-
tual outputs was 0.985, the results are presented in
figure 1.

Looking at figure 1 we see that one of the biggest
errors is produced for data sample 84 where the de-
sired output is 2 but the achieved output is 2.83
and so we decided to modify this value. We chose
the cluster centre with the minimum distance from
data input number 84 to operate on, the 5lh clus-
ter found by Chiu's algorithm. After calculating u
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Fig. 1. Results without rotation. Fig. 3. Results with rotation.

Fig. 2. Results with rotation, close up. Fig. 4. Results after second rotation.
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we integrated (3) over [0,1] which resulted in the
following change of centre

cs(O)
4.0728254
1.5775862
3.5913313
3.0833333
2.5000000
2.0618557
1.4763780
3.9393939
2.2905028
0.92307692
3.1578947
2.8375000
1.4285714

3.7966833
2.9639282
3.2256754
3.2013357
2.4897982
1.8922485
1.3869867
3.9921567
2.0351556
1.2345569
2.9666360
2.7482188
1.5265881

In figure 2 we present a close up of the data be-
tween samples 80 and 90 where the effect on number
84 is clearly seen going from a value of 2.83 at the
output to a value of 2.28 which is a lot closer to the
desired value of 2. As expected, other outputs have
also been changed. The correlation between desired
and achieved outputs changed from 0.985 to 0.989.

In figure 3 we present all the results after mod-
ifying the 5th cluster centre. We can see that one
of the largest remaining errors is for the class 3 and
corresponds to the point number 119.

We applied the algorithm a second time, this time
it was the 14t/l centre that was closest to the data
point. The original and modified centres are pre-
sented below.

Cl4(0)

4.4976399
0.81034483
3.6532508
2.8333333
3.3950617
3.2603093
1.2795276
4.1666667
0.58659218
1.2192308
2.9824561
2.4125000
2.2321429

4.4849561
0.72355217
3.6972663
2.8146892
3.4944491
3.3023906
1.3911103
4.1117278

0.46353234
1.0425569
2.9788016
2.4049777
2.1895329

With the second modification the correlation be-
tween desired and achieved output becomes 0.99 and
in figure 4 we present the results. Comparing figures
1 and 4 we can see a slight overall improvement has
been obtained with the two centre rotations.

5 Conclusion
Chiu's algorithm, in its original form, has proved

to be very reliable and in general gives good results.
We have looked at how to make a local improvement
of the model by rotating cluster centres. We are now
looking at how to improve our method by adding
constraints to our calculations.

Our ultimate aim, beyond our reach at the mo-
ment, is to tackle the data streaming problem. This
is where a global model has been trained on some
data coming from a database and the model is then
put online for various reasons. For example the
model could be for controlling a plant, or for fore-
casting certain variables. In our case we are partic-
ularly interested in forecasting levels of atmospheric
pollution. When the model is put online it uses cur-
rent data in order to carry out its tasks. But these
new data are usually stored in a database and could
themselves be used for training the model. Just how
to make the best use of new data when they become
available is the data streaming problem. We believe
that our method could be used as a local adjustment
of the global model and this is one of the directions
we are looking into.
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Abstract
This paper describes TreeGNG, a top-down unsuper-

vised learning method that produces hierarchical classi-
fication schemes. TreeGNG is an extension to the Grow-
ing Neural Gas algorithm that maintains a time history
of the learned topological mapping. TreeGNG is able to
correct poor decisions made during the early phases of
the construction of the tree, and provides the novel abil-
ity to influence the general shape and form of the learned
hierarchy.

1 Introduction

The discovery of hierarchical structure through statis-
tical methods is generally referred to as cluster analysis
or numerical taxonomy, and these techniques are well
established. The statistical generation of a hierarchical
clustering can be achieved by either agglomerative or di-
visive methods. However, the divisive methods suffer
from the inability to recover from a poor decision in the
construction of the dendrogram [1].

Unsupervised Competitive Learning is the artificial
neural network foil to cluster analysis. A sub-set of the
family of Unsupervised Competitive Learning methods
are the Growing Self-organising networks. Each node of
the network has a position vector in the input space, and
nodes are connected by edges to form graphs. The com-
petitive Hebbian rule [2] produces the edges that form a
sub-set of the Delaunay triangulation for the nodes [3].
The neighbourhood of a node is defined by the edges in-
cident to the node. The positions of the nodes are altered
in response to each input, and the structure of the net-
work is modified by the insertion and deletion of nodes
and edges. This dynamic behaviour can result in disjoint
graph structures. The procedure used to form the graph
and the resultant graph structure are called topology rep-
resenting networks (TRN) [4].

TRN research has mainly focused on the discovery of
concepts without hierarchical structure, but there have
been recent attempts to discover and learn the taxon-
omy of concepts contained in an unlabelled set of data.
A family of hierarchical neural clusterers has emerged
based on Fritzke's Growing Cell Structures (GCS) [5].
However, the GCS algorithm has some inherent prob-

lems, which we will describe later in this document.
In this paper we propose a new unsupervised hierar-

chical, top-down classifier. Our model uses the Growing
Neural Gas (GNG) algorithm [6], removing the reliance
on the sometimes less-than-successful partitioning pro-
duced by GCS, and provides the ability to alter the gen-
eral shape and form of the tree structure. The remainder
of this paper is organised as follows: In the next two
sections, we describe the dynamics and performance of
the GCS and GNG networks, and the known hierarchical
variants. In section 4, we present our model and the re-
sults of our experiments, and in the final section, section
5, we draw our conclusions.

2 Topology Representing Networks
In this section, we very briefly describe the dynamics,

and comment on the performance, of the GCS and GNG
networks.

2.1 Growing Cell Structures

The GCS algorithm grows a network composed of k-
dimensional network construction units, for which k is
user-defined (fig. 1). Since k is generally less than that
of the arity of the input data, the GCS model performs
a dimensionality-reducing mapping from the (possibly
high dimensional) input space into a (generally lower)
user-defined dimensional output space.

k=l k=2 k=3

Fig. 1. Examples of GCS network topologies for k-
dimensional network construction units [5].

Periodic node deletion occurs based on a measure of
node activity and the volume of the input space classified
by the node. The calculation of the Voronoi volume re-
quired for node deletion is difficult in dimensions greater
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than 2, and algorithm implementations have resorted to
estimates [7, 5].

2.2 Growing Neural Gas

Growing Neural Gas is similar to GCS but does not
impose the strict network-topology preservation rule,
and edges are deleted based on an age criterion. The
network incrementally learns the Delaunay triangulation
corresponding to the topological relationships inherent
in the data set, and continues until a user defined stop-
ping criterion is satisfied.

2.3 GCS and GNG Comparison

Fritzke claimed that GCS "automatically finds mean-
ingful partitions of the data", and that GCS was able
to estimate the probability density of the input "under
a wide range of parameter settings" [5]. In later work,
Kohle and Merkl used GCS for document classification.
Their results suggested that the GCS automatic cluster
boundary generation aided the identification of cluster
structure. However, they also noted that the algorithm
is very sensitive to parameter selection, and for a wide
range of parameters, GCS was "unable to produce se-
mantically meaningful classification results" [8]. The
strict topological preservation rule of GCS can result in
massive purges in the GCS network, causing much of
the accumulated learning to be lost [9]. The results of
our own investigations also suggest that GCS clustering
results are heavily dependent on the network parameter
settings.

In a performance comparison of three incremental net-
works (including GNG and GCS) and the multilayer
perceptron, the networks were benchmarked on four
datasets, and scored for classification error, convergence
rate and parameter sensitivity [10]. The GNG algorithm
returned the superior benchmark score. The algorithm
converged rapidly and showed little dependence on the
network parameter settings. Again, the results of our
own experiments agree with these findings.

3 TreeGCS

Various hierarchical variants to GCS and GNG have
been proposed [9, 11]. TreeGCS [7] is an interesting
variant. TreeGCS is a top-down, incremental learning hi-
erarchical classifier, that maintains a time history tree of
the graph connectivity of a standard GCS algorithm. As
a part of the normal GCS dynamics, periodic node dele-
tion takes place, occasionally resulting in graphs split-
ting into two or more disjoint graphs. Every disjoint
GCS graph structure is represented by a leaf node in the
tree representation. Every epoch, the tree representation
is examined, and if a GCS graph structure represented

by a leaf node has split, then a new child for every new
graph is inserted into the hierarchy beneath the old leaf
node. Similarly, if a disjoint sub-graph is deleted from
the network, then the leaf node associated with the sub-
graph is removed from the tree, and the hierarchy is up-
dated to remove any inconsistent structure e.g. nodes
with a single child are removed.

4 IVeeGNG
Based on the results of our own experiments and the

work of others, we consider that the relatively poor per-
formance of GCS should preclude its use as the underly-
ing algorithm. We believe that an improved basis for this
time mapping approach would be the GNG algorithm.
We propose the TreeGNG algorithm (fig. 2), which fol-
lows the TreeGCS algorithm but uses GNG as the un-
derlying clustering algorithm, has a user-defined graph
generation rate and replaces the epoch count stopping
criterion with a more flexible user-defined stopping cri-
terion.

Until stopping criterion is satisfied
For each input
Run GNG, generate graph structures
If (Tree generation time)
If (No. of clusters increased)

Identify the tree node that now
points to multiple clusters,
create new children for this node
and associate the new children
with the clusters

Elseif (No. of clusters decreased)
Remove the associated tree node
from the hierarchy and ensure the
tree structure contains no
singletons

End if
End if

End for
End program

Fig. 2. The TreeGNG Algorithm

Within the GCS algorithm, the rate of node deletion
is a user-defined iteration count; within the TreeGCS al-
gorithm, the generation of the tree structure is based on
an epoch-by-epoch examination of the graph connectiv-
ity. The same approach could be followed for TreeGNG.
However, we decided that we could make use of the fact
that the shape of the final tree will be dependent on the
relationship of these two key periods. If tree generation
occurs very infrequently in relation to the frequency of
node deletion, then the tree will be very shallow and pos-
sibly have a large branching factor. As tree generation
becomes more frequent, the tree will tend to get deeper
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with a smaller branching factor, and taken to the limit,
if the tree is generated every time a change occurs in
the number of graphs, then the tree will be binary. This
aspect was not examined by Hodge and Austin, but we
believe it provides a useful tool, as the the general shape
and form of the tree can be specified.

Fig. 3 illustrates the TreeGNG graph splitting and the
resultant tree growth.

Network

Tree

6
(a) (b) (c)

Network

Tree

d*b d*b

(d) (e) rz> (0

Fig. 3. GNG graph splitting and tree growth. In network
(a), following the standard GNG ageing dynamics, the
dashed edge is marked for deletion. Edge deletion re-
sults in two disjoint networks (b). At tree generation
time, the tree is updated with new subordinate nodes
(c) to reflect the the splitting of the graph. The edge
ageing and deletion process is repeated in graphs (d)
and (e) producing further tree growth (f) at the next
tree generation time.

4.1 Experimental Results

We tested the utility of our algorithm on a range of
data, and report the results for two synthetic data sets.
The data sets comprised of 675 and 900 elements in
R2. For both data sets, we ran the GNG algorithm for
5000 epochs with a range of parameters. For all the pa-
rameters considered, GNG satisfactorily clustered these
data in-line with our expectations, and the induced De-
launay triangulation indicated the appropriate number of
discrete clusters.

Figs. 4 and 5 (upper) shows the results of clustering
with 50 codebook vectors, for a GNG edge deletion age
of 1 epoch and 2 nodes insertions per epoch. It should
be noted that the overall clustering time can be reduced
by using a smaller edge deletion age, with little (if any)
impact on the quality of the final clustering. We recorded
the time history of the graph connectivity for tree genera-
tion intervals ranging from 1 iteration to 100 epochs, and

(2)

(4)

(1)

'&

(3)

(5)

(9) (10)

• • » , * . ' • :

•'• -i ,»" •

(8)

(6)

(7)

every iteration every epoch

every 30 epochs every 75 epochs

Fig. 4. GNG clustering of the MIX 10 data set (upper fig.) with
50 nodes, a GNG edge deletion age of 1 epoch and a
node insertion rate of 2 per epoch. The time history
trees for a range of tree generation intervals are shown
in the lower figures. With the tree generation occur-
ring every 30 epochs, the tree structure was broadly
in-line with our expectations of an appropriate hierar-
chical representation.

typical resultant tree structures are shown (figs. 4 and 5
lower). The trees confirm that frequent tree generation
results in binary tree representations, whilst an extended
period between tree generations results in wider, shal-
lower trees; but of more importance is that between these
two extremes, the tree structure is in-line with our expec-
tation of the most appropriate tree structure. In addition,
the TreeGNG tree structures do no exhibit the instabil-
ity noted with TreeGCS where "for many parameter set-
tings" the network repeatedly deletes and reinstates the
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(4) "
• (6)

(5)

;«.,(2) , (7)

(1)

every iteration every epoch

every 30 epochs every 100 epochs

Fig. 5. GNG clustering of the GAUS9 data set (upper fig.)
with 50 nodes, a GNG edge deletion age of 1 epoch
and a node insertion rate of 2 per epoch. The resul-
tant time history trees for a range of tree generation
intervals are shown in the lower figures. With the tree
generation occurring every 30 epochs, the tree struc-
ture was broadly in-line with our expectations of an
appropriate hierarchical representation.

same clusters [7]. The results of tests on other synthetic
data sets have indicated that TreeGNG is able to produce
trees in-line with our expectations of an approriate struc-
ture.

5 Conclusions

We have developed an unsupervised top-down hier-
archical classification tool based on Fritzke's GNG al-
gorithm and Hodge and Austin's TreeGCS. Our method
dynamically learns and adjusts the tree structure in re-

sponse to the input data, and produces stable hierarchi-
cal representations for a broad range of network param-
eters. The periodic edge removal and competitive Heb-
bian learning of the GNG algorithm allows the network
to recover from poor decisions in the generation of the
hierarchy and thus overcome one of the major problems
with TreeGCS and the divisive statistical methods. The
algorithm also provides the novel ability to influence the
general shape and form of the learned hierarchy.

References
[1] Everitt, B. (1993), Cluster Analysis, Edward

Arnold, London, 3rd edition

[2] Hertz, I , Krogh, A., Palmer, R. (1991), Intro-
duction to the Theory of Neural Computation,
Addison-Wesley, Redwood City, CA

[3] Fritzke, B. (1996), Growing Self-Organizing
Networks-Why?, In: Proc. European Symposium
on Artificial Neural Networks, pp. 61 -72

[4] Martinetz, T. M., Schulten, K. J. (1994), Topol-
ogy Representing Networks, Neural Networks,
7(3):507-522

[5] Fritzke, B. (1994), Growing Cell Structures - A
Self-Organising Network for Unsupervised and Su-
pervised Learning, Neural Networks, 7(9): 1441—
1460

[6] Fritzke, B. (1995), A Growing Neural Gas Network
Learns Topologies, Advances in Neural Informa-
tion Processing Systems, pp. 625-632

[7] Hodge, V. J., Austin, J. (2001), Hierarchical Grow-
ing Cell Structures: TreeGCS, IEEE Trans. Knowl-
edge and Data Engineering, 13(2):207-218

[8] Kohle, M., Merkl, D. (1996), Visualising Simi-
larities in High Dimensional Input Spaces with a
Growing and Splitting Neural Network, Lecture
Notes in Computer Science, 1112:581-586

[9] Burzevski, V., Mohan, C. K. (1996), Hierarchical
Growing Cell Structures, In: Proc. IEEE Int. Conf.
Neural Networks, Washington D.C., volume 3, pp.
1658-1663

[10] Heinke, D., Hamker, F. H. (1998), Compar-
ing Neural Networks: A Benchmark on Grow-
ing Neural Gas, Growing Cell Structures, and
Fuzzy ARTMAP, IEEE Trans. Neural Networks,
9(6): 1279-1291

[11] Cao, X., Suganthan, P. (2002), Hierarchical Over-
lapped Growing Neural Gas Networks with Appli-
cations to Video Shot Detection and Motion Char-
acteristics, In: Proc. Int. Joint Conf. Neural Net-
works, IEEE, Hawaii, USA, volume 2, pp. 1069-
1074



144

A Clustering Algorithm using Cellular Learning Automata based
Evolutionary Algorithm

R. Rastegar, M. Rahmati, M. R. Meybodi
Computer Eng. Department, Amirkabir University, Tehran, Iran

{rrastegar, rahmati, meybodi} @ce.aut.ac.ir

Abstract
In this paper, a new clustering algorithm based on

CLA-EC is proposed. The CLA-EC is a model
obtained by combining the concepts of cellular
learning automata and evolutionary algorithms. The
CLA-EC is used to search for cluster centers in such a
way that minimizes the squared-error criterion. The
simulation results indicate that the proposed algorithm
produces clusters with acceptable quality with respect
to squared-error criteria and provides a performance
that is significantly superior to that of the K-means
algorithm.

1 Introduction

Clustering is an important unsupervised
classification method used in identifying some
inherent structure present in a set of data. The purpose
of clustering is to group data into subsets that have
useful meaning in the context of a particular problem
[1]. Various clustering methods have been developed
which may be classified into the following categories:
hierarchical clustering, learning network clustering,
mixture model clustering, objective-function-based
clustering, and partition clustering, etc [5][16]. The
clustering problem can be stated as finding the
clusters such that the between-group scatter is
maximized and within-group scatter is minimized.
Many heuristic techniques for clustering exist in the
literatures, which address the global minimization of
squared-error criterion function, Genetic Algorithms
(GA) [1][3][4][7] and Simulated Annealing (SA) [6]
are two of these techniques.

The Cellular Learning Automata (CLA), which is
introduced for the first time in [11], is a mathematical
model for modeling dynamical complex systems that
consists of large number of simple components. The
simple components of CLA, which have learning
capabilities, act together to solve a particular problem.
This model has been applied to several problems such
as image processing [10], channel assignment in
cellular mobile system [2], function optimization [13],
modeling of rumor diffusion [8], VLSI Placement
[19], and modeling commerce networks [9]. In [13],
CLA and evolutionary computing are combined to
obtain a new model called CLA-EC for optimization
problems. This model is capable of performing search
in complex, large and multimodal landscape. In this
paper, a new clustering algorithm based on CLA-EC

is proposed. The CLA-EC is used to search for cluster
centers in such a way that minimizes the squared-error
criterion. Due to parallel nature of CLA-EC model,
the proposed algorithm is appropriate for clustering
large data set. In order to demonstrate the
effectiveness of the proposed CLA-EC-clustering, 6
different two-dimensional data sets and IRIS data set
are considered. Our experimental results of clustering
indicate that the CLA-EC based clustering algorithm
provides a performance that is significantly superior
to that of the K-means algorithm.

The rest of the paper is organized as follows.
Section Oil briefly presents the clustering problem.
Section III gives a brief review of learning automata,
cellular learning automata and CLA-EC model. The
proposed clustering algorithm is described in section
IV. Section V presents the simulation results for
different data sets and the last section (VI) is the
conclusion.

2 Clustering

In a clustering problem, a data set, in N-
dimensional Euclidean space, S={xli...,xM} is given,
where xieR** and M is the number of data.
Considering K clusters, represented by CJt...,CK ,the
clusters should satisfy the following conditions,

C, n C,. = 0 , / * j , ij = 1,...,K.
Among various clustering methods, the K-means
method is more attractive than others in practical
applications [15], The K-means clustering algorithm
is one of the well-known clustering methods, which is
based on an iterative hillclimb-ing algorithm. One of
the most important disadvantages of this algorithm is
that it is very sensitive to the initial configuration and
may be trapped in a local minimum [15]. Therefore,
several approximate methods such as Simulated
Annealing (SA) [6] and Genetic Algorithm (GA)
[1][3][4][7] have been developed to solve the above
problem.

3 The CLA-EC model

Learning Automata: Learning Automata are
adaptive decision-making devices operating on
unknown random environments. The Learning
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Automaton has a finite set of actions and each action
has a certain probability (unknown for the automaton)
of getting rewarded by the environment of the
automaton. The aim is to learn choosing the optimal
action (i.e. the action with the highest probability of
being rewarded) through repeated interaction on the
system. If the learning algorithm is chosen properly,
then the iterative process of interacting on the
environment can be made to result in selection of the
optimal action. Figure 1 illustrates how a stochastic
automaton works in feedback connection with a
random environment. Learning Automata can be
classified into two main families: fixed structure
learning automata and variable structure learning
automata (VSLA). In the following the variable
structure learning automata is described.

A VSLA is a quintuple < a, fr p, T(a,fi,p) >, where
a, ft, p are an action set with 5 actions, an environment
response set and the probability set p containing s
probabilities, each being the probability of performing
every action in the current internal automaton state,
respectively. Function T is the reinforcement
algorithm, which modifies the action probability
vector p with respect to the performed action and the
received response. Let a VSLA operate in an
environment with fi=fO,l}. Let neN be the set of
nonnegative integers that represent instance of
iterations. A general linear schema for updating action
probabilities can be represented as follows. Let action
i be performed at instance «. If fi(n)-0 (reward),

Pi(n + l) = Pi(n) + a[l-

If P(n)=l(penalty),

V/

j jn) \fj j*i
Where a and b are reward and penalty parameters.
When a=b, the automaton is called LRP. If b=0 the
automaton is called LJU and if 0<b«a<l, the
automaton is called LReP. For more Information about
learning automata the reader may refer to [12] [17].

Environment —i

Learning Automata

Fig. 1. The interaction between learning automata and
environment

Cellular Learning Automata: The Cellular Learning
Automata (CLA) [l l][20] is a mathematical model
for dynamical complex systems that consists of large
number of simple components. The simple
components, which have learning capabilities, act
together to produce complicated behavioral patterns.
A CLA is a cellular automata in which learning
automaton (or multiple learning automaton) is
assigned to its every cell. The learning automaton
residing in a particular cell determines its state
(action) on the basis of its action probability vector.

There is a rule that CLA operate under it. The rule of
CLA and the actions selected by the neighboring LAs
of any particular LA determines the reinforcement
signal to that LA (multiple LA). In CLA, the
neighboring LAs of any particular LA constitute its
local environment. The local environment is non-
stationary because it varies as action probability
vector of neighboring LAs vary. The operation of
cellular learning automata can be described as
follows: At the first step, the internal state of every
cell is specified. The internal state of every cell is
determined on the basis of action probability vectors
of learning automaton (automata) residing in that cell.
The initial value may be chosen on the basis of past
experience or at random. In the second step, the rule
of cellular learning automata determines the
reinforcement signal to each learning automaton
(automata) residing in that cell. Finally, each learning
automaton updates its action probability vector on the
basis of the supplied reinforcement signal and the
chosen action. Tins process continues until the desired
result is obtained.

The model of CLA-EC (Cellular Learning
Automata based Evolutionary Computing) [13]: The
CLA-EC model [13] is obtained by combining
cellular learning automata and evolutionary
computing. This model is capable of performing
search in complex, large and multimodal landscape.
In CLA-EC, similar to other evolutionary algorithms,
the parameters of the search space are encoded in the
form of genomes. Each genome has two components,
model genome and string genome. Model genome is a
set of learning automata. The set of actions selected
by this set of learning automata determines the second
component of genome (string genome). Based on a
local rule, a reinforcement signal vector is generated
and given to the set of learning automata. According
to the learning algorithm, each learning automaton in
the set of learning automata updates its internal state
according to a learning algorithm. Then each learning
automata in a cell chooses one of its actions using its
probability vector. The set of actions chosen by the set
of automata residing in a cell determines a candidate
string genome that may replace the current string
genome. The fitness of this string genome is then
compared with the fitness of the string genome
residing in that cell. If the fitness of, the generated
genome is better than the quality of the sting genome
of the cell, the generated string genome becomes the
string genome of that cell. The process of generating
string genome by the cells of the CLA-EC is repeated
until a termination condition is satisfied. In order to
have an effective algorithm, the designer of the
algorithm must be careful about detennining a
suitable genome representation, fitness function for
the problem at hand, the parameters of CLA such as
the number of cells (population size), the topology,
and the type of the learning automata for each cell.
Assume/be a real function that is to be minimized.

min{f($)\$e Bm}
where #" is {0,l}m. In order to use CLA-EC for
optimization of function / first a set of learning
automata will be associated to each cell of CLA-EC.
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The number of learning automata associated to a cell
of CLA-EC is the number of bits in the string genome
representing points of the search space o f / Each
automaton has two actions: 0 and 1. The CLA-EC
iterates the following steps until the termination
condition is met.

Step!: every automaton in cell i chooses one of its
actions using its action probability vector.

Step 2: cell i generates a new string genome, n\ by
combining the actions chosen by the set of learning
automata of cell i. The newly generated string genome
is obtained by concatenating the actions of the
automata (0 or 1) associated to that cell.

Step 3: Every cell i computes the fitness value of
string genome rj\ if the fitness of this string genome is
better than the one in the cell, then the new string
genome rf becomes the string genome of that cell.
That is

"+1

where %n and TJl
n present the string genome and the

new string genome of cell i at instance n.
Step 4: Se cells of the neighboring cells of the cell i

are selected. This selection is based on the fitness
value of the neighboring cells according to truncation
strategy [18].

Step 5: Based on the selected neighboring cells a
reinforcement vector is generated. This vector
becomes the input to the set of learning automata
associated to die cell. Let Ne(i) be set selected
neighbors of cell i. Define,

where,

fl if exp is true

[0 otherwise
ftJ , the reinforcement signal given to learning
automaton j of cell i, is computed as follows,

where w(.) is a step function. The overall operation of
CLA-EC is summarized in the algorithm of figure 2.

While not done do
For each cell i in CLA do in parallel

Generate a new string genome;
Evaluate the new string genome;
If/(new string genome) <fip\d string genome) then

Accept the new string genome
End if
Select Se cells from neighbors of cell i;
Generate the reinforcement signal vector;
Update internal state LAs of cell i

End parallel for
End while

Fig. 2. Pseudocode of CLA-EC

4 A CLA-EC based clustering algorithm

We propose to use the CLA-EC model to
determine the K cluster centers of the data set in F?;
thereby clustering the set of M points of
S={xu...,xM}> The sum of the squared distances of the
points from their respective cluster centers is taken as
the clustering metric, and denotes it b y / The aim is to
search the cluster centers in such a way that function/
be minimized The proposed algorithm consists of
three phases: preprocessing phase, the CLA-EC phase
and the clustering phase.

4.1 Preprocessing Phase

The purpose of preprocessing phase is to reduce the
size of the search space on which CLA-EC will
operate. To reduce the size of the search space, at first
the largest and the smallest values of each dimension
of data set is found as follows:

min • = min {x f , } , max . = max {x,. y}
J \<i<M *J J \<i<M J

Aj = m a x 7 - m i n y .

where xitj is the/th components of x,. Second, a new
search space where we denote it by R' which is R' =
[0,Ai] x...x [0,AN] is defined, where * is Cartesian
product sign.

4.2 The CLA-EC Phase

In the CLA-EC phase, clusters are optimized with
respect to the squared error criterion. The
characteristics of the applied CLA-EC are as follows.

String genome representation: Each string genome
is represented by a binary string consisting of M*N
parts where each part is a representation of an
encoded real number. Let X ^ be (/ *N + j )* part of
string genome where j is the dimension of the center
of cluster i in R'. If binary representation of X \j has
Wy bits then in a iV-dimensional space with K clusters,
the length of a string genome is w=22>Vy.

Fitness Junction (total sum of distances): To
compute the fitness value of £ at first, we compute
X 'ij by decoding £ and set Xitj to be (X r

i4+minj). The
fitness value of genome is computed as follows:

where,
AU =1 -2U AndJ A i = min A,.

\<j<K
Parameters of CLA: A one dimensional CLA with

wrap around connection and with the neighborhood
shown in figure 3a is used. The neighbors of cell i are
cell i-7 and cell /+7. The architecture of each cell is
shown in figure 3b. Each cell is equipped with m
learning automata. The string genome determiner
compares the new string genome with the string
genome residing in the cell. The string with the higher
quality replaces the string genome of the cell.
Depending on the neighboring string genomes and the
string genome of the cell, a reinforcement signal will
be generated by the signal generator.
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(b)
Fig. 3. The topology of the CLA-EC used in this paper.

Termination Criteria: CLA-EC stops after a pre-
specified number of iterations. The best string genome
found in the last iteration is the solution to the
clustering problem. For the experimentations that
follow the maximum number of iteration is set to 200.

4.3 The Clustering Phase

In this phase, the clusters are created using their
centers, which are encoded in the best string genome
reported by the pervious phase. This is done by
assigning each point x,, i=l...Mi to one of the clusters
Ck with center Xk such that,

Ck = arg min A, .,

where

All ties are resolved arbitrary.

t i—-4—-i i—»—s—

(a) (b)
Fig. 4. (a) Data 1 (b) Data 2.

Fig. 5. (a) Data 3 (b) Data 4.
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«

(a) 0»
Fig. 6. (a) Data 5 (b) Data 6.

5 Simulation results

Several simulations are conducted in order to
evaluate the effectiveness of the proposed method.
The results are then compared with the results
obtained for K-means algorithm. Simulations are
conducted for seven different data sets, which we call
them Data 1, Data 2, Data 3, Data 4, Data 5, Data 6
and IRIS Data set. The characteristics of these data
sets are given below.
Data 1: a two-dimensional data set with 4 clusters and
59 points as shown in figure 4a.
Data 2: a two-dimensional data set with 4 clusters and
25 points as shown in figure 4b.
Data 3: a two-dimensional data set with 4 clusters and
170 points as shown in figure 5a.
Data 4: a two-dimensional data set with 5 clusters and
128 points as shown in figure 5b.
Data 5: a two-dimensional data set with 5 clusters and
100 points as shown in figure 6a.
Data 6: a two-dimensional data set with 3 clusters and
35 points as shown in figure 6b.
Iris data: This data set represents different categories
of irises having four feature values. The four feature
values represent the sepal length, sepal width, petal
length and the petal width in centimeter. It has 3
clusters with 150 points.

For the sake of convenience in presentation, we use
CLA-EC(automata(a,b), se ,q) to refer to the CLA-EC
algorithm with q cells, the number of selected cell Se
and when using learning automata automata with
reward parameter a and penalty parameter b.

Experiment I: In this experiment we study the
effectiveness (quality of clusters found) of the
proposed clustering algorithm with respect to CLA-
EC parameters such as penalty and reward
parameters, the number of cells, and the number of
selected cells. Tables 1 of [21] shows the results of
the CLA-EC-clustering algorithm for data set Data 1
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for different values of the parameters of the CLA-EC
such as the type of the learning automata, the penalty
and the reward parameters of the learning automata,
the number of selected cells and the number of cells.
For each simulation maximum number of iterations of
CLA-EC is taken to be 200. It is clear that as the
mean and the standard deviation decrease the quality
of the clustering becomes better. By careful inspection
of the results reported in Table 1 [21] it is found that
as the number of cells increases, the mean and the
standard deviation of the result decreases. Also, it has
been found that, better results are obtained when each
automaton uses LRP or LR£P learning algorithm and
when Se is set to 1. Figure 7 shows the effect of the
number of cells in CLA-ECQ^KO.OIAOI),!,-) on
clustering IRIS data set. It is shown that as the
number of cells increases the quality of clustering
becomes better. Figure 8 shows the fitness of the best
genome (solid line) and the mean of the fitness of
genomes (dashed line) for each iteration when using
CLA-ECO^O.OIAOI),!^) for Data 1 and Data 4.

Experiment 2: In this experimentation we compare
the results of the proposed algorithm with that of K-
means algorithm. For this experimentation CLA-EC
has 5 cells, each automaton uses LRP learning
algorithm with a=b~0.1, Se is 1 and the maximum
number of iterations is set to be 200. The results of 50
simulations for Data 2 and Data 3 are shown in figure
9. For Data 1 it is found that the CLA-EC-clustering
algorithm provides the optimal value of 9502.44 in
28% of the runs whereas K-means algorithm attains
this value in 8% of the runs. Both algorithms get
trapped at a local minimum for the other runs. For
Data 2, CLA-EC-clustering attains the best value of
239.10 in all the runs. K-means, on the other hand,
attains this value for 28% of the runs, while in other
runs it gets stuck at some of its local minima (such as
3433.77, 3497.16 and 5551.52). For Data 3, Data 4,
Data 5, Data 6, and IRIS data set the CLA-EC-
clustering attains the best values of 15545.09,
1873.71, 5525.34, 3000.43, and 46.44 in 30%, 100%,
10%, 40%, %30 of the runs, respectively. The best
values attained by the K-means algorithm for these
data sets are 15545.09, 1873.71, 5515.34, 3000.43,
and 46.44 in 20%, 30%, 2%, 30%, and %24 of runs,
respectively. Table 2 shows the summary of results of
this experiment. By careful inspection of the results it
is found that the CLA-EC(L/J/>(0.1,0.1) ,1 , 5) performs
better than the K-means method for Data 1, Data 2,
Data 3, Data 4, Data 4, Data5, Data 6, and IRIS data
set.

6 Conclusions

In this paper, a new clustering algorithm based on
CLA-EC, called CLA-EC-clustering, was developed.
The CLA-EC finds the cluster centers, in such a way
that the squared-error criterion be minimized. In order
to demonstrate the effectiveness of the CLA-EC-
clustering, 6 different two-dimensional data sets and
IRIS data set were considered. The results of
simulations showed that the CLA-EC-clustering
algorithm provides a performance that is significantly
superior to that of the K-means algorithm. Due to the

parallel nature of CLA-EC, the proposed algorithm is
very suitable for clustering large data set.
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Fig. 7. Effect of the number of cells on the quality of
clustering for IRIS data set when using CLA-
EC(L/u<0.01,0.01),l, -) - (a) shows mean and (b) shows
the standard deviation over 50 runs.
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Fig. 9. Comparison of the K-means and the CLA-EC(L*/<0.1,0.1),l, 5) (a) shows the total sum of distances obtained for K-
means and CLA-EC(L/?/J(0.1,0.1),l, 5) over 50 different runs for Data 2- (b) shows the total sum of distances obtained for K-
means and CLA-EC(L*/<0.1,0.1),l, 5) over 50 different runs for Data 3. The solid line is for the CLA-ECCL^O.l.O.l),!, 5)
and the dashed line is for the K-means algorithm.

Tables 1. The results of the CLA-EC(L/?X0.1,0.1),l, 5) algorithm (maximum 200 iterations) and the K-means algorithm for
Data 1,2,3,4,5,6, IRIS - Columns 'Mean' and 'Std' show the mean and standard deviation over 50 runs.
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Abstract
When estimating the optimal value of the number of clusters, C,
of a given data set, one typically uses, for each candidate value
of C, a single (final) result of the clustering algorithm. If
distributional data of size T are used, these data come from T
data sets obtained, e.g., by a bootstrapping technique. Here a
new approach is introduced that utilizes distributional data
generated by clustering the original data T times in the
framework of cost function optimization and cluster validity
indices. Results of this method are reported for model data (100
realizations) and gene expression data. The probability of
correctly estimating the number of clusters was often higher
compared to recently published results of several classical
methods and a new statistical approach (Clest).

1 Introduction
Data clustering is very common. However, rather than
'recognizing' the true structure, a clustering algorithm
merely superimposes a structure on a data set, even if this
structure does not exist. In order to validate clustering
results, different techniques are considered. Whereas
relative criteria (in particular, the large family of validity
indices) do not involve statistical tests, other techniques
are based, e.g., on bootstrapping and hypothesis testing
[1], Biostatisticians currently introduce these techniques
into the challenging field of gene expression data analysis
in order to allow for statistical inference.
Nevertheless, the singularity of a sample data set may not
be the only source of randomness of a clustering result.
The perhaps most frequently used and least heuristic
clustering algorithms are based on function optimization.
For the global optimization, combinatorial, rule-based or
analytical solutions are usually infeasible or unknown. To
avoid the bias due to heuristic decisions made by the
analyst, stochastic methods are often used that contain
randomness explicitly, like random initialization [2], and
random search [3]. This leads to random output of the
clustering algorithm, but as a result of the algorithm. The
analysis of this second type of randomness is not only
desirable for an adequate data interpretation, but also
useful for the previous task of cluster validation.

When clustering data by using an optimization scheme,
one typically * validates' some final result, for example,
the partition obtained after a number of iterations of an
algorithm, such as simulated annealing. If the algorithm
only provides a local minimum (such as K-means or
fuzzy C-means), it is also common to let the algorithm
run a number of times and take the best result with
respect to an objective function. If these methods worked
well, they would have found the global optimum, i.e., a
result that is (usually) unique and not random. If the
search effort was specified a priori, it remains unclear
how closely the final result matches the optimum. Moller
et al. [3, 4] have investigated the uniqueness of obtained
objective function values and validity index curves.
However, this requires high computational costs, and
rules that define when to stop the search.
The validation strategy presented below is based on
distributional results of multiple (re-)partitioning rather
than a single (final) partition. Furthermore, it relies on
distributional data of the algorithmic search effort. One
principle of this strategy is comparable to that used in
bootstrapping and hypothesis testing. Information about
the degree of randomness in a large set of results are
utilized for estimating the numbers of clusters. Robust
results that are less depending on random settings of the
algorithm indicate non-random structure in the data.
It corresponds with experience that distinct clusters are
easily identified, even by relatively simple methods. As a
conclusion, one can expect the following if the specified
and true number of clusters are equal, i) The objective
function has clear (global) minimum with a wide and
smooth basin of attraction. Hence, the bottom can be
reached by descending from many starting points, ii) The
distinctness of the true clusters yields quite a low cost
function value, i.e. the 'valley' of the function will have a
strong gradient. Thus, rather few iterations might be
required to reach the minimum.
Conversely, if consistent results of multiple clustering
and/or relatively few iterations are observed, this can be
interpreted as an indication of existing clusters. A
conceptual advantage is that both consistency and effort
are general features that can be defined independently of
the heuristically chosen objective and validity functions.
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2 Methods
Clustering is viewed as an operator that transforms a set
of unlabeled items into subsets of equally labeled items.
This is only one step in the flow chart of cluster analysis
[5]. We consider a clustering algorithm based on function
optimization that requires the number of clusters, C, to be
specified beforehand. Hence, estimating the number of
clusters is another step, and the most important cluster
validation problem. Many cluster validity indices have
been proposed [1, 5]. The use of both an objective
function and a validity index is justified as follows.
Common objective functions can "lead to very unrealistic
partitions", and "some of the intuitively desirable
properties that we want a partition to have may not be
captured by a functional that is easily optimized." [5]

2.1 Clustering-and-cluster validation procedure

1. For C = 2,.., Cmax clusters,
a) apply the clustering algorithm T times to the data
set using r = 1,.., T random initial partitions and/or
random sequences of partitions thereby minimizing a
cost function, E. Calculate the validity index value for
each partition, V(C,t), as well as the minimum values
Emin(C) = min , E(C,t), and Vmin(C) = min , V(C,t).
b) Re-scale: E(C,t) = E(C,t) - Emin(C), t = 1,.., T

2. Re-scale V(2,.., Cmax) globally between 0 and 1.
3. ForC = 2,.., Cma,,

a) calculate the percentage, P(C), of the subset of
partitions for which holds: E(C,t) < Emin(C)+eEi and
V(C,t) < Vtnin(C)+£v, where V is a validity index to
be minimized. Zg and Sy are small positive values.
b) Calculate the average number of iterations, /(Q,
performed by the clustering algorithm.

4. Set a threshold value 0 < n < 100 (%).
Calculate four estimates in the number of clusters:
Cj is the largest value of C with P(C) > n.
C2 is that value of the set {CI P(C) > n] with the

smallest validity index score Vmin(C).
C3 is the value of C, where the graph connecting

the n% percentiles V^2),..f V^Cmwc) shows its
strongest increase, AnmXi from C to C+l,
and where P(C) > n. If 4mu < 0 set C3 = 1.

C4 is found analogously to C3t but 1(2),.., I(Cntax)
are used rather than V& and C4 e {2,.., CmaA}

If V is an index which is to be maximized (e.g., Dunn's
index [5]), the maximum principle is applied accordingly
in steps la, 3, and for the calculation of C2 and C3.

2.2 Parameters for the analysis procedure

• Clustering algorithm: fuzzy C-means (FCM) (cf. [1])
• Number of clustering trials: T=\00

• FCM parameters: squared Euclidean distances, fuzzy
exponent: 1.2, maximum number of iterations: 300;
100*, minimum objective function improvement:
10"10; 10"6 *, * typical default values, used here for the
microarray data

• Maximum number of clusters: Cmax = 7 for the model
data and Cmax = 9 for the microarray data.

• Cluster validity index: Davis-Bouldin index (cf. ref. 5)
Tolerance values: eE = 0, £v = 0.01 AV, where AV is
the range of V(C,t) over all values of C and t.

• Threshold value: n = 50 %.

Step 3a quantifies the robustness of candidate partitions
that received the best scores for the quality criteria (E and
V). The tolerance values EE and £y were included to allow
negligible (e.g. rounding) differences between almost
identical results. Stable estimates, C,, were obtained for a
wide range of parameter n. The rule for setting C3 = 1
was introduced based on results of this procedure for
uniformly distributed one-cluster data sets.

3 Data
Model data: 100 realizations (data sets) were generated
for a model by Tibshirani et al., extended by Dudoit and
Fridlyand [6] when testing analysis tools for microarray
data. The model consists of four clusters, 10 variables,
and the size of each cluster is random, either 25 or 50.
The cluster means of three variables are also randomly
chosen, from a N(C>3, 25I3) distribution, where lp is the
pxp identity matrix. The cluster members are multivariate
normally distributed. The cluster means of seven
variables are zero. These variables represent noise. Only
those simulations are used, where members of different
clusters have a minimum Euclidean distance of 1.
Microarray data: expression time courses of five groups
of genes which have been characterized as showing an
expression peak in one of five phases of the yeast cell
cycle ([7], Table 1). The 214 time courses selected here
can be expected to contain five clusters associated with
the cell cycle phases, early Gj, late Gj, S, G2, M.

4 Results
4.1 Model data
Table 1 contains the votes of the estimators C/,.., C4 for
100 realizations of the model. Three estimators provided
the correct number of clusters (C = 4) with probabilities
of 84 to 87%. C2 falsely suggested two clusters based on
a majority decision (45%). The reason for this is indicated
by the example in Table 2: the validity index used rated
the coarse structure (two clusters) as being a little clearer
than the finer structure (four clusters). This situation may
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often occur and is not contradictory to the case, that the
finer structure is the true structure one is interested in.
Hence, it may be more successful to find the largest
number of clusters above which the cluster validity, in the
literal sense, decreases clearly (i.e. increases if validity is
described by small values). This transition is recognized
to occur from C = 4 to C = 5 in Fig. 1, where the results
underlying the estimated numbers C, were plotted for the
same data set characterized in Table 2.

Table 1 Probabilities (in %) of correct estimates in the number
of clusters, C, for the 100 realizations of the four-cluster model.

c,
c2
c3
Q

1
—
-

0
-

2
0
45
4
3

3
9
33
11
9

4
89
22
84
87

5
2
0
1
1

6
0
0
0
0

7
0
0
0
0

Table 2 Results of 100 clustering trials for one data set of the
four-cluster model. See section 2.1 for the definitions.
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Fig. 1 Results of 100 runs of the FCM clustering algorithm thus
partitioning one model data set into C clusters, respectively. Re-
scaled cost function, E(C>t), on the x-axis a) against the (0,1)
normalized Davis-Bouldin cluster validity index, and b) against
the number of FCM iterations. 0 Vn = median, X mean

4.2 Gene expression data

Based on the obtained estimates, Cj = 5, C2 = 4, C3 = 5,
C4 = 4, the number of clusters may be assumed to be four
or five. More insight is obtained from the underlying
results (Table 3, Fig. 2).

Table 3 Results of 100 clustering trials for the yeast cell cycle
gene expression data. See section 2.1 for the definitions.
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Fig. 2 Results analogous to those in Fig. 1 for the yeast cell
cycle gene expression data.

Robust cost function and validity index results, P(2), and
small values of both the index, VJ2), and the number of
iterations, 7(2), indicate a coarse structure of two distinct
clusters. The Davis-Bouldin index, used here, rated the
four-cluster partition as being the best. This rating is
supported by the optimal robustness score, P(4) = 100%.
The fact that the four rather than two clusters required
more iterations to be found is natural, because the
clustering problem is more complex. In this sense, C > 4
is indicated by the result that, on average, finding the four
clusters did not require more iterations than generating
three clusters. Moreover, two minima were found equally
frequently for C = 3 instead of a unique solution (see Fig.
2). Nevertheless, apart from the four-cluster solution, the
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five-cluster partition also seems to be non-random as
suggested by robust cost function and index results,
P(5) = 94%. The fact that the index does not exhibit its
minimum at C = 5 may have the reason that some of the
five clusters are closer to each other than those of the
four-cluster partition. Indeed one cluster at C - 4 was
subdivided at C = 5. Perhaps this separation required an
increased number of iterations from several (unfavorable)
starting points of the cost function minimization. As
expected, the five-cluster partition most strongly agreed
with the five clusters biologically characterized by Cho et
al. (ref. 7, table 1).

early Gi

late GI

M

cell cycle phase

Fig. 3 Means and standard deviations of the gene expression
time course clusters, a-b) four and five-cluster partitions
obtained by clustering, c) biologically characterized clusters

5 Discussion
It was demonstrated that distributional rather than single
clustering results for a particular data set give improved
insight into existing data structures at different levels of
resolution. In addition to the automated estimation of
numbers, such as C7 to Q, plots of distributional results
may be a valuable tool. Analysts often let the clustering
algorithm run a multiple number of times, anyway (and
retain the best result). In these cases the evaluation of all
results rather than the best only is an advantage that can
be obtained with almost no extra costs.
In addition to the model data considered here, the seven
other models used in ref. 6 were also analyzed, each
based on 100 realizations. Moreover, 39 other cluster
validity indices (see ref. 4, 5) were tested replacing the
Davis-Bouldin index in the above procedure. Because
these results are too comprehensible, they cannot be
presented here. The usefulness of the approach
introduced in section 1 and demonstrated by an ad hoc
implementation, was confirmed also for the other model
data and validity indices. However, it seems that the
objective function of the clustering algorithm and the
validity indices should be adapted accordingly if, for
example, elongated clusters are expected.

There is much room for developments. One possibility is
the application of the Gustafson-Kessel algorithm that can
deal with elongated clusters by computing a set of cluster
covariance matrices. Furthermore, different sample data
sets might be analyzed in real applications, thereby
obtaining probability scores of correct estimation, similar
to those provided in Table 1 for the different model
realizations. In the absence of sufficient real data,
bootstrapping and re-sampling techniques may be helpful.
A striking feature of the above model is that few variables
represent clusters, and a multiple of variables represent
noise. This simulates conditions which are typical when
learning from gene expression data in the unsupervised
mode. Regarding the identification rates of 84-89% for
the model data (Table 1), the above procedure was
successful in comparison to seven other methods (Clest,
gap statistics with and without principal components,
mean silhouette width, and two other indices) which
achieved rates of 18 to 74% for the same model [6].
Hence, the presented approach may be promising for
microarray data analysis, because it can find cluster
characteristics in a relatively large amount of unspecific
information. Future work will be directed to the search or
identification of estimators that combine advantages of
different validity measures and methods.
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Abstract
In the context of evolutionary data classification, dynamical
modeling techniques are useful to continuously learn clusters
models. Dedicated to on-line clustering, the AUDyC (Auto-
adaptive and Dynamical Clustering) algorithm is an
unsupervised neural network with auto-adaptive abilities in non-
stationary environment. These particular abilities are based on
specific learning rules that are developed into three stages:
"Classification", "Evaluation" and "Fusion". In this paper, we
propose a new densities merge mechanism to improve the
"Fusion" stage in order to avoid some local optima drawbacks
of Gaussian fitting. The novelty of our approach is to use an
ambiguity rule of fuzzy modelling with new merge acceptance
criteria. Our approach can be generalized to any type of fuzzy
classification method using Gaussian models. Some experiments
are presented to show the efficiency of our approach to
circumvent to AUDyC NN local optima problems.

1 Introduction
Numerous classification techniques using leaning
processes have been developed for data clustering in
pattern recognition. But, most of them are not enough
accurate in long term applications, In fact, in many real-
life applications, non-stationeries data are common and
class models have to evolve in time. For example, in voice
and face recognition models undergo variations with
ageing. In diagnosis application, the system functioning
modes would change in the time due to the wear of its
parts and failures. It is thus necessary to refine the class
models using adaptive rules to take account of the
evolutions. In case of evolutionary data, by using a
suitable similarity measure, unsupervised learning
processes have to create class models and to modify them
in time according to the structure and the evolution of
unlabeled data. Within the framework of unsupervised
classification, neural network algorithms are widely used
and confer to the classifier auto-adaptive learning abilities
[1]. For examples, the Fuzzy Min-Max Clustering
algorithm [2] uses hyperbox prototypes models to
represent classes, the Cluster Detection and Labelling [3]
neural network is based on a Euclidian similarity measure.
Although their constructive architectures, most of neural

network algorithms are not adapted to online applications
requiring real dynamical modeling of classes.
To achieve dynamical classification, Lecoeuche and
Lurette [4] have proposed a new architecture called
AUDyC Auto-Adaptive and Dynamical Clustering. It
correctly defines data densities with Gaussian prototypes
models by using membership function based on Zadeh
theory. AUDyC NN has specific online learning rules that
allow the creation of new prototypes and complex classes,
adaptation and elimination of existent classes in order to
incorporate new information. However, in spite of its
performances, the AUDyC fusion procedure is not robust
and could induce some local optimum problem.
In probabilistic model construction, the drawbacks of
local convergence problems are well-posed for finite
mixture models [5]. Some solutions based on split and
merge mechanisms are proposed to improve the widely
used Expectation-Maximisation (EM) algorithm, [5]. In
order to circumvent local maxima, Ueda and Nakano [6]
present Split and Merge EM (SMEM) to operate in
overpopulate and underpopulate regions. In the same way,
Zhang and Yi [7] proposed the Competitive EM algorithm
that is the unsupervised version of EM by incorporating
efficient split and merge operations. However, the
previous techniques used for estimation of mixtures model
parameters are based on (prior and posterior) probability
conditions and are not useable for online dynamical model
in non-stationery environment.

In this paper, we proposed a new Gaussian densities
merge mechanism that consists in an ambiguity rule and
acceptance criteria. Before presenting it, the next section
describes briefly the AUDyC Neural Network.

2 Description of the AUDyC neural network
The AUDyC network [4] consists of a feed-forward
architecture with three layers. It is very similar to many
networks in Pattern Recognition with constructive
structure. Contrarily to its input layer (D neurons), the
Hidden and the Output layers (resp. J neurons and /
neurons) are totally free of evolution: connections and
nodes. The connections matrix W, between the input layer
and the hidden layer memorizes the Gaussian prototypes
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centers Mi and the connections matrix W2 between the

Hidden layer and the Output layer defines the membership
of prototypes to classes. In the AUDyC NN, a prototype is
defined as a single Gaussian density and a class is a
complex structure formed by one or more Gaussian
prototypes that are enough close to each other. The
AUDyC neural network connections weights are defined
by:

W,=[M, l / x D , , . , . . . , (1)

W2 =[<?,,],><,, 7-I...7./-I...I (2)

r

With (3)
Overwise

The membership degree ju]
k of a sample Xk to any

Gaussian prototype Pj corresponding to the neuron j is

calculated in the following way:

j (4)Ml = exp(-|(X, -Mj)'L-\Xk -M

With M; and £ ; respectively the center and the

covariance matrix of the prototype Py.

Ml is the decision function established to satisfy fuzzy

conditions in Zadeh theory [9] :

V* = l,...,tf V/=l,. . . ,7 0 < / / / < l
N . (5)

v* = !,...,# y/ = i,...,y o < ! / / / < W
k=\

N is the cardinality of the data sample % = {**L=iN •

The AUDyC structure is completely adaptive. The
initialization of the network is done at the first data
acquisition Xx with J = 1 and 7 = 1. The first Gaussian

prototype is characterized by its center Mi = Xx and a

parameter Sini of the initial covariance matrix of the

prototype. The construction of the network is done on-line
in an iterative way thanks to specific learning rules [4]. Its
auto-adaptive properties allow to develop connections and
neurons of the Hidden layer and the Output layer and thus
to modify the structure of the network. The unsupervised
leaning process (shown on Fig.l) consists in three stages:

1st stage: "Classification" makes possible the creation
and the adaptation of Gaussian prototypes and classes
according to the decision function.
2nd stage: "Evaluation" is used to eliminate aberrant
prototypes and classes due to the noise. This phase is
based on some rules of distance rejection.
3rd stage: "Fusion" is needed to merge Gaussian
prototypes or/and complex classes that are close. It
based on some rules of ambiguous rejection [4].

»|Learning[-+|Evaluation

Fig. 1: AUDyC NN unsupervised learning process

AUDyC learning strategy self-adapts its architecture in
order to incorporate new information and to take into
account evolutions of data distributions. Fig.2 shows an
illustration on synthetic data.

Fig.2: AUDyC dynamical classification on two evolutionary
Gaussian distributions (of 2000 dated samples)

More information on the AUDyC NN and its
performances for dynamical classification are described in
[4][8]. However, in spite of its performances, the AUDyC
network has some limits in terms of decrease of its
qualities of classification. We notice non-optimal
densities modeling in some situations of Gaussian
prototype fusion. Indeed, ambiguity rejection rules of this
fusion stage lead to some local maxima. The next section
presents new density merge mechanism to improve the
AUDyC classifier.

3 A new densities merge mechanism

3.1 Ambiguity problematic

In the context of fuzzy classification of incomplete
information, ambiguous data shared by clusters decrease
the reliability of classifiers. This is due to uncertainties
and inaccuracies inherent to data information. To
overcome such problems, it is thus useful to define
suitable decision rules of ambiguity reject. Many of them
lead exclusively to fusion or adaptation of the related
prototypes. Note for example ambiguity rules in [9]. The
AUDyC NN uses four kinds of ambiguity decision rules.
But only one can be selected at the same time and fixed
for the whole clustering process. Indeed, when AUDyC
classifier encounters ambiguity data shared by two or
several Gaussian prototypes, the first and the second
decision rule come to adapt only one of them because it
has the highest membership degree or because it's the
biggest in term of population. The inconvenience of this
initiative is that a unique Gaussian density could be
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represented by overlapped prototypes models (fig.3-a).
The third ambiguity rule consists in adapting all
prototypes of the ambiguity. This technique induces the
same inconvenience as the 2 first rules and in addition
assigns a unique data to more prototypes in the same time.
Finally, the fourth decision rule comes to merge all
prototypes which share an ambiguity data. This solution is
widely used to handle with ambiguous information in
classification. But, in many situations of Gaussian data
classification, it induces errors in modeling as illustrated
on Fig.3-b (not aligned densities) or in Fig.3-c (high and
weak densities). The succession of such phenomena could
more affect the quality of the global clustering.

Fig.3: Modeling errors induced by ambiguity rejection criteria

3.2 New criteria for Gaussian densities merge

To solve local optima problems discussed above, we
propose a new densities' merge criterion. Our main idea
consists at first in detecting Gaussian prototypes
candidates by using an ambiguity rule; and secondly, to
examine the densities fits according to their relative
orientations and their shapes. We deal with this by setting
an additive condition based on densities patterns analysis.
This will be the merge acceptance criterion. We propose
the following densities measure as:

Ac comes from the well-known Kullback-Leibler
Distance [10] for Gaussian densities. By studying the
KLD, Ac corresponds to the sensitive term of densities
form, orientation discordance. Numerous experiments
have shown that Ac is a well-established measure of two
local data densities fitting. Consider Gaussian prototypes,
the new proposed densities merge mechanism is set as
follow:
• First: Detect Gaussian prototypes candidates for fusion

thanks to ambiguity criterion with the threshold Nam£,:
Card {X € Pg & X € Pj }> Namh ^> Pj, Pg candidates

• Second : Evaluate the merge acceptance criterion
Ac(Pj,Pg)<thac=> merge_P(PJ,Pg) = Pm, & adapt Pm

Ac{PrPg)>thac^> adapt
[P., MJ(X)>»*(X)

h " ' " \yrgy otherwise

• Third : Fusion of the classes

P.eCpP^eC,, Cy*C2 => merge _C(Cl,C2) = Cm

The first step consists in analyzing all the X data which
belong to two different prototypes. If their cardinality is
higher than Namf,, the concerned prototypes are selected.

In the second step, in case of the acceptance criterion
comes to merge the two prototypes, the new merged
prototype is allocated to the class of its predecessors and
all X data are used to adapt this prototype [4].
The Gaussian prototypes merge operation is done by
using the recursive equations [10]. This increases the
algorithm speed by avoiding relearning of all data:

(7)MPm
 =—VjMpj +ngMpg

nm-\
'i t'n ' 'j

In case of the criterion is higher than the threshold, the
prototype, which presents the highest membership degree
with regard to the ambiguity datum, is adapted with the
new information using recursive equations in [4]. After
several test, the suitable threshold of acceptance merge is
fixed at thac = 3,2.

In the third step, if the prototype candidates did not
belong to the same class their classes are merged.

4 Experiments
To illustrate how the AUDyC algorithm performs with the
new merge mechanism, 3 synthetic datasets have been
created in non-stationary environment. The classification
quality is appreciated by comparing the results of the
modified AUDyC classifier with its previous version. To
generate dataset, let consider t a uniform distribution in
[0,1] and rnd\, rndi, two iid N(0,l). Two evolutionary
Gaussian modes are created with 1000 samples generated
by the following equations:

(8)
[a + 0.

For all the experiments in this paper the AUDyC NN is
initialized with the parameters: L,m-=0.4*/£> (initial

covariance matrix), //max=0.02 (membership threshold

of sample to prototype), /̂ min =0.01 (membership

threshold of sample to class), iVPmax = 300 (maximal

cardinality of any Gaussian prototype) and Nam^ = 1.
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Fig.4: Evolution of two Gaussian modes coming to merge

(4-a) Dynamical dataset modeling is done by using the AUDyC
classifier with its second ambiguity rule. Consequently, the
single natural density resulting of modes evolution is not
properly clustered; as it is representing by two Gaussian models.
(4-b) The classification of the data evolution is done by using
the modified AUDyC algorithm with our proposed merge
mechanism. The classifier merges correctly the two evolutionary
Gaussian modes in one density mode.

Fig.5: Evolution and crossover of two non-alignment densities.

(5-a) When the AUDyC classifier is used with its fourth
ambiguity rule, the two Gaussian models are merged to a single
one. This induces modeling errors and local optima. (5-b) The
dynamical classification is obtained by using the modified
AUDyC. The two densities are not merged but are enough close
to belong to the same class. Then we obtain a better
classification of data.

Fig.6: Evolution and crossover of weak and high densities

/,(*) = 10f; / 2 (0 = 1 4 - lOr,^ =5;

g, ( 0 = 1.2 + cosOrr); g2 (t) = cos(m) -1 .2 ; a2 = 1

(6-a) As in the previous experiment, the AUDyC classifier is

used with the fourth ambiguity rule. In this experiment too, we

notice modeling error and local optima problem. (6-b) The

experiment with the new merge mechanism gives a better

modeling by avoiding the prototypes fusion; they are assigned to
the same multiprototypes class.

5 Conclusion
Our main contribution consists in: at first establishing a
new approach of Gaussian densities criteria for the well-
posed ambiguity rejection problem in fuzzy classification;
secondly circumventing local optima drawbacks by
selecting Gaussian densities fitting to merge. The
proposed densities merge mechanism improved the
AUDyC NN learning rules for dynamical classification of
evolving data. The new mechanism is tested on some
examples chosen to illustrate the main difficulties that the
merge process has to deal with. By comparison with the
previous AUDyC NN that encounters local maxima, the
modified version gives a better dynamical classification.
To reach the algorithm global convergence, later works
will involve the design of a suitable density split
operations for dynamical models in fuzzy classification.
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Abstract
This paper proposes a new methodology which combines
supervised learning, unsupervised learning and genetic algorithm
for evaluating power system dynamic security. Based on the
concept of stability margin, pre-fault power system conditions are
assigned to the output neurons on the two-dimensional grid with the
growing hierarchical self-organizing map technique (GHSOM) via
supervised ANNs which perform an estimation of post-fault power
system state. The technique estimates the dynamic stability index
that corresponds to the most critical value of synchronizing and
damping torques of multimachine power systems. ANN-based
pattern recognition is carried out with the growing hierarchical
self-organizing feature mapping in order to provide an adaptive
neural net architecture during its unsupervised training process.
Numerical tests, carried out on a IEEE 9 bus power system are
presented and discussed. The analysis using such method provides
accurate results and improves the effectiveness of system security
evaluation.

1. Introduction
Power system spontaneous oscillations, due mainly to the
development of interconnection of large electric power
systems, are due to the lack of damping of the mechanical
mode of the interconnected system [1,2]. An important task in
power system operation is to decide whether the system is
currently operating safely, critically or unsafely. The
conventional eigenvalue analysis method requires a lot of
computational efforts as the size of power systems become
larger. The investigation of the synchronizing and damping
torques method [3-6] has shown that it gives efficient means
for determining the dynamic stability with a great reduction
of the on-line computational requirements. They can also
provide a clear picture about the dynamic performance of the
individual machines using the security contour visualization.
ANN-based methods have been recently developed for power
system security assessment [8-14]. The advantage of these
methods is the reduction of the on-line computational
requirements. The disadvantages are: (1) elaborate off-line
computations are required, and (2) if some components of the
pattern vector are strongly correlated, the methods become
inaccurate, and a feature extraction must be performed to
hopefully yield an uncorrelated set of components. Feature
extraction is the process of mapping all available features into
a composite feature set of lower dimension. A new feature
extraction technique based on genetic algorithm is presented
and applied to power system security assessment [15].
One of the most important aspects of achieving good neural
network performance has proven to be the proper selection
of training features. The curse of dimensionality states, as a

rule of thumb, the required cardinality of the training set
for accurate training increases exponentially with the input
dimension [16]. Feature extraction techniques applied to
power system security assessment have previously been
presented in [17].
In this paper, pre-fault power system conditions are assigned
to the output neurons on the two-dimensional grid with the
growing hierarchical self-organizing map technique
(GHSOM) via supervised Artificial Neural Networks (ANNs)
which perform an estimation of post-fault power system state.
The Kohonen SOM memory runs an unsupervised clustering
algorithm. It is easily trained and has attractive properties
such as topological ordering and good generalization.
However, two drawbacks remain untouched: firstly it uses
fixed network architecture in terms of number and
arrangement of neural processing elements, which has to be
defined prior to training. Secondly, hierarchical relations
between the input data are not mirrored in a straightforward
fashion [18]. To resolve both limitations, the GHSOM
composed of SOM-like neural networks with adaptive
architecture was used for data mining applications in [19] to
improved representation of the hierarchical structure of the
analysed data collection.
In the present work, the synchronizing and damping torques
analysis which utilizes a linearized small perturbation model
[4,5,20] is considered and its application generalized to
multimachine power systems for the dynamic security
assessment where a new criterion is defined. A GHSOM-
based method is presented to calculate the estimate security
index so that an output neuron calls the index corresponding
to an input pattern. The effect of the control parameter for the
(depth / shallowness) of the GHSOM is examined and the
effectiveness of the proposed technique demonstrated in a
IEEE 9 bus power system.

2 Dynamic Security Evaluation

2.1 Synchronizing and Damping Torques Analysis

The concept of damping and synchronizing torques is
extended to calculate the corresponding torque components in
a multimachine power system: obtained by breaking the
torque of the machine with respect to its own rotor angle and
speed responses according to the equation:

ATe = T.s AS + Td Aw (1)

The time responses of ATe,, A5 and Aco include the effect of
the various modes and so are the computed damping (Td) and
synchronizing (7V) torques. The linearized model of the
subsystem in a n-machine power system is depicted in Fig. 1.
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The self damping and synchronizing torques of machine i are:

TsU = T,eii+Tsmii

T —T 4-T ^
dii deii dtrii

where ' V stands for electrical and "m" for mechanical.

Fig. 1 Block diagram of a multimachine power system

The interaction damping and synchronizing torques of
machine / with the other machines are:

n

Vdeij + Tdmij .

(3)

2.2 New Stability Criterion

As the synchronizing and damping torques can not be
determined in a closed form, a new criterion (torques
criterion) is defined through necessary and sufficient
conditions for the system to be stable as follows:

Tsll>TsU and Tdii>Tdij (4)

The coupling between the low frequency electromechanical
modes is investigated by computing the contribution factors
[7] which give a method of presenting the interaction between
the eigenvectors associated with the eigenvalues or modes as
one or more parameters of the system are varied. The
synchronizing and damping torques analysis is correlated to
the modal analysis to provide insight into the system stability.

2.3 Feature Selection

An acceptable simple criterion for selecting a variable as a
feature is that it should provide more information for
classification than those not selected [20]. The genetic
algorithm solves the feature selection problem by
representing each possible solution as a binary vector
consisting of a number of bits equal to the number of features
where a "0 bit in location i means the i-th parameter is not
selected and a " 1 " bit means it is selected. An initial
population of solution candidates, called "individuals", is
generated, and the "fitness" F of the ;-th individual is
computed according to:

2(j) (5)

where F\ and F2 are the fitness components corresponding
to neural network accuracy and cardinality, respectively,
and CO) and 0)2 are their corresponding weights. We

measure set sufficiency fitness (accuracy) of individual j as
the reciprocal of the average absolute error computed by
testy ing a neural network trained with inputs corresponding
to the selected attributes of the individual. We measure
cardinality fitness as kn (j) where n (j) is the cardinality
level of member j (number of parameters selected) and:

r...
[k= 0

nU) ^ "desired

otherwise
Here, rQesired is the desired cardinality level. We also
specify 0)i =1.0 and (p2 is large (a>2 = 1000).
After evaluating the fitness of all Nx members of a
population, a certain number of the most fit members are
selected to undergo the so-called "crossover" procedure
where a fraction of the selected individuals are randomly
mated pairwise. In addition, a single bit of the chosen
members may be "mutated" or toggled to try and improve
their fitness. The new members of the population, called
"children" (which evolved through either crossover or
mutation), have their fitness evaluated, and again a certain
chosen and the procedure repeated. The accuracy
component, F](j), for eachy is computed by first randomly
splitting the input data into train and test sets according to a
user-specified ration. A neural network is then trained
using the training data corresponding to feature set j .
Finally, the average absolute error is obtained by testing the
neural network using the test data. This error is given by:

r. / ,x Ntest (6)

2 ^ \R jk.nn ~ Rk,correct \

where Ntest is the number of test data points, Rjktfm is the
neural network j's output for the k-th operating condition,
and Rkxorrea is the correct performance measure for the k-th
operating condition. The multilayer backpropagation neural
network is chosen because of its computational simplicity
and its ability to perform nonlinear functional
approximation. To limit computation time, we use a simple
neural network with only one neuron in one hidden layer.
After using GANN to perform the feature selection, we
then identify an optimal structure that we can use to
perform the function approximation to be used in the
visualization software. This step assumes that a feature set
that is identified as "best" using the simple structure will
be at least "one of the best" for more complicated
structures. For different randomly perturbed loads, 200
patterns are generated for each contingency (transmission
line outage). The set of features in terms of which input
data will be represented is defined among the original input
pattern composed by: the real and reactive powers of the n
generators (PG, , gG,), their voltage regulator gains (KAi)
and the real and reactive powers of the nL load demands
(PDj, QDi ). The choice of these features is motivated by
physical arguments and the selection process involves
engineering judgement [13]. The feature extraction
obtained from the original 15 dimensional input pattern,
applied to the IEEE 9 bus test system, leads to the vector
composed of 5 state variables, namely: PG\, KM , PG2 ,
QG3tPD8.

3 Proposed Neural Network Architecture

3.1 Growing Hierarchical Self-Organizing Map
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The choice of a clustering technique arises from the lack of a
priori information of the problem. Unfortunately, SOMs
require a previous knowledge of the problem to decide the
shape of its grid. In order to overcome this limit, the
GHSOM has been proposed [18]. The GHSOM has a
hierarchical structure of multiple layers, where each layer
consists of several independent growing SOMs. The map in
layer 1 consists of 3 x 2 units and provides a rather rough
organization of the main clusters in the input data. The six
independent maps in the second layer offer a more detailed
view of the data. For the control of the growth process, two
different strategies can be used, using either the mean
quantization error (mqe) of a unit or the absolute value
namely, the quantization error (qe) of a unit.
The mqe of a unit i is calculated according to (7) as the mean
Euclidean distance between its model vector m, and the nc

input vectors Xj that are the set of input vectors Ct mapped
onto this unit i.

mqe i

1

«c Zlh- "c f» (7)
X ; € C ,

The starting point for the GHSOM training process is the
calculation of an mqe0 of the unit forming the layer 0 map
as provided in (8). With nj we refer to the number of all
input vectors x of the input data set / and m0 denotes the
mean of the input data

me , = -L X ho "
1

-I = I

The minimum quality of data representation of each unit will
be specified as a fraction, indicated by a parameter % of mqe0

to satisfy the global termination criterion:

mqex < T. (9)

The growth process of a growing SOM can be described as
follows. Let C, be the subset of vectors Xj of the input data
that is mapped onto unit /, and m, the model vector of unit i.
Then the error unit e is determined as the unit with the mqe as
follows:

e = arg max ]T \\m ,, - x j \\ "C = | C / | - C <

(10)

Following the selection of e, its most dissimilar neighbor d is
determined as follows, where Ne is the set of neighboring
units of e.

d = arg max fhit - x }

A row or column of units is inserted between d and e. As
more units are added to the growing SOM their qes decrease.
The training process will continue until all units satisfy the
global stopping criterion.

3.2 Problem Formulation

The task of dynamic security assessment of a large-scale
power system using Neural Networks (NN) is an enormous
computational exercise. One way of reducing this
complexity is to divide the problem into smaller tasks at
different levels and train dedicated NN classifiers to handle
each task. The overall structure of the devised neural
architecture is depicted in Fig. 2. The PNSI (Projection
Network with Stochastic Interconnects) is a supervised
three layer NN which models an input-output relationship
by clustering both input and output spaces and establishing

a correspondence between the clusters of the two spaces
by viewing the training data only once [21]. The pre-fault
state vector is the input of an array of PNSIs which work in
a parallel way. Their purpose is the fast prediction of the
post-fault state vector for each contingency. The learning
phase of the PNSIs is performed on a main training set
composed of pre-fault and post-fault state vector pairs of
every outage for many operating points of the power
system. The number of the hidden layer units is not to be
determined a priori, but adapts automatically to the learnt
data. One approach is to generate nonlinearities with
stochastically chosen interconnects between the input and
hidden neural layers with a sigmoidal nonlinearity at each
hidden neuron. The hidden to output interconnects are
chosen to be a trainable projection matrix. The input
vectors are normalised between -1 and +1 according to
their maximum values reached in the training and testing
sets. The components of the weight vectors associated to
each neuron have been randomly initialised in the interval
[ -0.1, 0.1 ]. The outputs of the PNSIs are then fed into a
GHSOM which has been trained for classifying the post-
fault vector in several bidimensionnal maps. The
neighborhood function of each SOM is a unimodal function
which is symmetric around the location of the winner
neuron and monotonically decreasing with increasing
distance from the winner. In this paper a Gaussian is used
as a neighborhood function [17]. The GHSOM training set
is composed of the post-fault state vectors for all the
contingencies. The generalisation properties of the GHSOM
when trained on a set of the post-fault state vectors, could fix
the rough estimates obtained by the PNSIs.

4 Application to Dynamic Security Assessment
The proposed method uses combined supervised and
unsupervised learning for evaluating power system
dynamic security. The power system index is estimated by
calling an output neuron where the estimated index is
assigned. After an output neuron on the grid responds to an
input pattern, the output calls the estimated index. It is
assumed that the index is prepared by the off-line calculation
and is defined by:

Tcrs = min (r;v - T;m)

As a result, power system dynamics are evaluated by the
most critical value between the two critical synchronizing and
damping torques:

Tcr = min {rcrd , Tcrs ) (13)

Let us assume that niore than one learning data is assigned to
each output neuron. The estimated index is calculated by the
average value of the index corresponding to power system
conditions classified into the same output neuron. Namely:
Ti -±_yTi (14)
Jcr ~ Ni L Tcrk

where:

r j r : estimated index at output neuron i

Nj : Number of input patterns classified into output neuron i

Tl : index of input-pattern k classified into output neuron /

The algorithm of the method is well described in [20].
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Fig. 2 Proposed mapping architecture

The proposed method has been applied to the IEEE 9 bus
study system with 14 lines and 3 generators [4,5]. The main
training set is composed of 200 different load scenarios.
Therefore, a total amount of 2800 samples has been generated
by load flow calculations. Once the key features are selected,
some of the data are used for training the PNSIs (1700
samples) while some are used for testing the trained NN
(1100 samples). The GHSOM has 7 inputs (state vector and
security indexes) and the corresponding training set is
composed of the true post-fault state vectors (the base case
and the 14 contingencies). Based on the unit representing the
mean of all data at layer 0, the GHSOM training algorithm
starts with a 2 x 2 SOM at the first layer. The training process
for this map continues with the additional units being added
until the quantization error drops below a percentage r2 =
0.005 of the overall quantization error of the unit at layer 0,
resulting in 3 x 2 units representing six major clusters
depicted in Fig. 3. Further, the notation (ilj) is used to refer to
the unit located in column / and rowj of the map.
We find units (1/2), (1/3) and (2/1) to represent the
contingencies cases corresponding to secure operating points.
The main difference between these three clusters lies in the
range of the values reached by both the synchronizing and
damping torques, though they are both positive. For example,
unit (2/1) classifies the secure cases characterized by high
values of the critical synchronizing and damping
torques (7^ >Q.25 ,Tcrs >4.25)' whereas unit (1/2) groups

the secure cases where the critical torques remain positive in
the interval defined as: (7^ < 0.01 ,Tcrs < 1.45)- The non

critical cases are presented by unit (2/2) where both
synchronizing and damping torques are positive,
corresponding to the outages that provoke major changes and
cause severity conditions near the security contour, whereas
the operating points remain inside this contour. The critical
cases are placed in unit (2/3) representing insecure cases near
to the security boundary. These unstable states are outside the
security contour. Unit (1/1) classifies the insecure cases
where the critical values of the damping and/or synchronizing
torque are negative. Further maps are automatically trained to
represent the various state vectors. This results in six
individual maps on the second layer, each representing the
data of the respective higher layer unit in more detail as QEm

reaches T/ = 0.063 of the corresponding qeys unit in the layerl

In particular, a 6x5 map represents the insecure patterns of
unit (1/1) of the first-layer map.

Insecure cases
6x5 SOM

Secure Cases I
6x4 SOM

Secure cases II
4x7 SOM

(379)

(356)

(357)

Secure Cases III
4x3 SOM

Non critical cases
5x5 SOM

Critical cases
7x6 SOM

(29)

(78)

(491)

Fig. 3 GHSOM-layerl

When a post-fault state vector is presented, the
corresponding unit of the corresponding map is activated. It
is then possible to label each unit with security related
information. The obtained six maps in the second layer
provide a satisfactory and accurate enough pictorial view of
static security assessment. The results show a better use of
the neurons, avoiding the problem of the dead units (the
neurons which never win the competitive process), and a
smaller number of misclassifications.
For comparison purpose, a two-dimensional grid of
Kohonen SOM is depicted in Fig. 4. This allows us to view
the hierarchical structure of the data on the flat map which
consists of 15x15 output neurons. In other words, 2800
power system conditions are classified into 225 patterns.
The range of the estimated index in each cluster is given in
the mapping, where the critical index is defined as the
minimum value between the two critical torques:
Tcr = min\rcrd,Tcrs). The white holes correspond to the

output neurons where the estimated index is not assigned.
As the holes colour becomes darker in the figure, the power
system approaches insecure conditions. Five out of six
clusters on the first layer of the GHSOM are recognized
[20].

Fig. 4 Self-organizing map
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5.2 Discussion
Simulations results show that the proposed method projects
safe, critical and unsafe operation points to different clusters
corresponding to different regions in the security space.
Knowing which cluster relates to which security state and
mapping an operational point to one of these immediately
identifies whether the system is operating safely or not. The
range of label attributes (Tcr) in each cluster indicates which
associative actions should be taken in each instance. Different
preventive control schemes may be advised for low and high
critical values of the synchronizing and damping torques,
depending on the installed system components, company
policy, etc.
The following percentages are introduced to obtain a
quantitative measure of the classification performance. The
percentage of false alarms (FA), false dismissals (FD) and
false classifications (FC) are calculated. The testing statistics
are given in Table 1, comparing the use of the true or the
predicted post-fault values in the security mapping.

Table 1 Classification Statistics
Testing statistics

Testing data
True secure patterns

True insecure patterns
FA (%)
FD(%)
FC (%)

True vectors
1100
536
544
2.61
1.10
0.34

Predicted vectors
1100
528
539
4.17
2.04
0.58

Note that identical proportions of secure and insecure data are
used in both the training and testing sets. For larger T\ ( X\ =
0.107), which serves as the control parameter for the (depth /
shallowness) of the GHSOM architecture, more detailed data
representation is delegated to additional maps resulting in 7
layers. The first layer map has grown to a size of 2x2 units
with the remaining groups (1/1), (1/3), (2/2) and (2/3) of Fig.
3.

6. Conclusion

This paper has presented a new methodology to assess the
dynamic security for large scale power systems of a possible
contingency simply by considering the unit activated by the
pre-fault state vector in an output map. A new dynamic
stability index is developed. The torque components
technique has an advantage that it allows us to understand the
transition of the security margin on the two-dimensional grid
since it is easy to visually understand both secure and
insecure states close to the operational conditions. They can
also provide a clear picture about the dynamic performance of
the individual machines. The primary concern about whether
this new concept can become useful as an on-line aid resides
in the question of scaling. A feature selection technique based
Genetic Algorithm is applied to reduce effective problem
dimension. Using the GHSOM the overall training time is
largely reduced since only the necessary number of units are
developed to organise the state vectors and its architecture
allows the user to understand and analyze large amounts of
data in an explorative way. Parallel supervised neural
network architecture and the adaptive capability of the
growing hierarchical SOM can be combined to achieve high
speeds of execution and good classification accuracy.

This new approach significantly improves the efficiency and
effectiveness of large-scale power systems security
assessment.
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Abstract
Surface modeling and structure representation from
unorganized sample points are key problems in many
applications whose neural n
etworks are recently starting a gradual breakthrough. Our

purpose is the development of innovative self-organizing
neural network architecture for surface modeling.
We propose an original neural architecture and algorithm
inspired by Kohonen's self-organizing maps, based on
dynamic neighborhood propagation along with an
adaptive learning and repulsion process applied to a
generalized mesh structure that will lead to a topological
definition of the surface given as an input.

1 Introduction
Surface modeling and structure representation from
unorganized sample points (figure 1) are widely used in
many applications such as data visualization, land surface
modeling, medical imaging and reverse engineering.
Usually in such applications the input data consist in set
of sampling points collected on a 3D surface with no
information available about their connectivity. That's why
one of the main problems in surface reconstruction from
unorganized data points is to build a coherent mesh
structure that faithfully represents the sampled original
surface. Classical methods [1, 2] tend to create
connectivity among nearest points and finally build the
mesh, but problems may appear with sparse sets of
sample points, especially in under-sampled regions. To
cope with this problem we propose a neural method based
on an original convex neural network architecture
inspired from Kohonen's self-organizing maps [3]. This
neural mesh is a 3D-S0M with triangular architecture,
which has the capacity, through totally unsupervised
learning, to approximate the form of the surface to
reconstruct. The learning phase is based on a local
adaptation and repulsion processes which concern
independent local areas of neurons with dynamic
parameters for each neuron. Our method can be
advantageous compared to certain traditional methods of
reconstruction which have as severe precondition that the

points cloud constitutes an optimal, non-noisy sampling
of the surface which is less primordial in our approach.
The paper is organized as follows: Section 2 presents
related works on surface reconstruction and
representation using self-organizing maps and similar
approaches including ours. In section 3 we present the
general architecture and the learning algorithm associated
to our 3D-S0M Finally, the results presented in Section
4, demonstrate the efficiency of our 3D map. Section 5
brings some conclusions and perspectives.

2 State of the art
In the field of scientific visualization, Knopf and Sangole
[4] have introduced a concept of spherical map based on
Kohonen's self-organizing maps, however for the
propagation process, their approach take into account a
neighborhood restricted to the first level of vicinity, i.e. to
the nearest neurons of the processed vertex. We believe
that this restricted neighborhood limits the efficiency of
the map adaptation. In respect of the original self-
organizing maps philosophy, we use a neighborhood for
adaptation using a large number of neurons, well beyond
the first level of vicinity in the beginning of the
adaptation processing. This improvement provides more
flexibility to our structure and allows a better adaptive
process.
A similar approach has been used by Yu [5] who
proposed one of the first real rendering applications of the
self-organizing maps in the field of surface reconstruction
from unorganized sets of points. But the reconstruction
process used a 2D-S0M architecture and needs some
local mesh transformations and supervised forcing during
the reconstruction.
Ito & Al introduced the concept of a 3D topologic map as
a torus map for classification goals [6], but no visual
representation of the latter was developed for
visualization goals. According to the author this is due to
the disadvantage that represents the absence of edges in
the torus map. In [7] we have implemented a toric and
spherical self-organizing map for 3D-reconstruction
applications. Another approach using Growing Cell
Network [8] for surface reconstruction was presented by
Ivrissimtzis & Al in [9].
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3 General architecture & learning rule
In our application, the Kohonen's learning procedure is
used to carry a global arrangement in the mesh structure
with respect to the topological repartition of the data.
Within the framework of our approach, we extend the
concept of self-organizing map to any other triangular
convex architecture. For example, with this method any
convex triangular mesh structure can be used as a self
organizing map. The main idea behind this generalization
is the independence between the concept of self
organizing map, as a learning process, and the topological
architecture constraint of the map structure.
We added possibilities of local adaptation to the learning
process, to enhance the topology learning efficiency. By
those means, we obtain an original general dynamic self-
organizing map architecture with extended adaptation
capabilities.

links that enable a dynamical referencing of the
topological neighborhood of the mesh hence the
independence between the structure and the learning
algorithm.

Fig. 1. spiky sphere 5042 points & Squirrel form 9995 points.

3.1 Generalized 3D-map architecture
In [7] we have defined the architecture of a spherical
map, which was based primarily on the structure of an
icosahedron. We have generalized the method for any
convex triangular mesh structures like tetrahedron or
cube (figures 2a, 2c, and 2e).
On these basis architectures, we apply a subdivision
process to increase the density of the mesh, in order to
represent more refined surfaces. We use the butterfly
subdivision method [10] to increase the density of the
mesh: examples are available on figures 2b, 2d, and 2f.
With the subdivision method, a new vertex is inserted in
the middle of each edge: connecting the new midpoints
creates new edges. The old vertices are not modified and
new vertices are inserted when splitting each edge in two
sub-edges. Therefore, each triangle is subdivided into
four triangles. Coordinates of the new vertex are obtained
thanks to a butterfly mask that multiplies neighboring
point coordinates by a set of coefficients and sums them
up, to finally provide the new point coordinates.
The topological neighborhood in the map structure is
obtained by using a graph representation of neighborhood

Fig. 2. (a) tetrahedron, (c) cube and (e) icosahedron after 2
levels of subdivision respectively (b), (d) and (f).

3.2 Adaptative learning algorithm
Our learning algorithm is inspired by the Fritzke's works
on neural networks [8, 11] and Kohonen's works with the
self-organizing maps [3]; we have adapted some of their
ideas to our learning rule.
We use a principle of local adaptation inherent to each
neuron, their parameters of adaptation are different and
evolve in a dynamic way inside local regions. In addition,
the efficiency of the adaptation process is locally
improved according to a local parameter used as a
statistical density estimation criterion; which consists in
the accumulation of the error between the neuron and the
input vector in the actual neighborhood of the winning
neuron. More this local error is important, more the point
density of the region represented by this neuron is
significant, and needs more accurate and significant
adaptation. This parameter is collected and used after a
classical beginning phase of adaptation and repulsion
process to allow the architecture during a processing time
to get the pre-shape of the input data set.
Let us assume that the input data space is composed of a
set of sampling points such as X ={ X],.., X} ,.., XN },
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where X, represents a real input data vector, with Xj = [xp
, xj2,.., xjn ]

T e Rn. A weight vector Wj = [wn , w i2,.., win

]T e Rn is associated with each neuron of the self-
organizing map. In our case, the dimension of the input
data space isn = 3.

1. Initialize the total number I of weight vectors W,
in the form of the initial structure.

Set t = 0, t represents the discrete time reference
of the learning rule procedure.

2. At time t, an input data vector X(t) is randomly
selected from the input data space.

X(t) is compared with all the weight vectors
Wj(t), assuming a distance measure (Euclidean
distance in our case) denoted d(X,Wi). The
winning neuron, also called Best Matching Unit
(BMU), with weight Wc, is defined to be the one
with the smallest response and that has the index

4 i { d ( X W ) }

The weight vectors Wc of the BMU and some of
its neighboring neurons in the mesh are moved
toward the input vector X(t),while the other
neurons are subject to a weaker repulsion
process, they are moved backward from X(t),
equation 1 :

~ Wt{t)) ; For ie Nc(t)Wt{t+\) =

Wt{t+\) = Wfa)-(a(t)/Q)(X(t)- Wj(f)) ; Otherwise

4. Do t = t+1, If the end-learning criterion (t > T) is
not satisfied, return to step 2 and repeat the
process. Otherwise stop.

Where the factor ot(t) e [0,1] represents the learning
coefficient and Nc(t) specifies the topological
neighborhood for the neurons around the BMU inside the
map architecture. Both a(t) and Nc(t) are gradually
decreasing as the training proceeds, following a uniform
decreasing rule (1/t like).

The factor u(t) represents a local error estimation criterion
which consists in adding the square distance between
each neuron Wj in the neighborhood Nc(t) of the BMU,
and the input vector X(t) :

Hi (t+1) = ^ (t) + || X - Wi ||2 for i e Nc(t).

The control parameter X is equal to 0 all along the
beginning of the learning procedure, until the process has
reached a sufficient number of iteration T^for the network
corresponding to a sufficient level of organization, after
that X(t)=l when t > T, this limit is fixed by the user. The
factor 9 is a modular reduction factor for learning
coefficient a(t), this minimize the range of the repulsion
process, in order to keep a coherent network structure.

4 Results
The spiky sphere (figure 4a) has been modeled with a
network composed of 5K neurons.
The figurines in figure 4b and 4c have been modeled,
starting from a tetrahedron structure composed of 2K
neurons, obtained after 5 subdivision levels (figure 3).
The learning rule applied to this architecture is the one
defined in equation 1. The synthetic model of the spiky
sphere on figure 4a contains 5042 points. The input data
for the little pig figurine model [12] on figure 4b is
composed of 15825 points, the squirrel model [13] on
figure 4c of 9995 points. The convergence to those
present results necessitates generally 300000 steps.

Fig. 3. Tetrahedron after 5 levels of subdivision.

Only a few minutes are necessary, even for large data
sets, to complete the final shape, as the input data is not
processed itself but is only sampled: one point for each
iteration. Given that the sampling process is not the most
time consuming process in our method, we can assume
that the time performance is practically independent of
the size of the input data set. For example, the time
needed to achieve the complex shapes of the squirrel
model is approximately 5 minutes on a machine with a
Pentium 4 processor with 512MB of RAM and a 256MB
graphic board. The quality and speed of the results is
directly correlated with the algorithm parameters, which
are the learning factor a and the initial neighborhood size
Nc. A good choice of those parameters is crucial to allow
a good behavior of the modeling process. A fast
decreasing parameter or a small initial neighborhood
width would lead to a distorted map. For example, the
parameters for the squirrel model are: a(0)=0.5 ; D=0.4 ;
Nc(0)=1000 ; d=0.6 and the learning limit of T=300.000
iterations.
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Fig. 4. Reconstruction results.

5 Conclusion and perspectives
In this work we have developed several new aspects of
surface reconstruction using Kohonen's self organizing
maps. We have shown the great potential of this approach
for such graphical applications. The multiple applications
of this method have appeared beyond our original
purpose, surface reconstruction and representation, such
as high dimensional data visualization, morphing and
volume rendering. The strength and the efficiency of the
learning process have been proved by our experiments.
The interest of the architecture generalization is the
potential use of the self-organizing maps in the morphing
domain, using the same map structure to represent two
different objects through a learning process, leading the
mesh representing a certain object to model an other
object. The next step in the development of a complete
generalized self-organizing map is the implementation of
a local subdivision feature.
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Abstract
Self-organizing maps, SOMs, are a data visualization

technique developed to reduce the dimensions of data
through the use of self-organizing neural networks.
However, one of the limitations of Self Organizing Maps
algorithm, is that every SOM is different and finds
different similarities among the sample vectors each time
the initial conditions are changed.
In this paper, we propose a modification of the SOM
basic algorithm in order to make the resulted mapping
invariant to the initial conditions. We extend the
neighborhood concept to processing units, selected in a
fashionable manner, other than those commonly selected
relatively to the immediate surroundings of the best
matching unit. We also introduce a new learning function
for the newly introduced neighbors.
The modified algorithm was tested on a color
classification application and performed very well in
comparison with the traditional SOM.

1 Introduction
Kohonen formulated the Self Organizing Map

algorithm as a mathematical model of the
self-organization of topographic maps, which are
found in brains of higher animals [1], SOMs
accomplish two things: they reduce dimensions and
display similarities [2]. The way SOMs go about
reducing dimensions is by producing a map of
usually one or two dimensions plotting the
similarities of the data by grouping similar data
items together.

However, one of the limitations of the standard
Self Organizing Map algorithm is that every SOM
is different and finds different similarities among
the sample vectors each time the initial conditions
are changed. Consequently, a lot of maps need to be
constructed in order to get one final good map,
which is a tough and time consuming task.

On the other hand, in standard SOM, the
acquired information by the net during the training

process, although it gets more and more importance
as learning goes on, is used only for finding the
winner of the competitive layer.

The key idea introduced by Kohonen is the
concept of neighborhood [3]. Each unit has a set of
neighbors on the map. After finding the best
matching unit, BMU, to the input vector, not only its
weight is adjusted, but those of the neighbors are
also changed.

However, updating is exclusively made to the
selected winner and to those units determined by the
neighborhood function. No other units can
participate to the learning at the same time epoch.

Indeed, a standard SOM makes no difference
between "close" or "far" neighbors, and assigns to
both the same update. Thus, the output map provided
by standard SOM depends highly on the initial
conditions and the position of the winning unit on
the net.

It leads us to think that SOM could be more
effective not only if the neighborhood concept
introduced by Kohonen is extended and used in a
more sophisticated manner, but also if the
information acquired by the net plays an active role
in producing the final map.

2 Neighborhood Function
To improve SOM's classification capabilities we

propose, at first, to not restrict the neighborhood
concept only to units surrounding the BMU.
Inspired from the Neural Gas algorithm [4], we
propose to use the concept of weights' vectors
neighborhood in standard SOM, to generate a new
group of neighbors.

Let Nc, be the traditional neighborhood function
and Nw the neighborhood function relative to units'
weights vectors as introduced in [4]. We note df the
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distance separating the BMU and the furthest unit
belonging to Nw.

During training, when proceeding to updating,
not only those units which have their position
enclosed within Nc are updated, but also units
located outside Nc and within dfW\\\ also take part
of the learning (Fig.l).

Applied to Nc and Nw, the two neighborhood
functions are formulated by

Fig.l. The determination of df.

As training goes on, both neighborhoods
gradually shrink. At the end of training, both
functions have shrunk to zero size.
Then, at a second stage, we try to extend the
learning to the new type of neighbors, by
introducing a new learning rule involving the
information acquired by the net during the training
so that it contributes to the formation of the resulted
mapping.

3 Algorithm
3.1 Step 0

Input one sample vector of the training data set.

3.2 Step 1
Find the BMU relative to the input vector.

3.3 Step 2
Find those units to be updated. This is done by

computing the two neighborhood functions. For a
matter of simplicity, the two neighborhood
functions we opted to use in this paper have the
form

N = No(l- t/T)

where No is the value of N at t=0, t is the current
time, e.g. current iteration number, and 7" is the total
time, e.g. total number of iterations.

Nc = Po(l-tfT)
Nw = do(l-t/T)

(2)
(3)

Initially, both Nc and Nw are chosen to cover all
the map and the entire weights space respectively.
Then, as learning proceeds they shrink at the same
speed, but with different scales, since the former is
relative to units1 positions and the latter is relative to
their weights vectors.

After determining Nw, we pick up dfas explained
in the previous section.
Then we proceed to updating.

3.4 Step 3
Proceed to weight adaptation.

3.4.1: The learning rule relative to the units
selected by Nc is identical to the traditionally used
adaptive rule of SOM, that is:

Wi(t) = Wi(t-l) + ct(t)[x(t)- Wi(t-l)] (4)

for all units / such that / e Nc, and where Wj(t) is the
newly updated weight, Wi(t-l) is the old weight
before update, ct(t) is the learning rate and x(t) is the
input.

3.4.2: The new learning rule we introduce in this
algorithm is as follow:

WjW^WjCt-1 )+a(t)[x(t> Wj (t-1)]
+a(t)(t/T)[Aj(t)-x(t)] (5)

for all units j such that/ e Nc u df, and where Aj(t)
is the average of the weights of the neighboring units
of unity, t is the current time, and T\s the total time.
Eq.4 and Eq.5 can be used interchangeably,
depending on even df> Np or vice-versa.

3.5 Step 4
Input a new vector and go to step 1.

(1) (End of Algorithm)

To obtain Eq.5, we start from the general learning
rule of the SOM. From Eq4. we replace the updating
term by a more sophisticated one, and we arrange
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the indices to obtain

Wj(t) = Wj(t-l) + a(t)[
(6)

with p(t) and y(t) are two discrete time-dependent
weighing variables such that P(t)+ y(t) = 1, and Aj(t)
as defined above in Eq.5.

The main idea is that for those units located
outside Nc and positioned inside df, learning is
made by considering not only the newly input
information, but also the already available one on
the net.
From Eq.6, since p(t)+ y(t) = 1, we obtain

Wj(t) = Wj(t-l) + a(t)[ p(t)x(t) + y(t)Aj(t)- Wj(t-1)]
(7)

considering y(t) = t/T and p(t) = l-(t/T), leads us to
Eq.5.

In the proposed new learning rule, we replaced
the learning term by a weighed combination of the
input x(t) and the average of the weight values of
the surrounding units, A/t).

In order to keep the spirit of the topographic
mapping as introduced by Kohonen, we insisted to
make our choice of the new neighbors based on
their relative positions on the unit space and making
their updates with respect to their surroundings.
Finally, to guarantee the convergence of the
algorithm, y(t) and P(t) are chosen to have
antagonist roles.

In the beginning, y(t) starts with zero value, while
p(t) starts equal to 1. It means that learning starts
identically as in the traditional SOM for both
groups of neighbors, so that the new one can be
considered as the extension of Nc beyond its
borders.

Let/ be one of those units located within df and
positioned outside Nc on the map at a given time
epoch t. In order to strengthen the neighborhood
relationship, we update the weight w/t) of this unit
considering the information stocked in its
immediate surroundings.

At the first stages of learning, this operation
allows to put a maximum number of units in the
context of the training data set. In a standard SOM,
this operation is exclusive to the selected neighbors
of the BMU. For example, considering the fact that
the neighborhood function shrinks at each training

epoch, if some region of the input space is more
crowded than others and the initial density of weight
vectors is too low in that region, specific regions of
the units space will be updated consistently while
others will be left apart.

There are number of approaches in the literature
which tried to deal with this problem [5-7]. However
all of these methods adapt the winning unit only,
since they intend to bring solutions to
underutilization of some units of the competitive
layer.

In our algorithm, as learning goes on, the
information stocked on the net gets more and more
significance and importance, so that it participates
actively in the training/learning process by keeping
integrating a maximum number of units in their
respective changing neighborhood environment
making them "aware" of the evolution of the
network.

In traditional SOM, every region of the map is
being learned independently from the adjacent ones.
There is no real consideration of the evolution of the
network as a whole, but for finding the BMU.

We estimate that the information acquired by the
map along the learning, should play a more
significant role than just being used to select the
BMU by making its selection more meaningful and
consistent in the future steps of learning.

Fig.2. Different phases of the learning process. In the
beginning of the algorithm, as y(t) is still small, learning is
quite identical as in SOM. However, small updates aiming

to put a maximum number of units in the context of the
training data set are performed on the new group of

neighbors. Then, as y(t) and P(t) approach each other, the
middle zone on the graph, the learned information will

start participating actively to learning by integrating each
unit of the new neighbors in its relative continuously

changing environment. During this phase some conflicts
may take place. Finally, the third phase of the learning will
be rather a strengthening of the neighborhood relationship

more than performing updates.
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At the final stages of our algorithm when 7(t)
approaches the value 1 and p(t) the value 0, the
acquired information by the net will dominate the
updates of the new neighbors. It means that the new
learning rule strengthens the neighborhood
relationship more than performing updating (Fig.2).

4 Experimental Results and discussion
For a matter of clarity, the chosen application to

test the new algorithm consists of color mapping.
As SOM produces a mapping of classified data, it is
then easy to evaluate how good a map is and how
strong the similarities between objects are. In the
case of color classification, it is very easy to check
the resulted map and make comparisons between
the two algorithms.

Simulations were performed with different
network topologies with different number of
training data and different iteration numbers. The
showed results were obtained using a 10x10 net
lattice, 10000 training data set for 5000 iterations,
which are the optimal parameters to implement
color mapping in standard SOM. In fact, using our
algorithm, we could obtain similar performance by
using only 5000 training data in only 1000
iterations for the same net lattice size. The training
data and initial states were three-dimensional
vectors on the RGB scale having the form

x , = ( R i A 3 i )
X2=(R2,G2,B2)

XN=(R*,Gn,Bn)

where ^€[0.255], G& [0.255] and B{e [0.255]. The
initial states were drawn at random (Fig.3). The
showed initial distributions may appear highly
localized, but these are only examples. We also used
different initial distributions spreading on all the
weight space and obtained similar results.
For the used parameter configuration, Po and do
initial values of Nc (Eq.2) and Nw (Eq.3), are set to
12 and 400, respectively. These are the maximum
Euclidian distances separating two units on the unit
space (10x10), and two weights on the weight space
(0-255), respectively.

Conversely to the resulted maps given by the
traditional SOM, and as shown in Fig.4, the
proposed algorithm is invariant to the initial
conditions and in all cases we obtained the same

final mapping.
As we explained above, every SOM finds

different similarities among the sample data. In fact,
SOMs organize sample data according to the
position of the BMU on the map. If we re-initialize
the net with the same set of initial states, but with
different arrangements on the map, the obtained final
classification will be definitely different of the one
obtained before.

In our algorithm, the used new learning rule for
the introduced new group of neighbors keeps
adapting a maximum number of units to their
continuously changing environment, so that initial
position rearrangements of the units on the map have
no effect on the final result.

(a)

(b)
initial D*t«ct-3

(c)
Fig.3. Different Initial distributions used for
different sets of simulations (a), (b) and (c).
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Another typical problem of SOM. SOMs
organize sample data so that in the final product the
same samples are usually surrounded by similar
samples. However, similar samples are not always
near each other. If we have a lot of shades of purple,
not always we'll get one big cluster with all purples
in it. Sometimes, the clusters will get split and there
will be two groups of purples. As we can see on
Fig.4, we have two groups of purple in two different
locations, while they should be in the same region
of the map. Unfortunately, the proposed algorithm,
still suffers from this defect.

Fig.4. Representative results of three sets of simulations,
(a,a')5 (b,b') and (c,c'), performed on a 10x10 net matrix

with a total number of 10000 training data for a total
number of 5000 iterations. The same initial conditions
and training data were used for each set, but different

from one set to another, (a), (b), and (c) are maps given
by SOM. (a'), (b') and (c') are the proposed algorithm's
final maps. The grid placed on (a) illustrates the 10x10
competitive layer. Each square represents a unit on the
map at its final state after learning is completed. Colors

represent the different classes the network could classify.

5 Conclusion
In this paper we proposed some modifications

on the traditional SOM algorithm, in order to obtain
the same mapping independently from the initial
conditions.

The modifications we proposed consist of
introducing a new group of neighbors, based on
weight neighborhood function, so that two kinds of
neighbors are processed.
For this new type of neighbors we introduced,
updating is made according to a new learning
algorithm, in which not only the input information is
considered, but also the information already existing
on the map is used. At the beginning of the
algorithm, the two learning rules are similar to the
standard SOM. Then, more the learning goes on,
more the contribution of the information learned by
the net gets importance to the formation of the final
map. At the final stages of the process, updating of
the new group of neighbors will be more an
operation of adaptation of the selected units to their
changing environment, than a real updating to the
input vector. The proposed algorithm exhibited very
stable behavior in color classification application.
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Abstract
The task of estimating the meteorological profile of any location
of interest within a specified area is undertaken. Assuming that
the meteorological profiles of a sufficient number of
representative reference locations within the specified area are
available, the proposed methodology is based on (a) the
organisation of the meteorological profiles of the reference
locations employing a self-organising map (SOM) and (b) the
classification of the most salient morphological characteristics
of the reference locations. Subsequently, the meteorological
profile of any novel location of interest is approximated by a
weighted average of the meteorological profiles represented on
the SOM for those reference locations whose morphological
characteristics most closely match the morphological
characteristics of the location of interest. The proposed
methodology is evaluated by comparing the accuracy of
meteorological profile estimation with that of existing
estimation techniques as well as with the actual meteorological
profiles of the locations of interest.

1 Introduction
The estimation of the meteorological profile of any
location of interest within a specified area is of obvious
practical interest. Assuming that
• the morphology of the area is available, and
• the meteorological profiles of a sufficient number of

representative reference locations within the specified
area are known,

various methods can be employed for the estimation of
the meteorological profile of the location of interest (e.g.
"adoption-adaptation" of the meteorological profile of the
reference location that is closest to the location of
interest, interpolation between the nearest reference
locations). In this piece of research, a novel methodology
is proposed which combines the construction of a self-
organising map (SOM) that orders the meteorological
profiles of the reference locations with the classification
of the reference locations according to their most salient
morphological characteristics. Given a novel location of

interest within the specified area, its meteorological
profile is generated by:
• classifying the location of interest into one of the

morphological classes and, subsequently,
• determining the meteorological profile represented

on the SOM for those reference locations that most
closely match the morphological characteristics of
the location of interest.

This paper is structured as follows: the area specified for
meteorological profile estimation is described in section
2; the SOM employed for organising the meteorological
profiles of the reference locations within the specified
area as well as morphological classification of the Greek
territory are presented in section 3; the experimental
results as well as a comparison with existing estimation
techniques and the actual meteorological profiles of the
locations of interest are given in section 4; finally, section
5 concludes the paper.

2 The specified area
The Greek territory has been used as the area on which
the estimation of the meteorological profile of any
location of interest is performed.

2.1 Meteorological parameters - profiles
The meteorological profiles of 130 locations in the Greek
territory are available; these locations (shown in Fig. 1)
correspond to the weather stations maintained by the
National Meteorological Service (EMY) of Greece.
Each meteorological profile has been derived from 28
meteorological parameters1 which have been collected
over a period of 43 years (from 1955 to 1997) at a given
weather station. A single value per meteorological
parameter (equalling the numeric average of the collected
values over the 43 years) has been utilised for the

1 describing monthly and yearly maximum, minimum and
average temperature, barometric pressure and relative humidity,
monthly and yearly average number of sunny and cloudy hours
per day, monthly and yearly average levels of precipitation and
snow, monthly and yearly average wind speed
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generation of the meteorological profile of the given
weather station.

Fig. 1 The Greek territory with the 130 weather stations
maintained by EMY; locations of the available meteorological
profiles.

Greek territory can be determined, the meteorological
profiles of only 130 locations are available.

3 The Self-Organising Map (SOM)
The main sources of inspiration for the SOM [1] are the
self-organisation of the neurons in biological brains and
the emerging topology preservation such that similar
stimuli excite (and, thus, are represented by)
neighbouring neurons.
For meteorological profile estimation, two-dimensional
SOMs arranged into hexagonal grids have been
employed; the sizes of the grids range from 5x12 to
20x30 nodes. The SOMTOOLBOX for the MATLAB
environment has been used [4]. The training procedure
comprises 1,000 and 10,000 iterations of the entire
training set during the rough-training and the fine-tuning
phases, respectively. Following range normalisation, the
28-dimensional inputs (corresponding to the
meteorological profiles of the locations of Fig. 1) have
been used for training. Cross-validation of these 130
locations has been employed for meteorological profile
estimation. A total of 130 tests have been performed
where, in each test, 129 different locations constitute the
reference locations2.

2.2 Morphological characteristics - classes

The morphological characteristics deemed as most salient
for classifying any location of interest within the Greek
territory are

• quantitative (and directly available), namely the
altitude, amplitude and longitude of the location,
and

• qualitative (derived), such as the location being on
an island (also specifying the approximate island
size and the proximity to other islands or the
mainland) versus the location being on the mainland
(also specifying the proximity to the sea), the
proximity of the location to rivers and/or lakes, the
location being on a plane versus the location being
on a mountain (also specifying highland and
lowland plateaus).

The classification of the Greek territory according
exclusively to qualitative morphological characteristics
results into 4,096 combinatorially possible classes, of
which only 55 are observed in the 130 locations
corresponding to the weather stations of Fig. 1.
Classification according to both quantitative and
qualitative morphological characteristics is detailed in
section 3.
For reasons of clarity it should be mentioned that, while
the morphological characteristics of any location in the

Fig. 2. One of the 11x22 SOMs employed for organizing the
meteorological profiles of the Greek territory.

The 12x22 SOM (shown in Fig. 2) with range
normalisation has been selected as the most consistent
over the 130 trials as well as the best in preserving the
distances of the original meteorological profiles, i.e. in
ordering the meteorological profiles of the locations of
Fig. 1 in a reasonable manner.

2 the remaining location constitutes the location of interest
3 large SOMs have been found preferable to smaller ones since
they are more capable of exposing the proximity in terms of
meteorological profiles between the 130 locations; smaller
SOMs would be useful only if the aim were to ease computation
(i.e. a class of meteorological profiles per node)
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Fig. 3. The mapping of the 11x22 SOM on the Greek territory
into five groups created by the U-matrix.
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qualitative morphological characteristics); the resulting
27 morphological classes are shown in Fig. 4. The
relatively high degree of agreement between location-
grouping and morphological classification (Figs. 3 and 4,
respectively) underlies the fact that the morphological
characteristics of any location largely affect its
meteorological profile. The morphological classes are
not as continuous as are the groups resulting from the U-
matrix; this can also be seen in Fig. 5 which further
illustrates the assignment of the SOM nodes into the 27
morphological classes. However, the similarity of the
(range-normalised) meteorological profiles between
locations assigned to the same class is high. Hence, some
understanding of the relationship between meteorological
parameters and morphological characteristics is
established.

Fig. 5 The assignment of the nodes of the SOM of Fig. 2 into
the 27 morphological classes of Fig. 4.

Fig. 4 The 27 morphological classes of the Greek territory.

The organisation accomplished by the SOM of Fig. 2 as
well as the five groups created by its U-matrix (Fig. 3)
have been employed in order to configure the
morphological classification of the 130 locations of the
Greek territory (according to both quantitative and

4 Experimental results - comparison with
existing methods

In each of the 130 trials, the meteorological parameters -
and hence the meteorological profile - of the remaining
location (the location of interest) are assumed unknown.
However, the morphological characteristics of the
location of interest are available, whereby they can be
employed in order to classify the location into one of the
27 morphological classes of Fig. 4. Subsequently, an
estimation of the meteorological profile of the location of
interest can be performed from the reference locations of
the same morphological class that lie in the same closed
area of Fig. 4. The estimation is based on the weighted
average of the meteorological profiles of the reference
locations involved, where the weights have been
determined according to the similarity between reference



176

location and location of interest in terms of the three
quantitative morphological characteristics.
The proposed methodology for estimating the
meteorological profiles of the locations of interest has
been found superior to that of
• Simply adopting the meteorological profile of the

nearest reference location. This approach ignores the
fact that, although the two locations are near each
other, the morphological characteristics of the
reference location and the location of interest may
differ significantly.

• Adopting and adapting the meteorological profile of
the nearest reference location (e.g. adiabatic lapse rate
normalization of temperature [5]). This approach
takes into account the differentiation of the
morphological characteristics between the reference
location and the location of interest but is quite
complicated to implement and not always accurate.

• Interpolating between the nearest reference locations.
As for the simple adaptation, the fact that the
morphological characteristics of one or more of the
reference locations and the location of interest may
differ significantly - although the locations are near
each other - is ignored.

5 Conclusions
A novel methodology is proposed for the estimation of
the meteorological profile of any location of interest
within a specified area. Assuming that the morphology of
the area is available, and that the meteorological profiles
of a sufficient number of representative reference
locations within the area are known, the methodology
employs
* a self-organising map where the meteorological

profiles of the reference locations have been ordered,
and

* the morphological classification of the reference
locations.

Subsequently, The meteorological profile of a location of
interest within the specified area is generated by:
# classifying the location of interest into one of the

morphological classes and, subsequently,
• determining a weighted average of the

meteorological profiles represented on the SOM for
those reference locations that belong to the same
morphological class of Fig. 4.

The proposed methodology has been found superior to
existing estimation techniques and consistently close to
the actual meteorological profiles.
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Abstract
A growing self-organizing (SOM) neural network, en-

hanced with a local search heuristic is proposed as an ef-
ficient traveling salesman problem solver. A ring struc-
ture of processing units is evolved in time with a Ko-
honen type adaptation dynamics together with a simple
growing rule in the number of processing units. The re-
sult is a neural network heuristic for the TSP with a com-
putational complexity of O(n2), comparable to other re-
ported SOM-like networks. The tour emerging from the
SOM network is enhanced by the application of a sim-
ple greedy 2-Opt local search. Experiments over a broad
set of TSP instances are carried out. The experimental
results show a solution accuracy equivalent to that of the
best SOM based heuristics reported in the literature.

1 Introduction
The well known Traveling Salesman Problem (TSP) is

the archetype of NP-complete problems, it has attracted
considerably research interest and has been repeatedly
used as benchmark in the comparison of different com-
binatorial optimization algorithms. The task in the TSP
is to find a shortest close tour through a set of n cities
with known inter-city distances such that each city is
visited exactly once and the tour ends at the start city.
In the literature [1, 2, 3, 4] many exact and heuristic al-
gorithms for the TSP can be found. Several of them in-
spired from naturally occurring processes and with good
performance figures. Typically the computation of ex-
act solutions takes a time that grows exponentially with
n. Hence in presence of large problems, often occur-
ring in practical applications (e.g. VLSI routing, drilling
machine steering and wall paper cutting) heuristic al-
gorithms with considerably smaller complexity are pre-
ferred. It is argued [5, 6] that among the nature inspired
heuristics, Neural Networks algorithms are the less com-
petitive in overall performance. Nevertheless research
in the area continues and recent results [7, 8] indicate
that the Neural Network approach to the TSP remains
as a promising alternative when all performance figures
(problem scale, execution time and quality of the solu-
tion) are considered.

Considerable interest has attracted the self organizing
map (SOM) or Kohonen [9] type approach to the TSP
(e.g. see [7, 10] and references therein). The reasons are
multiple: straightforward and efficient implementation,
good scaling behavior with the size of the problem, rel-
ative simple parametrization and good solution quality.
These SOM-like networks solve the TSP by simply in-
specting, in an unsupervised way, the coordinate values
of the cities (inputs) for patterns and regularities, adjust-
ing themselves (self organizing) to fit the input data. The
self organizing dynamics produces a gradual movement
of the processing units (PUs) towards the cities and at the
same time, due to the topology preserving property [9],
paths between neighboring PUs (corresponding to neigh-
boring cities) will be as short as possible. Since the PUs
are logically organized in a ring shaped network a valid
tour for the considered TSP can be easily extracted.

In this contribution we present a traveling salesman
problem solver based on an enhanced SOM-like neural
network with a growing structure [11]. Like all SOM-
like networks for the TSP it consists of a ring of PUs
over which an unsupervised learning scheme is applied.
Initially the ring contains a small number of PUs, as time
advances the PUs are updated in response to stimuli from
the cities and successively new PUs are inserted. The
organization process induces a topologically ordered de-
scription of the data that leads to a feasible tour of the
considered TSP. This resulting tour is post processed
with a straightforward 2-Opt local search procedure [12]
in order to improve further its quality. A similar algo-
rithm has been previously presented [13] but employ-
ing a more complicated insertion strategy and a different
route post processing. Results from experiments carried
out over a broad range of scales for the size of the TSP
improve or are comparable, both in calculation time and
quality of solution, those obtained with other more so-
phisticated SOM-like algorithms.

This paper is organized as follows. The growing SOM
algorithm is briefly described in section 2. Comments on
the complexity of the algorithms are presented in section
3. In section 4 aspects concerning the initialization and
parametrization of the network are discussed. Experi-
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mental aspects and comparison of the results with other
methods are exposed in section 5 and in section 6 the
conclusions are presented.

2 The Growing SOM Algorithm
The proposed algorithm consists of a growing ring of

PUs adapting themselves according to the stimuli com-
ing from different cities. Initially the ring is composed of
a small number of PUs and successively new PUs are in-
serted. The algorithm finds the winning PU (best match-
ing unit BMU) nearest to a randomly chosen city. The
weights of the BMU and those of its direct neighbors are
updated. Each time a PU becomes a winner (BMU) an
associated counter accumulating the number of wins is
incremented. The weight update moves the position of
the BMU and of its neighboring PUs a fraction in the
direction of the stimulating city. Every fixed number of
iterations the algorithm finds the most winning PU and
inserts a new PU in the edge connecting it to the neighbor
with the mayor number of wins. The counters of every
PU are reset to zero and the process is repeated. This
very simple growing dynamics is iterated until the num-
ber of PUs is twice the number of cities. Finally each
city is assigned to the nearest available PU. The order
of the PUs in the ring structure conforms a valid tour of
the considered TSP. This resulting tour is post processed
with a straightforward 2-Opt local search procedure in
order to improve its quality. The algorithm consists then
of two distinct stages: a PU weight update and insertion
phase and at the end of network organization a tour im-
provement local search.

The PUs weight update is very similar to the well
known Kohonen learning rule:

1. The position vector r(k) of a randomly selected
city is presented to the network.

2. The BMU (PU with weight vector Wj) nearest to
r(k) is selected for update.

3. The weight vectors of the BMU and its two direct
neighbors are updated according to:

1. The kth PU with the mayor number of wins is se-
lected; wink > wini for all i PUs.

j + rj(r(k) — Wj) (1)

where 77 is the learning rate, which remains con-
stant during the process. The learning rate for the
neighbors is a fraction of that for the BMU.

4. The counter wirij which accumulates the number
of wins for the BMU is incremented.

The Growing_Rate-Parameter gives the number of it-
erations to be completed before the insertion procedure
is applied:

2. From its direct neighbors the PU with most wins
of the two is also selected, say the k + 1 PU with
wink+i.

3. A new PU is inserted with weight vector given by

Wnew = (2)

andwith pi = wink/(wink +
p2 = wink+i/(wink + wink+i).

4. Set the win counters to zero.

The update-insertion phase is iterated until the number
of PUs in the ring network is equal to twice the number
of cities in the TSP. The resulting organization of the ring
network of PUs is such that every weight vector is in the
immediate neighborhood of the position vector of a city
so that each city can be assigned to its nearest available
PU. At this stage the tour of the considered TSP is rep-
resented by the order of the PUs in the ring structure.

The tour improvement phase consists on the following
local greedy heuristic which uses the Euclidean distance:

1. For every city i, a section of the tour with M cities
is considered.

2. The distance d(i, fc) between the city i and the
following city (fc) in the considered section of the
tour is evaluated.

3. For all other cities k in the tour section, the
distance d(i,fc) is compared with the distance

4. If d(z, fc) > d(i, k) then a 2-Opt inversion be-
tween the cities fc and k is proposed.

5. The proposed inversion is accepted if the length of
the modified tour section is smaller than that of the
original. In this case city k becomes city fc.

With a section of the tour containing 1/10 of the num-
ber of cities (M) it is found that the above heuristic
achieves a tour length improvement between 0 and 4 per-
cent.

3 Algorithm Complexity
With an argumentation similar to that given in [13] it

can be easily verified that the time complexity of the al-
gorithm is at least of order O(n2) whereas its space com-
plexity is of order O(n). This complexity is typical of
all SOM-like algorithms presented in the literature [7].
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Nevertheless with some simple programming modifica-
tions the algorithm's complexity can be made linear, this
aspect was not further pursued in this work. It is worth
noting that in contrast, other nature inspired heuristics
for the TSP (Genetic Algorithms, Ant Colony Optimiza-
tion and Simulated Annealing) have much higher com-
plexity.

4 Initialization and Parametrization of the Algo-
rithm

The network is initialized as a ring of 8 PUs uniformly
and randomly distributed on a rectangular frame contain-
ing all the cities. With this choice and as an effect of the
first iterations of the learning dynamics, this initial con-
figuration is organized in a ring oriented approximately
along the centers of the main clusters of the cities dis-
tribution. The convenience of this simple initialization
scheme has been discussed in [10]. Only a small num-
ber of parameters are involved in the algorithm: Grow-
ing _Rate_Parameter, learning rate of the BMU 77, learn-
ing rate of the neighboring PUs and number of PUs to
be grown. The adequate values for these parameters can
be found after a small round of trial and error experi-
mentation. It is experimentally found that of the four
parameters only two of them (Growing_Rate_Parameter
and learning rate 77 of the BMU) are important in over-
all performance and must be more or less carefully fine
tuned. The final number of PUs can always be set to
twice the number of cities in the problem and the learn-
ing rate of the neighboring PUs varied around 77/2. In
consequence a fine tuning of the algorithm's parame-
ters is relatively easy to complete. In summary the best
ranges and values used were:

• Growing Jlate .Parameter between 1000 and 4000,
we used 2000 for all experiments.

• Learning rate of the BMU 77 between 0.01 and
0.06, we used 0.02 in all experiments.

• Learning rate of the neighboring PUs 0.6 77 was
used.

• The number of PUs to be grown was set to twice
the number n of cities in the TSP.

All experiments were carried out with the same set of
parameters. The parameters of the algorithm were fine
tuned with two instances of 100 and 500 cities and then
kept fixed for the rest of the experiments. Nevertheless it
was observed that the smaller instances (n < 500) were
most sensible to parameter tuning than the bigger ones.

5 Simulation Experiments
The algorithm was implemented in C++ on a 2.4 GHz

Pentium IV based machine. Experiments were made on

Table 1. Best results on 10 experiments for the TSP instances

Instance

ATT48
EIL51
EIL101
KROA150
KROA200
LK318
PCB442
ATT532
PR1002
NRW1379
PR2392
PCB3O38
FNL4461

Cities

48
51

101
150
200
318
442
532

1002
1379
2392
3038
4461

Optimum

10628
426
629

26524
29368
42029
50778
27686

259045
56638

378032
137694
182566

GSOM

10648
427
642

27229
30249
43350
54351
28701

269371
60431

404055
149759
195582

Error(%)

0.188
0.235
2.066
2.657
2.999
3.143
7.03
3.66
3.986
6.96

6.884
8.762
7.13

Table 2. Average execution times for some TSP instances

No. Cities

101
200
532

1002
2392
3038
4461

Time (sec.)

4
12
88

282
1860
3046
5365

a set of TSP instances available on the TSPLIB [14].
Sets of 10 experiments for each TSP instance were car-
ried out, the best and average results were registered. In
Table 1 the TSP instances studied are listed together with
the best result obtained with our algorithm on each prob-
lem. In Table 2 the execution times averaged over 10
experiments are presented. It can be appreciated that the
increase in time is slightly less than quadratic.

In order to evaluate the relevance of the experimental
results these were compared with those presented in [7].
There the authors compare results obtained by a SOM-
like network evolved with a Genetic Algorithm and those
obtained by Simulated Annealing and other three SOM
based heuristics including the FLEXMAP in [13]. In
Table 3 this comparison is summarized. SA stands for
Simulated Annealing, FMP for FLEXMAP, Bud for Bu-
dinich, ESOM and eiSOM are the author's algorithms
(e.g. see [7]). The missing values in the table correspond
to not reported results.



180

Table 3. Average solution quality of 5 enhanced SOMs

Instance

ATT48
EIL51
EIL101
KROA150
KROA200
LK318
PCB442
ATT532
PR1002
NRW1379
PR2392
PCB3038
FNL4461

SA

2.33
5.74
4.31
5.61
7.56
9.15
5.38
7.32

-
8.18

-
-

FMP

1.88
2.07
2.90
3.22
4.55
5.31
5.81
6.99

-
8.76

-
-

Average Error (%)

Bud

_
2.48
4.31
2.23
2.67
5.34
6.88
4.76
7.44

_
8.03

-
-

ESOM

_
0.93
2.72
1.69
1.96
3.48
5.11
3.54
5.07

_
7.21

-
-

eiSOM

_
1.97
2.92
1.26
1.21
1.93
5.67
2.39
4.01

-
5.83

-
-

GSOM

0.85
2.05
3.47
3.125
2.99
3.65
7.41
3.73
5.29
7.05
7.32
8.76
7.47

6 Discussion and Conclusions
In this contribution a TSP solver based on a growing

SOM-like neural network enhanced with a greedy 2-Opt
local search is presented. A Kohonen type learning rule
together with a simple PU insertion strategy are com-
bined in order to produce a SOM network with a grow-
ing structure. The parameters of the network are very
easily fine tuned, no special procedure is needed. The
experimental results over a wide spectrum of TSP in-
stances show that the accuracy of the solution is, in most
cases, equivalent to that of the best SOM based heuris-
tics reported in the literature. Only the eiSOM [7] shows
systematically better results than those of the present ap-
proach but for this case a Genetic Algorithm was neces-
sary to evolve and parametrize the SOM network. Even
for larger instances (3038, 4461 cities) the generated
tours have a length with errors below 9% of the opti-
mum values. This observed accuracy can still be further
increased by a more careful tuning of the network pa-
rameters on each individual instance.
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Abstract
In this paper, an integrated modeling system based on a

multi-layer perceptron model is developed and evaluated for the
forecasting of urban airborne maximum pollutant
concentrations. In the first phase, the multi-objective genetic
algorithm (MOGA) and sensitivity analysis are used in
combination for identifying feasible system inputs. In the
second phase, the final evaluation of the developed system is
performed for the concentrations of pollutants measured at an
urban air quality station in central Helsinki, Finland. This study
showed that the evolutionary design of neural network inputs is
an efficient tool, which can help to improve the accuracy of the
model. The evaluation work itself showed that the developed
modeling system is capable of producing fairly good operational
forecasts.

1 Introduction
A wide variety of neural network (NN) models such

as multi-layer perceptron (MLP) [1,2] models have been
developed for the forecasting of air quality, as the main
efforts have been focused on the forecasting of peak
pollutant levels [3], i.e., episodes due to their negative
health effects. The investigations have showed that NNs
are fairly accurate and useful tools that can outperform
other statistical and deterministic methods [4, 5].
However, up to date, most of the investigations have been
focused on the so called "nowcasting" of air quality, in
which the measured or pre-preprocessed meteorological
data is used instead of using results from numerical
weather prediction (N WP) models [4].

In this paper we develop and evaluate an integrated
modeling system based on a MLP model for forecasting
maximum concentrations of urban airborne pollutant
concentrations; the corresponding study for the
forecasting of hourly concentrations has been recently
made by Niska et al. [6]. In the developed modeling
system, the meteorological input data is derived from
meteorological pre-processing and numerical weather
prediction models, and the scheme corresponds to a
realistic operational situation, i.e., actual forecasting. The

system is designed through an evolutionary approach
based on a multi-objective genetic algorithm (MOGA) [7,
8, 9] after which the final evaluation is performed.

2 Experimental data
The concentration data used in this study were

obtained at the urban background station (Kallio) in
central Helsinki. The data comprised hourly ambient
airborne pollutant concentrations for the following
species: NOX, NO2, O3, PM10 and PM25. Fairly small
fractions (1-6%) of missing concentration values were
detected and replaced using the combination of the Self-
Organizing Map (SOM) and linear interpolation [10]. The
reason for imputation was practical: it was employed to
provide continuous data set to the model evaluation.

The pre-processed meteorological data, based on the
combination of the data from synoptic stations at
Helsinki-Vantaa airport (about 15 km north of monitoring
sites) and Helsinki-Isosaari (an island about 20 km south
of the monitoring site), were selected to be used in this
study, as they were best representative for the whole of
the urban area and contained relevant derived
atmospheric turbulence parameters. The mixing height
(the depth of the atmospheric layer where the pollutants
emitted from the surface are effectively mixed) and
turbulence parameters were evaluated using a
meteorological pre-processing model MPP-FMI [11]
which utilizes the sounding observations at Jokioinen (90
km northwest of Helsinki) and the routine meteorological
observations. This pre-processor has also been adapted to
better allow for urban meteorological conditions.

The numerical weather prediction data were derived
from the Finnish variant of the HIRLAM [12] and its
synoptic scale HIRLAM version 4.6.2 which was in
operational use during the period 15 Nov. 1999 to 16
March 2003. In the calculations, HIRLAM data at a
specified location (longitude 24.81°E and latitude
60.3 3 °N) close to the air quality monitoring site were
utilized. For this point, all the operational forecasts made
within 6 hourly intervals (00, 06, 12, 18 UTC) were
employed and the data from the model surface levels of
30 and 31 (the level 31 closest to ground) were used.
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3 Methods

3.1 Modeling system based on MLP model

We address the forecasting of daily maximum
concentrations of ambient airborne pollutants using a
fully-connected MLP model [1], which was trained using
scaled conjugate gradient back-propagation with 1000
training epochs. For controlling the over-fitting, we relied
on the early stopping method of training. The training
was stopped when the error of the validation set (20% of
the training data) increased for 10 iterations, and
consequently the weights and biases at the minimum of
the validation error were utilised. The architectures of the
MLP models were largely based on the previous studies
in this domain [5], in which one hidden layer, sigmoid
transfer functions for hidden units and linear transfer
functions for output were found to be sufficient.

The aim was to model the relationship between
airborne concentrations, pre-processed (MPP-FMI) and
forecasted (HIRLAM) meteorological parameters applied
at different time lags. The input data was selected from
the operational point of view. The concentration and
meteorological data were taken from the time lags T
(current day) and T - 1 (previous day), and timing and the
NWP forecast from the time T + 1 (next day; for which
the forecast applies). Additionally, the meteorological and
concentration variables were divided into 6-hourly daily
averages: 1:00 a.m. to 6:00 a.m., 7:00 a.m. to 12:00 p.m.,
13.00 p.m. to 18.00 p.m. and 19:00 p.m. to 24:00 p.m.
The variables used in the modeling system are listed in
Table 1.

3.2 Input selection using MOGA

In this study, the selection of input variables
(predictors) was necessary due to the large data
dimension (total number of variables 316); see Table 1.
The selection of inputs was based on the combination of
MOGA and the sensitivity analysis of the MLP model
[14, 15]. In this approach, the number of inputs was
minimized and the performance maximized, and the
sensitivity of the MLP was used to estimate the
relationship between inputs and performance [16].

In our experiments, we applied a structured genetic
algorithm (GA) as the core of MOGA. The structured
populations were implemented within the unconstrained
migration model including five isolated subpopulations
each having 20 individuals. The migration of best
individuals was applied within 20 generation intervals.
Inside the populations, we used the different mutation
rates (0.5, 1, 1.5, 2.0 and 2.5 mutations per individual, on
average) in order to maintain both rough and fine search
capabilities.

The selection of genetic operators was based largely
on the investigations made by Emmanoulidis [16].
Random sampling tournament selection and subset size
oriented common features (SSOCF) recombination
operators were utilized. The mutations were employed
within the framework of binary mutations, since the
problem (input selection) was represented as a bit string.

Table 1. The list of all variables used as inputs of the
modeling system. A relevant input subset is selected from
this set using MOGA for each pollutant respectively.
Input variable(s) Unit(s) Time Lags N

Temporal variables

Sine and cosine of year and weekday — T+1 3

Concentration variables; all the daily 6-hourly averages

NOX, NO2, O3,PM10and PM25 pg/m3 T.T-1 40

Meteorological variables; all the 6-hourly averages

Pressure, temperature and humidity Pa, K, % T, T-1 25
State of ground and albedo — T,T-1 16
Cloudiness (0-8)/8 T,T-1 8
Dewpoint, wetbulb and temp, scale K T, T-1 24
Rain mm T, T- 1 8
Height of low clouds m T, T -1 8
Sine and cosine of direction of flow — T,T-1 16
Wind speed m/s T, T-1 8
Sunshine duration and solar elevation h, rad T, T -1 16
Solar and net radiations W/m2 T,T-1 16
Moisture parameter — T,T -1 8
Monin-Obukhov length m T, T- 1 8
Friction and convective velocities m/s T, T -1 16
Turb. and latent heat flux W/m2 T, T -1 16
Mixing height m T, T-1 8
Gradient of potential temperature K/m T,T-1 8
HIRLAM variables from the model surface levels 30 and 31; all
the operational + 24 hours forecasts (00, 06, 12, 18 UTC)
U-and V-componentsofwind m/s T+1 16
Kinetic energy of turbulence J/kg T+1 8
Temperature K T+1 8
Specific humidity and cloud
condensate
Total cloud cover % T+1 8
Pressure and temperature at 2m Pa, K T+1 8

The input time T+1 is the time (next day), for which the
forecast applies; N is the number of variables.

The fitness assessment was performed here through
the Pareto-ranking and goal attainment techniques [7, 8,
9]. The input subset fitness was estimated by applying the
modified sensitivity analysis where the MLP was firstly
trained on all the inputs, after which the sensitivity was
assessed by calculating a statistical measure from the

kg/kg T+ 1 16
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output of simulation. In this scheme, unselected inputs
were replaced by their respective means computed on
training data; data was variance scaled.

As the statistical measure, we used the well-known
index of agreement [18] defined as follows:

(1)

where N is the number of observations, Oj the observed
data point, Pj the predicted data point, O the mean of
observed data and P mean of predicted data.

4 Experiments and results

4.1 Evaluation of MLP models
We have evaluated the modeling system for

forecasting daily maximum values of NO2, PMio, PM2.5
and O3 concentrations obtained at the urban air quality
station in central Helsinki. The evaluation work was
performed through three main phases: (1) the selection of
model-specific inputs, (2) the validation of input
selection, and (3) the final evaluation of models.

In the phases 1 and 2, the data set was partitioned at
random three data sets: a training data set (60% of all data
rows), a test data set (20%) and a validation data set
(20%). The training data set was used for constructing
the initial MLP, the test data set for performing feature
selection, and the validation data set for validating the
achieved Pareto-optimal front. The validation step was
made because it is known that the Pareto-optimal front by
itself does not provide enough information to select best
solution [14], i.e., does not have good generalization
power on different data.

In the last phase, the best input subset was chosen
according to the resulting Pareto-optimal fronts. The final
evaluation was performed using the cross-validation
method applying three different validation periods each
containing a full year cycle of data. For each validation
period, the general and episodic performances were
assessed through statistical analysis, where the index of
agreement (Eq. 1) was used for assessing the general
performance of the model and the success index for
assessing the episodic performance in the operational
sense, i.e., whether an episodic threshold value is
exceeded.

The episodic success index (SI) is calculated from the
true positive rate (TPR), representing the sensitivity of the
model, i.e., the fraction of correct alarms and the false
positive rate (FPR), representing the specificity of the
model, i.e., the relative fraction of false alarms.

TPR = A/M, 0 < TPR <1, (2)
FPR = (F-A)/(N-M), 0 < FPR < 1, (3)
where A is the number of correctly predicted episodes, M
is the number of all observed episodes, F is the number of
all predicted episodes and N is the total number of
observations. Sensitivity and specificity are combined
into the SI as follows:

SI = TPR-FPR, (4)
the value of SI ranging from -1 (TPR=0 and FPR=l) to 1
(TPR=1 and FPR=0).

The threshold values required in the computation of
SI were defined for each airborne pollutant according to
the 95th percentile of daily maximums or national
guidelines (if available).

4.2 Numerical results
The model evaluation results are presented in Table 2.

The results are presented as average values of the
statistical indicators and their standard deviations (ten
modeling runs) over the validation periods considered.

Table 2. Statistical model evaluation parameters of the
forecasted and measured maximum concentrations.

Pollutant

NO2

O3

PMIO

PM2 5

Pollutant

NO2

O3

PM10

PM25

Index of agreement (d]

Period

Mean

0.91

0.94

0.75

0.76

1

Std.

0.03

0.02

0.07

0.08

}

Period 2

Mean

0.85

0.94

0.80

0.76

Succes index (SI)

Period

Mean

0.50

0.58

0.15

0.35

1

Std.

0.17

0.15

0.11

0.15

Std.

0.05

0.01

0.07

0.04

Period 2

Mean

0.41

0.34

0.54

0.12

Std.

0.17

0.18

0.09

0.13

Period 3

Mean

0.78

0.89

0.39

0.55

Std.

0.02

0.01

0.04

0.05

Period 3

Mean

0.35

0.29

0.41

0.33

Std.

0.06

0.07

0.09

0.11

It can be seen that the best forecasting accuracies were
achieved for the concentrations of NO2 and O3 according
to index of agreement. This level of performance (d>0.9)
is applicable to operational forecasting. However, the
results obtained for particular matters: PM]0 and PM25

were slightly worse than the results obtained for NO2 and
O3. Contrary to good general performance, only moderate
episodic performance was achieved when considering
success index. The episodic performance was especially
degenerated in the case of particular matters.
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5 Discussion and conclusions
In this paper, the modeling system based on the MLP

neural network is evaluated for forecasting maximum
ambient airborne pollutant concentrations at the urban air
quality station in central Helsinki. Due to the large data
dimension, the novel input selection method based on the
MOGA and the sensitivity analysis of MLP is utilized for
ensuring reliability of the evaluation process.

The results when considering the forecasts of MLP
models showed good general agreement and moderate
episodic performance; see Table 2. The results in general
were slightly better than the results obtained for
forecasting hourly concentrations in time [6].

Despite the modest capabilities of predicting episodic
concentrations of particular matter, the proposed
modeling system can be useful for assessing of maximum
concentrations in urban areas. However, the performance
of the proposed system depends ultimately on site-
specific conditions such as climatic and topographic
factors, and requires appropriate site- and time-specific
data for training. Therefore, the results obtained in this
study cannot be directly generalized to other areas.
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Abstract
The behavior of an evolutionary system incorporating
both an evolving genetic representation (a learning
mechanism) and an evolving genetic operator (mutation) is
explored. Simulations demonstrate the evolution of
evolvability through the co-adaptation of these two
mechanisms. It is also shown that this co-adaptation
produces a transmission function that becomes more
conservative as the strength of the learning mechanism
increases.

1 Introduction
Altenberg [1] defines evolvability as the "ability of the
genetic operator/representation scheme to produce
offspring that are fitter than their parents." In addition
to defining evolvability, this definition identifies two
means by which evolvability can evolve. In particular,
if either the genetic operators or the genetic
representation1 fall under evolutionary control then, by
definition, it is possible for evolvability to evolve.
Although it is clear that the above conditions make it
possible for evolvability to evolve, the dynamics by
which evolvability evolves are far from clear. In
attempts to gain insights into these dynamics, some
researchers have studied systems with evolving genetic
operators including mutation [2,3] and crossover [4].
Others have studied systems that incorporate evolving
representations, including genetic programming [1],
stochastic genotype-to-phenotype mappings [5] and
simple learning mechanisms [6,7].
Each of the studies cited above considers either an
evolving genetic operator or an evolving representation,
but not both. Consequently, little is known about if and
how these two mechanisms might interact - and
interaction seems likely. Altenberg [1] argues that from
the perspective of selection, there is a duality between
representations and genetic operators. Meaning that in
terms of their effect on fitness, any change in a genetic
operator can be mimicked by a change in representation
and vice versa. For example, an increase in mutation
rate or a reduction of neutrality in the representation
could have indistinguishable impacts on fitness. The
existence of this duality strongly suggests that evolving
representations and evolving genetic operators will
interact. An understanding of the dynamics of these

1 As used here the term genetic representation includes the
effect of the genotype-to-phenotype mapping.

interactions may prove important in the creation of
highly self-adaptive evolutionary algorithms and may
generate insights into natural evolutionary phenomena
as well. The work presented here begins an examination
of such interactions through the study of a system that
explicitly allows for both an evolving genetic operator
and an evolving genetic representation.

2 Background
To talk about the dynamics of evolving evolvability it
is helpful to introduce the notion of a transmission
function [1, 8]. A transmission function describes the
effect of the genetic operators and genetic representation
on a population. In other words, a transmission
function maps a given distribution of parent phenotypic
fitness values into the distribution phenotypic fitness
values for their offspring. It is also possible to talk
about the conservatism of a transmission function. A
more conservative transmission function will tend to
produce offspring with phenotypic fitness closer to their
parents* fitness than will a less conservative
transmission function.
Two interesting dynamics related to the conservatism of
evolving transmission functions, and relevant to the
present work, have been reported. First, as the fitness of
a population rises, the transmission function tends to
become more conservative [1, 2, 9]. This dynamic
arises because at high fitness, changes made during
transmission tend to decrease fitness. Thus, a more
conservative transmission function is favored and
spreads through the population.
Second, for fitness levels above random quality, the
weaker the selective force the more conservative the
transmission function becomes [5, 10]. This dynamic
arises from the effects of selection on the distribution of
offspring fitness. When parents with less conservative
transmission functions reproduce, a few of their
offspring tend to have much higher fitness than the
others. Under strong selection pressure, these few high-
fitness offspring monopolize the reproductive
opportunities, resulting in the spread of less
conservative transmission functions. Conversely, when
parents with more conservative transmission functions
reproduce, they tend to produce offspring with closely
clustered, but higher average fitness. Now, under weak
selection pressure, reproductive opportunities are more
evenly distributed among the offspring, leading to the
spread of more conservative transmission functions.
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Through this second dynamic, the presence of learning
will also influence the conservatism of the transmission
function. By way of illustration, consider the view of
learning as a process that moves a phenotype toward a
nearby peak in the fitness landscape [see 11 for an
illustration]. In this view, many individuals with
distinct genotypes will have phenotypes that are
approaching the same fitness peak. Thus, the fitness of
these individuals will be similar, despite their
underlying genetic differences. The net effect is that
learning reduces the difference in selective pressure
between distinct genotypes, leading to the evolution of
a more conservative transmission function. Further, the
more powerful the learning mechanism, the more
pronounced this influence becomes.

3 Methods
To investigate the interaction between evolving genetic
operators and evolving representations a model
incorporating both of these mechanisms has been used.
In this model, an organism's genotype consists of two
parts: the genetic representation and a mutation rate
gene. The genetic representation contains the genetic
information from which the organism's phenotype is
generated. This representation incorporates a simple
learning mechanism that allows it to evolve. The
mutation rate gene controls the frequency with which
the genetic representation is mutated when the organism
is reproduced. Encoding the mutation rate in the
genotype permits the genetic operator to evolve. The
following sub-sections provide further descriptions of
this model and the genetic algorithm used for the
simulations.

3.1 The Evolving Genetic Representation
The genetic representation that is used has been adopted
from May ley [7]. In this model, an organism's genetic
representation consists of 20 loci, each of which may
take on one of the alleles 1, 0 or ?. As in Hinton and
Nowlan's seminal work [6], the ?'s represent traits that
may be altered by learning. It is through the number and
location of the ?'s (i.e. learning loci) within the
genotype, that the genetic representation is thought of
as evolving.
During every generation, each organism's genetic
representation is converted into a phenotype by
conducting a number of learning trials. In each learning
trial a candidate phenotype, pc, is generated as a copy of
the organism's genotype. Every ? in the copy is then
randomly replaced by either a 1 or a 0. The fitness of
each candidate phenotype is then evaluated using an NK
fitness landscape (see [7, 11, 12] for a complete
description of NK landscapes). Finally, the organism is
assigned the same fitness as the most fit candidate
phenotype.

The precise method for calculating the fitness of an
organism is shown in equation 1. In equation 1, T is
the number of learning trials, and F^fo) is the fitness
of the tth candidate phenotype as determined by the NK
landscape. F^opi is the maximum achievable fitness in
the current NK landscape and normalizes the fitness so
that comparisons can be made across multiple trials
with different NK landscapes. N is the number of loci in
the organism's genotype, m is the number of ?'s in the
genotype and c is the cost associated with learning.
Thus, the final term in equation 1 imposes a cost for
learning that is proportional to the number of ? alleles
in the organism's genotype. For an extensive discussion
of learning costs see [7].

0)
FNKopt

3.2 The Evolving Genetic Operator
Self-adaptive mutation rates [2, 3] are used to model an
evolving genetic operator. With self-adaptive mutation
rates each organism's genotype contains a mutation rate
gene. This gene indicates the probability that any given
locus will be mutated during reproduction. When an
organism is reproduced, the offspring receives mutated
copies of its parent's genetic representation and
mutation rate gene. The genetic representation is
mutated at the rate specified by the parent's mutation
rate gene. The mutation rate gene is mutated by adding a
random number selected from a normal distribution with
a mean of zero and a standard deviation of 0.001. The
mutation rate gene is also confined to the range [0... 1].

3.3 The Genetic Algorithm
The following parameters are common to all of the
simulations performed. Each population contained 100
organisms and reproduced asexually using roulette wheel
selection. Each allele in an organism's genetic
representation was encoded using two bits with "00"
representing 0, "01" representing 1, and both "10" and
"11" representing ?. The initial populations were
generated using random bit strings of length 40,
resulting in an expected allele distribution of 25% l's,
25% 0's and 50% ?. The mutation rate gene for every
organism was initially set to be 0.25. The NK
environments used to assign fitness were randomly
generated and had N=20 loci and K=4. The cost of
learning in equation 1 was set to 0.3.

4 Results
At the outset, it was unclear that evolution would occur
reliably in the presence of both self-adaptive mutation
rates and the learning mechanism employed. The
selective force for self-adaptive mutation rates is already
much weaker than that for primary traits, which directly
affect fitness. The addition of learning further weakens
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this selection by hiding the effects of mutations from
selection [11]. Despite this, it was found that evolution
is in fact able to occur reliably in the system used here.
Figure 1 shows population averages for fitness,
mutation rate, and the fraction of learning loci per
genotype over the first 40,000 generations of a typical
run using 10 learning trials. In this particular run, the
evolving mutation rate begins to converge at about
15,000 generations and is fully converged by 22,000
generations. Although the rate of convergence varied
between runs, the mutation rate converged before
75,000 generations in almost 90% of runs using 10
learning trials. Once the mutation rate nears
convergence, the average population fitness rises
quickly and the fraction of learning loci per genotype is
dramatically reduced. This reduction is due to the
Baldwin effect [6, 7, 13].

Typical Simulation Run

rises in these two curves represent opposite effects on
the conservatism of the transmission function.

5OOO 1OOOO 15000 20000 25000 30000 35000 4OOOO
Generation

Fig. I. Average population statistics for the first 40,000
generations of a typical simulation using 10 learning
trials.

Having established that evolution will occur under the
established conditions, the adaptive power of the
representation was then varied. Specifically, the number
of learning trials was varied from 2 to 30. For each
number of learning trials, 50 runs were performed with
75,000 generations each. From those 50 runs, 30 in
which the mutation rate converged prior to 40,000
generations were selected at random. For each of these
30 runs, the mutation rate and the percentage of learning
loci were averaged across time from 50,000 to 75,000
generations. These time averages were then averaged
across the 30 selected runs. These averages represent
optimal values for mutation rate and the fraction of
learning loci for each number of learning trials.
As shown in figures 2 and 3, both the mutation rate and
the fraction of learning loci tend to rise as the number
of learning trials increases. Increased mutation rates
make the transmission function less conservative.
Conversely, the combined increases in the fraction of
learning loci and the number of learning trials make the
transmission function more conservative.2 Thus, the

2 This is true because as the number of learning trials
increases, the number of learning loci that evolve allow for
a higher percentage of all possible phenotypes to be
guessed during the learning trials.

Mutation Rate vs. Learning Trials

Fig. 2. The average mutation rates increase with the number
of learning trials, decreasing the conservatism of the
transmission function.
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Fig. 3. The average fraction of learning loci increases with
the number of learning trials, increasing the conservatism
of the transmission function.

The opposing influences just described are interesting
for two reasons. First, the influences oppose each other,
making it impossible to immediately determine their
net effect on the conservatism of the transmission
function. Second, increasing mutation rates with
decreasing selection pressure is exactly the opposite of
what was found in earlier studies [2, 5, 9, 10].
However, these earlier studies used only self-adaptive
mutation rates and did not allow the representation to
evolve. Therefore, the expected conservatism-selection
strength relationship may still hold if the increased
conservatism in transmission due to the evolving
representation exceeds the decrease due to the higher
mutation rates.
To test this hypothesis, the conservatism of the
transmission function was investigated directly. For
each number of learning trials, 150 parent organisms
were created with the optimal mutation rate and the
expected number of learning loci. Each of these parents
was reproduced 30 times and the root mean square
difference in fitness between the parent and its offspring
was computed. The average results from 10 repetitions
of this process are shown in figure 4. As the number of
learning trials increases, the root mean square difference
in fitness between parent and child decreases, indicating
a net increase in the conservatism of the transmission
function.
From the results reviewed in the background section,
this observed increase in conservatism could be
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attributed to either increased fitness or to decreased
selection pressure. However, the average, median and
maximum fitness of the populations did not increase as
the number of learning trials increased. Therefore, the
observed increase in the conservatism of the
transmission function must have occurred in response to
the decreased selection pressure caused by the more
powerful learning mechanism.

Conservatism of Transmission

5 10 15 20 25 30
Learning Trials

Fig. 4. The conservatism of the transmission function
increases with increasing learning trials (i.e. decreasing
selection pressure).

5 Discussion
A system allowing for the evolution of both a genetic
operator (mutation) and a genetic representation (via
learning) has been explored. Simulation results from
this system have demonstrated the generality of earlier
findings that decreased selection strength lead to the
evolution of more conservative transmission functions.
The results also show that the increase in conservatism
can be achieved not just via evolution of the
representation (as in [1, 5, 6, 7]) or the operator (as in
[2, 5, 9, 10]), but can also be achieved through the co-
adaptation of the representation and the operator.
In pursuing this work, two significant questions that
will guide future study have arisen. First, what factors
affect how the representation and operators co-adapt? In
particular, why was the observed increase in the
conservatism of transmission enacted by increases in
both mutation and learning loci, as opposed to other
seemingly equivalent alternatives? One intriguing
possibility is a second-order conservatism in which the
co-adaptation increases how reliably the conservatism of
the transmission function is passed on to offspring.
Second, how will representations and operators co-adapt
in response to changes in the evolutionary
environment? Recent results have shown that when an
environmental change occurs (i.e. a change in the
fitness function) a selective benefit exists for less
conservative transmission functions [3, 13]. Thus,
because both representation and operators affect the
conservatism of the transmission function, it is
presently unclear how they will respond to
environmental changes.
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Abstract
A Multi-Objective Evolutionary Algorithm (MOEA) for solving
Traveling Salesman Problems (TSP) was developed and used in
the design of screws for twin screw polymer extrusion. Besides
the fact that MOEA for TSP have already been developed, this
paper constitutes an important and original contribution, since in
this case, they are applied in the design of machines. The Twin-
Screw Configuration Problem (TSCP) can be formulated as a
TSP. A different MOEA is developed, in order to take into
account the discrete nature of the TSCP. The algorithm
proposed was applied to some case studies where the practical
usefulness of this approach was demonstrated. Finally, the
computational results are confronted with experimental data
showing the validity of the approach proposed.

1 Introduction
Co-rotating twin-screw extruders are widely used in the
polymer industry for compounding and reactive
processing applications, due to a number of interesting
constructive and functional features [1-4]. As for other
types of extruders, the performance of these machines is
quite sensitive to the operating conditions (output, screw
speed and barrel temperature profile) and screw
configuration. Hence, both must be carefully defined for
each polymer system.
A methodology based on an optimization approach to set
automatically the operating point and satisfying the
relevant process criteria was proposed [5], The present
work extends the method to the definition of the relative
location of a set of modular screw elements (comprising
conveying, staggering kneading discs and reverse
elements) along the screw axis. This is a first step to deal
with screw design in twin screw extrusion.
The method is applied to a case study where the objective
is to determine the screw configuration yielding the best
global performance in terms of melt temperature at the
die exit, mechanical and thermal energy consumption,
maximum pressure generated, viscous dissipation, degree
of mixing and average residence time. The computational
results were assessed experimentally using, for simplicity,

two of these criteria, melt temperature at die exit and
power consumption.

2 MOEA for TSP
The choice of an optimization methodology depends
mainly of the type of problem to solve. In the present
case, the aim is to select the best location of a fixed
number of screw elements of a twin screw extruder that
will yield the best performance for a particular
application. The problem is illustrated in Figure 1: to
determine the position along the screw of 5 transport
elements, 4 kneading blocks (with different staggering
angles) and one reverse element (considering that in both
ends, other conveying elements will be used). This should
be done in such a way that either single criterion (such as
specific mechanical energy, SME), or a compromise
between various criteria (SME, maximum pressure,
viscous dissipation, etc) is/are satisfied. This will be
denoted as Twin Screw Configuration Problem, TSCP.

Fig. 1. Twin-screw extrusion configuration problem.

This is a complex optimization problem, due to the
presence of discrete decision variables and the existence
of a very wide search space. Also, one may face the
eventual need to combine discrete and continuous
decision variables (such as operating conditions and/or
geometrical features of specific elements) [6]. To
overcome these difficulties, the analogy between the well
known Traveling Salesman Problem (TSP) [7] and TSCP
was explored. This would be quite advantageous, given
the methodologies available as a result of the on-going
intensive research on TSPs [8-13].
In the TSP, the salesman aims to visit n cities but
minimizing the distance traveled and/or the total cost
(Figure 2-A). In the TSCP the polymer is the TSP's
traveling salesman and the screw modules are the cities,
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the aim being to define the sequence of screw elements
that maximize the processperformance (Figure 2-B).

O City Route

B

Fig. 2. Analogy between TSP (A) and TSCP (B).

Given the multi-objective nature of the TSCP, it makes
sense to use a Multi-Objective Evolutionary Algorithm
(MOEA) [6,14,15]. MOEAs have been used previously
by the authors for the optimization of single screw
extrusion, and for setting the operating conditions of twin
screw extruders [5,6].
To solve the TSCP, a specific MOEA, developed
previously by the authors [5,14] and denoted as Reduced
Pareto Set Genetic Algorithm with elitism (RPSGAe),
was modified in order to accommodate both the discrete
representation of the chromosome and the adequate
reproduction operator [6].
The formulation of the TSCP as TSP implies that each
chromosome comprises a sequence of discrete numbers
representing the positions of the screw elements.
Consequently, the Algorithm 1 was implemented by
modifying the Reduced Pareto Set Genetic Algorithm
with elitism (RPSGAe) developed previously [6,14]. Two
populations are considered, the internal (or main)
population (PI) of size N, used to store the best
individuals found in each generation, and an elitist
population (P2), of size IN, where the reproduction
operator for TSP is accomplished. Also, a ranking scheme
based on a clustering technique is employed to reduce the
population size while maintaining intact their
characteristics [6]. It is applied twice, first during the
selection phase, in order to ensure that the best
individuals are selected for reproduction, then after
reproduction, to select the best TV individuals of the elitist
population who will integrate the main population.

Algorithm 1 (MOEA for TSP):

- Set P1 randomly;
- Evaluation of P1 (using the modeling routine);
- Set Gen = 0;
- Do (for each generation):

• Non-domination test (P1);
• Ranking of P1 (using the clustering technique);
• Copy P1 to P2;
• Apply the inver-over operator to P2;
• Evaluation of P2;
• Non-domination test (P2);
• Ranking of P2;
• Copy best N individuals from P2 to P1;
• Gen = Gen +1;

-While (Gen < GenMax);
- Results (Pareto Plots);
- Apply the weighted sum;
- Best solution;

The algorithm starts with the random generation of the N
individuals of the internal population (PI). These are
evaluated using the modeling routine (see next section)
and the generation counter is initialized (Gen = 0). At
each generation, the following steps are performed: the
non-dominated individuals of PI were chosen; a
clustering procedure (see Algorithm 2) is applied to rank
the individuals of PI; the entire internal population (PI)
is copied to the elitist population (P2); the remaining N
individuals of the elitist population are generated by the
application of the inver-over operator; the new
individuals are evaluated; the non-domination test and the
clustering procedure are applied to the elitist population,
to rank its IN individuals; the best N individuals of the
elitist population are copied to the main population.
The algorithm ends when the maximum number of
generations is reached, the solutions being the non-
dominated individuals of the last main population. In
practice, since the selection of a single solution from the
pool of optimal points may be difficult (due to the most
probable existence of Pareto plots consisting of clouds of
points with feeble trade-offs), an overall simple objective
function using the weighted sum of the individual criteria
is applied to the final population:

(1
)

7=1

here, F, is the fitness of individual i, q is the number of
criteria, fj is the objective function of criterion j and Wj is

the corresponding weight (0 < wj < 1 and = 1 ) -
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Thus, after defining the weight of each criterion, function
(1) is applied to the non-dominated solutions and yields
the best result.
Algorithm 2 starts with the definition of the number of
ranks, NRanks, and the rank of each individual, Rank[i]9 is
set to 0. For each rank, r, the population is reduced to NR
individuals (where NR is the number of individuals of
each rank), using the clustering technique proposed by
Roseman and Gero [19]. Then, rank r is attributed to
these NR individuals. The algorithm ends when the
number of pre-defined ranks is reached. Finally, the
fitness of individual i (F,) is calculated using the
following linear ranking function:

F, = 2-SP +
2(SP-\)(NRanks+l-Rcmk\i]) ( 2

* Ranks

where SP is the selection pressure (1<S7*<2). Detailed
information on these algorithms can be found elsewhere
[6, 7].

Algorithm 2 (Clustering):

- Definition of NRsmks;
- Ranfii] = 0;
- r = 1;
- Do (for each rank):

• NR = r{N/NRanla);
• Reduce the population down to NR individuals;
• r = r + 1 ;

- W h i l e {r<NRanks)\
- Calculate fitness (equation 2);

3 Modeling of the Extrusion Process
The evaluation of the solutions is carried out using the
LUDOVIC software [20]. The program assumes that
melting occurs instantaneously, taking place just before
the location of the first restrictive element upstream.
From this location onwards, computations of melt flow
are performed separately for each type of screw element
(right-handed or left-handed screw elements, staggered
kneading disks). Experimental studies have shown that
the predictions of the software are within ± 10% of the
experimental values [20].
Therefore, for each polymer / system geometry /
operating conditions set, the software predicts with
reasonable accuracy the evolution along the screw axis of
variables such as temperature, melt pressure, shear rate,
viscosity, residence time, specific energy and filling ratio
and the values of relevant global performance parameters
(e.g., average residence time, average strain, mechanical

power consumption, maximum melt temperature, outlet
temperature).

4 Results and Discussion
As an example, this section will tackle the resolution of
the problem illustrated in Figure 1. Table 1 presents the
criteria to be included in this exercise, the corresponding
aim of the optimization and the individual range of
variation. A modular Leistritz LSM 30.34 laboratorial
extruder was used. The screw speed, output and barrel
temperature were fixed at lOOrpm, lOkg/hr and 200°C,
respectively. It is also assumed that the machine
processes a polypropylene homopolymer. The RPSGAe
parameters chosen are the following. The main and elitist
populations had 100 and 200 individuals, respectively,
and 50 generations were to be studied. A roulette wheel
selection strategy was adopted, a number of ranks of 30
and limits of indifference of the clustering technique of
0.01 (see [14] for more details) were adopted. Five
different runs using different seed values were carried out
in order to test the reproducibility of the algorithm.

Table 1- Optimization criteria, aim of optimization and
prescribed range of variation.

Criteria
Cl- Melt temperature at die
exit-Texit(°C)
C2- Specific mechanical
energy - SME (MJ/kg)
C3- Specific thermal energy
- STE (MJ/kg)
C4- Maximum pressure
generated - Pmax (MPa)
C5- Viscous dissipation -
Tmax/Tb
C6- Average strain - Avg.
St.
C7- Average residence time
-Avg .RT(s )

Aim
Minimize

Minimize

Minimize

Minimize

Minimize

Maximize

Minimize
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Figure 3 shows the Pareto curves in the criteria's domain
(given the 7-dimensional character of the problem, only
criteria Cl and Cl - see Table 1 - are represented). As
anticipated, Pareto plots generate a cloud of data and not
a well defined trade-off, because points that appear to be
dominated in one Pareto plot (or dimension) are non-
dominated in another. Thus, use of equation (1) provides
a simple effective alternative to obtain the best solutions.
Various individual weights were used to produce the six
screws represented in Figure 4. First the aim was to
select, from this pool of points, the best screw that
satisfies each criterion individually (corresponding
weight equal to 1). Then, the aim was to select the best
screw that considers all the criteria with the same
importance (all weights equal to 1/7).
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When Texit is the most important criterion, the screw
proposed has the kneading blocks and the reverse element
located quite upstream. This solution makes sense, as the
earlier the restrictive elements are located, the earlier the
viscous dissipation occurs and the bigger the opportunity
for thermal relaxation during the remaining of the screw
length.

210 215 220

Texit (°C)

225 230

Fig. 3. Pareto plots in the criteria's domain (for simplicity, only
C\ vs. C7 is represented).

One single configuration is proposed for minimizing
energy consumption (SME and STE) and average
residence time (Avg. RT). In this case, the material is
made to melt much later and then flows along alternating
restrictive and transport elements. Since SME and STE
are computed only beyond polymer melting, this
geometry involves much less screw length in melt flow
and regular spacing of the elements minimizes the
thermo-mechanical stresses induced to the polymer. In
principle, flow towards the die is also easier, as less
conveying elements will work fully filled.
The configurations proposed for decreasing maximum
local pressure (Pmax), viscous dissipation (Tmax/Tb), or
maximizing the average strain (Avg. Strain) maintain the
distribution of the restrictive elements in between
transport modules, but now the polymer melts as early as
possible. Apparently, the algorithm attempts to use the
available screw length to distribute shorter, less
restrictive, mixing blocks, which create smaller local
pressures and viscous dissipation, but maximize melt
flow/mixing.
Finally, the screw at Figure 4 bottom reflects the
necessary compromise between all criteria. Its geometry
is very similar to that maximizing mixing.

5 Experimental Results
In order to assess experimentally the above proposed
screw configurations, experiments were carried out
considering the problem of the simultaneous
minimization of the temperature at die exit (Texit) and the

Specific Mechanical Energy (SME). These two criteria
were selected since they are easy to obtain
experimentally. Figure 5-A shows the evolution of the
respective Pareto optimal front, from the randomly
defined initial population to the final 50th generation.
Each point represents a different screw profile. The
improvement obtained with the optimization procedure is
evident.
From this set of different screw configurations, six were
selected in order to be replicated experimentally. As
shown in the Figure, three were chosen from the optimal
set and the other three from the initial population. Screw
1 has the lowest SME; screw 3 represents a solution
yielding the minimal viscous dissipation; screw 2 results
from a balance between the two criteria. Each experiment
was repeated twice.
As can be seen in Figure 5-B, the global behavior of the
computational and experimental results is very similar,
the differences being within the expected values typical
for LUDOVIC. More importantly, the relative location of
the computational and experimental points is analogous,
which validates the methodology.

Fig. 4. Optimal screw configurations for various weights in
equation 1 (Q=10 kg/hr, N=200 rpm, Tb= 200 °C).

6 Conclusions
An elitist multi-objective genetic algorithm, denoted as
RPSGAe, was used to solve successfully the Twin-Screw
Configuration Problem (TSCP), consisting of locating
screw elements along the screw axis, which is an
important step towards the design of co-rotating twin-
screw screws.
The TSCP is a complex multi-objective, combinatorial,
discrete and not always continuous problem. The
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proposed optimization algorithm is sensitive to the type
and relative importance of the individual criteria.
An TSP specialized algorithm was used in a difficult
discrete and combinatorial problem on polymer extruders
design.

Fig. 5. Assessment of the optimization results: A) Pareto
frontiers of the initial and final populations; B) Computational
versus experimental results.
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Abstract

This paper presents the Pareto-Box problem for mod-
elling evolutionary multi-objective search. The problem
is to find the Pareto set of randomly selected points in the
unit hypercube. While the Pareto set itself is only com-
prised of the point 0, this problem allows for a complete
analysis of random search and demonstrates the fact that
with increasing number of objectives, the probability of
finding a dominated vector is decreasing exponentially.
Since most nowadays evolutionary multi-objective opti-
mization algorithms rely on the existence of dominated
individuals, they show poor performance on this prob-
lem. However, the fuzzification of the Pareto-dominance
is an example for an approach that does not need domi-
nated individuals, thus it is able to solve the Pareto-Box
problem even for a higher number of objectives.

1 Introduction

In multiobjective optimization, the optimization goal
is given by more than one objective to be extreme. For-
mally, given a domain as subset of R'\ there are assigned
m functions f\ (x\,.. . ,*„),.. .,/„,(*!,... ,*„). Usually,
there is not a single optimum but rather the so-called
PARETO set of non-dominated solutions.

Evolutionary Computation (EC) has been shown to
be a powerful technique for multi-objective optimiza-
tion [1][2][3] (EMO - Evolutionary Multi-Objective Op-
timization). This biologically inspired methodology of-
fers both flexibility in goal specification and good per-
formance in multimodal, nonlinear search spaces.

If we want to solve a highly complex multi-objective
optimization problem, we might select one of the best
ranked evolutionary approaches reviewed in the litera-
ture, like NSGA-II [4] or SPEA2 [5] and hopefully start
reaching good results quickly. Sadly, that will be rarely
the case when we face real-world problems with high
number of objectives. Usually, the different algorithms
are compared by measuring their performance indices in
difficult test searches [1][2][3][6]. However, most of the
benchmarks in the literature do not consider problems
with high number of objectives. Moreover, very com-

plex test functions should not be the only reference for
the design of new approaches, as they prevent us from
keeping track of the populations dynamics unambigu-
ously (as already stated by Coello in [2]). In order to
design a faster PARETO-dominance-based EC technique,
we need an "easy" multi-objective test function that al-
lows us to observe the search progress and that is yet
easily scalable to higher number of objectives as well.
The PARETO-BOX Problem, which will be presented and
studied in this paper, unifies these crucial properties. It
will help us to know more about how the PARETO-front
is searched for in EMO, and to measure the progress
of the novel Fuzzy PARETO Dominance-Driven Genetic
Algorithm (FDD-GA) approach in search problems with
higher number of objectives. In the following section,
we will introduce the PARETO-BOX problem and its anal-
ysis for random search. These results will be used in an
exemplary manner to study the dynamics of EMOs in
section 3.

2 The Pareto-Box Problem
Given are m uniformly randomly selected n-

dimensional points Pt in the Az-dimensional unit hyper-
cube (1 < / < m), with coordinates P[\ (l<j<n). Thus,
for each PLj we have 0 < Pij < 1. The problem we state
is:

PARETO-BOX Problem: What is the expectation value
for the size of the PARETO set of these points?

Here, we use the minimum version of PARETO dom-
inance, so for two /z-dimensional vectors a — (at) and
b = (bj) it is said that a dominates b (written as a -< b) if
and only if

Vi: ai < j : aj < bj (1 < ij < n) (1)

For a set M of points, its PARETO set P(M) is the subset
for which none of its elements is dominated by any ele-
ment of M. The PARETO set of the complete unit hyper-
cube contains only one element, the point 0. The random
sampling represents a random search in the unit hyper-
cube, thus we are also going to answer the question if
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random search can find the PARETO set of the unit hy-
percube.

Obviously, the PARETO set of this problem is not
hard to find, and there is also no conflict in the objec-
tives. However, the following analysis will show that it
is a hard problem for multi-objective optimization, once
the dimension n of the problem is increased. More-
over, this problems allows for a precise analysis of the
progress of algorithmic search, including the approach
to the PARETO front and the entering of concave regions
of the PARETO front.

In the following, em(n) denotes the expectation value
for the size of the PARETO set of m randomly selected
points in the ^-dimensional unit hypercube. Then, the
following theorems hold:

Theorem 1. Given are m randomly selected points in
the n-dimensional hypercube. For the expectation value
of the size of the PARETO set of these m points we have
the recursive relation:

e\(n)

em{l)

(2)

well. From the corresponding property of the harmonic
series, em(n)/m —> 0 for m —> °° can be seen in a similar
manner.

On the other hand, if m > 1 is fixed, all terms in eq. (3)
but the one for k — 1 will go to 0 for n —> °o, and the term
for k = 1 itself computes to m. So, it is easy to see that
£m(ft) —* m for n —> °°. •

We can express this result as follows: for increasing
number of sample points in the hypercube, the number
of non-dominated points will also increase, and never
"shrink" to the PARETO set of the hypercube, which only
contains the point 0. So, random search will not solve the
problem to find the PARETO set of the hypercube in any
dimension.

For increasing dimension, it will become more and
more unlikely to find any dominated point in a popu-
lation of random sampling points. In fact, the probabil-
ity falls exponentially. The PARETO set of m points will
contain nearly all m points.

We conclude this section by providing some special
results:

-\ (n) + -em(n -
m

{n,m > 2)

Theorem 2, The expectation value for the size of the
PARETO set of m > 1 randomly selected points in the
n-dimensional hypercube (n > 1) is

\k+\
em{n) =

k=\
(3)

Due to space limitations, the proofs of these theorems
can not be given here.

Theorems 1 and 2 allow for the specification of the
limiting behaviour of the expectation values for increas-
ing number of points and increasing dimensions. This is
stated in the following central theorem.

Theorem 3. For fixed dimension n > 1 and the number
of points m —• <», the expectation value em(n) —* °° the
ratio of the non-dominated points em(n)/m —» 0 and for
fixed m > 1 and dimension n—*°° it holds em(n) —* m.

Proof We see that

\ 1 1 1
em[l) = - (4)

which is the harmonic series and known to be diver-
gent. Now, eq. (3) shows that for « > 2 always em(n) >
em(n — 1) > ... > em(2), so for m —• <» em(n) —• <» as

(4,/i) : eA(n) = 4 - ^ r ' + -~r - jprr

3 EMO Analysis

The remarkable point on the PARETO-Box problem is
that it establishes the fact that the probability of finding
dominated points in higher dimensions (i.e. increasing
number of objectives) is falling exponentially with the
dimension of the problem. Having a look on most promi-
nent EMO algorithms like NSGA-II [5], SPEA2 [4] or
PESA [7], it can be seen that they all need dominated
points to perform their processing steps. For still yield-
ing dominated points in the domain of higher number
of objectives, these algorithms need an exponetially in-
creasing search effort, be it by increasing the population
size, or be it by increasing the number of generations.

Recently, the fuzzification of the PARETO dominance
relation has been proposed [8], and a corresponding
EMO has been presented. It will be shortly recalled here
(see [9] for an alternative approach to introduce fuzzy
logic in EMO). The underlying generic fuzzy ranking
scheme for a set S of multivariate data (vectors) 5/ with
real-valued components «,-/ and I < i < N is based on the
provision of a comparison function fx(y): R x R —> [0,1]
and a T-norm. Then, the following two steps are per-
formed:
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1. We compute the comparison values for any two
vectors 5/ = (aik) and aj = (ajk) by cSi{Sj) =
T(faik{cijk)\k = 1,...,N) with /V the number of
components of each vector.

2. We compute the ranking values for any element 5/
of 5 by rs(fl/) = maxfo.(«/)!./ ^ /].

Then, we consider vectors with lower numerical rank-
ing values to be on a higher ranking position. For step
2, instead of max the min operator can be used as well,
depending on the ranking to be favoured in increasing or
decreasing order.

When using the comparison function bounded divi-
sion and the algebraic (or product) norm as T-norm,
the ranking scheme fulfills several useful properties like
scale-independency in the data. The fuzzification of
PARETO dominance relation can be written then as fol-
lows: It is said that vector a dominates vector b by de-
gree iia with

Il/min(fl/,/

selection operators (see [10] for more details). As for
nearly all newer EMOs, it also adds an archive for stor-
ing non-dominated individuals over the whole run of the
algorithm.

(5)
Fig. 2. Performances of NSGA-II and FDD-GA for the

PARETO-BOX problem.

and that vector a is dominated by vector b at degree fip

with
()lip {a,b) =

11/
(6)

ForaPARETO-dominating/?, iia{a,b) = 1 and iip(b, a) =
1, but iip(aj)) < 1 and iia(b,a) < 1. Figure 1 gives a nu-
merical example for the fuzzy PARETO dominance con-
sidered here.

Fig. 1. Definition of Fuzzy-PARETO-Dominance. Here, u
dominates v by degree 0.1 • 0.2/0.1 • 0.9 = 0.2 and is
dominated by v by degree 0.1 • 0.2/0.7 • 0.2 « 0.143.

The advantage of the FPD is that the problem of miss-
ing dominated points does not matter. This will be
demonstrated by using the PARETO-BOX problem. We
also provide here a (Fuzzy-Dominance-Driven) FDD al-
gorithm, a Genetic Algorithm (GA) variant that employs
the FPD ordering of fitness values (represented as vec-
tors in case of miiltiobjective optimization) for defining

Figure 2 compares the performance of a comparable
set-up of NSGA-II and FDD-GA on the PARETO-BOX
problem for dimension n = 20. The NSGA-II imple-
mentation strictly followed [4]. For both algorithms, the
population size was 10, and 200 generations were per-
formed. Both algorithm used the same mutation proba-
bility and strength of 0.1. The selection scheme of FDD-
GA was adapted due to having a known co-domain of
the ranking values (aka fitness values). Tournament se-
lection was performed using In— r/ (with rt the ranking
values) as shared fitness values, and it was only selected
among the non-dominated individuals. If all individu-
als got the same ranking values, it was randomly se-
lected. The plot shows the size of the archive over the
number of sample points (i.e. calls of the objective func-
tions). Also given is the (numerically estimated) size
of the PARETO-set for random sampling, and the total
number of individuals (dominated and non-dominated).
As established by Theorem 3, for random search the size
of the PARETO set is close to the total number of points.
However, also NSGA-II runs close to this curve, quali-
fying this search as more or less random as well. This
is obvious from the fact that the probability of finding a
dominated individual by applying randomized operators
(mutation, crossover) is low.

For FDD-GA, we clearly see that even for dimension
20 it is able to find the single optimum of the PARETO-
Box problem, and also stays strongly below the curve
of random search all the time. To make this behaviour
more clear, we considered the p.d.f. of the ranking val-
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ues within a randomly created population (see fig. 3).
This plot was obtained by 100 times creating a set of 20
random vector with 100 components from [0,1]. Then,
among these 20 vectors the ranking values rv were com-
puted, and the intervall frequencies for — In rt were de-
rived. Thus, we can model the handling of randomly se-
lected points by the FPD ranking scheme (as it happens
when applied to the PARETO-BOX problem). The distri-
bution has a tail at the sider of smaller ranking values, so
roulette-wheel selection will acknowledge the fact that
such individuals gradually perform better (with respect
to PARETO-dominance). Such a behaviour can not be
achieved when an EMO is relying on the presence of
dominated individuals alone.

Probability Distribution of Ranking Values

Fig. 3. Distribution of ranking values in FDD-GA algorithm.

It has to be noted (but can not be detailed here) that
nevertheless NSGA-II, in this set-up, is also finding the
optimum up to a problem dimension of 8. In low dimen-
sions (2-3) the FDD-GA is also outperformed by NSGA-
II.
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Abstract
The paper proposes an implementation of the population
learning algorithm designed to solve instances of the quadratic
assignment problem. A short overview of the population-
learning algorithm and a more detailed presentation of the
proposed implementation is followed by the results of
computational experiments carried. Particular attention is given
to investigating performance characteristics and convergence of
the PLA. Experiments have focused on identification of the
probability distribution of solution time to a sub-optimal target
value.

1 Introduction
The techniques used to solve difficult optimization
problems have evolved from constructive algorithms to
local search techniques, and finally to population-based
meta-heuristics. Population based methods are
optimization techniques inspired by natural evolution
processes. Among best known population-based methods
are evolutionary algorithms [1]. Despite the fact that
evolutionary algorithms, in general, lack a strong
theoretical background, the application results were more
than encouraging. This success has led to emergence of
numerous techniques, algorithms and their clones.
Among well known population-based methods are:
scatter search technique, ant colony algorithm, particle
swarm optimization algorithm, cultural algorithm,
memetic algorithm and greedy randomized adaptive
search procedure.
Population learning algorithm (PLA) was proposed in ref.
2 as yet another population-based method, which can be
applied to support solving difficult decision-making and
optimization problems. Thus far PLA has been
successfully applied to solving a variety of difficult
scheduling problems [3], [4]. The algorithm proved also
successful in the domain of ANN training [5], [6].
In this paper an implementation of the PLA designed to
solve instances of the quadratic assignment problem
(QAP) is studied and validated. The goal of this research
was to investigate the PLA performance while dealing
with one of the most difficult, widely researched and

best-known combinatorial optimization problems. Section
2 of the paper offers a short overview of the population-
learning algorithm. Section 3 gives details of the
proposed implementation. In section 4 the results of
computational experiments carried with a view to validate
the implementation are discussed. Particular attention is
paid to investigating performance characteristics and
convergence of the PLA. Experiments have also focused
on identification of the probability distribution of solution
time to a sub-optimal target value.

2 Population-Learning Algorithm and Its
Implementation

In the PLA an individual represents a coded solution of
the considered problem. Initially, a number of
individuals, known as the initial population, is generated.
Once the initial population has been generated,
individuals enter the first learning stage. It involves
applying some, possibly basic and elementary,
improvement schemes. These can be based, for example,
on some simple local search procedures. The improved
individuals are then evaluated and better ones pass to a
subsequent stage. A strategy of selecting better or more
promising individuals must be defined and applied. In the
following stages the whole cycle is repeated. Individuals
are subject to improvement and learning, either
individually or through information exchange, and the
selected ones are again promoted to a higher stage with
the remaining ones dropped-out from the process. At the
final stage the remaining individuals are reviewed and the
best represents a solution to the problem at hand.
The quadratic assignment problem (QAP) is formulated
as follows. Let A = (aij)nxn and B = (bjj)nxn be two integer
matrices for an integer value n. Find a permutation x =
(x( 1),...,x(n)) that minimizes:

heuristicSince it was proved that QAP is NP-hard,
approaches have been widely used.
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The population learning algorithm applied to solving
QAP makes use of several learning and improvement
procedures, which, in turn, are based on four
neighbourhood structures shown in Table 1. In what
follows x denotes an individual encoded as a permutation
of natural numbers representing an assignment, and g(x)
its fitness function.
All learning and improvement procedures denoted
LEARN (i,P) operate on the population of individuals P,
and perform local search algorithms shown in Table 2. A
schema for the discussed procedure is shown below:
LEARN (i,P):
for each individual x in P do

Local__ search (i,x)
end for

Table 1 Neighbourhood structures

Perform TABU SEARCH (x) based on N2(x)
neighbourhood structure

Notation
%{x)

N2{x)

Mix)

Move
Exchange of two
consecutive elements in x
Exchange of two non-
consecutive elements in JC
Finding order of four
consecutive elements in x
by enumeration
A single step rotation of
three random elements in
X

Neighbourhood space
All possible exchanges

All possible exchanges

All fourtuples of
consecutive facilities

All possible triples

Table 2 Local search algorithms
i
1

2

3

4

5

6

Idea of the local search algorithm
Perform all moves from the neighborhood structure N\(x);
accept moves improving g(x); stop when no further
improvements of g(x) are possible
Mutate x producing x' {mutation procedure is selected
randomly from the two available ones - the two point
random exchange or the rotation of all chromosomes
between two random points}; perform all moves from the
neighborhood structure N\(x'); accept moves improving
g(x'); stop when no further improvements of g(x *) are
possible
Repeat k' times {k' is a parameter set at the fine-tuning
phase; in the reported experiment k' - 3 * initial
population size}; generate offspring y and y ' by a single
point crossover of x and a random individual x'; perform
all moves from the neighborhood structure 3Vj(y) and
3VJOO; accept moves improving g(y) and g(y')\ stop when
no further improvements of g(y) and g(y') are possible;
adjust P by replacing x and x' with the two best individuals
from {x, x\ y, y'}
Perform all moves from the neighborhood structure ^ (x ) ;
accept moves improving g(x); stop when no further
improvements of g(x) are possible
Perform all moves from the neighborhood structure %>{x)\
accept moves improving g(x); stop when no further
improvements of g(x) are possible
Perform SIMULATED ANNEALING (JC) based on Mfa)
neighbourhood structure

Simulated annealing is a metaheuristic introduced in [7].
Implementation of simulated annealing used within PLA
as the 6th local search algorithm is based on random
moves from the %(x) neighbourhood structure. If a better
individual in %(x) is found, then it is chosen. Otherwise
it is only accepted with some probability which decreases
in the course of computation.
Tabu search is yet another metaheuristic proposed by
Glover [8]. Here the robust tabu search algorithm, due to
Taillard is used [9]. For a permutation x the following
procedure is iterated. All neighbors from the
neighborhood ^(x) which are not tabu are considered
and the one which minimizes g best, is chosen. The tabu
criterion is dropped when a move is found which is better
than the best found so far (so called aspiration criterion).
Besides, an additional intensification mechanism is used
at most once in r iterations (r is a parameter). That is, a
local search around an element which improves the
solution is performed.
The procedure SELECT(P) of selecting individuals from
the population P for the consecutive stages of the PLA
algorithm is based on the following criterion. For the
population P, let var(P) stand for the variance, that is:

var(P) = xeP

P\-\
•; where m = xeP

p\
is the arithmetic mean. If, in the two consecutive stages,
the variance increases from var(P) to var(P'), then all the
individuals are promoted to the higher stage. Otherwise,
only (1- var(P')/var(P)) -100% best individuals from P'
are selected. Now, PLA has the following structure:
begin

generate randomly initial population
P := initial ̂ population
for / = 1 to 5 do

LEARN (iyP)
end for
for i = 6,7 do

SELECT (P)
LEARN (/, P)

end for
output the best individual from P

end

3 Experimental Evaluation
To evaluate the proposed implementation of the
population-learning algorithm several experiments have
been carried out. All the reported experiments are based
on the dataset of QAP instances contained in the OR-
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LIBRARY. The dataset includes 136 instances with the
respective solutions. Some of the solutions are known to
be optimal. The remaining are the best known solutions
(upper bounds) that have been obtained by numerous
research teams during recent years. To assess the
performance of the PLA all 136 instances have been
solved, four times each, with four different initial
population sizes. The results in terms of the mean relative
error calculated over for the whole population of
instances are shown in Table 3.

Table 3 Performance of the PLA with different initial
population sizes

Population size
MRE

500
0,2046%

1000
0,0991%

1500
0,0515%

2000
0,0393%

To gain better understanding of the PLA performance the
whole population of instances has been partitioned into 3
classes: small (n < 20), medium (20 < n < 50) and large (n
> 50) with, respectively, 39, 57 and 40 instances.
Estimated probabilities of finding a solution of the QAP
instance in a single PLA run with the relative error equal
to 0% are shown in Figure 1.

500 1000 1500 2000

Initial population

Figure 1 Estimated probabilities of finding a solution with the
relative error = 0% for small, medium and large instances of the

QAP problem (shown from top to down, respectively).

In order to check whether it is possible to achieve a
speed-up by implementing QAP in parallel, the study of
the probability distributions of the solution time to a sub-
optimal target value has been carried out. Throughout the
study the methodology suggested by Aiex et al. has been
used [10].
The following experiments have been performed. For
each of the QAP instance two different target values
were defined. For each instance/target combination the
following algorithm was run :

repeat
generate randomly initial population
P := initial ̂ population
for / = 1 to 5 do

LEARN {UP)
end for
for / = 6,7 do

SELECT (P)
LEARN {i,P)

end for
xbest:= the best individual from P;
Gbest:=g(x);

until Gbest <= target__value;
It was repeated m = 200 times and for each run the CPU
time needed to achieve the target value was measured.
Then for each instance/target pair the running times were
sorted in increasing order. With the /-th sorted running
time th a probability pt = {i - 0.5)/m is associated. It
indicates that 100/?,% of data are below, or equal to the
value tt. In the next step the estimation of the parameters
of the exponential distribution was performed. A
quantile-quantile plot (or, Q-Q plot), was used. A
theoretical Q-Q plot was obtained by plotting the
quantiles of the empirical distribution against the
theoretical quantiles. It allows to view whether there is a
shift in going from one distribution to another.
The cumulative distribution function for the two-
parameter exponential distribution is given by:

F(0=l-exp(-(/-//)/A)
where X is the mean of the distribution data and ju is the
shift of the distribution. For each ph a pt - quantile Qt{pi)
is defined. Since

thus

And the empirical distribution is defined by (ph Qt(pi)),
for / = 1,..., m. The calculation of the estimated values of
X and n is based on the following observation. If the
theoretical distribution is a close approximation of the
empirical distribution, then the points in the Q-Q plot
follow the line y - x. Alternatively, in a plot of data
against an exponential distribution with X = 1 and ju~ 0
the points would tend to follow the line y - Xx + ju.
Therefore, the parameters X and ju of theoretical
distribution can be estimated from the line obtained in the
Q-Q plot. Figure 2 presents example Q-Q plot with points
(-In (I-pi), U ), that is the measured times (in the ordinate)
against the quantiles of a two-parameter exponential
distribution with X = 1 and JJL - 0 (in the abscissa). To
calculate X and ju of the line y = Xx + /u which fits the Q-Q
plot best, the upper quartile and lower quartiles are used.
That is:
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_ Zu — Zl

qu-qi*

Since the number of measured times is m = 200, thus the
upper quartile corresponds to the 150th value and the
lower one to the 50th

zu ~ 'i5o> z\ ~ ho and qu - -In (l-/?)5o)> <7i ~ -In (l~Pso)
The parameter ju is calculated from the equation y = k x +
ju, that is fi- zu- k qu.

Figure 2 Q-Q plot with the variability information for example
instances - tail7a with target 500000.

Subsequently, by superimposing empirical and theoretical
distributions, it has been shown that distributing the PLA
iterations evenly among parallel processors achieves
linear speedup for total time needed to run all PLA
iterations. This observation is derived from the fact that if
time to a target solution value fits well a two-parameter
exponential distribution, then the probability of finding a
target solution in time pt with a sequential process is
equal to the probability of finding a solution at least as
good as that target value in time t with p independent
parallel processes.

4 Conclusion
Experiments have shown that the proposed
implementation of the population-learning algorithm
converges and performs well with respect to solving
instances of the quadratic assignment problem known to
be very hard from the computational point of view. It has
been also shown that distributing the PLA iterations
evenly among parallel processors achieves linear speedup
for total time needed to run all PLA iterations. Showing
that time to a target solution value, when using PLA, fits
well a two-parameter exponential distribution may help in

designing efficient population learning algorithms run on
parallel machines.
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Abstract
This paper presents an extension to our work on es-

timating the probability distribution by using a Markov
Random Field (MRF) model in an Estimation of Distri-
bution Algorithm (EDA) [1]. We propose a method that
directly samples a MRF model to generate new popula-
tion. We also present a new EDA, called the Distribution
Estimation Using MRF with direct sampling (DEUM^),
that uses this method, and iteratively refines the probabil-
ity distribution to generate better solutions. Our experi-
ments show that the direct sampling of a MRF model as
estimation of distribution provides a significant advan-
tage over other techniques on problems where a univari-
ate EDA is typically used.

1 Introduction
Estimation of Distribution Algorithms (EDAs) [2][3],

also known as Probabilistic Model Building Genetic Al-
gorithms (PMBGAs) [4], are a well-established topic in
the field of evolutionary algorithms. EDAs are motivated
by the idea of identifying important patterns or building
blocks [4] from the population of promising solutions.
A model of the probability distribution is used to pre-
serve those patterns and is explicitly sampled to gener-
ate a child population. EDAs are classified as univariate,
bivariate or multivariate according to the type of interac-
tion between allele values that is allowed in the model of
the probability distribution (see [3][4]).

An EDA regards a solution (chromosome) as a set of
random variables (the alleles), each taking a particular
value from a set of possible values. In particular, we rep-
resent a solution as x = {x\, #2, • • •»#n} where each xi
is the value taken by the i-th random variable. Univariate
EDAs do not consider dependencies between variables,
i.e., they only model building blocks of order one. In
this case, the joint probability distribution, p(x), is sim-
ply the product of the univariate marginal probabilities
of all variables in a solution x:

tal Learning (PBIL), the Univariate Marginal Distribu-
tion Algorithm (UMDA), and the Compact Genetic Al-
gorithm (cGA) all use a univariate model of the proba-
bility distribution (see [3][4][5]).

In our recent work [1], we propose a different model
of probability distribution for EDAs known as Markov
Random Field (MRF) model [6]. As in PBIL, the algo-
rithm proposed there, known as Distribution Estimation
Using MRFs (DEUM), maintains a probability vector,
however, uses a univariate MRF model to update it [1].

In this paper, we refine our use of MRF models for the
estimation of distribution. We describe an updated ver-
sion of DEUM called the Distribution Estimation Using
MRFs with direct sampling (DEUMd). DEUMd does not
maintain a probability vector. Instead, it directly sam-
ples the MRF model to generate new population. The
workflow of DEUMrf is more similar to that of UMDA
than PBIL. In UMDA, the marginal frequencies are di-
rectly sampled to generate successive populations. In
DEUMd, we replace these marginal frequencies with a
MRF model that is also built from a selected subset of
the population. This MRF model gives a maximum like-
lihood estimation of the optimal solution based on the
selected set, and it is sampled to generate a successive
population. The result of this, as we will show, is a sig-
nificant improvement in learning on well-known univari-
ate EDA problems.

The rest of the paper is constructed as follows. Sec-
tion 2 introduces our univariate MRF model, and shows
how we determine the model from a population. Sec-
tion 3 describes the operation of DEUM^ in detail, and
Section 4 gives the results of several experiments that
compare DEUM^ with other univariate EDAs. Finally,
Section 5 summarises and outlines further work.

2 A univariate MRF model of fitness

In [7], MRF theory was used to provide a formulation
of the joint probability distribution that relates solution
fitness to an energy function calculated from the values
of the solution variables. To be precise:

Here, p(xi) is the marginal probability of the i-th vari-
able having the value x\. Population Based Incremen-

p(x) =
e-U(x)/T

Eyf(y)
(2)
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from which we can derive an equation for each solution
x (see [7]):

-ln(f(x)) = U(x) (3)

Here, f(x) is the fitness of an individual. U(x) is
an energy function derived from allele values and, T is
a temperature coefficient. The summations are over all
possible solutions y. U(x) gives the full specification of
the joint probability distribution, so it can be regarded as
a probabilistic model of the fitness function. In particu-
lar, minimising U(x) is equivalent to maximising f(x).
In general, the form of the energy function will involve
interactions between the variables x\. In DEUM^, how-
ever, we use a simple form that assumes no such interac-
tions. Instead each variable provides a contribution a<x»
to the overall energy. From the above, we can derive an
equation for each solution:

a2x2
anxn (4)

We refer to this as the univariate MRF model. The
real-valued a* are called the MRF parameters, and com-
pletely determine the probability distribution.

Each solution in a given population provides an equa-
tion satisfying the model. Selecting N promising solu-
tions from a population therefore allows us to estimate
the distribution by solving the system of equations:

AaT = (5)

Here, A is the N x n-dimensional matrix of allele val-
ues in the selected set, a is the vector of MRF parameters
a = (ai , a 2 , . . . , an), and F is the iV-dimensional vec-
tor containing — ln(/(a;)) of the selected set of solutions
x. Solving this system of linear equations, we get the set
of MRF parameters a. Depending on the relationship
between N and n, the system will be under-, over-, or
precisely-specified. A standard fitting algorithm can be
used to give a maximum likelihood estimation of the ai.
The ai can then be used to provide a direct estimate of
the probability of the value of xt. For mathematical rea-
sons, we use {—1,1} as the values of Xi in our model,
rather than {0,1}. This ensures arithmetical symmetry
between the possible allele values. However, the follow-
ing analysis generalises to any choice of distinct values.

Fixing the value of a particular allele divides the set
Q of all chromosomes into two disjoint sets, which we
denote by A and B. More precisely, A = {x € ft :
Xi = 1} and B = {x e fi : xt — - 1 } . We denote the
probability that the allele value in position i is equal to
1 by p(xi = 1). Clearly, the probability that the allele
value in position i is equal to —1 is 1 —p(xi = 1). From
(2), we obtain:

p(Xi = 1) = 2^ p(x) = 2^ j (6)
x€A

Here, Z = J2y e~u^y)/T is a (very large) normalising
constant. Substituting for U{x) from (4), and noting that
Xi = 1 for all x € A, we obtain:

(7)

where K is a large constant representing the sum over
all chromosomes in A of contributions from alleles in
positions other than i.

Similarly, summing over B we obtain the probability
that the allele value in position i is equal to —1:

p(Xi = -1 ) = 1 - p(xi = 1) = ea*'T£ (8)

Here, K is the same constant as in (7), because the
chromosomes in A and B agree pairwise at allele posi-
tions other than i. Combining (7) and (8), the constants
K and Z drop out, and we get the following expression
as an estimate of the marginal probability for x% = 1:

p(xi = 1) =
1

1 +
(9)

where, 0 = 2/T.
Note that, as T —• 0, the value of /3 increases, and the

value of p(xi = 1) tends to an extreme depending on the
sign of at. If a» > 0, then p(x{ = 1) -* 0 as T -* 0.
Conversely, if a* < 0, then p(xi = 1) -> 1 as T -> 0. If
ai = 0, then pfe = 1) = 0.5 regardless of the value of
T. Therefore, the ai are indicators of whether the allele
value at the position i should be 1 or —1. This indication
becomes stronger as the temperature is cooled towards
zero.

This forms the basis for our estimation of distribution
technique, which combines the univariate MRF model
with a cooling scheme. We reduce T, i.e., increase /?,
as the population evolves, so the model becomes more
exploitative rather than explorative as the evolution pro-
gresses.

3 DEUMd: Distribution Estimation Using MRFs
with direct sampling

The five step procedure of the algorithm for DEUM^
are as follows:
1. Generate an initial population, P, of size M with uni-
form distribution.
2. Select the N fittest solutions from P, where N < M.
3. Calculate the MRF parameters a = (ai , a2,..., an)
by applying the univariate MRF model to the selected
solutions and solving the system of linear equations.
4. Generate M new solutions using the following distri-
bution:
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where, pfa = 1) = 1+^ai and pfa = -1) =
i+e-&ai' Here, ft is defined as ft = gr where, g is the
number of the current iteration and r > 0 is a cooling
rate parameter chosen by the user.
5. Replace P by the new population, and go to Step 2
until the termination criterion is satisfied.

DEUMrf uses the singular value decomposition (S VD)
[8] technique to solve the system of linear equations.
SVD proves to be the most stable technique, and can
solve (in the sense of giving a useful numerical answer)
systems of linear equations that are either under- or over-
specified [8].

As described in Section 2, ft has a direct effect on the
convergence speed of DEUM^. As the number of iter-
ations (g) grows, the marginal probability (p(xi)) grad-
ually cools down to either 0 or 1. However, depending
upon the type of problem, different cooling rate may be
required. In particular, there is a trade-off between con-
vergence speed of the algorithm and the exploration of
the search space. Therefore, the cooling rate parameter,
r, has been introduced, r gives the user explicit control
over the convergence speed of DEUM<f. Decreasing r
slows the cooling, resulting in better exploration of the
search space. However, it also slows the convergence of
the algorithm. Increasing r, on the other hand, makes
the algorithm converge faster. However, the exploration
of the search space will be reduced.

4 Experiments

In this section, we compare DEUM^ with other uni-
variate EDAs including DEUM and a GA, on two dif-
ferent problems. In order to compare best with best,
we empirically determined the parameters for DEUM^.
For the rest of the algorithms, we used parameter set-
tings from the literature or empirically determined pa-
rameters, depending on which proved best for particular
problems. The performance of each algorithm was mea-
sured in terms of the number of fitness evaluation taken
to find the optimal solution.

4.1 Onemax Problem

The Onemax problem [2] is a simple linear problem
decomposable into building blocks of order one, and
therefore is an ideal problem for univariate EDAs. It has
been shown that UMDA works very well on this problem
[2]. We compare the performance of DEUM^ against
a simple GA with uniform crossover (GA (uniform)),
UMDA, and DEUM. 100 runs of each algorithm were
executed for a series of Onemax problems with chromo-
somes ranging in size between 30 and 180. The number
of fitness evaluations taken to find the optimal solution

was recorded for each run. Uniform crossover with ex-
change probability of 0.5 was used for GA (uniform),
crossover was applied all the time and mutation was not
applied. Population size M ranged from 40 to 100 for
GA (uniform), 50 to 170 UMDA, 1.5n for DEUM and
was fixed at 40 for DEUMd. A for DEUM was from 0.5
to 0.6 and r for DEUMd was from 5 to 4.

Fig. 1. Average number of fitness evaluations for 30 to 180
sized onemax problem where the population size was
40 to 100 for GA (uniform), 50 to 170 for UMDA, 1.5n
for DEUM and 40 for DEUMd.

Truncation selection was used where selection size N
was 0.5M for GA (uniform), 0.3M for UMDA, 0.85M
for DEUM and a fixed size of 10 was used for DEUM^.
No elitism was used and new populations were generated
with complete replacement. Fig. 1 shows the average
number of fitness evaluations for each algorithm over the
range of onemax problems.

The success ratio of converging to the optimum was
93.5% for DEUM, 96% for DEUMd, 98% for UMDA
and 100% for GA (uniform). As we can see from Fig. 1,
UMDA has an expected performance, better than that of
GA (uniform) [2]. However, DEUMd performs better
than all of the other algorithms, for all problem instances
independent of their size.

4.2 Schaffer f6 function optimization

The Schaffer % function, described in [9] has been
frequently used to evaluate the performance of GAs. An
interesting feature of this function is that it has many lo-
cal optima, but a single global optimal solution. So a
hill-climbing algorithm will rapidly become trapped in
one of the local optima. A simplified version of it is pre-
sented below:



205

where -300 < x > 300.
The optimal solution is f(x) = 2 when x = 0. We

performed experiments with a 20-bit Gray code repre-
sentation of the f6 function.

Each algorithm with fixed parameter settings was run
for total of 1000 runs. For each run the number of eval-
uations taken to find the optimum was recorded. For
GA(uniform), the population size was 300, and trunca-
tion selection with a selection size N = 0.5M was used.
Crossover was applied all the time, mutation was set to
0.01 and 50% elitism was used. For PBIL, DEUM and
DEUMd, the population size was 500 and the selection
size, N was 2. The learning rate, A, for both PBIL and
DEUM was 0.1 and the cooling rate, r, for DEUMd was
1.5. Mutation shift was not applied in PBIL.

The experimental results are shown in Fig. 2, where
the Run Length Distribution (RLD) [10] is plotted for
each of the compared algorithms. We can see that, with
DEUMd, 80% of runs found the optimum within 4500
function evaluations, compared with 9000 function eval-
uations for PBIL. The success rate for finding a solution
for DEUMd was 92% compared to 94% of DEUM, how-
ever the number of function evaluations needed to find
the solution for DEUM^ was significantly less than that
of other algorithms.

100 1000

Number of fitness evaluations (log scale)

Fig. 2, Experimental results in the form of RLD showing, for
each algorithm running on 20-bit Schaffer f6 function,
the cumulative percentage of successful runs that ter-
minated within a certain number of function evalua-
tions.

5 Conclusions
In this paper, we have presented DEUMd as a novel

EDA, which uses MRF modelling of fitness to esti-
mate the probability distribution. The motivation behind
DEUMd is to use a direct sampling of a MRF model to
generate a new population in order to improve evolution.

Our experiments shows that, for univariate problems, the
use of MRF parameters instead of marginal probabili-
ties does provide a better estimation of the distribution.
This leads to better performance in terms of the number
of function evaluations required for convergence to the
global optimum. There are some penalties though. Cal-
culating the MRF parameters is computationally more
expensive than calculating marginal distributions, and
so DEUMd will be particularly appropriate for problems
where there is a positive trade-off in reducing the number
of fitness evaluations.

A promising line of research in this area is to develop
MRF models for bivariate and multivariate EDAs, where
the extra computational costs are more likely to be com-
pensated by a reduction in the number of fitness evalua-
tions required to solve higher-order problems.
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Abstract
The disinfection of water supplies for domestic consumption is
often achieved with the use of chlorine. Aqueous chlorine reacts
with many harmful micro-organisms and other aqueous
constituents when added to the water supply, which causes the
chlorine concentration to decay over time. Up to a certain
extent, this decay can be modelled using various decay models
that have been developed over the last 50+ years. Assuming an
accurate prediction of the chlorine concentration over time, a
measured deviation from the values provided by such a decay
model could be used as an indicator of harmful (intentional)
contamination. However, most current chlorine decay models
have been based on assumptions that do not allow the modelling
of another species, i.e. the species with which chlorine is
reacting, thereby limiting their use for modelling the effect of a
contaminant on chlorine. This paper investigates the use of
genetic programming as a method for developing a mixed
second-order chlorine decay model.

1 Introduction
Increasingly stringent government regulations and

consumer satisfaction requirements force water utilities to
supply "safe drinking water" to their consumers. The term
"safe drinking water" implies that the water supplied does
not carry pathogens at infectious doses, has few
disinfectant by-products and good taste. Of these, harmful
microorganisms are the main concern and in order to
reduce the risk of infection, chlorine is typically used as a
disinfectant. The general practice is to add large amounts
of chlorine at the source so that the disinfectant properties
at the extremities of the network are maintained. This
practice has recently been brought into question [1], but
remains the standard method of disinfection for water
supplies.
Recent world developments have highlighted the risk of
intentional contamination of water supply systems, which
offer a method for conveying a biological or chemical
agent to a large number of people with a minimal risk of
detection. Most of these agents will react with the chlorine
present in the water [2] but often not enough to neutralise
the threat posed by the agent. As the chlorine reacts with
the contaminant species to form disinfection by-products,

the concentration of chlorine in the water reduces.
Therefore, the introduction of a biological or chemical
agent could produce a chlorine concentration profile
different to that normally observed in the network. There
is therefore scope for an automated system, based on the
decay of chlorine, to differentiate between standard
reactions and those associated with an unwanted
contamination [2].
The disappearance, or decay, of chlorine from the water
as a result of chemical reactions with various aqueous
constituents has been modelled for over more than 50
years, with the first being a model developed by Feben
and Taras [3]. The models that have been developed since
have become increasingly complex [4, 5, 6], but all
assume that the rate of decay of chlorine is constant
throughout the reaction, whether chlorine reacts with one
species or more (e.g. parallel first order). These methods
have been fairly successful at predicting the decay of
chlorine throughout a water distribution system under
normal conditions, but often fail under re-chlorination
conditions. In order to model the effect of varying
contaminant concentrations on the decay of chlorine, a
model would have to have the following two
characteristics: (1) It should allow for the specification of
the concentration of the contaminant and (2) It should be
consistent with observed data when changing initial
concentrations. To our knowledge, no current chlorine
decay model meets these requirements.
This paper proposes the use of genetic programming to
derive a modified mixed second order chlorine decay
model from experimental data. In later sections, we will
show that this approach can discover accurate solutions
with a small computational outlay, which use only very
simple operators and terminals. This is in contrast to
previous approaches which are highly species-specific and
can require long computation times.

2 Chlorine Decay Modelling
Chlorine decay is typically modelled using some form of
the solution to the (pseudo-) first order rate law. The
models based on this solution do not account for the decay
of the species with which chlorine is reacting and can
therefore not be used to model the effect of a contaminant
on chlorine.
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Chlorine decay based on a mixed reaction with one other
species has the following chemical rate law,

(1)dt dt

where [C7] is the molar concentration of chlorine, [X]
defines the concentration of the second species, t is time
and k is the reaction rate constant. Since k is constant, this
equation represents the rate of one particular reaction and
this is not an adequate description of the decay of
chlorine. Chlorine reacts concurrently with many species
at many different rates. X should thus represent the molar
number of molecular sites with which chlorine reacts.
Some reactions will be quenched sooner than others,
depending on the reaction rate and concentration of the
sites. This implies a time-dependent average decay rate
that is largest at t=0 and smallest when t—»<». In order to
accommodate for these particulars, the mixed second
order rate law is rewritten as,

(2)
dt dt

where X is an unknown function of time and

= k(t)t
(3)

where k(t) is an unknown function of time. The solution to
this equation is given by,

[CI]=[CII-[P] and [x]=[x]0-[/>] (4)

and

r i {cxV{k(t)t{[Clj-[xl))-llCli[xl
cxp(k(t)t{[al-[xl)tal-[xl (5)

where [P] represents the molar number of reactive sites
that have been quenched. The absolute behaviour of the
function k(t) is unknown, but it has to adhere to the
following restrictions, due to the nature of the problem it
represents:

k(0) ± 0. The rate of decay of chlorine at t=0 has a
non-zero and defined value. Each reaction that
chlorine will undergo has a certain rate of reaction
(otherwise it would not react). Therefore, the overall
reaction rate is defined and non-zero.

dk/dt < 0. The reaction rate cannot increase with time.
Reactions are being quenched and the overall rate of
chlorine consumption will decrease over time. This
behaviour has been shown in previous studies [7],
particularly under re-chlorination conditions.

fc(oo) ^ o. The final rate of the reaction depends on the
rate of the reaction of the last reactive site present,
which will always be defined and non-zero.

In this paper we propose to use genetic programming to
discover a function for k that fits the observed data. The
function will be based on the initial concentrations of
chlorine and the molar number of reactive sites (X), as
well as time.

3 Genetic Programming
The genetic programming approach used in this paper is
relatively standard. The solutions are evolved as trees
which contain a number of operators and terminals. The
evolution takes place by using genetic-programming
specific crossover and mutation. Each of these are
outlined below.

3.1 Genetic Parameters

3.1.1 Genetic Programming
The genetic programming uses a generational approach
as its basis, with mutation rate and crossover rates of 0.9.
The mutation rate is high because the terminals and
operators are enumerated as integer variables. When a
binary encoding is used, crossover can occur at any point
through a variable, whereas this is not possible with
integers. Therefore crossover on a binary string also
implements some mutation. To compensate for the lack
of this effect, the integer representation uses a large
mutation rate.
To initialise the algorithm, a tree is "grown". This means
that elements are selected at random from both the
operator and terminal sets until such time as the
initialisation limit is reached whereupon terminals are
used to fill the remainder of the tree. The alternative
"full" initialisation selects only from the operator list and
results in substantially larger trees and therefore is not
explored here.

3.1.2 Crossover
The standard genetic algorithm single-point crossover
will not work with GP. Therefore a GP-specific operator
is used here which selects a point on each tree and then
swaps the sub-trees of each individual. This therefore
ensures that the resulting tree is syntactically correct.
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3.1.3 Mutation
The standard mutation operator used in genetic
algorithms can be used in GP, but here a further GP-
specific operator is used. A site is randomly selected on
the tree and a new sub-tree grown using the same
procedure as used to initialise the tree (in this case
"grow").

3.1.4 Terminal Set
The terminal set of the genetic programming consists of
three variables and ten constants as follows:

Table 1. Genetic Programming Terminal Set

InitCl
InitX
T
1-10

Initial molar chlorine concentration
Initial molar number of reactive sites
Time parameter
Constant integers from 1-10

It is anticipated that, if required, the genetic programming
approach will derive its own set of floating point variables
through the manipulation of these constants and the
operators described below.

3.1.5 Operator Set
The operator set consists simply of multiplication,
addition, subtraction and a protected division where
division by zero is prevented. Exponentials and other
operators are not included, as these can cause problems
for genetic programming in nested expressions. Also, this
approach ensures that simple expressions for the curves
can be derived from this modest set of operators.

3.1.6 Objective Function
The objective function of the genetic programming is
computed as the Root Mean Squared Error between the
derived curves and the actual data. In addition to this, to
implement the constraints 1 & 3 described in Section 2,
the approach is heavily penalised if the k is less than 1*10"
5 at timepoint 0, and a very large timepoint (l*1031).
These constraints approximate those real-world
constraints as it is not computationally feasible to evaluate
an expression at an infinite timepoint. The final constraint
is on the size of the tree where the solution is penalised if
a tree has a depth larger than that stipulated as an
experimental parameter.

4 Results
The data used in this study have been taken from [8]. In
this study, chlorine was added at three different initial
concentrations (1,3 and 5 mg/L) to an aqueous bacterial
suspension (E. coli) with a concentration of approximately

107 cells/ml. The chlorine concentration was measured at
various time intervals, shown in Figure 1. It should be
noted that the original chlorine concentrations have been
converted to mMol/L, so they can be used in this study.
The molecular weight used for chlorine was 70.9
mg/mMol. The concentration of reactive sites (initX) was
taken to be 0.034 mMol/L, which is equal to the
difference between the initial chlorine concentration at 5
mg/L and the chlorine concentration after 30 minutes.
Genetic programming was used to determine a function
for k, as described in previous sections. The GP was run a
total of 12 times, with differing random seeds, initial
depths and penalties for exceeding a depth 4, 6, 8, 10 and
12. Each run was conducted with a population size of 30
and for 5000 generations. In general, the results were
very good, often with small RMSE values, but
occasionally at the expense of the parsimony of the
solution. In fact, we found there was a small effect with
respect to the initial size of the trees, with smaller trees
yielding more effective results after optimisation. Table 2
shows this effect.

Table 2. Average RMSE for 12 runs

Initial depth
3 (5 runs) j
5 (4 runs)
7 (3 runs)

Average RMSE
0.001259
0.001402
0.001419

The best discovered result is shown in Figure 1. The
experimental parameters and the discovered equation for
the k-value over time are given in Table 3. As can be
seen the solution is both succinct and accurate with
respect to the data. In addition to this, a plot of k reveals
that the second constraint (Section 2) that was not
explicitly coded in the algorithm, was not violated by the
discovered solution. This therefore shows that genetic
programming has evolved a solution which fits all the
criteria for this modelling task.

Table 3. Experimental parameters used for determination of
best-fitting (lowest RMSE) k-function.

Random seed
Population
Initial depth
Penalise depth
Iterations
Time (sec)
RMSE
k(t)

2135
30
3
10
5000
74
8.74E-04
2/((InitCl+InitCl)*(l+InitX+InitX+T))+
2+InitCl/2
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Fig. 1. Chlorine concentration versus time. The points are the
measured chlorine concentrations taken from ref. 8. The GP-
fitted curves are represented by the lines.

5 Conclusions
Previous attempts at modelling chlorine decay in water
distribution networks has mostly been based on (pseudo-)
first order reaction kinetics and has been limited to a
description of one species only. Chlorine reacts with a
large number of species in real-world water systems, each
with different reaction rates. The average decay rate is
likely to vary with time, whereas existing models use
constant values to predict the decay of chlorine. In this
paper genetic programming has been used to create an
equation for k based on very few parameters, namely the
initial dose of chlorine, the molar number of reactive sites
and the time of the reaction. It has been shown that this
approach is capable of closely matching experimental
results. In addition to this, it has been shown that the
approach discovers these solutions whilst subjected to
constraints that ensure the results agree with the chemical
situation the model represents. Furthermore, the genetic
programming model has found good fit whilst only using
very simple mathematical operators and obeyed a further
constraint that was not made explicit to the algorithm.
This ensures that when the approach is applied to large
water distribution systems simulated over a large number
of hours that the computation of chlorine concentrations
can be completed efficiently. This accurate modelling of
the decay of chlorine is anticipated to be the first step
towards an early-warning contaminant detection system
for water distribution systems.
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Abstract
This paper presents a new approach to the evolution

of blackjack strategies, that of cultural learning. Popu-
lations of neural network agents are evolved using a ge-
netic algorithm and at each generation the best perform-
ing agents are selected as teachers. Cultural learning is
implemented through a hidden layer in each teacher's
neural network that is used to produce utterances which
are imitated by its pupils during many games of black-
jack. Results show that the cultural learning approach
outperforms previous work and equals the best known
non-card counting human approaches.

1 Introduction
The game of blackjack has been the subject of much

research, particularly in the reinforcement learning do-
main. However, given the nature of the game, perfect
strategies do not exist. Thus, traditional methods of neu-
ral network evolution involving gradient descent tech-
niques have no model to emulate. This paper introduces
an alternative approach for the evolution of high-quality
blackjack-playing agents. We evolve a population of
neural network agents which play games of blackjack
against an automated dealer. Cultural learning is intro-
duced by taking a percentage of the population and al-
lowing it to teach the following generation through spe-
cialised verbal output nodes. Two experiments are per-
formed, one where agents may see the dealer's up-card
and one where they cannot. We compare the perfor-
mance of the evolved strategies with bench-marks ob-
tained from a blackjack simulator.

The remainder of this paper is arranged as follows:
Section 2 discusses related work. Section 3 presents
the results of bench-marking several popular blackjack
strategies. Section 4 introduces the artificial life simula-
tor employed in the experiments. Section 5 presents the
experimental results and Section 6 concludes and sug-
gests future work.

2 Related Work
2.1 Cultural Learning

Culture can be succinctly described as a process of in-
formation transfer within a population that occurs with-
out the use of genetic material. Culture can take many

forms such as language, signals or artifactual materials.
Such information exchange occurs during the lifetime of
individuals in a population and can greatly enhance the
behaviour of such species.

Artificial cultural evolution, or synthetic ethology[l],
has been extensively researched. Approaches in-
clude fixed lexicons[2, 3], indexed memory[4], cul-
tural artifacts[5, 6] and signal-situation tables[7]. The
approach chosen in this work is the teacher/pupil
scenario[8, 9, 3, 10] where a number of highly fit agents
are selected from the population to act as teachers for
the next generation of agents. These pupils learn from
teachers by observing the teacher's verbal output and at-
tempting to mimic it using their own verbal apparatus.
As a result of these interactions, a lexicon of symbols
evolves to describe situations within the population's en-
vironment.

2.2 The Game of Blackjack

Blackjack or twenty-one begins with the dealer deal-
ing two cards face-up to each player and two to
his/herself, with one card visible (the up-card) and the
other face down. Cards are valued by their face value
(10 for all picture cards) except for the ace which can be
counted either as 11 or 1. The object of the game is to
obtain a higher score (the sum of all card values) than
that of the dealer's without exceeding 21. Each player
can draw additional cards until they either stand or ex-
ceed 21 and go bust. Once all players have obtained their
cards, the dealer turns over the hidden card and draws or
stands as appropriate. Should the dealer's hand bust, all
players win.

Several attempts have been made to develop high per-
forming blackjack strategies with populations of neural
networks using reinforcement learning techniques[ll,
12]. The nature of the game means that there is no per-
fect set of neural network outputs from which to perform
back-propagation. It is for this reason that we wish to
show that the introduction of cultural learning can gener-
ate superior strategies than reinforcement learning meth-
ods and provides the learning framework required with-
out knowledge of the perfect strategy.
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3 Bench-marking
In order to assess the performance of any evolved

strategy, a set of bench-marks were obtained for com-
parison purposes using a developed blackjack simulator.

Several strategies were considered including Dealer's
(Stand on 17 or more, Draw on less), Random, Always
stand, Hoyle's strategy and the Uribe Evolved Strategy.

The Hoyle strategy[13] is based on the dealer's up
card and the possession of an ace. It can be summarised
as:

if (dealer card < 6)
if (ace is held)

stand on 15
else

stand on 13
else

stand on 17

The Uribe Evolved strategy is taken from the work of
Uribe and Sanchez[12] and can be summarised as:

if (score> 9) OR
[(score> 13)and(score< 19)

AND (an ACE is held)]
stand

else
hit with 50% of probability

In order to produce statistically meaningful results, we
performed 1000 runs of 1000 games for each strategy.
The results presented in the table below are average wins
for each strategy.

Strategy
Hoyle
Dealer

Uribe et al
Always Stand

Random

% Wins
43.70
41.55
38.76
37.91
30.41

Standard Deviation
1.587
1.576
1.505
1.531
1.511

We can see from these results that most strategies are
quite poor against the dealer and that Hoyle's strategy
performs best. This is most likely due to its inclusion of
ace and dealer up-card information.

4 Simulator
Each agent in the population contains a neural net-

work that allows it to play blackjack. Once cards are
dealt to the agents the value of the hand is shown to the
network using thermometer encoding[l 1]. Given the im-
portance of the Ace, an additional input unit was created
to signal the presence of an Ace to the network.

The agent's decision is determined by rounding the
output of the single output node, where draw and stand
are represented by 0 and 1 respectively. The number
of hidden layers and nodes therein is unrestricted and
is determined by the evolutionary process. The agents
are evolved using a previously developed artificial life
simulator[14, 15].

4.1 Simulating Cultural Evolution

In order to perform experiments related to cultural
evolution, it was necessary to adapt the existing simu-
lator architecture to allow agents to communicate with
one another. This was implemented using an extended
version of the approach adopted by Hutchins and Hazle-
hurst, where the last hidden layer of each agent's neural
network functions as a verbal input/output layer[10].

At the end of each generation, a percentage of the pop-
ulation's fittest networks are selected and are allowed to
become teachers for the next generation. Each pupil ob-
serves the teacher's verbal output as it interacts with its
environment. A teaching cycle occurs when the pupil at-
tempts to emulate its teacher's verbal output using back-
propagation. Once the number of required teaching cy-
cles is completed, the teachers die and new teachers are
selected from the new generation.

5 Experiments

Each experiment allows 100 agents to evolve over 500
generations. At each generation, agents play 100 games
against a dealer strategy and an agent's fitness is de-
termined by the percentage of wins obtained scaled to
[0.0,1.0]. Agents are linearly ranked and selected for
reproduction using roulette wheel selection. Crossover
and mutation are applied with probabilities 0.6 and 0.02
respectively. When cultural learning is applied, 10% of
each generation are selected to act as teachers for the
next. Teaching cycles are set at 2 and a noise value in
the range [-0.5,0.5] is added to the each interaction with
probability 0.01. Each of these settings were empirically
determined to be suitable.

5.1 Experiment 1: Basic Experiment

The first experiment allowed agents to play hands of
blackjack based on the contents of their cards. Cards
were presented to each agent's neural network input
layer. In addition, agents were also presented with a flag
indicating the presence of an Ace card, reflecting its rel-
ative importance in the game.

The results for this experiment are presented in Fig-
ure 1. In addition to the average fitness of the popula-
tion, both Dealer and Hoyle strategy levels are shown
for comparison purposes.
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The results illustrated in Figure 1 show that the pop-
ulations are capable of attaining fitness levels above that
of the Dealer strategy. However, statistical tests show
(t-test with p value < 0.001) that cultural learning does
not provide a significant improvement. This may be ex-
plained by the lack of information available and moti-
vated our next experiment which takes account of dealer
up-card information.
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Fig. 1. Experiment I

5.2 Experiment 2: Dealer Information

Most advanced strategies, including Hoyle's, take the
dealer's up-card into account when determining a course
of action. Therefore, we present the dealer's up-card to
each agent by adding an additional 10 input nodes, one
for each of the dealer's possible up-cards (2-9, 10 for
all picture cards and the ten, Ace). All other variables
remain equal as used in Experiment 2.

200 ?50 300 350 100 150 500

Fig. 2. Experiment 2

The graph in figure 2 shows that the addition of dealer

information dramatically improves the performance of
both populations but particularly that of the population
employing cultural learning which achieved highs of
nearly 0.45 (45% wins) versus 0.44 for population learn-
ing. There is strong evidence (p value < 0.0001, 95%
confidence) that cultural learning is indeed improving
the population's fitness. The following resulting strategy
was extracted:

if (an Ace is held)

{
if (dealer has a 6 or higher)

stand on 16
else

stand on 17

else

if (dealer has a 7 or higher)
stand on 17

else
stand on 13

It is clear from the strategy that the evolved agents are
employing the dealer information to the full extent and
have identified a threshold value for the dealer up-card.
The strategy is tested in the next experiment to ascertain
its performance with respect to the bench-marked strate-
gies.

5.2.1 Strategy Testing: As a result of the in-
herent random nature of blackjack, it is necessary to test
the strategies over a number of runs to observe whether
they are successful. The final evolved strategy from Ex-
periment 2 was taken and hard-coded into the blackjack
simulator and 1000 runs of 1000 games were played.
The averaged results are displayed in the table below:

Strategy
Hoyle

Evolved
Dealer

Uribe et al
Always Stand

Random

% Wins
43.69
43.67
41.52
38.43
38.00
30.67

Standard Deviation
1.573
1.582
1.571
1.495
1.529
1.507

There is strong evidence (p value <0.001,95% confi-
dence) to support the claim that the evolved strategy and
Hoyle's strategy are equivalent in terms of performance,
suggesting that the population has evolved an optimum
strategy given the information available. It is likely that
in order to out-perform Hoyle's strategy it is necessary to
keep track of cards that have been played during a game,
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something which would only become truly useful if the
number of players was increased.

6 Conclusion
We have shown that the addition of cultural learning

to a population of neural network agents evolved using
a genetic algorithm can produce robust blackjack strate-
gies that out-perform those evolved thus far using rein-
forcement learning. As in previous work, the addition
of dealer information to the population significantly im-
proves performance. Through the bench-marking pro-
cess we have shown that the evolved strategy is equiv-
alent to the best human strategy which does not incor-
porate card-counting. Future work will introduce more
players per game with the expectation of evolving agents
capable of card counting strategies such as those devel-
oped by human experts.
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Abstract

One of the challenging problems in circuit imple-
mentations is finding the best state assignment for im-
plementing a synchronous sequential circuit which are
also represented as Finite State Machines. This prob-
lem, commonly known as State Assignment Problem
(S.A.P.), has been studied extensively because of its im-
portance in reducing the cost of implementation of cir-
cuits. The previous work on this problem assumes the
number of coding bits as constant, making it a single ob-
jective problem with the only objective being to reduce
the cumulative cost of transition between the connected
states.

In this work, we add another dimension to this op-
timization problem by introducing a second objective
of minimizing the number of bits used for assignment.
This is desirable to reduce the complexity and the cost
of a circuit. The two objectives are conflicting and thus
the optimal solution requires a tradeoff. We present
an evoluationary algorithms based approach to solve
this multi-dimensional optimization problem. We com-
pare the results from two algorithms, and find that an
NSGA-II based approach, with some modifications to
constraint handling, gives better results and running time
than NSGA. We also gain some insights about the shape
of the efficient frontier.

1 Introduction

A significant part of the digital circuits is constituted
by sequential synchronous circuits behaviour of which
can be presented by a finite state machine (FSM). Thus it
is not strange that the FSM synthesis models are contin-
ually developed. One of the most crucial steps in FSM
synthesis is the encoding of FSM states referred to as
the state assignment problem (SAP). It consists of the
unique assignment of bit strings to the states of sequen-
tial circuit (SC). This step of FSM synthesis is important
because it affects the quality of realised SC (cost/area,
maximum frequency, power consumption).

Attempts at solving the state assignment problem

spreads over five decades. Amongst the early attempts
are those due to Armstrong [1], Dolotta and McCluskey
[2] and the decomposition technique due to Hartmanis
and Stearns [3, 4]. Effective algorithms for the state en-
coding were developed, e.g. NOVA [5] for two-level
implementation targeted to Programmable Logic Arrays
(PLAs) or MUSTANG [6] and JEDI [7] for multilevel
FSM implementation. However, state assignments gen-
erated by these methods, for FSMs implemented in mod-
ern programmable devices allowing efficient implemen-
tations of digital systems, are far from optimum [8]. Tak-
ing above into account, and considering other conditions
(cf. [9, 10]) we decided to try to cope with SAP using
evolutionary methods.

2 Multi-Objective Problem Formulation

We have a directed graph representing the FSM. Each
vertex in the graph represents a state. Suppose there are
m states. Each of these states is to be assigned a binary
string of k bits. We have to find the assignment to these
states that optimizes that objective functions.

2.1 Objective Functions

We have two conflicting objectives 1 that we want to
minimize: (I) k- Minimizing the number of bits used
for state representation reduces the implementation costs
and the size of the circuit. (2) Transition Costs- This
represents the cumulative transition cost between states
in the graph. Transition Cost for any pair of states i, j ,
such that j is connected to i is given by the Hamming
distance between the string representation of states i and
j , i.e. the number of bit flips required to move from i
to j . Thus it is desirable to do the assignment of states
in such a way that neighbouring states in the graph are
assigned more "similar" binary strings than far-off states.

2.2 Constraints

Two constraints apply on the number of bits k used for
assignment. The first constraint specifies a lower limit on
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4 Comparison of EMO Approaches and Results

We have experimented with two main EMO ap-
proaches, NSGA and NSGA-II, as discussed below.
Note that all the simulations have been run on a personal
PC with 800 MHz P-II1 processor and 128 MB memory.

Fig. 1. Example of Tradeoff: The first figure shows the only
possible two bit assignment (k=2) for the state, while
the second figure shows one of the best possible three
bit (k=3) assignments. We observe that number of flips
in first image is 8, while only 6 in the second image.
This example illustrates the significance of considering
different k's.

the number of bits, that must be used to represent a set
of m distinct states.

k > \log2(m)] (1)

The second constraint is an upper limit on the number
of bits, which is same as the number of states. Any num-
ber of bits beyond this limit is redundant and can only
increase the cost of transition.

k < rn (2)

There is one more constraint for the solutions to be
valid: Each state should be given a distinct assignment.
This is obviously required for unique identification of
each state.

3 Methods

The first thing to do in Evolutionary Multiobjective
Optimization(EMO) approach is to determine a feasible
and solvable pair of representation and operators. The
crossover and mutation operators are designed according
to the chosen representation (genotype coding). We use
a matrix representation for one solution, that is a set of
assignments covering all the states of the given machine.
In this representation, a certain genotype is represented
by a 2-D matrix. The number of rows is equal to the
number of states in the machine. The number of colums
is equal to the upper limit on k. Our representation en-
sures that the constraint k < m is followed. We need
to check only for the remaining two constraints, that is
the lowerbound on k, and that no two states get the same
assignment.We do a two-point column-wise crossover.
We use simple bitwise mutation with the mutation prob-
ability currently set at 0.002 which represents the small
chance that each bit of the matrix can get changed.

4.1 NSGA

NSGA is a non-elitist evolutionary algorithms [12].
The basic principle of NSGA, like most other EMO al-
gorithms is to stress on selection of dominating points,
and avoid too much of crowding in any front. The in-
dividuals within a population are divided into diffrent
fronts(ranks) and an individual in a lower front (in this
minimization problem) will be given preference over an
individual in a relatively higher front.

4.1.1 Test Machine: For testing the perfor-
mance of the algorithm we have designed finite state ma-
chine M with 23 states. The first state of the machine is
connected, both-ways, to the remaining 22 states. There
are no connections within the 22 states. It is easy to ob-
serve that minimum transition cost will occur if the re-
maining 22 states are assigned strings which are differ-
ent at only one position from the assignment of the first
state. We have summarized the analytically computed
minimum transition cost for each value of k in Table 1.
Note that all the pairs mentioned in this table are pareto-
optimal, except (23,44), as it is dominated by (22,44).

4.1.2 Results: The algorithm gives 7 near
pareto-optimal points, of which only 5 are actually
pareto-optimal. Two points (5,92) and (6,82) are not
pareto-optimal, while the points (7,76), (8,72), (9,70),
(10,68) and (11,66) are pareto optimal, as seen in Table
1. The initial population is quite far away from the effi-
cient front which is obtained at the end of the simulations
(see Figure 2). The algorithm is able to move towards the
efficient frontier, and obtain five pareto-optimal points.
The simulations were run for 75,000 generations, al-
though the results did not change much after 25,000 gen-
erations. This indicated that the algorithm will not be
able to detect the remaining 13 pareto-optimal points.
All results are obtained for a population size of 500.

4.2 NSGA-II

NSGA-II [13] is an extension of NSGA. NSGA-II en-
sures that it has the following three properties:

1. It uses an elitist approach, i.e. the best individuals
are preserved in each generation

2. It uses an explicit diversity preserving mechanism
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k
Min Cost

5
92

6
78

7
76

8
72

9
70

10
68

11
66

12
64

13
62

14
60

15
58

16
56

17
54

18
52

19
50

20
48

21
46

22
44

23
44

Table 1. The minimum cost of transitions, calculated analytically, for the test machine M. Note that all the pairs mentioned in this
table are pareto-optimal, except (23,44), as it is dominated by (22,44).

4 6 8 10 12 14 16 18 20 22 24

Fig. 2. Figure shows the distribution of the initial populations.
The curves represent the best three fronts of individuals
found by the algorithm.

3. It emphasizes the non-dominated solutions.

In this algorithm, the offspring population Qt is first
created from the pareant population Pt and the usual
reproduction, crossover and mutation operators[14].
Thereafter, the two populations are combined together
to form Rt of size 2N. Then, a non-dominated sorting is
used to classify the entire population Rt. Once the non-
dominated sorting is over, the new population is filled
by solutions of different non-dominated fronts, one at
a time. The filling starts with the best non-dominated
front and continues with solution of the second non-
dominated front, followed by the third non-dominated
front, and so on. Since the overall population size of Rt

is 2N, not all fronts may be accomodated in N slots avail-
able in the new population. All fronts which could not
be accomodated are deleted. While the last front is under
consideration, there may arise a situation when this front
has more solutions than the number of free slots in the
new population. In such situations the crowding mea-
sure is used, and the individuals with maximum crowd-
ing distance are chosen.

Here, we first used a penalty-function approach for
handling constraints. A penalty equalling the number
of clashes in state assignments was given to every indi-
vidual. Feasible individuals, with no clash, were given

a penalty zero. The domination criteria was adjusted
to this change. If two given individuals are of differ-
ent penalty value, the one with lower penalty is said to
dominate the one with higher penalty value. In case of
indiviuals with equal (or zero) penalty, the old domina-
tion criteria based on objective function value was used.

4.2.1 Results: The results are showed in Fig-
ure 3. We have obtained 16 points with rankl, and all of
them actually correspond to pareto optimal points. The
only two points that the method was unable to reach were
(21,46) and (22,44), located at the far end of the solution
space.

5 Discussions and Conclusion

In this study, we have attempted to solve the state as-
signment problem (S.A.P.), keeping the number of bits as
variable. Thus, we have two objectives to be optimized:
(1). Reducing the cost of transition between states
and (2). Reducing the number of bits used. We have
approached this two-dimensional optimization problem
through evolutionary algorithms approach.

We observe that NSGA-II gave significantly better re-
sults than NSGA in lesser number of iterations, which
can be attributed to the elitist approach. The inher-
ent discreteness and discontinuity of the solution space
increases the chance of losing a good solution during
cross-over operators, and thus we find that an explicit
mechanism of favoring the good solutions improves the
qaulity of results. This is an evidence towards the dis-
creteness of the efficient frontier of solutions.
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Abstract

In terms of goal orientedness, selection is the driv-
ing force of Genetic Algorithms (GAs). In contrast to
crossover and mutation, selection is completely generic,
i.e. independent of the actually employed problem and
its representation. GA-selection is usually implemented
as selection for reproduction (parent selection). In this
paper we propose a second selection step after repro-
duction which is also absolutely problem independent.
This self-adaptive selection mechanism, which will be
referred to as offspring selection, is closely related to
the general selection model of population genetics. As
the problem- and representation-specific implementation
of reproduction in GAs (crossover) is often critical in
terms of preservation of essential genetic information,
offspring selection has proven to be very suited for im-
proving the global solution quality and robustness con-
cerning parameter settings and operators of GAs in var-
ious fields of applications. The experimental part of the
paper discusses the potential of the new selection model
exemplarily on the basis of standardized real-valued test
functions in high dimensions.

1 Introduction

By considering crossover as their main reproduction
operator, Genetic Algorithms (GAs) take an approach
which is fundamentally different to neighborhood-based
search techniques. The most essential difference is given
by the fact that recombination is able to combine prop-
erties of individuals from different regions of the search
space. Therefore, provided that the problem represen-
tation and the operators are adequate, the advantage of
applying GAs to hard optimization problems lies in their
ability to search wider regions of the solution space than
heuristic methods based upon neighborhood search do.
Nevertheless, also GAs are frequently faced with a prob-
lem which, at least in its impact, is quite similar to the
problem of stagnating in a local optimum. This draw-
back, called premature convergence in the terminology
of GAs, occurs when the population of a GA reaches

such a suboptimal state that the genetic operators can no
longer produce offspring which outperform their parents
(e.g. [1]).

The main aim of this paper is to find, analyze and im-
prove new generic theoretical concepts for avoiding or at
least retarding premature convergence in a generic way:

The basic approaches for retarding premature conver-
gence discussed in GA literature aim to maintain genetic
diversity. The most common techniques for this purpose
are based upon preselection [2], crowding [3], or fitness-
sharing [4]. The main idea of these techniques is to
maintain genetic diversity by the preferred replacement
of similar individuals [2], [3] or by the fitness-sharing
of individuals which are located in densely-populated
regions [4]. While methods based upon [3] or [4] re-
quire some kind of neighborhood measure depending on
the problem representation, [4] is additionally quite re-
stricted to proportional selection. Moreover, these tech-
niques have the common goal to maintain genetic diver-
sity which is very important in natural evolution where
a rich gene pool is the guarantor in terms of adaptive-
ness w.r.t. changing environmental conditions. In case
of artificial genetic search as being performed in Genetic
Algorithm the optimization goal does not change dur-
ing the run of a GA and the fixing of alleles of a global
optimal solution is desirable in the same manner as the
erasement of alleles which are definitely not part of of a
good solution, i.e. we claim that pure diversity mainte-
nance mechanisms as suggested in [2], [3], or [4] do not
support goal-oriented genetic search w.r.t the locating of
global optimal solutions.

A very essential question about the general perfor-
mance of a GA is, whether or not good parents are able
to produce children of comparable or even better fitness
(the building block hypothesis implicitly relies on this).
In natural evolution, this is almost always true. For Ge-
netic Algorithms this property is not so easy to guaran-
tee. The disillusioning fact is that the user has to take
care of an appropriate coding in order to make this fun-
damental property hold.
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In order to overcome this strong requirement we have
developed an advanced selection mechanism which is
based on the idea to consider not only the fitness of the
parents, in order to produce a child for the ongoing evo-
lutionary process. Additionally, the fitness value of the
evenly produced offspring is compared with the fitness
values of its own parents in order to decide whether or
not the evenly produced offspring is accepted as a mem-
ber of the next generation. The offspring is accepted as
a candidate for the further evolutionary process if and
only if the reproduction operator was able to produce
an offspring that could outperform the fitness of its own
parents. This strategy guarantees that evolution is pre-
sumed mainly with crossover results that were able to
mix the properties of their parents in an advantageous
way. Via these means we are already in a position to
attack one of the reasons for premature convergence,
namely the loss of relevant genetic information due to
improper crossover operators. Furthermore, this strat-
egy has proven to act as a precise mechanism for self-
adaptive selection pressure steering.

2 Offspring Selection: A New Model for Self-
Adaptive Selection Pressure Steering

In principle, the new selection strategy acts in the fol-
lowing way:

The first selection step chooses the parents for
crossover either randomly or in any well-known way of
Genetic Algorithms like roulette-wheel, linear-rank, or
some kind of tournament selection strategy. After hav-
ing created a new child from the selected parents by
crossover and mutation, we introduce a further selection
mechanism that considers the success of the apparently
applied reproduction. In order to assure that genetic
search proceeds mainly with successful offspring, it has
to be attempted that the used crossover and mutation op-
erators are able to create a sufficient number of children
that surpass their parents' fitness. Therefore, a new pa-
rameter, called success ratio (SuccRatio G [0,1]), is
introduced. The success ratio gives the quotient of the
next population members that have to be generated by
successful mating in relation to the total population size.
We define that a child is successful if its fitness is bet-
ter than the fitness of its parents, whereby the meaning
of 'better' has to be explained in more detail: is a child
better than its parents, if it surpasses the fitness of the
weaker, the better, or is it in fact some kind of mean
value of both?

For this problem, we claim that an offspring only has
to surpass the fitness value of the worse parent in or-
der to be considered as 'successful' at the beginning,
while as evolution proceeds the child has to be better
than a fitness value continuously increasing between the

fitness of the weaker and the better parent. As in the
case of Simulated Annealing, this strategy gives a wider
search at the beginning, whereas at the end of the search
process this operator acts in a more and more directed
way. Having filled up the claimed ratio (SuccRatio) of
the next generation with successful individuals accord-
ing to the above meaning, the rest of the next gener-
ation ((1 - SuccRatio) • \POP\) is simply filled up
with individuals randomly chosen from the pool of in-
dividuals that were also created by crossover but did not
reach the success criterion. The actual selection pressure
ActSelPress at the end of a single generation is defined
by the quotient of individuals that had to be considered
until the success ratio was reached, and the number of
individuals in the population in the following way:

ActSelPress =
\POPi+l\-h\POOL\

\POP\

If it is more difficult to achieve improvements at a cer-
tain stage of genetic search, more selection pressure is
needed and this GA variant is able to handle this in a
self adaptive way by creating a greater number of off-
spring as candidates for the next generation. If, on the
other hand, evolutionary progress is easier to achieve,
this algorithm is able to operate under less selection pres-
sure. The amount of required selection pressure also de-
pends on the actually employed operators: If a certain
crossover operator is appropriate for a concrete prob-
lem representation, it is easier to generate new offspring
which are able to outperform their own parents and less
selection pressure is needed. What is really rather re-
markable is the fact that also provably worse operators
[5] are able to achieve high-quality results as long as at
least 'sometimes' advantageous crossover result are pro-
duced - the unprofitable crossover results are not con-
sidered for the ongoing evolutionary process anyway.
Corresponding results for the path representation of the
TSP, which show that MPX crossover for example is able
to achieve results comparable to ERX crossover or OX
crossover (when being equipped with our self-adaptive
selection pressure model), are reported in [6].

An upper limit of selection pressure (MaxSelPress)
defines the maximum number of offspring considered
for the next generation (as a multiple of the actual pop-
ulation size) that may be produced in order to fulfill
the success ratio. With a sufficiently high setting of
(MaxSelPress), this new model also functions as a
precise 'detector heuristics' for premature convergence:

If it is no longer possible to find a sufficient number
(SuccRatio - \POP\) of offspring outperforming their
own parents even if (MaxSelPress • \POP\) candi-
dates have been generated, premature convergence has
occurred.
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3 Empirical Analysis on the Basis of Standardized
Test Functions

All results of this section are achieved with the Heuris-
ticLab prototyping and development environment (de-
scribed in ref. 7). The programs are written in the C#
programming language using the Microsoft .NET frame-
work 1.1. All values presented in the following tables are
the best resp. average values of thirty independent test
runs executed for each test case. The average number
of evaluated solutions gives a quite objective measure of
the computational effort.

In addition to a detailed empirical analysis of stan-
dardized TSP benchmarks in higher dimensions (as
stated in ref. 6), this paper discusses the performance
of the newly introduced theoretical concepts for some
commonly used real valued test functions in different di-
mensions. The main purpose of this additional analysis
is to underpin the generality of the newly introduced con-
cepts and methods. As no problem specific knowledge
or local search is involved, the identical algorithm can
be applied as in the tests for combinatorial optimization
problems like the TSP - just the problem representation
and the crossover and mutation operators have to be ex-
changed with standard operators known from GA litera-
ture for real valued encoding (e.g. ref. 8).

The test functions that are used in this section have
been designed by several authors for analyzing and com-
paring different optimization algorithms. Most of the
test functions have especially been designed to detect
weak points of the different methods. In order to demon-
strate the capability of offspring selection for achiev-
ing high quality solutions for very difficult optimization
problems in a general way, we have selected the follow-
ing test functions that are considered to be more difficult
and whose degree of difficulty can by scaled up by in-
creasing the dimension of the search space due to the
exponentially increasing number of local minima (ex-
cept the unimodal Rosenbrock function whose difficulty
is given by the extremely flat region around the global
optimum).

• The n-diinensional Rosenbrock function:

• The n-dimensional Schvvefel function (Sine Root):

f{~x) = 418.982887272433 • n + ] T -Xi

for -500 < x(i) < 500 with a global minimum of f{~x) - 0 at
~x* = {c,c,c, c) with c = 420.968746453712.

• The n-dimensional Ackley function:

for -32.768 < x(i) < 32.768 with a global minimum of f{~x) =
Oat
~x = (0,0,0, 0).

As all considered test functions have a unique global
minimum of 0 we state the results of the following ta-
bles as the absolute difference between the achieved re-
sult and 0. Many contributions interpret a solution to
be globally optimal if it is in a certain range (e.g. 10~5)
around the global optimum. For reasons of objectiveness
we state the exact values of the achieved solutions as it
frequently happens that it still takes plenty of iterations
to improve the solution quality from a value of 10~5 to
1Q-20 for e x a m p j e Consequently, a displayed result of
0.000000000 has to be interpreted to be smaller than the
lower limit of the C# double data type.

Tab. 1 shows the parameter settings of the GA with
offspring selection for the different benchmark test func-
tions.

Table 1. Parameter values used in the test runs of the GA with
offspring selection for the different test functions

Parameters for the n-dimensional Rosenhrock function
Population Size
Elitism Rate
Mutation Rate
Selection Operator
Crossover Operators
Mutation Operator
Success Ratio
Comparison Factor
Maximum Selection Pressure

100
1

0.05
Roulette

Discrete, Average, Heuristic
One-position Uniform Mutation

0.6
1.0 (constantly)

30
Parameters for the n-dimensional Rastrigin,
Schwcfcl (Sine Root), and Ackley functions

/(!?) = 100 • - x2)2 + (1 -

Population Size
Elitism Rale
Mutation Rate
Selection Operator
Crossover Operators
Mutation Operator
Success Ratio
Comparison Factor
Maximum Selection Pressure

500
1

0.05
Roulette

Discrete, Average, Heuristic
One-position Uniform Mutation

0.9
0.9- 1.0

25

for-2.048 < x(i) < 2.048 with a global minimum of f{~x) = 0
atz> = ( 1 , 1 , 1 , 1).

• The n-dimensional Rastrigin function:

f(~x) = 10 • n + ^2 x ? ~ 10cos(2 • TT • z,;)

for—5.12 < x(i) < 5.12 with a global minimum of f(~x) — 0 at
~x = (0,0,0, 0).

Many new theoretical serial and parallel GA concepts
are analyzed considering the highly multimodal Rastri-
gin, Ackley, Griewangk or Schwefel's Sine Root func-
tion (e.g. [9], [10], [11], etc.). However, these papers
analyze rather low problem dimensions around n — 10
for the Rosenbrock function and about n = 20 or n = 30
for the other test functions. Under this perspective it is
quite remarkable that the GA with offspring selection is
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Table 2. Experimental results achieved for the benchmark test
function in various dimensions

Results fur the Rosenbrock function
Problem

Dimension
n*20

n=500
ns 1 (XX)

Problem
Dimension

n=20
n=100
n=500

n=1000
n=50OO

Best

1.24 • 10~^5

1.37 • 10~8

2.31 • 10~9

4.11 • 10~8

Results for the R

Best
0.000000000
0.000000000
0.000000000
4.26 • 10~9

4.35 • 10~5

Average

5.70 • 10~25

2.23 • 10~5

1.02 • 10~8

2.59 • lO"7

astrigin function

Average
0.000000000
0.000000000
0.000000000
1.03 • 10~7

4.32 • 10~3

Results Tor the Schwefel (Sine Root) function
Problem

Dimension
n=2(l

n=IOO
n-500

n=1000
n=500O

Best

- 1 . 3 4 • l O " 1 ' ^
0.000000000
7.31 • 10"9

5.21 • 10~5

4.32 • 10~4

Average
-2.10 • 1 0 " 1 1

0.000000000
1.54 • 10~4

2.76 • 10" 3

5.88 • 10~3

Results for the Ackley function
Problem II

Dimension
n=20
n=100
n«=500
ii=10(X>
n=5000

Best

4.51 • 10~17

3.11 • 10~15

2.85 • 10~13

6.31 • 10~8

3.21 • 10~6

Average

7.83 • 10~ i e

7.16 • 10~14

8.78 • 10~9

1.26 • 10-7

7.65 • 10~5

Evaluated
Solutions

2'926'23l
16672523

181*217124
493*559*814

Evaluated
Solutions
4% 791*050

1O'718'323
52'423'489
67" 145'078

167*019'244

Evaluated
Solutions

735*411
3*321*411

17*311*622
34*703*482

146'235*943

Evaluated
Solutions

1*171012
5*278856

39'433'869
95*327*512

164*976*566

able to find the global optimum of all those test func-
tions up to a problem dimension of n = 1000 for the
Rosenbrock function, and even up to n = 5000 for Ras-
trigin, Ackley, Griewangk and Schwefel without any ad-
ditional algorithmic adaptations, i.e. with absolutely the
same algorithm as used for the combinatorial optimiza-
tion problems like the TSR Just the operators (crossover
and mutation) have been replaced by standard crossover
operators for real-valued encoding.

4 Conclusion
In this paper an enhanced GA selection concept has

been presented and exemplarily tested on some real-
valued test function with a scalable degree of difficulty.
The proposed GA-based techniques couple aspects from
Evolution Strategies (variable selection pressure) with
established selection, crossover and mutation concepts
known from GA theory in a general and self-adaptive
way. Therefore established crossover and mutation con-
cepts may be used analogously to the corresponding GA
and offspring selection can be applied in various fields
of GA applications.

The self-adaptive selection pressure steering makes
sure that the actually used selection pressure is just high
enough to successfully guide genetic search. Given an
upper limit of selection pressure to be applied, this model
also acts as a precise detector heuristics for premature
convergence.

Furthermore, the potential of offspring selection for
Genetic Programming (GP) applications is analyzed

within the scope of a current research project [12]. First
results for the identification of nonlinear structures in
mechatronic systems by means of Genetic Programming
indicate that offspring selection operates especially well
in combination with genetic programming.
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Abstract

This paper presents genetic algorithms with real-
coded binary representation - a novel approach to im-
prove the performance of genetic algorithms. The al-
gorithm is capable of maintaining the diversity of the
evolved population during the whole run which protects
it from the premature convergence. This is achieved by
using a special encoding scheme, introducing a high re-
dundancy, which is further supported by the so-called
gene-strength adaptation mechanism for controlling the
diversity. The mechanism for the population diver-
sity self-regulation increases the robustness of the al-
gorithm when solving non-stationary problems as was
empirically proven on two test cases. The achieved re-
sults show the competitiveness of the proposed algo-
rithm with other techniques designed for solving non-
stationary problems.

1 Introduction

A weak point of conventional genetic algorithms
(GAs) is that they often suffer from the so-called prema-
ture convergence, which is caused by an early homoge-
nization of the genetic material in the population. The
mechanisms for maintaining the population diversity be-
come extremely important when GAs are used for the
optimization in non-stationary environments. Thus GAs
are extended to be capable of continuously adapting to
changes in the environment when searching for optimal
solutions. The simplest way of reacting to changes in
the environment is to restart the genetic algorithm [1] or
increase the mutation rate to re-introduce the diversity
to the population [2] whenever a change of the system
is detected. The drawback of such approaches is their
poor ability to reuse the information gained in the past.
Other approaches are based on using redundant repre-
sentations. The dual GAs [3] extend standard binary
representation by the so-called head-bit, which is used
to determine the way the coding genes of the chromo-
some will be interpreted. A frequently used approach
to redundant representations is the diploidy and domi-
nance with multiple alleles for each gene position [4],

[5] and a dominance switching mechanism [6]. How-
ever, results achieved with the multiploid representations
published so far indicate that the approach is suitable for
the non-stationary environments with only a few period-
ically changing states.

The next section introduces the proposed real-coded
binary representation. Section 3 describes the test prob-
lems used for the experimental evaluation. The results
are presented in section 4 and the final comments con-
clude the paper.

2 GAs with Real-coded Binary Representation

The motivation for the proposed real-coded represen-
tation is to introduce a redundancy into the genetic code
that would make the genetic algorithm resistant against
the premature convergence. This is achieved so that the
chromosomes are not formed of direct zeros and ones as
in the case of the conventional genetic algorithms with
binary representation. Instead, each gene is expressed
by a real number r from the interval (0.0,1.0), which is
interpreted as a binary gene 0 or 1 as follows:

interpretation^) = 1, when r > 0.5
= 0, when r < 0.5.

The threshold value 0.5 is disabled in order to have un-
biased interpretations of zeros and ones. The real-valued
gene expressions represent a gene strength. The value
r = 0.0 represents the strongest binary 0, and r = 1.0
represents the strongest 1. Then as the value of r changes
from 1.0 to 0.5 the strength of a binary one decreases
and vice versa. Similarly this applies to a binary zero as
the value of r changes on the interval 0.0 to 0.5. Such
a pseudo-binary representation provides many possibili-
ties for expressing any arbitrary binary chromosome. For
example the two chromosomes C\ — [0.9, 0.1, 0.2, 0.6]
and C2 = [0.7, 0.2, 0.4, 0.9] are interpreted as the same
binary chromosome [1, 0, 0, 1].

The standard crossover operators can be used with this
representation. First, the offspring is composed of parts
taken from the parental chromosomes and then the gene
strength of each gene is changed by the so-called gene-
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strength adjustment mechanism. It plays a crutial role
in maintaining the population diversity. The extent to
which the genes will be adjusted depends (i) on their in-
terpretation and (ii) on the relative frequency of ones at
certain position in the chromosome. For this purpose a
vector P[] with relative frequency of binary ones at each
position of the representation is maintained. For exam-
ple the vector P = [0.8, 0.17,0.35, 68] shows that there
is 80% of ones at the first, 17% of ones at the second,
35% of ones at the third, and 68% of ones at the last
position of the chromosomes.

The gene at the z-th position is weakened proportion-
ally to P[i] if it interprets as the binary value that is
more frequently sampled at the z-th position in the cur-
rent population and vice versa, the gene at the z-th po-
sition is strengthened proportionally to P[i] if it repre-
sents the binary value that is less frequently sampled at
the i-th position. If the real-valued gene represents bi-
nary value that prevails in the population at the given
position then the gene is weakened - the value is moved
towards 0.5, so (1) is used for zero-valued genes (i.e. for
gene < 0.5) and (2) is used for one-valued genes (i.e.
for gene > 0.5), respectively. In opposite case the gene
is strengthened - zero-valued genes are moved towards
0.0, so (2) is applied and one-valued genes are moved
towards 1.0 using (1), respectively.

gene' = gene + c * (1.0 — P[i\) (D
gene' = gene — c * P[i] (2)

Parameter c denotes the maximal adjustment step defin-
ing the maximal value each gene can be changed by in
one adjustment step. It can take on values from the in-
terval (0.0,0.5). However useful values are rather small
ranging between 0.0 and 0.2.

The idea behind the introduced manipulation with the
strength of the genes is as follows. In standard evo-
lutionary algorithms the above-average building blocks
are used more often for creating the new population that
ends up in an undesirable homogenization of the pop-
ulation genotype. Here, the genes that are likely to pre-
vail the population are weakened each time they are used
in the newly created individual. Such genes are gradu-
ally approaching the value 0.5 and at some point of this
weakening process they are adjusted so that they turn
over the critical value 0.5 and change their interpreta-
tion from one to zero and vice versa, respectively. Even
when some binary gene completely overwhelm the pop-
ulation at some position it is just a matter of time when
the opposite value will emerge and reproduce again. In
the opposite case, the binary genes that are sampled in
the current population with below-average frequency are
strengthened in the newly created individuals in order to
make them more likely to survive and reproduce.

An important thing is that the weakening and strength-
ening of the genes is driven by the demand of the popu-
lation for the needed gene-values at the given positions.
There is no need for any explicit mutation operator, since
all the genes are passed into the new population already
modified by the gene-strength adjustment mechanism,
which can be considered as an implicit mutation.

The gene-strength adjustment offers a possibility to
distinguish between "promising" and "ordinary" indi-
viduals. Let us consider a newly generated individual
that is better than both of its parents as a promising one.
As such its genotype should be retained in the popu-
lation with an unchanged interpretation for some time.
In order not to change its interpretation by the adjust-
ment too early all its genes are rescaled to be strong be-
fore it is inserted into the new population (Note that the
generational evolutionary model is used in this work).
This means that the genes interpreted as ones are set by
random to be close to 1.0 and genes interpreted as ze-
ros are set to be close to 0.0. For example the individ-
ual o = (0.71, 0.45, 0.18, 0.57) would be rescaled to
cf = (0.97, 0.03, 0.02, 0.99). Obviously the latter one is
more likely to survive unchanged for certain number of
generations than the original one. This rescaling mecha-
nism boosts up the exploitation ability of the algorithm.

3 Test Problems and Experimental Setup

The first non-stationary problem we used is the
Osmera's dynamic problem [7]. The basis of the fitness
function is the function pi (x,t)9 where variable x is rep-
resented by a bit-string of length 31 and normalized to
give a value in the range (0.0,2.0), t e {1,1000} is the
time-step and the function c(t) specifies the changes in
the optimal bit-string. The goal is to keep on tracking
the optimal value of x, which minimizes the function
gi(x,t). We used c(t) of variant 2 introduced in [4],
where the optimum changes every 20 generations and
the changes are non-monotonous.

The second non-stationary problem is an oscillating
version of the single knapsack problem. The goal is to
fill a knapsack using a subset of objects from an available
set of size n, such that the sum of object weights is as
close as possible to the target weight t [5]. The problem
uses 14 objects, each of them of the weight Wi = 2 \
where i ranges from 0 to 13. The optimum fitness is 1.0
and the fitness decreases towards 0.0 as the Hamming
distance to the optimum solution string increases. The
target weight oscillates between values 12643 and 2837
every 1500 generations as used in [5].

50 independent runs were carried out for each experi-
ment and the results were averaged. The performance of
GARB has been evaluated and compared to the standard
genetic algorithm (SGA) and to the algorithms used in
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[4] and [5]. The comparisons are based on the quality of
the solutions achieved after the same number of fitness
function evaluations, which is a commonly used condi-
tion when comparing different evolutionary algorithms.
For the Osmera's dynamic problem a tracking error cal-
culated as the difference of the optimal fitness and the
fitness of the best individual in each generation was used
as the performance measure.

Parameters of GARB and SGA: population size 400
(Osmera's), 150 (Knapsack); tournament selection with
N = 3; generational evolutionary model with elitism
(the best individual is copied to the new population);
crossover: 2-point (Osmera's), uniform (Knapsack) with
the crossover rate 1.0; no mutation operator is used in
GARB; a simple bit-swapping mutation is used in SGA;
#fitness evaluations 400k (Osmera's), 30k (Knapsack).

4 Experiments and Results

Table 1 provides comparison of the GARB with the
standard genetic algorithm (SGA) and the genetic algo-
rithm extended with a case-based memory, a re-insertion
strategy and a predictor (CBM-B) as presented in [4].
The performance is measured by the ability to track the
optimum solution as it changes over the time. This is
denoted as the overall mean % tracking error (MTE),
which was calculated as an average tracking error over
all generations and all experiments. A standard devia-
tion (StDev) of the tracking error is calculated as well.
Right after change measures MTE and StDev show the
tracking error observed in the generations in which the
change of the optimum solution took place.

We can see that GARB's tracking capabilities are
much better than those of the SGA and CBM-B. GARB
performed best with c = 0.225 however, already with
c = 0.075 it outperformed the other algorithms. This
might be attributed to the fact that the GARB is able to
maintain a diverse population even when the optimal so-

Table 1. Comparison of GARB and other algorithms on Os-
mera's function.

Algorithm

GARB c = 0.025
GARB c = 0.075
GARB c = 0.125
GARB c = 0.175
GARB c = 0.225
SGA binary
SGA Gray
CBM-B

Right after change
MTE

83.3
25.6
12.8
10.2
9.2
N/A
N/A
N/A

StDev

30.6
34.6
22.4
19.7
19.3
N/A
N/A
N/A

Overall
MTE
50.4
2.4
1.0
0.7
0.6
57.3

47.66
19.39

StDev

25.2
7.4
3.9
3.0
2.7

43.61
42.94
33.13

Table 2. Comparison of GARB and other algorithms on Oscil-
lating knapsack problem. A number of runs (out of
50) in which optimum was achieved in each period
is used as the performance measure.

Algorithm
Oscillation period

1 2 3 4 5 6 7

Oscillation period 10 generations
GARB C = 0.025 46 0 7 0 17 6
GARB C = 0.075 45 19 5 11 9 16
GARB C = 0.125 41 35 31 37 38 32
GARB C = 0.175 32 28 25 28 29 33

Oscillation period 20 generations
GARB C = 0.025 47 1 0 1 0 6
GARB C = 0.075 50 46 34 42 28 43
GARB C = 0.125 49 49 49 47 49 49
GARB C = 0.175 46 42 44 44 48 39

0
7

36
35

3
29
50
46

0
10
35
21

2
40
50
44

Haploid-Recover
Extended-Additive
Ng-Wong

45
43
32

44
29
21

33
44
41

45
42
25

33
39
34

44
40
27

29
45
32

43
37
26

lution had already been found. Due to such a permanent
exploration activities the right after change MTE is al-
ready small.

Table 2 compares GARB with results obtained for the
Haploid-Recover, Extended-Additive and Ng-Wong ap-
proaches as presented in [5], The steady-state evolution-
ary model with the uniform crossover was running for
1500 generations between two subsequent target weight
changes. This equals to either 1500 or 3000 fitness eval-
uations depending on whether the uniform crossover op-
erator produces 1 or 2 offsprings. Our implementation of
GARB uses generational model. Since we did not know
the number of offsprings generated by the crossover in
[5] we carried out experiments with two different os-
cillation periods - 10 and 20 generations - in order to
change the target after 1500 and 3000 fitness evaluations,
respectively. The results achieved with GARB for oscil-
lation period 10 generations and c = 0.125 are better
than those of Ng-Wong but slightly worse than those of
Haploid-Recover and Extended-Additive. When the os-
cillation period 20 generations was used, GARB (with c
set to 0.125) outperformed all other algorithms.

GARB's capability of maintaining the population di-
versity is best illustrated in Figure 4. Its capability of
recovering from a completely homogeneous population
is shown there on Knapsack problem. The knapsack
problem was initialized by strings representing the tar-
get 12643 while the optimum target was 2837. The real
gene values were picked from interval (0.0,0.0 -f c) for
zero-valued genes and from (1.0 - c, 1.0) for one-valued
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Fig. 1. Demonstration of GARB's ability to recover from the
homogeneous population on knapsack problem.

genes where c was set to 0.1. The population diver-
sity calculated as the relative frequency of unique binary
chromosomes in the population is 0.0. We see that there
nothing happened, regarding the observed measures, for
the first four generations. The reason is that four gen-
erations is just the time needed to adjust the gene val-
ues to get close to the discrimination value 0.5. Then
as some gene values change the interpretation the pop-
ulation starts to diversify which allows the algorithm to
search for better solutions. The optimum solution was
found in the 16th generation. The important observation
is that the population remains diverse even after the op-
timum has been found. Notice the correlation of the di-
versity measure with the average fitness. When the aver-
age fitness reaches its peak the diversity drops down and
vice versa. It illustrates the fact that the population can
get homogeneous only to some extent. Due to the effect
of the gene-strength adjustment mechanism on the gene
values they become very weak at some point so that they
are reverted to the opposite binary interpretations forcing
the population to diversify again. The phases of homog-
enization and diversification repeat in cycles so that the
evolution can never get stuck.

5 Conclusions and Future Work
This paper introduces a novel genetic algorithm well

suited for solving non-stationary problems. It is based
on a redundant pseudo-binary representation with the bi-
nary genes represented by real numbers where all the
values greater than 0.5 are interpreted as binary ones and
the values lower than 0.5 are interpreted as binary zeros,
respectively. The gene-strength adjustment mechanism
is proposed to control the diversity of the evolved popu-
lation so that the real-valued gene corresponding to the
binary value that prevails at the given position in the pop-
ulation is weakened and pushed towards the opposite bi-

nary interpretation. The real-valued genes interpreted as
the minor binary value are strengthened making it more
likely to remain in the population and reproduce.

The proposed algorithm was empirically evaluated on
two non-stationary test problems proving that it repre-
sents a competitive alternative to the techniques designed
for the non-stationary optimisation. The algorithm ex-
hibits a strong capability of self-controlling of the pop-
ulation diversity that extends its explorative power and
makes it capable of recovering even from a completely
homogeneous population.

An analysis and a deep understanding of the algo-
rithm's behavior will be the primary goal of the future
work. The original version of the algorithm uses a gen-
erational model where the convergence characteristics of
the population is updated after the whole population has
been generated. The steady-state model could provide
a faster response to the state of the population since the
statistics could have been updated after inserting each
single individual. The implementation and an analy-
sis of the gene-strength adjustment mechanism with the
steady-state model are subject to future research as well.

References
[1] Fukunaga, A. (1997) Restart scheduling for genetic

algorithms. In Thomas Back, editor, Proceedings of
ICGA'97, 1997.

[2] Morrison, R. W., De Jong, K. A. (2000) Trig-
gered hypermutation revisited. In Proceedings of
CEC2000, pp. 1025-1032

[3] Collard, P., Gaspar, A. (1996) Royal-road land-
scapes for a dual genetic algorithm, in W. Wahlster,
editor, ECAI 96: 12th European Conference on Ar-
tificial Intelligence, Wiley & Son, pp 214-217

[4] Eggermont, J., Lenaerts, T. (2002) Dynamic Op-
timization using Evolutionary Algorithms with a
Case-based Memory, Proceedings of BNAIC02,
K.U.Leuven, Belgium, pages 107-114

[5] Lewis, J., Hart, E., Ritchie,G. (1998) A comparison
of dominance mechanisms and simple mutation on
non-stationary problems. In Eiben, A.E. et al. (Eds.).
Proceedings of PPSN'98,LNCS 1498, pp. 139-148,
Springer

[6] Ng, K. P., Wong, K. C. (1995) A new diploid
scheme and dominance change mechanism for non-
stationary function optimization. In Proceedings of
ICGA'95, pp. 159-166. Morgan Kaufmann

[7] OSmera, P., Kvasntfka, V., Pospfchal, J. (1997) Ge-
netic algorithms with diploid chromosomes. In Pro-
ceedings of Mendel'97, pp. 111-116



226

Dynamics in Proportionate Selection.

Abhishek Agrawal, Ian Mitchell, Peter Passmore, Ivan Litovski
1 Middlesex University, Hendon, London, NW4 4BT, U.K.
{a.agrawal, i.mitchell, p.passmore, i.litovski} @ mdx.ac.uk

Abstract

This paper proposes a new selection method for Genetic
Algorithms. The motivation behind the proposed method is to
investigate the effect of different selection methods on the rate
of convergence. The new method Dynamic Selection Method
(DSM) is based on proportionate selection. DSM fmctions by
continuously changing the criteria for parent selection (dynamic)
based on the number of generations in a run and the current
generation. Results show that by using DSM to maintain
diversity in a population gives slower convergence, but, their
overall performance was an improvement. Relationship between
slower convergences, in GA runs, leading to better solutions, has
been identified.

1 Introduction

Genetic Algorithms (GA) consists of many parameters,
which may be optimised to a specific problem or problem
domain. The parameters of most interest are those, which
contribute to rapid development of a solution that is near-
optimal. Analysis of a basic GA gives us five main
parameters, which may be optimised to produce an
algorithm optimal for generating a solution for a specific
problem [1,2]. First, population size is important and can
be changed throughout the GA. Second, Parent Selection
mechanisms. Third, the Recombination techniques, which
produce offspring. Fourth, replacement Ratio of Parents
with Offspring, and fifth, Mutation [3]. This paper focuses
only on Selection mechanisms as this is considered to be
the main component which determines the character of
the evolutionary search, whether it is volume orientated
(convergence reliability) or path orientated (convergence
velocity)[3].

There is an increasing interest in evolutionary algorithms
that have dynamic parameters, which change with respect
to time or generations. However most of our
understanding is limited to selection mechanisms, which
are static. The most commonly used algorithms for
parent selection are Fitness Proportional Selection [4],
and Linear Ranking [5] which are all static as their
behaviour does not change with respect to generations.
Tournament selection [4] is dynamic only in the sense that
parents are selected by a new random function.

2 Features of Dynamic Selection Method
(DSM)

This section will focus on a novel Dynamic Selection
Method (DSM). Analysis of the DSM will provide insight
into the effects of dynamic selection on the main
properties of a GA such as rate of convergence. To test
DSM an optimisation problem is used as the test bed. The
optimisation problem chosen is the Traveling Salesman
Problem [6] and instances are taken from TSPLIB [7].

Dynamic Selection Method is based on Proportional
Selection. To characterise the probability distribution in
DSM some assumptions have been made to simplify
calculations. Primarily, all individuals that may occur in a
population and are ordered with respect to fitness values

<E>(a, ( 0 ) s o that the first individual O ( a i ( 0 ) should

have the highest fitness and the last individual

lowest. Also, each individual may be

identified by the index / e {1? 2 .//} such that,

where p ? is probability of an individual being selected,

s(Pop(t)) denotes a selection operator.

In order to make this algorithm dynamic we will use the
concept of transposed fitness; O ' = f(<&) where O ' is
the transposed fitness, f is the objective function and
O i s the original fitness. This approach will allow us to
modify the algorithm itself by modifying the objective
function.

As with all parent selection the sum of all probabilities
should equal to 1. In DSM, the probability that an
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individual will be selected for mating (P,) is equal to the

fitness value <$>\a ) divided by the sum of all fitness.

P,= Number Of Generations

Figure 1. shows the increase in the function (C(n)) during
a single GA run in DSM.

As in proportionate selection an objective function #)
determines the selection probability of an individual fy.
In proportionate selection the objective is defined as J(x)=
xc where the constant C may not be equal to zero.

In DSM, we use a non-constant, time dependent C to
evaluate the objective function.

3 Dynamic Selection Method

Traditional methods of proportional selection rely on
ranking the population (fop) based on the hdividual's
fitness. This gives a higher probability of selecting fitter
individuals at the beginning of the run. Usually the
implementation requires a random number being
generated (0,1) representing the probability of selection.
This then equates to the individual selected. The objective
function responsible for calculating the individual's
transposed fitness is in the equation below:

DSM tries to maintain diversity by changing the
probability of selection of the individuals over
generations. DSM works by periodically altering the
selection criteria of the parents. This change happens
every generation therefore C is defined as a function of
the number of generations (n), where C(n) for DSM may
be defined as:

l l
0 < n < —-

C(n) =
In

Where N is the maximum number of generations.

4 Inverse Dynamic Selection Method (IDSM)

It was also considered important to see the inverse effects
of DSM where C(n) follows a linear change from an
exponent of 2 to 0.5. This is defined as IDSM and is
shown below in Fig.2.

Number Of Generations

Figure 2. shows the decrease in the function (C(n)) during a
single GA run in IDSM ,

In essence, the function for IDSM changes as in Fig.3.
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Figure 3. Shows changes in the objective function, O ' , during
a single GA run for IDSM.

DSM follows the inverse of the objective function,0',
shown in Figure 3.

5 Experimental Design

The effectiveness of DSM and IDSM were tested against
the more traditional methods such as Proportional
selection (PS), Ranking selection (RS) and Tournament
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Selection (TS). The parameters that were used for the first
genetic algorithm experiment are shown in Table 1.

Parameters Value

Population size
Replacement Ratio
Mutation rate
Crossover
Parent Selection
Max. Generations

2000
100%, generational
0.5%
2 point Cyclic Crossover
DSM,IDSM,RS,TS (5),PS
2000

Table 1:GA Parameters.

For the experiments, Cyclic Crossover (CX) [8], was
preferred over Partially mapped crossover (PMX) [4,9].
The reason for this preference is due to diversity. When
using PMX without incest prevention, the selection of two
identical individuals results in the same offspring and
therefore diversity is reduced. Therefore CX was
preferred which lowers the probability of identical
offspring and hence increases the diversity.

TSP [7] was chosen as a "test bed" to test the results. The
problems were selected from TSPLIB to see the
effectiveness of the parent selection schemes on
increasingly difficult problems.

6 Results

This paper is not preoccupied with the optimality of the
results but rather the rate of convergence to near optimal
solutions. Therefore, not all other parameters have been
optimised for performance.

Table 2 presents the results achieved for a particular TSP
instance. The results were verified by running each
experiment 20 times. The numbers at the end of the TSP
instance names indicate problem size, i.e. Atta48 is a 48
city problem.

EXP 1

Atta48

Eil51

Berlin52

Eil76

Chi 30

DSM

37878

540

9756

846

15147

IDSM

45200

539

9953

824

14214

RS

41598

550

8829

844

36641

TS

45535

563

10562

713

11611

FPS

42414

493

9335

818

15890

Table 2. shows the average results over 2000 generations. The
best results for each TSP instance are show in Bold.

As the optimality of results is not a focus of this work, it
was considered more important to look at the approach by
which the results were achieved by the various
algorithms.

Other parent selection methods (especially Tournament
selection) tend to have a much faster rate of convergence
and reach stagnation very quickly. RS did not seem to
perform very well under these parameters in comparison
to other algorithms but has been shown to work
effectively [10].

7 Further Results

Analysis of the data indicated that DSM could have much
greater diversity (lower rate of convergence) and would
reach the point of stagnation at a much later point, giving
better results. To test this criteria all experiments were re-
run with 3000 generations to see the effects of greater
diversity produced by DSM. Table 3 presents the results
achieved for a particular TSP instance. These results were
also verified by running the experiment 20 times.

EXP 2

Atta48

Eil51

Berlin52

Eil76

Chl30

DSM

32014

447

8910

646

11350

IDSM

44207

531

9648

744

13996

RS

41590

536

8826

831

35288

TS

42954

530

9962

648

11357

FPS

41418

487

9238

784

15234

Table 3. shows the average results over 3000 generations. The
best results for each TSP instance are show in Bold.

8 Conclusions

In this paper a novel selection method is proposed and
tested on an optimisation problem. The dynamic
properties of the proposed selection method assign
different probability of selecting individuals with the
same objective value, but, in different generations. Such
a technique shows considerable favour with regards to
DSM in its ability to maintain diversity in the population
and thus produce better solutions.

In DSM the diversity is maintained due to selecting a
higher percentage of weaker individuals in initial
generations. This comes at the expense of the rate of
convergence, however, the results shows that the point of
stagnation is reached later. Therefore, slower rates of
convergence and high diversity are needed to produce
good solutions in GAs.

The data in tables 2 and 3 are summarised in table 4 and
shows the effect of running the GA an extra 1000
generations. As can be seen many of the other methods
have reached their optimality and have nearly converged
and little improvement, if any in some cases, is shown.
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The maximum reduction was 9% for TS and the minimum
was none for RS. This should be compared with DSM that

had not converged at 2000 generations since when run for
extra 1000 iterations the optimality was improved

significantly in all cases. The maximum reduction for
DSM was 2 5 % and the minimum was 9%.

% decrease

Atta48

EU51

Berlin52

Eil76

Chi 30

DSM

15

17
9

24
25

IDSM

2

1

3

10
2

RS

0

3
0

2
4

TS

6

6
6

9
2

FPS

2

1
1

4
4

Table 4. shows the difference in percentages between average
results in Table 2 and 3.

Two new dynamic selection paradigms were tested; DSM
and IDSM. Overall DSM performed better than IDSM.
This is due to the fact that IDSM is biased towards
selecting fitter individuals in earlier generations and thus
affecting intermediate generations which soon become
stagnated. However, DSM selects weaker individuals in
early generations thus maintaining diversity and avoiding
stagnation in intermediate generations.

EXP1

DSM
FPS
RS
TS

TS

Best

37878
493
8829

713

11611

EXP2

DSM
DSM

RS
DSM

DSM

Best Decrease

32014 15%
447 9%

8826 0%

646 9%

11350 2%
Table 5. shows the decrease in TSP distance between the best
values in experiment 1 and 2.

In table 5 a comparison was drawn between the best TSP

routes achieved in 2000 (EXP1) generations and the best
routes achieved in 3000 (EXP2) generations. DSM is not

shown to be apparent in 2000 generations as it only

produced one best result but after 3000 generations DSM
has outperformed other parent selection mechanisms in all
but one case, where it achieved 8910 as opposed to RS's

8826 a 0.94% difference, hdicates DSM to be a useful parent
selection method.

area could reveal better functions and ranges. Also,

dynamics in other areas of EA may provide
improvements. Work is currently being carried out on the

effects of dynamic mutation and replacement.
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We have tested the new dynamic parent selection methods
DSM and IDSM against TS, RS, and FPS and shown that
dynamic selection methods, i.e. TS, DSM and IDSM, tend
to produce better results than static selection methods, i.e.
RS and FPS when run over extra 1000 iterations.

The changes in DSM were controlled by objective
functions that ranged from lA to 2 further works in this
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Abstract

A method for synthesizing grammatical models of na-
tural plants is presented. It is an attempt at solving the
inverse problem of generating the model that best de-
scribes a plant growth process, presented in a set of 2D
pictures. A geometric study is undertaken before trans-
lating it into grammatical meaning; a genetic algorithm,
coupled with a deterministic rule generation algorithm,
is then applied for navigating through the space of pos-
sible solutions. Preliminary results together with a de-
tailed description of the method are presented.

1 Background and motivation

The detailed study of a set of plants from an agricul-
tural field or a forest is a precious source of information
about their health, the treatments that the plants have un-
dergone and, consequently, about the appropriate man-
agement strategies. However, there is a physical impos-
sibility in bringing to the field the specialized equipment
needed to perform such a study. An approach to solve
this constraint is to build a detailed model in order to
obtain a-priory knowledge about the plants we wish to
observe or to perform virtual computer studies. Our first
attempt is to model dichotomous trees such as the great
Maple.

Based on the self-similarity observed in its develop-
ment (Mandelbrot [6], Barnsley [1]), a plant can be
thought of as a natural ("existing in nature") represen-
tation of a fractal; therefore, it is modeled using tools
created by the fractal research community. We are spe-
cially interested in a family of models called L-Systems
(for Lindenmayer Systems, [5]). With the addition of
simple geometric features, L-Systems have been used
extensively for visualization of natural developmental
processes (see, for example, [7] and [8])1.

However, observing a natural growth process and then
generating a model that describes it is still more of an art
than a structured approach more suitable to science. In
section 2 we present this inverse problem', a solution is
proposed in 3. Preliminary results are discussed in 4, and

1 In this paper, we won't go into any deeper details concerning the
basic concept and definition of L-Systems. These can be found in [9]

we conclude in 5.

2 Evolving a model to describe plant growth: the in-
verse problem

2.1 The inverse problem for a fractal

As mentioned, a tree can be represented using its frac-
tal characteristics. To represent a given tree, one must
search for a grammar that generates a fractal that best
represents the sought tree. The question to solve is then:
how to find a model to generate a specific fractal figure?

Answers from different disciplines exist to related
questions: in architecture, Coates et al ([2], chap. 14)
combined L-Systems with genetic programming for ex-
ploring designs. In [10], Lindenmayer and Prusin-
kiewicz generated FASS (space-Filling, self-Avoiding,
Simple and self-Similar) curves with graph rewriting
techniques. In [11], Vanyi et al developed a system for
graphically describing the circulation of blood in a hu-
man retine, coupling evolutionary methods coupled with
a restricted form of L-Systems. And, finally, the Collage
Theorem establishes a way of solving the inverse prob-
lem using Iterated Function Systems (IFS) ([1]).

2.2 The inverse problem for plant growth

The growth process of a plant can be described as a
suite of fractal figures, each one representing a specific
stage in time of this process; a model for this suite then
describes the growth process of this plant. The question
to answer at this stage is then: having observed a growth
process of a plant (or tree), what is the model that best
describes it?

The use of L-Systems (see [5, 7, 8, 9] for details) in an
attempt to answer this question is quite appropriate as the
recursive nature of the grammar usage makes them gen-
erate intermediate results in discrete time steps, much
like observing a plant growth in predefined, equally
spaced time intervals. Prusinkiewicz and Hanan, in [9],
extensively demonstrate the usefulness of L-Systems for
answering this question with what is known as computa-
tional botany. Somehow guided by a different objective,
Koza, in [4], uses genetic programming for generating
the (one and only) rule of an L-System.



The question that we address in this research project
goes still a step further, adding a geometrical compo-
nent: the object whose growth process is studied is
three-dimensional, but the temporal information that we
have is two-dimensional (a suite of 2D pictures). With
this new restriction in mind, we propose in section 3 a
method for generating a growth model for a tree (ex-
pressed as an L-System grammar), having a set of 2D
pictures. No hard restriction is set on the shape of the
pictures (they don't have to be taken from any specific
point in space) nor on their age {when they were taken is
not important, as long as we have this information).

3 Proposal
This research problem, as stated, implies working

with 2 parallel views of trees: the geometric represen-
tation, that defines how the tree is formed as a compo-
sition of shapes, and the syntactic representation: the
L-System string that is interpreted as the named geome-
tric figure. We have to be able to handle both views at
the same time, as the objective is to generate the same
geometry, but this can only be done through the correct
generation of a syntactic model.

In this section, a characterization of the kind of solu-
tions we are looking for is described (3.1), and how this
is represented in the syntactic domain is inferred (3.2).

3.1 Geometric considerations

Our goal being to model natural trees, the geometric
nature of tree growth should be reflected in the chosen
L-System rules. We defined 3 ways in which a tree
grows, exemplified with a series of drawings. If the
shape of a given young tree is as in Fig. l(a), the natural
growth is a combination of Y-shape (Fig. l(b)), T-shape
(Fig. l(c)) and B-shape (Fig. l(d))

3.2 Grammatical translation

As shown in Fig. l(b,c,d), the different types of
growth amount to different ways of combining the
"young tree" while forming a larger tree. We have de-
fined 3 syntactic operators, named B, T, and Y, trans-
lating the geometric relations explained in Fig. 1 to
L-System notation. These are called the growth oper-
ators:

1. Fig. l(d), representing B, would be S + (a)F(b).
Extending it to a three dimensional space and
specifying the contexts, the complete L-System
rule would be:

leftctx. < JB(a,6,c) > right ctx. -> S+(a)k(c)F(b)

This notation presents the advantage of having
non-fixed contexts, allowing for a family of rules

Fig. 1. Growth of a tree

of this shape. Following this idea, we also derive a
set of rules with the geometry of Fig. 1 (b) and (c)
(in three dimensions):

2. Fig. l(b):

Y(a,b,c,d) - F

3. Fig. l(c):

Now that we have defined the operators, we can take
a closer look at the primordial components of the tree
(Fig. l(a)); this "young tree" has a specific meaning as
part of an L-System: it is the axiom, S. As mentioned,
the operators only use combinations of this first tree for
building the whole tree; so it is important to choose a
large enough family of axioms for representing a large
number of different type of trees, if we want our method
to be general.

We have chosen this family to have the following syn-
tactic form: PtsGPtsGPts, where:

• G is one of B, T, or Y (correspondingly parame-
terized) and

• Pts is the L-System string of a primordial tree
shape.

This primordial shape is a generalization of the shape
shown in Fig. 2. It is represented by the concatenation
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Algorithm 1 Grammar synthesis

Fig. 2. General primordial tree shape

of 5 parameterized L-System regular expressions: part
1, 3, and 5 in Fig. 2 are F(/)°/1 ^straight line of length
Z"), and part 2 and 4 are [±(a1)&(a2)F(/)]°/1 (? straight
line of length I, growing from the vertical trunk at a 3D
angle specified by a\ anda.^)- The exponent 0/1 trans-
lates the possibility of presence/absence of the term.

3.3 The L-System family of solutions

These translations generate a parametric context-
sensitive L-System family (Table 1, with rules represent-
ing objects in 3D)2.

Table 1. The shape of the family of grammars

• 12 reserved symbols: Us = {F,f,+,-A&,V,G),[J}
• Alphabet: T = Us U R
• A parameterized Axiom S G T +

\c\ < B(a,b,c) > re? -> S+(a)&(c)F(b)

lcS < B(a,b,c) > rc£ -> S+(a)&(c)F(b)
lc j < Y(a,b,c,d) > vc\ - F(a)[+(b)&(d)S][-(c)&(d)S]

U& < Y(a,b,c,d) > r c ^ - F(a)[+(b)&(d)S][-(c)&(d)S]
lcl < T(a,b,c) > r e ! -+ F(a)[+(b)&(c)S]S

T(a,b,c) F(a)[+(b)&(c)S]S

3.4 Method: generating a grammar

Now the problem is more specific:

Having a list of figures Ct, find a grammar
of the family defined in Table 1 whose gra-
phical interpretation best approaches Ct

Our approach for solving this is shown in Alg. 1

2lc^ stands for left context ifor rule type r and rcT- for right context
jfor rule type r

1: procedure GENERATEGRAMMAR(£t: target figu-
res; Vt' spatial and temporal information about Ct)

2: r epeat
3: Choose a parameterized grammar Ma from the

axiom space >
4: Generate the best set of production rules (PR) for

the current axiom t>
5: G = Ma 0 PR > current grammar
6: until G is good enough
7: Return G
8: end procedure

The exploration of the axioms' space (line 1.3) is im-
plemented as a genetic algorithm, described in 3.4.1.
The production rules generation (line 1.4) is described
in (3.4.2), and the fitness function for the whole process
is presented in 3.4.3.

3.4.1 Choosing axioms: Each symbol of the
axiom (as described in 3.2 and Table 1) is encoded as a
gene in the chromosome, which is then 64 genes long.
Straightforward 1-point crossover and mutation opera-
tors are implemented on such representation.

3.4.2 Navigating the production rules space:
In this approach, we derive only the rules that could pos-
sibly expand a specific axiom. We use information from
Alg. 1: generation of the rules comes after choosing a
possible axiom. The general method calculates each pos-
sible outcome of a string, starting from the axiom, and
then derives the rule that would generate this string. For
example, if the axiom is S : B( l , 2,3)F(4), then its first
derivation will be

<S+(1)&(3)F(2)F(4) or

depending on whether there is a rule in the grammar G
that replaces JB(1, 2,3) or not. So G will be either G\ or

•{
Axiom = 5:S(1,2,3)F(4)

B(a, b, c) > F — S + (o)&(c)F(6)

f Axiom = 5:S(1,2,3)F(4)
*2 = J

Each possibility defines a current work string, that in
turn could be replaced by the rules of a grammar; this
iterative procedure is repeated for the number of gener-
ations indicated in the information about the target figu-

res.
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In that way, starting from the axiom, we build a graph
in which each node is the state of the generation of a
string, and whose leading transition is the rule that was
applied in order to obtain the string (see Fig. 3). This
type of graph does not have cycles, so it is a tree; each
path from the root to each one of the leaves is a com-
plete grammar, and a possible solution to the optimiza-
tion problem. Finding the best grammar is now equiv-
alent to evaluating each grammar path with an appro-
priate fitness function (3.4.3) and choosing the one with
better fitness.

rule A.1 AND rule A.2

For this first set of tests we aimed at finding perfect
fitness (fitness = 0, because fitness as in 3.4.3 is a sum of
distances). Fitness being the ending condition in Alg. 1,
this severe rule, associated with the cardinality of the
axiom space being ~ 1010, meant that the exploration of
the whole space was unthinkable, even with very pow-
erful machines. However, such a drastic constraint (fit-
ness =0) was useful in evaluating the proposed approach
when dealing with simple geometric figures and a sub-
set of the grammar. Not only did this allowed to verify
if we generated similar trees, but also similar grammars
(remember that we are using synthetic trees).

To this end, we studied the geometry of grammars
with simple axioms and one growth rule, either B, T, or
Y. Under certain conditions, the geometry of each class
of grammars is very distinctive, and is presented (in its
8th. iteration) in Fig. 4. We gave as inputs to our method

rule mi Vrule rm

Sp.1 | f Sp.2 j f Sp.n j f Sp.m J

Fig. 3. Grammar evaluation graph

3.4.3 Fitness function: The fitness of a gram-
mar G is a distance between a list of target figures Ct and
the figures generated by G. The distance between 2 figu-
res is evaluated by a comparison between their respective
fractal dimensions (F, calculated using the box-counting
algorithm) and their size (£):

a is a weighting estimator of the importance of each
measure; for this paper, we fixed a = 0.5

The fitness of a grammar G (F(G)) is the sum of all
the distances D

4 Results and discussion
We implemented an environment to experiment with

the visual appearance and with the formal definitions of
L-Systems ([3]). We then built a synthetic database of
2D pictures of trees generated using 3D grammars. The
proposed method is being evaluated for its ability to gen-
erate grammars that can evolve trees corresponding to
the source synthetic pictures.

Fig. 4. Input to our experiences

the sequences generated using each of the growth rule,
and hoped to obtain not only trees that were similar but
also the same grammar as entered. We repeated the ex-
periences 10 times with each sequence, and present here
some of our observations:

1. for all replicates, the resulting grammar generated
a tree that was similar to the input picture

2. in 8 replicates out of 10, the algorithm did not find
the exact grammar as entered, and the search con-
tinued even though the solutions were very close
and the fitness near 0.



234

3. in 2 replicates out of 10, the stochastic process
quickly generated a perfect solution.

4. the solutions were generated in reasonable
amounts of time. However, once again, the end-
ing condition requiring a perfect fit (fitness = 0)
did not allow the algorithm to stop when accept-
able solutions were encountered.

5 Conclusion and future work
These first results are very promising, and demon-

strate that the proposed approach is a solution to the in-
verse problem. We now have to improve the intuitiveness
of our fitness function: make it closer to our expectations
when comparing 2 natural trees. We, as humans, do not
expect 2 trees to be exactly similar in 2 different pictures.
However, we can recognize different pictures as coming
from the same tree. To this end, additional criteria, such
as comparing the number of segments, the compactness,
or even the texture of the trees, would definitely improve
the value returned by the fitness function.

Another important consideration is in devising a more
objective way of evaluating our method. This is actually
quite difficult to achieve, as we are evaluating the results
as humans, in a subjective manner. However, we think
that we would greatly benefit from a form of "mathemat-
ical evaluation" of our results.

We believe that the proposed approach for generat-
ing grammatical models from example is novel and very
promising, even though the presented results are still pre-
liminary. The next step will be to generate a consistent
set of results, along with extending it to more compli-
cated grammars (for example, stochastic). Finally, we
would like to draw some conclusions about the correct-
ness, usefulness and robustness of the proposed method.
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Abstract
We present a set of experiments regarding an evolu-

tionary algorithm designed to efficiently search for Op-
timal Golomb Rulers. The approach uses a binary rep-
resentation to codify the marks contained in a ruler and
relies on standard genetic operators. Furthermore, dur-
ing evaluation, an insertion and correction procedure is
implemented in order to improve the algorithm perfor-
mance. This method is successful in quickly identify-
ing good solutions, outperforming previous evolution-
ary approaches by discovering optimal and near-optimal
Golomb Rulers.

1 Introduction
A Golomb Ruler [1] is defined as a ruler that has

marks unevenly spaced at integer locations in such a way
that the distance between any two marks is unique. Un-
like usual rulers, they have the ability to measure more
discrete measures than the number of marks they pos-
sess. Additionally, they are not redundant since they
do not measure the same distance twice. An Optimal
Golomb Ruler (OGR) is defined as the shortest length
ruler for a given number of marks [2]. There may exist
multiple different OGRs for a specific number of marks.
Golomb Rulers have application in a wide range of real
world situations, mainly engineering [3].

For a small number of marks it is possible to construct
OGRs by hand. As the number of marks increases, the
problem becomes difficult and, for n > 9, computa-
tional approaches are required to find possible solutions.
Currently, most of the techniques used to identify OGRs
rely on parallel brute force algorithms. However, com-
putation is prohibitively costly in terms of computer re-
sources [3]. Evolutionary Computation (EC) approaches
are a promising alternative to previous methods that usu-
ally need too much time to obtain an answer. To the
best of our knowledge, there are some applications of
EC to this problem [4], [5], [6] and [7]. In this paper,
we present an aditional set of experiments using the ap-
proach presented in [6].

2 Problem Definition
A n-mark Golomb Ruler is an ordered set of n distinct

nonnegative integers {ai, a2> • • • ,a n } such that all pos-
sible differences \ai~aj\ii,j = l,...,n with i ^ j , are
distinct. Values ai correspond to positions where marks
are placed. By convention, the first mark a\ is placed on
position 0, whereas the length of the ruler is given by the
position of the rightmost mark an.

The length of a segment of a ruler is defined as the
distance between two consecutive marks. This way,
it is also possible to represent a Golomb Ruler with
n marks through the specification of the length of the
n - 1 segments that compose it. The Golomb Ruler
{ai, a 2 , . . . , a n } is an OGR if there exists no other n-
mark ruler having a smaller largest mark an. In such a
case an is called the length of the n-mark OGR (OGR-n,
for short).

3 Evolution with Marks
We propose a representation where candidate solu-

tions encode information about the maximum number of
marks that can be placed on a ruler with a given length
L [6]. A straightforward chromosome representation is
adopted allowing us to evolve both the number and the
position of the marks.

An individual is codified as a binary string with length
L, where each bit is associated with an integer position
in the ruler. If a given gene has the value 1 then it in-
dicates that there is a mark in the corresponding posi-
tion. This representation, where individuals represent se-
quences of marks in a ruler bounded by an upper length
limit, enables us to search for rulers without a predeter-
mined number of marks.

To generate descendants we selected variants of stan-
dard genetic operators usually applied to binary repre-
sentations: two-point crossover and shift mutation. Shift
mutation acts in the following way: it randomly selects
a mark and shifts it left or right with equal probability.
We selected this operator because it is somewhat sensi-
tive to the structure of the solutions. Moving, deleting or
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Table 1. Overall results achieved by Marks-EC approach with maximum ruler lengths between length 90 and 200

L
90
100
110
120
130
140
150
160
170
180
190
200

n
12
12
13
13
14
14
14
15
15
15
16
16

len
85
85
106
106
129
129
133
159
156
161
189
191

CX = 0.
avg
87.6
89.6
107.4
111.3
129.0
134.7
136.2
159.0
163.5
165.8
189.6
196.1

25
std
2.6
2.7
1.7
1.8
0.0
2.6
2.0
n/a
2.7
2.2
0.5
2.4

runs
19
30
9
30
3
30
30
1
30
30
5
30

n
12
12
13
13
14
14
14
15
15
15
16
16

len
85
85
106
109
129
129
129
155
158
163
188
188

CX = 0.5
avg
87.1
89.6
109.0
111.2
129.0
134.4
136.1
158.8
163.6
165.8
189.3
194.4

std
2.5
2.4
1.3
1.4
n/a
3.1
2.5
1.9
2.4
1.9
1.2
5.9

runs
19
30
8
30
1
29
30
6
30
30
3
29

n
12
12
13
13
14
14
14
15
15
15
15
16

len
85
85
106
109
129
129
127
155
160
157
164
190

CX = 0.75
avg
86.8
89.3
109.0
111.5
129.3
135.6
137.1
156.7
164.2
166.7
169.0
195.3

std
2.4
2.5
1.4
1.5
0.5
2.4
3.0
2.9
1.8
2.6
2.1
2.5

runs
20
30
14
30
4
30
30
3
30
30
30
29

inserting a mark can cause a great disruption in a ruler.
Shift mutation is applied to all individuals. The number
of shift mutations applied to each chromosome is upper
bounded by a small constant S.

To evaluate an individual we consider two criteria:
ruler length and legality of the solution (i.e., whether it
contains repeated measurements). The equation used to
assign fitness to an individual x is the following:

fit(x) =
- NR , if x is illegal
NM x L + (L - M) , if x is legal (1)

Where NR is the number of repeated measurements,
NM is the number of marks, L is the maximum length
of the ruler and M is the length of the ruler encoded in
the individual. This formula ensures that: the fitness of
a legal solution is always higher than the fitness of an
illegal solution; invalid solutions are ranked according
to their illegality (number of repeated measurements);
legal solutions are ranked according to their number of
marks. Rulers with an equal number of marks are ranked
according to their length.

A correction and insertion procedure is performed
during the evaluation of an individual. The aim is
twofold: to fix invalid rulers and to see if it is possi-
ble to add marks to legal solutions. The line of action
is straightforward: a mark is randomly removed if, when
checking the segments measured by the ruler, a duplicate
measurement is found. A constant C gives the maximum
number of rectifications allowed for a given solution. We
use this upper bound so that the evaluation of an individ-
ual does not take too long. If a valid ruler is obtained at
the end of the correction, then the second stage can pro-
ceed: an insertion operator tries to add marks in every

possible position ensuring that the obtained ruler is still
valid. The order in which the positions are selected for
insertion is randomly selected.

4 Experimental Results

To evaluate our approach (which henceforth we will
designate by Marks-EC) we performed a set of ex-
periments with several ruler lengths. More precisely,
we used the evolutionary algorithm to seek for good
rulers with lengths between 90 and 200 (given the
known OGRs we will be looking for rulers between 12
and 16 marks). The settings of the EC algorithm are
the following: Number of generations: 20000; Pop-
ulation size: 200; Tournament selection with tourney
size: 5; Elitist strategy; Two-point crossover with rates:
{0.25,0.5,0.75}; Maximum number of shifts, 5 = 3;
Maximum number of rectifications, C = 4.

For every ruler length L we performed 30 runs with
the same initial conditions and with different random
seeds. All initial populations were randomly generated,
where each gene will have a value of 0 with probability
of 0.9 (to increase the probability of having some legal
rulers in the initial population).

In table 1, we present a brief summary of the attained
results. Column "L" refers to the maximum ruler length,
"n" is the number of marks of the best ruler found and
"len" is the corresponding ruler length. Columns "avg"
and "std" indicate the average and standard deviation of
the best rulers found in each run. While the evolutionary
algorithm performed 30 runs, not all of them were able
to have their best rulers with the same number of marks.
When this occurred, the averages presented in the table
reflects only the runs with the highest number of marks
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Table 2. Overall results achieved by Marks-EC approach with flip mutation (probability of 0.005)

L
90
100
110
120
130
140
150
160
170
180
190
200

n
12
12
13
13
14
14
14
15
15
15
16
16

len
85
85
106
109
128
129
129
155
155
163
177
187

CX = 0.25
avg
87.0
90.1
108.6
111.3
128.5
135.2
137.0
158.0
164.9
167.1
185.8
196.5

std
2.5
2.1
1.7
2.0
0.6
2.2
2.6
2.6
2.6
1.7
5.9
2.6

runs
23
30
15
30
4
30
30
3
30
30
4
26

n
12
12
13
13
14
14
14
15
15
15
16
16

len
85
85
106
109
128
129
136
155
160
163
184
192

CX = 0.5
avg
87.5
89.7
108.9
111.8
128.6
136.2
138.3
158.8
164.9
167.3
184.0
196.2

std
2.6
2.5
1.3
1.4
0.5
2.3
1.5
2.5
2.3
2.0
n/a
2.0

runs
20
30
14
30
5
30
30
4
30
30
1

26

n
12
12
13
13
14
14
14
15
15
15
15
16

len
85
85
106
109
129
127
128
158
158
163
165
189

CX = 0.75
avg
87.1
90.2
108.9
111.8
129.3
136.2
138.3
158.5
164.8
167.3
170.8
196.5

std
2.5
2.1
1.4
1.6
0.6
2.7
2.5
0.7
2.5
2.0
2.2
7.7

runs
19
30
13
30
3
30
30
2
30
30
30
28

(column "runs"). For example, with a crossover rate of
0.25 and length 110, only for 9 runs were found rulers
with 13 marks (the average and standard deviation take
into account only those 9 runs). It wouldn't be meaning-
ful to compute all the runs.

A brief perusal of the results shows the effectiveness
of our approach. In terms of best results, we found
optimal or near-optimal solutions for the correspond-
ing number of marks. In fact, below 15 marks, for all
settings, the distance between the best solutions found
by this approach and the optimal values never exceeds
2.8%. The single exception is the experiment with set-
tings L = 150 and crossover rate 0.25, where this dis-
tance is 4.7%. Regarding 15 and 16 marks, the distance
to the optimum is still reasonable, ranging between 2.7%
and 8.6%. This observation can be reinforced by look-
ing into the averages. The values are close to the best
solutions discovered, showing that the algorithm can re-
liably find high quality rulers. The distances between the
best solutions found and the averages never exceed 5.4%
indicating that the algorithm is a robust approach.

Instances with 15 and 16 marks revealed to be the
most difficult. This is an expected result since the search
space topology defined by Golomb Rulers is very hard to
sample. The number of interactions that occur between
the genes that compose a chromosome is one of the rea-
sons that contribute to the difficulty of the search. There
is a high epistasis associated with this problem, since
changing the position of a mark affects all other marks.
As the number of marks increases, it is likely that there
is a growth in the difficulty of controlling the effects of
changes in the ruler.

The described approach does not have a standard mu-

Table 3. Best OGRs lengths for instances between 12 and
16 marks achieved by Marks-EC in comparison with
previous approaches and optimal results

Instances
OGR-12
OGR-13
OGR-14
OGR-15
OGR-16

Optimal
85
106
127
151
177

S-EC
103
124
168
206
238

RKH-EC
85
106
131
162
180

Marks-EC
85
106
127
155
111

tation operator. To analyze if this option influences the
search process, we performed a preliminary set of tests
with the addition of flip mutation, a standard genetic op-
erator for binary representations. The same experiments
were run with a mutation probability of 0.005 and the
results are presented in table 2.

From the observation of this table is not possible to
draw firm conclusions regarding the influence of flip mu-
tation in the algorithm. There are not many significant
alterations in the attained results. Further tests with al-
ternative mutation operators and other rates are required.
The most relevant result of this set of experiments was
the discovery of the optimal value for the ruler with 16
marks. This solution was found with settings L = 190
and crossover rate 0.25. The study of the influence of the
correction and insertion procedure which is performed
during evaluation is done in another publication [6]. Re-
sults show that both correction and insertion help the EC
algorithm to efficiently search for OGRs.

In table 3 we summarize the results achieved by our
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Table 4. Averages of best runs comparison between Marks-
EC approach with RKH-EC. Mutation rate = 0.

Table 5. Averages of best runs comparison between Marks-
EC approach with RKH-EC, Mutation rate = 0.005.

Instances
OGR-12
OGR-13
OGR-14
OGR-15
OGR-16

RKH-EC
91.4
113.7
136.6
165.6
197.1

CX 0.25
89.6
111.3
134.7
163.5
196.1

CX0.5
89.6
111.2
134.4
163.6
194.4

CX 0.75
89.3
111.5
135.6
164.2
195.3

Instances
OGR-12
OGR-13
OGR-14
OGR-15
OGR-16

RKH-EC
91.4
113.7
136.6
165.6
197.1

CX 0.25
90.1
111.3
135.2
164.9
196.5

CX0.5
89.7
UL8
136.2
164.9
196.2

CX 0.75
90.2
111.8
136.2
164.8
196.5

algorithm and compare them with previous evolutionary
approaches. We show the best solutions found for rulers
containing from 12 to 16 marks.

Marks-EC was able to find the OGR for all tested in-
stances with the single exception for 15 marks. Nev-
ertheless, for OGR-15 the solution discovered is just
2.65% higher than the optimal value, whilst the previous
best value found by an evolutionary approach is 7.28%
higher. The overall results attained by our algorithm out-
perform previous approaches.

To conclude our analysis, it is important to understand
how the global performance of the algorithm compares
with the previous best EC approach, Random Keys with
a Heuristic evolutionary algorithm. To achieve this goal,
we will compare the averages of the best solutions found
in the 30 runs. Comparing the two algorithms is a dif-
ficult task since we are not evolving rulers with a fixed
number of marks (like the RKH-EC approach). To al-
low a fair interpretation, we will just consider experi-
ments where all runs were able to reach the highest num-
ber of marks. Taking this into account, the experiments
used for comparison are: OGR-12, L = 100; OGR-13,
L = 120; OGR-14, L = 140; OGR-15, L = 170 and for
OGR-16, L = 200. It is important to notice that, when-
ever possible we used the same settings as described in
[5](e.g., number of generations, population size).

In table 4 and 5 we present the results. Although dif-
ferences are not overwhelming, the averages achieved by
the Marks-EC approach are always better (consult [5] for
the RHK-EC averages). Moreover, in the experiments
selected for comparison, the maximum ruler length is
usually set to a value that constrains the individuals to
have a larger final section of the ruler without marks.
While it helps to find rulers with a higher number of
marks, it may bring some difficulties when searching for
shorter rulers. Nevertheless, this is an empirical compar-
ison and conclusions must be regarded with care, since
both algorithms rely on different representations influ-
encing directly the evolutionary search.

5 Conclusions
Results achieved show that this evolutionary approach

is effective since it was able to quickly discover good
solutions. One of the main advantages of the represen-
tation used is that it does not require special precautions
to build the initial population or specific genetic oper-
ators to ensure that feasible individuals are generated.
Some additional scalability tests are required. Further-
more, we intend to extend our study in order to clarify
the influence of the representation.
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Abstract
An evolutionary algorithm based on Random Keys to

represent Golomb Rulers segments, has been found to
be a reliable option for finding Optimal Golomb Rulers
in a short amount of time, when comparing with stan-
dard methods. This paper presents a modified version
of this evolutionary algorithm where the maximum seg-
ment length for a Golomb Ruler is also part of the evolu-
tionary process. Attained experimental results shows us
that this alteration does not seems to provide significant
benefits to the static version of the algorithm.

1 Introduction
A Golomb ruler is defined as a ruler that has marks

unevenly spaced at integer locations in such a way that
the distance between any two marks is unique. They
were named after the relevant work of the mathematician
Solomon Golomb [1], and, unlike usual rulers, they have
the ability to measure more discrete measures than the
number of marks they carry. Also Golomb rulers are not
redundant, since they do not measure the same distance
twice. Figure 1 is an example of a Golomb Ruler.

Although the definition of a Golomb ruler does not
place any restriction on the length of the ruler, re-
searchers are usually interested in rulers with minimum
length. An Optimal Golomb Ruler (OGR) is defined as
the shortest length ruler for a given number of marks.
There may exist multiple different OGRs for a specific
number of marks. OGRs are used in a wide range of real
world situations. For example, in the field of communi-
cations when setting up an interferometer for radio as-
tronomy, placing the antennas on the marks of a Golomb
ruler maximizes the recovery of information about the
phases of the signal received [2].

Evolutionary Computation (EC) approaches are a
promising alternative to brute force methods that usually
need too much time to obtain an answer and so cannot be
considered as a realistic option in real world situations.
There have been some applications of EC to this problem
[3], [4], [5] and [6]. These approaches, when searching

o 1
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4

3

I

5

2
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Fig. 1. A Golomb Ruler with 4 marks

for solutions evolve the length of a fixed number of seg-
ments. This way, during search EC algorithms try to dis-
cover good rulers for a specific number of marks. In [7]
a different evolutionary approach is proposed. Prior to
the application of the algorithm, a maximum ruler length
is specified and then the search procedure tries to deter-
mine how many marks can be placed in such a ruler as
well as where each one of the marks should be located.
In this paper we continue the study presented in [5], by
analyzing the influence of evolving the maximum length
of a segment.

2 Golomb Rulers
In this section we present a formal definition of

Golomb rulers. A n-mark Golomb ruler is an ordered set
of n distinct nonnegative integers {ai, a2 , . . . , a n } such
that all possible differences \cn - a,j\, i,j = 1, . . . ,n
with i ^ j , are distinct. Values a* correspond to posi-
tions where marks are placed. By convention, the first
mark a\ is placed on position 0, whereas the length of
the ruler is given by the position of the rightmost mark
an. The ruler from figure 1 can be defined as {0,1,4,6}.

The length of a segment of a ruler is defined as the
distance between two consecutive marks. This way, it is
also possible to represent a Golomb ruler with n marks
through the specification of the length of the n — 1 seg-
ments that compose it. According to this notation the
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example from figure 1 can be defined as {1,3,2}.
The Golomb ruler {ax, a 2 , . . . , an } is an OGR if there

exists no other n-mark ruler having a smaller largest
mark an. In such a case an is called the length of the
n-mark OGR (OGR-n, for short).

Finding OGRs is a complex combinatorial optimiza-
tion problem. Moreover, it has some specific features
that differentiate it from other problems with similar
characteristics, such as the Travelling Salesperson Prob-
lem (TSP). Whilst TSP can be classified as a complete
ordered set (the goal is to find a permutation of the n
cities that compose the problem), OGR can be consid-
ered as an incomplete ordered set [3]. Assume that we
represent a ruler by a sequence composed by its seg-
ment's lengths. The OGR-n is a permutation of n — 1
elements taken from a set of m elements, where m is
defined as the maximum distance between marks (usu-
ally n <C m). The construction of such a solution poses
several difficulties:

• Should a maximum value for m be pre-established
or should it be adjusted during the construction of
a ruler?

• How to select the n — 1 elements from a set of m
values?

• How to build a valid permutation with the n - 1
elements selected?

3 An Evolutionary Approach with Random Keys
The representation chosen for individuals plays a cru-

cial role on the performance of EC algorithms. In [5],
an evolutionary approach based on the evolution of ruler
segments is proposed. A candidate solution for an OGR-
n instance is composed by a permutation of A distinct
values, where A is the maximum segment length.

Even when A is known, there are two crucial decisions
to make when building a solution for OGR-n: how to
select n — 1 distinct segments from the set of A values
and how to build a valid permutation with the selected
elements. We adopted a representation that tries to deal
efficiently with this situation:

• It provides a straightforward way to select which
elements will compose the permutation;

• It finds a natural arrangement for the selected seg-
ments.

In our approach, the chromosome is composed by a
permutation of A distinct values. Encoding of the per-
mutation is done with random keys (RK). RKs were
introduced by Bean [8] in 1994 and obtained good re-
sults in situations where the relative order of the tasks

is important [8], [9]. One of their main advantages is
that it is possible to apply standard genetic operators to
chromosomes (e.g., one point or uniform crossover) and
still obtain feasible individuals. We will just present a
brief overview of RKs. For a detailed description, con-
sult [8] or [10]. RKs representation uses a sequence of
N random numbers to encode a permutation of length
N. These numbers are typically sampled from the real
interval [0,1]. Both the position and the value of the
keys are important for the interpretation of the sequence.
To obtain the permutation that corresponds to a given
key sequence, all keys are sorted according to their val-
ues in decreasing order. Then, the original positions
of the keys will be used to construct the permutation.
For example, consider the following key sequence r =
{0.5,0.7,0.3,0.9,0.4}. Position 4 contains the highest
value of the key sequence (0.9), so 4 will be the first el-
ement of the resulting permutation. Then, the next high-
est value is at position 2. The ordering process continues
in a similar way and at the end we get the permutation
{4,2,1,5,3}. From a key sequence of length N we can
always construct a permutation of N unique numbers be-
tween 1 and N (or between 0 and N — 1 if needed).

In [10], Rothlauf et. al. proposed NetKeys, an ex-
tension of RKs to problems dealing with tree network
design. The situation addressed is that of the design of
a minimum spanning tree over a fully connected graph
with n nodes. In these circumstances, a NetKey sequence
will be composed by L = n(n~1) random numbers (the
number of links in the graph). Positions are labelled and
each one represents one possible link in the tree. The
value of a particular key can be interpreted as the impor-
tance of the link it represents. The higher its value, the
higher the probability that this link is used in the con-
struction of the tree. From this sequence, a permutation
of L numbers can be constructed in the same way as de-
scribed for standard RKs. Then the construction of the
tree begins: links are added to the tree in an order that is
in accordance to the value of its key. If the insertion of a
link would create a cycle, then it is skipped and construc-
tion continues with the next one. The process comes to
an end when n — 1 links have been selected.

Our codification of a solution for an OGR-n follows
the same principles as those expressed for NetKeys.
Each one of the A positions of the chromosome repre-
sents one possible segment. Without loss of generality,
we assume that position i corresponds to a segment of
length i (i = 1 , . . . , A). Also, just like with NetKeys,
the value of a given key represents the importance of the
related segment. If we compare both situations, there
is nevertheless one additional difficulty associated with
OGRs: the interpretation algorithm must determine, not
only which segments will be part of the ruler, but also its



241

Chromosome
(RK encoding)
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Fig. 2. Decoding and interpretation of the information con-
tained in a chromosome

relative position. Figure 2 illustrates how decoding and
interpretation (the two stages required to assign fitness
to an individual) are related.

A step-by-step description helps to exemplify how
the decoding of the permutation and subsequent
interpretation of the information contained in a chro-
mosome is performed. Consider that we are searching
for OGR-5 and that A is 10. Consider also that
the chromosome encodes the following key sequence
{0.87,0.17,0.67,0.27,0.86,0.97,0.71,0.31,0.38,0.40}.
After performing the RK decoding, the resulting permu-
tation is {6,1,5,7,3,10,9,8,4,2}.

During the interpretation phase, the first n — 1 valid
segments from the permutation are used to build the
ruler. The iterative algorithm used to build a valid ruler
tries to ensure that segments are selected in such a way
that no duplicate measurements exist. It is a determinis-
tic process and segments on the left of the permutation
have higher priority. Depending on the circumstances,
it might happen that in a specific position all segments
lead to duplicate measurements. If this situation arises, a
random value between 1 and A is chosen and a segment
with this length is appended to the ruler.

Evaluation of an individual follows two criteria: ruler
length and legality of the solution (i.e., whether it con-
tains repeated measurements). The effect of the addition
of a simple heuristic to the interpretation process is also
analyzed [5]. Results presented show a small improve-
ment in the performance of the EC algorithm.

In this paper, the value for A is also evolved. This
is accomplished in a simple manner. The value for A is
given by the chromosome length, this means that by hav-
ing chromosomes with variable length each individual
will have a different A value. The only modification that
is necessary to the previous approach, with fixed length,
is made on the crossover operator, that for each individ-
ual, a different cut point is randomly selected. This will
ensure the swap of genetic material of different lengths,
thus providing individuals with variable length.

4 Experimental Results

To evaluate our approach we performed a set of exper-
iments with several OGR instances. More precisely, we
used the evolutionary algorithm to seek for good rulers
with 10 to 17 marks. The settings of the EC algorithm
are the following: Number of generations: 5000; Pop-

ulation size: 100; Tournament selection with tourney
size: 5; Elitist strategy; One point crossover with rate:
0.75; Since we are mainly interest in comparing both
random keys approaches, the number of total evalutions
is smaller than the usual number needed for attaining the
best results as presented in [5],

An evolutionary strategy like mutation operator is
used. When undergoing mutation, the new value vnew

for a given gene (i.e. a key in the chromosome) is ob-
tained from the original value void in the following way:

Vnew = Void + <7 X 7V(0, 1) (1)

Where N(0,1) represents a random value sampled
from a standard normal distribution and a is a parameter
from the algorithm. In our experiments we used a = 0.1.
Mutation rate was set to 0.25 per gene. For every OGR
instance we performed 30 runs with the same initial con-
ditions and with different random seeds. All initial pop-
ulations were randomly generated with values for keys
selected from the real interval [0,1]. Significance of the
results was tested with a t-test with level of significance
0.05.

Table 1. Best rulers found for 30 runs without the use of a
simple heuristic and comparing with optimal results.

Instances
OGR-10
OGR-11
OGR-12
OGR-13
OGR-14
OGR-15
OGR-16
OGR-17

Optimal
55
72
85
106
127
151
177
199

RKFixA
55
72
91
111
131
167
200
236

RK Evolve A
55
72
91
114
131
167
202
230

The examination of table 1 shows that both RK ap-
proaches have found good quality solutions when com-
paring to the known optimal results. As expected, for a
smaller number of marks, both RK approaches were able
to find optimal solutions, while for the larger instances,
the rulers found are of poorer quality. Nevertheless, it is
interesting to observe that are not great differences be-
tween both RK approaches. As a matter of fact, the best
solutions found are always the same with exception for
the instances with 13,16 and 17 marks. For OGR-12 and
OGR-15, the static version of the algorithm provide bet-
ter solutions, while for OGR-17 evolving A has attained
a better solution.

The observation of the best rulers found is not a su-
ficient indication if the introduction of the evalution of
A is a worthwhile addition to the algorithm. By looking
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Table 2. Best rulers found and averages of the best rulers for
30 runs, for all the tested approaches without the use
of a simple heuristic.

Instances

OGR-10
OGR-11
OGR-12
OGR-13
OGR-14
OGR-15
OGR-16
OGR-17

RK
best
55
72
91
111
131
167
200
236

Fix A
avg
60.1
76.0
95.6
117.2
143.6
172.8
207.8
245.5

RK
best
55
72
91
114
131
167
202
230

Evolve A
avg
57.8
74.9
94.4
118.5
144.4
174.6
210.5
246.5

t-test
p < 0.05
0.000159
0.031262
0.008301
0.017769
0.672176
0.054341
0.008406
0.157805

Table 3. Best rulers found and averages of the best rulers for
30 runs, for all the tested approaches with the use of
a simple heuristic.

Instances

OGR-10
OGR-11
OGR-12
OGR-13
OGR-14
OGR-15
OGR-16
OGR-17

RK Fix A
best
55
72
92
113
137
167
197
228

avg
58.0
75.0
94.5
116.4
142.1
171.5
205.0
240.6

RK
best
55
74
95
112
137
169
198
234

Evolve A
avg
58.1
75.5
95.3
118.0
144.2
173.3
206.8
243.5

t-test
p < 0.05
0.953500
0.130064
0.001153
0.014721
0.001120
0.045272
0.094827
0.021833

at table 2, we can also compare the averages of the best
solutions found for the 30 runs (column avg). Results in
bold indicates better results as a pattern is formed: for
smaller instances, the evolution of A consistently finds
higher quality rulers while for a larger number of marks,
not evolving A attains overall better averages. Making
a statistical analysis of the results, we can find signifi-
cant differences for most of the OGR instances (column
t-test, significant results in bold).

A final experiment was performed regarding this is-
sue. Table 3 presents the attained results with both RK
approaches with the usage of a simple heuristic (as in
[5]). The use of an heuristic favouring small segments
introduced another difficult factor for the evolution of
the maximum segment length. In terms of averages, the
static version is always better and for best rulers found
(with the single exception of OGR-13).

5 Conclusions
In this paper we presented some experiments regard-

ing the evolution of the maximum segment length of a
Golomb Ruler. This effect was attained by introducing
variable length cromosomes. Results presented in this
paper suggest that there aren't significant gains in evolv-
ing the maximum segment length. Even so, it seems that
there might be some advantages for lower instances.
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Abstract
We propose replacing the traditional tree depth limit

in Genetic Programming by a single limit on the amount
of resources available to the whole population, where re-
sources are the tree nodes. The resource-limited tech-
nique removes the disadvantages of using depth limits at
the individual level, while introducing automatic popu-
lation resizing, a natural side-effect of using an approach
at the population level. The results show that the replace-
ment of individual depth limits by a population resource
limit can be done without impairing performance, thus
validating this first and important step towards a new ap-
proach to improving the efficiency of GP.

1 Introduction
Genetic Programming (GP) solves complex problems

by evolving populations of computer programs, using
Darwinian evolution and Mendelian genetics as inspira-
tion. Bloat is an excess of code growth caused by the
genetic operators in search of better solutions, without
a corresponding improvement in fitness. It is a serious
problem in GP, often leading to the stagnation of the evo-
lutionary process [1].

The traditional approach to maintaining code growth
under control is by imposing a tree depth limit on the
individuals accepted into the population, on a tree-based
GP system [2]. Several other techniques have been used
with various degrees of success (reviews and recent work
in refs. 3-6), but none was ever as popular as the tradi-
tional depth limits.

This paper describes how to implement a simple tech-
nique to replace the traditional tree depth limits. It is
based on a single limit imposed on the amount of re-
sources available to the whole GP population, where
resources are the tree nodes or other elements in non
tree-based GP (e.g. code lines). The resource-limited
technique removes most of the disadvantages of using
depth limits at the individual level, while introducing au-
tomatic population resizing, a natural side-effect of using

an approach at the population level.
Previous work, focused on financial time series pre-

diction, also used limits on the total number of nodes in
the population [7]. The results presented were, however,
scarce, and the implications of the idea have not been
explored any further.

Section 2 of this paper deals with several aspects of
tree depth limits, while Sect. 3 introduces and explains
the limited-resources technique. Section 4 describes the
experiments made, Sect. 5 relates the results obtained,
and finally Sect. 6 draws some conclusions and points
towards future directions of this work.

2 Tree Depth Limits

Tree-based GP traditionally uses a depth limit to avoid
excessive growth of its individuals [2]. When crossover
creates an offspring that violates this limit, one of its par-
ents is chosen for the new generation instead.

Traditional depth limits effectively avoid the growth
of trees beyond a certain point, but they do nothing to
control bloat until the limit is reached. They may also
prevent the optimal solution to be found for problems
of unsuspected high complexity. This may happen ei-
ther because the number of possible nodes in a tree of
maximum depth is not enough to represent the solution,
or because a maximum depth may prove too hard a re-
striction to find the solution, regardless of the number of
necessary nodes (for example, in symbolic regression of
the quartic polynomial, xA + x3 + x2 + x, tree-based GP
usually finds a solution of depth 7, whereas solutions of
depth 6, 5, and even 41 are rarely found). Last but not
least, depth limits cannot be used on non tree-based GP
systems.

Various approaches have been tried in order to over-
come the difficulties mentioned above. Some rely on
choosing specialized genetic operators to keep tree

'The factored form of the polynomial, (x2 + l)(x2 + x), can be
represented with a tree of depth 4.
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growth under control, without imposing strict limits
[8,9].

Recent work on dynamic limits has achieved promis-
ing results without the need for specific operators [10,
11]. It introduces a dynamic tree depth limit, initially
set at a low value, but increased whenever needed to ac-
commodate an offspring that, although deeper than the
limit, is better than any other individual found during the
run [10], and optionally decreased again whenever pos-
sible [11]. The idea has even been extended to create
a dynamic size limit, where size is the number of tree
nodes regardless of depth (which would enable its use in
non tree-based GP), but this variation did not perform so
well as the original idea [11]. All in all, new and better
approaches to bloat control are still needed.

3 Limited Natural Resources in GP

Individuals in GP are built with small elements called
functions and terminals. Each individual is made from
a certain number of these elements, jointly designated
as nodes. We can refer to the number of nodes of an
individual as the amount of resources the individual uses
(which is also directly related to the computational effort
needed to evaluate it).

We propose limiting the total amount of resources the
population can use in each generation. We can think of
it as limiting the amount of natural resources available
to a given biological population, where each individual
competes with the others for its share, and the weakest
individuals perish when resources are scarce. In GP, re-
sources become scarce when the total number of nodes
in the population exceeds the predefined limit. Beyond
this point, not all offspring are guaranteed to be accepted
into the new generation. The allocation of resources to
individuals (ensuring their survival) is mainly based on
fitness, with size playing a secondary role.

All the candidates to the new generation are queued by
fitness, regardless of their size, and given the resources
they need in a first come, first served basis. The indi-
viduals requiring more resources than the amount still
available are skipped (do not survive) and the allocation
continues until the end of the queue. Some resources
may remain unused. A rule emerges from this proce-
dure, promoting the survival of the best individuals and
the rejection of 'not good enough for their size' individu-
als, where the relationship between size and fitness is not
explicitly programmed, but a product of the evolutionary
process itself.

The resource-limited approach is expected to cause a
steady decrease of the population size (defined as the
number of individuals) as long as code growth contin-
ues. According to recent work [12-15], this factor may
bring some benefits in terms of convergence to good so-

lutions. It is also expected that, after the resources have
reached the exhaustion point, eventually some new gen-
eration will use them more sparingly, having all its indi-
viduals surviving and still leaving some resources avail-
able. We have considered two options on how to deal
with this situation: (1) use the exceeding resources to
allow the survival of the best individuals of the previous
generation - the parents that would otherwise be replaced
by their offspring - by applying the same allocation pro-
cedure described above (but ensuring that the population
size never increases beyond its initial value), or (2) do
not use the exceeding resources, thus never allowing the
population size to increase again.

4 Experiments

The aim of these experiments is to see whether tradi-
tional tree depth limits can be replaced by resource lim-
its as described above, without impairing performance
in terms of fitness and computational effort. To perform
a fair comparison, the resource limit for the new tech-
nique must be such that, during the entire run, the total
amount of resources used is roughly the same for both
approaches. We also want to study the differences in the
evolution of population size and mean tree size inside the
population.

A simple problem was used for the experiments: sym-
bolic regression of the quartic polynomial (x4 -f x3 -f
x2 + x, with 21 equidistant points in the interval - 1 to
-hi). An initial population of 500 individuals (Ramped
Half-and-Half initialization [2] with maximum depth
6) was evolved for 50 generations, even if the opti-
mal solution was found earlier. Tree crossover was
the only genetic operator used, and reproduction rate
was set at 0.1. The function and terminal sets were
{-(-, —, x, -r, sin, cos, log, exp} (protected as in ref. 2)
and {x}, respectively. Selection for reproduction used
the lexicographic parsimony pressure tournament [5]
and selection for survival used no elitism (in the tradi-
tional sense only, since the resource-limited approach
can be considered highly elitist). A total of 50 runs were
performed with each of the following techniques:

None —> no limits
Depth —> tree depth limit
Rsteady —> limited resources, forced steady usage
Rlow —»limited resources, possible low usage

The first technique (None) uses in fact no technique:
nothing is done to control the growth of trees. The sec-
ond technique (Depth) uses the traditional tree depth
limit as described in Sect. 2, with the typical value 17.
The following two techniques, Rsteady and Rlow, use lim-
ited resources as described in Sect. 3, set at 14500. The
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Fig. 1. Evolution of the amount of resources used by the pop-
ulation (left: per generation, right: cumulative).

Fig. 2. Evolution of the population size (left plot) and mean
tree size inside the population (right plot).

difference between them is that Rsteady forces the us-
age of all available resources (whenever possible), while
Rlow leaves any exceeding resources unused (see Sect. 3
for details).

When looking for the ideal resources limit, 14500, we
searched (in multiples of 500) for such a value that, when
used to cap the amount of resources used per generation
with the None technique, would result in an amount of
cumulative resources (used during the entire run) similar
to the cumulative amount used with the Depth technique.
Capping at a lower value would have saved resources,
but so would lowering the tree depth limit, and one must
not forget we want to provide the same resources to both
techniques.

All the experiments were performed using the
GPLAB toolbox [16]. Statistical significance of the
null hypothesis of no difference was determined with
Kruskal-Wallis non-parametric ANOVAs atp = 0.01.

5 Results
The following results are based on the mean values

over the 50 runs performed for each experiment.
Figure 1 shows the mean resources usage (per gener-

ation and cumulative) obtained with all techniques. Al-
though the resources limit was chosen so that Depth and
Rsteady would produce similar behavior (see Sect. 4),
one could expect the Rsteady line to run close to None
until it reached the resources limit (left plot, dashed
line) and then stick to the limit until the end of the run.
Instead, it diverts from None much sooner and barely
reaches the limit on the last few generations, a result of
the dynamics of the resource allocation procedure de-
scribed in Sect. 3. The Rlow technique does not behave
much differently from Rsteady. Consequently, the cu-
mulative lines of Depth and both resource-limited tech-
niques (Rsteady, Rlow) show very similar evolution (right
plot), with no significant differences between them.

However similar the behavior of Depth, Rsteady and
Rlow may look in Fig. 1 (except during the last 10 or
15 generations in the left plot), Fig. 2 shows a different
reality, both in terms of population size and mean tree
size inside the population (note that the left plot of Fig. 1
is obtained by "multiplying" both plots of Fig. 2). Re-
garding mean tree size, both Rsteady and Rlow run close
to None during the entire run, while Depth diverts com-
pletely around generation 25 (right plot). In terms of
population size, in both resource-limited techniques it
starts dropping steeply (and not coincidentally) also by
generation 25 (left plot).

Regardless of the relationship between population size
and mean tree size, we are interested in looking at a dif-
ferent and important issue, fitness, and how it relates to
the computational effort spent to obtain it. Effort can
be roughly expressed as the total number of nodes evalu-
ated - in other words, the total amount of resources used.
Figure 3 shows best (lowest) fitness as a function of com-
putational effort. Apart from the fact that the None tech-
nique proves to be a terrible waste of resources (which
comes as no surprise), the remaining three techniques
show similar behavior (note the logarithmic scale). The
differences in the best fitness achieved during the run are
not statistically significant between any two techniques.

6 Conclusions and Future Work
The replacement of the traditional tree depth limit in

GP by a technique based on limited resources available
to the entire population can be done without impairing
performance, and at the same time removing most of the
disadvantages of using depth limits.

The resource-limited technique could not be expected
to perform better than tree depth limits in a simple prob-
lem like the one we have presented, where the resources
available for both techniques were the same, and clearly
more than needed to easily find the optimal solution. The
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Fig. 3. Best fitness as a function of computational effort.

superiority of the new approach lies in its ability to auto-
matically compensate higher tree size with lower popula-
tion size, thus providing the necessary elements to cope
with highly complex problems where tree depth tech-
niques may fail, not for lack of resources, but for lack
of flexibility. Unlike tree depth techniques, the resource-
limited approach is also easily adaptable to non tree-
based GP systems.

Still, the resource-limited technique may be criticized
because, like the traditional depth limit, it does not
prevent bloat from occurring freely until the limit is
reached. The solution we propose for this problem is
to adapt the idea of dynamic tree depth limits [10,11] to
the resource-limited approach: initially low, the limit is
only raised if that results in improvement of the popu-
lation fitness. This will be the next of. a series of steps
towards the achievement of more efficient GP systems.
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Abstract
Local search (LS) methods for solving constraint
satisfaction problems (CSP) such as GSAT, WalkSAT
and DLM starts the search for a solution from a random
assignment. LS then examines the neighbours of this
assignment, using the penalty function to determine a
better neighbour valuations to move to. It repeats this
process until it finds a solution that satisfies all
constraints. I CM considers some of the constraints as
hard constraints that are always satisfied. In this way, the
constraints reduce the possible neighbours in each move
and hence the overall search space. We choose the hard
constraints in such away that the space of valuations that
satisfies these constraints is connected in order to
guarantee that a local search can reach any solution from
any valuation in this space. In this paper, we incorporate
ICM into one of the most recent local search algorithm,
ESG, and we show the improvement of the new
algorithm.

1 Introduction
A (CSP) [1] is a tuple (Z, D, C), where Z is a finite set of
variables, D defines a finite set Dx, called the domain of
x, for each x e Z, and C is a finite set of constraints
restricting the combination of values that the variables
can take [2]. A solution is an assignment of values from
the domains to their respective variables so that all
constraints are satisfied simultaneously [2]. CSPs are
known to be NP-hard in general. LS techniques, for
example GSAT [3], WalkSAT [4], DLM [5, 6], the min-
conflicts heuristic [7] and ESG [8], have been successful
in solving large CSPs [2]. LS first generates an initial
variable assignment (or state). It then makes local
adjustments (or repairs) to the assignment iteratively until
a solution is reached. LS can be trapped in a local
minimum, a non-solution state in which no further
improvement can be made. To help escape from the local
minimum, GSAT [3] and the min-conflicts heuristic [7]
use random restart, while DLM [5,6] and ESG [10]
modify the landscape of the search surface. LS traverses

the search space to look for solutions using some
heuristic function. Ref Schuurmans and Southey
introduced three measures of LS performance: depth,
mobility and coverage. Depth measures how many
clauses remain unsatisfied as the search proceeds,
mobility measures how rapidly a local search moves in
the search space, and coverage measures how
systematically the search explores the entire space. The
efficiency of a LS algorithm depends on three things [2]:
(1) the size of the search space (the number of variables
and the size of the domain of each variable), (2) the
search surface (the structure of each constraint and the
topology of the constraint connection) and (3) the
heuristic function (the definition of neighbourhood and
how a "good" neighbour is picked). The Island
Confinement Method (ICM) aims to reduce the size of
the search space [2]. In this paper, we incorporate ICM
into ESG and we show how the new algorithm can
improve ESG.
The rest of this paper is as follows. Section 2 gives the
necessary background and definitions. Section 3
introduces local search algorithms. Section 4 shows the
SAT translated from a CSP and the data of the
experiments presented in this paper is this kind of SAT.
Section 5 presents the notion of the island confinement
method. Section 6 presents the ESGI algorithm and the
results of this algorithm is in section 7. Last section gives
conclusion remarks.

2 Background and Definitions
In this section, we illustrate some terminologies we use in
this paper. Given a CSP(Z,D,C). We use var(c) to denote
the set of variables that occur in constraint c e C. If
|var(c)| = 2 then c is a binary constraint. In a binary CSP,
each constraint c e C i s binary. A valuation for variable
set {xi,..., xn} = Z is a mapping from variables to values
denoted {xi —> ab ..., xn —• an}, where aj e DXJ.
A state of a CSP problem (Z,D,C) (or simply C) is a
valuation for Z. A state s is a solution of a constraint c if
s makes c true. A state s is a solution of a CSP (Z,D,C) if
s is a solution to all constraints in C simultaneously. Let
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unsat to be the set of literals occurring in the unsatisfied
clauses.
SAT problems are a special case of CSPs. A
propositional variable can take the value of either 0
(false) or 1 (true). A literal is either a variable x or its
complement x . A literal / is true if/ assumes the value 1;
/ is false otherwise.
A clause is a disjunction of literals, which is true when
one of its literals is true. For simplicity we assume that
no literal appears in a clause more than once and no
literal and its negation appear in a clause. A satisfiability
problem (SAT) consists of a finite set of clauses (treated
as a conjunction). Let / ' denote the complement of literal
/ : / ' = j t ' i f7 = x, a n d / ' = x i f / = x\ Let L' = { / ' | / e
L} for a literal set L. Since we are dealing with SAT
problems we will often treat states as sets of literals. A
state {xj—>ab ..., xn—•aj corresponds to the set of
literals {xj / aj= 1} u {x'j | aj = 0}.

3 Local Search
A LS solver moves from one state to another using a
local move. The neighbourhood n(s) of a state s is the
states that are reachable in a single move from state s.
The neighbourhood states are the states reachable in one
move from the current state regardless of the actual
heuristic function used to choose the neighbour state to
move to. The Hamming distance between states S\ and s2

measures the number of differences in variable
assignment of Sj and s2. A vector variable vec(x) = (xj,
..., xn). For the purpose of this paper, we are interested
in SAT problems. We assume the neighbourhood
function n(s) returns the states which are at a Hamming
distance of 1 from the state s. In an abuse of terminology
we will also refer to flipping a literal / which simply
means flipping the variable occurring in the literal. A
local move from state s is a transition, s => s', from s to s1

G n(s).
We will consider a SAT problem as a vector of clauses
vec(c). The general LS algorithm starts the search from a
random valuation. This valuation represents the current
state. Some LS algorithms may start the search from a
heuristically chosen valuation. LS then moves from the
current state to a better neighbour. If there is no better
neighbour then it is local minima, trap. It escapes this
trap. Some LS algorithms may include a restart and/or
tabu list. If the search could not find a solution within a
number of flips it restarts the search. It uses tabu list to
avoid flipping the same variable in the next coming
number of steps.

4 Encoding CSP as SAT Problem
In this research, we focus on a specific class of SAT
problems, namely those encoding from a binary CSP. We
can encode any binary CSP (Z,D,C) to a SAT problem as
follows. Every CSP variable x e Z i s mapped to a set of
propositional variables {xah ..., xan} where Dx = {ab ...,
an}. For every X G Z , SAT(Z,D,C) contains the at-least-
one-on clause xaJ v ... v xan which ensures that any
solution to the SAT problem gives a value to x. Each
binary constraint c e C with var(c) = {x,y} is mapped to
a series of clauses. If {x -> a, y -> b} is not a solution of
c we add the clause xa' v yb' to SAT(Z,D,C), where xa'
and yb' e Z. This ensures that the constraint c holds in
any solution to the SAT problem. We call these clauses
problem clauses.
The above formulation allows the possibility that in a
solution, some CSP variable x is assigned two values.
Choosing either value is guaranteed to solve the original
CSP. This method is used in the encoding of CSPs into
SAT in the DIMACS archive. When a binary CSP
(Z,D,C) is translated to a SAT problem SAT(Z,D,C), all
the clause have the form x ' v y ' except the at-least-one-
on clauses.

5 The Island Confinement Method
The ICM is based on the observation: the solution space
of any subset of constraints in P encloses all solutions of
P. Solving a CSP thus amounts to locating this space to
all the constraints in P, which could be either points or
regions scattered around in the entire search space. The
solution space of constraints D is connected if the search
can move between any two solutions of D without
violating any constraint in D. The idea of ICM works by
finding a set of constraints which are connected, it starts
the search from an assignment which satisfies all these
constraints and finally restrict LS to search within this
space instead of searching in the entire problem space.
Therefore the search space becomes smaller and it
contains all the solutions.
Let sol(C) denotes the set of all solutions to a set of
constraints C, in other words the solution space of C. A
set of constraints C is an island if, for any two states s0, sn

€ sol(C), there exist states Si,...,sn.i e sol(C) such that Sj
=> si+i for all i e {0, . . . ,n- l} . That is we can move from
any solution of C to any other solution using local moves
that stay within the solution space of C.
Let lit(c) denote the set of all literals of a/set of clause c.
A set C of clauses is non-conflicting if there does not
exist a variable x such that x, x' e lit(C). A non-
conflicting set C of clauses forms an island [2].
Therefore, the problem clauses are an island/island
clauses. Given a SAT problem, we can incorporate ICM
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into any LS algorithm by the following steps: We split
the clauses into c ;' and c r \ where c j' and c r' are the
island and the at least-one-on clauses respectively. Make
an initial valuation that satisfies q'; getting inside the
island, c^ consists of clauses of the form x' v y \ An
arbitrary extension of lit(Ci') to all variables can always
be such an initial valuation. Restricting the search to
search within the at-least-one-on clauses while satisfying
the problem (island) clauses. To do so, we exclude
literals 1 from flipping when s1 = s - 1 u 1' does not satisfy
Cj. Hence we only examine states that are in n(s) and
satisfy Cj\

6 Incorporating ICM into ESG
The exponentiated subgradient algorithm (ESG) is a
general-purpose Boolean linear program (BLP) search
technique [10]. A BLP is a constrained optimization
problem where one must choose a set of binary
assignments to variables vec(x) = */,..., xn to satisfy a
given set of m linear inequalities vec(di). vec(x) <
bi,...,vec(dm) vec(x) < bm, where vec(dj) and bj are
constants, i=l, ..., m, while simultaneously optimizing a
linear side objective vec(a). vec(x) [10]. Dale [10]
describes how to encode a SAT problem as BLP. The LG
for a SAT problem of m clauses vec(c) = cl, . . . , cm and kj
literals in each Cj can be given by the following equation:

where yi is the real valued Lagrangian multiplier (LM)
associated with constraint Cj. Cj is the penalty for violating
Cj. ZO(Ci) = 1 or 0 when Cj is violated or satisfied by s
respectively, s is the current assignment. The objective is
to minimize L(s, vec(c)). The following is the ESG
algorithm;
ESG(vec(c))
Let s be a random valuation
vec(y) := 1, tabulit := 0
while (max number of tries not reached yet)

while L(s, vec(c)) > 0 and (max n. flips is not over))
unsat = n(s)
if (unsat is empty) then it is a trap
rand := choose a random number between 0-100
var := choose any variable randomly
if ((rand) < noise) s - {var} u {var'}
else learn: increase the LMs for the unsat clauses

else choose the best / from unsat
s = s - { l } u {1'}

If (weight update condition holds) update vec(y)
return s

ESG starts the search from a random assignment. It then
searches for a solution and stops if it reaches a maximum
number of flips. In each try, ESG restarts the search. ESG

flips one of the best variables from the unsatisfied clauses
of the current assignment to move to a better neighbour
state. The better neighbour state is the state which has
smaller LG than the LG of the current state. Note that
flipping a variable from the unsatisfied clauses to move
to a better neighbour is a common practice in local search
algorithms like DLM and WalkSAT. When there is an
ESG trap, with probability noise, where noise < 100,
ESG makes noise by flipping any variable randomly and
with probability 100-noise, ESG learns by increasing the
LMs of the unsatisfied clauses. Note that a clause has
higher LM means this clause has been involved in a
higher number of traps traps. Therefore, ESG chooses to
flip a variable from the unsatisfied clauses to satisfy the
clauses of higher LMs in the next move in order to
reduce LG. LG = 0 means all the clauses are satisfied.
ESG updates the LMs after a cetain number of flips to
prevent the clauses from having very high LMs.
The following is the El algorithm, the ICM incorporating
into ESG:
EI(vec(c))

split vec(c) into vec(Cj) and vec(cr)
make an initial valuation s that satisfies vec(Cj)
vec(y) := 1, tabulit : = 0
while (max number of tries not reached yet)

while L(s, vec{c}) > 0 and (max n. flips is not over))
unsat = u {1 = lit(c) | c e vec{cr}, s £ sol(c) and

( s - l u l ' ) e s o l ( C i ) }
if (unsat is empty) then it is an island trap

rand := choose a random number between 0-100
vars := u {var | if s-{var} u {var'}} then s e

var := choose a variable from vars randomly
if ((rand) < noise) s - {var} u {var'}
else escapes this island trap in the same way

mentioned in [2]
else choose the best / from unsat

s = s - { l } u {!'}
return s
We implemented El (The source code file can be taking
by emailing the authors) by modifying the code of
distribution of ESG. The input to El is the set of SAT
clauses. El splits the clauses into island clauses and none
island clauses. El starts the search from a random
valuation inside the island by initial assignment which
satisfies all the island clauses. As mentioned in section 4
that an arbitrary extension of lit(Cj') can be such an
initial assignment. A free literal is a literal once flipped
the search will not violate any of the island clauses so
that the search will remain searching inside the island. El
saves the free literals from the unsatisfied clauses into
unsat. An island trap happens when flipping any of the
literals in the unsatisfied clauses violates at least one of
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the island clauses and hence gets the search outside of the
island. To escape this trap, El flips the free literal var if
the chosen probability is less than noise, where noise is a
parameter. El escapes the island trap using the same
strategy used when escaping from the island trap in
DLMI [2]. In this strategy, we heuristically choose to free
one of the literals in the unsatisfied clauses by flipping
some literals from the satisfied clauses. For instance,
suppose we want to free the literal x from the unsatisfied
clauses. We know that flipping x violates the island
clauses, say, Ci and C2. Flipping x violates Ci and c2

means x is the only true literal in each of Cj and c2.
Therefore, we try to make one more literal true in each of
Cj and c2. By doing so we guarantee that there are two
literals true, x is one of them, in each of Cj and c2. Cj and
c2 still be satisfied after flipping x. If there is no island
trap or after escaping from the island trap, El flips the
best literal / from unsat in order to move to a better
neighbour.

7 Experiments
The ESG implementation has the following parameters: -
mf: max flips before restarting, -mr: max restarts before
aborting, -cp : number of reweights between corrections,
-alpha: scaled reweight step size (l+alpha*n/m), -rho:
rate of weight shrinkage to mean for sat clauses, -noise:
probability of noise in a trap and -rawalpha: raw
reweight step size, (never used with -alpha together).
The -cp, -alpha, -rho and -rawalpha are the parameters
used to update the LMs for the clauses. We have chosen
to set the -alpha parameter instead of -rawalpha because
of better performance. In all ESG experiments reported
[10], the -nr flag is used to fix the random number
generator seed to 0. We adopt the same practice.
The ESG distribution does not come with any
recommended parameters sets. We tuned, with the help
of the original authors, the parameter settings for each of
the benchmark sets. The parameters -rho 0.99 and 0.99, -
alpha 0.995 and 0.999, -nose 0.02 and 0.09, -cp 50 and
300, -mr 10 and 10 and -mf 500 and 10000 is for the n
queens and random permutation generation problems
respectively.

The following table gives a comparison of ESG and El
for n queens and random permutation generation
problems, we give the P value for El, the parameter
needed when escaping from the island trap. The tables
give the success ratio, average solution time (in seconds)
and average flips on solved instances for ESG and El.
The advantages of the ICM is evident in improving ESG.
El gives substantial and consistent improvement over
ESG in term of both time and number of flips in all
benchmark instances.

8 Conclusion
We have presented the El algorithm which is the ICM
incorporated into ESG. We have seen the improvement
gained by El. We believe that there is a plenty of scope
for using the ICM concept to improve other LS
algorithms, such as WalkSAT and the min-conflicts
heuristic.
Instance ESG

Succ Time |Flips

El

succ time |Flips

N-queen problem and P = 0.8

1Oqueen

20queen

50queen

lOOquen

20/20

20/20

20/20

20/20

0.02

0.04

1.03

15.23

235

317

1424

7523

20/20

20/20

20/20

20/20

0.00

0.03

0.90

4.80

81

113

179

264

Random permutation generation problems and P = 0.8

pp-50

pp-60

pp-70

pp-80

pp-90

pp-100

20/20

20/20

20/20

20/20

20/20

20/20

0.83

.39

5.22

5.10

4.23

9.25

2198

2580

6099

4956

5632

7283

20/20

20/20

20/20

20/20

20/20

20/20

3.08

1.04

1.23

.67

2.55

2.88

228

422

440

461

434

482
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Abstract
The assessment and forecast for atmospheric quality have
become the key problem in the study of the quality of
atmospheric environment. In order to evaluate the grade of
the atmospheric pollution, a model based on the particle
swarm optimization (PSO) algorithm is proposed in this paper.
Experimental results show the advantages of the proposed
models, such as pellucid principle and physical explication,
predigested formula and low computation complexity. In
addition, an improved Elman neural network, namely, the
output-input feedback Elman (OIF Elman) neural network is
also applied to forecast the atmospheric quality. Simulations
show that the OIF Elman neural network has great potential
in the field of forecasting the atmospheric quality.

1 Introduction
The air environment is closely linked with human
health and life, whereas the atmospheric quality has
been deteriorating with the quickening rhythm of
economic growth and industrialized progress. The
problems regarding the atmospheric pollution have
attracted more and more attention.
In order to control the atmospheric pollution, many
methods have been proposed and used to evaluate the
atmospheric quality, such as algorithms based on
grayer clustering, fuzzy mathematics and step analysis,
and some others. But there is an obvious limitation that
the assessment process and assessment results are lack
of specific physical meaning when using these methods.
In general, it is difficult to provide directly scientific
basis for environmental renovation planning. A model
based on PSO is proposed to evaluate the grade of
atmospheric pollution in this paper.
The atmospheric quality forecasting is an important
research subject. There are three kinds of commonly
used atmospheric forecasting models, namely: latent,
statistic, and numerical forecasting. These models are
either excessively complicated or are lack of precision
in forecasting111. Recently, some researches have
explored some methods based on artificial neural
networks (ANN) and applied them to the field of
atmospheric pollution forecasting. In this paper, an
improved output-input feedback Elman (OIF Elman)

neural network is used to forecast the atmospheric
pollution of a city in the Northeast of China.
Experimental results show that the proposed method
could provide an effective approach for the
atmospheric pollution forecasting.

2 Application of PSO for atmospheric
quality assessment

2.1 Brief introduction to PSO

Particle swarm optimization (PSO), originally
developed by Kennedy and Elberhart121, is a method for
optimizing hard numerical functions on metaphor of
social behavior of flocks of birds and schools offish. A
swarm consists of individuals, called particles, which
change their positions over time. Each particle
represents a potential solution to the problem.
Let the /th particle in a £>-dimensional space be
represented asX{= (xih Xi2,...txid) (i-l,2,,..tm). The best
previous position (which possesses the best fitness
value) of the /th particle is denoted by Pi=(Pu,
Pi2>~->PiD)> which is also called Pbest. The index of the
best Pbest among all the particles is represented by the
symbol g. The location Pg is also called gbest- The
velocity for the /th particle is represented as K/=
(VuiVa—tVo)). The concept of the particle swarm
optimization consists of, at each time step, changing the
velocity and location of each particle towards its Pbest

and gheM locations according to Eqs.(l) and (2),
respectively:

v,v/ = Mv,, + c,r,(pu -xid) + c2r2(pgd -xid) (1)
**=*«+<** (2)

where w is the inertia coefficient which is a constant in
the interval [0,1] and can be adjusted in the direction of
linear decrease; c\ and c2 are learning rates which are
nonnegative constants; rx and r2 are generated
randomly in the interval [0,1]; vui [-vmax, vmax], and
Vmax is a designated maximum velocity. The termination
criterion for iterations is determined according to
whether the maximum generation or a designated value
of the fitness is reached.
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Table 1 Limiting values of standard densities and benchmark values in "Environment Air Quality Standard (GB3095-1996)" and
the relative values at each level

Atmospheric
pollutants

O1

CJO

^ grade
Xi0

1st

Qi
grade

Xji

2nc

Ci2

1 grade

xi2 c
3rd

i3

grade 4th grade
Ci4 Xi4

so2NOX
NO2
FM14

TSP
CO

Fallen dust

0.020
0.015
0.015
0.020
0.050
0.500
2.000

I 0.05
I 0.05
I 0.04
1 0.05
I 0.12
I 1.50
I 5.50

2.50
3.33
2.67
2.50
2.40
3.00
2.75

0.15
0.10
0.08
0.10
0.30
4.00
12.0

7.50
6.67
5.33
5.00
6.00
8.00
6.00

0.25
0.15
0.12
0.25
0.50
6.00
24.0

12.50
10.00
8.00
12.50
10.00
12.00
12.00

0.50
0.30
0.25
0.50
1.20

10.00
40.00

25.0
20.0
16.7
25.0
24.0
20.0
20.0

Table 2 Ranges of a, b and c for different PSO parameters

Ranges of PSQ parameters [-120, 120] [-200, 200] f-1000, 10001 r-3000, 30001

a, b, c
[119.996557,

0.354625,0.824222]
[199.991384,

0.378879,0.7287621
[999.984087,

0.460297, 0.5330391
[2999.993160,

0.518968,0.4505301

2.2 A PSO-based model for assessment of
atmospheric quality

2.2.1 Universal formula for calculating harm rate of
atmospheric pollution

The harm rate of pollution of the ith atmospheric
pollutant can be expressed as13':

R, = l/(l + a,£?~*'c') (3)
where at and bt are parameters related to the ith
pollutant, and ct is the measured density of the ith
pollutant. Parameter ct can be replaced with a relative
density131, namely, */= ct / ci0. Then Eq.(3) can also be
rewritten as:

where ci0 is a predefined parameter of the ith pollutant,
usually taken as the natural basic density of the ith
pollutant. By using the relative density, at and b( can be
regarded as that they are irrelative with the
characteristics of the pollutant. Thus Eq. (4) is also
suitable to the cases of multi-pollutants.
To generalize the applicability of the model, a universal
parameter c is introduced in Reference [4], which is
needed to be ascertained unrelated to the ith pollutant
in Eq. (4). Then it follows that

f ' ) c (5)

2.2.2 Optimization of parameters using PSO method

According to the limiting values of standard densities
Cih Ci2 and Cih the benchmark value Ci0 enacted for
seven special atmospheric pollutants and the limiting
value of obvious harm Ci4, which are all regulated by
the enactment "Environment Air Quality Standard
(GB3095-1996)", the relative value at each level xik

(£=0,1,2,3,4) can be worked out and listed in Table 1.

In order to use the PSO method to optimize parameters
in Eq. (5), the objective function is selected as follows

min/(x) = m i n { ( f s ( * # - * f e ) 2 ) / ( * « ) } (6)
Jt=O/=O

where m is the number of the selected pollutants; K is
the number of the atmospheric pollution levels; Rik is
the harm rate of atmospheric pollution of the ith
pollutant for level k, and Rke is the objective value of
the harm rate of atmospheric pollution for level k,
respectively. The values of m and K are taken as 7 and
5, respectively, in this paper.
According to the index grading principle of geometric
proportion evaluating and arithmetical classification,
the objective values of harm rate of atmospheric
pollution for the five levels can be obtained as 0.01,
0.0463, 0.1284, 0.3562 and 0.99m.
In the process of optimizing parameters in Eq.(6) by
using the PSO, we find that the values of parameters
are changed obviously with the differences of the
intervals of the parameters in PSO as shown in Table 2.
Moreover, the value of a is approached to the lower
limit of the interval. Thus the functional relation
between the harm rate of atmospheric pollution and the
relative densities of pollutants can be set up by two
parameters approximately.
The optimal values of parameters a and b obtained by
using the PSO are 63.93 and 0.3401 respectively.
Therefore the calculating formula of harm rate of
atmospheric pollution suited for the cases of
multi-pollutants can be formulized generally as:

) (7)

2.2.3 PSO-based assessment model for atmospheric
pollution

The values of a and b could be calculated by using the
PSO method and Rt can be obtained using Eq.(7). Then
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the assessment for the atmospheric quality could be
performed. But how to integrate different R{ is a key
problem. A comprehensive method is proposed in [3]
for the assessment of atmospheric quality with
multi-pollutants. Based on this method, the
optimization is performed here by using PSO algorithm.
Define a variable R to represent the comprehensive
harm rate of atmospheric pollution. The final formula
for the assessment of atmospheric quality can be
illustrated as follows:

where m is the number of the types of pollutants, Rt is
the harm rate of atmospheric pollution of the rth
pollutant, wf is the normalized weight value of the rth
pollutant, respectively. Parameter w, can be defined
by w'k which is the relative importance of the
corresponding level of k. The values of w'k are[51:

;=0,
can be formularized as follows:

4 = 1 . 6 7 , H>;=2.33, W ; = 3 . Then wt

f

_ J <9>

where y. is the relative importance of theyth pollutant,
namely, v. -w'k if Rj ranked as k level.
The atmospheric quality could be assessed according to
the value of R if it is known. The harm rate of pollution
at each level of each atmospheric pollutant could be
worked out according to Table 1 and Eq.(7). Taking the
average of the same level of all atmospheric
pollutants as the standard pollution harm rate value
of the corresponding level, the ranges of R for all the
five levels can be obtained as follows: [0,0.0215],
[0.0215, 0.0383], [0.0383, 0.1245], [0.1245,0.4056],
[0.4056, 0.939].

Table 3 Assessment results of a city of Northeast of China
Harm rate Assessment Real

R results results
Data

2002.3.15
2002.3.16
2002.3.17
2002.3.18
2002.3.19
2002.3.20
2002.3.21
2002.3.22
2002.3.23
2002.3.24
2002.3.25
2002.3.26
2002.3.27
2002.3.28
2002.3.29
2002.3.30
2002.3.31

0.0273
0.0305
0.0427
0.0302
0.0272
0.0249
0.2355
0.1481
0.0276
0.0234
0.0324
0.0388
0.0432
0.0289
D.0260
0.0396
0.0285

good
good
slight
good
good
good

moderate
moderate

good
good
good
slight
slight
good
good
slight
good

good
good
slight
good
good
good

serious
moderate

good
good
good
slight
slight
good
good
good
good

2.3 An example for assessment atmospheric quality

The real monitoring density values of the three main
pollutants (PMJO, SO2 and NO2) in a city of Northeast
of China are selected as the sample data. Considering
the characteristics of windy and sandy, and the notable
pollution in spring in this city, we select the sample
data from 15 March 2002 to 31 March 2002. The
assessment results calculated by the proposed method
are listed in Table 3. Satisfactory results in the table
show that the proposed PSO-based method is effective
and applicable for the assessment of atmospheric
quality.

3 Application of OIF Elman network for
atmospheric quality forecasting

3.1 OIF Elman neural network

Because of the strong nonlinear characteristics of the
variation of the atmospheric pollution, we consider to
use a neural network model to get more accurate
forecasting. It has been demonstrated that the
output-input feedback Elman neural network (OIF
Elman NN) could be used successfully in the
identification and forecasting for the nonlinear
systems161. Accordingly, the OIF Elman NN is selected
for forecasting of the atmospheric quality in this paper.
The OIF Elman NN has two particular layers called
context layer and context II layer besides the
conventional input, hidden and output layers. The
context layer and context II layer could memorize the
former value of the hidden and output layer nodes,
respectively, so they could be regarded as a time-delay
operator. Therefore the feedforward part of the network
could be modified in the learning process while the
recurrent part is fixed. The structure of OIF Elman NN
is depicted as Fig. 1.The mathematic model of OIF
Elman network is:

(10)
(11)
(12)

y() () (13)
where v/7, W2, W\ W4 are, respectively, the weights
which are link the hidden and context layers, the hidden
and input layers, the output and hidden layers and the
hidden and context II layers. xc(k) and x(k) are the
outputs of context layer and hidden layer,
yc(k) and y(k) are the outputs of context II layer
and output layer, a, y are the feedback gains of the
self-connections of context and context II layers,
respectively.
The formulas of the learning algorithm of the OIF
Elman network are as follows[6]
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Context2 nodes

Fig. 1. Structure of OIF Elman

3.2 An example of the atmospheric quality
forecasting

The real monitoring data from 1 December 2001 to 30
November 2002 in a city of Northeast of China are
selected as samples. The atmospheric quality
forecasting is performed using the OIF Elman NN.
There are three main pollutants in the real data, namely
the PMio, SO2 and NO2. An OIF Elman NN with 3
input nodes, 10 hidden and context nodes, 1 output and
context II node is used in this paper. The inputs of the
network are the corresponding pollutant density values
of three consecutive days, and the output is the
forecasting density value of the next day.
The values of a and r| are both set as 0.01 by trial and
error. The maximum iterative number is set as 1000.
The average errors of PM10, SO2 and NO2are 0.000252,
0.000203 and 000126, respectively. The forecasting
curves of PMio are shown in Fig.2, where the solid line
represents the real density curve of the corresponding
pollutant and the dot line represents the forecasting
density curve, respectively. Numerical results show that
the OIF Elman NN model is effective in the forecasting
of atmospheric quality.

4 Conclusions
Because the values of parameters a and b in the
equation to calculate the harm rate of the atmospheric
pollution are uniform for different pollutants, the
proposed method could have more advantageous when
the number of pollutant types is large. Since the

assessment of the atmospheric quality is performed
according to the density values of multi-pollutants and
the assessment criterion is according to the average
density of multi-pollutants, the assessing process is
more objective and has clear physical meaning.

Fig. 2. Forecasting curves of PM|0
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Abstract

This work presents a new hybrid model, based on Par-
ticle Swarm Optimization, Genetic Algorithms and Fast
Local Search, for the symmetric blind traveling sales-
man problem. A detailed description of the model is
provided. The implemented system was tested with in-
stances from 76 to 2103 cities. For instances up to 439
cities, results were, in average, less than or around 1%
in excess of the known optima. When considering all
instances, results were 2.1498% in excess, in average.
These excellent results encourage further research and
improvement of the hybrid model.

1 Introduction

This paper presents a new hybrid model for the trav-
eling salesman problem (TSP). The proposed model is
based on the Particle Swarm Optimization (PSO) [1]
heuristics and uses concepts of Genetic Algorithms (GA)
[2] and Fast Local Search (FLS) [3]. From PSO, the
model uses local maximum, global maximum and swarm
movement. From GA, we used the representation of
the solution and the order crossover for moving particles
across the discrete search space. FLS is used to improve
solutions found during the search, by evaluating points
close to each particle. The motivation in developing a
hybrid system is to achieve good performance for large
instances.

2 Particle Swarm Optimization (PSO)

PSO is a heuristic method for optimization proposed
by Eberhart and Kennedy [1], and is inspired in the be-
havior of social agents. In nature, this behavior can
be observed in bird flocking, bee swarming, and fish
shooling, for instance. The computational model is
population-based, where agents, called particles, change
their position (state) in the multidimensional search
space of the problem, according to own experience and
the influence of the neighboring particles. Each particle

lrrhis work was partially supported by a research grant from the
Brazilian National Research Council - CNPQ (process 350053/03-0)

has a limited store capability, keeping track only of infor-
mation about its current position, speed and quality (fit-
ness regarding the other particles), as well as its best po-
sition ever visited (best local solution - BLS). Amongst
the swarm of particles, the one with best quality is re-
ferred as "the best global solution" (BGS). At each time
tick, particles move, influenced by both BLS and BGS,
to a new position in the search space. This is an iterative
process, repeated until a stop condition is met, usually a
predefined number of iterations. BGS is updated when-
ever a better solution than the previous is found. This
procedure is similar the principle of elitism, common to
most GA applications since, throughout iterations, the
best solution is conserved. However, there is a subtle dif-
ference: BGS is a reference for all particles in the same
iteration (in GA, this would be similar to say that all in-
dividuals would mate with the best individuals). BLS is
used only by a particle itself, not sharing this informa-
tion with other particles. It is interesting that BLS would
be a point with good fitness but it would be better if this
point is far enough from the BGS so as to improve di-
versity. In population-based heuristics, diversity mainte-
nance throughout iterations is frequently a challenge, but
it is a necessary condition to assure a satisfactory explo-
ration of the search space. In PSO, when many BLS's
are somewhat close to the BGS, there will be a parti-
cle crowding and the search stagnates. A mechanism to
avoid the consequences of this undesirable convergence
will be described later. In the classical PSO model, the
movement of a particle is defined by Equation 1, where
its next position (X{+i) is updated using the current po-
sition and a speed term (Vi). In fact, the speed term ac-
tually does not have the dimension of velocity. It could
be better defined as AX{ but, for the sake of simplicity,
it is called speed (K) [1].

Xi+1=Xi + Vi (1)

The speed term is defined according to Equation 2:

Vi = ^ .n .dBLS + c2.r2 .dBGS (2)
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where Vi is the current speed of particle i\ r\ and r2

are random values in the range [0..1]; c\ and c2 are the
weights of BLS and BGS, respectively (in percentage);
dBLS and dBGS are the distance between the current po-
sition and BLS and the current position and BGS, respec-
tively. The speed term (that is, the updating rate of the
current position) is directly proportional to the distance
between the current position to BLS and BGS. There-
fore, within few iterations the particle will be attracted to
either BLS or BGS. The speed term controls the amount
of global and local exploration of the particle (that is, the
balance between exploration and exploitation). A high
speed facilitates global exploration, while a small speed
will encourage local search. A user-defined upper bound
(Vmax) is established to limit the maximum speed of par-
ticles. As mentioned before, when particles agglutinate,
a mechanism is necessary to avoid stagnation, and an
explosion dissolves the crowd, repositioning all particles
randomly in the search space, but not losing the previous
references of BLS and BGS.

3 Genetic Algorithms (GA)

A GA is a search and optimization heuristic based on
the Darwinian principle of the species evolution, where
individuals better fitted to the environment are able to
survive longer and propagate their genetic material to
more descendants. A GA is also a population-based
method with individuals that represent a possible solu-
tion for the problem. The genetic load is usually repre-
sented by a string of elements (genes). Individuals of a
population are chosen according to their quality (fitness)
to reproduce. Reproduction takes place by means of the
application of genetic operators (crossover and mutation,
for instance) to the selected pool of individuals, creating
a new population. In particular, crossover is a genetic op-
erator responsible for fostering local search, recombin-
ing pieces of two (or more) individuals. For permutation
problems in combinatorial optimization, many crossover
operators were proposed (see [2], for instance). In this
work we used a strategy inspired in the Order crossover
(OX). This operator works as follows: given two indi-
viduals, their genetic material is aligned and two random
cut points are selected. The region of the chromosome
between these two cut points is called matching section
and will be exchanged between individuals. The remain-
ing genes are mapped according to the matching section
and are submitted to a sliding motion, so as to fill up the
entire chromosome. Later, we shall explain how OX is
used in our hybrid model.

4 Fast Local Search (FLS)

The FLS algorithm, also known as fast hill climbing,
is an enhanced local search procedure first proposed by

Voudouris and Tsang [3]. Although FLS can achieve
similar results than the classic hill climbing (or neighbor-
hood search), it is more efficient, concerning processing
time. The main characteristic of FLS is the use of an
activation bit for each position of the of the current so-
lution vector. In the initial iteration, all bits of the bi-
nary activation vector are set to 1. Whenever two points
are selected, the corresponding bits are reset. From the
second iteration on, only the bits corresponding to per-
mutations of higher fitness (than the previous one) are
kept set. Consequently, the number of permutations is
greatly reduced, since changes occur only for those po-
sitions where the corresponding bit is set.

5 Traveling Salesman Problem (TSP)
The TSP is a classical problem of combinatorial op-

timization and its modeling is of great interest for En-
gineering, Operations Research and Computer Science.
For solving TSP, many methods have been proposed, in-
cluding heuristic ones [2][3][4][5]. The simplest TSP
considers a set of interconnected cities with symmetric
distances between two points. The problem is to find the
shortest path for visiting all cities passing only once at
each point and returning to the initial city. There are
many other variations of the problem, such as asym-
metric distances between cities, capacitated vehicles,
fuel/depot points with mandatory passing, time-windows
restrictions, and so on. The blind TSP (BTSP) allows
the starting point to be in any city and it is defined by
a symmetric distance matrix between cities D = [G^],
which gives the distance between cities i and j . A tour
(t) can be represented as a cyclic permutation [3], and its
cost is the total distance travelled, according to the given
permutation, passing just once by the NC cities and re-
turning to the origin. In the TSP library (TSPLIB), at the
Internet1, a large collection of instances previously used
as a benchmark is freely available. Those instances are
used for evaluating performance of computational meth-
ods, since the optimal tours are always known.

6 Methodology
The hybrid model proposed in this work can be de-

fined as a discrete PSO that uses explicit local search
and concepts from GA. The original PSO was devised to
cope with a continuous rather than discrete search space
and, therefore, some adaptations were necessary. We
also used a local search strategy so as to improve solu-
tions globally found. Our model has a strongly coupled
hybridism, since the GA characteristic appropriated to
deal with the permutation problem (operator OX) is em-
bodied in the model. This contrasts with loosely coupled

1http://www.iwr.uni-heidelberg.de/groups/comopt/software/
TSPLIB95/
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models that run independent systems and share only final
results. We believe that the fusion of concepts from dif-
ferent paradigms in the same model is the most efficient
way to tackle hard problems such as the TSP.

6.1 Initial swarm and particles

In our model, each particle represents a possible so-
lution for the BTSP (a complete tour). A given particle
is composed by the following information: current po-
sition (CP), BLS, current speed (V*), current fitness of
the particle (C fitness) and fitness of BLS (M fitness).
Besides the particle-related parameters, other global pa-
rameters are defined: maximum number of iterations
(Nmax), number of particles (Np), minimum distance
for computing fitness (Dmin), number of cities of the
problem (NC). Also, a matrix of distances between
cities (D = [d^]), computed using Euclidean distance, is
used as input data. Parameter NC determines the length
of vectors used in CP, BLS and BGS.

Fitness is computed by dividing Dmin by the cost of
the tour represented by the current solution. Consider-
ing the instances used in this work, Dmin is set to the
optimal value of the tour and, therefore, fitness values
represent the excess of distance relative to the known op-
timum for the instance. When the value of optimum tour
is not known, Dmm could be set to 1. Therefore, fitness
is always inversely proportional to the cost of the tour,
as in a minimization problem. The swarm represents a
population of particles and, at the startup, Np particles
are crated (usually 20 < Np < 50). For each particle
i, Vi is randomly initialized, respecting Vmax, and the
vector CP is set with a random, but valid, tour. For the
first iteration, BLS receives the value of CP. All just gen-
erated particles will be in different points of the search
space, and will have different values for CP. This repre-
sents a good diversity for the initial population. Next,
the fitness of each particle is computed. The BGS and its
fitness receives the corresponding values of the first gen-
erated particle and are updated as soon as any other par-
ticle is better than the previous stored value. The speed
term of Equation 1 requests two parameters: dBLS and
dBGS. In the classic PSO, those parameters are contin-
uous. Therefore, the distance between particles is cal-
culated as the value of BLS or BGS decreased by the
CP value. However, for the BTSP, each position of the
search space represents a complete tour (a permutation
of cities), thus requesting a new way to compute the dis-
tance between particles, inspired in the Hamming dis-
tance. Given two particles "A" and "B" representing a
tour, the distance between them is computed comparing
vectors departing from a common city (point zero). Ini-
tially, the distance is null and, for each position of the
vector, the corresponding values are compared. When-

ever they are different, the distance is incremented by 1.
In this way, the maximum distance possible will be ex-
actly equal to NC. This computation may require a pre-
vious adjustment in one of the vectors: it will be slid cir-
cularly until the initial point of both vectors is the same.
The new vector created does not change the encoded in-
formation about the tour (recall that it refers to a BTSP).

6.2 Diversity and movement

The average distance between particles and the BGS
is calculated in each iteration. If this value is too close to
NC (recall how the distance between particles is com-
puted), agglutination is characterized and the swarm is
exploded. This parameter is named diversity (S). In the
same way, it is possible to have agglutination around the
BLS of a particle. In this particular case, all surrounding
particles will have its BLS value changed to a random
value. This procedure simulates a local explosion of the
swarm. This diversity maintenance procedure does not
affect the original number of iterations and it is essential
for an efficient exploration of the search space.

The movement of particles is based on Equations 1
and 2 and the OX operator that recombines two possible
solutions. The OX operator is adapted as follows: only
one cut point (PIox) is randomly chosen and it is the
same for the two particles. The second cut point (P2ox),
necessary to define the matching section, is found tra-
versing circularly NC — 1 positions of the solution vec-
tor (tour represented by the particle). Operator OX is
applied to two sets of vectors: CP and BLS, and CP and
BGS. The number of positions of the matching section
for each operation is given by Equations 3 and 4, where
c\ and C2 are the same parameters of Equation 2.

SBLS ~ c\.Vi

SBGS = c2.Vi

(3)

(4)
This procedure generates new temporary solutions that
are evaluated according to their fitness. The solution
with best fitness will be considered the new CP of the
particle. The concept of speed in this work is the same
as in the classical PSO, and determines the level of ex-
ploration of the search space by the particles. As usual,
after a particle has been moved in the search space, its
BLS is updated accordingly. An iteration is defined by
the movement of one particle and, after each iteration
BGS is updated, if necessary.

6.3 Local search with FLS

Refinement of solutions takes place together with the
search process. This refinement is accomplished by a
local search, exploring positions of the search space sur-
rounding to a given reference particle by means of the
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FLS strategy. When two points of the activation vector
are selected, the changes in the solution vector (tour) is
done using the 2-opt heuristics [4]. That is, the sub-tour
defined by these two points is inverted leading to a differ-
ent tour, but preserving its structure. This newly created
solution is stored in a temporary memory. The remaining
bits set of the activation vector are browsed two-by-two
and the same procedure as above is repeated. As result,
the temporary memory holds several variations descend-
ing of the current solution. The best of them substitutes
the current particle and the remaining are discarded. The
2-opt heuristics alone is not efficient, but combining its
use with FLS in our hybrid model can enhance efficiency
of the search, especially when the problem has many lo-
cal maxima.

7 Results

Preliminary tests were done exhaustively to adjust
the parameters of the model to maximum performance,
considering accuracy and processing time. These tests
used two instances (pr76 and pr299), and the para-
meters that produced the best results were: Np=20;
JVmax=1200; ci=0.7; c2=0.3; Vmax=70% of NC; 5=0.4;
p(FLS)=0.l5 (probability of using local search in a
given iteration). Further experiments were done us-
ing other instances of the BTSP found in the TSPLIB:
ratl95, pr439, d657, prl002, rll304 and d2103. For all
instances, the suffix represents the number cities, that is,
from 76 to 2103. The system was implemented in ANSI
C programming language and tests were run in a PC-
clone computer with Athlon XP 2.4 processor and 512
Mbytes of RAM. Table 1 presents the results obtained
and values represent the amount of excess the solution is
from the known optimal value (in percentage). Columns
"Average" and "Best" are, respectively, the average of
the best results in 10 independent runs, and the best so-
lution found over all runs. Considering all instances, the
average excess was 2,1498%.

Table 1. Results obtained for several instances of BTSP.

Problem
pr76
ratl95
pr299
pr439
d657
prl002
rll304
d2103

Average
0.000
1.148
0.620
0.500
3.193
4.715
2.498
4.524

Best
0.000
0.810
0.120
0.280
2.114
3.569
1.454
3.433

8 Discussion and Conclusions
As expected, the quality of solutions found by the pro-

posed method decreases as the size of the problem in-
creases. However, for instances up to 439 cities, we ob-
tained excellent results, less than or around 1% of excess,
in average (less than 1% for the best). It is important to
note that there are many models devised to solve TSP,
including those that use PSO, such as [5] that relates the
application of their model to quite small instances (up
to 14 cities). Real-world problems usually have a much
larger dimensionality, for which more efficient models
must be used, such as the one here proposed.

Hybrid heuristic models are interesting for hard prob-
lems since they combine interesting features from sev-
eral techniques in a single paradigm. The concepts of
GA and FLS embodied in the PSO paradigm have lead
to a robust and efficient model, therefore justifying the
need for hybridism. Results can be considered excel-
lent for a heuristic method, when compared with other
similar methods in the recent literature. It is worth to
emphasize the use of FLS with 2-opt. This strategy has
enhanced solutions found by the algorithm, but at the ex-
pense of a larger, but acceptable, computational cost.

Results encourage further work that will comprise the
study of a less expensive FLS, as well as other strategies
that could improve the model, such as GA's concepts of
niches and species [2] and breeding and subpopulations
[6].
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Abstract
Conventional particle swarm optimisation relies on exchanging
information through social interaction among individuals.
However for real-world problems involving control of physical
agents (i.e., robot control), such detailed social interaction is not
always possible. In this study, we propose the Perceptive
Particle Swarm Optimisation algorithm, in which both social
interaction and environmental interaction are increased to mimic
behaviours of social animals more closely.

1 Introduction
Collaborative behaviour among social animals exhibits a
remarkable degree of intelligence. Often the behaviour of
flocks, swarms and insect colonies, arises through
interaction between the individuals in the collective and
through interaction with their environment. For example,
ants cooperate by modifying their environment (leaving
pheromone trails) and have their behaviour modified by
their environment (following pheromone trails) - a form
of communication known as stigmergy.

Particle Swarm Optimisation - a "swarm intelligence"
algorithm - was originally designed to simulate bird
flocking in order to learn more about the human social
behaviour [3]. However, the conventional particle swarm
optimisation relies on social interaction among particles
through exchanging detailed information on position and
performance. In the physical world, this type of complex
communication is not always possible. This is especially
the case when each individual does not know or cannot
communicate its own performance. To overcome this
form of limitation, both social interaction and
environmental interaction is required.

In traditional swarm intelligence, the environment of
the swarm is the search space. We propose the
Perceptive Particle Swarm Optimisation (PPSO)
algorithm, which allows a finite perception range for each
individual, in order to imitate social insects in the
physical world. The particles in the PPSO algorithm can
observe the search space and other neighbouring
particles, as social insects observe the world and other
individuals through senses.

Swarm intelligence and conventional particle swarm
optimisation are described in section 2. The PPSO

algorithm is discussed in comparison to conventional
particle swarm optimisation in section 3. Section 4
describes experiments to investigate the performance of
PPSO and conventional particle swarm optimisation. A
discussion of the experimental results is provided in
section 5.

2 Background
Swarm intelligence emerged from inspiration of the
collective intelligence in social animals such as birds,
ants, fish and termites. These social animals require no
leader. Their collective behaviours emerge from
interactions among individuals, in a process known as
self-organisation. Each individual may not be intelligent,
but together they perform complex collaborative
behaviours. In swarm intelligence, the models of social
animals are used to create software agents cooperating to
solve complex problems [2]. Typical uses of swarm
intelligence are to assist the study of human social
behaviour by observing other social animals and to solve
a variety of optimisation problems [1]. There are three
main types of swarm intelligence techniques: models of
bird flocking, the ant colony optimisation (ACO)
algorithm, and the particle swarm optimisation (PSO)
algorithm. Different techniques are suitable for different
problems. We focus on the PSO algorithm in this paper.

The particle swarm optimisation algorithm was
introduced by Kennedy and Eberhart in 1995 [3], The
algorithm consists of a swarm of particles flying through
the search space. Each individual in the swarm contains
parameters for position and velocity. The position of
each particle represents a potential solution to the
optimisation problem. The dynamic of the swarm is
governed by a set of rules that modify the velocity of each
particle according to the experience of the particle and
that of its neighbours depending on the social network
structure within the swarm. By adding a velocity to the
current position, the position of each particle is modified.
As the particles move around the space, different fitness
values are given to the particles at different locations
according to how the current positions of particles satisfy
the objective. At each iteration, each particle keeps track
of its personal best position, pbest. Depending on the
social network structure of the swarm, the global best
position, gbest, and/or the local best position, Ibest, is
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used to influence the swarm dynamic. After a number of
iterations, the particles will eventually cluster around the
area where fittest solutions are. The particle swarm
optimisation algorithm has been successfully employed to
solve various optimisation problems [4, 5, 6]. The
conventional particle swarm optimisation algorithm is
summarised in Fig. 1.
The swarm behaviour in conventional particle swarm
optimisation is influenced by the number of particles, the
neighbourhood size, the inertia weight, the maximum
velocity, and the acceleration calculation to modify the
velocity. The larger the number of particles in the swarm,
the more likely the swarm will converge on the global
optimum, because the social information exchange is
increased. (This is dependent on different neighbourhood
types and the neighbourhood size.) The performance of
PSO algorithm can be improved through other system
parameters. The influence of the current velocity on the
new velocity can be controlled by the inertia weight. A
large inertia weight compels large exploration through the
search space; a smaller inertia weight causes reduced
exploration. The influence of the particle's experience
and that of its neighbour is governed by the acceleration
calculation (line 8, Fig. 1).

The further away the particle is from the best position
from its own experience and its neighbour, the larger a
change in velocity that is made in order to return to

Line No.
1

2

3
4
5
6

7

8

9

10
11
12

Conventional Particle Swarm Optimisation

Initialise a population or a swarm of particles with a
random position x,(0) and a random velocity v,{0), where
x,€Rn , v,GR", and i = {1, 2, ..., /w} while « is the
dimension of the search space and m is the number of
particles in the swarm.
Loop for / = 1 to maximum iteration or until
convergence

Set/update inertia weight, w
Loop for i= I torn

Get fitness value, F(xf</))

If F(x,<0) > pbesth pbesti = F(x,</)) and xpbeslii

If F(x,{0) > gbest, gbest = F(x,</)) and x^ =
X/(0 or

If F(x,</)) > West, West = F(x,{/)) and Xibest =
*,{')
Modify the velocity of particle i e.g.
V/( /+/ ) = W.X,{t) + Ciri(XpteMt.i - X,<0)

+ c2r2(x^-x,<0)
where c is a constant number and r is a random
number between 0 and 1

Modify the position of particle / as

End loop /
Test for convergence

End loop /

Fig. 1. Algorithm of conventional particle swarm optimisation.

that best position. The acceleration limits the trajectory of
the particle oscillation. The smaller the acceleration, the
smoother the trajectory of the particle is. However, too
small an acceleration may lead to slow convergence,
whereas too large an acceleration drives the particles
towards infinity. The new velocity is limited by the given
maximum velocity to prevent particles from moving too
fast in the space.

3 Perceptive Particle Swarm Optimisation
In particle swarm optimisation, all individuals in the
swarm have the same behaviours and characteristics. It is
assumed that the information on the position and the
performance of particles can be exchanged during social
interaction among particles in the neighbourhood.
However, in the physical world, collective intelligence in
social animals often cannot emerge from direct
interaction among individuals. Instead, indirect social
interaction (stigmergy) must be employed. The same
constraints apply when swarm intelligence is used for
applications such as robot control. Consequently, in order
to imitate the physical collective intelligence in social
insects, we propose the perceptive particle swarm
optimisation (PPSO) algorithm.

The PPSO algorithm is illustrated in Fig. 2. Most of
the processes are similar to the conventional particle
swarm optimisation. However, instead of directly
exchanging information among particles in their
neighbourhoods, the PPSO algorithm allows each
individual a finite range of perception. Each particle can
observe the search space of the optimisation problem and
the approximate positions of other individuals within its
perception range. An n-dimensional objective function
for the problem is treated as an (n+l)-dimensional
physical landscape (the extra dimension being fitness),
which particles are constrained to fly above, and never
below.

Each particle in the swarm observes the search space
within its perception range by sampling a fixed number of
directions to observe and sampling a finite number of
points along those directions. Fig 3 shows an example of
a particle observing the search space for a landscape
optimisation problem, where the goal is to find the
highest position in the landscape.

For three-dimensional observations, the particle
observes the search space in six directions along its +x,-x,
+y, -y, +z and -z axes, where the +x axis is always in the
direction of the particle velocity. (This allows particles to
observe the search space at various angles and increases
the chance that the swarm will find a good solution.) The
particle attempts to perceive the landscape at several
sampled distances from its position, in each direction. If
the sampled point is within the landscape, the particle



261

perceives the height of the landscape at that point. To be
more realistic, the perception radius for observing the
search space can be separated into an inner radius and an
outer radius. Within the inner perception radius, the
particle has excellent perception, while its perception is
less reliable in the outer perception range. Particles can
observe neighbouring particles in their perception range
without sampling along specific directions. If there is any
neighbour within the perception range, the particle
perceives the approximate positions of neighbours and
then chooses the local best position to move towards.

The performance of each particle in the
neighbourhood is unknown to each other. Therefore,
each neighbouring particle might be in either a better or
worse position than its own position. The particle must
randomly choose the neighbouring particles (line 8, Fig.
2), which will influence the particle to move towards
them. The position of the chosen neighbour will be used
as the local best position. If there is more than one
neighbour chosen, the West position is the average
position among those neighbours. The presence of the
neighbouring particles influences the calculation of the

Line No.
1

2

3
4
5

f.

o

7

8

9

10

11
12
13

Perceptive Particle Swarm Optimisation

Initialise a population or a swarm of particles with a
random position x,{0) and a random velocity v,{0), where
i, E Rn+\ v, E RM+/, and i = {1,2,..., m)
Loop for t - 1 to maximum iteration or until
convergence

Set/update inertia weight, w
Loop for i= 1 torn

G/xX/)) = Observation result of the search
space within the perception range (e.g. heights
of the landscape) by particle i in direction j ,
where/ = {1,2, ..., d) and d is the number of
directions

F ( x ( / ) ) ~ ij**ji*t(O)>Q) A A "

# landscape pts perceived

If F(x,{0) > pbesthpbestt = F(x,<0) and xpbestti

H*(x(<0) = r* where k is the index of the particle
within the perception range, r is a random no.
between 0 and 1; with probability/?,

^{aSL (« ((/))>^}X
<i(0 + 'S1

a

# neighbours
where 5 is random no. between -1 and 1
Modify the velocity of particle i as
vft+1) = w.\,{t) + cr(xpbestfi - x,(/)) if no
neighbouring particle is found, or
V/(/+7) = W.V,(t) + C\ri(xpbest.i - *J{0)

+ c2r2(xibest - x,<0) if otherwise.
If \{{t+l) > yman vJ</+/)=vmor.sign(v/</+7)
Modify the position of particle i as

End loop /
Test for convergence

End loop /

Fig. 2. Algorithm of perceptive particle swarm optimisation.

Fig. 3. The particle observing the search space in the problem of
landscape optimisation

new velocity for the next iteration in the same way as
local social interaction, West, in the conventional PSO
algorithm (line 9, Fig. 2). However, the particle will have
no memory of the local best position from previous
iterations. If the local best position at the current iteration
does improve the performance of the particle, it will
affect the personal best position in the next iteration
because the pbest position is the position with maximum
fitness value that the particle has ever been.

Apart from parameters in the conventional particle
swarm optimisation, the main parameters of the
perceptive particle swarm optimisation are: the perception
radius, the number of observing directions and the
number of points to observe along each observing
direction. A larger perception radius allows more social
interaction and encourages particles to explore the search
space. This is because when there is no neighbouring
particle within the perception range, the particle moves
around its personal best position. However, the larger
perception radius requires more computation time to
observe the search space. A greater number of observing
directions and a greater number of points to observe
along each observing direction require more computation
time as well. However, more observing directions allow
a greater chance to obtain a good solution and the greater
number of points offers more accuracy in observation.

4 Experiment and Result
The PPSO algorithm is designed for physically realistic
optimisation problems (i.e. robot control) where the
fitness function cannot accurately measure the
performance of particles, i.e. the function is noisy or
dynamic. In order to demonstrate the performance of the
perceptive particle swarm optimisation, this experiment
compares PPSO with conventional particle swarm
optimisation on a landscape optimisation problem. The
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experiment on the conventional PSO is conducted with
three types of social interactions; pbest, lbest (with a ring
network) and gbest [7]. The particles operate in two
dimensions, see landscape functions below. For the
experiment on the PPSO algorithm, the particles operate
in three dimensions. The fitness function for each
particle is the average of the height of the landscape
observed from all observation directions minus the
distance between the particle and observed landscape.

Both experiments share the same number of particles
and other settings. Both algorithms are applied on the
same three landscapes, each with a different level of
difficulty; single-peak, two-peak and multiple-peak
landscape:

Table 3. Result for 20 particles
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where x,y& [-20,20]. Each experiment was run 20 times,
with the result averaged in order to obtain a reliable
result. The algorithms terminate when they reach the
maximum iteration of 100,000 or when all particles move
less than a distance of 0.2 units. The results we report
here are the number of iterations used for each algorithm,
the number of mis-optimisation and the optimisation

Table 1. Result for 10 particles
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Table 2. Result for 15 particles
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error, which is the minimum distance between the
maxima of the landscape and the final pbest position of
each algorithm. The result of this experiment is shown in
table 1, 2 and 3 for 10, 15 and 20 particles.

5 Discussion
Despite the fact that particles can no longer communicate,
they can only observe, the performance of the PPSO
algorithm is comparable and sometimes better than the
conventional one in terms of the optimisation error. For
problems where reliable communication is impossible (or
very difficult) such as robot control, the PPSO algorithm
should be significantly beneficial. Also, the
transformation of the objective function into a higher-
dimensional landscape over which the particles fly, may
enable the PPSO to perceive and move to optima in very
complex or deceptive spaces. However, the observation
mechanism requires more computation time to process,
each iteration. The greater the number of particles in the
swarm, the more the PPSO algorithm finds a good
solution; however, at the expense of greater computation
time. In contrast, having fewer particles might suffer from
greater convergence error, but it requires less time.
Alternative observation mechanisms can be investigated
in future work in order to reduce the computation time.
In addition, the PPSO algorithm can be adapted for other
physical problems such as control or nanotechnology. In
our future work, the PPSO algorithm for complex higher
dimensional optimisation problem will be investigated.
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Abstract

In this paper, we present the optimization of logistic
processes in supply chains using the meta-heuristic al-
gorithm known as wasp swarm, which draws parallels
between the process to optimize and the way individuals
in wasp colonies interact and allocate tasks to meet the
demands of the nest.

1 Introduction

A supply chain is a modern organizational framework
where goods are purchased from other companies in-
stead of being produced in-house. Logistics can be de-
fined as the sub-process of the supply chain that deals
with the planning, handling and control of goods be-
tween the manufacturing and consumption points, with
the goals of maintaining a flexible and economic stor-
age structure and still deliver the goods (or orders) to
the client in time. The scheduling algorithm has then to
decide which goods are delivered to which customers at
which time.

One way of achieving that goal is to assign individual
agents to the orders and let the population of agents in-
teractively find an optimal scheduling solution [1]. The
interaction between the agents is performed by exchang-
ing information about quantity, desired date and arriving
date. These logistic problems are very complex, so ef-
ficient optimization methods are required. Natural sys-
tems often solve complex problems in a very efficient
way by self organizing mechanisms. The idea here is to
imitate this biological mechanisms.

Biologically motivated algorithms consist of a large
variety of problem solving methods that in some way
emulate a biological process observed either in specific
organisms or in nature. They include, among others, ge-
netic algorithms, which imitate the principle of natural
evolution, social insect based algorithms, which emu-

late some aspects of the dynamic assignment of tasks
in colonies, and swarm algorithms, based on the flock
behavior of animals. Here, we present and apply a new
algorithm based on wasp swarm optimization, tune the
algorithm parameters and apply it to a simulation of a
real-world logistic process at Fujitsu-Siemens Comput-
ers.

The paper is organized as follows. Firstly, we present
an introduction to wasp swarm optimization, how it can
be applied to a distributed dynamic scheduling problem
and other optimization algorithms used in scheduling.
Afterwards, we describe briefly the model of the stud-
ied logistic process and the obtained simulation results.
The closing section concludes this paper and defines the
future research work.

2 Wasp swarm optimization (WSO)

All termites, ants, many bees and some wasp species
belong to the class of social insects. They live in orga-
nized communities (nests or colonies) where the mem-
bers depend on each other to survive, unlike other kinds
of insects where parents get together only to mate and
resulting offsprings are abandoned. The dynamic as-
signment of tasks in those communities, such as foraging
and brood care, to the community members, and the ef-
ficient way colonies achieve goals without a conscious
planning effort from any of its agents has made them in-
teresting study cases in the development of optimization
algorithms.

In [2], a model for the organization characteristic of
a wasp colony is presented. In addition to the tasks
of foraging and brooding, also shared with the ant
colonies, wasps colonies organize themselves in a hier-
archy through interaction between the individuals. This
hierarchy is an emergent social order resulting in a suc-
cession of wasps from the most dominant to the least
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dominant. The model of Theraulaz [2] describes the na-
ture of interactions between individual wasps and their
local environment with respect to task allocation.

Cicirello & Smith [3] have implemented this algo-
rithm in order to optimize the job assignment problem
in factories. Here we extend the wasp swarm optimiza-
tion to a scheduling problem in logistic systems.

3 Wasp swarm optimization in scheduling

Our model is concerned with the allocation of avail-
able stock to incoming orders, with the goal of minimiz-
ing the overall cost. Basically, each order is assigned to
a wasp in the beginning of the process. The WSO algo-
rithm is a bidding algorithm, where the wasps take the
role of bidders trying to acquire finite resources. Wasp
strength is defined by the characteristics of the order: its
urgency and its component requirements. After being as-
signed to an order, the wasps decide or not to bid for the
available components in stock. The higher the urgency
of the order, the higher the stimulus of the wasp to get
the needed components to satisfy it. The probability of
wasp A bidding for components in stock is given by:

rt1*) = =oT (1)

where rji is the tardiness of the order, Si is the bidding
threshold and a is the bidding exponent. Both 0* and
a can be adjusted to diminish or increase the number
of actually competing wasps, with effects in the general
speed of the optimization. Notice that all wasps use the
same value of a.

The wasps that choose to bid will compete for the
available resources, in order to satisfy their correspon-
dent order (see figure 1).

The competing algorithm is based on a formation of
a hierarchy within the wasps. The position of each
wasp in the hierarchy is based on its strength. Each
wasp can challenge the wasp that immediately precedes
it. The probability that wasp A wins the tournament
against wasp B (and thus switches places with the de-
feated wasp) is defined by:

p(A) = (2)

where (3 is the tournament exponent. The force F of
each wasp can be defined as a combination of its order
tardiness T and component availability A. Component
availability is defined as the ratio between the needed
components of an order, and their availability in stock.
If the stock is running low in the required components,
the strength of the wasp diminishes.

F(Ty A) = WtT - WaA (3)

Fig. 1. order assignment to wasps

Wt and Wa are constants that weight the importance
of the tardiness and the component availability, respec-
tively. In each iteration of the tournament, the wasp on
top of the hierarchy wins the right to get the components
it requires, as long as there are enough of them in stock.
If not, the wasp is eliminated from the process and the
right of choice is passed to the next wasp in the hier-
archy, and so on. For the next iteration, the force of
each wasp is updated according to the components still
in stock, there is a new tournament and the leading wasp
can again be assigned the needed components. The pro-
cedure continues until all wasps are either removed from
the tournament or satisfied.

4 Other optimization algorithms used in scheduling

In order to test the performance of the WSO, we com-
pare its results with the results obtained using other com-
monly applied heuristic algorithms. Here, we consider
the Ant Colony Optimization (ACO) and the Genetic Al-
gorithms (GA).

• Random Search(RS). The simplest optimization
algorithm possible, it consists in randomly gen-
erating a large number of possible solutions and
choose the one which results in the lowest cost.

• Ant Colony Optimization(ACO). Ant algorithms
are multi-agents systems where the behavior of
each agent mimics the behavior of real life ants
and on how they interact with each other. When
ants travel from the nest to a food source and vice
versa, they leave a chemical trail of pheromones
marking the taken route. Other ants will catch the
trail and follow it, leaving their own pheromones
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Fig. 2. Schematics of the scheduling process

behind. Since pheromones evaporate with time,
the quickest route from the nest to the food source
will eventually be the dominant route followed by
most ants. The ACO was introduced by Dorigo [4]
to solve different classes of NP-hard problems, in
which dynamic scheduling is included. The algo-
rithm used here and its parameters are exactly the
same as presented in [5] and [6].

• Genetic Algorithms (GAs) GAs were introduced
as a computational analogy of adaptive systems.
They are modeled on the principles of the evolu-
tion via natural selection, employing a population
of individuals that undergo selection in the pres-
ence of variation-inducing operators such as mu-
tation and recombination (crossover). A fitness
function is used to evaluate individuals, and repro-
ductive success varies with fitness. Here, we used
the algorithm and parameters presented in [7],

5 Model of the logistic process

Fig. 2 presents a schematic view of the analyzed logis-
tic process, that can be described in probabilistic terms.
The birth process of the system (arrival of new orders in
a certain period of time) and the death process (delivery
of orders per unit of time, or the time it took them to be
processed), can be described by the classical theory of
queuing processes [8].

For the process being studied, this theory asserts the
Poisson distribution for the model of the birth process,

(4)

where x is the random variable number of orders and AT
is the parameter indicating the probability of this event to
occur on a certain time T. The death process is modeled
by the exponential distribution

(5)

where the time T is the random variable and /x is the
death rate. The process can be divided into five sequen-
tial steps: order arrival, component request, component
arrival and component assignment.

The component assignment is the basic problem un-
derneath a logistic process, since the company cannot
influence the arrival rates of the orders (birth process),
nor the suppliers delay. The service rates (death process)
of the orders are the only control variable by consider-
ing the assignment of components to the orders. Ideally,
all orders should be satisfied in time. In order to avoid
large volumes of stocks and to minimize the number of
delayed orders, the scheduling program assigns compo-
nents to orders every day, not considering their order of
arrival but their volumes, requirements and dates of de-
livery. The objective function used is presented in [7],
We impose as the most important objective that the high-
est number of orders is delivered at the correct date, al-
though we consider also important to have a small tar-
diness variance (TJT) of the remaining orders. Thus, the
objective function is given by

1
(6)

6 Simulation results and analysis of the algorithm

We applied the WSO algorithm described in sec. 3 to
the logistic process described in sec. 5, and compared it
with the RS, ACO and GA described in sec. 4.

In WSO, the bidding threshold is important when the
number of orders far outweigh the available resources,
as it reduces the number of competitors, thus diminish-
ing the total computational cost. In the case of this sim-
ulation, computational cost was not a problem, therefore
the bidding threshold had no significant influence in the
overall result and in the end we picked a = 0, thus mak-
ing the probability of bidding equal to one. All the sim-
ulations were run with a tournament exponent of f3 = 2,
This is the value used in the original wasp model in [3]
and it appears to work well for this kind of problems,
since any significant variation of that value generally re-
sulted in poorer results.

The relative weights of the tardiness and the compo-
nent availability, Wt and Wai were tried with different
values in order to obtain the a good solution. A ratio
which gave good results was ^ = 2.
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Fig. 3. Comparison of the WSO, ACO, GA and RS in terms of cost and number of evaluations

The RS and the GA were run with 50 individuals from
500 evaluations onwards (to have only reasonable re-
sults) and the ACO was run with five ants. The ACO pa-
rameters consist in the relative weight of the pheromone,
set to 1, the relative weight of the heuristic matrix, set to
10, and the evaporation coefficient, set to 0.2.

Figure 3 shows the resulting cost for an increasing
number of evaluations of the cost function.

Table 1 shows the cost and corresponding delivery de-
layed days for the different methods for a fixed number
of evaluations (100). The results, although very similar
for the ACO and the WSO, as can be expected from fig.
3, are better for the WSO.

Table 1, Comparison between the scheduling methods in
number of orders (dd = days delayed)

Scheduling
RS
GA

ACO
WSO

Cost
3730
2780
817
543

#dd = 0
326
332
335
350

#dd< 5
118
114
127
104

#dd>5
17
19
3
11

For this problem the GA always achieves the best so-
lution, given enough evaluations, but it needs 100 times
more evaluations to even get to a "good'* solution. Basi-
cally, the main advantage of using the WSO and ACO
will be in problems were evaluating the cost function
takes too much time.

7 Conclusions
This paper analyzes the performance of the wasp

swarm optimization algorithm (WSO) for the optimiza-
tion of logistic processes. For that we presented a sim-
ulation example, where the new algorithm is compared
with the GA, ACO and RS. Even with a very low num-
ber of function evaluations, WSO produces good results
when compared to the other algorithms. In finding those
results, it is 100 times faster than GA.
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Abstract
Several techniques have been employed to adapt particle
swarm optimization to find multiple optimal solutions in a
problem domain. Niching algorithms have to identify good
candidate solutions among a population of particles in order
to split the space into regions where an optimal solution may
be found. Subsequently the swarm must be optimized so that
particles contained inside the niches will converge on
multiple optimal solutions.
This paper presents an improved vector-based particle swarm
optimizer where subswarms contained in niches are
optimized in parallel.

1 Introduction
Problem-solving forms a large part of many scientific
and engineering applications. An optimal solution to a
problem would be the solution where the output is an
optimal value for a given set of inputs. A constant
quest for more effective utilization of available
resources has resulted in many techniques being
developed to find optimal solutions to a large variety of
problems.
Recently particle swarm optimization [1] have attracted
a fair deal of interest as it proved to be an effective
technique for solving more complex optimization
problems. Most problems that have been investigated
in this field, were solved by finding a single optimal
solution in the search space. The original particle
swarm optimizer has specifically been designed to
avoid convergence on sub-optimal solutions. In some
problems, however, the objective is to find all possible
solutions in the search space. Techniques to
accomplish this, entail division of the search space into
regions containing candidate solutions that will all
eventually converge on an optimal solution in that
region. These techniques, called niching, have been
studied in the fields of genetic algorithms and particle
swarm optimization [2]. When adapting the original
PSO algorithm to locate multiple optima, the most
crucial tasks prove to be finding good candidate
solutions where a niche may exist and then demarcate
the boundaries of these niches to contain particles that
will eventually converge on an optimal solution.
Particles must be maintained inside these niches during
optimization while niche boundaries are continuously
updated.

In this paper an algorithm is presented where niches are
identified using vector operations [3], but optimization
takes place in parallel, giving a more effective result.

2 Particle Swarm Optimization
Particle swarm optimization is a relatively recent
strategy for the optimization of functions that might be
difficult to solve by means of other more established
techniques. Conceptually similarities are to be found in
the fields of genetic algorithms as well as artificial life
[4]. Phenomena in nature involving populations of
individuals interacting in order to improve their
situation, were studied. In the case of flocks of birds
and schools of fish, individuals controlled their own
movements, but also seemed to share knowledge in
order to move to a more profitable position.
The original particle swarm optimizer, introduced by
Eberhart and Kennedy [1], consists of a population of
particles, each of which is represented by a position in
the search space where the optimal value of an
objective function is to be found. The value of the
function at a specific point is known as its fitness. The
optimal value of the function will therefore be the
position with the best fitness. A typical function used
to illustrate the usefulness of this approach, may have
many sub-optimal solutions. In the PSO, particle
positions are updated by using a particle's best position
found so far by the entire swarm, to guide the search
for a new position. The stochastic nature of the
algorithm will, however, also facilitate exploration of
hitherto undiscovered regions in the search space,
resulting in a fast and effective technique to find a
single global optimum.
Updating of particles is formalized by the following
equations:

vu(t + 1) = wvu ( 0 + c\ r,, j (t) (y itj (t) - x u (r))
+ c2r2tJ(t)(j(t)- Xlj(t)) [1]

* , ( f + l ) = xt(t) + v,(f+l) [2]
where 0 < w < 1 is an inertia weight incorporated to
limit the contribution of the particle's previous velocity
to the new velocity [5], c\ and c2 are two positive
acceleration constants and rlt y and r2,7 are random
sequences between 0 and 1. yt is the personal best
position of the /th particle while is the best position
found by any particle so far.
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3 Locating Multiple Optima
The original PSO algorithm has purposely been
designed to find a single optimum in a landscape often
boasting many sub-optimal solutions. Popular
benchmark functions like those of Rastrigrin or
Griewank have precisely the topology enabling the user
to conclusively test whether the PSO will indeed find
the overall best solution.
Often, however, the purpose of the exercise entails
finding all possible solutions in a search space. The
PSO algorithm can be adapted for this purpose, but care
must be taken that the exploratory nature of the original
PSO is controlled so that candidate suboptimal
solutions are maintained within a demarcated region.
The process is therefore twofold: first all candidate
solutions in the swarm of randomly placed particles
must be identified and a portion of the search space
demarcated where particles are expected to converge on
that solution. Such a region is called a niche and its
boundaries are set by calculating a niche radius.
Secondly the particles must be contained in the niche by
preventing them from moving outside the niche radius.
The particles in such a demarcated region can be
considered to be a neighbourhood where the candidate
solution is its neighbourhood best. The effect of
neighbourhoods on PSO performance have been
studied by Kennedy where a neighbourhood was
defined as a subset of the swarm in which the particles
are not necessarily adjacent to one another [6].
Several algorithms have been proposed to find multiple
optima by means of particle swarm optimization.
Parsopoulos and Vrahatis identified particles as
potential solutions when f(xi) < e, a threshold value
[7,8]. To prevent particles from moving away from the
original target, "function stretching" is applied at the
point where a candidate solution is found, entailing a
transformation of the original function in order to
eliminate local optima. During optimization, particles
will converge on an optimum near the original
candidate solution.

In their NichePSO algorithm Brits et al also use a
threshold value to find initial possible solutions [9].
The process is refined by monitoring the fitness of the
candidate particle while care is taken to prevent
problem dependence of the threshold value.
Subswarms are grown from the candidate solutions.
These swarms are updated in parallel while a subswarm
radius is maintained. While being updated, particles
may be absorbed by subswarms. Swarms may also be
merged when necessary.

4 A Vector-Based PSO
A new technique where vector operations were used to
find niches in particle swarm optimization was
proposed by Schoeman et al [3]. The main incentives
driving the development of this algorithm comprised
the following:
• to identify candidate solutions without prior

knowledge of the problem domain
• to demarcate each niche in such a way that it would

only contain particles that would eventually
converge on the neighbourhood best of that niche.

The principle on which this technique is based, lies in
the assumption that the dot-product of two vectors
pointing in different directions will be negative while
two vectors pointing in the same direction will have a
positive dot product. As the original PSO already uses
position vectors towards a particle's personal best and
neighbourhood best positions, the dot product of these
two vectors are calculated to determine whether the
particle is moving towards or away from the
neighbourhood best position. In addition, a niche
radius is calculated by finding the distance from the
neighbourhood best position to the nearest particle with
a negative dot product. Particles inside the niche
radius with positive dot products are marked as
belonging to that niche.
The process to find all niches in a swarm, starts by
setting the fittest particle in the entire swarm to the first
neighbourhood best position. Particles belonging to the
surrounding niche are identified as described above and
marked. The process is repeated for the remaining
particles until all particles have been processed.
In the original vector-based PSO, niches were
optimized sequentially as they were found, by executing
a fixed number of iterations. When niches are not
symmetrical around each neighbourhood best,
subsidiary niches may be formed between the genuine
niches. To prevent these niches from becoming
stationary, more particles were added when there were
less than a specific number of particles in a niche.
After sequential optimization of all the niches, it was
found that particles from several niches have converged
on the same optimum. The number of different optima
comprised the true number of niches.

5 A Parallel Vector-Based PSO
The vector-based PSO described in the previous section
is a sequential algorithm where each niche was
optimized in turn. Because search spaces are not
necessarily symmetrical, more than the required number
of niches are initially identified. Although more than
one niche may eventually have the same
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neighbourhood best position, and can be seen as finding
the same niche, the performance of the algorithm could
be increased by eliminating these duplicate niches.
A parallel vector-based PSO is therefore proposed
where initial niches are identified similar to the vector-
based PSO, but all particles are updated simultaneously.
Convergence is guided by each particle's personal best
position as well as the neighbourhood best of the niche
it belongs to. Some subs warms may converge towards
one another and will be merged once the distance
between them becomes less than a certain size. Particles
will be absorbed into the niche that has the fittest
neighbourhood best. Only those particles in the
subswarm that are near enough to the neighbourhood
best of the other subswarm, will be merged.
To merge subswarms effectively, a problem-dependent
parameter has to be introduced. Although one of the
objectives of the vector-based PSO was to find all
optima without any prior knowledge of the function, the
use of this parameter is justified as the algorithm has
been found to be faster.
An algorithm for the parallel vector-based PSO may
now be presented.
1. Initialize the swarm.

n particles are generated at random positions in the
problem space. An initial personal best position for
each particle is found by evaluating the fitness of a
random position near the particle. The fittest of the
two positions will be the particle's initial personal
best position pbest. The vector vpi is calculated
where

Identify initial niches by using vector operations,
a. Set neighbourhood best gbest to pbest with the

best fitness. Calculate v^ where

2.

b. Calculate the dot product X of each particle.

c. Calculate the niche radius - the distance
between gbest and the nearest particle with a
negative dot product.

d. Identify all particles inside the niche
radius having a positive dot product as
belonging to the current niche.

e. Repeat steps a to d for the remaining
particles until all particles have been
processed.

3. If a niche contains too few particle (less than 3 in
this algorithm) new particles are spawned in the
vicinity to prevent niches from becoming
stationary.

4. Update particles
a. For each particle: update its position by

using pbest and its neighbourhood best
gbest.

b. Update pbest and gbest if better positions
are found, as well as vectors vpi , vgi and
their dot product X. Repeat this step k times.

5. Update the niche radius.
6. Merge niches.

If the distance between gbest of two niches
becomes smaller than e, particles are merged
with the niche where gbest has the best fitness.
Only particles nearer than 6 to gbest of that niche
will be merged.

7. Repeat steps 4 to 6 m times. The total number
of iterations of the entire swarm will be m * k.

6 Experimental Results
A. Experimental setup
The parallel vector-based PSO was tested with four
one-dimensional functions and three two-dimensional
functions. The results were compared with those of the
original vector-based PSO as well as the Niche PSO
algorithm.

[3]

F2(x)=\e
-21og(2

[4]

F3(JC) = sin6(5;r(;c3/4 -0.05)) [5]

FA{x) =
-2log<2:

0.854
xsin6(5;r(jr4-0.05))

[6]
F5(x,y) = 200-(x2 + y-II)2 - ( x + y2 -I)2

[7]

Fl(x) = Y [xf - 10cos(2^c,) + lo] [9]

Functions Fl to FA all have 5 maxima between 0 and
1.0, but the spacing between the maxima and the
function values at the peaks differ.
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For functions Fl to FA the parallel vector-based PSO
was randomly initialized with 20 particles each time.
30 iterations of the entire swarm were executed with
Cj = c2 - 1.0 and w = 0.8. 100 experiments were done

with each of the functions. As in the case of NichePSO
and the original vector-based PSO good results were
obtained as all maxima were successfully located each
time.
The two-dimensional functions that were tested, were
those of Himmelblau, Griewank for -5.0 < x < 5.0
and -5.0 < y < 5.0 and Rastrigrin for -1.25 < x < 1.25
and -1.25 < v < 1.25. Within these boundaries,
Himmelblau has four, Griewank five and Rastrigrin
nine optima. The parallel vector-based PSO was
initialized with 40 particles in the case of the
Himmelblau and Griewank functions and 60 particles
for Rastrigrin. e was set to 0.5 for Himmelblau and
Griewank and 0.1 for Rastrigrin. Cj, C2 and w were set
as above.

B. Results
The results are summarized in table 1.

Table 1: Performance results

Function

F\
Fl
F3
FA
F5
F6
Fl

% experiments locating all niches
Niche
PSO
100%
100%
100%
100%
100%
100%
100%

Vector-
based PSO

100%
100%
100%
100%
90%

Not tested
Not tested

Parallel Vector-
based PSO

100%
100%
100%
100%
98%
95%
91%

It will be noted that the original vector-based PSO has
not been tested with functions F6 and Fl. Although the
principle used to identify niches were found to be
sound, the algorithm became computationally expensive
when dealing with more optima. An alternative was
therefore investigated.
The performance results also show that the NichePSO
algorithm outperforms both the original vector-based
PSO and the parallel vector-based PSO. This might
partly have resulted from a better initial distribution of
particles, as NichePSO uses Faure sequences.
NichePSO does, however, use more tunable parameters
than the vector-based PSO algorithms. To create initial
subswarms, a particle's fitness is tracked over a number
of iterations. If the variance is less than a certain
threshold, a subswarm is created with its nearest
neighbour, assuming that it is also lies inside the niche.
Subswarms are merged when the distance between them
are less than a specific value. Setting these parameters

is often problem-dependent assuming prior knowledge
of the objective function.
Apart from the search space boundaries, the initial
number of particles and the number of iterations, the
parallel vector-based PSO uses only a value indicating
the merging of two niches.

7 Conclusion and Future Work
It has been shown that the parallel vector-based PSO
performs well on a number of one and two-dimensional
test functions, but not as good as NichePSO. Further
research is needed to determine whether more particles
having a better initial distribution will give better
results. An in-depth study comparing the three
algorithms according to number of particles, parameter
settings and scalability, is also envisaged.
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Abstract

The hypercomputers compute functions or numbers,
or more generally solve problems or carry out tasks, that
cannot be computed or solved by a Turing machine. Sev-
eral numerical simulations of a possible hypercomputa-
tional algorithm based on quantum computations pre-
viously constructed by the authors are presented. The
hypercomputability of our algorithm is based on the
fact that this algorithm could solve a classically non-
computable decision problem, the Hilbert's tenth prob-
lem. The numerical simulations were realized for three
types of Diophantine equations: with and without solu-
tions in non-negative integers, and without solutions by
way of various traditional mathematical packages.

as the underlying physical system. Since our model
exploits the quantum adiabatic process for unbounded
operators [10], and the characteristics of the infinite-
dimensional irreducible representation of the dynamical
algebra su(l , 1) associated to the ISW [11], the simula-
tion is only able to partially illustrate our algorithm. In
other words, this work does not pretend to affirm that
the numerical simulations constitute our hypercomputa-
tional quantum algorithm.

2 The Hypercomputational Quantum Algorithm

The Hamiltonian operator H and the energy levels
En, for a particle with mass m in an ISW with length
?ra are [11]

1 Introduction

Although there have been several conferences and var-
ious specialized publications dedicated to the topic of
hypercomputation, this is still an area in its gestation
and development process. The term 'hypercomputer'
denotes any data processing device (theoretical, poten-
cially realizable or that can be implemented) capable of
carrying out tasks that cannot be performed by a Tur-
ing machine (TM) [1, 2]. Proposed models of hyper-
computation surge from diverse disciplines, such as non-
classical logics, computability, neural networks, or rela-
tivistic physics [1, 3, 4]. Notwithstanding the prolifera-
tion of theoretical hypercomputation models, the possi-
bility of a conceivable construction of a hypermachine,
continues to be controversial and held under study and
analysis.

This work presents several numerical simulations of a
possible hypercomputational algorithm based on quan-
tum computations previously constructed by the authors
[5]. The hypercomputability of our algorithm is based
on the fact that this algorithm could solve a TM non-
computable decision problem, Hilbert's tenth problem
[6]. Our algorithm is based on the algorithm proposed by
Tien D. Kieu [7, 8, 9], with the difference that we have
selected the Infinite Square Well (ISW) instead of the
(one-dimensional) Simple Harmonic Oscillator (SHO)

2m dx2 2ma 2 '
En = (h2/2ma2)n(n + 2),

where the action of H on its eigenvectors

(1)

(2)

is given by H \ n) = En\n). Due to the spectral struc-
ture of the ISW, the dynamical algebra associated with
it, is the Lie algebra su( l , 1) [11]. This is a tridimen-
sional algebra that satisfies the commutation relations
[ # - , # + ] = K3 and [K±,K3] = ^2K±, where op-
erators K+, K~ and K$ are called creation, annihilation
and Cartan operators, respectively. The algebra su(l , 1)
admits an infinite-dimensional irreducible representation
where actions of K+, K- and K3 on basis (2) are

K-\n) = y/n(n + 2) | n -
Kz | n) = (2n + 3) | n ) .

With basis on the algebrasu(l, 1), the Hamiltonian (1)
is rewritten as H = (h2/2ma2)K+K-, and a number
operator N is given by

N = - 3). (3)
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Due to the dynamical algebra associated, the Barut-
Girardello coherent states | z), z 6 C for the ISW are
eigenstates of annihilation operator K- [12]

!*> =

On the other hand, a Diophantine equation is of the
following form

D(xx,...,xk) = (4)

where D is a polynomial with integer coefficients. In
present terminology, Hilbert's tenth problem may be
paraphrased as: Given a Diophantine equation of type
(4), we should build a procedure to determine whether or
not this equation has a solution in non-negative integers.
From the concluding results obtained by Matiyasevich,
Davis, Robinson, and Putnam we know that, in the gen-
eral case, this problem is algorithmically insolvable or
more precisely, it is TM incomputable [6].

With the basis for the ISW, our hypercomputational
quantum algorithm for the Hilbert's tenth problem [5]
is shown in Table (1). Our algorithm is probabilistic
such are quantum algorithms in general. Unlike these
however, our algorithm is of adiabatic quantum compu-
tation over infinite-dimensional spaces, given that part-
ing from initial ground state (5) of (6), the final ground
state (10) of (7), is obtained via the adiabatic theorem
for unbounded operators [10]. As we have stated else-
where [5], the construction of our algorithm, breaking
from Kieu's algorithm, opens the possibility to con-
struct similar algorithms based on physical references
whose associated dynamic algebra possesses an infinite-
dimensional irreducible representation.

3 Simulation Procedure
Once constructed (7) with (5) and (6) selected for a

Diophantine equation of type (4), our problem revolves
around solving (8) in search of a value of T which sat-
isfies condition (11), whereby we can establish criteria
(12). Given that (8) is formulated inside an infinite di-
mensional Fock space, the simulation consists in being
solved numerically in a Fock space truncated from di-
mension m + 1, selected such that [13]

m+l\z)

has a norm less than one by some chosen e

i

{z I Z)m+l (13)

\m+lwhere \z) represents the infinite-dimensional state
| z) truncate to the m + 1 dimension.

Table 1. Hypercomputational quantum algorithm.

Given a Diophantine equation with k unknowns of type
(4), we provide the following quantum algorithm to decide
whether this equation has any non-negative integer solution
or not:

1. Construct a physical process in which a system initially
starts with a direct product of k coherent states | ^(0)),
and in which the system is subject to a time-dependent
Hamiltonian HA(t) over the time interval [0, X], for
some time T, with the initial Hamiltonian H\ and the
final Hamiltonian HD, given by

(5)

HA(t) = (1 - t/T)Hi + (t/T)HD,

(7)

2. Measure through the time-dependent Schrodinger equa-
tion with the

idt | tl>(t)) = HA(t) | il>(t)), for t € [0, T] (8)

the maximum probability to find the system in a partic-
ular number state at the chosen time T,

Pmax(T)= max JW>(T)| nu ... ,
( ) € N f e

where
{n}) 0 = | n i , . . . , n f c > 0 .

(9)

(10)

3. If Pmax(T) < 1/2, increase T and repeat all the steps
above.

4. If
P m a x ( T ) > l / 2 (11)

then j {n}) 0 is the ground state of Ho (assuming no
degeneracy) and we can terminate the algorithm and de-
duce a conclusion from the fact that

HD I {n}} 0 = 0 iff (4) has a solution in (12)



274

The numerical solution involves a discretization pro-
cedure that consists in replacing (8) by a discrete equa-
tion, whose solver preserves the norm of the state vector
in the evolution of time. This solver is unitary and it is
given by the Cay ley transform of H%+1 [13]

1 i rrm+1
(*) m+1 (14)

4 Simulation parameters and results
For the numerical simulations we have selected three

Diophantine equations. Since we counted on all the
information available for the simulation, the maximum
probabilities (9) can be calculated directly. Of course,
this situation would be different if we were measuring
upon the physical reference, in which case these prob-
abilities should be obtained parting from the expected
values of the operator numbers (3).

4.1 Equation with solution

We now consider a simple example which neverthe-
less has all the interesting ingredients typical for a gen-
eral simulation of our hypercomputing quantum algo-
rithm. Let D(x) be the Diophantine equation

D(x) = x - 6 = 0. (15)

In relation to the values of z, these should be greater
than 1.6 to guarantee that the maximum peak of density
of probability associated with the initial ground state (5)
is less than 1/2 [5]. We choose z = 4 and m = 9 which
satisfy (13) for e = 10~4. The truncated Fock space has
only ten dimensions, and is generated by {| 0 ) , . . . , 19)}.
For (15), according to the algorithm pointed out in Table
(1), we have that

[0.16 0.36 0.51 0.53 0.43 0.29 0.17 0.08 0.04 0.02]T,
rrlOxlO _ / ArlOxlO _ fi-irl0xl0\2

•"D ~~ V / '
rrlOxlO _ /T^IOXIO _ ^-rlOxlON Zn^lOxlO __ ^-glOxlOX

Applying (14) and incrementing T, figure (1) in-
dicates that the maximum probability reaches the
value of 1/2 for T « 35 and then the Fock state
16)10 = [0 . . . 1 0 0 0 ] T , is identified as the fi-
nal ground state (10) according to (11). Now, given that
H^xl° 16)10 = 0, we can conclude that (15) is solved
in the non-negative integers in agreement with (12).

4.2 Equation without solution

Let D(x) be the Diophantine Equation

D ( x ) = r c + 6 = 0, (16)

0.5
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0 7,

0.1

% /'v / " _ _ _ _ _
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Figure 1. Simulation results for (15) with (z, m) — (4,9).

and let z = 4 and m = 9. The figure (2) shows the prob-
abilities of states as a function of T. Below T « 70 none
of the states have probabilities greater than 1/2, and in
fact the excited states, clearly dominate in this regime.
Eventually, we enter the quantum adiabatic regime upon
which the dominant state raises its probability over the
1/2 value; indeed it corresponds to the Fock state 10).
Parting from (12), it is concluded then that (16) cannot
be solved in the non-negative integers.
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Figure 2. Simulation results for (16) with (z, m) = (4,9).

Unlike the previous example, this simulation does not
give a conclusive result. In fact, it would be more pre-
cise to affirm that according to figure (2), equation (16)
does not have a solution in {0 , . . . , m = 9}. Therefore,
it would be necessary to increase the value of m and ex-
ecute the algorithm once again. Unfortunately, different
to what would occur if we could count on the physical
reference, in the case of the simulation, a standing cri-
teria to determine the maximum value of m from which
we can obtain a conclusive result, does not exist.
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4.3 Catalan Equation

Given that every exponential Diophantine equation
can be reduced to a polynomial Diophantine equation
[6], Hilbert's tenth problem also applies to these types of
equations. It was recently proven that the Catalan Equa-
tion xp — yQ — 1, with x, y,p, q > 2, has one and only
one solution {x = q = 3,y = p = 2) [14]. Although
this solution could be found by simple inspection, differ-
ent mathematical packages such as Mathematica™ or
Maple™\ cannot find it. To put our algorithm to work in
order to determine if the Catalan Equation can be solved
in non-negative integers, we rewrite it as

(17)

whose only solution is (a = b — c = d = 0). The
simulation results obtained are shown in figure (3). Upon
verification of (12), we can observe that our algorithm
determines the existence of a solution.
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01
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/ ,.>
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Po.o.o.i

P w - 0

Pi ,0.0,0

10 20 30 40 50
T

Figure 3. Simulation results for (17) with (z, m) - (1.6,3).

5 Conclusions

Although the numerical simulations cannot be equiv-
alent to our possible hypercomputational quantum algo-
rithm, due to the impossibility to simulate an infinite
number of dimensions, their results give an idea of the
behaviour that could be observed if we would have a
real implementation and execution of our algorithm, sup-
ported in a determined physical process.

The nonequivalence is observed through an asym-
metry between solvable and non-solvable Diophantine
Equations in the non-negative integers, with respect to
the conclusiveness of the numerical simulations. This
asymmetry is usually a common characteristic of the
Turing machine incomputable problems, for which, if
the instance of the problem has a solution, a classic al-
gorithm would find it; while if it doesn't have a solution,
such algorithm will not halt.
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Abstract
The simulation of quantum circuits is usually exponential.

The Hardware Description Languages methodology is able to
isolate the entanglement as source of simulation complexity.
However, it was shown that this methodology is not efficient
unless the bubble bit technique is employed [1]. In this paper,
we present an extension of the HDL-bubble bit simulation
methodology, which provides means for simulated fault
injection - at the unitary level - in quantum circuits. The
purpose is, just like in classical computer hardware design, to be
able to verify the effectiveness of the considered quantum
circuit fault tolerance methodologies.

2 HDL Simulation Methodology
When entanglement is not present in the processed

quantum state, it is possible to describe the circuit and the
states with structural architectures by employing only
polynomial resources for simulation. By contrast, when
entanglement is detected in the processed state, the circuit
has to be described with a behavioral architecture. This
case requires exponential resources, because the overall
state cannot be represented correctly as a reunion of
individual subsystem states [1].

1 Introduction
Simulating quantum computation (and quantum

circuits in particular) is hard, even though there are many
types of simulators [2] and promising new achievements
[3], the high complexity involved by simulating quantum
algorithms cannot be completely avoided by using
symbolic representations. The main source of quantum
circuit simulation complexity is the entanglement [4] [5].
Nevertheless, efficient simulation is a prerequisite in
order to approach CAD techniques for quantum circuits.
The techniques described in this paper are based on the
bubble bit insertions [1] in order to reduce the simulation
runtimes. Other simulation frameworks are also
considering the memory overhead as a parameter [3].

The gate-level simulation of quantum circuits [1] is
based on the circuit model of quantum computation: the
circuits process quantum register states, with the
measurement being the only non-unitary operation. These
quantum circuits are constrained networks of quantum
gates, with no cloning and no feedback allowed [4].

With its paradigm suggested by Fig. 1, the gate-level
HDL simulation methodology [1] acknowledges
entanglement as the main source of simulation
complexity. The use of Hardware Description Languages
(HDLs) is motivated by the fact that they are able to
describe a circuit, in a compact manner, with both
structural and behavioral (functional) architectures. We
show how the bubble bit technique provides, besides
substantial runtime improvement, for simulated fault
injection support.

Fig. 1. HDL-based simulation approach example.

In Fig. 1 two quantum circuits (1 and 2, functionally
described) guard the entangled quantum state (S3). The
first quantum circuit uses the structural description
because it is guarded by 2 non-entangled states (Si and
S2)« Cpi...Cpn are the basic components of "circuit 1",
while Ai...An are their architectures. The non-entangled
quantum register uses a V notation, while ')' is used for
the entangled situation. Each circuit must be described
both by structural and functional architectures. For a gate
network, if entanglement is detected in the previous or
next quantum state, then the functional architecture has to
be selected to describe it; otherwise the structural
architecture is chosen. For the non-entangled, structural
situation, the quantum circuit can be reduced to a
collection of 1-qubit quantum gates. In fact, the bubble
bit technique is designed to avoid entangled
representations and to encode the quantum state matrix
representation so that it can be processed with only 1-
qubit gates. Fig. 2 presents the model of bubble bit HDL
simulation frameworks (including the possibility of fault
injection).
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matrix-form representation further complies with the state
coherence requirement. For every bubble-bit insertion, its
position inside the vector is recorded: {b, pos} is
described by its nature (6=0/1 /-I) and position in the
resulted state (pos). Performing all the necessary bubble
steps requires a total of O(n2) records be produced [1].

Fig. 2. HDL-based, bubble-bit simulation model.

3 Bubble Bit Insertion
The purpose of this technique is to avoid the 2"x2"

matrix expression of the w-qubit register unitary operator.
We take into consideration the specific pattern that
characterizes the arithmetic states from Shor's algorithm
and Grover's algorithm [4][5]:

«» ... i±J (i)
where n is the number of qubits, ^ e C , and he{0,1,-1}.
From this equation £ will be ignored because all non-
zero amplitudes are equal. We denote couple matrixes

The insertion algorithm is described by pseudocode:
Bubble step insertion algorithm

1. scan all the couples (bk9bk+l) from Eq.l;

1.1 memorize the first non-0 couple;
1.2 insert bubbles according to rules in Fig.3
and memorize their nature and position;

2. ±f_ the number of b. elements is a power of 2

then go to step 4;

3. _if the previous adjustement consisted of a Os

padding then erase Os so that the number of bi
elements will be the closest power of 2;
4. extract the first detected non-0 couple as a
non-entangled qubit representation;

The oval from Fig. 3 is the first non-6 couple
detected, and the rectangle represents the current
processed couple. The bubble bit is inserted between the
bits shown in rectangles in Fig. 3. As a result, we will
have a current processed couple (c) and a next couple (n).
The '?' sign stands for a further matrix element, not
processed in the current step. Several bubble steps must
be performed until all qubits are extracted. Also, for
maintaining a coherent matrix-form quantum state an
extra-qubit will be added to the state representation. Thus,
the number of bt elements will be increased from 2n to
2W+1 - at the first bubble step - by extra Os padding. The
next bubble steps will require erasure of Os, so that the

Fig. 3. Bubble bit insertion rules.

3.1 Fault Injection - The Setup Phase
The bubble bit framework can be adapted for

simulated fault injection requirements. Due to the specific
nature of the fault model in quantum computation [6], and
the way bubble bit encoding is performed, fault injection
must be applied before the bubble bit insertion algorithm.
Also, fault injection is triggered only if the "random
number generator'* dictates so (see Fig. 2). The entire
simulated fault injection process is inspired by the
classical hardware design solutions [7] and consists of 3
cycles: initialization, simulation, and data computation.
The setup phase corresponds to settling the nature of the
fault and its triggering. The simulation phase is
responsible for running the experiment according to the
scenario provided by the setup phase, while the data
processing phase uses the simulation signal traces results,
in order to compute the appropriate reliability measure.

In our simulation framework [1], injecting a fault
consists of accordingly modifying the quantum state
matrix from equation (1). When the fault is a bit-flip, then
the fault injection means the matrix elements will be
rearranged, whereas for the phase shift some matrix
elements will be multiplied with -1. In the bit flip case the
elementary operation is exchanging values between two
matrix positions: bt <-> bj for i * j . This allows building an

exchange function that operates on blocks of matrix
elements:
Exchange{(uo,...uw_l),(vo,...vw_l)]<* u( <-> v, (2)

for every / = 0,w-l.
Suppose we have a quantum state on n qubits,

kw-i-'-^i) > if a fautt occurs on qubit k, for the bit-flip
and phase-shift faults we will execute one or both of the
corresponding algorithms:
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Bubble step insertion algorithm
For i:=0 to 2n"k

End For
Phase-shift fault injection
For i:=0 to 2n-l

If /mod2* > 2k -1 then bt := (-1)6,-
End For

We have so far described the error injection process
but it also needs a way to trigger it. According to the fault
occurrence model [6] it has to be a random triggering.
Therefore, we have to use a random number generator in
order to find out if an error occurred. Then, we use the
same generator for selecting one of the following fault
types: bit-flip, phase-shift, both faults. When first used,
the generator returns the numbers,. If rx<n^ (for a

«£ given by a fixed error rate), then we have a fault. We
start the number generator again - yielding r2 - and the
selected fault nature is set by the following equation:

10 < r2 < j we have a bit-flip
y < r2 < j we have a phase-shift (3)

j < r2 < 1 we have both faults
3.2 The Data Processing Phase

The simulation phase is detailed in the example and
experiment section. We now focus on how to
automatically compute the most important parameter of
quantum circuit reliability: the accuracy threshold [6].

Suppose that, at simulation time t we observe signals
{SQIS^.^S^} . Each such state has a bubble bit
description. If st is on £,qubits, the bubble-bit

representation is given by the following equation:

Q (4)
In our analysis, st is the state observed during non-faulty
simulation, so for the same state in a faulty environment
we will have the bubble expression given by:

(5)

For validation of the quantum FTAMs (Fault Tolerant
Algorithms and Methodologies), we need to compare sf

with s*. This can be done with the operator presented in
the following equation:
j-r-/ *x 1 if \qb:)*\qb*); Vi = 0,k: orrec:*rec* . . .
dif(5t

/,^/) = < ' ' • ' (6)
[0 otherwise

Then, the total number of overall state errors at
simulation time t is:

The error rate on the overall observed states at moments

As pointed out in ref. 6, the applied FTAMs are valid
if the relationship between the experimental $sim and the

assumed singular error rate £ is of the order %sim ~ £2.

4 Example and Experimental Results
In order to illustrate how the bubble bit technique

works, we consider the simulation phase of fault
injection, performed in bubble bit encoding conditions for
the single error correcting quantum device in Fig. 4.

Fig. 4. Circuit for singular bit-flip error correction [6].

For this circuit we use a coding technique that replaces 1
qubit with a cluster of 3 qubits. The qubit state |o) is encoded as

1000), and |l) as |l 11). For example, state \y/) = -j

will become Ixyz) = -^(1000> + \ul))-
V2

If a bit-flip occurs, then the error is indicated by the
syndrome | s,^), where sx = x 0 z and s2 = y © z . The fault
location corresponds to the following syndrome values: bit-flip
on x by |l0), on y by |0l), and on z by |l l ) . The syndrome

100) indicates that there is no error. In circuit from Fig. 4 we

start with state|p0)correc/ =-W|000) + | l l l ) ) , which is then

affected by a bit-flip fault on qubit y:\p0) = - r ( | 010) + |l0l)).
v2

The evolution of the bubble-bit quantum state representation
throughout the simulation process (including the fault injection)
is described by the following equations, which present the
highlighted states from Fig. 4:
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(14)

The corresponding records are presented in Fig. 5. This

indicates the fact that state|/?7) = -W|000) + | l l l ) ) , therefore

the inflicted error has been corrected.

ifcp
i
2

step

1
2

bubble

{0.5}
-

bubble
-

{0,2}

ztrm
+7
0

zeros

0
+3

step

1
2

step

1
2

bubble

-

{0,2}

bubble

{0,7}
-

term

0
+3

zeros
4-7
0

Fig. 5. Bubble records for simulating the circuit from Fig. 4.

The HDL bubble bit simulation of quantum circuits
provides for substantial runtimes improvement, although
it produces O(n2) memory overhead because of the
bubble records. Our results are due to VHDL simulations,
carried on a Windows XP™, PENTIUM™ IV CPU
l,6GHz, 192MB RAM machine. We have performed the
gate-level simulation of quantum arithmetic circuits (the
full adder, modulo-A: adder and multiplier [8]). The
resulted runtimes are presented in Tab. 1 (we assumed

Grover's algorithm was simulated for an Oracle that
marks just one basis state, like in ref. 3. The runtime
evolution with the number of qubits in the data register is
presented in Fig. 6. The measured simulation times are
compared here with the runtime complexity reported in
ref. 3, which is 0.22x1.44".

5 Conclusions
Efficient quantum gate-level simulation may be

achieved by using the HDL simulation framework, at
least for Grover iteration and arithmetic circuits [2] [4].
Instead of using special algorithms for non-entangled
qubit group extraction [2][8], the HDL simulation
methodology relies on the bubble bit technique,
introduced as a method of avoiding entangled
representations. As experimented for Shor's algorithm
arithmetic circuits and Grover's algorithm, the bubble bit
technique allows for polynomial runtime simulation of
unitary operators (a substantial improvement), at the

expense of building records of size(9(«2). Furthermore,
the bubble bit technique can be used in order to attain
simulated fault injection of quantum circuits, which in
turn creates incentive for experimental validation of
quantum fault tolerant techniques. Our future work will
focus on extending the HDL-based simulation framework
according to the fault injection objective. All these will
make up what we call the QUERIST (QUantum ERror
Injection Simulation Tool) project.

Tab. 1. Runtimes for arithmetic circuits simulation.

size

4

8

16

32

64

full adder

2 sec

13 sec

41 sec

3 min, 48 sec

16 min, 7 sec

modulo adder

3.5 sec

17 sec

58.5 sec

5 min, 42 sec

21 min, 4 sec

modulo multiplier

9 sec

44.5 sec

2 min, 16 sec

16 min, 23 sec

53 min, 18 sec

Fig. 6. Runtime evolution with the number of qubits.
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Abstract
Redundant number systems have been widely used in

the speedup of classical digital arithmetic. This work in-
troduces the concept of redundancy in the quantum com-
putation field. We show that a constant depth quantum
adder circuit is attainable under this new framework.

1 Introduction
In the field of classical digital arithmetic, redundancy

plays a central role in the speedup of computer arith-
metic operations. Redundant number systems are at the
core of several fast digital arithmetic algorithms [1].

Pioneer work on quantum arithmetic includes the
carry-ripple quantum adder of Vedral et al [2] and
the quantum carry-save adder proposed by Gossett [3].
Draper [4] developed a method for the addition on the
quantum computer using the quantum Fourier transform.
Recently Draper et al [5] developed a quantum carry-
lookahead adder.

The best time complexity achieved so far is O(log n).
By bringing the concept of redundancy into the quantum
arithmetic field we show that the bound 0(1) is attain-
able.

2 Generalized Signed Digit Number Systems
Redundant number systems have been widely used in

digital arithmetic algorithms. Parhami [6] made an im-
portant generalization and unification of these systems
and their digital algorithms under a common framework
named Generalized Signed Digit (GSD) number sys-
tems. The basic concepts are now introduced.

Definition 1 Let r > 2 be an integer. A radix-r (signed)
digit set is a set of consecutive integers, called (signed)
digits, {-a , . . . , /?}, such that a, j3 > 0 and a + /? + 1 >
r.

Definition 2 A radix-r GSD number system is a posi-
tional number system such that any finite sequence of
n > 0 (signed) digits from a digit set S associates with
an integer by

n - 1

The redundancy index of a radix-r GSD number sys-
tem with digit set {-a,... ,/3} is

p = a + (3+l-r . (2)

A GSD number system is called redundant ifp>0.

Note that unlike standard practice in classical digital
arithmetic, a least significant digit first notation is used,
i.e., the most significant digit in #o#i • * * xn-i is xn-\.

3 Quantum GSD Representations
In this section GSD number systems are introduced in

the field of quantum computation.
Consider some fixed radix-r GSD number system

with a digit set of size d > 2, S = {—a,...,/?},
a + /? + 1 = d.

Definition 3 Let d > 2 be an integer. A qudit is a
quantum system Q whose state is a unit vector in a d-
dimensional Hilbert space.

Without loss of generality, we assume that the underly-
ing Hilbert space in Definition 3 is Hd = Cd. It has be-
come common practice to identify the canonical compu-
tational basis of Hd with the set {\k}, k G Z^}, in Dirac
notation. We will make use of the labelling scheme,

{\k),keS}.

The general state of a qudit thus is

(3)

(4)

kes

where a/~ G C , k G 5 , satisfy the normalization condi-
2

"Xn-i (1)
3=0

When the nonredundant binary system, r = 2, S =
{0,1} is considered, (3) and (4) give the usual definition
of the general state of a qubit, \ip) = a | 0 ) + 6 | l ) with

Let Qi , Q 2 , • • •, Qn be quantum systems with un-
derlying spaces Hd!, Hd2, • • •, Hdn. The underlying
Hilbert space of the composite quantum system with
components Qi , Q2, • - , Qn is the tensor product space
Hdx <S> Hd2 0 . . . <S> Hdn. Thus the state of a n-qudit
quantum register is a normalized vector of H^n.
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Definition 4 The computational basis for the underly-
ing space Hd®n of a n-qudit quantum register is given
by the dn states

(5)

where Xj G S, j = 0 , 1 , . . . , n — 1.

Each of these states naturally associates with the radix r
representation of the integer ]Cj=o Xjr^ by

(6)n - 1

j2xJrJ

j = 0

In the case of a redundant GSD number system the
same number can be represented by several basis states.

4 Carry Free Adder
In this section we outline the carry free adder algo-

rithm developed by Parhami [6],
Let S = {—a,...,/?} be the digit set of some

radix-r GSD number system where the integers x and
y are represented by the sequences XQXI • - • xn-\ and

Adding x and y in conventional nonredundant digital
arithmetic is basically a process of splitting X{ + yi into
a sum digit zi and a carry digit c*+i to the next position.
This operation is performed for each i and z = x -4- y is
encoded as 2o^i * * * ^n-i plus an overflow digit cn.

Generally, each carry Q + I depends not only on Xi and
2/i but also on the previous a. Therefore, the evaluation
of Ci+i must wait for c* to be computed. The generated
carry propagation chains are responsible for the overall
time complexity of the algorithm, tipically O(ri).

The Carry Free Adder (CFA) algorithm starts by com-
puting a partial sum wi and a carry digit Q + I from Xi
and yi, for every i. Then each of the final sum digits Z{
is computed by adding the partial sum digit Wi and the
carry c*. The generated partial sum and carry digits must
be such that the resulting zi = Wi -f c* still belongs to S.

An important property of the CFA algorithm is its full
parallelization capability. As a consequence, the algo-
rithm runs in 0(1) (provided that sufficient hardware is
available).

Algorithm 1 (Carry Free Adder)
FOR i FROM 0 TO n-1 DO

compute c[i+l] and w[i]
from x[i] and y[i]

END DO

FOR i FROM 0 TO n-1 DO
compute z[i] from w[i] and c[i]

END DO

Parhami showed that the CFA algorithm is applicable
to a large subclass of redundant GSD number systems
[6].

Theorem 1 Let S = {-a , . . . , j3} be the digit set of a
radix-r GSD number system with redundancy index p.
The CFA algorithm is applicable if and only if

(p > 3 and r > 2) or (p = 2, a ^ 1 and r > 2) or
(p = % P^ landr > 2).

Parhami also presented a limited carry propagation al-
gorithm for the GSD number systems excluded by theo-
rem 1. A quantum circuit implementing the limited carry
propagation algorithm was already developed [7].

5 Quantum Carry Free Circuit

The quantum adder circuit will be represented by a
unitary operator acting on the register space that stores
the inputs x and y, the result z and the ancillary space.

The adder circuit belongs to the family of hybrid quan-
tum systems [8] in the sense that is composed of qudits
of several dimensions.

The general computing process, ignoring ancillae, is

U\x)\y)\zinit) = \x)\y)\x (7)

where \zinit) is the initial state of result register (simi-
lar to the initial state |0) in conventional qubit computa-
tions).

In what follows we will use the notation borrowed
from [9]:

The tensor product of an operator U act-
ing on an ordered sequence of qudits
<Zi > (72 > • • • > <7m and the identity operator act-
ing on the remaining qudits is denoted by

Generating each carry digit Q + I can be viewed as the
process of evaluating a function c : S2 —> Sf at the point
(xi,yi), where 5 ' = {—A,... ,/i} is the set of possi-
ble carry digits. Function c depends only on the GSD
number system in use and its definition can be found in
Parhami [6]. Let d! = X + \i + 1 be the size of S1 and
c : S2 x 5 ' —• S2 x Sf be the extension of c defined by
c(x, y, f) = (x, y, -X 4- (2A + / + c(x, y)) mod d').

Since c is just a permutation function, the operator
C e U(H®2 ® Hdf) that implements the computation
of each carry digit is given by

C\x)\y)\f) = \x)\y)\c(x,y,f)).

This operator has action (see Fig. 1)

C|ari)|W)|-A) = 1^)1^)1^+1).

(8)
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\Vi)-
| - A > -

c — IK)

Fig. 1. Quantum gate C

Computation of the carry digits is performed in paral-
lel by applying the unitary operator

n-l

~ CnCn-1 ' ' ' C2C1 , (9)
z = 0

where C^+i = C[xi, yi, Q + I ] for each i — 0 , . . . , n — 1.
Now let w : 5 2 x S' -> S be defined by

w{x,y,c) =
— r - c if c = c(x,y)
c otherwise (10)

and let w : S2 x S' x S -> 5 2 x 5 ' x 5
be the permutation function given by w(x,y,c,g) =
(x, y, c, —a + (2a + ^ -f ty(x, y, c)) mod d).

After all carry digits have been generated, computa-
tion of each partial sum wu i = 0 , . . . , n — 1, is per-
formed by applying the operator W e U(Wf2 0 W<*/ 0

) defined by

(11)

The operator W has action W \xi) \yi) \ci+\) \—a) =
\xi) \yi) |c»+i) \wi)9 as illustrated in Fig. 2.

w
Xi)

Fig. 2. Quantum gate W

The parallel computation of the partial sum digits con-
sists on applying the following sequence of unitary op-
erators acting on disjoint sets of qudits

n - l

(12)

where Wi = W[xi,yi,Ci+i,Wi],i = O,...,n- 1.
The evaluation of each of the final sum digits, zi,i =

0 , 1 , . . . , n—1, is performed by the function z : SxSf —>

S defined by z(w, c) — w + c. Associated to z is the
unitary operator Z G U(Hd 0 Hd' 0 Hd) given by

\w) \c)\-a +(2a + z(w,c)) mod d) . (13)

Figure 3 illustrates the action Z \wi) | Q ) |— a ) =

»> |c») |zt) .

h) 1
\-<*)-

Fig. 3. Quantum gate Z

Let Zi = Z[iyj, Q , ^ ] , z = 0 , . . . , n — 1. The parallel
computation of the final sum digits is provided by the
unitary operator

n - l

£3 = (14)
2 = 0

Note that the most significant digit of the result, zn, is
just the last carry digit cn+i.

We now address the problem of garbage disposal.
Reverting the ancillary qudits to their initial states is
achieved by applying the corresponding inverse opera-
tors in reverse order. This process, known as uncompu-
tation of partial results, has two steps:

1. Reset the partial sums,

2. Reset the carry digits,

1 == 1 2 •ClKC,

(15)

(16)

Note that (16) does not reset the most significant digit
of the result. A measurement is necessary before apply-
ingC" 1 .

We are now in place to define the unitary operator U
that implements the full CFA circuit.

Let Hwork = Hfn 0 Hfn 0 Uf1 0 Hd* be the
working register space and Wanciiia = Wf,n 0 Wfn

be the ancillary space. Then the quantum operation
V e U (Wwork 0 Wanciiia) defined by

(17)

has action
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Fig. 4. Quantum CFA circuit for n = 2

where U is the adder operator (7) and |C) € Wanciiia is
the initial state of the ancillary space.

Each term of the product (17) can be computed in one-
time slice since the gates act on distinct qudits. Thus the
full circuit for the addition of two n-qudit numbers has
constant depth , which gives the 0(1) time complexity
(see Fig. 4).

6 Applications

Quantum algorithms for multiplication and certain
mathematical functions start to appear in the literature
[2], [3]. The simple inclusion of a CFA circuit could
noticeably improve the time requirements of such algo-
rithms.

Quantum modular exponentiation is one of the most
expensive parts of Shor's factoring algorithm [10]. This
process could be made much faster, since it consists of a
sequence of multiplications.

Quantum error-correcting codes allow for arbitrarily
large quantum computations, provided the noise in indi-
vidual quantum gates is below a certain constant thresh-
old. Threshold theorems rely on assumptions about the
type of noise and the architecture of the computer. In or-
der that the techniques of fault-tolerant computation may
be applied, quantum computer designers should develop
architectures that are parallelizable [11]. The intrinsi-
cally parallel CFA here presented, when part of more
complex redundant arithmetic algorithms, could provide
efficient fault-tolerant quantum operations.

7 Conclusions and subsequent research

A new general framework for redundant quantum
computations was introduced. This provided the build-
ing of a class of fully parallel circuits for the addition in
constant time.

The use of redundancy in classical digital circuits has
long been known to provide efficient algorithms for tHe
evaluation of other arithmetic operations as well as ele-
mentary mathematical functions [12].

There remains to fully explore the combination of re-
dundancy and quantum concepts in all arithmetics, eval-
uation of elementary mathematical functions and more
complex computations.
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Abstract
In this paper, we study a special class of nonbinary ad-

ditive cyclic codes over GF(4) which we call reversible
complement cyclic codes. Such codes are suitable for
constructing codewords for DNA computing. We de-
velop the theory behind constructing the set of genera-
tor polynomials for these codes. We study, as an exam-
ple, all length—7 codes over GF(A) and list those that
have the largest minimum Hamming distance and largest
number of codewords.

1 Introduction
Adleman's work [1] set up the stage for the possibility

to use DNA to solve hard (NP-complete) computational
problem such as the Hamiltonian Path problem by ma-
nipulations of DNA molecules in a test tube. His main
idea was to use actual DNA sequences (strands) to solve
problems that are unsolvable by conventional computers
or require an enormous amount of computation. Because
of the huge numbers of DNA molecules in a typical test
tube, any method of computation based on DNA would
seem to have potential massive parallelism, capacity, and
power. This potential, however, is limited by the con-
straints imposed by the chemical structure of DNA.

A single DNA strand is a sequence of four possible
nucleotides: adenine (A), guanine (G), cytosine (C) and
thymine (T). The ends of a single DNA strand are chemi-
cally polar with the so called 5' end and the 3' end. Since
there are 4n possible single DNA strands of length n, and
since DNA strands can be quickly and cheaply synthe-
sized, DNA codewords can be used to store information
at the molecular level, thus providing a basis for bimole-
cular computation. It is known that 1 gram of DNA con-
tains 2.1 x 109 DNA bases. Since there are 4 DNA bases
then each DNA bases can encode two bits which implies
that 1 gram of DNA can store about 4.2 x 1021 bits. On
the contrary, conventional storage technologies can store
at most 109 bits.

These applications of DNA require success in achiev-
ing specific hybridization between a DNA codeword and
its Watson-Crick complement. Each single string can be

paired up with a complementary string to form a dou-
ble helix. The Watson-Crick complement of a DNA
strand is the strand obtained by replacing each A by
T and vice versa, each C by G and vice verse, and
switching the 3' and 5' ends. Specific hybridization
is the process whereby a strand and its Watson-Crick
complement bond to form a double helix. Nonspe-
cific hybridization is the process whereby a strand bonds
with another strand different that its complement. Non-
specific hybridization may occur between a DNA strand
and the Watson-Crick complement of a distinct DNA
strand. It may also occur between a DNA strand and
the reverse of a distinct strand.

Several papers have proposed different techniques to
construct a set of DNA codewords which are unlikely to
form undesirable bonds with each other by hybridization
[2]-[10]. For example, in [7], [8], [9] four different con-
straints on DNA codes are considered: The Hamming
constraint for a distance d, the reverse-complement con-
straint, the reverse constraint and the fixed GC—content
constraint. The purpose of the first three constraints is to
make non-desirable hybridizations difficult to occur. The
fixed GC—content constraint is used to make sure we
have similar melting temperatures [9]. In [10], the au-
thors have proposed cyclic codes over GF(4) as a good
field to construct DNA codes. They restricted their work
only to linear reversible cyclic codes over GF(4).

In this paper we will use the rich theory of cyclic codes
to form codes that are suitable for DNA computing. In
particular, we will construct additive cyclic codes over
GF(4) that are suitable to minimize non-specific hy-
bridization. Our focus will be on constructing additive
reversible complement cyclic codes over GF(A) to gen-
erate codes that satisfy the first three constraints above.
From these codes we then construct what we call DNA
codes CDNA- We give a list of all additive reversible
complement cyclic codes of length 7 that can be used as
DNA codes.

The rest of the paper is organized as follows. In sec-
tion II we give some background and recall some ba-
sic results for DNA codes and additive cyclic codes over
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GF(4). In Section III, we construct the theory of addi-
tive reversible complement cyclic codes over GF(4). In
section IV, we list the best additive reversible comple-
ment cyclic codes of length 7 with their complete weight
enumerators and their GC— weight enumerators.

2 Background
We define a DNA code of length n to be a set of

codewords (x\,..., xn) with X{ £ {A> G, G, T} . In
this paper we shall identify codes over {A, G, G, T}
with codes over GF(4) = {0, l,u;, xu} where w —
J1, and UJ2 + u -f 1 == 0. For the letters A,C,G,Ty

over GF(4), we designate 0,u>,G7,1 respectively. The
Watson-Crick complement is given by Ac = T,
Tc = A,CC = G, and Gc = T. An additive code
G(n,2fc) over GF(4) of length n and dimension k
is an additive subgroup of GF(4)n . Note that an ad-
ditive code C over GF(4) is closed under addition
but not under scalar multiplication by elements from
GF(4). A linear code C over GF(4) is called cyclic
if it is invariant with respect to the shift operator that
maps (uo, • • • ,Un-i) to (tin_i,t*o,.. ->%-2). For each
codeword (UQ, . •. >v>n-i), we associate the polynomial
u(x) = UQ 4- u\x + • • • un-ix

n~l. For each codeword
u = (IAO , wi, • • • , wn_i), we define the reverse of u to be
ur — (i£n_1)

<un_2,..., UQ), the complement of u to be
uc = (u§ , . . . , tin-i) anc* the reverse-complement to be
w

r c = (w^_1?... ,u§). The Hamming weight of a code-
word (ito,. . . , nn_i) is the number of nonzero coordi-
nates. For example, the Hamming weight of (1002101)
is 4. The Hamming distance H{x, y) between two code-
words is the number of coordinates in which they differ.
The minimum (Hamming) distance of a code C is given
by

d — min H(x, y) x,y £ C and x ^ y.

If a code C is an additive code then the mini-
mum distance of C is the minimum Hamming weight
of any nonzero codeword. We denote the com-
plete weight enumerator of a code C over G.F(4) by

e
where n^(c) is the number of occurrences of k £
GF(4) in a codeword c. We denote by GCWc(x^ y) —
CWEc{x,x,y,y) the GG-weight enumerator of C
over GF(4). The GC—weight enumerator of a code
C over GF(4) is the weight enumerator that counts the
number of {0,1} and the number of {w, w} in G.

The trace map Tr : GF(4) -> GF(2) is given by

Tr(x) =x + x2.

In particular Tr(0) = Tr( l) = 0 and Tr(v) =

For each polynomial p(x) = p0 -f pix + • -prz
r,

we define the reciprocal of p(a?) to be the polynomial

p*(x) = xrp(l/x) = p r -f-pr^ia:r x H p o^ r - Note
that deg p*(x) < deg p(x) and if po 7̂  0? then p(x)
and p*(x) always have the same degree. p(x) is called
self-reciprocal lffp(x) =p*(x).

Definition 1 An additive code C of length n over
GF(4) will be called reversible ifiu € G, then ur e C.

Definition 2 An additive code C of length n over
GF(4) will be called complement if Vw £ G, then
uceC.

Definition 3 An additive code C of minium distance d
is called reversible complement cyclic ifC is cyclic, re-
versible, and complement.

We construct DNA codes CQNA with distance 5 from
reversible complement cyclic codes by deleting u or urc

from any pairs of codewords (w, urc) where u ^ urc. If
the original code C has minimal distance d then 5 > d.

The following theorem classifies additive cyclic codes
overGF(4).

Theorem 1 Let C be an (n,2k) additive
cyclic code of length n over GF(4). Then
C = (up(x)+q(x),r(x)) where p{x), q(x), r(x)
are binary polynomials that divide (xn — 1) mod 2,
and r(x) divides q(x) (xn — 1) /p(x) (mod 2), and
k = 2n — deg p — deg r.

Proof: See Theorem 14 in [12]. •

3 Cyclic Reversible Complement Codes over GF(4)
Our goal in this paper is to classify reversible com-

plement cyclic codes over GF(4). This class of codes is
important because the set of codewords satisfy the fol-
lowing constraints.

• The Hamming constraint: For any two codewords
w, x, we have H(w, x) > d. This constraint is in-
tended to limit non-specific hybridization whereby
the Watson-Crick complement of a codeword an-
neals to a distinct word w.

• The reverse-complement constraint: For any two
codewords w, x (where w might equal x), we have
H(wc,xr) > d. This constraint is intended to
limit non-specific hybridization between a code-
word and the reverse of another codeword.

Theorem 2 Suppose C — (r(x)) is an additive cyclic
code over GF(4). C is reversible iff r(x) is self-
reciprocal.

Proof: See Theorem 1 in [13] •
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Lemma 3 An additive cyclic code C = (g(x)) over
GF{4) is complement iff{x — 1) does not divide g{x).

Proof: Let C = (p(x)) be a cyclic code over GF(4).
Letc(x) = co + cixH cn^ixn~1 be a codeword in C.
cc(x) = eg 4- c§x 4- • • • c^x71-1. Note that a 4- ac = 1
for any a in G F ( 4 ) . This implies that c (x )+c c (x ) = 14-
x H x7 1"1 . Since C is linear then cc(x) 6 C iff c(x) 4-
cc(x) = l+x+- • • xn~l e C iff(xn - 1) / (x - 1) e C
iff (xn - 1) / (x - 1) = g(x)f(x) iff (x* - 1) = (x -
l)g(x)f(x) for some polynomial /(x). Since n is odd
then (xn — 1) factors uniquely into a product of distinct
irreducible polynomials. Hence cc(x) G C iff (x — 1)
does not divide g(x). •

Let C = (ojp{x) 4- <z(̂ )) be an additive cyclic code
of length n over GF(4) with deg(p(x)) = r. Since
C has no binary polynomial and since c(x) 4- cc(x) =
(xn — 1) / (x — 1) is a binary polynomial for any code-
word c(x) then the following lemma holds

Lemma 4 Let C = (cop(x) 4- q(x)) be an additive
cyclic code of length n over GF(4) with deg (p(x)) = r.
Then C cannot be a complement code.

Lemma 5 Let C, A, B be additive codes such that C —
A 4- B. If A and B are reversible then C is reversible.

Proof: See Lemma 5 in [15] •

The next two theorems classify all additive reversible
complement cyclic codes over GF(4).

Theorem 6 Let C = (o;p(x),r(x)) or C =
(tup(x),r(x)) be an additive cyclic code of length n
over GF{4). C is reversible complement ijfp{x), r(x)
are self-reciprocal andr(x) is not a multiple of{x — 1).

Proof:
4=Suppose p(x), r(x) are self-reciprocal and r(x) is

not a multiple of (x — 1). Then A = (ojp(x)), B =
(r(x)) are both reversible. By Lemma 5, C must be re-
versible. Since r(x) is not a multiple of (x — 1), then C
is also a complement cyclic code.

=>Suppose C is reversible complement, then o;p*(x),
and r*(x) are in C. Since deg(u>p*(x)) = deg(o;p(x)),
and deg(r*(x)) = deg(r(x)), then u;p*(x) = wp(x),
and r*(x) = r(x). Since C is complement then r(x)
cannot be multiple of (x — 1). Therefore, p(x), r(x) are
self-reciprocal and r (x) is not a multiple of (x — 1). •

• If deg (q(x)) = deg (p(x)) then q(x) is self
reciprocal

Theorem 7 Let C = (up(x) 4- g(x), r(x))
0 ^^ an additive cyclic code of length n over GF{4). C
is an additive reversible complement cyclic code iffp(x)
is self-reciprocal, r(x) is self-reciprocal, not a multiple
of(x — 1), and

#* cieg (̂ f(x)) < deg (p(x)) /̂ ew, r(x) divides

7/" deg deg , r(x) flf/v/

Proof: See Theorem 8 in [15]

4 Additive Reversible complement cyclic codes of
length 7

(x7 - 1) factors over GF(2) as

x7 - 1 = (x3 4- x 4- l)(x 4- l)(x3 + x2 4-1)

We have found 29 reversible complement cyclic codes
of length 7 over GF(4). The following list gives the ones
with the largest minimum distance and maximum num-
ber of codewords:

Ci =

c3 =

c4 =

c6 =

u; 4- (x4 4- x3) ,
(x6 4- x5 + x4 4- x3 + x2 4- x 4- l)

/ w + ^ + ^ + l ) , \
V (x6 + x5 + x 44-x 34-x 24-x + l) )>

u 4- (x5 4- x2) ,
(x6 4- x5 4- x4 4- x3 + x2 + x 4-1)

u + (x5 H- x4 4- x3 4- x2) ,
(x6 4- x5 4- x4 4- x3 + x2 4- x 4-1)

w 4- (x5 4- x2 -f 1) ,

a; 4- (x5 4- x4 4- x3 4- x2 4-1) ,
(x6 + x5 4- x4 4- x3 + x2 4- x 4- l)

We have found that all the codes above have 256 code-
words and Hamming distance 3. We also found that
CDNA for these codes have Hamming distance 3 and
208 codewords. In [16] the best n = 7, d = 3, DNA
code has 180 codewords.

Codes C2, C3, C4, Cs above are the best in terms of
constructing CDNA with fixed GC—content. All these
codes have the same GC—weight enumerator function
given by:

GCW(x,y) =
70x3y4 4- 14x6y 4- 70x4y3

4-42x5y2 + 4 2 x V 4- 14xy6

4-2x7 + 2y7.

This shows that we can construct codes with fixed
GC-conten t (3/7) of size 70 codewords. C2, C4, and
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have the same CWEc (a;, y, z, t) given by

+7y2zH2 4
+7x2ytA -

- 7x2zH2 +
h 7xy2zA +

+7xAyz2 + 7x2yH2

+21x2y2z2t 4
+7x2y3z

+7x2zH -
+7x3zH2 +

+7y2zt* -

-r (x y o T

2 _(_ Yx2y2t3
f 7yzH2 +'
7y3z2t2 + 2
f 7xAzt2 +'

+21x2yz2t2.

7y
7x;

TnT-
lX

+
1 4-
Ix;
Ix

2z2t3

yH2

7x3yH2

z7

zH4

y2z2t2

vz2t

C3 has CWEc (x, j / , 2;, t) given by:

7x2yh2

2

+7y4zt2

+21x2y2

+7x3yH2

-f
+7x2yH

+7xy2t4 +
+2lxy2zH2

2

7x4y2z
7x2yz4

7y3zH2

V2*2
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Abstract
In this work, Evolutionary Algorithms (EAs) are used

to control a recombinant bacterial fed-batch fermenta-
tion process, that aims to produce a bio-pharmaceutical
product. Initially, a novel EA was used to optimize the
process, prior to its run, by simultaneously adjusting the
feeding trajectory, the duration of the fermentation and
the initial conditions of the process. Finally, dynamic
optimization is proposed, where the EA is running si-
multaneously with the fermentation process, receiving
information regarding the process, updating its internal
model and reaching new solutions that will be used for
online control.

Keywords: Evolutionary Computation, Fed-batch
fermentation optimization, Online optimization, Vari-
able size chromosomes, Real-valued representations

1 Introduction
Valuable products such as recombinant proteins, an-

tibiotics and amino-acids are produced using fermenta-
tion techniques and thus there is an enormous economic
incentive to optimize such processes. However, these
are usually very complex, involving different transport
phenomena, microbial components and biochemical re-
actions. Furthermore, the nonlinear behavior and time-
varying properties make bioreactors difficult to control
with traditional techniques. Thus, it is necessary to
consider quantitative mathematical models, capable of
describing the process dynamics and the interrelation
among relevant variables. Additionally, robust optimiza-
tion techniques must deal with the model's complexity,
the environment constraints and the inherent noise of the
experimental process.

Several optimization methods are described in litera-
ture. It has been shown that, for simple bioreactor sys-
tems, the problem can be solved analytically. Numerical

1 Ana Veloso is most grateful for the financial support provided by
PRODER

methods, such as gradient algorithms based on the lo-
cal sensitivities of the objective function for changes in
the values of the control variables, have also been used
[1]. One other popular method is dynamic programming
which discretizes both time and control variables to a
predefined number of values and uses a systematic back-
ward search. However, those methodologies become too
complex when the number of state variables increases.
An alternative approach comes from Evolutionary Al-
gorithms (EAs), where previous work has reached inter-
esting results in the optimization of feeding trajectories

In this work, a fed-batch recombinant E. coli fermen-
tation process to produce a bio-pharmaceutical product
[4] was studied. In fed-batch fermentations there is an
addition of certain nutrients along the process, in order
to prevent the accumulation of toxic sub-products. The
purpose is to apply real-valued representation based EAs,
with variable sized chromosomes, in order to achieve
both static and dynamic optimization. The former is
conducted offline before the process starts and aims at
setting some of the fermentation's variables, namely the
substrate feeding trajectory, the initial conditions and
also the duration of the fermentation. The latter is con-
ducted in real time, interacting with the fermentation and
optimizing the feeding trajectory by reacting to informa-
tion about the real values of relevant state variables.

2 The fed-batch fermentation process

E. coli is the microorganism of choice for the produc-
tion of bio-pharmaceuticals, usually grown under fed-
batch mode due to the negative effect of acetic acid pro-
duced when glucose is present above certain concentra-
tions. During this process the system states change con-
siderably, from a low initial to a high biomass and prod-
uct concentrations. This dynamic behavior motivates the
development of optimization methods to find the optimal
input feeding trajectories. The typical input is the sub-
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strate inflow rate as a function of time. One way to eval-
uate the process performance is the productivity, defined
as the units of product formed per unit of time, which is
usually related with the final biomass obtained.

As previously presented [4], a white box mathemati-
cal model was developed, based on differential equations
that represent the mass balances to the state variables,
namely Fin,s the substrate feeding rate (in kg/h), W the
culture medium weight (in kg), S the glucose, X the
biomass, O the dissolved oxygen, C the dissolved car-
bon dioxide and A the acetate. Real experiments were
used as the basis for the model derivation, being con-
ducted in a fermentation laboratory with a 5-L bioreac-
tor and the experimental results were consistent with the
model. This model will be used for the optimization de-
scribed in the following, performing model simulation,
by using the Euler numerical integration method, with
a small step size d and a given duration for the process
(Tf) measured in hours.

3 Evolutionary Algorithms for Static Optimization
3.1 Evolutionary Algorithms for Feeding Trajectory
Optimization

The first approach to the problem was to develop an
EA capable of optimizing the feeding trajectory, i.e., to
determine the amount of substrate (glucose) to be fed
into the bioreactor per time unit (Firl}s). Real-valued
representations were used in order to encode the feeding
amounts. Each gene will encode the amount of substrate
to be introduced into the bioreactor in a given time unit
and the genome will be given by the temporal sequence
of such values.

In this case, the size of the genome is determined
based on the final time of the process (Tf) and the dis-
cretization step (d) considered in the simulation, be-
ing given by the expression: ^ . However, this could
produce a very large genome (a typical value would
be 5000), which would difficult the EA's convergence.
Thus, feeding values are defined only at certain equally
spaced points, and the remaining values are linearly in-
terpolated. The size of the genome becomes ^ -f 1,
where p stands for the number of points within each in-
terpolation interval. The values used in the experiments
are: Tf = 25, d = 0.005 andp = 200.

The amount of substrate that can be introduced per
time unit is limited to a maximum of 0.4 kg/h due to
the pump's capacity. Thus, there is the need to impose
limits in the gene values that must be within the range
[0.0; 0.4]. In the initial population, each individual is
assigned, for each of its genes, a random value in this
interval.

The evaluation process, for each individual in the pop-
ulation, measures the quality of the feeding trajectory in

terms of the fermentation's productivity. This calcula-
tion is achieved by firstly running a simulation of the
model, given as input the feeding values in the genome.
In each simulation, the relevant state variables are ini-
tialized with the following values: Xo = 5, So = 0,
Ao — 0, Wo = 3. The fitness value is then calculated
from the final and initial values of the state variables X
and W, by the expression

Xf * Wf - Xp * WQ

Tf

Both mutation and crossover operators were taken into
account. Two mutation operators were used, namely:
Random Mutation (replaces one gene by a new ran-
domly generated value, within the range [mini, maxi])
and Gaussian Mutation (adds to a given gene a value
taken from a Gaussian distribution, with a zero mean
and a standard deviation given by max»~m*n», where
[mini; maxi] is the range of values allowed for gene i).
In both cases, the operators were applied to a variable
number of genes (a value that is randomly set between
1 and 10 in each application). On the other hand, the
following crossover operators were chosen: Two-Point,
Uniform, Arithmetical and Sum crossovers [5].

The population size was set to 200 and the selection
procedure is done by converting the fitness value into
a linear ranking in the population, and then applying a
roulette wheel scheme. In each generation, 50% of the
individuals were kept from the previous generation, and
50% were bred by the application of the genetic opera-
tors.

The implementation of the proposed EA was based on
a general purpose package, developed by the authors in
the Java programming language. All experiments re-
ported were run on a PC with a Pentium IV 2.4 GHz
processor.

A set of experiments was conducted in order to find
the best set of genetic operators for this problem [4]. The
best result was obtained using an alternative that contem-
plates the use of all genetic operators described above.
In this case each crossover operator is responsible for
breeding 12.5% of the offspring and each mutation op-
erator 25%.

3.2 Optimization of Initial Conditions

The initial conditions of the experiments were set
based on the practitioner's experience and wisdom.
However, there is no guarantee that the initial values of
the state variables are optimal. So, it was decided to in-
corporate the initial values of significant state variables
in the optimization procedure.

Once each variable has different physical constraints
it was necessary to define a genome where the limits are
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distinct in each position. The variables chosen to be op-
timized, additionally to the feeding trajectory, were the
initial values of X, W, S and A, with their range of vari-
ability given by Xo € [1; 5], Wo 6 [2; 4], So e [0; 5] and

3.3 Optimization of the Final Time

The duration of the fermentation is not imposed by
any theoretical result, yet is chosen by empirical knowl-
edge, making it possible to optimize its value. In this
section, an EA will be proposed for this task considering
variable size chromosomes and new genetic operators.

The genetic operators defined in Section 3.1 were
kept: the mutations were unchanged and the crossovers
were updated to cope with parents of different sizes. In
this case, each of the offspring keeps the size of one par-
ent and for the genes where only one parent is defined
(the one with greater length), their value is passed into
the corresponding offspring. In the creation of the initial
population the individuals are given chromosomes with
distinct sizes, randomly selected in a range defined by
two parameters: a minimum and a maximum size. Fur-
thermore, two novel mutation operators were defined, in
order to allow for the change of the size of individuals
during the evolution process:

• Grow: consists in the introduction of a new gene
into the genome, in a random position, being its
value the average of the values of the two neigh-
boring genes.

• Shrink: a randomly selected gene is removed from
the genome.

Both operators are only applied when the maximum
and minimum size constraints are obeyed. With the in-
troduction of the new genetic operators, the probabilities
used in the experiments are the following: each of the
four crossover operators has a probability value of 10%,
the random and gaussian mutation keep their probabili-
ties of 25% and the new mutation operators have a prob-
ability of 5% each.

Two different experiments were conducted: in the
first, only the final time and feeding trajectory are opti-
mized, being the genome made out of the feeding trajec-
tory; in the latter, the initial conditions are also consid-
ered a target of optimization, being the initial parameters
encoded into the first group of four genes (fixed size), as
before, and the remaining of the genome used to code
the feeding trajectory (variable size). The minimum and
maximum duration of the fermentation are set to 20 and
50 hours, respectively. The remaining parameters of the
EA are kept unchanged.

Table 1. Comparison of the results obtained by the EAs for
feeding trajectory (F), initial conditions (I) and dura-
tion (T) optimization.

Optim. aim
F

F+I
F+T

F+T+I

Mean and conf.interval
8.98 ± 0.06
9.38 ± 0.06
9.16 ±0.09
9.44 ± 0.05

Best res.
9.12
9.46
9.32
9.50

3.4 Results

A set of experiments was conducted to test the previ-
ous approaches and the results obtained are displayed in
Table 1. Each alternative was tested by 30 independent
runs, and each run was stopped after 3000 generations.
In the table, the first column indicates the purpose of the
EA, where F stands for feeding trajectory, / for initial
conditions and T for final time optimization. The results
are given in terms of the defined fitness, being shown,
in the second column, the mean of the runs and the con-
fidence interval and in the third column the best result
obtained over all the runs.

The optimization of both time, feeding trajectory and
initial parameters had the best overall results, showing
that the EA can simultaneously optimize all these as-
pects. An interpretation of the results led to the con-
clusion that the best results confirmed the findings of the
practitioners and reached after years of practical experi-
ments, although in some cases the results gave some in-
teresting insights to the researchers.

4 Evolutionary Algorithms for Online Optimization

The offline optimization described previously makes
use of a simulation model to evaluate each solution. Al-
though this is a reliable model, validated by experimen-
tation, in a real environment several sources of noise can
contribute to changes in the observed values of the state
values. This scenario has an impact on the experimental
results that end up being worse than the ones predicted.
During the fermentation process, some of the state vari-
ables can be measured, but its values tend to serve only
for modeling purposes. However, it is possible to de-
velop dynamic optimization algorithms that are capable
of timely reacting to this new knowledge by updating its
internal model and generating new solutions.

EAs make a promising approach to this real-time opti-
mization task, since they keep a population of solutions
that can be easily adapted to perform re-optimization.
Indeed, the population can be evaluated under the new
scenario and better adapted solutions created through the
use of reproduction operators. The fact that a set of so-
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lutions is kept, and not only the best solution, makes a
faster adaptation to new conditions possible, while tak-
ing advantage of previous work.

In this work, online optimization based on EAs is pro-
posed, working in two stages: the former is the static
optimization, conducted before the fermentation process
and described in the previous section; the latter is the
dynamic optimization, where the fermentation monitor-
ing software sends information about the values of state
variables to the EA, that reacts by updating its internal
model and reaching a new optimal solution, that is sent
back to the monitoring software.

The EA used to perform online optimization is simi-
lar to the ones described in the previous section. When
new information is received, the EA determines a start-
ing point (in time) for its optimization, by adding the
time label of the received data with its predicted run-
ning time. Then it takes the last available population and
adapts it by removing from the genome of each individ-
ual the genes that encode feeding values for elapsed time
periods. Each of these individuals is re-evaluated taking
the new knowledge into consideration and the normal
process of the EA proceeds for a given number of iter-
ations. The best solution (feed) obtained is then sent to
the fermentation process and can be used.

In order to validate this method a set of experiments
was conducted, where the online measurements are sim-
ulated by adding noise to relevant state variables (X and
W were selected since they have a direct impact on the
fitness values). These variables were disturbed in regu-
lar intervals in time (of 1 hour) by the following rules:

Table 2. Results obtained by the EAs for online optimization.

where U(a, b) is a value taken from an uniform distri-
bution in the range [a, b]. In the experiments, both in
static and dynamic optimization, only feed trajectory op-
timization was considered and the experimental setup
was kept from the previous section. The offline EA is
stopped after 2000 generations, while the online one runs
for 500 generations in each time step.

Table 2 summarizes the results obtained with different
values of p ranging from 0.01 to 0.1. In the columns the
result from the static optimization in shown, followed by
the result obtained by the optimal feed with the added
noise and finally the result of the online optimization
method.

It is possible to observe that the added noise is enough
to make an huge impact on the process even when the
disturbance is small (p=0.01), a result that shows that
the process is quite sensitive to small changes in state
variables (a conclusion shared by the researchers with
practical experience), and emphasizes the need for dy-
namic optimization. The online optimization is capable
of results near the ones initially expected, therefore com-

p
0.01
0.02
0.05
0.1

Initial
8.84 ±
8.81 ±
8.82 ±
8.68 ±

opt.
0.06
0.06
0.09
0.09

Init.+ noise
4.58 ±0.21
4.49 ±0.17
4.26 ±0.14
4.17 ±0.18

Online
8.68 ±
8.35 ±
7.67 ±
7.44 ±

Opt.
0.07
0.10
0.12
0.13

pensating the noise, even though there is a decrease in
performance when p raises, as would be expected.

5 Conclusions and further work
In this work EAs, based on real-valued representations

and variable size chromosomes were proposed in order
to optimize relevant parameters for a fermentation pro-
cess, both in offline and online modes. The results, al-
though based on simulations, show that the offline EA is
capable of simultaneously optimizing the feeding trajec-
tory, the initial conditions and the duration of a fermenta-
tion process. On the other hand, the online optimization
deals well with significant changes (up to 10%) in the
state variables relevant to the fitness function.

Future work includes the validation of the system by
further testing, including both simulations and real fer-
mentation processes. An integration of the time and
initial parameter optimization in the dynamic procedure
will also be undertaken.

References
[ 1 ] A.E. Bryson and Y.C. Ho. Applied Optimal Control -

Optimization, Estimation and Control. Hemisphere
Publication Company, New York, 1975.

[2] J.A. Roubos, G. van Straten, and AJ. van Boxtel.
An Evolutionary Strategy for Fed-batch Bioreactor
Optimization: Concepts and Performance. Journal
ofBiotechnology, 67:173-187,1999.

[3] R. Marteijn, O. Jurrius, J. Dhont, C. de Gooijer,
J. Tramper, and D. Martens. Optimization of a Feed
Medium for Fed-Batch Culture of Insect Cells Using
a Genetic Algorithm. Biotechnol Bioeng, 81:269-
278,2003.

[4] M. Rocha, J. Neves, I. Rocha, and E. Ferreira. Evo-
lutionary algorithms for optimal control in fed-batch
fermentation processes. In G.Raidl et al , editor,
Proceedings of the Workshop on Evolutionary Bioin-
formatics - EvoWorkshops 2004, LNCS 3005, pages
pp.84-93. Springer, 2004.

[5] Z. Michalewicz. Genetic Algorithms + Data Struc-
tures = Evolution Programs. Springer-Verlag, USA,
third edition, 1996.



292

Benchmark testing of simulated annealing, adaptive random search and
genetic algorithms for the global optimization of bioprocesses

R. Oliveira1 and R. Salcedo2

1REQUIMTE/CQFB Centro de Quimica Fina e Biotecnologia, Departamento de Quimica, Faculdade de Ciencias e
Tecnologia, Universidade Nova de Lisboa, P-2829-516 Caparica, Portugal, e-mail: rui.oliveira@dq.fct.unl.pt

department of Chemical Engineering, Faculty of Engineering, University of Porto, R.Dr. Roberto Frias, P-2781-
901 Porto, Portugal, email: rsalcedo@fe.up.pt

Abstract
This paper studies the global optimisation of bioprocesses
employing model-based dynamic programming schemes.
Three stochastic optimisation algorithms were tested:
simulated annealing, adaptive random search and genetic
algorithms. The methods were employed for optimising two
challenging optimal control problems of fed-batch
bioreactors. The main results show that adaptive random
search and genetic algorithms are superior at solving these
problems than the simulated annealing based method, both in
accuracy and in the number of function evaluations.

1 Introduction
Bioprocess optimisation is becoming an increasingly
important tool in the biochemical industries. From the
methodological point of view, bioprocess optimisation
supported by mathematical models is still a challenging
problem. Several optimisation strategies are possible.
Deterministic gradient-based algorithms can certainly
be used, although convergence is only guaranteed
towards local optima. Many researchers have recently
changed to stochastic algorithms for dynamic
optimization, not only because discontinuities can be
easily handled, but also because locating the global
optimum becomes much easier [1-3]. The main
objective in this paper is to perform a benchmark
testing of common stochastic algorithms: simulated
annealing, adaptive random search and genetic
algorithms for the global optimization of bioprocesses.
The methods are briefly described below and then
applied to two benchmark problems for the optimal
control of fed-batch bioreactors. Obviously, all these
algorithms will produce results that may strongly
depend on the discretization type used for the control
variable [4]. For simplicity, a simple constant
parameterization, which might however not be the best
for these problems, was employed in all algorithms.

2 Bioprocess optimisation
The dynamic optimisation problem can be stated as to
find the control inputs u(t) over a given time domain

that maximise a given performance function that can be
generally stated as follows [1]:

(1)

with j the performance function, c a vector of state
variables, u a vector of control inputs, tf the batch time,
0 a terminal performance function and O a time
varying performance function.
Adaptive random search methods are particularly
attractive for the global optimization of non convex
problems and are easily applicable to constrained
functions and to optimal control problems [3]. Such an
example is the MSGA algorithm [5,6].
Simulated annealing is a powerful technique for
combinatorial optimization. Algorithms based on
simulated annealing employ stochastic generation of
solution vectors and share similarities between the
physical process of annealing and a minimization
problem. To apply simulated annealing to continuous
spaces, Cardoso et al. [7] have coupled it with the
deterministic nonlinear simplex [8], following a
proposal for unconstrained minimization [9], while
incorporating important additional features, such as the
ability to handle constraints and MINLP problems [10].
This paper exploits both MSGA and MSIMPSA for the
optimization of the test problems described below.
The genetic algorithm (GA) may be viewed as a
stochastic algorithm based on the principle of survival
of the fittest [11]. In short, a population of size n is
initially randomly created. Each individual is
characterised by the respective 'chromosome'
consisting in a complete set of optimisation parameters.
Then successive new generations are simulated
implementing: selection, crossover and mutation, and
the fittest individuals are selected for mating and
propagated to the next generations. The children are
subject to crossover and mutation operations. The
genetic algorithm coded by Carrol et al. [12] was
adopted in this work.
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3 Results and discussion

3.1 Case study I
The optimisation of an heterologous protein process in
a fed-batch bioreactor described in Park and Ramirez
[13] was selected for the first study The mathematical
model is as follows:

Material balance equations:

dt

at

dt
dV
dt

®(S)(Pt-Pm)-DPm

Kinetic rates:

2L87S

fP(S)-
Se -5S

S + OA

4.75ju(s)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
0.12 + ^ 0 )

The process state variables are: the concentrations of
biomass (X), glucose (S), total protein (Pt) and secreted
protein (Pm). The optimisation goal is to find the
optimal feeding strategy F(t) that maximizes

= Pm(tf)V(tf) (10)

where tf is the batch time and V the medium volume in
the bioreactor. The following initial conditions were
assumed: PM=0g/L, PT=0g/L, X=1.0g/L, S=5g/L, V=1L.
The batch time was fixed to tf=15 h and the glucose
concentration in the inlet feed was S0=20 g/1. The
Pontryagin's Minimum Principle (PMP) technique
showed that the maximum performance is J=32.4g
under the conditions described [13]. Since the proposed
algorithms are stochastic, their behaviour was tested on
a statistical basis, and 10 runs with different
optimization trajectories were made, using 10 time
intervals. The results for MSIMPSA are dependent on
the upper bound for the control variable, and this were
varied from 10 down to 3 in steps of one. Fig. la
compares MSIMPSA with GA. The average number of
function evaluations for MSIMPSA was ~104 when the

upper bound for u was set to 3, but decreased to 4500
otherwise, indicating premature ending of the
optimization. The upper bound for u was kept at 10
with GA. It may be concluded that GA arrives near the
global optimum with 105 function evaluations, and
MSIMPSA only arrives at the global optimum with a
high probability when the upper bound for u is kept
below 4. Increasing the number of function evaluations
for MSIMPSA did not improve the results.

GA: n=lQ4

GA: n=105

-100.0 -80.0 -60.0 -40.0 -20.0 0.0

Fig. la. Benchmarking results for case I
(MSIMPSA-lines vs GA-markers; n=runction evaluations)

4 GA: n = 10s

-60.0 -40.0
Relative Error (%)

Fig. lb. Benchmarking results for case I
(MSGA-lines vs GA-markers; n=function evaluations)

-80.0 -60.0 -40.0
Relative Error (%)

Fig. lc. Effect of number of function evaluations for case I
(MSGA with upper bounds on u set to 10)

Fig. lb shows that MSGA, with 104 function
evaluations, is more robust than MSIMPSA, and very
good results are obtained with the upper bounds for the
control variable set as high as 6. Fig. lc further shows
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that MSGA can improve with the upper bounds on u
set to the maximum value of 10, but at the expense of
an increasing number of function evaluations.
However, for this example, GA is somewhat superior,
although less accurate.

3.2 Case study II
The maximisation of the profitability of a fed-batch
fermentation for a protein production by recombinant
bacteria described in [14-16], using 10 time intervals,
was adopted for the second case. The material balance
equations and corresponding kinetic rates are given
below. The state of the process is defined by the
biomass (X), glucose concentration (S), protein
concentration (P), inducer concentration (I), schock
factor (ISF) and recovery factor (IRF), and medium
volume in the bioreactor (V). The model equations are:

Material balance equations:

^ - = VX-DX
dt

dS_

dt
r-DS + uxSF IV

^ = RfnX-DP
dt
dl =
dt "
dISF

dt

dIRF

dt

fp

ihiv

= -kJSF

= k2{\-IRF)

dV
- = ul+u2

w i t h D = (wj +u2)IV

Kinetic equations:
0A07S

'/14814.8

./ e _ 0.22/i?F\
u = d>\ ISF +
^ Y{ 0.22 + 1)

0.0005 +1
fp ~ 0.022 + /

0.09/
0.034 + /

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

Two streams are fed to the fermenter at different rates:
glucose is fed at a volumetric feed rate Ui and
concentration in the feed of SF

= 100.0 g/1, while the

inducer is fed with a different stream at a rate u2 with
concentration in the stream of IF=4.0 g/1. The degrees
of freedom are the control inputs, i.e. the feeding rates,
which in this case are constrained such that 0<UJ<1 and
0<u2<l. The initial state is X(0) = 0.1 g/L, S(0)=40 g/L,
P(0)=0.0 g/L, I(0)=0.0 g/L, V(0)=lL, ISF(0)=l,
IRF(0)=0. The objective is to maximise the process
profitability stated as follows:

J - P(tf )V(tf )/Q-(fu2IFdT (23)

with tf=10 hours and Q the ratio of protein value to
inducer cost fixed to 1/5. In the original paper, this
optimisation problem was solved employing the PMP
theory, formulating the Hamiltonian and identifying
singular control arcs, giving an optimal profitability of
J=0.803. In [20] the same problem was solved using
hybrid models, and the maximum profitability obtained
was 0.740, viz. 7.8% lower than the optimum. The
results obtained using the techniques presented before
are shown in Figs. 2a-b. It may be concluded that
MSGA gives better results than either MSIMPSA or
GA, and that GA quickly deteriorates when the number
of function evaluations decreases. However, all results
are better than the ones given by the hybrid approach of
Tholodur and Ramirez [15].

100

80 \

60 -|

40

GA

n = 104

MSIMPSA
n=1.2xlOs

-3.0 -2.5 -2.0
Relative Error (%)

Fig. 2a. Benchmarking results for case II (MSIMPSA-lines
vs. GA-markers; n=function evaluations)

GA

n = 104

60 -j

j
40

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0

Relative Error (%)

Fig. 2b. Benchmarking results for case II (MSGA-lines vs.
GA-markers; n=fiinction evaluations)
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4. Conclusions
Bioprocesses optimisation is still a challenging problem
in several respects. The resulting dynamic optimisation
program is difficult to solve due to constraints and
often due to the lack of sensitivity of the performance
function over control inputs. This lack of sensitivity
may be explained by the nature of kinetic behaviour
characterised by saturation kinetics. Deterministic
gradient-based algorithms tend to converge towards
local optima and have difficulties handling constraints.
The non linear nature and the occurrence of sudden
metabolic switches difficult the evaluation of gradients.
Stochastic algorithms are becoming more popular for
dynamic optimization, not only because discontinuities
can be easily handled, but also because locating the
global optimum can be envisaged. In this paper the
power of the stochastic approach is well illustrated with
the two benchmark problems In particular it is
demonstrated that adaptive random search and genetic
algorithms seem superior at solving these problems
than the simulated annealing based method, but
adaptive random search and simulated annealing are
more accurate. However, several other examples may
be given where simulated annealing excels over either
adaptive random search [4] or over genetic algorithms,
especially for highly constrained functions [17]. Thus,
more extensive tests have to be conducted before a
definite conclusion can be taken.

Accronyms
GA - Genetic Algorithm
MSGA-MinlpSGA
MINLP - Mixed Integer Non-Linear Programming
MSIMPSA - Minlp Simplex Simulated Annealing algorithm
NLP - Non Linear Programming
SGA - Salcedo-Goncalves-Azevedo algorithm

References

[1] Banga, J. R., E. Balsa-Canto, C. Moles and A. A. Alonso
(2003). Dynamic optimization of bioreactors: a review,
Proceedings INSA, Part A, nos. 3&4, May&July, 257.

[2] Martinez, E. C. And J. A. Wilson (2003). Evolutionary
optimization of batch process systems using imperfect
models, Proceedings INSA, Part A, nos. 3&4, May&July,
403.

[3] Salcedo, R. L., R. P. Lima and M. F. Cardoso (2003).
Simulated annelaing for the global optimization of chemical

processes, Proceedings INSA, Part A, nos. 3&4, May&July,
359.

[4] Lima, R. M., G. Francois, B. Srinivasan and R. L. Salcedo
(2004). Dynamic optimization of batch emulsion
polymerization using MSIMPSA, a simulated-annealing-
based algorithm, Ind. Eng. Chem. Res., 43(24), 7796.

[5] Salcedo, R., M. J. Goncalves and S. Feyo de Azevedo
(1990). An Improved Random-Search Algorithm for Non-
Linear Optimization, Comp. Chem. Engng., 14(10), 1111.

[6] Salcedo, R. L. (1992). Solving Non-Convex NLP and
MINLP Problems with Adaptive Random-Search, Ind. Eng.
Chem. Res., 3\(l), 262.

[7] Cardoso M.F., R.L. Salcedo and S.F. de Azevedo (1996).
The simplex-simulated annealing approach to continuous
non-linear optimization, Computers Chem. Engng., 20(9),
1065.

[8] Nelder J.A. and R. Mead (1965). A simplex method for
function minimization, Comput. J.,1, 308.

[9] Press W.H. and S.A. Teukolsky (1991). Simulated
annealing optimization over continuous spaces, Computers in
Physics, 5(4), 426.

[10] Cardoso M.F.; Salcedo, R.L.; Feyo de Azevedo, S.;
Barbosa, D. (1997). A Simulated Annealing Approach to the
Solution of MINLP Problems, Comp. Chem. Engng. 21(12),
1349.

[11] Goldberg, D. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley.

[12] Carroll, D. L. (1996). Chemical Laser Modeling with
Genetic Algorithms, AIAA J., Vol. 34(2), 338.

[13] Park, S. And Ramirez, W. F. (1988). Optimal Production
of Secreted Protein in Fed-Batch Reactors, aiche Journal,
34(9), 1550.

[14] Lee, J. And Ramirez,W.F. (1994) Optimal fed-batch
control of induced foreign protein-production by recombinant
bacteria, aiche Journal, 40(5), 899.

[15] Tholudur, Arun and Ramirez, W. Fred (1996)
Optimization of fed-batch bioreactors using neural network
parameter function models, Biotechenol. Prog., 12, 302.

[16] Carrasco E.F. and Banga J.R. (1997) Dynamic
optimization of batch reactors using adaptive stochastic
algorithms, Ind. Eng. Chem. Res., 36 (11), 5047.

[17] Costa, L., P. Oliveira (2001). Evolutionary algorithms
approach to the solution of mixed integer nonlinear
programming problems. Comput. Chem. Eng., 25, 257.



296

Dynamic modelling and optimisation of a mammalian cells process using
hybrid grey-box systems

A. Teixeira1, A. Cunha2, J. Clemente2, P.M. Alves2, M. J. T Carrondo u , R. Oliveira1

^EQUIMTE/CQFB Centro de Quimica Fina e Biotecnologia, Departamento de Quimica, Faculdade de Ciencias e
Tecnologia, Universidade Nova de Lisboa, P-2829-516 Caparica, Portugal

2IBET/ITQB Instituto de Biologia Experimental e Tecnologia/Instituto de Tecnologia Quimica e Biologica,
Apartado 12, P-2781 -901 Oeiras, Portugal

E-mail: {ana.teixeira, rui.oliveira}@dq.fct.unl.pt
E-mail: {cunha, clemente, marques, mjtc}@itqb.unl.pt

Abstract
In this work a model-based optimisation study of fed-batch
BHK-21 cultures expressing the human fusion glycoprotein
IgGl-IL2 was performed. Due to the complexity of the BHK
metabolism it is rather difficult to develop an accurate kinetic
model that could be used for optimisation studies. Many
kinetic expressions and parameters are involved resulting in a
complex identification problem. For this reason an alternative
more cost-effective methodology was adopted, based on
hybrid grey-box models. It was concluded that modulation
particularities of BHK cultures were effectively captured by
the hybrid model, this being of crucial importance for the
successful optimisation of the process operation. From the
optimisation study it was concluded that the glutamine and
glucose concentrations should be maintained at low levels
during the exponential growth phase and then glutamine
feeding should be increased. In this way it is expected that
both the cell density and final product titre can be
considerably increased.

1 Introduction
The use of animal cells such as Baby hamster kidney
(BHK) cell lines for the production of high valuable
proteins has gained great importance in the last years.
Low cell densities as well as high production costs are
typical disadvantages associated with animal cultures.
It is very important to improve the productivity and
robustness in these processes by model-based
optimisation and control strategies. There is not yet
available in the literature a mathematical model
describing accurately BHK cells metabolism. Several
models have been proposed for other animal cell lines
such as hybridomas or Chinese hamster ovary (CHO)
cell lines [1-3]. In preliminary studies it was concluded
that such models fail to describe the complete state of
BHK cultures with sufficient accuracy for optimisation
studies. Most likely due to the difficulty of synthesizing
a good model, no quantitative optimisation studies
supported by models have been reported in the
literature so far. Therefore in a process control
perspective BHK cultivation processes may be viewed
as having high potential for improvement. Other

modelling paradigms such as hybrid grey-box systems
are currently available for the analysis of complex
systems [4-8]. The main design concept is that the a
priori mechanistic knowledge is not viewed as the only
relevant source of knowledge, but also other sources,
like heuristics or information hidden in databases, are
considered as valuable complementary (not alternative)
resources for model development. In this paper the
main objective is to develop a hybrid grey-box model
sufficiently accurate for optimization studies and then
to perform a preliminary optimisation study of the
process operation.

2 Proposed methodology

2.1 Hybrid model development
The hybrid model structure adopted is simultaneously
parallel, in respect to the reaction kinetics model, and
serial, in respect of the connection between reaction
kinetics and material balance equations. The
compensation of the reaction kinetics is performed by
multiplying a mechanistic known term by a black-box
kinetic term. The black-box compensator was a simple
Multilayer Perceptron (feedforward neural network)
with the tangent hyperbolic function in the hidden
layers and linear output layer:
rnonP =w2tanh(w1x + b1) + b2 (1)

being wt and w2 weight matrices in the connections
between nodes of layers 1 and 2 and 2 and 3
respectively, whereas bi and b2 are bias parameter
vectors. This structure is in the statistical point of view
most appropriate for non-linear regression problems
[9].

2.2 Black-box model reliability monitoring
After the parameters of the black-box model have been
estimated, the input space was subject to clustering
using the k-mean algorithm [10-11]. The main idea is
to represent in a compact way the input space, which
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defines the domain of experience of the black-box
model. The clusters were defined as radial basis
functions:

ricm^^e^-""^-'"'* (2)

with nij the cluster centres and Ij diagonal covariance
matrices (Sj = diag{ay2}). The calculation of the
standard deviations is made on the basis of the
interpolation tolerance. The resulting set of clusters
forms a continuous density function f:c-»EMe[0,l]
that computes the neural network experience measure
(EM) for given input vectors c.

EM(c) = max{r(c,mj,Zj)} (3)

High EM values (higher than 0.5) indicate that the
neural network outputs are reliable.

2.3 Process optimisation based on the hybrid model
The feeding strategies of glucose and glutamine were
optimised for maximisation of the total amount of
product produced using the best hybrid model obtained.
The dynamic optimization problem can be generically
stated as to find the control inputs u(t) over a given
time domain te[to, tf] to maximize the performance
index (J) subject to several constraints [12]. In the
present case the optimisation criterion was to maximise
the total mass of product obtained at the end of the run
at time (tf):

max J = CIgG1_IL2(tf)V(tf) (4)
u

The control input vector was the feeding rate of glucose
and glutamine: u = [Fglc, Fgiut]

T .
The optimisation (4) is subject to several constraints:
- Differential equality constraints: the hybrid models
equations form a set of ODE (ordinary differential
equations) equality constraints that relate the
performance function with the control inputs

- Upper/lower bounds inequality constraints:

0<V<Vmax, 0<Fglc<Fglc,max, 0<Fgln<Fgln,max

- Optimisation risk inequality constraint. In the present
study we introduce a novel inequality constraint related
with the use of hybrid models:

jRISK[c(T)]dx

tf-t0

withRISK=l-EM.

- < RISKn (5)

This constraint states that the average experience
measure should be higher than a given acceptable
experience EMminy which is related with the risk of the
model being unreliable. This will restrict the feasibility

domain and is essential when employing hybrid
models. As will be shown later the black-box estimates
degrade in regions of the input space with sparse
measurements. The constraint (5) prevents that the
optimal process trajectories lie in those regions of the
input space.
The optimisation algorithm was implemented in a
Fortran program. The optimisation (4) was
implemented with a micro-genetic algorithm [13]. The
two control inputs were parameterised using a
discretization technique.

3 Results and discussion
Several hybrid model structures were compared in
terms of accuracy in describing the training data set,
composed by 3 process runs, and a validation data set
composed by 2 process runs. The criterion to stop the
parameter estimation algorithm was the achievement of
the minimum modelling error for the validation set.
Since the final model is to be used for optimisation, the
structure and size of the black-box compensator must
be selected on the basis of improved predictive
capacity.

3.1 Hybrid model results
The first hybrid model investigated was a simple serial
structure. This structure combines the material balance
equations with a feedforward neural network with 6
inputs (the fall input space) and 6 outputs, which are
directly the volumetric reaction rates of each of the
state variables. The number of parameters in the hidden
layer was tuned heuristically. The best result was
obtained with NH = 2 hidden nodes corresponding to
the overall error (sum of error of the training and
validation set) of MSE = 0.0080. In subsequent studies
the structure of the hybrid model increased in
complexity by the incorporation of prior mechanistic
knowledge in the reaction kinetics yielding
simultaneously parallel and serial structures. The best
result obtained was MSE = 0.0058 for a small network
with 36 parameters. Despite the fact that all models
could practically result in zero error in describing the
training data set, the description of the validation set
could be significantly improved by incorporating
reliable mechanistic descriptions of the reaction
kinetics in the serial/parallel hybrid structure. Other
structures were tested, namely a multilinear description
of the kinetic rates. The results were however worst
probably because this structure is not able to capture
the inherent non-linearities of the kinetic.
The final result using the best model is presented in
Fig. 1. There is a remarkable agreement between model
predictions and measurements. Interestingly the
number of parameters is comparable to the mechanistic



298

model first developed (23 parameters) and the
mechanistic model has much higher error. Clearly the
model can be improved, this requiring more
experiments carefully planned being subject of future
work.

0 100 200 300 0 50 100 150 200
time (h) time (h)

Fig. 1. Hybrid modelling results: (a) example of a batch run
used for training; (b) example of fed-batch used for
validation. Symbols represent measured values; full lines
represent modelling results.

3.2 Metabolic significance
The reaction kinetics identified by the neural network
embedded in the hybrid model were analysed in respect
to their metabolic significance. The yield coefficients
of lactate on glucose (Yiac/gic) and ammonia on

glutamine (Yamm/gin) are in agreement with the so
reported shift that occurs in BHK cell cultures [14].
The yield Yiac/gic increases with increasing glucose
concentration reaching a relatively constant value of
about 0.7 g/g for glucose concentrations higher than
0.4 g/L. The yield coefficient of ammonia on glutamine
varies significantly with glutamine concentration. The
metabolic shift is once more evident. For glutamine
concentrations in the range 0.5-1.4 mM the yield
Yamm/gin is constant and equal to 1.8 mol/mol, which is
close to the theoretical value of 2 mol/mol. Above
1.4 mM of glutamine concentration this ratio decreases
significantly approaching the theoretical value of
1 mol/mol. From this analysis it may be concluded that
the hybrid model was able to properly describe the
metabolic shifts, this being of crucial importance for
the successful process optimisation.

3.3 Investigation of the optimal operating strategy
The feeding strategies of glucose and glutamine were
optimised for maximising the total amount of IgGl-IL2
produced using the best hybrid model. As discussed
previously, when using hybrid models for process
optimization it may be important to constraint the risk
of the model being unreliable. The possibility to
explore novel process trajectories outside the trust
region can be regulated through the maximum risk
parameter (5). As expected the final IgGl-IL2
produced increases as higher risk levels are accepted.
For risks higher than 25 % the optimization results do
not comply with biological constraints. The
optimisation results for the case of RISK < 15 % may
be interpreted as follows. Glucose and glutamine
concentrations should be controlled to low levels while
cells are growing at their maximum rate. During this
phase the specific formation rate of IgGl-IL2 is
affected by the low levels of glutamine but this is
compensated by the increase in cell density. When cells
start dying the best strategy seems to be increasing the
glutamine feeding rate. This improves the IgGl-IL2
formation rate. A considerable improvement in
productivity is expected when comparing with the fed-
batch experiments performed so far. The final product
titre is expected to be 31 mg/1 against the 15 mg/1
obtained so far in the fed-batch experiments.

4. Conclusions
The main objective in this work was to perform a
detailed model-based optimisation study of fed-batch
BHK-21 cultures expressing IgGl-IL2. It was first
attempted to develop a mathematical model based on
relatively simple unstructured and non-segregated
kinetics. It was concluded that due to the complexity of
the BHK metabolism it is rather difficult to develop
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such kinetic model sufficiently accurate for
optimisation studies. An alternative more cost-effective
methodology based on hybrid grey-box models was
adopted. The best result was obtained with a
serial/parallel structure in which a feedforward neural
network compensates the inaccuracy of a simple first
order kinetic description. The hybrid model was
analyzed in respect to its metabolic significance. It was
demonstrated that the yields are consistent with the
well-known metabolic shifts occurring in BHK cells,
this strengthening the potential application for process
optimization.
The optimisation results show that the best operating
strategy for maximising the volumetric productivity
consists in controlling the glucose concentration at low
levels during the whole process while glutamine should
be controlled at low levels during the growth phase (0-
0.5 mM) and then increased up to 1.8 mM in the
production phase. By implementing such a strategy a
considerable improvement on the final product titre is
expected.
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Abstract
The carbon source feeding strategy is crucial for the
productivity of many biochemical processes. In high density
and shear sensitive cultures the feed of the carbon source is
frequently constrained by the bioreactor maximum oxygen
transfer capacity. In order to maximise the product formation,
these processes should be operated at low dissolved oxygen
(DO) concentrations close to the limitation level. This
operating strategy may be realised with a closed-loop
controller that regulates the DO concentration through the
manipulation of the carbon source feed rate. The performance
of this controller may have a significant influence on the final
product production and should be as accurate as possible. In
this work we study the application of adaptive control for
solving this problem focusing not only on stability but also on
accuracy. Whenever possible the convergence trajectories to
the set point are characterised mathematically. Concerning
the instrumentation, two situations are covered i) only the DO
Tension (DOT) is measured, ii) both DOT and off-gas
composition are measured on-line. The controllers are tested
in a pilot plant recombinant Pichia pastoris process.

1 Introduction
The carbon source feeding strategy is normally
determinant for bioprocess productivity because the
availability of carbon source has a decisive influence
on the cells metabolism and therefore on the final
product production. In the biochemical industries the
feeding strategy in fed-batch bioprocesses is commonly
optimised off-line and then implemented on-line with
open-loop controllers. In some cases the application of
closed-loop control is justifiable and could introduce
improvements in productivity. Ref. 1 demonstrated the
advantage of closed-loop carbon source feed control
based on direct carbon source measurements. This
controller was implemented in a cultivation of Chinese
hamster ovary cells in a high-density perfusion process
and was shown to work reliably for more than 2.5
month.
In some aerobic high density processes, the feed of the
carbon source can be controlled indirectly with a DO
based closed-loop controller. In high-density cultures
oxygen mass transfer limitation is likely to occur
because beyond a given cell density the vessel oxygen

transfer capacity is unable to sustain the oxygen
metabolic demand. Ref. 2 studied this control problem
in a recombinant Escherichia coli process with the
general goal of avoiding acetate accumulation since
this was determinant for the bioreactor productivity.
The only sensor required was a standard dissolved
oxygen probe. The controller managed to feed the
maximum carbon source obeying to the oxygen transfer
limitation constraint.
In targeting industrial application, issues such as
reliability, sterility, and accuracy, are given high
priority [1]. In this paper we study the application of
adaptive control of glycerol addition under oxygen
transfer limitation in a recombinant P. pastoris process
employing reliable measurements. A major concern
was given not only to the stability but also to the
accuracy of the controller. The accuracy is in this case
crucial because oscillations may lead to the irreversivel
loss of culture productivity [3]. The accuracy is very
much dependent on the tracking dynamics to the
reference signal, hence the characterization of the
tracking dynamics has been given a great deal of
attention. Two of the most reliable measurements
currently available in production facilities are DO
(polarographic) probes and Mass spectrometers (MS).
Hence adaptive controllers were designed that can
utilise all this information but also the case of only
DOT being available on-line is treated. Interestingly it
was concluded that the availability of the MS does not
represent a decisive advantage in context of the control
problem studied.

2 Materials and methods

2.1 The process
A stable Pichia pastoris strain constitutively expressing
a recombinant protein was used in this work.
Fermentations were carried out in a 30 1 working
volume fermenter (Lab Pilot Fermenter Type LP351,
50 L, Bioengineering, Switzerland). Fermentation
temperature was controlled at 30°C, and pH was
controlled at 5.0 with addition of ammonium hydroxide
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25%. Airflow was kept constant at 1800 1 h1 .
Dissolved oxygen concentration was controlled in
cascade mode: firstly by manipulating the overhead
pressure between 80 and 500 mbar, controlling the DO
level at 95% of saturation; then by manipulating the
agitation rate between 320 and 1000 rpm maintaining
the DO level at 50% of saturation. Finally the glycerol
feeding rate was used to keep the dissolved oxygen
concentration level at the desired set-point. The data
acquisition and control algorithms were implemented in
the Universal Bio-process CONtrol system - UBICON,
Electronic System Design, Hannover, Germany. This
supervision system, based on a VME architecture
(industrial standard IEC 1014), includes hardware and
software interfaces, connecting equipment via a CAN
field-bus (ISO 11898), and enables real-time and multi-
tasking operation.

2.2 Adaptive controller design
A process model for the fed-batch cultivation of the P.
pastoris yeast was first developed with the purpose of
supporting the design of the adaptive controllers. It is
assumed that the process is run under carbon source
limitation being the accumulation of the carbon source
negligible at any instance. This is equivalent to state
that all carbon source material fed to the bioreactor is
instantly consumed and therefore the substrate
consumption rate is equal to the rate of substrate
addition to the vessel. In such circumstances the
volumetric oxygen consumption rate can be related
directly to the substrate consumption rate through the
stoichiometry, i.e., the oxygen consumption rate is
equal to the carbon source consumption rate (defined as
the product SFD(t) where SF is the carbon source
concentration in the feed rate, and D is the dilution
rate) multiplied by the yield of oxygen to substrate YOs-
Since the intracellular reaction kinetics are complex
and inherently dynamic it is necessary to assume that
the yield coefficient is a time function. With these
considerations and simplifications the following single-
input single-output (SISO) process equation with D
being the control input and Co the process output is
obtained:

dC,
dt

= -Yo sDSF-DC0 +kLa(C0-Co) (1)

being kLa the volumetric oxygen mass transfer
coefficient and Co* the oxygen saturation concentration
in the liquid phase. In Eq. (1) all parameters YOs(t),
Co* , SF and kLa are considered to be badly known.
The uncertainties around these parameters pose the
important constraints for deriving a simple and robust
controller directly from Eq. (1). It is however possible
to design a stable direct or indirect adaptive scheme to
cope with these uncertainties. Before we start designing

the controllers we will transform the process Eq. (1)
into a more convenient form. First the variable
transformation Z=100-DOT is introduced with DOT
being the dissolved oxygen tension defined as
DOT=100Co/Co* being directly measured by oxygen
probes after proper calibration. With this variable
transformation and assuming that both the dynamics of
Co* and the DO dilution term are negligible, the
process equation is rewritten in the following
simplified linear time-varying form:

— = 9D-kLaZ
dt L (2)

with 0=lOOYOsSF/Co*. In the process dynamical model
(2) there are two possible unknowns. The term 0
congregates several ill-defined process parameters and
is considered always as being an unknown time varying
'parameter'. If no measurement device is available for
the off-gas composition the kLa will be an additional
unknown of the process. Though both cases were
studied in detail, in the context of the present paper
only the situation of unknown 0(t) and "measured" kLa
(indirectly from the analysis of off-gas composition) is
addressed.
A recursive least squares algorithm could be employed
for estimating the unknown 0(t) on-line, however an
even simpler alternative is to apply an observer-based
estimator [4] that may be formulated as follows:

— = D§-kLa(100-DOT) + (»(100-DOT-Z) (3a)
dt

de
dt

= y(100-DOT-Z) (3b)

If the design parameters oo, y are defined as w=2^x'1-
(dD/dt)D~l and y=£>'V2, it may be shown that the
estimates of 0(t) converge to the true process values
with second order dynamics [5]. Subtracting Eq. (2) by
eq (3a) and combining with (3b), after some
manipulation yields the following result:

dt2 dt
(4)

that basically confirms that the convergence follows the
well known second order equation. The advantage of
this solution is that the user has full control on the
speed of convergence and on the oscillatory behaviour
of the estimator by setting the two parameters x and C,
and hence trial and error tunings are avoided.
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Fig. 1 .DO control results for step changes in the set-point using 6 distinct adaptive control algorithms and different controller
settings.

Povided that both G(t) and kLa(t) are known on-line it is
straightforward to derive a control law for the control
input D that stabilises system (2). Since the process is
first order it is obvious to employ a first order reference
model design:

dt

being DOTSP the set-point and rc the first order time
constant. Combining equations (5) and (2) and
substituting 9(t) and kLa(t) by their estimates (or
'measurement' in the case of kLa), the following
control law is obtained:

F = -
0(t)

= (DOTsp-DOT) (6)

3 Results and discussion
The controller equation (6) was implemented along
with a discrete version of the estimator (3ab)
employing direct Euler discretization with sampling
time T=2 s. Also other controllers and estimation
algorithms for the simultaneous 9(t) and kLa estimation
were implemented and tested. The overall final results
are plotted in Fig. 1. Besides the model reference

adaptive controller described previously, an adaptive
gain controller - with gain calculations that guarantee
second order convergence to the set-point - and also a
model reference controller employing a linear second
order reference model were tested. The application of
all control algorithms was rather successful. In all cases
robust and accurate control was achieved. In Fig. (1)
several results are presented for different controller
tunings. It is important to recognise that the tuning is in
this case intuitive: the convergence speed (x) and
damping coefficient (Q are the parameters that may be
used to tune the dynamics of convergence. The
divergence shown in Fig. (1) corresponded to a fast
controller setting with x=8 s, i.e close to the sampling
time. The 0(t) could be estimated accurately in the
whole time domain but was affected 3 times by
glycerol accumulation. The two peaks observed at the
end were caused by sudden loss of cell activity
signalling the end of the batch. The results produced by
the controller (6) with the estimator (3), which are
representative of the other algorithms, can be assessed
from Fig. (2). Three controller parameters must be
properly set. The ii and £ are the time constant and
damping coefficient respectively of a second order
dynamic response for the estimation of the unknown
function 8(t). They were set to 10 s and 1 respectively.
The xc is the time constant for the exponential
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convergence of Co to the desired set-point. Fig. (2a)
shows the controller response to step changes in the
set-point with xc=20, 40 and 60 s. It was observed that
decreasing xc the response becomes faster and
oscillations have higher amplitude. Though the
controller design attempted to impose first order
convergence, the controller response seems to be
typical of a second order system. This was not
unexpected and can be easily explained by probe
dynamics as well as process time delays namely in
what concerns the evaluation of the kLa and also delays
in the pumping system. The estimator performance can
be assessed from Fig (2b). The estimator was stable in
the whole experiment. The oscillations observed in the
estimation of 0(t) corresponded to glycerol
accumulation that occurs whenever the set-point is
changed.
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Fig. 2. Example of results obtained with controller (6)
employing the adaptive estimator (3) (a) control results (b) 9
estimator results.

4 Conclusions
In this work adaptive control algorithms were designed
specifically for driving aerobic fermentations near
maximum oxygen transfer capacity, were developed
and tested in a recombinant P. pastoris process. This
control problem is directly linked to economical issues
and is of significant practical relevance. The control
algorithms were derived on the basis of stability and
accuracy and require two on-line measurements that are
currently standard in most production facilities: DO
electrodes and the MS or other device for measuring
concentration of oxygen in the outlet gas stream.
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Abstract
The Multilayer Perceptrons (MLPs) are the most

popular class of Neural Networks. When applying
MLPs, the search for the ideal architecture is a crucial
task, since it should should be complex enough to
learn the input/output mapping, without overriding
the training data. Under this context, the use of
Evolutionary Computation makes a promising global
search approach for model selection. On the other
hand, ensembles (combinations of models) have been
boosting the performance of several Machine Learning
(ML) algorithms. In this work, a novel evolutionary
technique for MLP design is presented, being also
used an ensemble based approach. A set of real world
classification and regression tasks was used to test this
strategy, comparing it with a heuristic model selection,
as well as with other ML algorithms. The results favour
the evolutionary MLP ensemble method.

Keywords: Supervised Machine Learning, Multilayer
Perceptrons, Evolutionary Algorithms, Ensembles.

1 Introduction
Neural Networks (NNs) are important Machine Learn-

ing (ML) techniques, denoting a set of connectionist
models inspired in the behavior of the human brain. In
particular, the Multilayer Perceptron (MLP) is a popular
architecture, where neurons are grouped in layers and
only forward connections exist. This provides a pow-
erful base-learner, capable of nonlinear mappings [1].
When compared to other ML methods, MLPs are known
to behave well in terms of predictive knowledge [2],
and there has also been research in terms of explanatory
knowledge (e.g. extracting rules from MLPs) [3].

However, one of the major issues when applying
MLPs is the topology (i.e. connectivity) design. This is
a complex and crucial task, with a strong impact in per-
formance (a small network may provide poor learning

lrThis work was supported by the FCT project
POSI/ROBO/43904/2002, which is partially funded by FEDER.

capabilities, while a large one will overfit the data). It
is common to address this task by trial-and-error proce-
dures (e.g. exploring different number of hidden nodes),
in a blind search strategy, which only goes through a
small set of possible configurations. More elaborated
methods have been proposed, such as pruning [4] and
constructive [5] algorithms, although these perform hill-
climbing, being prone to local minima.

An alternative is offered by Evolutionary Computa-
tion (EC), which performs a global multi-point (or beam)
search, quickly locating areas of high quality, even when
the search space is very large and complex. The combi-
nation of EC and NN, often called Evolutionary Neural
Networks (ENNs), is a better candidate for the topology
design, due to the characteristics of the error surface [6]:

• the number of nodes/connections is unbounded;

• the mapping from the structure to its performance
is indirect;

• changes are discrete and can provide discontinu-
ous effects in the NN behaviour; and

• similar topologies may present different perfor-
mances.

In addiction, this approach is biologically more plau-
sible; i.e., living creatures have succesfully adapted to
their environments as a result of the interaction of evolu-
tion and learning.

Another emergent ML research area is related to the
use of ensembles, where a set of models are combined to
produce an answer, being often more accurate than indi-
vidual learners [7]. One interesting way to build NN en-
sembles is based on heterogeneous topologies [8]. This
approach can be easily adapted to ENNs with no com-
putacional effort increase, since ENNs already use a pop-
ulation of NNs with different connectivities.

The present work presents a novel ENN to the design
of MLP topologies, where a direct MLP representation
(closer to the phenotype) is used. This approach will be
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tested in classification and regression tasks, using both
single and ensemble based models. Finally, results will
be compared with a heuristic NN selection procedure, as
well with other ML methods.

2 Materials and Methods
2.1 Data Sets

Eight classification and eight regression data sets were
selected from the UCI ML repository [9], and its main
features are listed in Table 1, namely the number of nu-
meric (Nu), binary (Bi) and nominal (No, i.e. discrete
with 3 or more labels) input attributes, as well as the
number of examples (Ex) and classes (CI). The regres-
sion tasks are identified by the symbol SR in the Cl col-
umn (last eight rows).

Table 1. A summary of the data sets used.

Task

Balance
Bupa
Car
Cmc
Dermatology
Ionosphere
Sonar
Yeast
Abalone
Auto-mpg
Autos
Breast-cancer
Heart-disease
Housing
Servo
WPBC

Nu
4
6
0
5
34
34
60
7
7
5
17
1
6
12
2

32

Inputs
Bi
0
0
0
3
0
0
0
1
0
0
3
4
3
1
0
0

No
0
0
6
1
0
0
0
0
1
2
5
4
4
0
2
0

Ex

625
345
1728
1473
366
351
104

1484
4177
398
205
286
303
506
167
194

Cl

3
2
4
3
6
2
2
10
3ft
5ft
3?
SR

SR
3R
5R

will be modeled by one real-valued output, which di-
rectly represents the dependent target variable.

The MLPs used make use of biases and sigmoid ac-
tivation functions, with one hidden layer, containing a
variable number of nodes. A different approach was fol-
lowed for the regression tasks, since outputs may lie out
of the logistic output range ([0,1]). In this case, the lo-
gistic function was applied on hidden nodes, while the
output ones used shortcut connections and linear func-
tions, to scale the range of the outputs (Figure 1). This
solution avoids the need of filtering procedures, which
may give rise to information loss and has been success-
fully adopted in other regression applications, such as
Time Series Forecasting [10].

Input Layer : Hidden Layer Output Layer

Fig. 1. A 2 - 2 - 1 ML? topology with bias and shortcuts.

The initial weights will be randomly set within the
range [-1,1]. Then, the RPROP algorithm [11] is se-
lected for training, due to its faster convergence and sta-
bility, being stopped after a maximum of 200 epochs or
when the error slope is approaching zero.

Two distinct accuracy measures were adopted: the
Percentage of Correctly Classified Examples (PCCE),
used in classification tasks; and the Normalized Root
Mean Squared Error (NRMSE), applied in the regression
ones. These metrics are given by the equations:

2.2 Neural Networks

Before feeding the MLPs, the data was preprocessed:
a 1-of-C encoding (one binary variable per class) was
applied to the nominal attributes and all input values
were rescaled within the range [—1,1]. For example, the
safety attribute from the task car was encoded according
to: low —» 1 -1 -1 , med —»-1 1 -1 and high—* -1 -1 1.

Regarding the outputs, the discrete variables were nor-
malized within the range [0,1] (using also a 1-of-C en-
coding for the nominal attributes). Therefore, the pre-
dicted class is given by the nearest class value to the
node's output, if one single node is used (binary vari-
able), otherwise the node with the highest output value
is considered. On the other hand, regression problems

PCCE = * ! x 100

NRMSE =
x?LiTi

x 100 (%)
(1)

thewhere N denotes the number of examples; Pi,
predicted and target values for the i-th example.

An Heuristic approach (HNN) to model selection is
defined by a simple trial-and-error procedure, where
fully connected MLPs, with a number of hidden nodes
ranging from 0 to 20, are trained. Then, the topol-
ogy with the lowest validation error (computed over non
training data) is selected. The trained MLPs will also be
used to build an Ensemble (HNNE), where the output is
given by the average over all 21 MLPs.
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2.3 Evolutionary Neural Network

In this work, an Evolutionary Algorithm with a direct
representation is embraced, where the genotype is the
whole MLP. Each individual of the initial population is
set by choosing a random number of hidden nodes (be-
tween 0 and 10). Then, each possible connection is set
with probability of 50%. New individuals are bred by
structural mutation, which works by adding or deleting
a random number (from 1 to 5) of nodes or connections.
The population size was set to 20, being the selection
done by converting the fitness value (the error computed
over a validation set) into its ranking, and then applying
a roulette wheel scheme, being used a substitution rate of
50%. Finally, the ENN is stopped after 20 generations.

This scalable ENN is able to search through any kind
of MLP connectivity, ranging from linear models to com-
plex nonlinear MLPs. The ENN Ensemble (ENNE) will
be built using the best 20 individuals (with lower vali-
dation error) obtained during the evolutionary process,
being the output computed as the average of the MLPs.

3 Results
The NN/EC experiments were conducted using a soft-

ware package developed in Java by the authors. The
other techniques were computed using WEKA ML soft-
ware (with its default parameters) [12]:

• J48 - a classification decision tree based on the
C4.5 algorithm;

• M5P - a regression decision tree (M5 algorithm);

• 1B5 - a 5-Nearest Neigboor,

• KStar - an instance based algorithm; and

• SVM - a Support Vector Machine.

For each model, 10 runs of a 5-fold cross-validation pro-
cess [13] (stratified in the classification tasks) were exe-
cuted. This means that in each of these 50 experiments,
80% of the data is used for learning and 20% for testing.
Regarding the MLP based approaches, the learning data
was divided into training (50% of the original dataset)
and validation sets (30%). Tables 2 and 3 show the av-
erage errors of the 10 runs for each learning model and
classification/regression task. In both tables, the last row
averages the global behaviour of each technique.

First, the classification results will be analyzed. The
NN based approaches (last four columns) are competive
when compared with the other ML algorithms. The few
exceptions are the dermatology and sonar tasks, where
the SVM and KStar get the best results. As expected, the
ENN outperforms the HNN, with a 1 % increase in perfor-
mance. Furthermore, the ensemble approaches (HNNE

and ENNE) obtain better results when compared with the
single based methods (1.4% improvement in both cases).
Indeed, the ENNE reveals the best overall behaviour, out-
performing all other algorithms in 5 of the 8 tasks.

A similar scenario occurs in the regression tasks. In
general, the NN methods are better than the other ML al-
gorithms, although the M5P outperforms the HNN and
HNNE approaches. When compared with the ENN, the
HNN is outperformed by a wider difference (2.5%). As
before, the ensembles behave better, although the impact
is higher with the ENNE (1.5% improvement, being the
best method in 5 tasks) than with the HNNE (0,7% im-
provement).

4 Conclusions
The surge of bio-inspired techniques, such as Multi-

layer Perceptrons (MLPs) and Evolutionary Computa-
tion (EC), has created new exciting possibilities for the
field of Machine Learning (ML). Considering ensembles
of learning models to improve its accuracy has also been
a focus of attention by the research community. In this
work, an evolutionary approach to MLP topology design
was presented, considering single and ensemble combi-
nations, being tested in supervised learning tasks (e.g.,
classification and regression).

The results obtained confirm than Evolutionary Neu-
ral Network (ENN) approach outperforms a heuristic
trial-and-error MLP design procedure (HNN), as well as
other ML algorithms (e.g. K-Nearest Neigboor). How-
ever, this improvement in performance has the handicap
of increasing the computational complexity (the HNN re-
quires only a tenth of the ENN computational effort).

On the other hand, the use of the EC population struc-
ture to construct ensembles is a recent research field. In-
deed, the proposed ENN Ensemble (ENNE), based on the
average of the outputs from the best EC individuals (or
MLPs), is competitive. The ENNE has the advantage of
presenting the best overall performance while requiring
the same computational effort, when compared with the
single based ENN.

In future work, it is intended to explore similar ap-
proaches with different neural architectures (e.g., Recur-
rent Neural Networks). Moreover, more elaborated en-
sembles should be considered, by designing fitness func-
tions which reward specialization [14].
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Table 2. The classification results (PCCE values, in

Task
Balance
Bupa
Car
Cmc
Dermatology
Ionosphere
Sonar
Yeast
Mean

J48
78.1
64.8
91.3
51.2
95.7
89.4
72.5
56.0
74.9

Table 3.

Task
Abalone
Auto-mpg
Autos
Breast-cancer
Heart-disease
Housing
Servo
Wpbc
Mean

MSP
24.3
11.8
13.3
40.8
21.2
18.4
50.4
73.2
33.0

IBS
87.6
60.7
92.3
47.2
96.6
84.6
80.5
57.1
75.8

KStar
88.3
65.9
87.1
49.6
94.5
84.0
85.2
53.1
76.0

SVM
87.7
58.0
93.5
48.4
97.4
87.9
76.7
56.6
75.8

HNN
94.8
68.4
97.4
50.6
94.9
88.9
79.9
58.2
79.1

The regression results (NRMSE

TBS
25.3
15.1
21.4
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Abstract
With more than 23000 protein structures deposited in the
Protein Data Bank (PDB) and more structures being
discovered with each passing day, the experimental
determination of the 3-dimensional structure of proteins is
just the beginning of a journey in-silico. For a structural
biologist, this enormous surge of structural data carries with it
far greater computational challenges; Compare, align, classify,
and categorize them under families, domains and functionally
similar proteins already discovered. Pelican provides the
structural biologist with a strong and easy technique that that
will help him in facing these challenges. Pelican is a rapid
way to align the backbones of two protein structures using 2-
dimensional Cellular Automaton (CA) models. Breaking
down the protein structure into distance matrices comprising
of 5 peptide units, Pelican uses the differences of these
matrices to construct the 2-dimensional CA grid. Starting
from an initial unaligned state, the CA evolves through
several generations according to a defined set of local rules.
As the CA evolves through successive generations, the
emergent patterns made by the live cells are the ones that
contribute to the alignment. Pelican is also an example of a
system exhibiting emergent behavior. Each cell behaves in a
strictly microscopic way, but each individual cell's behavior
leads to a macroscopic long range behavior exhibited by the
entire system which collectively gives the alignment.

1 Introduction
Proteins have an uncanny ability to assume infinite
shapes and structures and could be the reason why
nature has chosen them to be the building blocks of life.
This realization of the importance of proteins gave birth
to a highly specialized field called Structural Genomics.
"Structural genomics will yield a large number of
experimental protein structures (tens of thousands) and
an even larger number of calculated comparative
protein structure models (millions)..." [1]. This
mammoth surge in structure information has lead
researchers to look out for efficient techniques to
compare protein structures, detect motifs, classify
proteins under specific families, etc. While the current
dogma of genetics connecting sequences to structures
(sequence-> structure-> function) suggests that it would
suffice if sequences were studied in greater details to
detect similarity in proteins and classify them, there are
several instances when different sequences yield the

same structure. As a result there is a concerted effort to
study the 3-dimensional structure of proteins. [2, 3].

2 The Pelican algorithm

Fig. 1. The Pelican Algorithm

Fig. 1 illustrates the central idea of the Pelican
algorithm:

• Breakdown large protein structures to smaller
units... comprising of n successive C-alpha
atoms of the primary amino acid sequence
(n=5).

• Compute the distance matrix of each unit
(Poly-peptide blocks).

• For the given 2 protein structures, compute the
Difference Matrix (DMX)

• Using the DMX, generate the Initial
Configuration of a 2-Dimensional CA.

• The CA evolves through several generations
according to a pre-defined set of microscopic
rules; the rules designed in a way such that
only the cells corresponding to the longest
alignments of the two structures survive.
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3 Pelican's alignment principle
The central idea behind Pelican is that all alignments
(significant or otherwise) between the two protein
structures will be visible in the Difference Matrix. Fig. 2
shows the DMX (converted to the IC of a cellular
automata [4]) of 2 protein structures; the A chains of
Ia4f and lc40. These two proteins are found to be
similar according to DALI [5]. The DMX contains
patterns that signify alignments and other similar motifs.

L*4.! - - < - • E Z •. 1 1
fiT, *L"l L:'. 41-fiL 7-LC-J

•"I • — -.•-. u-
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Fig. 2 Difference Matrix -la4f_A and lc40_A

Fig. 3 illustrates the principle of Pelican and how it
can be used to identify these patterns. There are 2
protein structures whose PPBs are shown numbered
(PI1...PI12) and (P2i..P28). The shaded portions of the
protein structures are similar. The Amino Acid
sequences of the PPBs of the two structures are also
shown. The DMX is computed and is shown in the
figure. The similar structures correspond to the
following.

A7 to A18 of protein structure 1 (corresponding to Pl4

toPl7PPBs)
A3 to A15 of protein structure 2. (corresponding to P22

to P25 PPBs)

Looking at the DMX, it is evident that there will be a
contiguous run of diagonal cells of low value
corresponding to the alignment because the distance
matrices will be similar at these locations. The location
of these low valued cells will be corresponding to the
locations of Pl4 to Pl7 against P22 to P25. Fig. 2 shows
the same principle applied to two similar protein
structures obtained from the pdb servers
(www.rcsb.org). The only difference is that they have
been converted to the Initial Configuration of a CA.
Notice from the DMX in Fig. 3 that alignment
patterns can be formed as cross-diagonals running in
either direction. It is evident from Fig. 2 that the long
diagonal running from top-left to bottom-right
comprises an alignment.

Fig. 3. The alignment principle behind Pelican

Detecting the significant contiguous alignments
involves designing a set of rules using which the CA
will evolve and in the process eliminate all other cells
that are not part of the alignment. Instead of looking at
all the eight neighbors of a cell for writing the rules,
only the cross neighbors (cells at the diagonals) are of
importance here.

Fig. 4 (a) Neighborhood states for which the center cell lives
and (b) Cells with states not found in (a) will die

The guiding rule is that a cell that is alive should remain
alive into the next generation if and only if its diagonal
neighbors are alive. Applying these rules successively to
all the cells of a particular generation will eliminate all
such cells that are not part of the alignment. Fig.
4(a) (b) shows all possible cross-neighbor combinations
for which the center cell lives (a) and dies (b).
Applying the rules for the IC shown in Fig. 5(a), the
next 4 generations of the CA are shown in Fig. 5(b)-(e).
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Fig. 5 Evolution of the (a) Initial configuration for 4 generations (b)

to(e)

It can be observed that only those cells contributing to
the alignment of similar structures survive in the final
generations. At the same time, the live cells at the ends
of the largest alignment are successively getting
eliminated. However, this is not a cause of concern
because the survival of a lone live cell (a cell without
any live neighbors) in the nth generation implies that it
is part of an alignment that is at least of length 2n+l (n
cells on either direction plus itself).

4 Aligning with gaps using Pelican
Fig. 6(a) shows two protein structures where the
segments A and C are aligned with a gap in protein
structure 1 indicated by B. Aligning with gaps in
Pelican means that there will be continuous run of live
cells in a particular cross direction and then there will
be a gap in the horizontal/vertical direction followed by
another continuous run in the cross direction. As shown
in Fig. 6(b), A indicates an alignment followed by a gap
indicated by B and then there is another alignment
indicated by C. Now, to align with gaps, we need to
consider the gray cells indicated by B and the rules also
need to be updated to actually make the B cells alive in
subsequent generations so that the entire alignment A+C
is registered as a continuous alignment with a gap
indicated by B.

5 Emergent behavior in Pelican
CA models are classic examples of systems exhibiting
emergent behavior. Pelican goes on to corroborate this.
Pelican is a grid of cells that evolve based on a set of
locally applicable microscopic update rules. There is no
long range communication between the cells.

Fig. 6. (a)Protein structures aligned with gaps and (b) Pelican

extended to detect alignments with gaps.

But these microscopic rules lead to large scale
macroscopic behavior leading to detection of
alignments of the two structures, thus making Pelican an
emergent system.

6 Results
Pelican was tested with various sets of data. The data
sets were obtained from www.rcsb.org. To test Pelican
with similar proteins and dissimilar proteins, the DALI
service for Fold Classification and Structural
Alignments (FSSP) (http://www.ebi.ac.uk/dali/fssp) was
used. The DALI server provides a percent similarity
between two protein structures based on the amino acid
sequences. The similarity is a measure of the percent of
similar amino acids in the final alignment. On the other
hand, Pelican is strictly a structure alignment algorithm.
The scoring for Pelican uses only the structure
information and no sequence related information.
Pelican's scoring scheme is designed to yield a purely
structure based numeric value of the alignment. In
Pelican, the best alignment is when the smaller of the
two structures is completely aligned with the larger of
them. The score for a Pelican alignment calculates the
percentage of cells that are contributing to the "largest
alignment*'. Largest alignment here is a relative term
since Pelican can be configured to detect alignments of
any length. The results of all the runs shown below are
for alignments that are greater than 5 continuous cells.
Since each cell is comprised of 5 amino acids (with an
overlap of two), the length of the alignments considered
for scoring are greater than 13. If NMAx be the number
of cells (Penta-Peptide-Blocks) in the smaller of the two
structures, and N c be the number of cells of the final
alignment, then Pelican score= NMAX/NC. Table 1-Table
2 and Fig. 7-Fig. 8 show the results of running Pelican
on different data sets. Apart from these data sets,
Pelican was run on a lot of different data sets and the
results concurred with the results reported on the
DALI server. Where DALI reported low similarities,
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Pelican discovered a lot of small sized motifs, but no
significant alignment.

7 Conclusion
The Pelican algorithm discussed till now considers
aligning the two structures without gaps. With a little
variation which involves considering the plus-neighbors
and altering the update rules, the algorithm can very
well be made to handle aligning structures with gaps as
well. Pelican is not only useful for detecting alignments,
but can also detect smaller motifs.

TABLE 1

RESULTS OF RUNNING PELICAN ON lscu_A AND 1EUD_A

TABLE 2

RESULTS OF RUNNING PELICAN ON 1E6K_A AND 1M5T_A

Protein

1SCU_A
1EUD_A

#C-a
atoms

288
306

Similarity
DALI %

66

Pelican scoring(NMAX/
Nc)*100

NMAX

143

Nc

87

Pelican
score

61

Generation -2 Generation -3

Fig. 7. Results of running Pelican on 1SCU_A and 1EUD_A

Protein

1E6K_A
1M5T.A

#C-a
atoms

129
124

Similarit
yDALI

%

23

Pelican scoring(NMAx/
Nc)*100

NMAX

61

Nc

18

Pelican
score

29

Generation -2 Generation -3

Fig. 8. Results of running Pelican on 1E6K_A and 1M5T_A
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Abstract

In this paper we propose a new algorithm for the de novo
peptide sequencing problem. This problem reconstructs a pep-
tide sequence from a given tandem mass spectra data contain-
ing n peaks. We first build a directed acyclic graph G =
(V, E) in O(n logn) time, where v € V is a spectrum mass
ion or a complementary mass to a spectrum ion. The solu-
tions of this problem are then given by the paths in the graph
between two designated vertices. Unlike previous approaches,
the proposed algorithm does not use dynamic programming,
but it builds the graph in a progressive fashion using a pri-
ority queue, thus obtaining an improvement over other meth-
ods [1,2].

1 Introduction

Proteomics is defined as the study of many proteins
simultaneously, and functional proteomics studies com-
plex biological process as a whole, registering the behav-
ior of several thousands of protein components at once.
Analytical methods of protein separation, such as two-
dimensional gel electrophoresis, are key techniques in
proteomics as they allow the separation of complex pro-
tein mixtures, e.g. cells, tissues or whole organisms, in
their components that can be afterwards characterized as
individual proteins [3].

One of the key problems in Proteomics is the identi-
fication of peptides from mass spectrometry data. There
are two fundamental approaches to this problem. One
common approach is to search a database of mass spec-
tra using various probabilistic methods. However, this
approach has several limitations. For example, it is much
harder to detect new peptides in this fashion and it is al-
most impossible to handle post translation modifications
of the proteins. A relatively new technique is de novo se-
quencing. This technique reconstructs the amino acidic
sequence of a peptide from a given tandem mass spectra
data without the use of database search techniques.

In de novo sequencing, several copies of the "un-

known" peptide (in term of amino acidic sequence) are
broken up into two fragments, a prefix and a suffix se-
quence, by their random fragmentation due to collision.
The masses of the resulting fragments are then measured
by the mass spectrometer. Since we cannot distinguish
if a mass peak corresponds to a prefix or a suffix, and
additionally, some fragments may be lost due to experi-
mental errors, the de novo sequencing problem takes in
input a subset of the prefix and the suffix masses of a
peptide, and determines an amino acidic sequence.

1.1 Related Work

The problem of de novo sequencing has been well
studied during the last few years. Almost all the solu-
tions have been based on graph theoretic techniques [1,
2]. For example in Dancik et. al [1], a directed acyclic
graph is built, where the nodes of the graph are all the
mass peaks and a labelled edge connects two nodes that
differ by an amino acid mass. Then a mass peak is trans-
formed into several nodes in the graph, each node rep-
resenting a possible prefix sequence. The longest or the
highest scoring path is then searched for in the graph.
However, the longest path approach has the tendency to
include multiple nodes associated with the same mass
peak. Unlike this approach, we build a simpler graph
based on the useful required peaks without the use of a
scoring function.

The next major step was the dynamic programming
approach of Chen [2]. This algorithm builds a graph in
O(n2) time complexity, where n is the number of mass
peaks. This algorithm finds only one solution in O(n2)
time, and all the solutions in O(pn + n2) time, where p is
the number of solutions. In [4], a more elaborate graph is
built in O(n3) time, a scoring function is introduced, and
all the solutions scoring more than a threshold are found
in O(pn3) time. In [5] a new scoring function was in-
troduced along with a dynamic programming algorithm,
the time complexity of which is greater than that of the



313

other papers mentioned above.
Another direction has been the application of the spec-

trum graph based algorithms that leverage scoring func-
tions obtained from empirical biological knowledge [6]
to clean the spectrum, and, use the method described
in [2] to build the graph and obtain the solutions.

In another related work [7], the authors find only one
solution in O(nlogn) time, without building any graph,
but they consider error-free spectrum, and so in this for-
malization the solution is unique.

Also, in a recent paper [8], the de novo peptide se-
quencing can be obtained using algorithms for finding
substrings with particular submasses in a given weighted
strings.

1.2 Our Contribution

In this paper we propose a simple and efficient algo-
rithm for de novo sequencing problem by using a greedy
strategy. We build a directed acyclic graph in O(n log n)
time, from the given spectrum mass and the mass of the
whole peptide. This graph is built using only the useful
peaks in the spectrum (analogously for the edges). The
solutions are obtained by a reading of the graph in O(pn)
time, where p is the number of solutions.

2 Background
In this section, we present the biological background

and a brief description of the peptide sequencing. Amino
acids are the building blocks of proteins. The amino acid
form with missing hydrogen and hydroxyl group on the
N-terminal and carboxyl sides respectively is called a
residue. A peptide is formed by a chain of amino acid
residues: a pair of amino acids undergoes a dehydration
reaction where a loss of water leads to a peptide bond
between the two molecules [9].

Peptides can fragment at three different places in the
amide backbone (Fig. 1), denoted by a*, b*, Ci (if the
fragment retains the N-terminal portion of the peptide)
and x2, y*, z* (if the carboxyl-terminal portion is re-
tained). The subscripts indicate the number of amino

*s ys 23 X2 y2 22 X\ yi 2%

H2N~C-C- N-C -C -M-C-O-N~O-O-OH

a 2 t>2

Fig. 1. Structural notation of a peptide backbone.

acid residues contained in the ion. Thus if two adjacent

ions with the same letter designation appear in a mass
spectrum, their mass difference is equivalent to an amino
acid residue mass.

The de novo sequencing approach is based on the se-
lective fragmentation of individual peptides by tandem
mass spectrometry (MS/MS). The masses of the derived
fragments are measured and plotted in a MS/MS spec-
trum. A MS/MS spectrum of peptides contains two lev-
els of information: 1. the mass of the whole peptide; 2.
a pattern of fragments (or ions) that can be associated to
a given sequence basing on known fragmentation rules.

The 6 and y ions usually provide most of the infor-
mation necessary to reconstruct the peptide analyte. All
masses are measured in atomic mass units (abbrev. amu).
The b-ion mass equals the sum of the residues plus
1 amu, due to the hydrogen atom on the N-terminal side
of the backbone whereas the y-ion mass equals the sum
of the residues plus 19 amu (17 amu from the carboxyl
side OH group, 2 amu from the two hydrogen atoms).
If a b-ion and a y-ion form a complementary pair, the
sum of their masses equals the whole peptide mass plus
2 amu.

3 Our Model
In this section we give a formal characterization of the

peptide sequencing problem.
We model a peptide as a string over the 20-letter al-

phabet A = {a i , . . . a2o}> where a i , . . . a2o represent
amino acid residues. We associate a mass to each residue
denoted by a function m : A —• R. We also introduce
two special characters, 6Q and yo, associated with masses
m(&o) = 1 and m(y0) — 19, that will be used for the ions
model. The definition of m can be naturally extended to
(Au{bo,yo})* as follows:

k

m(ah --aik) = ^ m(aij) with a{j € Au{bOiyo}.
j=i

If we let any peptide P be represented by the string
dix • • - dik, then its b-ions and y-ions are represented by
the strings

for j = l , . . . , /c

for j = 0 , . . . ,/c - 1

respectively. Note that bk and y^ are not true peptide
ions: such cleavage points are not detected in real
experiments. They are instead a convenient notation.
Similarly, we consider b0 and y0 as being ions too.
Note that bj and yk-j are a complementary pair for
0 < J' < &. Thus the peptide mass is mp = m(P) + 18,
and we have m(bj) -f m(yk-j) = mp + 2 for
1 = 0 , . . . , k. More generally, we say that m\ and m2
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are two complementary masses if mi H- rri2 = mp + 2.
We denote by m c the complementary mass of m.

Since experimental spectra contain some background
noise, we first perform some filtering operations to se-
lect only the most relevant peaks. For example, we can
perform a threshold operation to select only those peaks
with at least a given abundance.

We then model a spectrum by the set M =
{ m - i , m o , m i , . . . , m n , m n + i , m n + 2 } , where m{ <
mj,\fi < j . The elements m i , . . . , m n are the exper-
imental peak filtered masses, with

m_i = m(60) = 1,

m0 = m(2/0) = 19,

mn+i =m(bk) = mp- 17,

m n + 2 = rn(yk) = mp + 1.

Furthermore, in the experimental data, we do not al-
ways obtain a complete peptide fragmentation. Instead
of looking for mass peaks in the spectrum whose dif-
ference equals an amino acid residue mass, we look for
mass differences equal to s £ S where S C m[>4*]. We
can define S as

5 = {5 € R\3r e A* s.t. s = m(r) A \r\ < i/},

where v is the longest not-fragmentable sequence. In
other words, S includes the masses of single amino acid
residues and of small peptides. We notice that \S\ does
not depend on the peptide mass nor on the spectrum size.

4 The de novo peptide Sequencing Problem

Using the notation introduced in the previous section,
we can now state the de novo peptide sequencing prob-
lem as follows.

Input. A vector M = { m _ i , . . . , m n + 2 } containing
the spectrum mass peaks.

Output. All the strings r\ • • • rk € A* such that

/) r{16 A\ m(n) e S for2 = l , . . . , /c

ii) m(ri • ••r/t) = m n + i - 1

Hi) m(bori • • • rj) e M V m(rj+1 • • • rky0) e
M fovj = l , . . . , / c - l .

We solve the problem in two steps. We first construct
a spectrum graph from the relevant mass peaks and then
we use this graph to obtain the solutions.

4.1 Graph building

In the following we do not distinguish between nodes
and corresponding masses, with abuse notation.

We first build a directed acyclic graph G = (V, E) in a
progressive fashion starting from the initial node denoted
by v0 = ran+i. At any step for each v already inserted
in V we add a new node v1 if v — v' = s 6 S and a
new edge (v, v'). By proceeding in this way, we obtain
a graph where

veV=>veMvvceM

(^1 > ^2) £ E => v2 > v\, t>2 - v\ € S.

This is made, as described in Algorithm 1, by selecting
the v elements of V in a mass decreasing order stored
in a priority queue Q. We also have to look for already
inserted elements in the queue, so we implement Q with
a balanced binary search tree (such as a AVL-tree) [10].

Algorithm 1 Solution graph building algorithm.

Input: M;
Output: V, E\

l: y = {mn + 1}; Q - { m n + 1 } ; E = 0;
2: while Q ̂  0 do
3: v = ExtractMax[Q]\
4. for all s e S do
5: if 3 m € M such that f — m = 5 orm — vc = s

then
6: V1 = V — S\

7: i f ? / £ V then
8: V = Vu{v'};
9: Q = QU{V};

10: end if
11: E = EU{(v',v)}.
12: end if
13. end for
14: end while

In order to deal with real experimental data, we also
include a tolerance factor when seeking the spectrum.
Given a tolerance 5, the mass m is in the spectrum M if
there exists m e M such that \m - rh\ < 6.

When the algorithm terminates, we can have one of
the following configurations:

1. if we inserted ve — m_i in K, then we have at
least a solution. The solutions are all the paths
from ve to VQ\

2. if we did not insert ve in V, then we could not find
any solution. This can happen for both missing
spectrum peaks, or for unknown modifications in
some amino acid.

In the latter case, we only built the terminal part of the
path. We can then insert ve in V and run the algorithm



315

starting from ve in a reverse fashion. This execution will
surely stop before reaching v0 too, giving us the begin-
ning part of the path.

We could formally show that the solution of the de-
novo peptide sequencing problem are equivalent to the
paths in the graph constructed by our algorithm.

Proposition 1 The spectrum graph is built in
O(\M\\og\M\) time.

Proof: For each node in the queue Q (in step 2) and for
each element in \S\ (step 4) Algorithm 1 checks if there
exists an element in M such that the difference between
the node and the element in M or between the element
in M and the complementary mass to the node is the
element of S (step 5). If it is true, that element is inserted
in the queue Q and in the graph edge V when it was
not already there (step 7), and the edge between the two
peaks is inserted.

The loop on each element in Q is performed | V\ times,
where j V̂ | < \M\. For each iteration of the aforemen-
tioned loop, | 5 | checks are executed; \S\ is constant with
respect to the input size of our problem (i.e. the size of
the mass spectra). The procedure to seek for an m 6 M
in step 5 can be implemented by a binary search algo-
rithm which takes a O(log \M\) time for each element
extract from Q.

In step 7 we look for the presence of a node in the
graph. We observe that we are looking for a node v' < v,
where v was the maximum value in Q. Thus, if such
node exists in the graph, it is still in Q, so we can search
for it in the queue, taking a O(log |Q|) time. Finally, the
obtained complex time is equal to O(\M| log(M|). •

In [2], all the mass peaks have a corresponding node
in the graph and an edge exists between nodes if the
distance between them is an element of 5, leading to
O(n2) differences. Instead, we give an algorithm to built
a graph not having all the mass peaks but only the peaks
such that there exists a path starting from themselves
and stopping to the first node, so reducing the number
of edges with respect to [2].

4.2 Obtaining the Solutions

The solution are obtained trivially by performing a
search in the spectrum graph, starting from the source
node ve. Hence, the time complexity is O(n) to find one
solution and O(pn) for all the p solutions. We note that
the way we built the graph, all such paths end in the vo
node. Such a method, as described above, returns a list
of sequences in S. Any of such sequences can be inter-
preted as a set of strings in A*, expanding each sum into
all the possible strings whose masses sum to it.

5 Conclusions and Future Work
In this paper, we presented a new algorithm for the de

novo peptide sequencing problem. Our graph construc-
tion requires O(n log n) time and uses only the useful
peaks. This is a significant improvement over existing
algorithms.

This work is a first step in our plan. We have already
developed two implementations, one each in C++ and
Python. We are in the process of performing detailed
performance tests on peptide data. One major future di-
rection is to score the different solutions obtained by our
algorithm.
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Abstract
This paper presents a simulation of the behavior of

different species of birds, which share the same habitat,
but manage to use different times of the day to sing their
songs. Therefore, they avoid a vocal competition and
improve the conditions to find a mate. Communicative
agents are used to model the birds and their behavior. A
simple set of rules is used to make the decisions when
and how to change the time for the search for a mate. By
incorporating damping and amplifying feedback loops
the collective behavior of each species led the system to
a solution which was favorable to all agents.

1 Introduction
Emergent behavior can be seen in any type of system

where behavior is determined not by a global control but
instead by the interactions of decentralized entities [1]
[2]. Many examples of emergent behavior can be found
in biological systems, as for example in insect colonies
like ants, bees, or termites [3] [4] [5].

To understand this collective behavior computer simu-
lations are used to examine the parameters which are im-
portant for such a system [6]. Reynolds showed with his
boids-simulation that a relatively simply behaving group
of birds is capable of forming a flock without a central-
ized control [7].

In this paper the mating behavior of birds is exam-
ined. Male birds sing songs to attract females1. Most
bird species do this at dawn [8]. But if all species, which
share the same habitat, would choose the same time of
day to sing their songs there would be likely a lot of vo-
cal competition. This might be the reason why males of
some species chose a different time of day to find a mate.
Some species, like the nightingale, even use the night. In
ref. [8] an even more sophisticated sharing of the time
of day between two species is described:

"Two birds of the Californian chaparral,
the wrentit and the Bewick's wren, share the

1, defend their territory, and alarm others

same habitat, and also have similar songs.
But they manage to alternate their singing
bouts so that they are never in direct con-
flict.

The Bewick's wren starts the session in
the morning and dominates the airways for
the first hour. The wrentit stays quiet to
avoid competition, but gets his turn sing in
the second hour, after which the Bewick's
wren starts again. And so this astonishing
sharing of the stage goes on."

To examine this obviously well coordinated behavior a
simulation based on autonomous agents was used. Sim-
ple, communicative agents were used to imitate some of
the behaviors of birds. They used a simple set of rules to
make the decision when to change the time for their mat-
ing behavior. By incorporating damping and amplifying
feedback loops the collective behavior of each species
led the system to a solution which was favorable to all
agents.

2 Simulation Setup
Different species of communicative agents were set

into the 2-dimensional simulation environment, where
they could fly around, search for food and mate. The
simulation was frame based. It simulated one day within
4800 frames.

While programming a complex systems some specific
properties have to be ensured [9]. E.g. the system has
to be open. Therefore, old agents were periodically re-
placed by new agents. The rate of replacements was con-
trolled.

It was ensured that no agent had a complete view of
the system. All agents could only gather data and act
within their near vicinity.

3 Attributes of the Agents

The agents are modelled as simple as possible and as
complex as necessary.



Each agent can freely fly around, search for food, and
rest at night. The male birds can emit signals (sing a
song). The signals are the same within a species but
have significant differences to signals of other species.
Female birds know the signal of their species from birth
on. A signal can be heard within a limited range by other
agents. Agents can see other agents and places with food
only in a short distance. This ensures that the relation-
ships between agents are short-range.
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At night all agents rest. During the day the agents
would normally try to find food. At a specific time they
would start to find a mate for three hours. After that, they
would continue to find food again. Each agent was free
to choose the time for mating. Why and when an agent
decided to change its behavior is described in the next
two subsections.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 4 7 49

days

Fig. 1. Distribution of females of species A2, which tried to
fi nd a mate, over the day - observed for 50 days.

Each agent has a memory in which the signal of its
species is stored. Additionally, an agent observes the
activities of other (male) agents. It memorizes at what
time of day how many signals of its own and of other
species could be heard. The memory of these data fades
out after a day and new observations have to be made.

The male birds have a value which defines their dom-
inance. It ranges from 0 to 100 and is randomly chosen.
This dominance is incorporated into their signals. Fe-
males can judge by the quality of the melody how dom-
inant a male bird is. They tend to mate with more domi-
nant males.

4 Behavior Model

Each communicative agent shows a specific behavior
during the daytime. The behavior was simplified to three
different phases: resting, finding food, and mating. A
specific behavior was selected for each hour of the day.
The resting phase could not be changed. The three hours
for the mating behavior had to be in a row.

The duration for the mating behavior was set to three
hours manually. In a more complex simulation it would
depend on how much energy singing would cost and
how much energy the food, found within a specific time,
would provide.

Fig. 2. Average success rate of male (dashed line) and female
(straight line) birds of species A2.

4.1 Behavior of Male Birds

During the period of mating a male bird flies around
and periodically emits a signal (i.e. sings a songs) de-
pending on a probability PSend- He waits for a response.
If no female bird arrives, he moves on.

If his success decreases (no success over a time
Tnosuccess), he becomes less and less motivated and
the probability Psend decreases by the factor Pdecrease-
Therefore, more successful birds sing more often.

If his success decreases over a longer period of time
(Dmaie)> he changes the time of day to find a mate. To
find a better time of day he observes when males of his
own species sing more often. He then imitates their be-
havior and starts his search for a mate just when they do
it.

Another criterion to change the time for mating would
be the vocal competition with other species. If during
his mating time the number of foreign signals exceeds
a threshold Fmax> he would choose to change the time
of day of his search. If he observed less foreign signals
after his own mating time, he would try to find a mate
even later; otherwise earlier.

The behavior of the male bird is kept quite simple:
avoiding the time of day when too many birds of other
species are active and imitating the more successful
males of his own species.
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Fig. 3. Distribution of females of species B2, which tried to
fi nd a mate, over the day - observed for 50 days.

4.2 Behavior of Female Birds

During the daytime when female birds try to find a
mate, they fly around and listen to signals. When they
hear one, they compare it to the one they associate with
their own species. If it is not similar, they just ignore
it. But if it is similar they can decide to fly towards its
source location. This decision is based on how dominant
the male sounds. The more dominant he is, the more
likely they choose to search for him. The minimal prob-
ability to fly to him is Qmin> If they find exactly one,
they assume that he is the emitter and mate with him.

If females hear signals of their own species while they
are not trying to find a mate, they just ignore them.

The criteria to change the time of day for their mating
behavior are similar to those of the males. If they hear
too many foreign signals (> Fmax) during their mating
time, they try to avoid this time of day and try to find a
mate a little bit earlier or later.

If they have no success to find a male over a longer
time (Dfemaie)> they observe when most signals of their
own species can be heard and choose this time of day.

5 Simulation Scenarios

The absolute values used within these scenarios are
not biologically founded. Most actions happen in a much
shorter time than in nature. E.g. female birds tend to
listen to a male's song for days instead of hours before
deciding to mate with him.

Two different species A2 and B2 of 30 agents each (15
male, 15 female birds) were set into the simulated habi-
tat. The simulation run lasted for 50 (simulated) days.
By then the behavior of the two species had stabilized.

Every second day an agent was replaced with a new
one to simulate an in-/out-flux of the system. If this fre-

quency is increased too much, the system becomes insta-
ble, because the disturbances overweigh the time needed
for the system to converge.

All agents of both species started with the same be-
havior pattern, to confront them with a situation which
forced them to change their behavior. Resting from 9pm
until 5am, then searching for food for most parts of the
day. From 7am on, all agents started to search for a mate
for three hours.

In a second scenario three different species As, B$,
and C3 of 30 agents each (15 male, 15 female birds)
were set into the habitat. The simulation run lasted for
50 days. All agents started again with the same behavior
pattern.
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Fig. 4. Average success rate of male (dashed line) and female
(straight line) birds of species B2.

6 Examining the Parameter Space
The parameters used in the simulation were divided

into two groups. Those which described the "physical
reality" of the environment and those which influenced
the behavior of the birds. The physical parameters were
fixed.

There were too many parameters for the behavior,
spanning a huge parameter space, to be analyzed analyt-
ically. Therefore, the parameter settings were examined
with a genetic algorithm [10] [11].

These behavior parameters were grouped in a genome:

• Length of the time interval defining how long
males would observe how many females wanted
to mate with them (Tnosucces3). If none arrived
within this time, the male became less motivated
to sing their song (decreasing Psend)

• Number of days without success before changing
behavior: Dmaie, Dfemale (separated parameters
for females and males).
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• Maximal number of foreign signals per hour be-
fore a bird thinks it is too noisy: Fmax.

• Probability to send signals (initial & maximal
value): PSend*

• Degradation of Pgend if unsuccessful:

• Minimal value of Psend'> Pmin-

• Increase Of PSend if SUCCeSSful: Pincrease-

• Minimal probability that a female bird flies to the
source of a signal: Qmin. Is added to dominance
of the male bird divided by the maximal domi-
nance.

As the fitness function the average mating success of
each species was used. The population size2 was set to
45 and the search lasted for 60 generations.

Finally, species J?2 exploited the later hours while
species A2 tended to mate in the earlier hours of the day.

Fig. 6. Distribution of females of species £3, which tried to
fi nd a mate, over the day - observed for 50 days.

Fig. 5. Distribution of females of species A3, which tried to
fi nd a mate, over the day - observed for 50 days.

In Fig. 2 the average success rate to find a mate is
shown for female and male birds of species A2. A value
of 1 means that a bird mated successfully within 24h.
In the first days the rates dropped because the females
started to search later in the day for a mate. But after the
males followed them, their success rate increased again.
Fig. 4 shows the success rates for species B2 which de-
veloped in a similar way, but could not come back to
the optimum like species A2. Not all birds shifted their
search to the later time of day as can be seen in Fig. 3.

The value of the male success rate could never reach
1 because the less dominant males would rarely find a
mate.

7 Results
7.1 Scenario with 2 Species

In the first scenario the females of both species started
to change the time for their mating behavior after two
days. Fig. 1 shows for species A2 how many female
birds at what time of day tried to find a mate over a pe-
riod of 50 days (Fig. 3 for species B2). They spread over
several hours. But most females of species B2 started to
use the later hours of the day while species A2 remained
in the early hours. The males behaved in a similar way.

After day 10 the females of species A2 started to re-
duce the span. And after day 13 a collective behavior
emerged to only use the time from 6am to lpm. The
males followed them in a short distance.

2the number of simulations running parallel

7.2 Scenario with 3 Species

Fig. 5 shows the distribution of females of species A3
over the day, Fig. 6 for species £3, and Fig. 7 for C3. In
the first days all three species had to change their daily
routine. After 16 days species A3 established a max-
imum in the early hours of the day, while species B%
gathered most birds around 4pm after 20 days. Species
C3 spread between ^3 and £3, but without stabilizing
in a specific time slot after 50 days. Its maximum rather
alternated between the earlier and the later hours. Still,
the birds of C3 avoided the maxima of A3 and £3. The
males behaved in a similar way.

In Fig. 8 the average success rate to find a mate is
shown for female birds of species A3, JE?3, and C3. Since
three species had to share the daytime - instead of two
as in the first scenario - the success rates were slightly
worse and could not return to the optimum.
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Fig. 7. Distribution of females of species C3, which tried to
fi nd a mate, over the day - observed-for 50 days.

Fig. 8. Average success rate of female birds of species A3
(straight line), B3 (dashed line), and C3 (dotted line).

8 Conclusion
The simulation does not claim to fit exactly for real

birds. It is a simplified model to examine the idea of
pushing groups which share the same habitat to use dif-
ferent time intervals for behaviors which would other-
wise interfere.

Nevertheless, the simulation results provide an insight
that under some conditions groups can adapt their be-
havior only by using feedback loops without any global
control.

9 Outlook
The simulation could be made more complex. E.g.

the duration for the mating behavior could depend on
how much energy is used up during a day (while just
flying around or singing) and how much energy the food,
found within a specific time, provides. Since the fitness
function of the genetic algorithm depends on the average
mating success, the birds would have to search for an
optimal solution, allowing them to search for a mate as
long as possible, but still having enough time to find the
needed food.
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Abstract

Currently the best algorithms for transcription factor
binding site prediction are severely limited in accuracy.
There is good reason to believe that predictions from
these different classes of algorithms could be used in
conjunction to improve the quality of predictions. In
this paper, we apply single layer networks and support
vector machines on predictions from 12 key algorithms.
Furthermore, we use a 'window* of consecutive results
for the input vectors in order to contextualise the neigh-
bouring results. Moreover, we improve the classification
result with the aid of under- and over- sampling tech-
niques. We find that by integrating 12 base algorithms,
support vector machines and single layer networks can
give better binding site predictions.

1 Introduction

In this paper, we address the problem of identifying
transcription factor binding sites on sequences of DNA.
There are many different algorithms in current use to
search for binding sites [1, 2, 3, 4]. However, most of
them produce a high rate of false positive predictions.
The task addressed here is to reduce false positive pre-
dictions by means of classification techniques from the
machine learning field.

To do this we first integrate the results from 12 differ-
ent algorithms for identifying binding sites, using non-
linear classification techniques. To further improve clas-
sification results, we employ windowed inputs where a
fixed number of consecutive results are used as an in-
put vector, so as to contextualise the neighbouring re-
sults. The datasets include two classes labeled as either
binding sites or non-binding sites with about 93% being
non-binding sites. We make use of sampling techniques,
working with a traditional neural network: single layer
networks (SLN) and a contemporary classification algo-
rithm: support vector machines (SVM).

We expound the problem domain in the next section.
In Section 3, we introduce the datasets used in this pa-

per. We explain how we apply under- and over- sampling
techniques in Section 4. Section 5 briefly introduces our
experiments and gives all the experimental results. The
paper ends in Section 6 with a conclusion.

2 Problem Domain

One of the most exciting and active areas of re-
search in biology currently, is understanding how the
exquisitely fine resolution of gene expression is achieved
at the molecular level. It is clear that this is a highly non-
trivial problem. While the mapping between the coding
region of a gene and its protein product is straightfor-
ward and relatively well understood, the mapping be-
tween a gene's expression profile and the information
contained in its non-coding region is neither so simple,
nor well understood at present. It is estimated that as
much as 50% of the human genome is cis-regulatory
DNA [5] , undeciphered for the most part and tantalis-
ingly full of regulatory instructions. Cis-regulatory ele-
ments form the nodes connecting the genes in the regu-
latory networks, controlling many important biological
phenomena, and as such are an essential focus of re-
search in this field [6].

It is known that many of the mechanisms of gene regu-
lation act directly at the transcriptional or sequence level,
for example in those genes known to play integral roles
during embryogenesis [6]. One set of regulatory interac-
tions are those between a class of DNA-binding proteins
known as transcription factors and short sequences of
DNA which are bound by the proteins by virtue of their
three dimensional conformation. Transcription factors
will bind to a number of different but related sequences.

The current state of the art algorithms for transcrip-
tion factor binding site prediction are, in spite of recent
advances, still severely limited in accuracy. We show
that in a large sample of annotated yeast promoter se-
quences, a selection of 12 key algorithms were unable
to reduce the false positive predictions below 80%, with
between 20% and 65% of annotated binding sites re-
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Fig. 1. The dataset has 68910 columns, each with a possible
binding prediction (Y or N). The 12 algorithms give
their own prediction for each sequence position and
one such column is shown.

Fig. 2. The window size is set to 7 at the current study. The
middle lable of 7 continuous possible binding sites is
the label for a new windowed input. The length of each
windowed input now is 12 x 7.

covered. These algorithms represent a wide variety of
approaches to the problem of transcription factor bind-
ing site prediction, such as the use of regular expres-
sion searches, PWM scanning, statistical analysis, co-
regulation and evolutionary comparisons. There is how-
ever good reason to believe that the predictions from
these different classes of algorithms are complementary
and could be integrated to improve the quality of predic-
tions.

In the work described here we take the results from
the 12 aforemention algorithms and combine them in 2
different ways, as shown in next section. We then inves-
tigate whether the integrated classification results of the
algorithms can produce better binding site predictions
than any one algorithm alone.

3 Description of The Dataset

The dataset is from a large sample of annotated yeast
promoter sequences. It has 68910 possible binding po-
sitions and a prediction result for each of the 12 algo-
rithms, see Figure 1. The 12 algorithms can be cate-
gorised into higher order groups as Single sequence al-
gorithms (7) [1, 7, 8, 9]; Coregulatory algorithms (3)
[2, 10]; Comparative algorithm (1) [3]; Evolutionary al-
gorithm (1) [4].

The label information contains the best information
we have been able to gather for the location of known
binding sites in the sequences. Throughout we have
used the following notation: 0 denotes the prediction
that there is no binding site at this location; 1 the pre-
dictions that there is a binding site at this location, while
0.5 indicate that this algorithm is not able to analyse this
sequence. Two datasets are generated based on the orig-
inal set.

• Single Inputs: We take the results from the 12 al-

gorithms and combine them into one 12-ary fea-
ture vector as a single input. All repeated and in-
consistent data were removed and 1984 data points
are left.

We then randomly choose 2/3 of the data points
for training, while 1/3 remained for testing.

Windowed Inputs: To do this, we use a 'win-
dow' of consecutive results in the input vector
in order to contextualise the neighbouring results,
see Figure 2. In the current work, we set the
window size = 7.

We use the first 2/3 of the data points for train-
ing. By using windowed inputs, after removing re-
peated and inconsistent data, 36247 out of 45933
data points are left. In this part, we do cross-
validation first to choose a better classification al-
gorithm, then train the selected classifier using the
whole 36247 data points. For testing, we do ex-
periments on the final third of the data points first
without repeated and inconsistent data points, and
second with full continuous set of rows for analy-
sis by biologists.

4 Sampling techniques for Imbalanced Dataset
Learning

In our dataset, there are less than 10% binding posi-
tions among the total vectors, so this is an imbalanced
dataset [11]. Since the dataset is imbalanced, the super-
vised classification algorithms will be expected to tend to
over predict the majority class, namely the non-binding
site category. In this work, to cope with imbalanced data,
we concentrate on the data-based method, i.e., using
under-sampling of the majority class (negative samples)
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and over-sampling of the minority class (positive sam-
ples). We combine over-sampling and under-sampling
methods in our experiments. For the under-sampling,
we randomly selected a subset of data points from the
majority class.

The over-sampling case is more complex. In [11], the
author addresses an important issue that the class im-
balance problem is only a problem when the minority
class contains very small subclusters. This indicates that
simply over sampling with replacements may not sig-
nificantly improve minority class recognition. To over-
come this problem, we apply a synthetic minority over-
sampling technique as proposed in [12]. For each pat-
ten in the minority class, we search for its if-nearest
neighbours by computing Hamming distances. A new
pattern belonging to the minority class will be generated
by employing the majority voting principle to this pat-
tern and its K—nearest neighbours in the feature vector
space. For simplicity, in the following experiments, we
set K = 5.

5 Experiments
The classification techniques we used are single

layer network (SLN) [13], and support vector machine
(SVM)[14].

The SVM experiments were completed using LIB-
SVM, which is available from the URL
h t t p : //www. cs ie .ntu.edu. tw/~cj l in/ l ibsvm.
The others were implemented using the NETLAB
toolbox, which is available from the URL
h t t p : / / w w w . n c r g . a s t o n . a c . u k / n e t l a b / .

All the user-chosen parameters are attained by using
cross-validation.

In the training dataset, the positive examples, namely
binding sites, are double over-sampled. When comb-
ing with under-sampling, we selected a number of neg-
ative examples using cross-validation from the training
dataset.

P. = Precision = TP / (TP + FP),

2 • Recall • Precision
F. = F-score =

Accu. = Accuracy =

fp = false positive rate =

Recall + Precision
TP + TN

TP + FN + TN + FP1

FP
FP + TN'

(2)

(3)

(4)

(5)

Table 1. A confusion matrix.

TN

FN

FP

TP

5.2 Classification results

5.2.1 Classification results with Single Inputs:
The results are shown in Table 2. Comparing with the
best base algorithm, the SLN and SVM increase the F-
score by 16.3%, and 36.6%, respectively; and decrease
fp by 20.6%, and 48.8%, respectively. It can be seen
that the SVM outperforms the SLN on this dataset. The
integrated predictor is much better than the single best
algorithm.

Table 2. Common performance metrics (%) calculated from
confusion matrices on consistent single testing set.

Classifier

best Alg.

SLN

SVM

R.

74.2

75.8

69.4

P.

20.4

24.7

31.9

E

32.0

37.3

43.7

Accu.

70.4

76.1

83.2

fp
30.1

23.9

15.4

5.1 Common performance metrics

It is apparent that for a problem domain with an im-
balanced dataset, classification accuracy rate is not suf-
ficient as a standard performance measure. Instead re-
call, precision and F-value [15, 16] are calculated to un-
derstand the performance of the classification algorithm
on the minority class. Based on the confusion matrix
computed from the test results (see Table 1, where TN is
the number of true negative samples; FP is false positive
samples; FN is false negative samples; FP is true posi-
tive samples), several common performance metrics can
be defined as follows:

R. = Recall = TP / (TP + FN), 0)

5.2.2 Classification results with Windowed In-
puts: All experimental results are presented in Table
3. The top half of the table gives the results for the con-
sistent windowed data, as described in section 3. It can
be seen that for both SLN and SVM, the F-scores are
increased and fp are decreased when compared with the
single best base algorithm on the consistent test set. And
again, the SVM outperforms the SLN on this dataset.

For full test set, which includes inconsistent data
points, it can also be seen that for the SVM the F-score
is increased, whilst the SLN keeps the same value as the
best base algorithm. On the other hand, the SVM re-
duces the fp by 40%, while the SLN does 15.5%.
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Table 3. Common performance metrics (%) calculated from
confusion matrices on consistent and full window
test sets.

test set

consistent

full

Classifier

best Alg.

SLN

SVM

best Alg.

SLN

SVM

R.

39.2

38.3

36.8

37.2

33.5

32.5

P.

14.4

16.6

21.6

17.2

18.1

23.3

F.

21.0

23.2

27.3

23.5

23.5

27.1

Accu.

86.0

88.0

90.7

86.1

87.4

89.9

fp

11.6

9.6

6.6

11.0

9.3

6.6

6 Conclusions

The first significant result presented here is that by in-

tegrating the 12 algorithms we can considerably improve

binding site prediction. In particular the SVM increases

the F-score by 36.6% from the best base algorithm and

decreases false positive rate by 48.8%. The second sig-

nificant result is that windowing of the input vectors,

thereby joining additional contextual information from

the genome. Moreover the windowing of the data re-

moves many of the inconsistent and repeated data points
and thereby gives a much larger training and test set. As

expected the SVM gave better classification results than

the SLN.
Future work will investigate i) using real valued al-

gorithm results in the input vector; ii) using algorithm
based technologies to cope with the imbalanced dataset;
iii) considering a range of supervised meta-classifiers or
ensemble learning algorithms.
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Abstract
Temporal gene expression data is of particular interest to
researchers as it can be used to create regulatory gene
networks. Such gene networks represent the regulatory
relationships between genes over time and provide insight
into how genes up- and down-regulate each other from
one time-point to the next (the Biological Motherboard).
Reverse engineering gene networks from temporal gene
expression data is considered an important step in the
study of complex biological systems. This paper
introduces sensitivity analysis of trained perceptrons to
reverse engineer the gene networks from temporal gene
expression data. It is shown that a trained neural network,
with pruning (gene silencing), can also be described as a
gene network with minimal re-interpretation, where the
sensitivity between nodes reflects the probability of one
gene affecting another gene in time. The methodology is
known as the Neural Network System Biology Approach
with Gene Silencing Simulations (NNSBAGSS). The
methodology was applied to artificial temporal data and
rat CNS development time-course data.

1) Introduction
Temporal gene expression analysis is an active area of
research and is undergoing a transition in response to a
shift from traditional biology to systems biology due to
advances in high throughput technologies (see Figure 1).
Initial approaches to the problem of temporal gene
expression analysis include cluster analysis, principal
component analysis (PCA) and singular value
decomposition (SVD), as well as regression modeling and
Bayesian Networks. All these methods perform well in
identifying classificatory relationships but struggle to
extract causal relationships (regulatory rules). Artificial
neural networks (ANNs) [1] have been shown to be
effective in extracting classificatory knowledge from non-
temporal gene expression data, and an ANN-Genetic
Algorithm hybrid [2] has also been applied to temporal
data. One of the problems in the application of artificial
neural networks in this research area

Figure 1 Time Line of Temporal gene expression analysis
research

concerns the difficulty in creating complex regulatory
networks from the analysis of high-dimensional weight
matrices that represent the individual connections
between genes over time. Narayanan et al [1] have
demonstrated the applicability of single-layer ANNs
(perceptrons) for static (non-temporal) gene expression
data for classification purposes, where weight values
were used to identify the importance of genes for
classification. This paper extends this approach by
introducing sensitivity analysis as a central theme of the
NNSBAGSS methodology discussed here. Sensitivity
analysis is more amenable than weight analysis and can
be extended to more complex neural networks, such as
those that result from the analysis of large temporal gene
expression datasets.

2) NNSBAGSS Methodology
The NNSBAGSS methodology, represented as a
flowchart in Figure 2, is a method for reverse engineering
the regulatory rules from temporal gene expression data.
At the heart of this methodology lies the sensitivity
analysis of the trained, best neural network. Sensitivity
analysis measures the effect of small changes in the input
channel (gene expression at time t) on the output (gene
expression at time t+1). Sensitivity analysis is performed
to determine the effect
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Explore the data
and know it

Preprocess
the data if
required

Input output mapping for submission to neural network
simulator

Choose the Neurai Network that suits your problem and
Train,test on the data

Sensitivity Analysis on the Best
Network

there a
insignificant gene

Channels

Dissect regulatory rules on the basis of
Sensitivities b/w the genes

Figure 2 NNSBAGSS methodology

that each of the network inputs (gene expression values at
one time step) has on the network output (gene
expression at subsequent time step). This provides
feedback as to which input channels are the most
significant. From this, insignificant channels can be
removed (pruned) from the input space (known as gene
silencing). The first input is varied between its mean and
± 1 standard deviation while all other inputs are fixed at
their respective means. The network output is computed
for a number of steps above and below the mean. This
process is repeated for each input. The variation of each
output with respect to the variation in each input is
analyzed and insignificant gene inputs can be silenced,
resulting in regulatory rules being reverse engineered.
Sensitivity analysis has an analogy with the systems
biology approach described by Leroy Hood et at [3] in
which they observe the effect of genetic and
environmental perturbations in a system and then analyse
the effect on other system components, thereby producing
predictions and hypotheses about the system. A particular
temporal gene expression experiment is regarded as a
system. The algorithm perturbs the gene expression value
of a gene at a previous time step to see the effect on the
gene expression value of other genes at subsequent time

steps, thereby revealing the inherent regulatory rules in
the temporal data. All such in silico predictions must be
checked by laboratory work. In the following
experiments, the methodology was applied on artificial
temporal Boolean data [1] and real world RT-PCR
temporal data of rat CNS development [4].

2.1 Artificial Temporal Gene Expression data

2.1.1 Explore the data:
The data involved in this experiment is an artificial gene
expression dataset forward engineered by a program
which creates temporal Boolean Liang networks [5]. A
Liang network consists of rules which are made of logical
operators distributed randomly in a number of random
fixed length logical expressions, but to a specific k value
which determines the maximum number of genes that can
affect others in the next time step. This data consists of
only 2 k values. If k=2, then between 2 and 4 genes can
be affected at time t+1 by genes at time t. When k=3, then
anything between 3 and 9 genes are involved in the next
time steps. The data contain 10 genes derived from
Boolean rules with k values of 2 and 3. The data consists
of 210 (1024) records needed to specify every possible
truth assignment for each dataset. The gene can either be
on (1) or off (0). These 1024 records consist of the input
values (10 gene expression values at time t) and the
desired gene expression value (10 Gene expression values
at time t+1). Thus our data consists of 1024 *20
expression values. This data was generated using a C++

programme and had the following 20 inherent rules
between values at time t and the subsequent value at time
t+1 in the following format :3*l(If gene 3 is on then
gene 1 goes on), 4&10*l (if gene 4 and 10 are on then 1
is on)

Table 1

Rule
1
2
3
4
5
6
7
8
9
10

• Rules embedded in the

Arguments
3*1
4&10*l
6&10*2
4&9*2
5&4*3
9*3
2 * 4
9*4
6*5
9&6*5

Rule
11
12
13
14
15
16
17
18
19
20

artificial dataset

Arguments
8*6
5*6
8 & 7 * 7
6&10*7
9 & 3 * 8
4 & 1 * 8
7 * 9
5 & 4 * 9
5&10*10
1*10

If our method cannot reverse engineer approximately
back to these rules for artificially constructed data, there
is little chance of the method finding true rules in actual
temporal gene expression data. Also note that a gene goes
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off at a time-step unless it is specifically switched on by
some gene at the previous time-step.

2.1.2 Pre-process the data
The only pre-processing required for the artificial data is
the randomisation of the input -desired pair and preparing
the data for submitting to the neural network simulator1

for learning the input-output function (the rules inherent
in the data).

2.1.3 Choice of desired input-output mapping
The task that the ANN has to solve is a linear problem i.e.
the artificial neural network has to learn the input (gene
expression value at time t) to output (gene expression
value at time t+1) mapping, where no non-linear
relationships exist between input values and output value.
There are 1024 exemplars of this input -output mapping.

2.1.4 Choice of neural architecture
Neural networks can be very powerful learning systems.
However, it is very important to match the neural
architecture to the problem. For the artificial temporal
data we tried a number of single layer perceptrons (that is,
full connectivity between the input nodes and output
nodes, with no hidden layers), adopting different learning
rule parameters and transfer functions. We followed the
standard training, cross-validation and testing routine for
perceptrons with different parameters. Out of 1024
randomised exemplars we used 60% (614) for training,
15% (154) for cross-validation and 25% (256) for testing.
The best network with minimum Mean Squared Error for
training as well as cross validation set was chosen. The
best neural network architecture was a perception with
the activation function as the hyperbolic Tanh function.
This will squash the range of each neuron in the layer to
between-1 and 1.

2.1.5 Sensitivity Analysis
For artificial temporal data a sensitivity analysis was
performed on 624 training exemplars when the best
network was trained on the data a number of times. Each
input was varied between its mean and ± 1 standard
deviation. The network output was computed for 50 steps
below and above the mean and the sensitivity was
calculated. The strongest weights during training were
used, with the results represented as a graph. Figure 3 is a
representation of the sensitivity matrix showing the
sensitivity of all genes at previous time step over all other

genes at next time steps over the 50 runs. It shows that
the results remain more or less the same on repeated runs.

1 There are various neural network simulators available,
Publicly available neural simulators are
SNNS,PDP++,Genesis,Joone to name a few.
Commercially available neural network simulators are
Neurosolutions, Matlab Neural Network Tool Box.

Figure 3: The x-axis represent gene state at time t, y- axis
represents gene state at time t+1 and z-axis represents the
sensitivity. For example, gene 1 has a strong sensitivity of
(0.7) on gene 10 at next time step, thereby reverse
engineering rule 20

2.1.6 Pruning/Reverse Engineering:
By analysing Figure 3 and the sensitivity matrix (not
shown) all the embedded rules were reverse engineered
by the approach. This can be seen most clearly in the first
column of "Gene 1 (t+1)", where gene 3 has a large affect
and genes 4 and 10 have a less marked affect. This
corroborates the rules seen earlier as gene 3 can activate
gene 1 by itself (Rule 1), whereas it requires the
combined effort of gene 4 and gene 10 (Rule 2) to
accomplish this. The sensitivity analysis therefore not
only defines regulatory behaviour, but also the relative
strengths of the regulation. Therefore, this demonstrates
that our method is able to reverse engineer the embedded
rules from artificial gene expression data.

2.2 Rat C.N.S development data:

The Rat (Sprague-Dawley albino rat) data is an RT-PCR
study of 112 genes each measured on cervical spinal cord
tissue in triplicate at nine different time points during the
development of the rat central nervous system [4]. This
gene expression data is accepted to be non-noisy, small
and accurate, and is ideal for testing a new strategy
because of previous work in literature. There are nine
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different time points in the CNS development study
namely Ell , E13, E15, E18, E21, PO, P7, P14, A.
The input output mappings were Ell input -El3 output,
El3 Input- El5 output, El5 input-El8 output,
El8 input-E21 output, E21 input-PO output, PO input-
P7output, P7 input -PI4 output, PI4 input -A output.
There are eight exemplars for network to learn from.
Each exemplar has 112 input gene expression values of
the prior time step and 112 desired gene expression
output values of the subsequent time step. The
NNSBAGSS methodology was applied on this real world
temporal data. The training, testing and cross validation
regime was followed to choose the best network. The
sensitivity analysis was performed on the perception
trained on all eight exemplar pairs (9 time steps). Each
input was varied between its mean and ±1 standard
deviation. The network output was computed for 50 steps
below and above the mean and the sensitivity was
calculated . The best weights during the training were
used and the results are represented as a graph. The graph
in Figure 4 is the representation of sensitivity matrix
showing the global sensitivity of all 112 genes at the
previous time step affecting 112 genes at the next time
step. Again these remain similar over the repeated runs.

3) Analysis
Some of the important rules from the real-world problem
are as follows. The most strongly affecting gene
according to sensitivities are InslRNlNSl, which affects
Cellubrevin (25.5), Nestin (15.9), GrglRNgaba
(41.0243, the strongest signal in Fig4), GRg2_RNGABA
(28). Gene InslRNlNSl, involved in peptide signalling,
has a very strong influence on the gene expression
system. The gene expression of this gene is prominent
only in the initial time points of El 1-El3. It may be the
case that the gene being switched off starts the process of
cervical spinal cord development [4]. The other
prominent cause-effect relationship as evident from the
sensitivity analysis is nAChRd RNZCRD1 affecting
nestin (21.77), thus corroborating previous suggestions
that cholinergic transmission forms the leading edge in
neurotransmitter signalling in cervical spinal cord [4].
Overall the sensitivity analysis is able to extract the
regulatory importance of some of the genes described as
activators of the CNS development programme and
mentioned in the literature as the genes of study in spinal
cord injuries because of their importance in activation of
CNS development.

4) Conclusion
The reverse engineering of gene networks and causal
relationships between genes is the major obstacle to
extracting system knowledge from gene expression data.

Our experiments demonstrate that a neural network
approach, combined with sensitivity analysis, can reverse
engineer both actual and biologically plausible rules from
artificial and real-world data, respectively. While more
work is required to determine why sensitivity analysis
works in the way it does, the results presented here
provide evidence of a novel, alternative approach to
reverse engineering that can lead to automatic extraction
of rules from temporal gene expression data. The process
is simple and repeatable, with clear visualisations
resulting from the method.

Figure 4: Sensitivity analysis for 112 genes in Rat C.N.S
development. Only a small part of the full sensitivity
analysis is provided here.
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Abstract

The goal of this work is to investigate meta-level ar-
chitectures for adaptive systems. The main application
area is the user modeling for mobile and digital televi-
sion systems. The results of a set of experiments per-
formed on the proposed architecture showed that it is
possible to reuse the components responsible for user
modeling if they are designed as meta-level compo-
nents.

1 Introduction

Currently most applications are developed for a large
variety of users. An important issue is how to create
adaptive applications that enable systems to satisfy het-
erogeneous needs. An adaptive system is a system with
the ability of adapting its own behavior (with respect
to performance and functionalities) to individual users
needs. Some examples of system functions that can be
adapted are: information retrieval, product recommen-
dation, learning support, and user interfaces. Beyond the
set of basic functions, systems may implement mecha-
nisms that permit automatic development of a user pro-
file, representing it in a user model. A user model is a
knowledge representation of the preferences which de-
termine the user's behavior. Preferences are the basic
information necessary to provide system adaptability.

In traditional approaches, user modeling components
have been created integrated with other system elements,
without a specific component responsible for it. With
the growing complexity of the adaptive systems, devel-
opers need new methodologies, concepts and techniques
to overcome design difficulties and simplify the develop-
ment process.

In this work we propose a meta-level architecture to
separate the components responsible for the acquisition
and manipulation of user modeling from other compo-
nents of the adaptive system. This architecture has base-
objects in its lower level and meta-objects in its upper
level. Meta-objects can be defined as objects that de-
scribe the user model. The meta-objects can control a
base-object, in order to modify its structure and behav-
ior at execution time. This type of control is possible

due to the reflective computing concept. Reflective com-
puting is defined as the activities that a computational
system execute over itself, in a different way from other
processes, to solve their own problems and to search in-
formation about their own processes in real time.

To validate these architectures, experiments with in-
terface adaptive systems will be conducted. The adap-
tation capacity, the reusability degree and the reduction
in complexity of the implemented systems will be mea-
sured.

This paper is organized as follows. In section 2 the
concepts of adaptive systems and user modeling are pre-
sented; in section 3 the concepts of meta-level architec-
ture and reflective computing are described; in section 4
we propose an architecture that joins the meta-level con-
cepts and the adaptive systems; in section 5 the imple-
mentation of a mobile system with adaptive interface is
described. This system uses the architecture proposed in
this paper. Finally, in section 6, the final considerations
are presented.

2 Adaptive Systems

An adaptive system can be defined as a system with
the ability to adapt its own behavior (i.e. functionalities)
to the individual needs, expectations and abilities of the
users [1]. This kind of system should be able to imple-
ment mechanisms that allow the creation and storage of
the user model.

A user model is composed of the knowledge of the in-
dividual preferences that determine the user's behavior.
Preferences are composed of information that is directly
necessary to the adaptation of the system's behavior to
the user's interests [2, 3]. For example, how many times,
how frequent and for how long a user accesses one link
in a web page.

Moreover, the user model may have personal infor-
mation about the user such as age and profession. This
information is not directly necessary for adapting a sys-
tem to the user, but can be utilized to create user stereo-
types. This allows the system to anticipate some of the
user's behaviors [4, 5, 6]. Systems with that type of an-
tecipation has shown benifits to both users and service
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providers [7]. However the development and mainte-
nance of those personalizable systems are very complex
and expensive, which suggests the need of a new ap-
proach for such undertaking [8].

In the majority of the related research works, user
modeling is performed by the application system, and of-
ten there is no clear distinction between the system com-
ponents that are used for user modeling purposes and the
components that perform others tasks [8, 9].

In this context, we believe that the utilization of a
meta-level architecture will help in the development of
adaptive systems.

3 Meta-Level Architecture

Computational reflection is the activity executed by a
computational system when the system computes (and
possibly affects) its own computations. Reflection is de-
fined as a way of introspection, in which the system tries
to draw conclusions about its computations and eventu-
ally influence them [10].

Computational reflection defines a new software ar-
chitecture paradigm. This architecture model is com-
posed of a base-level, where we find the system objects
that implement the system functionalities, and the meta-
level, where we find the data structures and actions to
be performed over the base-level objects [11]. The do-
main limits is the most interesting aspect of the reflexive
architecture, not only because it permits the construc-
tions of adaptive systems but also because it stimulates
the reuse of components. The main point is to allow the
application programmer to concentrate on the solution
of a specific problem of the application domain. In this
aspect, the meta-level architectures have been adopted
to express non functional characteristics of the system,
such as reliability and security, in an independent way
from the application domain.

The basic concepts of computational reflection are
[12]:

1. to separate the basic facilities from the non basic
facilities through architectural levels;

2. the basic facilities must be satisfied by the objects
of the application;

3. the non basic facilities must be satisfied by meta-
objects;

4. the non functional capacities are added to an ap-
plication object through its specific meta-objects,
and;

5. the base-object can be structuraly and behavioraly
changed at execution or compilation time.

In figure 1, we can see the reflection process in a com-
putational system. The computational system is divided
in two or more computational levels. The user sends a
message to the computational system. The message is
treated by the functional level, which is responsible for
performing the work correctly, while the non functional
level manages the work of the functional level.

Structural and\
behaviokchangsd

Fig. 1. Reflective Computing System Overview

With this ability a system is more capable of changing
and adapting its structure and behavior. By separating
the base-level functions from the meta-level functions
we increase reusability, diminish complexity, and make
the system more flexible overall.

Computational reflection can be implemented by
functional, logic or imperative programming. However,
it is with the natural flexibility of the object model that
computational reflection has shown its effectiveness and
elegance in the resolution of programming problems
[13].

In computational reflection, classes, methods, at-
tributes and objects representations are redefined by
meta-classes and meta-objects. The level in which the
meta-classes and meta-objects are available is called
meta-level.

4 Proposed architecture

We propose an architecture for adaptive applications
that use the meta-level and reflection concepts. The
base-level contains all the basic functionalities (compo-
nent 1 - figure 2) while the meta-level holds all the ob-
jects that control the creation and adjustment of the user
models and stereotypes (component 2 - figure 2).

The meta-level has enough information to create and
adapt the user models, stereotypes or any other structure
necessary to adapt the system to the user. This is possi-
ble because the intersection concept (point (a) - figure 2)
provides all the base-level system data (structure, behav-
ior and user behavior) and observations of user bahavior.
In this way, machine learning methods (mainly classifi-
cation) process the data and offer support for resolution
of decision-based problems.
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The decision can be used through the introspection
ability (point (b) - figure 2) for changing the system func-
tionalities (describes and executed by base-level) trans-
forming the system and adapting it to the user's needs.

This architecture allows management of the functional
aspects separately from the ones related to the acquisi-
tion and maintenance of the user's models. This is pos-
sible because the interface between base-level and meta-
level is unique. Meta-level components can be removed
and added to the architecture without modification to the
base-level.

5 Application Example
To verify the adherence of the meta-levels architecture

in adaptive systems, we implemented an adaptive system
that uses the proposed architecture.

In this example a book store system (client and server)
is implemented. The system is accessed by mobile
equipments (cell phones) that use J2ME (Java Micro
Edition) technology [14].

When the user is placing a book order using his cell
phone, the following steps are executed:

1. he is identified by the cell phone number;

2. he searches the book by the book's name or by the
author's name in the book's catalog;

3. he selects the desired book or books;

4. he adds the book to his "shopping cart";

5. he executes another search and adds more books
to his "shopping cart";

6. he confirms the purchase, and;

7. he receives a message to confirm the purchase.

To attend the customers, the server side is imple-
mented using the Java Servlets Technology [14]. Ba-
sically, the server is capable of keeping the "shopping
carts" of the users, answering queries and finalize pur-
chases. The book's database is written in XML. The
system architecture can be visualized in figure 3.

5.1 Meta-Level

While the base-level is responsible for all functional-
ities described before, the meta-level is responsible for
the acquisition of the user's behavior beyond the compu-
tational system. Through the use of that information the
meta-level changes the behavior of the base-level with
the intention of adapting the system to the user.

Basically, the implemented features for this prototype
are: interface changes that adapt the presentation or the
navigation path, and; a list of recommended items for
each customer (like typically done by Amazon [15]).

During the adaptation of the interface, the text com-
ponents on authors and books are changed - removing,
inserting or ordering the components according to the
users' preferences. In the adaptation of the navigation,
links are shown or hidden according to users' prefer-
ences. The recommendation algorithms use input about
a customer's interests to generate a list of recommended
items.

In both cases, the acquisition and maintenance of the
user model is carried out through the observation of the
user behavior. This is determined by means of the user's
clicks and purchases.

The experiment showed that it is possible to reuse the
components (i.e. the presentation adaptation component,
the navigation adaptation component and the recommen-
dation algorithms). The only action that must be taken is
to change the components in the meta-level.

6 Conclusions

This paper described a meta-level architecture to sepa-
rate the components responsible for acquisition and ma-
nipulation of the users' models from the other compo-
nents of an adaptive system.

The architecture proposed here can be used to add the
ability of adaptation to stable computational systems. It
also allows management of the functional aspects sepa-
rately from the ones related to the acquisition and main-
tenance of the user's models.

To validate this architecture, a system with adaptive
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interface was implemented. Through this experiment, it
was verified that it is possible to reuse the components
responsible for the user modeling only by adding them
as stable meta-level components. Moreover, the need of
tools to implement the computational reflection concept
was identified. In the example, the meta-control compo-
nent had to be built in the server side. This was because
the technology used to implement the clients (J2ME)
does not implement the computational reflection ability.

As future work, we plan to verify the applicability of
this architecture in other kinds of adaptive systems, for
example: adaptive information retrieval, recommenda-
tion systems and others.
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Abstract

This paper presents adaptive finite state automata as an al-
ternative formalism to model individuals in a genetic algorithm
environment. Adaptive finite automata, which are basically
finite state automata that can change their internal structures
during operation, have proven to be an attractive way to rep-
resent simple learning strategies. We argue that the merging
of adaptive finite state automata and GA results in an elegant
and appropriate environment to explore the impact of individ-
ual adaptation, during lifetime, on population evolution.

1 Introduction

Most of the early works on genetic algorithms were
based on the simplifying assumption that individuals do
not change during lifetime. In contrast to this "rigid in-
dividuals" approach, some important trends on compu-
tational evolution, tackling the challenge of incorporat-
ing some kind of plasticity, into individuals modeling,
started to emerge, in the last decade. Baldwinian [1]
and Lamarckian [2] Evolution, are two of the major ap-
proaches, in which, individual phenotype is not a di-
rect map from its genotype, but instead, the phenotype
presents some flexibility in responding to the environ-
ment input.

Plasticity refers to the flexibility, or capacity for
change [3], of a subject, and includes both reasonably
simple traits, like the malleability of an amoeba cell
membrane, and complex phenomena, like human learn-
able behaviour. It has been pointed out that individual
plasticity is not always a benefi cial trait. Turney, for in-
stance, presented ten dimensions of trade-offs related to
the balance of phenotype rigidity and plasticity, like en-
ergy consumption, length of learning period and smooth-
ness of the fi tness landscape [4].

Some simulation experiments involving plastic and
learning individuals have been proposed. Most of these
works are based on the use of artifi cial neural-networks
with backpropagation [5] or some simpler hill-climbing
strategy [2], to model the ability of an individual to per-
form a local search on the fi tness space, before a new
population is produced by some standard genetic algo-

rithm approach.
The concept of a plastic automaton, that can change

its initial structure, during execution, have been initially
proposed by Neto to address some problems on com-
piler construction design and implementation [6]. This
formal device was named Adaptive Automaton. Inde-
pendently, Shutt and Rubstein introduced a similar de-
vice, called Self-Modifying Automata [7]. More re-
cently, Klein and Kutrib presented the Self-Assembling
Automata [8], which share the same basic concepts cre-
ated by Neto, Shutt and Rubstein, but with a new formal-
ization. This paper presents the Adaptive Finite State
Automata, or J ^ - F S A , as an alternative way to repre-
sent plastic individuals in a GA population. The <ĉ -FSA
formalism is heavily based on Adaptive Automata, but
without some features that, despite being important in
compiler construction design and some other application
areas, would just add superflous complexity to the prob-
lem of represeting a GA genotype as a plastic automaton.

The three main reasons why ^-FSA is an interesting
formalism to represent plastic individuals are: (1) plas-
ticity is an inherent, but easily disabled, characteristic
of <£̂ -FSA ; (2) tradicional automata, like fi nite state [9],
pushdown [10] and automata with multiplicities [11], are
already being explored as individual modelling tool, in
the context of "standard" genetic algorithms; (3) Adap-
tive fi nite state automata are related to two well stab-
lished fi elds: formal language theory (FLT) and gram-
matical inference (GI) [12, 13]. The integration of srf-
FSA and GA would bring these three fi elds (FLT, GI and
GA) closer, facilitating information exchange, and tools
reutilization.

The next section presents adaptive finite state au-
tomata and a graphical notation for their representa-
tion. Section 3 discuss the integration of Baldwinian
and Lamarckian computational evolution with adaptive
automata theory. Finally, conclusion and sugestions for
future works are presented.
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2 Adaptive Finite State Automata

An J ^ - F S A is a kind of fi nite state automaton that
can change its transition relation during input reading.
It can be seen as a simplifi ed version of an adaptive
automaton [6] and as a generalized self-assembling au-
tomata [8]. Each transition of an J ^ - F S A , besides op-
erating as in a conventional FSA, can be attached to an
adaptive function, which is executed just before the tran-
sition, removing or inserting new elements to the au-
tomaton's transition set.

Formally, an <s/-FSA is a 10-uple M =
(Q, E, q0, F, 6,«, r , # , $, A). The fi rst fi ve elements
defi ne the subjacent mechanism, where:

Q is the state set.

E is the input alphabet, fi nite and non-empty.

q0 G Q is the initial state of the automaton.

F CQ is the fi nal state set.

K Q x { E U {e}} x Q x { « U {e}} x 2 r

the non-deterministic transition relation.
is

The transition relation differs from the usual one by
two new elements: an adaptive function label, taken
from K, and a set P e 2 r ^ ^ u E ^ , of parameter assign-
ments, where F *—>• {Q U E} is a partial function that
maps formal parameters to states or input symbols. The
adaptive function label may also be an epsilon symbol
(e), indicating that the transition is a regular one. The
others fi ve elements of M defi ne the adaptive mecha-
nism, where:

K is the set of adaptive functions labels.

F is a set of formal parameters and variables.

\P is a set of generators.

$ : { r u $ } H K is a partial function, mapping formal
parameters, variables and generators, to adaptive
function labels.

A C K x {?, +, - } x {Q U T U
x { Q u r U#} x {«U
is the set of adaptive actions.

x {E U {e} U T}
x 2 r ~ « u E u r u *>

The fi rst element of each adaptive action just groups
adaptive actions into adaptive functions. The second el-
ement defi nes the type of the adaptive action, which can
be a query (?), a remove (—) or an insert action (+).
The remaining elements represent the transitions to be
queried, removed or inserted. These elements can be

Before After

Fig. 1. Adaptive function Graphical Representation

Fig. 2. Automaton structure before and after reading aa

replaced by a formal parameter, a variable or a gener-
ator. Formal parameters are mapped to the values de-
fi ned in S, during the adaptive function execution. Vari-
ables are used to indicate general transition patterns and
generators indicate a state that is to be used for the fi rst
time inside the dynamically changing S function. A de-
tailed description of an ^/-FSA is out of the scope of
this paper, mainly for space restriction, but the follow-
ing graphical representation proposal, can express, more
intuitively, the operation of an adaptive function.

In the graphical representation, adaptive functions are
illustrated by two prototypical automata (represented by
the usual graphical notation, with circles and arrows),
separated by a triple arrow. The triple arrow direction in-
dicates an automaton sub-structure before and after the
adaptive function execution. Variables and formal pa-
rameters are marked with the prefi x "?", while gener-
ators are prefi xed by "*". The adaptive function label
and its formal parameters appear above the graphics, us-
ing standard notation for functions: the function label
followed by a comma delimited, bracket enclosed, se-
quence of parameters.

Figure 1 shows a 2-parameter adaptive function that
removes any two adjacent transitions, departing from
state ?pi, that reads the same input symbol, ?p2J and
inserts a loop, on state ?pi, reading ?p2. An empty tran-
sition is also created, from ?pi to the state previously
reached by the adjacent transitions. This adaptive func-
tion, if properly used, generalizes the language accept
by the automaton, creating a loop, after reading two con-
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Fig. 3. Adaptive FSA for building Prefi x-Tree Acceptor

(a) Subjacent Mechanism (b) Adaptive Mechanism

secutive symbols. Figure 2 illustrates how a subjacent
mechanism should look before and after the execution
of this adaptive function.

Finally, its worth noting that an ^/-FSA can be easily
specialized to a self-assembling fl nite automata of degree
k [8], just by: (1) restricting to k, the number of adap-
tive function parameters, (2) not accepting input symbols
(just states) to be passed as parameters, (3) not allowing
variables and (4) not allowing transitions to be removed.
A formal proof of this result, which will imply that the
class of languages accepted by self-assembling fi nite au-
tomata, is a subset of the one accepted by an J ^ - F S A , is
under development.

2.1 An J ^ - F S A that builds a prefix-tree acceptor

Many grammar induction algorithms start from build-
ing a special kind off! nite state automaton, called prefi x-
tree acceptor, or simply, PTA [12]. Algorithms to build
PTAs, from a set of positive strings, are straightforward.
However, in the following example, both the PTA, and
the algorithm that builds a PTA, from sample strings,
will be modeled as an ^-FSA .

The automaton's subjacent layer, with alphabet E —
{a,6 ,#} , has one state, and is shown in figure 3.(a).
The number sign, # , is just a string delimiter. Transi-
tions (qo,a,qo) and (qo,b,qo) are both associated with
the 2-parameters adaptive function, &?, presented in fi g-
ure 3.(b). The adaptive function just breaks the loop (pa-
rameterized by ?pi and ?£>2)> creating a new prefi x-tree

Fig. 4. Automaton structure as it reads aa#aba

edge, and two new loops, similar to the initial ones, that
will allow the prefi x-tree to continue growing, if neces-
sary. A string delimiter transition is also inserted to lead
the automaton to its initial state whenever a number sign
is read. Figure 4 illustrates the automaton's plasticity, as
it reads the sample input aa#aba. Loops and delimiter
transitions are omitted in the sake of clarity.

This automaton can be formalized as an J ^ - F S A

M = (Q,£ ,go,^<S, /c , r ,# ,$ ,A) , where the sub-
jacent mechanism has Q — {qo}, £ = {a, 6, # } ,
q0 = q0, F = {q0}, 6 = {(qo,a,qo,srf(a,qo))9

(qQ,b,qo,stf(b,qo)),(qo,#,qo,e)} and the adaptive
layer, containing just one adaptive function, &/, has
K = {£/}, r = {pup2}, * = {n}, $ =
{(pi,srf),(p2,£?),{n,srf)}. The A relation, repre-
sented using a notation that emphasizes the adaptive ac-
tion type (shown outside the brackets) and the associa-
tion of adaptive function labels and parameters, is:

( , # , g , ) ,
-f-(*n, a, *n, J^(a, *n)),

3 Baldwinian and Lamarckian Evolution with Adap-
tive Finite State Automata

Genetic Algorithms are very effi cient at exploring the
entire search space; however, they are relatively poor
at fi nding the precise local optimal solution in the re-
gion at which the algorithm converges. For make things
better, there are hybrid algorithms which are the com-
bination of improvement procedures, usually working
as evaluation functions, and genetic algorithms. In or-
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der to improve the algorithms performances, local im-
provement procedures have been incorporated into GAs,
through what could be called "learning" or "individual
plasticity". There are two basic strategies in using hy-
brid GAs: Lamarckian and Baldwinian evolution. The
Baldwin Effect, as utilized in genetic algorithms, was
first investigated by Hinton and Nolan [14] by allow-
ing an individual's fi tness (phenotype) to be determined
based on learning. Like in natural evolution, the result
of the improvement does not change the genetic struc-
ture (genotype) of the individual. Although Lamarckian
evolution has been universally rejected as a viable theory
of genetic evolution in nature, using ideas inspired on
it, in genetic algorithms, can improve their convergence
speed [2]. In Lamarckian computational evolution, the
genetic structure of an individual can be changed to re-
flect the results of learning.

In a GA environment where genotype are represented
as an <s/-FSA , the Baldwin effect could be explored by
the appropriate utilization of adaptive functions to model
plasticity or learning. The plasticity level could be con-
troled by designing, or admitting the evolution, of differ-
ent adaptive functions. A kind of "Lamarckian effect"
could also be easily acchieved by retaining the struc-
tural changes suffered by the automaton, between gen-
erations.

4 Conclusion

Adaptive finite state automata have been described
and an example illustrating their inherent ability to
model plasticity, in a formal language and automata the-
ory framework, has been presented. Using adaptive fi -
nite state automata to model individuals in GA opens a
new path for investigations on the interaction of individ-
ual plasticity and evolution, which is an important topic
in current computational evolution research. It may also
strengths the links between grammar inference and com-
putational evolution areas, providing a new environment
for theory and results exchange. Some suggestions for
future work include the integration of AdapTools *, an
environment for adaptive automata development, with
some GA computational library. In-depth studies on
genotype representation, performance and limits of hy-
brid GA-^Z-FSA algorithms should also be conducted in
the near future.
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Abstract
This paper aims to present the logical model that makes up
the structure of a tool for the definition of environments for
rule-driven adaptive formalisms.

1 Introduction
Adaptive applications need resources to adapt
themselves to the environment's momentary needs and
to foresee the internal and external demands, thus
making up for a complex, robust, and fault-tolerant
structure, yet flexible and responsive. Such applications
offer modern capacities that are very difficult to be
modeled by using present techniques of software
development.
In order to solve the adaptive applications' modeling, it
was proposed in [1] a generic formalism that allows
(underlying) rule-driven non-adaptive devices to be
extended to concepts of adaptive mechanisms. Such
formalism is based on an Adaptive Mechanism (AM)
that involves the kernel of an underlying non-adaptive
device (ND). This way, an Adaptive Device (AD) is
formally defined by AD = (C, AR, S, c0, A, NA, BA,
AA).
In this formulation C is the set of all the possible
configurations of ND and cO e C means its initial
configuration. S is the set of all possible events that
make up AD's entry chain and set A represents the
acceptance configurations for ND.
Sets BA and A A are adaptive actions' sets. NA is a set
of all symbols that can be generated with exits by AD,
in response to the application of adaptive rules.
AR is the set of adaptive rules that define the adaptive
behavior of AD and is given by the relationship Ar
c BA x C x S x C x NA x AA in which adaptive actions
modify the current set of AR adaptive rules from AD
to a new AR set by adding and/or deleting adaptive
rules in AR.
Based on these definitions, it is proposed in this paper a
logical model for the representation of the formal

elements shown in [1]. Such model is fundamental to
the developing of tools that support a design
methodology for adaptive applications. This paper is
organized as follows: in section 2, the stages of
extensions for adaptive devices and its use will be
described. In section 3, the logical representation for
adaptive devices is shown, and finally, in section 4,
some conclusions and future papers are discussed.

2 Stages of extensions for non adaptive
rule-driven devices.

When extending a formalism of an underlying device
to the concepts of adaptive rule-driven mechanisms, a
specialist should involve the non adaptive device with
an adaptive layer. In order to develop this job, the
specialist should possess good knowledge both of the
underlying formalism and of the concepts of adaptive
mechanisms. On the other hand, a planner that uses a
device extended by a specialist does not need a formal
knowledge as deep as the one needed by the specialist
in extension of devices. The planner needs to know the
extended specification language and how to use it in
the project of his applications.
When extending a non adaptive rule-driven device to
support adaptive characteristics there is the need to
accomplish 3 stages: the stage of extension of the
formal (mathematical) model, the stage of definition of
the logical model and the stage of definition of the
physical model. Figure 1 illustrates the stages and the
existent relationship among them.
The stage of extension of the formal model Figure
1(A), offers a view in which a specialist with good
mathematical knowledge of underlying formalism
accomplishes the conceptual definition of the extended
device to the concepts of adaptive mechanisms. In [1]
and [2], extensions of underlying devices are presented
to the concepts of adaptive devices. In this phase, the
junction of the formal concepts of both (underlying and
adaptive) formalisms is achieved, thus obtaining a new
underlying device extended to concepts of adaptive
mechanisms.
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Figure 1. Stages of extension of non adaptive rule-driven devices.
After obtaining the adaptive formalism, it is necessary
a mapping of its concepts for an intermediate
representation, as shown in Figure 1(B). Such stage
consists of the definition of the logical structure that
represents the formal concepts of the new adaptive
device. Such structure is of fundamental importance,
because it is part of the information storage structure
necessary for the development of tools that will help
the planner in designing adaptive applications.
In the stage of physical definition, as shown in Figure
1(C), a planner with knowledge of the developed
adaptive formalism accomplishes the specification of
his application. At this stage, yielded specifications are
to be later analyzed and implemented.
When performing his work the planner instances the
defined objects in the logical stage and he defines the
physical elements that represent the behavior of the
application.
In this phase, it can be observed that the instantiated
objects belong to two different classes, i.e., the objects
that represent the behavior of the developed application
and other objects that represent the adaptive functions
and actions responsible for modifications in the
behavior of the application in execution. Based on the
set of the defined objects in this phase, the
presentation, the simulation, the verification and the
execution of the projected application are allowed.
During the simulation and execution process of
specification in the adaptive kernel, adaptive actions
can be executed and rules can be added or removed

from the behavior represented by specification, thus
modifying its structure.
In [3], a methodology was proposed to give support to
the project of adaptive applications by using concepts
presented in this paper. In Figure 2, it is shown the
design methodology for adaptive applications formed
by the following phases: specification phase,
transformation specification phase, and validation and
specification simulation phase. In the specification
phase the application is accomplished by using either a
text or a graphic tool. Soon afterwards, the
transformation of the produced specification to an
intermediate representation (logical model) is
accomplished and, based on the obtained representation
the planner can inform entry string sequences and
evaluate its specification. If mistakes or inconsistencies
occur, the planner can make changes in the
specification and restart the process.

application
execution

Textual/Graph
Interface

Specification

Application
Domain

App
1

App
2

\

App
3

4

/

Figure 2. Methodology for Design of Adaptive Applications.
The proposed methodology is linked to the need to use
tools for helping the planner in the performance of his
job. During the specification phase there is the need of
a text or graphic tool to aid the planner in the
specification of an application. The phase of
specification transformation of the application to an
intermediate representation can be accomplished in two
ways: automatic (generated by the editors at the
moment of the edition), or through a translator that
makes the transformation process after the specification
process. And, finally, tools that allow the visualization,
simulation and verification of the projected
applications. In this phase, the planner, using an
integrated environment informs the values regarding
entry chain and submits their specification to the
performer of the adaptive kernel. Initially, in case they
exist, prior adaptive actions are performed, followed by
elementary actions of the underlying device and finally
the subsequent adaptive actions. This way, at each step
the designer gets a new configuration (state of the
system) and a new set of rules (behavior of the
application) according to the adaptive actions that were
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performed. The obtained results should be displayed to
the user, who can analyze them and, if necessary, make
changes and restart the whole process.

3 Logical model for adaptive formalisms
Based on the concepts shown in [1], a logical model is
proposed, so that it allows the construction of tools that
help to plan adaptive applications. Such a model is
represented by a data structure that gives support to the
storage of the intermediate representation and allows
the construction of a program that can manage the
performance of the resulting specification by using the
available facilities from adaptive devices.
In [3], a proposal was presented for the logical
structuring of the formal definition of the concepts of
adaptive devices. Figure 3 shows a diagram of entity
relationship of the conceptual model for adaptive
devices. Such a diagram is structured by objects of
three types: Underlying Kernel (UK), Specification (S)
and Adaptive Layer (AL) according to the
characteristics they represent.
The objects of horizontal hachure (Device, Component
Type, Connection Type and Attribute Type) are
Underlying Kernel (UK) type and they correspond to
the intermediate representation of the basic elements of
an underlying device. In this structure, the conceptual
elements of the underlying devices formally
represented by set C are defined.
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i ^
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1

Component
Type

Adaptive
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1
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Adaptive
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I

Adaptive
Action Type

Status

Connection
Type

Figure 3. Diagram of entity relationship intermediate
representation.

Solid color objects (Project, Attributes, Components,
Connections and Status) are Specification (S) type and
aim to represent the specifications yielded by a planner.
Each object of this structure corresponds to elements of
the formal definition, in which: each rule c that is part
of the set of rules NR of an underlying device ND can
be represented by the objects in S. The planner, when
defining a specification, instances objects of the NS
type (elements that constitute the underlying kernel)
and defines the behavior of the application. This
structure also stores the elements of set A that
correspond to the rules of acceptance of an adaptive
device and, furthermore, to the information on values
of both the entry and exit chains in the Status object.

The objects with vertical hachure are Adaptive Layer
(AL) type and they aim to provide the necessary
resources to support the adaptive layer that involves the
underlying kernel. The Adaptive Layer is structured in
objects that correspond to the configuration of the
adaptive device (Adaptive Action Type), and in objects
that correspond to the AR conceptual elements that, in
turn, correspond to adaptive functions and actions.
When defining the Underlying Kernel of a new device
(Petri Nets, Automata, Grammar Free from Context,
etc.) the specialist needs to store information related to
the name of the device, the creation date and updating,
etc.. Such information is stored in the Devices object.
Information on the types of components (places and
transitions of a Petri Net, final states, and non-final
states of Automata, etc.) that represent the behavior of
an application and that is used by a planner when
specifying their application, can be represented by the
Component Type object.
When specifying a rule that represents the behavior of
an application it is necessary to represent the form of
the existing connection between its components. The
Connection Type object represents the information on
the connection type for a device: transition for
Automata, Petri Net connections, etc., while the
Attribute Type object contains information on the types
of data that are available for attribution to a component
of an application behavior.
When accomplishing the Specification of an
application it is necessary to store information on the
description of the specification, on the planner in
charge, etc.. Such information is represented by the
Projects object. At first, when defining the behavior of
a project, one should define the components that
constitute the application behavior. Such components
are parts of the NR rules and they are represented by
the Components object. One can mention the
description of the states that constitute a specification
of Automata or the description of the places and
transitions of a Petri Net, etc. as examples of such
components.
Following the definition of the components, one
defines the rules (set c of the formal representation)
that constitute the behavior of an application (formally
acted by NR). Such structure establishes the
relationship among the defined elements in both
Component and Connection Type objects and defines
the behavior of an application.
The value of each attribute associated to a (Component
or Connection) object is represented by the Attributes
object. The values of stimulus, and related information
to the exit and other necessary information during
execution are acted by the Status object.
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The Adaptive Layer is associated to the elements of
specification of an application. This results, at first, in
the definition of the information on the type of adaptive
action that can occur: consultation action, insert or
removal. Such information is stored in the Adaptive
Action Type object.
When the adaptive mechanism is joined to the
underlying kernel it is necessary to define the adaptive
functions (the conceptual elements BA and AA) that
should be associated to the elements of the
Components object. The Adaptive Functions object
allows the extension of the underlying kernel to have
the features of adaptive mechanisms and it makes the
connection between the elements of the underlying
kernel and their respective adaptive actions that are
represented by the Adaptive Actions object.
The Adaptive Actions object represents the set of
adaptive actions belonging to AR that has the function
of accomplishing changes in the behavior of the
projected application.
Based on the logical structure, a tool is being
developed that will allow a specialist to configure the
conceptual elements of a non adaptive device and to
accomplish its extension for the adaptive mechanisms.
Such tool will also allow a planner, by using a textual
language (intermediate representation), to develop the
project of their applications.
In a second stage other tools will be developed that will
allow the specification and display of graphic elements
of the extended adaptive devices. The tool development
is being made in Java [3] due to the portability and
reuse features inherent to this programming language.
Figure 3 shows the interface of the tool that is
responsible for the definition of the connections of a
specification.

Figura 4. Interface of an Adaptive Tool System.

4 Conclusion.
This work aimed to present how to make the extension
of a non adaptive device to support the characteristics
of adaptive mechanisms.
Initially, the general structure of an adaptive
mechanism was presented, followed by the stages for
the extension of a non adaptive formalism to support
the characteristics of adaptive mechanisms. Following,
the methodology for the design of adaptive applications
was shown by using these concepts. Finally, a logical
model was presented for the construction of tools that
will give support to a design methodology of adaptive
applications.
The proposed methodology was used in [2] to
modeling of applications that has support the use of
graphic interface and tools are being implemented to
facilitate specialists and planners in their job with
adaptive technology.
In relationship the stages of definition of adaptive
formalisms several works were accomplished in
relation to formal definition and as resulted adaptive
formalisms were developed. Such works served as base
for the definition of the extension stages for adaptive
formalisms and they were to base the proposal of a
logical model that it seeks to represent adaptive rule-
driven formalisms.
The defined logical structure represents the conceptual
elements for adaptive formalisms and it constitutes an
intermediate representation for the definition of tools
that it will support the methodology of design of
adaptive applications.
As a continuation to this work, it is suggested a deeper
study for the validation of the proposed logical model
and the definition of a physical model (computational)
for the validation of the proposed structure.
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Abstract
Decision tables have been traditionally used for solving
problems involving decision-taking tasks. In this paper, adaptive
devices based on decision tables are used for the solution of
decision-taking problems. The resulting adaptive decision tables
have proved to be effective due to their generality and
flexibility. They are helpful tools for automatically choosing an
applicable alternative among several available at each stage in
the decision-taking process. An illustrative example as well as
an overall comparative evaluation is shown in the business
management field.

1 Introduction
The evolution of information technology has contributed
to transformations in several areas where its resources are
applied. Computers and computational systems are very
important support tools in the decision-taking process.
The decision processes can vary from the simplest to the
most complex and dynamic, depending on the existing
variables and the variables that can appear in the
presented problems. Contingent on the complexity, the
decision-taking process requires gathering of most
information possible in order to reduce risks. The
information can derive from past, present or inferred
future facts.
Because of its features, decision processes are well suited
as applications using the adaptive techniques. The use of
methods based on the adaptive technology is an
alternative to be considered in the resolution of complex
problems, and those methods can be more efficient than
traditional ones [1].
Adaptive devices are built of sets of rules that can be
dynamically changed [2], which means that their internal
procedures can be self-modified in order to face their
input stimuli situations.
This paper shows how the adaptive decision tables'
mechanism may be used in the decision-making
processes, whose established criteria change at each
decision-taking cycle. An application example of the
adaptive decision table in the business area is shown in

detail, in order to compare it to the traditional decision-
making methods, and to make clear the use of adaptive
technology.

2 Decision taking
A decision is a choice made between two or more
available alternatives. Decision-taking is the process of
choosing the best alternative to achieve the proposed
goals [3].
A decision requires an individual, or a group of
individuals, to choose one among several options. The
options can vary from two to an unlimited number. The
decisions can become too complex if the sequence of
decisions taken affects the subsequent options [4].
In the decision process, the decision-taker usually must
analyze the goals to be achieved by his actions, the
situation within the problem, the available resources, and
the consequence of the decision taken [5].
Hence, any problem whose solution is based on a
decision-taking process can be planned using the
experience and results of other similar processes. A
database of adopted strategies in each case aids the
decision process in many of its perspectives, and also
improves information quality. In case there is no
information in the database, there must have means to
enter new data and, therefore, modify the database to
improve the model.
Approaches about the decision-taking process can be
found in several publications. Among them is the classic
rational selection, where Ackoff and Sasieni (1968, apud
[4]) state that the decision process model should gather all
the data that can represent the control variables that will
determine the alternative actions, the uncontrollable
variables relevant to the problem, and the decision criteria
that can lead to the best action. Hence, this model should
show the selection outcome.
In management science, the use of decision process
models implemented in computers may become a way to
control and manage the consequences of a decision [4].
Those systems are based on the feedback concept.
Depending on the availability of the data, and the
performance of the model, the systems are fed back
allowing the decision taker to gain control and improve
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his performance.
The computational tools currently available for use by
organizations are designed to supply quantitative and
qualitative information that assists in the decision-taking
process.
As a rule, during the development of conventional
systems, a previous analysis of the information in the
actual context is performed. The system is developed
based on the results of this analysis, allowing the
information to be programmed and the situation to be
simulated. If newer information emerges within the
context, the system can no longer fit its answers, since its
information is fixed.
With the adaptive techniques, however, the system is not
only capable of determining the information needed for
the decision-taking situation, but also it is capable of
receiving new data, which will eventually appear in each
cycle of the process. Therefore, the system changes itself
to provide better conditions to such decisions. This
system is called adaptive device. The main characteristic
of the adaptive device is to dynamically modify its own
procedures [2], in consequence of the inputs, without
external action, such as, of the user.

3 Adaptive Technology
A formal device is said to be adaptive whenever its
behavior changes dynamically, in a direct response to its
input stimuli, without interference of external agents or
even its users. In order to achieve this feature, adaptive
devices have to be self-modifiable. In other words, any
possible changes in the device's behavior must be known
at their full extent, at any step of its operation in which
the changes have to take place. Therefore, adaptive
devices must be able to detect all situations causing
possible modifications and adequately react by imposing
corresponding changes to the device's behavior. In this
work, devices are considered whose behavior is based on
the operation of subjacent non-adaptive devices that can
be fully described by some finite set of rules.
Application of adaptive technology is based on a formal
model known as Adaptive Automata (AA) [6, 2], which
is a Structured Pushdown Automata that, through the
performance of predefined adaptive functions, change its
behavior in response to its input stimuli.
Many projects have been developed using adaptive
technology, which shows the versatility and applicability
of these techniques in wide-range application.
The use of adaptive technology for solving computational
problems is very interesting, since it presents compatible
results with the most commonly used techniques with a
cost-effective relationship even more interesting. We can
list, e.g., Adaptive Statecharts, Adaptive Markov Chains,

Adaptive Grammars, and Adaptive Decision Table,
among others. Further information about these and other
adaptive formalisms can be found at the Adaptive
Technology Lab web site (www.pcs.usp.br/~lta).

4 Applying Adaptive Technology on
Decision-Support Systems

After analyzing the operation, clarity and easiness of the
learning process of each adaptive device available
nowadays, we have concluded that the adaptive rule-
driven device is the best choice for implementing
decision-support systems.
In [2], the adaptive rule-driven devices can be seen as a
two-layer system. The first layer is represented by a non-
adaptive device, which is the basis for the system and is
called underlying device. The second layer is represented
by the set of adaptive actions associated to that
underlying device. The addition of this second layer
empowers a common decision table (or any other
underlying device) to Turing's Machine level (the so-
called Turing compatibility) at a minimum cost.
To operate such adaptive device, one should initially use
the non-adaptive underlying decision table to determine
the rule(s) that matches the current situation of the
condition predicates. Then, the selected adaptive rule is
performed by executing the indicated adaptive actions
associated to that rule. The adaptive rule can change the
underlying device rules, changing, therefore, the systems
behavior.

material-

building-
supplier5

price=
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purchase:9

Ma
Ba
Si

BP
NB

Ma
Ba

s2
GP
NB

Bb

s3
GP
FB

Fig 1 - non-adaptive decision table

The Adaptive Decision Table (ADT) was selected as the
core of this decision-support system for reasons such as:
• The non-adaptive underlying device is the ordinary

decision table, which is well-known among the
information systems solution providers presenting,
though, a higher commercial potential.

• The execution algorithm is quite straightforward, since
it is as simple as the underlying device execution,

• Extending the non-adaptive underlying device to the
adaptive one is very easy, as shown in [2], presenting
extremely low-cost additions.

Further details about formal definition and
implementation of ADT can be found in [2, 7].
As can be seen from the differences between the non-
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adaptive decision table (fig 1) and the adaptive one (fig
2), the additional cost to 'upgrade' such device is really
low. The underlying device is the same.
Attaching an adaptive layer to this device is a
straightforward procedure, since it remains as a table,
with increased size, though. The meaning of each extra
column and row can be found in ref. 2.

As a table, just a few modifications need to be made for
the runtime engine. However, ADT's computational
power is much higher than its non-adaptive counterpart
is. The last one can be used only for Finite State
Automata simulation.
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Fig. 2 - ADT example before processing

5 Illustrative Example
The application of an ADT will be illustrated through a
very simple example, such as the purchase of construction
material for civil engineering business.
Ideal conditions for the purchase have been established,
such as price has to be 'good' and the supplier has to be
'near' the building. These criteria (good and near) are
pre-definite to simplify the example. At the moment of
decision-taking, both conditions have to be true for the
selected supplier. The possible non-deterministic solution
will not be used, since the backtracking (or other
techniques to simulate parallel processing) increases
exponentially the running time.
Since this example must be short in length, some
auxiliary functions such as the one that would perform
price analysis, proximity criteria and insertion of new
materials were not shown.
For inserting new materials, an adaptive function would
receive material name / code to be inserted together its
respective building name, and create new columns for it
in the ADT. Note that the fields supplier, price and
proximity would be empty.
A timely-started function (bid) would then replace the
previous price analysis based on new market information,
and also fulfill the just-inserted material's price and
supplier field on those that does not have these fields
fulfilled.
There may be another function that, based on GPS
information and on some distance criteria, would analyze

if the supplier are 'near' or 'far from' the building. Again,
this function was also omitted for sake of simplicity.
An adaptive function (F) has been designed for this
example. This function is composed of 4 elementary
adaptive actions, as seen in fig. 2, which change the
underlying device in the following manner:
• The first three rules (first, second and third column after

the heading column) exclude the rules whose settings
are not ideal; therefore, they are naturally excluded.

• The fourth rule add a rule whose settings are the ideal
supplier.

A non-adaptive device rule is a 5-tuple (Mr), Bk, Sn,
MPr, PO) format with:
•Mr) - Material Name / Code to be purchased.
•Bk - Building name to which the material will be
destined for.
•Sn - Supplier's Name / Code.
•MPr - Price of the material, which can be GP (good
price) or BP (bad price).
•PO - Proximity to the Building, which can be NB (near
the building) or FB (far from the building).
In the example, we will simulate a purchasing, where the
material code is A//? to be used at the Bb building.
Initially, the device is started by applying the starting
rule, which is identified by a 'S ' on the TAG row (as may
be seen in Fig. 2)
Then, the action get(data), which is checked in this rule,
will be applied. This action actually acquires the material
Name / Code and the building name
Now, we search the ADT for a rule that tests the
conditions material and building against the values just
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read (and, of course, with the ideal conditions for
purchasing).
There is no eligible rule for this case, so the adaptive rule
will call the adaptive function, passing as arguments
material and building information just read.
The adaptive action will search for rules in the underlying
device and delete any that has same material and building
information and doesn't fulfill the ideal conditions (that
could be {MP, Bb, ,GP,FB} or {M(3, Bb, ,BP,FB} or

else {Mp, Bb, ,BP,NB}), and include a new supplier,
which name will be generated by generator gl, with the
desired settings {Mp, Bb, g/,GP, NB}.
The system will then select the new supplier, just added.
If there were already a rule with ideal conditions, it would
be selected before the activation of any adaptive action.
This is an intrinsic adaptive technology characteristic.
The resulting ADT after this process can be seen in fig. 3.
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6 Conclusion
This study has shown that some real-world problems may
be adequately modeled through adaptive techniques. The
study has also shown that where conventional modeling
may not be adequate, an adaptive modeling can fit the
needs.
Among attractive characteristics of this project, two can
be emphasized: reliability and affordability. Reliability is
achieved by its formal developing process, which through
mathematical definitions can 'predict' its behavior,
preventing misleading. The production cost, however, as
presented on this paper is very low.
In conclusion, this project is expected, as many others in
this area, to help in the reduction of production cost and
in the increasing application of adaptive solution to
business problems in general.
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Abstract
Real mobile robots should be able to build a virtual
representation of the physical environment, in order to navigate
and work in such environment. This paper presents an adaptive
way to make such representation without any a priori
information of the environment. The proposed system allows
the robot to explore the entire environment and acquire the
information incoming from the sensors while it travels and, due
to the adaptability of the mapping method, the system is able to
increase the memory usage according to the already mapped
area. The map, built using the adaptive technique, is useful to
provide navigation information for the robot, allowing it to
move on the environment.

1 Introduction
Robotic mapping is one of the most important
requirements for a truly autonomous mobile robot. Such
robots should be able to build their own abstract
representation of the physical environment instead of use
a preliminary map stored in its memory. The main
reasons are: First, the hard and repetitive task of manually
mapping each house, office, factory, street and
agricultural field which robots are intent to work and
manually register this map in the their memory. The
second reason is related to the possibility of robots work
in hazardous, unstructured and unknown environments.
Such places may be dangerous or impossible for humans
to construct a map. Then, robots must build their own
map before being able to execute others tasks [1].
Another question related to robotic mapping refers to the
way of acquire such maps. Complete and geometrical
representation of the environment increases the data
amount and the computational complexity for the
database searching during the robot localization and path
planning process.
This work employs adaptive mechanisms to collect
information of the world and to navigate on it. Such
adaptive mechanisms allow the system to build maps
without a priori information of the environment, and also

allow the system to manage the memory space
accordingly to the already mapped area.
This paper extends previous works on the representation
of physical environments using adaptive automata [3],
[8], [9]. The improvements are on the robot's motions,
which are, movements during the exploring stage and the
navigation process using the built map.
In order to present the general view of the system, the
following section presents the information model used in
this work, section 3 sketches the adopted formalism,
section 4 describes the mapping structure, section 5
describes the automaton responsible for steer the robot
during the exploration of the environment and section 6
presents the navigation mechanism using the built map.

2 The Information Model
The model proposed in this work is depicted in figure 1:

Sensors

Obstacle information

Sensor, motion and
navigation auxiliary

information

Exploring-move automaton

Navigation subsystem

Motion information

Motion system

Mapping
automaton

I
Acquired

information

Fig. 1. System model.

In the model, the exploring-move automaton, receives
data coming from the sensors and the current
neighborhood information extracted from the mapping
automaton. Its output contains information on the next
move of the robot during its exploration's displacements.
After the conclusion of the mapping process, decisions on
displacements are performed by the navigation subsystem
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which also receives data from the sensors and the map.
The mapping automaton stores all the sensor information
on the presence or absence of obstacles close to the robot
during its travel. Note that the environment, sensors and
motions have been simulated in order to validate the
proposed mechanisms.

3 Adaptive Automata
Adaptive automata extend the concept of finite automata
by incorporating the feature of performing dynamic self-
reconfiguration in response to external stimulus. As
results, their behavior may be changed according to
collected information. Such feature represents a trustful
way for modeling physical environments and to conduct
the robot, despite the complexity of the environment. It
has been shown that adaptive automata have the same
computational power as Turing devices [7]. Fig. 2 shows
the graphic representation of adaptive automata, where:

e: current state before the transition;
e': current state after the transition;
a: input stimulus before the transition;
B: adaptive action before applying the transition;
A: adaptive action after applying the transition.

Fig. 2. Adaptive automata transition.

Adaptive actions are optional. Three different elementary
adaptive actions are allowed: inspection - search the
current state set for a given transition; deletion - erase a
given transition from the current state set; and insertion -
add a given transition to the current set of states. Such
actions are denoted by preceding the desired transition by
the signs ?, - and +, respectively. Reference [7] details
the concept and notation of adaptive automata.

4 The Mapping Automaton
The proposed mapping automaton has the initial
configuration of a square lattice (see figure 3a), composed
by nine states connected by a set of transitions denoting
areas to be mapped. The central state is the initial state of
the automaton, and represents the starting point of the
robot's exploring path. The length of each
interconnection represents the distance covered by the
robot size.
Figure 3b details the initial configuration of the
automaton. The dot-marked state ( • ) represents the
current position of the robot, special tags (X) are used for
marking corner states and special transitions have
function of support expansions in the lattice.

Fig. 3. (a) Initial lattice in an adaptive automaton, (b) Detailed
initial automaton lattice.

Once the automaton is supplied with the data collected by
the robot's sensors, the four adjacent non-filled
transitions are properly replaced according to that
information. The information collected by the sensors
contain indications on the direction - north (N), south (S),
east (E) or west (W) - and their respectively conditions -
free to move or occupied (impossible to move). Figure 4a
shows one example of the four-data information collected
by sensors. In the figure, double arrows indicate non-
obstructed areas (directions S and E) and bold lines
denote obstructed ways (directions N and W).
Robot's displacements in the environment are represented
by some consistent state change in the mapping
automaton. As the robot moves, the current lattice is
expanded in the direction of the movement. This
expansion is performed by adding a line or a column to
the existent lattice. Figure 4b shows the result of an N-
move, after reconfiguring the vacant transitions.

Fig. 4. (a) Example of information coming from the sensors: two
directions obstructed and two free directions, (b) Expanded
lattice after an N-move.

Figure 5 shows a complete map with the representation of
the information acquired by the automaton after exploring
an empty 4L' room. The robot has completed the
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exploration at the rightmost upper space of the room
which is represented by the dot-marked state.

Fig. 5. Example of an empty *L" room mapped.

As shown in the figure 5, the memory usage by the
abstract representation of the real world, is proportional to
the mapped area and all vacant transitions which fill the
rectangular shape.
To keep the relation between the piece already built of the
map and the real environment, the initial state of the
automaton is adopted as representing the origin of the
map. This state corresponds to the initial mapping place.
Thus, one point in the map is linked to one point in the
physical environment through the association of each
transition in the automaton's representation with the
corresponding displacement performed by the robot in the
real world.

5 The Exploring-Motion Automaton
An adaptive automaton is employed for determining the
robot's next move. For this purpose, it is supplied with
four-data information collected by the sensors (figure 4a)
and with neighborhood eight-data information previously
modeled in the map (figure 6). Its operation allows the
robot to cover the entire environment in a zigzag path.
The zigzag path, directed by the exploring-move
automaton, may be adapted according the kind of
environment detected and according the stage of
exploration. To perform this adaptation, there are several
branches of the exploring-move, one for each kind of
possible situations. All of these branches may be
connected to the initial state of the exploring-move
automaton by a transition and, this connection is changed
to the branch which should deal with the information
from the sensor and from the map in a specific stage of
exploration.

As described in section 3, this changing of connection
between the initial state and the first state of the branch
may be performed by adaptive actions, which allow
insertion and deletion of transitions.

Fig. 6. Example of information extracted from the map
representing two obstructed transitions and six free transitions.

While the environment is explored, the exploring-motion
automaton may sign to the mapping automaton some
special states, called landmarks, which are properly
marked on the map. During the navigation process such
landmarks are helpful for plan a trajectory.
If an obstacle is detected during the exploration's
displacements, the proposed automaton marks the central
state on the free space before and/or after the obstacle and
it signs to the mapping automaton that this state is a
landmark. Figure 7 depicts the landmarks defined for an
environment-example. The mapping automaton performs
this representation by properly adding a transition
connecting the signed state to a special state. This special
state indicates all the landmark states existent. Figure 8a
shows an example of two close states signed as
landmarks, in which the tag (X) marks the special state.

Fig. 7. Landmarks defined for an environment-example.

6 Navigation
During the navigation process the landmarks indicated by
the exploring-move automaton are helpful for plan a
trajectory from some initial position to a target position.
The system calculates the path between such landmarks
before the navigation and, during navigation, it must find
which landmarks are nearest to the initial and to the target
positions [4], [6]. Then, those landmarks may be viewed
as sub-goals in the navigation process.
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To perform the calculus of the path between two
landmark-states in the mapping automaton a sequence
generator is used. The sequences generated become the
input of the mapping automaton, which is configured to
present the landmark states as initial and final states.
Then, the accepted sequences by the mapping automaton
are the sequences which represent the path between two
landmarks. The rejected sequences are discarded.
The four sequences firstly generated contain each one of
the four main directions: N, S, E or W. Then, the
following sequences generated are extensions of the
previous one. For example, the three sequences generated
from the N direction are NN, NE and NW (the sequence
NS does not lead to a displacement, then it is not
generated). Figure 8b shows the covered states by this
example from the N direction (the triangle indicates the
reached states and the dot-marked state (•) corresponding
to the origin of searching).

Fig. 8. (a) Example of two close states defined as landmarks, (b)
Covered states by the first N-sequence generated.

7 Conclusions and Future Works
Robotic mapping is an important process for getting truly
mobile robots and is also an essential feature to allow
robots to complete certain tasks in hazardous,
unstructured or unknown environments. The present work
has shown an alternative to the classic robotic mapping
approaches: adaptive mechanisms provide a new way to
build maps and conduct the robot for the environment.
During the exploration, sensors attached to the robot scan
the environment for the direction and presence or absence
of close obstacles, and such information is collected into
the model by enabling the mapping automaton to perform
appropriate self-modifications.
The exploring-motion automaton allows the robot to
cover the entire environment, which means that the robot
is able to reach any target position during the exploration
of the place. This automaton also provides special
landmarks to the mapping automaton, which may be used
as sub-goals during navigation. The navigation process
calculates the path between two of these landmarks.

This purpose contrasts with some classic approaches (e.g.,
[2], [5], [10]) by presenting features of building a map
without a priori knowledge of the space and memory
space usage increasing with the actually mapped area.
Future works should deal with constructing landmarks
with a serial identification attached in order to restrict the
searching in the database during the calculus of the path
between landmarks in the navigation process.
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Abstract
Software has been specified as domain theories. A useful
strategy for building specifications is the incremental extension
of an initial theory, in which increments add new terms and
notions not considered in previous extensions. Given an
increment, the corresponding theory is stated in a
corresponding specification language. The next increment - or
extension of the theory - typically requires a related language
extension, which has been specified in a variety of ways, e.g.
meta-computations, rewriting systems, etc. Adaptive devices
naturally support such scheme, whose instances should reflect
the impact of extension variations on the specification
language. This paper describes an adaptive framework for the
design of a class of software specification languages supporting
the incremental process of elaborating software specifications.

1 Introduction
Software engineering strives to provide practitioners with
principles that help building reliable software systems.
One of the best-known principles concerns the
elaboration of software specifications to bridge the gap
between software requirements and their implementation
in some programming language. It is not the case of
discussing the rich debate about this issue, but it is worth
mentioning some lessons learned from the use of
specification languages in the traditional sequential
program construction viewpoint1. Firstly, the use of a
formal specification language, guided by some formal
method, does not guarantee the correctness of the
software system under construction [1], but specification
languages with a formal basis increase our understanding
of the specification by allowing the detection of
inconsistencies and ambiguities. Secondly, a specification
should support extensions, and should also exhibit
operational capabilities. We are interested in these latter
features as the main drivers of specification language
design. The novelty of our approach is the use of an
adaptive device [2] in the specification language design,
supporting the realization of those desirable features. The

1 In this paper, we are not considering the component based
software construction approach, i.e., the reuse in-the-large.

motivation for using the adaptive device approach is that
such devices naturally solve the realization problem.
Section 2 presents the adopted viewpoint for
specifications and specification languages. Sections 3, 4
and 5 describe our strategy to extend a specification
(programming) language, and present simple examples.
Section 6 draws some conclusions.

2 Specifications and Specification Languages
Software specifications may be viewed as theories
presentations elaborated for application domains. It is
expected that the resulting working program be derived
from its specification through a finite series of step-by-
step transformations extending the base theory, i.e. the
original specification [3]. Fundamental definitions
underlying this approach may be found elsewhere [4, 5],
to mention a few. We will briefly quote and synthesize
the core definitions of [3], with respect to theory and
language extensions.
• Since specifications and programs are linguistic

constructs, they must be expressed in a defined
linguistic system. A linguistic system consists of two
parts: a collection of well-formed sentences, and a
code of reasoning. Formally, LS = <LLS, hLS>, where
LLs denotes the linguistic system language and his
denotes the rules of reasoning of the LS.

• A theory T in a linguistic system LS is a set of LS
formulae, which is closed under hLS. A theory
presentation is an axiomatization of the theory, i.e. a
set of formulae from which all formulae of T can be
derived by means of the derivability relation hLS.
Formally, T= <LST, AT>, where LST is the linguistic
system of T and AT is the presentation of T.

• An LS' = <LLS>, \-LS>> is an extension of LS = <LLS,
hLS>, iff LLS^ LLS' e his S his: If two theories are
expressed in the same LS, their respective languages
and presentations, leaving the underlying linguistic
system implicit, can characterize them. Formally,
T= <LT, AT> e T = <LT>, AT>.

• A theory T' is an extension of T, i.e. T c T\ iff the
properties defined by T for the symbols of LT are still
there in T\ and 7" allows the proofs of some new
properties.
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• An extension T c: T' is conservative iff for all
formulae A ofLT, ifAT> \~SL-A, then AT\-SLA.

A program can also be viewed as a theory presentation
with an underlying linguistic system, but due to the
operational nature of programming languages there is a
bias of the theory presentation towards a particular
interpretation (a particular implementation) [3]. In other
words, a program is a specification of another program
written, say, in some machine language.
In brief, the program construction process is a series of
conservative incremental extensions of an initial theory,
in which increments add new terms and notions not
considered in previous extensions, while preserving the
properties included at each step. Given an increment, the
corresponding theory is stated in a corresponding
specification language. The next increment - or
extension of the theory - typically requires a related
language extension. To meet this requirement, the
specification language should be extensible. Does this
property imply writing a new compiler? Or would it be
better using a purely syntactic extension based on the
semantics of an appropriate existing language? We take
the latter approach as the main strategy for the design of
software specification languages. In the literature, a
number of strategies are found that address this subject,
e.g. using modular compilation [6].
In this paper, we illustrate this strategy with a very
simple example. Let the following operation be a
fragment of a theory presentation on integers, written in
an imperative Pascal-like programming language:
FUNCTION divide

START

divide:=

END;

(n:

n/d

INTEGER; d: INTEGER): INTEGER;

Let us suppose we want to extend the theory with the
notion of preconditions as of the design by contract
approach [7]. This approach states that the function
invocations at any point in a program must satisfy the
precondition specified for the function. That means the
programmer will not write explicit defensive code in
order to check the precondition in the function body,
because the respect for the precondition is an obligation
for the client of certain service, not for the supplier of
that service. The precondition specification for the above
fragment may be written as: PRE d <> o, where PRE
denotes a precondition. This theory extension implies a
language extension.

3 Extending Programming Languages
Let us sketch a proposal for extending programming
languages as an intermediate goal towards the extension
of software specifications. Our main intent is keeping the
specifications executable. Starting from an available

programming language, one is allowed to employ in the
desired software specification strictly the abstractions
provided by the host language's syntactic constructs.
When this is a syntactically extensible language, users
may create new syntactic constructs for representing
abstractions not included in the original notation, so
users may represent new abstractions in terms of existing
ones. By proceeding in a hierarchical way, successive
abstraction layers of increasing complexity may be built
in order to bring the expressiveness of the language
closer and closer to the domain of the particular software
being specified. Since each layer's abstractions are stated
strictly as combinations of previously defined
abstractions, at each specification step any software will
be easily translated into the immediately preceding
layer's abstractions, until reaching the lowest level
abstraction layer, represented by the host programming
language.
With such a simple approach, specifying a software is
reduced to specifying a sequence of successive
abstractions, which are directly mapped into
corresponding language syntactical extensions and their
associate translating scheme into the abstractions defined
in previously defined abstraction layers. This process
proceeds until the set of available abstractions match the
expressiveness requirements for defining the application
software in terms of the application domain's
abstractions.
EXTENSIONS #N

EXTENSIONS #1

HOST LANGUAGE Lo | Li LN

The main feature of this approach is keeping the
specifications executable all along the development
process. No semantic gaps are introduced between the
specification and its implementation, since all
specification steps may be immediately converted into
executable code, and no abstraction is created unless it be
strictly stated in terms of existing, executable ones.
By adequately choosing the host programming language,
one may significantly reduce the need for supporting
computing resources for implementing this approach. For
instance, if Lo is an already existing extensible language
(e.g. LISP) all one must do is to define the abstractions
needed as extensions of Lo (in the case of LISP, the
extensions take the form of either macros or functions).
On the other hand, when Lo is not already extensible,
then an extension feature must be added in order to allow
following the proposed approach.
For usual non-extensible procedural host languages, it is
possible to implement a language extension additional
layer in order to provide the needed facilities for
programmers to provide their language extensions as
definitions for new abstractions. A powerful way to allow
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the inclusion of extra abstractions in a given language is
to offer some meta-linguistic feature for allowing to
define new syntactical constructs. In our case, a modified
Wirth's context-free extended BNF notation has been
chosen [8]. That is enough for defining new syntax.
Processing and incorporating such user-defined
syntactical extensions as a preprocessor for the host
language compiler is quite straightforward [9]. However,
syntax is not all we need. It is necessary to state all
extensions in terms of already existing language
constructs. In order to overcome this problem, we
adopted another well-known solution, e.g. typifying the
extensions and using classical operational semantics for
interpreting each new construct in terms of existing ones:
each new extension is declared as a context-free
grammar, and its meaning is also declared as a text
stated as a program using the basic host language syntax
enriched with previously declared syntactical constructs.
In this way, the compiler is informed on the new
construct to be further accepted, as well as on how
exactly it must be translated into lower-level abstractions.
After accepting such an extension definition, the
compiler extends its acceptor in order to recognize the
new syntax, and associates the declared translation
procedure to the syntactical recognition of the new
construct. Whenever further input text contain excerpts
that follow the new defined syntax, its related translation
procedure is followed, converting the input text in the
extended notation into another text written in the
previous abstraction level.

4 A Very Simple Extension Layer
In this section we present a simplified proposal of a
nucleus for an extension mechanism, to be used as a
preprocessor for procedural, originally non-extensible
languages. For space reasons, the host language has been
reduced to a minimum: block structure has been
simplified, declarations have been reduced to simple
intege variables, and commands have been eliminated,
except for if s, go to's and assignments of simple
expressions.
The following context-free grammar, stated in modified
Wirth's notation, defines, in its first part, the (non-
extensible host language) nucleus Lo we are going to use
as the starting version of our extensible language, and in
its second part, the proposed extension mechanism,
represented by EXT. Each time the non-terminal EXT is
instantiated, it extends the previous version of the
language by adding a new non-terminal (NEWNTERM) to its
grammar, and incorporates the corresponding abstraction
to the language syntax. Note that TERM represents any
terminal in the language, including identifiers (id),

integers (int) and other elementary language
components.
//* HOST LANGUAGE (EXTREMELY SIMPLIFIED) *//

PROG = "BEGIN" ( DECL \ ";" ) "START" ( COM \ ";" ) "END" .

DECL = "VAR" ( id \ "," ) ":" "INTEGER" | PROCEDURE | EXTENSION .

COM = LABEL *:" PROG | id := EXPARIT | "GOTO" LABEL |

"IF" EXPARIT ( ">" | "=" | "<" | "<>" ) EXPARIT

"THEN" PROG ( "ELSE" PROG | e ) | PREVIOUSNTERM .

EXPARIT = ( ( id | int | CALL ) \ ( " + " | "-" | "*" | "/" )) .

CALL = id "(" ( id | int | CALL \ "," ) " ) " .

PROCEDURE = "FUNCTION" id "{" { id ":" "INTEGER" \ ";" ) "J"

":" "INTEGER" ";"

"START" ( COM \ ";" > "END" ";" .

LABEL « id .

//* PROPOSED EXTENSION MECHANISM *//

PREVIOUSNTERM = 0 .

EXTENSION = "DEFINE" NEWNTERM ":" "NEW" NTERM nAS" WIRTHMOD

"MEANING" PREVIOUSWIRTHMOD "ENDDEFINE" .

NTERM = "PROG" | "DECL" | "COM" | "EXPARIT" | "EXTENSION"

| "LABEL" | "NTERM" | "CALL" | "PROCEDURE" j "NEWNTERM"

| "WIRTHMOD" | "PREVIOUSWIRTHMOD" | PREVIOUSNTERM .

NEWNTERM = id .

WIRTHMOD = ((( TERM | NTERM | NEWNTERM | "e"

| "(" WIRTHMOD ( "\" WIRTHMOD | £ ) " ) " )

{ "#" int | e ) \ ( "|" | e ) ) .

PREVIOUSWIRTHMOD = (({ TERM | NTERM | "E"

| "(" PREVIOUSWIRTHMOD < "\" PREVIOUSWIRTHMOD | E ) «)" )

( "#" int | £ ) \ ( "|" | £ ) ) .

The interpretation of the above grammar is almost
conventional, except for the meta-symbol 0 that refers to
the empty set: initially there are no PREVIOUSNTERMS.

After the full handling of the declaration of an
EXTENSION the name corresponding to the NEWNTERM

being declared is added to the PREVIOUSNTERMS set of
already defined non-terminals of the grammar. So,
WIRTHMOD refers to some syntactical definition involving
any terminals or non-terminals, while PREVIOUSWIRTHMOD

represents a syntax strictly stated in terms of the non-
terminals representing abstractions known at the
previous extension's abstraction layer. The extension pre-
processor adequately updates the set of PREVIOUSNTERMS

in order to keep the integrity of this mechanism.

5 Illustrating Case Studies
For illustration purposes, let us first work the small
situation referred to at the end of section 2. Let us restrict
the extension to including in the language the declaration
of preconditions. The suggested syntax has been starting
the construct with the word WPRE" followed by a
condition (in our language, conditions are defined as
relations between two arithmetic expressions. In order to
explore the extensibility feature introduced by the
preprocessor, the programmer should declare the desired
new syntax as shown below.
In words, the denominator of the division will be
automatically checked against zero every time the
function divide is called, and an error report will be
generated whenever that condition succeeds.
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DEFINE PRECONDITION: NEW COM AS
"PRE" EXPARIT # 1 ( "=" | "<" | ">" | "<>"

MEANING
EXPARIT # 2

"IF NOT (" EXPARIT # 1 ( "=" | "<" | ">" | "<>" ) EXPARIT # 2

") THEN ERROR() ELSE"

ENDDEFINE;

FUNCTION divide (n: INTEGER; d: INTEGER): INTEGER;
START

PRECONDITION d <> 0;

divide:=n/d

END;

Our preprocessor generates an expanded code as follows:
FUNCTION divide (n:

START
IF NOT ( d o

END;

INTEGER;

0 ) THEN

d: INTEGER):

ERROR () ELSE

INTEGER;

divide:=n/d

The next is another simple illustrating example that
creates a new command. By using such a feature, it is
easy to create new abstractions from already existing
ones. For instance, the next declaration adds a WHILE

statement to our host language:
DEFINE WHILESTATEMENT: NEW COM AS

"WHILE" EXPARIT # 1 ( "=" | "<" | ">" |

"REPEAT" PROG # 3

MEANING

"LOOP#: IF" EXPARIT # 1 ( "=" | "<" | ">" | "<

"THEN BEGIN" PROG # 3 "; GO TO LOOP# END

ENDDEFINE;

" ) EXPARIT # 2

) EXPARIT # 2

In this case, note the meta-label LOOP# that must be
instantiated each time a WHILESTATEMENT is called, in
order to avoid label duplication in the resulting program.
For instance, the WHILESTATEMENT below:
I WHILE x < 3 REPEAT BEGIN x := x+1; y:= y-1 END I

is expanded into the following equivalent program,
according to the template previously defined:
LOOP0001: IF X < 3 THEN BEGIN

BEGIN

GO TO

END

X := X+1;

LOOP0001

y: = y-1 END;

The host language must at least provide the full set of
primitive constructs needed to specify all operations in
the program we intend to build. If it is not the case, then
it would not be possible to express the application
program facts in terms of the available host language's
basic syntactic constructs, unless some extra effort be
made in order to provide the missing facilities for the
host language before the desired extensions are created
and used.

6 Conclusions
Obviously, there is much more to be said about using
extensible features of a programming language in order
to ease the specification of software projects than what
one is allowed to fit into a four-page paper. Programming
language extensibility and operational semantics have
not received adequate attention in recent scientific works.
However, as we tried to show in this paper, their features
allow an easy way for implementing software directly

from specifications, in a bottom-um fashion, always
keeping the specifications executable, and eliminating
the deep gap between specifications and implementation,
usually found in current software engineering practices.
Using adaptive technology in the implementation of
compilers and preprocessors substantially reduces the
difficulty of implementing languages representing multi-
layers of abstractions by allowing the user to interact
with the kernel of the host language's compiler without
opening its source code. Such great feature is
accomplished by the unification got when using adaptive
automata as the language's run-time abstract machine.
In this way, adaptive automata may be generated both as
object-code and as a syntax recognizer, so programs may
be compiled, their syntax may be modified and they also
may be easily executed in the same unified framework
provided by the underlying adaptive environment.
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Abstract
Ant colonies behavior and their self-organizing capabilities
have been popularly studied, and various swarm intelligence
models and clustering algorithms also have been proposed.
Unfortunately, the cluster number is often too high and
convergence is also slow. We put forward a novel
structure-attractor, which actively attracts and guides the ant's
behavior, and implement an efficient strategy to adaptively
control the clustering behavior. Our experiments show that
swarm intelligence clustering algorithm based on attractor
(SICBA for short) greatly improves the convergence speed
and clustering quality compared with LF and also has many
notable virtue such as flexibility, decentralization.

1. Introduction
Swarm Intelligence emerged out of social insect
collective behavior shows many interesting properties
such as flexibility, robustness, decentralization and
self-organization. Implementations of optimization and
control algorithms based on swarm intelligence such as
Ant Colony Optimization and Ant Colony Routing
have been well known [1,2,3]. Clustering models and
algorithms based on swarm intelligence, inspired by
co-operative brood sorting by ants or other behavior,
are also put forward, though they are still in a
preliminary, proof-of-concept stage [4,5].

The swarm intelligence clustering models and
algorithms have advantages in many aspects, such as no
need of priori information, self-organization. However,
the number of result cluster is often too high and the
convergence is slow because of the ant's inefficient
behaviors: randomly picking up items and dropping
down items. Are there any methods to make ant to
perform efficiently?

After some careful research, we believe that the
algorithms inefficient performance is mainly because of
the ant's inefficient moving. Especially in the first
stage, the items is distributed sparsely, the probability
for an ant to move to a place to pick up items or to drop
down items is often small, so most of the ant's moving
is inefficient. At the same time, the number of items
loaded by an ant is an important factor for cluster
number and accuracy.

In this paper, we put forward a new algorithm,
named swarm intelligence clustering algorithm based
on attractor (SICBA for short). SICBA attacks the
problem in following two aspects:

Firstly, a novel, efficient structure, called attractor,
is constructed. Simply, it is an item set converging the
homogeneous items. Moreover, it contains not only
local environment information, such as inner distance,
but also global information, such as outer distance
between attractors in the system. So it can actively
attracts the ant to pick up dissimilar items or drop down
similar items.

Secondly, an ant can pick up the farthest item or
all items from an attractor controlled by a simple rule.
Furthermore, a parameter is applied to form a strategy:
first stage an ant is prior to pick up all items to coarsely
but fast cluster; last stage the ant is mostly to pick up
the farthest item to precisely partition. So it can
distinctly improve the convergence speed and accuracy.

The paper is organized as follow: the following
section introduces the related work; the next section
describes the details of SICBA ; the experiments are
showed in the section 4; at last we make our
conclusion.

2. Related Work
Deneubourg et al [4] proposed an agent-based

model to explain how ants manage to cluster the
corpses of their dead nestmates. Artificial ants (or
agents) are moving randomly on a square grid of cells
on which some items are scattered. Each cell can only
contain a single item. Whenever an unloaded ant
encounters an item, this item is picked up with a
probability which depends on an estimation of the
density of items of the same type in the neighborhood.
When a loaded ant encounters a free cell on the grid,
the probability that this item is dropped also depends on
an estimation of the local density of items of the same
type.

Lumer and Faieta[5] (LF for short )extended the
model of Deneubourg et al., using a dissimilarity-based
evaluation of the local density, in order to make it
suitable for data clustering. Unfortunately, the resulting
number of clusters is often too high and convergence is
slow. Therefore, a number of modifications were
proposed, by Lumer and Faieta themselves as well as
by others [6,7].

3. Swarm Intelligence Clustering Algorithm
Based on Attractor
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3.1 Basic Concept

Definition 1. Attractor is a data set which has similar
items as a whole. The attractor can attract the ants to
pick up the furthest item or all items from it according
to a pick-attractive rate, and drop down an item or an
item collect in it according to a drop-attractive rate.
Furthermore, the attractor has it own status: active and
inactive, if the attractor has not any item the attractor is
considered as inactive, and it can't attract ant to pick up
items or drop down items any longer; otherwise, it is
considered as active and can attract any ant.
Definition 2. Inner distance is the average distance
between the items and the attractor's centroid for an
attractor.
Definition 3. Outer distance is the average distance
with the other attractors in the system for an attractor.

Attractor's pick-attractive rate and drop-attractive
rate are two very important features to control an ant to
load items or unload items, differentiating the ant's
randomly choosing method in [4, 5]. Pick-attractive
rate (PAR) for an attractor is a numeric feature to
indicate the attractor's affinity attracting the ant to pick
up items, in other word, it indicate the probability for
an ant to pick up a item or all the items from the
attractor. If the PAR is greater, the probability for an
ant to pick up items is also greater. The PAR value
depends on the attractor's item number marked as C, if
the number C is less than a threshold 6, the attractor
is a small attractor whose PAR is determined by its
inner distance, outer distance and item number, and if
the inner distance, the outer distance and item number
are less the PAR is greater; otherwise, if C is greater
than 0 the attractor is considered as big one and its
PAR is effected by the maximal distance in the attractor
and outer distance. The PAR is given by

t if C<9

[ftftPiPi if C>d
(i)

where Di € [0, 1] , Do e [0,1] represent inner

distance and outer distance, / , (x) = 1 — X , and

0<ax,a2,a3 <\and ax+a2+a3=l, S is a
constant parameter to control the choosing strategy: if
<5>1, the attractor which has few items will have the
absolute priority to be chosen comparing with the
attractor which has many items. Dm is the maximal
distance in the attractor, and

0<Px,P2<\and j3x+j32=l.
Drop-attractive rate (DAR) for an attractor is a

contrast feature to indicate the attractor's affinity
attracting the ant to drop down items. In the same way,

The DAR value firstly depends on C, if the number C is
less than the threshold 6 the attractor is small one and
the DAR is always small; if C > 6 the attractor is a
big one and its DAR is determined by the distance
between the items loaded by a ant and the attractor's
items, and the outer distance also has slight influence.
The DAR is given by

\ « C<° (2)
{(l-D)xp]+Doxp2 if C>0

where T is the total number of items in the system, D is

the distance between the loaded items by an ant and the

attractor's items, 0 < J3x,j32 < 1 and fix+ J32 =1
J3X is always greater than J32 •

3.2 Probability Conversion Function

Probability conversion function is a function
which converts the attractor's quality and quantity
characters into a pick up probability for an unloaded ant
or drop down probability for an loaded ant. There are
usually two related functions. One is for picking-up
probability; another is for dropping probability.
Picking up stimulus An unloaded ant can perform the
task: picking up an item or picking up all items. When
the item number of the target attractor C is less than 6
the ant picks up all the items. Obviously, the unloaded
ant should pick up an entire attractor if the attractor is
small, homogeneous and not isolated. The attractor is
more homogeneous and coupling its inner distance and
outer distance is less. So the Spick_all is given by

Spick-aU = / , ( A ) x «. + / . (Do) x a2 (4)
where D{ G [0,1] , Do G [0, 1] represent inner

distance and outer distance

0<a x ,a2 < 1 and ax+a2=\.
While the item number C is greater than 6 the

attractor is considered as a big one, so only the most

dissimilar item should be picked up. The stimulus

$pick-one ^or Peking up one item is mainly influenced

by the furthest distance and slightly by the outer

distance. S pick_one is given by

)P (5)
where Dm is the maximal distance in the attractor,

and 0<j3x,fi2 <landj3x+fi2 =1 .
Drop down stimulus The stimulus for a loaded ant to
drop its items L in an attractor is based on the local
distance D between the loaded items and the attractor's
items. If the ant loads an item collect the center of the
loaded items is used to measure the similarity.
Furthermore, we also consider the global factor - outer
distance because the outer distance indicates the
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dependence among the attractors in the system.

Stimulus for dropping down Sdrop is given by

(6)

where 0 < J3x,j32 < 1 and fa + J32 = 1 fa
always greater than J32 .

is

3.3 Algorithm Description

Based on the above description we have the
following algorithm.
Algorithm (SICBA: Swarm Intelligence Clustering
Algorithm Based on Attractor)
DInitialize 0, 8, MAXCYCLENUMBER

ATTRACTORN U M B E R and other parameters;
2. Run k-means algorithm assigned with
ATTRACTORNUMBER clusters to form the original
ATTRACTORNUMBER attractors;
3. Give ants initial attractors, initial states of ants are
unloaded;
4. WHILE(cycle_counter< MAXCYCLENUMBER
and NotConvergent) {
5. FOR (number of ants ){
6. IF the ant is unloaded, THEN

{calculate Pp ;

Compare Pp with a random probability Pr , IF

Pp<Pr THEN
{ Not pick up anything;

According to PAR values, the unloaded ant moves
to the greatest attractor;
}ELSE
{ Pick up the most farther items or all items;

Update the attractor's state according to the
picking task;

According to DAR values, the loaded ant moves to
the greatest attractor;
} }ELSE the ant is loaded
{ Calculate Pd ;

Compare Pd with a random probability Pr,

IF Pd<Pr THEN

{ Not drop down;
According to DAR values, the loaded ant moves

to the greatest attractor;
}ELSE
{ Drop down the load;

Update the attractor's state according to the
dropping task;

According to PAR values, the loaded ant
moves to the greatest attractor;

4. Experimental Results

In this section, we'll demonstrate the experimental
results about the performance of SICBA and the
influence of the parameter 8 for clustering
performance.

The dataset IRIS chosen from UCI machine learning
repository
(http://www.ics.uci.edu/-mlearn/MLRepositorv.htmn
are used in this paper. IRIS database has 150 records
with 4 attributes. All experiments are performed on a
800-MHz Pentium machine which 512 megabytes main
memory, running on Windows 2000 professional.
Programs are written in Windows/Vision C++ 6.0.

4.1 Comparison with FL

In this experiment we compare SICBA with LF
about the clustering performance. Because here
accuracy is little important we measure the clustering
result number when fun N cycles. The result is shown
in the figure 1.

\
• \

\

\

. I ^

l' SICBA 1 !

j LF 1 |
|

•j

,.£=3=
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Trainning Cycles

Fig. 1. Clustering Number with Training Cycle

Figure 1 shows that convergence speed of SICBA
is faster than LF, especially in the first stage, SICBA
quickly partitions dataset into a few clusters, however,
the LF is very slow to be convergent. The last cluster
number of SICBA is also better than LF. Figure 1
shows that the last number of SICBA is 4 a little greater
than the real number 3, but LF is much greater than 3.
Because SICBA initialize ATTRACTORNUMBER
attractors with Kmeans, moreover, it picks up all items
in the small attractor at first stage and picks up the
farthest items in the big attractor at last stage, so
SICBA can converge greatly faster than LF,
furthermore, it also can get much better clustering
result.

4.2 Influence of Parameter 8 for the Clustering
Performance

The parameter 8 in formula (1) is a most
important factor to affect the clustering performance,
because it directly determines the picking up strategy.
In this experiment the clustering performance is
measured by clustering result number through 1000
times training. The influence shows in figure 2.
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Fig.2. Influence of Parameter 8

Figure 2 shows that if value of 8 is greater the
clustering performance is better. From formula 1, we
can easily get that 8 directly effect the PAR value,
that is to say, 8 affects the probability for the small
attractors to be chosen to pick up items. If 8 is
greater, the small attractor is more prior to be chosen
than the big one, so SICBA is quicker to converge. As
to last stage, most of the active attractors are all big
one, and 8 doesn't effect any longer. The probability
of picking up item is mainly determine by the
attractor's furthest item, so SICBA can precisely adjust
the cluster and get better accuracy performance.
Because the PAR values in the case of C> 6 is always
smaller than 1, obviously, 8 greater than 1 is none
meaning. In conclusion, when 8 equals 1 SICBA can
get the best performance and implement the efficient
strategy: small attractors prior.

5. Conclusion
This paper put forward a novel structure in swarm

intelligence clustering algorithm, named attractor,
which contains not only the local information but also
the global information, so it can actively attract the ant
to pick up items or drop down items and avoid the ant
aimless moving. Furthermore, we also implement an
efficient strategy: small attractors prior, based on the
attractor. The strategy makes SICBA pick up all items
to coarsely but fast cluster in the first stage and pick up
the furthest item to precisely fine-tune. The
experiments prove that it can greatly improve the
algorithm convergence speed and clustering quality
compared with LF algorithm. Although SICBA has no

advantages over classic kmeans algorithms on the
aspect of space and time complexity, as a
self-organization clustering algorithm, it has great
advantages in robustness, visualization, flexibility and
decentralization.
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Abstract
Multi-agent systems are the best approach for an ef-

ficient supply chain management. However, the con-
trol of each sub-system in a supply-chain is a complex
optimization problem and therefore the agents have to
include powerful optimization resources along with the
communication capacities. This paper presents a new
methodology for supply-chain management, the dis-
tributed optimization based on ant colony optimization,
where the concepts of multi-agent systems and meta-
heuristics are merged. A simulation example, with the
logistic and the distribution sub-systems of a supply-
chain, shows how the distributed optimization outper-
forms a centralized approach.

1 Introduction
In order to improve competitiveness and profitability,

most of the companies today are organized as supply-
chains: a world-wide network of external partners (sup-
pliers, warehouses and distribution centers) through
which raw materials are acquired, transformed into prod-
ucts and delivered to costumers [1]. The company's job
is no longer to produce the goods, but to manage all the
different partners in a coordinated manner such that in
the end the costumer receives a quality product on a cer-
tain desired date.

The different partners in a supply-chain operate un-
der different sets of constraints and objectives. However,
the systems are highly interdependent and the optimiza-
tion of objectives such as on-time deliveries or costs of
one partner will influence the performance of the remain-
ing partners. The supply-chain is a pure distributed sys-
tem with several parallel and independent optimization
problem and the coherence between the different deci-
sion making centers can be accomplished by a multi-

1This work is supported by the German Ministry of Education and
Research (BMBF) under Contract no.l3N7906 (project Nivelli) and
by the Portuguese Foundation for Science and Technology (FCT) un-
der Grant no. SFRH/BD/6366/2001 and "Programa de Financiamento
Plurianual de Unidades de I&D (POCTI), do Quadro Comunitario de
Apoio III".

agent based framework, based on explicit communica-
tion between constituent agents to control multiple sys-
tems [1,5].

This paper introduces an innovative management
methodology based on the description of the supply
chain as a distributed optimization problem. The opti-
mization problems are solved by the ant colonies meta-
heuristic that can also be used as a multi-agent frame-
work.

2 Description of a supply-chain
A typical supply chain has at least two partners: the

logistic system, that collects the orders from the cus-
tomers, purchases the components from external sup-
pliers and schedules the components gathered in cross-
docking centers, e.g. airports, see [5]); and the distribu-
tion system, an external company that collects the com-
ponents at the cross-docking centers and delivers them
to the clients as orders. The task of each system can be
modeled as an optimization problem.

2.1 Logistic process

The logistic system receives every day new orders re-
quested by different clients, where an order Oj is a set of
different types of components in certain quantities, with
a certain due date dj. The different components and their
quantities are purchased from external suppliers, that de-
liver the components to the cross-docking centers after
a certain period of time. The logistic process task is a
scheduling problem that consists of observing the list of
n orders and the list of components, and decides which
orders are released at date rj.

The difference between the release date and the due
date is called the lateness Lj — rj — dj. The objective is
to match the release date with the due date, i.e. to have
for all orders Lj = 0. This decision step is done once
per day. Two disturbances may influence the system:
the fact that suppliers service may not be respected; and
the fact that some clients ask for desired delivery dates
not compatible to supplier services. The optimization
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objective is to minimize the cost function given by

# { j e O : Lj: = 0}

where ]Cjeo I A? I accounts for the minimization of the
lateness of the set of released orders O; # { j ^ O}
refers to the minimization of the number of orders not
released; Y^jgo ^j describes the minimization of the ex-
pected lateness of those orders that remain in the system
and are delayed; and finally # { j e O, Lj = 0} accounts
for the maximization of the number of orders delivered
at the correct date. This problem can be formally de-
scribed by a disjunctive graph G = {V, A], where the
vertices V represent the n orders waiting to be released.

2.2 Distribution process

After the scheduling method has decided which orders
will be delivered, a distribution company will pick-up
the assigned components and deliver them to the differ-
ent clients. There is a direct correspondence between
clients and orders, but clients are described in this case
by their geographical location.

In general, a distribution problem consists of deter-
mining how many trucks are necessary to transport the
orders and which sequence should be followed in order
to minimize the transportation costs. We consider here
two constraints: the maximum load capacity Q and the
maximum travel distance R of each truck. This distribu-
tion problem can be modeled as a Vehicle Routing Prob-
lem (VRP)[2]. In this case, the cost function to be mini-
mized is the distance traveled by all the vehicles

(2)
i=0 j=0 l=i

where xiji = {0,1} indicates if the vehicle / traveled the
distance dij from client i to j : if yes, Xiji = 1; if not
Xiji = 0. The problem can be represented by a disjunc-
tive graph G — {V, A}, where the vertices V represent
the location of the clients and the arcs A are associated
with the traveling distance dij between the vertices.

3 Supply-chain management through distributed op-
timization

Two different strategies can be adopted for the sup-
ply chain management: the centralized or the distributed
optimization. In the first case, the logistic partner is the
dominant partner and defines the supply chain solution
according only to the logistic objectives. The distribu-
tion partner can only optimize the static solution pro-
vided by the central system. In the distributed approach,
both partners are equally important and the final solution

is found after the systems agree about the solution that
is better for both systems. This is achieved through a
distributed optimization description of the supply chain
management problem.

Consider that the supply-chain is a system S = SL °
SD consisting of an aggregation o of the logistic system
SL and the distribution system SD- Let f = /L ° ID
be the cost function of the system 5, where JL and fo
are the expressions proposed in (1) and (2), respectively.
Distributed optimization is a methodology where the two
optimization processes are running in parallel and each
of the processes is using the intermediate results of the
other process. This can be defined as

= mm[fL(t - h)\ o min[fD(t - (3)

where t describes the actual optimization iteration and
t — l\ and t - l2 describe previous optimization itera-
tions. If Zi ^ Z2, the distributed optimization is said to
be asynchronous, which means that at every optimiza-
tion iteration, the optimization method accesses infor-
mation from previous and different iterations. The asyn-
chronous method has been the most used method [6], in
order to avoid convergence problems of the min[/i] opti-
mization methods, for example in cases where the com-
putational effort of one iteration is different from method
to method.

Next section shows how this framework is easily im-
plemented using the Ant Colony Optimization method-
ology.

4 Ant Colony optimization

The Ant Colony Optimization (ACO) methodology
[3] is an optimization method suited to find minimum
cost paths in optimization problems described by graphs.
Consider a problem with n nodes and a colony of g ants.
Initially, the g ants are randomly placed in g different
nodes. The probability that an ant k in node i chooses
node j as the next node to visit is given by

0

if j i r

otherwise
(4)

where r^- and rjij are the entries of the pheromone con-
centration matrix r and heuristic function matrix 77 re-
spectively, for the path (i, j ) . The pheromone matrix
values are limited to [Tm i n , rm o x] , with r m i n = 0 and
Tmax = 1. F is the tabu list, which acts as the memory
of the ants and contains all the trails that the ants have
already passed and cannot be chosen again. The param-
eters a and (5 measure the relative importance of trail
pheromone and heuristic knowledge, respectively.
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After a complete tour, when all the g ants have visited
all the n nodes, the pheromone concentration in the trails
is updated by

Tij (t + 1) = Tij (t) x (1 - p) + AT?. (5)

where p G [0,1] expresses the pheromone evaporation
phenomenon and Ar^ are pheromones deposited on the
trails (i, j) followed by ant q that found the best solution
fq(s) for this tour:

y^rp: if arc (z, j) is used by the ant q
) otherwise

(6)
The algorithm runs N times.

4.1 Implementation in the logistic process

In the scheduling problem of the logistic system, the
orders waiting to be delivered are the nodes of the graph,
and the role of the ants is to find the minimum cost path
connecting the orders that should be delivered. We con-
sider that each ant is traveling with a bag with the avail-
able stocks and is distributing the stocks between the or-
ders that it is visiting. It only visits orders whose com-
ponents it is able to deliver. In this way, the ACO only
builds feasible solutions. When the stocks' bag is empty
or the remaining components are not enough to deliver
any missing order, the search for this ant is finished. In
this case, the number of visited nodes may not be the
same from one ant to another, while for the VRP the
number of nodes to visit is fixed and equal to the number
of clients to visit [2].

The heuristic function 77 is the order's lateness, as pro-
posed in [4]: if an order has already a positive lateness,
the ant will feel a stronger attraction to visit it, because
the order is already delayed. We define the heuristic
function as an exponential function in the interval [0,1]
where the value 0 is for the order that has the minimum
lateness Z/mm and 1 is for the most delayed order L m a x

[4]. The objective is that the orders already delayed at-
tract ants much more than the orders not yet delayed:

e-1
(7)

Notice that in this case the heuristic information is only
order dependent, therefore rjj = rjij. The pheromone
trails T^ are also restricted to the interval [0,1], there-
fore a < j3 will indicate a higher relative weight of the
pheromones trail. The Tabu list is the list of orders al-
ready delivered by the ant and also the orders which is
not possible to visit, due to lack of stocks. The objective
function to minimize by each ant k is /£ defined in (1).

4.2 Implementation in the distribution process

To solve the VRP, the ACO algorithm constructs solu-
tions by successively choosing clients to visit until all the
orders have been delivered. The nodes are the locations
of the clients and there is an extra node specifying the
localization of the docking center. The heuristic infor-
mation used in this case is the saving function, proposed
in [2]:

Wij = di0 + djo - 2 x dij + 2 x \di0 + dj0\ (8)

where d^ is the distance between clients i and j , and
dOi = dio is the distance between client i and the dock-
ing center 0. The heuristic matrix 77 is a normalized ver-
sion of this heuristic:

Wij — min[w]

max fit;] — mink/;]
(9)

Whenever the choice of a location will lead to infeasi-
ble solutions for reasons of vehicle capacity Q or total
route length R, the cross-docking center is chosen as a
final location to close the tour and a new tour with a new
vehicle is started. On the next iteration, the algorithm
will start from node 0 again and will repeat this proce-
dure until all the clients are visited and all the orders are
delivered. The objective function to be minimized is the
one defined in (2).

4.3 Distributed optimization

In the logistic sub-system, the solution's search space
is defined by the n orders that can be delivered today.
The ACO algorithm uses n x n matrices TL and T)L to
search for the optimal solution of /^ . In the distribution
sub-system, the solution's search space is O U 0, i.e.,
it is equivalent to the search space of the logistic cen-
ter plus the cross-docking center 0. The ACO algorithm
uses (n + 1) x (n + 1) matrices r^+o and 77/3+0.

The optimization problem / = JLOJD is solved in an
asynchronous way. The o operator represents the com-
position of the individual pheromone matrices TL and
T£>. Note that they both represent a path connecting
the clients, although based on different features: lateness
and distance.

5 Simulation results
In this section, we compare the supply-chain perfor-

mance using the centralized and distributed optimization
approaches. We consider a simulation environment run-
ning one-day optimization problems during one fictive
month, where each day a certain stochastic number of
new orders enter the logistic system. The clients location
follow a random distribution around the cross-docking
center.
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Table 1. Solutions for the one day problem

Optimization
Centralized
Distributed

h
0.36
0.36

ID
362
355

Table 2. Solutions for the one-month problem; t-test proba-
bilities.

Optimization
Centralized

Distributed

t-test pt

h
6.74

(6.86, 0.33)

6.91
(7.28, 0.35)

0.42

/ D

1511
(1586.8,81.8)

1422
(1463.2,48.3)

<0.05

Fig. 1. Distribution problem solution: centralized (-) and dis-
tributed(..).

Table 1 shows the results of both logistic (/L) and dis-
tribution (fD) systems for the one day-problem. In both
cases, there are 13 orders to be delivered: 11 orders are
distributed at different clients using 2 vehicles, while 2
orders remained in the logistic system. However, when
using the distributed optimization approach, the distribu-
tion system switched one of the orders that remained in
the system by one that was delivered. In logistic terms
the result is the same, but in routing terms, it is better, be-
cause the traveled distance is smaller. Figure 1 describes
this result in detail by representing the cartesian coordi-
nates of the clients' location and the routing solutions for
both approaches.

The best cumulative results for the one month prob-
lem are presented in Table 2, as well as the mean and
variance of the results for 10 different trials. The table
presents also the t-test probabilities pt, that indicate if
there is a statistical difference between the results. It
is clear that the results in terms of logistic optimization
are very similar using both approaches, although the best
result is obtained using a centralized approach, with a
smaller mean result and a narrower variance. However,
in terms of the distribution system, it is clear that the sys-
tem performs better when using the distributed optimiza-
tion, with lower traveled mean distances and narrower
variance. This is confirmed by the t-test (considering a
significance level of 0.05) that shows that the results for
both approaches in the logistic system case can be con-
sidered the same, while for the distribution problem, it
shows that the results are statistically different.

6 Conclusions
This paper introduces a new supply chain manage-

ment technique, based on the distributed optimization
paradigm solved by ant colony optimization. The re-
sults show that for a logistic-distribution partners sup-
ply chain, the distribution systems performance can be
improved without compromising the logistic systems
results, i.e. the global systems performance improved
just through the exchange of information between the
supply-chain partners.
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Abstract
We report about a performance evaluation of na-

ture inspired stochastic vs. conventional deterministic
scheduling algorithms. By means of a comprehensive
test bench, that comprises task graphs with diverse prop-
erties, we determined the absolute performance of those
algorithms with respect to the optimal solutions. Sur-
prisingly, the nature inspired stochastic algorithms out-
performed all the investigated deterministic algorithms.

1 Introduction
The analysis and comparison of scheduling heuris-

tics is subject of many recent publications. The usually
used test sets consist either of randomly generated task
graphs or program traces of mathematical algorithms
(e.g. Gauss-Seidel, Cholesky, ...)• In very few cases,
comparisons to optimal schedules were conducted. Al-
though many authors use big task graphs to evaluate their
heuristics, the number of test cases is rather small.

Unfortunately, most authors do not reveal their test
sets, making it impossible for other scientists to com-
pare their own algorithm to the analyzed ones. For our
best knowledge, Kwok and Ahmad [1] are the only au-
thors who published the used test set on their web-page.
It consists of 350 task graphs of different sizes and is
structured according to the method the task graphs were
produced and the Computation to Communication Ratio
(CCR) which represents the ratio of a task graph's node-
and edge-weights. Since some of the test case classes
consist of only five task graphs, it is possible that a sin-
gle outlier could distort the analysis' results.

For these reasons, we developed a comprehensive
structured test bench with 36000 test cases [2]. The task
graphs were generated randomly and structured concern-
ing the graph's size, its meshing degree, its average edge
length and the node- and edge-weights. To emphasize a
certain graph property (e.g. a high meshing degree), the
random numbers were determined by a Gaussian distrib-
ution. Since this test bench should also provide test cases
which are unbiased with respect to one or more graph at-

tributes, test classes with uniform distributed attributes
are provided as well.

2 Survey of the investigated algorithms
We used the current interim version1 of this test bench

to compare some well known scheduling algorithms,
namely Dynamic Level Scheduling (DLS), Earliest Time
First (ETF) and Modified Critical Path (MCP) with im-
plementations of three nature inspired heuristics, Ant
Colony Optimization Algorithm (ACO), Genetic Algo-
rithm (GA) and Simulated Annealing (SA). Since Kwok
and Ahmad [3] provide a detailed description of the
observed deterministic algorithms, this section concen-
trates on some aspects of our nature inspired heuristics'
implementations. An overview of these meta-heuristics'
general properties is given by Blum and Roll [4], Since
nature inspired heuristics have many parameters for tun-
ing their processing, their results can only represent a
single implementation and its parameter settings but not
the overall meta-heuristics it is based on.

To provide a fair comparison between the nature in-
spired and the deterministic heuristics, we decided not to
make use of a heuristic for the determination of a start-
ing point for the nature inspired algorithms. Otherwise
it would be possible to select the best result of all the de-
terministic algorithms, implying that the nature inspired
heuristics would perform better for every situation.

The process of scheduling a task graph can be subdi-
vided into two phases: the selection of the task which
will be mapped next and the mapping of this task to
an idle processor. Since all of the observed determin-
istic heuristics perform a greedy mapping2, we decided
to reduce the complexity of the nature inspired heuris-
tics' search spaces by reducing their search to the selec-
tion process, too. Therefore, the nature inspired heuris-
tics generate task sequences which are forwarded to a

1 Since the computation is still in progress, only 30511 optimal so-
lution are currently available.

2This means, that a task is mapped to the processor where it can
start as soon as possible.
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greedy mapping mechanism that allocates the tasks to
the processors. The resulting schedules are returned
to the heuristics for evaluation and optimization of the
search process.

Each individual of the genetic algorithm's population
is a valid task sequence. Its fitness is computed by map-
ping the tasks in the given sequence to the considered
target architecture. To keep the algorithm's runtime low,
every run consists of only 36 generations with 32 in-
dividuals. While testing this algorithm, these settings,
combined with a cross-over rate of 90% and a mutation
rate of 10%, achieved the best results.

The starting temperature of the SA's cooling process
is chosen with respect to the given task graph problem.
The initial task order is generated randomly. To reduce
the probability of getting stuck in local optima in the
late phase of the cooling process, SA uses a proportional
cooling strategy. A task sequence's neighborhood is de-
fined by all sequences where exactly one task is placed
at another position.

While SA and GA operate on complete task or-
ders, ACO's virtual ants evaluate pairs of preceding
and succeeding tasks. Every ant passes all tasks in a
valid sequence and forwards this task sequence to the
greedy mapper which returns the corresponding sched-
ule's length. According to this schedule length a cer-
tain amount of pheromone is distributed equally to all
predecessor/successor pairs belonging to the ant's path.
Succeeding ants can use these information to select their
path through the available tasks.

3 Results

The comprehensive structure of the test bench de-
scribed above as well as the availability of optimal so-
lutions is the base for a more thorough analysis than had
ever been performed before. To point out the limits of
the hitherto used methods, we will start this analysis by
comparing the heuristics relatively to each other and to
the best solution found by one of them. Next, we will
show the additional information that can be achieved by
using our comprehensive test bench: Firstly, by using
the optimal schedules, the algorithms can be scored ab-
solutely. In this way, one gets a more precise view of the
algorithm's real performance. Secondly, the test bench's
structure allows a more detailed examination of the ob-
served heuristic's strengths and weaknesses.

The heuristics were pairwise compared considering
the test bench's 36000 task graph problems3. The re-
sults are presented in table 1, where every cell contains
the comparisons of the two heuristics which are assigned
to the cell's column and row. The uppermost value rep-

resents the number of test cases, where the heuristics'
results differ. The second value relates to the number
of test cases, where the heuristic which belongs to the
cell's row finds worse schedule lengths than the col-
umn's heuristic. The third value describes the inverse
case.

Table 1: Relative comparison of the observed heuristics.

ACO

DLS

ETF

GA

MCP

SA
1721
932
789
19232
19213
19
20631
20604
27
4543
4221
322
19525
19509
16

MCP
19522
16
19506
13447
6632
6815
16867
9523
7344
19425
853
18572

GA
4576
367
4209
19190
18377
813
20505
19795
710

ETF
20614
39
20575
9643
3539
6104

DLS
19220
15
19205

Obviously, the nature inspired algorithms find clearly
better schedules than the deterministic heuristics. While
SA and ACO are by far the most successful of the in-
vestigated algorithms, the GA performs still better than
the deterministic algorithms from which DLS is the best,
followed by MCP and ETF.

The degradation from the best known solution
(degFromBest), is defined by means of the found sched-
ule length SL and the best known schedule length
SLbest as degFromBest = 100 * SLs££*™% • This is
another characteristic parameter which is widely used in
scheduling literature [5]. A high degradation value indi-
cates a strong deviation from the best solution and there-
fore poor results.

Table 2 shows the observed heuristics' degradation
from the best found solution4, averaged over all 36000
test cases. Again, SA and ACO perform much better
than GA. The best deterministic algorithm is DLS, fol-
lowed by MCP and ETF. Although this comparison gives
a very clear view of the algorithms' results' relative qual-
ity, it has three significant disadvantages. Firstly, it still
does not give any clue about the absolute quality of a
heuristic's results. Secondly, since all comparisons are
related to the best known solution, this analysis's results
is strongly dependent of the heuristics selected for analy-
sis. Choosing another set of algorithms could change the

3 Note that this comparison is independent from the optimal solu-
tions.

4This best solution was found by one of the observed heuristics and
might therefore differ from the optimal solution.
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results to a large extend. Thirdly, every time a heuris-
tic is added for comparison, the whole analysis has to be
repeated.

Table 2: Average degradation from the best solution (in %).

SA
0,048

MCP
3,472

GA
0,423

ETF
3,738

DLS
3,415

ACO
0,054

These disadvantages are eliminated by the knowl-
edge of optimal schedule lengths. Table 3 shows the
heuristic's average degradation from the optimal solu-
tions of 30511 task graph problems. All heuristics per-
form worse than before, because for 5562 test cases
(« 18,22%) none of the heuristics found the optimal so-
lution. For the nature inspired algorithms, the difference
between table 2 and 3 is larger than for the determinis-
tic ones, because they found the best solution more often
and therefore had only few suboptimal test cases which
had to be considered in this analysis.

Table 3: Average degradation from the
optimal solution (in %).

SA
0,707

MCP
4,019

GA
1,039

ETF
4,209

DLS
3,937

ACO
0,723

Figure 1 shows the percentage of test cases, to which
the observed heuristics were able to find optimal solu-
tions. Again SA and ACO perform much better than
GA and the deterministic algorithms. Out of those,
DLS found more optimal schedules than MCP and ETF.
While the difference between the nature inspired and
the deterministic algorithms is quite large, the last-
mentioned behave nearly in the same manner and differ
by only «2,8%.

Fig. 1. Comparison considering the number of found optimal
solutions.

As already mentioned above, the diverse structure of
our test bench allows a thorough analysis of a heuristic's

properties. The following results should give a first im-
pression of possible examinations.

Figure 2 shows the effect of the target architecture's
size on the quality of the heuristics' results. Obviously,
SA and ACO perform better than all other heuristics. Ex-
cept for target architectures with 2 processors, where S A
finds «2,67% more optimal schedules. While ACO is al-
most unaffected by the target architecture's size, GA and
the deterministic heuristics find optimal solutions more
frequently, if the target architecture's size does not limit
the parallelism of the schedule. Again, DLS performs
better than MCP and ETF.

10 15 20

Target Architecture's size

Fig. 2. Influence of the target architecture's size.

As can be seen in figure 2, SA is the only heuristic
which finds more optimal schedules if the target archi-
tecture is small. Its success rate in finding an optimal
solution drops from 84,21% for target systems with only
two processors to approximately 80% for larger systems.
Figure 3 shows, that for all target architecture sizes SA
has clearly more difficulties in finding optimal schedules
if the task graph has predominantly long edges. In con-
trast, DLS performs slightly better for task graphs with
long edges if the target architecture is large.

Our investigation's next focus is the effect of the task
graph's size on the quality of the found solutions. As can
be seen in figure 4, the percentage of found optimal so-
lutions decreases, when the task graphs' size increases.
Nevertheless, SA and ACO scale better than GA which
in turn performs much better than the deterministic algo-
rithms. In contrast to SA, whose success rate drops from
87,42% to 72,58% (this is a difference of 14,84%), the
MCP algorithm's success rate in finding optimal sched-
ules drops by 52,36%.

With respect to the fact that most publications in liter-
ature use larger task graphs, with sometimes even more
than 1000 tasks, the question arises, if the here presented



364

- •

- / " "

• /

DLS/short Edges
DLS/long Edges
SA/short Edges .
SA/long Edges

Target Architecture's size

Fig. 3. Effect of the average edge length on SA's and DLS's
success rate in finding optimal schedules.

8 10 12 14 16 18 20 22 24

Task graph's size

Fig. 4. Impact of the task graphs' size.

results are of any meaning to real world scheduling prob-
lems. In order to answer this question, we created an-
other test bench which follows the same structure as the
described one, but which consists of task graphs with up
to 250 tasks. A representative test bench with larger task
graphs would require too much hard disk space. First re-
sults with the large task graphs indicate, that the above
observations will mainly hold for scheduling problems
with larger task graphs (see table 4 for details).

4 Conclusion
In this paper, two different kinds of heuristic schedul-

ing algorithms were compared: nature inspired stochas-
tic and conventional deterministic algorithms. Our in-
vestigations are based on a comprehensive test bench
that provides optimal schedules for 30511 test cases and
therefore allows an elaborated comparison of heuristic

algorithms. It could be clearly shown that the nature
inspired algorithms outperform the conventional ones.
Thus, future research in scheduling algorithms should
pay more attention to this approach.

Table 4: Relative comparison with respect to larger task graph
problems (up to 250 tasks).

ACO

DLS

ETF

GA

MCP

SA
29056
20303
8753
34401
29612
4789
34750
30393
4357
32151
29047
3104
34354
28553
5801

MCP
34105
9167
24938
32645
17320
15325
33818
21120
12698
34294
15687
18607

GA
31904
5570
26334
34358
19361
14997
34652
22066
12586

ETF
34741
6901
27840
31746
11505
20241

DLS
34194
8462
25732
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Abstract
Ant colony optimization algorithm is integrated with

an external memory for the purpose of improving its effi-
ciency for the solution of a well-known hard combinato-
rial optimization problem. The external memory keeps
variable-size solution segments extracted from promis-
ing solutions of previous iterations. Each solution seg-
ment is associated with its parent's fitness value. In the
construction of a solution, each ant retrieves a segment
from the memory using tournament selection and con-
structs a complete solution by filling the absent compo-
nents. The proposed approach is used for the solution of
minimum span frequency assignment problem for which
very promising results are obtained for provably difficult
benchmark test problems that could not be handled by
any other ACO-based approach so far.

1 Introduction

Ant colony optimization (ACO) is a general-purpose
metaheuristic which can be applied to many kinds of op-
timization problems[l]. Among many efforts on the de-
velopment of new variants of ACO algorithms toward
improving their efficiency under different circumstances,
recently the idea of knowledge incorporation from previ-
ous iterations became attractive and handled by a number
of researchers. Mainly, these population- or memory-
based approaches take their inspiration from studies in
genetic algorithms (GAs). In memory-based GA imple-
mentations, information stored within a memory is used
to adapt the GAs behavior either in problematic cases
where the solution quality is not improved over a number
of iterations, or a change in the problem environment is
detected, or to provide further directions of exploration
and exploitation. Memory in GAs can be provided ex-
ternally (outside the population) or internally (within the
population).

External memory implementations store specific in-
formation within a separate population (memory) and
reintroduce that information into the main population at
a later moment [2-4]. The most common approaches us-
ing internal memory are polyploidy structures in com-

bination with dominance mechanisms, which imply the
use of an internal memory through redundancy in genetic
material by having more than one copy of each gene [5].

In ACO, the first internally implemented memory-
based approach is the work of Montgomery et al. [6].
In their work, named as AEAC, they modified the char-
acteristic element selection equations of ACO to incor-
porate a weighting term for the purpose of accumulated
experience. This weighting is based on the character-
istics of partial solutions generated within the current
iteration. They aim to provide, in addition to normal
pheromone and heuristic costs, a more immediate and
objective feedback on the quality of the choices made.
The authors suggested simple weight selection and up-
date procedures and proposed two variations of their al-
gorithm. They claimed that the achieved results for dif-
ferent TSP instances are either equally well or better than
those achieved using normal ACS algorithm.

The work of Guntsch et al. is the first example of an
external memory implementation within ACO [7]. Their
approach, P-ACO, uses a population of previously best
solutions from which the pheromone matrix can be de-
rived. For every solution in the population, some amount
of pheromone is added to the corresponding edges of
the construction graph. Population is organized as a
FIFO queue and it is simply updated by entering the
best solution of an iteration into the population while the
oldest one is removed. The authors proposed a simple
pheromone update and a number of population manage-
ment strategies in [8].

This paper introduces another population based ex-
ternal memory approach where the population includes
variable-size solution segments taken from elite individ-
uals of previous iterations. Each stored solution segment
is associated with its parent's objective function value
that will be used as a measure in segment selection and
updating the memory. In order to construct a solution, a
particular ant retrieves a segment from the external mem-
ory using tournament selection strategy and completes
the rest of the solution. The details of the practical im-
plementation are given in the following sections.
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This paper is organized as follows. Current state of
the art of using ACO for the solution of frequency as-
signment problem (FAP) is presented in Section 2. The
proposed approach is described with its implementation
details in Section 3. Section 4 covers the results and re-
lated discussions. Section 5 concludes the paper.

2 Ant Colony Optimization for the Frequency As-
signment Problem

The frequency assignment problem (FAP) is an NP-
hard combinatorial optimization problem and defined as
the assignment of frequencies within a predefined band-
width to radio transmitters in a mobile telecommuni-
cation network in such a way that certain interference
and traffic constraints are all satisfied. In this paper, a
well known minimum-order fixed-frequency assignment
problem (MO-FFAP), namely the Philadelphia 21-cell
MO-FAP is considered and solved using the proposed
ACO strategy. This problem is handled by many authors
in literature where two different demand vectors and sev-
eral constraint matrices are used to define its different
instances [9].

ACO for FAP is not yet widely studied in literature
and two significant publications to be mentioned are
published by Maniezzo et. al [10] and Montemanni et.
al [11]. In the work of Maniezzo et.al, ANTS algorithm
prepared for the solution of quadratic assignment prob-
lem is adapted for FAP [12]. Ants work on feasible solu-
tions only, i.e. with no constraint violations, and an ant
iteratively constructs a solution where partial solutions
are considered as ant states. At each step t, each ant ai
computes a set A^. of feasible expansions to its current
state and moves to one of them probabilistically. The
probability of moving from one state i to another j de-
pends on the combination of the attractiveness rjij of the
move and the pheromone trail concentration r^ between
the two states.

Montemanni et al. used the ANTS approach for the
solution of minimum span frequency assignment prob-
lem. They first fix the available frequency span to a suf-
ficiently high value and iteratively minimize the interfer-
ence using the ANTS algorithm. Once the interference
is reduced to zero, the frequency span is reduced by one
and the ANTS algorithm is run again.

The results published in both of the studies demon-
strate that the ANTS algorithm is quite effective for
small size problems however it is outpeformed by other
approaches for large and provably difficult problem in-
stances.

3 The Proposed External Memory Strategy and Its
Use in the Solution of FAP

The significant differences of our approach, compared
to the above explained two ANTS-based algorithms, are
its adaptation from the simple classical ACO approach,
its use of a segment-based external memory for knowl-
edge incorporation from previous iterations, and its ef-
ficiency in the solution of provably difficult benchmark
problem instances that could not be solved by any previ-
ous ACO-based algorithm. In the proposed approach,
variable-size solution segments from observably good
solutions of previous iterations are used in the construc-
tion of new ones. These elite solution segments are
stored in a dynamic library acting as the external mem-
ory for the ACO algorithm. Initially the memory is
empty and a number of classical ACO iterations are per-
formed to fill in the memory. To do this, at the end of
each iteration, one randomly-positioned variable-size so-
lution segment is cut from each of the best k solutions
and stored into the memory. To construct a complete
solution in this phase, ants use the demand vector, the
constraint matrix, and the pheromone matrix as follows:
starting from the first cell and for each frequency to be
assigned within a particular cell, an ant first determines
the set of available frequencies that can be assigned with-
out violating the co-cell constraints such that the remain-
ing demand can be satisfied with the remaining amount
of frequencies. Then, a frequency from this set is se-
lected using a pheromone-based probabilistic selection
scheme as explained below. The frequency assignment
procedure goes on until a solution with a number of co-
channel constraints is obtained. In each iteration, all ants
follow this simple frequency assignment procedure and
form an assignment with no co-cell constraints. Conse-
quently, the fitness value of a constructed solution S is
computed as

\c\
Fitness(S) = L - ^ CCV{i) (1)

where CCV(i) is the total number of co-channel con-
straint violations within cell i, C is the set of cells and L
is a large integer constant.

The |C|#|F| pheromone matrix if, where F is the set
of frequencies, is initialized with a small constant value,
ho, and is updated after all ants complete their solution
construction procedures. Only the best solution found in
the current iteration is used for pheromone update and,
assuming that the best solution found in iteration t is St,
the amount pheromone to be deposited in H(i, j) is up-
dated as

Fitness(St)
' K (2)
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where p and K are experimentally determined constants.
Note that, H(ij) stores the amount of pheromone de-
posited on frequency fj as a results of its assignments
within cell C». At the beginning of each iteration,
pheromone concentration of all frequencies within all
cells are decreased by a constant factor as described in
equation 3.

H(iJ) = max{h0, (1 - (3)

In the selection of frequencies for a particular assign-
ment, ants follow a probabilistic selection scheme which
favors those frequencies with higher pheromone concen-
tration. Accordingly, the probability of assigning a fre-
quency / G F to a cell c G C is computed using equa-
tion 4.

1
[H(cJ)]«.[nff

(4)

where a, 13 are constants and n / for a particular fre-
quency / is a heuristic value that is computed as rif —
(\F\ ~ f)/\F\- T h e a b o v e formulation of ACO for fre-
quency assignment problem is adapted from the work of
Dorigo etal. [1],

When the initialization phase of the memory is com-
pleted, ACO algorithm starts to work in conjunction with
the external memory. The size of memory M is fixed,
there are m ants that build the solutions, and there is no
particular assignment of ants over the problem space. In
this respect, before an ant starts to construct an assign-
ment, a solution segment is selected from the external
memory using a tournament selection strategy and the
ant constructs a complete solution over this partial as-
signment using the same construction procedure of the
classical ACO algorithm as explained above. The only
change is the usage of the new demand vector which
is attached to the solution segment when it is extracted
from its parent solution. This demand vector indicates
the number of frequencies not yet assigned and needed
to form a complete solution. After all ants complete their
iterations, the external memory is updated using the re-
sulting solutions. For this purpose, variable-length so-
lution segments are extracted from the best n elite so-
lutions to replace a number of low-fitness solution seg-
ments in the memory. In the implemented strategy, so-
lutions contribute the memory update procedure in dif-
ferent amounts. In this respect, d, where d > 1, so-
lution segments are cut from the best solution, whereas
only one segment is taken from the elite solution with
the lowest fitness. The number of segments to be taken
from other elite solutions is determined by linear scal-
ing. Each inserted segment replaces a non-updated li-
brary element with the lowest fitness value. This way,

higher quality solutions have more characteristic com-
ponents in the external memory compared to ones with
lower fitness values.

As it is the case for many metaheuristic method, each
ACO iteration is followed by a local search that aims
to minimize the maximum constraint violations for each
assigned frequency.

4 Experimental Results

In experimental evaluations, the number of ants m and
the size of the external memory M are chosen as |F | /2 .
Constants a and j3 used in the computation of frequency
assignment probabilities are set equal to 1 and 5, respec-
tively. Initial pheromone concentration is 0.5 and con-
stant p used in pheromone update procedures is taken as
0.02. In updating the memory, parameters n and d are
selected as 0.1 * m and d = 0.05 * m, respectively. Con-
stants L and K used in equations (1) and (2) are set equal
to 10000 after a number of experimental evaluations.

Several commonly handled problem instances and
the corresponding experimental results obtained for the
Philadelphia system are listed in Table 1, where the pro-
posed approach is named as EM-ACO. For these test
problem instances, the most difficult ones are the second
and sixth instances. For all the other problems, the opti-
mal solutions are found within a few seconds and within
one or two iterations. For the second and the sixth prob-
lem instances, best results are reported by Beckmann [9]
andMCGA[13].

Table 1. Evaluation of EM-ACO with respect to published
results

Problem

1
2
3
4
5
6
7
8

Approach and the best solution
EM-ACO

381
433
533
533
221
256
309
309

ACO
381
450
533
533
221
271
309
309

MCGA
381
427
533
533
221
253
309
309

m381
427
533
533
221
253
309
309

L14J
381
433
533
533
221
263
309
309

Comparative convergence performances of EM-ACO
and the classical ACO algorithm for the most difficult
problem instances are given in Table 2 and Table 3. It can
easily be seen that the proposed approach outperforms
the classical ACO method for these two problem in-
stances in convergence speed and solution quality. EM-
ACO did not find the solutions with known best fitness
values for these very difficult problem instances, how-
ever the obtained results are still significant from two
point of views: firstly, this is the first t ime an ACO-based
approach is used for the solution of these two difficult



368

Table 2. Evaluation of EM-ACO with respect to best pub-
lished results for the second problem

2nd Problem

1*1
265
264
263
262
261
260
259
258
257
256

EM-ACO
Pert.
100%
100%
100%
90%
60%
70%
10%
20%
10%
20%

Ave. Iter.
192
215
498
436
588
674
1994
1504
1698
1392

ACO
Pert.
30%
30%
0%
0%
0%
0%
0%
0%
0%
0%

Ave. Iter.
1343
1492

-
-
-
-
-
-
-
-

¥\F\ =Number of frequencies

Table 3. Evaluation of EM-ACO with respect to best pub-
lished results for the sixth problem instance

6th Problem
\F\

442
441
440
439
438
437
436
435
434
433

EM-ACO
P

100%
100%
100%
70%
60%
40%
20%
20%
50%
10%

Av. It
163
228
340
544
705
1250
979
1180
828
946

ACO
P

10%
10%
10%
0%
0%
0%
0%
0%
0%
0%

Av. It
628
928
432

-
-
-
-
-
-
-

*|F|=Number of frequencies

problem instances and the obtained results are still bet-
ter than some GA-based algorithms, and secondly, they
demonstrate the improvements gained with the use of of
external memory in an ACO-based algorithm.

5 Conclusion

In this paper a novel ACO strategy using an external
memory of solution segments from elite solutions of pre-
vious iterations is presented. The stored segments are
used in the construction of solutions in the current it-
eration to provide further intensification around poten-
tially promising solutions. Using partially constructed
solutions also improve time spent in the construction of
solutions since part of the solution is already available.
The handled problem instances are well-known in liter-
ature and it is the first time that they are solved by an
ACO-based approach and results with best known fitness
values are obtained with most of the problem instances.
As it is clearly seen from the obtained results, the use
of a segment-based external memory has improved the
convergence speed and solution quality of plain ACO;

the obtained results are even better than those found by
some GA-based algorithms. Additionally, the proposed
ACO strategy is very simple to implement and it does
not bring significantly additional computational or stor-
age cost to the existing ACO algorithms.
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Abstract
The extraction of logical rules from data is a key

application of artificial neural networks (ANNs) in
data mining. However, most of the ANN-based rule
extraction methods rely primarily on heuristics, and
their underlying theoretical principles are not very
deep. That is especially much true for methods ex-
tracting fuzzy logic rules, which usually allow to mix
different logical connectives in such a way that ex-
tracted rules can not be correctly evaluated in any
particular fuzzy logic model. This paper shows that
mixing of connectives is not needed. A method for
fuzzy rules extraction for which the evaluation of the
extracted rules in a single model is the basic princi-
ple is outlined and illustrated on a case study with
EEG data.

1 Introduction
One of the chief reasons why artificial neural net-

works are quite popular in practical applications
is their ability to learn, from available data, very
general nonlinear mappings. The learned map-
ping incorporates knowledge about the implications
that certain values of the input variables have for
the values of the output variables. That know-
ledge is represented through the network architec-
ture and through numerical parameters of the map-
ping. Needless to say, such a representation is not
much human-comprehensible. Therefore, methods
allowing to extract from trained ANNs knowledge
represented through logical rules have been devel-
oped since the early nineties [1, 2, 3].

Many ANN-based rule extraction methods have
already been proposed, differing with respect to var-
ious aspects (cf. the classifications suggested in
[1, 4, 5]). They can be divided into two main groups:

• Boolean rules, i.e., formulas of the Boolean lo-
gic, such as the propositional if... then rules
or M-of-N rules [2, 3, 6].

• Fuzzy rules, i.e., formulas of some fuzzy logic,
[1, 7, 8, 9] (a survey of many other methods

can be found in [10]).

An important feature of ANN-based rule extrac-
tion methods is that most of them rely primarily
on heuristics, and their underlying theoretical prin-
ciples are not very deep. This is particularly much
true for methods extracting fuzzy rules. Most of
them allow to interpret different logical connectives
by means of algebraic operations that do not belong
to the same algebra. Typically, the conjunction is in-
terpreted in a G-algebra, but the negation in a MV-
algebra, due to the fact that the interpretation of the
negation in a MV-algebra is involutive, whereas in
a G-algebra, it is not [1, 10, 11]. Consequently, the
extracted rules then can not be correctly evaluated
in any single fuzzy logic model.

The objective of the present paper is to show
that such a mixing of different interpretations is not
needed. A method for the extraction of fuzzy rules
in a disjunctive normal form (DNF) is outlined, for
which the evaluation of the extracted rules in a sin-
gle model is the basic principle, and its applicability
is demonstrated on a case study with EEG data.

2 Extraction of Fuzzy DNF Rules from Data
In the Boolean logic, DNF rules are defined as

rules \P = V--i A czn Pi i in which Ci,. . . ,Cd are
nonempty finite sets, ^ and ipij, i = 1,.. •, d, j 6 C{
are atomic formulas, and V, A are connected via the
De Morgan law

That definition can be in full generality trans-
ferred also to a fuzzy logic provided the meaning
of the connectives A and -• is fixed. Recall some
important properties of fuzzy logic connectives [12]:

• the meaning of a connective is given by its in-
terpretation, i.e., an operation on truth values;

• each interpretation of each connective belongs
to a BL-algebra, either a general one, or a BL-
algebra of a specific kind (e.g., MV-algebra,
G-algebra, PL-algebra, Lll-algebra);
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• to compute the truth value of a formula in a
model, all connectives occurring in the formula
have to be interpreted in the same algebra.

In this section, an ANN-based method for the ex-
traction of fuzzy DNF rules will be outlined, which
is based on the following principles:
(i) the ANN computes the truth value ||\£||M of

\I> in some model M;
(ii) any atomic formulas ^ j , (fi2,j a r e interpre-

ted with the same kind of fmitely-parametri-
zable fuzzy sets on a crisp domain DJ;

(iii) the ANN is trained with a sequence of pairs
(x1, y 1 ) , . . . , (#*, yf) such that for k = 1, . . . , t,
xk = {x\,..., x{) G Dx x • • • x Dn, and yk G
(0,1) is the desired | | ^ | |M provided ipiyj, i =
1, . . . , d, j G C ,̂ are interpreted with respect
to (i.e., equals the membership of
Xj in the fuzzy set <pf^ interpreting cpij in M);

(iv) M is chosen from some considered set of mod-
els M in such a way that the squared error
over the training sequence is minimal.

Observe that the principle (i) implies that the un-
derlying ANN has 1 output neuron, whereas from
(ii) follows that it has n input neurons correspond-
ing to the domains D\,..., Dn and \Ci\-\ h \Cd\
hidden neurons corresponding to the considered ato-
mic formulas, where \C\ denotes the cardinality of
a set C, and Q C { 1 , . . . , n} for i — 1 , . . . , d. Also,
(ii) entails a finite-parametrizability of M, and for
each M G M , (iii) combined with (1) yields

M = ((iMi5)i€crid>T>c) = (($$)S;-d .r,c),
(2)

where T and c are, respectively, the £-norm inter-
preting A and the precomplement interpreting -«.
Finally, (i)-(ii) together with (2) entail

where S is an s-norm, connected with T, due to the
De Morgan law, through S(y,z) = T(yc,zc)c, and
(iii)-(iv) together with (3) imply that training the
neural network with (x1, y1),..., (#*, yl) leads to the
optimization task

M = arg min
M>eM

(4)

The finite parametrizability of M. turns (4) to a
standard task of multidimensional optimization.

For any implementation of the method, the set of
models M has to be specified. Taking into account
(2) and the principle (ii), this means to specify:

• for j = l , . . . ,n , the parametrization of the
fuzzy sets on the domain Dj interpreting the
formulas ipij, j G Cj, which is defined by a
parametrizing mapping TTJ : $lPj —> F(Dj),
where pj e A/", F(Dj) denotes the set of
all fuzzy sets on Dj, and TTJ fulfils (Ba^j G

i,j = Kj(ai,j) for 2 = 1, . . . , d, j G Ci\

• the particular fuzzy logic considered, which
determines the £-norm T and the considered
precomplement c.

In applications of fuzzy sets, various parametriz-
ing mappings are encountered, for example, the
Gaussian parametrization ?r(a, b) — 7(a,6) f°r a ^

(x-a)2

5R, b > 0, where 7(a,&)(#) — e ^ , the tri-
angular parametrization, ?r(a, 6, c) — A(a?bjC) for
a, 6, c G 5R, a < b < c, where A(aj5?c)(x) =
max(0, min( |5^, ^zf)), or the bell-shaped para-
metrization 7r(a, 6, c) = -B(a,&,c) for a,b,c G 3?, a ^
0, where Brabc)(x) = —, * 2b. Examples of

particular fuzzy logics are the Lukasiewicz logic
[12, 13], or the product-Lukasiewicz logic [14], en-
tailing the t-norms T^(x,y) — max(x + y — 1,0),
and Tpi,(x,y) = xy, respectively, and the precom-
plements xCh = CpL = 1 - x.

3 A Case study with EEG data
In collaboration of neurophysiologists and trans-

portation scientists, the specificity of EEG signals
corresponding to somnolence has been investigated
at the Czech Technical University Prague. Its ulti-
mate objective is to provide an empiric knowledge
base for a system automatically detecting impaired
vigilance, a cause of severe traffic accidents. A de-
scription of that investigation and the collected data
have been presented in [15] (due to space limitations,
they are not reproduced here).

During data preprocessing, Gabor spectral anal-
ysis has been performed for EEG signals measured
in 35 healthy volunteers and corresponding always
to three vigilance levels - full vigilance, mental ac-
tivity, and somnolence caused by sleep deprivation.
The knowledge about the specificity of individual
kinds of the signals was primarily obtained through
visual inspection of the EEG records and of the cor-
responding spectrograms by expert physiologists. In
addition, to 14 frequencies / i , . . . , /14 = 1 — 14 Hz
of EEG spectra from two selected electrodes, sev-
eral automated knowledge extraction methods were
applied, including also the above method for the ex-
traction of fuzzy-DNF rules. In that context, two
important features of the way how human experts
describe EEG spectra should be mentioned [15]:
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• the spectra are usually not described in terms
of idividual frequences, but instead in terms of
differently looking bands of the spectrum, in
particular, the considered frequencies 1-14 Hz
are conventionally covered with three consec-
utive spectrum bands, called <5, 0, a bands;

• their descriptions are often vague and im-
precise (e.g., "substantially higher", "a little
higher", "clearly predominating").

4 Extracting fuzzy DNF rules about EEG
spectra

Restricting knowledge about EEG spectra to
knowledge about the 6, 0 and a band has the fol-
lowing consequences for the extracted rules:
(i) Three ANNs need to be trained, for extracting

fuzzy DNF rules corresponding to the three
considered vigilance levels,

d 2

** = V A w&jA vi'MjA ^M**' (5)

where £ G {u,m, s}, Vl/V, \£m and \£s states
that the signal corresponds to full vigilance,
to mental activity, and to somnolence, re-
spectively, whereas <PM&> * — l , - . , d , £ G
{v,m,s}, £ G Ci — {8,0, a}, and j—1,2, state
approximate characterization of the intensity
of the band £j of the spectrum from the j-th
electrode for the vigillance level £,

(ii) For any training sample (xk,yk), k = 1, . . . , t,
only yk G {0,1} is known, yk = 1 iff train-
ing the ANN for which the fe-th sample is
a positive example (e.g., yk = 1 if that
particular sample is a positive example of
somnolence and the somnolence network is
trained). On the other hand, the vector xk =

H ' ^ t ^ ^ t ^ ' ^ ) e <0>+°°)6 of in-
tensities corresponding to the £, 9 and a bands
of the spectra obtained with the two elec-
trodes is not known, but instead a vector Ik —
pM, . . . ,^^ ." . ,^ ) e <0,+oo)28 of
intensities corresponding to the 14 considered
frequencies / i , . . . , /14 is known.

(iii) The 6, 0 and a bands of the spectrum from
the j-th electrode, j = 1, 2, are assumed to be
described, respectively, with fuzzy sets 5j, 9j
and dj on (0,+00), allowing to interconnect,
for all (xk,yk), the intensities xk., xj., a;* ,
with the intensities Ik

x,..., Ik
14 through

(6)

Hence, for j = 1,2, / j ^ , . . . , Ik
lA are member-

ship grades of the frequencies / j , i , . . . , /j,i4 in
the non-normalized fuzzy set

Ik = (7)

(iv) The fuzzy sets 5j, 0j and dj for j = 1,2 are
assumed to be finitely parametrizable inde-
pendently of j , thus for each £ G {8j,0j,aj},

£3 = ^ ( % ) ' w h e r e ^ : ^P4 -^ ^((0,+oc)),
p$ G AT, a .̂ G SPS and the parametrizing
mappings TT̂ , 7T̂  and 7ra can differ from each
other, as well as from the mappings TT^ that
parametrize the fuzzy sets v?i,^, interpreting
for i = l, . . . ,d, ^ G {^,m, s}, j = 1,2 and
£ = 6j,9j,aj the atomic formulas tyiMj- ̂ u e

to the finite parametrizability, the fuzzy sets
/j1 , j = 1,2 in (7) can not be arbitrary fuzzy
sets on (0, +00), and the membership grades
of / 1 , . . . , /14 in /k in general can not be arbi-
trary tuples of nonnegative numbers. Conse-
quently, a solution to the system of equations
(6) does not necessarily exist, and a more gen-
eral task needs to be solved to get the band
intensities xk., x#., x^., k — 1, . . . , t, together
with the parameters as5, a^, actj determin-
ing the fuzzy sets Jj, 0j and dj for j = 1,2.
That task can be formulated as least-squares
fitting of the fuzzy sets Ik to given frequency
intensities /£]_,..., ^14, k = 1, . . . ,£, i.e.,

14

^,3aj(A)} " ^ f fc)2 = ( ^ , 1 - • •, *i,3) € (0, +00)3 &

a5j,aej,aaj G 5R^ x 3?p^ x ̂  & ̂  = ir6(aSj)

& flfj - 7r^a^.) & 5j = 7ra(aa.)} (8)

For illustration, Figure 1 shows the fitted fuzzy
sets Ik introduced in (7) for three particular training
samples (one for each considered vigilance level), the
Gaussian parametrization of the fuzzy set $1, and
the bell-shaped parametrization of the fuzzy sets 0\
and ai . The fit was constructed according to (8),
and the obtained values x^, x\x and x^Kl of band
intensities were used when solving the optimization
task (4) for the rules (5) with d = 5, £ G {v,m, s},
Gaussian parametrization of the fuzzy sets (fiyis1,
(Pi^Oi» y>i,ict\» ancl ^ne product-Lukasiewicz logic.

5 Conclusion
The paper proposed a neural-networks based me-

thod for the extraction of fuzzy DNF rules, requiring
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full vigilance (k=18): x£ = 8.1 (xJ = 10.5,>£ =68 .7

mental activity (k=29): x£ = 57.4.x* = 9.3.x* =2 .1

s o m n o l e n c e ( k = 7 4 ) : x * = 3 2 . 1 . x J = 1 1 . 8 , > £ = 4 . 9
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Fig. 1. Fitted fuzzy sets jf (7) for three particular
training samples (one for each considered vig-
ilance level), the Gaussian parametrization of
the fuzzy set 8\, and the bell-shaped paramet-
rization of the fuzzy sets 6\ and on

all involved logical connectives to be interpreted in
the same fuzzy logic model. This brings the ad-
vantage of assuring a correct interpretability of any
extracted formula in the considered model, which
is not the case for most existing fuzzy rule extrac-
tion methods. The method has been elaborated as
far as to the formulation of a standard task of mul-
tidimensional optimization that needs to be solved
to determine the parameters of all involved fuzzy
sets. The feasibility of the method has been demon-
strated on a case study with real data presented in
[15], which concern the specificity of EEG signals
corresponding to somnolence.
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Abstract
This paper presents a new neuro-based method for short term
load forecasting of Iran national power system (INPS). A
MultiLayer Perceptron (MLP) based Neural Network (NN)
toolbox has been develeped to forecast 168 hours ahead. The
proposed MLP has one hiden layer with 5 neurons. The
effective inputs were selected through a peer investigation on
historical data released from the INPS. To adjust the parameters
of the MLP, the Levenberg-Marquardt Back Propagation
(LMBP) training algorithm has been employed because of its
remarkable fast speed of convergence. Most of papers dealt with
168-hour forecasting employed a hirachical method in the sense
of monthly or seasonly provided that there are enough data. In
the absence of rich data, forecasting error would increase. To
remedy this problem, the proposed neuro-based approach uses
only the weekly group data of concern while an extra input is
added up to indicate the month. In other words for each weekly
group, a unique MLP based neural network is designed for the
purposed of load forecasting.

1 Introduction
Load forecasting has always been the essential part of an
efficient power system planning and operation. Generally
there are two groups of forecasting models, traditional
models (model-based techniques) and modern techniques
(known as model-free techniques) [1, 2]. Traditional load
forecasting models are time series and regression analysis.
In recent years, computational intelligent methods are
more commonly used for load forecasting [1-10].
Multilayer feedforward neural networks, as universal
approximation machines, are very suitable for load
forecasting because they have remarkable ability to
approximate nonlinear functions with any desired
accuracy. Selection of the input-output training data and
input vector of the neural network play a crucial role.
Especially in our case (load forecasting problem) the
MLP-based networks are greatly affected by selection of
inputs, day type, month type, historical load data and
weather information.
Importance of hourly load input data for each weekly
group is more than other inputs (section II).

This toolbox is based on a three-layered feedforward
neural network building block. For training of this neural
network instead of the conventional BP method, the
LMBP method was employed in order to reach the
(sub)optimum network's parameters faster; we need this
especially for one hour ahead forecast (section III).
Finally the paper presents the simulation results of this
method (section IV) followed be section V that addresses
future work.

2 Input Selection
Selection of proper and optimal number of inputs would
result more accuracy and convergence speed in a
multilayer feedforward neural network. Most of load
forecasting methods use weather information, load power
of the days before forecast day and day type for input
variables. Day type is justified by correlation anlysis on
the historical load information.
By correlation analysis on the historical load information
for INPS, a week is divided into 4 groups: Saturdays (first
day of the week), Sundays to Wednesdays (workdays),
Thursdays and Fridays (weekends). For each group, most
effective lags (load of the previous hours) on hourly load
were selected by correlation analysis [11]. Table 1 shows
the selected lags for each weekly group. For example first
row in table 1 says that for Group "Saturdays" loads of
one hour, two hours,.... and finally 169 hours earlier are
used to predict the future load.

Table 1 - The selected load lags for weekly groups

Weekly

Group

Saturdays

Workdays

Thursdays

Fridays

Selected Load Lags

1,2,3,23,24,25,167,168,169

1,2, 3,23,24,25,47,48,49,147, 148, 149,167,

168,169

1,2, 3,23, 24,25,47,48,49, 167, 168, 169

1,2, 3,23, 24,25, 167,168, 169,191, 192,193,

335,336,337

Iran has regions with various weather conditions.
Temperature is the most effective weather information on
hourly load. Instead of using temperatures of all cities in
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Iran, temperatures of Ahvaz, Tehran and Tabriz were
selected, by correlation analysis, as representatives of hot,
moderate and cold region temperatures, respectively [11].
In this paper we also use an extra input that indicates
which month of the year is under study.

3 Neural Network

3.1 Structure of Neural Network

Generally, neural networks with a hidden layer have the
remarkable ability to approximate most nonlinear
functions with a desired accuracy if there are enough
hidden neurons. Therefore, the model shown in Fig. 1 is
composed of three layers, and each layer has a
feedforward connection. In this model, inputs for each
weekly group are separately trained by a MLP.JThe input
layer for hourly load forecast of each weekly group,
Saturdays, workdays, Thursdays and Fridays, has
respectively 13, 19, 16 and 19 neurons (consisting of
selected load lags and 3 representatives' forecasted
temperatures and 1 node to indicate month). Through a
deep investigation we found that a hidden layer with 5
neurons works quite good. Of course, the network has one
output neuron (the load of the forecasted hour).
In the proposed method, it is unnecessary to train the
network using the data collected for one season or a
month; this requires considering at least four previous
years data that might make the set of training data huge. In
this method, two previous years data is sufficient.
Therefore, it is possible to reduce the size of the MLP and
learning time as well.
To validate the quality of the developed MLP, we run it
with year 2000 load data, in order to be able to judge the
merit of the method.

Output layer

j Q D * * * • I Hidden layer

' * * EH EH EH ' Input layer
T T f

D

Independent variables

Figl. The MLP architecture for each weekly group

3.2 Learning
For the purpose of training, we employed the Levenberg-
Marquardt Back Propagation (MLBP) algorithm; this
algorithm represents a network learning method that
updates weight and baias values according to the
Levenberg-Marquardt optimization. This is an improved
Guass-Newton method that has an extra regularization
term to deal with the additive noise in the training samples
[16]. Conventional BP methods are often too slow for
practical problems, but the LMBP method can converge
from ten to one hundred times faster than the conventional
BP method.
Neurons in the hidden and output layers have nonlinear
transfer function known as the "tangent sigmoid" (tansig)
function:

/ (*) = 1 (1)
JK l + exp(-2x) V '
The weighted inputs received by a tansig node are
summed and passed through this non-linear function to
produce an output. The tansig function generates outputs
between -1 and +1 and its inputs should be in the same
range. As a result, it is necessary to limit the MLP inputs
and target outputs. Mean-standard deviation and minimum
(min)-Maximum (max) normalization methods have been
tested and min-max method has been selected:

X — X •
actual minX normlized -x2- l (2)

X — X
max min

This normalization method has also the advantage of
mapping the target output to the non-saturated sector of
tansig function. This process helps in improving the
accuracy of both the learning and forecasting modes.
The MLPs can be trained for each weekly group of a year
and the related weights and biases will be gained and used
for forecasting.

3.3 Forecasting
The toolbox provides a user friendly environment for
tuning and constructing the MLPs. It can be used for one
hour up to a week load forecasting. The first hour load is
forecasted and then it is used as one of the MLP inputs for
the prediction of the next hours' load. Consequently, the
error of each hour load's forecast will influence the
prediction of next hours' load. However, the proposed
method used in the toolbox eventually predicts the future
loads effectively.

4 Simulation Result
To verify the predictive ability of this method, this section
presents some examples of up to a week forecasting
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performance of this toolbox. The data used in the
simiulations is the actual load power data of Iran National
Power System (INPS) and temperature data from 1997 to
2000. we forecast the load power in 2000 by three
different methods. Cases 1 to 3 are indicated as follows.
Case 1 presents a case in which a unique MLP was
developed for each month in each weekly group. This
method needs data of at least 4 years for learning.
Case 2 shows the results of load forecasting for a case in
which for each weekly group of each season an MLP was
designed.
Case 3 represents the results for the case where for each
weekly group an MLP has been developed with adding an
extra input indicating month of the corresponding data.
This method only needs the data of two years for
learning.
The mean absolute percentage error (MAPE) with the
proposed technique is shown in Fig. 2. Figure 2 shows
forecast results for Cases 1 to 3. The MAPE is defined as
follows:

Table 2. Mean Absolute Percentage Error in 2000.

MAPE(%) = I JJ^ i l^ lx lOO (3)

Where p is the actual load, p is the forecast load, and

N is the number of data. The mean absolute percentage
error for Case 1 to Case 3 in the year 2000 are shown in
Table 2. We can see from Fig. 2 and Table 2 that the
prediction ability for Case 3 is better than the others (Case
1, Case 2). Therefore, less data has been used to train
network (this cause's fast convergence) and at the same
time error has reduced. Using some examples,
performance of the proposed (used in Case 3) method is
presented in Figs. 3 and 4.

5 Conclusions
One of the most successful applications of the MLP to
real-world problems has been in the area of electric load
forecasting. In this paper, a new method for load
forecasting was presented, which is based on a three-
layered feedforward neural network. The optimum inputs
were selected for the MLP considering historical data of
the INPS. The program has fast convergence, with the use
of LMBP training method, and its performance is
satisfactory for one-week load forecasting, noting that it
can be extended for one-hour load forecasting too. Less
data has been used to train network (this causes fast
convergence) and at the same time error has reduced. To
improve the accuracy of the program for peak load,
special days' (holidays') load and also for sudden load
changes caused by weather front, the authors are currently
working on a peak load forecaster, an adaptive MLP and a
fuzzy expert system.

2000

Casel

Case2

Case3

MAPE(%)

4.59

2.53

1.79

Month Number
1O 12

Fig. 2. Mean absolute percentage error corresponding to
month

79 5 22(Dtype=1Xmape=0.99Xmapepeak=1)(pape=4.7)

20 40 60 80 100 120 140 160 180

Fig. 3. Actual and forecast hourly loads from Aug. 12 to Aug.
18,2000(MAPE=0.99%)
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x 10
4 79 10 23(Dtype=7Xmape=i.2)(mapepeak=i.4Kpape=5.8)

20 40 60 80 100 120 140 160 180

Fig 4. Actual and forecast hourly loads from Jan. 12 to Jan. 18,
2001(MAPE=1.2%)
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Abstract
A new approach to approximate the algebraic so-

lution of systems of interval linear equations (SILE)
is proposed in this paper. The original SILE prob-
lem is first transformed into an optimization prob-
lem, which is in turn solved with use of artificial
neural networks and gradient-based optimization
techniques.

1 Introduction
Systems of linear equations play an important role

in many theoretical as well as practical, real world
problems. There are a number of techniques, such
as the powerful Finite Element Methods (FEMs),
which allow transforming the original problems into
those of solving a system of linear equations. How-
ever, when it is about real world problems, it is in-
evitable to deal with uncertainties. As the result,
the presence of uncertainties must properly be taken
under consideration in the system of equations men-
tioned above. When all uncertainties can be consid-
ered as impreciseness and when they can be repre-
sented in form of interval numbers [1,5], the system
of linear equations becomes that of interval linear
equations (SILE).

Solving SILE has been the topic of many re-
searches for decades and various techniques have
been successfully developed [2, 6, 8, 9]. Usually,
a definition of the solution to such SILE must be
stated first, and algorithms are provided in order to
approximate the solution regarding that definition.
The exact solution, when the size of the problem
is considerably large, is almost unobtainable. It is
very common to find only the so called inner approx-
imation and the outer approximation (or the hull
approximation) of the difficult-to-find exact solution
[9].

In this paper the algebraic solution of SILE is con-
sidered. Finding the exact algebraic solution for a
given SILE is usually a difficult task due to the char-
acteristic properties of interval arithmetics. In many
cases, such a solution may not exist at all. The aim
of the technique proposed here is to approximate the

exact algebraic solution, if any exists, or to find an
acceptable solution in the other case.

One of the major problems in solving SILE lies
in the specific properties of interval arithmetics. In
this paper, this issue is dealt with use of artificial
neural networks. Neural networks with its ability
to learn from examples and to approximate a wide
class of functions are applied here to replace some
operations on interval numbers. Another advantage
of using neural networks is that they allow paralleliz-
ing the computation process, which could increase
the efficiency of the proposed approach and make it
applicable in real-time systems.

In the next section, some basic notions regarding
interval numbers and interval arithmetics together
with the formulation of the SILE problem are pro-
vided. The SILE problem is then viewed as an op-
timization one in section 3. Numerical evaluation
is provided in 4 and some final conclusions can be
found in 5.

2 System of interval linear equations
2.1 Basic notions

We denote interval numbers in this paper by plac-
ing a bar over lowercase characters, i.e. a, b A
real interval number a can be considered as a pair
[aL, aR], where aL, aR <E E, aL < aR are called
the left and the right endpoint of a respectively. The
interval number a can be defined as follows:

a = [aL, aR] = {x € E : aL < x < aR}

The set of all real interval numbers is denoted by
IE. Operations in E can be extended to those in IE.
Namely, a binary operation * in IE can be defined
as follows:

a * b = {c = a * b : a G a, 6 £ (i)

The concept of vector and matrix can be also
extended to interval vector and interval matrix.
Namely, an interval vector (an interval matrix) is
a vector (matrix), whose elements are interval num-
bers. The set of all n-element real interval vectors is
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denoted by JIM", the set of all n x m element matrices
is denote by M n x m . The concept of product of an
interval matrix and an interval vector is essential in
thisjpaper. Let A G IMmxn, x G Mn . The product
of A and x can be defined in one of the following
manners:

Ax = {b G Em : 3A G A, 3x G x, b = Ax } (2)

or:

Tv — [ 7 7 ] m x n \ r ] n x l

kk X
U = i

(3)

where the interval multiplication in (3) is that de-
fined in (1).

Let us now define the distance between two vec-
tors of interval numbers, namely for a, b G IRn:

d2 (a, b) = (4)

The last notion needed to be mentioned here is
that of interval hulls. In general, an interval hull of
a subset A G Rn, denoted here by H(A) is said to
be the smallest vector h G IMn that includes the set
A. In other words:

H(A) = he A c h A t n , A C h ' c h
(5)

2.2 Algebraic solution for SILE
Let us now consider the system of interval linear

equations:
Ax = b (6)

where A G M n X n is an interval matrix and b G IRn

is an interval vector. The solution of (6) can be
understood in different ways. The most common
one is perhaps the so-called united solution which
makes use of the interval matrix-vector product as
provided in (2):

S (A, b) = {x G Rn : 3A G A, 3b G b, Ax = b}

The solution set S in general is not an interval
vector, it may not be convex or even not compact
at all [8]. Usually instead of the exact solution S,
H (S) is of major interest:

x=[A, b]3a=W(S(A, b))

A number of techniques has been developed so far
to compute the interval hull of the solution set or to
approximate it. Anther common approach is to find

some inner approximation of the solution set S, i.e.
an interval vector Si such that Si C S.

In this paper, the algebraic solution of (6) is taken
under consideration [6]. The algebraic solution of
(6) is an interval vector x* G IMn, for which the
product Ax*, according to (3) is equal to b. Finding
the exact solution x* is a complex problem since the
interval arithmetic operations are defined in terms
of min-max functions:

a x = mm max (7)

Moreover, in many cases the algebraic solution may
not exist at all.

The aim of this work is to find an interval vec-
tor approximating x*, if such solution exists. In the
other case, the approximating interval vector may
give an idea of the solution for some solvable SILE,
whose left-side matrix and/or right-side vector are
slightly different from A and b, respectively. This
problem will be considered in an optimization con-
text, which is the topic of the next section.

3 SILE as an optimization problem
3.1 Definition of the cost function

As mentioned above, the SILE problem (6) can be
viewed in terms of an optimization (minimization)
problem with the cost function F:

F(x) = \d2
2(Ax,b) (8)

where the interval matrix-vector product is defined
as in (3). It can be easily observed that the algebraic
solution x* for (6), if such exists, corresponds to the
global minimum of the cost function F(x). In (8),
the cost function's domain is IRn. However, when
endpoint notation is applied, F (x) can be rewritten
as F(X) = F (x\, xf, 4 , a* . . . , x^, x*), which
is a function in M2n. The cost function F may be
treated hereby as either F (x) or F(X), depending
on the context in which it appears.

There are numerous techniques for real valued
function optimization. The most popular ones are
the gradient-based methods, which make use of the
gradient of the optimized function. In our case, F
is obviously not differentiable, therefore gradient-
based optimization methods are inapplicable. It can
be observed that the problem lies in the product of
interval numbers:

£• min a?kXu,
l K

max
k=l

(9)
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The cost function F can be minimized using genetic
algorithms, or another idea is to replace interval
number multiplication with an approximating dif-
ferentiable function so that F becomes also differen-
tiable. In our approach, interval numbers multipli-
cation is approximated by use of a neural network.
The details will be discussed in the next section.

3.2 Neural networks for approximation of in-
terval number multiplication

Neural networks are well known for their ability to
learn from examples and to be universal non-linear
approximators. They can find various applications
in numerous engineering problems. In this section, a
feed-forward, multi-layer, sigmoidal neural network
S is designed to approximate the interval number
multiplication (7).

The network used here contains N = 4 input neu-
rons, M = 2 output neurons and one hidden layer
with K hidden neurons, where K will be chosen later
by experiments (Figure 1). The inputs to the net-
work are aL^aR^ xL and xR, whereas the two outputs
represent the left and right endpoints of the result
interval number. All neurons in the network are sig-
moidal with the activation function //.

x1=a

Fig. 1. The architecture of feed-forward neural network
used to approximate interval number multipli-
cation.

Let denote by W = [WnJfc]
NxK and V =

[Vfcm] the connection's weight matrices between
neurons in the input layer and those in the hid-
den layer, and between hidden neurons and out-
put neurons, resp.. It can be observed that the
network described above can be interpreted as a
function Af : EN -> MM, which is differen-

t ia te (since all neurons are sigmoidal). To train
the given network, a set of random training samples
T = {<([<*, af] , [xj-, xf}) , [tf, yf})} was gen-
erated so that [a\, af] , [x\, xf] C [-1, 1]. The
network was then trained using the training set T
and the scaled conjugate gradient algorithm devel-
oped by Moller [7].

It will later be in need of computing the gradient
vector of M with respect to its input Xi:

K

(10)
fc=l

where u\ and um are the aggregated input sig-
nals to the fc-th hidden neuron and the m-th out-
put neuron. It is worth noting that the partial
derivatives dNm/dxi in (10) can be efficiently com-
puted in term of an hybrid neural network J\fd

with 2K + M input units and M output units,
which can be directly built from Af. In order to
compute dNm/dxi, one just only has to put the
vector [Wik\fi

f(uh
k)\fi

f(u^)]r k = l^J = TJ/L
[Wik\ y! (w )̂] as the input signal to Md.

3.3 The modified cost function

Let us now consider again the cost function (8) for
our SILE problem. Let us replace the interval prod-
uct [Ax] as defined in (9) by a new one [A x ^ x]
using the approximating neural network M as pre-
viously described:

[A
Lfc=i fc=i

Consequently, the cost function F can be approxi-
mated by:

Kk=l

+
\fc=i

which is a differentiable function:

(aik,xk) -b\

fe=i

for j — l,n, a G {L, R}. Now, instead of minimizing
the original cost function F, its approximation f is
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Table 1. The minimal, maximal and average cost func-
tion's values and Mean Absolute Square Er-
ror for n = 2,5,10,20.

Min.C
Max.C
Min.E
Max.E
Avg.C
Avg.E

n = 2
0

2.58e-4
0

7.36e-l
7.57e-6
4.61e-4

n — 5
9.98e-30
4.53e-3
1.27e-3
1.42e-l
5.68e-4
2.53e-2

n= 10
7.04e-6
7.88e-2
4.21e-5
2.32e-l
1.55e-2
5.70e-2

n = 20
1.06e-2
3.25e-l
1.88e-2
1.53e-l
6.60e-2
6.41e-2

minimized. In this paper, again, the scaled conju-
gate gradient algorithm is applied to minimize f.

4 Numerical evaluation
In order to test the performance of the proposed

approach, a set of 50 neural networks for interval
number multiplication with 5 neurons in the hid-
den layer were trained. These networks were trained
with use of a set of 500 training and 300 validating
samples, both randomly generated. Next, all those
networks were tested against a test set composed of
2000 randomly generated testing samples. The net-
work with the best performance was then chosen for
further use in the task of solving the SILE problem.

The proposed technique was applied to approx-
imate the algebraic solution of various systems of
interval linear equations:

Ax = b , A e r x n , x, b (11)

with various values of n. For each value of n, a
set of 20 different configurations of A and the exact
algebraic solution x* were first randomly generated
(each element of A as well as of x* is an interval
number in [—1,1]). The interval vectors b were then
computed according to: b = Ax*.

For each configuration of {A,b}, the simulation
was repeated 10 times (i.e. with 10 different ran-
domly chosen starting points). The solution with
the smallest value of the cost function (8) was cho-
sen as the final solution for the system. For such a
solution the Mean Absolute Square Error (E) was
also computed. The results forn = 2,n = 5,n = 10
and n = 20, categorized according to the cost func-
tion value (C) as well as the error E are shown in
Table 1.

5 Conclusions
In this paper, a neural network based method to

approximate the algebraic solution of systems of in-
terval linear equations was presented. The task of

solving SILE was viewed as an optimization prob-
lem. Due to the specific properties of interval arith-
metics, a simple neural network for interval number
multiplication was used to facilitate the optimiza-
tion problem. Both neural network training and cost
function minimization was realized with use of the
scaled conjugate gradient algorithm. A number of
numerical simulations was also provided.

One important property of such an optimization
based technique for SILE is that even when there is
no analytical solution for a given SILE, a possible
solution can still be found. The proposed approach
can also be easily used in the more general case:

where A G

Ax = b

\ b G IRn and n^m.
Being able to solve the SILE problem would be

the first step toward solving the more general prob-
lem, namely the problem of solving systems of fuzzy
linear equations. This will be the topic for further
works by the authors.
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Abstract

Selection of an optimal subset of classifiers in design-
ing classifier ensembles is an important problem. The
search algorithms used for this purpose maximize an ob-
jective function which may be the combined training ac-
curacy or diversity of the selected classifiers. Taking into
account the fact that there is no benefit in using multi-
ple copies of the same classifier, it is generally argued
that the classifiers should be diverse and several mea-
sures of diversity are proposed for this purpose. In this
paper, the relative strengths of combined training accu-
racy and diversity based approaches are investigated for
the plurality voting based combination rule. Moreover,
we propose a diversity measure where the difference in
classification behavior exploited by the plurality voting
combination rule is taken into account.

1 Introduction

When a set of classifiers is available for the classifica-
tion problem under concern, the simplest strategy would
be to select the one providing best performance on the
training data set. However, the best performing classifier
is not guaranteed to provide best accuracy on the unseen
data. Another reasonable approach would be to choose
a subset of the available classifiers to build a multiple
classifier system (MCS) which are shown to provide im-
proved classification accuracies compared to the individ-
ual classifiers [1].

Given the rule of combination, an optimal subset
can be selected by maximizing the combined accuracy.
However, recent theoretical and experimental work have
provided alternative criteria named as diversity measures
for guiding classifier selection. It is argued that the se-
lected classifiers should be diverse, which means that
they should make errors on different input samples [2, 3].
There are several diversity measures proposed so far,
many of which are not correlated with the combined ac-
curacies provided by the popular combination methods
such as majority voting. However, recent studies have
shown that there is a strong relationship for the double

fault measure proposed in Ref. [1] with the majority vot-
ing accuracy [4]. Krogh and Vedelsby have theoretically
shown that the combined ensemble error is equal to the
difference between the average error of the individual
classifiers and the ambiguity (or, diversity) of the classi-
fiers, Eens = EaVg — A [2], In other words, average clas-
sification accuracy of the individual members and their
diversity are two objective functions that should be si-
multaneously maximized in ensemble design.

The measure of diversity should depend on the method
of combination. For instance, in the case of majority vot-
ing, the selected classifiers should not make coincident
errors. In other words, the classifiers should generate er-
rors on different input samples. In the case of plurality
voting, the classifiers should generate different incorrect
classifications for a given input sample [5].

In this paper, the use of combined accuracy and diver-
sity are studied in classifier selection so as to investigate
the strengths and weaknesses of each approach. A diver-
sity measure is also proposed, aiming to satisfy the ex-
pectations of plurality voting combination rule. The pro-
posed measure is based on quantifying the uncertainty
in the incorrect classifier outputs. It is compared with
two other diversity measures and also the combined ac-
curacy on the training data. The experiments are con-
ducted on two different classifier sets including strong
and relatively weaker classifiers. The forward search al-
gorithm which is an iterative approach is used to select
optimal classifier sets by maximizing an objective func-
tion that may be either the combined training accuracy
or any measure of diversity. The individual classifica-
tion accuracies of the selected classifiers are also exam-
ined to clarify the relation between combined accuracy
and individual classifier accuracies.

2 Diversity Measures

The correlation of a measure of diversity with the
combined accuracy is generally considered to be impor-
tant since the ultimate aim is maximized combined ac-
curacy. Classifier selection based on making use of di-
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versity measures quantifying only the differences in the
classification behavior does not provide good results in
general. On the other hand, in the cases when the com-
bined error on training data is optimized, the difference
in the selected classifiers is not explicitly examined.

In this study, we considered the double fault measure
which is correlated with the majority voting accuracy
and defined as,

Table 1. The performance of the classifiers in SET1.

DF=l-
M(M-l) £ -w w

and the disagreement measure defined as,

9
DA =

j V 1 0

M(M - N
(2)

Nf® denotes the number of training samples that ith and
jth classifiers misclassify simultaneously and similarly,
iVf * denotes the number of training samples that zth and
jth classifiers misclassify and correctly classify respec-
tively. Taking into account the differences in classifica-
tion behaviors, DA increases as the set of input samples
where both classifiers generate either correct and incor-
rect classifications decreases. It should be noted that,
DA does not have any explicit support on higher indi-
vidual or combined accuracy during the classifier selec-
tion process. Moreover, both measures are mainly ex-
amining the correct/incorrect classification behavior of
the classifiers but the labels of misclassifications are also
important for plurality voting.

3 A Diversity Measure for Plurality Voting

In plurality voting, the joint decision is selected as the
class getting the maximal number of votes. Hence, in or-
der to increase the combined accuracy, the incorrect class
labels generated by different classifiers should not be the
same. Consider the case when an input sample x% be-
longing to class uJi is correctly classified by the first two
classifiers, and misclassified by the other three classifiers
in a five classifier subset. Then, the combined decision
using plurality voting corresponding to the output set
{u>i, u)i, ujj, (jjk, u)n } would be correct if Uj ^ u>k i=- un.
However, if the last three classifiers agree on an another
class as CUJ = u^ — un, this would lead into a misclassi-
fication. This means that the output labels corresponding
to incorrect classes should also be examined by the diver-
sity measure in plurality voting rule instead of checking
whether the input sample is correctly classified or not as
in DA and DF.

Assume that we are looking for best M classifiers sub-
set and C different classes are available. Let Y denote a
random vector representing the number of incorrect la-
bels. For instance, consider the above example where

Data set

iris
image-seg

vowel
satimage.CR

letters
vehicle

cone-torus
glass

Average

Oracle

100.00
99.28
98.48
95.83
95.13
97.63
96.25
94.53
97.14

Average

94.81
92.58
79.63
88.31
81.15
70.75
84.59
63.31
81.89

SB

94.89
95.17
83.23
90.06
88.07
72.11
87.44
61.02
84.00

five classifiers are selected and there are C = 4 dif-
ferent classes. Let the outputs from the classifiers be
{u;2,u>2,^1,^1,^3} respectively and the correct class
is <jj\. Then, we obtain Y = [2,1,0] which represents
the fact that there 2 coincident incorrect labels and an-
other incorrect label which is different from the other.
The length of Y is equal to min{M,C - 1}. The
length becomes M when C > M and C - 1 when
C <— M. In order to quantify the difference in the
misclassifications, the vector is normalized to one and its
entropy, E(Y) is computed. For Y = [2/1,2/2? ••• >2/T]>
E(Y) = Ef= i -ytlog(yt). Then, the diversity based
on the entropy of the misclassifications is computed as,

E{Yn)
n=l \\og(m\n{M,C-\})

combined = true

otherwise

(3)
where N is the total number of training samples. As
seen above, the diversity measure takes into account the
combined accuracy. For the input samples where the
plurality voting combination rule achieves correct clas-
sification, 1 is added to the diversity measure. For the
misclassified input samples, the uncertainty in misclas-
sification quantified by entropy is considered.

The scale factor ( 1 / log(min{M, C - 1})) is used to
normalize the entropy. In other words,

0 <
E(Yn)

l o g ( m i n { M , C - 1})
< 1. (4)

The above term is equal to zero when the incorrect la-
bels coincide and to one when the incorrect labels are
uniformly distributed among all possible incorrect la-
bels. Since the contribution due to the second item is less
than or equal to one, more support is given to a correct
classification than uncertainty in misclassification dur-
ing classifier selection. This is important for the mea-
sure to be correlated with the combined accuracy. The
difference in the output labels of the selected classifiers
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Table 2. The performance of the classifiers in SET2.

Data set

iris
image-seg

vowel
satimage.CR

letters
vehicle

cone-torus
glass

Average

Oracle

100.00
99.28
97.31
96.12
94.34
95.86
98.75
100.00
97.71

Average

91.61
83.04
55.90
81.55
64.60
61.84
76.76
54.13
71.18

SB |
95.00
90.82
81.16
89.21
79.88
63.61
85.17
61.48
80.79

Table 3. The resultant accuracies (in %) using different diver-
sity measures on SET1.

Data set

iris
image-seg

vowel
satimage_CR

letters
vehicle

cone-torus
glass

Average

TA

94.89
95.94
83.23
90.06
88.07
72.11
86.98
62.73
84.25

DF

95.11
96.33
86.35
89.99
87.67
76.51
86.48
63.98
85.30

DA

95.33
94.63
81.41
88.38
82.08
71.70
85.92
65.00
83.06

ME

95.33
96.18
86.35
90.23
87.68
76.61
86.69
64.22
85.41

is considered in the case of incorrect combined labels
where, more support is given to the classifiers which are
not generating same incorrect labels. These properties of
this measure are in parallel with the diversity exploited
by the plurality voting combination rule.

4 Data Sets and Classifier Sets

In the simulations performed on seven data sets, 40%
of the available data is used for training and the rest
for testing. For the 'letters' data set, 10% of the avail-
able data set is used for training. Two different clas-
sifier sets are implemented for the classifier selection
problem. Eight classifiers based on Multilayer Percep-
trons (MLPs) and seven Radial Basis Function neural
networks (RBFs) with varying architectures and initial
weights are trained on the same training set for the first
classifier set, SETL The second classifier set, SET2 in-
volves fifteen classifiers generated using bagging algo-
rithm. The classifier prototype is not the same for all
classifiers and are randomly selected as either nearest
mean classifier, Fisher's linear discriminant classifier, lo-
gistic regression classifier or parzen classifier and each
classifier is trained on a different bootstrap replicate of
the training set. For the training of the classifiers, the
PRTOOLS toolbox for MATLAB is used [6].

The experiments are conducted ten times for each data
set and the average performances are taken into account.
The average accuracies of the classifiers over the test sets
in ten different simulations on SET! and SET2 are pre-
sented in Tables 1 and 2 respectively. The first column
provides the percentage of test samples for which at least
one of the classifiers generates the true label. The second
column shows the average of the individual accuracies
of all classifiers and the last column shows the accuracy
provided by the single best classifier which is the test
performance of the classifier providing the highest accu-
racy on the training data. As seen in the second columns
of the tables, SET1 includes classifiers with better indi-

vidual accuracies on the average.

4.1 Experimental Results

For the classifier selection, forward search method
is used. The resultant accuracies on the test data ob-
tained for SET1 and SET2 are presented in Tables 3
and 4. The second column presents the resultant accu-
racies when the combined accuracy on the training data
is maximized (TA) whereas the rest columns show the
accuracies for double fault (DF), disagreement measure
(DA) and the proposed measure based on misclassifica-
tion entropy (ME) respectively.

As seen in the tables, the ME based measure provides
better results than the other diversity measures for both
of the classifier sets. This is mainly due to the fact that
the diversity measure should depend on the combination
scheme. Consider the results on SET1 including classi-
fiers with higher individual accuracies. As seen in Ta-
ble 3, the diversity measures DF and ME which are cor-
related with the combined accuracy provide better results
than TA. On the other hand, TA is advantageous on SET2
involving comparatively weaker classifiers. This means
that, diversity of classifiers may not be a good criterion
for classifier selection in the case of weak classifiers.
This observation is also true in the case of DA which
selects classifiers with non-coincident correct or incor-
rect classifications since its performance on SET2 is far
below the one in SET1. Comparing the two tables, we
can also conclude that availability of strong classifiers is
important in ensemble design since SET1 provided bet-
ter combined results than SET2 for all measures.

At this stage, the important question to be answered
is: "Do better ensembles include only the classifiers with
best individual accuracies?". In order to find the answer,
the selected classifiers are analyzed in terms of individ-
ual accuracy and diversity. Since one classifier set may
come out to be more diverse than another according to



384

Table 4. The resultant accuracies (in %) using different diver-
sity measures on SET2.

Data set

iris
image-seg

vowel
satimage_CR

letters
vehicle

cone-torus
glass

Average

TA

95.33
92.45
83.38
89.70
82.14
68.88
85.35
63.13
82.54

DF

95.00
92.49
78.30
89.59
81.18
66.37
85.48
61.25
81.21

DA

94.22
87.83
65.29
86.50
63.70
50.37
79.19
55.63
72.84

ME

95.00
92.19
77.90
89.70
81.38
71.40
85.69
62.58
81.98

Table 5. Averages for mean and standard deviations (in paren-
theses) of the classifiers selected over ten simulations
and eight data sets.

Obj. Funct

TA
DF
DA
ME

SET1 j

96.86(0.40)
94.14(4.55)
88.08(8.89)
94.21(4.43)

SET2

89.13(2.71)
87.74(4.26)

73.56(17.04)
86.02(7.21)

one particular diversity measure but the contrary may be
true for another, we preferred to check the standard de-
viation of the individual accuracies of the selected clas-
sifiers to get some idea about the differences of the se-
lected classifiers in terms of their classification behav-
iors. The mean and standard deviation of the individual
accuracies of the selected classifiers are computed for
each of the ten different simulations for each data set and
the averages over eight data sets are computed for both
mean and standard deviations. The experimental results
are provided in Table 5. As seen in the table, TA selects
classifiers with higher individual accuracies compared
to the other measures. Since DA mainly concentrates
on the differences, the selected classifiers have less aver-
age performance. Also, the difference in the individual
classifier accuracies is smaller in TA. However, diversity
based classifier selection approaches select classifiers
with much different individual accuracies. The classifi-
cation differences of the selected classifiers are also im-
portant for TA since, in SET2 where a larger difference
is available among the selected classifiers compared to
SET1, TA performs better than the other diversity mea-
sures. On SET1, similar individual classifier accuracy
averages (DF and ME has 2-3% less average accuracy)
but much larger differences in standard deviations (more
than 10 times) mean that, both highly accurate and rela-

tively weaker classifiers exist in the optimal sets selected
by DF and ME. It can be argued that the contribution to
the diversity is mainly from relatively weaker classifiers.
Hence, not only strong classifier but the simultaneous
use of both strong and relatively weaker classifiers are
essential for good ensemble design.

5 Conclusions

It is observed that in the cases where the classifiers
involved in the selection task are weak, the combined
training accuracy based classifier selection performs bet-
ter compared to the diversity measures. A new diversity
measure is developed for plurality voting which takes
into account the uncertainty in the output labels corre-
sponding to incorrect classes. The proposed measure
is observed to perform better compared to the double
fault and disagreement measure. The mean and stan-
dard deviations of the individual accuracies of the se-
lected classifiers are examined for both combined train-
ing accuracy and diversity based classifier selection. It
is observed that the classifiers selected in the training
accuracy based case have higher individual accuracies
and less standard deviations compared to the diversity
measures based cases. It is argued that both strong and
weak classifiers should be considered in classifier fusion
where the weak classifiers are expected to contribute the
ensemble diversity.
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Abstract

This paper describes the advances of our research on
visualization of multi-agent systems (MAS) for purposes
of analysis, monitoring and debugging. MAS are getting
more complex and widely used, such analysis tools are
highly beneficial in order to achieve better understand-
ing of agents' behaviour. Our solution is based on our
originally offline visualization tools suite, which now
uses a new realtime data acquisition framework. In this
case we have focused on agent meta-reasoning in a MAS
for planning of humanitarian relief operations. Previous
tools were unable to deal with complex characteristics
of these simulations. This paper describes our new ap-
proach, declares conditions and proposes visualization
methods, which fulfil them.

1 Introduction

In our research two different areas meet. On one hand,
it is the research of MAS, on the other hand it is visual-
ization as a mean of presenting various issues present in
the MAS. This paper is primarily oriented on methods of
visualization based analysis of the MAS.

1.1 Visualization

From the point of view of visualization, our research
can be characterized as visualization of dynamic changes
in MAS, including detection of long term trends, hid-
den dependencies, mutual influence among various enti-
ties etc. Currently, there is a very little research directed
similar way [1], [2]. We have already presented some re-
sults, mostly dealing with offline visualization tools for
backward analysis of recorded simulations of MAS [3],
[4]. In this paper we present our advances in this field of
research. The main advance presented here is the fact,
that we are now able to connect to a running simulation
and perform visualization in realtime. This has brought
some interesting problems and solutions which are de-
scribed further.

1.2 Multi-Agent Systems

Multi-agent systems are collections of autonomous,
heterogeneous agents with specialized functionalities.
The agents are usually able to carry out collective de-
cision making, share resources, integrate services or just
collaboratively seek for specific information. A more de-
tailed description can be found in [5] and is beyond the
scope of this paper.

1.3 Application

Our designed visualization tools are general enough
to cover a larger area of MAS. To validate it, we have
chosen a special case application scenario, which has
been motivated by real-life situations and was developed
within InX (Inaccessibility in MAS) project [6]. Let us
assume that several delivery vehicles are operating in an
area without available communication infrastructure.In
the scenario we have several kinds of actors:

• villages - locations in where the humanitarian aid
is required or distributed from

• transporters - organizations owning trucks that
compete for tasks

• trucks - vehicles that dispatch the humanitarian
aid upon request from the ports to the villages

• meta-agents with monitoring agents - create ap-
propriate models of community through observa-
tions (observers watch their neighbourhood) and
intrusions (intruders break into coalitions)

These are represented in the .A-GLOBE system [6] by
containers that include simulation agents. Requests in
the villages are generated by the environment simulator.

Agents can create a coalition, a set of agents, which
agreed to cooperate on a single, well-specified task.
When an agent tries to form coalition with another agent,
it checks its private restrictions with the properties of the
other agent. Properties are e.g. tribe, language, location,
aliance-name etc.
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1.4 Meta-Reasoning and Meta-Agents

Meta-reasoning focuses on detection of these con-
strains by monitoring the community communication.
Agent's meta-reasoning is a computational process that
implements agent's capability to reason on a higher level
about another agent or a community of agents. Meta-
reasoning can be used for reconstructing agents' private
knowledge, their mental states and for prediction of their
future courses of action. Meta-agents should have the
capability to reason about incomplete or imprecise in-
formation. A more detailed description is in [6]. The
central point of the meta-agent's operation is an appro-
priate model of the community. This model has to be
expressed in an appropriate language of adequate granu-
larity. These models play an important role in visualiza-
tion.

1.5 Visualization Challenges

.4-GLOBE platform is primarily directed towards
MAS simulation and has very limited visualization pos-
sibilities. However, the platform can be connected to var-
ious visualization servers. Research of meta-reasoning
involves many hidden relations in the system, which are
hard to reveal from a set of tables. We were interested
in a easy-to-understand complex visualization method,
which will facilitate the folowing challenges:

• How geographical proximity of various agents in-
fluences their states. Visualize various agent prop-
erties to see important differences and similarities,
which have influence on their state and also the
global state of the MAS.

• Preview history of evolution of agents' proper-
ties to see temporal dependencies of consecutive
events in the MAS. History of events is very im-
portant, because MAS evolves in time. In this case
the state of an agent is closely related to its 2D po-
sition and its neighbourhood (e.g. observers watch
their neighbourhood). So to analyze recent events
in the MAS, we need also information from his-
tory, which can have direct consequences in the
recent events.

• Realtime data capture with sufficient sampling
resolution - i.e. capture realtime data from a run-
ning MAS simulation (has no central clock) with
appropriate sampling frequency.

• Since we are in realtime, we cannot do preprocess-
ing of the whole captured time interval; the frame-
work has to be capable of capturing unspecified
number of agents and their properties of various
structure. Data structure of an agent can be viewed

as a tree (e.g. XML document). However, not only
the data change in time, but the structure of the tree
changes too.

2 Our Solution
In this section we describe both the underlying cap-

ture framework and our specialized visualization tech-
niques. The proposed visualization tool fits in the row of
our previous tools [3][4] designed for offline analysis of
recorded simulation. Their unsuitability to perform real-
time visualization of a running simulation was the most
limiting factor which has lead to development of the new
solution.

2.1 Capture Framework

The capture framework is partially similar to a tempo-
ral database. The term capture has been adopted from
the area of video capturing, because of similar behav-
iour of storing consecutive states of the MAS. Unlike
temporal database, our capture framework does not use
exact time stamps, but uses a preset sampling frequency.
In the following text the term time step refers to time
difference between two consecutive captured states of
the simulated MAS. All events that happen during one
time step are considered as if they happened at the same
time. The loss of information in this case is irrelevant,
because the simulation platform does not use any global
clock, communication is via network environment (far
from perfect) and the changes in the simulated MAS are
relatively slow.

The capture framework is based on a circular buffer,
which holds the captured history of states of the moni-
tored MAS. Experiments have shown, that capturing up
to 5 minutes of history with sampling frequency of 10 Hz
is sufficient for most of the analysis needs.

2.1.1 Description of the Data Structures:
Captured data are stored along with their structure. It
was one of the main challenges to keep the memory cost
as low as possible while being able to access the chang-
ing structure of recorded data throughout the whole cap-
tured history. Agents, containers, properties are created,
deleted, modified and/or hierarchically organized during
simulation. The state of the simulated MAS can be any-
time serialized into a kind of tree-like structure, i.e. the
system consists of a number of agents located in con-
tainers, they have set/unset properties of various types
and the whole structure changes during simulation.

The data structures reflect the needs of the capture
framework and visualization. Our current implementa-
tion keeps captured data in a form of a data stream. A
stream represents the flow of time - history of one data
variable. A variable can be a data container or a name
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index, which in fact is a conversion from a textual identi-
fier into an index and serves as the main stone for build-
ing and keeping the tree structure of the captured data.
The index can be used to select another data stream. Data
streams are allocated and dealocated as necessary. When
a change arrives, the corresponding data container is du-
plicated and filled with new value. Further time slices
only referece this instance of data container. The same
applies to name indices.

This solution has several advantages like (i) changes
in one name index do not affect other name indices, (ii)
can build and keep trees of any size and also (iii) mem-
ory cost is kept relatively low, because only changes are
recorded.

2.2 Visualization Method

From the point of view of visualization, the MAS con-
tains agents, located in containers moving in 2D environ-
ment. Chosen visualization techniques reflect this char-
acteristics. The 2D environment is represented by a tex-
tured plane, which also serves as a cutting plane. It rep-
resents the current simulation time. The time flow axis
is parallel with the normal vector of the plane facing up
(anything below the plane is history). The texture of the
environment provides geographical and proximity con-
text (Fig. 2).

and thus expresses that fact, that the agents belong to the
particular container. Containers with only one agent do
not use the orbit placement but keep the agent in the cen-
tre. Meta-agents are connected with their observers with
a simple line (Fig. 1) and are placed on a different z-level
to improve the readability of the connections.

To visualize the history of agents' properties, we have
improved one method from our previous visualization
approaches. As the time flows, each agent leaves a
"path" behind (Fig. 1) - a sequence of agent's posi-
tions in the environment. The path reflects several im-
portant issues: history of proximity of agents with influ-
ence on agents' properties and/or environmental events.
The technique of selecting a property to colour the steps
of a history path has been adopted from our previous
tools [4].

We have successfully tested non-linear time for the
paths - i.e. while the simulation time is always lin-
ear, the paths are drawn with logarithmic decrease of
distance between two corresponding time steps. Cur-
rent time (at the cutting plane) is drawn with maximum
distance between two time steps and fades with history.
This approach has a very nice feature - it enables us to
overview a much larger time interval while keeping im-
portant events visible.

Basically, agents contain two types of property val-
ues: numeric and textual. The framework recognizes
them and uses two different methods of mapping them
into colour palette. Minima and maxima are recorded
along with numeric values and serve as scale for colour-
ing. Textual properties are kept in a set which is used
for colour selection. Basically, the algorithm assignes
different colours to different strings. On a limited set of
all strings (our case) the algorithm works well. Distinct
colours emphasize the differences between agents.

Fig. 1. Schematic view of the visualization technique.

Agents and containers are represented by glyphs [3].
There are several different types of agents in the MAS.
Each type is assigned a unique glyph reflecting the pur-
pose of the agent. Textual names of agents are drawn
near the glyphs to distinguish particular agents. Con-
tainers are represented by glyphs too. If one container
contains more than one agent, they are placed on an orbit
around the container (Fig. 2). The orbit connects them

3 Results

The proposed visualization tool already has signifi-
cantly improved the efficiency of analysis of the simu-
lated MAS. The realtime nature of the framework along
with ability to present history brings a completely new
view of the system. Meta-agents form their models of
other agents. Through visualization of these model qual-
ities and their history we are able to detect social struc-
tures inside the MAS, their relations to other agents, lo-
cations etc. or even explore the reasons or causing events
very efficiently. This is very beneficial, because we
can concentrate on the simulation itself or even perform
some user intervention. For example, in particular ar-
eas, where a meta-agent is unable to provide some level
of model qualities, the user can easily send an observer
or an intruder there, because the visualization presents
these issues in relation to geographical poswition.
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Fig. 2. Screenshot from a running visualization. In the fore-
ground there are 4 agents in one container (placed
on the orbit), textured cutting plane represents current
simulation scenario with cities and roads.

We believe, our framework can be beneficial to mon-
itoring of other agent platforms too. The capture frame-
work itself is very modular. Input modules understand
incoming data (parse communication protocol), convert
it into internal form for the capture framework and build
appropriate logical groups. In its current form it per-
forms intrusive monitoring in such a way, that the MAS
itself sends appropriate data into the visualization mod-
ule. There exist other approaches, which collect data e.g.
by monitoring communication among agents. The main
contributions of our paper are as follows: (i) the abil-
ity to capture history of evolution of the agent system
including the structure of logical groups and hierarchies
and being able to interpret it - either in real-time visu-
alization, or in a deeper, backward offline analysis; (ii)
our visualization technique allows realtime preview of
history of evolution of the MAS with many important
contextual information (e.g. proximity issues).

4 Conclusion and Future Work

In this paper we have presented our advances on MAS
visualization. Our visualization platform now captures
and visualizes data from a realtime running MAS. Going
realtime has brought new problems and challenges, some
of them have been addressed in this paper.

In our further research we would like to concentrate
on the following issues:

• Enlarge significantly the captured interval for
tracking long term changes and dependencies and
thus enable the user to walk through a much larger

time interval. We expect to use some kind of disk
cache for these purposes.

• Improve speed of the capture framework and
colour selection and mapping mechanism.

• Test it with other MAS platforms to prove in-
dependence, flexibility and different dynamics of
captured data.

• Introduce opposite direction of communication.
Use visualization framework to analyse the MAS,
stop the simulation if appropriate or perform other
interaction with the simulation.

The first results are very promissing, the overview of the
MAS has been significantly simplified and allows the
user to explore and analyze many previously unseen is-
sues. The visualized information helps the user to react
efficiently and make particular decisions.
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Abstract
This paper presents an intelligent agent-inspired genetic
algorithm (IAGA). Analogous to the intelligent agent, each
individual in IAGA has its own properties, including
crossover probability, mutation probability, etc. Numerical
simulations demonstrate that, compared with the standard GA
where all individuals in a population share the same crossover
and mutation probabilities, the proposed algorithm is more
flexible, efficient and effective.

1 Introduction
In the latest decades, genetic algorithm (GA), as a kind
of heuristic algorithms, has been developed rapidly and
applied to many fields including combinatorial
optimization, function optimization, parameter
selection, and many others [1'4]. Because of its high
parallel properties and requiring minimal knowledge of
the problems involved, GA has shown its powerful
strength for solving problems in many fields. At the
same time, intelligent agent (IA) is a distributive
computing technique. It is far more flexible in handling
problems151. Generally IA emphasizes on flexibility and
responsiveness and GA pursues the global optimality of
solutions. There are quite a few references relating to
the combination of the two methods[6'7]. However, IA
and GA still are applied relatively independently, for
instance, the author of Ref. [5] presents an approach by
combining GA and IA for manufacturing scheduling, in
which GA provides optimized results to IA and IA
schedules the limited resources according the scheme
produced by GA. In this paper, we attempt to endow
GA more distributive properties, similar to that
possessed by IA, to improve the flexibilities of GA.

The remaining part of the paper is organized as
follows. Section 2 gives the outline of the standard GA.
Section 3 summarizes briefly the properties of the
intelligent agent. Section 4 proposes a novel GA
paradigm sharing some characteristics with IA. Section
5 shows the simulated experimental results.

Conclusions and discussions are given in the last
section.

2 Standard GA
The standard GA includes the following five primary
elements in general: a) Problem coding, b) Population
setting, c) Fitness function construction, d) Genetic
operator design, and e) Control parameter selection.
The standard genetic algorithm can be formulated
briefly as follows:
1. Select running parameters for the population,

including population size, crossover probability,
mutation probability and the max generation
number.

2. Initialize a random population
3. Evaluate individuals in the population
4. Based on some rules, select parental individuals. If

the crossover operation happens under uniform
probability, cross the two parental individuals and
then two child individuals are reproduced, or else,
copy the parental individuals into child population
directly.

5. For the two individuals newly entering the child
population, perform mutation operation under
uniform probability.

6. If the child population is full, replace the parental
one with it, and then evaluate individuals in the
parental population, or else, repeat from the 4th
step.

7. If the number of max generation is reached, save
the best solution in the final population and then
terminate, or else repeat from the 4th step.

From the above description, it can be seen that the
crossover and mutation operators use the same
probabilities on all individuals, respectively, in the
standard GA.

It has been demonstrated by practices that the
selection of control parameter is very important to keep
the population diversity and enable the population to
converge efficiently. In contrast, if the individuals are



390

almost the same with each other (lack of diversities) in
the population, GA will be easily trapped into the local
minimum and converge too early. In this paper, we will
focus in the strategy of control parameter selection so
that the control parameter can be distributive as
possibly in the population, but not as that in the
standard GA where all individuals share one parameter
set which is determined before implementing the
algorithm.

3 Characteristics of intelligent agent
Intelligent agent (IA), as a popular technique in
distributive artificial intelligence field, has many
desirable characteristics15"^. The following four items
are its basic characteristics: a) autonomy, b) social
ability, c) reactivity, d) pro-activeness. Autonomy
enables agents to be more adaptive to the environment.
Social ability ensures agents to collaborate with each
other when implementing a given task. Reactivity
enables agents to sense the surrounding environment
and pro-activeness let agents go in the direction to
finish their tasks. Based on the above traits, agents can
adjust their properties to adapt to the changing
environment as possibly, at the same time, collaborate
mutually and try to finish their task actively and
distributively.

4 Intelligent agent-inspired genetic
algorithm

The flexibility of intelligent agent has been briefly
introduced in Section 3. Compared with intelligent
agent, GA should have more distributive properties.
Motivated by IA, we attempt to endow GA some new
characteristics, aiming at making it more parallel and
more distributive. The main alterations focus on two
aspects: one is that each individual is endowed a
parameter set which includes crossover probability and
mutation probability. The other is on selection method.
In the proposed intelligent agent-inspired genetic
algorithm (IAGA), we apply a method named local
competition to select the second parental individuals.
When it comes to selection, initially, one parental
individual is selected according to the traditional
proportion selection methods. And then randomly
select a group of individuals (named as candidate set)
in parental population. The individual with the highest
fitness in the candidate set is taken as the second
parental individual. This process strengthens the
important principle "Survival of the fittest" in GA,
since the individuals in the candidate set compete with
each other to transmit its genetic traits.

Before implementing the algorithm, two genetic
intervals [PcLt PcU] and [PmL< PmU] must be assigned.
The first one is for adjusting the crossover probability
and the second one for adjusting the mutation
probability. If the crossover is performed on two
selected individuals xandy, then new individuals x
and y are reproduced. Taken x for example, the
crossover probability is changed according to

and mutation probability is changed according to

pm(x') = pm(x)-vAf, (2)
where A / = f(x') - f(x) , / ( • ) is the fitness
function, JU and V are constants, which are
predetermined to adjust the convergence speed. If the
new crossover (or mutation) probability is larger than
its corresponding upper bound, it is set to its upper
bound PcU (orPmU); or smaller than corresponding
lower bound, it is set to its lower bound PcL (or Pmi)-

The proposed IAGA can be described as follows:
1. Initialize the population. Randomly generate a

group of feasible solutions and code them into
individuals, then endow each individual a
crossover probability and a mutation probability,
which should be randomly set with their
corresponding genetic intervals, i.e., [PcLt PcLj\ and
[PmL, Pmlj\>

2. Select parental individuals. According the
traditional proportion selection method, select the
first parental individual. And then randomly select
some individuals to construct the candidate set.
The individual with the highest fitness in the
candidate set are taken as the second parental
individual.

3. Reproduce child individuals. Crossover the
parental individuals to reproduce child ones. The
crossover mechanism includes single-point
crossover, two-point crossover, etc.

4. Adjust genetic parameters. The crossover
probability and mutation probability are adjusted
after the reproduction of new individuals according
to Eqs. (1) and (2). Both of them should be
restricted within their genetic intervals. If any of
them exceeds its corresponding genetic interval,
the exceeding one will be set to be the nearest
bound.

5. Check the size of child population. If it's smaller
than the size of parental population, repeat from
step 2; or else replace the parental population with
the child one.

6. Check the generation number. If it reaches the
maximum, terminate and save the best solution in
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the final generation; or else repeat from the step 2
and continue.
From the above mentioned procedure of the

proposed IAGA, it can be seen that if jU and V are
both taken as 0, the genetic probabilities (including
crossover and mutation probabilities) of all individuals
are set to be the same values, respectively, then the
proposed algorithm is similar to the standard GA. In
addition, if the size of candidate set is taken as 1, then
the proposed IAGA is entirely the same as the standard
GA. The flow chart of the proposed IAGA is shown in
Fig. 1.

Initialize the population

Select parental individuals

JL
Reproduce child individuals

Adjust genetic parameters

C Terminate

Fig. 1 Flow chart for proposed intelligent agent-inspired
genetic algorithm

5 Simulation experiments
To demonstrate the validity of the proposed algorithm,
we run it for some well-known traveling salesman
problems181, comparing it with the standard GA (SGA).
For the SGA the population size, maximal generation
number, crossover and mutation probabilities are taken
as 200, 200, 0.98 and 0.005, respectively. For the
proposed IAGA the corresponding running parameters
are shown in table 1.

The results are listed in table 2, where the first
column is for the instance names, the proceeding four
columns for the tour lengths and run time
corresponding to SGA and the proposed IAGA,

respectively. And the last column is for the shortened
tour lengths by the proposed algorithm. All the results
are the averages of five independent runs. From table 2,
it can be seen that the proposed IAGA can obtain the
better solutions than those obtained by the SGA and
shortens the tour lengths in different levels for all of the
examined instances. The highest improved level is in
11.95% for the pr264 instance (in the sixth line of table
2).

Table 1. Running parameters for the proposed IAGA

Parameter
Size of

population
Crossover
Interval

M
Size of

candidate
set

Value

ZUU

[0.6, 0.98]

0.01

10

Parameter
Maximal

generation
Mutation
interval

V

Value

zuu

[0.005, 0.3]

0.01

Table 2. Comparison between standard GA and IAGA

Instance
name

KroAlOO

Bierl27

KroB150

KroB200

pr226

pr264

pr299

rd400

fl417

pcb442

Tour length

SGA IAGA

37192

138090

53168

75347

383389

248475

311084

62159

135790

222628

36600

130449

48012

71509

375506

218792

294154

60434

135027

219825

Run time

SGA IAGA

0.35

0.48

0.70

0.59

0.84

1.02

0.20

0.45

0.47

0.52

0.29

0.42

0.45

0.41

0.53

0.83

0.19

0.37

0.39

0.37

Shortened
tour

length
592

7641

5156

3838

7883

29683

16930

1725

763

2803

6 Conclusions and discussions
The proposed IAGA endows the GA more distributive
properties and use a new selection mechanism to select
the second parental individual. Numerical experiments
show that the proposed algorithm improves the quality
of solutions remarkably and is more efficient than the
standard GA. The studies of distributive properties of
GA could promote its applications in distributive
artificial intelligence and enable it to run on internet
grids.
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Abstract

This paper presents a wrapper method for feature se-
lection that combines Lazy Learning, racing and sub-
sampling techniques. Lazy Learning (LL) is a local
learning technique that, once a query is received, ex-
tracts a prediction by locally interpolating the neighbor-
ing examples of the query which are considered relevant
according to a distance measure. Local learning tech-
niques are often criticized for their limitations in dealing
with problems with high number of features and large
samples. Similarly wrapper methods are considered pro-
hibitive for large number of features, due to the high cost
of the evaluation step. The paper aims to show that a
wrapper feature selection method based on LL can take
advantage of two effective strategies: racing and sub-
sampling. While the idea of racing was already proposed
by Maron and Moore, this paper goes a step further by
(i) proposing a multiple testing technique for less con-
servative racing (ii) combining racing with sub-sampling
techniques.

1 Introduction

Lazy Learning (LL) is a local modeling technique
which is query-based in the sense that the whole learn-
ing procedure (i.e. structural and parametric identifica-
tion) is deferred until a prediction is required. In pre-
vious works we presented an original Lazy Learning al-
gorithm [3, 1] that selects automatically on a query-by-
query basis the optimal number of neighbors, and its ap-
plication to data analysis, time series prediction, system
identification and nonlinear control. Despite the large
amount of applications to real tasks, local methods are
often a target of criticism as far as computational require-
ments for dealing with large datasets (i.e. many variables
and/or large samples) are taken into consideration.

This paper discusses how to effectively employ the LL
algorithm for feature selection (for an up-to-date state of
the art on feature selection see [7]). In particular, we
will focus here on a wrapper method based on LL. In the
wrapper approach [9] the feature subset selection algo-
rithm exists as a wrapper around the learning algorithm,
which is often considered as a black box able to return

(e.g. via cross-validation) an evaluation of the quality of
a feature subset. While most of the wrapper algorithms
are defined independently of the learning machine, we
propose here a method which takes advantage of the
unique aspects of a local learning algorithm.

The usefulness of a local modeling approach for re-
ducing the cost of feature selection was first presented
in [10]. The idea consists in assessing a large number
of feature subsets by performing cross-validation only
on a reduced test set. On the basis of well-known sta-
tistical results, it is possible to show that families of
good feature subsets can be rapidly found by quickly
discarding the bad subsets and concentrating the com-
putational effort on the better ones. This model selec-
tion technique was called the Hoeffding race by Maron
and Moore [10], with reference to Hoeffding's formula
which puts a bound on the accuracy of a sampled mean
of N observations as an estimator of the expected value.
Local modeling techniques fit well in this paradigm
thanks to the property that modeling is performed only
when a prediction is required. Then, by reducing the
size of the test set, the computational cost required for
assessment is reduced, too.

The aim of this work is: i) to speed up further the eval-
uation step of a wrapper method by reducing, together
with the number of test predictions, also the size of the
training set required for assessing the quality of a can-
didate feature set, ii) to improve the efficiency of the
wrapper search by discarding more rapidly those can-
didates which, on the basis of the tests made till that
moment, appear as significantly worse than others. In
particular, the main two contributions of the paper are:
the combination of racing and sub-sampling techniques
with the Lazy Learning algorithm previously proposed
by the authors and the use of a multiple testing criterion
(the Friedman test) for performing a more statistically
founded selection.

The use of sampling [8] enhances the performance of
the racing approach to feature selection by making pos-
sible the definition of a number of lightweight experi-
mental benchmarks to assess, compare and discriminate
between candidate subsets. Each experimental bench-
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mark relies on small training and test sets, which are ob-
tained by randomly sub-sampling the available dataset.
The idea is that, in order to discriminate between a very
large number of candidates, the combination of multiple
small and fast benchmarks can be more effective than a
single big and time consuming validation procedure.

The second contribution of the paper lies in the use of
a nonparametric multiple test, the Friedman test [4], to
compare different configurations of input variables and
to select the ones to be eliminated from the race. The use
of the Friedman test for racing was proposed first by one
of the authors in the context of a technique for compar-
ing metaheuristics for combinatorial optimization prob-
lems [2]. This is the first time that the technique is used
in a feature selection setting. Note that in some sense this
method fills the gap between Hoeffding race [10] and
BRACE [11]: similarly to Hoeffding race it performs a
nonparametric test, and similarly to BRACE it considers
a blocking design.

2 The RACSAM (radng+sub-sampling) algorithm
The RACSAM wrapper algorithm is based on the idea

that once the evaluation is based on the LL algorithm,l

this can be made faster by considering training and test
sets of limited size.

The main steps of the RACSAM algorithm are: (i) the
creation of a number of lightweight experimental bench-
marks, each characterized by a small training and test
set, (ii) the use of the experimental benchmarks to assess
in parallel a large family of candidates, (iii) the discard-
ing of those candidates resulting significantly worse than
others.

2.1 The F-race algorithm

The racing algorithm proposed in this paper, F-Race
in the following, takes as input a training set of size
N, a test set of size Nt8, a set of M candidate feature
sets Sm C { 1 , . . . , n} (also called configurations) and
a number W > 1 of expected winners. The expected
output is a set of at most W configurations which are
significantly better than the others.

Let ©o = {Sm, m = 1 , . . . , M} the set of configu-
rations at the start of the algorithm. A racing algorithm
proceeds by generating a sequence ©o 2 @i 2 ©2 2
. . . , of nested sets of candidate configurations. The step
from a set ®q-i to Qq is obtained by possibly discard-
ing some configurations that appear to be suboptimal on
the basis of information available at step q. Let Mg_i the
cardinality of Qq-i, that is the number of remaining con-
figurations and Iq-i = {m : Sm £ ©g-i} the indices

[We refer the reader to [3, 1J and to the publicly available R pack-
age l a z y (http://cran.r-project.org/src/contrib/Descriptions/lazy.html)
for a description of the main features of the LL algorithm.

of the configuration still competing before the execution
of the qth step.

At the gth step, 1 < q < Nts, the racing algorithm
computes for all Sm € Qq-i

= LL(xq,DN,Sm) (1)

where LL(-) is the prediction returned by a LL algorithm
where the feature set is Sm € @g-i and the training set
is made of N samples.

This value is used to fill an evaluation matrix E, sized
Nts x M, whose generic [q, m] term is

E[q,m] = \yq-yq,m\, q = l,...,Nta, m£lq-i
(2)

where yq is the observed output for the input xq. Step q
terminates defining set @q by dropping from @q-i the
configurations that appear to be suboptimal in the light
of the statistical test described in the following sec-
tion. Note that this test compares only the Mq-i < M
columns of the evaluation matrix, whose indices are in
Iq-i, which represent the feature configurations still in
the race.

The above described procedure is iterated and stops
either when all configurations but W are discarded (i.e.
Mq < W for some q) or when q = Nt8. The advantage
of racing is that in the first case, M — W configurations
are discarded by having recourse only to a subset of the
Nts samples available for testing.

The statistical test: the racing algorithm we propose
in F-Race2 is based on the Friedman test, a statistical
method for hypothesis testing also known as Friedman
two-way analysis of variance by ranks [4]. The null hy-
pothesis of the test assumes that all remaining configu-
rations in the race belong to the same error distribution.
If at the qth step the null of the aggregate comparison is
not rejected, all candidates in Qq-i pass to Qq. On the
other hand, if the null is rejected, the configuration with
the largest estimated mean-square error is discarded and
the test repeated with Mg_i — 1 configurations, until the
null hypothesis is not rejected.

The main merit of our nonparametric approach is that
it does not require to formulate hypotheses on the dis-
tribution of the observations. A second role played by
the Friedman test is to implement in a natural way a
blocking design [5]. Blocking is an effective way for
normalizing the costs observed on different conditions.
By focusing only on the ranking of the different config-
urations within each condition, blocking eliminates the
risks that the variation due to the difference among test
samples washes out the variation due to the difference
among configurations.

2 available at
http://cran.r-project.org/src/contrib/Descriptions/race.html
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2.2 The racing+sub-sampling combination

In spite of the improvement due to racing, evaluation
based on LL may still appear computationally expensive
if the training set is very large. It is sufficient to note that
the complexity of the LL prediction in (1) is proportional
to the number of samples in Djy.

The added value of sampling consists in using in (1)
training sets D^, composed of N < N samples, which
are a randomized subset of the original set DN- The re-
duction of the training set size speeds up the LL predic-
tion and consequently each step of the F-race algorithm.

Let us notice however that the computational gain oc-
curs at the cost of the deterioration of the assessment
of the quality of each single configuration. In terms
of bias/variance trade-off sub-sampling implies variance
increase. In general terms, the rationale for the RAC-
SAM approach is that very bad models should be de-
tected rapidly and with small effort by exploiting only a
part of the information of the training set, reserving the
intensive use of the entire information only to the most
difficult cases. This is implemented in practice by in-
creasing gradually the size N of the sub-sampled train-
ing set once the race moves forward.

The resulting RACSAM algorithm consists then in a
modified version of the F-race algorithm, described in
Section 2.1, where at the qth step only a subsample of
the training set of size N^ is used for computing the ac-
curacy of all the Mq-i configurations still in race. Equa-
tion (1) is then replaced by yqtTn = LL(xq, D${q), Sm)
where N^ is the size of the sub-sampled training set at
the qth step. In our preliminary experiments we used the
rule 7V^+1) = N^ + 10 with i\K°> = 50 to update the
size of the sub-sampled training set.

3 The exploration strategy

The RACSAM algorithm takes as input a set of M
candidate feature sets and returns a set of W winners.
While this approach makes possible an exhaustive ex-
ploration of the feature subspace (i.e M = 2n ) in the
case of very small n, it requires some modifications if
we intend to address problems with very large dimen-
sionality. Our search strategy is quite simple. An initial
set 0Q of candidates is created either randomly or by
adopting some filtering techniques (e.g. Pearson corre-
lation or Gram-Schmidt orthogonalization [7]). This ini-
tial set is passed through the RACSAM algorithm which
returns the W better candidates. Then an iterative pro-
cedure begins. The iterative search is composed of two
steps: (i) generation (e.g. by neighborhood exploration)
of a new set of M candidates ©5' starting from the out-
put G^-1) of the RACSAM algorithm (ii) racing of 0^ }

by RACSAM. Alternative search strategies that could be

easily combined with the RACSAM approach are dis-
cussed in [10].

4 Experimental results
Two experiments were carried out: the first one stud-

ies the ability of the algorithm to detect the subset of
relevant variables in a very large set of irrelevant ones.
The second one assesses the improvement in prediction
accuracy that can be obtained by adopting the RACSAM
approach.

Selection of relevant variables: we consider a prob-
lem of feature selection where the dimensionality of the
input space is n >> 10 and the output is dependent only
on 10 inputs according to the relation

y = 10sin(7rxia?2) - 1/2)2 + 10x4

lQsm(irx6x7) + 2Q(x8 - 1/2)2 + e.

We suppose that the input vector x takes value in the
hypercube [0, l ] n and that e is a standard Gaussian ran-
dom variable. Note that this feature selection problem
is a harder version of the problem proposed in [6]. We
conduct two main experiments: the first with n = 110
and the second with n — 210 inputs. Each experi-
ment has two variants: initialization by Gram Schmidt
(GS) and by random generation (RN). For each exper-
iment we generate 25 times a random training and test
set by sampling uniformly the input hypercube. In the
GS variant we first rank the variables according to the
Gram-Schmidt orthogonalization procedure and we cre-
ate an initial set of 5000 candidates 0Q by combining
the most relevant 50 variables according to the GS pro-
cedure. In the random variant the initial set 0 Q of 5000
candidates is generated randomly.

The RACSAM procedure performs a F-race where the
p-value threshold is set to 0.01 and the number of win-
ners to W = 50. The algorithm is stopped when at least
10000 models have been assessed. For each run, we de-
fine successful the RACSAM algorithm if it is able to
discover and retain the best feature set (made of the first
ten variables only) among the W winners. The success
rate of the RACSAM algorithm is compared to that of a
forward selection (FS) procedure using a LL algorithm
with 270 training samples and 500 test samples.

Table 1 reports for each experiment (i) the RACSAM
percentage of successes, (ii) the rate of success of the
forward selection procedure, (iii) the average number of
models (plus the standard deviation) which were exam-
ined by the RACSAM algorithm before discovering the
correct set, (iv) the average number of training samples
(plus the standard deviation) required for the assessment,
(v) the average number of test samples (plus the standard
deviation) required for the assessment. Note that an ex-
haustive search would have required the assessment of
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n/Init
110/GS
110/RN
210/GS
210/RN

Racs
92%
88%
88%
84%

FS
8%
8%
4%
4%

Assessed
7342 ± 572
7054 ± 726
7403 ± 595
7017 db 901

Train
259 ± 31
220 ± 21
265 ± 52
223 ± 37

Test
601 ± 307
213 ±214
660 ± 522
240 ± 366

Dataset

LL-RAC1
LL-RAC2

SVM
RTREE

AIL

9.7e-5
9.0e-5
1.3e-4
1.8e-4

POL

3.12
3.13
26.5
8.80

ELE

1.6e-3
1.5e-3
1.9e-3
3.1e-3

TRI

0.21
0.12
0.11
0.11

WIS

27.39
27.41
29.91
33.02

CEN

0.17
0.16
0.21
0.17

Table 1. Comparison RACS AM vs. Forward Selection.

2n models. The experimental results show that the per-
formance of the algorithm is independent of the initial-
ization and quite robust to number of irrelevant variables.

Prediction accuracy: this experiment compares the
performance accuracy of the LL algorithm enhanced by
the RACS AM procedure to the the accuracy of two state-
of-art algorithms, a SVM for regression and a regression
tree (RTREE). These two algorithms are well-known
and powerful examples of embedded techniques for fea-
ture selection. We use the implementations available in
the e l 0 7 1 and t r e e R packages, respectively. The
comparisons were carried out by performing a five-fold
cross-validation on six real datasets3 of high dimension-
ality: A i l e r o n s (TV = 14308,n = 40), P o l e (N =
15000, n = 48), E l e v a t o r s (N = 16599,n = 18),
T r i a z i n e s (N = 186,n = 60), Wiscons in (N =
194, n = 32) and Census (N = 22784, n = 137).

Two version of the RACS AM algorithm were tested:
the first (LL-RAC1) takes as feature set the best one (in
terms of estimate Mean absolute Error (MAE)) among
the W winning candidates : the second (LL-RAC1) av-
erages the predictions of W LL predictors, where each
LL model takes as inputs one of the W sets returned by
the RACS AM procedure. In both cases we set W = 5,
and the p-value to 0.01. The selection procedure stops
when at least 1000 different configurations have been
analysed.

In Table 2 we present, for each learning method,
the absolute prediction error averaged over the 5 cross-
validation groups. Since the methods are tested on
the same examples under the same conditions, we use
the paired test of significance to perform an exhaustive
paired comparison of all the methods for all the bench-
marks. In what follows, by "significantly better" we
mean better at least at a 5% significance level. As far as
the comparison LL-RAC1 to LL-RAC2 is concerned, we
obtained that LL-RAC2 is significantly better than LL-
RAC1 3 times out of 6 and it is never significantly worse
than LL-RAC1. As far as the comparison of LL-RAC2
to the other state-of-the-art techniques is concerned we
obtain that the LL-RAC2 approach is never significantly
worse than SVM and/or RTREE but that it performs 5
times out of 6 significantly better than SVM and 6 times
out of 6 significantly better than RTREE.

3available at http://wwwJiacc.up.pt/Mtorgo/Regression/DataSets.html

Table 2. Mean Absolute prediction errors.

5 Conclusions
Preliminary results show the effectiveness of the

RACS AM approach in selecting relevant features and in
improving the predictive accuracy, especially in the case
of a combination of the predictors based on the feature
sets returned by RACS AM. Future research will extend
these preliminary results by combining the RACSAM
assessment procedure with more sophisticate search
strategies (e.g. the schemata search proposed in [10])
and by applying the technique to massive datasets with
thousands of variables.
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Abstract
PENA (Personalized News Access) is an adaptive system for
the personalized access to news. The aims of the system are to
collect news from predefined news sites, to select the sections
and news in the server that are most relevant for each user and
to present the selected news. In this paper are described the
news collection process, the techniques adopted for structuring
the news archive, the creation, maintenance and update of the
user model and the generation of the personalized web pages.
This is a preliminary work that is based on the system that is
described in [1].

1 Introduction
Simple forms of personalization are implemented in many
sites, based on preferences directly expressed by the
users, while there are more complex approaches proposed
in the literature, for example [2, 3]. In this paper, PENA
is introduced, an adaptive web site for accessing news
stories. PENA is a multi-agent system, which aims at
personalizing both the selection of topics that are of
interest to the user and the presentation of each news
item.
This paper is organized as follows. In Section 2 we
discuss the functionality requirements of the system. We
then focus on three main aspects: the organization of
content, described in Section 3, the adopted user
modelling techniques, described in Section 4, and the
news retrieval process, described in Section 5. Section 6
outlines the personalization strategy of PENA. Section 7
describes some testing experiments of the system and
Section 8 gives an overview of the future goals.

2 Functionality, Requirements and
Architecture of PENA.

In PENA we had two main functionality goals: Firstly,
the system should be able to collect news from the web.
Secondly, the system should present only the news that
the user is interested in, and leave the others aside, as
information which can be reached on demand.
As a first requirement, we imposed that these forms of
personalization should be provided to both first time and
frequent users. As a consequence, PENA must be able to

generate an initial, possibly approximate, model of first
time users.
Another important requirement is the ability of the system
to revise the user model, in order to make it as close as
possible to his actual characteristics and follow possible
changes of interest.
Thirdly, the system should never impose its choices on
the user. The user must be always able to modify system
decisions. Moreover, being the user able to make changes
supports the user modelling process, as the system can get
information about the user's actual characteristics and
interests. As a consequence, all the web pages generated
by PENA contain buttons for modifying the system
choices.
These functionality goals imposed some requirements on
the design of PENA, which is organized as three tier
architecture. The user can access the server using any
web browser, first tier. The web browser interacts with a
set of agents which are responsible for user-modelling
and personalization activities, second tier, and which can
access information maintained in a set of databases, third
tier.
A user interaction agent collects user requests and returns
web pages to the browser. User modelling is carried out
by two agents: one is activated only when a user connects
to the server for the first time and it creates the initial user
model based on the data that are provided by the user in
the registration form and a library of stereotypes. The
second agent is activated at the start of each session and is
responsible for revising the user model, based on the
user's actions during his last session and on a set of user
modelling rules. The user models are maintained in a
database and thus can be retrieved each time the user
connects to the site.
Two other agents are in charge of extracting, respectively,
from the news database and from the user database, the
specific pieces of information that are going to be
presented to a user, given his model. All these pieces of
information are then passed to the interaction agent,
which generates the web pages and sends them to the
user's browser.

3 Organization of Content.
The news database contains all the news stories that can
be presented to the user, and is able to support the
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classification of news according to their topics. In PENA,
we defined a hierarchy of sections, in which the news is
classified. This hierarchy was decided based on the high
level classification of news that is done to the web sites
from where the news stories are downloaded. More
specifically, we considered the high-level sections
politics, economy, sport, technology, culture and world.
As the news are retrieved from the web sites, the system,
based on the web site news classification, stores them
locally in the corresponding category.
There are many reasons that justify this choice. First of
all, it worth's maintaining this high level classification
since it is accurate. Second, the high level classification
of news sections allows us to provide some form of
personalization even when limited information about the
user is available. This is very common for first time users.
In this case, it is difficult to make a selection of topics
more accurate than the one corresponding to high level
sections in the hierarchy.
The news database consists of three Tables. The main
table contains the article id, the source of the article and
the high level category of the article. The other two tables
contain the names of the categories and the name of the
sources (news portal) of the articles. It must be mentioned
that the retrieval part of PENA is responsible for
populating this database.

4 User Modelling.
The user model plays a central role in the personalization
process of PENA, because accurate personalization
requires the modelling of different user features. For
example, the selection of the sections to be displayed is
related to the user's interests. In PENA, the user model is
divided into a set of dimensions which represent the
different level of user interest for a news section. In this
case we considered four separate dimensions: high,
medium, low, null.
We can turn now to discuss our user modelling approach
more precisely. In our application, there are two separate
phases. The first one regards the creation of an initial
model for a user connecting to the server for the first
time. The second one revises the user model, by tracking
the user's actions, in order to identify his interests and,
possibly, the changes about them during time. The
creation of the initial model is based on the use of
stereotypical knowledge. The second phase is based on
user modelling rules that are activated based on the
analysis of user's actions during the browsing the news.

4.1 Using Stereotypes for Initializing the user model.

The creation of an initial model for first-time users is
based on the use of stereotypes [4], which represent the

features of classes of readers. The data used in the
classification are collected from the user in a registration
form, which contains a small set of questions.
At this point, it must be mentioned that there are seven
predefined stereotypes in the database. These stereotypes
are twenty four fields that contain probabilities and are
grouped in six logic groups. For each one of the six
interests, which are presented in the registration form, the
user is asked to choose one of the four possible interests,
high, medium, low, null. Each one of the twenty four
probabilities corresponds to each one of those possible
user selections.
The stereotypes consist of two groups of slots:
classification slots and prediction slots. The structure of
the slots is the same: Each slot corresponds to a feature Fj
of the user. For each feature Fj we have a set of linguistic
values (vn, , vik). A numeric value x^ E [0,1] is associated
with each linguistic value vy of Fj . This number can be
regarded as the probability that Fj = vy , given that the
user belongs to the stereotype. This means that the
numeric value xy measures the frequency of Fj = v^ for
the individuals belonging to the stereotypical class and
thus it is a measure of the compatibility of Fj = v^ with
the stereotype.
The stereotypes use the data provided by the user in the
registration form as classificatory information and make
predictions on different features of the user. For each
feature Fj, the corresponding slot provides the probability
Xjj that Fj = Vjj, given the stereotype Sj<. In order to
compute the degree of match, we assume that the features
are independent. Moreover, as a stereotype is the result of
the conjunction of all the features, we compute the degree
of match of the user with a stereotype as the product of
the contributions of all the individual slots.
At this point, there are seven probabilities. The maximum
probability is selected. In this way we decide about the
stereotype which is closer to the user. All the probabilities
of the selected stereotype are chosen and stored in the
database, as the initial user profile.
It is worth noting that the information provided by the
registration form and then used for classifying the user is
very general. Thus, for example, we can only make
predictions on the user's interests in high-level sections,
such as sport, politics.

4.2 Dynamic revision of the user model.

Since the interests a user may change, we are interested in
both tracking any changes and modifying the user model
accordingly. This can be achieved only by adopting some
techniques for tracking the user's behaviour and for
dynamically revising the user model in accordance to user
behaviour.
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In order to do that: a set of events was isolated,
corresponding to actions performed by the user during his
browsing session. A set of dynamic user modelling rules
for the regular revision of the user model was introduced.
The rules are based on the monitored events and on the
resulting statistics. In the following, these two aspects
will be discussed in more detail.

4.3 Events monitored by the system.
PENA monitors and stores into the database the following
events: Firstly, the news stories that the user reads and the
amount of time devoted for reading by the user to each
news story. Secondly, the sections that the system
selected and the user maintained. Finally, the sections that
were not selected by the system and that the user asked to
display.
These events provide important feedback about the user
actions to the system, in order to compute statistics about
the user's behaviour. The reliable revision of the user
model, evaluates as more important the whole history of
events during time than a single event.
The computed statistics are: The percentage of stories that
the user reads in each specific section. The percentage of
news, the user does not read. For each section, the
percentage of news not displayed by the system that the
user asks to display and the percentage of news displayed
by the system that the user suppresses. Finally, the
amount of time the user spends in each news story he
reads.
These statistics are used by a set of user modellmg rules
in order to revise the user models.

4.4 User modeling rules.
At this point two things must be mentioned about the
rules. Firstly, each rule is activated independently of the
others and is used to revise a specific portion of the user
model. Secondly, the rules are organized as compositions
of conditions and consequents and have the following
format: the antecedents are formed by logical conditions
on the statistics about the user's behaviour and the
consequents specify changes to the probability
distributions over some features of the user model.
The system contains three rules. The main goal of the first
rule modifies the probabilities of the user model in a way
that reassures the selection of the news category. Based
on the fact that a news category is selected as relevant for
a particular user if the sum of the low and null
probabilities from this category is less than forty nine
percent, the probabilities of a news category that was
added is formulated as follows: the high probability of the
news category is set to sixty percent, the medium

probability is set to forty percent and the low and null
probabilities of the news categories are set to zero.
The third rule is the opposite of the first one, as it deals
with the removal of an entire news category from those
that are presented to the user. Based again on the fact that
a news category is selected as relevant for a particular
user if the sum of the low and null probabilities from this
category is less than forty nine percent, the probabilities
of a news category that was removed is formulated as
follows: the null probability of the news category is set to
sixty percent, the low probability is set to forty percent
and the high and medium probabilities of the news
category are set to zero.
Finally, the second rule deals with the view of an article

from the user. The main idea of this rule is to either
reinforce the existing user profile, by increasing the high
probability ten percent, if the user spent more than ten
seconds in the article, or decrease the existing profile by
decreasing the null probability of the news category by
ten percent.

4.5 Rule Activation and Revision of the User Model.
Two aspects still have to be defined: When the rules are
activated and how the user model is revised as a result of
the rules activation.
In the current prototype, the rules are activated at the start
of each session, based on the user actions that are stored
in the database during his last session. Therefore, the
user's behavior is monitored during a session. Any user
changes are activated instantly, such as the addition of an
entire section of news. At this point the user model does
not change. It will change in the start of the next user
session, when the user modeling rules for the revision of
the user model are activated.
Our approach has several advantages concerning both the
efficiency of the system and the coherency of its
behavior. Firstly, the statistics derived from the user
behavior analysis within a whole session are more
reliable and more significant than those regarding shorter
browsing periods. Secondly, since the analysis of the
user's actions and the revision of the user model are
carried out at the start of each user session, the system
does delay due to the performance of the revision task.
The user model revision is based on the rules. Once a rule
is activated, the probability distributions in the user model
are first combined with the predictions expressed in the
consequent of the rules, and then normalized obtaining
the revised distributions. This new distribution is stored
as the revised user model in the user's database.

5 News retrieval.
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The main goal of the retrieval part of the personal news
agent is to visit periodically some Hellenic news sites and
e-newspapers, to retrieve new stories and store the plain
text of the article in the news database of the system. The
retrieval part contains five agents and is a thread. This
feature allows us to arrange the time interval between two
subsequent executions. The general idea for the retrieval
agent is to be executed periodically and retrieve new
articles.

6 Personalization of Content.
The personalisation task is performed by two different
agents. The first agent personalizes the content of the
presentation: given the pieces of information in the user
model, it decides which sections and news have to be
presented. The second agent generates dynamically the
web pages and is also responsible for the personalization
of the presentation. However, in the current prototype we
decided to maintain a standard format for the
presentation, as we focused on the personalization of the
content. This means that all the users see the same layout
of the web pages, but various forms of personalization
can be adopted on this aspect.
All the pages are generated dynamically, including the
home page, which contains a list of the high-level
sections that are considered relevant for the specific user.
After that, a list of all the articles of the relevant sections
follows. Each node of this list contains a small portion of
the article and a link to the full text article. In the case of
a previously read article, there is a message that the
specific article was read and a link that allows the user to
read it again.
Whenever the user opens an article, the corresponding
page is generated by the system. The page is divided into
two parts: The upper part, which contains the links for
getting back to the page with the list of all the articles and
the lower part that contains the text of the article.

7 Experiments.
The testing was performed with a small set of users, who
were selected as representatives of different categories of
readers, as they differ in terms of education income and
occupation. There were selected a high school student, a
university student, a network administrator, a university
professor, an accountant, a civil engineer, a doctor, a
salesman, an economic manager and a PhD candidate.
They were presented with the complete news section list
and were asked to express a measure of their interest:
high, medium, low or null. After that, they were asked to
register and use PENA. As a result, PENA classified the
user based on the predefined stereotypes, generated
predictions and produced personalized pages with news.
The result of this personalization process has been

compared with the preferences expressed a priori by the
user.
The selection of the system was judged compatible with
the preferences of the user, if the system included all the
sections that the user indicated as of high interest and not
included any section of no interest for the user. The
selection was judged completely incompatible, if the
system failed to include all sections indicated as of high
interest and included at least a section of no interest. In 7
out of the 10 cases the system provided satisfactory
results, while in 3 cases the system completely failed to
satisfy the desired data.
Although the test set was very small and in many senses
naive, the results are quite encouraging on the feasibility
and on the practical applicability of the approach, since
the system achieved high accuracy 70%, in the prediction
of interesting news sections for the users.

8 Implementation details.
PENA is designed as a set of cooperating agents and
implemented in a three -tier architecture. The system is
implemented using Java, especially Servlets and JSP.
The databases are implemented using MySQL and are
accessed using JDBC.

9 Conclusions and Future Work.
The described system is in an early development and
experimental stage and is part of a project that aims at the
creation of an adaptive news site. There are three main
goals of our future work. Firstly, alternative ways should
be investigated for the initial user model. Secondly, news
model adaptation can be achieved, by employing a further
classification of the news, inside their high level
classification that exists now. Finally, recommendations
enhancement can be done by proposing articles based
both on the user model and news stories similarity.
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Abstract
Almost all LPU algorithms rely heavily on two steps: exploiting
reliable negative dataset and supplementing positive dataset. For
above two steps, this paper originally proposes a two-step
approach, that is, CoTrain-Active. The first step, employing
CoTrain algorithm, iterates to purify the unlabeled set with two
individual SVM base classifiers. The second step, adopting
active-learning algorithm, further expands the positive set
effectively by request the true label for the "suspect positive"
examples. Comprehensive experiments demonstrate that our
approach is superior to Biased-SVM which is said to be previous
best. Moreover, CoTrain-Active is especially suitable for those
situations where the given positive dataset P is extremely
insufficient.

1 Introduction
Traditionally, a general binary text classifier is built by
employing some algorithm on the positive and the
negative dataset. This kind of algorithms are termed
supervised learning algorithm. However, in reality, hand-
label data can be tedious and expensive to available. In
practice, it is a common situation where only a small
number of positive data is available. Since no negative
data are provided, researchers turn to explore algorithms
which are based on a small number of positive dataset and
a comprehensive unlabeled dataset. Francois Denis
originally proposes the framework for learning from only
positive and unlabeled training data, abbreviated as LPU
(Learning from Positive and Unlabeled data). A collection
of LPU algorithms are detailed and compared in [2].

This paper proposed another LPU algorithm that
contributes in two aspects. The one is the proposal of
employing CoTrain for purifying unlabeled dataset. The
other is supplementing the positive dataset by using of
Active-Learning algorithm.

The remainder of the paper is organized as follows:
section 2 gives a review of related works; section 3
proposes our CoTrain-Active approach. A number of

comparative experiments have been made in section 4.
Section 5 is conclusion.

2 Related Works
To tailor for LPU problem, F.Denis[10] introduced Naive
Bayes algorithm for the positive and unlabeled examples
(PNB). PEBL[3] is another two-step approach targeted at
LPU. A detailed evaluation of several two-step LPU
approaches, along with Biased-SVM, can be found in [2],
In experiment section, we list Biased-SVM result
(previous best) as a comparison. Co-Training framework,
which "assumes have two individual classifiers on
different views "[10], is first proposed by Blum and
Mitchell in 1998. Another comprehensive study using co-
training method to tackle "labeled and unlabeled data" is
conducted by Nigam and Ghani[l 1]. Active-Learning[13]
intends to find the most informative instance to request
the true label. A novel integration of active learning and
EM can be found in [13].

3 CoTrain-Active method
The proposed algorithm falls into two sequential steps:
CoTrain step and Active-Learning step. For short, we use
P to denote positive set. Reliable negative set is expressed
as RN. Unlabeled set can be denoted U.

3.1 CoTrain step
Unlike former LPU algorithms ([2],[3]) exploiting
reliable negative dataset, CoTrain iterates to purify
unlabeled dataset by filtering out some "suspect positive "
examples. The rationality behind is that purifying the
unlabeled data by filtering out a small fraction positive
data is much easier than exploiting a small number of
reliable negative data. Moreover, the "suspect positive"
data being filtered out can also be made use of
supplementing positive dataset.

Specifically, CoTrain consists of two individual SVM
learners (base classifier) which are built on the same
positive dataset and the different unlabeled datasets. The
two base classifiers "help" or "co-purify" each other by
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filtering out "suspect positive" examples from the
unlabeled dataset of the counterpart.
For presentation, d is an arbitrary document and the T is

the set of "suspect positive" data. Classify(S, d) denote
the result generated by classifier S on d. £2finai and Sifinai
are the classifiers when iteration converge.

Algorithm: CoTrain
Input: (/>, U)\
Output: (S2final , S,final J \ £/, , U2)

1. Randomly split U set into two set U\ U2 subject to
u]uu2==u, u]nu2=={}

2. Label P as positive and U\ as negative; build SVM
classifier S\Q with P and U\\

3. Label P as positive and U2 as negative; build SVM
classifier S2o with P and U2;

4. i=0;r={};e={ };*={};
5. while(true)
6. Q={d I C l a s s i f y ^ , d )==positive}
7. Ux = Ux ~Q\
8. R={d I Class i fy^ , d)==positive}
9. U2 = C/2 ~ ^ ;
10. if (g=={} and #=={}) then
11. break;
12. end if
13. T^TUQUR;
14. i=i+l;
15. Build SVM classifier SVl with P and Uu

16. Build SVM classifier S2i with P and U2-
17. end while

After CoTrain we got two robust classifiers and a purified
unlabeled set, U\ U £/2, which can be regard as reliable
negative set RN. Another product of CoTrain is T, the
doubtful positive set, which can be further utilized in later
active learning step.

3.2 Active-learning step

Generally, active learning is usually employed for the
purpose of reducing the necessary number of labeled
training instance and enhancing classifier performance.
We here employ active learning to expand positive set
and therefore further improve classifier Sfm&\ .The key
point of active learning is making decision on which
unlabeled instance should be selected to query. Because
each query is considered as an expensive operation, we
attempt to better our classifier with as few queries as
possible. We first classify the data in T, the set being
removed from U9 by Smnai and S2fina|.If both of Sif,nai and
S2f,nai consider the document in T is positive, we request
the document for true label. Thus, we actually query the

"most doubtful positive" document. Detailed about
algorithm can be seen below.

Algorithm: Active-learning
Input: (S2fmaI Slfma, T Uj U2 P)
Output: Sfinai
1. 0={d I Classify(Sifinai, </)==positive and

Classify(S2finai ,d)==positive }
2. for each din O
3. Request the true label for d\
4. if (d labeled as positive)
5. P=PU {d}
6. end if
7. end for
8. Rebuild final SVM classifier Sfinai with P and U\ U

U2

Combining the algorithm CoTrain and Active-Learning is
our final approach.

3.3 CoTrain-SVM

Since active learning needs some extra man efforts, we
compare with other LPU method without active learning
step as a fair comparison. After CoTrain, a linear SVM
classifier is built on P as positive and U\ U U2 as negative.

4 Experiment
To compare with Biased-SVM, we set the same
experimental environment as [2] did. Since our final
classifier is enhanced by active learning involving extra
expensive query, we list the result of CoTrain-SVM as a
fair comparison

4.1 Experiment setup and Data preprocess

Here we use the Reuter-21578, the popular text collection
in TC(text classification) experiment, which is made up of
21578 documents of 135 categories. Among 135
categories, only 10 commonly used categories, 9980
documents are selected to be our experiment set. Based
on the documents of 10 categories, we choose each
category as positive while the rest as negative. Thus we
have 10 data sets to evaluate our approach. For each
dataset, we randomly pick out 70% as training set and the
rest 30% as test set. Further, we split the training set into
P and U as follows: select the Per percent positive data as
P and mixed the rest of positive data with negative data as
U. In our experiments, we will vary Per to show the effect
of the proposed algorithm with different positive mixed
percentage in U.

Appropriate data preprocessing has been done, we
employ stop-list to remove those common words but no
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feature selection and stemmer has been done. When
indexing features, we choose itc-weighting[6]. For SVM,
which is employed as basic classifier here, we use the
SVM toolbox (developed by Anton Schwaighofer) with
linear kernel.

4.2 How to measure our approach
We evaluate our approach from three aspects. So far as
CoTrain step is concerned, the objective of this step is to
purify U) and U2. To measure the degree of unlabeled
data being purified, we use q to denote the ratio of
positive data being removed to total positive data being
mixed in U\ and Ui. Effectiveness of active learning can
be measured by e, the ratio of positive data being added
into P to query times. The performance of the final
classifier can be measured by /, J=2rp/(r+p), where p is
the precision and r is recall.

4.3 Results analysis
To check the degree of being purified in CoTrain step, we
calculate q, mentioned in section 4.2, to demonstrate the
percentage of the removed positive instance mixed in U.

Table 1 list q scores of 10 Retuer data sets for several Per
which is mentioned in section 4.1. For Table 1, we proved
CoTrain method to be good at purifying U set .With the
decrease of Per, the average of q scores declined
synchronously. Such phenomenon can be interpreted as
follows: the smaller Per is, the more positive data have
been mixed with negative data and thus the two basic
classifiers can be poorly constructed which results in low
q score.

Table 2 list the average of 10 datasets/scores for several
Per settings, the first column is given by [2], another
column is calculated with CoTrain-SVM algorithm which
doesn't employ active-learning step. An obvious
comparison can be seen, even without the active-learning
step, our approach CoTrain-SVM is superior to biased-
SVM which is previous best one in a range of Per
situation.

Tabel 2 Average/score of two algorithm

Per

0.7
0.3

CoTrain-
SVM
0.8856
0.8569

Biased-
SVM
0.856
0.785

Per

0.7

0.6

0.5

0.3

Per

0.7

0.6

0.5

0.3

acq

0.988

0.994

0.992

0.973

acq

0.718

0.852

0.843

0.921

corn

0.934

0.969

0.679

0.727

corn

0.518

0.696

0.729

0.868

Table

crude

0.992

0.910

0.924

0.857

Table 3

crude

0.654

0.707

0.768

0.855

I After CoTrain step, q scores of each dataset

earn

0.992

0.994

0.978

0.971

grain

0.984

0.939

0.937

0.928

intere
st
0.878

0.892

0.884

0.878

mone
y
0.933

0.928

0.928

0.871

ship

0.806

0.878

0.824

0.689

After Active learning, e scores of each dataset

earn

0.921

0.939

0.968

0.984

grain

0.685

0.823

0.877

0.907

intere
st
0.424

0.532

0.600

0.707

mone
y
0.564

0.618

0.688

0.818

ship

0.769

0.797

0.850

0.885

trade

0.921

0.920

0.889

0.859

trade

0.639

0.690

0.786

0.883

wheat

0.862

0.901

0.893

0.750

wheat

0.466

0.534

0.582

0.760

Avera
ge
0.929

0.932

0.893

0.850

Avera
ge
0.636

0.719

0.769

0.859

Table 4 / o f the final classifier on each dataset

Per

0.7

0.6

0.5

0.3

acq

0.950

0.951

0.946

0.960

corn

0.851

0.822

0.853

0.852

crude

0.863

0.893

0.912

0.903

earn

0.984

0.986

0.981

0.980

grain

0.960

0.905

0.920

0.921

intere
st
0.816

0.833

0.816

0.772

mone
y
0.874

0.873

0.889

0.888

ship

0.866

0.883

0.863

0.858

trade

0.863

0.925

0.913

0.922

wheat

0.845

0.836

0.845

0.807

Avera
ge
0.887

0.891

0.894

0.886
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The goal of active learning is to expand positive set

effectively. It attempts to add new positive

document as many as possible by querying users as

few as possible. From Table 3, we can say, active-

learning performs effectively especially when given

positive dataset P is insufficient.

With Cotrain significantly purifying unlabeled data

and active learning greatly expanding P, the

enhancement of our algorithm has been proved by

Table 4 experimentally. Notably, even with highly

mixed unlabeled set, we can maintain a high /

scores. Such phenomenon demonstrates that our

method is.still suitable for those situations where

positive instances are deficient

5 Conclusion

This paper artfully solve the two difficulties,

purifying unlabeled set and expanding positive set,

in LP U problem.
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Abstract

Using a GA as a NN designing tool deals with many
aspects. We must decide, among others, about: coding
schema, evaluation function, genetic operators, genetic
parameters, etc. This paper focuses on an efficiency of
NN architecture evolution. We use two main approaches
for neural network representation in the form of chromo-
somes: direct and indirect encoding. Presented research
is a part of our wider study of this problem [1, 2]. We
present the influence of coding schemata on the possi-
bilities of evolving optimal neural network.

1 Introduction

Genetic Algorithms (GAs) [3] and artificial Neural
Networks (NNs) [4] were proposed as the imitation of
natural process: biological evolution and real neural sys-
tems respectively. Designing architecture of networks
causes some problems: How many neurons should be in
the network? How they should be organized? How many
connections we should establish and between which neu-
rons? A designer of a NN architecture must relay on his
experience or on informal heuristics [5].

Designing a NN is a problem of searching for an ar-
chitecture, which performs some specific task with de-
sired accuracy. This process can be seen as searching
the surface defined by networks performance evaluation
above the space of all possible neural networks architec-
tures [6, 7, 8, 9, 10, 11]. The coding schema limits a
search space for a GA. The smaller the search space is,
the easier is to find the optimal, or near optimal network
architecture. However, the smaller search space means
the small number of different potential NN architectures.

A fitness function, used for evaluation of generated
networks, strongly influences obtained results [2]. We
developed a fitness function, which try to balance the
size and an accuracy of an evaluated network.

2 Neural network representations

There are two major approaches of neural network ar-
chitecture evolution: direct encoding [12] and indirect
encoding [12, 13]. The main difference lies on a size of

a set of representative networks (a size of a search space
for a GA).

2.1 Direct encoding

Direct encoding represents neural networks as direc-
tional graphs. A very large subset of neural networks
can be represented using this method. Direct encoding
focuses on the ability to produce neural networks with
the highest possible quality. The ability of representing
a very large subset of neural networks and very few lim-
itations on the size of the domain causes the time and
memory requirements of this method to be very large. A
network with n neurons is represented by a matrix and a
vector. Matrix E is used to encode information if there
are connections between neurons. For feed-forward neu-
ral networks only a half of the matrix is used. Vector V
is used to encode information if neurons are active. This
causes vector V to be a mask for matrix E. Both, vector
and matrix encode input layer, hidden layer and output
layer neurons and connections between neurons. There
are no connections between neurons in input layer. The
memory complexity of such approach is O(n2) for one
neural network. An exemplary genotype with direct en-
coding and a decoded phenotype is shown on fig. 1.

1 1 1 1 0 1]

0 0 1 1 1 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

Lo o o o o oj

Fig. 1. Direct encoding genotype and the decoded phenotype
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2.2 Indirect encoding

Indirect encoding comes as a compromise between
time and quality. The most important feature of this
approach is the limitation of the size of the domain of
search. This causes the method to be very fast, but very
often with suboptimal results. Memory requirements of
this method are smaller than in direct encoding. Rep-
resentation of a neural network with n neurons requires
O(n) memory. In used approach a neural network archi-
tecture is represented as a binary tree with a set of gram-
mar rules for network architecture construction. Every
node of the tree contains one of two non-terminal sym-
bols (S and P) or a terminal symbol (E). All leaf nodes
of the tree are terminal symbols. Non-terminal symbol
S denotes division of the active neuron into two sequen-
tially connected neurons. Non-terminal symbol P de-
notes division of the active neuron into two parallel neu-
rons. An exemplary genotype with indirect encoding and
a decoded phenotype is shown on fig. 2.

Fig. 2. Indirect encoding genotype and the decoded phenotype

2.3 Quality of a neural network

Quality of a neural network can be measured by two
criteria: error rate during processing and size of the net-
work itself. The smaller error, the better are the answers
of a network during the processing of the test set. The
smaller size, the better are the capabilities of a network
to generalize during processing data which have not been
seen previously.

The method of neural network evaluation used in all
experiments has been presented in details in [2, 1]. Most
of the experiments have been performed using data sets,
especially HOUSING, IRIS and ZOO problems [14]. It
is important to notice that used method allows to cre-
ate neural networks with connections between more than
one layer. A two phased evolution is used. The task of
the first phase is to receive networks with small error

rates, the task of the second phase is to reduce the size of
neural networks and to keep the error rates small enough.
The fitness function value consists of two elements: an
error rate factor and a network size factor.

/mm
t (1)t(l+ f8) if ft>Pt

jt if ft<fr
Size factor fs of a neural network is a function of

number of connections between neurons. Error rate fac-
tor ft is a function of error values on every output of
a network during testing process. / t

m m is the maximum
acceptable error factor. Detailed calculation of all factors
have been presented in [2]. Evolved neural networks ar-
chitectures are trained using Backpropagation method or
by evolutionary approach.

3 Results of experiments
The difference of quality between direct and indirect

encoding strongly depends on the discussed problem.
The biggest difference is seen if the input vector is large.
The natural ability of direct encoding of removing less
or non important input features gives this method a big
advantage. In case of such problems it has proven to be
much more effective than the indirect approach in the
aspect of quality. Indirect encoding is able to give very
good solutions in very few generations, but evolved net-
works size is larger than in direct encoding (fig. 3).

Neural network evolved and trained for solving XOR
problem is shown on fig. 1. This network architecture
has been evolved using direct encoding and trained using
evolutionary approach. It is impossible to receive this
neural network using indirect encoding due it is outside
the domain of search.

2.6

Fig. 3. Optimal neural network for XOR problem

Fig. 4. shows a neural network evolved for solving
Parity of a number problem. It is evolved using direct en-
coding and trained using Backpropagation method. The
smallest neural network for this problem evolved with
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indirect encoding contains 6 connections between neu-
rons. This example shows the abilities of direct encoding
for neural network pruning.

6 6 6 6

Fig. 4. Optimal neural network for Parity of a number problem

Fig. 6. shows the evolution results for the IRIS prob-
lem. In the experiment direct and indirect encoding give
almost identical result. The neural network received us-
ing direct encoding is smaller only by 2 connection and
evolution process took many more generations than for
indirect encoding.

Exemplary results for ZOO, HOUSING and XOR
problems using direct encoding have been shown on fig.
7. Evolution process requires a lot of computation time,
but received neural networks are often very small and
very well pruned. All neural networks have been trained
using Backpropagation method.

4 Summary

Efficiency of direct encoding in generation of neural
networks with very good quality has been proven by
many experiments. A large part of experiments led to
generation of very small networks with very good qual-
ity.

4.1 A size of networks and computation time

The biggest advantage of direct encoding is the abil-
ity of adding and removing single connections between
neurons. The evolution process using direct encoding
requires very long computation time (fig. 7.).

In every experiment indirect encoding has proven not
to be able to reach global optimum. The optimal neu-
ral networks are outside the domain of search of this
method. Received networks are often up to 6 times larger
(fig. 6.) than in direct encoding. Indirect encoding has
given very good neural networks in very few genera-
tions. It takes many more generations to reach the same
solution by direct encoding.

Direct encoding requires much more computation
time but is very effective in giving very small, very well
pruned neural networks. Indirect encoding gives good
results in very few generations, but it is not able to pro-
ceed further with optimization due to its limitations on
the domain of search.

Number of connections

81

20 40 60
Generation

Direct— Indirect —

100

Fig. 5. Size of neural network in direct and indirect encoding,
Parity of a number problem

Number of connections

97

83

70

56

42

28

14

0 20 40 60 80 100 120
Generation

Direct— Indirect —

Fig. 6. Size of neural network in direct and indirect encoding,
IRIS problem
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0 20 40 60 80 100 120
Generation

ZOO HOUSING XOR

Fig. 7. Size of neural network in direct encoding

4.2 Size of the domain of search

Let us denote n as number of neurons in hidden layers,
k as the size of input vector and / as the size of output
vector. Used indirect encoding stores a neural network
as a binary tree with two possible non-terminal symbols
in each tree node. This gives the size of the domain equal
to 2n — 1. Direct encoding uses a matrix (and a vector
which is a mask) to encode a neural network and has the

size of the domain equal to 2^*=i ' +x~ K

4.3 Further research

The further research will focus on combining the ad-
vantages of these two methods. Parallel process of evo-
lution with two both types of encoding will be presented.
Once, a network with indirect encoding is proven to be
effective enough, it will be converted to a network with
direct encoding and further evolved in the aspect of its
quality optimization.

Other important problem concerns a learning method.
As it is mentioned above, direct coding enables genera-
tion of small sized networks. Although, such a small net-
work must learns its task. Our experiments showed that
using Backpropagation method, a small network could
not be able to learn desired task. Surprisingly, a GA can
learn such a small network. An example is a XOR prob-
lem (see fig. 1). Backpropagation method starting from
a set of random weights (from the range covering the
proper values of weight) is not able to learn a network
XOR problem while a GA does it. It seems that the opti-
mum is very narrow and Backpropagation methods leads

to the local optimum.
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Abstract
Model discovery and performance surface optimization with
genetic algorithm demonstrate profitability improvement with
an inconclusive effect on statistical criteria. The examination
of relationships between statistics used for economic forecasts
evaluation and profitability of investment decisions reveals
that only the 'degree of improvement over efficient prediction*
shows robust links with profitability. If profits are not
observable, this measure is proposed as an evaluation criterion
for an economic prediction. Also combined with directional
accuracy, it could be used in an estimation technique for
economic behavior, as an alternative to conventional least
squares.

1 Introduction
Problems with applications of evolutionary computation
(EC) in finance are often due to the lack of common
methodology and statistical foundations of its numerous
techniques. These deficiencies sometimes cast doubt on
conjectured results and conclusions. At the same time,
relationships between summary statistics used for
predictions' evaluation and profitability of investment
decisions based on these predictions are not
straightforward in nature. The importance of the latter
is particularly evident for applications of an
evolutionary / artificial neural network (E/ANN) under
supervised learning, where the process of network
training is based on a chosen statistical criterion, but
when economic performance is generally sought.
Motivations for this paper come from the ongoing
search for the foundation of EC in finance and a claim
by [1] that traditional summary statistics are not closely
related to a forecast's profit, with the exception of
directional accuracy (DA).
Financial assets' prices often exhibit non-stationarity,
autocovarience and frequent structural brakes, posing
problems for their modeling. This paper also
investigates how data mining benefits from genetic
algorithm (GA) model discovery, performance surface
optimization and pre/pro-processing, improving
predictability or/and profitability.

2 Methodology
For our experiment we build ANN forecasts and
generate a posterior optimal rule. The rule, using future
information to determine the best current trading action,
returns a buy/sell signal (B/S) today if prices tomorrow
have increased/decreased. A posterior optimal rule
signal (PORS) is then modeled with ANN forecasts,
generating a trading B/S signal. Combining a trading
signal with a strategy warrants a position to be taken.
We consider a number of market timing strategies,
appropriate for different strengths of the B/S signal. If
we have a buy (sell) signal on the basis of prices
expected to increase (decrease) than we enter a Long
(Short) position. Note that our approach is different
from standard B/S signal generation by a technical
trading rule. In the latter it is only a signal from a
technical trading rule that establishes that prices are
expected to increase/decrease. In our model we
collaborate signal's expectations of price change (given
by PORS) with a time-series forecast.
To apply our methodology we develop the dual network
structure, presented in Figure 1. The forecasting
network feeds into the action network, from which the
information set includes the output of the first network
and PORS, as well as the inputs used for forecasting, in
order to relate the forecast to the data upon which it was
based.

(2>lh
= >

actions

{B/S} & {Strategy}

LPORS

Fig. 1. Dual ANN: (1) forecasting network; (2) acting network

This structure is an effort to relate actions' profitability
to forecasting quality, examining this relationship in
computational settings. The model is evolutionary in
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the sense it considers a population of networks
(individual agents facing identical problems/instances)
that generate different solutions, which are assessed and
selected on the basis of their fitness. Backpropagation
is used in the forecasting net to learn to approximate the
unknown conditional expectation function (without the
need to make assumptions about data generating
mechanism and beliefs formation). It is also employed
in the action net to learn the relationship between
forecasts' statistical and actions' economic
characteristics. Lastly, agents discover their optimal
models with GA; applying it for ANN model discovery
makes technical decisions less arbitrary. The structure
seems to be intuitive and simple to generate results
independent from a chosen architecture. The results
produced are sufficiently general, being stable for
multiple independent runs with different random seeds
for a dual forecasting/action net and a single forecasting
net.

2.1. Generating Posterior Optimal Rule Signal

PORS is a function of a trading strategy adopted and
based on the amount of minimum profit and the number
of samples into the future. Stepping forward one
sample at a time, the potential profit is examined. If the
profit expected is enough to clear the minimum profit
after transaction costs (TC), a PORS is generated. The
direction of PORS is governed by the direction of the
price movement. Normally, the strength of the signal
reflects the size of underlying price changes, although,
we also examine signals without this correlation to
identify when profit generating conditions begin.
Lastly, we consider PORS generated only at the points
of highest profit to establish the maximum profit
available.

3 Description of the Environment
Let Y be a random variable defined on a probability
space (Q, T,P). Q is a space of outcomes, jTis a a-field
and P is a probability measure. For a space (Q, !F,P) a.
conditional probability P[A\f] for a set A, defined with
respect to a a-field 7\ is the conditional probability of
the set A, being evaluated in light of the information
available in the a-field f. Suppose economic agents'
utility functions are given by a general form:
U(WM) = g(YM9SUct+,)) (1)

According to (1), agents' utility depends on: a target
variable Yh v; a decision/strategy variable, 8(fchs), which
is a function of the forecast, fct+S9 where s > J is a
forecasting horizon. Setting the horizon equal to 1, we
examine the next period forecast (when this

simplification does not undermine the results for s>J).
A reward variable Wt+S is sufficiently general to
consider different types of economic agents and
includes wealth, reputation, etc. w^/fy^j, fct+J) is the
response function, stating that at time /+ / an agent's
reward wl+J depends on the realization of the target
variable yt+J and on the accuracy of the target's forecast,
fct+1. Forecasting is regarded as a major factor of a
decision rule, being close to the reality in financial
markets. Also, it has a developed statistical foundation
in econometrics allowing its application in evolutionary
computation.

Let fct+j= 6'Xt to be a forecast of Yt+J conditional on
the information set !Fh where unknown m-vector of
parameters, 6 e <9, with 0 to be compact in if and
observable at time / n-vector of variables, Xt. Xt are 7y-
measurable and might include some exogenous
variables, indicators, lags of Yh etc. An optimal forecast
does not exclude model misspecification, which can be
due to the form of/e /+/ or failure to include all relevant
information in Xt. Under imperfect foresight, the
response function and, therefore, the utility function are
negatively correlated with forecast error,
e,+i = y,+i -fct.v K i | > ° • A mapping of the forecast
into a strategy rule, S(fct^j) (combined with elements of
Xt) determines a predictive density gy, which establishes
agents' actions.

In this setting, maximizing expected utility requires
us to find an optimal forecast, fct+i and to establish an
optimal decision rule, S(fct+1). Note that optimality is
with respect to a particular utility function, implemented
through a loss function, in the sense that no loss for a
correct decision and a positive loss for incorrect one.
Given a utility function, expected utility maximization
requires minimization of the expected value of a loss
function, representing the relationship between the size
of the forecast error and the economic loss incurred
because of that error. A strategy development (mapping
of the forecast into a decision rule) is another way to
minimize the expected value of a loss function.

A loss function, L: R—+IV, related to some economic
criteria or a statistical measure of accuracy, takes a
general form:
L(Pi a, e) s [a + (1 - 2a)l(e < 0)]ep , (2)

where p is a coefficient of risk aversion; e is the forecast
error; a e [0,1] is the degree of asymmetry in the
forecaster's loss function. L(p, a, e) is ^measurable.
It could also be presented as:
L{p, a, 0)*[a + (\-2a)\(Yt,l-fcl+i(0)<O)}\Yl+i-fcl+i(0f, (3)

where a and p are shape parameters and a vector of
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unknown parameters, 0 e@. For given values of p and
a an agent's optimal one-period forecast is

A a, 0)] = £[L(^+1-/c,+1)] = E[I(e,+I)]. (4)

Training EANN under different criteria allows us to
examine relationships between statistical measures and
economic characteristics.

4 Experimental Design
We use ANN with GA optimization for the building/evolution
of price forecast and trading strategy development/evolution
upon relevant forecast. The mechanism appears to be an
intuitive way to deal with agents' cognitive limits in
forecasting and optimization, modeling the traders' learning
process to approximate the unknown conditional expectation
function. It also provides a natural procedure to consider
decisions' heterogeneity by agents viewing similar
information. A single hidden layer ANN seems to be
sufficient for our problem, particularly considering the
universal approximation property of feedforward nets. GA
facilitates an optimal choice of network settings and adds
additional explanatory power to the analysis.

4.1. Learning Law and Search Algorithm
Backpropagation is one of the most common algorithms
in supervised learning. Although being simple and
computationally efficient, the search here can get caught
in local minima. Backpropagation is also often
criticized for being noisy and slow to converge. To
improve the original gradient learning, particularly its
slowness of convergence, we consider a number of
alternatives.

4.2. Performance Surface
The performance of ANN learning is monitored by
observing how the cost changes over training iterations.
The learning curve presents the internal error over each
epoch of training, comparing the output of the ANN to
the desired output. In price forecasting, the target is the
next day closing price, where in signal modeling, the
target is the current strategy. Achieving an accurate
representation of the mapping between the input and the
target might not necessarily lead to a forecast to be
exploitable or a strategy using that forecast to be
profitable.
We consider that evaluation criteria should measure not
so much absolute effectiveness of the model with
respect to the environment but rather its relative

[2] found correlation between the Kolmogorov-Smirnov statistics
and the length of validation period. Assuming that traders' beliefs
with longer validation periods get closer to the true process in

effectiveness with respect to other models. Although
we train ANN with the goal to minimize internal error
function, we test and optimize its generalization ability
by comparing its performance with the results of a
benchmark, an efficient prediction (EP) . In forecasting
prices, EP is the last known value . For predicting
strategies, it is the buy/hold (B/H) strategy. The degree
of improvement over efficient prediction (IEP) is
calculated as an error from a de-normalized value of the
ANN and a desired output, then normalizing the result
with the difference between the target and EP value.
Making a prediction using a change or a percentage
change, the value of IEP is particularly significant. IEP
around 1, implying that the ANN predicted a change or
a percentage change of zero, indicates that the network
does not have adequate information to make a valid
prediction. So, it ends up predicting the mean of all
changes, zero. Predicting two samples or more in
advance, one can have reduction in value of IEP (in
comparison to one sample prediction). This does not
mean that there is an improvement, since the change in
the desired value is typically larger for a longer
prediction. We classify our results using the following
scale: IEPO.8 => excellent; IEPO.85 => very good;
IEPO.9 => good; IEP<0.95 => satisfactory; IEP>0.95
=> weak.

4.3. Profitability as Performance Measure

Similar to the performance evaluation criteria of
investment managers (total realized returns adjusted for
the riskness) the realized total continuously
compounded returns or excess returns have been used to
review trading rules developed under evolutionary
learning. Unlike case-by-case evaluation of actions of
portfolio managers, decisions of evolutionary agents are
assessed on aggregate, over the entire trading period.
Therefore, in computational modeling process/means
used by agents need to be explicitly evaluated. Under
continuously compounded reinvestment of realized
returns, strategies with a higher number of trades and
lower returns per trade receive greater fitness. [3]
demonstrates that strategies with the lowest mean

simulations and agents' accuracy increases, they consider the time
horizon that agents use for validation as a representation of the
accuracy of prediction.

^ Note, market efficiency testing is not an objective of our studies
per se. However, learning a profitable forecast/strategy is, in a
way, discovering market inefficiency.

•* If prices exhibit random walk behaviour, equally likely to change up
or down, the average forecast has a change of zero from the last
value. This makes the last value a good benchmark to determine if
the prediction can improve on a random chance.
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returns and variances per trade could be evaluated as
best.
Simple aggregate realized returns overcome problems
with frequent trading. Although the number of trades
minimization favors infrequent but prolonged positions.
More importantly, realized returns ignore opportunity
costs (non-realized losses from missing profitable
opportunities), incurred maintaining a certain market
position. A proposed solution here is to use non-
realized simple aggregate returns.
We examine the following forms of cumulative and
individual trades' return measures: non-realized simple
aggregate return; profit/loss factor; average, maximum
gain/loss. In addition we estimate exit efficiency,
measuring whether trades may have been held too long,
relative to the maximum amount of profit to be made, as
well as the frequency and the length of trades, including
out of market position. To assess risk exposure we

4 5

adopt the Sharpe ratio and the maximum drawdown ,
as well as common 'primitive' statistics. To overcome
the Fisher effect we consider trading positions with a
one-day delay.
TC is assumed to be paid both when entering and
exiting the market, as a percentage of the trade value.
TC accounts for broker's fees, taxes, liquidity cost (bid-
ask spread), as well as costs of collecting/analysis of
information and opportunity costs. According to [4]
large institutional investors achieve one-way TC about
0.1-0.2%. Often TC in this range is used in
computational models. Since TC (defined above) would
differ for heterogeneous agents, we report the break-
even TC that offsets trading revenue with costs leading
to zero profits.
Thus, in this paper profitability is a function of return,
risk and transaction costs. The classification of the
ANN output as different types of B/S signals determines
the capability of the model to detect the key turning
points of price movement. Evaluating the mapping of a
forecast into a strategy, Sffc^j), assesses the success in
establishing a predictive density, gy that determines
agents' actions.

4.4 Time Horizons and Trading Strategies Styles

Heterogeneous traders in the experiment use different
lengths of past and forward time horizons to build their
forecasts/strategies. We have run the experiment on
stock indexes from a number of markets and found that

4 Given by the average return divided by the standard deviation of
that return.

5 Accesses the size of the individual losses occurred while achieving
given gains.

'optimal' length of training/validation period is a
function of specific market conditions. In this paper we
adopt three memory time horizons, [6; 5; 214] years. We run
the experiment with one year testing horizon, as it seems to be
reasonable from the actual trading strategies perspective and
supported by similar experiments.
Both long and short trades are allowed in the simulation.
Investing total funds for the first trade, subsequent trades
(during a year) are made by re-investing all of the money
returned from the previous trades. If the account no longer has
enough capital to cover TC, trading stops.

5. Genetic Algorithm Optimization
In this research EC is used for ANN model discovery,
considering GA optimization for: network's topology;
performance surface; learning rules; number of neurons
and memory taps; weight update; step size and
momentum rate. GA tests the performance of the
following ANN models: Multilayer Perceptron (MLP),
Jordan and Elman Networks (J/E), Time-Lag Recurrent
Network (TLRN), Recurrent Network (RN), Modular
Network (MN) and Support Vector Machine (SVM).
We examine the performance surface optimized with
GA for DA, discounting the least recent values and
minimizing the number of large errors. For learning
rule optimization we consider Steepest Descent;
Conjugate Gradient; Quickprop; Delta Bar Delta and
Momentum.
With GA optimization we test the integer interval [I,
20] for hidden layers' neurons, expecting that a higher
number increases the network's learning ability,
although at the expense of harder training and a
tendency to overspecialization. GA optimization
considers the range [1, 20] for the number of taps,
affecting the memory of the net. The input layer,
having access to the least modified data, has typically
the highest number, decreasing in the hidden layers.
GA optimization of the weight update for static
networks considers whether the weights are updated
following all data (batch) or after each piece of data
(online) are presented. For dynamic networks GA
determines a number of samples to be examined each
time ANN updates weights during the training phase.
The step size, controlling the speed of weight
adjustment, manages the trade-off between slow
learning and a tendency to overreact. Usually the
hidden layer has a larger step size than the output layer,
and memory components generally have lower step size
than other components of the same layer. GA optimizes
the step size of the learning rates in the range [0, 1].
The momentum, using the recent weight update, speeds
up the learning and helps to avoid local minima. GA
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searches in the range [0, 1] for the value by which the
most recent weight update is multiplied.
In terms of GA parameters, we apply the tournament
selection with size 4, {prob=fitness/£fitness}. Four
types of mutation are considered in the experiment:
uniform, non-uniform, boundary and Gaussian.
Probability of mutation (PM) tested in the range [0,
0.05] and probability of uniform crossover is examined
in the range [0.7, 0.95]. We test the effect of the
increase in population size in the range [25, 200] on
performance and computational time. The training
optimization continues until a set of termination criteria
is reached, given by maximum generations in the range
[100,500].
When a model lacks information, trading signals'
predictions often stay near to the average. If ANN
output remains too close to the mean to cross over the
thresholds that differentiate entry/exit signals, post-
processing is found to be useful (establishing thresholds
within the range). Post-processing with GA
optimization, examines a predicted signal with
simulated trades after each training, searching for the
thresholds against the values produced by ANN to
generate maximum profit (see Appendix for details).
GA tests various settings from different initial
conditions (in the absence of a priori knowledge and to
avoid symmetry that can trap the search algorithm).
Since the overall objective of financial forecasting is to
make a trading decision, based on that forecast
profitable, economic criteria rather than statistical
qualities need to be employed for the final goal. We use
GA optimization with the aim to minimize IEP value
and profitability as a measure of overall success .

6. Empirical Application

6.1. Data
We consider daily closing prices for the MTMS
(Moscow Times) share index obtained from Yahoo
Finance. The time period under investigation is
01/01/97 to 23/01/04. There were altogether 1575
observations in row data sets. Examining the data
graphically reveals that the stock prices exhibit a
prominent upward, but non-linear trend, with

Another possibility would be to use profit as the performance
surface determinant. We leave this option out, since it wouldn't
allow us to consider the questions proposed at the beginning.
Setting the performance surface determined by the overall
objective would not guarantee minimization of the underlying loss
function used in forecasting and would not permit us to examine
the relationship between statistical qualities and economic
profitability.

pronounced and persistent fluctuations about it, which
increase in variability as the level of the series increases.
Asset prices look persistent and close to unit root or
non-stationarity. Descriptive statistics confirm that the
unit-root hypothesis cannot be rejected at any
confidence level. The data also exhibits large and
persistent price volatility with significant
autocovarience even at high order lags.
Changes in prices increase in amplitude and exhibit
clustering volatility. The daily return displays excess
kurtosis and the null of no skewness is rejected at 5%
critical level. The tests statistics lead to rejection of the
Gaussian hypothesis for the distribution of the series. It
confirms that high-frequency stock returns follow a
leptokurtic and skewed distribution incompatible with
normality assumed often in the analytical literature.

6.2. Experimental Result
ANN with GA optimization was programmed with
various topologies . Altogether we have generated and
considered 93 forecasting and 143 trading strategies'
settings. Effectiveness of search algorithm was
examined with multiple trials for each setting. 92% of
10 individual runs produce identical results, confirming
the replicability of our models. Efficiency of the search
was assessed by the time it takes to find good results.
The search with ANN unoptimized genetically took a
few minutes, where the search with GA optimization
lasted on average 120 minutes on a Pentium 4
processor.Over a one year testing period 19 trading
strategies were able to outperform in economic terms
the B/H strategy, with an investment of $10,000 and a
TC of 2% of trade value. The average return
improvement over B/H strategy was 20%, with the first
five outperforming the benchmark by 50% and the last
three by 2%. The primary strategy superiority over B/H
strategy was 72%.
For the five best performing strategies, the break-even
TC was estimated to be 2.75%, increasing to 3.5% for
the first three and nearly 5% for the primary strategy.
Thus, the break-even TC for at least primary strategy
appears to be high enough to exceed actual TC.
Profitability produced by our simple architecture
supports computational model development based on
economic and statistical foundations.
The experiment demonstrates that normalization reduces
the effect of non-stationarity in the time series. The
effect of persistency in prices diminishes with the use of

Programs in Visual C++, v. 6.0 are available upon request. We have
run tests on TradingSolutons, v. 2.1, NeuroSolutions v, 4.22 and
Matlab v. 6.
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the 'percentage change' in values. Table 1, presenting
the average effect of GA post-processing on
performance, shows that it has generally improved
(positive values) statistical characteristics. Although
only accuracy exhibits sizable change, the effects on

9

IEP and correlation were significantly smaller and not
always positive.

Table 1. GA Post-Processing Effect

AStats./Sets

IEP
Accuracy (%)

Correlation

2000-2004

0.059

1.3

0.016

1998-2004

-0.838

6.58

0.011

1997-2004

0.001

0.95

0.001

The experiment with four types of GA mutation did not
identify the dominance by a particular type. We have
run simulations with different PM to test how the
frequency of novel concepts' arrival affects modeling of
the environment with structural brakes. The results,
presented in Table 2, show that newcomers generally
benefit the system. Although we have expected this
outcome, its consistency among all (including short
time) horizons was not anticipated. In economic terms,
runs with a high probability of mutation {PM=0.05}
have produced the highest returns. At the same time,
this relationship is of non-linear character (e.g.
{PM=0.001} consistently outperforms {PM=0.02}).
Some moderate, although consistent relationship

between PM and strategies' risk exposure was found.
Higher PM resulted in low riskness, given particularly
by Sharpe ratio. We have also noticed some positive
correlation between PM and annual trades' quantity,
although this relationship appears to be of moderate
significance and robustness. Trading frequency in
simulations without mutation seems to be set at the
beginning and stay until the end either at low or high
values. The experiments without mutation have
produced strong path-dependent dynamics, though not
necessarily with sub-optimal outcome. It seems there
exist some 'optimal' PM (in our experiment 0.05 and
0.001) and tinkering with this parameter can improve
overall profitability. We have not found a robust
relationship between the memory length and PM>0.
Although, the memory length in simulations without
mutation was on average 2.5 times shorter than in
experiments with mutation. The relationship between
PM and common statistical measures was inconclusive
at acceptable significance or robustness.

8 Percentage of correct predictions.
9 Correlation of desired and ANN output.

GA model discovery reveals that MLP and TLRN with
(Focus) Laguarre memory, with neurons number in the
hidden layer in the range [5, 12] and Conjugate Gradient
learning rule generate the best performance in statistical
and economic terms for forecasting and acting nets.
Generally models discovered with GA have lower
trading frequencies, but without reduction in riskness.
Annualized returns of those models were improved
moderately. The effect of GA discovery on models'
statistical performance was not conclusive, with a weak
tendency towards accuracy amelioration. An increase in
population size for GA optimization didn't lead to
improvement in results. We explain this by the non
multi-modal nature of our problem. Evidently, a higher
population size has resulted in longer computational
time. The relationship between statistical measures
(accuracy, correlation, IEP) and trading strategies'
profitability seems to be of a complicated nature.
Among the ten statistically sound price forecasts, there
is only one that was used in a trading strategy superior
to B/H benchmark. The best five in economic terms
strategies are among the worst 50% according to their
accuracy. Three of the most accurate strategies are
among the worst 25% in terms of their annualized
return. Correlation of desired and ANN output
characterizes one of the first five strategies with highest
return among its best performers, another one among its
worst results and the remaining are in the middle. IEP
shows some robust relationships with annualized return.
All five strategies with highest return have IEPO.9.
Furthermore, one of the first five profitable strategies
has one of the three best IEP values. Therefore, if
profits are not observable, IEP could be used as an
evaluation criterion for an economic prediction
Regarding the performance surface optimization, two
out of the three best strategies included an adjustment to
treat directional information as more important than the
raw error. We found that training ANN with the
performance surface genetically optimized for DA,
discounting least recent values or minimizing number of
large errors generally improves profitability. Among
25% of the weak (in economic terms) strategies'
annualized returns, there is none with learning criteria
optimized. Our experiment has shown that among three
optimizations of the performance surface considered,
strategies trained on learning the sign of the desired
output were generally superior to those trained to reduce
the number of large errors or focusing learning on recent
values. At the same time, the impact of optimization for
DA on common statistical measures was insignificant,
conforming that DA only weekly relates to conventional
statistical criteria.
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Table 2. Economic and Statistical Measures Under Different Probabilities of Mutation

Measures/PM

Return (%)

Sharpe Ratio

Trades (N°)

IEP

Accuracy (%)

Data Sets

0

76.9

0.13

I

1.116

51.5

0.001

85.7

0.15

3

1.126

32.9

0.02

76.4

0.15

3

1.169

37.66

2000-2004

0.05

99.8

0.16

5

1.135

54.98

0

65.6

0.13

9

0.949

41.2

0.001

75.1

0.13

1

0.95

45.92

0.02

62.1

0.14

5

0.958

40.77

1998-2004

0.05

86.8

0.16

10

0.936

42.06

0

68.3

0.13

7

0.942

32.38

0.001

74.7

0.13

1

1.076

32.9

0.02

60.8

0.13

4

1.077

32.9

1997-2004

0.05

82

0.14

3

0.979

32.4

Our simulation generally supports a claim that DA
relates to forecast profits more than mean squared or
mean absolute errors criteria. At the same time, the
experiment rejects an assertion that all other summary
statistics are not related to forecast profit, as was
demonstrated by the IEP relationship with profitability.
As the results show that DA (alone or always) does not
guarantee profitability of trading strategies trained with
this criterion, it might be ineffective to base empirical
estimates of economic relationships only on that
measure. If conventional least squares are to be
considered inadequate, an alternative estimation
technique for economic behavior might use a
combination of measures, demonstrated to have certain
relationships with profitability; IEP and DA have been
identified so far.

7. Conclusion
Profitability results produced by our simple architecture
seem to be sufficiently general to support computational
model development, based on economic and statistical
foundations. The break-even TC, for at least primary
strategy, appears to be high enough to exceed actual TC.
GA post-processing has generally improved statistical
characteristics. Novel concepts' arrival, determined by
PM, benefits the system in economic terms, but is
inconclusive statistically. It seems there exist some
'optimal' PM and tinkering with this parameter has a
positive effect on profitability.
Models discovered with GA have moderately higher
profitability, but the impact on their statistical
characteristics was inconclusive. GA optimization of
performance surface (particularly for DA) has a positive
effect on strategies' profitability, though with little
impact on their statistical characteristics. Since DA
does not guarantee profitability of trading strategies
trained with this criterion, it might be ineffective to base
empirical estimates of economic relationships only on

that measure.
When profits are not observable, IEP is proposed as an
evaluation criterion for an economic prediction, due to
its robust relationships with annualized returns. If
conventional least squares are to be considered
inadequate, an alternative estimation technique for
economic behavior might use a combination of
measures, demonstrated to have certain relationships
with profitability; IEP and DA have been identified so
far.
The performance surface set-up is viewed to be a crucial
factor in search of a profitable prediction with an
evolutionary model. Measures of trading strategies'
predictive power might significantly differ from criteria
leading to its profit maximization. The choice of
evaluation criteria combining statistical qualities and
economic profitability is viewed as essential for an
adequate analysis of economic structures.
Presence of at least two objectives (statistical and
economic) to be satisfied at the same time could be
considered as a multiobjective optimization problem for
further research. It seems, evolutionary algorithms,
capable generating the Pareto optimal set in a single run,
might be particularly appropriate for this task.

Appendix
Use of thresholds within the ranges against values
produced by ANN (e [-1, 1]) allows us to set different
levels for predicted signals. For enter Long outputs the
range is {> 0.5}, with scaling based on the distance
between the enter Long and enter Short thresholds
(enter Long and zero if thresholds are equal). Exit Short
range is [0.2, 0.5], with scaling based on the distance
between the exit Short and enter Long thresholds. For
exit Long the range is [-0.2, -0.5], with scaling based on
the distance between the exit Long and enter Short
thresholds. Enter Short range is {< -0.5}, with scaling
based on the distance between the enter Long and enter
Short thresholds (enter Short and zero if thresholds are
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equal). For Hold outputs the range is [-0.2, 0.2], with
scaling based on the distance between the exit Short and
exit Long thresholds.
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Abstract
The Hidden Layer Learning Vector Quantization is used to
correct the prediction of multilayer perceptrons in classification
of high-dimensional data. Corrections are significant for
problems with insufficient training data to constrain learning.
Our method, HLVQ-C, allows the inclusion of a large number
of attributes without compromising the generalization
capabilities of the network. The method is applied to the
problem of bankruptcy prediction with excellent results.

1 Introduction
Many actual machine learning problems, like image
analysis, neurophysiology, remote detection and
bioinformatics, involve classification and clustering of
high-dimensional data. However, most classification
methods have a poor performance when a large number of
features are used. Since the search space increase
exponentially with the number of features included, large
training sets are usually required to obtain a reliable
model. If the learning machine is an Artificial Neural
Network, complex architectures may be needed with the
risk of overfitting. Moreover, training is slower, due to the
presence of many local minima, and often becomes an ill-
conditioned problem [1].

Some classifiers, such as minimum distance, often
perform relatively well on low dimensional data, but they
show limited performance in high dimensional spaces.
Dimensionality reduction through feature selection is a
useful, and often necessary, preprocessing step. For
difficult classification problems, with non-linear
correlated inputs or samples containing many atypical
examples, care must be taken during feature selection not
to discharge information necessary for class separation.

In a previous work we showed that Hidden Layer
Learning Vector Quantization (HLVQ) is an efficient
method for classification [2]. HLVQ performs a non-
linear feature selection that effectively reduce the
dimensionality of the problem and improve class
discrimination. In this work we apply HLVQ to correct
the predictions of multi layer perceptron (MLP) in
classification problems. The objective is to correct the

outputs of the MLP, especially for points in poorly
sampled regions in the training process. With this method
we can handle more features without compromising the
generalization capabilities of the MLP.

Next section presents the HLVQ algorithm and in
section 3 it is used to implement the purposed correction
algorithm. Section 4 presents brief description of Support
Vector Machines (SVM), and section 5 describes the
bankruptcy prediction problem. Section 6 presents the
results of our method in comparison to the most
conventional method of discrimination, the Multiple
Discriminant Analysis (MDA) and more recent techniques
such as Support Vector Machines.

2 The Hidden Layer Learning Vector
Quantization (HLVQ)

The Hidden Layer Learning Vector Quantization (HLVQ)
is an algorithm recently proposed for classification of high
dimensional data [2, 3]. It is implemented in three steps.
First, a multilayer perceptron is trained using back-
propagation. Second, supervised Learning Vector
Quantization is applied to the outputs of the last hidden

layer to obtain the code-vectors w t / corresponding to
each class c, in which data are to be classified. Each

example, Xi, is assigned to the class c* having the smallest
Euclidian distance to the respective code-vector:

; = minlwCj -Kx)\\ (1)

where h is a vector containing the outputs of the hidden

layer and |-| denotes the usual Euclidian distance. In the

third step the MLP is retrained but with two differences
regarding conventional multilayer training. First the error
correction is not applied to the output layer but directly to
the last hidden layer. The output layer is therefore ignored
from now on. The second difference is in the error
correction backpropagated to each hidden node:

(2)

After retraining the MLP a new set of code-vectors,
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-new -
We, = Wei + Aw6./

(3)

is obtained according to the following training scheme:

AwCj = a(n)(x- wc.) if x e class c,, . . .

Awc. =0 if X ̂  class c,
The parameter a is the learning rate, which should
decrease with iteration n to guarantee convergence. Steps
two and three are repeated following an iterative process.
The stopping criterium is met when a minimum
classification error is found.

The distance of given example x to each prototype is:

which is a proximity measure to each class.

3 HLVQ-C
One drawback of multilayer perceptrons is their poor
performance in sparse regions not covered by training
data, common in high dimensional datasets. To alleviate
this situation we propose the following method to correct
the MLP output. The objective is to identify these regions
and evaluate the consistency of the perception results
against the HLVQ prediction. After training the MLP and
HLVQ, the algorithm runs according to the following
steps.

Each test example, x', is included in the training set
and the neural network retrained. Since the class
membership of this example is unknown, we first assign it
to class "0" and determine the corresponding output
yQ(xl) = y!

0 as well as the respective distances to each
class prototype obtained with HLVQ,

(6)

In a second step the network is retrained considering
the example as class "1" . The new output yx (xl) = y[
and the respective distances to the prototypes are obtained
in a similar way, thus:

From these outputs, y'o and y[, the choice is made

following the heuristic rule:

/ = y[ if d? < df .

We call this method Hidden Layer Learning Vector
Quantization Correction, HLVQ-C, and it corrects the
class separation hyperplane.

Figure 1, show how the method works. Before
correction, a new point "?", located outside the region
covered by the training data, is classified as class 1 by the
MLP, since it is above the separation hyperplane.
However, the distance d\ to class 0 code-vector (X) is
smaller than the distance to the class 1 code-vector (Y) -
d2. HLVQ-C modifies the MLP prediction and this
element is now correctly assigned to class 0.

X . After

• Class 0
A Class 1

A

-—Y
A A

A

A

X

-
A

A "

A

X ,

Figure 1: How HLVQ-C corrects the MLP predictions.
Full line indicate the separation hyperplane before a new
point "?" is included. Dashed line is the same but after
retraining considering the new point as class 0.

4 Support Vector Machines (S VM)
Support vector machines (SVM) are a new learning-by-
example paradigm spanning a broad range of
classification, regression and density estimation problems
[15]. Equipped with a sound mathematical background,
SVM treat both the problem of complexit minimization
while maximizing generalization. The advantage,
regarding other approaches, is that SVM generalization
error is not dependent on the dimensionality of the input
data. The learning method uses input-output training
examples from the data set

D = cR"xY : (8)

such that / classifies correctly test data (x,y) generated
from the same underlying probability distribution P(x,y).
Using the loss function defined by :
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V(yi,f(xi)) = | l - (9)

The learning problem can be formulated minimizing the
function (10) using

The minimizer of (10) has the form:

with a,,be R. The equivalent quadratic programming
problem originally proposed in [16] is:

subject to constraints:

03)

where C is the penalty constant (regularization parameter)
and £ the slack variable.

Introducing Lagrange multipliers:

maxW(cc) = ]T
(14)

and solving with respect to a(J under the constraints

0<or, and iyi =°> m e has again

the form of Eq. (11). The empirical error measured by
]TJ=1£ is minimized while controlling the learning
machine capacity.

5 Application to the Bankruptcy Problem
The bankruptcy prediction problem is to discriminate
between healthy and distressed companies based on the
record of several financial indicators from previous years
[4]. Several modern approaches have been used to analyze
this problem, ranging from Support Vector Machines,
Genetic Algorithms and Neural Networks [4-10].
Although several authors have demonstrated that these
methods are in general more accurate in signaling a
distressed company, traditional Linear Discriminant
Analysis (MDA) is still widely used. The success of MDA
can be explained by its simplicity and the fact that, in
most cases, the difference in performance are not
substantial. Another reason to explain the analyst's
resilience in using new approaches, concerns the quality
of databases used to benchmark the predictions. The most
common weakness are the small size of the database,
limited historical records and the use of unbalanced

samples, containing much more healthy companies than
financially distressed ones.

We used a sample obtained from Diana, a database
containing about 780,000 financial statements of French
companies. The initial sample consisted of financial ratios
on 2,800 non-financial French companies, for the years of
1998, 1999 and 2000, with at least 35 employees. From
these companies, 311 were declared bankrupted in 2000
and 272 presented a restructuring plan ("Plan de
redressement") to the court for creditors approval. We
decided not to distinguish these two categories as both
signal companies in financial distress.

The sample thus has 583 financial distressed firms,
most of them of small and medium size, with a number of
employees from 35 to 400. From the initial 30 financial
ratios we select the 17 most relevant ratios excluding
those with either a small average sensitivity or a small
variance of the sensitivity. High correlated ratios were
also excluded. All data were normalized to zero mean and
unity variance.

Neural networks containing from 5 to 20 hidden
nodes were tested. A hidden layer of 15 neurons, a
learning rate of 0.1 and a momentum term of 0.25 were
chosen.

The bankruptcy is a dynamic process. In order to
capture the evolution and the trend of the financial
position we also used three annual variances of the
following ratios: debt ratio, value added per employees
and margin before extra items and taxes, thus extending
our previous study [3].

6. Results and conclusions
To test HLVQ-C, we used a balanced dataset containing
583 healthy and 583 distressed companies using ten-fold
cross validation. We discriminate the accuracy of the
classifiers for type I, type II error and the overall
misclassification. Type I error is the percentage of
undetected bankruptcies while type II error is the
percentage of healthy companies predicted as bankrupt.

Table 1 summarizes the results with data from 1999,
one-year prior to the announcement of bankruptcy. Our
method surpasses all others, both in the overall accuracy,
and, more important, on type I error. This term has a
much higher cost for banks and insurance companies than
type II error [4],

Support Vector Machines (SVM) reduced substantially
error type I while keeping error type II at almost the same
level as MLP. This may be due to the fact that the optimal
compromise between minimization of the empirical risk
and complexity has not been reached. However, the
method could be improved using unlabeled data and the
geometry of the separation hyperplane would allow less
misclassifications of the type I.
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Type I error is always higher than type II error since
distressed companies has a more heterogeneous pattern
and are therefore harder to classify. Finally, note that
Multiple Discriminant Analysis (MDA) has a very small
accuracy.

Table 1: Generalization errors (in percentage) for several
machine learning algorithms.

Model

MDA

SVM

MLP

HLVQ-C

Error I

26.4

17.6

25.7

11.1

Error II

21.0

12.2

13.1

10.6

Total

23.7

14.8

19.4

10.8

We presented a technique for output correction of
multilayer perceptrons, called HLVQ-C. With this
technique a MLP can be trained with a large set of
features without compromising the generalization.
Corrections introduced by HLVQ-C can be substantial for
high-dimensional data and small training datasets.

To our knowledge, results obtained with Hidden Layer
Learning Vector Quantization Correction, represent the
greatest improvement with respect to discriminant
analysis. Support Vector Machines is also a very
competitive approach.
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Abstract
In this paper, we present a neural network based sys-

tem to generate an adaptive model for financial time se-
ries tracking. This kind of data is quite relevant for data
quality monitoring in large databases. The proposed sys-
tem uses the past samples of the series to indicate its
future trend and to generate a corridor inside which the
future samples should lie. This corridor is derived from
an adaptive forecasting model, which makes use of the
walk-forward method to take into account the most re-
cent observations of the series and bring up to date the
values of the neural model parameters. The model can
serve also to manage other time series characteristics,
such as the detection of irregularities.

1 Introduction
Specialists say that this century is surely the century of

data [1], In fact, the poor quality of customer data costs
to U.S. business more than US$600 billion a year [2]. It
is then easy to see that data are critical assets in the in-
formation economy, and that the quality of a company's
data is a good predictor of its future success.

In this context, we propose a neural network based
tool to treat one of the most important types of data in-
volved in information systems: the financial time series.
The development of time series forecasting methods is
gaining importance as companies and research centers
give more emphasis to a data based knowledge and make
their investments in a data driven way. The idea in this
paper is to generate an adaptive model from the series
observations, and to use it to derive a monitoring "corri-
dor" for the future samples of the series.

Note that our aim is not simply to develop a prediction
algorithm; actually, what we propose is a system that
monitors the quality of time series data by drawing reli-
ability regions (the corridors) from the predicted values.
These corridors may be estimated either for short-term or
long-term prediction, and must be updated periodically.

In the next section, we give a brief description of some
time series data quality issues. In Section 3, we summa-
rize the neural system developed for time series model-
ing. The experimental data used in this work is presented

in Section 4. Implementation and obtained results are
detailed in Section 5, and conclusions are addressed in
Section 6.

2 Time Series Data Quality Issues
Defining Data Quality (DQ) is a very context depen-

dent task. Common sense says that it refers to confor-
mity to the specifications. Concretely, what one is sup-
posed to do is to set some attributes based on indicators
and parameters, in order to get quantifiable metrics ca-
pable to inform the quality of a specific database [3],

For this work, since we are dealing with specific time
series data, the considered DQ dimensions are timeli-
ness (how up-to-date is your database?), completeness
(does your database have missing values?) and correct-
ness (how free-of-error are your data?).

2.1 Modeling Financial Time Series

Financial time series data have been traditionally de-
composed in the following terms [4]:

• Irregularities. Sometimes a time series is affected
by brusque changes that may not be predicted by
any model. The September, 11 case is an example
in civil aviation time series. So, in order to make
data as "clean" as possible before they start to be
processed, one must compensate for irregularities.
The procedure proposed in this paper works to-
wards furnishing to the system (or to the supervi-
sor) the probabilities of the presence of irregulari-
ties in the time series;

• Trend. The first regular component to be removed
of a time series before it can be efficiently modeled
is its trend. Generally, the trend is a linear compo-
nent that indicates the increase or the decrease of
the series. It is important that the trend be calcu-
lated periodically, in order to permit the model to
incorporate the most recent features introduced by
new observations. Rarely, the trend may be mod-
eled by nonlinear functions, such as exponential
or polynomial ones [4];
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• Seasonal and cyclical components. Besides the
trend, time series generally contains cycles of reg-
ular nature. These cycles are due to the series
seasonalities and ciclicities, and may be extracted
by the removal of sinusoidal components (those
which have greater spectral energy when com-
pared to the others) [4].

Therefore, a time series Yt (after the removal of the
irregularities) may be expressed as:

Yt = Tt + Ct et (1)

where the right-hand terms are, respectively, the global
trend, the cycles (longer period cyclical variations),
the seasonal variations (weekly, monthly, annual) and
a highly uncorrelated non-linear component eu which
we call the residual series, that is, the part of the se-
ries that remains after preprocessing is concluded. This
residue may be generally viewed as a stationary sto-
chastic process and is what should be processed (in our
case, by neural models). The predicted values are then
summed to the "deterministic" parts of the series in order
to generate the desired forecasts.

3 The Adaptive Neural System
Since the 1990's, neural networks have been more and

more applied in finance [5]. The number of financial ap-
plications such as pattern recognition, classification and
time series forecasting have dramatically increased as a
consequence of the fact that financial services organiza-
tions turned to be the second largest sponsors of neural
network research [6].

Neural networks have an advantage over
ARMA/ARIMA methods [7] because they can construct
nonlinear models when mapping the input space to the
output space, since they are universal function approx-
imators. In this work, we use feedforward networks
trained with the error backpropagation algorithm [8].

The proposed neural system makes use of two mech-
anisms that work together for performing the time series
tracking task: classification and estimation. The first one
is responsible to discover whether the next samples of
the series should be increasing or decreasing (or even re-
maining within a stability region) the overall series val-
ues, and the second one gives an estimate of the value
itself of the future samples. The aggregation of these
two mechanisms gives us the requirements for tracking
the series.

Figure 1 shows the architecture of the used network,
for both classification and estimation tasks. The N most
recent observations of the series form the network input
vector. The hidden layer contains H biased neurons with
the hyperbolic tangent as the activation function. For the

output layer, we use either a hyperbolic tangent single
neuron (for the classification problem) or a non-biased
linear neuron (estimation). For both classification and
estimation problems, the output stands for #t+F> where
F, the future lag, may be greater than one.

or tendency
of growth

Fig. 1. Neural network architecture for time series tracking.

3.1 The Walk-forward Procedure

Time series data, due to their nature, demand efficient
signal processing techniques for feature extraction and
model adaption, in order to incorporate the changes of
the series behaviour. For achieving this goal, the moni-
toring procedure will be continuously tuned to generate
satisfactory predictions for the future values of the series.

The walk-forward procedure [6] is, in general, applied
to an out-of-sample (offline) data set in order to simulate
real-life trading and to test the robustness of the model
through its frequent retraining. In our case, as it is as-
sumed that we are continuously receiving new data, we
may apply the procedure by substituting the older sam-
ples for the most recent ones, retraining the network and
then predicting the future values in a up to date way. Fig-
ure 2 illustrates this process.

Fig. 2. Generic scheme for the walk-forward procedure.

Note that the size of the testing set is kept constant, in
order to assure an independent check of the neural net-
work; the training and the validation sets may be scaled
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together since the purpose of the validation set is to de-
termine the ability of the network to generalize1.

4 The Experimental Data
Financial market data may be bought from specialized

companies (mainly if they are intraday, high-frequency
data) or freely downloaded from websites that offer some
amount of daily stock data for the past years. The latter
alternative does not guarantee "total quality" data; this
means that data may be noisy, corrupted, incomplete and
so on. This reinforces the interest in DQ tool develop-
ments and introduces a new challenge to the prediction
problem: if we are able to properly filter the noisy data
out and then correctly predict the future values of the se-
ries, we can avoid the extra cost of certified stock data.

The procedure proposed in this work is suitable to op-
erate in this noisy data environment: as the developed
model generates "corridors" inside which future data are
expected to lie, we may use these "certified" regions to
check for the presence of noisy samples in non-certified
data (this may be used to filter irregularities out, for ex-
ample).

In this work, we used five years (1998-2002) of daily
stock data for companies that appear in the SP500 in-
dex. Data are under the "open-high-low-close" (OHLC)
format. In order to test the methodology, three compa-
nies were selected from the computer business segment:
IBM, Sun and Microsoft.

5 Implementation and Results
The first step for implementing the procedure pro-

posed here concerns the development of an automatic
preprocessing block. In our system, the neural model
is updated (and so the preprocessing of the series) for
every new month of data2. The data lag used for the net-
work training phase is initially set to 6 months, and the
tune window (the number of observations N that com-
prises an input vector) is set to 10. The preprocessing
phase aims at achieving a series decomposition accord-
ing to Equation 1, which allows to obtain the residual
term. Such residual term will be used to train the net-
work.

We considered that trends are always linear, which
may be a good approximation for financial time series
in non-short periods of time. After the definition of the
time lag, we fit a straight line to the series (by the least
squares method) and define it as the series trend.

The resulting zero-trend series is now ready to have its
cycles and seasons removed. This is done by computing

Usually, the training set correponds to 60-70% of the non-testing
data.

2 It may be shown that, for daily financial time series, one needs
approximately one month to characterise a stable trend change. The
user may, however, set another value for the retraining periodicity.

the series spectrum and removing frequency components
that exhibit higher energies. The number NC of compo-
nents to be removed is defined by an energy threshold
for surviving components3.

Figure 3 shows an example of the series trend estima-
tion, its compensation and the spectrum of the zero-trend
series before removing cycles and seasonal components.
Note that the component for / = 0 was zero even before
the removal, because the detrended series has zero mean.

Fig. 3. The series trend compensation (top) and the spectrum
of the zero-trend series (bottom).

Once the training, validation and testing sets are de-
fined, a last normalization must be performed in order
to flatten the distribution of the inputs according to the
training set distribution. We calculate the mean ji and
the standard deviation a of the training set, and each
input pattern Xi (for the training, validation and testing
sets), becomes x\ = ^f^r, where the parameter 5 is de-
termined according to how wide the distribution of the
training set is.

5.1 Generating the corridor

Once the networks (for classification and estimation)
have converged, the validation corridor for the future val-
ues of the series may be computed. As shown in Fig-
ure 1, the network has a single output node, that is, it
is optimized to predict the sample xt+p having xt to
xt-N+i as inputs.

For the prediction task, since there is an error in the
estimation of xt+p (xt+F), that is, the output of the net-
work may be seen as xt+p ± e, we will have access to
upper and lower estimations that tend to be less accurate

3 We chose to remove cycles and seasons together, by looking at the
spectrum of the detrended series; another option is to first eliminate
seasons (when one knows their periods) and then remove cycles by
spectrum analisys.
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as we go further in time for the estimation process. These
bounds form the estimation corridor, which is limited by
the classification network output, that is, if the sample is
expected to increase (decrease) the series value, the cor-
ridor may not go beyond a minimum (maximum) value,
which is done by the series previous value4. The most
accurate estimation we may produce is given by the one-
day predictor (F = 1), in which the corridor is generated
for the next series observation only. The bounds of the
corridor are calculated from the last N estimations: for
example, the corridor xt+i ± SN has

N
(2)

that is, the average error from the last N predictions. The
corridor interval also furnishes the value for the correct-
ness metric (it is 1 if xt+i = xt+i). In general, this
one-day predictor is sufficient to provide Data Quality
Management, given that we are treating daily series and
we can always apply a DQ test for a new sample. Time-
liness and completeness have, in our case, the maximum
value (1) if data are complete and up to date, and loses
0.1 for each missing or delayed sample. Thus, the sys-
tem can always returns these DQ metrics to the user.

For the available experimental series, the topology of
the best trained network was 10-4-1, with constant learn-
ing rate (0.2) and momentum term (0.1). For the treated
series, the neural method achieved an average of less
than 2% of estimation error for the reconstructed series
(residue plus "deterministic" parts of the series), while
an ARMA(10,l) process obtained an error of 2.24%. For
the classification problem, we achieved more than 99%
of efficiency for the classification problem when deter-
mining a one-day trend detection assuming 6% of stabil-
ity region, that is, we were able to establish if the next fu-
ture sample of the series would increase or decrease the
series values (or remain within a 6% variation region).

6 Conclusions

A neural method for Data Quality assessment of time
series data was developed. The neural system provides
to the supervisor a tool for monitoring the quality of the
next observed samples of the series: whenever a new
sample falls outside the corridor, the system warns the
supervisor and either apply a correction tool (when avail-
able) or label the unreliable sample. In both cases, an in-
crease in the overall DQ is aimed. This monitoring sys-
tem can be used for detecting irregularities (with poste-
rior filtering) and in forecasting assessment, as discussed
in the text.

The generation of long-term corridors through the
feedback of short-term predictions may also be ex-
ploited. The main problem here is to maintain the sta-
bility of the network, which is not guaranteed due to
the feedback error. We found that two kinds of diffi-
culties may arise: the fading of the network output due
to the feedback of negative errors, or the divergence of
the output due to the feedback of positive errors. A new
approach is being developed in which a mechanism to
assure network stability is inserted in the recurrent pre-
diction model. Preliminary results indicate that this new
model will be able to furnish corridors longer than 10
days, enabling the supervisor to work with longer term
forecasting.

Wavelet methods are also being tested in the pre-
processing phase, in order to filter out irregularities from
the training set and turn the network more sensitive to
their presence in the testing set.
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Abstract
Artificial Neural networks (ANNs) have found applications in a
wide variety of medical problems and have proved successful for
non-linear regression and classification. This paper details a
novel and flexible probabilistic non-linear ANN model for the
prediction of conditional survival probability of malignant
melanoma patients. Hazard and probability density functions are
also estimated. The model is trained using the log-likelihood
function, and generalisation has been addressed. Unrestricted by
assumptions that are unrealistic or parametric forms that are
difficult to justify, the model thereby attains advantage over
traditional statistical models. Furthermore, an estimate of the
variance-covariance matrix is obtained using the asymptotic
Fisher information matrix. Implemented in an Excel®
spreadsheet, the model's user-friendly design further adds to its
flexibility, with much potential for use by statisticians as well as
researchers.

1 Introduction
Artificial Neural Network (ANN) research has become
very popular in the analysis of medical data, as ANNs can
incorporate non-linearities that are less restricted by
unrealistic assumptions than conventional statistical
models. One of the most common models is the multi-
layer perceptron, which has found many applications in
medicine, for example in diagnostic image analysis [1],
clinical diagnosis [2]. They frequently give results
comparable and in some cases superior to statistical
models, for example in predictions of thalasemia minor in
blood screening [3]. Indeed, theoretical work suggests that
ANNs can match or outperform results obtained from
statistical models [4]. Identification of prognostic factors
of a particular disease is an important and widely studied
aspect of medical and statistical research, useful for aiding
clinicians to plan care pathways, and to predict survival
characteristics, in addition to educating the patients and
public.

Survival analysis describes the analysis of time-to
event data, corresponding to the time from a defined time
origin until the occurrence of a particular event of interest

such as death or disease recurrence. In addition to
incidence, corresponding clinical and pathological factors
are recorded at times of diagnosis and treatment. The
dependence of disease outcome on these factors and
covariates can therefore be assessed. Standard statistical
procedures are not suitable for the analysis of survival
data, as they require particular modelling techniques due
to the lack of symmetry, restriction to positive outcomes
(survival times are not negative), and to censoring (i.e.,
the case has been lost to follow-up or the end point of
interest has not occurred). Right censoring occurs when
the survival time is greater than some defined time point.
The analysis presented in this paper is based on data with
right censored survival times. Much analysis of censored
survival data uses Cox regression [5], or parametric
models using (for example) a lognormal distribution.
However, both types of models impose either
distributional forms or assumptions which are not always
tenable [6]. Therefore, there has been increasing interest in
recent years in models that are flexible, and not restricted
by unrealistic assumptions.

Recent research suggests that ANNs are suitable
for modelling censored survival data and so may be used
where regression models have been used traditionally.
Studies proposing ANNs as extensions to standard
regression models for survival data include Liestol et al.
[7], who propose approaches for grouped time data, while
Faraggi and Simon [8] generalise Cox regression, by
replacing the linear functional in the Cox model with a
non-linear ANN predictor. However, few ANN
approaches in the published literature use continuous time.
For the prediction of relapse from breast cancer, Ripley et
al. [9] use 7 ANN models. Survival time is treated as a
continuous variable in 4 of the models, and grouped and
treated as a discrete variable in the remaining 3 models.

This paper investigates a novel flexible ANN
approach for the analysis of censored survival data, set
within a probabilistic framework. Censored observations
are not omitted. Generalisation is addressed, in addition to
an approximation to the variance-covariance matrix. The
ANN's performance will be compared to Cox regression,
as the latter is a method of choice for the analysis of
censored data. In addition, comparisons to other popular
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survival modelling techniques, such as the empirical
Kaplan-Meier estimate (KM) [10], and parametric log-
normal model (LN) [11] will be performed.

2 Basics of Survival Analysis
When analysing survival data interest centres upon 2 main
functions that are estimated from the observed survival
times: the survivor and hazard functions. The probability
density function of t, the actual survival time of an
individual, is f(t). The survivor function, S(f), is the
probability that the survival time is greater than or equal to
t. The related hazard function h(t) denotes the
instantaneous death rate and represents the probability that
the event occurs at time t, conditional on it not occurring
prior to time t. The following relationship holds:

Table 1: The Data

h(t) dt =
S(t)

( i )

The cumulative hazard function H(f) is defined as

H(t)=jh(u)du (2)
o

so that

S(t)=e'm (3)

3 The Data
The data set used for this study comprises 1946 malignant
melanoma patients diagnosed in the West Midlands region
from 1987-1996, of which 1160 are females and 786 are
males. The survival time variable t is the number of
months from date of diagnosis (entering the register) to the
end of the study, due either to death or survival till the cut-
off date (31st December 1999). Censored observations
consist of patients that have not died. The data set is
heavily censored, with 1628 censored cases. Significant
prognostic factors used are summarised in Table 1. A
logarithmic transformation was applied to the Pathological
depth variable, as it is extremely positively skewed,
resulting in the categories shown.

4 The ANN Model

4.1 The Model
A feed-forward multi-layer perceptron (MLP) was
designed and implemented in an Excel® spreadsheet,
using matrix multiplication. 24 patient subsets were
created according to levels of the input variables defined
in the table below:

The source nodes in the input layer of the network

comprise the covariates X = {xjy X2,...., Xp.j}, a bias,

Factor

Townsend Score

TQ=0
TQ = 1

Clarke Level
Clar 12

Clar3

Clar 45

Log-Pathological
Depth
L.P.12
L.P.3
L.P.4
L.P.5

Me

Town
Towns

Hi

Description

asure of Social Deprivation

send Score between -8.5 & -1.3
end Score Between -1.29 & 8.8

stological Stage of Cancer

papillary dermis

Tumour invades papillary reticular dermal
interface

Tumour invades reticular dermal interface or
subcutaneous tissue

Log of vertical thickness of tumour in mm

depth <= 0.75mm
depth between 0.75mm & 1.50mm
depth between 1.51mm & 4.00mm

depth > 4.00mm

Level

Affluent
Deprived

Medium

Most Severe

Least Thick
Medium Thick
Medium Thick

Thickest

Xo = 1, and time, input Xp, coded as a prognostic variable
by using it as a scaled normalized input (by dividing event
time by the maximum value over the range of all event
times). Multiplying these inputs by the synaptic weight
parameters (Xjk, f° r j = 0 , . . . , / ? (for the connection from
input node j to output node k), we have the input to the
hidden layer. Next, a logistic activation function is applied
to the weighted sum at each hidden node, such that

1 (4)
l + exp(-a&)

where a is the slope parameter of the sigmoid function. In
this case, we set (2=1. The use of such activation functions
plays an important role in allowing the outputs to be given
a probabilistic interpretation - it implies that the ANN
model is in principle a mixture of logistic distributions.
The inputs to the second layer, G(yk), for A: = 1,..., m,
are then multiplied by weights /?& and adding a bias

parameter of unity, j3o, we have a single input to the
output node. The same activation function is then applied,
and the functional representation of the output from the
ANN is

+ A) (5)

Equation 5 is summed over all cases (the sample index 1
has been suppressed for clarity). As the batch method of
learning is used, training and validation processes
common to ANN studies are not required. The ANN
model is illustrated in Figure 1.

4.2 Training
The back-propagation algorithm [13] is very popular for
training feed-forward MLPs, but we have used the
SOLVER® tool in Excel® as an alternative optimisation
technique to make the ANN more user-friendly for
explaining it to non-specialists. Although a common (cost)
objective function is the sum of squared differences of the
output and target values, by using the log-likelihood
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function additional valuable information may be obtained.
This is discussed in section 4.4.

Input Layer hidden Layer Output Layer

Fig. 1. The ANN Model

The log-likelihood for a data set of n exact or right
censored survival times may be written as follows:

)} (6)

where d. = Censoring Status (0 = Censored, 1 = Died).

Upon differentiating Equation (5) with respect to time, the
probability density function may be found as

dt k-i

where G'(V) = G(V)(1-G(V)). The log-likelihood is

then maximised using the SOLVER® tool in Excel®. This
procedure is stopped once convergence is achieved.

4.3 Monotonicity

In order to ensure monotonic survival functions it is
necessary to constrain the OCpk and j3k weight parameters
in Equation (7). It can be shown that a regularity condition
of the ANN is

apk<0, (8)

This is a sufficient condition, and may over-constrain the
parameters, but it is computationally convenient and easily
incorporated in the SOLVER® tool.

4.4 Hazard Functions
As Equation (6) shows, a probability density estimate for
each non-censored case is used to compute the log-
likelihood. Furthermore, from Equation (1), estimates of
the hazard function for each subset may also be obtained
from the ANN by simply dividing the probability density
function by the corresponding survivor function S(t).

4.5 Regularisation and Generalisation

In order for the ANN to generalise well beyond the data
set and thus avoid overfitting, the simplest and perhaps
most effective form of regulariser, weight decay, was used
to control model complexity. As over-fitted mappings with
regions of large curvature tend to have large weights,
penalizing the cost function by a multiple of the sum of

squared weights, CO, encourages them to be small. CO was
chosen by analysing the profile log-likelihood upon
convergence of the ANN. A value of 0.01 was determined
for the results in this paper. The significance of the
weights was examined using the stepwise saliency
determination procedure. The saliency of a weight is
defined as the change in the cost function resulting from
the deletion of that weight. The ANN was pruned using
the optimal brain surgeon (OBS) [14] procedure, reducing
the number of weight parameters in the model to 24. The
OBS technique requires the Hessian, H , and its inverse.
Techniques used to compute both are described below.

4.6 Hessian and Variance-Covariance Matrices

Using the Jacobian of the log-likelihood function, the
outer product approximation [4] (O.P) was used for
generating a Hessian matrix, and is given by:

where H N denotes the Hessian, n is the number of
patterns in the data set and g is the gradient vector of the
cost function (for ease of presentation we will not display
the actual expression here). The inverse of the Hessian
was computed using a computationally efficient procedure
[4]

H - i _
iV+1 ~

(10)

which constructs the matrix one point at a time. The initial
matrix Ho is OCl, where 0C is a small quantity. Results are
not sensitive to the precise value of OC, and a value of 0.01
proved acceptable. Both matrices were computed using a
specifically written Matlab® program.

Having computed the Hessian and its inverse, the
large sample approximate variance-covariance matrix may
be computed. The variance-covariance matrix is

Jd2\ogL(P)\X!_ (j
dfijdfr \) \ J

(11)

where E is the expectation operator and fi is a parameter
(not necessarily to be identified with the /?* weights of the
network.). This expression is valid for censored data [16].
Using the law of large numbers, the sample average of the
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partial derivatives in Equation (11) converges to
theexpectation of one term. Finally, the RHS of Equation
(11) in its sample average form is the outer-product
approximation of Equation (9).

5 Results
Figure 2 below shows a comparison of the ANN outputs
with other survival modelling techniques discussed in
section 1. The plot shows a representative example,
corresponding to a patient residing in a deprived area, with
Clarke level 3 (medium progressed stage) and L.P.4
(thick tumour depth). The ML estimate of the survival
function fits the data very well, usually more closely than
either a lognormal or a Cox model. Moreover, there is
considerable doubt in this case as to the validity of the
underlying assumptions of the Cox model [6].

Comparisons of similar plots and 10-year
survival probability for other subsets confirmed the
ANN's predictive accuracy.

1.00 r

0.90 ;

0.80

0.70 i

0.60
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i K M j
| cox j

U ~ - LN ;

6000

Fig. 2. The ANN Outputs With Traditional Models. LN denotes a
log-normal model, and KM is the Kaplan-Meier estimate.

6 Discussion and Conclusion
A parsimonious non-linear ANN model for prediction of
conditional survival probabilities, hazard and probability
density functions, has been presented in this paper. The
ANN is trained by maximising the log-likelihood function.
Generalisation and model complexity have been
addressed. Thus the model is expected to work well with a
variety of different data sets. Survival predictions are at
the very least as good as traditional modelling approaches.

Difficulty in interpreting the parameters forms the
biggest disadvantage of the ANN in addition to the choice
of regularisation parameter. However, our studies show
that predictions are not too sensitive to the latter.

Using first derivatives of the log-likelihood, the

sample approximation of the variance-covariance matrix
may be calculated. Standard errors and intra-weight
correlations may therefore be obtained, in addition to
confidence intervals, detailed in [6]. The ANN therefore
shares many desirable properties of statistical models and
is a useful prognostic tool for the analysis of censored
survival data. The model's implementation in an Excel®
spreadsheet adds to its user-friendliness. As the only
assumption involved is that the ANN is a mixture of
logistic densities, the model provides huge potential for
the analysis of survival data where a specified distribution
is difficult to justify, or where conventional modelling
assumptions are violated.

References

[I] Daponte, J. S., Sherman, P. (1991) Classification of
ultrasonic image texture by statistical discriminant analysis of
neural networks, Computerized Medical Imaging and Graphics
15: 3-9.
[2] Mann, N. H. L, and Brown, M. D. (1991) Artificial
intelligence of low back pain, Orthopedic Clinics of North
America 22: 303-314.
[3] Erler, B. S., Vitagliano, P., Lee, S. L. (1995) Superiority of
neural networks over discriminant functions for thalasemia minor
screening of red blood cell microcytosis", Archives of Pathology
and Laboratory Medicine 119: 350-54.
[4] Bishop, C. M. (1995) Neural networks for pattern
recognition, Oxford University Press.
[5] Cox, D.R. (1972), Regression models and life tables, Journal
of the Royal Statistical Society, Series B, 34: 187-202.
[6] Joshi, R., PhD Thesis (2004), Coventry University.
[7] Liestol, K., Andersen, P. K., Andersen, U. (1994) Survival
analysis and neural nets, Statistics in Medicine 13: 1189-1200.
[8] Faraggi, D. and Simon, R. (1995) A neural network model for
survival data, Statistics in Medicine 14: 73-82.
[9] Ripley, R. M., Harris, A. L., Tarassenko, L. (2004) Non-
linear survival analysis using neural networks, Statistics in
Medicine 23: 825-842.
[10] Kaplan, E. L., and Meier, P. (1958) Nonparametric estimator
from incomplete observations, Journal of the American
Statistical Association 53: 457-481.
[II] Johnson, N. L., and Kotz, S. (1970) Distributions in
Statistics: Continuous Univariate Distributions, 1, Boston.
[12] Johnson, N. L , Kotz, S., and Balakrishnan, N. (1995)
Continuous Univariate Distributions, II, Wiley, Chichester.
[13] Rumelhart, D. E., and McClelland, J. L. (1986) (eds)
Parallel distributed processing: explorations in the microstructure
of cognition, Foundations, 1, MIT Press, Cambridge.
[14] Hassibi, B., Stork, D. G., and Wolff, G. J. (1993) Optimal
brain surgeon and general network pruning, IEEE Int. Conf.
Neural Networks, San Francisco: 293-299.
[15] Collett, D. (1994) Modelling Survival Data In Medical
Research, Chapman and Hall.
[16] Escobar, L. A., and Meeker, W. Q. (1998) Fisher
information matrices with censoring, truncation, and explanatory
variables, Statistica Sinica 8: 221-237.



429

Boosting Kernel Discriminant Analysis
with Adaptive Kernel Selection

ShinjiKita*, Satoshi Maekawa*, Seiichi Ozawa*, ShigeoAbe*
*Graduate School of Science and Technology, Kobe University, Japan

^National Institute of Information and Communications Technology, Japan
E-mail: {ozawasei,abe}@kobe-u.ac.jp, maekawa@nict.go.jp

Abstract
In this paper, we present a new method to enhance

classification performance based on Boosting by intro-
ducing nonlinear discriminant analysis as feature se-
lection. To reduce the dependency between hypothe-
ses, each hypothesis is constructed in a different feature
space formed by Kernel Discriminant Analysis (KDA).
Then, these hypotheses are integrated based on Ad-
aBoost. To conduct KDA in each Boosting iteration
within realistic time, a new method of kernel selection
is also proposed. Several experiments are carried out
for the blood cell data and thyroid data to evaluate the
proposed method. The result shows that it is almost the
same as the best performance of Support Vector Machine
without any time-consuming parameter search.

1 Introduction

Recently, kernel methods have been widely noticed
as a powerful approach to solving difficult classification
tasks. The Support Vector Machine (SVM) is a typical
classifier based on the kernel method. The advantage
of kernel methods originally comes from the nonlinear
mapping to a high-dimensional feature space. If a proper
kernel function is selected, the inputs in the same class
can be completely isolated from the others and the class
separability is maximized in the feature space. However,
the features mapped to such a high-dimensional space
often suffer from noise and outliers; hence dimensional
reduction for the feature space such as Kernel Principal
Component Analysis and Kernel Discriminant Analysis
(KDA) have been often used [1][2].

KDA is a promising method of feature selection in
which the class separability is maximized in a feature
space. However, it is not easy to find a proper kernel
function for a particular dataset. To find an optimal ker-
nel, cross-validation has been often employed. However,
an eigenvalue problem must be solved at every validation
step in KDA; hence, the computation costs often become
serious especially when a large training dataset is given.
On the other hand, Boosting has been also widely known
as a powerful method to realize a strong hypothesis by

combining several weak hypotheses [3] [4].
From the idea underlying in Boosting, we come upon

a new idea for a practical KDA implementation without
immense computations; that is, even if week hypotheses
are constructed with low-performance features obtained
by KDA using a small subset of training samples, we ex-
pect to construct a strong hypothesis by combining such
week hypotheses based on the Boosting principle. In this
framework, we apply KDA to a small number of training
samples; hence, it is expected that the computation costs
of kernel selection are greatly reduced. Unfortunately,
however, if we adopt cross-validation as a kernel selec-
tion method, the computation costs are still high because
we need to evaluate classification performance at every
step in kernel selection and boosting. To overcome this
problem, we can adopt another criterion in kernel selec-
tion: (between-class scatter)/(within-class scatter).

In this paper, we propose a novel boosting approach in
which each weak learner is constructed based on a dif-
ferent feature space whose axes are obtained by KDA
with a small subset of training samples. This approach
provides a practical implementation for the combination
of Boosting and KDA, which can lead to reducing clas-
sification dependency between constituent hypotheses

In the next section, we describe our strategy and the
Boosting KDA algorithm. Then Section 3 shows some
experimental results for two standard datasets.

2 Boosting Kernel Discriminant Analysis
Here, we briefly explain KDA and AdaBoost.M2 [3],

and then we propose a novel method to select an appro-
priate parameter in KDA and a new Boosting strategy to
increase the diversity of generated hypotheses. Finally
we show the whole learning algorithm of the proposed
method.

2.1 KDA and AdaBoost.M2

KDA [2], which is a nonlinear extension of LDA, is
well known to give a subspace where the class separabil-
ity is maximized in a high-dimensional feature space. In
KDA, input data are projected into a high-dimensional
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feature space at first, then they are projected on a low-
dimensional subspace called KDA subspace.

Suppose that a training set is given as
{(xij,Vij)f=i}?=i where Xij is an / dimensional
column vector and y^ is the class label of Xij. C is the
number of classes and each class has Q (i = 1 , . . . , C)
samples. Let N = J2i&i be the total number of training
samples. We assume that observations have zero-mean
in the feature space and this is achievable by adjusting
'Kernel Matrix' (see [5] for details). The inputs are
mapped into a high dimensional feature space through a
nonlinear mapping function 4> • RJ—>F, where F is the
feature space. A between-class scatter matrix B and a
within-class scatter matrix W in F are given as follows:

c c

(2)
t = l j=l

where mi = Ylj=i <t>(xij) *s m e center of the class i in
the feature space. Basis vectors v spanning a KDA sub-
space are obtained by solving the following eigenvalue
problem: XWv = Bv.

To calculate B and W in the high dimensional space,
we use a kernel function K(x, xf) = (p{xY(j){xf). This
enable us to calculate B and W without treating </>(x).
This method is well known as 'Kernel Trick' [1]. As one
of various kernel functions, the Gaussian kernel

K(x,x') = eXp(JX-f^) (3)

is often used, and we also use this Gaussian kernel here.
On the other hand, AdaBoost is a major boosting algo-

rithm developed by Freund [3], which boosts the perfor-
mance by the ensemble of weak learners whose perfor-
mances are slightly better than random guessing. Ada-
Boost.M2 is one of the highly sophisticated multiclass
extensions of AdaBoost, which has been proposed for
two-class problems (see [3] for details). We use Ada-
Boost.M2 to integrate hypotheses.

2.2 Proposed Kernel Selection

In KDA, instead of finding an optimal parameter a
in Eq. (3) by cross-validation, we present a method to
select a such that the following criteria S is maximized:

c trace(B)
trace(VF)'

(4)
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Fig. 1. cr-S curves for Gaussian kernel

we have observed two types of a-S curves shown in
Figs. l(a),(b). As can be seen from Fig. l(a), Type 1
has a single peak. In this case, we should select a at this
peak unless it is not too small. If a is too small, some test
samples might be projected to the complementary space
of the feature space which is spanned by training data.
Consequently, the test performance will get worse even
though the training data are correctly classified. To avoid
such an inappropriate situation, we should select a with
the largest S under the condition that a is larger than a
threshold value (here we set it to 0.01).

On the other hand, Type 2 in Fig. l(b) does not have
any peak and S monotonically increases to a certain
value. Since the parameter a that maximize 5 becomes
so large, the Gaussian kernel has a similar value in any
case; then the kernel matrix can be easily degenerated.
Hence, it is preferable to select a as small as possible
under the condition that 5 is not too small compared
with the maximum value. An ad hoc solution for this
is to find a ( 'C in Fig. l(b)) to maximize the following
criteria H:

(5)

This criterion is the same as used in the conventional
LDA. Applying this kernel selection to several datasets,

where (<TI,5I) and (cr2,5f2) correspond to the points
with minimum and maximum <r, respectively ('A' and
'B'in Fig. l(b)).

2.3 A Strategy to Generate Diverse Hypotheses

To obtain various KDA subspaces, a small subset of
training samples is extracted from the whole training set,
then a KDA subspace is constructed from it. Intuitively,
this KDA subspace is regarded as a 'weak feature space'
because it is constructed based on limited information
on training samples. In such a weak feature space, the
corresponding hypothesis must also have week perfor-
mance. Therefore, it is expected that a strong hypothe-
sis is constructed by combining these week hypotheses
based on AdaBoost.

For each training subset, r% of training samples are
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Input: Training set {(x»j, Vij)f =i}?=i where Xij £ R1

and the class label y^ € Y = { 1 , . . . , C}; the
distribution probability of samples
D(i,j) = 1/iV for i = 1 , . . . , C, i = 1 , . . . , Ci;
the number of iterations T; kernel function K and
the percentage r of selected data.

Initialize weight vectors: w}jy = D(i,j)/(C — 1)
for i = 1 , . . . ,7V, j = 1,..'. , Q , t/ € Y - {yij}

D o f o r t = l , 2 , . . . , r

y G Y - {yij}; and set Dt(iJ) = g c s % w

2 Choose r% of the training data randomly, then
denote it as Rt.

3 Obtain a kernel parameter at by applying the
proposed kernel selection method to Rt.

4 Construct KDA subspace with (K, <Tt,Rt), and
project all training data into this subspace, then
denote a set of the feature vectors as Ft.

5 With (Dt,quFt), build the t-th hypothesis ht :
R1 x Y — [0,1]

6 Calculate the pseudo-loss of ht :

8 Set a new weight vector to be
( / ) ( (

^ , 2 / j,y

for i = 1, . . . , C, j = 1,. . . , Cu y £Y - {y{j}
Output the final hypothesis

T

hf(x) = argmax £ (log j-t)ht(x,y)

Fig. 2. The Proposed Boosting KDA Algorithm

randomly chosen. Here, r is set to a small value to re-
duce the dependency between hypotheses generated in
Boosting steps. If r is small, the total combinations of
these subsets increase, then it will result in increasing
the diversity of hypotheses that leads to high generaliza-
tion ability [6].

In Fig. 2, we summarize the proposed Boosting KDA
algorithm. Step Initialize, Steps 1, 5, 6, 7, 8, and Step
Output correspond to the procedures in AdaBoost.M2.
The percentage r of selecting training samples in Step 2
is set to 1, 3, 5, 10, 15 to study the effect of increasing
the diversity of hypotheses. The kernel selection in Step
3 is carried out based on the procedure in 2.2 and KDA
algorithm stated in 2.1 is conducted in Step 4.

3 Experiments

The proposed Boosting KDA is compared with Ad-
aBoost [7] and SVM in terms of the recognition rate and
training speed. In addition, the progress of recognition
rates for different r are investigated to study the prop-
erties of Boosting KDA. Here, a blood cell dataset [1]
and a thyroid dataset [8] are used for the evaluation. The
blood cell dataset contains 3097 training data and 3100
test data. The number of classes and attributes are 12
and 13, respectively. The thyroid dataset contains 3772
training data and 3428 test data. The number of classes
and attributes are 3 and 21, respectively.

We adopt RBF networks to create hypothesis, and the
number of hidden units is set to twice the number of
classes. Training of RBF is carried out based on the
conjugate gradient descent, which optimizes the centers
and widths of radial-basis functions, and modifies the
weights to reduce training errors. The maximum itera-
tions in the optimization is set to ten to avoid over-fitting.

Table 1 shows the test performance of the proposed
method, AdaBoost, and SVM [1]. As seen from Table 1,
the performance of SVM changes depending on the type
of kernel and the implementation of multiclass problems.
However, the performance of the proposed method is al-
most the same as the best performance of SVM. Figures
3(a),(b) show the progress of test performance in Boost-
ing KDA as the boosting steps increase (r= 1,3,5,10,15).
As seen from Figs. 3(a),(b), the performance for larger r

Table 1. The comparison of test performance. For SVM, the
best results are picked up from [1].

(a) Blood Cell Data
Algorithm

Boosting KDA
Boosting Only
L1/L2 SVM

DDAGSVM

ECOC SVM

Kernel
Gauss

—
Gauss
Poly

Gauss
Poly

Gauss
Poly

Multiclass Ext.
AdaBoost.M2
AdaBoost.M2
one-against-all
one-against-all

pairwise
pairwise

(63,10,27)
one-against-all

rate(%)
93.74
91.42
92.77
93.58
92.41
93.00
94.05
92.84

(b) Thyroid Data
Algorithm

Boosting KDA
Boosting Only
L1/L2 SVM

DDAG SVM

Kernel
Gauss

—
Gauss
Poly

Gauss
Poly

Multiclass Ext.
AdaBoost.M2
AdaBoost.M2

pairwise
pairwise
pairwise
pairwise

rate(%)
97.90
96.03
97.29
97.72
97.40
97.86
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Table 2. Average training time (sec.) per iteration in the pro-
posed method (CPU: Intel Pentium-IV, 1.8GHz).

200 400
Boosting Steps

(a) Blood Cell Data

600

400 500200 300
Boosting Steps

(b) Thyroid Data

Fig. 3. Test performance of Boosting KDA with r=l,3,5,10,15
for (a) blood cell data and (b) thyroid data. • and •
mean the points where the training performance attains
to 99% and 100%, respectively.

is higher than that for smaller r at early boosting steps,
while this tendency reverses at late boosting steps. It
should be noted that the performance for blood cell data
is distinctively degraded when r = 1 even if there are no
large differences in other cases. Considering that large
r leads to slow convergence in training (see the result in
Table 2), r should be selected as small as possible within
an acceptable performance level.

When it comes to over-fitting, the test performance
does not degrade even when the training performance at-
tains to 100% except for the case of r = 15 in blood cell
data.

r [%]
blood cell

thyroid

1
10.2
3.5

3
11.6
6.5

5
15.2
16.7

10
54.0
88.9

15
151.8
232.6

4 Conclusions
We have developed a novel method to introduce Ker-

nel Discriminant Analysis into Boosting and a method
to choose an appropriate kernel parameter in KDA.
The proposed method achieved fairly good performance
without any time-consuming parameter tuning. But it
takes a little longer time in training than S VM to achieve
good recognition performance. To overcome this, a more
effective method to choose subsets leading to fast con-
vergence should be developed.

Acknowledgment
This research was partially supported by the Ministry

of Education, Science, Sports and Culture, Grant-in-Aid
for Scientific Research (B) and (C), and by the Okawa
Foundation for Information and Telecommunications.

References
[1] Abe, S. (2005) Support vector machines for pattern

classification. Springer
[2] Baudat, G., Anouar, F. (2000) Generalized dis-

criminant analysis using a kernel approach. Neural
Computation, Vol. 12: 2385-2404

[3] Freund, Y., Schapire, R. E. (1997) A decision-
theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and
System Sciences, Vol. 55, No. 1: 119-139

[4] Juwei, L., Plataniotis, K. N., Venetsanopoulos,
A. N. (2003) Boosting linear discriminant analy-
sis for face recognition. IEEE Int. Conf. on Image
Processing: 14-17

[5] Scholkopf, B., Smola, A., Muller, K. -R. (1996)
Nonlinear component analysis as a kernel eigen-
value problem. MPI Technical Report, No. 44

[6] Murua, A. (2002) Upper bounds for error rates of
linear combinations of classifiers. IEEE Trans, on
Pattern Analysis and Machine Intelligence, Vol. 24,
No. 5: 591-602

[7] Ratsch, G., Onoda, T., Muller, K. -R. (2001) Soft
margins for AdaBoost. Machine Learning, Vol. 42,
No. 3: 287-320

[8] flp://ftp.ics.uci.edu/pub/machine-learning-
databases/



433

Product Kernel Regularization Networks

Kudova Petra, Samalova Terezie
Institute of Computer Science, Academy of Sciences of the Czech Republic

Pod vodarenskou vezi 2, P.O. Box 5, 182 07 Prague 8, Czech Republic
E-mail: {petra, terka}@cs.cas.cz

Abstract
We study approximation problems formulated as reg-

ularized minimization problems with kernel-based sta-
bilizers. These approximation schemas exhibit easy
derivation of solution to the problem in the shape
of linear combination of kernel functions (one-hidden
layer feed-forward neural network schemas). We prove
uniqueness and existence of solution to the problem. We
exploit the article by N. Aronszajn [1] on reproducing
kernels and use his formulation of product of kernels
and resulting kernel space to derive a new approxima-
tion schema - a Product Kernel Regularization Network.
We present a concrete application of PKRN and com-
pare it to classical Regularization Network and show that
PKRN exhibit better approximation properties.

1 Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Space (shortly RKHS)
was defined by Aronszajn, 1950 ([1]) as Hilbert space
H of functions (real or complex) defined over ft c Mrf

with the property, that for each x £ ft the evaluation
functional on H given by Tx : / \-* f(x) is bounded.
This implies existence of a positive definite symmetric
function k : ft x ft —> E (so called reproducing kernel)
corresponding to H such that

1. for any / e H and y £ ft the following reproduc-
ing property holds f(y) = </(x), k(x, y)), where
{.,.) is scalar product in H and

2. for every y e ft, the function ky(x) — k(x, y) is
an element of H.

Note that the reproducing kernel for H is unique. On the
other hand, every positive definite symmetric function is
a reproducing kernel for exactly one Hilbert space, that
can be described as eomp{]T^=1 a,ikx.;Xi £ fi,ai £
R}, where comp means completion of the set.

Next we will consider product of Reproducing Ker-
nel Hilbert Spaces. For i = 1,2 let Fi be a RKHS
of functions on fti, let K{ be the corresponding ker-
nel. Consider the following set of functions on ft —
nx x n2 Ff = {£r=i/u(*i)/2,*(z2) I n e N,A e

Fi,f2 £ ^2}- Clearly, Ff is a vector space, it is
not complete though. For its completion, we first de-
fine a scalar product on F'. Let / , g be elements of
Ff expressed as f(xux2) = YH=I fi,i(xi)hAx2)>
g{xx,x2) = Y,7=i9i,j(xi)92j(x2)- We define </,#) =
Er= iE^ i ( / i , i ^ i J> i< /2 , i , 5S j>2 , where {.,•>< de-
notes the scalar product in Fim It is a routine to check that
this definition does not depend on the particular form
in which / and g are expressed and that the properties
of scalar product are satisfied. We define norm on F'
by 11/11 = >/</, /) . Finally, let F be the completion
of Ff. It can be shown ([1]) that the completion exists
not only as an abstract Hilbert space but that F is in fact
a space of functions on ft. We call F the product of
Fx and F2 and write F = Ft 0 F2.

Theorem 1.1 (flj) For i = 1,2 let F{ be an RKHS on
fti with kernel K{. Then the product F = Fx ® F2 on
Qi x ft2 is an RKHS with kernel given by

K((xux2),(yuy2)) = Ki(x

where xuyi £ tth x2,y2 € ft2.

(1)

for proofs of the sketched properties we ask the reader
to refer to [1] or to [12].

2 Learning from data as minimization of functional
The task to find an optimal solution to the setting of

approximating a data set z = {(ui, Vi)}^Lx C R d x l b y
a function from a general function space X (minimizing
error) is ill-posed. Thus we impose additional (regular-
ization) conditions on the solution ([5]). These are typi-
cally things like a-priori knowledge, or some smoothness
constraints. The solution / 0 has to minimize a func-
tional T : ft —» E that is composed of the error part
and the "smoothness" part: F(f) = £z(f) + 7 $ ( / ) ,
where £z is the error functional depending on the data
z = {(u»,Uz)}£Li C Rd x R and penalizing remote-
ness from the data, $ is the regularization part — the
so called stabilizer — penalizing "remoteness from the
global property" and 7 is the regularization parameter
giving the trade-off between the two terms of the func-
tional to be minimized.
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To prove existence and uniqueness of solution to such
a problem we will use some results from mathematical
analysis. Error part of our functional doesn't exhibit suf-
ficiently nice properties, so the regularization part has to
do the job. We employ RKHS in such a way that we
nicely and easily obtain existence, uniqueness and even
form of the solution.

Let 7i be an RKHS over Q C Rd with kernel k
and norm ||.||fc. We construct the minimization func-
tional composing of error part £z(f) based on data z —
{(w», Vi)\ i = 1 , . . . , N} C Rd x R and let the regular-
ization part be <£(/) = | | / | | | forming

vi)2 + ), where 7 e Now we

711/112, (2)

where 7 G M+. (See section 2.1 for a more detailed
construction.)

Now uniqueness of solution to such a problem comes
clearly from strong quasiconvexity of the functional T
composing of convex error part and strongly quasicon-
vex kernel part. To show existence of solution we need
weak sequential lower semicontinuity of the functional
which can be shown by computing second derivatives of
the functional, for precise derivation see [11].

Derivation of the shape of the solution to the regular-
ized minimization problem has been shown already in
[5] but without taking advantage of RKHS, in [4], [8]
and others known as Representer theorem, for the kernel
case see [11]. All the proofs are based on the idea that
minimum of a function can exist in an interior point only
if first derivative equals zero.

Employing this theorem we obtain solution to the
kernel-based minimization problem in the form of

N

(3)

where ui are the data points and &(-, •) the corresponding
kernel.

2.1 Concrete minimization functional and RKHS

An error functional is usually of the form £z(f) =
^2i=iV(f(ui),Vi). A typical example of the empiri-
cal error functional is the classical mean square error:

In [5] a special stabilizer based on the Fourier Trans-

form was proposed: &G(I) = JRd ^ ~ - d m d ( s ) , where

G : Rd -> R + is symmetric (G(s) = G(-s)) func-
tion tending to zero as ||s|| —> 00 (the last holds for any
G e £1). That means 1/G is a low-pass filter.

Thus the functional TQ to be minimized is of the
form: TG{f) = Sz(f) + £ l

show how to build an RKHS corresponding to the regu-
larization part of our functional:

Let us define g(x,y) = G(x — y) =
JRdG(t)e/lt'xe~ltydm(i(t). For g G <S(M2d) sym-
metric positive definite we obtain an RKHS H
(using the classical construction, see [4], [10],[13]).
We put (f,g)n = JH^ldmn(s) and ob-

tain the norm \\f\\2
n = fRd I4g£dmn(s), for

H = compspan{G^(x,.), x G Rd}, where comp{... }
denotes completion of the set {... } and a* means com-
plex conjugate of a. It is easy to check the reproducing
property of G on H, that is (/(x), G(x - y))n = f(y).

Special types of reproducing kernels and following
RKHS are the well known Gaussian kernel k\(x,y) =

_ll i|2 - | | s | | 2

e-\\z-y\\ with Fourier transform ki(s) = e~ 2 or in
one dimension kernel k2(x,y) = e~\x~y\ with Fourier
transform k2(s) = (1 -f s2)"1 . The norm for this RKHS
is of the form \\f\\* = J ^ ^ = ||/||22 + \\f>\\l2.
So we see we obtain a Sobolev space W\.

As a more general example we will consider the prod-
uct of kernels introduced in section 1. Suppose that apri-
ori knowledge of our data suggests to look for the solu-
tion as a member of product of two functional spaces. In
one dimension the data may be clustered thus being suit-
able for approximation via Gaussian kernels. In the other
dimension we have only information on smoothness of
the data, hence we will use kernel resulting in Sobolev
norm. Employing theorem 1.1 we obtain a kernel for
the product space of the form: K((xi,x2), (2/1,2/2)) =
h(xuyi) • k2(x2y2) = e-"*1-*1!'2 • e^*2"*2 ' , where

Regularized minimization schema in this case is of the
form:

kxk2{s)
(4)

Taking advantage of this being an RKHS we have the
form of the solution to such a type of minimization:

N

fo(xux2) = (5)

Approximation schemas of this type exhibit so far nicer
approximation properties since it can be better fitted to
special types of data.

3 Learning algorithm
Now we present a learning algorithm based on the

theoretical results from the previous sections. We as-



435

Fig. 1. a) Product Kernel Regularization Network b) Product
Unit

sume that we have a data set {i£i\tt2\v l}fLi, where
ui e Rn, u2 £ Mm, vi eR and N is a number of data
samples. We will fit these data set using Product Kernel
Regularization Network (PKRN) derived from the regu-
larization schema 4.

It is a feed-forward neural network with one hidden
layer of N product units and a linear output layer (see
Fig. la). By a product unit (see Fig. lb) we mean a unit
with (n 4- m) real inputs and one real output. It con-
sists of two positive definite kernel functions Ki(c{, •),
^2(^2, •)> one evaluating the first n inputs and one eval-
uating the other m inputs, the output of the product unit
is computed as the product K\{c\,ui) • K2(c2, ^2)-

The network then evaluates the function

f(ui,u2) = -K2(c2\u2), (6)

where the parameters c[l and c2 are called centers
and the coefficients of the linear combination W{ weights.

The learning algorithm for PKRN is sketched at Fig. 2.
It is derived from Tikhonov regularization and for the
case of Regularization Network was described in [8].
See also [6].

The algorithm is quite simple, setting the centers of
kernels to the data points given by the training set and
evaluating the values of output weights by solving linear
system of equations. Parameter 7 must be estimated in
advance (cross-validation is usually used).

4 Experiments

We tested the performance of proposed Product Ker-
nel Regularization Network on several experiments, in-
cluding both benchmark and real life problems.

We always use two disjunct data sets, one for training
and one for evaluating the error of the result, and com-
pute the normalized error:

Input: Data set {u[\ u2\ v{}^=1 C l n x R m x ]
Output: Product Kernel Regularization network.

1. Set the centers of kernels:

2. Compute the values of weigths w\,

(IcyI 4- K)w = v,

where / is the identity matrix,
ci\uij)-K2(c2i,u2

j)
, . . . , ?;*;), 7 > 0.

Kid =

Fig. 2. Learning algorithm for Product Kernel Regularization
Network.

Table 1. Error values for PKRN and RN on Probenl data sets.

cancer 1
cancer2
cancer3
glass 1
glass2
glass3

PKRN
Etrain
2.739
2.152
2.374
6.141
5.269
3.691

Etest
1.816
3.516
2.798
8.590
8.202
7.411

RN
•Entrain

2.658
2.279
2.348
4.899
4.570
4.837

Etest
1.875
3.199
2.873
8.033
8.317
7.691

N

(7)

where N is number of examples and / is the network
output.

We have used the Gaussian function e v ~b ) for
both kernel functions (Ki and K2), but the kernels dif-
fer in the width b of the Gaussian functions. All para-
meters 7, bi and b2 were estimated by cross-validation.
LAPACK library [7] was used for linear system solving.

The table 1 compares the resulting errors of PKRN
and Regularization Networks (RN) on data sets selected
from Probenl [9] benchmark repository.

The applicability of PKRN on real life problems is
demonstrated on the prediction of the flow rate on the
Czech river Ploucnice. Our goal is to predict the cur-
rent flow rate from the flow rate and total rainfall from
the previous date, i.e. we are approximating function
/ : E x R -> R.

We have three different data sets for this task - called
pi 1, pi Is and pl2, each containing 1000 training samples
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and 367 testing samples. The results obtained on these
data sets by PKRN are listed in the table 2.

Table 2. Error values of PKRN on training and testing sets of
the Ploucnice data.

plls pl2
-Strain

Etest

0.057180 0.057215 0.109477
0.048332 0.048475 0.097608

The table 3 shows that the PKRN overperformes the
so called conservative predictor. Conservative predic-
tion is a predictor saying that the value will be the same
as it was yesterday, and in spite of its simplicity it is very
successful on some tasks, including this one.

The prediction on the testing set made by PKRN is
displayed at Fig. 3.

Table 3. Comparison of errors obtained by PKRN and conser-
vative predictor (CP).

Etrain

Etest

PKRN
0.057
0.048

Prediction of flow rate on the ri\

CP
0.093
0.054

cr Ploucnice

0 50 100 150 200 250 300 350 400

Fig. 3 . Prediction of the flow rate on the river Ploucnice by
Product Kernel Regularization Network.

5 Conclusion

We have shown how to employ RKHS in approxi-
mation theory and stressed advantages of this approach.
Inspired by the article [1] we introduce kernel-product
based approximation and derive the shape of Product
Kernel Regularization Networks (PKRN).

We tested the performance of proposed PKRN on
benchmark tasks from Probenl repository and showed

that its result are comparable to standard variant of Reg-
ularization Network. We demonstrated the applicability
of PKRN on prediction of river flow rate, which is a real-
life task.

We expect our algorithm to be useful particularly in
situations where some prior knowledge of the character
of data is available in the sense that we can expect that
for some groups of inputs different kernel functions are
suitable.
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Abstract
In this paper, we present a scheme for steganalysis based on
statistical correlations and machine learning. In general, digital
images are highly correlated in the spatial domain and the
wavelet domain; hiding data in images will affect the
correlations. Different correlation features are chosen based on
ANOVA (analysis of variance) in different steganographic
systems. Several machine learning methods are applied to
classify the extracted feature vectors. Experimental results
indicate that our scheme in detecting the presence of hidden
messages in several steganographic systems is highly effective.

1 Introduction
Steganography has recently received much attention due
to its applications in copyright protection and covert
communications. Unlike traditional watermark methods it
does not affect the appearance of the image. With digital
images (audios or videos) as carriers, detecting the
presence of hidden messages poses significant challenges.
Westfeld performed the blind steganalysis on the basis of
statistical analysis of PoVs (pair of values). This method,
so-called ^-statistical analysis [1], gave a successful
result to a sequential LSB (Least Significant Bit)
embedding steganography. Provos [2] extended this
method by re-sampling the test interval and re-pairing
values. Fridrich [3] introduced a RS steganalysis which is
based on the partition of an image's pixels into three
groups: Regular, Singular and Unusable and estimate the
possible embedded message length of the LSB
steganography. Farid and Lyu [4,5] described an approach
to detect hidden messages in images that uses a wavelet-
like decomposition to build higher-order statistical
models of natural images. Support vector machines are
then used to discriminate between untouched and
adulterated images. In [6], Avcibas, et al. presented
techniques for steganalysis of image based on image
quality metrics. In [7], Rate-Distortion Curves are used
for steganalysis.
On the side of steganography, Kawaguchi presented
BPCS-steganography [8] to obtain a large hiding capacity;
Westfeld proposed the F5 algorithm [9], which hides
messages in the DCT (Discrete Cosine Transform)
domain and can defeat %2-statistical analysis. Yu [10]

proposed SES (Steganography Evading Statistical
analyses) which can stand x2-statistical analysis and RS
steganalysis. Meanwhile, many ordinary steganography
tools can be downloaded from the Internet based on
different hiding methods [11-14].
In this paper, we present a scheme for steganalysis based
on statistical correlations and machine learning. In
general, digital images are highly correlated in the spatial
domain and the wavelet domain; hiding data will affect
the statistics of images. Based on the correlation features
extracted from images, ANOVA (analysis of variance)
[15] is applied to choose the good measures and machine
learning algorithms are applied to discriminate between
untouched and adulterated images.

2 Correlation and Feature Extraction

2.1 Statistical Properties of Images
Several papers [16-19] described the statistical models of
natural images such as probability models for images
based on Markov Random Field models (MRFs) and the
Gaussian Mixture Model (GMM). In general, natural
images are highly correlated in adjacent pixels; as shown
in the following.

Fig. 1. A grayscale image (a) and the joint probability of
adjacent pixels (b)

Figure 1 (a) is a grayscale ([0 255]) image with size mxn.
v(ij) denotes the grayscale value at point (y), v(i+\J)
denotes the grayscale value at the adjacent point (i+\j).
(v(y), v(/+lj/)) is the grayscale value pair at the two
adjacent points. Figure 1 (b) shows the joint probability
distribution p(v(ij), v(/+l/)), which indicates that the
adjacent pixels are highly correlated.
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2.2 Statistical Correlations for Feature Extraction
Throughout plenty of experiments, there are also
correlations in intra-bit plane and inter-bit plane of
images. Mi(l:w, \:n) denotes the binary bits of the Least
Significant Bit Plane and M2(l:m, \:ri) denotes the binary
bits of the second Least Significant Bit Plane. We present
the correlation coefficients Cl, C2 and C3 as follows:

Cl = cor(Mu M2)

C2 = cor (X5,X6)

(1)

(2)

(3)

Where

= Ml(2:m,\:n)

X7 = Mi(l:w, \\n- 1), X8 = M,(l:#w,2:/i)
Besides the correlations in the spatial domain, we
consider the autocorrelation of the probability density in
the histogram. pk denotes the probability density of the
histogram at grayscale sample k (k - 0,1, ...,N-1, for 8-bit
grayscale image, N = 256).
H = (po, pu pi...pH-\) stands for the probability
distribution in the histogram. He, Ho, H*; and Wk2 are
defined as follows:
He = (PO, Pi, A - • >PU-2) , Wo = {pUP$,p5-. -Af-l);

Hyt/ = (Po, p\, P2'-PU-l-k), H^2 = (Ph Pk+U Pk+2'-'PN-\)'

The autocorrelation coefficients C4 and C(k) are defined
as follows:

C4 = cor (He, Ho) (4)

C(k) = cor(Uk],Hk2) (5)

k is the lag distance in (5). Set k = 1, 2,

C5 = C(1) (6)

C6 = C(2) (7)
Meanwhile, wavelet decomposition is an analysis of
scale- and location-dependence. There are high
correlations in intra-subbands. cA, cH, cV and cD denote
the approximate sub band, horizontal, vertical and
diagonal detail sub bands with size m'xn', respectively.
Define the following autocorrelation coefficients in the
wavelet domain.

Cl = cor (cHj, cH2)

C8 = cor (cH3, cH4)

C9 = a>r(cV,,cV2)

C10 = cor(cV3,cV4)

Cll = cor (cDi,cD2)

3, cD4)

(8)

(9)

(10)

(11)

(12)

(13)

Where

cXi = cX( 1: wf-1, 1:/?'), cX2 = cX(2: m\ 1 :ri\

cX3 = cX(l: m\ l:w'-l), cX4 = cX(l: m\ 2\ri\

XG{H,V,D}.

After extracting C1-C12 from the image, we apply
ANOVA [15] to choose the good measures according to
the steganographic system.

3 Experiments and Discussion

3.1 Experiments

Over 5000 images are taken from many different sources
and cover several categories. Some are downloaded from
http://www.freephoto.com and other websites. We store
these images as 8-bit grayscales and hide messages in
these carriers using the hiding methods SES [10], BPCS
[9] and the hiding tools BMP Secrets [14], Invisible
Secrets v4 [11] and Secure Engine 4.0 [12]. The
corresponding hiding ratios are 12.5%, 25%, 25%, 12%
and 12%, respectively. C1-C12 are extracted from the
carriers and the steganograms, and ANOVA techniques
are then applied to choose the good measures.
STPRtool and LS-SVMlab 1.5 are applied in our
experiments. The core of the STPRtool comprises
statistical pattern recognition algorithms [20] and the
algorithms of LS-SVMlab 1.5 are described in [21].
Training sets are chosen at random and the remaining sets
are tested. Classifiers are Fisher Linear Discriminant
(FLD), Quadratic Classifier (QC), Support Vector
Machines (SVM), Kernel Fisher Discriminant (KFD), and
LSSVM [20-24]. RBF kernels are applied and the kernel
parameters are 0.01 for SVM and KFD in STPRtool and
0.1 for LSSVM.

3.2 Results and Discussion
Table 1 lists the train accuracy and test accuracy for
carriers and steganograms, using the five classifiers. The
feature sets are {C1-C5} for SES, Invisible Secrets and
Secure Engine; {Cl, C4-C6} for BPCS and {Cll, C12}
for BMP Secrets. Table 1 shows kernel-based classifiers,
SVM, KFD and LSSVM have better train accuracy than
FLD and QC.
The ROC curves in Figures 2-6 indicate that the
classification performance is best in the steganalysis of
Invisible Secrets, followed by SES, BPCS and BMP
Secrets; the classification performance in the steganalysis
of Secure Engine is not as good as others. It is probably
attributed to our lack of knowledge regarding its hiding
methods, and so the feature set is likely not the best.
Figure 6 also indicates that the kernel-based classifiers,
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KFD and LSSVM are not as good as FLD and QC in
steganalysis of Secure Engine, although kernel-based
classifiers have a better train accuracy (table 1).
We note that the classification accuracy is related to
feature set, kernel parameter, image file format and image
type (gray or color). The details are presented in the
expanded version of this paper.

Table 1. Accuracy comparison of train and classification using
F(FLD), Q(QC), S(SVM), K(KFD) and L(LSSVM). The first
row for each classifier gives train accuracy for carriers; the
second row gives train accuracy for steganograms; the third
gives test accuracy for carriers and the last row gives test
accuracy for steganograms.

F

Q

s

K

L

SES

63%
99

58.5
98.9

69.4
99

67.8
98.9

89
97.6
85.4
87.5

91.6
96.6
85.8
85.6

87
97.4
85.4
93

BPCS

82.5
54

81.6
51.7

86.9
70

85.7
63.8

100
99.6
69.7
96

100
100
66.5
97.7

98.9
96.0
88

88.6

BMP
Secrets

87.8
84.4
85.6
85.8

86.2
88.8
86.3
89.5

94.7
94.8
86.1
88

96.3
95.8

L 85.7
86.9

92.0
90.3
88

88.9

Invisible
Secrets

65.8
100
66.8
100
73.2
100
71.9
100

98.7
98.9
97.8
97.3

98.7
99.0
97.6
97.2

96.8
97.6
95.2
96.8

Secure
Engine

61
87

57.4
90.1

73
86

64.4
90.1

98
97

80.2
65.4

100
97

82.2
50.5

97
97

80.2
73.3

Fig. 3. ROC curves in steganalysis of BPCS

Fig. 4. ROC curves in steganalysis of BMP Secrets

Fig. 5. ROC curves in steganalysis of Invisible Secrets

Fig. 2. ROC curves in steganalysis of SES Fig. 6. ROC curves in steganalysis of Secure Engine
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4 Conclusions
We presented a scheme for steganalysis based on
statistical correlations and learning machine classifiers.
Experimental results suggest that it can be applied
successfully in the steganalysis of several steganographic
systems. Overall, kernel-based classifiers give better train
accuracy and test accuracy than the other classifiers,
except in the steganalysis of images created using Secure
Engine.
Steganalysis is a very challenging problem and, in our
view, the successful development of a steganalytic tool
will likely rely on multiple steganalytic algorithms and
their independent decisions.
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Abstract

Feature selection has been an interesting issue in text
categorization up to now. Previous works in feature
selection often used filter model in which features, af-
ter ranked by a measure, are selected based on a given
threshold. In this paper, we present a novel approach to
feature selection based on multi-criteria of each feature.
Instead of only one criterion, multi-criteria of a feature
are used; and a procedure based on each threshold of fea-
ture selection is proposed. This framework seems to be
suitable for text data and applied to text categorization.
Experimental results on Reuters-21578 benchmark data
show that our approach has a promising scheme and en-
hances the performance of a text categorization system.

1 Introduction

Feature selection is an interesting issue recently in ma-
chine learning and plays an important role in text cate-
gorization [1],[2],[3]. Up to now, there has been two
most common approaches in feature selection: the filter
and the wrapper [4],[5] approach. In the filter approach,
features are chosen based on a given threshold of a spe-
cific measurements; the measurements should be one of
four types: information, distance, dependence and con-
sistency measures [6]. The wrapper model [5] choose
features based on the accuracy of a classifier: features
which achieve highest the accuracy of the classifier are
selected. When the number of features increases, the
wrapper method is impractical since the time of building
the classifier; instead, the filtering approach is usually
chosen because it is easy for implementing and indepen-
dent of classifiers.

Feature selection for text categorization often applied
the filter approach [2],[3]. Filter approach often uses one
of the existing measurements, e.g. document frequency,
information gain, mutual information as the measure-
ment for filtering features [1],[2],[7],[8]. However, text
has it own characteristics of linguistics such as seman-
tics, syntax, thesaurus, etc; in other words, text has
multi-criteria for evaluating its importance or weight in

a document. Therefore, it seem to be suitable to apply
several measurements for the same feature and the fea-
ture selection process is then implemented by the filter
approach. In this paper, we propose a novel approach to
the feature selection problem based on multi-criteria of
features in text categorization and investigated its advan-
tage on the benchmark text data.

The paper is organized as follows. Section 2 presents
a novel framework for feature selection problem base on
multi-criteria of features. The proposed framework is
applied in text categorization in Section 3. Experimental
results in Section 4 show the performance improvements
of our approach. Discussions and conclusions are drawn
in Section 5.

2 A Novel Framework for Feature Selection
2.1 The EFS procedure

The feature selection problem in text categorization
can be stated as follows: Given a set X consisting of n
features xi,X2,...xn, the problem in feature selection
is to choose the optimal subset S of X (\\S\\ <C \\X\\)
with highest effectiveness for the system.

To solve this problem, our basic idea is to filter fea-
tures based on a procedure of multi-criteria ranking for
terms (terms in text categorization are equivalent to fea-
tures). Each feature, according to a criterion, will be
weighted with a term weight; thus, with t criteria, we
will have t ways of ordering features as follows. The
feature selection problem can be stated mathematically
as follows.

Choose a proper subset of X, given a set of crite-
ria # i , . . . , 0u within which each criterion determines a
ranking of X. Formally, we have:

Criterion 6X : xai^) r ^ • • • d±ex £<n(n)

Criterion 6t : xat{l) -<dt • • • -<et x<rt(n)

where &i is a permutation of the set { 1 , . . . , n}, and -<et
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is the order relation based on criterion Oi.
After ranked X according to a multiple criteria as

above, for each criterion Oi, we select a subset Si of X
based on a threshold 7*. Then the set of selected terms is
defined by

S=\JSt (1)
2 = 1

Algorithmically, the EFS procedure for feature selection
is depicted as in Figure 1.

Procedure EFS(^ - original feature set, ^-optimal fea-
ture set, T\ , . . . , rt - threshold values)

for i =1 to t loop

Step 1. Ranking all features based on criterion O
Step 2. Choose the first features based on rf
Step 3. Return Sf

end loop;
S <- S1US2U"-USt;

Return 5

Fig. 1. The EFS procedure for selecting the optimal feature
subset

2.2 How to choose the threshold for each criterion?

There is a question raising in the EFS procedure:
How to choose the subsets of features based on thresh-
old values ?. Intuitively, suppose that for each criterion
Oi, the optimal subset is SQ^, the final subset should
be obtained by combination of optimal subsets SOpu,
Sopt = Soptl U • • • U Soptn Finding the optimal sub-
set for each criterion is also very difficult problem. In
addition, it depends on the data type and characteristics
of the problem under consideration. Thus, the threshold
values should be approximated by experiments.

Among the criteria of feature in the problem un-
der consideration, there must be a principal or pri-
mary criterion regards to the problem, denoted 0p, 0p e
(# i , . . . , 0t). It should be reasonable to choose the opti-
mal subset Soptp as the "core" set firstly and then other
subsets are added increment ally to the core set. Finally
the optimal subset obtained could be approximated as

(2)

3 Application to Text Categorization
3.1 Measurements of Text Data

Given a set of categories C — {ci}^, features in text
categorization usually are selected by one of the follow-
ing measurements.

1. Document frequency criterion: Features are se-
lected by their frequencies in document, with a
threshold.

2. Class-based criterion: Select features based on
their frequency in a class.

3. Information gain measure: The information gain
of term x is given by [1],[3]:

IG(x) = -

4. Mutual information measure: Mutual information
of term t is given by [1],[3]:

(4)

There are other measures for feature selection, for exam-
ple, chi-square and odd-ratio ... [1],[2],[3]

3.2 Naive Bayes Classifier

The naive Bayes algorithm is viewed as the baseline
algorithm for text categorization recently [2],[3]. It can
be briefly described as follows.

Given m classes C = (ci, C2,.. . , cm), with a docu-
ment d\ our problem is to build a classifier a that can
assign the document dr to a class. Suppose a document
6! consisting of terms x\, x2i.. • xn. The naive Bayes
algorithm calculates the probability of a class belonging
to each document by the following formulation:

n

- J]P(a:i|ci)P(ci). (5)

Thus, the class of document d! is calculated by the fol-
lowing formula,

a(d') =arg max P(ci\d).
i 6 [ l m ]

(6)

4 Experimental Results
4.1 Real-world Data Set

To examine our proposed method, we used a standard
text data set Reuters-21578 l. The top 10 categories were

lThis data set can be obtained from
http://www.daviddlewis.com/resources/testcollection/reuters21578
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Table 1. Details of top 10 categories of Reuters-21578 data
set

Table 2. The contingency table for a category

Category
Earn
Acq

Money-fx
Grain
Crude
Trade

Interest
Ship

Wheat
Corn

#training docs
2,877
1,650
538
433
389
368
347
197
212
181

#testing docs

1,083
719
179
149
189
117
131
89
71
56

Total 7,769 3,019

chosen for implementation; they are described in Table
1. Reuters-21578 data set is preprocessed by removing
common words such as the, a, an, etc in the stop list,
words are stemmed by the Porter algorithm. After pre-
processing, the number of vocabulary is 19,791 words.

In our experiments, we chose two standard methods
in feature selection, all terms (that is method containing
all terms in vocabulary) and feature selection based on
mutual information measure. For easily understanding
later, we called the first case all term method and the
second case the baseline method.

In the baseline method, mutual information measure is
considered as the most common measure used in feature
selection [11],[1]. Thus, we take it as the principal crite-
rion 9P and Soptp is taken by a threshold of mutual infor-
mation measure. The most threshold using this measure
is ~ 1/10 vocabulary [7], [11]. Thus we chose the num-
ber of vocabulary was 2,000.

To compare our method with the baseline method and
all term method, we used two criteria, the mutual in-
formation and class-based frequency. The principal cri-
terion here was mutual information measurement. A
threshold for the principal criterion was T\ = 2,000 and
two thresholds for class-based frequency measure were
selected, r2 = 100 and r2 = 200, respectively. For
convenience, we called the first case in the our proposed
method the EFS-100 and the second the EFS-200. The
number of terms in the EFS-100 and EFS-200 are 2,314
and 2,619 terms respectively.

Experiments are executed in SunOS 5.8 operating sys-
tem, Perl, sed, awk, C programming languages and lib-
bow library [12].

4.2 Performance Measures

Conventional performance measures in text catego-
rization are precision/recall, Fi measure and break-even
point (BEP). They based on two basic measures pre-

Category Ci

Classifier predict YES
Classifier predict NO

Human assign
YES

(H

Human assign
NO
bi
di

cision and recall. Mathematically, they are expressed
through the contingency table as in Table 2, for each
category c ,̂ the precision Pi and the recall Ri are de-
fined as follows, Pi = a,i/(ai + bi) and Ri — ai/(a,i +
Ci). Macro-averaging performances of the system are
given by: macro-P = $ ^ = 1 Pi/k and macro-i? =
SiLi Ri/k. Microaveraging performances are calcu-
lated by, micro-P = 2 i = i a * / S i = i ( a i + &*)> a n d

micro-i? = Y%=i a«/5Z?=i(a* + <*)- Fi *s defined as
Fi = 2PR/(P + R). BEP measure is the point that
P = R, this point is often calculated by taking the av-
erage of P and R. The macro- and micro-Fi and BEP
are calculated by replacing P, R with the corresponding
macro and micro of P, R.

Macro-averaging and microaveraging of Fi and BEP
are treated as the measures to compare performances of
text categorization systems.

4.3 Experimental Results

Table 3 shows the results of BEP and F1. Results
indicated that both two proposed methods the EFS-100
and the EFS-200 had always higher performances than
the baseline and the all term methods.

The macroaveraging BEP for the EFS-100 is 69.26%
vs. 68.13% when using the all term method and 68.69%
when using the baseline method. In case of the EFS-
200, the macroaveraging BEP is 69.14%; it is higher
than both baseline and the all term methods but lower
than the EFS-100. The microaveraging BEP for both
proposed methods is the same (74.55%). It is also not
different from that for the baseline method (74.54%) but
higher than the all term method (72.74%).

In summary, our proposed method outperformed the
baseline method and the all term method, especially for
macro averaging measures. Furthermore, the results also
showed that the EFS-100 has better performance than the
EFS-200, it has been suggested that appropriate parame-
ters TI and T2 for our proposed method can be tuned for
achieving better performance

In order to compare performances of the system,
we compare macroaveraging measures of BEP and
macroaveraging of Fi . Results shows that with all 10
categories, the proposed method have higher perfor-
mances than using mutual information criterion and us-
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Table 3. BEP and F\ performance measures of Reuters-21578

Category

Earn
Acq

Money-fx
Grain
Crude
Trade

Interest
Ship

Wheat
Corn

macro ave
micro ave

BEP
all terms

97.65
96.45
76.54
50.34
80.00
79.15
72.52
62.92
31.76

L 33.93

68.13
72.31

baseline
97.47
96.04
75.98
49.49
78.09
84.62
68.96
60.00
40.85
35.40

68.69
74.54

EFS-100
97.43
96.60
76.54
51.04
78.51
84.12
70.23
59.55
41.13
37.50

69.26
74.55

EFS-200
97.38
96.66
76.19
51.50
78.51
84.12
70.23
59.55
39.72
37.50

69.14
74.55

all terms
98.10
96.48
76.92
59.76
81.40
82.59
73.00
67.00
39.82
35.89

71.10
73.34

baseline
97.91
96.21
75.98
54.42
79.67
85.59
73.83
67.58
49.24
46.40

72.68
73.86

EFS-100
98.04
96.67
76.54
57.47
79.43
85.60
73.38
68.75
48.39
44.02

72.83
74.06

EFS-200
98.04
96.67
76.30
57.41
79.43
85.60
73.38
68.96
47.83
44.30

72.79
74.03

ing all terms in both BEP and Fi . Macroaveraging
of BEP with proposed method is 69.26% vs. 68.13%
when using all terms and 68.69% when using mutual
onformation criterion; macroaveraging of F\ with pro-
posed method is 72.83% vs. 71.10% when using all
terms and 72.68% when using mutual information cri-
terion.

5 Conclusions

This paper proposed a novel feature selection ap-
proach based on the multi-criteria ranking of features in
text categorization problem. A general framework for
feature selection was proposed and applied to Reuters-
21578 data set. Experimental results shows that the pro-
posed method using multi-criteria of features instead of
using only one criterion as the baseline methods could
enhance the performance of the system, especially for
macroaveraging; in compared to methods using only one
criterion and whole vocabulary. This results is signifi-
cant and useful for feature selection in text categoriza-
tion problem.
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Abstract
One of the main problems with text classification sys-

tems is the lack of labeled data, as well as the cost of
labeling unlabeled data [1]. Thus, there is a growing in-
terest in exploring the combination of labeled and un-
labeled data, i.e., partially labeled data [2], as a way to
improve classification performance in text classification.
The ready availability of this kind of data in most appli-
cations makes it an appealing source of information.

The distributed nature of the data, usually available
online, makes it a very interesting problem suited to be
solved with distributed computing tools, delivered by
emerging GRID computing environments.

We evaluate the advantages obtained by blending su-
pervised and unsupervised learning in a support vector
machine automatic text classifier. We further evaluate
the possibility of learning actively and propose a method
for choosing the samples to be learned.

1 Introduction
Applications of text classification are ubiquitous,

since almost 80% of the information available is stored
as text. Thus, there is an effective interest in research-
ing and developing applications that better help people
handling text-based information. On the other hand, the
wealth of text information has made the organization of
that information into a complex and vitally important
task.

Most text categorization methods, e.g., K-Nearest
Neighbor, Naive Bayes, Neural Nets and Support Vec-
tor Machines, have their performance greatly defined by
the training set available. This is one key difficulty with
current text categorization algorithms, since they require
manual labeling of more documents than a typical user
can tolerate [3]. Thus, methods that need a small set of
labeled examples are currently being explored.

Labeling data is expensive but, in most text categori-
zation tasks, unlabeled data are often inexpensive, abun-
dant and readily available. Therefore, to achieve this pur-
pose, i.e., the use of relatively small training sets, the in-
formation that can be extracted from the testing set, or
even unlabeled examples, is being investigated as a way
to improve classification performance.

Seeger in [4] and Szummer in [2] present reports

on learning with unlabeled data, comparing several ap-
proaches. Text is represented using the Bag of Words
and text pre-processing tools are usually applied, such
as, stopword removal, low frequency word removal and
stemming. For a study on text pre-processing tools
please refer to [5].

The rest of the paper is organized as follows. Sec-
tion 2 focuses on the issues related to the use of par-
tially labeled data on text classification and proposes two
approaches. Section 3 presents the results obtained and
Section 4 presents some conclusions and future work.

2 Using Partially Labeled Data
To achieve the best classification performance with a

machine learning technique, there has to be enough la-
beled data. However these data are costly and some-
times difficult to gather. Therefore, using unlabeled data
for text classification purposes has recently been actively
investigated [6] [7].

In general, unlabeled examples are much less expen-
sive and easier to gather than labeled ones. This is par-
ticularly true for text classification tasks involving online
data sources, such as web pages, email and news stories,
where large amounts of text are readily available. Col-
lecting this text can frequently be done automatically, so
it is feasible to collect a large set of unlabeled examples.
If unlabeled examples can be integrated into supervised
learning, then building text classification systems will be
significantly faster, less expensive and more effective.

There is a catch however, because, at first glance, it
might seem that nothing is to be gained from unlabeled
data, since an unlabeled document does not contain the
most important piece of information - its classification.

Consider the following example to give some insight
of how unlabeled data can be useful. Suppose we are
interested in recognizing web pages about conferences.
We are given just a few conferences and non-conferences
web pages, along with a large number of pages that are
unlabeled. By looking at just the labeled data, we de-
termine that pages containing the word paper tend to
be about conferences. If we use this fact to estimate
the classification of the many unlabeled web pages, we
might find that the word deadline occurs frequently in
the documents that are classified in the positive class.
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This co-occurrence of the words paper and deadline over
the large set of unlabeled training data can provide useful
information to construct a more accurate classifier that
considers both paper and deadline as indicators of posi-
tive examples.

Some authors [8] refer to unlabeled data as back-
ground knowledge, defining it as any unlabeled collec-
tion of text from any source that is related to the classifi-
cation task.

Joachims presents in [9] a study on transductive S VM
(TSVM) introduced by Vapnik [10]. TSVM make use
of the testing set and extend inductive S VM, finding an
optimal separating hyperplane not only of the training
examples, but also of the testing examples [11].

The goal of active learning is to design and analyse
learning algorithms that can effectively filter or choose
the samples to be labeled by a supervisor. The incentive
in using active learning is mainly to expedite the lear-
ning process and reduce the labeling efforts required by
the teacher [12]. Schohn in [3] proposes a method to ac-
tively learn with SVM, exploring the examples that are
orthogonal to the space spanned by the training set, in or-
der to give to the classifier information about dimensions
not yet explored.

2.1 Background Knowledge and Active Learning

\Large margin

Small margin \Small margin

\Large margin

Fig. 1. Classifications task: positive examples marked with
4- signs; negative examples marked with — signs; and
testing examples (with small and large margin) marked
with black dots.

Figure 1 presents a classification example that we will
use to illustrate both proposed approaches: background
knowledge and active learning. Both approaches start
with the inductive SVM trained with the training set
available and add examples from the test set.

Background knowledge - Choose the testing exam-
ples classified by the SVM with more confidence (larger
margin) and incorporate them, possibly incorrectly clas-
sified, in the training set.

Active learning - Choose the 20 testing examples,
classified by the user/oracle/supervisor in which the
SVM has less confidence (smaller margin) and integrate
those correctly classified examples in the training set.
Both approaches have advantages and disadvantages,
and we expect to conjugate them to use the advantages
and mitigate the disadvantages. For an objective compa-
rison, we can use the following criteria:

1. User interaction: while the first approach is auto-
mated, the second approach needs some user inter-
action, since the selected items must be classified
by the supervisor;

2. Correctness of training set: the first approach
does not guarantee its correctness, since the added
examples are classified by the inductive SVM,
whereas in the second approach all examples in
the training set are (correctly) classified by the su-
pervisor;

3. Computational time: there is not a significant dif-
ference in the computational time used, however
the first approach can take longer, because the
examples are automatically classified and there is
no limit on the number of examples added;

4. Performance measured as detailed in Section 3:
the second approach has greater potential, since
the information added is more reliable, but has
limitations on the number of items the supervisor
can tolerate/is able to classify (20 in our case).

3 Results
Reuters-21578 collection was used with the ModApte

split publicly available at http://kdd.ics.uci.edu
/databases/ reuters21578/ reuters21578.html.

Table 1. Number of positive training and testing documents
for Reuters' most frequent categories.

Category

Earn
Acquisitions

Money-fx
Grain
Crude
Trade

Interest
Ship

Wheat
Corn

Training

2715
1547
496
395
358
346
313
186
194
164

Testing

1044
680
161
138
176
113
121
89
66
52
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Table 2. F1 measures for ModApte split (9603/3299) and Small split (20/3299) on baseline SVM and on both proposed approaches:
Background Knowledge (BK) and Active Learning (AL).

Category

Earn

Acquisitions
Money-fx

Grain
Crude
Trade

Interest
Ship

Wheat
Corn

Average

Baseline

93.99
88.94
60.72
75.00
72.73
64.92
58.46
65.62

68.47
68.29

71.72

ModApte Split

BK

94.42

89.69
60.99
76.07
74.36
65.62
60.30
66.67

69.03
81.87

97.31

AL

94.98
93.09
65.48
79.33
76.38
75.12
73.40
75.92

80.68
82.22

79.32

Baseline

86.24

48.36
14.95
25.94
26.23
26.60
14.77
7.50

41.29
33.77

32.57

Small Split

BK

87.40
44.43
99.62
12.57
16.25
9.17
9.71
7.33

4.67
3.88

29.50

AL

90.41
52.50
62.45
21.29
20.94

58.41
23.71
15.84

63.81
52.80

46.21

Reuters-21578 is a financial corpus with news articles
averaging 200 words each. Example categories are trade,
earn or crude. In this corpus there are about 12000 clas-
sified stories into 118 possible categories. The ModApte
split was used, using 75% of the articles (9603 items)
for training and 25% (3299 items) for testing. Table 1
presents the ten most frequent categories and the num-
ber of training and testing examples, comprising 75% of
the items.

In addition to ModApte split, a Small split was also
tested. The testing set was exactly the same for the
sake of comparison, but the training set, instead of 9603
examples was randomly reduced to 10 positive examples
and 10 negative examples. The idea was to reproduce a
real situation in which a real user would be asked to pro-
vide these 20 examples.

The simulation results were evaluated using Fl mea-
sure, which combines both Precision and Recall. Pre-
cision is the percentage of predicted documents for the
given topic that are correctly classified (1).

Recall is the percentage of total documents for the
given topic that are correctly classified (2).

Precision =
categories found and correct

total categories found (1)

Table 2 presents Fl measures for ModApte split
(9603 training examples and 3299 testing examples) and
for Small split (20 training examples and 3299 testing
examples) on baseline SVM and on both proposed ap-
proaches: Background Knowledge and Active Learning.
Fl values were preferred to analyse the methods' perfor-
mance, since they fuse precision and recall values.

Where Backgroung Knowledge is concerned, there is
an improvement of 3% (from 71,72% to 73,86%) for the
ModApte split, but not for the Small split, where there
is a decrease (from 32,57% to 29,50%). For this ap-
proach to be successful the baseline classifier can not be
too weak, since it will be responsible for classifying the
testing examples. That is not the case with Small split.
With only 20 examples the initial classifier is not accu-
rate enough to determine new training examples.

With active learning the improvement is more rele-
vant (improvement of 40%, from 32.57% to 46.21%) on
the Small split than on the ModApte split, a predictable
outcome, since the training set was doubled (20 initial
examples plus 20 examples actively chosen to be classi-
fied by the supervisor).

In what ModApte split is concerned this active ap-
proach improves 10% the baseline results (from 71,72%
to 79,32%).

Recall =
categories found and correct

total categories correct

2 * precision * recall
r l = :—: —

precision + recall

(2)

(3)

4 Conclusions and Future Work

The results presented in the previous section are en-
couraging to the improvement achieved by the introduc-
tion of unlabeled documents' information in the learning
procedure. The introduction of background knowledge
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by the SVM classified testing examples should not be
used with small training sets, however it can constitute
a slight improvement when the baseline classifier is not
too weak.

The proposed margin-based active learning method
has potential to substantially improve performance when
small training sets are available. This conclusion is very
important in text classification tasks, since usually there
is a small number of classified examples and a huge
number of unlabeled ones. Further testing in the hybrid
conjugation of both proposed methods is also foreseen.

Future work will deal with the theoretical foundations
of these experiments and research on use of data grid
technology to make use of physically distributed data
sources.

The motivation behind the use of unlabeled or par-
tially labeled data has to do with its readily online avail-
ability. To effectively explore the wealth of data a grid
infrastructure has to be taken advantage of. Not only
the most obvious data grid infrastructure, but also the
crucial resource grid. Yet another appealing issue to be
analysed has to do with the possibility of distributing the
learning methods computational load. Using a service
grid it would be possible to not only to exploit the un-
used computational power in an intranet, but also to in-
terchange and compare methods with other researchers
on the internet.
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Abstract
The data integrity in computer security is a key
component of what we call trustworthy computing,
and one of the most important issues in data
integrity is to detect and correct error codes, which
is also a crucial step in software and hardware
design. Numerous methods have been recently
proposed to solve legal-codes of the cyclic-code
generated polynomial g(x). We think that a
better approach for this purpose is to solve the legal-
codes by finding the roots of the cyclic-code
generated polynomial. However, as it is well known,
finding roots of polynomials of high degree in the
modulo-g space GF(q) is very difficult. In this paper
we propose a method to solve the roots of cyclic-
code generated polynomial by using evolutionary
computation, which makes use of randomized
searching method from biological natural selection
and natural genetic system.

1 Introduction
With the fast development of computer, there are
more and more demand on computer application in
all fields, and the trustworthy computing play more
and more important role in the software design and
network communication. The computer detecting
error codes and correcting error codes is the basic
demand of trustworthy computing, therefore, the

computer detecting error codes and correcting error
codes is of significance to trustworthy computing
and to computer security. The precise bits of
detecting error codes and correcting error codes111

are 64 bits nowadays in MILKWAY-II computer
while there was only 1 bit in the past, and in the
future, the spaceflight technology of shipping
persons and GPS will all request higher capacity of
error-correcting and error-detecting. Therefore, we
need more scientific and more complete trusted
computing means. This paper introduces
evolutionary algorithm with simulative biologic
genetic evolution through population crossover and
mutation to attain the solutions of problem, and to
solve the roots of exponential cyclic-code generated
polynomial g(x) in modulo-^ space GF(q).

2 The Theory of Evolutionary Computation

The method of evolutionary computation121 is a
random searching method referencing biological
natural selection and natural genetic mechanism. It
includes genetic algorithms (GAs), evolution
strategies (ESs), evolutionary programming (EP)
and genetic programming (GP). It is also a new
method to solve problems through combining nature
genetics with computer science.
If we consider an optimizing problem as following:

min{/(jc) | x e X}

Foundation item: This work was supported by the National Natural Science Key Foundation of China
with the Grant No.60133010 and the National Research Foundation for the Doctoral Program of Higher
Education of China with the Grant No.20030486049.
Biography: Li Kangshun (1962-), male, Ph. D candidate, senior engineer, research direction:
Evolutionary computation, computer security.
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subject to
g, (*) = 0, / = l ,2,-. . , / i

where f(x) is an objective function in domain
X, VJC e XJ(x) > 0 o X is a feasible set of its
solutions. It can be a finite set (for example, a
combination optimization problem), it can also be a
subset of real space Rn (for example, continuous
optimization problem) etc.

3 Steps of Evolutionary Computation
Algorithm

Step 1: Producing the initial population
P(t) = {xl(t),x2(t), ,*„(/)} and computing

the corresponding function fitness values.
The basic genetic unit of biological
individual *,(/) is gene, and the genes are

ranked in sequence to form chromosomes.
The initial population13* consists of a certain
amount of chromosomes at the beginning of
the search. In fact fitness function is the
objective function of optimization problem,
the evolutionary algorithm will search for
the chromosome with maximum fitness.

Step 2: Selecting, crossing and mutating the
individuals. The individuals with the better
fitness replace the worse individuals,
namely, the selection operation embodies
the biological genetic process of fitted
survival. Crossover operation is the
exchanging of gene pieces of the male
parent chromosome and female parent
chromosome. Some parts of the genes are
changed in mutation operation

Step 3: Computing the fitness values of the new
individuals: the sub-generation generated by
the male parent and the female parent forms
a new generation (population), and then we
compute the all fitness values of a new
generation to prepare a new evolutionary
operation.

Step 4: Stopping the operation when the most
optimal fitness solutions are solved or stop criterions
are satisfied, and then output the solutions of the
chromosome; otherwise, return to step 1.

4 The Theory of Cyclic-Code Generated
Polynomial

4.1 Field114]

If F is a set included at least one element, and satisfy
the follow criterions:

a. All elements of F constitute a plus Abel-
group, and the plus unit element is marked 0.

b. All non-0 elements of F constitute a multiple
Abel-group, and the multiple unit element is
marked 1.

c. The elements of F satisfy the distributive and
associative regulations between plus and
multiple as follows:
a(b+c)=ab+ac
(b+c)a=ba+ca

where a9b,c e F, so we call Fa field.

4.2 GF(q) -Field

GF(q) is a field which satisfies the following
criterions

a. The GF(q) includes q elements

b. All results calculated by modulo-^ plus and
modulo-^ multiple with the elements of
GF(q) belong to GF{q).

Example 1: Assume
GF(9) ={0,1,2,3,4,5,6,7,8}, {8} and {7} belong to

GF(9), then (8+7) modulo 9=6 belongs to GF(9),

8*7 modulo 9=2 belongs to GF(9) too.

Example 2: Assume p{x) = x3 + x +1 is a
polynomial that cannot be divided by other
polynomial of GF(2), then the set consisting of 8
leaves of polynomials

{0,1, 3C,3C2,JC + 1 , X 2 + A : , X 2 + 1 , X 2 4 - J C 4 - 1 }

produced by modulo p(x) form a finite set

GF(23) of 8 degrees.

Therefore, we know that the GF{q) is a plus

cyclic group and a multiple cyclic group.
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4.3 Cyclic codes[161

In N-dimensional linear space Vn in field GF(q), if

Vnk is a ^-dimension subspace, and to any

C,=(CW , ,CM_2 , . . . ,C0)GFW , there is

Q=(C f l .2V . ,C05C f l ,)6F^, so we call Vnk a cyclic

subspace or cyclic code, where GF(q) is finite field

of q exponentials, it's clear thatK k is a ^-dimension

linear subspace of ^-dimension linear space.
From above, we know that cyclic codes in field
GF{q) are linear grouping codes which every code

has cyclic feature. Therefore, we can get another
definition of cyclic codes:
Assume that C is a linear and a = (a0,ax,.-..,«„_,) is a

legal code of C, a new code is formed by shifting the
elements along one place and taking one off the end
and putting it on to the beginning, then we get
b = aT = (ana2,...,an_]9a0), and b is a legal code of C

too, so we call C a cyclic code.
For example, suppose a cyclic-code generated
matrix and a checkout matrix of Hamming code C
are as follow:

1000101"
0100111
0010110
0001011

From the first line of generated matrix based on
left moving a place, we get 16 codes (1000101)
(0001011) (0010110) (0101100) (1011000)
(0110001)(1100010)
(0100111) (1001110) (0011101) (0111010)

(1110100) (1101001) (1010011) (1111111)
(0000000)
From these codes we can easily see that if C, is the

code of C , moving cyclic code leftward or
rightward a place, we can also get the code of C. So
this group of linear grouping code is cyclic code.
Assume C = (C/).),Cw_2,...,C0) is a code of [n,k] cyclic
codes, the corresponding polynomial is
C(x) = cn_lx"-1 +Cn_1x

n-2 + '- + C0 . It is called the

polynomial of code C (or code polynomial).

4.4 The cyclic-code generated polynomial [3,4,6,7]

G=
1110100

0111010

1101001

Assume f(x) an n -exponential polynomial on
GF(q) , and g(x) the first 1-coefficient factor of
f{x), namely, / (*) = g(x)h(x).
A set: / = {m(x)g(x) | dm(x) <n-\- dg(x)}, where d

is exponential numbers of polynomial. Then, we call
g(x) the generated polynomial of/ , namely, / is
generated by g(x).

Assume g(x) a cyclic code (polynomial), then
we call it the cyclic-code generated polynomial.
There are two important theories of solving legal
codes as follows:
Theory 1: C(x) is the cyclic legal code if and only

if C(a,)=0,/ = lA-»,/f-*. Where at is the

root of g(x) (/ = 1,2,- ",n-k)

Theory 2: Assume C(x) is the cyclic code,
cn-PCfl-2»'"'co a r e the corresponding

coefficients of C(x) , and

C(a) = 0,/ = 1,2,-•-,«-&. Where ai is the

root of g(x) ( i = 1,2,",n-k ), and

a. * aj (i * j) . Then, we can solve the

values of <:„_,,crt_2,•••,c0 through solving

= 0,

and the cyclic legal code is (co,c,,-••,£„_,).

Therefore, we can use the roots of cyclic-code
generated polynomial g(x) to construct the cyclic
legal code C. But the difficulty in constructing
cyclic legal code C is how to solve the roots of
cyclic-code generated polynomial. But general
method to solve the roots is to factor cyclic-code
generated polynomial, as we know, this method is
infeasible for solving the roots of high-exponential
polynomial. To resolve this difficulty, in the next
section we will propose a feasible method on how to
use evolutionary computation to solve the roots of
cyclic-code generated high-exponential polynomial

a"'',a

a,-',a

n-\

^n-k '

n-l

n-2

2 »

a k
i - 2

,a2

1

,1

a j

c

c

c
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5 The Algorithm of Solving the roots of
Cyclic-Code Generated polynomial by
Evolutionary Computation

Assume g(x) is a cyclic-code generated polynomial,
then we convert the solving problem to a single-
objective optimal problem as following,

subject to x e GF(q) and g(x) > 0

Because the field GF{q) is the modulo-^ field,
the method of finding optimal solutions is more
difficult than classical method of evolutionary
computation. Therefore, we have to improve the
algorithm of evolutionary computation as following:
Step 1, initialize population Po, set t = 0, produce n

integral individuals Po = {or0,} , / = 1,2,-• • N at

random, and calculate the function fitness values of
the corresponding individual, and sort the modulo-^
values in the order from small to large.
Step 2, Select some individuals to form a
reproduction pool
/> ={«',}, i = l,2,---ro

Step 3, crossover the individuals of Px

where jr/?, = q9 0 < pi < q are random number,

Step 4, use new individual to mutate the parents. If
the function fitness value of independent a 2 is
better than the worst modulo-^ value calculated by
step 1, then, use a2 to replace the corresponding
individual, otherwise, return to step 3.
Step 5, If the fitness value of function ||C7(JC)|| < 1010

or / > T is reached, output the modulo-^ individuals,
and stop the running. Otherwise, return to step 3.

6 Numerical Experiments

In this section, we apply evolutionary computation
to solving the roots of cyclic-code generated
polynomial in a special modulo-g field GF(q) to
indicate that we can use this method to replace
traditional method in which factor the polynomial by

artificial operation to solve the roots in this complex
modulo-^ field GF(q).

Experiment 1: Suppose the length of a code 14,
namely, n=14, and the places of checking-code is
4,so n-k equals 10, the cyclic-code generated
polynomial is as following:

g(x) = x14 + 4xn + lxw + 6x9 + 4xy + x +1 = 0

subject to g(x) > 0 and 1 < x < 1000, x e GF(2*)
we set maximum iteration times r=20000, after

running 543 times the 10 roots are attained as in the
following table

No.
1
2
3
4
5

Root
49
985
129
689
33

No.
6
7
8
9
10

Root
681
41
993
681
105

Experiment 2: Suppose the length of a code 14,
namely, n=14, and the places of checking-code is
2,so n-k equals 12, the cyclic-code generated
polynomial is as following:

g(x) = x*+ 3x7 + x6 + 5*3 + 3x2 + 2x +1 = 0

subject to g(x) > 0 and 1 < x < 1000, x e GF(2y)
we set the maximum iteration times T= 15000, after
running 148 times the 12 roots are attained as in the
following table

No.
1

2

3
4

5
6

Root

993

757

989

65

13

73

No.
7

8

9
10

11

12

Root

25

997

785
21

13

77

Through the analysis of the above experiments, we
conclude that this method has at least two
advantages, compared with the method of traditional
manual factorizing polynomial. The first is that
using evolutionary algorithm to solve the roots of
cyclic-code generated polynomial can save much
time, it only takes some minutes to solve the roots,
which is impossible by factorizing the polynomial in
such short time; the second is that this method can
solve all the roots of the polynomial, while using the
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method of factorizing the polynomial is difficult to
solve all the roots of the cyclic-code generated
polynomial, sometimes not even a single one.

7 Conclusions

This paper proposed an innovative method to solve
the roots of the cyclic-code generated polynomial in
the complex modulo-^ field GF(q) by using
evolutionary computation. Through the experiments
and the theoretical analysis, this method is the best
method to solve the roots of this type of polynomials
up to now, and authors haven't found anyone who
proposed such high performance method. Therefore
this method will change the method that only factor
the cyclic-code generated polynomial of high
exponential to find the roots manually in modulo-^
field GF{q), and it will also resolve the difficult
problem of having roots but could not be solved. So,
it extended the application of evolutionary
computation in computer security, it also enhanced
the reliability of the trustworthy computing at the
same time.
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Abstract
This work describes ongoing multidisciplinary research which
aims to analyse and to apply connectionist architectures to the
interesting field of computer security. In this paper, we present
a novel approach for Intrusion Detection Systems (IDS) based
on an unsupervised connectionist model used as a method for
classifying data. It is used in this special case, as a method to
analyse the traffic which travels along the analysed network,
detecting anomalous traffic patterns related to SNMP (Simple
Network Management Protocol). Once the data has been
collected and pre-processed, we use a novel connectionist
topology preserving model to analyse the traffic data. It is an
extension of the negative feedback network characterised by the
use of lateral connections on the output layer. These lateral
connections have been derived from the Rectified Gaussian
distribution.

1 Introduction
The identification of intrusions is a difficult problem due
to the dynamic nature of systems and networks, the
creativity of attackers, the wide range of computer
hardware and operating systems and so on.
This complexity increases if we talk about distributed
network-based systems and insecure networks as Internet.
An attack and intrusion to a network would end up
affecting any of the three computer security principles:
availability, integrity and confidentiality, exploiting for
example the Denial of Service, Modification and
Destruction vulnerabilities [1], Further, network intruders
are constantly updating their attack technology.
For these reasons, intrusion detection systems have
become a required element in addition to the computer
security infrastructure of most organizations. Intrusion
Detection (ID) is a field focused on the identification of
attempted or ongoing attacks on a computer system or
network. The accurate detection in real-time of computer
and network system intrusions has always been a
complicated and interesting problem for system
administrators and information security researchers.

Intrusion Detection Systems (IDS) are software or
hardware systems that speed up and automate the process
of monitoring the events which take place in a computer
system or network, analyzing them to identify security
attacks.
There are two main models to analyze events for
detecting attacks: Anomaly detection (identifies activities
that diverge from known patterns for users) and Misuse
detection (based on the comparison of a user's activities
with the known behaviors of attackers attempting to
penetrate a system) [2].

2 The Connectionist Analyzer Model
The Data Classification step used by this IDS model is
based on the use of the neural architecture called
Cooperative Maximum Likelihood Hebbian Learning [3,
4, 5]. It is based on the Negative Feedback Network [6].
Consider an N-dimensional input vector, x , and a M-
dimensional output vector, y , with w being the weight

linking input j to output / and let 77 be the learning

rate.
It can be expressed as:

0)

The activation is fed back through the same weights and
subtracted from the inputs.

(2)

After that simple Hebbian learning is performed between
input and outputs.
Lateral connections [3, 4, 5] have been derived from the
Rectified Gaussian Distribution [7] and applied to the
negative feedback network. The net result [3, 4, 5, 8] will
be shown to be a network which can find the independent
factors of a data set but do so in a way which captures
some type of global ordering in the data set.
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We use the standard Maximum-Likelihood Network [3,
5, 9, 10] but now with a lateral connection (which acts
after the feed forward but before the feedback). Thus we
have: a feed forward step (Eq. 1) follows by:

Lateral Activation y< ( / + j } = ^ + ^ _ Ay)y

M

Feedback:
i=\

Weight change: AWy = rj.yi.sign(ej)\ e} \p x

(3)

(4)

(5)

3 IDS Model
The aim of this work is the design of a layered system
capable of detecting anomalous situations for a computer
network. The information analysed by our system is
obtained from the packets which travel along the
network. So, it is a Network-Based IDS [2]. The
necessary data for the traffic analysis is contained on the
captured packets headers. This data can be obtained using
a network analyser.
When we talk about anomaly detection model we refer to
IDS which detect intrusions by looking for abnormal
network traffic. Anomaly detection is based on the
assumption that misuse or intrusive behaviour deviates
from normal system use [11, 12, 13]. In many cases, as in
the case of the attacker who breaks into a legitimate
user's account, this is a right assumption. The attacker
may behave differently than the regular user, so if the
IDS has established what the user normally does during a
session, it can determine that the user is not behaving in a
usual way and detect the attack.
So in summary, we have developed a system for detecting
anomalous traffic patterns, this includes proper attacks
and dangerous situations without being an attack.
Examples of these ones are management actions
performed by the network administrator, so in those
cases, the administrator will know that is a real attack or
just a false alarm in the case that he has performed it.

3.1 Structure of the Model
The structure of this novel layered IDS model is showed
in Fig.l and it is described as follows:
- First step. - Network Traffic Capture: one of the

network interfaces is set up as "promiscuous" mode, in
such a manner that it is capable of capture all the
packets which are travelling along the network.

Second step.- Data Pre-processing: the captured data
is pre-processed and used as an input data to the
following stage. We only select traffic based on UDP
(User Datagram Protocol) as it is explained later. This
means that in terms of TCP/IP (Transmission Control
Protocol/Internet Protocol) protocol stack, the model
analyses only the packets which use UDP at transport
layer and IP protocol at network layer.
Third step.- Data Classification: once the data has
been captured and pre-processed, the connection!st
model presented in section 2 is used to analyse the data
and identify the anomalous pattern.
Fourth step.- Result Display: the last step is related to
the visualization stage. Finally the output of the
network is presented to the administrator or person in
charge of the network security. Up to the actual
research state, this visualization tool displays data
projections highlighting anomalous situations clearly
enough to alert the network administrator as we show
in Fig.2, taking into account aspects as the traffic
density or "anomalous" traffic directions.

Fig. 1. Model Structure of the Layered IDS.

4 Real Data Set
The data pre-processing step is performed taking into
account the following:
There are several ports/protocols that can be considered
dangerous for the network security: SNMP, ICMP, TFTP
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and so on. Among those, we have actually focused our
effort in the study of SNMP because an attack based on
this protocol may severely compromise the systems
security. CISCO [14] found the top five most vulnerable
services in order of importance, and SNMP was one of
them.
The study of SNMP protocol is the reason why the system
selects packets based on UDP during the data pre-
processing layer.
This research will continue trying to extend the model to
cover several different situations, including other SNMP
anomalous situations and protocols, until to cover all of
them.
Data selection: we used only 7 variables extracted from
the packet headers among all the information captured for
each one:
- Timestamp: the time difference in relation to the first

captured packet.
- Source Port: the port of the source host from where the

packet is sent.
- Destination Port: the port of the destination host to

where the packet is sent.
- Size: total packet size (in Bytes).
- Protocol: in this case we have used values between 1

and 35 to identify the packet protocol.
- Source IP: numeric value which codifies the source

host IP address.
- Destination IP: numeric value which codifies the

destination host IP address.
In terms of IP address, we have fixed numeric values to
addresses included in each range in which the network is
divided, given special values to the multicast and
broadcast addresses.
This specific data set contains a scanning of network
computers for the SNMP (Simple Network Management
Protocol) port using sniffing methods. The aim is to make
a systematic sweep in a group of hosts to verify if SNMP
protocol is active in one of the following ports: 161, 162
and 3750. The sweep has been done using these port
numbers because:
- 161 and 162 are the default port numbers for SNMP, as

RFC 1157 [15] says: protocol entity receives messages
at UDP port 161, and messages which report traps
should be received on UDP port 162.

- We have also included a random port (3750) in the
sweep as a test random element.

Some features of the analysed traffic along the network
are the following:
- The SNMP packets are generated and sent inside the

own network, this is, it is an internal protocol and any
host out of the network can not introduce any packets

of this type in the network. This is mainly warranted by
the external security implemented through the firewall.

- We have taken into account all the traffic to ensure the
existence of both, anomalous and non-anomalous
situations. These have similar behaviours so the
differences are difficult to identify making it an
interesting problem to investigate.

5 Results
Fig. 2 shows traffic based on several protocols such as
BOOTP, NETBIOS, DNS, TIMED and SNMP.

Fig.2. Data projections displayed by the model identifying
anomalous situations.

Through a simple visual analysis of Fig.2 we can see that
while most of the traffic evolves in the same direction, it
is easy to identify three groups (Groups 1, 2 and 3.- Fig.
2) progressing in a different direction. We have study this
matter (identifying every represented point) and we have
concluded that these groups are related to the SNMP
sweep mentioned above. Each group identified in Fig. 2
contains points that represent packets sent to each port
included in the sweep (161, 162 and 3750) which is
embedded in data set introduced to the model. All the
packets belonging to SNMP protocol are contained in one
of these three groups and there are no packets belonging
to another protocol. In terms of performance results, our
model has identified the three anomalous situations
existing in the data set, as we known.
These graphical features allow the Network-Administrator
to identify the sweep anomalous situation just by looking.
The main feature that allows identifying the anomalous
patterns is the growth direction. It can be seen that it is not
parallel to the normal traffic direction.
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6 Conclusions
We have developed a novel layered system for detecting
anomalous traffic patterns including proper attacks and
dangerous situations without being an attack, which can
be considered an IDS. This work is actually focused on
the study of SNMP because an attack based on this
protocol may severely compromise the systems security.
We have applied different methods such as Principal
Component Analysis [6, 16] or Maximum Likelihood
Hebbian Learning for the classification step. Cooperative
Maximum Likelihood Hebbian Learning provides more
sparse projections than the others [5].
This is an ongoing research with the aim of showing the
viability of the system developed. Later on it will be
extended to cover a greater variety of anomalous
situations as dictionary attacks or spoofing.
Future work will be based on the study of different
distributions and learning rules to improve the whole
architecture and to improve the system in such a way that
it can be able to capture, process, classify and display the
data in real time.
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Abstract
This paper describes results concerning the robustness and
generalization capabilities of a supervised machine learning
method in detecting intrusions using network audit trails.
We also evaluate the impact of kernel type and parameter
values on the accuracy with which a support vector
machine (SVM) performs intrusion classification. We show
that classification accuracy varies with the kernel type and
the parameter values; thus, with appropriately chosen
parameter values, intrusions can be detected by SVMs with
higher accuracy and lower rates of false alarms.
Feature selection is as important for intrusion detection as it
is for many other problems. We present support vector
decision feature selection method for intrusion detection. It
is demonstrated that, with appropriately chosen features,
intrusions can be detected in real time or near real time.

1 Introduction
Intrusion detection is a problem of great importance
to protecting information systems security, especially
in view of the worldwide increasing incidents of
cyber attacks. Since the ability of an Intrusion
Detection System (IDS) to identify a large variety of
intrusions in real time with accuracy is of primary
concern, we will in this paper consider performance
of SVM-based IDSs with respect to classification
accuracy and false alarm rates, and their relation to
parameter selection and kernel type.
AI techniques have been used to automate the
intrusion detection process; they include neural
networks, fuzzy inference systems, evolutionary
computation, machine learning, etc. Several research
groups recently have used SVMs to build IDSs.
However, most groups that studied SVMs for IDS
considered only a small set of kernels and parameters
[1-5]. Although several groups have extensively
considered model selection in SVMs, optimal
parameters are usually domain specific. In this paper,
we present a methodology to evaluate the impact of
model selection (kernel types and parameter values)
on the performance of a SVM to detect intrusions.
Data mining techniques have been introduced to
identify key features that characterize intrusions [6-
8]. We performed experiments to rank the importance
of input features using support vector decision
function for each of the five classes (normal, probe,

denial of service, user to super-user, and remote to
local) of network traffic patterns in the DARPA data.
It is shown that using only the important features for
classification gives better performance.
Intrusion detection data used for experiments is
briefly explained in section 2. A brief introduction to
model selection using SVMs for intrusion detection is
given in section 3. In section 4, we analyze
classification accuracies of SVMs using ROC curves.
A brief introduction to feature selection and SVM-
specific feature identification is given in section 5.

2 Data Used for Analysis
A subset of the DARPA intrusion detection data set is
used for offline analysis. In the DARPA intrusion
detection evaluation program, an environment was
set up to acquire raw TCP/IP dump data for a
network by simulating a typical U.S. Air Force LAN.
The LAN was operated like a real environment, but
being blasted with multiple attacks [9,10]. For each
TCP/IP connection, 41 various quantitative and
qualitative features were extracted [6] for intrusion
analysis. Attacks are classified into the following
types.
Attack types fall into four main categories:
1. DOS: denial of service
2. R2L: unauthorized access from a remote machine
3. U2Su: unauthorized access to local super user

(root) privileges
4. Probing: surveillance and other probing

3 Model Selection
In any predictive learning task, such as classification,
both a model and a parameter estimation method
should be selected in order to achieve a high level of
performance of the learning machine. Recent
approaches allow a wide class of models of varying
complexity to be chosen. Then the task of learning
amounts to selecting the sought-after model of
optimal complexity and estimating parameters from
training data [11,12].
Within the SVMs approach, usually parameters to be
chosen are (i) the penalty term C which determines
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the trade-off between the complexity of the decision
function and the number of training examples
misclassified; (ii) the mapping function O; and (iii)
the kernel function such that

In the case of RBF kernel, the width, which implicitly
defines the high dimensional feature space, is the
other parameter to be selected [13].
We performed a grid search using 10-fold cross
validation for each of the five faults in our data set.

9*3 . 3

- 3 0 lo<C> 3

Fig. 1. SVM model for Normal.

Fig. 2. SVM model for Probe.

Fig. 3. SVM model for DoS.

- 3 B 10<C> 3

Fig. 4. SVM model for U2Su.

Fig. 5. SVM model for R2L.
First, we achieved the search of parameters C and /
in a coarse scale and then we carried through a fine
tunning into the five detection faults proper space.
Model selection results obtained through grid search
are given in figures 1 to 5 for normal, probe, DoS,
U2Su, and R2L, respectively.

4 ROC Curves
The Receiver Operating Characteristic (ROC) curves
are generated by considering the rate at which true
positives accumulate versus the rate at which false
positives accumulate with each one corresponding,
respectively, to the vertical axis and the horizontal
axis in Figures 6 to 10.
The point (0,1) is the perfect classifier, since it
classifies all positive cases and negative cases
correctly. Thus an ideal system will initiate by
identifying all the positive examples and so the curve
will rise to (0,1) immediately, having a zero rate of
false positives, and then continue along to (1,1).
Detection rates and false alarms are evaluated for the
five-class pattern in the DARPA data set and the
obtained results are used to form the ROC curves.
Figures 6 to 10 show the ROC curves of the detection
models by attack categories as well as on all
intrusions. In each of these ROC plots, the x-axis is
the false alarm rate, calculated as the percentage of
normal connections considered as intrusions; the y-
axis is the detection rate, calculated as the percentage
of intrusions detected. A data point in the upper left
corner corresponds to optimal high performance, i.e,
high detection rate with low false alarm rate [14].

Fig. 6. SVM detection accuracy for normal.
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Fig. 7. SVM detection accuracy for probe.

Fig.
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Fig. 9. SVM detection accuracy for U2Su.

Fig. 10. SVM detection accuracy for R2L.

5 Feature Ranking and Selection
Feature selection is an important issue in intrusion
detection. Of the large number of features that can be
monitored for intrusion detection purpose, which are
truly useful, which are less significant, and which
may be useless? The question is relevant because the
elimination of useless features (the so-called audit
trail reduction) enhances the accuracy of detection
while speeding up the computation, thus improving
the overall performance of IDS. In cases where there
are no useless features, by concentrating on the most
important ones one may well improve the time
performance of an IDS without affecting the accuracy
of detection in statistically significant ways.

The feature selection problem for intrusion detection
is similar in nature to various engineering problems
that are characterized by:

• Having a large number of input variables x = (JC/,
X2> • ••> xn) of varying degrees of importance to the
output y; i.e., some elements of x are essential, some
are less important, some of them may not be mutually
independent, and some may be useless or noise (in
determining the value of y)

• Lacking an analytical model that provides the basis
for a mathematical formula that precisely describes
the input-output relationship, y = F (x)

• Having available a finite set of experimental data,
based on which a model (e.g. intelligent systems) can
be built for simulation and prediction purposes

5.1 SVM-specific Feature Ranking Method

Information about the features and their contribution
towards classification is hidden in the support vector
decision function. Using this information one can
rank their significance, i.e., in the equation

F (X) = IWJXJ + b

The point X belongs to the positive class if F(X) is a
positive value. The point X belongs to the negative
class if F(X) is negative. The value of F(X) depends
on the contribution of each value of X and Wi. The
absolute value of Wi measures the strength of the
classification. If Wi is a large positive value then the
i* feature is a key factor for positive class. If W* is a
large negative value then the i**1 feature is a key factor
for negative class. If Wj is a value close to zero on
either the positive or the negative side, then the ith

feature does not contribute significantly to the
classification. Thus, a ranking can be done by
considering the support vector decision function.
We validate the ranking by comparing the
performance of the classifier using all input features
to that using the important features; and we also
compare the performance of a classifier using the
union of the important features for all fives classes.

Table 1 SVM detection accuracies
Class

Normal
Probe
DoS

U2Su
R2L

Classifier Accuracy (%)
SVMs

(41 features)
99.55
99.70
99.25
99.87
99.78

SVMs
(6 features)

99.23
99.16
99.16
99.87
99.78
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Table 2 Most important feature descriptions
Class

6 Most
Important
Features

Feature Description
• source bytes: number of bytes sent

from the host system to the
destination system

• dst_host_srv_count:: number of
connections from the same host
with same service to the destination
host during a specified time window

• count: number of connections made
to the same host system in a given
interval of time

• protocol type: type of protocol used
to connect (e.g. tcp, udp, icmp, etc.)

• srv_count: number of connections
to the same service as the current
connection during a specified time
window

• flag: normal or error status of the
connection

6. Conclusions
A number of observations and conclusions are drawn
from the results reported in this paper:
SVMs easily achieve high detection accuracy (higher
than 99%) for each of the 5 classes of DARPA data,
regardless of whether all 41 features are used, or only
the important features for each class are used. Using
the important features for each class gives the most
accurate performance.
A grid search for intrusion detection (Figures 1 to 5)
which seeks the optimal values of the constraint
penalty for method solution and the kernel width
(C,y) has been performed. We demonstrate that the
ability with which SVMs can classify intrusions is
highly dependent upon both the kernel type and the
parameter settings.
We note, however, that the difference in accuracy
figures tend to be small and may not be statistically
significant, especially in view of the fact that the 5
classes of patterns differ tremendously in their sizes.
More definitive conclusions perhaps can only be
drawn after analyzing more comprehensive sets of
network data.
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Abstract
Locking caches, providing full determinism and good per-

formance, are a very interesting solution to replacing conven-
tional caches in real-time systems. In such systems, tempo-
ral correctness must be guaranteed. The use of predictable
components, like locking caches, helps the system designer to
determine if all the tasks will meet its deadlines. However,
when locking caches are used in a static manner, the system
performance depends on the instructions loaded and locked
in cache. The selection of these instructions may be accom-
plished through a genetic algorithm.

This paper shows the impact of the fitness function in the
final performance provided by the real-time system. Three fit-
ness functions have been evaluated, showing differences in the
utilisation and performance obtained.

1 Introduction
To cope with the processing power demanded by to-

day complex engineering systems, real-time system de-
signers are resorting to high-performance contemporary
processors. These processors are designed with a ma-
jor goal: to provide good average execution times over a
great variety of computing needs. Unfortunately, in real-
time systems, what the designer needs is to guarantee
that the tasks must execute on time even under adverse
circumstances. To do so, it is necessary to estimate the
worst-case response time of every task in the system.

Given the speed disparity between the memory system
and contemporary processors, computer architects intro-
duce a cache memory in between. However, cache op-
eration makes hard to predict the execution times since
cache contents change dynamically, adapting to the exe-
cution path in each moment. Furthermore, during its ex-
ecution, the tasks working sets interferes with each other.
Therefore, to ease the analysis, it is feasible to lock the
contents of the cache memory with some predetermined
instructions such that the system provides not just better

*This work has been supported in part by the Spanish Common
Interministerial de Ciencia y Tecnologia under project CICYT-
TIC2003-08106-C02-01

performance but also predictability as shown in ref. 1
and ref. 2. The problem is that, as it is proved in ref.
3, determining an optimal placement of cache contents
by trying to maximise the number of times that the refer-
enced datum is in the cache memory is NP-hard. Hence,
it may be a good idea to apply some heuristics. Previ-
ous works published in ref. 4 show that using a genetic
algorithm represents a good solution for this particular
problem.

However, performance of locking cache is highly de-
pendant on the genetic algorithm characteristics. In ad-
dition, performance of real-time systems must be quan-
tified with several metrics: system utilisation, task slack
(distance from end of task execution to its deadline), or
average task slacks in the system.

This paper explores three different fitness functions,
and evaluates the performance they provide in terms of
system utilisation and slack time, two metrics commonly
used in evaluating real-time systems. The results will
illustrate which is the most adequate fitness function to
get the best value for each metric.

The remainder of the paper is organised as follows.
Section 2 introduces the genetic algorithm and its three
fitness functions. Section 3 illustrates the experimental
procedure. Finally, in Section 4 some conclusions and
future work are summarised.

2 Genetic Algorithm

2.1 Representation

Each individual is modelled as a binary vector of di-
mension n, where n is the number of memory blocks
occupied by all of the tasks. If a bit is set to one, the
associated memory block is to be loaded and locked in
the cache memory.

2.2 Fitness functions

The first fitness function will attempt to allocate more
blocks for those real-time tasks with lower priorities, try-
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ing to compensate the time lost due to the execution of
higher priority real-time tasks. Equation 1 shows the re-
sulting fitness function:

SA =

N

i = 2

2N~l (1)

where N is the number of tasks in the system, Ri is the
response time of each task, r ,̂ computed using CRTA as
given in ref. 5.

The second fitness function will try to provide a lower
processor utilisation at the system level.

(2)

where C[y the computation time of n includes all cache
effects.

The third fitness function tries to improve the average
slack time at the system level.

N

/c = Hr
with

(3)

(4)

where Ri and Di are respectively the response time and
deadline of T*.

2.3 Selection Criteria

Given any of the previous fitness function there are
two possible outcomes:

• The number of locked blocks required by the task
set is less than or equal to the cache memory size.
This is a valid individual.

• The number of locked blocks required by the task
set is greater than the cache memory size. This is a
non-valid individual, since even though the system
may provide acceptable response times, it does not
satisfy the intended requirements.

A rank-based selection is used, in which the individ-
uals are sorted according to two basic rules. If the indi-
vidual is valid, it is ranked according to its fitness value.
If the individual is not valid, it is ranked according to the
number of blocks used; the lesser the number of blocks,
the better the individual.

2.4 Crossover and Mutation

For crossover, two individuals are randomly selected
from the previous ranking. Both individuals are di-
vided in two ends, randomly selecting the splitting point.
Then, by exchanging the two portions to the right of the
cut-off point, two new individuals are created. Once the
crossover is done, the resulting new individuals may use
more cache lines than the cache memory has available.
However, to make a broader exploration of the search
space, those individuals are not discarded. Therefore,
mutation is applied by following one of three schemas:

• For individuals with a number of locked blocks
greater than cache size, the mutation procedure se-
lects at random a set of locked blocks and marks
them as unlocked, reducing the number of locked
blocks. The resulting individual may have a num-
ber of locked blocks that are greater, equal or
lower than the cache size.

• For individuals with a number of locked blocks
lower than cache size, mutation randomly selects
a set of unlocked blocks and mark them as locked,
increasing the number of locked blocks. The re-
sulting individual may have a number of locked
blocks greater, equal or lower than the cache size.

• For individuals with a number of locked blocks
equal than cache size, mutation randomly selects
a set of pairs, each pair with one locked block and
one unlocked block, and exchanges them, leaving
unchanged the number of locked blocks.

This policy allows the existence of non-valid individ-
ual, but also helps to keep its number low.

2.5 Initial population and tuning parameters

Although a genetic algorithm can explore all the
search space through crossover and mutation, selecting
adequately the initial population may help the algorithm
to find a sub-optimal solution with a lower number of
iterations. Due to the structure of the tasks, the ideal so-
lution is an individual with a number of 1 's equal to the
cache size; hence, the best solution includes a large se-
quence of consecutive l's. The population is initialised
with sequences of l's, randomly selecting the beginning.

Other parameter settings are: Population size: 200;
Number of generations: 5000; Probability of crossover:
0.6; Probability of mutation for individual with number
of locked blocks equal to cache size: 0.01; Probability
of mutation for individual with number of locked blocks
distinct to cache size: 0.001; Probability of selection of
the highest ranked individual: 0.1. The parameter set-
tings are based on results of several preliminary runs.
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They are comparable to the typical values mentioned in
ref. 6.

3 Experimental Procedure

There were 26 different setups, each with 3 to 8 tasks.
The code for each task is synthetic; it does nothing use-
ful but it has a mix of instructions such that it is easy to
generate different programs, which is adequate for the
purpose. Each experiment was tested using seven differ-
ent cache memories ranging from 64 lines to 4096 lines,
for 182 experiments comprising 770 tasks. In some of
the experiments, the footprint (the amount of memory
required) of the task set was smaller than the cache size,
which means that they will run as fast as possible, since
there will be no interference at all. Because of this, they
were discarded; the final number of valid experiments is
146 and the number of tasks is 610.

For each of the 146 experiments, three runs of the ge-
netic algorithm -one run for each fitness function- were
accomplished. For each run, the overall system utilisa-
tion, the per-task slack times, and, finally, the overall
slack time, were estimated.

3.1 Overall System Utilisation

Let N be the number of tasks in the system, the com-
putation time, C[, of each task, r;, is calculated using
CRTA. Assuming that task 7* has higher priority than
task Tj whenever i < j , the calculation of the computa-
tion times, are given by:

Then, the system average slack time is calculated by
means of:

C[ =

C[ =

(5)

i < N(6)

which takes into account the execution times of those
tasks whose priority is higher than the priority of the cur-
rent task.

The system utilisation, £//, is then given by:

N

i = i

1 N

Savg = -Tf / ^Si (9)

3.3 Statistical Analysis

With just the bare results attained in the experiments it
is not possible to declare, which fitness function is better,
so statistical analyses will be used. First, a comparison
of the statistical summaries is done; this is followed by a
paired-sample analysis, a procedure designed to test for
significant differences between two data samples where
the data is collected as pairs. Several statistical values
have been used to determine if there exist differences
between samples. In addition, three null hypothesis tests
have been done for each comparison. These are t-test,
sign test, and signed rank test.

3.3.1 Analysis of System Utilisation: Figure
1 shows a comparison of the average, median, lower and
upper quartile for the utilisation obtained from each fit-
ness function. It can be observed that function JA pro-
vides the largest (the worst) utilisation, while functions
JB and fc offers similar results. In order to determine if
there are significant differences between the utilisation
provided by fs and fc, a paired-sample analysis has
been performed. The analysis shows that the difference
between fs and fc is small but statistically significant,
giving lower utilisation (better performance) for the re-
sults obtained when using the fitness function /# .

Average

fc ""

Lower
quartile

fA

(7)

Median

fB fc v

Upper
quartile

fC

fa

3.2 Slack Time

Let TV be the number of tasks in the system, the per
task slack time, Si, is given by:

Dt

where A is the deadline of task 7*.

(8)

Fig. 1. Utilisation from each fitness function

3.3.2 Overall Slack Time: From Figure 2 it
can be clearly recognised than fc offers a large (better)
average slack than /A and fs- Regarding the compari-
son between / ^ and /# , Figure 2 presents contradictory
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results. Besides that, the paired-sample analysis for the
data coming from fA and fB does not help to decide
which of the two fitness functions provides better aver-
age slack. Albeit, it may be reasonable to say that both
fA and fB provide the same average slack.

Average

Table 1. Function selection criteria versus optimising param-
eter

Lower
quartile

Fig. 2. Average slack from each fitness function

4 Conclusions and Future Work
This paper showed the impact of three different fitness

functions over the results provided by a genetic algo-
rithm that selects the contents of a locking cache mem-
ory, which is used in a static way in a real-time system.
The first fitness function, fAt tries to minimise the aver-
age response time of the tasks. The second one, fB, tries
to minimise the global system utilisation. Finally, the
third one, fc, tries to minimise the average slack time.

The evaluation is based upon two metrics: global sys-
tem utilisation, U, and Overall Average Slack Time, S.

• Fitness function fB is statistically better than fc
whenever it is required to optimise the overall util-
isation. Fitness function fA presents worst utilisa-
tion than the other two functions.

• Regarding overall slack time, fitness function fc
offers the better performance, while there is no dif-
ference between fB and fA.

From the results it can be seen that none of the fit-
ness functions perform well in the two basic metrics,
although fitness function fc may be the best option to
get the optimal average slack and quasi-optimal utilisa-
tion. However, if the performance required for one of the
two metrics is a critical parameter, the system designer
should choose between fB and fc the one that it is more
appropriate to its particular optimisation interests. Table
1 gives the proposed selection criteria of fitness function.

Rank

First option
Second option
First option

Optimising
for utilisation

fB
fc
fA

Optimising
for slack

fc
}B or fA

fB or fA

The statistically significant but very small difference
between fB and fc concerning utilisation allows to ex-
pect that the combined use of the two fitness functions
in the same genetic algorithm, may bring a trade-off so-
lution for both metrics. Therefore, future work will in-
volve the development of a selection operator that con-
siders two or more metrics for different fitness functions
in order to sort the individuals.
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Abstract
This paper proposed a new perceptual digital watermarking
scheme based on ICA, SCS, the human visual system (HVS),
discrete wavelet transform (DWT) and the orthogonal vector.
The original gray image first is divided into 8X8 blocks, and
then permuted. A 1-level DWT is applied to each 8X8 block.
Each watermark bit is modulated by orthogonal vector, then
the watermark is add to the original image. Finally the I DWT
is performed to form the watermarked image. In the
watermarking detection process the independent component
analysis (ICA)-based sparse code shrinkage (SCS) technique
is employed to denoise, and make using of the orthogonal
vector character. By hypothetical testing, the watermark can
be extracted exactly. The experimental results show that the
proposed technique successfully survives image processing
operations, image cropping, noise adding and the JPEG lossy
compression. Especially, the scheme is robust towards image
sharping and image enhancement.

1. Introduction
The digital watermarking has been proposed as a
solution to the problem of copyright protection of
multimedia data in a networked environment. By the
term "digital watermark," we mean a signal which is
superimposed on the digital image, in such a way that
the following hold.
(1) The visual perception of the image remains
unaltered, and the watermark is unnoticed.
(2) We are in a position to detect a certain digital
watermark by examining the alterations caused by the
superposition.
(3) A great number of different digital watermarks, all
distinguishable from each other, can be produced.
(4) Distortion or removal of the digital watermark
through general image operations and manipulations
should be extremely difficult and, preferably,
impossible.
The satisfaction of the above-mentioned demands
provides a way to superimpose an "invisible"
watermark on images. On the other hand, we must

know that no watermarking scheme can survive all
attacks, and the watermarking scheme should associate
with the cryptography. A certain watermarking scheme
should be used under some circumstances. When it
comes to copyright protection, there are many
problems to solve. Because some issuses should be
solved before it applies to actual application. We think
for the copyright authorization a image should first
registers in the watermark authentication center, then it
is regarded as the protected image. When verifying a
image, the watermark authentication center should
extract the watermark based on the registration
information, or it is regarded as a counterfeit. Generally
this watermark model can applied to copyright
protection, or the watermark authentication center.

There are several techniques have been developed
for watermarking mainly in spatial domain and
frequency domain. In [1], three coding methods for
hiding electronic marking in document were proposed.
In [2]-[4], the watermarks are applied on the spatial
domain. The major advantage of the spatial domain
method is that the algorithm is sample and the the
major disadvantage of spatial domain watermarking is
that a common picture cropping operation may
eliminate the watermark. On the other hand the
frequency domain method is more robust than the
spatial domain method. So many researchers focus
their attentions on this method

The proposed scheme of this paper is based on ICA,
SCS, the human visual system (HVS), discrete wavelet
transform (DWT) and the orthogonal vector. This
method can exactly extract the watermark. Especially,
it can resist the signal enhancement operation.

This paper is organized as follows: section 2, section
3 and section 4 describes the HVS, the watermark
embedding and detection algorithm. In section 5
experimental results are shown. Finally, in section 6 we
draw the conclusion of this paper.

2. The Human Visual System (HVS)
The wavelet transform finds its way into the field of
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signal analysis. Compared with the traditional
transforms, the Fourier transform for instance, the
wavelet transform has an advantage of achieving both
spatial and frequency localization.
The DWT is very suitable to the human visual system.
In [9] the authors proposed a method calculating the
image masking and the JND (just noticeable
differences). It can be calculate through these terms:

A 0 . ' . J )

I . 00 ,if I * 0
0 ,J2 , if t = I
0.16 , if 1 - 2
0.10 , if 1= J

0 • «. J )

(2)

(3)

(4)

(5)

23'1

1 and 0 are the resolution level where 1=1, 2, 3
and the frequency orientation where 0=1, 2, 3. From
above we can get the JND :

(6)

The detail of the calculation can refer [5].

3. Watermark Permution And Embedding
We use a binary meaningful image of size 64x64. In
order to resist cropping operation, a fast two-
dimensional (2-D) pseudorandom number traversing
method is used to permute the watermark to disperse its
spatial relationship, i.e.

W ' = Permute (w, Key (K )) (7)

During the detection process we can extract w ' , and
then reverse w ' to W using :

W = InvPermute (W ', Key (K )) (8)

First we set two orthogonal vector SO and SI like
below:

SO = [0 1 0 0 1111 0 0 0 111 0 0]

si = [ 1 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1 ]

SO , SI are selected by the Zig-zig scan and then
projecting to one dimension, which can warrant this
method have a good virtue towards JPEG compression.
Patterns SO and si are so selected as to be
symmetric and orthogonal to each other. The
embedding process follow:
(1) For each 8x8 block we apply 1-level DWT, then
we get three detail subbands HL,LH,HH and one
approximate subband LL.
(2)select one detail subband of size 4x4, for example
HL. The coefficiens are modified :

HL<i,j)+alpha*JNE(i,j)*S0((i-l)*4+j)

ifW=0;

HL(i,j)+alpha*JND[iJ)*Sl((i-l)*4+j)
ifW' = l;

(9)

Where alpha is a positive number controlling the trad-
off between perception and the robust of the watermark.
For a image of size 512x512 we can embed 64x64
bits information. So three versions watermark are
embedded.
(3)Performing the IDWT and forming the watermarked
image T.

4. Watermark Detection
The watermark detection process need the original
image I .In the watermark detection process two-setp
detection is used.
(1) denoising the possibly corrupted image I .
(2) extracting the watermark.
(1) First step the PSNR of a given possibly corrupted
image! is caculated. If PSNR is smaller than a given
threshold PSNR 0 , then the independent component
analysis (ICA)-based sparse code shrinkage (SCS)
technique [7]] [8] is employed to model the denoising
problem. Therefore, the noisy image T can be denoted
As:

I = 1 + N = As + N (10)

Suppose only the observed data is given; the basis
matrix and the ICs can be obtained by first finding a
separating matrix w (with W "' = A ) via sparse
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coding [7]. Then, can be determined bys = WX . After
sparse coding, the noisy image I can be transformed
by means of w , and a noisy independent
component, s + N (in the ICA transformed domain),
can finally be derived as follows:

W 1 = WI + WN = WAs + WN = s + N (ID

Then, one can shrink s + N by means of g and then
get the cleaned version of s, which is represented as s",
where

^ = g ( s + N ) (12)

In general, the shrinkage function, is explicitly defined
[8] based on the sparse density distribution of noisy
independent components to have the effects that small
arguments are set to zero and the absolute value of
large arguments are reduced by an amount depending
on the noise level. In the third step, the approximated
host image T can be derived by an inverse ICA
transformation: I = As". After the estimated host image
is determined, it can be used for watermark detection.
(2) After the pre-processing, we then can extract the
watermark from image T, for each bit the algorithm
includes the following steps:

1) For the original image I and the watermarked
image! each 8 x 8 block we apply 1-level DWT, we
get three detail subbandsHL,LH, HH ,HL,LH,HH and
one approximate subband LL , LL .

2) using (13)

(13)
PHO = ABS (SUM ((HL - H L )• * SO ))

PHI = ABS (SUM ((HL - H ~ L ) * S 1 ))

W '(i , j) = 0; if PHO - PHI > 0

W '(i, j) = 1 ; if PHI - PHO > 0

one bit watermark can be extracted.

(3)Then we can extract 64 x 64 bits watermark. So the
extracted watermark W"' can obtain by

W ' = InvPermute (w , Key (K )) (14)

We define the similarity measurement between the
referenced watermark W and extracted
watermark W ' as

X (w(u)e w(i,j))
NC = (15)

Where iMxN i s the s ize of the watermark.

5. Experimental Results
We have performed experiments with the test images
Lena, Baboon, and Peppers of size 512x512. The
watermark "JLU" image of size 64 x 64. All the test
images and the watermark image are shown in fig.2. 18
commonly used attacks are adopted to test the
robustness of our method. These attacks included 1)
median filtering; 2) Wiener filtering; 3) sharpening
3times; 4) sharpening 4times; 5) Possion noise addition;
6) Salt noise addition; 7) enhanced brightness +50; 8)
enhanced brightness +100; 9) enhanced darkness +50;
10) enhanced darkness +100; 11)-14) JPEG
compression with quality factors of 90%, 80%, 70%
and 60%; 15) dithering; 16) rotation 1 degree; 17) scale
from 512x512 to 400x400; 18) scale from 512x512
to 128x128. It can be seen from the experience our
method receives good robustness under signal
enhancement operations, for example sharpening 3
times the PSNR is only 13.285 and the NC value is 1.
When sharpening 4 times the PSNR is 8.699 and the
NC can also get a high value 0.9031. Another signal
enhancement experience is enhanced darkness +50 the
NC is 1. When enhanced darkness +100 the NC is also
1. So from this results we can see our method is very
robust towards signal enhancement. Additionally, we
also test the robust under noise adding attack. Because
our method uses sparse code shrinkage (SCS)
technique, the experiences show it has a good
performance in denoising. The corresponding results
can also be seen from fig. 1.

We compare our method with the method proposed
in [6]. The strongly enhanced contrast experiences of
our method can get the value of NC is 1, and the
method proposed in [6] only get the value of NC is
0.97. When sharpening experiences, our method the
value of NC is 1, and the method proposed in [6] not
mentioned. It can be seen from table. 1 our method have
a better performance than the method proposed in [6],
especially under signal enhancement attacks.

M x N Fig.l. The detection response of results under 18 attacks.
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Fig.2. The test images are respectively Lena, Baboo, Peppers of size 512X512 and the watermark image of size 64 X 64.

Table.l.
Comparison robustness to JPEG lossy compression, PSNR, slightly enhanced contrast, strongly enhanced contrast, sharpening

3 times and cropping (1/4) of our method and the method prorosed in [6].
Image

Lena

Baboon

Peppers

Method

Proposed
in[6]
Our
method
Proposed
in[6]

Our
method
Proposed
in[6]

Our
method

JPEG (ratio3.3)

PSNR
NC
PSNR
NC
PSNR
NC

PSNR
NC
PSNR
NC

PSNR
NC

33.8
0.99
34.1
0.999
34.8
0.992

35.2
0.9995
34.1
0.99

33.9
0.999

PSNR

39.8

40.4

40.2

40.2

38.9

37.6

Slightly
enhanced
contrast

0.9985

1

0.9992

1

0.9982

1

Strongly
enhanced
contrast
0.973

1

0.980

1

0.968

1

Sharpening
3 times

No

1

No

1

No

1

Cropping (1/4)

0.7623

0.7942

0.7746

0.7931

0.7741

0.7602

6. Conclusion
In this paper, we proposed an adaptive watermarking
algorithm for binary image watermark. The proposed
algorithm is evaluated from the transparency point of
view and the robustness against some common
attacks, such as a JPEG compression, filtering, noise
corruption and cropping. The results show the
desirable features of proposed algorithm, especially it
shows robustness against signal enhancement. The
performance of the proposed algorithm is compared
with the algorithm proposed in [6], The comparison
results show the advantage of the proposed algorithm
over the algorithm in [6].
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Abstract

We simulate binocular eye movements in reading. We
introduce the 3-D edge features reconstructed from the
binocular foveated vision to determine the next fixation
point in reading. The next fixation point is determined
statistically from the feature points in the 3-D short-term
memory edge image. We show the effectiveness of sim-
ulating eyes movement based on 3-D short-term memory
image to realize humanlike robots.

1 Introduction

It is important to determine eye movement to real-
ize the vision of autonomous robot such as human vi-
sion. It is proposed to determine tasks and the view-
point according to it in the field of computer vision[l][2].
On the other hand, it is based on the psychological
experiments[3]that the viewpoint determine according to
the given tasks. On the other hand, it is one of important
problem that many psychologist studies[4]. It aims at re-
alizing the viewpoint movement in the task of reading.
The vision system used CCD device is realized based
on the foveated vision that the resolution in the retina
center is high and the resolution in the retina periphery
is low[5].

But it is not argued for the binocular eye movements in
reading. Human understands the 3-D world by comput-
ing the depth from the binocular foveated vision. Thus,
we realize the viewpoint movement in reading based on
the 3-D world derived from binocular eye movements.
In this paper, we realize binocular eye movements that
viewpoint moves in the wide region such as to search
the next line and word. We use the 3-D edge features re-
constructed from the foveated vision of binocular eyes to
determine the next fixation point in reading. It is argued
that human behaviour is related to human memory [6]. In
this paper, we introduce the 3-D short-term memory re-
lated to binocular vision. The next fixation point is deter-
mined statistically from the feature points saved on the
short-term memory. We show the effectiveness of simu-
lating eyes movement based on 3-D short-term memory
image to realize humanlike robots .

2 Foveated Vision
The center of the retina is called the fovea. Vision in

which resolution is low at the periphery of the retina and
high at the center of it is called foveated vision. Because
the log-polar mapping model varies its scale in rotation,
it is used widely as a image sampling model. Wilson
proposed the arrangement of the receptive field accord-
ing to the mapping model and explained the human sens-
ing facility related to the contrast[7]. The receptive field
is located on circles whose center is the center of the
retina. In order to realize the types of vision, it is nec-
essary that the resolution diminishes as the radius of the
circle grows larger. The eccentricity Rn of the nth circle
is defined in the following:

Rn = R0(l
2(1 - Ov)Cm

2 - (1 - Ov)Cmr (1)

Ro is the radius of foveated vision, and Cm is the rate
between the eccentricity and the distance from the retina
center to the center of the receptive field. Ov is the over-
lapping rate between the receptive fields in the neighbor.

3 Calculation of determining the camera directions
based on stereo vision

We describe the necessary technique to reconstruct the
3-D world based on binocular eyes.

3.1 Calculation of camera matrix

Camera matrix M is the translation matrix used to
translate from world coordinates to camera display. It is
defined using camera position, direction and focus and
image size. Camera matrix is calculated as the products
of the following four matrix.

M = T • Mi • M2 • M3 (2)

T is the translation matrix used to translate from the
point coordinate to the homogeneous coordinate . M\ is
the perspective translation matrix used to translate from
the homogeneous coordinate to the display in the 3-D
coordinate on the display. M2 is the matrix used to trans-
late from the 3-D coordinate on 3-D display to the 2-D
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coordinate on the display. M3 is the matrix used to trans-
late from the 2-D coordinate to the 2-D display. Camera
matrix of left camera and right camera is calculated in
the following.

ML=TL- ML1 - ML2 - ML3 (3)

MR = TR- Mm • MR2 - MR3 (4)

We calibrate using the method of Tsai[9] in the case of
simulating the eye movement using the real pan-tilt cam-
era.

3.2 Calculation of the points in 3-D space from binoc-
ular images

The point of the 3-D space P is represented using the
homogeneous coordinate as P\p] = P[pi,p2,P3,1]. If
/IL and HR are real and the coordinate on left image is
P\PL] = P\PLI,PL2, 1] and the coordinate on right im-
age is P\pL] = P[pz,i,PL2,1],

hL < PL1,PL2» 1 > = [< Pl,P2,P3, 1 > ML) (5)

hR < PR1,PR2, 1 > = [< Pl,P2,P3, 1 > MR] (6)

. Thus, the coordinate (pi,P2>P3) is calculated from
the right image < PR\,PR2,1 >, the left image <
PLI, PL2,1 > and the camera matrix ML, MR,

3.3 Determining of the camera direction from the fix-
ation point

The pan and tilt rotation angle < 0j,0j > and
< 0r,(pr > for the left and right camera are cal-
culated from the fixation point (pi,P2>P3) in the 3-
D world. The rotation center of the left camera is
(cl\,cl2,cl3) and the rotation center of the right cam-
era is (cri,cr2,cr3). The direction of the left camera
is X1 < tLi,iL2,iL3 > and the direction of the right
camera is X' < iRiyiR2jiR3 >. The direction of the
left camera Y1 required to look at the fixation point is
calculated in the following:

A=<pi- cli,p2 - cl2,p3 - cl3 (7)

, pi - ch p2 - cl2 p3 - cl3

\A\ ' \A\ ' \A\ > w

. The rotation matrix RL is calculated using X'Yf as

Y' = RLXf (9)

Y'(X'X'T)-lX'T = RL (10)

. After the pan tilt camera rotates as the rotation axis is
y axis, rotates as the rotation axis is x axis. The rotation

around the y axis shows Tryt and the rotation around the
x axis shows Trx. RL is represented as

RL — Trx • Try —
7*12 r 1 3

T22 7*23

7*32 7*33

(11)

, Try and Tr2/ are calculated using cpi and 0/ as

Trx =

cosfa 0 sin<f>i
0 1 0

0 cos<f>i

1 0 0
0 COS0/ sine i

(12)

(13)
0 -sine i cose i

. Therefore, we can get RL from previous equations:

sinfa = ri3 (14)

COSe i = T22 (15)

. In the case of

' X'=<iLuiL2,iL3 >=< 0,0,1 >

, as the following equation is gotten:

Pi - ch
sin(f>i =

\A\
(16)

(17)

,</)t,ei can be calculated. In the similar, the right camera
direction Y" required to look at the point (pi,P2,P3) is
calculated:

y " =< "" CTl P2 ~ CT2

\A\ ' |A| ' \A\

A=<pi- d i , p 2 - c/2,P3 - cl3 >

The rotation matrixi?# is calculated :

Y"(X"X"T)~lX"T = RR

Y" = RRX"

(18)

(19)

(20)

(21)

In the similar, (j>r, 0r are calculated. Thus, left camera di-
rection <<f>i,ei> and right camera direction < </>r, 0r >
are calculated from the fixation point (pi,P2»P3).

4 Binocular eye movements in reading based on 3-D
short-term memory image

We describe the eye movement in reading based on
short-term memory image and foveated vision.
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4.1 3-D short-term memory image

Short-term memory saves the information for about
20 seconds[6]. Human does not have the conscious-
ness while the fxation point moves quickly. This is
reason why the image saved for the short term does
not change while the foveated image of the viewpoint
changes quickly. Thus, we realize the observed image
that does not change suddenly though the fixation point
moves in the wide region. We take the attention to the
short-term memory related to vision. In especially, the
vision system should not save 2-D image but 3-D image
in short-term mermoy image to determine the motion of
binocular eye balls.

The feature is saved in the 3-D short-term memory
after 3-D point is recovered from these feature in the
case that the feature of right image is same as the feature
of left image and the feature is on the epipolar line of
left camera corresponding to a feature of right camera.
The next fixation point is statistically determined from
the feature points of the short-term memory. Thus, 3-D
coordinates (x. y, z) are recovered from the two feature
points in right and left camera.

4.2 Generating 3D short-term memory feature im-
age

We explains the algorithm of 3-D short-term memory
edge feature image.

1) A pixel is selected from the xy coordinate of right
foveated vision. A plane determined from the cen-
ter of two cameras and a pixel on the image plane
of the right camera. The epipolar line is generated
by intersecting the plane with the left image plane.

2) We determine the rotation that the sum of absolute
difference between RGB values is minimum using
the correlation method for each pixel, we get the
corresponding point on the epipolar line[8].

3) The 3-D point coordinate is recovered from xy co-
ordinate gotten from the foveated vision of right
and left camera ((3.1)(3.2)).

4) The color and the time value are saved in the coor-
dinate of the 3-D point in the 3-D short-term mem-
ory image. We generate 3-D short-term memory
image using voronoi algorithm from 3-D point sets
in 3-D short-term memory.

5) The sequences 1)2)3)4) are applied for the xy co-
ordinate corresponding to each pixel of foveated
vision and the 3-D points are reconstructed.

6) The next fixation point is determined from the
edge feature image included in the attention re-

gion in 3-D short-term memory edge feature im-
age(4.3). The motion of the right camera and left
camera is determined(3.3).

7) The time value is incremented. The difference be-
tween the current time and the time on the short-
term memory image is calculated. If the difference
is over the constant value, the point is deleted in
the short-term memory image.

4.3 Binocular eye movements in reading

In the case that the fixation point is on the line in read-
ing, we use the square mask. The direction that the most
edges exist in the square mask is determined while the
square mask is rotated. The attention region is composed
of the regions to the space from the fixation point back-
ward and forward for the reading direction. If the edge
number is not over the constant value, the next fixation
point is in the attention region. If the edge number is
over the constant value, the next fixation point is in the
region from the next space following forward the current
attention region to the space after the space. Thus, it is
simulated to determine the next fixation point both back-
ward and forward. In the case that a fixation point is on
the end of the line, the fixation point moves to the top
of the next line through the line saved in the 3-D short-
term memory image. At first, the direction that edges are
many is determined using the square. In this time, the at-
tention region is selected in the opposite of the reading
direction. The top of the line is detected by repeating
this. After the space is found under the current line, the
next fixation point is determined from the attention re-
gion that the edges are many under the space.

Fig. 1. The change of resolution and weight on the foveated
vision. : Reso'(x) and Weight'(x) in the case of a =
0.8, p = 0.25.

a makes the resolution Reso'{x) change. The reso-
lution becomes low, if a decreases. (5 makes the weight
Weight'(x) change. The frequency that the next fixa-
tion point is determined to the feature points where the
distance between the fixation ooint and the feature point
is less than 6 pixels is high, if j3 is big.

Figure 1 shows the change of resolution and weight
on the foveated vision. Reso'(x) and Weight'(x) is de-
termined as a = 0.8,
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(3 = 0.25. The resolution Reso'(x) calculated the fea-
ture point number per unit volume from the short-term
memory feature image. In this paper, the edge length of
a cube is 24 pixels in a unit volume.

Reso{x) =
1 -h exp (—ab)

1 -h exp (a(x - b))
Weight{x) = 1.0 - Reso(x)

(1.0 -0.067) -I- 0.067(22)

(23)

Reso\x) = aReso(x)

Wezght (x) = if x>6
otherwisP4)

If the edge number including in the attention region is
N, the probability fi to determine the next fixation point
to the ith edge is defined in the following.

/* =
Weight(xi)

(25)

5 Simulating binocular eye movements in reading
We simulate binocular eye movements in reading. The

pan-tilt cameras that the focus length is / = 519.615 are
arranged in (-5,0,0) and (5,0,0). The document size is
512 * 256 pixels. The center position of the document is
fixed in (0,0, 700). We use the camera that the focus dis-
tance / i s 519.615. The parameter requiered to generate
the foveated image is set in Ro = 7,Cm = 0.5,Ov = 0.9
and length — 170. Figure2(a) shows edges detected

Fig. 2. (a)Edges detected on the right foveated vision at the
middle of the second line. (b)The 3-D edge recov-
ered from the foveated vision of the right and left cam-
era(c)The viewpoint movement.(d)The 3-D short-term
memory edge image when the fixation point is on the
end of second line.

on the right foveated vision at the middle of the second
line. Figure2(b) shows The 3-D edge recovered from

Fig. 3. (a) The 3-D short-term memory edge image for the
curved document when the fixation point is on the end
of second line.(b)The edge image generated from a
foveated vision when the fixation point is on the end
of second line

the foveated vision of the right and left camera. Figure2
(c) shows the viewpoint movement. Figure2(d) shows
the 3-D short-term memory edge image when the fixa-
tion point is on the end of second line. Figure3(a) shows
the 3-D short-term memory edge image for the curved
document when the fixation point is on the end of sec-
ond line. Figure3 (b) shows the edge image generated
from a foveated vision when the fixation point is on the
end of second line. The 3-D short-term memory edge
is recovered adequately. It is found that the viewpoint
movement to read the document located in the space is
realized from these results. Binocular eye movements
in reading the curved document in the bound book was
simulated using this model.

6 Conclusions
The binocular eye movements in reading based on the

3-D short-term memory are simulated by controlling two
pan-tilt cameras.
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Abstract:
Face pose adjustment, as a loop of human face location, is very
important in computer face recognition. In this paper, we
present a new approach to automatic face pose adjustment on
gray-scale static images with a single face. In the first stage,
with the degree of mediacy make every little image, then ask for
one piece of image including two eyes using match degree. And
continue the nose and mouth part horizontal gray projection in
small scope. Finally adjust this piece correctly. In the second
stage, based on the location and the symmetry feature of eyes,
the inclination angle is calculated and the face position is
redressed. The experimentations show that the algorithm
performs very well both in terms of rate and of efficiency.
What's more, due to the precise location of eyes, the apples of
the eyes are detected.

1 Introduction
With the development of computer technology pattern
recognition[4] has emerged as an active research area with the
characteristic of friendliness and convenience. Human face
recognition technique[l][5] embodies human intelligence and
has general applications including identity validation and
human- computer interaction. Face pose location is one of the
important parts in human face recognition. Whether or not
detecting the correct human face pose has crucial influence on
the performance of the whole human face recognition system. In
human face recognition systems the facial features need to be
located after detecting the human face. Due to the behavior
habit and physical factors, the facial images are not upright but
have an inclination angle in the vertical plane sometimes. Thus
increase the difficulty of facial features location. Therefore the
human face location can be divided into two parts: face pose
adjustment and facial features location. Face pose adjustment is
the precondition of facial features location and an important part
in face recognition system.

Considering the variation of gray scale, geometrical
characteristics and symmetry features of the eyes, this paper
presents a novel approach for face pose adjustment based on eye
location in gray scale image with single face. In the first stage,
the face or the eyes search field is detected according to vertical
variance projection and horizontal integral gray projection of

College, Zhejiang University of Technology , Hangzhou
, China

^zjut.edu.cn)
the image. Then make the desired field at middle with the
degree of mediacy. Thereafter ask for one piece of image
including two eyes using match degree. And continue the nose
and mouth part horizontal gray projection in small scope. In the
second stage, based on the location and vertical complexity of
the image block and black block eye model the eyes are located.
Based on the location and the symmetry feature of eyes, the
inclination angle is calculated and the face pose is redressed. In
this paper we use gray scale images with single face in simple
background. In condition of color images, they will be
transformed to gray scale images by deriving the red
component(The reason is that the base color of human skin is
red, the red component contain large amount of human face
information and its SNR is higher than the other components.
Thus it is more effective.)

2 The algorithm parameter design
The gray level variance is the main feature to represent face
characteristic. Face area is complex contrast to the simple
background. Meanwhile, the gray difference between eyes and
its surrounding skin is greater than other features in the face.
Furthermore, the eyes geometrical shape is around round or
ellipse and the eyes are symmetrical to the face axis. Based on
the previous analysis, this paper design and utilize the
parameters presented below to the images of horizontal size of
N pixels and vertical size of M pixels.(Its gray matrix is

G , the gray value is Bj: in row i and column j.)

2.1 Vertical variance projection <JV

Gv indicates the gray variance intensity in vertical direction in

an image. Its expression is:

Where V is the vertical integral projection of the image block
and can be obtained by

„ , ,, 1 * » (2)

2.2 Horizontal integral projection H
H indicates the gray variance in vertical direction. Its
expression is

//(0 = — f B O)
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2.3 Vertical complexity of image block C
C is designed according to the characteristic that the vertical
gray variance of eyes is greater than that of the other features in
a face image. Its expression is defined as follows:

M - I N

*M.j - *,., I (4)

2.4 The dark block eye model F
F is designed base on the fact that the geometrical shape of eye
is approximate round or ellipse and the eye gray variance is
greater than the surrounding skin. Its value indicates the match
degree between the image block and an eye so that it can be
used to accurate eye location. Its expression is below.
F = min

Where OC is a constant and is used to modulate the influence of
horizontal gray variance on the black block eye model.

3. Implementation of the face pose
adjustment algorithm.

3.1 Extraction of the face region(the eye search
region)

The face region detection algorithm based on <JV and H is

described as below:
Analyses the approximate face location in the gray scale image
with a single face and decide the face detection region. This step
can speed up face location and decrease the disturbance of the
redundant information(mainly the clothes).

Fig 1 (left: Decided gray scale face detection region
Fig 2(right).The relationship between the vertical variance
projection curve and the face image

In this paper we use gray scale images of 256 degree against
black background and the face occupy a relatively large region
in each image. The course face location is to determine the
approximate region of the face in an image, so it's the
precondition of the fine facial features extraction. As to the
images examined in this paper two steps can be performed.

First, determine the left and right boundary by the vertical gray
projection and the upper region by the horizontal gray
projection in an image. The algorithm [2] is described as
follows.
Suppose the face gray image is I(x, y) (sized by n*m). The
vertical gray projection of the image is below.

P{x) = 1 , 2 , 3 ... n

The curve corresponding to this function is called as vertical
gray projection curve. It indicates the total gray variance in X
axis.
The horizontal gray variance is defined as

P(y) = £ I(x,y) (y = 1 , 2 , 3 . . . * )

The curve this function corresponding to is called horizontal
gray projection curve. It denotes the total vertical gray variance
in Y axis.
Take the vertical gray projection curve into account. It can be
find in general conditions the face gray value is higher than that
of the background and it vary obviously in vertical direction,
thus the vertical gray projection curve has a peak in the
corresponding face area. The left and right limit of the peak is
also that of the face. Therefore as long as the left and right limit
of the main peak of the vertical gray projection curve is decided,
the relatively precise left and right limit of the peak can be
obtained.

Fig 3 (left): The face left and right limit location
Fig 4(right) The vertical and horizontal gray projection

Let the rectangle region deciding by the left right boundary and
upper boundary be the final result of the detected gray face
region. In fact, because the eyes generally locate in the upper
half region of the rectangle, the bottom boundary can be raised
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approximately considering the eye detection speed and
computational burden(Fig 5).

Fig 5: The final location of gray face region

3.2 The eyes location
The eyes location can be divided into two parts: detecting the
image block of maximum complexity and fine locating the eyes
by the black block eye model.

3.2.1 Detecting the image block of maximum
complexity
Firstly, Divide the eyes region obtained from above into little
image blocks averagely. The width of the little image block is
1/10 that of the eyes detection region, a little larger than the
apples of the eyes in the gray scale face image with single face.
The height of the little image block is 1/5 that of the eyes
detection region. Secondly, calculate and record the vertical
complexity of all little images blocks. Thereafter shift all the
little image blocks rightwards by 1/2 unit width and upwards by
1/2 unit height respectively, then calculate and record the
vertical complexity of the little image blocks. Finally, sort the
complexity obtained from above decreasingly and select 10
little image blocks of the largest complexity.
The experiments demonstrate these blocks generally concentrate
on the significantly gray variant area such as the eye, eyebrow,
bang and temple. Many of these 10 little image blocks adjoin or
overlap each other. For these little image blocks of the same
height that adjoin or overlap each other, only the little image
blocks of the maximum complexity is reserved and the other are
deleted. Slightly slide the remaining little image blocks over its
surrounding area until the vertical complexity of the little image
blocks reach the maximum. Delete the overlapped little image
blocks according to reserving the little image blocks of the
maximum vertical complexity. Up to now the remaining little
image blocks is little, there are must two little image blocks
containing the eye and eyebrow simultaneity.

3.2.2 Accurate eye location according to the black
block eye model
The results from 3.2.1 can locate the eyes roughly. In order to
decrease the disturbance of the eyebrow to accurate eye location,
select the lower half part of the little image blocks as the
processing object for fine eye location based on black block eye
model. In this way, these new little image block are all square,
its sideline being 1/10 the width of the eye detection region.
Slightly slide these new little image blocks in their surrounding
region and calculate their black block eye model value until
reaching the optimal location of these new little image blocks.
Sort these new little image blocks by descending order
according the values obtained from above. The experimental
results(Fig 8 for example) demonstrate the new little image
block of the maximum black block eye model value must
contain an eye and this block lies in the optimal eye
location(The optimal eye location here is the result that the eye
locate in the middle of the image block and the middle of the
image block is the apple of an eye). Select the new little image
block of the maximum value as the final location of one eye.
Before the final location of the other eye is determined delete
three kinds of new little image blocks that obviously don't
contain an eye.
(l)The new little image blocks of the negative black block eye
model value because the geometrical figure and gray variance in
these images differ a lot from those of an eye.
(2 ) The new little image blocks that closely locate in the
boundary of the eye detection region. These blocks are
disturbance blocks locating in such area as the bang, temple,
dividing region of the face from the background.
(3) The new little image blocks that locate below the block of
the maximum black block eye model value besides the absolute
value of the incline rate is larger than 1 (namely the absolute
value of the inclination angle is bigger than 45°).
Slightly shift the remaining new little image blocks again in the
nearby small region(excluding the little block that has been
considered as the final location of one eye). Get the optimal
location of each little block according to the output of the black
block eye model. Thereafter select the little block of the
maximum black block model value among these little blocks as
the final location of the other eye. The reason that these new
little image blocks need to be adjusted twice lies in that owing
to the limit of slightly shifting scope, slightly adjustment once
can't guarantee both the two new little image blocks that
contain the eyes locate in the final location in condition that the
inclination angle is relatively big in the vertical plane.

Fig 6(left) 10 little image blocks with the maximum vertical
complexity

Fig 7(right) The remaining little image blocks after slightly
adjusted according to vertical complexity

3.3. Face pose adjustment according to the symmetry
of the face image

The human face image is a symmetric geometric configuration
and the eyes lie in the two sides of the face symmetry axis
symmetrically. This kind of symmetry does not change while
the face tilts. Therefore the face pose can be redressed by select
the face symmetry axis through the accurate eye location.
Two little image blocks can be found by the eye location
technique mentioned in 3.2. Subsequently calculate the face
inclination angle in the vertical plane according to these two
little image blocks. Let the perpendicular bisector of the line



between the centers of the two little image blocks (namely the
apples of the eyes location) be the face symmetry axis and
redress the face pose. The redressed face image illuminates in
Fig 9.
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Fig 12: The images rotated greatly in depth before and after
adjusted

Fig 8(left) The first slightly adjustment result according to the
black block eye model.
Fig 9 (right) The final image blocks location containing the
eyes

4. Experimental results analysis
This experiments use 100 color images of 20 people (5 images
per people, 300x200 pixels,256 gray scale) captured by digital
camera in simple background. Take the gray scale images
obtained by deriving the red component from the above images
as the initial sample database. The face inclination angle doesn't
exceed positive or negative 40° in vertical plane. The programs
using VC++ are implemented on PHI 450 PC. Experimental
results show that our algorithm can perform face pose
adjustment successfully. Face pose is successfully redressed in
99 images and the correct rate is 99%. Partial face images
processing results is illustrated in Fig 10.
It has been experimentally verified that the proposed algorithm
is the same effective even in condition that the face rotates to a
large degree rightward or leftward as long as the two eyes can
be found. Merely the face symmetry axis deduced by the two
eyes location runs parallel with the real face symmetry line.
This shows the robustness of the algorithm. The adjustment
result of this kind of images is shown in Fig 11.
The precondition of valid face pose adjustment in this algorithm
is the accurate eye location. In other words this algorithm can
firstly detect the eyes location in gray scale images with a single
face which has important significance on the subsequent face
feature(eye) location in face recognition.

Fig 10: The redressed face image

5. Conclusion
This work presents an approach for face pose adjustment based
on eye location in gray scale images with a single face which
has fully concerned the variation of gray scale variance,
geometrical figure and symmetry features of the eyes. The
concepts of vertical complexity of image block and black block
eye model are proposed. After the gray scale face region is
detected, the face pose is adjusted according to the accurate eye
location and symmetry of the eyes. This algorithm has high
correct rate and is very robust thus suitable to face pose
adjustment in simple background specifically. Furthermore, this
algorithm can accurately locate the eyes so that it has leading
significance in the subsequent feature location in face
recognition.
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Abstract

This paper deals with the design of a semi-automated
noise filtering approach, which receives just original
noisy image and corresponding gold (user manipulated)
image to learn filtering task. It tries to generate an
optimized mathematical morphology procedure for im-
age filtering by applying a genetic algorithm as an op-
timizer. After training and generating a morphological
procedure, the approach is ready to apply the learned
procedure on new noisy images. The main advantage
of this approach is that it takes just one gold sample to
learn filtering and does not need any prior context knowl-
edge. Using the morphological operators makes the fil-
tering procedure robust, effective, and computationally
efficient. Furthermore, the proposed filter shows little
distortion on the noise free parts of an image and it can
extract objects from heavily noisy environments. Archi-
tecture of the system and details of implementation are
presented. The approach feasibility is tested by well-
prepared synthetic noisy images and results are given
and discussed.

Keywords: Image Filtering, Mathematical Morphol-
ogy, Genetic Algorithm, Learning, Morphological Fil-
tering, Dilation, Erosion, Opening-Closing

1 Introduction

Image filtering and enhancement are crucial tasks in
image processing because for other related tasks, such
as segmentation or object tracking, these preprocessing
tasks are vital to get desirable results. Many different
filtering methods are presented in literature [1, 2, 3, 4].
Learning by just one gold sample image without de-
pending on any prior knowledge has not been a major
research field, and is the main focus of our approach.
Indeed, in any scientific or engineering application,
preparing one sample does not require much effort. Our
approach uses morphological operators to build image
filtering procedure. In the next section a short review of
binary mathematical morphology will be presented.

This paper is organized as follows: section 2 is about
binary morphology; section 3 presents proposed archi-
tecture and methodology; experiments and results are
given in section 4; and finally discussion and conclusions
are presented in section 5.

2 Binary Mathematical Morphology(MM)

Mathematical morphology was developed based on
the work of Serra and Steinberg [5, 6]. Morphology is
a shape-based approach to image processing. The value
of each pixel in the output image is based on a compar-
ison of the corresponding pixel in the input image with
its neighbors [5, 7]. The MM provides techniques for
pre- or post processing, such as filtering, and also for
segmentation and representation of the objects. Dilation
and erosion are fundamental operators of mathematical
morphology .. Let A be the image and B the structuring
element (SE), then the basic operations can be defined as
follows [7, 8]:

Dilation - The dilation of A by B is defined as:

= {z\(B)zn A (1)

where B is the reflection of B about its origin and (B)z

is the shifted version of B by z. Dilation expands the
boundaries of the object.

Erosion - The erosion of A by B is defined analo-
gously as:

AQB = {z\(B)zCA}. (2)

Erosion, as a dual operation to dilation, shrinks the
boundaries of the object.

Opening - It is defined as an erosion followed by a
dilation:

)®B. (3)

Objects and connections between them can be elimi-
nated by opening with suitable structuring elements.

Closing - It is defined as a dilation followed by an

erosion:
(4)
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Closing removes small holes on the foreground, which
are smaller than the chosen SE. The combination of
closing and opening is also known as morphological
filtering[7].

3 Architecture and Methodology
Figure 1 shows the main architecture of the pro-

posed approach. It has two key units, namely, Ge-
netic Optimizer of Mathematical Morphology Proce-
dure (GOMMP) and Mathematical Morphology Proce-
dure Applier (MMPA).

GwwfcOptiminrof
MM Procedure

Appier

Procedure,
Structural

Parameters

Sample
GoaHargel

Image

Fig. 1. The main structure of the proposed approach

The GOMMP receives the pair of images, the orig-
inal and corresponding gold sample, and then gener-
ates the desirable mathematical morphology procedure
to achieve the filtering effect illustrated in the gold sam-
ple. The MMPA applies the generated procedure on
noisy images to filter new input images. Morphological
operators are selected to build the image processing pro-
cedure because they are computationally efficient robust
shape-based image processing tools. The MM procedure
uses three fundamental operators, namely, dilation, ero-
sion, and opening-closing (as a filtering operator). These
operators can be applied more than once ( A l , K2, and
A 3 times); and any operator uses its own 5 x 5 structur-
ing element. One of six different combinations of these
three operators can be a chain as follows:

A3 x O(SE1) - C(SE2) -+
Al x E(SE3) -> K2 x D(SEA)

(5)

Now we must choose the desirable MM procedure
(one of six possible combinations of operator chains) and
find the optimal structuring elements (SEl, SE2, SE3
and SEA) and their repetition time (A l , A2, and K3).
Genetic Algorithm (GA) is a good candidate to deter-
mine these variables to optimize the MM procedure. It
is a suitable tool for those function optimization, espe-
cially those functions with complex searching space [9].
In order to generate the ideal MM procedure, a function
with 104 variables should be optimized (100 variables
for elements of four 5 x 5 structuring elements, 3 vari-
ables for operator repetition parameters, and one variable

for chain indicator, to point out one of six possible com-
binations of operator chains).

The following steps show how GOMMP optimizes
the MM processing chain:

A. Population Initialization: Producing 80 randomly
generated chromosomes as an initial population. Any
chromosome is built by concatenating binary coded
strings of 104 decision variables.

B. Applying Mathematical Morphology Proce-
dures: Applying MM procedure related to any individ-
ual; parameters of that procedure are taken by decoding
and mapping of any chromosome to decision variables.

C. Evaluation of Similarity: After applying MM
procedure related to any chromosome, the similarity of
goal image and processed image is measured by a nor-
malized correlation coefficient. This measure quantifies
the fitness value of any corresponding chromosome.

D. Stopping Criteria: The number of produced gen-
erations is considered if that exceeds a pre-specified
threshold, the algorithm terminates and shows the indi-
viduals with the higher fitness value in the population;
otherwise it goes to the next step.

E. Selection: Selecting a pre-specified number of in-
dividuals to produce offspring. The Roulette Wheel
method is used to select candidates from the current
population[9].

F. Crossover: Applying single point crossover for
candidate chromosomes to produce offspring[9].

G. Mutation: Applying mutation as a background
operator with low probability (p = 0.01) to generate
new chromosomes resulted by randomly filliping of
their bits[9]. Go to step B.

For aforementioned GA, the fitness function obvi-
ously can be defined based on the similarity between
the gold sample and generated image by MM procedure,
normalized correlation coefficient, S e [0,1], is chosen
to measure this similarity [10]:

N N

5 =
N N N N

(6)

In this measure, C is the gold sample and C is the image
generated by the MM procedure. The similarity between
these two images should be maximized by GA.

4 Experiments and Results

The training phase of approach is done by introduc-
ing the binary original and the gold samples to the Ge-
netic Optimizer. A heavily noised synthetic image which
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includes four objects is used as the original image, as
shown in Figure 2a. Figure 2b shows the gold sample
as the user manipulated image with filtering effect. Our
aim is to remove the noise and keep the objects. The op-
timal structuring elements, the optimized chain of math-
ematical morphology operations (MM procedure), and
the iteration time for any operation are generated by the
training (genetic optimization) process. The results are
as follows:

SEl =

SE2 =

SE3 =

SE4 =

0 1 1 1 1
0 1 1 1 1
0 0 0 0 0
1 1 1 1 0
1 1 1 0 0

1 0 1 0 0
0 1 1 1 0
0 0 0 0 1
1 0 0 0 1
0 0 1 0 0

1 1 1 1 0
0 1 1 0 0
0 1 0 0 0
0 0 1 0 0
1 1 1 0 1

1 1 1 1 0
1 0 0 1 1
0 1 1 1 1
1 1 1 1 0
1 1 1 1 1

(7)

(8)

(9)

(10)

The selected ideal morphological operation chain by
GA based on these structuring elements is as (applying
left to right):

K3 x (O(SEl) - C{SE2)) -* (11)

K2 x D(SEA) -+Klx E(SES),

where K\ = = 2, and K3 = 1.

The result of applying the generated MM filtering pro-
cedure on a sample noisy image is shown in Figure 2c,
with 96.77% of similarity to the gold sample. Now we
have everything of MM procedure to apply it on a test
image set.

In our test set, three kinds of noise, namely random,
uniform, and gaussian noise, are used to corrupt the test
images. The different noise levels and the combined
forms of them are added to the test images to generate

Fig. 2. Example for noise filtering. From left to right: sample
noisy image, gold sample provided by the user, and
filtered image by generated MM procedure. The result
has a 96.77% similarity to the gold sample.

the test data. Furthermore, some thin lines, thick lines,
and speckle noise are added to images to investigate the
performance of the approach in the presence of irrelevant
structures in noisy images (these irrelevant components
are not present in the gold sample). The testing set con-
tains 19 noisy images. Some results of applying the gen-
erated MM filtering procedure on noisy test images are
shown in Figure 3. In the conducted tests, the matching
rate rj between the result image and the gold sample is
calculated as following:

rj =
N - SNUP

N
x 100%, (12)

where N is the number of pixels in the noisy image,
and Nup is the number of unmatched pixels when the
gold sample and the result image are compared. The
number of unmatched pixels is multiplied by 8 to mag-
nify the dissimilarity between the result image and the
gold sample. The level of magnification was determined
empirically to match the visual expectation more realis-
tically.

5 Discussion and Conclusion

The learning/optimization process uses the sample
noisy image and the corresponding gold sample to learn
noise filtering. After optimization by GA, the MM fil-
tering procedure according to Eq. 11 is generated, where
K\ = 2,K2 = 2, and K3 = 1. Hence, the optimal mor-
phological processing consists of opening-closing fol-
lowed by two times dilation and two times erosion (any
operator has its own optimal structuring element).

After finding the ideal MM filtering procedure, it is
applied on the test set which includes 19 noisy images.
The overall average matching rate was 94.81% with
standard deviation of 7.80%. In cases number 4 and 5
the filtering task can be interpreted as object extraction
because the filter removed irrelevant objects, thin lines,
thick lines, and speckles, and correctly extracted four ob-
jects of interest. Other filters such as median and mean
filters cannot deal with these cases.

Our approach takes just one gold sample to learn
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Fig. 3. Some results of applying generated MM filtering pro-
cedure on noisy test images: the overall average match-
ing rate is 94.81% with standard deviation of 7.80%
for test set with 19 images, (a), (c), (e), (g), and (i)
are the noisy images and (b), (d), (f), (h), and (j) are
the result images. The different amount of three noise
(random, gaussian, and uniform noise), thin and thick
lines, and speckle noise are used to corrupt the test im-
ages.

the filtering task and does not need any prior context
knowledge: that is the main advantage of this ap-
proach. Using the morphological operators for image
filtering makes the filtering procedure robust and com-
putationally efficient. Overall results are very promising.

The proposed approach can be extended to gray level
images in order to cover a wider range of image process-
ing applications with the need of segmentation, object
extraction, and classification. This will be the subject of
future work.
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Abstract
In this work, associative memories are used for diagnostic
classification of needle EMG signals. Vectors containing 44
autoregressive coefficients represent each signal and are
presented as stimuli to associative memories. As the number
of training stimuli increases, the method recursively updates
associative memories. The obtained classification results are
equivalent to the ones provided by the traditional Fisher's
discriminant, indicating the feasibility of the proposed
method.

1 Introduction
Adaptive techniques have been applied to the study of
electromyographic (EMG) signals. Artificial neural
networks were used to control functional electrical
stimulation in paraplegics, by adapting to changing
environments and allowing patient's interaction with
the network's operation [1]. An adaptive feature
extraction algorithm was used for the classification of
motion commands used in prosthetic arms [2].
Adaptive classification of motor unit action potentials
was designed to deal with shape changes due to
muscular fatigue [3].
EMG signals have also been used for diagnostic
purposes [4]. Clinicians diagnose patients, based on the
knowledge or experience that has been acquired over
the years. An automatic classification technique should
mimic a physician, by storing previous classification
results and improving its diagnostic ability. However,
most papers that deal with automatic EMG
classification for diagnostic purposes present non-
adaptive techniques [5], [6], [7].
In this work, we propose an adaptive EMG
classification technique for diagnostic purposes and
study its feasibility. EMG signals are represented by
autoregressive models, since encouraging classification
results have been presented in the literature [6], [7].
Associative memories are used as classifiers, for they
provide reliable results [8] and they can be computed
by a recursive algorithm. In order to validate the
obtained classification results, they are compared to the
ones obtained by the traditional Fisher's discriminant.

2 Methodology
2.1 Signal Acquisition and Autoregressive Modeling
A data bank with needle EMG signals was used in this
work. These signals were recorded at 50% MVC, from
the biceps brachii muscle, using a 10kHz low-pass
filter, at the Duke University Medical Center.
Signals were acquired at the Biomedical Engineering
Laboratory of the University of Sao Paulo with a 12-bit
AID converter and a sampling rate of 25kHz. We
selected 800-ms EMG signals, recorded from 6 normal
patients (72 signals), 6 myopathic patients (56 signals)
and 5 neuropathic patients (43 signals). All signals
were classified as stationary, both in mean and
variance, by the run test [9], for a 5% significance level
and 20 segments. EMG signals were modeled as
outputs of autoregressive models. Burg's method [10]
was used to estimate the autoregressive coefficients.
Order 44 was used in this work, since previous studies
[8] showed that this order provided the best
classification results for the same data bank.

2.2 Classification
The use of a two-step classification procedure is
reported in the literature [5], [6]. We used the two-step
classification, since it provided better results than a
single-step classification, in a previous research using
the same data bank [11]. The first classification step
separated EMG signals into normal and pathological
classes. The second step separated the signals
previously classified as pathological into neuropathic
and myopathic classes.
The classification procedure was implemented by two
linear classifiers—associative memories and Fisher's
discriminant—, which are described in the following
subsections.

2.2.1 Linear Associative Memories
According to psychologists, an associative memory
(AM) often results from learning the relationship
between a stimulus and a response (operant
conditioning) [12]. The same terminology is used in the
mathematical formulation of associative memories
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[13]. A response r is associated to a stimulus s9 through
an associative memory M, according to equation 1:

r = M-s. (1)
The conditioning process is called training. Among all
the signals from the data bank, a training set of signals
is created. Autoregressive coefficients of each training
signal form a column of the training stimuli matrix.
The known classification of the signal is represented in
a column of the training response vector. For each
signal, an integer number represents the classification.
In the first classification step, T stands for normal and
'2' for pathological signal. In the second step, T stands
for neuropathic, while '2' stands for myopathic. An
associative memory vector Mj+\ is estimated, by using
the training stimuli matrix Sj and the training response
vector/fy [13]

MJ+l =Rj-SJ9 (2)

where Sfj indicates the Moore-Penrose inverse of the
training stimuli matrix 5/ [14],
As the number j of stimuli in the training matrix Sj
increases, the computation of the generalized inverse
becomes more burdensome. The stimuli matrix at they-
th iteration can be expressed as:

Sj=]S» Sj], (3)
where S^ is the previous stimuli matrix and ay is the
newest stimulus vector to be included in the training
group. As one can observe, the number of columns in
the stimuli matrix increases with the number of training
signals. As a consequence, the direct computation of
the generalized inverse could be a hindrance to the use
of associative memories as classifiers. However,
Greville's recursion [14] enables us to update the
generalized inverse by calculating:

(4)

where b+j is the generalized inverse of vector bj, which
is defined by

If bj given by equation 5 is equal to zero, then we must
use another formula to compute bj

where the superscript V indicates the transpose matrix.
In our Matlab® implementation, we calculated the norm
of vector bj given by equation 5. Whenever this norm
was smaller than 10"7, we substituted bj by the value
provided by equation 6. This procedure avoided
numerical errors.

The generalized inverse of matrix Sj is obtained by
computing the generalized inverse of column vector bj9

which has length 44 (the number of autoregressive
coefficients). Vector bj itself is either a function of the
previously computed S^i or a function of the
generalized inverse of the product (Sj.\ Stj.\), which is
square matrix of size (44 x 44). In this way, we can
compute Sfj by inverting smaller matrices or vectors
that do not increase in size, as the number of training
signals increases.
We also provide the recursion to compute the
associative memory vector:

Mj+^Mj-MjSjbl+rjb;, (7)

where Vj is the response corresponding to the newest
training stimulus vector sj9 and Mj is the previous
memory vector.
In order to evaluate the performance of these adaptive
associative memories, we must use test stimuli sk of
known classification responses. The response rk

associated to each test stimulus is estimated by

rk=
Mj'sk> («)

for j varying from 1 to the number of training stimuli
and for k varying from 1 to the number of test stimuli.
These responses are real values and do not correspond
exactly to the integer values associated to the classes.
As a consequence, we must use a criterion to separate
the obtained responses into the classes. In the first
classification step, responses r,- below 1.5 were
classified as normal signals (class 1), while responses r}

greater or equal to 1.5 were classified as pathological
signals (class 2). This same value was used in the
second classification step, in order to separate
neuropathic (class 1) from myopathic signals (class 2).

2.2.2 Fisher's Linear Discriminant
Fisher's linear discriminant (FLD) classifies a signal
associated to a stimulus vector sj9 by estimating the
response [15]

Pj = VTSj . (9)

In order to compute vector v, training stimuli must be
separated into classes 1 and 2. For class 1, the mean
stimulus vector u\ and the covariance matrix Si are
calculated. Similarly, for class 2, the mean stimulus
vector w2 and the covariance matrix E2 are computed.
The optimal projection direction that separates classes
1 and 2 is given by vector v:

v =
nx +n2 - 2

(10)

where nx and n2 are the number of stimuli in classes 1
and 2 respectively. The stimulus Sj is separated into
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class 1, if the response ry is above a threshold value.
Otherwise, it is separated into class 2.
In this work, both AM and FLD were implemented in
Matlab®

2.2.3 Training group
In a real system, the diagnosis of a patient is based on
previous knowledge. Similarly, an initial set of subjects
was used to compose the initial training group. Three
subjects were chosen to form the initial training group,
providing 11 normal, 10 neuropathic and 10 myopathic
signals.
Eight additional subjects were later added to the
training group, at a random order. This random order
of subjects was used because physicians cannot choose
the order in which patients arrive at the clinic. All the
signals of a given subject were inserted one-by-one
into the training process. The following order of
insertion was used: 12 normal, 15 normal, 7 myopathic,
9 neuropathic, 9 myopathic, 6 neuropathic, 16 normal
and 12 myopathic signals.
At each training step, one signal was classified using
all the information stored in the previous training
group. Then, autoregressive coefficients of this signal
were included in the next training stimuli group. The
response associated to each stimulus varied according
to the type of training: unsupervised or supervised [16].
Unsupervised training was based on the results given
by the classifier. The estimated class for each new
signal was inserted as the next training response.
Supervised training was based on the known signal
classification, which was provided by a teacher. For
supervised training, the known classification of the
subject was included as response, regardless of the
estimated class. The known classification inserted in
supervised training could represent the diagnosis
provided by a physician, based on clinical evidence and
exam results, other than EMG.

2.2.4 Test Group
In order to test the variation of classification rate with
the increasing number of training stimuli, we needed
signals that were not used previously in training. All
six of the remaining subjects had already been
separated for the test group, providing 18 signals of
each type. All test signals were classified several times,
as each new training signal was included in the training
group.

3 Results
Classification rates obtained by AM are shown in
Figure 1, while results obtained by FLD are illustrated
in Figure 2. The horizontal axis presents the number of
training signals used at each iteration and ranges from
31 (initial training group) to 117 (final training group).
The vertical axis represents the correct classification
rate in percentage. It is equivalent to the ratio between
the number of correct classifications and the total
number of test signals (54). Dashed lines represent the
classification rate obtained for unsupervised training,
while continuous lines represent supervised training.

40 60 80 100
number of training signals

Fig. 1. Classification rates obtained by AM, for supervised
(continuous line) and unsupervised training (dashed line).

According to figures 1 and 2, supervised training
(continuous line) clearly showed better results than
unsupervised training (dashed line), for both classifiers
(AM and FLD). This result was expected, since the
correct training is fundamental for the classifier's
performance.

40 60 80 100
number of training signals

Fig. 2. Classification rates obtained by FLD, for supervised
(continuous line) and unsupervised training (dashed line).

Unsupervised training seemed to stabilize at values
close to 40%, which is similar to the classification rate
obtained for the initial training group. This result
shows that both classifiers did not 'learn' from
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unsupervised training. On the other hand, supervised
training presented increasing classification rates that
reached values above 75%. The performance of both
supervised classifiers improved as the size of the
training group increased. This result shows that the
supervised classifiers were able not only to store but
also to use previous training information, in order to
improve classification rates.
Comparing FLD and AM results, one can observe that
FLD provides a more erratic behavior than AM,
whenever less than 60 signals are used in training.
The method presented in this work uses simple update
equations, whose computation does not increase in
complexity, as additional training signals are included.
So, the method can be applied to a larger group of
signals and subjects. If we had more subjects in our
data bank, we could have provided the classification
rates in percentage of subjects. However, since we had
only six test subjects, we provided our final
classification rates (above 75%) in percentage of
signals. The classification rates presented in the
literature for FLD (60% to 87.5%) [7], [6] and neural
networks (47.5% to 90%) [17], [7] are given in
percentage of subjects and were obtained for the same
parameters of our study—autoregressive coefficients of
EMG signals.

4 Conclusion
This work presented a recursive method to update
associative memories. These memories 'adapted' as new
signals and their known classification were included in
the training process. The method was applied to 117
training signals and 54 test signals. The obtained 75%
classification rate showed the method's feasibility,
since it is within the range of 47.5% to 90% presented
by other methods in the literature [6], [7], [17].
Training signals were included one-by-one in the
training group and associative memories were updated
by recursive equations. As a consequence, the
computational load did not increase as new information
was added to the training process. This is one of the
advantages of associative memories in comparison to
other methods.
These results indicate that recursive associative
memories could be applied, in the near future, to a
large number of signals in a clinical setting, providing
high classification rates.
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Abstract

Thinking about the "Symbol Grounding Problem" and
the brain structure of living things, the author believes
that it is the best solution for generating communica-
tion in robot-like systems to use a neural network that
is trained based on reinforcement learning. As the first
step of the research of symbol emergence using neural
network, it was examined that parallel analog communi-
cation signals are binarized in some degree by noise ad-
dition in reinforcement learning-based communication
acquisition. In this paper, it is shown that two con-
secutive analog communication signals are binarized by
noise addition using recurrent neural networks. Further-
more, when the noise ratio becomes larger, the degree of
the binarization becomes larger.

1 Introduction

We humans can communicate complicated informa-
tion skillfully using symbols. It has been thought that
artificial neural networks(ANNs) are good at continu-
ous nonlinear approximation, but are not good at sym-
bol handling or logical processing. In living things, the
functional difference has been pointed out between the
left-brain and the right-brain[ 1]. Based on these, the idea
of the specialization that the ANN corresponding to the
right-brain is used for pattern processing, and a digital
computer corresponding to the left-brain is used for log-
ical processing has been accepted generally. However,
there is no general idea about what signals should be
transferred between the ANN and the computer, and that
causes the "symbol grounding problem". Furthermore,
the left-brain and the right-brain looks almost the same
in the real brain compared with the difference between
the ANN and the digital computer.

The author believes that in order to solve the serious
"symbol grounding problem", the pattern processing and
the logical processing should not be distinguished. Ac-
cordingly it is expected for the ANN to perform the both
without any discriminations. For this reason, it is very
significant to show that symbols emerge in the ANN
only by applying reinforcement learning inspired by the

learning of living things. Then, there appears a question
"is it true that ANN is not good at symbol processing?"

Here, for simplicity, symbols are considered as dis-
cretized signals. Considering from the point of neces-
sity, the reason why the communication signals are dis-
cretized can be either "logical thinking" or "elimination
of noise effect". Considering from the point of struc-
ture, associative memory, in other words, fixed-point dy-
namics can be a solution to realize the discretization.
As the first step of the research of symbol emergence,
the necessity of "elimination of noise effect" has been
focused on, and it was examined whether parallel ana-
log communication signals are discretized by noise ad-
dition in reinforcement learning-based communication
acquisition[2][3].

In this paper, like a "word", a series of signals are
communicated on behalf of the parallel signals. Same
as the previous work, binarization of the signals by re-
inforcement learning in noisy environment is examined.
It seems more difficult than the case of parallel signals
because memory is necessary to generate and recognize
the communication signals.

2 Learning and Task

A simple communication environment in which only
two agents exist is assumed here. Referring to [4], one of
them can transmit a communication signal to the other.
They are put on an one-dimensional space as shown in
Fig. 1. When the both agents touch together, they get
a reward. The transmitting agent (transmitter) cannot

Fig. 1. Communication task employed in this paper.
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Fig. 2. Architecture of each agent and signal flow in one time step.

move, but can observe the relative location of the op-
ponent, and generates a series of communication signals
by its own recurrent neural network (RNN). The receiv-
ing agent (receiver) interprets the communication signals
and generates its motion command also by its own RNN.
It can move according to the motion command. It cannot
observe anything except for the communication signal,
and cannot transmit anything. Both agents are trained
based on reinforcement learning independently.

The transmitter is fixed at the left edge on a one-
dimensional space where the left edge is linked to the
right edge. The length of the space is 1.0. The receiver
is located randomly at every trial. When the motion com-
mand is positive, it moves to the right, and when nega-
tive, it moves to the left. The absolute value decides the
moving distance. When the distance between the trans-
mitter and receiver is less than 0.11, they can touch each
other and get a reward. However, if the motion com-
mand is too large for the distance, it goes past the trans-
mitter, and they cannot get the reward. Accordingly, the
receiver's motion should be in a range, and the range is
gradually sifted according to the receiver's location.

Fig. 2 shows the architecture of each agent and the
signal flow in one time step. Each agent has an Elman-
type RNN that enables memorization of some necessary
information. There are two stages in one time step. In
the first stage, the transmitter observes the receiver's lo-
cation, and generates the first communication signal by

computing its RNN. The receiver receives the signal, and
computes its RNN. The outputs are not used at this stage,
but the hidden outputs are used as the feedback inputs at
the stage 2. In the stage 2, the transmitter receives the
first communication signal as input, and generates the
second communication signal. The receiver receives the
signal, and generates the motion command.

The information of receiver's location is localized by
N Gaussian units. This helps the neural network to learn
a strong nonlinear transformation. The center of each
Gaussian is arranged between 0.0 and 1.0 with the con-
stant interval of 1.0/(N - 1), where N is the number of
Gaussian units. The size of each Gaussian a is the same
as the interval. The output is described as

GSi(loc) = exp ( - ± ((TV - 1). loc - if) , (1)

where i is the index of each Gaussian unit (i —
0,1,2, . . , N — 1), loc is the receiver's location. Here,
AT = 30.

As a reinforcement learning architecture, actor-critic
is employed for each agent. Here, the transmitter deals
with the communication signal as its action, while the
receiver deals with the communication signal as its state.
One of the outputs of each network is used as critic, and
the other is used as actor. The hidden neurons are used
in common by the both types of outputs. The training
signals are generated based on reinforcement learning,
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and the network is trained by BPTT (Back Propagation
Through Time). TD (Temporal Difference) error f is cal-
culated as

rt-i = r £ + 7 P t - P t _ 1 (2)

where rt is the reward, Pt is the critic output at t time
step, and 7 is a discount factor. The critic output is
trained by the training signal as

rt-i = rt + -yPt. (3)

As the critic output Pu the output at the stage 1 is used
for the transmitter, while the output at the stage 2 is used
for the receiver. The training signal is also given to the
output at the stage 1 for the transmitter, while to the out-
put at the stage 2 for the receiver. The actual motion Mt

is calculated as

Mt = a(2.5At + rndt 4- nt) (4)

where At is the actor output, rnd is the random number
for trial and error, and n is the noise factor that is not
added in the case of the receiver's motion, but is added
in the case of the communication signal, a is a constant.
The actor output is trained by the training signal as

t-i = At-i (5)

where 0 is a constant, and it is 0.5 here. The training sig-
nal is given to the output at each stage for the transmitter,
while to the output at the stage 2 for the receiver. When
the training signal is given to the output at the stage 2, the
learning traces back also to the stage 1 based on BPTT.

The output function of each hidden or output neuron
is a sigmoid function that ranges from -0.5 to 0.5. All the
training signals are limited from -0.4 to 0.4 to avoid the
saturation area of the sigmoid function. In Eq. (4), by
multiplying 2.5 to each actor output, the range becomes
from -1.0 to 1.0, and after that, the trial and error fac-
tor and noise are added. When the value becomes larger
than 1.0 or less than -1.0, it is returned to 1.0 or -1.0
respectively. Here, the trial and error factor is cubed uni-
form random number whose level, in other words, whose
amplitude is ±0.4. The noise factor is a uniform random
number whose level is varied from ±0.0 to ±1.6 with
the interval of 0.2 in the following simulations. Even in
the case that the noise factor is always zero, the random
number for the trial and error factor of the transmitter is
received as a noise for the receiver.

For the critic computation based on TD learning in Eq.
(2) and (3), 0.5 is added to the critic output actually. The
reward that is given to each agent is 0.9. To generate the
communication signal, a in Eq. 4 is 1.0 in the transmit-
ter. For the motion command, a is 0.4 in the receiver so
as that the receiver can touch the transmitter in one step
from any locations by an appropriate motion. If the re-
ceiver's motion is discretized completely, no less than 4
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Fig. 3. The communication signals as a function of the re-
ceiver's location. The random number level is 0.4.
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Fig. 4. The receiver's motion command as a function of the
receiver's location. The random number level is 0.4
and the noise level is 1.0.

levels of output is required. The number of layers is 3,
and the number of neurons in the hidden layer is 10 for
both agents. All the initial connection weights from the
hidden layer to the output layer are 0.0, and those from
the input layer including feedback inputs to the hidden
layer are decided randomly in the range from -1.0 to 1.0.

3 Result

It was observed whether the transmitted signals be-
came discrete when the noises were added to the com-
munication signals during the learning. The consecutive
two communication signals and the motion command af-
ter learning with no noise are shown in Fig. 3(a) and Fig.
4(a), and those with some noise (level=1.0) are shown in
Fig. 3(b) and Fig. 4(b). The initial connection weights
are the same between the two cases. The sloping lines
in Fig. 4 indicate the maximum and minimum limit val-
ues of the motion for the receiver to touch the transmit-
ter in one time step by the motion as a function of the
receiver's location.

Roughly, the results are similar to the case of the par-
allel communication signals[2][3]. In the both cases,
the transmitter generated the first communication signal
from the receiver's location and generated the second
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one from the first communication signal and the feed-
back inputs. Then the receiver received the first commu-
nication signal, kept the information through the feed-
back inputs, and could acquire appropriate motions from
the stored information and the second signal at the stage
2. After learning with noise, each communication signal
was almost binarized, and only around the boundary of
the binary values, the signal took a medium value. How-
ever, it is clear that the degree of binarization is larger
than in the case of no noise. The receiver's motion is
discretized into four levels in the optimal range by the
combination of the two consecutive binary communica-
tion signals. The motion is more clearly discretized than
the communication signals. The reason might be that the
receiver also learned to binarize the received signal uti-
lizing non-linear transformation of the neural network.
When the number of communication chances was in-
creased to three times, the assignment of information to
the signal of each chance could not be done well, and the
optimal motion command could not be acquired. That is
different from the case of parallel signals.

The degree of the binarization according to the noise
level was also observed. The degree of binarization that
means how the signal is close to the maximum value 1.0
or the minimum value -1.0 is defined as

Nc Nd

' noise level
(test phase)

Nd) (6)

where Nc is the number of communication chances, Nd
is the number of sampled receiver's locations, and com
is the communication signal without the random number
and noise. If the communication signal is always -1.0
or 1.0, the degree becomes the maximum of 1.0, while
if the signal is always 0.0, it becomes the minimum of
0.0. The degree of binarization according to the noise
level is shown in Fig. 5(a). Each small circle shows the
average degree over 50 simulations, and the vertical line
shows the standard deviation. It can be seen that when
the noise level becomes larger, the degree becomes larger
and the deviation becomes smaller. However, when the
noise level becomes larger than 1.0, the degree decreases
slightly according to the noise level. When the noise
level is 1.6, the both signals encode the same information
as the signal 1 in Fig. 3(b) in most cases. That results in
the high degree of binarization.

The noise tolerance was also examined. Fig. 5(b)
shows the average time steps to the goal as a function of
the noise level in the learning phase for each noise level
in the test phase after learning. It can be seen that when
some noise is added in the test phase, the performance
is the best when the noise level in the learning phase is
1.0. It is interesting that under the same condition, the
degree of binarization is the maximum. However, when

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
noise level

(a) degree of binarization

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
noise level (learning phase)

(b) noise tolerance

Fig. 5. Noise Effect. (a)Degree of binarization according to
the noise level in the learning phase. (b)Noise toler-
ance according to the noise level in the learning phase.

the noise level in the learning phase is larger than 1.0,
the performance becomes worse even if the noise level
in the test phase is 0.0. This means that the large noise
in the learning phase disturbed the proper learning even
for the case of no noise.

4 Conclusion

It was shown that as well as the case of the parallel
communication signals, noise addition has the effect to
promote the binarization of the signal only by reinforce-
ment learning in the case of a series of signals. The rea-
son why appropriate signals cannot be obtained in the
case of more than two signals should be examined.
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Vertex Cover[5],[8]. We classify the corpora firstly and
Abstract. then analyze the point property of the feature space by

this means. Because of CASSAN-II neural computer have
been widely applied the Theory of High-Dimension
Space Geometry to Artificial Neural Networks
[3],[7],[6],[4], and soon it succeeds in many fields, such

In this paper, we present a novel algorithm of speaker-
independent continuous Mandarin digits speech-recognition,
which is based on the dynamic searching method of high-
dimension space vertex cover. It doesn't need endpoint
detecting and segmenting. We construct a coverage area for
every class of digits firstly, and then we put every numeric
string into these coverage-areas, and the numeric string is
recognized directly by the dynamic search method. Finally,
there are 32 people in experiment, 16 female and 16 male, and
256 digits all together. All these digits are not learned. The
correct recognition result is 218, and error recognition result is
26. Correct recognition rate is 85%

1 Introduction
With the development of the technology of speaker-
independent small vocabulary isolating speech
recognition, its application has been prospected in many
fields. But the applied continuous speech recognition
system is still rare. Therefore, the research of speech
recognition was mainly concentrated on improving the
performance of speaker-independent large vocabulary
continuous speech recognition since 1990s.
The traditional algorithm of the speaker-independent
continuous speech-recognition is mainly depended on the
endpoint detection. First, the speech was segmented into
small units, syllables or phonemes, and then these units
were recognized by the method of Hidden Markov
Models (HMMs)[2] or Dynamic Time Warping (DTW).
The advantages of these methods are that they can
convert the continuous speech into isolated speech and
reduce the difficulties of the recognition process. But
their method is fragile in the noise, limited in their ability
to handle pronunciation variation, and costly for large
vocabulary spontaneous speech transcription. That is to
say, their ability to represent dynamic behavior is limited
[10].
In order to resolve these problems of continuous speech
recognition, in this paper, we present a novel algorithm
which is based on the Theory of High-Dimension Space

as pattern recognition[9], face recognition[12] and
adaptive controller[l],Finally we implement it on the
CASSAN-II neural computerfl 1] invented by Wang
Shoujue.

2 The characteristic of continuous
speech
(1) Co-articulation exists in the speech units (e.g.
phoneme, syllable).
(2) Because there are not clear endpoints between two
units, the phone can not be segmented completely or
separated from each other.
(3) Both the rate-of-speech[5] and the duration-of-speech
are variable, so it is difficult to find an uniform module;
Because of the three characteristics mentioned above, the
endpoint detecting and the speech segmentation become
difficult. In addition, the environment noise makes the
acoustic model establishment even more difficult.
Therefore, the decision tree and many phonemic models
were used in the traditional Hidden Markov Models
method, such as Word-Dependent (WD), Left-Context-
Dependent (LCD), Right-Context-Dependent (RCD),
context-Dependent (CD, also called TRIPHONE model,
triple phone), and so on. This makes the models which
appear seldom can't be trained sufficiently, so the
recognition rate is lower than those which appeared more.
(4) There are some characters of the nature speech, which
is more optional and has a few stochastic phenomena,
such as hesitation, pause, filled pauses etc.

3 Feature extraction of the continuous
digits speech recognition and the
constructing of High-Dimension Space
coverage areas
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3.1 The collection and establishment of the speech
corpora
There are two speech patterns. One is spontaneous speech
that is the utterance we speak in our daily life. It is
unbending. At least, it has no special prepare in terms of
speech pattern. It is always slack, and goes with random
events (filled pauses etc.). The other is the reading speech.
It is always changeless. Its speech pattern and speech
context should be prepared beforehand and accord with
the grammar as well.
The continuous speech we adopted in this paper is
between the reading and the spontaneous speech. The
context of our corpora is the phone numbers. The read
pattern is similar to the spontaneous speech. According to
the experiment requires, we remove some complex noise
but some background noise (e.g. stir of cars in road) is
left.
There are two corpora. As for the first corpora, we
segment the continuous speech into syllables by hand and
then select the better result as "the learning corpora". We
must point out that these syllable samples are different
from the isolated samples. They have many
characteristics of continuous speech. As for the second
corpora, we regard all these articulate continuous phone
number as "the recognition corpora". Both these corpora
are collected in 8000Hz (the Sample Frequency) and
16bits (the Bit Depth).

3.2 Feature extraction method of the learning corpora
There are three steps in this process.
Step 1. Change the wave samples into Mel Frequency
Cepstrum Coefficient (MFCC).
First, pre-emphasis processing:

x'(n)=x(n)-0.9375x(n-l).
Second, hamming windows:

x'(n)=[0.54-0.46cos(27tn/255)]x(n)
the width of this window is 256, and its offset is 64.
Third, Mel Frequency Cepstrum conversion: the number
of Mel filters is 24. We remove the first and the last 7
values, and remain 16 values as feature parameters.
Step 2. Remove the redundant data.
First, suppose that every 16 feature parameters consist of
one 16 dimension-vector Ci, i=l,2,3...n, shown as fig.l.

Second, compute the angle of the two adjacent vectors:

Cn

Fig.l. As for a digit sample, here are n 16-dimension-vectors.
Every vector has 16 dimensions which are 16 MFCC after step
1.

6j = ar cos(-c^c,

When the angle 6. is below the experiment statistic

number O.13rad, remove Cj or Cj+1 until all
Oj > 0A3rad . In this way, we can not only remain more

than 8 vectors but also compress data in a certain extent.
Step 3. Normalize a digit sample into a certain length.
First, select one shortest sample from each class of MFCC
vectors. These vectors have already been compressed.
Choose the optimal 8 vectors in hearing by hand. And
regard these 128 values, a new feature vector of High-
Dimension Space, as a standard of this class of MFCC
vectors.
Second, compare all MFCC vectors of each class with the
standard, and choose sequential 8 16-dimension-vectors
whose angle with the standard is smallest. And regard this
128-dimension-vector as the feature of this sample. The
coverage areas of feature space are constructed by these
128-dimension feature vectors. This process is shown as
figure 2.

Standard
(128

B ... B

MFCC

Fig. 2. Choose the most similar 8 vectors (consist of a vector of
128-dimension) from the MFCC vectors.

Suppose,
,A • Bh .

If,

Then regard this 128-dimension vector Bp as the most

similar one in these vectors Bk (k = 1,2, •••/?).

Therefore, select Bp as this sample's feature vector

(128-dimension). This feature vector is one of the
samples, which construct the coverage areas of this class
of feature space.
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3.3 Put the feature vectors into neural networks and
construct the coverage areas of every syllable (we see
every syllable as one class) in the high-dimension
feature space
From 0 to 9 except 1, there are 9 classes of samples. The
digit " 1 " is divided into two classes: "yi" and "yao". Then
there are 11 classes of samples totally. Regard each
sample class as one set Si (i=l,2,. ..11) ,

Si={xij | xijeSi , j<=N}
Si is from the learning corpora. And select n samples
(every sample xij is one of the point of High Dimension
Space) from every sample class as a new sample set S'i.
Put the new sample set S'i into neural networks, and
adopt the Theory of High-Dimension Space Vertex
Cover[4],[8],[ll],[12] to construct the coverage areas of
the ith class in feature space.

4 The novel algorithm and its
implementation of Speaker-Independent
Continuous Digit Speech Recognition Based
on the Dynamic Search Theory of High-
Dimension Space Vertex Cover

will be changed by time). In fig.3a, two distinct minimum
points are shown in 79th and 357th points respectively.
Since it is in the coverage area of "san", this result
indicates that the two positions in time-axis are the
pronunciation of "san". Fig.3b indicates the distance
between this sentence and the coverage area of "wu".
There is only one minimum point, the 109th point. This
point stands for "wu" in this sentence. The curves in fig.
3c, 3d and 3e indicate the distance between this sentence
and the coverage areas of " ba", "er" and "qi"
respectively. The minimum points correspond to the
pronunciation of "ba", "er" and "qi" of this sentence
respectively.

Fig.3a. the distance from "san wu ba er qi ling ling san" to the
coverage area of "san"

4.1 Feature extraction method of recognition corpora
According to the same procedure of the step 1 and step 2
in section 3.2, change wave samples into 16 dimension
MFCC vectors and remove the redundant data. And then
extract 8 16-dimension vectors as a 128-dimension vector
from the beginning of the speech. Extract next 8 16-
dimension as the next 128-dimension from the second 16-
dimension vector. The rest may be deduced by analogy.
Form a series of 128-dimension vectors whose length (the
number of 128-dimension vectors) varies with the length
of the speech. In this experiment, it varies from 207 to
465.1n this procedure, the frame width of Hamming
window is 256 sample points, the offset length of every
frame is 64 sample points, the number of Mel filter is 24,
and the threshold 9=0.13 radian.

Fig.3b. the distance from "san wu ba er qi ling ling san" to the
coverage area of "wu"

Fig.3c. the distance from "san wu ba er qi ling ling san" to the
coverage area of "ba"

4.2 Dynamic search and recognition method of High-
Dimension Space Vertex Cover
Regard n 128-dimension feature vectors of continuous
speech to be recognized as n points of high dimension
space. Here, take the sentence "san wu ba er qi ling ling
san" as an example. The length of this sentence is 433,
that is n=433. Compute the distance between these n
points and every class of the coverage area. The result
curve is shown as 11 Figures, we select 2 figures fig.3a-
3c. (The x-coordinate is the points' serial number and it is
a time-axis. And y-coordinate is the distance between the
present point and the present coverage area. The distance

Fig.3d. the distance from "san wu ba er qi ling ling san" to the
coverage area of "er"
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Fig.3e. the distance from "san wu ba er qi ling ling san" to the
coverage area of "qi"

All these 11 curves form a mesh surface shown as fig.6.

Fig.4. the 3D display of the recognition result

5 Result and discussion

5.1 Statistic result:

There are 32 people in this experiment, 16 female and 16
male, and 256 digits all together. All these digits are not
learned. The correct recognition result is 218. and Error
result is 26.

5.2 Discussion
We discussed a new method of the Speaker-Independent
Continuous Speech-Recognition in this paper. As it dose
not need to detect the endpoint and segment speech, it can
be used in the recognition of the continuous nature speech.
Although the result is not perfect, but we can see the
performance of robustness is good. It will be a promising
new research direction in the continuous nature speech
recognition.
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Abstract
In this paper, we present a technique for tracking groups of
partials in musical signals, based on networks of adaptive
oscillators. We show how synchronization of adaptive
oscillators can be utilized to detect periodic patterns in outputs
of a human auditory model and thus track stable frequency
components (partials) in musical signals. We present the
integration of the partial tracking model into a connectionist
system for transcription of polyphonic piano music. We provide
a short overview of our transcription system and present its
performance on transcriptions of several real piano recordings.

1 Introduction
Music transcription could be defined as a process of
converting an audio signal into a note-level (parametric)
representation, where notes (pitches), their starting times
and durations are extracted from the signal. Transcription
is a challenging problem for current computer systems;
separating notes from a mixture of other sounds, which
may include other notes played by the same or different
instruments or simply background noise, requires robust
algorithms with performance that should degrade
gracefully when noise increases.
Automatic transcription of polyphonic music would be
useful in a variety of applications, ranging from content-
based retrieval of music (i.e. query by example systems)
and music analysis systems to accompaniment systems
and musicological studies.
In recent years, several transcription systems have been
developed [1-4]. All authors, except for Bello [2], base
their systems on frequency domain analysis of the musical
signal. Cues, such as local energy maxima, are extracted
from the time-frequency representation of the signal and
used in subsequent processing stages to find notes that are
present in the signal. Various techniques, such as
statistical frameworks, blackboard architectures, distance
metrics or ICA are used in the process of grouping the
found cues into notes, relying on information such as
harmonicity and common onset/offset times. To reduce
the complexity of the TF representation, to reduce noise
and to incorporate some kind of temporal processing,

partial tracking has been used in some systems to locate
stable frequency components in the audio signal [4,5].
In this paper, we present a connectionist approach to
music transcription. Transcription is a challenging task, so
we limited the domain of our system to transcription of
polyphonic piano music. The paper focuses on our
approach to partial tracking with networks of adaptive
oscillators, provides a short description of our entire
transcription system, and presents some results obtained
on transcriptions of real piano recordings.

2 Partial tracking with networks of adaptive
oscillators

A melodic sound can be roughly described as a sum of
components with relatively stable frequencies and time-
varying amplitudes, called partials. By finding partials in a
signal, one isolates the stable frequency components most
likely belonging to tones, and discards noisy components.
This is especially desirable in transcription systems, where
the goal is to find all the tones present in the audio signal.
Currently, most partial trackers used in transcription
systems are based on a procedure similar to the tracking
phase vocoder [6], where peaks are computed in each
frame of the time-frequency representation. Detected
peaks are then linked over time according to intuitive
criteria such as proximity in frequency and amplitude to
form partial tracks. Such approach is quite susceptible to
errors in the peak peaking procedure, where missed or
spurious peaks can lead to fragmented or spurious partial
tracks.
We propose an alternative partial tracking approach that is
not based on the standard peak-picking/peak connecting
paradigm, but on connectionist principles. It is composed
of two parts: an auditory model, and adaptive oscillators
that extract partials from outputs of the auditory model.

2.1 Auditory Model
The auditory model emulates the functionality of human
ear and transforms the audio signal into a probabilistic
representation of firing activity in the auditory nerve.
Amongst the several auditory models available, we chose
to use a combination of the Patterson-Hodsworth
gammatone filterbank [7] and Meddis' model of hair cell
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transduction [8], as their implementations are readily
available. The gammatone filterbank emulates the
movement of basilar membrane in the inner ear. Its
outputs are processed by the hair cell model, which
converts each output into a probabilistic representation of
firing activity in the auditory nerve. Its operations are
based on a biological model of the hair cell and it
simulates several of the cell's characteristics, most notably
half-wave rectification, saturation and adaptation.
Saturation and adaptation are very important to our
model, as they reduce the dynamic range of the signal, and
in turn enable our partial tracking model to track partials
with low amplitude. These characteristics can be observed
in Fig. 1, displaying outputs of three gammatone filters
and the hair cell model on the 1., 2., and 4. partial of
piano tone F3 (pitch 174 Hz).

174 Hz

348 Hz

696 Hz

TIME TIME

Fig. 1. Auditory analysis of three partials of piano tone F3.

2.2 Partial Tracking
Output of the auditory model consists of a set of quasi-
periodic functions describing firing activities of inner hair
cells in different parts of the basilar membrane (Fig. 1).
Temporal models of pitch perception are based on the
assumption that detection of periodicity in output channels
of the auditory model forms the basis of human pitch
perception. Periodicity is usually calculated with
autocorrelation, resulting in a three-dimensional time-
frequency representation of the signal called
autocorrelogram, with time, channel center frequency and
autocorrelation lag represented on orthogonal axes. In
contrast, we propose to use a set of adaptive oscillators to
estimate periodicity in output channels of the auditory
model.
An oscillator is a system with periodic behavior. It
oscillates in time according to its two internal parameters:
phase and frequency. An adaptive oscillator adapts its
phase and frequency in response to its input (driving)
signal. When a periodic signal is presented to an adaptive
oscillator, it adjusts its phase and frequency to match that
of the driving signal and thus synchronizes with the signal.
By observing the frequency and phase of a synchronized
oscillator, an accurate estimate of the frequency and phase
of its driving signal can be made. After reviewing several

models, we decided to use a modified version of the
Large-Kolen adaptive oscillator [9] in our partial tracking
model.
The rationale behind the use of adaptive oscillators for
partial tracking is simple. As periodicity in an output
channel of the auditory model points to the presence of a
frequency component (partial) in the input signal, analysis
of periodicity in the channel indicates the exact frequency
of the partial. In our model, periodicity is detected by a set
of adaptive oscillators. If these synchronize with their
stimuli (outputs of the auditory model), this indicates that
the stimuli are periodic, and consequently that partials are
present in the input signal. Frequencies of partials can be
estimated by observing the frequencies of synchronized
oscillators. Such a model has several advantages, when
compared to standard approaches: it produces a
continuous estimate of partials in a signal; because
oscillators constantly adapt to their stimuli, partials with
slowly changing frequencies (vibrato...) can be tracked;
and as the auditory model reduces the dynamic range of
the input signal and thus boosts partials with low
amplitudes, these can be tracked as well.

2.3 Oscillator networks
As most tones are harmonic, we extended the model of
tracking individual partials to a model of tracking groups
of harmonically related partials by joining adaptive
oscillators into fully-connected networks. Each network
contains oscillators that track a series of harmonically
related partials, so the frequencies of oscillators in a
network are set to integer multiples of the frequency of the
first oscillator (Fig. 2). As each oscillator in the network
tracks a single partial close to its initial frequency, a
network of oscillators tracks a group of harmonically
related partials, which may belong to one tone with pitch
equal to the frequency of the first oscillator.

FREQUENCY CHANNELS

STRENGTH OF A GROUP

I OF PARTIALS (f.Jlf)

Fig. 2. A network of adaptive oscillators.

Within a network, each oscillator is connected to ail other
oscillators with excitatory connections. These connections
are used to adjust frequencies and outputs of non-
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synchronized oscillators in the network with the goal of
speeding up their synchronization. Only a synchronized
oscillator can affect frequencies and outputs of other
oscillators in the network. Output of a network is
calculated as a weighted sum of outputs of individual
oscillators in the network and represents the strength of a
group of partials tracked by oscillators in the network.
Connecting oscillators into networks has several
advantages if the goal is to obtain a compact
representation of a signal, suitable for transcription.
Output of a network represents the strength of a group of
harmonically related partials tracked by its oscillators.
Such output provides a better indication of presence of a
harmonic tone in the input signal than do outputs of
individual oscillators. Noise usually doesn't appear in the
form of harmonically related frequency components, so
networks are more resistant to noise and provide a clearer
time-frequency representation. Network connections are
used by synchronized oscillators to speed up
synchronization of non-synchronized oscillators, leading
to a faster network response and faster discovery of a
group of partials. Missing partials (even missing
fundamental) are tolerated, if enough partials are found by
other oscillators in the network.
An example is given in Fig. 3, which displays slices taken
from three time-frequency representations of piano chord
C3E3B4, calculated 100 ms after the onset: representation
with uncoupled oscillators, repre-sentation with networks
of adaptive oscillators and short-time Fourier transform.
The representation with uncoupled oscillators was
calculated with 88 oscillators tuned to pitches of piano
tones A0-C8. Oscillator outputs (independent of partial
amplitudes) are presented in Fig. 3A. Fig. 3B shows
outputs of 88 oscillator networks, tuned to the same
pitches. Product of networks' outputs and amplitudes of
partials is shown in Fig. 3C. Fig. 3D displays the first 440
frequency bins of the Fourier transform calculated with a
100 ms Hamming window.
Individual oscillators have no difficulty in finding the first
few partials of all tones (A). Some of the higher partials
are not found, as they are masked by louder partials of
other tones (we use only one oscillator per semitone).

Oscillator networks (B) produce a clearer representation
of the signal; the first two or three partial groups of each
tone stand out. Networks coinciding with tones E3 and B4
produce the highest outputs, because almost all partials in
the networks are found. When amplitudes are combined
with network outputs (Fig. 3C), only four partial groups
stand out, corresponding to first partials of all three tones
(C3, E3, B4) and the second partial of tone E3. If we
compare Fig. 3C with the Fourier transform in 3D,
advantages of partial group tracking for transcription are
obvious.
Overall, oscillator networks produce a compact and clear
representation of partial groups in a musical signal. The
main problem of this representation lies in occasional
slow synchronization of oscillators in networks, which can
lead to delayed discovery of partial groups. This is
especially true at lower frequencies, where delays of 40-
50 ms are quite common, because synchronization only
occurs once per oscillator cycle; an oscillator at 100 Hz
synchronizes with the signal every 10 ms, so several 10s
of milliseconds are needed for synchronization. Closely
spaced partials may also slow down synchronization,
although it is quite rare for a group of partials not to be
found.

3 Transcription of piano music
The described partial tracking model has been
incorporated into our system for transcription of piano
music, called SONIC [10]. Next to partial tracking, the
system also includes a note recognition module, an onset
detector based on a network of integrate-and-fire neurons,
a module for resolving repeated notes, based on multilayer
perceptrons and simple algorithms for estimation of
tuning, note length and loudness.
A note recognition module is the central part of every
transcription system. Its input consists of a set of cues
extracted from the time-frequency representation of the
input signal and its task is to associate the found cues with
notes. Statistical methods are frequently used for this task;
in our transcription system the task is performed by a set
of neural networks. Inputs of each network are taken from
outputs of the partial tracking module presented in

OSCILLATORS

C3,
E3

OSCILLATOR

NETWORKS

C3,B

B4,

E34

OSC. NETS &
AMPLITUDES

C C3,

131 330 496 995
FREQUENCY (HZ)

131165 330496 995
FREQUENCY (HZ)

131165 330496 995
FREQUENCY (Hz)

130500 1000 2010 3030
FREQUENCY (HZ)

Fig. 3. Representations of piano chord C3E3B4
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previous sections. Each network is trained to recognize
one piano note in its input; i.e. one network is trained to
recognize note A4, another network recognizes note G4...
After extensive testing of several neural network models,
we decided to use time-delay neural networks (TDNNs) in
our system, as they provided the best performance.
Networks were trained and tested on a database of approx.
150 synthesized piano pieces of various styles, combined
with randomly generated chords. Tests showed that the
incorporation of the partial tracking module significantly
improved overall accuracy of transcription, halving the
number of spurious notes [10].

4 Performance analysis
To analyze the performance of our transcription system,
we tested it on a number of synthetisized and real
recordings. The real recordings were transcribed by hand
with the help of the original score. Originals and
transcriptions of several pieces can be found on
http://lgm.fri.uni-lj.si/SONIC. Table 1 lists performance
statistics of three real piano performances: percentages of
correctly found and spurious notes in transcriptions, as
well as percentages of octave errors for missed and
spurious notes are given.

corr.
notes

spur,
notes

missed
octave err.

spurious
octave err.

88.5
68.3
85.9

15.5
13.6
15.2

35.1
30.3
70.3

80.5
79

87.4

Table 1. Performance statistics on real recordings

The transcribed recordings are: (1) J.S. Bach, English
suite no. 5, 1st mvt, performer Murray Perahia, Sony
Classical SK 60277; (2) F. Chopin, Nocturne no. 2, Op.
9/2, perf. Artur Rubinstein, RCA 60822; (3) S. Joplin,
The Entertainer, performer unknown, MCA 11836.
Overall, most transcription errors are either due to octave
errors or errors related to missed or spurious repeated
notes. In Bach's English Suite, next to octave and repeated
note errors, most of the missed notes are either quiet low
pitched notes or notes in arpeggios and thrills. Chopin's
Nocturne is a good example of very expressive playing,
where a distinctive melody is accompanied by quiet,
sometimes barely audible left hand chords. The system
therefore misses over 30% of all notes, but even so the
resynthesized transcription sounds quite similar to the
original (listen to the example on the aforementioned URL
address). When we compared transcriptions of the real
and a synthesized version of The Entertainer, both turned
out to be very similar. Transcription of the real recording
contains more spurious notes, mostly occurring because of
pedaling, which was not used in the synthesized version.

The number of correctly found notes is almost the same in
both pieces. Octave errors are the main cause of both
missed and spurious notes. For a more detailed analysis,
see [10].

5 Conclusion
In this paper, we presented a connectionist approach to
partial tracking in musical signals. Our approach is based
on a human auditory model and on adaptive oscillators for
discovery and tracking of partial groups. By using a
connectionist approach, we avoided some of the pitfalls of
classical partial tracking approaches. We presented a brief
overview of our transcription system and presented
performance statistics on transcriptions of several real
piano recordings. Overall, results are very promising and
we believe that connectionist approaches to transcription
should be further studied.
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Abstract

A novel Independent Component Analysis(ICA) al-
gorithm is achieved, which enable to separate mixtures
of symmetric and asymmetric sources with self adap-
tive nonlinear score functions. It is derived by using the
parameterized asymmetric generalized Gaussian den-
sity (AGGD) model. Compared with conventional ICA
algorithm, the proposed AGGD-ICA method can sepa-
rate a wide range of signals including skewed sources.
Simulations confirm the effectiveness and performance
of the approach.

1 Introduction

The independent component analysis(ICA) technique
is to recover source signals which are considered statis-
tically independent given only the output of a number of
sensor mixtures[l]. In this paper we consider the linear,
instantaneous, noiseless mixtures model with the form
x(t) = As(£), where s(t) e RM denotes the vector
of zero-mean, stationary, statistically independent source
signals, x(t) e RN denotes the vector of observable
mixtures and A € RNxM is a full-rank constant mix-
ing matrix. We assume that there are as many sources
as mixtures i.e. M = N. These observed signals are
processed by a de-mixing matrix W that

y(t) = W x ( t ) = WAs(i) , (1)

where y(t) £ RN is an estimate of s(t) to within the
permutation and scaling ambiguities. Then we get the
performance matrix P and P = WA.

A useful algorithm that has been developed is
the important contribution of Amari etal.according to
ref.2(independently by Cardoso, which was termed the
relative gradient algorithm[3])

Wfc+1 = Wk + ^ j _ (/?(y)yT']Wfc, (2)

where rj > 0 is the learning rate which can be chosen by
the perfect idea in ref.4 and (p(-) is the vector of score
functions whose optimal components are

The optimal score function depends on the probabil-
ity distribution of the sources heavily. In order to achieve
a good separation result, the ICA algorithm must adapt
to different source distributions. Various methods have
been proposed to separate mixtures of sub- and super-
Gaussian distribution signals[5], but they did not con-
sider the condition that the sources have asymmetric dis-
tributions. Here, we present an adaptive algorithm which
is derived by using an AGGD model for symmetric and
asymmetric source signals.

This paper is organized as follows: Section 1 intro-
duces briefly the ICA model and natural gradient algo-
rithm; then in section 2, we use two parametric density
models: generalized Gaussian density(GGD) model and
AGGD model to cover an extensive range of source dis-
tributions, at the end of this part the new algorithm is
proposed; Simulations illustrating the good performance
of the proposed method are given in section 3; Finally,
section 4 concludes the paper.

2 Generalized Gaussian Density(GGD), AGGD
Model and AGGD-ICA Algorithm

Firstly, let us introduce two definitions which can
measure the skewness and sharpness of a random vari-
able's distribution so called skewness and kurtosis. They
are defined as

7i = skew(y) =

72 = kurt(y) =

ms(y)

m\{y)
- 3 ,

(3)

where ra2(y), m3(y) and m4(y) denote the 2nd-, 3rd-,
4th-order moments. The skewness with zero and non-
zero values corresponds to symmetric and asymmet-
ric distribution. Similarly the kurtosis with positive,
zero and negative values corresponds to super-Gaussian,
Gaussian and sub-Gaussian distribution respectively.

The relationship between 71, 72 and freedom degree
parameters in GGD and AGGD model will be deter-
mined in the next two subsections.
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2.1 GGD Model

The PDF of GGD[5-7] with shaping factor c and scal-
ing factor 7 is represented by

Pggiv) = 2T(l/c)
- fiy)\

c

where F ( ) is the Gamma function defined by T(x) —
Jo°° tx~le~tdt. By changing the values c(c > 0), a fam-
ily of distributions with different sharpness will be given.
When c = 2, the distribution reduced to Gaussian. If
c > 2 the distribution becomes sub-Gaussian, that is
72 < 0, otherwise c < 2, it becomes super-Gaussian
PDF, that is 72 > 0. Figure 1 shows a family of GGD.

Fig.l. Some Densities of GGD PDF(^y = 0, a% = 1).

Because the parameter c can not be estimated directly
from data samples, but the kurtosis 72 can be, so we
should find the relationship between c and kurtosis 72.
From the definition, the 2nd- and 4th-order moment can
be obtained easily

7712 = r v2

J-oo

r(f)
72r(i;

r(f)mA= y4pgg(y)dy = ^ .
J —OQ 7 •*• \ c /

The scaling factor 7 can be derived by using one of
above equations, e.g. from the 2nd-order moment

7 = m 2 r ( i ) '

Then using the definition of 72, we can get

- 3 . (4)

So given a value of 72, the parameter c can be de-
termined from (4). But, because of the F(-) function's
definition, it is impossible to express c in terms of 72
by an analytically exact expression. Hence an approx-
imation is required. A good approximation was found

in ref.8 by applying the least squares method(LSM), the
LSM estimate result follows

c = -0.12. (5)
72 ~ 1.865

From above analysis, the score function based on
GGD PDF in the algorithm (2) can be derived from (3)

<Pi,gg(yi) = cl°\yi - Vyi\C~lsgn(yi - fjLVi). (6)

For different value of parameter c, the score functions
are shown in figure 2.

r-— c-o.87
c-1.0 .
c=2.O

I —- c=2.5 L
| • C-4.O |

—i i -

Fig.2. Some Score Function Based on GGD PDF
F a m i l y ^ = 0, a2

y = 1).

Then for any symmetric source signals, we can substi-
tute (6) to (2), the ICA algorithm is obtained.

2.2 AGGD Model

Choi et.al.[7] present the flexible ICA algorithm
where the score function was derived from the GGD
model. They had shown that the algorithm can sep-
arate the mixtures of sub- and super-Gaussian signals
with self-adaptive score function which is controlled by
Gaussian exponent c. But they did not consider the con-
dition that the source signals have asymmetric distribu-
tions. The main limitation affecting the GGD model is
its symmetry. So we will introduce an asymmetric PDF
model-AGGD model [6]. It depends on two second-order
parameters:of, of called left and right variance respec-
tively and defined as: af = ± £2

the estimated mode(which is not coincide with the mean
in the case of asymmetry distribution) and Ni(Nr) is the
number of yi that is less than my(or greater than rhy).

Hence, replacing the variance of GGD PDF with af
and of, we can get the AGGD distribution model

Pagg(y) =

where 7 =
cri+crr

-7f[-(y-my)]c}, y <my

y>my

(7)

r<i> . , _ 1 /r.(f)

and my is the mode. From the definition
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(7) we can prove that AGGD model satisfies the re-
quired properties of density function that is pagg(y) >
05 / ^ o Pagg(y)dy — 1, at the same time, pagg(y) is con-
tinuous when y — my.

From this definition, it is easy to notice that when
af = of, the PDF coincides with the GGD model, that
is to say it has symmetric distribution; Furthermore, if
af = of and 72 = 0, the AGGD coincides with the
Gaussian model, so if 72 > 0, it coincides with super-
Gaussian distribution, otherwise, 72 < 0, it degrades to
sub-Gaussian PDF; then if of ^ of and 72 = 0, we can
get general asymmetric Gaussian class. Figure 3 shows
a family of AGGD as c varies.

Fig.3. Some Densities of AGGD PDF Family for
Different c(fj,y = 0, of = 1, of = 4).

From the definition, the 2nd- and 4th-order moment of
AGGD can be obtained

m2 = (oy - ai)

Then the relationship between 72 and c can be ob-
tained from (4), (8-9). The relationship between 72 and c
is given in figure 4 for different combinations of af and

t=1O
t=1OO
t»1OOO
t-1OOOO

From (3), we can get score function of AGGD easily

-cryf (~(yi — rnyi))
c~l , yt < my.

-7r (Vi - myi)C~ - y% > my-i
(10)

Substitute (10) to (2), we can get the separation algo-
rithm based on AGGD model—AGGD-ICA. For differ-
ent value of parameter c , the score functions are shown
in figure 5.

Fig.4. Relationship Between 72 and c for Different Left
and Right Variance^ = 0, af = 1, t = of).

Fig.5. Some Score Function Based on AGGD PDF
F a m i l y ^ = 0 , of = 1 , of = 2).

2.3 AGGD-ICA Algorithm

As discussed above, we can use a parametric PDF
model AGGD to estimate symmetric and asymmetric
source signals. Under the framework of natural gradient,
we derive a novel AGGD-ICA separated algorithm. The
proposed AGGD-ICA algorithm have a wide application
range compared with classic ICA algorithm, It paves the
way to wider applications of ICA methods to real world
signal processing. The procedure of proposed AGGD-
ICA algorithm is simply summarized as:

Stepl Calculating the output signals y(t) by observa-
tions x(£) and the given initial separating matrix W;

Step2 Estimating the skewness and kurtosis of the ex-
tracted signals y(t);

Step3 If skewness equals to zero or very close to
zero(< 0.1), then af = of. We seek c from (5) using
(4) according to the values of 72. Else if 71 far away
zero(> 0.1 ), we will seek c from (5) using (4),(8) and
(9) according to the values of 72;

Step4 Calculate the score function (6) or (10);
Step5 Updating W using (2), if | |Wk+x - W k | | > e,

k — k + 1 and go to stepl, otherwise, end the algorithm.

3 Simulations
In order to confirm the validity and performance of our

proposed AGGD-ICA algorithm, simulation experiment
is given below. Five source signals which have differ-
ent waveforms are used, they are one Gaussian signal,
one super-Gaussian signal, one sub-Gaussian signal and
two asymmetric source signals. The waveform of them
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are shown in figure 6(a). The source signals are mixed
through a mixing matrix which is randomly generated.

The initial condition of W is an identity matrix,
the learning rate rj is chosen by the variable step-size
method, which Chamber et.al. in[4] has proved this
procedure can make the algorithm convergence fast and
robust. We can choose the learning rate rj as fol-
lows: at the first stage of the separation process(first 50
iterations),?? = 0.01, then it reduces to r\ — 0.001 at
the last stage of the optimization. In the experiment we
find that the AGGD-ICA algorithm can convergent be-
fore 100 iterations. The performance matrix P = WA
can be obtained

-0.960
0.005
0.002

-0.000
0.177

-0.030
0.030
1.000

-0.001
0.059

-0.006
-0.025

0.000
-0.990
-0.032

0.043
0.094
0.001
0.004
2.373

0.014
1.046
0.001

-0.005
-0.023

The recovered signals y(t) are plotted in figure 6(b).
It can be seen from the result that the source signals are
well separated by using the AGGD-ICA algorithm.

Fig.6. Experiment Results Showing the Separation of
Symmetric and Asymmetric Sources.

The separation performance can be evaluated in terms
of median signal-to-interference ratio(SIR), defined as

SIR(yj) = 10\og10
~ sij)

where Sj is the sources and yj is the corresponding re-
constructed signals, j = 1, • • • , N. So, if we want to get
good separation, we must make SIR as big as possible.

The SIR of the recovered signals are: SIR(yi) =
19.1867; SIR(y2) = 28.4527; SIR(y3) = 22.2379;
SIR(y4) = 26.3291; SIR(y5) = 23.4001. The proposed
AGGD-ICA algorithm can separate the mixed signals ef-
ficiently.

4 Conclusion
Under the natural gradient framework, using a sin-

gle parametric non-linearity model-AGGD model as the
density estimation of source signals, a novel AGGD PDF
based adaptive ICA algorithm has been gained. The
AGGD-ICA algorithm can adaptively choose the param-
eter by estimating the high order sample statistics 71,
72. As a result it can be applied to more extensive
range of source distributions including skewed sources.
From above simulation we can see that the mixed signals
achieve good separation and the AGGD-ICA algorithm
has perfect convergent properties.
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Abstract
One of the most promising methods of interacting with small
portable computing devices, such as personal digital assistants,
is the use of handwriting. In order to make this communication
method more natural, we proposed to visually observe the
writing process on ordinary paper and to automatically recover
the pen trajectory from numerical tablet sequences. On the basis
of this work we developed handwriting recognition system
based on visual coding and genetic algorithm. The system was
applied on Arabic script. In this paper we will present the
different steps of the handwriting recognition system. We focus
our contribution on genetic algorithm method.

1 Introduction
In the last few years a number of pen-based computers
and personal digital assistants (PDA's) have been
released. Most of the PDA's have difficulty to recognize
handwritten text. Since handwriting is one of the most
familiar communication media, pen-based interfaces
combined with automatic handwriting recognition offer a
very easy and natural input method. We notice the great
increase of interest in the development of on-line
handwriting recognition systems [1,2,3,4]. The user
writes on the surface of a digitizing tablet with an
electronic pen. The digitizing tablet captures the dynamic
information about handwriting, such as number of stokes,
stroke order, writing speed, etc, all in real time.
In recent years, some researches have made a lot of
efforts in the field of the cognitive psychology and the
linguistics to conceive the model of perception and
reading by men [1,5,6]. The encoding of Arabic
handwritten word consists of representing a word from
its original sequence of 2D coordinating it to sequence of
visual codes. In fact, our approach is based on the
psychology of the visual perception to extract primitive
description of the word, which is useful in the stage of
on-line handwritten recognition. For this reason, some
algorithms are used to extract automatically the visual
codes from the cursive script. The extraction rate of this
experiment is 72 % [1]. We correct the weakness of this
heuristic strategy chosen for encoding the Arabic

handwritten word by developing a basic concept of the
genetic approach in order to select the best combination
of characters that represent the correct Arabic word.
In this paper, we developed a system that recognizes on-
line Arabic cursive handwriting. Previous research in the
field of calligraphic characteristics and visual coding of
the Arabic handwriting is reviewed in section 2. Section
3 is devoted to present our proposed recognition system
which consists of the genetic algorithm concept.
Experimental results and discussions were given in
section 4.

2 Calligraphic characteristics and primitive
extraction of the Arabic Handwriting
The Arabic is a consonantal and cursive writing. This
property is met in two forms printed or handwritten. The
Arabic alphabet is composed of 28 different letters. The
difference between these letters is their positions in the
word, the number and the position of the diacritic dots,
the presence of the "hamza" and Vowels. In fact, the
majority of letters change slightly in the shape of their
character according to their position in the word (initial,
medium or final) if they are joined to another letter either
if they are isolated. Therefore we have 58 Arabic letters
without diacritics as shown in the following figure.

• k - i a J - L J - L I 1 J l i - j ^ u - u £ a.- .A £ A- J

Fig.l. The 58 Arabic letters in their different positions

2.1 Diacritical symbols influence
Some Arabic letters have the same shape; however, they
are distinguished from each other by the addition of dots
in different positions relative to the main stroke. Some
Arabic characters use special marks to modify the
character accent. When diacritical symbols (dots,
specials marks) are used, they appear above or below the
characters and they are drawn as isolated entities as
shown in fig. 2. Diacritical symbols are positioned at a
certain distance from the character. In fact, this makes
some difficulties in separating the border of a text line.
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Indeed, diacritical symbols can generate some redundant
separate lines [1]. We count 15 among the 28 letters of
the alphabet, which contain dots. Some letters present a
zigzag shape said 'Hamza'. It is considered as accent
"vowel" in the Arabic alphabet. All diacritics are not
considered in our work.

2.2 Primitive extraction

The word has generally two main zones: the median zone
and the striking zone. Every zone is composed of its own
visual indications as it is presented in the tables (1,2) [1].

Table. 1 Visual codes information of the prominent zone

Table.3 Visual codes labels

Notation

Alif

Shaft

Left oblique
shaft

Left oblique
shaft

Leg

Pocket

Visual code

Al

Ha

Hog

Hod

Ja

Po

Shape

^ =

= ^

1

1 i

Table.2 Visual codes information of the median zone

Notation

Valley

Occlusion

Curve open right

Left open curve

Ain

Sad

Space inter tracing

Visual code

Va

Oc

Cod

Cog

Ain

Sad

Shape

We attribute for every visual code a label as shown in
table 3.

Visua
code
Labe

CoG

8

1

I

Va

/

Oc

2

HoG

9

HoD

10

Po

3

Ain

/ /

Al

4

Ja

5

Ha

6

Sad

12

#

13

CoD

7

2.3 Features extraction of the Arabic script

We represent an arabic word by 2 strings: the first string
represents the visual indices and the second one
represents the different letters which are called
"chromosomes". The number of strokes is determined by
calculating the number of the velocity maxima of the
handwriting trajectory [2].
The following table shows the visual indices and the
visual codes of some Arabic letters. These features are
used in the preliminary operations of genetic algorithm.

Table.4 Example of some letters with their visual features and
stroke number

Arabic
Letters

1
L

Indices

1
2
3
4

Stroke
Number

1-2
2-3
3-4
3-4-5

Visual Codes

Al
Al/Va
Va
Va/Va/Va

3 Genetic algorithms
Genetic algorithms are a class of optimization and search
methods that use randomness to avoid local extrema.
They are capable of adaptive and robust search over a
wide range of space topologies [3]. Genetic algorithms
are distinguished from other techniques by a principal
characteristic: they search in intrinsically parallel fashion
from a population of solutions and not from a single
solution. A genetic algorithm is too an iterative algorithm
that depends on the generation-by-generation
development of possible solutions, with selection
schemes permitting the elimination of bad solutions and
the replication of good solutions that can be modified.
The robustness of a genetic algorithm is also due to the
fact that it manipulates according to parameters rather
than the parameters themselves. There are three stages in
a genetic search process: selection, crossover and
mutation.

3.1 Gene structure

A handwritten word is represented by a continuation of
visual codes of letters. In this case the order of these
letters is considered. We attribute N-the number of basic
letters extracted from a cursive word. Therefore, every
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gene of the population has N chromosomes and every
chromosome has one of the 58 possible values (1 to 57
for the basic Arabian characters and the value 0 for
characters with more than one visual indication)
numbered from the right to the left.
For example, if the letter D has 6 strokes, we code it as
follow. Visual codes: va/ain/0/0/0/va

Label codes: 1/11/0/0/0/1 .
An other example for the complete word: i*^ "̂
The visual codes are: Cod/Va/Va/Al/Va/Va/Occ/Ja
The chromosomes are : 27 / 40 / 42.
The following figure shows us the different codes:

Letters

Visual
indices
Chrom
osomes
Stroke
order

0

5

0

11

0

0

0

10

0

0

0

9

0

2

0

8

P

1

42

7

0

1

0

6

0

4

0

5

JL

1

40

4

0

1

0

3

0

0

0

2

7

27

1

Fig.2. Example of an Arabic word representation

3.2. Fitness function
The value returned from the fitness function for one
chromosome represents the degree of match between the
word represented by that chromosome and the real
handwritten word. The calculation of the fitness value is
based on sum of the resemblance measurement between
two visual indices strings. The following table (Table 5)
presents the different values of fitness function. The
genetic algorithm will find the best combination of
characters to reconstruct the analyzed word. In the
selection-reproduction stage, the solutions with high

Table.5 Fitness values matrix

VI
1

2

3

4

5

6

7

8

9

10

11

12

13

1

0

1

1

1

1

1

1

1

1

1

1

1

1

2

1

0

1

1

1

1

0.5

0.5

1

1

0.5

0.5

1

3

1

1

0

1

0.5

1

1

1

1

1

1

1

1

4

1

1

1

0

1

0.5

1

1

0.5

0.5

1

1

1

5

1

1

0.5

1

0

1

1

1

I

1

1

1

1

6

1

1

1

0.5

1

0

1

1

0.5

0.5

1

1

1

7

1

0.5

1

1

1

1

0

1

1

1

0.5

0.5

1

8

1

0.5

1

1

1

1

1

0

1

1

0.5

0.5

1

9

1

1

1

0.5

1

0.5

1

1

0

0.5

1

1

1

10

1

1

1

0.5

1

0.5

1

1

0.5

0

1

1

1

11

1

0.5

1

1

1

1

0.5

0.5

1

1

0

0.5

1

12

1

0.5

1

1

1

1

0.5

0.5

1

1

0.5

0

1

13

1

1

1

1

1

1

1

1

1

1

1

1

0

fitness values are given more chance to reproduce, which
gives them more effect on the population change. In this
stage, the best chromosomes will dominate while the
worse ones are discarded.

3.3 Crossover operation
The crossover operation consists on the selection of two
parent solutions, with a higher probability for
chromosomes possessing high fitness values. During
crossover, portions of each parent pair are selected and
resulting chromosomes are created by concatenation of
the exchanged substrings. The main goal of the crossover
stage is to generate new solutions, which will contain the
useful parts of both parent solutions and which will have
better fitness values. The number of crossover positions
should not be before a zero, i.e. it should not break a
character between two blocs. (See figure 3)

Word

IV

CH

Order
stroke

0

0

0

12

0

3

0

11

o
I

46

10

1

4

9

13

10

8

0

5

0

7

>

1

13

6

0

1

0

5

0

0

0

4

0

2

0

3

Jk

1

44

2

• J

1

4

1

Word

IV

CH

Order
strokes

0

0

0

11

5

14

10

13

10

9

0

5

0

8

0

0

0

7

0

2

0

6

1

51

5

0

1

0

4

0

0

0

3

0

0

0

2

.>

8

9

1

Fig.3. Example of crossover operation between 2 words

The crossover will be done on the fourth stroke. Two
generations have been reproduced. (See figure 4)
Wordl « oi
Word2«

Word

VI

CH

Order
stroke

0

0

0
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0

3

0

11
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9

_ j
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8
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0
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1
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0

4

0

0

0

3

0

0

0
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8

9
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Word

VI

CH

Order
stroke

0

0

0

13

J
5

14

12

13

10

11

0

5

0
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0

0

0

9

0

2

0

8

1

51

7

0

1

0

6

0

0

0

5

0

2

0

4

1

44

3

0

0

0

2

1

4

1

Fig.4. Crossover results

"CH": Chromosome

"VI": Visual indices
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3.4 Mutation operation
Just as in nature, some individuals will have random
mutations occur in their genes. The mutation rate
specifies the odds that a given gene in an individual will
be mutated. If a gene is selected for mutation then its
value will be changed. In the case of bit representation,
the gene will simply be flipped. (See figure5)

Word

IV

CH
Order
stroke

0

5

0

14

0

0

0

13

2

41

12

13

10

11

0

5

0

10

0

0

0

9

0

2

0

8

1

51

7

0

1

0

6

0

4

0

5

1
1

40

4

0

1
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0

0

0

2

7

27

1
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2
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7
27

1

Fig.5. Mutation result of the word « ̂  »

4 Experimental results and discussions

In order to evaluate the performance of our system, 24
participants were invited to contribute to the handwriting
data construction for our recognition experiment. The
data set of words of each participant was stored in one
data file. When producing the data file, each participant
was asked to write some Arabic words. We collected 500
words written by different writers. 200 words we used as
data prototypes for the selection of the initial population
of the genetic algorithm, the others used for testing our
system. In the first stage where the heuristic strategy
chosen for encoding the Arabic handwritten word, The
extraction rate obtained is about 72 %, but in the second
stage which consist to correct the weakness of the
previous method, we developed a genetic algorithm in
order to select the best combination of visual codes
extracted by a heuristic method from a word. The
evolutionary approach here permits the recognition of
cursive handwriting without limitation of a lexical
dictionary. The number of generations (500) and the
fitness value (0.5) were fixed as a convergence condition
criterion. The recognition rate obtained is about 89%.
These results obtained were encouraging. Compared to
the on line recognition system of the cursive handwriting
in [3] which have a manually segmentation system of the
handwritten words, our system contains an automatically
segmentation process of the handwritten words. This
segmentation approach is based on a combination of the
visual extractor and the evolutionary genetic algorithm

system. Some errors were due to the style of the writer
handwriting and were difficult to be avoided even by a
human reader. For example there is confusion between
the two Arabic words shown in the following figure.

Maksabon Maktabon
Fig.6. The confusion between two Arabic words

As a future work, we can remove this confusion and
improve the recognition rate obtained by adding to our
system a matching template algorithm and a large lexical
Arabic dictionary.

Acknowledgement
The authors would like to acknowledge the financial
support of this work by grants from the General Direction
of Scientific Research and Technological Renovation
(DGRST), Tunisia, under the ARUB program
01/UR/11/02.

References
[1] Jouini, B., Kherallah, M., Alimi, M. A., (2003) A new
approach for on-line visual encoding and recognition of
handwriting script by using neural network system. In:
David W. Person. Ed. Artificial Neural Nets and Genetic
Algorithms. Springer, Wien, pp. 161-167

[2] Kherallah, M., Haddad, L., Mitiche, A., Alimi, M.A.,
(2004) Towards the design of handwriting recognition
system by neuro-fuzzy and Beta-Elliptical approaches.
Proc. AIAF2004. 18th IFIP World Computer Congress,
pp. 187-196

[3] Alimi, M. A . (2002) Evolutionary Computation for
the Recognition of On-Line Cursive Handwriting, IETE
Journal of Research, Special Issue on "Evolutionary
Computation in Engineering Sciences" edited by S.K. Pal
etal.

[4] Plamondon, R., Srihari, S. N. (2000) On-line and off-
line handwriting recognition: A comprehensive survey.
IEEE Trans. Pattern Anal. Mach. Intell., 22(l):63-84

[5] Cote, M., Cherie, M., Leconet, E., Suen, C.Y.,
(1995). Building a perception Based Model for Reading
Cursive Script, ICDAR, vol I, pp 898-901

[6] Foorster, K., (1994) Computational modeling and
elementary process analysis in visual word recognition.
Journal of Experimental Psychology, "Human Perception
and Performance", Special Section, Modeling Visual
Word Recognition, 20, no 6, pp. 1292-1310



506

Multi-objective genetic algorithm applied to the structure
selection of RBFNN temperature estimators

C. A. Teixeira1, W. C. A. Pereira2, A. E. Ruano1, M. Gra9a Ruano1

Centre for Intelligent Systems, University of Algarve, Portugal
2Biomedical Eng. Program - COPPE/ Federal University of Rio de Janeiro, Brazil

E-mail: cateixeira@ualg.pt

Abstract
Temperature modelling of a homogeneous medium,

when this medium is radiated by therapeutic ultrasound,
is a fundamental step in order to analyse the perfor-
mance of estimators for in-vivo modelling. In this paper
punctual and invasive temperature estimation in a homo-
geneous medium is employed. Radial Basis Functions
Neural Networks (RBFNNs) are used as estimators. The
best fitted RBFNNs are selected using a Multi-objective
Genetic Algorithm (MOGA). An absolute average error
of 0.0084°Cwas attained with these estimators.

1 Introduction

The use of ultrasound for therapeutic proposes, spe-
cially for hyperthermia and surgery, is based on the ther-
mal effect induced by the ultrasound. Accurate knowl-
edge of tissue temperature evolution with respect to time
and space is envisage for the development of therapeutic
hyperthermia models. As for as known, neither precise
nor effective spatial-temporal temperature systems are
available, disabling an even more frequent use of ultra-
sonic instrumentation in therapy. To be also mentioned
the possibility of broadening the ultrasound instrumen-
tation to other specific and well delimited regions of ap-
plications if an accurate temperature model is achieved.
Previous work in the area considers that these spatial-
temporal temperature patterns are linearly related with
the changes of sound velocity and medium expansion.
The temperature range considered by [1] was between
^20°Cand ^25°C. The researchers obtained a mean
square error of 0.03 (°C)2, an average error of -0.02 °C,
and a maximum error of 0.44°C.
In this paper, punctual and invasive temperature estima-
tion in a homogeneous medium is proposed, when the
medium is radiated by therapeutic ultrasound. The tem-
perature range employed on the experiments included
the normal human temperature, therefore a more realistic
modelling is proposed. The temperature in the point of
interest is considered nonlinearly related with the spec-
tral intensity information at that point. For this propose

Table 1. Temperature ranges.

Intensity
(Watt/cm2)

Temperature (°C)
Initial Max. Final

1
1.5
2

29
30
31

34.5
37.2
38.8

28.5
28
31

Radial Basis Functions Neural Networks (RBFNN) were
used. The best fitted RBFNN structures were searched
by a Multi-objective Genetic Algorithm (MOGA).
Since the selection procedure consumes a high computa-
tional time, a distributed computing approach was used,
as in [2].

2 Experimental setup

The real data used in this work are temperature and
acoustic intensity signals, in a point 48 mm distant (ax-
ial distance) from an ultrasonic therapeutic transducer,
in a glycerin (homogeneous medium) tank. Data was
acquired during approximately 110 min. At each 10 sec-
onds, a temperature value was acquired from the devel-
oping waveform using a thermocouple. Also, a window
of 5fis of the acoustic intensity signal, corresponding
to a window of 2000 points of the intensity waveform
was recorded. Mechanical energy was supplied only
in the first 60 min, by the ultrasonic therapeutic device
(Ibramed Sonopulse (Sao Paulo)). During the remaining
50 minutes the acoustical energy was maintained at zero
level, while temperature variations were observed and
recorded. Three sets of signals were acquired at 3 MHz
in continuous operating mode, at three different intensi-
ties: IWatt/cm2,1.5Watt/cm2 and 2Watt/cm2. The
initial, maximum, and final temperature of the glycerin
medium in the point of interest are summarised in Table
1.
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3 Methods
3.1 Processing the experimental data

From the intensity signals collected from the exper-
iment, some spectral features were extracted aiming
the development of temperature models. After a Fast
Fourier Transform computation the amplitude of the fun-
damental component (3 MHz), of the first harmonic
(RS6MHZ), and of the second harmonic («9MHz) were
saved for future use in the RBFNNs training, test and
validation.
Afterwards, the features extracted and the measured tem-
perature signals were normalised to values between 0
and 1, in order to enable a correct training of the neural
networks (NNs). The conventions used are the following
ones: normalised amplitude of the fundamental compo-
nent - / / c , normalised amplitude of the first harmonic -
Iih, normalised amplitude of the second harmonic - I2h>
and normalised temperature - T.
At the end of this processing phase the data collected at
IWatt/cm2 was selected for training, the data collected
at 1.5Watt/cm2 was selected for test, and the data col-
lected at 2Watt/cm2 was selected for model validation.
The training, test, and validation sets are formed by 429,
427, and 400 patterns, respectively.

3.2 RBFNN

A RBF (Fig. 1) is a three fully connected layers neural
network. The first layer is a set of inputs, the second is
formed by a set of processing elements, called neurons,
that performs a nonlinear transformation on the input
data. The outputs of the hidden layer are linearly com-
bined at the last layer to calculate the overall network
output. The input/output relation for a RBF is given by:

-c{\ (1)

where n is the number of neurons in the hidden layer, b is
the bias term, 11.11 is a norm (an Euclidean norm was em-
ployed), and </?(||xj ~~ cill) is a s e t °f nonlinear radial
basis functions weighted by {ai}^_1. The basis func-
tions are centred at {ci}^-^ (centres) and are evaluated
at points Xj. Normally these functions are Gaussian:

(2)

3.3 Multi-objective Genetic Algorithm (MOGA)

Manual selection of the best RBFNN structure for a
particular problem is a hard process according to the
enormous number of possible structures. In order to per-
form an automatic and intelligent search, M0GA[3] was

Fig. 1. RBFNN structure.

applied to the problem under study.
In this work MOGA was assigned to select the impor-
tant inputs, and the best number of neurons. The lags
of the variables: / / c , I\k, I2h, and T were selected
as NNs inputs. In this particular problem MOGA runs
during 100 generations, of 100 RBF (individuals) each.
The crossover and mutations probabilities were defined
as 0.7 and 0.5 respectively. To maintain population di-
versity in each generation 10% of the population was
changed by a set of randomly generated individuals. The
previously referred values are the ones that reproduce the
best MOGA results, and are selected after several tests,
considering different parameters arrangements.

3.3.1 Search space: In order to define the
MOGA search space, the number of inputs was restricted
to the interval [2,20]. In the same way, the number of
neurons was restricted to the interval [2,8], and the max-
imum admissible lag (MLAG) was defined as 20. These
values were also selected after several runs, testing dif-
ferent parameters arrangements.
Considering NV=4 the number of variables that can con-
tribute with information to the RBFNN inputs, then the
total number of inputs available is: TI = NV x MLAG =
80. The total number of possible input combinations is
given by: £n°=2 NVCn = 5.2.E18. Considering the re-
strictions on the number of neurons, the total number of
possible models is: 8 x ^f=2

 NVCn = 4.LE19, an ex-
tremely high value to consider an exhaustive search.

3.3.2 Computational architecture: In order
to accelerate MOGA execution, a distribute computing
scheme was used (Fig. 2). The main computer places the
training and test data in the database, together with the
initial population. In a next step each one of the work-
ers queries the database for NNs to be trained, and the
features of each trained NN are placed in the database.
When all the individuals in the initial population are
trained, the master computer recombines and mutate the
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Fig. 2. Distributed computational architecture.

trained population. A portion of 10% of the population
is replaced by a set of randomly generated individuals,
and the changed population is stored in the database for
future training of the workers. After the training of this
population the master mutates, recombines, and intro-
duces random individuals, and a new stage begins. The
process continues until the specified number of genera-
tions is met.

3.3.3 Individual performance assessment:
The training of each individual was performed using the
Levenberg Marquardt (LM) algorithm with the "early-
stopping" termination criteria[5]. In each iteration the
LM optimises only the values of the centres and spreads,
while the linear weights ({<^i}2-\) w e r e obtained using
the "Least Squares"(LS) strategy[5]. The initial values
of the centres and spreads were determined using the op-
timal adaptive k-means algorithm [6].
After training, the performance of each individual was
accessed according the the following measures: Root
Mean Square error in the TRaining set (RMSTR),
Root Mean Square error in the TEst set (RMSTE),
Model-validity tests, and Model Complexity (MCP).
The model-validity tests considered in this work are ex-
plained in [7], and used in [2]. These tests involve the
computation of auto-correlation, cross-correlation and
higher correlations functions involving model residuals,
inputs, and outputs. If the fitted model is adequate, the
following conditions should hold:

Ree(T) = 6{T)
Rue(r) = 0 ,Vr

V e W = 0 ,Vr
iVea(r) = 0 ,Vr

Re(eu)(r)=0 , r > 0

Re2e2(r) = 5(T)

R(ye)e*(T) = kS(r)

R(ye)u<r) = 0 ,Vr (3)

In reality, the correlations presented in eq. 3 will never
be precisely zero for all lags. This way the model is
considered adequate if the normalised correlation tests
lie within 95% confidence limits defined as:

CI = 1. (4)

where N is the number of training patterns. In the same
way, the autocorrelations of the residuals never equals
perfectly the delta function, but will be considered as
adequate if the autocorrelation plot enters the 95% con-
fidence interval before lag one.
The MCP was computed as the total number of parame-
ters for a particular NN structure:

MCP = NC x NE + NS + NW, (5)

where NC is the number of centres, NE is the number
of inputs, NS is the number of spreads, and NW — n is
the number of weights.

3.3.4 MOGA objectives: From the MOGA
point of view, the RMSTR, RMSTE, maximum of corre-
lation tests, and MCP are objectives to minimise. Having
in mind the attainment of models with a higher general-
isation capacity, the RMSTE was defined as a goal of
priority 2, and with goal value of 0.003. The maximum
of the correlation tests are defined with a goal of value
CI = 1.96/^429 - MLAG = 0.097, and with priority
1. In order to discard large models of heavy computa-
tion, MCP was defined as a goal with priority 1, and
value 70. This value was selected having in mind the
MOGA search space, defined in sub-section 3.3.1.

4 Results and discussion
In this section the selection of the best individual from

the MOGA preferable set, was based on Root Mean
Square Error in the Validation set (RMSEV). This means
that the best individual is the one that presents the small-
est RMSEV, when compared to the other preferable in-
dividuals.
After 100 generations, MOGA yields a non-dominated
set of 2598 individuals, and a preferable set of 20 in-
dividuals. From the preferable set, the best individual
presents a RMSEV of 0.0015, a maximum absolute er-
ror of 0.0748°C, a mean squared error of 0.0037 (°C)2,
and an average error of -0.0084 °C. In addition, this
model has 6 neurons, and a weights norm of 4.2044.
Comparing the previously referred error values with the
ones presented in [1], it can be said that the maximum
absolute error was reduced from 0.44°Cto 0.0748°C,
the mean squared error was reduced from 0.03 (°C)2 to
0.0037 (°C)2, ie. one magnitude order, and the average
error was reduced from -0.02°Cto -0.0084°C. These in-
creases in performance show that probably temperature
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Table 2. Performance of the best model

G
P

RMSTR

0.0008

_

RMSTE
0.0016
0.003

2

MCP
61
70
1

Ree
0.0782
0.097

1

Re2€2

0.0138
0.097

1

R(ye)e*
0.0933
0.097

1

R(ye)u2

0.0767
0.097

1

Rue
0.0863
0.097

1

Ru2e2

0.1040
0.097

1

Ru*e
0.0757
0.097

1

Re{eu)
0.1213
0.097

1
G - MOGA Goals; P - MOGA Priorities

modelling in the same conditions of [1] would be better
performed with RBFNN.
Table 2 presents MOGA optimisation objectives for the
best RBFNN. Looking to that table, it can be stated that
this individual fulfils 8 out of 10 objectives defined. The
goals that are not fulfilled are close to the desired value.

Table 3. Inputs of the best model

hi Ih2

4,15 1,6,7,15,18 1

Table 3 presents the inputs of the best model. From
the analysis of this table it can be said that the infor-
mation of Ifc is completely discarded, as well as in the
majority of the preferable individuals. The relevance of
the information of I hi is marked by the presence of two
lags (Ihi(k - 4) and Ihi(k - 15)). The information of
7̂ 2 is of great importance for the model, given the pres-
ence of 5 lags related with this variable. This crescent
relevance from Ifc to Ih2 is because harmonics at higher
frequencies are more attenuated, and more sensitive to
temperature variations. The relevance of the past mem-
ory of the system is marked by the presence of the 1st

lag of T. The presence of this lag proves the physical
validity of the model, since the actual temperature T(k)
is obviously dependent on the temperature in the past 10
seconds.

5 Conclusions & future work
The work hereby presented deals with RBFNN

structure selection for punctual and invasive temperature
modelling in a homogeneous medium. The results
obtained with the best selected models are promising,
and points that coherent results can be obtained in
a non-invasive spatial-temporal environment, that is,
in the same conditions of [1]. A reduction of one
magnitude order is attained in terms of mean squared
error.
For future work the use of B-Splines NNs is suggested.
These NNs use different basis functions through the
input space, adjusting itself locally to the problem,
and better results are expected. It will be tested a
non-invasive spatial-temporal temperature estimation,

using these methods. This is proposed as a fundamental
step towards ultrasonic therapeutic instrumentation
feedback control.
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Abstract
This paper describes the application of Hybrid Intelligent
Systems in a new domain: reliability of complex networks. The
reliability is assessed by employing two algorithms (TREPAN
and Adaptive Neuro-Fuzzy Inference Systems (ANFIS)), both
belonging to the Hybrid Intelligent Systems paradigm. TREPAN
is a technique to extract linguistic rules from a trained Neural
Network, whereas ANFIS is a method that combines fuzzy
inference systems and neural networks. In the experiment
presented, the structure function of the complex network
analyzed is properly emulated by training both models on a
subset of possible system configurations, generated by a Monte
Carlo simulation and an appropriate Evaluation Function. Both
approaches are able to successfully describe the network status
through a set of rules, which allows the reliability assessment

1 Introduction
The central role played by systems in most real world
situations requires an adequate design phase. In
communication networks, for example, besides basic
constraints (connection speed, throughput, etc.), an
important issue to be addressed regards the reliability of
the system [1].
A convenient way of modelling any system is to adopt an
undirected or a directed connected graph, called
Reliability Block Diagram (RBD), in which every block
or link is associated with a system component. Each block
in an RBD can be considered to assume one of two
possible states, operating or failed. In this way, the whole
system can be described by a Boolean vector x, having as
many components as the number of edges in the RBD.
The state of the whole system, uniquely determined by the
Boolean vector JC, is also described by a binary variable y
[2]. The Boolean mapping that associate every input
vector x to its corresponding output y is called Structure
Function (SF) [3]. The procedure employed to retrieve the
value of y that corresponds to a given x is usually referred
to as an Evaluation Function (EF) [4]. The most widely
studied reliability measure (s-t reliability) assumes that the
system is operating if there exists at least one working

path from the source node s to the terminal node /. In this
case a depth-first procedure [5-6] can be employed as an
EF. Of course, there are also situations where the
reliability assessment is more complicated (e.g. electric
power system), and more complex EF are required [7]. An
important issue is that the SF and therefore the reliability
assessment require the solution of an NP-hard problem
[8]. A possible way to reduce the computational burden is
to employ Monte Carlo techniques, which attempt to
produce an estimate of the network reliability by
analyzing a subset of possible system states x.
Generally, Monte Carlo techniques require a large number
of EF evaluations to establish the reliability of a system;
therefore, it seems to be convenient to employ a machine
learning method for approximating the reliability
expression through a reduced collection of EF values. To
this aim several Machine Learning approaches have been
considered in the literature [9-12].
However, in search of more comprehensible models,
novel investigation areas are developed, by integrating
several intelligent systems. This operative synergy, called
Hybrid Intelligent Systems (HIS) [13], seeks to improve
the efficiency, reasoning power and comprehensibility of
the integrand systems.

This paper presents, under the integrative perspective of
HIS, an approach for the reliability assessment of complex
networks.
To this aim empirical models induced by two techniques
(TREPAN [15] and ANFIS [16]) are compared, when
applied to the samples generated by a Monte Carlo
simulation for a given EF. To our best knowledge, this
approach, based on HIS paradigm, has not been yet used
to assess the reliability of complex systems.
The paper is organized as follows: In Sec. 2 some
definitions are presented. Sec. 3 introduces the machine
learning methods considered for approximating the
reliability of a network, while Sec. 4 presents the
proposed approach to assess the system reliability. Sec. 5
compares the results obtained on a example related to a
complex network with 21 links. Finally, Sec. 6 contains
the conclusions.
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2 Definitions
It is assumed that the system components have two states
(operating and failed) and that component failures are
independent events. The state xt of the ith component is
defined as [2]:

{1 (operating state) with probability /J ,^

0 (failed state) with probability Qr = 1 - Pt

where Pt is the probability of success of component /.
The state of a system containing d components is
expressed by a vector JC=(JCI^2V> xd). To establish if x is
an operating or a failed state for the network, a proper
Evaluation Function (EF) is defined:

_ _ J1 if the system is operating in this state
y ~ ~ jo if the system is failed in this state

For example, a depth-first procedure [5-6] can be
employed as an EF, if the criterion to be used for
establishing reliability is simple connectivity. For other
metrics, special EF may be used.

3 Hybrid Intelligent Systems Models

3.1 Extraction of knowledge from trained NN

The Extraction of Knowledge from Neural Networks
consists of the development of techniques that allow the
comprehensible representation of the knowledge acquired
by a trained network. This can be expressed in diverse
ways, through symbolic rules, rules fuzzy or decision
trees. The Extraction of Knowledge allows the validation
and refinement of the neural networks, as well as the
integration of connectionist and symbolic systems.
TREPAN [15] is a technique to extract decision trees
from a trained neural network and contains aspects, which
differ from other algorithms used for extraction of
information from neural networks [15]. TREPAN requires
as input the weights and biases of the trained neural
network (NN) and a training data set. As output it
produces a decision tree that provides an approximation to
the function represented by the network.

[A! 1 fcl

Fig. 1. A Complex Reliability Network

Figure 2 present a decision tree extracted by TREPAN,
from the system network the figure 1. In general the first
node in the tree refers to the most important component of
the network Note that from the extracted tree, it is easy to
obtain rules.

3.2 Fuzzy Model Identification

Fuzzy system identification is the process of identifying
the structure and the parameters of a fuzzy model. The
construction of the fuzzy model requires two phases. The
first phase is model structure identification that is, the
identification of the input variables and rules. As a result,
the first phase produces a set of If/Then rules [17]. The
second phase corresponds to the adaptation of the
parameters (membership functions and coefficients).
The first phase was performed through the construction of
knowledge-based neural networks (KBNN) [18], using the
procedure Neural Fuzzy Networks (FuNN) [19]. This
procedure combines elements of fuzzy modeling and
neural network computations into single connectionist
architecture. The procedure employed (FuNN) [20-21]
consists on five layers: input variable layer, condition
elements layer, rule layer, action elements layer, and
Output layer. The rules obtained by FuNN are of the
linguistic type. For example, referred to the system shown
in Figure l:lf (B is Operating) and (C is Operating) and (E is

Operating) then (System is Operating)

Fig. 2. Tree extracted by TREPAN from the network in Fig. 1

33 Parameters optimization

The fuzzy inference system described in 3.2 provides the
knowledge expressed through rules of the type If/Then,
which represent the structure and a first approach to the
SF to be estimated. An additional phase is required for
tuning the parameters of a preliminary fuzzy system and
then to carry out the evaluation of the final system. ANFIS
[16-17] uses a hybrid learning algorithm to identify
parameters of Sugeno-type fuzzy inference systems. The
ANFIS procedure can construct an input-output mapping
based on both human knowledge (in the form of fuzzy if-
then rules) and input-output data pairs. The parameters
that define membership functions are adjusted through the
learning process by a back-propagation algorithm.

4 The Proposed Approach
To evaluate the performance of the methods presented in
the previous section, the network shown in Fig. 3 has been
considered [22]. It is assumed that each link has reliability
Pi and the goal is to obtain models that approximate the s-
t reliability metrics. In order to apply the HIS paradigm,
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such as TREPAN or ANFIS, it is first necessary to collect
a set of examples (x,y), where y=EF(x), to be used in the
training phase and in the subsequent performance
evaluation of the resulting models. To this aim, NT system
states have been randomly selected without replacement.
In the case to be analyzed, only connectivity is checked to
assess if a selected state x corresponds to an operating or
to a failed state. To select the appropriate models a 10-
fold cross-validation (CV) was performed. The
performance of each method is measured using sensitivity,
specificity and accuracy indexes as suggested in [23].

Fig. 3. Complex Network to be evaluated [22]

The average accuracy across the CV is computed, whereas
the model with the highest value of accuracy and with the
lower complexity is selected for evaluating the system
reliability. To this aim, a system state x*i is generated at
random and it is decided if it is a failed state or not using
the induced models. The process is repeated by analyzing
NM system states. System reliability is estimated as the
ratio of operating states to NM.

Models determination
The state space associated to the system shown in figure 3
is randomly sampled and a data set with 2000 different
(xfy) pairs is generated. First the data set is used to train
an MLP network composed of one input layer, one hidden
layer and one output layer. The architecture of the
network is denoted by H:h:o' indicating i neurons in input
layer, h neurons in hidden layer and o neurons in output
layer. The activation function used was sigmoid function.
Different numbers of neurons in the hidden layer were
evaluated. The network was trained using the Levenberg-
Marquardt algorithm with Bayesian optimization of the
regularization parameters. The aim of regularization is to
avoid over-fitting of the model by minimizing the sum of
squares of errors and the sum of squares of model
parameters. [24]. The best average accuracy during testing
(95.2 %) was obtained with 67 units. The average
accuracy during training was 100 %. The Neural Network
Toolbox of Matlab was used to train the network [25].
The trained neural network (21:67:1) is then integrated
with the TREPAN model. The fidelity, (percentage of
predictions made by the extracted tree that agree with the

predictions made by the network) was 97.46% during the
training and 94.35% during the testing. In order to obtain
the ANFIS model, a preliminary fuzzy system was
induced, using the FuNN model [19]. Some rules
extracted by FuNN are:
a) If xi6 is Operating and xn is Failed and X21 is Operating then System

is Operating
b) If X8 is Failed and xn is Failed and xis is Failed then System is

Failed
c) If X15 is Operating and xn is Operating and X21 is Operating then

System is Operating
Some of the rules generated have a physical meaning,
related to the minimal path (e.g. rule c) and cut (e.g. rule
b) sets of the network [2]. Finally, the optimization of the
previous fuzzy model was performed by ANFIS. The
Fuzzy Logic Toolbox of Matlab [25] was used for
training. Table 1 shows the average number of rules
along with the average performance results obtained using
the 10-fold cross-validation for the algorithms compared,
for the training and testing phases. It is interesting to note
that although the NN model presents the highest
performance indexes during the training, the performance
indexes of the TREPAN model during the testing, are
superior to the NN and ANFIS models, even if the
complexity of the induced ANFIS model (rules generated)
is lower. Table 1 also shows that, during the testing phase,
TREPAN performs better that the ANFIS model.
Once TREPAN and ANFIS are trained, their models are
used to estimate the network reliability. A random data set
with NM = 10000 data pairs (x^yi) was generated using
iV=0.90. Each system state is evaluated using a depth-first
procedure and both trained models. The average system
reliability based on EF was 0.9943. TREPAN and ANFIS
produced the same average system reliability.

6 Conclusions
This paper has presented the reliability assessment of a
complex system based on two methodological approaches
(TREPAN and ANFIS) that uses the hybridization of
different soft computing techniques. For the case
analyzed, both models, built from a small sample of the
state space, produce approximations with a satisfactory
accuracy but, in average, the TREPAN model outperforms
the best ANFIS model. Nevertheless, from a complexity
point of view, the ANFIS model is better since it produces
a smaller number of rules. Future researches, such as
parameterizations, different NN training methods,
different numbers of layers and nodes among others, are
required to obtain more concrete conclusions about the
performance of the different techniques. However, the
hybridization of intelligent systems is a promising
approach for assessing the reliability of complex
networks. It not only improves the efficiency of the
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integrand systems, but also increases the capacity of
understanding, since it produces useful topological
information about the network, such as minimal path
and/or cut sets.

Table 1. Average performance results for models
Model

NN

TREPAN

ANFIS

Rules

671

96

58

Sensitivity %

Train

100

96.5

93.5

Test

94.4

94.1

91.9

Specificity %

Train

100

98.4

94.4

Test

96.0

96.9

93.5

Accuracy %

Train

100

97.57

94.06

Test

95.2

95.6

92.8
1 number of neurons
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Abstract

In this paper we present an architecture for decision
making of software agents that allows the agent to be-
have autonomously. Our target area is computational
agents — encapsulating various neural networks, genetic
algorithms, and similar methods — that are expected to
solve problems of different nature within an environment
of a hybrid computational multi-agent system. The ar-
chitecture is based on the vertically-layered and belief-
desire-intention architectures. Several experiments with
computational agents were conducted to demonstrate the
benefits of the architecture.

1 Introduction

Software agents can be seen as small self-contained
programs that can solve simple problems in a well de-
fined domain [6]. In order to solve complex problems
agents have to cooperate and exhibit some level of au-
tonomy. Autonomy, adaptivity, cooperation ability, and
several other properties distinguish agents from "con-
ventional" programs.

In this paper we present an architecture that allows
simple design of adaptive, or intelligent, agents. The
architecture enables the agent to solve problems of dif-
ferent nature within an environment of a computational
multi-agent system, and thus increase its autonomy,
adaptivity and the performance of the whole system. The
architecture is implemented within a distributed multi-
agent system Bang3 that provides a platform for an easy
creation of hybrid artificial intelligence models by means
of autonomous agents (see [4]).

2 Computational agents

An agent is a computer system that is situated in some
environment, and that is capable of autonomous action
in this environment in order to meet its design objectives
[9, Ch. 1]. Autonomy is used to express that agents are
able to act (to perform actions) without the intervention
of humans or other system.

2This research has been supported by the National Research Pro-
gram Information Society project no. 1ET100300419.

An intelligent agent is one that is capable of flex-
ible autonomous action in order to meet its design
objectives, where flexibility means three things: pro-
activeness (goal-directed behavior), reactivity (response
to changes), and social ability (interaction with other
agents). Building purely goal-directed or purely reac-
tive agents — one that continually responds to its envi-
ronment — is not difficult in some environments. The
problem is to build a system that achieves an effective
balance between the goal-directed and reactive behavior,
which strongly depends on the characteristics of the en-
vironment.

A computational agent is a highly encapsulated object
realizing a particular computational method [5], such as
a neural network, a genetic algorithm, or a fuzzy logic
controller. The main objective of our architecture is to
allow a simple design of adaptive autonomous agents
within an environment of a computational multi-agent
system. In order to act autonomously, an agent should
be able to cope with three different kind of problems [8]:
cooperation of agents, a computation processing sup-
port, and an optimization of the partner choice. The ar-
chitecture we present is general in the sense that it can
be easily extended to cope with different problems than
those mentioned, nevertheless, we present its capabilities
in these three areas.

Cooperation of agents: An intelligent agent should be
able to answer the questions about its willingness to par-
ticipate with particular agent or on a particular task. The
following subproblems follow: (1) deciding whether two
agents are able to cooperate, (2) evaluating the agents
(according to reliability, speed, availability, etc.), (3) rea-
soning about its own state of affairs (state of an agent,
load, etc.), (4) reasoning about tasks (identification of a
task, distinguishing task types, etc.).

Computations processing: The agent should be able to
recognize what it can solve and whether it is good at it,
to decide whether it should persist in the started task, and
whether it should wait for the result of task assigned to
another agent. This implies the following new subprob-
lems: (1) learning (remembering) tasks the agent has
computed in the past (we use the principles of case-based
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Fig. 1. Architecture — network of concepts (a); Concept node
(b); Monitor (c)

Fig. 2. Modeling state of an agent

learning and reasoning — see [2], [1] — to remember
task cases), (2) monitoring and evaluation of task pa-
rameters (duration, progress, count, etc.), (3) evaluating
tasks according to different criteria (duration, error, etc.).

Optimization of the partner choice: An intelligent
agent should be able to distinguish good partners from
unsuitable ones. The resulting subproblems follow:
(1) recognizing a suitable (admissible) partner for a par-
ticular task, (2) increasing the quality of an evaluation
with growing experience.

So, the architecture must support reasoning, descrip-
tions of agents and tasks (we use ontologies in descrip-
tions logics - see, e.g., [3]), monitoring and evaluation
of various parameters, and learning.

3 Network of concepts

The architecture is organized into layers. Its logic is
similar to the vertically-layered architecture with one-
pass control (see [9, p. 36]). The lowest layer takes per-
ceptual inputs from the environment, while the topmost
layer is responsible for the execution of actions.

The architecture consists of four layers (see Figure 1):
the monitors layer, the evaluators modeling layer, the
layer for decision support, and the behavior generation
layer. All layers are influenced by global preferences.

Global preferences allow us to model different flavors
of an agent's behavior, namely, we can set an agent's
pro-activity regime, its cooperation regime and its ap-
proach to reconsideration. The monitors layer interfaces
directly with the environment. It works in a purely reac-
tive way. It consists of rules of the form condition —>
action. Evaluators modeling layer is used to model
more aggregate concepts on top of already defined con-
cepts (either monitors or other evaluators). Decision
support layer enables an agent to solve concrete prob-
lems. Behavior generation layer generates appropriate
actions that the agent should perform, and thus controls

the agent's behavior. The mechanisms for action gener-
ation and selection are provided by the BDI model (see
[9, pages 55-61]).

The basic element of our architecture is a concept
node. We can imagine a concept node as a class in
some common object-oriented programming language,
which defines explicitly its dependences on other con-
cept nodes. The concept node is dependent on some
other concept node if it needs some services provided
by this other concept node in order to provide its own
services. Each part of the architecture is defined as a
concept node.

The network of concept nodes is a directed acyclic
graph of concept nodes — see Figure 1 (a). Edges ex-
press dependences between concept nodes. This graph
respects described layers. Figure 1 (b) shows a detailed
view of a common concept node and Figure 1 (c) depicts
a detailed view of a monitor. Each monitor can define
several filters which represent rules as described above.

Explicitly defined dependences allow each agent to
use only those those concept nodes that it really needs.

4 Modeling in the network of concepts

Evaluators are used to describe an agent's state, and
to estimate services' quality of partner agents. They
usually perform aggregations of several simpler concept
nodes, typically the monitors. Typically, evaluators have
the form of a non-linear real function that may differ in
individual evaluators.

In order to describe an agent's state, we have defined
four evaluators — Load, Tiredness, Stress, and Compu-
tation state (see Figure 2). For example, the Load evalu-
ator depends on the count of currently running tasks and
on their demandingness (complexity, etc.). We approxi-
mate the complexity of tasks by the average duration of
past tasks. The load grows proportionally with the count
of tasks and the average duration of tasks. The other
evaluators can be described in a similar way.
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The decision support concept nodes are used to rep-
resent particular decision problems and provide sugges-
tions of how to solve these problems.

Fig. 4. BDI architecture within the network of concepts

Fig. 3. Support for cooperation

Figure 3 depicts concept nodes that solve decision
problems common in the area of agents cooperation. The
Agents ontology tools concept node encapsulates reason-
ing services about agents' capabilities. The Cooperation
willingness (CW) concept node suggests whether to co-
operate with a particular agent or not. The Task solving
decision concept node suggests whether to solve a par-
ticular task for a particular agent. For details about other
areas of decision support see [7].

In the behavior generation layer, we use the BDI
model (see [9]) to generate and choose the appropriate
actions. The purpose of computational agents is to solve
assigned tasks in an effective way. We distinguish two
different situations:

1. If an agent does not use services of other agents in
order to solve its task, it can perform the following basic
actions: (a) Accept/postpone /reject a new task, (b) Fin-
ish / interrupt a started task, (c) Evaluate task (if there
are some tasks in the tasks repository with incomplete
information), d) Find and solve new tasks.
2. If an agent uses services of other computational agents
in order to solve its own task, it acts as a simple task man-
ager (an agent that assigns tasks to other agents), and it
can further perform the following actions: (a) Search for
suitable partners, (b) Test and evaluate possible part-
ners, (c) Distribute / redistribute task to partners.

We base our implementation of the BDI model on the
algorithm described in [9, pages 55-61]. According to it,
we have to specify the implementation of a belief revi-
sion function (brf), an options generation function (op-
tions), a filter function, and an execute function. The
monitors layer and the evaluators modeling layer repre-
sent the agent's knowledge about its environment, and
thus stand for its beliefs. Beliefs are updated automati-
cally by filters of monitors, which can be seen as the brf
function.

Figure 4 shows concept nodes implementing the BDI
architecture. The BDI model encapsulates the basic logic
of the algorithm. We have further defined several con-
cept nodes that are responsible for option generation.
Each such a concept node implements its own options
function and its own filter function which is responsible
for filtering desires and intentions. The action function is
implemented in the BDI model as defined by the pseudo-
code in the algorithm 1. B denotes the set of beliefs,
/ the set of intentions, D the set of desires, Dx the set
of desires generated by the x-th option generation node,
ON odes a vector of all agent's option generation nodes.

Algorithm 1 Action function of the BDI agent.

1: weight max = 0
2: for i = 1 to ONodes.length do
3: (Di,weighU) = ON odes[i\.options (B11)
4: if weighU > weightmax then
5: weightmax = weighU
6: D = Di
7: nodemax = ONodes[i]
8: end if
9: end for

10: returnnodemax>filter(B,D,I)

5 Experiments
We have adapted two existing computational agents

embedding the multi-layer perceptron (MLP) and the ra-
dial basis function (RBF) neural network. These agents
represent two different computational methods for the
solution of similar categories of tasks.

Overheads of the architecture are summarized in Ta-
ble 1. The creation of the agent takes 2-3 times longer
since all the structures must be initialized. The com-
munication overhead is around 30% when dealing with
message delivering. However, in real-life scenario of
task solving, the overhead is only about 10%.
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Agent creation time

Message delivery time

Total computation time

Without the arch.

3604 (is

2056 /is

8994681 fis

With the arch.

9890 /is

2672 /is

9820032 /is

Table 1. Comparison of the agent with and without the au-
tonomous support architecture

Random choice

Best speed

Best Accuracy

Best services

Error

11.70

1.35

1.08

1.17

Duration

208710ms

123259ms

274482ms

102247ms

Table 2. Optimization of the partner choice. Comparison of
choices made by different criteria.

Table 2 summarizes the measured results of optimiza-
tion of the partner choice. We simulated a usual sce-
nario when an agent needs to assign some tasks to one
of admissible partners. This agent uses a collection of
different tasks and assigns them to the computational
agents successively. The total duration of the computa-
tion and the average error of computed tasks were mea-
sured. A significant improvement of the efficiency can
be seen.

Experiments with optimization by reusing results are
summarized in Table 3. We have constructed several col-
lections of tasks with different ratios of repeated tasks
(quite a usual situation when, e.g., evaluating the pop-
ulation in genetic algorithms). We compared the to-
tal computation-times of the whole collection with and
without the optimization enabled. We can see that the
optimization is advantageous when the ratio of repeated
tasks is higher than 20%. When more than 40% are re-
peated the results are significant.

Repeated tasks

0%

20%

40%

60%

Standard

135777097

94151838

50704363

47682940

Optimized

121712748

90964553

91406591

90804052

Table 3. Optimization by reusing the results of previously-
computed tasks (duration in milliseconds).

6 Conclusions
In this paper, we have described a general architecture

that allows a simple design of adaptive software agents.
It supports both agents' decision making and the gen-
eration of autonomous behavior. The architecture in-
corporates learning capabilities and support for reason-
ing based on ontologies which allows reasoning about
agents' capabilities and activities and optimization of the
performance.

The experiments have demonstrated that (1) it allows
faster and more precise execution of tasks; (2) it sup-
ports a better cooperation of agents; (3) the performance
drawbacks are not high.

The realized architecture provides several challenges
for future work. The exchange and sharing of task cases
can be a useful extension of the current implementation.
We plan to perform more exhaustive experiments with
groups / ensembles of cooperative computational agents.
Finally, we plan to experiment with algorithms (e.g., by
genetic algorithms) for automatic learning (generation)
of global and local preferences of the architecture suit-
able for a particular situation (task).
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Abstract

In this paper we introduce technique how a neural net-
work can generate a Hidden Markov Chain. We use
neural network called Temporal Information Categoriz-
ing and Learning Map. The network is an enhanced
version of standard Categorizing and Learning Module
(CALM). Our modifications include Euclidean metrics
instead of weighted sum formerly used for categoriza-
tion of the input space. Construction of the Hidden
Markov Chain is provided by turning steady weight in-
ternal synapses to associative learning synapses. Result
obtained from testing on simple artificial data promises
applicability in a real problem domain. We present a
visualization technique of the obtained Hidden Markov
Chain and the method how the results can be validated.
Experiments are being performed.

-+• RO, R1 R2, R3

time

Fig. 1. Neural network can distinguish between rising and
falling edge in a sequence even if they have the same
values. It generated Hidden Markov Chain. Output of
the network is a sequence of states of that chain as well
as the chain as a temporal model of the sequence.

1 Introduction

Many signals that are processed in the field of artificial
intelligence have temporal components. Of course, that
is because we live in temporal environment. If we want
to process such signals with neural networks, we have to
take the temporal information into account.

Feed-forward neural networks could not be used with
a great success in sequential data processing. There are,
of course, applications which employ such neural net-
works by e.g. passing several consequent signal values
to the network input at the same time. But such state-
free neural network could not discover relationship be-
tween consequent signal samples. Another drawback is
that such application of a neural network is limited to
one-dimensional signals only.

Processing of temporal sequences and signals is do-
main of recurrent neural networks. Analogically in the
field of logical circuits static signals are processed by
combinatorial logic and sequences are handled by se-
quential logic. In the field of artificial neural networks
we can name Elman networks [1] as a basic networks for
sequence processing. Multilayered perceptron networks
were enhanced with time-delay connections which can
represent sequential memory in a feed-forward neural

network. There are spiking neural networks [2] which
cover temporal behavior with leaky integration of an
input and transmission of temporal activation pulses
(spikes). The most precise and complicated structure for
sequence processing is Long Short-Term Memory [3].

Hidden Markov Models (HMM) [4] are widely used
tools for processing and recognition of temporal se-
quences. HMM is a tool for statistical modeling of se-
quences. In short, the HMM is based on a stochastic
automaton - Hidden Markov Chain (HMC), hidden be-
hind a probabilistic observation function. For each se-
quence we can create the corresponding stochastic au-
tomaton which corresponds to the sequence by the prob-
abilistic function. HMC is based on Markov condition
which says that future state of the automaton depends
only on the present state, not on the past states.

There are also combinations of HMMs and neural net-
works [5]. Some of them use neural networks instead of
the probabilistic observation function. Some of them use
small neural networks for computation of state to state
transition probability etc.

Since our objective are neural networks and we need
to measure their performance, the HMM are suitable
tools for comparison. We did not create so popular hy-
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brids of HMM and neural networks but we developed a
neural network that can somehow act as a HMM. Our fo-
cus is to make the comparison to HMM and to discover
mutual consequence and relation of HMMs and neural
networks in general.

2 Theoretical Part
Based on previous experiment in information catego-

rization, we found that a suitable neural network that can
facilitate this task is Murre's Categorizing and Learn-
ing Module (CALM) [6] developed in Leiden in the year
1992. Original CALM neural network has many pleas-
ant features such as:

• Categorization of the input vectors. CALM pro-
cesses input vectors and sorts them into categories.

• Module is strongly inspired by live neural net-
work. It can be taken as a simple model of a corti-
cal mini-column.

• Winner takes all principle is applied within the
network. After several iterations one R-V neuron
pair is chosen.

• Plasticity/stability dilemma is gently controlled by
the arousal process.

• Modularity. The CALM is an autonomous mod-
ule with built-in learning algorithm (in contradic-
tion to supervised neural networks with external
teacher). Learning phase does not need to be sep-
arated from the recalling phase.

• Degree of the module (amount of R-V pairs) does
not depend on dimension of input vector. It de-
pends on desired number of categories.

• CALM is recurrent neural network. This is the
main reason why we have chosen it.

• Module has leaky integrating behavior in the
arousal subsystem and built-in activation decay of
the neurons.

Function of CALM can be described by three main
processes (see Fig.4 where additional fourth process for
temporal memory occurred as well). Excitatory pro-
cess is performed by R-neurons. Each R-neuron reacts
to the input signal based on the inter-synapse weights
(which are being modified by learning algorithm). Each
R-neuron excites its matching V-neuron. V-neurons real-
ize competition layer. When the new input vector is pre-
sented, one V-neuron wins the competition and suppress
activation of other V- and R-neurons. CALM contains
additional arousal process that controls learning rate and

High

One n-dimensional Input Vector

Fig, 2. Original Categorizing and Learning module can pro-
cess isolated input patterns. Neurons are depicted as
circles. Synapses are either excitatory (arrow) or in-
hibitory (dot). Each synapse has its weights. Inter-
synapses only are being learned by learning algorithm
other synapse weights are steady.

selects new representants (R-neurons) for new categories
of input vectors.

Original CALM module has pleasant features in static
pattern recognition. It has fast convergence (iteration
time decreases with increasing number of presentation
of one input vector) but it is not suitable for recognition
of sequences and it needs certain improvements.

We made such improvements that were partly intro-
duced in [7]. Namely it is the improved measuring of
the input space and autonomous mapping of the tempo-
ral consequences in cross-synapses that we consider as a
tool for construction of a HMC.

First, we replaced weighted sum by Euclidean met-
rics in the R-neuron inputs. The scalar product is a good
solution for high dimensional patterns. But it could not
separate low dimensional patterns precisely. The major
problem is with one-dimensional input vector where all
values are treated as one category because all of them
are linear combinations. Euclidean metrics allows cate-
gorization of low dimensional patterns and is suitable for
processing of sequences.

Second improvement overcomes another drawback of
the original CALM module that is a need of a reset of all
activations in the module between presentations of two
different patters. Original CALM forgets its state after
the recognition thus it is not usable in sequence recogni-
tion.

We found that cross-synapses (in Fig.3 denoted by
thick lines with dots) in combination with a temporal
memory can provide historically recognized information
to recognition of future input vectors. We preserve ac-
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tivation of the V-neurons and following input vector is
being categorized based on its position in the input space
(by the meaning of Euclidean metrics) and also by pre-
viously selected category that influents R-neurons using
matching cross-synapse.

Original CALM has cross-synapses as well. Certain
setup of their weights makes the CALM to become self
organizing map (proximate vectors in the input space
form categories which are represented by neighboring
R-neurons). Our improvement makes the cross-weights
become learning. With help of the temporal memory in
R-neurons cross-weights maps often consequent vectors
to neighboring categories. Learning cross-synapses use
associative Hebb's learning rule. If the present input vec-
tor activates one R-neuron, then the cross-synapse be-
tween this R-neuron and V-neuron activated by previous
input vector is reinforced, others are diminished.

Thus there are two mappings in the enhanced CALM.
First one maps input space to the categories. Second one
maps temporal consequences of input patterns to cross-
synapses. Enhanced CALM was named Temporal Infor-
mation Categorizing and Learning Map (TICALM).

an arrow with arbitrary strength. Narrow and dashed ar-
row means low probability, black solid arrow means high
probability, see Fig.3.

Fig. 3 . TICALM does not process isolated input vectors but
it takes temporal nature of pattern sequences into ac-
count.

Fig. 4. Block diagram of the TICALM. There is the tempo-
ral memory added besides excitatory, inhibitory and
arousal processes included in original CALM.

Now we can treat categories in the TICALM as states.
Transition from one state to another is influenced by
cross-synapse weight. One property of the HMC is tran-
sition matrix that denotes probability of a transition from
one state to another. In our network the probability is ex-
pressed by the cross-weight. As the HMC is driven by
probabilities during transitions, TICALM is driven by
cross-synapse weights.

In experiments we proof it the cross-synapses are ca-
pable to incorporate sequential and stateful behavior in
the TICALM. The cross-synapse weights could be filled
into the matrix. Strong inhibitory weights denote low
probability of transition to another state, weak inhibition
by cross-synapses causes high probability of the transi-
tion. This is the reason why we say that TICALM can
construct Hidden Markov Chain.

In Fig.3 we can see that TICALM no longer pro-
cess isolated patterns. In contradiction to commonly
used processing of the temporal sequences by present-
ing a subsequence (several continuous samples of the
sequence at the same time) to a neural network in-
put the TICALM processes input vectors one by one.
This approach does not limit the sequence to be one-
dimensional. In Fig.3 the input sequence is two-
dimensional and is passing through network input from
left to right.

For easier consideration of the results we use a visu-
alization technique of the HMC graph where states are
depicted as circles and transition probability is drawn by

3 Experiments
First of all we test the network on a special artifi-

cial and simple data set. Since the original CALM is
a state-free network (it treats the same input vectors
in the same category), TICALM should separate even
same input patterns based on their context or position
between other input patterns respectively. Let us have
a simple sequence of two dimensional testing vectors
((0 l)(0.5 0.5)(l 0)(0.5 0.5)). If we present this se-
quence to original CALM, the module will assign three
categories to vectors (0 1), (0.5 0.5) and (1 0). One can
expect that TICALM should assign vector (0.5 0.5) two
categories. One for the vector between (0 1) and (10)
and another one for the vector between (10) and (0 1).
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In the other words TICALM will differ the same input
vector into two transitions, one forward and one back-
ward.

In Fig.3 we can see four images that show progress
of the HMC being created within the network. Cross-
synapses were rewritten to a matrix which is depicted in
a series of graphs.

Each iteration in module ends with one activated R-V-
pair (network state). Cross-synapses indicate how prob-
able transitions between network states are - the network
simulation can be displayed as a stochastic automaton.
At the set of automata we can see how the consequence
of clusters is being created within the network during the
learning.

(a) (b) (c)

Fig, 5. Progress of construction of the HMC. Transitions with
high probability are represented by thick arrows. Tran-
sitions with low probability are represented by thin,
dashed and dotted arrows.

Next experiment uses artificial data as well but the
data are not as simple as in previous experiment where
the result is easily predictable.

We will compare the temporal model created by
TICALM to constructed within the HMM from the same
data sequences. Schema of the experiment is depicted
in Fig.6 Let us create the HMM respectively its transi-
tion matrix manually. Then we will use particular HMM
for generating sequences. The sequences will be used as
training data for another HMM and for TICALM. After-
wards, we will display HMC created within the HMM
and HMC created by TICALM.

We could not directly compare HMC created by
TICALM with HMC that created the testing data se-
quence because one sequence can be generated by more
than one HMM. Our visualization technique can help us
to check whether the created models are the same in sev-
eral repeated experiments.

4 Conclusion
We introduced a technique how the neural network

can generate a probabilistic automaton - Hidden Markov
Chain, that describes temporal characteristics of the in-
put sequence. We have built in Euclidean metrics instead
of scalar sum previously embedded in the network. Main

HMM

HMM

TICALM

Fig. 6, Schema of comparison of HMM and TICALM gener-
ated models.

contribution is an improvement of the internal cross-
synapses by a learning algorithm that adds a possibil-
ity of construction of the Hidden Markov Chain by the
network. Functionality of the network was proven by
simple experiments. Currently running experiments will
prove that generated chains are reasonable and compa-
rable to Hidden Markov Models on more complex and
non-artificial data.
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Abstract
The paper deals with assessing performance improvements
and some implementation issues of two well-known data
mining algorithms, Apriori and FP-growth, in Alchemi grid
environment. We compare execution times and speed-up of
two parallel implementations: pure Apriori and hybrid FP-
growth - Apriori version on grid with one to six processors.
As expected, the latter shows superior performances. We
also discuss the effects of database characteristics on overall
performance, and give directions for proper choice of
execution parameters and suitable number of executors.

1 Introduction
Since the introduction of association rule mining [1],
the frequent itemset mining has received a great deal
of attention. Within the last decade, a large number of
algorithms have been proposed for mining either all
frequent itemsets [2], closed frequent itemsets [3] or
only maximal frequent itemsets [4] within large
databases consisting of item subsets. An important
issue is to perform either of the tasks as fast as
possible.
However, there is an alternative approach to
performance improvement, namely concurrent
implementation of existing algorithms. We use GRID
technology to speed up mining procedures and present
the results of our experimental setup. Two popular
mining algorithms, Apriori and FP-growth, are used
on Alchemi platform, which is selected as the
implementation of GRID environment.
The paper is organized as follows. In Sec. 2, we
present the background on association rule mining
and main features of the two chosen mining
algorithms. Sec. 3 briefly describes GRID
environment, Alchemi platform and our experimental
setup, together with some implementation issues. The
databases and experiments are described, followed by
the results of mining procedures executed in GRID
environment in Sec. 4. The performance of the two
algorithms is evaluated in GRID environment with
different number of processors, for the two databases
and different support values. We conclude the paper

with discussion of results and directions for future
work.

2 Background Theory and Related Work
Association rule mining deals with large databases,
where it is impossible for human to extract relevant or
existing features. The use of automated procedures and
computer technology is therefore imperative.

2.1 Frequent Itemsets

Let us assume a database D with large number of
patterns or itemsets, taken from a set of items or
attributes I. A row in D is called transaction T = (tid,
7), where tid is the transaction identifier and / is an
itemset, / c I. A transaction T = (tid, I) is said to
support an itemset X, if X c /. Each transaction has a
unique identifier. The cover of an itemset X in D
consists of the set of transaction identifiers of
transactions in D that support X:

cover(X, D):= {tid\(tid, I)e D, Jfc/}

The support of an itemset X in database D is the
number of transactions in the cover of X and D:

support(Xt £>):= | cover(X, D) \.

An itemset is called frequent in D if its support in D
exceeds a given minimal support threshold (j. The goal
is usually to find all frequent itemsets (AFI) in a
database, given a minimal support threshold. As the
search space of all subsets of I is huge, there are two
well known sub-problems that are looking only for
closed frequent itemsets (CFI) or maximal frequent
itemsets (MFI).
A frequent itemset / is called closed, if it has no
frequent superset with the same support, i.e., if

/ = n J
{tid, J)e cover(I)

A frequent itemset is called maximal if it has no
frequent superset. It is easy to see that MFI c FCI c
AFI, which influences the speed of corresponding
mining algorithms.
Among a large number of sequential algorithms for
discovering frequent itemsets, we shall briefly describe
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two of the most popular: Apriori and FP-growth [6, 7],
followed by a short comment on parallel versions.

2.2 Apriori algorithm
The Apriori algorithm uses the following theorem to
reduce the search space: if an itemset is large, then all
of its subsets are large as well. This means that it is
possible to generate the potentially large (7+1) itemset
using large / itemset. All subsets of candidate z+1
itemset must be large itemset. It is therefore possible to
find all large itemsets using database scan repeatedly.
During the i-th scan, Apriori counts the occurrence of
the /-itemset and at the end of the pass /, it generates
the candidates with *+l items. Its main disadvantage is
multiple database scan, however some solutions exist
which overcome this issue [6].

2.3 FP-growth algorithm

The FP-growth (Frequent Pattern) is an alternative to
Apriori-like algorithms since it doesn't generate time
consuming candidate lists, but rather adopts a pattern
fragment growth method, based on a compressed
prefix-tree data structure. There are basically two
steps: 1) FP-tree construction and 2) mining frequent
patterns with FP-tree by pattern fragment growth. The
first step requires one scan of database to identify the
set of frequent items followed by the supplement of the
list of ordered frequent items to the database
transactions, while the second scan is sufficient for the
FP-tree creation. The second step is a recursive
procedure that analyses FP-tree in a bottom-up manner
for each frequent item and constructs its conditional
FP-trees that call the same procedure recursively. As it
performs mining on a compressed (tree) data structure,
it is very fast.

2.4 Parallel algorithms

Among Apriori-like algorithms, three parallel versions
are popular: Count Distribution, Data Distribution and
Intelligent Data Distribution algorithm [8]. Since
Alchemi does not support direct communication
among threads or executors, we could not take
advantage of these algorithms. So we adopted an
alternative approach, described in Section 3.2.

3 GRID Environment and Alchemi
Platform

Grid environment represents a kind of distributed
platform which enables dynamic sharing of processing
and storage capacities on (possibly) geographically
dispersed end-computers, taking into account their

availability, capabilities and resources. Grid can be
considered either as a single giant virtual computer or
as an interconnected cooperative environment. The
term grid comes from analogy with power grid, which
acts as a constant and reliable energy source and its
users do not need to care where electricity comes from,
how it is produced and distributed etc. Similarly, grid
users do not have to know how many and what kind of
computers execute the submitted task, they only want
to get a correct solution within a reasonable time.

3.1 Platform of choice
Our platform of choice Alchemi [9] is an open source
project from Melbourne University and part of the
Gridbus project. It is developed in C# for Microsoft
.NET framework. It offers an OO model with a
multithreading paradigm. The smallest unit of parallel
processing is a grid thread. Grid application consists of
several grid threads that can be executed in parallel.
Although tightly integrated with .NET platform,
Alchemi can also run on other platforms using web
services, or even use alternative open source
environment (Mono, dotGNU) on platforms other than
MS Windows. Alchemi grid consists of three
components: manager, executor and owner, as shown
in Fig. 1 [10].

Fig. 1. Alchemi grid components.

The manager manages grid application execution and
thread execution. Executors sign up with manager.
Owner submits grid threads to manager who adds
them into the thread pool and from there, schedules
threads for execution on available executors. Executors
afterwards return the finished threads or results to the
manager, who passes them on to the owner. Owner
may afterwards perform some final processing if
necessary.
Although simple, Alchemi represents an appropriate
environment for experimental evaluation of
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intraorganisational grid benefits. Its major drawbacks
are absence of security mechanisms and no inter-
thread communication. In our case, security is not an
issue (yet), since our experimental grid is situated
within laboratory environment, while the absence of
inter-thread communication limits the choice of
algorithms appropriate for implementation.

3.2 Problem and experimental setup

Our experimental grid consists of six personal
computers with Pentium IV 2 GHz processors and 500
MB memory, connected with 100 Mbps links over
Ethernet switch and running Windows 2000 Advanced
Server operating system. The experiments are always
performed on the most recent version of Alchemi
software, which is at the moment of writing 0.8. All of
them function as executors, while one of them
additionally acts as a grid manager and application
owner, as shown in Fig. 2.

Fig. 2. Experimental grid architecture.

We study the problem of mining for association rules
in large databases. More precisely, we investigate how
much we can shorten the time needed for completion
of known algorithms like Apriori when using a grid
environment.
We have rewritten a basic Apriori implementation to
run on Alchemi grid. When the owner specifies the
desired number of total threads, the dataset is
partitioned into a corresponding number of horizontal
partitions. Each partition becomes a parameter which
is sent out to the executor together with a thread to be
executed. The executors search for frequent itemsets in
the received partitions with additional parameter -
support sj. The result itemsets are returned to the
owner, who accomplishes the aggregation by searching
for frequent itemsets in the whole database with
(usually higher) support s2 and taking as candidate
itemsets only those returned from the executors.
We also experimented with FP-growth algorithm,
which is supposed to return the same results as Apriori
in shorter time. We took an existing FP-growth
implementation [11] in C++ and wrapped it with .NET
managed code to suit the distributed nature of our grid
environment. An alternative model to grid thread is

used - a basic unit of distributed processing is called
grid job. The algorithm ran on the same database
partitions as Apriori in the former experiment.
Although a job-oriented model is used as opposed to
the thread-oriented one in our Apriori implementation,
the amounts of overhead in both cases are comparable.
Since FP-growth cannot make use of candidate
itemsets, we employed Apriori in the aggregation
(reduction) phase just like in the first experiment. The
cost of aggregation is achieved centrally and is
therefore constant. We rather focus on the total amount
of processing time on executors when employing
different number of executors. With only one executor,
the execution is centralized, while with more
executors, the level of parallelism is increased.
Our hypothesis is that the more executors we occupy,
the shorter will be the overall execution time.
However, depending on the database size and
characteristics, after a certain point adding new
executors would probably not bring further reduction
due to higher amount of overhead.

4 Results and discussion
To show the benefits of running datamining applicati-
ons in grid environment, we performed the two
experiments described in Section 3.2, on two different
databases, Sava [12] and UCI-Adult [5], each of them
six times, with one to six executors. Since the
databases have different characteristics and sizes, the
results obtained also slightly differ.
Figs. 3 and 4 show the execution times versus number
of executors - processors, obtained with different
values of relative partition support parameter sl9 which
was always taken as the third of the aggregation
support, si=S2/3. (when the support is lower, the
algorithm has to check more candidates). It is obvious
that with higher number of executors we get shorter
execution times, at least up to six executors on UCI-
Adult database, and up to five on Sava database.
On both databases, FP-growth runs considerably faster
than Apriori. However, there are a few points worth
mentioning. If number of computers is further
increased, the overhead of communication becomes
excessive, thereby limiting the benefits of parallelism.
On the other hand, our databases are relatively small.
With the largest known databases used for datamining,
we could still benefit from as much as hundred and
more executors. Next, when database partitions consist
of randomly chosen transactions, execution times on
different partitions are rather similar.
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Fig 4: The results on Sava database.

When this is not the case, e.g. when partitions on
different machines consist of differently distributed
data, individual execution times may be drastically
different - even larger than on the entire dataset (due
to smaller absolute minimal support values).

5 Conclusions
The paper deals with datamining in grid technology.
We show its benefits when using Apriori and FP-
growth algorithms with Alchemi. The best results are
obtained with hybrid combination, where FP-growth is
used in parallel on partition databases and Apriori for
the final aggregation. In our future work we shall try
to implement the different parallel versions of mining
algorithms on the latest grid platforms, as well as to
explore more thoroughly issues of effectiveness and
robustness.
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Abstract
This paper discusses a novel performance driven
placement technique based on distributed Genetic
Algorithms, and focuses particularly on the following
points:(l) The algorithm has two-level hierarchical
structure consisting of outline placement and detail
placement. (2) For selection control, which is one of the
genetic operations, new multi-objective functions are
introduced. (3) In order to reduce the computation time, a
parallel processing is introduced. Results show
improvement of 22.5% for worst path delay, 11.7% for
power consumption, 15.9% for wire congestion and
10.7% for chip area.

1 Introduction
Deep-Sub-Micron (DSM) technology of 0.18 micron and
below enable the integration of logical circuits having
more than 10 million gates. In such a DSM technology, it
is important to optimize timing constraint, power
consumption, wire congestion and chip area at initial
phase of layout design. In this paper, we proposed a novel
performance driven placement procedure based on
Genetic Algorithm (GA)[1]. GA, which is population-
based algorithm, is effective to such a multi-objective
optimization problems. An essential difficulty exits in GA,
However, with regard to large amount of computation
time. In order to overcome the difficulty of GA, a parallel
processing technique, which divides the population into
several sub-population as shown in Fig.l, is introduced.
Studies on analog module placement[2], floorplanning
[3],[4] and routing[5],[6] have been reported as being
applications of GA to the VLSI layout problem. However,
no studies have ever seen the effect of applying GA in
consideration of timing constraint, power consumption,
wire congestion and chip area.

2 Base Algorithm
The placement model we assume in this paper is for
CMOS standard cells. The cells have the same height and
various widths, and are placed as arrays in several lines.
The algorithm proposed herein has two-level hierarchical

structure consisting of outline placement and detail
placement. GA is applied the basic algorithm of each
placement process. In outline placement, the placement
area is divided into four partitions, and cells are allocated
to the partitioned areas. This process repeated sequentially
in order to determine cell positions in stages as shown in
Fig.2 (1). In detail placement, two-dimensional areas of
the LSI, as shown in Fig.2 (2), are searched to determine
optimal cell positions in a partitioned area. The genetic
coding in outline placement is as explained below. An
example of an intermediate stage during outline placement
is shown in Fig.3 (1), where eight cells are partitioned into
four areas, denoted A through D. The result represents an
individual (that is; a solution). The gene locus provides
cell IDs and assigns area-names to genes. As Fig.3 (1)
shows, cells 2 and 8 are assigned in Area-A, and cells 5
and 6 are assigned in Area-B. Thus, an individual
indicates the status of a partition. Detail placement is
executed after outline placement. In detail placement, the
gene locus corresponds cell IDs and each gene gives cell
location (grid number). An example of coding in detail
placement and individual are presented in Fig.3 (2). In
this example, five cells are placed in a 4 *2 placement
mesh.

3 Selection Operators
For GAs, it's important to set suitable evaluation
parameters for controlling the selection of individuals. In
order to realize high quality placement, the proposed
algorithm uses a new multi-objective function that
consists of three evaluations besides chip area.

Fig.l. Distributed Genetic Algorithm (DGA)
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(I) Outline placement

Fig.2. Hierarchical placement
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Fig.3. Coding

3.1 Timing Constraint

We assume that the interconnections are done using two
layers, the first metal layer (Ml) and the second metal
layer (M2). Wire length of a net is calculated from the
circumscribed rectangle lengths of the net as shown in
Fig.4. In this paper, The wiring delay of dely for a net n
from the source / to the load j is as follows.

;

Where, Lv(h} is the total wire length of the circumscribed
rectangle for the net n routed on Ml(2), lv(h) is the length
of the circumscribed rectangle from the source to the load
j routed on Ml(2), c1(2) is the capacitance of Ml(2) per
unit length, r}(2) is the resistance of M1 (2) per unit length,
E ; Cj is the sum of the load capacitance for the net n, and
Ro is the equivalent output resistance of the source for the
net n. We define the timing constraint. The proposed
algorithm doesn't calculate the delay time of all paths on
every generation. Concretely, it is only calculated the
delay of all paths on every T generation and we build up
calculation path list. The calculation path list consists of
10 worst paths in all paths. The proposed algorithm only
calculates the delay of paths in calculation path list from
T+l generation to 2T generation as shown Fig.5. Thus, we
save run-time keeping quality of solutions.

3.2 Power Consumption

The dominant source of power consumption in a digital
CMOS circuit synchronized by a clock is the switching of
signals. It can occupy about 70% of total power
consumption. Therefore, it is effective to reduce the
power consumption of switching of signals. The power
consumption of switching of signals in CMOS is given by

P= a xCx/xF 2 --(2)
Where "C" is the load capacitance, "V" is the supply
voltage, "f* is the clock frequency and "a" is the switching
ratio. The load capacitance "C" consists of input gate
capacitance for the next stage, output gate capacitance and
routing capacitance. So, we reduce the capacitance
(routing capacitance) of cell with the high ratio of
switching.

3.3 Wire Congetion

Wire congestion may cause un-connect nets or the chip
size may grow if the wiring capacity is increased. In order
to avoid wire congestion, the new function called cut-line
deviation is introduced. Cut-line deviation refers to the
balance of the maximum number of cross-border cut-line
in the process of iterative partitioning minus the minimum
number of cut-lines. The example shown in Fig.6, the cut-
line deviation of (1) is 3 and that of (2) is 0. Preferably,
this value should be small. Thus, the example Fig.6 (2)
gives a better result than (1).

4 Crossover
This algorithm adopts general uniform crossover for
outline placement. While according to the coding in
outline placement, a sequence of genes is not so essential.
One-point or two-point crossover operations tend to save
the genetic sequence, whereas uniform crossover
operations are expected to hold a gene and gene locus pair
across generations and thus maintain population versatility.

Fig.4. Virtual Wire Length

Fig.5. Timing of calculation for path delay
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Therefore, this algorithm adopts general uniform
crossover for outline placement. However, the crossover
cannot adjust the number of cells contained in an area for
newly generated individuals. This deviation of cell count
does not produce a lethal gene but remarkably reduces the
processing speed. In order to prevent this deviation, the
heuristic adjustment technique shown in Fig.7 is used for
new individuals generated by crossover. If the deviation
of cell count exceeds the threshold, cells migrate from the
most populous area to the least populous area. The
number of migrating cells is calculated in order to
minimize the virtual wiring length. Uniform crossover was
used in outline placement, however this generates many
lethal genes if used in detail placement, because crossover
cause several cells coexist in a single grid or overlap each
other. In order to supper lethal genes, we used the
crossover that modified PMX (Partially Mapped
Crossover^ 1] for corresponding to the proposed coding.

5 Implementation on Parallel Computer

5.1 Parallel Processing of the proposed Algorithm

When parallel processing in placement is considered, it
can be considered that the partial areas of LSI is assigned
to Processing Unit (PU). The proposed algorithm takes
processing time most to the 1st division processing,
because gene length is the longest. In early division
processing in which many processing time is required, a
sufficient number (at least the number of PUs) of partial
areas are not generated yet. Therefore, the parallel
processing system, which assigns the partial areas to PUs,
is not effective. In order to realize efficient parallel
processing, we adopt Distributed GA.

5.2 Hierarchical structure ring topology

The new ring topology of two steps of hierarchical
structures was introduced into reference for biological
niche as shown in Fig.8. The hierarchical ring topology (H
ring topology) consists of lower layer, which means the
neighboring sub-population, and upper layer, which
means the distant sub-population. In lower layer, the
migration interval is made high. By contraries, in upper
layer, the migration interval is made low.

6 Result and Discussion
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6.2 Experimental Result I

The result of the experiment is shown in Table. 1. Routing
capacitance can be reduced if the value of "Length of the
nets with high SW" rate in Table 1 is small. That is,
power consumption is reducible. The proposed algorithm
improved power consumption, timing constraint, wire
congestion and chip area in comparison with EDA.
However, our runtime spends more than one thousand
times in comparison with EDA.

6.3 Tuning of The Parameter of DGA

Migration of individuals is controlled by several
parameters such as: (1) a migration interval that affects
the frequency of migration, (2) a migration rate that
controls how many individuals migrate. In this work, the
preliminary experiments determined the optimal migration
interval and rate. In case of the migration interval, the
preliminary experiment was conducted about the case of
the migrate interval of 20, 30, 40, 50 or 60 generations.

6.1 Experimental Set-up

In order to evaluate the effectiveness of the techniques
proposed in this paper (hereafter, called GAP), we
compared with commercial EDA tool. The experimental
data is 0.35 micron COMS technology. Fig.8 Hierarchical Ring Topology
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The experiment results are shown in Fig. 9> The migrate
interval was the best result in the case of 50 generations
irrespective of the number of processors from Fig. 9. In
case of the migration rate, the preliminary experiment
was also conducted about the case of the migrate rate of
5%, 10%, 20%, 30% or 40%. The experiment results are
shown in Fig. 10. The migrate rate was the best result in
the case of 10% irrespective of the number of processors
from Fig. 10. Thus, in this work, interval was made into
every 50 generations and migrate rate was made into 10%.

6.4 Experimental Result II

The results of H ring topology and ring topology, which
use 12 processors, and that of a single processor are
shown in Fig. 11. Fig. 11 shows the relative value which
set the value of a single processor to 1. In the case of 12
processors, the ring and the H ring realized 11 times as
many improvement in speed as this compared with the
single processor. Moreover, parallel processing has been
improved as the quality of placement. When the H ring
topology was compared with ring topology, in all
evaluation criteria, H ring topology was made a good
result.

7 Conclusion
In this paper, a novel parallel placement procedure was
presented. The experiment verified that the proposed
multi-objective functions are effective. It also became
clear that Distributed Genetic Algorithm could improve
placement performance reducing processing time.
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Abstract
This paper presents an architecture which is suitable

for a massive parallelization of the compact genetic al-
gorithm. The resulting scheme has three major advan-
tages. First, it has low synchronization costs. Second, it
is fault tolerant, and third, it is scalable.

The paper argues that the benefits that can be ob-
tained with the proposed approach is potentially higher
than those obtained with traditional parallel genetic al-
gorithms.

1 Introduction

One of the efficiency enhancement techniques that has
been investigated in the field of evolutionary computa-
tion, both in theory and in practice, is the topic of par-
allelization [1]. With a traditional parallel genetic algo-
rithm (GA) implementation, population members need
to be sent over a computer network, and that imposes a
limit on how fast they can be. This paper addresses the
parallelization of the compact genetic algorithm (cGA)
[2], and take advantage of its compact representation of
the population do develop a scheme which significantly
reduces the communication overhead.

The paper is organized as follows. The next section
presents background material on parallel GAs and sec-
tion 3 reviews the cGA. Section 4 shows the motivation
for parallelizing the cGA and presents an architecture
that allows its massive parallelization. In section 5 com-
puter experiments are conducted and its results are dis-
cussed. Finally, a number of extensions are outlined, and
we finish with a brief summary and the main conclusions
of this work.

2 Parallel GAs
An important efficiency question that people are faced

with in problem solving is the following: Given a fixed
computational time, what is the best way to allocate
computer resources in order to have as good a solution
as possible. Under such a challenge, the idea of paral-
lelization stands out naturally as a way of improving the
efficiency of the problem solving task. By using mul-
tiple computers in parallel, there is an opportunity for

delivering better solutions in a shorter period of time.
Several researchers have investigated the topic of par-

allel GAs and the major design issues are in choices such
as using one or more populations, and in the case of us-
ing multiple populations, decide when, with whom, and
how often do individuals communicate with other indi-
viduals of other populations.

Although implementing parallel genetic algorithms is
relatively simple, the answers to the questions raised
above are not straightforward and traditionally have only
been answered by means of empirical experimentation.
One exception to that has been the work of Cantu-Paz
[1] who has built theoretical models that lead to rational
decisions for setting the different parameters involved in
parallelizing GAs. There are two major ways of imple-
menting parallel GAs: (1) using a single population, and
(2) using multiple populations.

In single population parallel GAs, also called Master-
Slave parallel GAs, one computer (the master) executes
the GA operations and distributes individuals to be eval-
uated by other computers (the slaves). After evaluating
the individuals, the slaves return the results back to the
master. There can be significant benefits with such a
scheme because the slaves can work in parallel, inde-
pendently of one another. On the other hand, there is an
extra overhead in communication costs that must be paid
in order to communicate individuals and fitness values
back and forth.

In multiple population parallel GAs, what would be a
whole population in a regular non-parallel GA, becomes
several smaller populations (usually called demes), each
of which is located in a different computer. Each com-
puter executes a regular GA and occasionally, individu-
als may be exchanged with individuals from other pop-
ulations. Multiple population parallel GAs are much
harder to design because there are more degrees of free-
dom to explore. Specifically, four main things need to be
chosen: (1) the size of each population, (2) the topology
of the connection between the populations, (3) the num-
ber of individuals that are exchanged, and (4) how often
do the individuals exchange.

Cantu-Paz investigated both approaches and con-
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eluded that for the case of the Master-Slave architecture,
the benefits of parallelization occur mainly on problems
with long function evaluation times because it needs con-
stant communication. Multiple population parallel GAs
have less communication costs but do not avoid com-
pletely the communication scalability problem. In other
words, in either approach, communication costs impose
a limit on how fast parallel GAs can be.

The next section gives an overview of the cGA, and
after that, its parallelizatioa is discussed.

3 The Compact Genetic Algorithm

Harik et al. [2] noticed that it was possible to mimic
the behavior of a simple GA without storing the popula-
tion explicitly. Such observation came from the fact that
during the course of a regular GA run, alleles compete
with each other at every gene position. At the beginning,
scanning the population column-wise, we should expect
to observe that roughly 50% of the alleles have value 0
and 50% of the alleles have value 1. As the search pro-
gresses, for each column, either the zeros take over the
ones, or vice-versa. Harik et al. built an algorithm that
explicitly simulates the random walk that takes place on
the allele frequency makeup for every gene position. The
resulting algorithm, the cGA, was shown to be opera-
tionally equivalent to a simple GA that does not assume
any linkage between genes.

Under the cGA, the population is represented by a
probability vector. The elements of the vector are the rel-
ative frequency counts of the number of 1 's for the differ-
ent gene positions. The cGA manipulates the population
in an indirect way through an update step in each allele
frequency of the probability vector. Notice that each al-
lele frequency value is a member of a finite set of iV + 1
possible values, and can be stored with log2(A

r + 1)
bits. (N denotes the population size of a regular GA).
Instead, a regular GA would require N bits to represent
each bit position. Further details about the algorithm can
be found in the original source [2].

4 Massive parallelization of the compact GA

The main motivation for parallelizing the cGA comes
from the observation that the probability vector is a com-
pact representation of the population, and it is possible
to communicate the vector rather than individuals them-
selves. Communication costs can be reduced this way
because the probability vector needs significant less stor-
age than the whole population. This observation has first
been made by Harik [3] when the cGA was developed.

Since communication costs can be drastically re-
duced, it makes sense to clone the probability vector to
several computers, and each computer can work inde-
pendently on solving a problem by running a separate

cGA. Then, the different probability vectors would have
to be consolidated (or mixed) once in a while.

We have developed an asynchronous parallelization
scheme which consists of a manager processor, and an
arbitrary number of worker processors (see Figure 1).
Initially, the manager starts with a probability vector
with 0.5 in all positions, just like in a regular cGA. After
that, it sends the vector to all workers who are willing to
contribute with CPU time.

Each worker processor runs a cGA on its own based
on a local copy of the probability vector. Workers do
their job independently and only interrupt the manager
once in a while, after a predefined number of m fitness
function evaluations have elapsed.

During the interruption period, a worker sends the ac-
cumulated results of the last m function evaluations as a
vector of probability fluxes with respect to the original
probability vector. Subsequently, the manager adds the
probability fluxes (values are truncated so that they never
exceed 1.0 and never go below 0.0) to its own probabil-
ity vector, and resends the resulting vector back to the
worker. Notice that the manager's probability vector not
only incorporates the results of the m function evalua-
tions performed by that particular worker, but it also in-
corporates the results of the evaluations conducted by
the other workers. That is, while a particular worker
is working, other workers might be updating the man-
ager's probability vector. Thus, at a given point in time,
workers are working with a slightly outdated probabil-
ity vector. Although this might seem a disadvantage at
first sight, the error that is committed by working with
a slightly outdated probability vector is likely to be neg-
ligible for the overall search because an iteration of the
cGA represents only a small step in the action of the GA
(this is especially true for large population sizes).

One could think of different ways of parallelizing the
cGA but the scheme that we are proposing is particularly
attractive because once the manager starts, there can be
an arbitrary number of workers, each of which can start
and finish at any given point in time making the whole
system fault tolerant. When a worker starts, it receives a
copy of the manager's probability vector, which already
contains the accumulated results of the other cGA work-
ers. On the other hand, when a worker quits, we simply
loose a maximum of m function evaluations, which is
not a big problem.

The proposed parallelization scheme has several ad-
vantages: (1) it has low synchronization costs, (2) it is
fault tolerant, and (3) it is scalable.

All the communication that takes place consists of
short transactions. Workers do their job independently
and only interrupt the manager once in a while. Dur-
ing the interruption period, the manager communicates
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Fig. 1. Manager-worker architecture.

with a single worker, and the other workers can continue
working non-stop.

The architecture is fault tolerant because workers can
go up or down at any given point in time. This makes
it suitable for massive parallelization using the Internet.
It is scalable because potentially there is no limit on the
number of workers.

5 Computer simulations

This section presents computer simulations that were
done to validate the proposed approach. In order to sim-
plify both the implementation and the inteipretation of
the results, we decided to do a serial implementation of
the parallel cGA architecture. The serial implementation
simulates that there are a number of P worker processors
and 1 manager processor. The P worker processors start
running at the same time and they all execute at the same
speed. In addition, it is assumed that the communication
cost associated with a manager-worker transaction takes
a constant time which is proportional to the probability
vector's size. Such a scheme can be implemented by
having a collection of P regular compact GAs, each one
with its own probability vector, and iterating through all
of them, doing a small step of the cGA main loop, one
at a time. After a particular cGA worker completes m
fitness function evaluations, the worker-manager com-
munication is simulated as described in section 4.

We present experiments on a bounded deceptive func-
tion consisting of the concatenation of 10 copies of a
3-bit trap function with deceptive-to-optimal ratio of 0.7
[4]. This same function has been used in the original
cGA work. We simulate a selection rate of s = 8 and
did tests with a population size of iV = 100000 indi-
viduals (each worker processor runs a cGA that simu-
lates a 100000 population size). We chose this popula-
tion size because we wanted to use a size large enough
to solve all the building blocks correctly. We use s = 8
following the recommendation given by Harik et al. in
the original cGA paper for this type of problem. Finally,
we chose this problem as a test function because, even
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though the cGA is a poor algorithm in solving the prob-
lem, we wanted to use a function that requires a large
population size because those are the situations where
the benefits from parallelization are more pronounced.

Having fixed both the population size and the selec-
tion rate, we decided to systematically vary the num-
ber of worker processors P , as well as the m parameter
which has an effect on the rate of communication that
occurs between the manager and a worker. We did ex-
periments for P in {1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024}, and for a particular P , we varied the parameter m
in {8, 80, 800, 8000, 80000}. This totalled 55 different
configurations, each of which was run 30 independent
times.

The m parameter is important because it is the one that
affects communication costs. Smaller m values imply an
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increase in communication costs. On the other hand, for
very large ra values, performance degrades because the
cGA workers start sampling individuals from outdated
probability vectors.

Figures 2 and 3 show the results. In terms of fitness
function evaluations per processor, we observe a linear
speedup for low ra values. For instance, for m = 8 we
observe a straight line on the log-log plot. Using the
data directly, we calculated the slope of the line and ob-
tained an approximate value of -0.3. In order to take into
account the different logarithm bases, we need to mul-
tiply it by log2 10 (y-axis is log10, x-axis is log2) yield-
ing a slope of approximately -1 . This means that the
number of function evaluations per processor decreases
linearly with a growing number of processors. That is,
whenever we double the number of processors, the aver-
age number of fitness function evaluations per processor
gets cut by a half. Likewise, in terms of communication
costs, as we raise the parameter ra, the average number
of communication steps between manager and worker
decreases in the same proportion as expected. For in-
stance, for ra = 80, communication costs are reduced 10
times when compared with m — 8. Notice that there is a
degradation in terms of speedup for the larger ra values.
For instance, for ra = 8000 and m = 80000 (which is
about the same order of the population size), the speedup
obtained goes away from the idealized case. This can
be explained by the fact that in this case (and especially
with a large number of processors), the average number
of communication steps per processor approaches zero.
That means that a large fraction of processors were ac-
tually doing some work but never communicated their
results back to the manager because the problem was
solved before they had a chance to do so.

6 Extensions

It would be interesting to do a mathematical analy-
sis of the proposed parallel cGA. A number of questions
come to mind. For instance, what is the effect of the
ra parameter? What about the number of workers P?
Should m be adjusted automatically as a function of P
and Nl Our experiments suggest that there is an "op-
timal" ra that depends on the number of cGA workers
P , and most likely depends on the population size N as
well.

Another extension that could be done is to compare
the proposed parallel architecture with those used more
often in traditional parallel GAs, either master-slave and
multiple deme GAs. Again, our experiments suggest that
the parallel cGA is likely to be on top of regular parallel
GAs due to lower communication costs.

The model structure of the cGA never changes, every
gene is always treated independently. There are other

probabilistic model building genetic algorithms (PMB-
GAs) [5] which are able to learn a more complex struc-
ture dynamically as the search progresses. One could
think of using some of the ideas presented here for par-
allelizing these more complex PMBGAs.

Finally, it would be interesting to have a parallel
cGA implementation based on the Internet infrastruc-
ture, where computers around the world could contribute
with some processing power when they are idle. Similar
schemes have been done with other projects, one of the
most well known is the SETI@home project [6].

7 Summary and conclusions
This paper reviewed the compact GA and presented an

architecture that allows its massive parallelization. The
motivation for doing so has been discussed and a serial
implementation of the parallel architecture was simu-
lated. Computer experiments were done under idealized
conditions and we have verified an almost linear speedup
with a growing number of processors.

The paper presented a novel way of parallelizing GAs.
This was possible due to the different operational mech-
anisms of the cGA when compared with a more tradi-
tional GA. By taking advantage of the compact repre-
sentation of the population, it becomes possible do dis-
tribute its representation to different computers without
the associated cost of sending it individual by individual.
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Abstract

The parallelization of gradient descent training algo-
rithm with momentum and the Levenberg-Marquardt al-
gorithm is implemented using C# and Message Passing
Interface (MPI) on .NET platform. The turnaround times
of both algorithms are analyzed on cluster of homoge-
neous computers. It is shown that the optimal number
of cluster nodes is a compromise between the decrease
of computational time due to parallelization and corre-
sponding increase of time needed for communication.

1 Introduction
A neural network model training itself is computa-

tionally expensive. If large datasets are considered, the
modelling becomes time consuming. A practical so-
lution to the problem is to parallelize the algorithms.
The basic idea of concurrency on which the architec-
ture of feed-forward neural network is built can be effi-
ciently exploited for computational purposes. However,
this can only be effectively realized on SIMD (single
instruction multiple data) computers [1]. Today, clus-
ters of loosely coupled desktop computers present ex-
tremely popular infrastructure for development of par-
allel algorithms. The processes, running on computers
in cluster, communicate with each other through mes-
sages. Message Passing Interface (MPI) is standardized
and portable implementation of this concept, providing
several abstractions that simplify the use of parallel com-
puters with distributed memory [2]. Thus, each process
in MPI program in MIMD (multiple instruction multiple
data) architecture executes its own code on its own data.

Although, the majority of today clusters run on Linux
operating systems, Microsoft Windows operating sys-
tems coupled with the .NET platform is also becom-
ing an interesting alternative. The .NET platform, de-
signed to simplify the connection of information, peo-
ple, systems and devices has two important parts [3]:
(i) Common Language Infrastructure (CLI), a layer built
upon operating system, allowing development of oper-
ating system independent applications and (ii) new pro-

gramming language C# - simple, safe, object-oriented,
network centered high performance language.

In this paper parallel implementation of neural net-
work training algorithms in aspect of linking Message
Passing Interface to the C# and .NET framework is con-
sidered. In next section parallelization of training al-
gorithms for feed-forward neural networks is presented.
Furthermore, important implementation details with em-
phasis on technology are exposed in section three. In
section four the experimental setup and results in terms
of computational times are given. The main findings are
summarized in the last section.

2 Parallelization of feedforward neural network
training

Feedforward neural networks [4] are designed to
find nonlinear relations between specified input-output
pairs. Suppose Q input-output pairs {p(q),d(q)}9 q =
1 , . . . , Q are given. Each no-dimensional input sample
p(q) is propagated through the neural network layer by
layer in order to obtain nL dimensional output yL(q) in
the L-th layer. Output of n-th neuron in the Z-th layer is
calculated as

ii

£
i=0

(i)
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where (pl(s) = 1/(1 -f e s) is sigmoid activation func-
tion, y% = Pi(q) are neural network inputs, yl

0~
1(q) = 1

bias inputs and ul
ni neural network weights.

A training algorithm objective is to find such set
of weights that minimize the error function £ =
\ E?=i £*=i en{q)\ with en{q) = dn(q) - yfa) be-
ing the difference between calculated and desired output
on the n-th neuron in the output layer.

In the following we will consider parallelization of
two gradient based training algorithms: the classical gra-
dient descent algorithm with momentum and the second-
order derivative based Levenberg-Marquardt algorithm.
In both cases the weights are iteratively updated in batch
mode, i.e., only after the entire set of input-output pairs
has been applied to the network. Having in mind the
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MIMD architecture of the MPI cluster, the paralleliza-
tion can be implemented in terms of parallel execution
of the processes running the same neural network model
with different input-output pairs. The parts of algorithm
which can be parallelized are divided among slave pro-
cesses, while other tasks are handled by the master pro-
cess. By this division the need for communication be-
tween the master and slave processes arises.

2.1 Gradient descent algorithm with momentum

The idea of the gradient descent algorithm [4] is to up-
date the network weights in the opposite direction of gra-
dient in which the error function decreases most rapidly,

Awi as (2)

The first term with learning parameter 77 is determined
using a technique called backpropagation [4], which in-
volves computations backwards through the neural net-
work. The second term, with parameter a, enables a net-
work to ignore small features in the error function sur-
face and respond more efficiently to the general trends.

The parallelization flowchart is presented in Fig. 1.
Within the initialization phase input-output pairs are di-

Read number of input-
output pairs and NN
architecture, allot
input-output pairs to
groups, initialize weights

Distribute input-output pair
group details and neural
network architecture

Read corresponding
input-output pairs

Transfer current weights

l a v e) Calculate weight updates

Collect weight updates

Update weights

Exit when stopping
criterion is met

Fig. 1. Parallelization of the gradient descent algorithm with
momentum.

vided among P slaves processes. During the training
phase each slave process needs to obtain weight updates
for its group of approximately Q/P input-output pairs.

As a result, the computational burden of Eq. 2, is re-
duced by a factor of P. However, the processes need
to communicate with each other in order to exchange
weights and weights updates, which requires some addi-
tional computational resources and reduces overall per-
formance.

2.2 Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm was designed
to approach second-order training speed without
having to compute the Hessian matrix. With error
function £ the Hessian matrix can be approximated
as H « J T J , where J is the Jacobian matrix
that contains first derivatives of the errors em(q)
with respect to the weights ujl

ni. For the calcula-
tion of Jacobian matrix J the weight vector ft =

K V • -u\iNQM& ' ' • > ÂTLATO* ^l,0> • • •U;NL,iVL_1)
T

having i\fa elements and the error vector
e = (e 1( l ) , . . . ,e i V L( l ) ,e i (2) , . . . ,e JvL(Q))T with
Ne = NL Q elements are introduced. Assuming that
em(q) is the r-th element of the vector e and ujl

ni is the
c-th element of vector ft, the elements of the Jacobian
matrix having Ne rows and Afo columns are given as
Jr,c = der/dQc = dem(q)/dujl

nii. The elements of
Jacobian matrix can be computed through a slightly
modified backpropagation technique [5], i.e., instead of
one backward pass NL passes are required, one for each
neuron in the output layer. When the Jacobian matrix is
calculated, the weight update is given as

Aft = - [ € . (3)

Marquardt has proposed to set learning rate ji to some
small value /i = 0.001 and then update it according to
the following rules until the stopping criterion is met:

1. Following the Eq. 3 the weight update Aft is ob-
tained and error function £n+An for the updated
weights ft + Aft is calculated.

2. When the error function £n+An is grater or equal
to the error function £n of the weights Aft, in-
crease the learning rate, fi <— 10//, and return to
item 1.

3. Ifthecase<?n+Ar2 < £&> reduce the learning rate,
(i <— 0.1//, and continue with item 1.

Parallel implementation of Levenberg-Marquardt
training algorithm follows the ideas applied in paral-
lelization of the gradient descent algorithm with momen-
tum. The calculation of the Hessian approximation from
Jacobian matrix having Ne rows and N& involves N^Ne

multiplications, which represents a huge computational
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and storage burden. Fortunately, it turns out that the Ja-
cobian matrix does not have to be computed and stored
as a whole. It can be divided into P matrices J i , . . . , J p
with approximately Ne/P rows and NQ columns and
each of these matrices is obtained from some predeter-
mined group of input-output pairs. In this case the ap-
proximation to the Hessian matrix is calculated as

H a J J [Ji (4)

+... +

Similarly, the vector e can be divided into P sub-vectors
e ) Tof length approximately Ne/P, eT = ( e j , . . . , ep)

and the product JTe can be calculated as

JTe (5)

While the initialization phase of the algorithm is equal
to the gradient descent algorithm with momentum, pre-
sented in Fig. 1, the training phase differs substantially.
The computational burden of each slave is increased due
to more complex derivation of gradients using backprop-
agation technique and the fact that slaves also calcu-
late their contributions to the Hessian approximation and
to the product JTe (Fig. 2). Further, the Levenberg-

Transfer current weights

Calculate Jacobian
matrices J, and
error vectors e,

Calculate matrix products
jjji and products Jfy

Collect matrix products Jj
and products J/C

Update weights and
learning rate

Exit when stopping
criterion is met

Fig. 2. Parallelization of the Levenberg-Marquardt algorithm.

Marquardt algorithm also needs additional communica-
tion resources. While in the gradient descent algorithm
master process only collects NQ weight updates from
each slave process, the master process in Levenberg-
Marquardt algorithm collects the NQ elements of the
Hessian approximation and NQ elements of the product
JT6.

3 Binding C# and MPI on .NET platform

The langauge C# is object oriented language with
bounds checking and garbage collection. Thus it helps
writing safe code by protecting from dangerous pointer
and memory-management errors, such as accessing the
element of array out of its bounds or problems connected
to creation and deletion of objects. The meta code, pro-
duced by C# compiler is then executed by the CLI inter-
preter, available for Windows systems and also for Linux
systems [6].

Due to the fact that MPI standard only requires source
compatibility and that current MPI implementations do
not support .NET platform, the final code, using MPI
libraries written in C language is not platform indepen-
dent. On Windows systems the freely available MPICH
library [2] is mostly used.

Besides the compatibility issues, there are also some
problems regarding the binding of the MPI libraries to
the C# language. First, the objects in .NET can be arbi-
trarily moved by garbage collector, and this must be pre-
vented when they are in use by MPI functions. The solu-
tion, which still generates safe code, is to use special C#
class to pin the object in some memory location and than
obtain pointer to that object needed by MPI library func-
tions. Special care is needed to unpin the object when
it is not needed anymore. Secondly, MPI data types and
constants are defined in C++ header files, which cannot
be directly imported into C#. Therefore, MPI constants
need to be represented as functions, which can return the
value of particular constant on startup. Similarly special
functions are written to create, access and delete special
MPI data types. In order to put the binding problems out
of the C# programmer's sight, a wrapper was written in
C# and partially in C [7], providing an interface to the
MPICH library that looks more like a normal C# class.
It is reported that with careful pinning and unpinning of
objects the performance of the MPI is only slightly af-
fected [7].

4 Results

Performance of both algorithms was tested on two
problem domains: (i) the character recognition problem
and (ii) the rubber testing data set. In the first case 7800
samples of numbers 0-9 represented as 8 x 8 black and
white pixels were generated. Additionally, noise was in-
troduced as a 0.15 probability of a wrong pixel being
generated. The neural network with 64 inputs, 10 neu-
rons in the hidden layer and 10 neurons in the output
layer was used to classify the samples. In the second
case, rubber hardness was related to its rheological prop-
erties for 25000 samples of different rubber compounds.
The neural network having 7 inputs, 21 neurons in the
hidden layer and one neuron in the output layer was used.
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In all runs neural networks were randomly initialized us-
ing the same seed. The training was stopped when the
specified error was reached or after 20000 iterations.

A cluster of 8 computers with processor Intel Pentium
IV 2.0 GHz, 512 MB RAM, running Windows 2000 was
used. One computer was reserved for the master process
and the remaining for slave processes.

The cluster utilizing from 1 to 7 slaves was consid-
ered in different trials to run both algorithms and the
turnaround times of those trials were recorded. The per-
formance of the gradient descent algorithm with mo-
mentum on both problem domains is presented in Fig
3. It can be observed that the time of the tasks which

Fig. 3. Gradient descent learning algorithm with momen-
tum: computational time per iteration depending on the
number of slave processes.

are parallelized (white) is reduced with the increasing
number of slave processes. On the other hand, the in-
creasing number of slaves also increases the time needed
for weights transfer and weight update collection (gray).
The best overall performance is thus reached with 4 slave
processes for the first problem and 5 for the second one.

Performance of the Levenberg-Marquardt learning al-
gorithm measured in the same way is presented in Fig. 4.
In this case the contribution of the non-parallelized pro-
cesses is notably greater (black) due to the fact that
solving of equation 3 was not parallelized. Although,
NQ + 1 times more data is exchanged during the collec-
tion phase, compared to the gradient descent algorithm
with momentum, its relative contribution to the required
computational time is small. Therefore, the turning point
was not reached within the cluster of 8 computers.

5 Conclusion
The parallelization of two different feed-forward neu-

ral network training algorithms was considered in C# on
.NET platform using Message Passing Interface (MPI).

The parallelization of certain tasks reduces the total

Fig. 4. Levenberg-Marquardt algorithm: computational time
per iteration depending on the number of slave pro-
cesses.

computational time, however the ratio between the par-
allelized tasks and unavoidable inter-processes commu-
nication is decisive for the optimal number of slaves. In
terms of speedups the gain is considerably greater in the
case of Levenberg-Marquardt algorithm, since the rela-
tive contribution of communication to the iteration times
is small.
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Abstract
Today numerous variants of heuristic optimization al-

gorithms are used to solve different kinds of optimiza-
tion problems. This huge variety makes it very diffi-
cult to reuse already implemented algorithms or prob-
lems. In this paper the authors describe a generic, exten-
sible, and paradigm-independent optimization environ-
ment that strongly abstracts the process of heuristic op-
timization. By providing a well organized and strictly
separated class structure and by introducing a generic
operator concept for the interaction between algorithms
and problems, HeuristicLab makes it possible to reuse
an algorithm implementation for the attacking of lots
of different kinds of problems and vice versa. Conse-
quently HeuristicLab is very well suited for rapid pro-
totyping of new algorithms and is also useful for edu-
cational support due to its state-of-the-art user interface,
its self-explanatory API and the use of modern program-
ming concepts.

1 Introduction

Naturally inspired optimization heuristics have al-
ready been used to attack various kinds of problems.
They were applied to e.g. routing problems, schedul-
ing problems, function optimization, or graph problems.
As a basis for the different optimization algorithms dif-
ferent natural archetypes were considered: E.g. the pro-
cess of natural evolution inspired Evolutionary Compu-
tation, the foraging behavior of ants provided a basis for
Ant Colony Optimization or the movement and social
behavior of bird flocks or fish schools led to Particle
Swarm Optimization. Due to their generality a lot of
these heuristics are able to attack very different kinds of
problems. However, to obtain very high quality results,
various problem specific adaptations and hybrid variants
were also developed. This leads to the situation that not
only the number of problems but also the variety of dif-
ferent algorithms is enormous today.

So scientists working in the area of heuristic optimiza-
tion have to deal with this variety of optimization al-

gorithms and problems. On the one hand it is neces-
sary to test newly developed algorithms with different
problems and on the other hand different optimization
algorithms have to be evaluated concerning their appli-
cability for an optimization problem. Consequently a
paradigm-independent optimization environment is fa-
vorable that separates the algorithm and problem im-
plementation from each other, making it possible to ex-
change both of them freely. Furthermore, it is preferable
to have an environment at hand that supports the users
not only concerning the implementation of algorithms
and problems but also offers a very high degree of usabil-
ity by providing e.g. a state-of-the-art user interface, a
self-explanatory installer, and a concise documentation,
making it also useful for educational purposes in student
courses.

In this paper the authors present a new generic, flex-
ible, and extensible optimization environment named
HeuristicLab that is designed to deal with very differ-
ent kinds of optimization algorithms and problems. Due
to the strict separation of algorithms and problems (see
section 4) one of the most important aspects is the devel-
opment of a new generic concept to define abstract op-
erators for all interactions between algorithms and prob-
lems (described in section 5).

2 Requirements Analysis

One of the basic features of each generic optimiza-
tion environment is to enable the user to add new opti-
mization algorithms as well as new optimization prob-
lem types in a very fast and easy way. Furthermore, the
program should not be focused on a specific kind of opti-
mization problem or algorithm. The environment should
provide a framework with a well structured and self-
explanatory application programmer's interface (API)
that enables the user to implement all different kinds of
algorithms and problems. This framework should espe-
cially take care of all not optimization specific parts like
threading, saving and loading settings, reading and writ-
ing files, or the graphical user interface (GUI). Moreover,
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it should also provide a plug-in architecture that allows
adding, removing and using algorithm and problem im-
plementations at any time.

Concerning the implementation of various different
kinds of algorithms and problems the most important as-
pect should be to follow one of the fundamental princi-
ples of object oriented programming: the exchangeabil-
ity of modules. Consequently it should be possible to
attack all different kinds of implemented problems with
one single algorithm implementation (e.g. a generic Ge-
netic Algorithm (GA)) without the need to change any
code of the algorithm plug-in. Vice versa one problem
implementation (e.g. an implementation of the Traveling
Salesman Problem (TSP)) should be useable for all avail-
able algorithms. So it would be of crucial importance to
provide an abstract way of communication between al-
gorithms and problems to be able to exchange both parts
independently.

Additionally to an usable API the whole program it-
self should be very intuitional in order to use it not only
for algorithm development and problem solving but also
for educational aspects. It should provide a state-of-the-
art installer and a GUI to enable students or other in-
terested users to experiment with different optimization
techniques and problems out of the box.

3 Other Available Optimization Software Packages
Of course the idea of a generic and extensible op-

timization environment is not new. Especially in the
area of Evolutionary Computation there are numerous
more or less mature libraries (a comprehensive list can
be found e.g. on the EvoWeb homepage1). Among them
are a lot of small projects which have just been devel-
oped to solve a specific optimization problem, some li-
braries which are a little bit outdated or have not yet
reached a state of broad application (like GAlib [1],
OpenBEAGLE [2], TEA, GENOM, JDEAL), and a few
highly-developed frameworks (like EO [3], JEO [4],
ParadiseEO [5], ECJ). Especially the Evolving Objects
(EO) project and its further developments JEO and the
DREAM project [6] have to be mentioned as very am-
bitious and successful approaches towards a generic and
flexible framework for (parallel) Evolutionary Computa-
tion. However, all these libraries suffer from some weak-
nesses concerning the requirements stated in the previ-
ous section:

Almost all of the existing libraries are dedicated to a
specific optimization paradigm like Evolutionary Algo-
rithms, Local Search or Swarm Algorithms. It is a very
hard task to break up the libraries in such a way that opti-
mization algorithms of another paradigm can be equally
used. However, for practical applications the ability to

1 http://evonet.lri.fr/evoweb/resources/software

compare results of different paradigms is very essential.
All the existing libraries are - as the name suggests -

libraries. Therefore, their usability cannot really be com-
pared with state-of-the-art software products. If at all
GUIs are only rudimentally available, self-explanatory
installers are missing altogether. None of the existing
packages can be used out of the box without deeper pro-
gramming knowledge. Consequently, the usability for
e.g. university courses is rather limited as the students
should not spend their time with installing but with us-
ing the software.

So it can be said that there definitively exist some
powerful optimization libraries, but all of them seem
not to be able to fulfill the desires of the authors: a
generic and extensible optimization environment, open
for all different kinds of optimization paradigms, com-
parable to state-of-the-art software packages, equipped
with a GUI and a self-explanatory installer, usable out of
the box not only for rapid prototyping and comparison
of new optimization algorithms but also for educational
purposes.

4 Modeling the Optimization Process

After having thought of all the different requirements
for the project the first point to start with is the model-
ing of the optimization process itself. As already stated
in the introduction there are manifold natural archetypes
that inspired heuristic optimization techniques. Conse-
quently the resulting algorithms have almost no struc-
tural similarities. So due to the strict demand for gen-
erality and openness the process has to be abstracted to
a very high level to assure that all different kinds of al-
gorithms and problems can be integrated into the frame-
work.

Primarily a heuristic optimization process can be
stated in the following way: An algorithm iteratively
modifies one or more solutions of a problem in a spe-
cific way in order to increase their quality and gener-
ates results to inform others about the progress of the
optimization. Obviously the four modules Algorithm,
Problem, Solution, and Result form the main actors and
consequently they have been modeled as base classes
in the HeuristicLab framework. Furthermore, also the
EvaluationOperator delegate is included as the calcula-
tion of the quality value of the different solutions is one
of the main issues in every heuristic optimization algo-
rithm. More details on the operator concept are given in
section 5. In Fig. 1 an UML class diagram shows these
classes and their most important properties and methods.

Due to the very high level of abstraction the base
classes only provide very rudimental functionality. The
three classes Algorithm, Problem, and Result contain ba-
sic parameter properties (e.g. Rounds, RandomSeed, Is-
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Algorithm

-Problem(): Problem
-Rounds(): int
•UseSpecificRandomSeed(): bool
-RandomSeed(): int
i-ExceptionOccurndO : ExceptionEventHandlet
>Read(in file : string): Algorithm
•Write(in file : string)
-Start(in problem: Problem)
•Abort()

#ProcessResult(in result: Result)

GetNextResuKQ: Result
#Solve(in random : Random)

Problem
+lsMinimize(): bool
+BestKnownSolution(). Solution
+BestKnownSolutionQuaWyO : double
•EvakiattonOperator(): EvaluationOperator
+ReacKin We : string): Problem
•Wr«e(in file: string)
+GenerateNewSolution(in random : Random) : Solution
+GenerateN»wSolution(in list params objectQ): Solution

Solution

ProblemO : Problem
QualityQ : double
Eva»uate()
Readfln file : string): Solution

>-Write(in Tile : string)
•Equals(in obj: object): bool
^ompareTopn obj: object): int

(delegate*
EvaluationOperator

•EvaluationOperator(in solution : Solution): double

Result

Round(): int
TotalRounds<): int
Best(): Solution
Probtem(): Problem
DifferenceQ: double

Fig. 1. Class diagram of the main HeuristicLab framework
classes.

Minimize, etc.) which are reasonable in every kind of
optimization task. Furthermore, they provide a reading
and writing mechanism to store and retrieve the current
object (binary serialization). Additionally Algorithm
also takes care about threading by performing the algo-
rithm execution in an own thread, separating this compu-
tational heavy task from the representation and adminis-
tration issues.

Based upon these four base classes the HeuristicLab
framework can be used to implement very different kinds
of optimization algorithms and problems by inheriting
from them and by implementing their abstract methods.
However, HeuristicLab is not just one more class library
offering some more assistance for solving optimization
problems. HeuristicLab is more thought of as a fully
functional optimization environment which can be ex-
tended by own algorithm and problem plug-ins. So a
layer is needed above the framework base classes that
implements a GUI front end and is therefore responsible
for all user interactions, for the presentation of various
results generated by the algorithms and for administra-
tive tasks like installing or removing plug-ins or chang-
ing global settings. The propagation of results from
the Algorithm to the front end is done via Result ob-
jects. Fig. 2 visualizes the interplay between the differ-
ent HeuristicLab classes.

Fig. 2. Diagram showing the interaction between the various
HeuristicLab classes.

5 Communication between Algorithms and Prob-
lems - The Operator Concept

Due to the high demand for generality and extensibil-
ity a fundamental problem occurs concerning the inter-
action between algorithms and problems. It has to be
possible to use a specific algorithm with any optimiza-
tion problem that is available and the other way round to
attack a concrete problem implementation with any al-
gorithm. Consequently both sides can only use the base
classes Algorithm, Problem, and Solution to work with
each other as they are the least common denominator of
all algorithms and problems. However, e.g. in the case
of GAs the algorithm has to manipulate the solution can-
didates via the genetic operators crossover and mutation.
These operators are problem specific as they depend on
the problem encoding. But the algorithm itself has no
idea about the encoding used for the problem implemen-
tation and furthermore also cannot provide any crossover
or mutation operator on its own.

This general dilemma occurs not only in the case of
GAs. In some way any heuristic optimization algorithm
has to manipulate solution candidates in order to find
better solutions. So there has to be a way that the algo-
rithm can perform problem specific operations without
having to know details about the problem's implementa-
tion.

To handle this problem the operator concept was de-
veloped. This programming technique is based on a
main idea of object oriented programming (OOP): the
separation of the declaration and the implementation of
objects as it is done in OOP by interfaces and classes.
However, in the case of HeuristicLab this separation
doesn't take place on the level of classes but on the level
of methods. An algorithm declares the parameters and
the return type of the operators it needs (i.e. the method
interface) and a problem has to provide concrete meth-
ods that match exactly with the declared interfaces and
represent those operators. So in the case of GAs the al-
gorithm declares e.g. a crossover operator as a method
that takes two solutions as parameters (the parents) and
returns a new solution (the child).

From a more software development oriented point of
view this can be realized by using delegates. A delegate
is a type that represents methods. When a delegate is
defined the parameter types and the return type of the
method are specified. Then any concrete method that
has the same parameter types and return type can be as-
signed to a variable of the delegate type. This variable
can be used like any other method. So e.g. the Algorithm
class in a GA implementation has to have two properties
that are used to store the two genetic operators crossover
and mutation. When a problem instance is selected for
optimization a value is assigned to these properties that
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references to the methods implemented by the problem
that should be used as crossover or mutation operators.
Furthermore, as the algorithm and problem implementa-
tions are located in different HeuristicLab plug-ins meta
data is used to label those methods that implement spe-
cific operators. So an algorithm can read this meta data
via reflection at runtime to initialize the needed delegates
properly.

By this operator concept no specific information about
the problem implementation is needed and so all prob-
lems that provide the necessary operators can be at-
tacked by an algorithm. On the other hand a problem
just has to provide some methods implementing cer-
tain operators and to label them correctly. So e.g. if a
problem implements a neighborhood operator, it can be
solved with any neighborhood-based optimization tech-
nique that only needs to compute the neighborhood of a
solution (like Simulated Annealing, etc.).

6 Current State of Development

As reflection, meta data and delegates are needed to
realize the above discussed architecture and concepts,
the Microsoft .NET Framework 1.1 and C# were used
for the implementation of HeuristicLab. At the mo-
ment HeuristicLab 1.0.0 is freely available for non-
commercial and educational use. More details are avail-
able at http://www.heuristiclab.com.

Up to now several different optimization algorithms
and problems have been implemented for HeuristicLab
and lots of them are already included in the actual ver-
sion. The following plug-ins are currently available
(plug-ins printed in italic are currently still under de-
velopment): GA (Generic Genetic Algorithm), SSGA
(Steady-State Genetic Algorithm), IslandGA (Coarse
Grained Parallel Genetic Algorithm), SASEGASA [7],
GP (Genetic Programming), ES (Evolution Strategy),
SA (Simulated Annealing), PSO (Particle Swarm Opti-
mization), ACO (Ant Colony Optimization), TS (Tabu
Search), TSP (Traveling Salesman Problem), JSSP
(Job Shop Scheduling Problem), MPSP (Multiproces-
sor Scheduling Problem), GCP (Graph Coloring Prob-
lem), BP (Bin Packing Problem), TestFunctionsND (n-
Dimensional Real-Valued Test Functions). The architec-
ture of the HeuristicLab framework as well as the opera-
tor concept have proven themselves to be extremely flex-
ible and very well suited for all different kinds of algo-
rithms and problems. Besides its potential for the rapid
prototyping of new optimization heuristics HeuristicLab
was also already used as supporting tool in university
courses and is also used as development environment for
real-world applications ([8],[9]).

7 Conclusion
In this paper we have presented the basic architecture

of HeuristicLab - a generic, extensible, and paradigm-
independent optimization environment. A clear and well
organized class structure, the operator concept, a self-
explanatory API and the use of modern programming
concepts make it possible to easily use HeuristicLab for
the development of different kinds of heuristic optimiza-
tion algorithms and problems as well as to exchange
the different implementations freely. Consequently es-
pecially for rapid prototyping of new optimization algo-
rithms HeuristicLab turned out the be a powerful tool.
Moreover, HeuristicLab is not just an optimization class
library. It also provides an easy to use and state-of-the-
art GUI and installer and is therefore also suitable as an
educational tool for university courses.
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Abstract
Subpath reversals are common operations in graph-based
structures arising in a wide range of applications in
combinatorial optimization. We describe the satellite list, a
variation on the doubly-linked list that is symmetric, efficient,
and can be reversed or reverse subsections in constant time.

1 Introduction
Linked lists and doubly-linked lists are among the first
topics in any elementary data structures text. Though
these lists are often stored in arrays, they are dynamic list
structures in the purest definitions. The list size can be
changed dynamically, and large splicing operations can be
performed in constant time, because pieces of the list can
be deleted or inserted by reassigning pointers in the
endlinks of the spliced subsections.

The general-purpose operation that reverses a
doubly-linked list (or a subsection) is a common
pedagogic programming exercise, and the fastest solution
is known to be O(n). This paper describes an efficient
approach to coding a list that abandons a fixed orientation
in favor of a symmetric design, so that subsections appear
the same backwards and forwards. This structure, a
satellite list, can be reversed or have a subsection reversed
in constant time. The reverse operation is equivalent to
deleting and re-inserting the subsection with the head and
tail switched. This allows algorithms that require the use
of the "reverse" operation to become more efficient. All
other list operations remain unchanged and the new design
requires the same number of pointers to store the list as a
doubly-linked list. However, algorithms that rely on a
list's fixed global orientation will not benefit from using
the satellite list design.

A well-known variant of the doubly linked list,
sometimes called the xor-list, is symmetric and can be
reversed in constant time. This ingenious space-saving
representation, discussed in one of the exercises by Knuth
[1] (550), combines the successor and predecessor of each
node in a single pointer field using the 'exclusive or'

operation, or some other operation that yields equivalent
functionality. Thus a pointer to either adjacent list
element can be found with knowledge of the other. Clever
as it may be, the problem with this representation is that
one cannot jump to the middle of the list and start a
traversal, or perform any other operation. It seems to give
up the dynamic properties that would make a linked list
preferable to a static array. We have not yet found an
application for which this representation would be
appropriate.

Another method for implementing reversible lists
is described by Tatham [5]. This method uses a doubly-
linked list, but adds additional computation to the
traversal queries (e.g. previousQ and nextQ). Rather than
designating one pointer 'next' and the other 'previous',
Tatham's traversal uses 'if structures to manually check
at each node which link refers to the node just visited.
This allows the list to be treated symmetrically, and
requires no more memory than a traditional doubly-linked
list. Like the satellite list, this method abandons the
notion of a fixed global orientation.

In the following sections, we discuss the issue of
subpath reversal with a doubly-linked list, describe the
satellite list, and discuss logical and physical
representation, memory and time efficiency, and subpath
reversal with the satellite list.

1.1 Subpath Reversal with a Doubly-Linked List
Subpath reversal is the alteration of a graph such that
some subpath in the induced graph is reversed relative to
the path that contains it. Subpath reversal is often equated
to the removal two node-links, or arcs, (a,b) and (c,d) and
the addition of two others (a,c) and (b,d) in the path
(a,b,...,c,d). A problem that arises when performing a
subpath reversal in a path or cycle represented by a
doubly-linked list motivates the desirability of a reversible
list structure. The difficulty is that the linked list makes
the task of performing a subpath reversal while
maintaining a readable list too computationally taxing.

A simple example can best describe how the
problem occurs. The subpath reversal operation deletes
two arcs (a,b) and (c,d) in favor of another two arcs (a,c)
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and (b,d) from a cycle contained in a circular, doubly-
linked list. If the resulting cycle is traversed from any
point in either direction, exactly one of the subpaths
between the new arcs (e.g. the b-c path) will be traversed
in reverse order. The obvious part of the operation is
updating the arcs among a,b,c, and d by assigning c to
follow a, a to precede c, d to follow b, and b to precede d.
Now, however, the "Next" and "Previous" pointers of a
node chosen from the path between b and c no longer
reference the correct nodes. For example, c now follows
a, but the node that now follows c is the node that
previously preceded c; so the pointer must be updated.
Completing the move and maintaining a readable tour
involves swapping the "Next" and "Previous" pointers in
each node of the reversed subpath.

With a linked list structure, the expense of the
subpath reversal grows proportionally with the size of the
list (O(nJ). Hence the challenge is to find a data structure
that allows a given algorithm to make the move and
restore a readable structure efficiently.

2 The Satellite List
The satellite list can operate in the same capacity as a
doubly-linked list with the following key difference: the
satellite list does not depend on a fixed orientation. The
"next" node in the list depends on the current orientation,
information that is naturally preserved in traversing the
satellite list but otherwise neglected by the doubly-linked
list. If a global orientation can be avoided altogether, a
primary consequence is that the subpath reversal operation
is performed easily and in constant time. In addition, the
satellite list retains the same efficiency as the doubly-
linked list in terms of the number of memory fields it
occupies and the commands it requires to perform other
list operations.

To obtain a suitable structure that lacks the
structural weakness of the linked list but retains its
simplicity, its representation is disassembled. A linked
list node contains two data members: a pointer to the
previous client node and a pointer to the next client node.
Pointers should operate in a symmetric fashion,
suggesting that they point toward "adjacent" nodes, rather
than "next" or "previous" ones. To accomplish this, the
pointers are removed from the structure and given their
own structures, called satellites, whose sole purpose is
handling the links among clients in the list. Each satellite
points not to an adjacent list node, as in the linked list
representation, but rather to the list node's satellite. To
read the tour starting from a client, one of its satellites is
chosen to begin the traversal. The traversal operation
then follows the satellite's pointer to the next satellite, the
client is noted, and the process continues. Therefore, the

list is traversed on one of two distinct singularly linked
lists of satellites.

2.1 Logical Representation
Figure 1 depicts a doubly-linked list node and a satellite
list node. The distinguishing characteristic of the satellite
list node is its avoidance of direct links with adjacent list
nodes. Instead, its satellites link the list nodes indirectly.
The dashed lines in the figure emphasize the parts of the
structure that indicate relationships among components of
the list node. From a satellite, there exists some means to
immediately access the complement satellite. A similar
relationship associates a satellite with the client ID or
index of the list node.

Fig. 1. The Doubly-Linked List vs. the Satellite List

Figure 1 discloses the functional differences between the
two types of nodes. The city represented by the doubly-
linked list node is constructed in memory in such a way
that its data members (typically "Next" and "Previous")
are not referenced directly. The data members are not
interchangeable and necessitate an orientation. Also,
since the data members store references to entire list
nodes, the node from which a reference was obtained is
not implicit. For example, it is not correct to assume that
a node has been obtained from the "Next" pointer of the
preceding node because it is equally likely to have been
obtained from the "Previous" pointer of the following
node. On the other hand, this information remains evident
when using the satellite list because each satellite is
reached from a distinct source. Furthermore, two
satellites sharing a list node operate as independent nodes
in separate singly-linked lists, allowing them to be
interchangeable. This symmetry allows for a "current
direction" during traversal without incorporating any of
the costly, explicit decision making that would otherwise
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be necessary to overcome the asymmetry of a doubly
linked list.

2.2 Efficient Physical Representation
A satellite list may be constructed and used without
specifically declaring each satellite's links (pointers or
indices) to its associated complement satellite or its client.
This property reduces the number of pointers needed to
represent a list node from four to two, cutting the memory
requirement in half.

The list indices are maintained in a single one-
dimensional array of length twice n (where n is the
number of list nodes). Each element in the array is a
satellite node and contains the value of (or pointer to) its
adjacent satellite. For each client list node, there exists
two physical array positions (satellites), which, together,
are considered a logical position. The client itself needs
no physical position since it can be uniquely identified by
the indices of its satellites. Figure 2 diagrams an example
satellite list stored in an integer array representing the
cycle (0,1,2,3,4,0).

Integer value containing the index of the adjacent satellite

In General Bitwise Ops in C

Index of the Satellite: / /

ID number of the node: ill i»\

Index of the complement satellite: / +1 — 2(/ Mod 2) /Al

(The dashed line indicates that the boundary is logical)

Fig. 2. The Doubly-Linked List vs. the Satellite List

A key factor that makes the use of the efficient
implementation desirable is the ease with which the
implied relationships mentioned in the previous section
can be found. Given some satellite, the queries are to
determine its complement satellite and its client. The
general formulas to compute these queries are given in the
figure along with the equivalent bitwise operations in the
C language. A satellite's client can be computed by
integer-dividing the index by 2 (no remainder). An
identical result is achieved with the bitwise shift operator,
" » " . To find a satellite's complement, the index should
be incremented if it is even and decremented if it is odd.

A bitwise operator is also available for computing a
satellite's complement satellite—the exclusive or, "A".
These and other bitwise operators are extremely fast
because they don't request any arithmetical or logical
computation from the processor; thus, the measure of
overhead they contribute to routine operations is
insignificant. For languages that do not support bitwise
operations, using the general formulas may be too costly.
In this case, the computational overhead can be avoided
by storing "client" and "complement" explicitly, although
doing so doubles the memory requirement for the
structure.

Although Figure 2 shows all odd satellites
pointing to odd satellites, the list is perfectly functional
when some odd satellites point to even satellites, or vice
versa. Indeed, this becomes the case for the endpoints of
a reversed subpath. Interestingly, when a satellite list is
organized so that the entire list can be read from just the
even or odd satellites, the satellite list array can be
unioned with a doubly-linked list structure and the list can
be read correctly from either.

2.3 Memory and Time Efficiency
In practice, the satellite list does not impose an additional
memory requirement. The number of pointer fields
required to store the tour are the same for the two lists
(two per client). Of course, this is not to say that
additional fields cannot be added to a list node of either
representation for use with specialized algorithms. As a
point of academic interest, however, the representation of
the satellite list in the previous section clearly uses one
extra bit per field, since the index of a satellite node is
twice that of the city. So, if ever the size of the list being
dealt with nears a billion elements, the ceiling for using
32-bit fields in a satellite list will be half that of the
doubly linked list.

The satellite list does not impose additional
computational effort over the doubly-linked list for the
traversal procedures, practically speaking. Enumerating
across several nodes is simply a matter of following a
singly-linked list of satellite nodes, and the cost of using
the shift operator is marginal.

2.4 Subpath Reversal with a Satellite List
Because of the list's symmetric design, the subpath
reversal operation is a natural one and is performed easily
in constant time, (0(1)). The operation is illustrated in
Figure 3.

Figure 3 depicts isolated subpaths for a doubly-
linked list (top) and a satellite list (bottom), where straight
arcs point to the following nodes in the list, and the
curved arcs point to preceding nodes. The subpath in the
satellite list remains feasible when rotated 180 degrees—
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only the end-links need to be changed. The subpath in the
doubly-linked list, however, does not match correctly
when rotated. Additional time must be taken to correct
the intermediate arcs in the reversed subpath.

Subpath Reversal with a Linked List
(Before Rearranging Pointers)

Not Feasible

Subpath Reversal with a Satellite List

Feasible

Fig. 3. The Doubly-Linked List vs. the Satellite List

3 Remarks
The strengths of the satellite list are symmetry and
subpath reversal. However, if a global orientation is
essential to the algorithm, the 0(1) subpath reversal
property cannot be maintained. The satellite list
seems to have tremendous potential for application. The
development of this list was motivated by our research on
data structures for the Traveling Salesman Problem
(TSP), for which an efficient method of handling paths
and cycles is needed for a number of operations. While
the satellite list proved successful in speeding up TSP
algorithms in comparison to the doubly-linked list, it
proved even more useful in replacing the doubly-linked
list component of the &-level tree [3]—our variable-level
generalization of the 2-level tree structure for the TSP by
Chrobak et al. [2]. In addition, the structure was found
particularly relevant in the implementation of adaptive
neighborhood search procedures based on ejection chain
reference structures that have proved effective in a wide
range of applications in combinatorial optimization.
Likewise, ejection chains have often been fundamental
components in tabu search adaptive memory procedures
and in a number of evolutionary algorithms based on

scatter search and path-relinking models. Preliminary
results for the efficiency of these structures in the context
of TSP algorithms can be found in Osterman, Rego, and
Gamboa [4]. The successful results obtained with the use
of the satellite list in the TSP setting greatly motivates the
application of similar algorithm designs to more general
routing problems as well as a variety of other challenging
problems commonly cast into TSP models such as those
arising in computational biology (Agarwala et al. [6],
Avner et al. [7]).
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