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Preface

The subject of this book is the solution of polynomial equations, that is, sys-
tems of (generally) non-linear algebraic equations. This study is at the heart
of several areas of mathematics and its applications. It has provided the mo-
tivation for advances in different branches of mathematics such as algebra,
geometry, topology, and numerical analysis. In recent years, an explosive de-
velopment of algorithms and software has made it possible to solve many
problems which had been intractable up to then and greatly expanded the
areas of applications to include robotics, machine vision, signal processing,
structural molecular biology, computer-aided design and geometric modelling,
as well as certain areas of statistics, optimization and game theory, and bio-
logical networks. At the same time, symbolic computation has proved to be
an invaluable tool for experimentation and conjecture in pure mathematics.
As a consequence, the interest in effective algebraic geometry and computer
algebra has extended well beyond its original constituency of pure and applied
mathematicians and computer scientists, to encompass many other scientists
and engineers. While the core of the subject remains algebraic geometry, it
also calls upon many other aspects of mathematics and theoretical computer
science, ranging from numerical methods, differential equations and number
theory to discrete geometry, combinatorics and complexity theory.

The goal of this book is to provide a general introduction to modern math-
ematical aspects in computing with multivariate polynomials and in solving
algebraic systems. It is aimed to upper-level undergraduate and graduate stu-
dents, and researchers in pure and applied mathematics and engineering, in-
terested in computational algebra and in the connections between computer
algebra and numerical mathematics. Most chapters assume a solid ground-
ing in linear algebra while for several of them a basic knowledge of Gröbner
bases, at the level of [CLO97] is expected. Gröbner bases have become a ba-
sic standard tool in computer algebra and the reader may consult any other
textbook such as [AL94, BW93, CLO98, GP02], or the introductory chapter
in [CCS99]. Below we discuss briefly the content of each chapter and some of
their prerequisites.
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The book describes foundations, recent developments and applications of
Gröbner and border bases, residues, multivariate resultants, including toric
elimination theory, primary decomposition of ideals, multivariate polynomial
factorization, as well as homotopy continuation methods. While some of the
chapters are introductory in nature, others present the state-of-the-art in sym-
bolic techniques in polynomial system solving, including effective and algo-
rithmic methods in algebraic geometry and computational algebra, complexity
issues, and applications. We also discuss several numeric and symbolic-numeric
methods. This is not a standard textbook in that each chapter is independent
and, largely, self-contained. However, there are strong links between the dif-
ferent chapters as evidenced by the many cross-references. While the reader
gains the advantage of being able to access the book at many different places
and of seeing the interplay of different views of the same concepts, we should
note that, because of the different needs and traditions, some notations in-
evitably vary between different chapters. We have tried to note this in the text
whenever it occurs. The single bibliography and index underline the unity of
the subject.

The first chapter gives an introduction to the notions of residues and re-
sultants, and the interplay between them, starting with the univariate case
and synthesizing different approaches. The sections on univariate residues and
resultants could be used in an undergraduate course on complex analysis, ab-
stract algebra, or computational algebra as an introduction to more advanced
topics and to illustrate the interdependence of different areas of mathematics.
The multivariate sections, on the other hand, directed to graduate students
and researchers, are intended as an introduction to concepts which are widely
used in current research and applications.

The second chapter puts the accent on linear algebra methods to deal
with polynomial systems: the multiplication maps in the quotient algebra by
a polynomial ideal are linear and allow for the use of eigenvalues and eigen-
vectors, duality, etc. Applications to Galois theory, factoring, and primary
decomposition are offered. The first sections require, besides standard linear
algebra, some background on computational algebraic geometry (for instance,
the first five chapters of [CLO97]). Some acquaintance with local rings (as in
Chapter 4 of [CLO98]) would also be helpful. Known basic facts about field
extensions and Galois theory are assumed in the last part.

The third chapter also elaborates on the concepts in the first two chapters,
and combines them with numerical methods for polynomial system solving
and several applications. The tools and methods developed are used to solve
problems arising in implicitization of rational surfaces, determination of the
position of a camera or a parallel robot, molecular conformations, and blind
identification in signal processing. The required background is very similar to
that needed for the first sections of Chapter 2.

Chapter 4 is devoted to laying the algebraic foundations for border bases of
ideals, an extension of the theory of Gröbner bases, yielding more flexible bases
of the quotient algebras. Border bases yield a connection between computer
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algebra and numerical mathematics. An application to design of experiments
in statistics is included.

The fifth chapter concentrates on various techniques for computing pri-
mary decomposition of ideals. This machinery is applied to study an interest-
ing class of ideals coming from Bayesian networks, establishing an important
link between algebraic geometry and the emerging field of algebraic statistics.
Besides Gröbner bases, the readers are expected to have a casual understand-
ing of the algebra-geometry dictionary between ideals in polynomial rings
and their zero set. Many propositions that can be found in the literature
are stated without proof, but the chapter contains several accessible exercises
dealing with the structure and decomposition of polynomial ideals.

Chapter 6 studies the inherent complexity of polynomial system solving
when working with the dense encoding of the input polynomials and under
the model of straight-line programs, i.e., when polynomials are not given by
their monomials but by evaluation programs. Being a brief survey of alge-
braic complexity applied to computational algebraic geometry, there is not
much background required, though knowledge of basic notions of algebraic
geometry and commutative algebra would be helpful. The chapter is mostly
self-contained; when necessary, basic bibliography supplements are indicated.

Chapter 7 is devoted to the study of sparse systems of polynomial equa-
tions, i.e., algebraic equations with a specific monomial structure, presenting
a comprehensive state-of-the-art introduction to the field. Combinatorial and
discrete geometry, together with matrices of special structure, are ingredients
of the presentation of toric (or sparse) elimination theory. The chapter fo-
cuses on applications to geometric modelling and computer-aided design. It
also provides the tools for exploiting the structure of algebraic systems which
may arise in different applications. Some basic knowledge of discrete geometry
for polyhedral objects in arbitrary dimension is assumed. This chapter will
be of particular interest to graduate students and researchers in theoretical
computer science or applied mathematics wishing to combine discrete and
algebraic geometry.

Chapter 8 deals with numerical algebraic geometry, a term coined some
years ago to describe a new field, which bears the same relation to algebraic
geometry as numerical linear algebra does to linear algebra. Modern homotopy
methods to describe solution components of polynomial systems are presented.
The prerequisites include a basic course in numerical analysis, in particular
Newton’s method for nonlinear systems. Because of the numerical flavor of
the proposed methods, this chapter is expected to be particularly appealing
to engineers.

Lastly, Chapter 9 gives a complete overview of old and recent methods for
the important problem of approximate factorization of a multivariate polyno-
mial, in other words, the complex irreducible decomposition of a hypersurface.
The main techniques rely on approximate numerical computation but the re-
sults are exact and certified. It is addressed to students and researchers with
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some basic knowledge of commutative algebra, algebraic numbers and holo-
morphic functions of several variables.

This book grew out of Course Notes prepared for the CIMPA Graduate
School on Systems of Polynomial Equation that we organized in Buenos Aires,
in July 2003. We take this opportunity to thank CIMPA for the funding and
the academic support to carry out this activity. We are also grateful for the
support from the following institutions: International Centre for Theoreti-
cal Physics (ICTP, Italy), Consejo Nacional de Investigaciones Cient́ıficas y
Técnicas (CONICET, Argentina), Institut National de Recherche en Informa-
tique et en Automatique (INRIA, France), PROSUL Programme from CNPq
(Brazil), Délégation régionale de coopération Française au Chili, and Univer-
sidad de Buenos Aires (Argentina). We also thank ECOS-Sud, whose project
A00E02 between INRIA and Universidad de Buenos Aires provided the ini-
tial framework for our collaboration. Special thanks go to Gregorio Malajovich
and Alvaro Rittatore, who co-organized with us the I Latin American Work-
shop on Polynomial Systems which followed the School. Finally, we would like
to thank deeply all the speakers and all the participants.

December 2004 Alicia Dickenstein and Ioannis Z. Emiris
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1

Introduction to residues and resultants

Eduardo Cattani �1 and Alicia Dickenstein ��2

1 Department of Mathematics and Statistics - University of Massachusetts,
Amherst, MA 01003, USA, cattani@math.umass.edu

2 Departamento de Matemática - FCEyN - Universidad de Buenos Aires, Ciudad
Universitaria - Pab. I - (1428) Buenos Aires, Argentina, alidick@dm.uba.ar

Summary. This chapter is an expanded version of the lecture notes prepared by the
second-named author for her introductory course at the CIMPA Graduate School
on Systems of Polynomial Equations held in Buenos Aires, Argentina, in July 2003.
We present an elementary introduction to residues and resultants and outline some
of their multivariate generalizations. Throughout we emphasize the application of
these ideas to polynomial system solving.

1.0 Introduction

This chapter is an introduction to the theory of residues and of resultants.
These are very classical topics with a long and distinguished history. It is not
our goal to present a full historical account of their development but rather
to introduce the basic notions in the one-dimensional case, to discuss some of
their applications -in particular, those related to polynomial system solving-
and present their multivariate generalizations. We emphasize in particular
the applications of residues to duality theory and the explicit computation of
resultants which, in turn, results in the explicit elimination of variables.

Most readers are probably familiar with the classical theory of local
residues which was introduced by Augustin-Louis Cauchy in 1825 as a pow-
erful tool for the computation of integrals and for the summation of infi-
nite series. Perhaps less familiar is the fact that given a meromorphic form
(H(z)/P (z))dz on the complex plane, its global residue, i.e. the sum of local
residues at the zeros of P , defines an easily computable linear functional on
the quotient algebra A := C[z]/〈P (z)〉 whose properties encode many impor-
tant features of this algebra. As in Chapters 2 and 3, it is through the study of
this algebra, and its multivariate generalization, that we make the connection
with the roots of the associated polynomial system.
� Partially supported by NSF Grant DMS-0099707.

�� Partially supported by Action A00E02 of the ECOS-SeTCIP French-Argentina
bilateral collaboration, UBACYT X052 and ANPCYT 03-6568, Argentina.



2 E. Cattani & A. Dickenstein

The basic definitions and properties of the univariate residue are reviewed
in Section 1.1 and we discuss some nice applications in Section 1.2. Although
there are many different possible definitions of the residue, we have chosen
to follow the classical integral approach for the definition of the local residue.
Alternatively, one could define the global residue by its algebraic properties
and use ring localization to define the local residue. We indicate how this is
done in a particular case.

In Section 1.5 we study multidimensional residues. Although, as coeffi-
cients of certain Laurent expansions, they are already present in the work of
Jacobi [Jac30], the first systematic treatment of bivariate residue integrals is
the 1887 memoir of Poincaré [Poi87], more than 60 years after the introduction
of univariate residues. He makes the very interesting observation that geome-
ters were long stopped from extending the one-dimensional theory because of
the lack of geometric intuition in 4 dimensions (referring to C2). The modern
theory of residues and the duality in algebraic geometry is due to Leray and
Grothendieck. There have been many developments since the late 70’s: in the
algebro-geometric side with the work of Grothendieck (cf. [Har66]); in analytic
geometry where we may mention the books by Griffiths and Harris [GH78]
and Arnold, Varchenko and Gusĕın -Zadé [AGZV85]; in commutative algebra
with the work of Scheja and Storch [SS75, SS79], Kunz [Kun86], and Lipman
[Lip87]; and in the analytic side with the residual currents approach pioneered
by Coleff and Herrera [CH78]. In the 90’s the possibility of implementing sym-
bolic computations brought about another important expansion in the theory
and computation of multidimensional residues and its applications to elimi-
nation theory as pioneered by the Krasnoyarsk school [AY83, BKL98, Tsi92].
It would, of course, be impossible to fully present all these approaches to the
theory of residues or to give a complete account of all of its applications. In-
deed, even a rigorous definition of multivariate residues would take us very
far afield. Instead we will attempt to give an intuitive idea of this notion,
explain some of its consequences, and describe a few of its applications. In
analogy with the one-variable case we will begin with an “integral” definition
of local residue from which we will define the total residue as a sum of local
ones. The reader who is not comfortable with integration of differential forms
should not despair since, as in the univariate case, we soon show how one can
give a purely algebraic definition of global, and then local, residues using Be-
zoutians. We also touch upon the geometric definition of Arnold, Varchenko
and Gusĕın-Zadé.

In Sections 1.3 and 1.4 we discuss the definition and application of the
univariate resultant. This is, again, a very classical concept which goes back
to the work of Euler, Bézout, Sylvester and Cayley. It was directly motivated
by the problem of elimination of variables in systems of polynomial equa-
tions. While the idea behind the notion of the resultant is very simple, its
computation leads to very interesting problems such as the search for deter-
minantal formulas. We recall the classical Sylvester and Bezoutian matrices
in Section 1.4.
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The rebirth of the classical theory of elimination in the last decade owes
much to the work of Jouanolou [Jou79, Jou91, Jou97] and of Gelfand, Kapra-
nov and Zelevinsky [GKZ94], as well as to the possibility of using resultants
not only as a computational tool to solve polynomial systems but also to study
their complexity aspects. In particular, homogeneous and multi-homogeneous
resultants are essential tools in the implicitization of surfaces. We discuss the
basic constructions and properties in Section 1.6. We refer to [Stu93, Stu98],
[Stu02, Ch. 4] and to Chapters 2, 3, and 7 in this book for further background
and applications. A new theoretical tool in elimination theory yet to be fully
explored is the use of exterior algebra methods in commutative algebra (start-
ing with Eisenbud and Schreyer [ESW03] and Khetan [Khe03, Khe]).

In the last section of this chapter we recall how the resultant appears
naturally as the denominator of the residue and apply this to obtain a normal
form algorithm for the computation of resultants which, as far as we know,
has not been noted before.

Although many of the results in this chapter, including those in the last
section, are valid in much greater generality, we have chosen to restrict most
of the exposition to the affine and projective cases. We have tried to direct
the reader to the appropriate references.

For further reading we refer to a number of excellent books on the topics
treated here: [AY83, AGZV85, CLO98, GKZ94, GH78, EM, Tsi92].

1.1 Residues in one variable

1.1.1 Local analytic residue

We recall that, given a holomorphic function h(z) with an isolated singularity
at a point ξ in C, we may consider its Laurent expansion

h(z) =
∞∑

n=1

bn
(z − ξ)n

+ h(z),

where h is holomorphic in a neighborhood of ξ, and define the residue of h at
ξ as

resξ(h) = b1. (1.1)

The classical Residue Theorem tells us that the residue is “what remains after
integrating” the differential form (1/2πi)h(z) dz on a small circle around ξ.
Precisely:

resξ(h) =
1

2πi

∫
|z−ξ|=δ

h(z)dz,

for any sufficiently small positive δ and where the circle {|z − ξ| = δ} is
oriented counter-clockwise.
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Remark 1.1.1. As defined in (1.1), the residue depends on the choice of lo-
cal coordinate z. Associating the residue to the meromorphic 1-form h(z) dz
makes it invariant under local change of coordinates. We will, however, main-
tain the classical notation, resξ(h) rather than write resξ(h(z)dz).

We can also think of the residue of a holomorphic function h at ξ as a
linear operator resξ[h] : Oξ → C, which assigns to any holomorphic function
f defined near ξ the complex number

resξ[h](f) := resξ(f · h).
Suppose h has a pole at ξ of order m, Then, the action of resξ[h] maps

1 �−→ b1
z − ξ �−→ b2

...
...

...
(z − ξ)m−1 �−→ bm

and for any k ≥ m, (z − ξ)k �→ 0 since (z − ξ)k · h is holomorphic at ξ. These
values suffice to characterize the residue map resξ[h] in this case: indeed, given
f holomorphic near ξ, we write

f(z) =
m−1∑
j=0

f (j)(ξ)
j!

(z − ξ)j + (z − ξ)mg(z),

with g holomorphic in a neighborhood of ξ. Therefore

resξ[h](f) =
m−1∑
j=0

f (j)(ξ)
j!

resξ[h]((z − ξ)j) =
m−1∑
j=0

bj+1

j!
f (j)(ξ). (1.2)

Note, in particular, that the residue map resξ[h] is then the evaluation at ξ of
a constant coefficient differential operator and that it carries the information
of the principal part of h at ξ.

1.1.2 Residues associated to polynomials

In this notes we will be interested in the algebraic and computational aspects
of residues and therefore we shall restrict ourselves to the case when h(z)
is a rational function h(z) = H(z)/P (z), H,P ∈ C[z]. Clearly, resξ(h) = 0
unless P (ξ) = 0. It is straightforward to check the following basic properties
of residues:

• If ξ is a simple zero of P , then

resξ

(
H(z)
P (z)

)
=
H(ξ)
P ′(ξ)

. (1.3)
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• If ξ is a root of P of multiplicity m, then

resξ

(
H(z)P ′(z)
P (z)

)
= m · H(ξ). (1.4)

Since (P ′(z)/P (z))dz = d(lnP (z)) wherever a logarithm lnP of P is de-
fined, the expression above is often called the (local) logarithmic residue.

Given a polynomial P ∈ C[z], its polar set ZP := {ξ ∈ C : P (ξ) = 0} is
finite and we can consider the total sum of local residues

res
(
H

P

)
=

∑
ξ∈ZP

resξ(H/P ),

where H ∈ C[z]. We will be particularly interested in the global residue oper-
ator.

Definition 1.1.2. The global residue resP : C[z] → C is the sum of local
residues:

resP (H) =
∑

ξ∈ZP

resξ(H/P )

Remark 1.1.3. We may define the sum of local residues over the zero set of P
for any rational function h which is regular on ZP . Moreover, if we write h =
H/Q, with ZP ∩ZQ = ∅, then by the Nullstellensatz, there exist polynomials
R,S such that 1 = RP + SQ. It follows that the total sum of local residues∑

ξ∈ZP

resξ(h/P ) = resP (HS),

coincides with the global residue of the polynomial HS.

Let R > 0 be large enough so that ZP be contained in the open disk
{|z| < R}. Then, for any polynomial H the rational function h = H/P is
holomorphic for |z| > R and has a Laurent expansion

∑
n∈Z enz

n valid for
|z| > R. The residue of h at infinity is defined as

res∞(h) := −e−1. (1.5)

Note that integrating term by term the Laurent expansion, we get

res∞(h) = − 1
2πi

∫
|z|=R

h(z)dz.

Since by the Residue Theorem,

resP (H) =
1

2πi

∫
|z|=R

H(z)
P (z)

dz,

we easily deduce
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Proposition 1.1.4. Let P,H ∈ C[z]. Then resP (H) = −res∞(H/P ).

Remark 1.1.5. We note that the choice of sign in (1.5) is consistent with Re-
mark 1.1.1: If h = H/P is holomorphic for |z| > R, then we may regard h
as being holomorphic in a punctured neighborhood of the point at infinity in
the Riemann sphere S2 = C ∪ {∞}. Taking w = 1/z as local coordinate at
infinity we have: h(z)dz = −(h(1/w)/w2)dw and

res0(−(h(1/w)/w2)) = −e−1. (1.6)

Note also that Proposition 1.1.4 means that the sum of the local residues of
the extension of the meromorphic form (H(z)/P (z)) dz to the Riemann sphere
is zero.

Proposition 1.1.6. Given P, H ∈ C[z], resP (H) is linear in H and is a
rational function of the coefficients of P with coefficients in Q.

Proof. The first statement follows from the definition of resP (H) and the
linearity of the local residue. Thus, in order to prove the second statement
it suffices to consider resP (zk), k ∈ N. Let d = degP , P (z) =

∑d
j=0 ajz

j ,
ad �= 0. Then, if follows from Proposition 1.1.4 and (1.6) that

resP (zk) = res0

(
(1/w)k

w2 P (1/w)

)
= res0

(
1

wk+2−d P1(w)

)
,

where P1(w) =
∑d

j=0 ajw
d−j . Note that P1(0) = ad �= 0 and therefore

1/P1(w) is holomorphic near 0. Hence

resP (zk) =

{
0 if k + 2− d ≤ 0

1
� !

d�

dw�

(
1

P1

)
(0) if � := k + 1− d ≥ 0 (1.7)

Now, writing P1 = ad(1 +
∑d−1

j=0
aj

ad
wd−j), the expression 1

� !
d�

dw�

(
1

P1

)
(0) may

be computed as the w� coefficient of the geometric series

1
ad

∞∑
r=0

⎛⎝− d−1∑
j=0

aj

ad
wd−j

⎞⎠r

(1.8)

and the result follows.

In fact, we can extract from (1.7) and (1.8) the following more precise
dependence of the global residue on the coefficients of P .

Corollary 1.1.7. Given a polynomial P =
∑d

j=0 ajz
j ∈ C[z] of degree d and

k ≥ d− 1, there exists a polynomial with integer coefficients Ck such that

resP (zk) =
Ck(a0, . . . , ad)
ak−d+2

d

.

In particular, when P,H have coefficients in a subfield k, it holds that
resP (H) ∈ k.
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We also deduce from (1.7) a very important vanishing result:

Theorem 1.1.8. (Euler-Jacobi vanishing conditions) Given polynomials
P,H ∈ C[z] satisfying deg(H) ≤ deg(P )− 2, the global residue

resP (H) = 0.

We note that, in view of (1.3), when all the roots of P are simple, Theo-
rem 1.1.8 reduces to the following algebraic statement: For every polynomial
H ∈ C[z], with degH < degP − 1,∑

ξ∈ZP

H(ξ)
P ′(ξ)

= 0. (1.9)

The following direct proof of this statement was suggested to us by Askold
Khovanskii. Let d = deg(P ), ZP = {ξ1, . . . , ξd}, and P (z) = ad

∏d
i=1(z − ξi).

Let Li be the Lagrange interpolating polynomial

Li(z) =

∏
j �=i(z − ξj)∏
j �=i(ξi − ξj)

.

For any polynomial H with deg(H) ≤ d− 1,

H(z) =
d∑

i=1

H(ξi)Li(z).

So, if deg(H) < d−1, the coefficient of zd−1 in this sum should be 0. But this
coefficient is precisely

d∑
i=1

H(ξi)
1∏

j �=i(ξi − ξj)
= ad

d∑
i=1

H(ξi)
P ′(ξi)

.

Since ad �= 0, statement (1.9) follows.

Since, clearly, resP (G.P ) = 0, for all G ∈ C[z], the global residue map resP

descends to A := C[z]/〈P 〉, the quotient algebra by the ideal generated by P .
On the other hand, if degP = d, then A is a finite dimensional C-vector space
of dimension deg(P ), and a basis is given by the classes of 1, z, . . . , zd−1. As
in 2 we will denote by [H] the class of H in the quotient A. It follows from
(1.7) and (1.8) that, as a linear map,

resP : A → C

is particularly simple:

resP ([zk]) =
{

0 if 0 ≤ k ≤ d− 2,
1
ad

if k = d− 1. (1.10)

The above observations suggest the following “normal form algorithm” for
the computation of the global residue resP (H) for any H ∈ C[z]:



8 E. Cattani & A. Dickenstein

1) Compute the remainder r(z) = rd−1z
d−1 + · · ·+ r1z+ r0 in the Euclidean

division of H by P = adz
d + · · ·+ a0.

2) Then, resP (H) = rd−1
ad

.

We may also use (1.10) to reverse the local-global direction in the defi-
nition of the residue obtaining, in the process, an algebraic definition which
extends to polynomials with coefficients in an arbitrary algebraically-closed
field K of characteristic zero. We illustrate this construction in the case of a
polynomial P (z) =

∑d
j=0 ajz

j ∈ K[z] with simple zeros. Define a linear map
L : K[z]/〈P 〉 → K as in (1.10). Let ZP = {ξ1, . . . , ξd} ⊂ K be the zeros of P
and L1, . . . , Ld be the interpolating polynomials. For any H ∈ K[z] we set:

resξi
(H/P ) := L([H.Li]) .

One can then check that the defining property (1.3) is satisfied. We will discuss
another algebraic definition of the univariate residue in Section 1.2.1 and
we will discuss the general passage from the global to the local residue in
Section 1.5.3. We conclude this section by remarking on another consequence
of Theorem 1.1.8. Suppose P1, P2 ∈ C[z] are such that their set of zeros Z1,
Z2 are disjoint. Then, for any H ∈ C[z] such that

degH ≤ degP1 + degP2 − 2

we have that ∑
ξ∈Z1∪Z2

resξ

(
H

P1 P2

)
= 0

and, therefore

resP1(H/P2) =
∑
ξ∈Z1

resξ

(
H

P1 P2

)
= −

∑
ξ∈Z2

resξ

(
H

P1 P2

)
= −resP2(H/P1).

(1.11)
We denote the common value by res{P1,P2}(H). Note that it is skew-symmetric
on P1, P2. This is the simplest manifestation of a toric residue ([Cox96,
CCD97]). We will discuss a multivariate generalization in Section 1.5.6.

1.2 Some applications of residues

1.2.1 Duality and Bezoutian

The global residue may be used to define a dualizing form in the algebra A.
We give, first of all, a proof of this result based on the local properties of
the residue and, after defining the notion of the Bezoutian, we will give an
algebraic construction of the dual basis.
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Theorem 1.2.1. For P ∈ C[z], let A = C[z]/〈P 〉. The pairing A×A → C

([H1], [H2]) �→ resP (H1 ·H2)

is non degenerate, i.e.

resP (H1 ·H2) = 0 for all H2 if and only if H1 ∈ 〈P 〉.

Proof. Let d = degP and denote by ξ1, . . . , ξr the roots of P , with respective
multiplicities m1, . . . ,mr. Assume, for simplicity, that P is monic. Suppose
resP (H1 · H2) = 0 for all H2. Given i = 1 . . . , r, let Gi =

∏
j �=i(z − ξj)mj .

Then, for any � ≤ mi,

0 = resP (H1 · (z − ξi)�Gi) = resξi
(H1/(z − ξi)mi−�)

which, in view of (1.1.1), implies that (z−ξi)mi divides H1. Since these factors
of P are pairwise coprime, it follows that H1 ∈ 〈P 〉, as desired.

As before, we denote by K an algebraically-closed field of characteristic
zero.

Definition 1.2.2. Let P ∈ K[z] be a polynomial of degree d. The Bezoutian
associated to P is the bivariate polynomial

∆P (z, w) :=
P (z)− P (w)
z − w =

d−1∑
i=0

∆i(z)wi ∈ K[z, w].

Proposition 1.2.3. The classes [∆0(z)], . . . , [∆d−1(z)] ∈ A = K[z]/〈P 〉 give
the dual basis of the standard basis [1], [z], . . . , [zd−1], relative to the non-
degenerate pairing defined by the global residue.

Proof. We note, first of all, that

P (z)− P (w) =

(
d−1∑
i=0

∆i(z)wi

)
(z − w) =

d∑
i=0

(z∆i(z)−∆i−1(z))wi,

where it is understood that ∆−1(z) = ∆d(z) = 0. Writing P (w) =
∑d

i=0 aiw
i

and comparing coefficients we get the following recursive definition of ∆i(z):

z∆i(z) = ∆i−1(z)− ai, (1.12)

with initial step: z∆0(z) = P (z) − a0. We now compute resP ([zj ] · [∆i(z)]).
Since deg∆i = d − 1 − i, deg(zj∆i(z)) = d − 1 − i + j. Hence, if i > j,
deg(zj∆i(z)) ≤ d− 2 and, by Theorem 1.1.8,

resP ([zj ] · [∆i(z)]) = 0 for i > j .
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If i = j, then deg(zj∆j) = d − 1 and it is easy to check from (1.12) that its
leading coefficient is ad, the leading coefficient of P . Hence

resP ([zj ] · [∆j(z)]) = resP (adz
d−1) = 1.

Finally, we consider the case i < j. The relations (1.12) give:

zj∆i(z) = zj−1z∆i(z) = zj−1(∆i−1(z)− ai)

and, therefore
resP (zj∆i(z)) = resP (zj−1∆i−1(z))

given that resP (aiz
j−1) = 0 since j − 1 ≤ d − 2. Continuing in this manner

we obtain

resP (zj∆i(z)) = · · · = resP (zj−i∆0(z)) = resP (zj−i−1P (z)) = 0.

Remark 1.2.4. Note that Proposition 1.2.3 provides an algebraic proof of The-
orem 1.2.1. Indeed, we have shown that Theorem 1.2.1 only depends on the
conditions (1.10) that we used in the algebraic characterization of the global
residue. We may also use Proposition 1.2.3 to give an alternative algebraic
definition of the global residue. Let Φ : A ×A → A denote the bilinear sym-
metric form defined by the requirement that Φ([zi], [∆j ]) = δij . Then, the
global residue map res : A → K is defined as the unique linear map such that
Φ(α, β) = res(α · β), for α, β ∈ A.

Remark 1.2.5. The recursive relations (1.12) are exactly those defining the
classical Horner polynomials Hd−i(z) = adz

i−1 + ad−1z
i−2 + · · · + ad−i+1,

associated to the polynomial P (z) =
∑d

j=0 ajz
j .

1.2.2 Interpolation

Definition 1.2.6. Let Z := {ξ1, . . . , ξr} ⊂ K be a finite set of points together
with multiplicities m1, . . . ,mr ∈ N. Let d = m1 + · · · +mr and h ∈ K[z]. A
polynomial H ∈ K[z] is said to interpolate h over Z if degH ≤ d − 1 and
H(j)(ξi) = h(j)(ξi) for all j = 1, . . . ,mi − 1.

Proposition 1.2.7. Let Z ⊂ K and h ∈ K[z] be as above. Let P (z) :=∏r
i=1(z − ξi)mi . Then H interpolates h over Z if and only if [H] = [h] in

A = K[z]/〈P 〉, i.e. if H is the remainder of dividing h by P .

Proof. If we write h = Q · P +H, with degH < d, then

h(j)(ξi) =
j∑

k=0

ckQ
(k)(ξi)P (k−j)(ξi) +H(j)(ξi),

for suitable coefficients ck ∈ K. Since P (�)(ξi) = 0 for � = 0, . . . ,mi − 1, it
follows that H interpolates h. On the other hand, it is easy to check that the
interpolating polynomial is unique and the result follows.
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Lemma 1.2.8. With notation as above, given h ∈ K[z], the interpolating poly-
nomial H of h over Z equals

H(w) =
d−1∑
i=1

ci(h)wi where ci(h) = resP (h · ∆i).

Proof. This is a straightforward consequence of the fact that resp(zj ·∆i(z)) =
δij . For the sake of completeness, we sketch a proof for the complex case using
the integral representation of the residue.

For any ε > 0 and any w with |P (w)| < ε, we have by the Cauchy integral
formula

h(w) =
1

2πi

∫
|P (z)|=ε

h(z)
z − w dz =

1
2πi

∫
|P (z)|=ε

h(z)
P (z)− P (w)

∆P (z, w)dz.

Denote Γ := {|P (z)| = ε}; for any z ∈ Γ we have the expansion

1
P (z)− P (w)

=
1
P (z)

1

1− P (w)
P (z)

=
∑
n≥0

P (w)n

P (z)n+1
,

which is uniformly convergent over Γ . Then,

h(w) =
∑
n≥0

(
1

2πi

∫
Γ

h(z)∆P (z, w)
P (z)n+1

)
P (w)n, (1.13)

and so, isolating the first summand we get

h(w) = resP (h(z)∆P (z, w)) +Q(w)P (w). (1.14)

Finally, call H(w) := resP (h(z)∆P (z, w)). It is easy to check that H = 0
or deg(H) ≤ d − 1, and by linearity of the residue operator, H(w) =∑d−1

i=1 ci(h) w
i, as desired.

1.2.3 Ideal membership

Let again P (z) =
∑d

i=0 aiz
i ∈ C[z]. While in the univariate case is trivial, it is

useful to observe that Theorem 1.2.1 allows us to derive a residual system of
d linear equations in the coefficients of all polynomials H(z) =

∑m
j=1 hjz

j of
degree less than or equal to m, whose vanishing is equivalent to the condition
that H ∈ 〈P 〉.

Such a system can be deduced from any basis B = {β0, . . . , βd−1} of
A = C[z]/〈P 〉. We can choose for instance the canonical basis of monomials
{[zj ], j = 0, . . . , d − 1}, or the dual basis {[∆k(z)], k = 0, . . . , d − 1}. Theo-
rem 1.2.1 means that H ∈ 〈P 〉, i.e. [H] = 0 if and only if
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resP ([H] · βi) =
m∑

j=0

hjresP ([zj ]βi) = 0 ∀ i = 0, . . . , d− 1.

Suppose m ≥ d, when B is the monomial basis, the first d × d minor of the
d×m matrix of the system is triangular, while if B is the dual basis given by
the Bezoutian, this minor is simply the identity.

If H ∈ 〈P 〉, we can obtain the quotient Q(z) = H(z)/P (Z) ∈ C[z] from
equations (1.13), (1.14). Indeed, we have:

Q(w) =
∑
n≥1

res[Pn+1](H(z)∆P (z, w))P (w)n−1.

By Theorem 1.1.8, the terms in this sum vanish when n ≥ deg(H) + 1
d

.

1.2.4 Partial fraction decomposition

We recall the partial fraction decomposition of univariate rational functions.
This is a very important classical result because of its usefulness in the com-
putation of integrals of rational functions.

Let P,H ∈ K[z] with deg(H) + 1 ≤ deg(P ) = d. Let {ξ1, . . . , ξr} be the
zeros of P and let m1, . . . ,mr denote their multiplicities. Then the rational
function H(z)/P (z) may be written as:

H(z)
P (z)

=
r∑

i=1

(
Ai1

(z − ξi) + · · ·+ Aimi

(z − ξi)mi

)
(1.15)

for appropriate constants Aij ∈ K.
There are, of course, many elementary proofs of this result. Here we would

like to show how it follows from the Euler-Jacobi vanishing Theorem 1.1.8.
The argument below also gives a simple formula for the coefficients in (1.15)
when P has only simple zeros.

For any z �∈ {ξ1, . . . , ξr} we consider the auxiliary polynomial P1(w) =
(z−w)P (w) ∈ K[w]. Its zeros are ξi, with multiplicity mi, i = 1, . . . , r, and z
with multiplicity one. On the other hand, degH ≤ degP1 − 2, and therefore
Theorem 1.1.8 gives:

0 = resP1(H) = resz(H/P1) +
r∑

i=1

resξi
(H/P1) .

Since P1 has a simple zero at z, we have resz(H/P1) = H(z)/P ′
1(z) =

−H(z)/P (z) and, therefore

H(z)
P (z)

=
r∑

i=1

resξi

(
H(w)

(z − w)P (w)

)
.
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In case P has simple zeros we have resξi
(H/P1) = H(ξi)/P ′

1(ξi) which gives:

H(z)
P (z)

=
r∑

i=1

(H(ξi)/P ′(ξi))
(z − ξi) .

In the general case, it follows from (1.2) that

resξi
(H/P1) =

mi−1∑
j=0

kj
dj(H(w)/(z − w))

dwj

(
ξi
)

=
mi−1∑
j=0

aj

(z − ξi)j+1

for suitable constants kj and aj .
We leave it as an exercise for the reader to compute explicit formulas for

the coefficients Aij in (1.15).

1.2.5 Computation of traces and Newton sums

Let P (z) =
∑d

i=0 aiz
i ∈ C[z] be a polynomial of degree d, {ξ1, . . . , ξr} the set

of zeros of P , and m1, . . . ,mr their multiplicities. As always, we denote by A
the C-algebra A = C[z]/〈P 〉. We recall (cf. Theorem 2.1.4 in Chapter 2) that
for any polynomial Q ∈ C[z], the eigenvalues of the multiplication map

MQ : A → A ; [H] �→ [Q ·H]

are the values Q(ξi). In particular, using (1.4), the trace of MQ may be ex-
pressed in terms of global residues:

tr(MQ) =
∑

i

miQ(ξi) = ResP (Q · P ′) .

Theorem 1.2.9. The pairing A×A → C

([g1], [g2]) �→ tr (Mg1g2) = ResP (g1 · g2 · P ′)

is non degenerate only when all zeros of P are simple. More generally, the
trace tr (Mg1g2) = 0 for all g2 if and only if g1(ξi) = 0, for all i = 1, . . . , r or,
equivalently, if and only if g1 ∈

√〈P 〉.
Proof. Fix g1 ∈ C[z]. As tr (Mg1g2) = resP (g1 · P ′ · g2), it follows from Theo-
rem 1.2.1 that the trace of g1 · g2 vanishes for all g2 if and only if g1 P ′ ∈ 〈P 〉.
But this happens if and only if g1 vanishes over ZP , since the multiplicity of
P ′ at any zero p of P is one less than the multiplicity of P at p.

As trP (Q) is linear in Q, all traces can be computed from those corre-
sponding to the monomials zk; i.e. the power sums of the roots:

Sk :=
r∑

i=1

miξ
k
i = resP (zk · P ′(z)).
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It is well known that the Sk’s are rational functions of the elementary sym-
metric functions on the zeros of P , i.e. the coefficients of P , and conversely
(up to the choice of ad). Indeed, the classical Newton identities give recursive
relations to obtain one from the other. It is interesting to remark that not
only the power sums Sk can be expressed in terms of residues, but that we
can also use residues to obtain the Newton identities. The proof below is
an adaptation to the one-variable case of the approach followed by Aı̆zenberg
and Kytmanov [AK81] to study the multivariate analogues.

Lemma 1.2.10. (Newton identities) For all � = 0, . . . , d− 1,

(d− �)a� = −
d∑

j>�

ajSj−� (1.16)

Proof. The formula (1.16) follows from computing:

res
(
P ′(z)
z� P (z)

P (z)
)

; � ∈ N

in two different ways:

i) As res
(
P ′(z)
z�

)
= res0

(P ′(z)
z�

)
= �a�.

ii) Expanding it as a sum:

d∑
j=0

aj res
(
P ′(z) zj

z� P (z)

)
=
∑
j<�

ajres
(
P ′(z)
z�−jP (z)

)
+
∑
j≥�

ajres
(
P ′(z)zj−�

P (z)

)

The terms in the first sum vanish by Theorem 1.1.8 since deg(z�−jP (z)) ≥
deg(P ′(z))+2, while the second sum may be expressed as

∑
j≥� ajSj−�. Since

S0 = d, the identity (1.16) follows.

1.2.6 Counting integer points in lattice tetrahedra

Let P ⊂ Rn be a polytope with integral vertices and let P◦ denote its interior.
For any t ∈ N, call

L(P, t) := #(t · P) ∩ Zn ; L(P◦, t) := #(t · P◦) ∩ Zn,

the number of the lattice points in the dilated polyhedron t · P and in its
dilated interior. Ehrhart [Ehr67] proved that these are polynomial functions
of degree n. They are known as the Ehrhart polynomials associated to P and
P◦. Moreover, he determined the two leading coefficients and the constant
term in terms of the volume of the polytope, the normalized volume of its
boundary and its Euler characteristic. The other coefficients are not as easily
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accessible, and a method of computing these coefficients was unknown until
quite recently (cf. [Bar94, KK93, Pom93]). There is a remarkable relation
between these two polynomials, the Ehrhart-Macdonald reciprocity law:

L(P◦, t) = (−1)n L(P, t).
In [Bec00], Matthias Beck shows how to express these polynomials in terms

of (multidimensional) residues. In the particular case when P is a tetrahedron,
this is just a rational one-dimensional residue. We illustrate Beck’s approach
by sketching a proof of Ehrhart-Macdonald reciprocity in the case of a tetra-
hedron.

Fix α1, . . . , αn ∈ N and consider the tetrahedron with vertices at the origin
and at the points (0, . . . , αi, . . . , 0):

Σ = {(x1, . . . , xn) ∈ Rn
≥0 :

n∑
k=1

xk

αk
≤ 1 }.

Clearly,

Σ◦ = {(x1, . . . , xn) ∈ Rn
>0 :

n∑
k=1

xk

αk
< 1 }.

Let A :=
∏n

i=1 αi , Ak :=
∏

i�=k αi, k = 1, . . . , n. Then,

L(Σ, t) = #{m ∈ Zn
≥0 :

n∑
k=1

mk

αk
≤ t }

= #{m ∈ Zn
≥0 :

n∑
k=1

mkAk ≤ tA}

= #{m ∈ Zn+1
≥0 :

n∑
k=1

mkAk +mn+1 = tA}.

So, we can interpret L(Σ, t) as the coefficient of ztA in the series product:

(1 + zA1 + z2A1 + . . . ) . . . (1 + zAn + z2An + . . . )(1 + z + z2 + . . . ),

i.e. as the coefficient of ztA in the Taylor expansion at the origin of

1
(1− zA1) . . . (1− zAn)(1− z)

Thus,

L(Σ, t) = res0

(
z−tA−1

(1− z) ·∏n
i=1(1− zAi)

)
= 1 + res0

(
z−tA − 1

z · (1− z) ·∏n
i=1(1− zAi)

)
.
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For t ∈ Z, let us denote by ft(z) the rational function

ft(z) :=
ztA − 1

z · (1− z) ·∏n
i=1(1− zAi)

.

Note that for t > 0, res0(ft) = −1, while for t < 0, res∞(ft) = 0. In particular,
denoting by Z the set of non-zero, finite poles of ft, we have for t > 0:

L(Σ, t) = 1 + res0(f−t(z)) = 1−
∑
ξ∈Z

resξ(f−t(z)) . (1.17)

Since L(Σ, t) is a polynomial, this identity now holds for every t.
Similarly, we compute that

L(Σ◦, t) = #{m ∈ Zn+1
>0 :

n∑
k=1

mkAk +mn+1 = tA}.

That means that L(Σ◦, t) is the coefficient of wtA in the series product:

(wA1 + w2A1 + . . . ) . . . (wAn + w2An + . . . )(w + w2 + . . . )

or, in terms of residues:

L(Σ◦, t) = res0

(
wA1 . . . wAn (w−tA − 1)

(1− wA1) . . . (1− wAn)(1− w)

)
.

The change of variables z = 1/w now yields

L(Σ◦, t) = (−1)n res∞

(
ztA − 1

z (1− zA1) . . . (1− zAn) (1− z)
)

= (−1)nres∞(ft(z)) . (1.18)

The Ehrhart-Macdonald reciprocity law now follows from comparing (1.17)
and (1.18), and using the fact that for t > 0, res0(ft) = −1.

1.3 Resultants in one variable

1.3.1 Definition

Fix two natural numbers d1, d2 and consider generic univariate polynomials
of these degrees and coefficients in a field k:

P (z) =
d1∑

i=0

aiz
i , Q(z) =

d2∑
i=0

biz
i . (1.19)

The system P (z) = Q(z) = 0 is, in general, overdetermined and has no
solutions. The following result is classical:
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Theorem 1.3.1. There exists a unique (up to sign) irreducible polynomial

Resd1,d2(P,Q) = Resd1,d2(a0, . . . , ad1 , b0, . . . , bd2) ∈ Z[a0, . . . , ad1 , b0, . . . , bd2 ],

called the resultant of P and Q, which verifies that for any specialization of the
coefficients ai, bi in k with ad1 �= 0, bd2 �= 0, the resultant vanishes if and only
if the polynomials P and Q have a common root in any algebraically closed
field K containing k.

Geometrically, the hypersurface {(a, b) ∈ Kd1+d2+2 : Resd1,d2(a, b) = 0}
is the projection of the incidence variety {(a, b, z) ∈ Kd1+d2+3 :

∑d1
i=0 aiz

i =∑d2
i=0 biz

i = 0}; that is to say, the variable z is eliminated. Here, and in what
follows, K denotes an algebraically closed field.

A well known theorem of Sylvester allows us to compute the resultant as
the determinant of a matrix of size d1 +d2, whose entries are 0 or a coefficient
of either P or Q. For instance, when d1 = d2 = 2, the resultant is the following
polynomial in 6 variables (a0, a1, a2, b0, b1, b2):

b22a
2
0 − 2b2a0a2b0 + a22b

2
0 − b1b2a1a0 − b1a1a2b0 + a2b21a0 + b0b2a21

and can be computed as the determinant of the 4× 4 matrix:

M2,2 :=

⎛⎜⎜⎝
a0 0 b0 0
a1 a0 b1 b0
a2 a1 b2 b1
0 a2 0 b2

⎞⎟⎟⎠ . (1.20)

Let us explain how one gets this result. The basic idea is to linearize the
problem in order to use the eliminant polynomial par excellence: the deter-
minant. Note that the determinant of a square homogeneous linear system
A · x = 0 allows to eliminate x: the existence of a non trivial solution x �= 0
of the system, is equivalent to the fact that the determinant of A (a polynomial
in the entries of A) vanishes.

Assume deg(P ) = d1, deg(Q) = d2. A first observation is that P and Q
have a common root if and only if they have a common factor of positive degree
(since P (z0) = 0 if and only if z − z0 divides P ). Moreover, the existence of
such a common factor is equivalent to the existence of polynomials g1, g2 with
deg(g1) ≤ d2 − 1,deg(g2) ≤ d1 − 1, such that g1P + g2Q = 0. Denote by S�

the space of polynomials of degree � and consider the map

Sd2−1 × Sd1−1 −→ Sd1+d2−1

(g1, g2) �−→ g1P + g2Q
(1.21)

This defines a K-linear map between two finite dimensional K-vector spaces of
the same dimension d1+d2, which is surjective (and therefore an isomorphism)
if and only if P and Q do not have any common root in K. Denote by Md1,d2
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the matrix of this linear map in the monomial bases. It is called the Sylvester
matrix associated to P and Q. Then

Resd1,d2(P,Q) = ±det(Md1,d2). (1.22)

The sign in this last equality cannot be determined, but the positive sign is
taken by convention.

Note that for d1 = d2 = 2 we obtain the matrixM2,2 in (1.20). The general
shape of the Sylvester matrix is:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 b0
a1 a0 b1 b0

a1
. . . b1

. . .
...

. . . a0
...

. . . b0
... a1

... b1
ad1 bd2

ad1

... bd2

...
. . . . . .
ad1 bd2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where the blank spaces are filled with zeros.

Note that setting ad1 = 0 but bd2 �= 0, the determinant of the Sylvester
matrix equals bd2 times the determinant of the Sylvester matrix Md1−1,d2

(in a0, . . . , ad1−1, b0, . . . , bd2). We deduce that when deg(P ) = d′1 < d1 and
deg(Q) = d2, the restriction of the (d1, d2) resultant polynomial to the closed
set (ad1 = · · · = ad′

1+1 = 0) of polynomials of degrees d′1, d2 factorizes as

Resd1,d2(P,Q) = b
d1−d′

1
d2

Resd′
1,d2(P,Q).

What happens if we specialize both P and Q to polynomials of respective
degrees smaller than d1 and d2? Then, the last row of the Sylvester matrix is
zero and so the resultant vanishes, but in principle P and Q do not need to
have a common root in K. One way to recover the equivalence between the
vanishing of the resultant and the existence of a common root is the following.

Given P,Q as in (1.19), consider the homogenizations Ph, Qh defined by

Ph(z, w) =
d1∑

i=0

aiz
iwd1−i , Qh =

d2∑
i=0

biz
iwd2−i.

Then, P,Q can be recovered by evaluating at w = 1 and (z0, 1) is a com-
mon root of Ph, Qh if and only if P (z0) = Q(z0) = 0. But also, on one hand
Ph(0, 0) = Qh(0, 0) = 0 for any choice of coefficients, and on the other Ph, Qh

have the common root (1, 0) when ad1 = bd2 = 0. The space obtained as the
classes of pairs (z, w) �= (0, 0) after identification of (z, w) with (λ z, λw) for
any λ ∈ K − {0}, denoted P1(K), is called the projective line over K. Since
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for homogeneous polynomials as Ph it holds that Ph(λ z, λw) = λd1Ph(z, w)
(and similarly for Qh) , it makes sense to speak of their zeros in P1(K). So, we
could restate Theorem 1.3.1 saying that for any specialization of the coeffi-
cients of P and Q, the resultant vanishes if and only if their homogenizations
have a common root in P1(K). As we have already remarked, when K = C, the
projective space P1(C) can be identified with the Riemann sphere, a compact-
ification of the complex plane, where the class of the point (1, 0) is identified
with the point at infinity.

1.3.2 Main properties

It is interesting to realize that many properties of the resultant can be derived
from its expression (1.22) as the determinant of the Sylvester matrix:

i) The resultant Resd1,d2 is homogeneous in the coefficients of P and Q sep-
arately, with respective degrees d2, d1. So, the degree of the resultant in
the coefficients of P is the number of roots of Q, and vice-versa.

ii) The resultants Resd1,d2 and Resd2,d1 coincide up to sign.
iii) There exist polynomials A1, A2 ∈ Z[a0, . . . , bd2 ][z] with deg(A1) = d2 −

1,deg(A2) = d1 − 1 such that

Resd1,d2(P,Q) = A1P +A2Q. (1.23)

Let us sketch the proof of property iii). If we add to the first row in the
Sylvester matrix z times the second row, plus z2 times the third row, and so
on, the first row becomes

P (z) zP (z) . . . zd2−1P (z) Q(z) zQ(z) zd1−1Q(z)

but the determinant is unchanged. Expanding along this modified first row,
we obtain the desired result.

Another important classical property of the resultant Resd1,d2(P,Q) is that
it can be written as a product over the zeros of P or Q:

Proposition 1.3.2. (Poisson formula) Let P,Q polynomials with respec-
tive degrees d1, d2 and write P (z) = ad1

∏r
i=1(z−pi)mi , Q(z) = bd2

∏s
j=1(z−

qj)nj . Then

Resd1,d2(P,Q) = ad2
d1

r∏
i=1

Q(pi)mi = (−1)d1d2 bd1
d2

s∏
j=1

P (qi)ni

Proof. Again, one possible way of proving the Poisson formula is by showing
that

Resd1,d2((z − p)P1, Q) = Q(p)Resd1−1,d2(P1, Q),

using the expression of the resultant as the determinant of the Sylvester ma-
trix, and standard properties of determinants. The proof would be completed
by induction, and the homogeneity of the resultant.
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Alternatively, one could observe that R′(a, b) := ad2
d1

∏r
i=1Q(pi)mi depends

polynomially on the coefficients of Q and, given the equalities

R′(a, b) = ad2
d1
bd1
d2

∏
i,j

(pi − qj)minj = (−1)d1d2 bd1
d2

s∏
j=1

P (qi)ni ,

on the coefficients of P as well. Since the roots are unchanged by dilation of
the coefficients, we see that, as Resd1,d2 , the polynomial R′ has degree d1 +d2
in the coefficients (a, b) = (a0, . . . , bd2). Moreover, R′(a, b) = 0 if and only if
there exists a common root, i.e. if and only if Resd1,d2(a, b) = 0. This holds
in principle over the open set (ad1 �= 0, bd2 �= 0) but this implies that the loci
{R′ = 0} and {Resd1,d2 = 0} in Kd1+d2+2 agree. Then, the irreducibility of
Resd1,d2 implies the existence of a constant c ∈ K such that Resd1,d2 = c · R′.
Evaluating at P (z) = 1, Q(z) = zd2 , the Sylvester matrix Md1,d2 reduces to
the identity Id1+d2 and we get c = 1.

We immediately deduce

Corollary 1.3.3. Assume P = P1 · P2 with deg(P1) = d′1, deg(P2) = d′′1 and
deg(Q) = d2. Then,

Resd′
1+d′′1,d2(P,Q) = Resd′

1,d2(P1, Q)Resd′′1,d2(P2, Q).

There are other determinantal formulas to compute the resultant, coming
from suitable generalizations of the map (1.21), which are for instance de-
scribed in [DD01]. In case d1 = d2 = 3, the Sylvester matrix M3,3 is 6 × 6.
Denote [ij] := aibj − ajbi, for all i, j = 0, . . . , 3. The resultant Res3,3 can also
be computed as the determinant of the following 3× 3 matrix:

B3,3 :=

⎛⎝ [03] [02] [01]
[13] [03] + [12] [02]
[23] [13] [03]

⎞⎠ , (1.24)

or as minus the determinant of the 5× 5 matrix⎛⎜⎜⎜⎜⎝
a0 0 b0 0 [01]
a1 a0 b1 b0 [02]
a2 a1 b2 b1 [03]
a3 a2 b3 b3 0
0 a3 0 b3 0

⎞⎟⎟⎟⎟⎠ .
Let us explain how the matrix B3,3 was constructed and why Res3,3 =
det(B3,3). We assume, more generally, that d1 = d2 = d.

Definition 1.3.4. Let P,Q polynomials of degree d as in (1.19). The Be-
zoutian polynomial associated to P and Q is the bivariate polynomial
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∆P,Q(z, y) =
P (z)Q(y)− P (y)Q(z)

z − y =
d−1∑
i,j=0

cijz
iyj .

The d× d matrix BP,Q = (cij) is called the Bezoutian matrix associated to P
and Q.

Note that ∆P,1 = ∆P defined in (1.2.2) and that each coefficient cij is a
linear combination with integer coefficients of the brackets [k, �] = akb�−a�bk.

Proposition 1.3.5. With the above notations,

Resd,d(a, b) = det(BP,Q). (1.25)

Proof. The argument is very similar to the one presented in the proof of
Poisson’s formula. Call R′ := det(BP,Q). This is a homogeneous polynomial in
the coefficients (a, b) of the same degree 2d = d+d as the resultant. Moreover,
if Resd,d(a, b) = 0, there exists z0 ∈ K such that P (z0) = Q(z0) = 0, and so,

∆P,Q(y, z0) =
∑d−1

i=0

(∑d−1
j=0 cijz

j
0

)
yi is the zero polynomial. This shows that

R′(a, b) = 0 since the non trivial vector (1, z0, . . . , zd−1
0 ) lies in the kernel of

the Bezoutian matrix BP,Q. By Hilbert’s Nullstellensatz, the resultant divides
a power of R′. Using the irreducibility of Resd,d plus a particular specialization
to adjust the constant, we get the desired result.

The Bezoutian matrices are more compact and practical experience seems
to indicate that these matrices are numerically more stable than the Sylvester
matrices.

1.4 Some applications of resultants

1.4.1 Systems of equations in two variables

Suppose that we want to solve a polynomial system in two variables f(z, y) =
g(z, y) = 0 with f, g ∈ K[z, y]. We can “hide the variable y in the coefficients”
and think of f, g ∈ K[y][z]. Denote by d1, d2 the respective degrees in the
variable z. Then, the resultant Resd1,d2(f, g) with respect to the variable z
will give us back a polynomial (with integer coefficients) in the coefficients,
i.e. we will have a polynomial in y, which vanishes on every y0 for which there
exists z0 with f(z0, y0) = g(z0, y0) = 0. So, we can eliminate the variable z
from the system, detect the second coordinates y0 of the solutions, and then
try to recover the full solutions (z0, y0).

Assume for instance that f(z, y) = z2+y2−10 , g(z, y) = z2+2y2+zy−16.
We write

f(z, y) = z2 + 0z + (y2 − 10) , g(z, y) = z2 + yz + (2y2 − 16).
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Then, Res2,2(f, g) equals

Res2,2((1, 0, y2−10), (1, y, 2y2−16)) = −22y2+2y4+36 = 2(y+3)(y−3)(y2−2).

For each of the four roots y0 = −3, 3,
√

2,−√2, we replace g(z, y0) = 0 and
we need to solve z = y2

0−6
y0

. Note that f(z, y0) = 0 will also be satisfied due to
the vanishing of the resultant. So, there is precisely one solution z0 for each
y0. The system has 4 = 2× 2 real solutions.

It is easy to deduce from the results and observations made in Section 1.3
the following extension theorem.

Theorem 1.4.1. Write f(z, y) =
∑d1

i=1 fi(y)z
i , g(z, y) =

∑d2
i=1 gi(y)z

i, with
fi, gi ∈ K[y], and fd1 , gd2 non zero. Let y0 be a root of the resultant with
respect to z, Resd1,d2(f, g) ∈ K[y]. If either fd1(y0) �= 0 or gd2(y0) �= 0, there
exists z0 ∈ K such that f(z0, y0) = g(z0, y0) = 0.

Assume now that f(z, y) = yz−1 , g(z, y) = y3−y. It is immediate to check
that they have two common roots, namely {f = g = 0} = {(1, 1), (−1,−1)}.
Replace g by the polynomial g̃ := g + f . Then, {f = g̃ = 0} = {f = g = 0}
but now both f, g̃ have positive degree 1 with respect to the variable z. The
resultant with respect to z equals

Res1,1(f, g̃) = det
(
y −1
y y3 − y − 1

)
= y2(y2 − 1).

Since both leading coefficients with respect to z are equal to the polynomial
y, Theorem 1.4.1 asserts that the two roots y0 = ±1 can be extended. On the
contrary, the root y0 = 0 cannot be extended.

Consider now f(z, y) = yz2 + z − 1 , g(z, y) = y3 − y and let us again
consider f and g̃ := g + f , which have positive degree 2 with respect to z.
In this case, y0 = 0 is a root of Res2,2(f, g̃) = y4(y2 − 1)2. Again, y0 = 0
annihilates both leading coefficients with respect to z. But nevertheless it can
be extended to the solution (0, 1).

So, two comments should be made. The first one is that finding roots
of univariate polynomials is in general not an algorithmic task! One can try
to detect the rational solutions or to approximate the roots numerically if
working with polynomials with complex coefficients. The second one is that
even if we can obtain the second coordinates explicitly, we have in general a
sufficient but not necessary condition to ensure that a given partial solution
y0 can be extended to a solution (z0, y0) of the system, and an ad hoc study
may be needed.

1.4.2 Implicit equations of curves

Consider a parametric plane curve C given by z = f(t), y = g(t), where
f, g ∈ K[t], or more precisely,
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C = {(z, y) ∈ K2 : z = f(t) , y = g(t) for some t ∈ K}.
Having this parametric expression allows one to “follow” or “travel along”
the curve, but it is hard to detect if a given point in the plane is in C. One
can instead find an implicit equation f ∈ K[z, y], i.e. a bivariate polynomial
f such that C = {f = 0}. This amounts to eliminating t from the equations
z−f(t) = y− g(t) = 0 and can thus be done by computing the resultant with
respect to t of these polynomials.

This task could also be solved by a Gröbner basis computation. But
we propose the reader to try in any computer algebra system the follow-
ing example suggested to us by Ralf Fröberg. Consider the curve C de-
fined by z = t32 , y = t48 − t56 − t60 − t62 − t63. Then the resultant
Res32,63(t32 − z, t48 − t56 − t60 − t62 − t63 − y) with respect to t can be com-
puted in a few seconds, giving the answer f(z, y) we are looking for. It is a
polynomial of degree 63 in z and degree 32 in y with 257 terms. On the other
side, a Gröbner basis computation seems to be infeasible.

For a plane curve C with a rational parametrization; i.e.

C = {(p1(t)/q1(t), p2(t)/q2(t)) : q1(t) �= 0, q2(t) �= 0} ,
where pi, qi ∈ K[t], the elimination ideal

I1 := 〈q1(t)z − p1(t), q2(t)y − p2(t)〉 ∩K[z, y]

defines the Zariski closure of C in K2. We can obtain a generator of I1 with a
resultant computation that eliminates t. For example, let

C =
{(

t2 − 1
(1 + 2t)2

,
t+ 1

(1 + 2t)(1− t)
)
, t �= 1 , −1/2

}
.

Then C = V(I1) is the zero locus of

f(z, y) = Res2,2((1 + 2t)2z − (t2 − 1), (1 + 2t)(1− t))y − (t+ 1))

which equals
27y2z − 18yz + 4y + 4z2 − z.

We leave it to the reader to verify that C is not Zariski closed.
One could also try to implicitize non planar curves. We show a general

classical trick in the case of the space curve C with parametrization x =
t2, y = t3, z = t5. We have 3 polynomials x − t2, y − t3, z − t5 from which
we want to eliminate t. Add two new indeterminates u, v and compute the
resultant

Res2,5(x−t2, u(y−t3)+v(z−t5)) = (−y2+x3)u2+(2x4−2yz)uv+(−z2+x5)v2.

Then, since the resultant must vanish for all specializations of u and v, we
deduce that

C = {−y2 + x3 = 2x4 − 2yz = −z2 + x5 = 0} .
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1.4.3 Bézout’s theorem in two variables

Similarly to the construction of P1(K), one can define the projective plane
P2(K) (and in general projective n-space) as the complete variety whose points
are identified with lines through the origin in K3. We may embed K2 in P2(K)
as the set of lines through the points (x, y, 1). Again, it makes sense to speak of
the zero set in P2(K) of homogeneous polynomials (i.e. polynomials f(x, y, z)
such that f(λx, λy, λz) = λdf(x, y, z), for d = deg(f)).

Given two homogeneous polynomials f, g ∈ K[x, y, z] without common
factors, with deg(f) = d1, deg(g) = d2, a classical theorem of Bézout asserts
that they have d1 · d2 common points of intersection in P2(K), counted with
appropriate intersection multiplicities. A proof of this theorem using resultants
is given for instance in [CLO97]. The following weaker version suffices to obtain
such nice consequences as Pascal’s Mystic Hexagon theorem [CLO97, Sect. 8.7]
(see Corollary 1.5.15 for a proof using multivariable residues).

Theorem 1.4.2. Let f, g ∈ K[x, y, z] be homogeneous polynomials, without
common factors, and of respective degrees d1, d2. Then (f = 0) ∩ (g = 0) is
finite and has at most d1 · d2 points.

Proof. Assume (f = 0) ∩ (g = 0) have more than d1 · d2 points, which we
label p0, . . . , pd1d2 . Let Lij be the line through pi and pj for i, j = 0, . . . , d1d2.
Making a linear change of coordinates, we can assume that (0, 0, 1) /∈ (f =
0) ∪ (g = 0) ∪ (∪ijLij). Write f =

∑d1
i=0 aiz

i , g =
∑d2

j=0 bjz
j , as polynomi-

als in z with coefficients ai, bj ∈ K[x, y]. Since f(0, 0, 1) �= 0, g(0, 0, 1) �= 0
and f and g do not have any common factor, it is straightforward to ver-
ify from the expression of the resultant as the determinant of the Sylvester
matrix, that the resultant Resd1,d2(f, g) with respect to z is a non zero ho-
mogeneous polynomial in x, y of total degree d1 · d2. Write pi = (xi, yi, zi).
Then, Resd1,d2(f, g)(xi, yi) = 0 for all i = 0, . . . , d1 · d2. The fact that (0, 0, 1)
does not lie in any of the lines Lij implies that the (d1d2 + 1) points (xi, yi)
are distinct, and we get a contradiction.

1.4.4 GCD computations and Bézout identities

Let P,Q be two univariate polynomials with coefficients in a field k. Assume
they are coprime, i.e. that their greatest common divisor GCD(P,Q) = 1.
We can then find polynomials h1, h2 ∈ k[z] such that the Bézout identity
1 = h1P + h2Q is satisfied, by means of the Euclidean algorithm to compute
GCD(P,Q). A we have already remarked, GCD(P,Q) = 1 if and only if P
and Q do not have any common root in any algebraically field K contain-
ing k. If d1, d2 denote the respective degrees, this happens precisely when
Resd1,d2(P,Q) �= 0. Note that since the resultant is an integer polynomial
in the coefficients, Resd1,d2(P,Q) also lies in k. Moreover, by property iii) in
Section 1.3.2, one deduces that
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1 =
A1

Resd1,d2(P,Q)
P +

A2

Resd1,d2(P,Q)
Q. (1.26)

So, it is possible to find h1, h2 whose coefficients are rational functions with
integer coefficients evaluated in the coefficients of the input polynomials P,Q,
and denominators equal to the resultant. Moreover, these polynomials can be
explicitly obtained from the proof of (1.23). In particular, the coefficients of
A1, A2 are particular minors of the Sylvester matrix Md1,d2 .

This has also been extended to compute GCD(P,Q) even when P and Q
are not coprime (and the resultant vanishes), based on the so called subresul-
tants, which are again obtained from particular minors of Md1,d2 . Note that
GCD(P,Q) is the (monic polynomial) of least degree in the ideal generated by
P and Q (i.e. among the polynomial linear combinations h1P + h2Q). So one
is led to study non surjective specializations of the linear map (1.21). In fact,
the dimension of its kernel equals the degree of GCD(P,Q), i.e. the number
of common roots of P and Q, counted with multiplicity.

Note that if 1 ≤ d2 ≤ d1 and C =
∑d1−d2

i=0 ciz
i is the quotient of P in the

Euclidean division by Q, the remainder equals

R = P −
d1−d2∑

i=0

ci(ziQ).

Thus, subtracting from the first column ofMd1,d2 the linear combination of the
columns corresponding to ziQ, i = 0, . . . , d1 − d2, with respective coefficients
ci, we do not change the determinant but we get the coefficients of R in the
first column. In fact, it holds that

Rd1,d2(P,Q) = ad2−deg(R)
d1

Rdeg(R),d2(R,Q).

So, one could describe an algorithm for computing resultants similar to the
Euclidean algorithm. However, the Euclidean remainder sequence to compute
greatest common divisors has a relatively bad numerical behavior. Moreover,
it has bad specialization properties when the coefficients depend on para-
meters. Collins [Col67] studied the connections between subresultants and
Euclidean remainders, and he proved in particular that the polynomials in
the two sequences are pairwise proportional. But the subresultant sequence
has a good behavior under specializations and well controlled growth of the
size of the coefficients. Several efficient algorithms have been developed to
compute subresultants [LRD00].

1.4.5 Algebraic numbers

A complex number α is said to be algebraic if there exists a polynomial P ∈
Q[z] such that P (α) = 0. The algebraic numbers form a subfield of C. This
can be easily proved using resultants.
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Lemma 1.4.3. Let P,Q ∈ Q[z] with degrees d1, d2 and let α, β ∈ C such that
P (α) = Q(β) = 0. Then,

i) α+ β is a root of the polynomial u+(z) = Resd1,d2(P (z − y), Q(y)) = 0,
ii) α · β is a root of the polynomial u×(z) = Resd1,d2(y

d1P (z/y), Q(y)),
iii) for α �= 0, α−1 is a root of the polynomial u−1(z) = Resd1,d2(zy−1, P (y)),

where the resultants are taken with respect to y.

The proof of Lemma 1.4.3 is immediate. Note that even if P (resp. Q) is
the minimal polynomial annihilating α (resp. β), i.e. the monic polynomial
with minimal degree having α (resp. β) as a root, the roots of the polynomial
u× are all the products αi · βj where αi (resp. βj) is any root of P (resp. Q),
which need not be all different, and so u× need not be the minimal polynomial
annihilating α ·β. This happens for instance in case α =

√
2, P (z) = z2−2, β =√

3, Q(z) = z2 − 3, where u×(z) = (z2 − 6)2.

1.4.6 Discriminants

Given a generic univariate polynomial of degree d, P (z) = a0 + a1z +
· · · + adz

d , ad �= 0, it is also classical the existence of an irreducible poly-
nomial Dd(P ) = Dd(a0, . . . , ad) ∈ Z[a0, . . . , ad], called the discriminant (or
d-discriminant) whose value at a particular set of coefficients (with ad �= 0)
is non-zero if and only if the corresponding polynomial of degree d has only
simple roots. Equivalently, Dd(a0, . . . , an) = 0 if and only if there exists z ∈ C
with P (z) = P ′(z) = 0.

Geometrically, the discriminantal hypersurface

{a = (a0, . . . , ad) ∈ Cd+1 : Dd(a) = 0}
is the projection over the first (d + 1) coordinates of the intersection of the
hypersurfaces {(a, z) ∈ Cd+2 : a0 + a1z + · · · + adz

d = 0} and {(a, z) ∈
Cd+2 : a1 + 2a2z + · · ·+ dadz

d−1 = 0}, i.e. the variable z is eliminated.
The first guess would be that Dd(P ) equals the resultant Resd,d−1(P, P ′),

but it is easy to see that in fact Resd,d−1(P, P ′) = (−1)d(d−1)/2 adDd(P ). In
case d = 2, P (z) = az2 + bz + c, D2(a, b, c) is the well known discriminant
b2 − 4ac. When d = 6 for instance, D6 is an irreducible polynomial of degree
10 in the coefficients (a0, . . . , a6) with 246 terms.

The extremal monomials and coefficients of the discriminant have very
interesting combinatorial descriptions. This notion has important applications
in singularity theory and number theory. The distance of the coefficients of
a given polynomial to the discriminantal hypersurface is also related to the
numerical stability of the computation of its roots. For instance, consider the
Wilkinson polynomial P (z) = (z+1)(z+2) . . . (z+19)(z+20), which clearly
has 20 real roots at distance at least 1 from the others, and is known to be
numerically unstable. The coefficients of P are very close to the coefficients of
a polynomial with a multiple root. The polynomial Q(z) = P (z) + 10−9z19,
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obtained by a “small perturbation” of one of the coefficients of P , has only
12 real roots and 4 pairs of imaginary roots, one of which has imaginary
part close to ±0.88i. Consider then the parametric family of polynomials
Pλ(z) = P (z) + λz19 and note that P (z) = P0 and Q(z) = P10−9 . Thus, for
some intermediate value of λ, two complex roots merge to give a double real
root and therefore that value of the parameter is a zero of the discriminant
D(λ) = D20(Pλ).

1.5 Multidimensional residues

In this section we will extend the theory of residues to the several variables
case. As in the one-dimensional case we will begin with an “integral” definition
of local residue from which we will define the total residue as a sum of local
ones. We will also indicate how one can give a purely algebraic definition of
global, and then local, residues using Bezoutians. We shall also touch upon
the geometric definition of Arnold, Varchenko and Gusĕın-Zadé [AGZV85].

Let K be an algebraically closed field of characteristic zero and let I ⊂
K[x1, . . . , xn] be a zero-dimensional ideal. We denote by Z(I) = {ξ1, . . . , ξs} ⊂
Kn the variety of zeros of I. We will assume, moreover, that I is a complete
intersection ideal, i.e. that it has a presentation of the form I = 〈P1, . . . , Pn〉,
Pi ∈ K[x1, . . . , xn]. For simplicity, we will denote by 〈P 〉 the ordered n-tuple
{P1, . . . , Pn}. As before, let A be the finite dimensional commutative algebra
A = K[x1, . . . , xn]/I. Our goal is to define a linear map

res〈P 〉 : A → K

whose properties are similar to the univariate residue map. In particular, we
would like it to be dualizing in the sense of Theorem 1.2.1 and to be compatible
with local maps res〈P 〉,ξ : Aξ → K, ξ ∈ Z(I).

1.5.1 Integral definition

In case K = C, given ξ ∈ Z(I), let U ⊂ Cn be an open neighborhood of ξ
containing no other points of Z(I), and let H ∈ C[x1, . . . , xn]. We define the
local Grothendieck residue

res〈P 〉,ξ(H) =
1

(2πi)n

∫
Γξ(ε)

H(x)
P1(x) · · ·Pn(x)

dx1 ∧ · · · ∧ dxn , (1.27)

where Γξ(ε) is the real n-cycle Γξ(ε) = {x ∈ U : |Pi(x)| = εi} oriented by
the n-form d(arg(P1)) ∧ · · · ∧ d(arg(Pn)). For almost every ε = (ε1, . . . , εn) in
a neighborhood of the origin, Γξ(ε) is smooth and by Stokes’ Theorem the
integral (1.27) is independent of ε. The choice of the orientation form implies
that res〈P 〉,ξ(H) is skew-symmetric on P1, . . . , Pn. We note that this definition
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makes sense as long as H is holomorphic in a neighborhood of ξ. If ξ ∈ Z(I)
is a point of multiplicity one then the Jacobian

J〈P 〉(ξ) := det
(
∂Pi

∂xj
(ξ)

)
is non-zero, and

res〈P 〉,ξ(H) =
H(ξ)
J〈P 〉(ξ)

. (1.28)

This identity follows from making a change of coordinates yi = Pi(x) and
iterated integration.

It follows from Stokes’s theorem that ifH ∈ Iξ, the ideal defined by I in the
local ring defined by ξ (cf. Section 2.1.3 in Chapter 2), then res〈P 〉,ξ(H) = 0
and therefore the local residue defines a map res〈P 〉,ξ : Aξ → C. We then define
the global residue map as the sum of local residues

res〈P 〉(H) :=
∑

ξ∈Z(I)

res〈P 〉,ξ(H)

which we may view as a map res〈P 〉 : A → C. We may also define the global
residue res〈P 〉(H1/H2) of a rational function regular on Z(I), i.e. such that
H2 does not vanish on Z(I). At this point one may be tempted to replace the
local cycles Γξ(ε) by a global cycle

Γ (ε) := {x ∈ Cn : |Pi(x)| = εi}
but Γ (ε) need not be compact and integration might not converge. However,
if the map

(P1, . . . , Pn) : Cn → Cn

is proper, then Γ (ε) is compact and we can write

res〈P 〉(H) :=
1

(2πi)n

∫
Γ (ε)

H(x)
P1(x) · · ·Pn(x)

dx1 ∧ · · · ∧ dxn .

The following two theorems summarize basic properties of the local and
global residue map.

Theorem 1.5.1 (Local and Global Duality). Let I = 〈P1, . . . , Pn〉 ⊂
C[x1, . . . , xn] be a complete intersection ideal and A = C[x1, . . . , xn]/I. Let
Aξ be the localization at ξ ∈ Z(I). The pairings

Aξ ×Aξ → C ; ([H1], [H2]) �→ res〈P 〉,ξ(H1 ·H2)

and
A×A → C ; ([H1], [H2]) �→ res〈P 〉(H1 ·H2)

are non-degenerate.
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Theorem 1.5.2 (Local and Global Transformation Laws). Let I =
〈P1, . . . , Pn〉 and J = 〈Q1, . . . , Qn〉 be zero-dimensional ideals such that J ⊂ I.
Let

Qj(x) =
n∑

i=1

aij(x)Pi(x) .

Denote by A(x) the n× n-matrix (aij(x)), then for any ξ ∈ Z(I),

res〈P 〉,ξ(H) = res〈Q〉,ξ(H · det(A)) . (1.29)

Moreover, a similar formula holds for global residues

res〈P 〉(H) = res〈Q〉(H · det(A)) .

Remark 1.5.3. We refer the reader to [Tsi92, Sect. 5.6 and 8.4] for a proof
of the duality theorems and to [Tsi92, Sect. 5.5 and 8.3] for full proofs of
the transformation laws. The local theorems are proved in [GH78, Sect. 5.1]
and extended to the global case in [TY84]; a General Global Duality Law is
discussed in [GH78, Sect. 5.4] Here we will just make a few remarks about
Theorem 1.5.2.

Suppose that ξ ∈ Z(I) is a simple zero and that det(A(ξ)) �= 0. Then,
since

J〈Q〉(ξ) := J〈P 〉(ξ) · det(A(ξ))

we have

res〈P 〉,ξ(H) =
H(ξ)
J〈P 〉(ξ)

=
H(ξ) · det(A(ξ))

J〈Q〉(ξ)
= res〈Q〉,ξ(H · det(A)) ,

as asserted by (1.29). The case of non-simple zeros which are common to both
I and J is dealt-with using a perturbation technique after showing that when
the input {P1, . . . , Pn} depends smoothly on a parameter so does the residue.
Finally, one shows that if ξ ∈ Z(J)\Z(I), then det(A) ∈ Jξ and the local
residue res〈Q〉,ξ(H · det(A)) vanishes.

1.5.2 Geometric definition

For the sake of completeness, we include a few comments about the geometric
definition of the residue of Arnold, Varchenko and Gusĕın-Zadé [AGZV85].
Here, the starting point is the definition of the residue at a simple zero
ξ ∈ Z(I) as in (1.28). Suppose now that ξ ∈ Z(I) has multiplicity µ. In a
sufficiently small neighborhood U of ξ in Cn we can consider the map

P = (P1, . . . , Pn) : U → Cn .

By Sard’s theorem, almost all values y ∈ P (U) are regular and at such points
the equation P (x)−y = 0 has exactly µ simple roots η1(y), . . . , ηµ(y). Consider
the map
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φ(y) :=
µ∑

i=1

H(ηi(y))
J〈P 〉(ηi(y))

.

It is shown in [AGZV85, Sect. 5.18] that φ(y) extends holomorphically to
0 ∈ Cn. We can then define the local residue res〈P 〉,ξ(H) as the value φ(0). A
continuity argument shows that both definitions agree.

1.5.3 Residue from Bezoutian

In this section we generalize to the multivariable case the univariate approach
discussed in Section 1.2.1. This topic is also discussed in Section 3.3 of Chap-
ter 3. We will follow the presentation of [BCRS96] and [RS98] to which we
refer the reader for details and proofs. We note that other purely algebraic
definitions of the residue may also be found in [KK87, Kun86, SS75, SS79].

Let K be an algebraically closed field K of characteristic zero and let A
be a finite-dimensional commutative K algebra. Recall that A is said to be a
Gorenstein algebra if there exists a linear form � ∈ Â := HomK(A,K) such
that the bilinear form

φ� : A×A → K ; φ�(a, b) := �(a · b)
is non-degenerate. Given such a dualizing linear form �, let {a1, . . . , ar} and
{b1, . . . , br} be φ�-dual bases of A, and set

B� :=
r∑

i=1

ai ⊗ bi ∈ A⊗A .

B� is independent of the choice of dual bases and is called a generalized Be-
zoutian. It is characterized by the following two properties:

• (a⊗ 1)B� = (1⊗ a)B�, for all a ∈ A, and
• If {a1, . . . , ar} is a basis of A and B� =

∑
i ai ⊗ bi, then {b1, . . . , br} is a

basis of A as well.

It is shown in [BCRS96, Th. 2.10] that the correspondence � �→ B� is an
equivalence between dualizing linear forms on A and generalized Bezoutians
in A⊗A.

As in Section 1.2.5 we can relate the dualizing form, the Bezoutian and
the computation of traces. The dual Â may be viewed as a module over A
by a · λ(b) := λ(a · b), a, b ∈ A, λ ∈ Â. A dualizing form � ∈ Â generates Â
as an A-module. Moreover, it defines an isomorphism A → Â, a �→ �(a•). In
particular there exists a unique element J� ∈ A such that tr(Mq) = �(J� · q),
where Mq : A → A denotes multiplication by q ∈ A. On the other hand, if
{a1, . . . , ar} and {b1, . . . , br} are φ�-dual bases of A, then

Mq(aj) = q · aj =
r∑

i=1

φ�(q · aj , bi)ai



1 Residues and resultants 31

and therefore

tr(Mq) =
r∑

i=1

φ�(q · ai, bi) =
r∑

i=1

�(q · ai · bi) = �
(
q ·

r∑
i=1

aibi
)

from which it follows that

J� =
r∑

i=1

ai · bi . (1.30)

Note that, in particular,

�(J�) =
r∑

i=1

�(ai · bi) = r = dim(A) . (1.31)

Suppose now that I ⊂ K[x1, . . . , xn] is a zero-dimensional complete inter-
section ideal. We may assume without loss of generality that I is generated by
a regular sequence {P1, . . . , Pn}. The quotient algebra A = K[x1, . . . , xn]/I
is a Gorenstein algebra. This can be done by defining directly a dualizing
linear form (global residue or Kronecker symbol) or by defining an explicit
Bezoutian as in [BCRS96, Sect. 3]:

Let

∂jPi :=
Pi(y1, . . . , yj−1, xj , . . . , xn)− Pi(y1, . . . , yj , xj+1, . . . , xn)

xj − yj (1.32)

and set
∆〈P 〉(x, y) = det(∂jPi) ∈ K[x, y] . (1.33)

We shall also denote by ∆〈P 〉(x, y) its image in the tensor algebra

A⊗A ∼= K[x, y]/〈P1(x), . . . , Pn(x), P1(y), . . . , Pn(y)〉 . (1.34)

Remark 1.5.4. In the analytic context, the polynomials ∂jPi are the coeffi-
cients of the so called Hefer expansion of Pi. We refer to [TY84] for the
relationship between Hefer expansions and residues.

Theorem 1.5.5. The element ∆〈P 〉(x, y) ∈ A⊗A is a generalized Bezoutian.

This is Theorem 3.2 in [BCRS96]. It is easy to check that ∆〈P 〉 satisfies the
first condition characterizing generalized Bezoutians. Indeed, given the iden-
tification (1.34), it suffices to show that [f(x)] ·∆〈P 〉(x, y) = [f(y)] ·∆〈P 〉(x, y)
for all [f ] ∈ A. This follows directly from the definition of ∆〈P 〉. The proof
of the second property is much harder. Becker et al. show it by reduction to
the local case where it is obtained through a deformation technique somewhat
similar to that used in the geometric case in [AGZV85].
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We denote by τ the Kronecker symbol; that is, the dualizing linear form
associated with the Bezoutian ∆〈P 〉. As we shall see below, for K = C, the
Kronecker symbol agrees with the global residue. In order to keep the context
clear, we will continue to use the expression Kronecker symbol throughout
this section.

If H1/H2 is a rational function such that H2 does not vanish on Z(I), then
[H2] has an inverse [G2] in A and we define τ(H1/H2) := τ([H1] · [G2]).

If {[xα]} is a monomial basis of A and we write

∆〈P 〉(x, y) =
∑
xα∆α(y)

then {[xα]} and {[∆α(x)]} are dual basis and it follows from (1.30) and (1.34)
that

J〈P 〉(x) := Jτ (x) =
∑
α

xα∆α(x) = ∆〈P 〉(x, x) .

Since lim
y→x

∂jPi(x, y) =
∂Pi

∂xj
it follows that J〈P 〉(x) agrees with the standard

Jacobian of the polynomials P1, . . . , Pn. As we did in Section 1.1.2 for univari-
ate residues, we can go from the global Kronecker symbol to local operators.
Let Z(I) = {ξ1, . . . , ξs} and let

I = ∩ξ∈Z(I)Iξ

be the primary decomposition of I as in Section 2.1.3 of Chapter 2. Let Aξ =
K[x1, . . . , xn]/Iξ, we have an isomorphism:

A ∼=
∏

ξ∈Z(I)

Aξ .

We recall (cf. [CLO98, Sect. 4.2]) that there exist idempotents eξ ∈ K[x1, . . . , xn]
such that, in A,

∑
ξ∈Z(I) eξ = 1, eξi

eξj
= 0 if i �= j, and e2ξ = 1. These gener-

alize the interpolating polynomials we discussed in Section 1.1.2. We can now
define

τξ([H]) := τ(eξ · [H])

and it follows easily that the global Kronecker symbol is the sum of the local
ones. In analogy with the global case, we may define the local Kronecker
symbol τξ([H1/H2]) of a rational functionH1/H2, regular at ξ as τξ([H1]·[G2]),
where [G2] is the inverse of [H2] in the algebra Aξ. The following proposition
shows that in the case of simple zeros and K = C, the Kronecker symbol
agrees with the global residue defined in Section 1.5.1.

Proposition 1.5.6. Suppose that J〈P 〉(ξ) �= 0 for all ξ ∈ Z(I). Then

τ(H) =
∑

ξ∈Z(I)

H(ξ)
J〈P 〉(ξ)

(1.35)

for all H ∈ K[x1, . . . , xn].



1 Residues and resultants 33

Proof. Recall that the assumption that J〈P 〉(ξ) �= 0 for all ξ ∈ Z(I) implies
that [J〈P 〉] is invertible in A. Indeed, since J〈P 〉, P1, . . . , Pn have no common
zeros in Kn, the Nullstellensatz implies that there exists G ∈ K[x1, . . . , xn]
such that

G.J〈P 〉 = 1 mod I .

Given H ∈ K[x1, . . . , xn], consider the trace of the multiplication map
MH·G : A → A. On the one hand, we have from Theorem 2.1.4 in Chapter 2
that

tr(MH·G) =
∑

ξ∈Z(I)

H(ξ)G(ξ) =
∑

ξ∈Z(I)

H(ξ)
J〈P 〉(ξ)

.

But, recalling the definition of the Jacobian we also have

tr(MH·G) = τ(J〈P 〉 ·G ·H) = τ(H)

and (1.35) follows.

Remark 1.5.7. As in the geometric case discussed in Section 1.5.2 one can use
continuity arguments to show that the identification between the Kronecker
symbol and the global residue extends to the general case. We refer the reader
to [RS98] for a proof of this fact as well as for a proof of the Transformation
Laws in this context. In particular, Theorem 1.5.2 holds over any algebraically
closed field of characteristic zero.

1.5.4 Computation of residues

In this section we would like to discuss briefly some methods for the com-
putation of global residues; a further method is discussed in Section 3.3.1 in
Chapter 3. Of course, if the zero-dimensional ideal I = 〈P1, . . . , Pn〉 is radi-
cal and we can compute the zeros Z(I), then we can use (1.28) to compute
the local and global residue. We also point out that the transformation law
gives a general, though not very efficient, algorithm to compute local and
global residues. Indeed, since I is a zero dimensional ideal there exist univari-
ate polynomials f1(x1), f2(x2), . . . , fn(xn) in the ideal I. In particular we can
write

fj(xj) =
n∑

i=1

aij(x)Pi(x)

and for any H ∈ K[x1, . . . , xn],

res〈P 〉(H) = res〈f〉(H · det(aij)) . (1.36)

Moreover, the right hand side of the above equation may be computed as
an iterated sequence of univariate residues. What makes this a less than de-
sirable computational method is that even if the polynomials P1, . . . , Pn and
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f1, . . . , fn are very simple, the coefficients aij(x) need not be so. The following
example illustrates this.

Consider the polynomials

P1 = x2
1 − x3

P2 = x2 − x1x
2
3

P3 = x2
3 − x3

1

(1.37)

The ideal I = 〈P1, P2, P3〉 is a zero-dimensional ideal; the algebra A has di-
mension four, and the zero-locus Z(I) consists of two points, the origin, which
has multiplicity three, and the point (1, 1, 1). Gröbner basis computations with
respect to lexicographic orders give the following univariate polynomials in the
ideal I:

f1 = x4
1 − x3

1

f2 = x2
2 − x2

f3 = x3
3 − x2

3 .

(1.38)

We observe that we could also have used iterated resultants to find univariate
polynomials in I. However, this will generally yield higher degree polynomials.
For instance, for our example (1.37) a Singular [GPS01] computation gives:

>resultant(resultant(P_1,P_2,x_3),resultant(P_2,P_3,x_3),x_2);

x_1^10-2*x_1^9+x_1^8

Returning to the polynomials (1.38), we can obtain, using the Singular com-
mand “division”, a coefficient matrix A = (aij(x)):⎛⎝x2

1 + x3 x
3
3 + (x2

1 + x1 + 1)x2
3 + (x2

1 + x1 + x2)x3 + x2
1x2 (x1 + 1)x3 + x2

1

0 x3
1 + x2 − 1 0

1 (x1 + 1)(x2 + x3) + x2
3 x1 + x3

⎞⎠
So that

det(A) = (x2 + x3
1 − 1)x2

3 + (x2
1x2 + x5

1 − x3
1 − x2

1 − x2 + 1)x3 +
= x3

1x2 + x6
1 − x5

1 − x3
1 + x2

1 − x2
1x2 .

Rather than continuing with the computation of a global residue res〈P 〉(H)
using (1.36) and iterated univariate residues or Bezoutians, we will refer the
reader to Chapter 3 where improved versions are presented and discuss instead
how we can use the multivariate Bezoutian in computations. The Bezoutian
matrix (∂jPi) is given by⎛⎝x1 + y1 −x2

3 −(x2
1 + x1y1 + y21)

0 1 0
−1 −y1(x3 + y3) x3 + y3

⎞⎠
and therefore
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∆〈P 〉(x, y) = x1x3 + x1y3 + x3y1 + y1y3 − x2
1 − x1y1 − y21 .

Computing a Gröbner basis relative to grevlex gives a monomial basis of A
of the form {1, x1, x2, x3}. Reducing ∆〈P 〉(x, y) relative to the corresponding
basis of A⊗A we obtain:

∆〈P 〉(x, y) = (y2 − y3) + (y3 − y1)x1 + x2 + (y1 − 1)x3 .

Hence the dual basis of {1, x1, x2, x3} is the basis {x2−x3, x3−x1, 1, x1− 1}.
We now claim that given H ∈ K[x1, . . . , xn], if we compute the grevlex

normal form:
N(H) = λ0 + λ1[x1] + λ2[x2] + λ3[x3]

then, res〈P 〉(H) = λ2. More generally, suppose that {[xα]} is a monomial
basis of A and that {[∆α(x)]} is the dual basis given by the Bezoutian, then
if [H] =

∑
α λα[xα] and 1 =

∑
α µα[∆α],

res〈P 〉(H) =
∑
α

λαµα . (1.39)

Indeed, we have

res〈P 〉(H) = res〈P 〉(H · 1) = res〈P 〉
(∑

α

λαx
α ·

∑
β

µβ∆β

)
=

∑
α,β

λαµβres〈P 〉(xα ·∆β) =
∑
α

λαµα .

Although the computational method based on the Bezoutian allows us to
compute res〈P 〉(H) as a linear combination of normal form coefficients of H,
it would be nice to have a method that computes the global residue as a
single normal form coefficient, generalizing the univariate algorithm based on
the identities (1.10). This can be done if we make some further assumptions
on the generators of the ideal I. We will discuss here one such case which
has been extensively studied both analytically and algebraically, following
the treatment in [CDS96]. A more general algorithm will be presented in
Section 1.5.6. Assume the generators P1, . . . , Pn satisfy:

Assumption: P1, . . . , Pn are a Gröbner basis for some term order ≺.

Since we can always find a weight w ∈ Nn such that inw(Pi) = in≺(Pi),
i = 1, . . . , n, and given that I is a zero dimensional ideal, it follows that, up
to reordering the generators, our assumption is equivalent to the existence of
a weight w such that:

inw(Pi) = ci xri+1
i (1.40)

It is clear that in this case dimK(A) = r1 · · · rn, and a monomial basis of A is
given by {[xα] : 0 ≤ αi ≤ ri}.

We point out that, for appropriately chosen term orders, our assumption
leads to interesting examples.
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• Suppose ≺ is lexicographic order with xn ≺ · · · ≺ x1. In this case

Pi = cix
ri+1
i + P ′

i (xi, . . . , xn)

and degxi
(P ′

i ) ≤ r. This case was considered in [DS91].
• Let ≺ be degree lexicographic order with x1 ≺ · · · ≺ xn. Then

Pi(x) = cix
ri+1
i +

i−1∑
j=1

zj φij(x) + ψi(x) ,

where deg(φij) = ri and deg(ψi(x)) ≤ ri. This case has been extensively
studied by the Krasnoyarsk School (see, for example, [AY83, Ch. 21] and
[Tsi92, II.8.2]) using integral methods. Some of their results have been
transcribed to the algebraic setting in [BGV02] under the name of Pham
systems of type II.

Note also that the polynomials in (1.37) satisfy these conditions. Indeed,
for w = (3, 14, 5) we have:

inw(P1) = x2
1 , inw(P2) = x2 , inw(P3) = x2

3 (1.41)

The following theorem, which may be viewed as a generalization of the
basic univariate definition (1.1), is due to Aı̆zenberg and Tsikh. Its proof may
be found in [AY83, Ch. 21] and [CDS96, Th. 2.3].

Theorem 1.5.8. Let P1, . . . , Pn ∈ C[x1, . . . , xn] satisfy (1.40). Then for any

H ∈ C[x1, . . . , xn] res〈P 〉(H) is equal to the
1

x1 · · ·xn
-coefficient of the Laurent

series expansion of:

H(x)∏
i cix

ri+1
i

∏
i

(
1

1 + P ′
i (x)/(cix

ri+1
i )

)
, (1.42)

obtained through geometric expansions.

The following simple consequence of Theorem 1.5.8 generalizes (1.10) and
is the basis for its algorithmic applications.

Corollary 1.5.9. Let P1, . . . , Pn ∈ C[x1, . . . , xn] satisfy (1.40) and let {[xα] :
0 ≤ αi ≤ ri} be the corresponding monomial basis of A. Let µ = (r1, . . . , rn),
then

res〈P 〉([xα]) =
{

0 if α �= µ
1

c1···cn
if α = µ (1.43)

Remark 1.5.10. A proof of (1.43) using the Bezoutian approach may be found
in [BCRS96]. Hence, Corollary 1.5.9 may be used in the algebraic setting as
well.

As in the univariate case, we are led to the following algorithm for com-
puting residues when P1, . . . , Pn satisfy (1.40).
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Algorithm 1: Compute the normal formN(H) ofH ∈ K[x1, . . . , xn] relative
to any term order which refines w-degree. Then,

res〈P 〉(H) =
aµ

c1 · · · cn , (1.44)

where aµ is the coefficient of xµ in N(H).

Remark 1.5.11. Given a weight w for which (1.40) holds it is easy to carry the
computations in the above algorithm using the weighted orders wp (weighted
grevlex) and Wp (weighted deglex) in Singular [GPS01]. For example, for the
polynomials in (1.37), the Jacobian J〈P 〉(x) = 4x1x3 − 3x2

1 and we get:

> ring R = 0, (x1, x2, x3), wp(3,14,5);

> ideal I = x1^2-x3, x2-x1*x3^2, x3^2 - x1^3;

> reduce(4*x1*x3 - 3*x1^2,std(I));

4*x1*x3-3*x3

Thus, the x1x3 coefficient of the normal form of J〈P 〉(x) is 4, i.e. dimK(A) as
asserted by (1.30).

1.5.5 The Euler-Jacobi vanishing theorem

We will now discuss the multivariate extension of Theorem 1.1.8. The basic
geometric assumption that we need to make is that if we embed Cn in a suit-
able compactification then the ideal we are considering has all its zeros in
Cn. Here we will restrict ourselves to the case when the chosen compactifica-
tion is weighted projective space. The more general vanishing theorems are
stated in terms of global residues in the torus and toric compactifications as
in [Kho78a].

Let w ∈ Nn and denote by degw the weighted degree defined by w. We set
|w| = ∑

i wi. Let I = 〈P1, . . . , Pn〉 be a zero-dimensional complete intersection
ideal and write

Pi(x) = Qi(x) + P ′
i (x) ,

where Qi(x) is weighted homogeneous of w-degree di and degw(P ′
i ) < di.

We call Qi the leading form of Pi. We say that I has no zeros at infinity in
weighted projective space if and only if

Q1(x) = · · · = Qn(x) = 0 if and only if x = 0. (1.45)

In the algebraic context an ideal which has a presentation by generators
satisfying (1.45) is called a strict complete intersection [KK87].

Theorem 1.5.12 (Euler-Jacobi vanishing). Let I = 〈P1, . . . , Pn〉 be a
zero-dimensional complete intersection ideal with no zeros at infinity in
weighted projective space. Then,

res〈P 〉(H) = 0 if degw(H) <
n∑

i=1

degw(Pi)− |w|.
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Proof. We begin by proving the assertion in the particular case when Qi(x) =
xN+1

i . By linearity it suffices to prove that if xα is a monomial with 〈w,α〉 <
N |w|, then res〈P 〉(xα) = 0. We prove this by induction on δ = 〈w,α〉. If δ = 0
then xα = 1 and the result follows from Corollary 1.5.9. Suppose then that
the result holds for any monomial of degree less than δ = 〈w,α〉, if every
αi ≤ N then the result follows, again, from Corollary 1.5.9. If, on the other
hand, some αi > N then we can write

xα = xβ · Pi − xβ · P ′
i ,

where β = α − (N + 1)ei. It then follows that res〈P 〉(xα) = −res〈P 〉(xβ · P ′
i ),

but all the monomials appearing in the right-hand side have weighted degree
less than δ and therefore the residue vanishes.

Consider now the general case. In view of (1.45) and the Nullstellensatz
there exists N sufficiently large such that

xN+1
i ∈ 〈Q1(x), . . . , Qn(x)〉 .

In particular, we can write

xN+1
j =

n∑
i=1

aij(x)Qi(x) ,

where aij(x) is w-homogeneous of degree (N + 1)wj − di. Let now

Fj(x) =
n∑

i=1

aij(x)Pi(x) = xN+1
j + F ′

j(x) ,

and degw(F ′
j) < (N + 1)wj . Given now H ∈ K[x1, . . . , xn] with degw(H) <∑

i di − |w|, we have by the Global Transformation Law:

res〈P 〉(H) = res〈F 〉(det(aij) ·H) .

But, degw(det(aij)) ≤ (N + 1)|w| −∑
i di and therefore

degw(det(aij) ·H) ≤ degw(det(aij)) + degw(H) < N |w| ,

and the result follows from the previous case.

Remark 1.5.13. The Euler-Jacobi vanishing theorem is intimately connected
to the continuity of the residue. The following argument from [AGZV85, Ch. 1,
Sect. 5] makes the link evident. Suppose P1, . . . , Pn have only simple zeros
and satisfy (1.45). For simplicity we take w = (1, . . . , 1), the general case is
completely analogous. Consider the family of polynomials

P̃i(x; t) := tdiPi(t−1x1, . . . , t
−1xn) . (1.46)
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Note that P̃i(t · x, t) = tdiPi(x). In particular if Pi(ξ) = 0, P̃i(tξ; t) = 0 as
well. Suppose now that deg(H) <

∑
i di − n and let H̃(x; t) be defined as in

(1.46). Then

res〈P̃ 〉(H̃) =
∑

ξ∈Z(I)

H̃(tξ; t)
Jac〈P̃ 〉(tξ)

= ta
∑

ξ∈Z(I)

H(ξ)
Jac〈P 〉(ξ)

= tares〈P 〉(H) ,

where a = deg(H)− deg(Jac〈P 〉(x)) = deg(H)− (
∑

i di − n). Hence, if a < 0,
the limit

lim
t→0

res〈P̃ 〉(H̃)

may exist only if res〈P 〉(H) = 0 as asserted by the Euler-Jacobi theorem.

We conclude this subsection with some applications of Theorem 1.5.12 to
plane projective geometry (cf. [GH78, 5.2]). The following theorem is usually
referred to as the Cayley-Bacharach Theorem though, as Eisenbud, Green,
and Harris point out in [EGH96], it should be attributed to Chasles.

Theorem 1.5.14 (Chasles). Let C1 and C2 be curves in P2, of respective
degrees d1 and d2, intersecting in d1d2 distinct points. Then, any curve of
degree d = d1 + d2− 3 that passes through all but one of the points in C1 ∩C2

must pass through the remaining point as well.

Proof. After a linear change of coordinates, if necessary, we may assume that
no point in C1 ∩ C2 lies in the line x3 = 0. Let Ci = {P̃i(x1, x2, x3) = 0},
degPi = di. Set Pi(x1, x2) = P̃i(x1, x2, 1). Given H̃ ∈ K[x1, x2, x3], homoge-
neous of degree d, let H ∈ K[x1, x2] be similarly defined. We can naturally
identify the points in C1 ∩ C2 with the set of common zeros

Z = {ξ ∈ K2 : P1(ξ) = P2(ξ) = 0} .
Since degH < degP1+degP2−2, Theorem 1.5.12 implies that res〈P 〉(H) = 0,
but then

0 = res〈P 〉(H) =
∑
ξ∈Z

H(ξ)
Jac〈P 〉(ξ)

which implies that if H vanishes at all but one of the points in Z it must
vanish on the remaining one as well.

Corollary 1.5.15 (Pascal’s Mystic Hexagon). Consider a hexagon in-
scribed in a conic curve of P2. Then, the pairs of opposite sides meet in
collinear points.

Proof. Let L1 . . . L6 denote the hexagon inscribed in the conic Q ⊂ P2, where
Li is a line in P2. Let ξij denote the intersection point Li ∩ Lj . Consider the
cubic curves C1 = L1+L3+L5 and C2 = L2+L4+L6. The intersection C1∩C2

consists of the nine points ξij with i odd and j even. The cubic Q+L(ξ14ξ36),
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where L(ξ14ξ36) denotes the line joining the two points, passes through eight
of the points in C1 ∩ C2 hence must pass through the ninth point ξ52. For
degree reasons this is only possible if ξ52 ∈ L(ξ14ξ36) and therefore the three
points are collinear.

1.5.6 Homogeneous (projective) residues

In this section we would like to indicate how the notion or residue may be
extended to meromorphic forms in projective space. This is a special instance
of a much more general theory of residues in toric varieties. A full discussion
of this topic is beyond the scope of these notes so we will restrict ourselves to
a presentation of the basic ideas, in the case K = C, and refer the reader to
[GH78, TY84, PS83, Cox96, CCD97] for details and proofs.

Suppose F0, . . . , Fn ∈ C[x0, . . . , xn] are homogeneous polynomials of de-
grees d0, . . . , dn, respectively. Let Vi = {x ∈ Pn : Fi(x) = 0} and assume
that

V0 ∩ V1 · · · ∩ Vn = ∅ . (1.47)

This means that the zero locus of the ideal I = 〈F0, . . . , Fn〉 is the origin
0 ∈ Cn+1. Given any homogeneous polynomial H ∈ C[x0, . . . , xn] we can
define the projective residue ofH relative to the n+1-tuple 〈F 〉 = {F0, . . . , Fn}
as:

resPn

〈F 〉(H) := res〈F 〉(H) = res〈F 〉,0(H).

It is clear from the integral definition of the Grothendieck residue, that the
local residue at 0 is invariant under the change of coordinates xi �→ λxi,
λ ∈ C∗. On the other hand, if deg(H) = d we see that, for

ρ :=
n∑

i=0

(di − 1) ,

H(λ · x)
F0(λ · x) · · ·Fn(λ · x)d(λx0) ∧ · · · ∧ d(λxn) =

λd−ρ H(x)
F0(x) · · ·Fn(x)

dx0 ∧ · · · ∧ dxn .

Hence,
resPn

〈F 〉(H) = 0 if deg(H) �= ρ .
Being a global (and local) residue, the projective residue is a dualizing

form in the algebra A = C[x0, . . . , xn]/I. Moreover, since I is a homogeneous
ideal, A is a graded algebra and the projective residue is compatible with the
grading. These dualities properties are summarized in the following theorem.

Theorem 1.5.16. The graded algebra A = ⊕Ad satisfies:

a) Ad = 0 for d > ρ := d0 + · · ·+ dn − (n+ 1).
b) Aρ

∼= C.
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c) For 0 ≤ d ≤ ρ, the bilinear pairing

Ad ×Aρ−d → C ; ([H1], [H2]) �→ resPn

〈F 〉(H1 ·H2)

is non-degenerate.

Proof. The assumption (1.47) implies that F0, . . . , Fn are a regular sequence
in the ring C[x0, . . . , xn]. Computing the Poincaré series for A using the exact-
ness of the Koszul sequence yields the first two assertions. See [PS83, Sect. 12]
for details. A proof using residues may be found in [Tsi92, Sect. 20]. The last
assertion follows from Theorem 1.5.1.

An important application of Theorem 1.5.16 arises in the study of smooth
hypersurfaces XF = {x ∈ Pn : F (x) = 0}, of degree d, in projective space
[CG80]. In this case we take Fi = ∂F/∂xi , the smoothness condition means
that {F0, . . . , Fn} satisfy (1.47), and the Hodge structure of X may be
described in terms of the Jacobian ideal generated by {∂F/∂xi}. Indeed,
ρ = (n+ 1)(d− 2) and setting, for 0 ≤ p ≤ n− 1, δ(p) := d(p+ 1)− (n+ 1),
we have δ(p) + δ(n− 1− p) = ρ, and

Hp,n−1−p(X) ∼= Aδ(p) .

Moreover, the pairing

resPn

〈F 〉 : Aδ(p) ×Aδ(n−1−p) → C

corresponds to the intersection pairing

Hp,n−1−p(X)×Hn−1−p,p(X) → C .

The projective residue may be related to affine residues in a different way. If
we identify Cn ∼= {x ∈ Pn : x0 �= 0}, then after a linear change of coordinates,
if necessary, we may assume that for every i = 0, . . . , n,

Zi := V0 ∩ · · · ∩ V̂i ∩ · · · ∩ Vn ⊂ Cn . (1.48)

Let Pi ∈ C[x1, . . . , xn] be the polynomial Pi(x1, . . . , xn) = Fi(1, x1, . . . , xn)
and let us denote by 〈P î〉 the n-tuple of polynomials P0, . . . , Pi−1, Pi+1, . . . , Pn.

Theorem 1.5.17. For any homogeneous polynomial H ∈ C[x0, . . . , xn] with
deg(H) ≤ ρ ,

resPn

〈F 〉(H) := (−1)i res〈P î〉(h/Pi) , (1.49)

where h(x1, . . . , xn) = H(1, x1, . . . , xn).

Proof. We will only prove the second, implicit, assertion that the right-hand
side of (1.49) is independent of i. This statement, which generalizes the iden-
tity (1.11), is essentially Theorem 5 in [TY84]. For the main assertion we refer
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to [CCD97, Sect. 4], where it is proved in the more general setting of simplicial
toric varieties.

Note that the assumption (1.47) implies that the rational function h/Pi

is regular on Zi and hence it makes sense to compute res〈P î〉(h/Pi). For each
i = 0, . . . , n, consider the n-tuple of polynomials in K[x1, . . . , xn]: 〈Qi〉 =
{P0, . . . , (Pi · Pi+1), . . . , Pn}, if i < n and 〈Qn〉 = {P1, . . . , Pn−1, (Pn · P0)}.
The set of common zeros of the polynomials in Qi is Z(Qi) = Zi ∪ Zi+1.
Hence, it follows from (1.48) that the ideal generated by the n-tuple Qi is
zero-dimensional and has no zeros at infinity. Hence, given that deg(H) ≤ ρ,
the Euler-Jacobi vanishing theorem implies that

0 = res〈Qi〉(h) =
∑
ξ∈Zi

res〈Qi〉,ξ(h) +
∑

ξ∈Zi+1

res〈Qi〉,ξ(h)

=
∑
ξ∈Zi

res〈P î〉,ξ(h/Pi) +
∑

ξ∈Zi+1

res〈P̂i+1〉,ξ(h/Pi+1)

= res〈P î〉(h/Pi) + res〈P̂i+1〉(h/Pi+1)

and, consequently, the theorem follows. We should point out that the equality
res〈Qi〉,ξ(h) = res〈P î〉,ξ(h/Pi), which is clear from the integral definition of the
local residue, may be obtained in the general case from the Local Transfor-
mation Law and the fact that res〈P î〉,ξ(h/Pi) was defined as res〈P î〉,ξ(h ·Qi),

where Qi inverts Pi in the local algebra Aî
ξ and, consequently, the statement

holds over any algebraically closed field of characteristic zero.

We can use the transformation law to exhibit a polynomial ∆(x) of degree
ρ with non-zero residue. Write

Fj =
n∑

i=0

aij(x)xi ; j = 0, . . . , n ,

and set ∆(x) = det(aij(x)). Then, deg(∆) = ρ, and

resPn

〈F 〉(∆) = 1 (1.50)

Indeed, let 〈G〉 denote the n+ 1-tuple G = {x0, . . . , xn}. Then by the trans-
formation law

resPn

〈G〉(1) = resPn

〈F 〉(∆)

and a direct computation shows that the left-hand side of the above identity
is equal to 1.

Putting together part b) of Theorem 1.5.16 with (1.50) we obtain the fol-
lowing normal form algorithm for computing the projective residue resPn

〈F 〉(H):

Algorithm 2: 1. Compute a Gröbner basis of the ideal 〈F0, . . . , Fn〉.
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2. Compute the normal form N(H) of H and the normal form N(∆) of
∆, with respect to the Gröbner basis.

3. The projective residue resPn

〈F 〉(H) =
N(H)
N(∆)

.

Remark 1.5.18. There is a straightforward variant of this algorithm valid for
weighted homogeneous polynomials. This more general algorithm has been
used by Batyrev and Materov [BM02], to compute the Yukawa 3-point func-
tion of the generic hypersurface in weighted projective P4

w, w = (1, 1, 2, 2, 2).
This function, originally computed in [CdlOF+94] has a series expansion
whose coefficients have enumerative meaning. We refer to [BM02, 10.3] and
[CK99, 5.6.2.1] for more details.

We can combine Theorem 1.5.17 and Algorithm 2 to compute the global
(affine) residue with respect to a zero-dimensional complete intersection ideal
with no zeros at infinity in projective space. The construction below is a special
case of a much more general algorithm described in [CD97] and it applies, in
particular, to the weighted case as well. It also holds over any algebraically
closed field K of characteristic zero.

Let I = {P1, . . . , Pn} ∈ K[x1, . . . , xn] be polynomials satisfying (1.45). Let
di = deg(Pi) and denote by

Fi(x0, x1, . . . , xn) := xdi
0 P (

x1

x0
, . . . ,

xn

x0
)

the homogenization of Pi. Let h(x1, . . . , xn) ∈ K[x1, . . . , xn]. If d = deg(h) <∑
i(di − 1), then res〈P 〉(h) = 0 by the Euler-Jacobi theorem. Suppose, then

that d ≥∑
i(di − 1), let H ∈ K[x0, . . . , xn] be its homogenization, and let

F0 = xd0
0 ; d0 = d−

n∑
i=1

(di − 1) + 1 .

Then, d =
∑n

i=0(deg(Fi)− 1) and it follows from Theorem 1.5.17 that

resPn

〈F 〉(H) = res〈P 0̂〉(h/P0) = res〈P 〉(h) .

1.5.7 Residues and elimination

One of the basic applications of residues is to elimination theory. The key idea
is very simple (see also Section 3.3.1 in Chapter 3). Let I = 〈P1, . . . , Pn〉 ⊂
K[x1, . . . , xn] be a zero-dimensional, complete intersection ideal. Let ξi =
(ξi1, . . . , ξin) ∈ Kn, i = 1, . . . , r, be the zeros of I. Let µ1, . . . , µr denote their
respective multiplicities. Then the power sum

S
(k)
j :=

r∑
i=1

ξkij
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is the trace of the multiplication map Mxk
j
: A → A and, therefore, it may be

expressed as a global residue:

S
(k)
j = tr(Mxk

j
) = res〈P 〉(xk

j · J〈P 〉(x)).

The univariate Newton identities of Section 1.2.5 now allow us to compute
inductively the coefficients of a polynomial in the variable xj with roots at
ξ1j , . . . , ξrj ∈ K and respective multiplicities µ1, . . . , µr.

We illustrate the method with the following example. Let

I = 〈x3
1 + x2

1 − x2, x
3
1 − x2

2 + x1x2〉 .

It is easy to check that the given polynomials are a Gröbner basis for any term
order that refines the weight order defined by w = (5, 9). The leading terms are
x3

1,−x2
2. A normal form computation following Algorithm 1 in Section 1.5.4

yields:

S
(1)
1 = −2 ; S(2)

1 = 4 ; S(3)
1 = −2 ; S(4)

1 = 0 ; S(5)
1 = 8 ; S(6)

1 = −20.

For example, the following Singular [GPS01] computation shows how the val-
ues S(3)

1 and S(4)
1 were obtained:

> ring R = 0, (x1,x2), wp(5,9);

> ideal I = x1^3 + x1^2 - x2, x1^3 - x2^2 + x1*x2;

> poly J = -6*x1^2*x2+3*x1^3-4*x1*x2+5*x1^2+x2;

> reduce(x1^3*J,std(I));

2*x1^2*x2+2*x1*x2+10*x1^2-10*x2

> reduce(x1^4*J,std(I));

-8*x1*x2-12*x1^2+12*x2

Now, using the Newton identities (1.16) we may compute the coefficients of a
monic polynomial of degree 6 on the variable x1 lying on the ideal:

a5 = 2 ; a4 = 0 ; a3 = −2 ; a2 = 0 ; a1 = 0 ; a0 = 0.

Hence, f1(x1) = x6
1 + 2x5

1 − 2x3
1 ∈ I.

We refer the reader to [AY83, BKL98] for a fuller account of this elimina-
tion procedure. Note also that in Section 3.6 of Chapter3 there is an applica-
tion of residues to the implicitization problem.

1.6 Multivariate resultants

In this section we will extend the notion of the resultant to multivariate sys-
tems. We will begin by defining the resultant of n+1 homogeneous polynomials
in n + 1 variables and discussing some formulas to compute it. We will also
discuss some special examples of the so-called sparse or toric resultant.
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1.6.1 Homogeneous resultants

When trying to generalize resultants associated to polynomials in any num-
ber of variables, the first problem one faces is which families of polynomials
one is going to study, i.e. which will be the variables of the resultant. For
example, in the univariate case, fixing the degrees d1, d2 amounts to setting
(a0, . . . , ad1 , b0, . . . , bd2) as the input variables for the resultant Resd1,d2 . One
obvious, and classical choice, in the multivariable case is again, to fix the
degrees d0, . . . , dn of n + 1 polynomials in n variables, which will generally
define an overdetermined system. If one wants the vanishing of the resultant
Resd0,...,dn

to be equivalent to the existence of a common root, one realizes
that a compactification of affine space naturally comes into the picture, in
this case projective n-space.

Consider, for instance, a bivariate linear system⎧⎨⎩ f0(x, y) = a00x+ a01y + a02
f1(x, y) = a10x+ a11y + a12
f2(x, y) = a20x+ a21y + a22

(1.51)

We fix the three degrees equal to 1, i.e. we have nine variables aij (i, j =
0, 1, 2), and we look for an irreducible polynomial Res1,1,1 ∈ Z[aij , i, j =
0, 1, 2] which vanishes if and only the system has a solution (x, y). If such
a solution (x, y) exists, then (x, y, 1) would be a non-trivial solution of the
augmented 3× 3-linear system and consequently the determinant of the ma-
trix (aij) must vanish. However, as the following example easily shows, the
vanishing of the determinant does not imply that (1.51) has a solution. Let⎧⎨⎩ f0(x, y) = x+ 2y + 1

f1(x, y) = x+ 2y + 2
f2(x, y) = x+ 2y + 3

The determinant vanishes but the system is incompatible in C2. On the other
hand, the lines defined by fi(x, y) = 0 are parallel and therefore we may view
them as having a common point at infinity in projective space. We can make
this precise by passing to the homogenized system⎧⎨⎩F0(x, y, z) = x+ 2y + z

F1(x, y, z) = x+ 2y + 2z
F2(x, y, z) = x+ 2y + 3z,

which has non zero solutions of the form (−2y, y, 0), i.e. the homogenized
system has a solution in the projective plane P2(C), a compactification of the
affine plane C2.

We denote x = (x0, . . . , xn) and for any α = (α0, . . . , αn) ∈ Nn+1, |α| =
α0 + · · · + αn, xα = xα0

0 . . . xαn
n . Recall that f =

∑
α aαx

α ∈ k[x0, . . . , xn] is
called homogeneous (of degree deg(f) = d) if |α| = d for all |α| with aα �= 0, or
equivalently, if for all λ ∈ k, it holds that f(λ x) = λd f(x), for all x ∈ kn+1.
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As we already remarked in Section 1.3.1, the variety of zeros of a homogeneous
polynomial is well defined over Pn(k) =

(
kn+1\{0}) / ∼, where we identify

x ∼ λx, for all λ ∈ k\{0}. As before, K denotes the algebraic closure of k.
The following result is classical.

Theorem 1.6.1. Fix d0, . . . , dn ∈ N and write Fi =
∑

|α|=di
aiαx

α, i =
1, . . . , n. There exists a unique irreducible polynomial

Resd0,...,dn
(F0, . . . , Fn) ∈ Z[aiα ; i = 0, . . . , n, |α| = di]

which verifies:

(i) Resd0,...,dn
(F0, . . . , Fn) = 0 for a given specialization of the coefficients in

k if and only if there exists x ∈ Pn(K) such that F0(x) = · · · = Fn(x) = 0.
(ii)Resd0,...,dn

(xd0
0 , . . . , x

dn
n ) = 1.

The resultant Resd0,...,dn
depends on N variables, where N =

∑n
i=0

(
n+di

di

)
.

A geometric proof of this theorem, which is widely generalizable, can be found
for instance in [Stu98]. It is based on the consideration of the incidence variety

Z = {((aiα), x) ∈ KN × Pn(K) :
∑

|α|=di

aiαx
α, i = 1, . . . , n},

and its two projections to KN and Pn(K). In fact, Z is an irreducible variety
of dimension N − 1 and the fibers of the first projection is generically 1 − 1
onto its image.

As we noticed above, in the linear case d0 = · · · = dn = 1, the resultant
is the determinant of the linear system. We now state the main properties of
multivariate homogeneous resultants, which generalize the properties of deter-
minants and of the univariate resultant (or bivariate homogeneous resultant)
in Section 1.3.2. The proofs require more background, and we will omit them.

Main properties

i) The resultant Resd0,...,dn
is homogeneous in the coefficients of Fi of de-

gree d0 . . . di−1di+1 . . . dn, i.e. by Bézout’s theorem, the number of generic
common roots of F0 = · · · = Fi−1 = Fi+1 = · · · = Fn = 0.

ii) The resultants Resd0,...,di...,dj ,...,dn
and Resd0,...,dj ...,di,...,dn

coincide up to
sign.

iii) For any monomial xγ of degree |γ| greater than the critical degree ρ :=∑n
i=0(di−1), there exist homogeneous polynomials A0, . . . , An in the vari-

ables x0, . . . , xn with coefficients in Z[(aiα)] and deg(Ai) = |γ| − di, such
that

Resd0,...,dn
(F0, . . . , Fn) · xγ = A0F0 + · · ·+AnFn. (1.52)
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Call fi(x1, . . . , xn) = Fi(1, x1, . . . , xn) ∈ k[x1, . . . xn] the dehomogeniza-
tions of F0, . . . , Fn. One can define the resultant

Resd0,...,dn
(f0, . . . , fn) := Resd0,...,dn

(F0, . . . , Fn)

and try to translate to the affine setting these properties of the homogeneous
resultant. We point out the following direct consequence of (1.52). Taking
γ = (ρ + 1, 0, . . . , 0) and then specializing x0 = 1, we deduce that there
exist polynomials A0, . . . , An ∈ Z[(aiα)][x1, . . . , xn], with deg(Ai) bounded by
ρ+ 1− di =

∑
j �=i di − n, and such that

Resd0,...,dn
(f0, . . . , fn) = A0f0 + · · ·+Anfn. (1.53)

As we remarked in the linear case, the resultant Resd0,...,dn
(f0, . . . , fn)

can vanish even if f0, . . . , fn do not have any common root in Kn if their
homogenizations F0, . . . , Fn have a nonzero common root with x0 = 0. Denote
by fi,di

= Fi(0, x1, . . . , xn) the homogeneous component of top degree of each
fi. The corresponding version of Proposition 1.3.2 is as follows.

Proposition 1.6.2. (Homogeneous Poisson formula) Let F0, . . . , Fn be
homogeneous polynomials with degrees d0, . . . , dn and let fi(x1, . . . , xn) and
fi,di

(x1, . . . , xn) as above. Then

Resd0,...,dn
(F0, . . . , Fn)) = Resd1,...,dn

(f1,d1 , . . . , fn,dn
)d0

∏
ξ∈V

f0(ξ)mξ ,

where V is the common zero set of f1, . . . , fn, and mξ denotes the multiplicity
of ξ ∈ V .

This factorization holds in the field of rational functions over the co-
efficients (aiα). Stated differently, the product

∏
ξ∈V f0(ξ)

mξ is a rational
function of the coefficients, whose numerator is the irreducible polynomial
Resd0,...,dn

(F0, . . . , Fn) and whose denominator is the d0 power of the irre-
ducible polynomial Resd1,...,dn

(f1,d1 , . . . , fn,dn
), which only depends on the

coefficients of the monomials of highest degree d1, . . . , dn of f1, . . . , fn. Note
that taking F0 = x0 we get, in particular, the expected formula

Res1,d1,...,dn
(x0, F1, . . . , Fn) = Resd1,...,dn

(f1,d1 , . . . , fn,dn
). (1.54)

Another direct consequence of Proposition 1.6.2 is the multiplicative pro-
perty:

Resd′
0.d′′

0 ,d1,...,dn
(F ′

0 · F ′′
0 , F1, . . . , Fn) = (1.55)

Resd′
0,d1,...,dn

(F ′
0, F1, . . . , Fn) · Resd′′

0 ,d1,...,dn
(F ′′

0 , F1, . . . , Fn),

where F ′
0, F

′′
0 are homogeneous polynomials of respective degrees d′0, d

′′
0 . More

details and applications of the homogeneous resultant to study V and the
quotient ring by the ideal 〈f1, . . . , fn〉 can be found in 2, Section 2.3.2.
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Some words on the computation of homogeneous resultants

When trying to find explicit formulas for multivariate resultants like the
Sylvester or Bézout formulas (1.22) (1.25), one starts searching for maps as
(1.21) which are an isomorphism if and only if the resultant does not van-
ish. But this is possible only in very special cases or low dimensions, and
higher linear algebra techniques are needed, in particular the notion of the
determinant of a complex [GKZ94]. Given d0, . . . , dn, the first idea to find a
linear map whose determinant equals the resultant Resd0,...,dn

(F0, . . . , Fn), is
to consider the application

Sρ+1−d0 × · · · × Sρ+1−dn
−→ Sρ+1

(G0, . . . , Gn) �−→ G0F0 + · · ·+GnFn,
(1.56)

where we denote by S� the space of homogeneous polynomials of degree � and
we recall that ρ+ 1 = d0 + · · ·+ dn − n.

For any specialization in K of the coefficients of F0, . . . , Fn (with respec-
tive degrees d0, . . . , dn), we get a K-linear map between finite dimensional
K-vector spaces which is surjective if and only if F0, . . . , Fn do not have any
common root in Kn+1 \ {0}. But it is easy to realize that the dimensions are
not equal, except if n = 1 or d0 = · · · = dn = 1. Macaulay [Mac02, Mac94]
then proposed a choice of a generically non zero maximal minor of the cor-
responding rectangular matrix in the standard bases of monomials, which
exhibits the multivariate resultant not as a determinant but as a quotient of
two determinants. More details on this can be found in Chapters 2 and 3; see
also [CLO98].

We now recall the multivariate Bezoutian defined in Section 1.5 (cf. also
Chapter 3).

Let F0, . . . , Fn polynomials of degrees d0, . . . , dn. Write x = (x0, . . . , xn),
y = (y0, . . . , yn) and let Fi(x)−Fi(y) =

∑n
j=0 Fij(x, y)(xj−yj), where Fij are

homogeneous polynomials in 2(n+1) variables of degree di−1. The Bezoutian
polynomial ∆〈F 〉 is defined as the determinant

∆〈F 〉(x, y) = det((Fij(x, y))) =
∑
|α|≤ρ

∆α(x)yα.

For instance, we can take as in (1.32)

Fij(x, y) = (Fi(y0, . . . , yj−1, xj , . . . , xn) − Fi(y0, . . . , yj , xj+1, . . . , xn)) /(xj − yj).

This polynomial is well defined modulo 〈F0(x) − F0(y), . . . , Fn(x)− Fn(y)〉.
Note that the sum of the degrees deg(∆α) + |α| equals the critical degree
ρ =

∑
i(di− i). In fact, for any specialization of the coefficients in k such that

Rd0,...,dn
(F0, . . . , Fn) is non zero, the specialized polynomials {∆α, |α| = m}

give a system of generators (over k) of the classes of homogeneous polynomials
of degree m in the quotient k[x0, . . . , xn]/〈F0(x), . . . , Fn(x)〉, for any m ≤ ρ.
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In particular, according to Theorem 1.5.16, the graded piece of degree ρ of
the quotient has dimension one and a basis is given by the coefficient

∆0(x) = ∆〈F 〉(x, 0). (1.57)

On the other side, by (1.52), any homogeneous polynomial of degree at least
ρ+ 1 lies in the ideal 〈F0(x), . . . , Fn(x)〉.

There is a determinantal formula for the resultant Resd0,...,dn
(as the de-

terminant of a matrix involving coefficients of the given polynomials and co-
efficients of their Bezoutian ∆〈F 〉) only when d2 + · · · + dn < d0 + d1 + n.
In general, it is possible to find smaller Macaulay formulas than those arising
from (1.56), as the quotient of the determinants of two such explicit matrices
(c.f. [Jou97], [WZ94], [DD01]).

Assume for example that n = 2, (d0, d1, d2) = (1, 1, 2) , and let

F0 = a0x0 + a1x1 + a2x2

F1 = b0x0 + b1x1 + b2x2

F2 = c1x
2
0 + c2x2

1 + c3x2
2 + c4x0x1 + c5x0x2 + c6x1x2

be generic polynomials of respective degrees 1, 1, 2. Macaulay’s classical matrix
looks as follows: ⎛⎜⎜⎜⎜⎜⎜⎝

a0 0 0 0 0 c1
0 a1 0 b1 0 c2
0 0 a2 0 b2 c3
a1 a0 0 b0 0 c4
a2 0 a0 0 b0 c5
0 a2 a1 b2 b1 c6

⎞⎟⎟⎟⎟⎟⎟⎠
and its determinant equals −a0Res1,1,2. In this case, the extraneous factor a0
is the 1×1 minor formed by the element in the fourth row, second column. On
the other hand, we can exhibit a determinantal formula for ±Res1,1,2, given
by the determinant of ⎛⎝∆(1,0,0) a0 b0

∆(0,1,0) a1 b1
∆(0,0,1) a2 b2

⎞⎠ ,
where the coefficients ∆γ of the Bezoutian ∆〈F 〉 are given by

∆(1,0,0) = c1(a1b2 − a2b1)− c4(a0b2 − a2b0) + c5(a0b1 − a1b0),

∆(0,1,0) = c6(a0b1 − a1b0)− c2(a0b2 − b0a2)
and

∆(0,0,1) = c3(a0b1 − b0a1).
In fact, in this case the resultant can be also computed as follows. The

generic space of solutions of the linear system f0 = f1 = 0 is generated by the
vector of minors (a1b2 − a2b1,−(a0b2 − a2b0), a1b2 − a2b1). Then
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Res1,1,2(F0, F1, F2) = F2(a1b2 − a2b1,−(a0b2 − a2b0), a1b2 − a2b1).
Suppose now that F0 =

∑n
i=0 aixi is a linear form. As in expression (1.54)

one gets, using the homogeneity of the resultant, that

Res1,d1,...,dn(F0, F1, . . . , Fn) = ad1...dn
0 Res1,d1,...,dn(x0 +

n∑
i=1

ai

a0
xi, F1, . . . , Fn)

= ad1...dn
0 Resd1,...,dn(F1(−

n∑
i=1

ai

a0
xi, x1, . . . , xn), . . . , Fn(−

n∑
i=1

ai

a0
xi, x1, . . . , xn)).

More generally, let �0, . . . , �r−1 be generic linear forms and Fr, . . . , Fn be
homogeneous polynomials of degree dr, . . . , dn on the variables x0, . . . , xn.
Write �i =

∑n
j=0 a

i
jxj and for any subset J of {0, . . . , n}, |J | = r, denote by

δJ the determinant of the square submatrix AJ := (ai
j), j ∈ J . Obviously,

δJ ∈ Z[ai
j , j ∈ J ] vanishes if and only if �0 = · · · = �r−1 = 0 cannot be

parametrized by the variables (xj)j /∈J .
Assume for simplicity that J = {0, . . . , r − 1} and let δJ �= 0. Left mul-

tiplying by the inverse matrix of AJ , the equality A.xt = 0 is equivalent
to xk = k-th coordinate of −(AJ )−1.(ai

j)j /∈J(xr, . . . , xn)t, for all k ∈ J.
Call F J

j (xr, . . . , xn), j = r, . . . , n, the homogeneous polynomials of degrees
dr, . . . , dn respectively gotten from Fj , j = r, . . . , n after this substitution.
Using standard properties of Chow forms (defined below), we then have

Proposition 1.6.3. Up to sign,

Res1,...,1,dr,...,dn
(�0, . . . , �r−1, Fr, . . . , Fn) = δdr...dn

J Resdr,...,dn
(F J

r , . . . , F
J
n ).

In case r = n we moreover have

Res1,...,1,dn
(�0, . . . , �n−1, Fn) = Fn(δ{1,...,n},−δ{0,2,...,n}, . . . , (−1)nδ{0,...,n−1}).

As we have already remarked in the univariate case, resultants can, in
principle, be obtained by a Gröbner basis computation using an elimination
order. However, this is often not feasible in practice, while using geometric
information contained in the system of equations to build the resultant ma-
trices may make it possible to obtain the result. These matrices may easily
become huge (c.f. [DD01] for instance), but they are structured. For some
recent implementations of resultant computations in Macaulay2 and Maple,
together with examples and applications, we also refer to [Bus03].

The unmixed case

Assume we have an unmixed system, i.e. all degrees are equal. Call d0 = · · · =
dn = d and write Fi(x) =

∑
|γ|=d aiγx

γ . Then, the coefficients of each ∆α are
linear combinations with integer coefficients of the brackets [γ0, . . . , γn] :=
det(aiγj

, i, j = 0, . . . , n), for any subset {γ0, . . . , γn} of multi-indices of degree
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d. In fact, in this equal-degree case, if F0, . . . , Fn and G0, . . . , Gn are homo-
geneous polynomials of degree d, and Gi =

∑n
j=0mijFj , i = 0, . . . , n, where

M = (mij) ∈ k(n+1)×(n+1), then,

Resd,...,d(G0, . . . , Gn) = det(M)dn

Resd,...,d(F0, . . . , Fn).

In particular, the resultant Resd,...,d is invariant under the action of the group
SL(n,k) of matrices with determinant 1, and by the Fundamental Theorem
of Invariant Theory, there exists a (non unique) polynomial P in the brackets
such that Resd,...,d(F0, . . . , Fn) = P ([γ0, . . . , γn], |γi| = d). There exists a de-
terminantal formula in terms of the coefficients of the Bezoutian as in (1.24)
only if n = 1 or d = 1. In the “simple” case n = 2, d = 2, Res2,2,2 is a degree
12 polynomial with more than 20,000 terms in the 18 coefficients of F0, F1, F2,
while it has degree 4 in the 20 brackets with considerably fewer terms.

Given a projective variety X ∈ PN (K), of dimension n, and n generic
linear forms �1, . . . , �n, the intersection X ∩ (�1 = 0)∩· · ·∩ (�n = 0) is finite of
cardinal equal to the degree of the variety deg(X). If we take instead (n+ 1)
generic linear forms �0, . . . , �n in PN (K), the intersection X� := X∩ (�0 = 0)∩
· · · ∩ (�n = 0) is empty. The Chow form CX of X is an irreducible polynomial
in the coefficients of �0, . . . , �n verifying

CX(�0, . . . , �n) = 0 ⇐⇒ X� �= ∅.
Consider for example the twisted cubic, i.e the curve V defined as the

closure in P3(K) of the points parametrized by (1 : t : t2 : t3), t ∈ K. It can
also be presented as

V = {(ξ0 : ξ1 : ξ2 : ξ3) ∈ P3(K) : : ξ21 − ξ0ξ2 = ξ22 − ξ1ξ3 = ξ0ξ3 − ξ1ξ2 = 0}.
Given a linear form �0 = a0ξ0 + a1ξ1 + a2ξ2 + a3ξ3 (resp. �1 = b0ξ0 + b1ξ1 +
b2ξ2 + b3ξ3), a point in V of the form (1 : t : t2 : t3) is annihilated by �0 (resp.
�1) if and only if t is a root of the cubic polynomial f0 = a0 +a1t+a2t2 +a3t3

(resp. f1 = b0 + b1t+ b2t2 + b3t3). It follows that

CV (�0, �1) = Res3,3(f0, f1).

In general, given n and d, denote N =
(
n+d

d

)
and consider the Veronese

variety Vn,d in PN−1(K) defined as the image of the Veronese map

Pn(K) −→ PN−1(K)
(t0 : · · · : tn) �−→ (tα)|α|=d.

Given coefficients (aiα, i = 0, . . . , n, |α| = d), denote by �i =
∑

|α|=d aiαξα
and fi =

∑
|α|=d aiαt

α, i = 0, . . . , n, the corresponding linear forms in the N
variables ξα and degree d polynomials in the n variables ti. Then,

CVn,d
(�0, . . . , �n) = Resd,...,d(f0, . . . , fn).

For the use of exterior algebra methods to compute Chow forms, and a fortiori
unmixed resultants, we refer to [ESW03].
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1.6.2 A glimpse of other multivariate resultants

Resultants behave quite badly with respect to specializations or give no in-
formation, and so different notions of resultants tailored for special families
of polynomials are needed, together with appropriate different algebraic com-
pactifications.

Suppose we want to define a resultant which describes the existence of a
common root of three degree 2 polynomials of the form

fi(x1, x2) = ai x1x2 + bi x1 + ci x2 + di ; ai, bi, ci, di ∈ K, i = 0, 1, 2, (1.58)

i.e. ranging in the subvariety of the degree 2 polynomials with zero coefficients
in the monomials x2

1, x
2
2. Note that the homogenized polynomials

Fi(x0, x1, x2) = = ai x1x2 + bi x0 x1 + ci x0 x2 + di x
2
0, i = 0, 1, 2,

vanish at (0, 1, 0) and (0, 0, 1) for any choice of coefficients ai, bi, ci, di. There-
fore the homogeneous resultant Res2,2,2(f0, f1, f2) is meaningless because it
is identically zero. Nevertheless, the closure in the 12 dimensional parameter
space K12 with coordinates (a0, . . . , d2) of the vectors of coefficients for which
f0, f1, f2 have a common root in K2, is an irreducible hypersurface, whose
equation is the following polynomial with 66 terms:

Res(1,1),(1,1),(1,1)(f0, f1, f2) = −c2a0d
2
1a2b0 − a1c

2
2b

2
0d1 − a1c

2
0b

2
2d1 + a2

2c1d
2
0b1

+2a0c1b2c2b1d0 − a1c2b0c0b1d2 − a0c
2
1b

2
2d0 + c2a

2
0d

2
1b2 − c2

2a0b
2
1d0 + a1c2d0a0b1d2

+c0a
2
2d

2
1b0 + 2c0a2b1c1b0d2 − 2c2a0d1b2a1d0 + a2c

2
1b0b2d0 + a1c2d0a2b0d1 + a2

1c2d
2
0b2

+a2c1d0a0b2d1−a2
2c1d0b0d1+a2c1d0a1b0d2−a2c1d

2
0b2a1+c0a2d1b2a1d0−a1c2d

2
0b1a2

+c2a0d1b1a2d0 +c2a0d1a1b0d2−a1c0d
2
2a0b1−c0a2b1b0c2d1−a2c1b0b2c0d1−c2

0a2b
2
1d2

−a1c2b0c1b2d0+c2
2a0b1b0d1+a1c2b

2
0c1d2−a0c1b2c0b1d2+a0c1b

2
2c0d1−2a1c0d2a2b0d1

+a1c0d2a0b2d1−c0a2d
2
1a0b2−a2

0c1d2b2d1−a2
1c2d0b0d2−2a0c1d2b1a2d0+c0a2d1a0b1d2

−c0a
2
2d1b1d0 + c2

0a2b1b2d1 + a1c
2
0b2b1d2 + a0c1d2a2b0d1 − a0c1d

2
2a1b0 + a2c1b

2
0c2d1

+c0a2b
2
1c2d0+a1c0d2b1a2d0+a0c1d2b2a1d0+c2a0b

2
1c0d2−c2a0b1b2c0d1−c0a2b1c1b2d0

−a1c0b2c1b0d2+2a1c0b2b0c2d1−a2c1b0c2b1d0−a1c0b2c2b1d0+a1c0b
2
2c1d0+a0c

2
1b2b0d2

−a0c1b2b0c2d1 − c2a0b1c1b0d2 − c2a
2
0d1b1d2 − a2

1c0d2b2d0 + a2
1c0d

2
2b0 + a1c

2
2b0b1d0

−a2c
2
1b

2
0d2 + a2

0c1d
2
2b1. (1.59)

This polynomial is called the multihomogeneous resultant (associated to bide-
grees (1, 1)). In Section 1.7 we will describe a method to compute it.

There are also determinantal formulas to compute this resultant, i.e. for-
mulas that present Res(1,1),(1,1),(1,1)(f0, f1, f2) as the determinant of a matrix
whose entries are coefficients of the given polynomials or of an adequate ver-
sion of their Bezoutian. The smallest such formula gives the resultant as the
determinant of a 2×2 matrix, as follows. Given f0, f1, f2, as in (1.58) introduce
two new variables y1, y2 and let B be the matrix:
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B =

⎛⎝ f0(x1, x2) f1(x1, x2) f2(x1, x2)
f0(y1, x2) f1(y1, x2) f2(y1, x2)
f0(y1, y2) f1(y1, x2) f2(y1, x2)

⎞⎠
Compute the Bezoutian polynomial

1
(x1 − y1)(x2 − y2) det(B) = B11 +B12x2 +B21y1 +B22x2y1,

where the coefficients Bij are homogeneous polynomials of degree 3 in the
coefficients (a0, . . . , b2) with tridegree (1, 1, 1) with respect to the coefficients
of f0, f1 and f2. Moreover, they are brackets in the coefficient vectors; for
instance, B11 = c1b0d2 − b0c2d1 − c0b1d2 + c2b1d0 + b2c0d1 − c1b2d0 is the
determinant of the matrix with rows (b0, c0, d0), (b1, c1, d1), (b2, c2, d2). Finally,

Res(1,1),(1,1),(1,1)(f0, f1, f2) = det(Bij).

These formulas go back to the pioneering work of Dixon [Dix08]. For a mod-
ern account of determinantal formulas for multihomogeneous resultants see
[DE03].

Multihomogeneous resultants are special instances of sparse (or toric) re-
sultants. We refer to 7 for the computation and applications of sparse re-
sultants. The setting is as follows (cf. [GKZ94, Stu93]). We fix n + 1 finite
subsets A0, . . . , An of Zn. To each α ∈ Zn we associate the Laurent monomial
xα1

1 . . . xαn
n and consider consider

fi =
∑

α∈Ai

aiαx
α, i = 0, . . . , n.

For instance, one could fix lattice polytopes P0, . . . , Pn and take Ai = Pi∩Zn.
In general Ai is a subset of the lattice points in its convex hull Pi. For generic
choices of the coefficients aiα, the polynomials f0, . . . , fn have no common
root. We consider then, the closure HA of the set of coefficients for which
f0, . . . , fn have a common root in the torus (K\{0})n . IfHA is a hypersurface,
it is irreducible, and its defining equation, which has integer coefficients (de-
fined up to sign by the requirement that its content be 1), is called the sparse
resultant ResA0,...,An

. The hypersurface condition is fulfilled if the family of
polytopes P0, . . . , Pn is essential, i.e. if for any proper subset I of {0, . . . , n},
the dimension of the Minkowski sum

∑
i∈I Pi is at least |I|. In this case, the

sparse resultant depends on the coefficients of all the polytopes; this is the
case of the homogeneous resultant. When the codimension of HA is greater
than 1, the sparse resultant is defined to be the constant 1. For example, set
n = 4 and consider polynomials of the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f0 = a1x1 + a2x2 + a3x3 + a4x4 + a5
f1 = b1x1 + b2x2

f2 = c1x1 + c2x2

f3 = b3x3 + b4x4

f4 = c3x3 + c4x4.
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Then, the existence of a common root in the torus implies the vanishing of both
determinants b1c2− b2c1 and b3c4− b4c3, i.e. the variety HA has codimension
two. In this case, the sparse resultant is defined to be 1 and it does not vanish
for those vectors of coefficients for which there is a common root. Another
unexpected example is the following, which corresponds to a non essential
family. Set n = 2 and let ⎧⎨⎩ f0 = a1x1 + a2x2 + a3

f1 = b1x1 + b2x2

f2 = c1x1 + c2x2.

In this case, the sparse resultant equals the determinant b1c2 − b2c1 which
does not depend on the coefficients of f0.

There are also arithmetic issues that come into the picture, as in the fol-
lowing simple example. Set n = 1 and consider two univariate polynomials
of degree 2 of the form f0 = a0 + b0x2, f1 = a1 + b1x2. In this case, the
sparse resultant equals the determinant D := a0b1 − b0a1. But if we think
of f0, f1 as being degree 2 polynomials with vanishing x-coefficient, and we
compute its univariate resultant Res2,2(f0, f1), the answer is D2. The expo-
nent 2 is precisely the rank of the quotient of the lattice Z by the lattice
2Z generated by the exponents in f0, f1. As in the case of the projective
resultant, there is an associated algebraic compactification XAn,...,An

of the
n-torus, called the toric variety associated to the family of supports, which
contains (K \ {0})n as a dense open set. For essential families, the sparse
resultant vanishes at a vector of coefficients if and only if the closures of
the hypersurfaces (fi = 0), i = 0, . . . , n, have a common point of intersec-
tion in XAn,...,An

. In the bihomogeneous example (1.58) that we considered,
Ai = {(0, 0), (1, 0), (0, 1), (1, 1)} are the vertices of the unit square in the
plane for i = 0, 1, 2, and the corresponding toric variety is the product variety
P1(K)× P1(K).

Sparse resultants are in turn a special case of residual resultants. Roughly
speaking, we have families of polynomials which generically have some fixed
common points of intersection, and we want to find the condition under which
these are the only common roots. Look for instance at the homogeneous case:
for any choice of positive degrees d0, . . . , dn, generic polynomials F0, . . . , Fn

with these degrees will all vanish at the origin 0 ∈ Kn+1, and the homoge-
neous resultant Resd0,...,dn

(F0, . . . , Fn) is non zero if and only if the origin
is the only common solution. This problem arises naturally when trying to
find implicit equations for families of parametric surfaces with base points of
codimension greater than 1. We refer to Chapter 3 and to [Bus03, BEM03]
for more background and applications.
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1.7 Residues and resultants

In this section we would like to discuss some of the connections between
residues and resultants. We will also sketch a method, based on residues, to
compute multidimensional resultants which, as far as we know, has not been
made explicit before.

Suppose P (z), Q(z) are univariate polynomials of respective degrees d1, d2
as in (1.19) and let ZP = {ξ1, . . . , ξr} be the zero locus of P . If Q is regular
on ZP , equivalently Resd1,d2(P,Q) �= 0, then the global residue resP (1/Q) is
defined and the result will be a rational function on the coefficients (a, b) of P
and Q. Thus, it is reasonable to expect that the denominator of this rational
function (in a minimal expression) will be the resultant. This is the content
of the following proposition:

Proposition 1.7.1. For any k = 0, . . . , d1+d2−2, the residue resP (zk/Q) is a
rational function of the coefficients (a, b) of P,Q, and there exists a polynomial
Ck ∈ Z[a, b] such that

resP

(
zk/Q

)
=

Ck(a, b)
Resd1,d2(P,Q)

.

Proof. We have from (1.26) that

1 =
A1

Resd1,d2(P,Q)
P +

A2

Resd1,d2(P,Q)
Q,

with A1, A2 ∈ Z[a, b][z], deg(A1) = d2 − 1, and deg(A2) = d1 − 1. Then,

resP

(
zk/Q

)
= resP

(
zk A2

Resd1,d2(P,Q)

)
,

and we deduce from Corollary 1.1.7 that there exists a polynomial C ′
k(a, b) ∈

Z[a, b][z] such that

resP

(
zk/Q

)
=

C ′
k(a, b)

Resd1,d2(P,Q) ak+1
d1

.

Thus, it suffices to show that ak+1
d1

divides C ′
k(a, b). But, since k ≤ d1 +d2−2

we know from (1.11) that

resP

(
zk/Q

)
= −resQ

(
zk/P

)
=

C ′′
k (a, b)

Resd1,d2(P,Q) bk+1
d2

,

for a suitable polynomial C ′′
k ∈ Z[a, b][z]. Since Resd1,d2(P,Q) is irreducible,

the result follows.
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Note that according to Theorem 1.5.17, we have

resP1

P̃ ,Q̃
(zk) = resP

(
zk/Q

)
= −resQ

(
zk/P

)
,

where P̃ , Q̃ denote the homogenization of P and Q, respectively. This is the
basis for the generalization of Proposition 1.7.1 to the multidimensional case.
The following is a special case of [CDS98, Th. 1.4].

Theorem 1.7.2. Let Fi(x) =
∑

|α|=di
aiαx

α ∈ C[x0, . . . , xn], i = 0, . . . , n, be
homogeneous polynomials of degrees d0, . . . , dn. Then, for any monomial xβ

with |β| = ρ =
∑

i(di − 1), the homogeneous residue resPn

〈F 〉(x
β) is a rational

function on the coefficients {aiα} which can be written as

resPn

〈F 〉(x
β) =

Cβ(aiα)
Resd0,...,dn

(F0, . . . , Fn)

for a suitable polynomial Cβ ∈ Z[aiα].

We sketch a proof of this result, based on [Jou97, CDS98] and the notion
of the determinant of a complex [GKZ94].

Proof. We retrieve the notations in (1.56), but we consider now the application
“at level ρ”

Sρ−d0 × · · · × Sρ−dn
× S0 −→ Sρ

(G0, . . . , Gn, λ) �−→ G0F0 + · · ·+GnFn + λ∆0,
(1.60)

where ∆0 is defined in (1.57). For any specialization in K of the coefficients of
F0, . . . , Fn (with respective degrees d0, . . . , dn), we get a K-linear map between
finite dimensional K-vector spaces which is surjective if and only if F0, . . . , Fn

do not have a common root in Kn+1 \ {0}, or equivalently, if and only if
the resultant Resd0,...,dn

(F0, . . . , Fn) is non zero. Moreover, it holds that the
resultant equals the greatest common divisor of all maximal minors of the
above map. Let U be the intersection of Zariski open set in the space of
coefficients a = (aiα) of the given polynomials where all (non identically zero)
maximal minors do not vanish. For a ∈ U , the specialized K-linear map is
surjective and for any monomial xβ of degree ρ we can write

xβ =
n∑

i=0

Ai(a;x)Fi(a;x) + λ(a)∆0(a;x) ,

where λ depends rationally on a. Since the residue vanishes on the first sum
and takes the value 1 on ∆0, we have that

resPn

〈F 〉(x
β) = λ(a) ,

This implies that every maximal minor which is not identically zero must
involve the last column and that λ(a) is unique. Thus, it follows from Cramer’s
rule that resPn

〈F 〉(x
β) may be written as a rational function with denominator

M for all non-identically zero maximal minors M . Consequently it may also
be written as a rational function with denominator Resd0,...,dn

(F0, . . . , Fn).
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In fact, (1.60) can be extended to a generically exact complex

0 → Sd0−(n+1) × · · · × Sdn−(n+1) → · · · → Sρ−d0 × · · · × Sρ−dn × S0 → Sρ → 0,

which is a graded piece of the Koszul complex associated to F0, . . . , Fn, which
is exact if and only if Resd0,...,dn

(F0, . . . , Fn) �= 0. Moreover, the resultant
equals (once we index appropriately the terms and choose monomial bases
for them) the determinant of the complex. This concept goes back to Cayley
[Cay48] and generalizes the determinant of a linear map between two vector
spaces of the same dimension with chosen bases. For short exact sequences
of finitely dimensional vector spaces V−1, V0, V1 with respective chosen bases,
the determinant of the based complex is defined as follows [GKZ94, Appendix
A]. Call d−1 and d0 the linear maps

0 −→ V−1
d−1−→ V0

d0−→ V1 −→ 0 ,

and let �i = dimVi, i = −1, 0, 1. Thus, �0 = �−1 + �1. Denote by M−1 and M0

the respective matrices of d−1 and d0 in the chosen bases. Choose any subset
I of {0, . . . , �0} with |I| = �−1 and let M I

−1 be the submatrix of M−1 given
by all the �−1 rows and the �−1 columns corresponding to the index set I.
Similarly, denote by M I

0 the submatrix of M0 given by the �1 rows indexed
by the complement of I and all the �1 columns. Then, it can be easily checked
that det(M I

−1) �= 0 ⇐⇒ det(M I
0 ) �= 0. Moreover, up to (an explicit) sign, it

holds that whenever they are non zero, the quotient of determinants

det(M I
−1)

det(M I
0 )

is independent of the choice of I. The determinant of the based complex is
then defined to be this common value. In the case of the complex given by
a graded piece of the Koszul complex we are considering, the hypotheses of
[GKZ94, Appendix A, Th. 34] are fulfilled, and its determinant equals the
greatest common divisor of the rightmost map (1.60) we considered in the
proof of Theorem 1.7.2.

We recall that, by b) in Theorem 1.5.16, the graded piece of degree ρ
in the graded algebra A = C[x0, . . . , xn]/〈F0, . . . , Fn〉, is one-dimensional. We
can exploit this fact together with the relation between residues and resultants
to propose a new algorithm for the computation of resultants. Given a term
order ≺, there will be a unique standard monomial of degree ρ, the smallest
monomial xβ0 , relative to ≺, not in the ideal 〈F0, . . . , Fn〉. Consequently, for
anyH ∈ C[x0, . . . , xn]ρ, its normal formN(H) relative to the reduced Gröbner
basis for ≺, will be a multiple of xβ0 .

In particular, let ∆ ∈ C[x0, . . . , xn] be the element of degree ρ and homo-
geneous residue 1 constructed in Section 1.5.6. We can write

N(∆) =
P (aiα)
Q(aiα)

· xβ0 .
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Theorem 1.7.3. With notation as above, if P (aiα), and Q(aiα) are relatively
prime

Resd0,...,dn
(F0, . . . , Fn) = P (aiα).

Proof. We have:

1 = resPn

〈F 〉(∆) = resPn

〈F 〉

(
P (aiα)
Q(aiα)

· xβ0

)
=
P (aiα)
Q(aiα)

Cβ0(aiα)
Resd0,...,dn

(F0, . . . , Fn)
.

Therefore

Resd0,...,dn
(F0, . . . , Fn)Q(aiα) = P (aiα)Cβ0(aiα),

but since Resd0,...,dn
(F0, . . . , Fn) is irreducible and coprime with Cβ0(aiα) this

implies the assertion.

Remark 1.7.4. Note that Theorem 1.7.3 holds even if the polynomials Fi are
not densely supported as long as the resultant Resd0,...,dn

(F0, . . . , Fn) is not
identically zero.

Consider the example from Section 1.6.1:

F0 = a0x0 + a1x1 + a2x2

F1 = b0x0 + b1x1 + b2x2

F2 = c1x
2
0 + c2x2

1 + c3x2
2 + c4x0x1 + c5x0x2 + c6x1x2

Then ρ = 1 and

∆ = det

⎛⎝ a0 a1 a2
b0 b1 b2

c1x0 + c4x1 + c5x2 c2x1 + c6x2 c3x2

⎞⎠ .
We can now read off the resultant Res1,1,2(F0, F1, F2) from the normal form
of ∆ relative to any Gröbner basis of I = 〈F0, F1, F2〉. For example computing
relative to grevlex with x0 > x1 > x2, we have:

N(∆) =
(
(a20b

2
1c3 − a20b1b2c6 + a20b

2
2c2 + a0a1b0b2c6 − a0a2b21c5+

a0a1b1b2c5 − a0a1b22c4 + a0a2b0b1c6 − a0a2b1b2c4 − 2a0a1b0b1c3 + a21b
2
0c3 −

a21b0b2c5 + a21b
2
2c1 − a1a2b20c6 + a1a2b0b1c5 + a1a2b0b2c4 + 2a0a2b0b2c2 −

2a1a2b1b2c1 + a22b
2
0c2 − a22b0b1c4 + a22b

2
1c1)/(a0b1 − a1b0)

)
x2

and the numerator of the coefficient of x2 in this expression is the resultant.
Its denominator is the subresultant polynomial in the sense of [Cha95], whose
vanishing is equivalent to the condition x2 ∈ I

Theorem 1.7.3 is a special case of a more general result which holds in the
context of toric varieties [CD]. We will not delve into this general setup here
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but will conclude this section by illustrating this computational method in the
case of the sparse polynomials described in (1.58). As noted in Section 1.6.2,
the homogeneous resultant of these three polynomials is identically zero. We
may however view them as three polynomials with support in the unit square
P ⊂ R2 and consider their homogenization relative to P. This is equivalent to
compactifying the torus (C∗)2 as P1×P1 and considering the natural homog-
enizations of our polynomials in the homogeneous coordinate ring of P1×P1,
i.e. the ring of polynomials C[x1, y1, x2, y2] bigraded by (degx1,y1

,degx2,y2
).

We have:

Fi(x1, x2, y1, y2) = aix1x2 + bix1y2 + cix2y1 + diy1y2, ai, bi, ci, di ∈ K.

These polynomials have the property that

Fi(λ1x1, λ1y1, λ2x2, λ2y2) = λ1 λ2 Fi(x1, x2, y1, y2),

for all non zero λ1, λ2.
Notice that 〈F0, F1, F2〉 ⊂ 〈x1, x2, y1y2〉 and we can take as ∆ the deter-

minant of any matrix that expresses the Fj in terms of those monomials. For
example

∆ = det

⎛⎝a0x2 + b0y2 c0y1 d0
a1x2 + b1y2 c1y1 d1
a2x2 + b2y2 c2y1 d2

⎞⎠
We point out that in this case ρ = (1, 1) = 3(1, 1)−(2, 2), which is the bidegree
of ∆. If we consider for instance the reverse lexicographic term order with
y2 ≺ y1 ≺ x2 ≺ x1, the least monomial of degree ρ is y1y2. The normal form
of ∆ modulo a Gröbner basis of the bi-homogeneous ideal 〈F0, F1, F2〉 equals
a coefficient times y1y2. This coefficient is a rational function of (a0, . . . , d2)
whose numerator is the P1×P1 resultant of F0, F1, F2 displayed in (1.59). We
invite the reader to check that its denominator equals the determinant of the
3× 3 square submatrix of the matrix of coefficients of the given polynomials⎛⎝a0 b0 c0a1 b1 c1

a2 b2 c2

⎞⎠ .
Again, this is precisely the subresultant polynomial whose vanishing is equiv-
alent to y1y2 ∈ 〈F0, F1, F2〉 (c.f. also [DK]).

As a final remark, we mention briefly the relation between residues, re-
sultants and rational A-hypergeometric functions in the sense of Gel’fand,
Kapranov and Zelevinsky [GZK89]. Recall that given a configuration

A = {a1, . . . , an} ⊂ Zp

or, equivalently an integral p× n matrix A, a function F , holomorphic in an
open set U ⊂ Cn, is said to be A-hypergeometric of degree β ∈ Cp if and only
if it satisfies the differential equations:
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∂uF − ∂vF = 0 ,

for all u, v ∈ Nn such that A · u = A · v, where ∂u =
∂|u|

∂zu1
1 . . . zun

n
, and

n∑
j=1

aijzj
∂F

∂zj
= βiF

for all i = 1, . . . , p. The study of A-hypergeometric functions is a very ac-
tive area of current research with many connections to computational and
commutative algebra. We refer the reader to [SST00] for a comprehensive
introduction and restrict ourselves to the discussion of a simple example.

Let Σ(d) denote the set of integer points in the m-simplex

{u ∈ Rm
≥0 :

m∑
j=1

uj ≤ d} .

Let A ⊂ Z2m+1 be the Cayley configuration

A = ({e0} ×Σ(d)) ∪ · · · ∪ ({em} ×Σ(d)).

Let fi(t) =
∑

α∈Σ(d) ziαt
α, i = 0, . . . , d be an m + 1-tuple of generic poly-

nomials supported in Σ(d). Denote by Fi(x0, . . . , xd) the homogenization of
fi. Given an m + 1-tuple of positive integers a = (a0, . . . , am) let 〈F a〉 be
the collection 〈F a0

0 , . . . , F
am
m 〉. The following result is a special case of a more

general result (see [AS96, CD97, CDS01]) involving the Cayley product of a
general family of configurations Ai ⊂ Zm, i = 0, . . . ,m.

Theorem 1.7.5. For any b ∈ Nm+1 with |b| = d|a|−(n+1), the homogeneous
residue resP2

〈F a〉(x
b), viewed as a function of the coefficients xiα, is a rational

A-hypergeometric function of degree β = (−a0, . . . ,−am,−b1−1, . . . ,−bm−1).

Suppose, for example, that m = 2 and d = 1. Then, we have

A =

⎛⎜⎜⎜⎜⎝
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

⎞⎟⎟⎟⎟⎠
and Fi(x0, x1, x2) = ai0x0 + ai1x1 + ai2x2. Let a = (2, 1, 1) and b = (0, 1, 0).
Then the residue resP2

〈F a〉(x1) might be computed using Algorithm 2 in Sec-
tion 1.5.6 to obtain the following rational function

(a20a12 − a10a22)/det(aij)2.

Note that, according to Theorem 1.7.2 and (1.55), the denominator of the
above expression is the homogeneous resultant
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Res2,1,1(F 2
0 , F1, F2) = Res1,1,1(F0, F1, F2)2 .

Indeed, as
x1

F 2
0F1F2

= − ∂

∂a01

(
1

F0F1, F2

)
,

differentiation “under the integral sign” gives the equality

resP2

〈F a〉(x1) = − ∂

∂a01

(
1

det(aij)

)
.

One can also show that the determinant det(aij) agrees with the discriminant
of the configuration A. We should point out that Gel’fand, Kapranov and
Zelevinsky have shown that the irreducible components of the singular locus
of the A-hypergeometric system for any degree β have as defining equations
the discriminant of A and of its facial subsets, which in this case correspond
to all minors of (aij) .

In [CDS01] it is conjectured that essentially all rational A-hypergeometric
functions whose denominators are a multiple of the A-discriminant arise as
the toric residues of Cayley configurations. We refer to [CDS02, CD04] for
further discussion of this conjecture.
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Summary. This chapter studies algebras obtained as the quotient of a polynomial
ring by an ideal of finite codimension. These algebras have a rich supply of interesting
linear maps whose eigenvalues, eigenvectors, and characteristic polynomials can be
used to solve systems of polynomial equations. We will also discuss applications to
resultants, factorization, primary decomposition, and Galois theory.

2.0 Introduction

This chapter will consider the quotient ring

A = K[x1, . . . , xn]/〈f1, . . . , fs〉

where K is a field and f1, . . . , fs are polynomials in x1, . . . , xn with coefficients
in K. The ring A is also a vector space over K in a compatible way, so that
A is an algebra over K. These are the “algebras” in the title of the chapter.
For us, the most interesting case is when A has finite dimension as a vector
space over K. We call A a finite commutative algebra when this happens.

What’s Covered. We will first use the algebra A to determine the solutions
of the polynomial system

f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0.

We will then use the dual space of A to give an interesting description of
the ideal 〈f1, . . . , fs〉. In the remaining sections of the chapter, we will learn
that finite commutative algebras can be used in a variety of other contexts,
including the following:

• Resultants.
• Factoring over number fields and finite fields.
• Primary decomposition.
• Galois theory.
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In all of these applications, multiplication maps play a central role. Given a
finite commutative algebra A, an element a ∈ A gives a multiplication map

Ma : A −→ A

defined byMa(b) = ab for b ∈ A. This is a linear map from a finite-dimensional
vector space to itself, which means the many tools of linear algebra can be
brought to bear to studyMa. Furthermore, since A is commutative, the linear
maps Ma all commute as we vary a ∈ A.

What’s Omitted. We will not discuss everything of interest connected with
finite commutative algebras. The three main topics not covered are:

• Gorenstein duality.
• Real solutions.
• Border bases.

Duality is covered in Chapter 3 and also in [EM96, EM98], and an introduction
to real solutions of polynomial equations appears in [CLO98]. Border bases
are discussed in Chapters 3 (briefly) and 4 (in more detail).

Notation. Given A = K[x1, . . . , xn]/〈f1, . . . , fs〉 and f ∈ K[x1, . . . , xn], we
will use the following notation:

• [f ] ∈ A is the coset of f in the quotient algebra A.
• Mf is the multiplication map M[f ]. Thus Mf ([g]) = [fg] for all [g] ∈ A.
• Mf is the matrix of Mf relative to a chosen basis of A over K.

Other notation will be introduced as needed.

2.1 Solving equations

This section will cover basic material on solving equations using eigenvalues
and eigenvectors of multiplication maps on finite dimensional algebras.

2.1.1 The finiteness theorem and Gröbner bases

Consider a system of polynomial equations

f1(x1, . . . , xn) = 0
f2(x1, . . . , xn) = 0

...
fs(x1, . . . , xn) = 0

(2.1)

in n variables x1, . . . , xn with coefficients in a field K. Here is an example from
[MS95] that we will use throughout this section and the next.
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Example 2.1.1. Consider the equations

f1 = x2 + 2y2 − 2y = 0

f2 = xy2 − xy = 0

f3 = y3 − 2y2 + y = 0

(2.2)

over the complex numbers C. If we write the the first and third equations as

f1 = x2 + 2y(y − 1) = 0 and f3 = y(y − 1)2 = 0,

then it follows easily that the only solutions are the points (0, 0) and (0, 1).
(Exercise: Prove this.) However, this ignores multiplicities, which as we will
see are perfectly captured by the algebra A = C[x, y]/〈f1, f2, f3〉.

Our first major result is the Finiteness Theorem, which gives a necessary
and sufficient condition for the algebra corresponding to the equations (2.1)
to be finite-dimensional over K.

Theorem 2.1.2. The algebra

A = K[x1, . . . , xn]/〈f1, . . . , fs〉

is finite-dimensional over K if and only if the equations (2.1) have only finitely
many solutions over the algebraic closure K.

Proof. We will sketch the main ideas since this result is so important. A
complete proof can be found in Chapter 5, §3 of [CLO97].

First suppose that A is finite-dimensional over K. Then, for each i, the set
{[1], [xi], [x2

i ], . . . } ⊂ A must be linearly dependent, so that there is a nonzero
polynomial pi(xi) such that [pi(xi)] = [0] in A. This means that

pi(xi) ∈ 〈f1, . . . , fs〉,

which easily implies that pi vanishes at all common solutions of (2.1). It follows
that for each i, the solutions have only finitely many distinct ith coordinates.
Hence the number of solutions is finite.

Going the other way, suppose that there are only finitely many solutions
over K. Then in particular there are only finitely many ith coordinates, so
that we can find a nonzero polynomial qi(xi) which vanishes on all solutions
of (2.1) over K. In this situation, Hilbert’s Nullstellensatz (see Chapter 4, §1
of [CLO97] for a proof) asserts that

pi(xi) = qNi (xi) ∈ 〈f1, . . . , fs〉

for some sufficiently large integer N .
Now consider the lexicographic order >lex on monomials xα = xa1

1 · · ·xan
n .

Recall that xα > xβ if a1 > b1, or a1 = b1 and a2 > b2, or . . . (in other words,
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the left-most nonzero entry of α−β ∈ Zn is positive). This allows us to define
the leading term of any nonzero polynomial in K[x1, . . . , xn].

The theory of Gröbner bases (explained in Chapters 2 and 5 of [CLO97])
implies that 〈f1, . . . , fs〉 has a Gröbner basis g1, . . . , gt with the following
properties:

• g1, . . . , gt form a basis of 〈f1, . . . , fs〉.
• The leading term of every nonzero element of 〈f1, . . . , fs〉 is divisible by

the leading term of one of the gj .
• The set of remainder monomials

B = {xα | xα is not divisible by the leading term of any gj}
gives cosets [xα], xα ∈ B, that form a basis of A over K.

Since the leading term of pi(xi) is a power of xi, the second bullet implies
that the leading term of some gj is a power of xi. It follows that in any xα ∈ B,
xi must appear to strictly less than this power. Since this is true for all i, it
follows that B is finite, so that A is finite-dimensional by the third bullet.

More details about monomial orders, leading terms, and Gröbner bases
can also be found in Chapter 2 of [CLO97].

Let’s apply Theorem 2.1.2 to our example.

Example 2.1.3. For the equations f1 = f2 = f3 = 0 of Example 2.1.1, one can
show that f1, f2, f3 form a Gröbner basis for lexicographic order with x > y.
Thus the leading terms of the polynomials in the Gröbner basis are

x2, xy2, y3,

so that the remainder monomials (= monomials not divisible by any of these
leading terms) are

B = {1, y, y2, x, xy}.
(Exercise: Verify this.) Hence A has dimension 5 over C in this case.

2.1.2 Eigenvalues of multiplication maps

For the remainder of this section, we will assume that

A = K[x1, . . . , xn]/〈f1, . . . , fs〉
is finite-dimensional over K. For simplicity of exposition, we will also assume
that

K = K.

Thus K will always be algebraically closed.
As in the introduction, f ∈ K[x1, . . . , xn] gives a multiplication map

Mf : A −→ A.
Our main result is the following Eigenvalue Theorem first noticed by Lazard
in 1981 (see [Laz81]).
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Theorem 2.1.4. Assume that (2.1) has a finite positive number of solutions.
The eigenvalues of Mf are the values of f at the solutions of (2.1) over K.

Proof. We will sketch the proof and refer to Theorem 4.5 of Chapter 2 of
[CLO98] for the details.

First suppose λ ∈ K is not a value of f at a solution of (2.1). Then the
equations

f − λ = f1 = · · · = fs = 0

have no solutions over K = K, so that by the Nullstellensatz, we can write

1 = h · (f − λ) +
s∑

i=1

hifi

for some polynomials h, h1, . . . , hs ∈ K[x1, . . . , xn]. Since the multiplication
map M1 is the identity 1A and each Mfi

is the zero map, it follows that

Mf − λ1A =Mf−λ : A −→ A

is an isomorphism with inverse Mh. Thus λ is not an eigenvalue of Mf .
Going the other way, let p ∈ Kn be a solution of (2.1). As in the proof of

Theorem 2.1.2, the remainder monomials B = {xα(1), . . . , xα(m)} give the ba-
sis [xα(1)], . . . , [xα(m)] of A. The matrix ofMf relative to this basis is denoted
Mf . For j = 1, . . . ,m, let pα(j) be the element of K obtained by evaluating
xα(j) at p. Then we claim that

Mtf (pα(1), . . . , pα(m))t = f(p)(pα(1), . . . , pα(m))t, (2.3)

where t denotes transpose. Since 1 ∈ B (otherwise there are no solutions),
the vector (pα(1), . . . , pα(m))t is nonzero. Thus (2.3) implies that f(p) is an
eigenvalue of Mtf and hence also of Mf and Mf .

To prove (2.3), suppose that Mf = (mij). This means that

[xα(j)f ] =
m∑

i=1

mij [xα(i)]

for j = 1, . . . ,m. Then xα(j)f ≡ ∑m
i=1mijx

α(i) mod 〈f1, . . . , fs〉. Since
f1, . . . , fs all vanish at p, evaluating this congruence at p implies that

pα(j)f(p) =
m∑

i=1

mijp
α(i)

for j = 1, . . . ,m. This easily implies (2.3).

Example 2.1.5. For the polynomials of Examples 2.1.1 and 2.1.3, the set B =
{1, y, y2, x, xy} gives a basis of A. One computes that the matrix of Mx is
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Mx =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 2 2
0 0 0 −2 −2
1 0 0 0 0
0 1 1 0 0

⎞⎟⎟⎟⎟⎠ .
The first and second columns are especially easy to see since here Mx maps
basis elements to basis elements. For the third column, one uses f2 = xy2−xy
to show that

Mx([y2]) = [xy2] = [xy].

The fourth and fifth columns are obtained similarly. (Exercise: Do this.) Using
Maple or Mathematica, one finds that the characteristic polynomial of Mx is
CharPolyMx

(u) = u5. By Theorem 2.1.4, it follows that all solutions of the
equations (2.2) have x-coordinate equal to 0.

In a similar way, one finds that My has matrix

My =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
1 0 −1 0 0
0 1 2 0 0
0 0 0 0 0
0 0 0 1 1

⎞⎟⎟⎟⎟⎠ .
with characteristic polynomial CharPolyMy

(u) = u2(u − 1)3. Thus the y-
coordinate of a solution of (2.2) is 0 or 1. For later purposes we also note
that

Mx has minimal polynomial MinPolyMx
(u) = u3

My has minimal polynomial MinPolyMy
(u) = u(u− 1)2.

We will see that later that since y takes distinct values 0 and 1 at the solutions,
the characteristic polynomial u2(u− 1)3 of My tells us the multiplicities of the
solutions of (2.2).

In general, the matrix of Mf : A → A is easy to compute once we have a
Gröbner basis G of 〈f1, . . . , fs〉. This is true because of the following:

• As we saw in the proof of Theorems 2.1.2 and 2.1.4, G determines the
remainder monomials B that give a basis of A.

• Given g ∈ K[x1, . . . , xn], the division algorithm from Chapter 2, Section 3
of [CLO97] constructs a normal form

N(g) ∈ Span(B)

with the property that g ≡ N(g) mod 〈f1, . . . , fs〉.
This gives an easy algorithm for computing Mf with respect to the basis of
A given by B: For each xα ∈ B, simply compute N(xαf) using the division
algorithm. This is what we did in Example 2.1.5.
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If we compute the matrix Mxi
for each i, then then Theorem 2.1.4 implies

that the xi-coordinates of the solutions are given by the eigenvalues of Mxi
. But

how do we put these coordinates together to figure out the actual solutions?
This was trivial to do in Example 2.1.5. In the general case, one could simply
try all possible combinations of the coordinates to find the solutions. This is
very inefficient. We will learn a better method in Section 2.1.3.

Minimal Polynomials of Multiplication Maps. The minimal polynomial
of a multiplication map Mf : A → A has an interesting interpretation. Given
f ∈ K[x1, . . . , xn], note that

Mf is the zero map ⇐⇒ f ∈ 〈f1, . . . , fs〉.

Furthermore, given any polynomial P (u) ∈ K[u], we have

P (Mf ) =MP (f).

(Exercise: Prove these two facts.)
As defined in linear algebra, the minimal polynomial P ofMf is the monic

polynomial of minimal degree such that P (Mf ) is the zero map. Using the
above two facts, it follows that P is the monic polynomial of minimal degree
such that P (f) ∈ 〈f1, . . . , fs〉.

In particular, the minimal polynomial of Mxi
is the monic polynomial of

minimal degree such that P (xi) ∈ 〈f1, . . . , fs〉. In other words, P (xi) is the
generator of the elimination ideal

〈f1, . . . , fs〉 ∩K[xi].

(Exercise: Prove this.) Thus P (xi) = 0 is the equation obtained by eliminating
all variables but xi from our original systems of equations (2.1). This gives a
relation between multiplication maps and elimination theory.

2.1.3 Eigenvectors of multiplication maps

A better method for solving equations, first described in [AS88], is to use the
eigenvectors of Mtf given by (2.3), namely

Mtf (pα(1), . . . , pα(m))t = f(p)(pα(1), . . . , pα(m))t.

In this equation, p is a solution of (2.1), B = {xα(1), . . . , xα(m)}, and pα(j) is
the element of K obtained by evaluating xα(j) at p. As we noted in the proof
of Theorem 2.1.4, (2.3) implies that (pα(1), . . . , pα(m))t is an eigenvector of Mtf
for the eigenvalue f(p).

This allows us to use eigenvalues to find solutions as follows. Suppose that
all eigenspaces of Mtf have dimension 1 (we say that Mtf is non-derogatory in
this case). Then suppose that λ is an eigenvalue of Mtf with eigenvector
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v = (u1, . . . , um)t.

By assumption, we know that v is unique up to a scalar. At this point, we
also know that λ = f(p) for some solution p, but we don’t know what p is.

To determine p, observe that (pα(1), . . . , pα(m))t is also an eigenvalue of Mtf
for λ. Since we may assume that xα(1) = 1, the first coordinate of this eigen-
vector is 1. Since λ has a 1-dimensional eigenspace, our computed eigenvector
v is a scalar multiple of (pα(1), . . . , pα(m))t. Hence, if we rescale v so that its
first coordinate is 1, then

v = (1, u2, . . . , um)t = (1, pα(2), . . . , pα(m))t. (2.4)

The key point is that the monomials xα(j) ∈ B include some (and often all) of
the variables x1, . . . , xn. This means that we can read off the corresponding
coordinates of p from v. Here is an example of how this works.

Example 2.1.6. Consider the matrices Mtx and Mty from Example 2.1.5. Neither
is non-derogatory since Maple or Mathematica shows that their eigenspaces
all have dimension 2. However, if we set f = 2x+ 3y, then

Mtf = 2Mtx + 3Mty

is non-derogatory, where

the eigenvalue 0 has eigenbasis v = (1, 0, 0, 0, 0)t

the eigenvalue 3 has eigenbasis v = (1, 1, 1, 0, 0)t.

(Exercise: Check this.) Since B = {1, y, y2, x, xy} has the variables x and y
in the fourth and second positions respectively, it follows from (2.4) that the
x- and y-coordinates of the solutions are the fourth and second entries of the
eigenvectors. This gives the solutions

(0, 0) and (0, 1)

found in Example 2.1.1.

Before using this method in general, we need to answer some questions:

• What happens when some variables are missing from B?
• What does it mean for a matrix to be non-derogatory?
• Can we find f ∈ K[x1, . . . , xn] such that Mtf is non-derogatory? What

happens if we can’t?

The remainder of Section 2.1.3 will be devoted to answering these questions.

Missing Variables. For a fixed monomial ordering, the ideal 〈f1, . . . , fs〉 has
a Gröbner basis G. We assume that G is reduced, which means the following:

• The leading coefficient of every g ∈ G is 1.
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• For any g ∈ G, its non-leading terms are not divisible by the leading terms
of the remaining polynomials in G.

As we’ve already explained, G then determines the remainder monomials

B = {xα | xα is not divisible by the leading term of any g ∈ G}.
We will assume that G �= {1}, which implies that 1 ∈ B and that (2.1) has
solutions in K (the latter is true by the Consistency Algorithm described in
Chapter 4, §1 of [CLO97] since K = K).

We need to understand which variables lie in B. We say that xi is known if
xi ∈ B and missing otherwise (this is not standard terminology). As explained
above, if Mtf is non-derogatory, then the eigenvectors determine the known
coordinates of all solutions. It remains to find the missing coordinates. We
will analyze this using the arguments of [MS95].

A variable xi is missing if it is divisible by the leading term of some element
of G. Since G �= {1} and is reduced, it follows that there is some gi ∈ G such
that

gi = xi + terms strictly smaller according to the term order.

Furthermore, since this is true for every missing variable and G is reduced,
it follows that other terms in the above formula for gi involve only known
variables (if a missing variable appeared in some term, it would be a missing
variable xj �= xi, so that the term would be divisible by the leading term of
gj = xj + · · · ∈ G). Thus

gi = xi + terms involving only known variables.

Now let p be a solution of (2.1). Then gi(p) = 0, so that the above analysis
implies that

0 = pi + terms involving only known coordinates.

Hence the gi ∈ G tell us how to find the missing coordinates in terms of the
known ones.

Non-Derogatory Matrices. If M is square matrix, then:

M is non-derogatory ⇐⇒ the Jordan canonical form of M has
one Jordan block per eigenvalue

⇐⇒ MinPolyM = CharPolyM.

(Exercise: Prove this.) This will have a nice consequence in Section 2.1.4
below. Note also that M is nonderogatory if and only if Mt is.

Existence of Non-Derogatory Multiplication Matrices. Our first ob-
servation is that there are systems of equations such that Mtf is derogatory for
all polynomials f ∈ K[x1, . . . , xn]. Here is a simple example.
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Example 2.1.7. Consider the equations

x2 = y2 = 0.

The only solution is p = (0, 0) and B = {1, x, y, xy}. Given f = a+ bx+ cy+
dx2 + exy + · · · in K[x, y], we have f(p) = a. One computes that

MT
f =

⎛⎜⎜⎝
a b c e
0 a 0 c
0 0 a b
0 0 0 a

⎞⎟⎟⎠ ,
so that Mtf − aI4 has rank ≤ 2 for all f . (Exercise: Prove these assertions.) It
follows that the eigenspace of Mtf for the eigenvalue f(p) = a has dimension
at least 2. Thus Mtf is always derogatory.

To describe what happens in general, we need to discuss the local structure
of solutions. A basic result from commutative algebra states that the ideal
〈f1, . . . , fs〉 has a primary decomposition. Since we are over algebraically closed
field and the equations (2.1) have only finitely many solutions, the primary
decomposition can be written

〈f1, . . . , fs〉 =
⋂
p

Ip (2.5)

where the intersection is over all solutions p of (2.1) and each Ip is defined by

Ip = {f ∈ K[x1, . . . , xn] | gf ∈ 〈f1, . . . , fs〉 for some g with g(p) �= 0}. (2.6)

One can show that Ip is a primary ideal, which in this case means that
√
Ip

is the maximal ideal 〈x1 − p1, . . . , xn − pn〉, p = (p1, . . . , pn). We will explain
how to compute primary decompositions in Section 2.4.3. See also Chapter 5.

Example 2.1.8. The ideal of Example 2.1.1 has the primary decomposition

〈x2 + 2y2 − 2y, xy2 − xy, y3 − 2y2 + y〉
= 〈x2, y〉 ⋂ 〈x2 + 2(y − 1), x(y − 1), (y − 1)2〉
= I(0,0)

⋂
I(0,1).

We will prove this in Section 2.4.3.

Given the primary decomposition 〈f1, . . . , fs〉 =
⋂

p Ip, we set

Ap = K[x1, . . . , xn]/Ip.

Then (2.5) and the Chinese Remainder Theorem (see p. 245 of [KR00]) give
an algebra isomorphism
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A = K[x1, . . . , xn]/〈f1, . . . , fs〉 �
∏
p

K[x1, . . . , xn]/Ip =
∏
p

Ap. (2.7)

We call Ap the local ring of the solution p. This ring reflects the local structure
of a solution p of (2.1). The multiplicity of a solution p is defined to be

mult(p) = dimKAp.

This definition and (2.7) imply that

dimKA = #solutions counted with multiplicity.

We now define a special kind of solution.

Definition 2.1.9. A solution p of (2.1) is curvilinear if Ap � K[x]/〈xk〉
for some integer k ≥ 1.

Over the complex numbers, p is curvilinear if and only if we can find
local analytic coordinates u1, . . . , un at p and an integer k ≥ 1 such that the
equations are equivalent to

u1 = u2 = · · · = un−1 = uk
n = 0.

Alternatively, let mp be the maximal ideal of Ap. The integer

ep = dimK mp/m
2
p = #minimal generators of mp (2.8)

is called the embedding dimension of Ap. Then one can prove that a solution
p is curvilinear if and only if Ap has embedding dimension ep ≤ 1.

Example 2.1.10. For the solutions (0, 0) and (0, 1) of the polynomials given
in Example 2.1.8, we compute their multiplicity and embedding dimension as
follows. For (0, 0), we have

A(0,0) = K[x, y]/〈x2, y〉 � K[x]/〈x2〉.
This shows that (0, 0) has multiplicity 2 and embedding dimension 1 (and
hence is curvilinear). As for (0, 1), a Gröbner basis computation shows that

A(0,1) = K[x, y]/〈x2 + 2(y − 1), x(y − 1), (y − 1)2〉
has dimension 3, so that the multiplicity is 3. (Exercise: Do this.) The em-
bedding dimension is less obvious and will be computed in Section 2.2.2.

Using curvilinear solutions, we can characterize those systems for which
Mf (or Mf or Mtf ) is non-derogatory for some f ∈ K[x1, . . . , xn].

Theorem 2.1.11. There exists f ∈ K[x1, . . . , xn] such that Mf is non-
derogatory if and only if every solution of (2.1) is curvilinear. Furthermore,
when the solutions are all curvilinear, then Mf is non-derogatory when f is a
generic linear combination of x1, . . . , xn.
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Proof. First observe that since there are only finitely many solutions and K is
infinite (being algebraically closed), a generic choice of a1, . . . , an guarantees
that f = a1x1 + · · ·+ anxn takes distinct values at the solutions p.

Next observe that Mf is compatible with the algebra isomorphism (2.7).
If we also assume that f takes distinct values at the solutions, then it follows
that Mf is non-derogatory if and only if

Mf : Ap → Ap

is non-derogatory for every p.
To prove the theorem, first suppose that Mf : Ap → Ap is non-derogatory

and let
u = [f − f(p)] ∈ Ap

be the element of Ap determined by f −f(p). Then the kernel of Mf−f(p) has
dimension 1, which implies the following:

• u lies in the maximal ideal mp since elements in Ap \mp are invertible.
• The image of Mf−f(p) has codimension 1.

Since the image is 〈u〉 ⊂ mp and mp also has codimension 1 in Ap, it follows
that

〈u〉 = mp

Thus p is curvilinear. (Exercise: Supply the details.)
Conversely, if every p is curvilinear, then it is easy to see that Mf is non-

derogatory when f is a generic linear combinations of the variables. (Exercise:
Complete the proof.)

Applying the Eigenvector Method. In order to apply the method de-
scribed here, we need to find f such that Mtf is non-derogatory. Typically, one
uses f = a1x1+· · ·+anxn. The idea is that when the solutions are curvilinear,
Theorem 2.1.11 implies that f will work for most choices of the ai.

We implement this as follows. Given a system with finitely many solutions,
make a random choice of the ai and compute the corresponding Mtf . Then:

• Test if Mtf is non-derogatory by computing whether CharPolyMf
(u) equals

MinPolyMf
(u).

• Once a non-derogatory Mtf is found, use the eigenvector method to find the
solutions.

If our system has only curvilinear solutions, then this procedure will probably
succeed after a small number of attempts. On the other hand, if we make a
large number of choices of ai, all of which give a non-derogatory Mtf , then we
are either very unlucky or our system has some non-curvilinear solutions, but
we don’t know which.

To overcome this problem, there are two ways to proceed:
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• First, one can compute the radical√
〈f1, . . . , fs〉 = {f ∈ K[x1, . . . , xn] | fk ∈ 〈f1, . . . , fs〉 for some k ≥ 1}.

The radical gives a system of equations with the same solutions as (2.1),
except that all solutions how have multiplicity 1 and hence are curvilinear.
Thus Theorem 2.1.11 applies to the radical system. Furthermore, Propo-
sition 2.7 of Chapter 2 of [CLO98] states that√

〈f1, . . . , fs〉 = 〈f1, . . . , fs, (p1(x1))red, . . . , (pn(xn))red〉,
where pi(xi) is the minimal polynomial of Mxi

written as a polynomial in xi

and (pi(xi))red is the squarefree polynomial with the same roots as pi(xi).
See [KR00, Sec. 3.7B] for the squarefree part of a polynomial.

• Second, one can intersect eigenspaces of the Mtxi
. Let p1 be an eigenvalue

of Mtx1
, so that p1 is the first coordinate of a solution of (2.1). Then, since

Mtx1
and Mtx2

commute, Mtx2
induces a linear map

Mtx2
: EA(p1, Mtx1

) → EA(p1, Mtx1
).

where EA(p1, Mtx1
) is the eigenspace of Mtx1

for the eigenvalue p1. The eigen-
values of this map give the second coordinates of all solutions which have
p1 as their first coordinate. Continuing in this way gives all solutions since
the intersection

⋂n
i=1EA(pi, Mtxi

) is one-dimensional (see Theorem 3.2.3 of
Chapter 3). This method is analyzed carefully in [MT01].

2.1.4 Single-Variable representation

One nice property of the non-derogatory case is that when Mf is non-
derogatory, we can represent the algebra A using one variable. Here is the
precise result.

Proposition 2.1.12. Assume that f ∈ K[x1, . . . , xn] and that Mf is non-
derogatory. Then there is an algebra isomorphism

K[u]/〈CharPolyMf
(u)〉 � A.

Proof. Consider the map K[u] → A defined by P (u) �→ [P (f)]. Then P (u) is
in the kernel if and only if [P (f)] = [0], i.e., if and only if P (f) ∈ 〈f1, . . . , fs〉.
In the discussion of minimal polynomials in Section 2.1.2, we showed that the
minimal polynomial of Mf is the nonzero polynomial of smallest degree with
this property. It follows easily that the kernel of this map is generated by the
the minimal polynomial of Mf . Thus we get an injective algebra homomor-
phism

K[u]/〈MinPolyMf
(u)〉 −→ A.

But MinPolyMf
(u) = CharPolyMf

(u) sinceMf is non-derogatory, and we also
know that
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dimK K[u]/〈CharPolyMf
(u)〉 = deg CharPolyMf

(u) = dimKA.

It follows that the above injection is the desired isomorphism.

Notice that this proof applies over an arbitrary field K. Thus, when K is
infinite and all of the solutions are curvilinear (e.g., all have multiplicity 1),
then Proposition 2.1.12 applies when f is a generic linear combination of the
variables.

We can use the single-variable representation to give an alternate method
for finding solutions. The idea is that the isomorphism

K[u]/〈CharPolyMf
(u)〉 � A

enables us to express the coset [xi] ∈ A as a polynomial in [f ], say

[xi] = Pi([f ]),

where deg(Pi) < dimKA. (Exercise: Show that Pi can be explicitly computed
using a Gröbner basis for 〈f1, . . . , fs〉.) Now we get all solutions as follows.

Proposition 2.1.13. Assume that Mf be non-derogatory and let P1, . . . , Pn

be constructed as above. Then:

1. 〈f1, . . . , fs〉 = 〈CharPolyMf
(f), x1 − P1(f), . . . , xn − Pn(f)〉.

2. For any root λ of CharPolyMf
(u), the n-tuple

(P1(λ), . . . , Pn(λ))

is a solution of (2.1), and all solutions of (2.1) arise this way.
3. If f =

∑n
i=1 aixi, then

∑n
i=1 ai(xi−Pi(f)) = 0, so that I has n generators.

Proof. For part 1, it is easy to see that xi − Pi(f) ∈ 〈f1, . . . , fs〉, and
CharPolyMf

(f) ∈ 〈f1, . . . , fs〉 by the Cayley-Hamilton theorem. For the other
inclusion, one uses xi = xi−Pi(f)+Pi(f) to express an element of 〈f1, . . . , fs〉
as an element of 〈x1 − P1(f), . . . , xn − Pn(f)〉 plus a polynomial in f . Then
Proposition 2.1.12 implies that this polynomial is divisible by CharPolyMf

(f).
From here, the other parts of the proposition follow easily. (Exercise: Complete
the proof.)

The third part of Proposition 2.1.13 implies that when all solutions are
curvilinear, we can rewrite the system as n equations in n unknowns. In this
case, the corresponding ideal is called a complete intersection.

The single-variable representation will have some unexpected consequences
later in the chapter.
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2.1.5 Generalized eigenspaces and multiplicities

The final observation of Section 2.1 relates multiplicities and generalized eigen-
spaces. Given an eigenvalue λ of a linear map T : V → V , recall that its
generalized eigenspace is

GV (λ, T ) = {v ∈ V | (T − λI)N (v) = 0 for some N ≥ 1}.
It is well-known that the dimension of GV (λ, T ) is the multiplicity of λ as a
root of the characteristic polynomial of T .

Proposition 2.1.14. The characteristic polynomial of Mf : A → A is

CharPolyMf
(u) =

∏
p

(u− f(p))mult(p).

Furthermore, if f ∈ K[x1, . . . , xn] takes distinct values at the solutions of (2.1)
and p is one of the solutions, then the generalized eigenspace GA(f(p),Mf ) is
naturally isomorphic to the local ring Ap.

Proof. First observe that Mf is compatible with the isomorphism

A �
∏
p

Ap =
∏
p

K[x1, . . . , xn]/Ip

where 〈f1, . . . , fs〉 =
⋂

p Ip is the primary decomposition and the product and
intersection are over all solutions of (2.1).

Now fix one solution p and note that f(p) is the only eigenvalue of Mf

on Ap since Ap = K[x1, . . . , xn]/Ip and p is the only common solution of the
polynomials in Ip. This easily leads to the desired formula for CharPolyMf

(u)
since mult(p) = dimKAp.

The previous paragraph also implies that Mf−f(p) is nilpotent on Ap, so
that Ap is contained in the generalized eigenspace of Mf for the eigenvalue
f(p). If we further assume that f(q) �= f(p) for q �= p, then Mf−f(p) is
invertible on Aq. Since A � ∏

pAp, it follows that we can identify Ap with
the generalized eigenspace GA(f(p),Mf ).

Here is a familiar example.

Example 2.1.15. For the equations f1 = f2 = f3 = 0 of Example 2.1.5, the
solutions are (0, 0) and (0, 1), and CharPolyMy

(u) = u2(u − 1)3. Since y sep-
arates the solutions, Proposition 2.1.14 implies that (0, 0) has multiplicity 2
and (0, 1) has multiplicity 3.

Genericity. Proposition 2.1.14 shows that we can compute multiplicities by
factoring CharPolyMf

(u), provided f takes distinct values at the solutions.
Furthermore, if we let f = a1x1 + · · · + anxn, then this is true generically.
Thus, if we make a random choice of the ai, then with high probability, the
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resulting f will take distinct values at the solutions. Thus, given a system of
equations (2.1), we have a probabilistic algorithm for finding both the number
of solutions and their respective multiplicities.

But sometimes (in a deterministic algorithm, for instance), one needs a
certificate that f takes distinct values at the solutions. Here are two ways to
achieve this:

• First, if 〈f1, . . . , fs〉 is radical, then f takes distinct values at the solutions
if and only if Φ = CharPolyMf

has distinct roots. (Exercise: Prove this.)
Hence one need only compute gcd(Φ,Φ′).

• In general, one can compute
√〈f1, . . . , fs〉 as described in Section 2.1.3

and then proceed as in the previous bullet.

Numerical Issues. A serious numerical issue is that it is sometimes hard to
distinguish between a single solution of multiplicity k > 1 and a cluster of k
very close solutions of multiplicity 1. Several people, including Hans Stetter,
are trying to come up with numerically stable methods for understanding such
clusters. For example:

• While the individual points in a cluster are not stable, their center of
gravity is.

• When the cluster consists of two points, the slope of the line connecting
them is numerically stable.

More details can be found in [HS97a]. From a sophisticated point of view, this
is equivalent to studying the numerical stability points in a Hilbert scheme of
subschemes of affine space of fixed finite length supported at a fixed point.

Other Notions of Multiplicity. The multiplicity mult(p) defined in this
section is sometimes called the geometric multiplicity. There is also a more
subtle version of multiplicity called the algebraic multiplicity or Hilbert-Samuel
multiplicity e(p). A discussion of multiplicity can be found in [Cox].

2.2 Ideals defined by linear conditions

As in the previous section, we will assume that

A = K[x1, . . . , xn]/〈f1, . . . , fs〉

is a finite-dimensional algebra over an algebraically closed field K. In this
section, we will continue the theme of linear algebra, focusing now on the role
of linear functionals on A and K[x1, . . . , xn].

2.2.1 Duals and dualizing modules

Given A as above, its dual space is
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Â = HomK(A,K).

If {�1, . . . , �m} is a basis of Â, then composing with the quotient map
K[x1, . . . , xn] → A gives linear functionals

L1, . . . , Lm : K[x1, . . . , xn] −→ K

with the property that

〈f1, . . . , fs〉 = {f ∈ K[x1, . . . , xn] | Li(f) = 0, i = 1, . . . ,m}
Thus the ideal 〈f1, . . . , fs〉 is defined by the linear conditions given by the Li.
In this section, we will explore some interesting ways of doing this.

Recall from Section 2.1 that we have the product decomposition

A �
∏
p

Ap

induced by the primary decomposition 〈f1, . . . , fs〉 =
⋂

p Ip, where the product
and intersection are over all solutions in Kn of the equations

f1 = f2 = · · · = fs = 0.

The product induces a natural isomorphism

Â �
∏
p

Âp. (2.9)

One feature of (2.9) is the following. For each solution p, let {�p,i}mult(p)
i=1 be

a basis of Âp. As above, every �p,i gives a linear functional

Lp,i : K[x1, . . . , xn] −→ K.

Then:

• If we fix p, then

Ip = {f ∈ K[x1, . . . , xn] | Lp,i(f) = 0 for i = 1, . . . ,mult(p)}
is the primary ideal such that Ap = K[x1, . . . , xn]/Ip.

• If we vary over all p and i, then the Lp,i define the ideal

〈f1, . . . , fs〉 =
⋂
p

Ip.

This way of thinking of the linear conditions gives not only the ideal but also
its primary decomposition.

The dual space Â also relates to the matrices Mf and Mtf appearing in
Section 2.1. Since Mf is the matrix of the multiplication map Mf : A → A
relative to the basis of A coming from the remainder monomials B, linear
algebra implies that Mtf is the matrix of the dual map Mt

f : Â → Â relative to
the dual basis of Â. This has the following nice application.
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Example 2.2.1. Let p be a solution and let 1p : A → K be the linear functional
defined by 1p([f ]) = f(p). (Exercise: Explain why this is well-defined.) Thus
1p ∈ Â. In Section 2.1.2, we used equation (2.3) to prove that f(p) is an
eigenvalue of Mtf . In terms of Mt

f , this equation can be written

Mt
f (1p) = f(p) 1p.

(Exercise: Prove this.) See Theorem 3.2.3 of Chapter 3 for more details.

We also need to explain how Â relates to commutative algebra. The key
point is that Â = HomK(A,K) becomes an A module via

(a�)(b) = �(ab)

for a, b ∈ A and � ∈ Â. Similarly, in the decomposition (2.9), each Âp is
a module over Ap. We call Â and Âp the dualizing modules of A and Ap

respectively. Dualizing modules are discussed in Chapter 21 of [Eis95].
Finally, we say that A is Gorenstein if there is an A-module isomorphism

Â � A.

Being Gorenstein is equivalent to the existence of a nondegenerate bilinear
form

〈·, ·〉 : A×A → K

with the property that
〈ab, c〉 = 〈a, bc〉

for a, b, c ∈ A. (Exercise: Prove this.) Here is an example.

Example 2.2.2. Let P ∈ C[z] be a polynomial of degree d with simple zeros.
Consider the global residue

resP : C[z]/〈P 〉 → C

introduced in Chapter 1. By Theorem th:dual of Chapter 1, the bilinear form

C[z]/〈P 〉 × C[z]/〈P 〉 → C

defined by (g1 · g2) = resP (g1g2) is nondegenerate. Since

(g1g2 · g3) = resP ((g1g2)g3) = resP (g1(g2g3)) = (g1 · g2g3),

we see that A = C[z]/〈P 〉 is Gorenstein.

See Chapter 21 of [Eis95] for more on Gorenstein duality.
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2.2.2 Differential conditions defining ideals

So far, we’ve seen that each primary ideal Ip can be described using mult(p)
linear conditions. We will now explain how to represent these linear conditions
using constant coefficient differential operators evaluated at p. We will assume
that K has characteristic 0.

Let’s begin with some examples.

Example 2.2.3. The equation

x2(x− 1)3 = 0

has the solutions 0 of multiplicity 2 and 1 of multiplicity 3. In terms of deriv-
atives, we have the ideal

〈x2(x− 1)3〉 = {f ∈ K[x] | f(0) = f ′(0) = 0, f(1) = f ′(1) = f ′′(1) = 0}.

Notice that the multiplicities correspond to the number of conditions defining
the ideal at 0 and 1 respectively.

Example 2.2.4. Consider the three sets of equations

(a) : x2 = xy = y2 = 0

(b) : x2 = y2 = 0

(c) : x = y3 = 0.

One easily sees that (0, 0) is the only solution, with multiplicity 3 in case (a),
multiplicity 4 in case (b), and multiplicity 3 in case (c). In terms of partial
derivatives, the corresponding ideals are given by

(a) : 〈x2, xy, y2〉 = {f ∈ K[x, y] | f(0, 0) = fx(0, 0) = fy(0, 0) = 0}
(b) : 〈x2, y2〉 = {f ∈ K[x, y] | f(0, 0) = fx(0, 0) = fy(0, 0) = fxy(0, 0) = 0}
(c) : 〈x, y3〉 = {f ∈ K[x, y] | f(0, 0) = fy(0, 0) = fyy(0, 0) = 0}.

In each case, the multiplicity is equal to the number of conditions defining the
ideal.

We will now generalize this description and use it to obtain interesting
information about the local rings. For instance, in the above example, we will
see that the descriptions of the ideals in terms of partial derivatives imply the
following:

• In cases (b) and (c), the ring is Gorenstein but not in case (a).
• In case (c) the ring is curvilinear but not in cases (a) and (b).
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We begin by setting up some notation. Consider the polynomial ring
K[∂1, . . . , ∂n]. Then an exponent vector α = (a1, . . . , an) gives the monomial
∂α, which we regard as the partial derivative

∂α =
∂a1+···+an

∂xa1
1 · · · ∂xan

n
.

Thus elements of K[∂1, . . . , ∂n] become constant coefficient differential opera-
tors on K[x1, . . . , xn].

In examples, we sometimes write ∂α as ∂xα . Thus

∂xy2 = ∂(1,2) =
∂3

∂x∂y2

when operating on K[x, y]. Also note that Example 2.2.4 involves the operators

(a) : 1, ∂x, ∂y

(b) : 1, ∂x, ∂y, ∂xy

(c) : 1, ∂y, ∂y2 .

(2.10)

applied to polynomials in K[x, y] and evaluated at (0, 0). Here, 1 is the identity
operator on K[x, y].

We next define the deflation or shift of D =
∑

α cα∂
α ∈ K[∂1, . . . , ∂n] by

an exponent vector β to be the operator

σβD =
∑
α

cα

(
α

β

)
∂α−β ,

where
(
α
β

)
=
(
a1
b1

) · · · (an

bn

)
and ∂α−β = 0 whenever α− β has a negative coor-

dinate. The reason for the binomial coefficients in the formula for σβD is that
they give the Leibniz formula

D(fg) =
∑

β

∂β(f)σβD(g)

for f, g ∈ K[x1, . . . , xn]. Here are some simple examples of deflations.

Example 2.2.5. Observe that

∂xy has nonzero deflations ∂xy, ∂x, ∂y, 1
∂y2 has nonzero deflations ∂y2 , 2∂y, 1.

These correspond to cases (b) and (c) of Example 2.2.4. On the other hand,
the operators of case (a) are not deflations of a single operator. As we will
see, this is why case (a) is not Gorenstein.

Definition 2.2.6. A subspace L ⊂ K[∂1, . . . , ∂n] is closed if it has finite
dimension over K and closed under deflation, i.e., σβ(L) ⊂ L for all β.
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The reader can easily check that the differential operators in cases (a), (b)
and (c) of (2.10) span closed subspaces. Here is the main result of Section 2.2.2
(see [MMM93] for a proof).

Theorem 2.2.7. For every solution p of (2.1), there is a unique closed sub-
space Lp ⊂ K[∂1, . . . , ∂n] of dimension mult(p) such that

〈f1, . . . , fs〉 = {f ∈ K[x1, . . . , xn] | D(f)(p) = 0 ∀ solution p and D ∈ Lp},
where D(f)(p) means the evaluation of the polynomial D(f) at the point p.
Furthermore, the primary component of 〈f1, . . . , fs〉 corresponding to a solu-
tion p is

Ip = {f ∈ K[x1, . . . , xn] | D(f)(p) = 0 for all D ∈ Lp},
and conversely,

Lp = {D ∈ K[∂1, . . . , ∂n] | D(f)(p) = 0 for all f ∈ Ip}.
It should not be surprising that Examples 2.2.3 and 2.2.4 are examples of

this theorem. Here is a more substantial example.

Example 2.2.8. Consider the equations

f1 = x2 + 2y2 − 2y = 0

f2 = xy2 − xy = 0

f3 = y3 − 2y2 + y = 0

from Example 2.1.1. There, we saw that the only solutions were (0, 0) and
(0, 1). In [MS95], it is shown that

L(0,0) = Span(1, ∂x)
L(0,1) = Span(1, ∂x, ∂x2 − ∂y).

(2.11)

Thus 〈f1, f2, f3〉 consists of all f ∈ K[x, y] such that

f(0, 0) = fx(0, 0) = f(0, 1) = fx(0, 1) = 0, fxx(0, 1) = fy(0, 1),

and looking at the conditions for (0, 0) and (0, 1) separately gives the primary
decomposition of 〈f1, f2, f3〉. In Section 2.2.3 we will describe how (2.11) was
computed.

Gorenstein and Curvilinear Points. We conclude Section 2.2.2 by ex-
plaining how special properties of the local ring Ap can be determined from
the representation given in Theorem 2.2.7.

Theorem 2.2.9. Ap is Gorenstein if and only if there is D ∈ Lp whose de-
flations span Lp.
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Proof. Let Lev
p denote the linear forms K[x1, . . . , xn] → K obtained by com-

posing elements of Lp with evaluation at p. Each such map vanishes on Ip and
thus gives an element of Âp. Hence

Lp � Lev
p � Âp.

Furthermore, if D ∈ Lp maps to D̃ ∈ Âp, then the Leibniz formula makes it
easy to see that the deflation σβD maps to (x− p)βD̃, where

(x− p)β = (x1 − p1)b1 · · · (xn − pn)bn

for p = (p1, . . . , pn) and β = (b1, . . . , bn). (Exercise: Prove this.) Hence these
deflations span Lp if and only if Âp is generated by a single element as an
Ap-module. In the latter case, we have a surjective Ap-module homomorphism
Ap → Âp which is an isomorphism since Ap and Âp have the same dimension
over K. We are done by the definition of Gorenstein from Section 2.2.1.

Before stating our next result, we need some definitions from [MS95].

Definition 2.2.10. The order of D =
∑

α cα∂
α is the degree of D as a

polynomial in K[∂1, . . . , ∂n]. A basis D1, . . . , Dmult(p) of Lp is consistently
ordered if for every r ≥ 1, there is j ≥ 1 such that

Span(D ∈ Lp | D has order ≤ r) = Span(D1, . . . , Dj).

Note that every consistently ordered basis has D1 = 1. Also observe that
the bases listed in (2.10) and (2.11) are consistently ordered.

We can now characterize when Ap is curvilinear.

Theorem 2.2.11. The embedding dimension ep of Ap is the number of op-
erators of order 1 in a consistently ordered basis of Lp. In particular, Ap is
curvilinear if and only if any such basis has at most one operator of order 1.

Proof. Let mp be the maximal ideal of Ap. Recall from equation (2.8) that

ep = dimK mp/m
2
p

= #minimal generators of mp.

Also let Lr
p = Span(D ∈ Lp | D has order ≤ r). Then L0

p ⊂ L1
p ⊂ · · · and, for

r ≥ 0, we have

dimK L
r
p/L

r−1
p = # operators of order r in a

consistently ordered basis of Lp.
(2.12)

We claim that there is a natural isomorphism

L1
p/L

0
p � HomK(mp/m

2
p,K). (2.13)
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Assuming this for the moment, the first assertion of the theorem follows im-
mediately from (2.12) for r = 1 and the above formula for ep. Then the final
assertion follows since by definition Ap is curvilinear if and only if it has
embedding dimension ep ≤ 1.

To prove (2.13), let Mp = 〈x1 − p1, . . . , xn − pn〉 ⊂ K[x1, . . . , xn] be the
maximal ideal of p. Then any operator D =

∑n
i=1 ai∂i induces the linear map

Mp −→ K

that sends f ∈ Mp to D(f)(p). By the product rule, this vanishes if f ∈ M2
p,

so that we get an element of the dual space

HomK(Mp/M
2
p,K).

Furthermore, it is easy to see that every element of the dual space arises in
this way. (Exercise: Prove these assertions.)

The isomorphism K[x1, . . . , xn]/Ip � Ap induces exact sequences

0 → Ip → Mp → mp → 0

and

0 → HomK(mp/m
2
p,K) → HomK(Mp/M

2
p,K) → HomK(Ip/Ip ∩M2

p,K) → 0.

It follows that D =
∑n

i=1 ai∂i gives an element of HomK(mp/m
2
p,K) if and

only if D vanishes on Ip, which is equivalent to D ∈ Lp. Since these operators
represent L1

p/L
0
p, we are done. (Exercise: Fill in the details.)

We get the following corollary of this result and Theorem 2.1.11.

Corollary 2.2.12. The multiplication map Mf is non-derogatory when f is
a generic linear combination of x1, . . . , xn if and only if for every solution p,
a consistently ordered basis of Lp has at most one operator of order 1.

Since the bases in Example 2.2.8 are consistently ordered, (2.11) shows that
the solutions of the corresponding equations have embedding dimension 1 and
hence are curvilinear. (This is the computation promised in Example 2.1.10.)
Thus Mf is non-derogatory when f is a generic linear combination of x, y. Of
course, we computed a specific instance of this in Example 2.1.6, but now we
know the systematic reason for our success.

Note also that if we apply Theorems 2.2.9 and 2.2.11 to Example 2.2.4,
then we see that the ring is Gorenstein in cases (b) and (c) (but not (a)) and
curvilinear in case (c) (but not (a) and (b)). This proves the claims made in
the two bullets from the discussion following Example 2.2.4
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2.2.3 Two algorithms

We’ve seen that the ideal 〈f1, . . . , fs〉 can be described using Gröbner bases
and using conditions on partial derivatives. As we will now explain, going from
one description to the other is a simple matter of linear algebra.

Gröbner Bases to Partial Derivatives. If we have a Gröbner basis for
〈f1, . . . , fs〉, then we obtain the required closed subspaces Lp in a three-step
process. The first step is to compute the primary decomposition

〈f1, . . . , fs〉 =
⋂
p

Ip.

In particular, this means knowing a Gröbner basis for each Ip. We will explain
how to compute such a primary decomposition in Section 2.4.3.

Given this, we fix a primary ideal Ip. We next recall a useful fact which re-
lates Ip to the maximal ideal Mp = 〈x1−p1, . . . , xn−pn〉 of p in K[x1, . . . , xn].

Lemma 2.2.13. If m = mult(p), then Mm
p ⊂ Ip.

Proof. It suffices to prove that mm
p = {0}, where mp is the maximal ideal ofAp.

By Nakayama’s lemma, we know that that mk
p �= mk+1

p whenever mk
p �= {0}.

Using
Ap ⊃ mp ⊃ m2

p ⊃ · · · ⊃ mk
p ⊃ {0},

it follows that dimKAp ≥ k + 1 whenever mk
p �= {0}. The lemma follows.

This lemma will enable us to describe Ip in terms of differential operators
of order at most m. However, this description works best when p = 0. So the
second step is to translate so that p = 0. Hence for the rest of our discussion,
we will assume that p = 0. Thus Lemma 2.2.13 tells us that

Mm
0 ⊂ I0, m = mult(0).

The third step is to write down the differential operators in L0 as follows.
Let B0 be the set of remainder monomials for the Gröbner basis of I0 and set

Monm = {xα | xα /∈ B0, deg(xα) < m}.
For each xα ∈ Monm, let

xα ≡
∑

xβ∈B0

cαβx
β mod I0 (2.14)

In other words,
∑

xβ∈B0
cαβx

β is the remainder of xα on division by the
Gröbner basis of I0. Then, for each xβ ∈ B0, define

Dβ = ∂β +
∑

xα∈Monm

cαβ
β!
α!
∂α.

where α! = a1! · · · an! for α = (a1, . . . , an) and similarly for β!.
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Proposition 2.2.14. f ∈ K[x1, . . . , xn] lies in Ip if and only if Dβ(f)(0) = 0
for all xβ ∈ B0.

Proof. Let f =
∑

α aαx
α. Since Mm

0 ⊂ I0, we can assume that f =∑
deg(α)<m aαx

α. Using (2.14), it is straightforward to show that

f ∈ Ip ⇐⇒ aβ +
∑

xα∈Monm

cαβaα = 0 for all xβ ∈ B0.

(Exercise: Prove this equivalence.) However, since

∂γ(xδ)(0) =

{
γ! if γ = δ
0 otherwise,

(2.15)

one easily sees that for xβ ∈ B0,

Dβ(f)(0) =
(
∂β +

∑
xα∈Monm

cαβ
β!
α!∂

α
)(∑

deg(γ)<m aγx
γ
)
(0)

= β!
(
aβ +

∑
xα∈Monm

cαβaα

)
.

The proposition now follows immediately since K has characteristic 0.

Here is an example of this result.

Example 2.2.15. For the polynomials from Example 2.2.8, we will show in
Section 2.4.3 that the primary decomposition is

〈x2 + 2y2 − 2y, xy2 − xy, y3 − 2y2 + y〉
= 〈x2, y〉 ⋂ 〈x2 + 2(y − 1), x(y − 1), (y − 1)2〉
= I(0,0)

⋂
I(0,1).

Let’s focus on I(0,1). If we translate this to the origin, then we get the ideal

I0 = 〈x2 + 2y, xy, y2〉.
The generators are a Gröbner basis for lex order with x > y, the remainder
monomials are B0 = {1, x, y}, and the multiplicity is m = 3. Thus

Mon3 = {xα | xα /∈ {1, x, y}, deg(xα) < 3} = {x2, xy, y2}.
The coefficients cαβ are given by

x2 ≡ 0 · 1 + 0 · x+ (−2) · y mod I0
xy ≡ 0 · 1 + 0 · x+ 0 · y mod I0
y2 ≡ 0 · 1 + 0 · x+ 0 · y mod I0.

so that

D1 = 1, Dx = ∂x, Dy = ∂y + (−2)1!
2!∂x2 = ∂y − ∂x2 .

(Exercise: Check this! ) Up to a sign, this is the basis of L(0,1) that appeared
in Example 2.2.8. The treatment for L(0,0) is similar. (Exercise: Do it.)
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We also want to remark on an alternate way to view the construction
L0 = Span(Dβ | xβ ∈ B0). Here, we are in the situation where p = 0, so that
by Theorem 2.2.7, we have

I0 = {f ∈ K[x1, . . . , xn] | Dβ(f)(0) = 0 for all xβ ∈ B0}
and

L0 = {D ∈ K[∂1, . . . , ∂n] | Dβ(f)(0) = 0 for all f ∈ I0}.
Now we will do something audacious: switch xi with ∂i. This means that I0
becomes an ideal

Î0 ⊂ K[∂1, . . . , ∂n]

and L0 becomes a subspace

L̂0 ⊂ K[x1, . . . , xn].

Observe that the pairing (2.15) is unchanged under xi ↔ ∂i. Thus:

L̂0 = {the polynomial solutions of the infinitely

many differential operators in Î0}.
This is the point of view taken in Chapter 10 of [Stu02]. Here is an example.

Example 2.2.16. In Example 2.2.15, we showed that

I0 = 〈x2 + 2y, xy, y2〉 =⇒ L0 = Span(1, ∂x, ∂y − ∂x2).

This means that under the switch x↔ ∂x, y ↔ ∂y, the subspace

L̂0 = Span(1, x, y − x2) ⊂ K[x, y]

is the space of all polynomial solutions of the infinitely many operators in the
ideal

Î0 = 〈∂2
x + 2∂y, ∂x∂y, ∂

2
y〉 ⊂ K[∂x, ∂y].

Other examples can be found in [Stu02].

We should also note that the description of Ip given by differential condi-
tions can require a lot of space. Examples and more efficient methods can be
found in Section 3.3 of [MMM96].

Partial Derivatives to Gröbner Bases. Now suppose that conversely, we
are given the data of Theorem 2.2.7. This means that for each solution p we
have a closed subspace Lp of dimension mult(p) such that

〈f1, . . . , fs〉 = {f ∈ K[x1, . . . , xn] | D(f)(p) = 0 for all p and D ∈ Lp}.
If we pick a basis Dp,i of each Lp, then the linear forms f �→ Dp,i(f)(p) give
a linear map
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L : K[x1, . . . , xn] −→ Km (2.16)

where m = dimKA. This map is surjective and its kernel is 〈f1, . . . , fs〉. Given
an order > (with some restrictions to be noted below), our goal is to find a
Gröbner basis of 〈f1, . . . , fs〉 with respect to > using the linear map (2.16).

The idea is to simultaneously build up the Gröbner basis G and the set of
remainder monomials B. We begin with both lists being empty and feed in
monomials one at a time, beginning with 1. The main loop of the algorithm
is described as follows.

Main Loop: Given a monomial xα, compute L(xα) together with L(xβ) for
all xβ ∈ B.

• If L(xα) is linearly dependent on the L(xβ), then compute a linear relation

L(xα) =
∑

xβ∈B

aβL(xβ), aβ ∈ F

(hence xα −∑
xβ∈B aβx

β ∈ 〈f1, . . . , fs〉) and add xα −∑
xβ∈B aβx

β to G.
• If L(xα) is linearly independent from the L(xβ), then add xα to B.

Once this loop is done for xα, we feed in the next monomial, which is the
minimal element (with respect to >) of the set

N(xα, G) = {monomials xγ > xα such that xγ is not
divisible by the leading term of any g ∈ G}. (2.17)

Hence we need to find the minimal element of N(xα, G). As explained in
[BW93], this is easy to do whenever > is a lex or total degree order. The
algorithm terminates when (2.17) becomes empty.

In [MMM93], it shown that this algorithm always terminates and that
when this happens, G is the desired Gröbner basis and B is the corresponding
set of remainder monomials. Here is an example.

Example 2.2.17. In the notation of Example 2.2.15, let p = (0, 0) and L0 =
Span(1, ∂x, ∂y − ∂x2). It follows that I0 is the kernel of the map

L : K[x, y] −→ K3

defined by L(f) = (f(0, 0), fx(0, 0), fy(0, 0) − fxx(0, 0)). If we use lex order
with x > y, then the above algorithm starts with B = G = ∅ and proceeds as
follows:

xα L(xα) B G min(N(xα, G))
1∗ (1, 0, 0) {1} ∅ y
y∗ (0, 0, 1) {1, y} ∅ y2

y2 (0, 0, 0) {1, y} {y2} x
x∗ (0, 1, 0) {1, y, x} {y2} xy
xy (0, 0, 0) {1, y, x} {y2, xy} x2

x2 (0, 0,−2) {1, y, x} {y2, xy, x2 + 2y} none!

(2.18)
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In this table, an asterisk denotes those monomials which become remainder
monomials. The other monomials are leading terms of the Gröbner basis.
(Exercise: Check the steps of the algorithm to see how it works.)

A complexity analysis of this algorithm can be found in [MMM93].

2.2.4 Ideals of points and basis conversion

We conclude by observing that the algorithm illustrated in Example 2.2.17
applies to many situations besides partial derivatives. The key point is that if

L : K[x1, . . . , xn] −→ Km

is any surjective linear map whose kernel is an ideal I, then the algorithm
described in the discussion following (2.16) gives a Gröbner basis for I. Here
are two situations where this is useful.

Ideals of Points. Suppose we have a finite list of points p1, . . . , pm ∈ Kn.
Then we want to compute a Gröbner basis of the ideal

I = {f ∈ K[x1, . . . , xn] | f(p1) = · · · = f(pm) = 0}

consisting of all polynomials which vanish at p1, . . . , pm. This is now easy, for
the points give the linear map L : K[x1, . . . , xn] → Km defined by

L(f) = (f(p1), . . . , f(pm))

whose kernel is the ideal I. Furthermore, it is easy to see that L is surjective
(see the proof of Theorem 2.10 of Chapter 2 of [CLO98]). Thus we can find a
Gröbner basis of I using the above algorithm.

Example 2.2.18. Consider the points (0, 0), (1, 0), (0, 1) ∈ K2. This gives the
linear map L : K[x, y] → K3 defined by

L(f) = (f(0, 0), f(1, 0), f(0, 1)).

If you apply the algorithm for lex order with x > y as in Example 2.2.17,
you will obtain a table remarkably similar to (2.18), except that the Gröbner
basis will be {y2 − y, xy, x2 − x}. (Exercise: Do this computation.)

A more complete treatment appears in [MMM93]. This is also related to
the Buchberger-Möller algorithm introduced in [BM82]. The harder problem
of computing the homogeneous ideal of a finite set of points in projective space
is discussed in [ABKR00].

Basis Conversion. Suppose that we have a Gröbner basis G′ for 〈f1, . . . , fs〉
with respect to one order >′ and want to find a Gröbner basis G with respect
to a second order >.
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We can do this as follows. Let B′ be the set of remainder monomials with
respect to G′. Then taking the remainder on division by G′ gives a linear map

L : K[x1, . . . , xn] −→ Span(B′) � Km.

The kernel is 〈f1, . . . , fs〉 and the map is surjective since L(xβ) = xβ for
xβ ∈ B′. Then we can apply the above method to find the desired Gröbner
basis G. This is the FGLM basis conversion algorithm of [FGLM93].

Example 2.2.19. By Example 2.2.17, {y2, xy, x2 +2y} is a Gröbner basis with
respect to lex order with x > y. To convert to a lex order Gröbner basis with
y > x, we apply the above method. After constructing a a table similar to
(2.18), we obtain the Gröbner basis {x3, y + 1

2x
2}. (Exercise: Do this.)

Besides ideals of points and basis conversion, this algorithm has other
interesting applications. See [MMM93] for details.

2.3 Resultants

The method for solving equations discussed in Section 2.1 assumed that we
had a Gröbner basis available. In this section, we will see that when our equa-
tions have more structure, we can often compute the multiplication matrices
directly, without using a Gröbner basis. This will lead to a method for solving
equations closely related to the theory of resultants.

2.3.1 Solving equations

We will work in K[x1, . . . , xn], K algebraically closed, but we will now assume
that we have n equations in n unknowns, i.e.,

f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0. (2.19)

Solutions to such a system are described by Bézout’s theorem.

Theorem 2.3.1. Consider a system of equations (2.19) as above and let di

be the degree of fi. Then:

1. If the system has only finitely many solutions, then the total number of
solutions (counted with multiplicity) is at most µ = d1 · · · dn.

2. If f1, . . . , fn are generic, then there are precisely µ = d1 · · · dn solutions,
all of multiplicity 1.

To find the solutions, we will use a method first described by Auzinger and
Stetter [AS88]. The idea is to construct a µ × µ matrix whose eigenvectors
will determine the solutions. For this purpose, let

d = d1 + · · ·+ dn − n+ 1 (2.20)
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and divide the monomials of degree ≤ d into n+ 1 disjoint sets as follows:

Sn = {xγ : deg(xγ) ≤ d, xdn
n divides xγ}

Sn−1 = {xγ : deg(xγ) ≤ d, xdn
n doesn’t divide xγ but xdn−1

n−1 does}
...

S0 = {xγ : deg(xγ) ≤ d, xdn
n , . . . , x

d1
1 don’t divide xγ}.

Note that

S0 = {xb1
1 · · ·xbn

n | 0 ≤ bi ≤ di − 1 for all i}, so that #S0 = µ. (2.21)

(Exercise: Prove this.) Since S0 plays a special role, we will use xα to denote
elements of S0 and xβ to denote elements of S1 ∪ · · · ∪ Sn. Now observe that

if xα ∈ S0, then xα has degree ≤ d− 1,

if xβ ∈ Si, i > 0, then xβ/xdi
i has degree ≤ d− di,

where the first assertion uses d− 1 = d1 + · · ·+ dn − n =
∑n

i=1(di − 1).
Now let f0 = a1x1 + · · ·+ anxn, ai ∈ K, and consider the equations:

xα f0 = 0 for all xα ∈ S0

(xβ/xd1
1 ) f1 = 0 for all xβ ∈ S1

...

(xβ/xdn
n ) fn = 0 for all xβ ∈ Sn.

Since the xα f0 and xβ/xdi
i fi have degree ≤ d, we can write these polynomials

as linear combinations of the xα and xβ . We will order these monomials so that
the elements xα ∈ S0 come first, followed by the elements xβ ∈ S1 ∪ · · · ∪ Sn.
This gives a square matrix M0 such that

M0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xα1

xα2

...
xβ1

xβ2

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xα1 f0
xα2 f0

...
xβ1/xd1

1 f1
xβ2/xd1

1 f1
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.22)

where, in the column on the left, the first two elements of S0 and the first
two elements of S1 are listed explicitly. The situation is similar for the column
on the right. Each entry of M0 is either 0 or a coefficient of some fi. In the
literature, M0 is called a Sylvester-type matrix.

We next partition M0 so that the rows and columns of M0 corresponding
to elements of S0 lie in the upper left hand corner. This gives
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M0 =
(
M00 M01

M10 M11

)
, (2.23)

whereM00 is a µ×µ matrix for µ = d1 · · · dn, andM11 is also a square matrix.
One can show that M11 is invertible for a generic choice of f1, . . . , fn. Hence
we can define the µ× µ matrix

M̃f0 =M00 −M01M
−1
11 M10. (2.24)

Also, given a point p ∈ Kn, let pα be the column vector (pα1 , pα2 , . . .)t ob-
tained by evaluating all monomials in S0 at p (where t means transpose).

Theorem 2.3.2. Let f1, . . . , fn be generic polynomials, where fi has total de-
gree di, and construct M̃f0 as in (2.24) with f0 = a1x1 + · · · + anxn. Then
pα is an eigenvector of M̃f0 with eigenvalue f0(p) whenever p is a solution of
(2.19). Furthermore, the vectors pα are linearly independent as p ranges over
all solutions of (2.19).

Proof. Let pβ be the column vector (pβ1 , pβ2 , . . .)t given by evaluating all
monomials in S1 ∪ · · · ∪ Sn at p. Then evaluating (2.22) at a solution p of
(2.19) gives

M0

(
pα

pβ

)
=
(
f0(p)pα

0

)
.

In terms of (2.23), this becomes(
M00 M01

M10 M11

)(
pα

pβ

)
=
(
f0(p)pα

0

)
,

and it follows that
M̃f0 pα = f0(p)pα. (2.25)

(Exercise: Prove this.) Hence, for a solution p, f0(p) is an eigenvalue of M̃f0

with eigenvector pα. For generic a1, . . . , an, f0 = a1x1 + · · · + anxn takes
distinct values at the solutions, i.e., the eigenvalues f0(p) are distinct. This
shows that the corresponding eigenvectors pα are linearly independent.

We can now solve (2.19) by the method of Section 2.1.3. We know that
there are µ = d1 · · · dn solutions p. Furthermore, the values f0(p) are distinct
for a generic choice of f0 = a1x1 + · · · + anxn. Then Theorem 2.3.2 implies
that the µ× µ matrix M̃f0 has µ eigenvectors pα. Hence all of the eigenspaces
must have dimension 1, i.e., M̃f0 is non-derogatory.

Also notice that 1 ∈ S0 by (2.21). It follows that we can assume that every
pα is of the form

pα = (1, pα(2), . . . , pα(µ))t.

Thus, once we compute an eigenvector v of M̃f0 for the eigenvalue f0(p), we
know how to rescale v so that v = pα.
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As in Section 2.1.3, the idea is to read off the solution p from the entries
of the eigenvector pα. If fi has degree di > 1, then xi ∈ S0, so that pi appears
as a coordinate of pα. Hence we can recover all coordinates of pi except for
those corresponding to equations with di = 1. These were called the “missing
variables” in Section 2.1.3. In this situation, the missing variables correspond
to linear equations. Since we can find the coordinates of the solution p for
all of the other variables, we simply substitute these known values into the
linear equations corresponding to the missing variables. Hence we find all
coordinates of the solution by linear algebra. Details of this procedure are
described in Exercise 5 of Section 3.6 of [CLO98].

This is all very nice but seems to ignore the quotient algebra

A = K[x1, . . . , xn]/〈f1, . . . , fn〉.

In fact, what we did above has a deep relation to A as follows.

Theorem 2.3.3. If f1, . . . , fn are generic polynomials, where fi has total de-
gree di, then the cosets of the monomials

S0 = {xb1
1 · · ·xbn

n | 0 ≤ bi ≤ di − 1 for all i}

form a basis of the quotient algebra A. Furthermore, if f0 = a1x1 + · · ·+anxn

and M̃f0 is the matrix constructed in (2.24) using f0, f1, . . . , fn, then

M̃f0 = Mtf0
,

where Mf0 is the matrix of the multiplication map Mf0 : A → A relative to the
basis given by S0.

Proof. Recall from Bézout’s theorem that when f1, . . . , fn are generic, the
equations (2.19) have µ = d1 · · · dn solutions of multiplicity 1 in Kn. It follows
that A has dimension µ over K. Since this is also the cardinality of S0, the first
part of the theorem will follow once we show that the cosets of the monomials
in S0 are linearly independent.

Write the elements of S0 as xα(1), . . . , xα(µ) and suppose we have a linear
relation among the cosets [xα(j)], say

c1[xα(1)] + · · ·+ cµ[xα(µ)] = 0.

Evaluating this equation at a solution p makes sense and implies that

c1p
α(1) + · · ·+ cµpα(µ) = 0. (2.26)

In the generic case, our equations have µ = d1 · · · dn solutions, so that (2.26)
gives µ equations in µ unknowns c1, . . . , cµ. But the coefficients of the rows
give the transposes of the vectors pα, which are linearly independent by The-
orem 2.3.2 It follows that c1 = · · · = cµ = 0. This proves that the cosets



2 Solving equations via algebras 95

[xα(1)], . . . , [xα(µ)] are linearly independent. Thus S0 gives a basis of A as
claimed.

For the second assertion, observe from equation (2.3) that

Mtf0
pα = f0(p)pα

for each solution p. Comparing this to (2.25), we get

Mtf0
pα = M̃f0 pα

for all solutions p. Since f1, . . . , fn are generic, we have µ solutions p, and the
corresponding eigenvectors pα are linearly independent by Theorem 2.3.2.
This implies Mtf0

= M̃f0 .

The above proof of Mtf0
= M̃f0 requires that det(M11) �= 0 and that all

solutions have multiplicity 1. In Chapter 3, Theorem 3.5.1 will show that
Mtf0

= M̃f0 holds under the weaker hypothesis that det(M11) �= 0. (Note that
the matrix M0 defined in Section 3.5.1 is the transpose of our M0. Thus the
“Schur complement” defined in Theorem 3.5.1 is what we call M̃tf0

.)
It is satisfying to see how the method described in this section relates to

what we did in Section 2.1. However, there is a lot more going on here. Here
are some items of interest.

Multiplication Matrices. By setting f0 = xi in Theorem 2.3.3, we can
construct the matrix of multiplication by xi as Mxi

= M̃txi
. However, it is

possible to compute all of these maps simultaneously by using f0 = u1x1 +
· · · + unxn, where u1, . . . , un are variables. In the decomposition (2.23), the
matrices M10 and M11 don’t involve the coefficients of f0. Thus, we can still
form the matrix M̃f0 from (2.24), and it is easy to see that

M̃tf0
= u1Mx1 + · · ·+ unMxn

.

Thus one computation gives all of the multiplication matrices Mxi
. See the

discussion following Theorem 3.5.1 in Chapter 3 for an example.

Solving via Multivariate Factorization. As above, suppose that f0 =
u1x1 + · · · + unxn, where u1, . . . , un are variables. In this case, det(M̃f0) be-
comes a polynomial in F [u1, . . . , un]. The results of this section imply that
for f1, . . . , fn generic, the eigenvalues of M̃f0 are f0(p) as p ranges over all
solutions of (2.19). Since all of the eigenspaces have dimension 1, we obtain

det(M̃f0) =
∏
p

(u1p1 + · · ·+ unpn). (2.27)

It follows that if we can factor det(M̃f0) into irreducibles in F [u1, . . . , un], then
we get all solutions of (2.19). The general problem of multivariate factorization
over an algebraically closed field will be discussed in Chapter 9. We will see
in Section 2.3.2 that (2.27) is closely related to resultants.
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Ideal Membership. Given f ∈ K[x1, . . . , xn], how do we tell if f ∈
〈f1, . . . , fn〉? This is the Ideal Membership Problem. How do we do this with-
out a Gröbner basis? One method (probably not very efficient) uses the above
matrices Mxi

as follows:

f ∈ 〈f1, . . . , fn〉 ⇐⇒ f(Mx1 , . . . , Mxn
) is the zero matrix.

To prove this criterion, note that f(Mx1 , . . . , Mxn
) = Mf since the Mxi

commute.
Then we are done since Mf is the zero matrix if and only if f is in the ideal.
(Exercise: Supply the details.)

Sparse Polynomials. It is also possible to develop a sparse version of the
solution method described in this section. The idea is that one fixes in ad-
vance the terms which appear in each fi and then considers what happens
when fi is generic relative to these terms. One gets results similar to Theo-
rems 2.3.2 and 2.3.3, and there are also nice relations to polyhedral geometry.
This material is discussed in Chapter 7. See also [CLO98, Chapter 7].

Duality. The assumption that f1, . . . , fn have only finitely many solutions in
Kn implies that these polynomials form a regular sequence. This allows us to
apply the duality theory of complete intersections. There are also interesting
relations with the multidimensional residues discussed in Chapters 1 and 3.
This material is also covered in greater detail in [EM96] and [EM98].

2.3.2 Multivariate resultants

The classical multivariable resultant Resd0,...,dn
in an irreducible polynomial

in the coefficients of n+ 1 homogeneous polynomials

F0, . . . , Fn ∈ K[x0, . . . , xn]

of degrees d0, . . . , dn with the property that

Resd0,...,dn
(F0, . . . , Fn) = 0

if and only if the Fi have a common solution in the projective space Pn(K)
(as usual, K = K).

This resultant has an affine version as follows. If we dehomogenize Fi by
setting x0 = 1, then we get polynomials fi ∈ K[x1, . . . , xn] of degree at most
di. Since Fi and fi have the same coefficients, we can write the resultant as

Resd0,...,dn
(f0, . . . , fn).

Then the vanishing of this resultant means that the system of equations
f0 = · · · = fn = 0 has a solution either in Kn or “at ∞,” i.e., a projec-
tive solution with x0 = 0.
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In the situation of Section 2.3.1, we have n polynomials f1, . . . , fn of de-
grees d1, . . . , dn in x1, . . . , xn. To compute a resultant, we need one more
polynomial. Not surprisingly, we will use

f0 = a1x1 + · · ·+ anxn.

We will usually assume ai ∈ K, though (as illustrated at the end of Sec-
tion 2.3.1) it is sometimes useful to replace ai with a variable ui.

In order to compute the resultant Res1,d1,...,dn
(f0, f1, . . . , fn), we need to

study the behavior of the system f1 = · · · = fn = 0 at ∞. Write

fi =
di∑

j=0

fi,j

where fi,j is homogeneous of degree j in x1, . . . , xn. Then fi homogenizes to

Fi =
di∑

j=0

fi,jx
di−j
0

of degree di in x0, x1, . . . , xn. Then (2.19) has a solution at ∞ when the
homogenized system

F1 = · · · = Fn = 0

has a nontrivial solution with x0 = 0.
The following result relates the algebra A = K[x1, . . . , xn]/〈f1, . . . , fn〉 to

solutions at ∞.

Lemma 2.3.4. The following are equivalent:

f1 = · · · = fn = 0 has no solutions at ∞
⇐⇒ Resd1,...,dn

(f1,d1 , . . . , fn,dn
) �= 0

⇐⇒ A has dimension µ = d1 · · · dn over K.

Proof. Note that Fi reduces to fi,di
when x0 = 0. Thus the fi have a solution

at ∞ if and only if the system of homogeneous equations

f1,d1 = · · · = fn,dn
= 0

has a nontrivial solution. This gives the first equivalence. The second uses
Bézout’s theorem and some facts from algebraic geometry. See Section 3 of
Chapter 3 of [CLO98] for the details.

When there are no solutions at ∞, it follows that we get our algebra A of
dimension d1 · · · dn over K. But unlike Section 2.3.1, the solutions may have
multiplicities > 1. In this case, we can relate resultants and multiplication
maps as follows.
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Theorem 2.3.5. If f0 = u1x1 + · · ·+unxn and (2.19) has no solutions at ∞,
then

Res1,d1,...,dn
(f0, f1, . . . , fn)

= Resd1,...,dn
(f1,d1 , . . . , fn,dn

) det(Mf0)

= Resd1,...,dn
(f1,d1 , . . . , fn,dn

)
∏
p

(u1p1 + · · ·+ unpn)mult(p).

and

Res1,d1,...,dn
(u− f0, f1, . . . , fn)

= Resd1,...,dn
(f1,d1 , . . . , fn,dn

) CharPolymf0
(u)

= Resd1,...,dn
(f1,d1 , . . . , fn,dn

)
∏
p

(
u− (u1p1 + · · ·+ unpn)

)mult(p)
.

Proof. In each case, the first equality uses Theorem 3.4 of [CLO98, Ch. 3] and
the second uses Proposition 2.1.14 of this chapter.

While this is nice (and will have some unexpected consequences when we
discuss Galois theory in Section 2.5), the relation between resultants and what
we did in Section 2.3.1 goes much deeper. Here are some details.

Computing Resultants. First recall that the method given in Section 2.3.1
for computing the matrix Mf0 of the multiplication mapMf0 used the equality

M̃f0 = Mtf0

from Theorem 2.3.3. As we noted after the proof, this equality requires that
det(M11) �= 0 (since det(M11)−1 was used in the formula for M̃f0 given in
(2.24)). This relates to resultants as follows.

A standard method for computing Res1,d1,...,dn
(f0, f1, . . . , fn) involves the

quotient of two determinants. In our situation, the relevant formula is

det(M0) = Res1,d1,...,dn
(f0, f1, . . . , fn) det(M ′

0), (2.28)

whereM0 is precisely the matrix appearing in (2.22) andM ′
0 is the submatrix

described in Section 4 of Chapter 3 of [CLO98]. It follows that

Res1,d1,...,dn
(f0, f1, . . . , fn) =

det(M0)
det(M ′

0)

whenever det(M ′
0) �= 0. The subtle point is that det(M0) and det(M ′

0) can
both vanish even though Res1,d1,...,dn

(f0, f1, . . . , fn) is nonzero. So to calculate
the resultant using M0, we definitely need det(M ′

0) �= 0. Yet for M̃f0 , we need
det(M11) �= 0. Here is the nice relation between these determinants.

Proposition 2.3.6. det(M11) = Resd1,...,dn
(f1,d1 , . . . , fn,dn

) det(M ′
0).
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Proof. First observe that by (2.22) and the definition of M̃f0 , we have

det(M0) = det
(
I −M01M

−1
11

0 I

)
det

(
M00 M01

M10 M11

)
= det

(
M̃f0 0
M10 M11

)
= det(M̃f0) det(M11).

whenever det(M11) �= 0. Using this with (2.28) and Theorems 2.3.5 and 2.3.3,
we obtain

det(M̃f0) det(M11) = det(M0)
= Res1,d1,...,dn

(f0, f1, . . . , fn) det(M ′
0)

= Resd1,...,dn
(f1,d1 , . . . , fn,dn

) det(Mf0) det(M ′
0)

= Resd1,...,dn
(f1,d1 , . . . , fn,dn

) det(M̃f0) det(M ′
0)

when f1, . . . , fn are sufficiently generic. Cancelling det(M̃f0) (which is nonzero
generically) shows that the equality

det(M11) = Resd1,...,dn
(f1,d1 , . . . , fn,dn

) det(M ′
0)

holds generically. Since each side is a polynomial in the coefficients of the fi,
this equality must hold unconditionally.

We noted earlier that det(M11) �= 0 implies that M̃f0 is defined and satisfies
M̃f0 = Mtf0

. Then Proposition 2.3.6 shows that det(M11) �= 0 also guarantees
the following additional facts:

• Resd1,...,dn
(f1,d1 , . . . , fn,dn

) �= 0, so that (2.19) has no solutions at ∞.
• det(M ′

0) �= 0, so that Res1,d1,...,dn
(f0, f1, . . . , fn) can be computed using

M0 and M ′
0.

Hence the link between Section 2.3.1 and resultants is very strong.
For experts, we observe that (2.28) and Proposition 2.3.6 imply that if

det(M ′
0) �= 0, then we have

Res1,d1,...,dn
(f0, f1, . . . , fn) =

detM0

detM ′
0

Resd1,...,dn
(f1,d1 , . . . , fn,dn

) =
detM11

detM ′
0

,

where we observe that M ′
0 is a submatrix of both M11 and M0. So M0 allows

us to compute not one but two resultants. Has this been noticed before?

Genericity. In Section 2.3.1, we required that f1, . . . , fn be “generic”, which
upon careful reading means first, that the system (2.19) has d1 · · · dn solutions
of multiplicity 1, and second, that det(M11) �= 0. In terms of resultants, this
means the following:



100 D.A. Cox

• Resd1,...,dn
(f1,d1 , . . . , fn,dn

) �= 0.
• Resd−1,d1,...,dn

(det
(

∂fi

∂xj

)
, f1, . . . , fn) �= 0, where d is defined in (2.20).

• det(M ′
0) �= 0.

The first item guarantees that A has the correct dimension by Lemma 2.3.4
and the second guarantees that the Jacobian is nonvanishing at all solutions,
so that every solution has multiplicity 1 by the implicit function theorem.
Finally, the first and third conditions are equivalent to det(M11) �= 0 by
Proposition 2.3.6.

One historical remark is that while the formula (2.28) is due to Macaulay
in 1902, many ideas of Section 2.3.2 are present in the work of Kronecker in
1882. For example, Kronecker defines

Res1,d1,...,dn
(u− f0, f1, . . . , fn)

and shows that as a polynomial in u, its roots are f0(p) for p a solution of
(2.19). He also notes that the discriminant condition of the second bullet is
needed to get solutions of multiplicity 1 and that when this is true, the ideal
〈f1, . . . , fn〉 is radical (see pp. 276 and 330 of [Kro31, Vol. II]).

2.4 Factoring

In earlier sections of this chapter, we studied quotient algebras

A = K[x1, . . . , xn]/〈f1, . . . , fs〉

where K was usually algebraically closed. Here, we will work over more general
fields and consider two factorization problems: factoring polynomials into a
product of irreducible polynomials and factoring an ideal into an intersection
of primary ideals (primary decomposition). We will also study the Theorem
of the Primitive Element.

2.4.1 Factoring over number fields

Near the end of Section 2.3.1, we gave the formula (2.27)

det(M̃f0) =
∏
p

(u1p1 + · · ·+ unpn),

where f0 = u1x1+· · ·+unxn and the product is over all solutions p. The point
was that we could compute the left-hand side, so that if we knew how to factor
multivariable polynomials over an algebraically closed field, then we could find
all of the solutions. We will now turn the tables and use finite commutative
algebras and their multiplication maps to do factoring over number fields. We
begin with a lovely result of Dedekind.
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Dedekind Reciprocity. Suppose that f(x), g(x) ∈ Q[x] are irreducible with
roots α, β ∈ C such that f(α) = g(β) = 0. Then factor f(x) into irreducibles
over Q(β), say

f(x) = f1(x) · · · fr(x), fi(x) ∈ Q(β)[x]. (2.29)

The fi(x) are distinct (i.e., none is a constant multiple of any of the others)
since f is separable. Then the Dedekind Reciprocity Theorem describes the
factorization of g(x) over Q(α) as follows.

Theorem 2.4.1. Given the above factorization of f(x) into irreducibles over
Q(β), the factorization of g(x) into irreducibles over Q(α) can be written as

g(x) = g1(x) · · · gr(x), gi(x) ∈ Q(α)[x]

where
deg(f1)
deg(g1)

=
deg(f2)
deg(g2)

= · · · = deg(fr)
deg(gr)

=
deg(f)
deg(g)

.

Proof. Consider the Q-algebra

A = Q[x, y]/〈f(x), g(y)〉.
Since y �→ β induces Q[y]/〈g(y)〉 � Q(β) and the fi(x) are distinct irreducibles
(because f(x) is separable), we get algebra isomorphisms

A � Q(β)[x]/〈f(x)〉
� Q(β)[x]/〈f1(x) · · · fr(x)〉

�
r∏

i=1

Q(β)[x]/〈fi(x)〉︸ ︷︷ ︸
Ki

,

(2.30)

where Ki is a field since fi(x) is irreducible over Q(β). Thus A is isomorphic to
the product of the fields K1, . . . ,Kr. Furthermore, since [Ki :Q(β)] = deg(fi),
the degree of Ki over Q is

[Ki :Q] = [Ki :Q(β)][Q(β) :Q] = deg(fi) deg(g). (2.31)

Now interchange the roles of f and g. The factorization of g(y) into s
irreducibles gi(y) over Q(α) � Q[x]/〈f(x)〉 gives an isomorphism between A
and a product of s fields A �∏s

i=1 K′
i such that

[K′
i :Q] = deg(gi) deg(f). (2.32)

However, the decomposition of A into a product of fields is unique up to
isomorphism (this is proved by studying the idempotents of A). Hence we
must have r = s and Ki � K′

i after a suitable permutation of indices. It
follows that (2.31) and (2.32) must equal for all i, and the result follows.
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According to [Edw04], Dedekind discovered this result in 1855, though
his version wasn’t published until 1982. Kronecker found this theorem inde-
pendently and stated it in his university lectures. Theorem 2.4.1 was first
published by Kneser in 1887.

A Factorization Algorithm. The algebra A that we used in the proof of
Theorem 2.4.1 can also be used to construct the factorization of f(x) over
Q(β). The idea is to compute

Φ(u) = CharPolyMf0
(u), f0 = x+ ty,

for an appropriately chosen t ∈ Q. This polynomial in Q[u] can be computed
using the methods of Section 2.1 and factored using known algorithms for fac-
toring polynomials in Q[u]. Kronecker observed that these factors determine
the factorization of f(x) over Q(β). Here is his result.

Theorem 2.4.2. Assume that f0 = x+ty takes distinct values at the solutions
of f(x) = g(y) = 0 and let

Φ(u) =
r∏

i=1

Φi(u)

be the irreducible factorization of Φ(u) in Q[u]. Then the irreducible factor-
ization of f(x) over Q(β) is

f(x) = c f1(x) · · · fr(x),
where c ∈ K∗ and

fi(x) = gcd(Φi(x+ tβ), f(x)).

(Note that the gcd is computed in Q(β)[x].)

Proof. If n = deg(f(x)) and m = deg(g(y)), then Bézout’s theorem implies
that the equations f(x) = g(y) = 0 have at most nm solutions in x and y
counted with multiplicity. But in fact there are exactly nm solutions since
f(x) and g(y) are separable. It follows that all of the multiplicities are 1. We
now apply the methods of Section 2.1.

By assumption, f0 = x+ ty takes distinct values at all solutions of f(x) =
g(y) = 0. Since they have multiplicity 1, the multiplication mapMf0 : A → A
is non-derogatory, where A = Q[x, y]/〈f(x), g(y)〉. Then the single-variable
representation (Proposition 2.1.12) implies that u �→ [x+ ty] ∈ A induces

Q[u]/〈Φ(u)〉 � A
since Φ(u) is the characteristic polynomial of multiplication by f0 = x+ ty on
the algebra A. Notice also that

Disc(Φ(u)) �= 0
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since the eigenvalues all have multiplicity 1. This implies that the above fac-
torization of Φ(u) is a product of distinct irreducibles.

By the Chinese Remainder Theorem, such a factorization gives a decom-
position

A � Q[u]/〈Φ(u)〉 �
r∏

i=1

Q[u]/〈Φi(u)〉

into a product of fields. Using the definition of A, this transforms into the
product of fields given by

A = Q[x, y]/〈g(y), f(x)〉 �
r∏

i=1

Q[x, y]/〈g(y), f(x), Φi(x+ ty)〉. (2.33)

(Exercise: Prove this.) Since y �→ β induces Q[y]/〈g(y)〉 � Q(β), we can
rewrite (2.33) as a product of fields

A �
r∏

i=1

Q(β)[x]/〈f(x), Φi(x+ tβ)〉. (2.34)

However, Q(β)[x] is a PID, so that 〈f(x), Φi(x + tβ)〉 is the principal ideal
generated by fi(x) = gcd(f(x), Φi(x + tβ)). Since each factor in the product
in (2.34) is a field, we see that fi(x) is irreducible over Q(β). Furthermore,
each fi(x) divides f(x). It remains to show that f(x) equals f1(x) · · · fr(x) up
to a constant.

We proved above that Φ(u) has distinct roots, so that the same is true for
Φ(x + tβ). It follows that in the factorization Φ(x + tβ) =

∏r
i=1 Φi(x + tβ),

the factors Φi(x+ tβ) have distinct roots as we vary i. Hence the same is true
for the fi(x). Hence their product divides f(x) since each one does. However,
using (2.34) and degree calculations to those of Theorem 2.4.1, we see that

dimKA =
r∑

i=1

deg(fi) deg(g).

(Exercise: Supply the details.) Since dimKA = nm = deg(f) deg(g), we see
that deg(f) = deg(f1 · · · fr), and the theorem follows.

This theorem leads to the following algorithm for factoring f(x) over Q(β):

• Pick a random t ∈ Q and compute Φ(u) = CharPolyMf0
(u) for f0 = x+ty.

Also compute Disc(Φ(u)).
• If Disc(Φ(u)) �= 0, then factor Φ(u) =

∏r
i=1 Φi(u) into irreducibles in Q[u]

and for each i compute gcd(Φi(x + tβ), f(x)) in Q(β)[x]. This gives the
desired factorization.

• If Disc(Φ(u)) = 0, then pick a new t ∈ Q and return to the first bullet.
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Since Disc(Φ(u)) �= 0 if and only if x+ ty takes distinct values at the solutions
of f(x) = g(y) = 0, Theorem 2.4.2 implies that the second bullet correctly
computes the required factorization when the discriminant is nonzero. Notice
that the second bullet uses the Euclidean algorithm in Q(β)[x], which can be
done constructively using the representation Q(β) � Q[y]/〈g(y)〉.

As for the third bullet, the number of t ∈ Q that satisfy the equation
Disc(Φ(u)) = 0 is bounded above by 1

2nm(nm − 1), where n = deg(f(x)),
m = deg(g(y)). (Exercise: Prove this.) Thus the third bullet can occur at most
1
2nm(nm− 1) times. It follows that the above algorithm is deterministic.

An alternate approach would be to follow what Kronecker does on pages
258–259 of [Kro31, Vol. II] and regard t as a variable in f0 = x + ty. Then
Φ(u) becomes a polynomial Φ(u, t) ∈ Q[x, t]. If one can factors Φ(u, t) into
irreducibles Q[u, t], say Φ(u, t) =

∏r
i=1 Φi(u, t), then it is straightforward to

recover fi(x, β) from Φi(x+ tβ, t). A rigorously constructive version of this is
described in [Edw04].

2.4.2 Finite fields and primitive elements

Here, we will give two further applications of finite commutative algebras.

Factoring over Finite Fields. We begin with a brief description for factor-
ing a polynomial f(x) ∈ Fq[x], where Fq is a finite field with q = p� elements.
We will use the algebra

A = Fq[x]/〈f(x)〉
and the Frobenius map

Frob : A → A, Frob(a) = aq.

This map is linear over Fq and has 1 as an eigenvalue since 1q = 1. As in Sec-
tion 2.1, EA(Frob, 1) denotes the corresponding eigenspace. This eigenspace
determines whether or not f(x) is irreducible as follows.

Proposition 2.4.3. If f(x) has no multiple roots, i.e., gcd(f(x), f ′(x)) = 1,
then the dimension of the eigenspace EA(Frob, 1) is the number of irreducible
factors of f(x).

Proof. Since f(x) has no multiple roots, a factorization f(x) = f1(x) · · · fr(x)
into irreducible polynomials in Fq[x] gives an algebra isomorphism

A �
r∏

i=1

Ki, Ki = Fq[x]/〈fi(x)〉,

compatible with the Frobenius map Frob. If a ∈ Ki, then since Ki is a field,
we have the equivalences

Frob(a) = a ⇐⇒ aq = a ⇐⇒ a ∈ Fq.
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It follows that on Ki, the eigenvalue 1 has a 1-dimensional eigenspace
EKi

(Frob, 1). Since the eigenspace EA(Frob, 1) is the direct sum of the
EKi

(Frob, 1), the result follows.

Here is a simple example of this result.

Example 2.4.4. Let f(x) = x5 + x4 + 1 ∈ F2[x]. One easily sees that f(x) is
separable. Then A = F2[x]/〈f(x)〉 is a vector space over F2 of dimension 5
with basis [1], [x], [x2], [x]3, [x4], which for simplicity we write as 1, x, x2, x3, x4.

Note that Frob : A → A is the squaring map since q = 2. To compute the
matrix of Frob, we apply Frob to each basis element and represent the result
in terms of the basis:

1 �→ 1

x �→ x2

x2 �→ x4

x3 �→ x6 = 1 + x+ x4

x4 �→ x8 = 1 + x+ x2 + x3 + x4.

Here, x6 = 1+x+x4 means that 1+x+x4 is the remainder of x6 on division
by f(x) = x5 + x4 + 1, and similarly for the last line. Hence the matrix of
Frob− 1A is ⎛⎜⎜⎜⎜⎝

1 0 0 1 1
0 0 0 1 1
0 1 0 0 1
0 0 0 0 1
0 0 1 1 1

⎞⎟⎟⎟⎟⎠−
⎛⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0 0 0 1 1
0 1 0 1 1
0 1 1 0 1
0 0 0 1 1
0 0 1 1 0

⎞⎟⎟⎟⎟⎠
(remember that we are in characteristic 2). This matrix has rank 3 since the
first column is zero and the sum of the last three columns is zero. (Exercise:
Check the rank carefully.) Hence we have two linearly independent eigenvectors
for the eigenvalue 1. By Proposition 2.4.3, f(x) is not irreducible over F2.

Besides giving the number of irreducible factors of f(x), one can also use
the eigenspace EA(Frob, 1) to construct the irreducible factorization of f(x).
The rough idea is that if [h(x)] ∈ A is a nonzero element of EA(Frob, 1),
then gcd(h(x), f(x)) is a factor of f and (if h(x) chosen correctly) is actually
one of the irreducible factors of f(x). This is Berlekamp’s algorithm, which is
described in Section 4.1 of [LN83].

Theorem of the Primitive Element. The single-variable representation
used in the proof of Theorem 2.4.2 may remind the reader of the Theorem of
the Primitive Element. As we will now show, this is no accident.
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Theorem 2.4.5. Let K ⊂ L = K(α1, . . . , αn) be an extension such that K is
infinite and each αi is separable over K. Then there are t1 . . . , tn ∈ K such
that

L = K(α), α = t1α1 + · · ·+ tnαn.

Proof. Let fi be the minimal polynomial of αi over K and let

A = K[x1, . . . , xn]/〈f1(x1), . . . , fn(xn)〉.

Note that we use a separate variable xi for each polynomial fi. Then arguing
as in the proof of Theorem 2.4.2, one easily sees that by Bézout’s theorem, all
solutions of

f1(x1) = f2(x2) = · · · = fn(xn) = 0 (2.35)

have multiplicity 1. Since K is infinite, we can pick t1, . . . , tn ∈ K such that
f0 = t1x1 + · · ·+ tnxn takes distinct values at all solutions of (2.35). It follows
that Mf0 : A → A is non-derogatory, so that by Proposition 2.1.12, the map
u �→ [t1x1 + · · ·+ tnxn] ∈ A induces a surjection

K[u] −→ A.

Furthermore, the map A → L induced by xi �→ αi is surjective since L =
K(α1, . . . , αn). The theorem follows since the composition K[u] → A → L is
surjective and maps u to α = t1α1 + · · ·+ tnαn.

Here is an example to illustrate the role of separability.

Example 2.4.6. Let K = Fp(t, u), where t and u are variables, and let K ⊂ L
be the field obtained by adjoining the the pth roots of t and u. This extension
is purely inseparable of degree p2 and L �= K(α) for all α ∈ L since α ∈ L
implies that αp ∈ K. (Exercise: Prove these assertions carefully.)

Hence the single-variable representation of Proposition 2.1.12 must fail.
To see the underlying geometric reason for this failure, first observe that

L � K[x, y]/〈xp − t, yp − u〉

is the algebra from the proof of Theorem 2.4.5. In the algebraic closure K of
K, the only solution of

xp − t = yp − u = 0

is given by x = p
√
t and y = p

√
u. The local ring at this point is

K[x, y]/〈xp − t, yp − u〉 = K[x, y]/〈(x− p
√
t)p, (y − p

√
u)p〉 � K[x, y]/〈xp, yp〉,

which clearly has embedding dimension 2 and hence is not curvilinear. It
follows that Mf is derogatory for all f ∈ K[x, y]. Since the single-variable
representation requires that Mf be non-derogatory, we can see why the The-
orem of the Primitive Element fails in this case.
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2.4.3 Primary decomposition

The final task of Section 2.4 is to extend the factorizations introduced in
Section 2.4.1 to the realm of ideals. Suppose that

f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0 (2.36)

is a system of equations with coefficients in a field K and only finitely many
solutions over the algebraic closure K. (Thus we are back in the situation where
the number of equations need not equal the number of variables.) We say that
〈f1, . . . , fs〉 is zero-dimensional since a finite set of points has dimension 0.
Our goal is to give an algorithm for computing the primary decomposition of
a zero-dimensional ideal.

Theoretical Results. An ideal I ⊂ K[x1, . . . , xn] is primary if fg ∈ I always
implies that either f ∈ I or gN ∈ I for some N ≥ 1. It is easy to see that the
radical

√
I of a primary ideal is prime. By Chapter 4, §7 of [CLO97], every

ideal I ⊂ K[x1, . . . , xn] has a primary decomposition

I = I1 ∩ · · · ∩ Ir (2.37)

into an intersection of primary ideals. We say that (2.37) is minimal when r
is as small as possible.

In the zero-dimensional case, the primary components Ii of 〈f1, . . . , fs〉
can be obtained from the given ideal by adding one more carefully chosen
polynomial ui. Here is the precise result.

Lemma 2.4.7. A zero-dimensional ideal 〈f1, . . . , fs〉 has a minimal primary
decomposition

〈f1, . . . , fs〉 = I1 ∩ · · · ∩ Ir
such that

√
I1, . . . ,

√
Ir are distinct maximal ideals. Furthermore, for each i,

Ii �⊂
⋃
j �=i

√
Ij ,

and any ui ∈ Ii \
⋃

j �=i

√
Ij has the property that

Ii = 〈f1, . . . , fs, ui〉.
Proof. Let 〈f1, . . . , fs〉 = I1 ∩ · · · ∩ Ir be a minimal primary decomposition.
Note that Ii and hence

√
Ii are zero-dimensional since 〈f1, . . . , fs〉 is. We

also know that
√
Ii is prime. But zero-dimensional prime ideals are maximal.

(Exercise: Prove this.) Hence the
√
Ii are maximal. Furthermore, if

√
Ii =√

Ij for some i �= j, then Ii ∩ Ij is primary (Exercise: Supply a proof.) This
contradicts the minimality of our representation. Hence the

√
Ii are distinct.

If Ii ⊂
⋃

j �=i

√
Ij , then Ii ⊂

√
Ij for some j �= i by the Prime Avoid-

ance Theorem ([Sha90, Th. 3.61]). This implies that
√
Ii ⊂

√
Ij and hence
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√
Ii =

√
Ij since the radicals are maximal. This contradiction proves that

Ii �⊂
⋃

j �=i

√
Ij .

Now let ui ∈ Ii \
⋃

j �=i

√
Ij . Then we certainly have 〈f1, . . . , fs, ui〉 ⊂ Ii.

For the opposite inclusion, take j �= i and note that ui /∈
√
Ij implies that

1+uirj ∈
√
Ij for some rj since

√
Ij is maximal. (Exercise: Prove this.) Thus

(1 + uirj)Nj ∈ Ij for some Nj ≥ 1. Expanding the product∏
j �=i

(1 + uirj)Nj ∈
∏
j �=i

Ij ⊂
⋂
j �=i

Ij ,

we see that 1 + uir ∈
⋂

j �=i Ij for some r. Now take a ∈ Ii. Then

a(1 + uir) ∈ Ii ∩
⋂
j �=i

Ij = 〈f1, . . . , fs〉.

Hence a = a(1 + uir) + ui(−ar) ∈ 〈f1, . . . , fs〉 + 〈ui〉 = 〈f1, . . . , fs, ui〉, as
desired.

In the zero-dimensional case, one can also prove that the ideals Ii in the
primary decomposition are unique. For general ideals, uniqueness need not
hold (see Exercise 6 of Chapter 4, §7 of [CLO97] for an example) due to the
phenomenon of embedded components.

The most commonly used algorithm for computing the primary decompo-
sition of a zero-dimensional ideal is described in [GTZ88] and uses Gröbner
bases plus a change of coordinates to find the ui of Lemma 2.4.7. However,
the recent paper [Mon02] of C. Monico shows how to find the ui using the
quotient algebra

A = K[x1, . . . , xn]/〈f1, . . . , fs〉.
We will describe Monico’s method, beginning with the following special case.

The Rational Case. The solutions of (2.36) are rational over K if all so-
lutions in K

n
actually lie in Kn. In this situation, it is easy to see that the

primary decomposition is

〈f1, . . . , fs〉 =
⋂
p

Ip,

where the intersection is over all solutions p of (2.36). Furthermore, as we
noted in (2.6), the primary component Ip is

Ip = {f ∈ K[x1, . . . , xn] | gf ∈ 〈f1, . . . , fs〉 ∃g ∈ K[x1, . . . , xn] with g(p) �= 0},

and
√
Ip is the maximal ideal 〈x1 − p1, . . . , xn − pn〉 when p = (p1, . . . , pn).

Unfortunately, this elegant description of Ip is not useful for computational
purposes. But we can use the methods of Section 2.1 to find the polynomials
ui of Lemma 2.4.7 as follows.
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Proposition 2.4.8. Suppose that 〈f1, . . . , fs〉 is zero-dimensional and all so-
lutions of (2.36) are rational over K. If f ∈ K[x1, . . . , xn] takes distinct values
at the solutions of (2.36), then for each solution p, the corresponding primary
component is

Ip =
〈
f1, . . . , fs, (f − f(p))mult(p)

〉
.

Proof. Let up = (f − f(p))mult(p). By Lemma 2.4.7, it suffices to show that
up ∈ Ip and up /∈

√
Iq for all solutions q �= p. Since

√
Iq is the maximal ideal

of q, the latter condition is equivalent to the non-vanishing of up at q, which
follows since f takes distinct values at the solutions.

To prove that up ∈ Ip, let vp =
∏

q �=p(f − f(q))mult(q). By Proposi-
tion 2.1.14,

upvp = CharPolyMf
(f). (2.38)

However, the Cayley-Hamilton theorem tells us that CharPolyMf
(Mf ) is the

zero operator on A. Applied to [1] ∈ A, we obtain

[0] = CharPolyMf
(Mf )[1] = CharPolyMf

([f ]) = [CharPolyMf
(f)].

Combined with (2.38), this implies

upvp = CharPolyMf
(f) ∈ 〈f1, . . . , fs〉 ⊂ Ip.

Since Ip is primary, either up or some power of vp lies in Ip. But

vp(p) =
∏
q �=p

(f(p)− f(q))mult(q) �= 0

since f takes distinct values at the solutions. Hence no power of vp lies in Ip,
so that up ∈ Ip.

Here is an example of this proposition.

Example 2.4.9. Consider the ideal 〈x2 + 2y2 − 2y, xy2 − xy, y3 − 2y2 + y〉 ⊂
Q[x, y]. We saw in Example 2.1.1 that the corresponding equations have solu-
tions (0, 0) and (0, 1), which are rational over Q. Since y takes distinct values
at the solutions, we can use f = y in Proposition 2.4.8 to compute the primary
decomposition.

By Example 2.1.5, the characteristic polynomial of my is u2(u − 1)3. It
follows that the primary components are

I(0,0) = 〈x2 + 2y2 − 2y, xy2 − xy, y3 − 2y2 + y, y2〉 = 〈x2, y〉
I(0,1) = 〈x2 + 2y2 − 2y, xy2 − xy, y3 − 2y2 + y, (y − 1)3〉

= 〈x2 + 2(y − 1), x(y − 1), (y − 1)2〉.
(Exercise: Verify the final equality using the congruences

y(y − 1)2 ≡ (y − 1)2 mod (y − 1)3 and y(y − 1) ≡ y − 1 mod (y − 1)2.)
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Putting these together, we obtain the primary decomposition

〈x2 + 2y2 − 2y, xy2 − xy, y3 − 2y2 + y〉
= 〈x2, y〉⋂〈x2 + 2(y − 1), x(y − 1), (y − 1)2〉
= I(0,0)

⋂
I(0,1)

given in Example 2.2.15.

We note that in Proposition 2.4.8, one can replace the characteristic poly-
nomial with the minimal polynomial. Here is the precise result.

Proposition 2.4.10. Suppose that 〈f1, . . . , fs〉 is zero-dimensional and all so-
lutions of (2.36) are rational over K. If f ∈ K[x1, . . . , xn] takes distinct values
at the solutions of (2.36), then for each solution p, the corresponding primary
component is

Ip =
〈
f1, . . . , fs, (f − f(p))n(p)

〉
,

where MinPolyMf
(u) =

∏
p(u− f(p))n(p).

(Exercise: Prove this proposition.) Here is an example.

Example 2.4.11. For the ideal of Example 2.4.9, recall from Example 2.1.5
that the minimal polynomial of y is u(u− 1)2. Thus

I(0,0) = 〈x2 + 2y2 − 2y, xy2 − xy, y3 − 2y2 + y, y〉 = 〈x2, y〉
I(0,1) = 〈x2 + 2y2 − 2y, xy2 − xy, y3 − 2y2 + y, (y − 1)2〉

= 〈x2 + 2(y − 1), x(y − 1), (y − 1)2〉.

This gives the same primary decomposition as Example 2.4.9, though the
initial description of the primary components is simpler because the minimal
polynomial has smaller exponents than the characteristic polynomial.

The General Case. Now suppose that K is a field and that the equations
(2.36) have solutions whose coordinates may lie in a strictly larger field. This
means that in the primary decomposition over K, the number of primary
components no longer equals the number of solutions. Here is an example
taken from [Mon02].

Example 2.4.12. The equations x2 − 2 = y2 − 2 = 0 have four solutions
(±√2,±√2), none of which is rational over Q. We will see below that the
primary decomposition of 〈x2 − 2, y2 − 2〉 ⊂ Q[x, y] is

〈x2 − 2, y2 − 2〉 = I1 ∩ I2 = 〈x2 − 2, x− y〉 ∩ 〈x2 − 2, x+ y〉.

Note that the ideal I1 corresponds to ±(
√

2,
√

2) while I2 corresponds to
±(
√

2,−√2).
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Here is a description of the primary decomposition of an arbitrary zero-
dimensional ideal.

Proposition 2.4.13. Suppose that 〈f1, . . . , fs〉 is zero-dimensional and f ∈
K[x1, . . . , xn] takes distinct values at the solutions of f1 = · · · = fs = 0. If the
irreducible factorization of CharPolyMf

(u) is

CharPolyMf
(u) =

r∏
i=1

pi(u)mi ,

where p1(u), . . . , pr(u) are distinct monic irreducible polynomials, then the
primary decomposition of 〈f1, . . . , fs〉 is given by

〈f1, . . . , fs〉 = I1 ∩ · · · ∩ Ir,

where
Ii =

〈
f1, . . . , fs, pi(f)mi

〉
.

Proof. We will use Galois theory to prove the proposition in the special case
when K is perfect (see [Mon02] for the general case). This means that either
K has characteristic zero, or K has characteristic p > 0 and every element of
K is a pth power. Every finite extension of a perfect field is separable.

If Ii is a primary component of 〈f1, . . . , fs〉, then its radical
√
Ii is prime

in K[x1, . . . , xn]. Then the following are true:

• The variety V(Ii) = V(
√
Ii) ⊂ K

n
is irreducible over K.

• The Galois group Gal(K/K) acts on V(Ii).

These bullets imply that the action of Gal(K/K) on each V(Ii) is transitive.
(Exercise: Prove this.) Hence all p ∈ V(Ii) have the same multiplicity, denoted
mi. Also note that V(Ii) ∩V(Ij) = ∅ for i �= j. (Exercise: Prove this.)

By Proposition 2.1.14, we see that

CharPolyMf
(u) =

r∏
i=1

∏
p∈V(Ii)

(u− f(p))mi .

Since f has coefficients in K, we see that σ(f(p)) = f(q) whenever σ ∈
Gal(K/K) takes p to q. But we also know that the f(p) are all distinct and K
is perfect. Thus standard arguments from Galois theory imply that pi(u) =∏

p∈V(Ii)
(u − f(p)) is irreducible over K. (Exercise: Supply the details.) It

follows that the above factorization coincides with the one in the statement
of the proposition.

From here, the rest of the proof is similar to what we did in the proof of
Proposition 2.4.8. The key point as always is that f takes distinct values at
the solutions. (Exercise: Complete the proof.)
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The above proof shows that when K is perfect, the mi’s compute the
multiplicities of the corresponding points. However, this can fail when K is
not perfect. We should also mention that one can weaken the hypothesis that
f takes distinct values at the solutions: an analysis of the proof in [Mon02]
reveals that it is sufficient to assume that f(p) �= f(q) whenever p and q are
solutions of (2.36) lying in different orbits of the Gal(K/K)-action. When this
happens, however, the exponent mi may fail to equal the multiplicity.

Here is an example of Proposition 2.4.13.

Example 2.4.14. For the ideal 〈x2 − 2, y2 − 2〉 ⊂ Q[x, y] of Example 2.4.12,
one easily sees that f = x+ 2y takes distinct values at the solutions and has
characteristic polynomial

CharPolyMf
(u) = (u2 − 18)(u2 − 2),

where u2 − 18 and u2 − 2 are irreducible over Q. By Proposition 2.4.13, we
get the primary decomposition 〈x2 − 2, y2 − 2〉 = I1 ∩ I2, where

I1 = 〈x2 − 2, y2 − 2, (x+ 2y)2 − 18〉 = 〈x2 − 2, x− y〉
I2 = 〈x2 − 2, y2 − 2, (x+ 2y)2 − 2〉 = 〈x2 − 2, x+ y〉.

This is the primary decomposition of Example 2.4.12. (Exercise: Verify this.)
We could instead have used f = x+y, which has characteristic polynomial

u2(u2 − 8). The function f does not take distinct values on the roots but
does separate orbits of the Galois action. As noted above, the conclusion of
Proposition 2.4.13 still holds for such an f . (Exercise: Check that u2(u2 − 8)
leads to the above primary decomposition.)

We next relate primary decomposition to the factorizations discussed in
Section 2.4.1.

Example 2.4.15. As in Section 2.4.1, suppose that f(x), g(x) ∈ Q[x] are irre-
ducible and α, β ∈ C satisfy f(α) = g(β) = 0. Also suppose that we have the
irreducible factorization

f(x) = f1(x) · · · fr(x) over Q(β).

We can relate this to primary decomposition as follows. Pick t ∈ Q such that
f = x + ty takes distinct values at the solutions of f(x) = g(y) = 0. In the
proof of Theorem 2.4.2, we showed that all solutions have multiplicity 1, so
that we have a factorization

CharPolyMf
(u) =

r∏
i=1

Φi(u),

where the Φi(u) ∈ Q[u] are distinct irreducibles. Proposition 2.4.13 implies
that the primary decomposition of 〈f(x), g(y)〉 ⊂ Q[x, y] is
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〈f(x), g(y)〉 =
r⋂

i=1

〈f(x), g(y), Φi(x+ ty)〉,

and Theorem 2.4.2 asserts that the irreducible factors of f(x) in Q(β)[x] are

fi(x) = gcd(Φi(x+ tβ), f(x)).

Since Q(β)[x] � Q[x, y]/〈g(y)〉, there is a polynomial fi(x, y) ∈ Q[x, y] such
that fi(x, β) = fi(x) in Q(β)[x]. Then

〈f(x), g(y), Φi(x+ ty)〉 = 〈g(y), fi(x, y)〉.
(Exercise: Prove this.) Hence the above primary decomposition can be written

〈f(x), g(y)〉 =
r⋂

i=1

〈g(y), fi(x, y)〉.

This shows that there is a close relation between primary decomposition and
factorization.

There is also a version of Proposition 2.4.13 that uses minimal polynomials
instead of characteristic polynomials.

Proposition 2.4.16. Suppose that 〈f1, . . . , fs〉 is zero-dimensional and f ∈
K[x1, . . . , xn] takes distinct values at the solutions of (2.36). If the irreducible
factorization of MinPolyMf

(u) is

MinPolyMf
(u) =

r∏
i=1

pi(u)ni ,

where p1(u), . . . , pr(u) are distinct monic irreducible polynomials, then the
primary decomposition of 〈f1, . . . , fs〉 is given by

〈f1, . . . , fs〉 = I1 ∩ · · · ∩ Ir,
where

Ii =
〈
f1, . . . , fs, pi(f)ni

〉
.

Proof. See [ABRW96] or [YNT92].

Algorithmic Aspects. From the point of view of doing primary decompo-
sition algorithmically, one weakness of Proposition 2.4.13 is that f needs to
take distinct values at the solutions. How do we do this without knowing the
solutions? This problem was discussed at the end of Section 2.1.5. Another
weakness of this method is that computing the characteristic polynomial of
a large matrix can be time-consuming. The timings reported in [Mon02] in-
dicate that as the number of solutions increases, methods based on [GTZ88]
outperform the algorithm using Proposition 2.4.13.

Other approaches to primary decomposition are given in [EHV92] and
[MMM96]. See also Chapter 5.



114 D.A. Cox

2.5 Galois theory

Solving equations has been our main topic of discussion. Since Galois theory
is also concerned with the solutions of equations, it makes sense that there
should be some link. As we will see, turning a polynomial equation f(x) = 0
of degree n into n equations in n unknowns is a very useful thing to do.

To illustrate our approach, consider the splitting field of x2−x−1 ∈ Q[x].
Two simple description of this field are

Q(
√

5) and Q[y]/〈y2 − 5〉.

However, we will see that the splitting field can also be expressed as

Q[x1, x2]/〈x1 + x2 − 1, x1x2 + 1〉. (2.39)

Although this may seem more complicated, it has the advantage of giving
explicit descriptions of the roots (the cosets of x1 and x2) and the Galois action
(permute these two cosets). Note also that the generators of ideal appearing
in (2.39) make perfect sense since they give the sum and product of the roots
of x2 − x− 1.

The quotient (2.39) is an example of a splitting algebra. We will see that
our methods, when applied to general splitting algebras, lead to some standard
results in Galois theory. We will also show that primary decomposition gives
an algorithm for computing Galois groups.

2.5.1 Splitting algebras

Let K be an infinite field and f(x) ∈ K[x] be a monic polynomial of degree n
with distinct roots. We will write f(x) as

f(x) = xn − c1xn−1 + · · ·+ (−1)ncn, ci ∈ K.

The elementary symmetric polynomials σ1, . . . , σn ∈ K[x1, . . . , xn] are defined
by the identity

(x− x1) · · · (x− xn) = xn − σ1x
n−1 + · · ·+ (−1)nσn. (2.40)

Consider the system of n equations in x1, . . . , xn given by

σ1(x1, . . . , xn)− c1 = 0
σ2(x1, . . . , xn)− c2 = 0

...
σn(x1, . . . , xn)− cn = 0.

(2.41)

The associated algebra is
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A = K[x1, . . . , xn]/〈σ1 − c1, . . . , σn − cn〉.

This is the splitting algebra of f over K. The system (2.41) and the algebra A
were first written down by Kronecker in 1882 and 1887 respectively (see page
282 of [Kro31, Vol. II] for the equations and page 213 of [Kro31, Vol. III] for
the algebra). A very nice modern treatment of the splitting algebra appears
in the recent preprint [EL02].

The Universal Property. We first explain why the splitting algebra deserves
its name. The natural map K[x1, . . . , xn] → A takes σi to ci, so that by (2.40),
the cosets [xi] ∈ A become roots of f(x). It follows that

f(x) splits completely over A.

But more is true, for the factorization of f(x) over A controls all possible ways
in which f(x) splits. Here is the precise statement.

Proposition 2.5.1. Suppose that R is a K-algebra such that f(x) splits com-
pletely over R via

f(x) = (x− α1) · · · (x− αn), α1, . . . , αn ∈ R.

Then there is a K-algebra homomorphism ϕ : A → R such that this splitting
is the image under ϕ of the splitting of f(x) over A.

Proof. Consider the K-algebra homomorphism Φ : K[x1, . . . , xn] → R deter-
mined by xi �→ αi. This maps (2.40) to the splitting in the statement of the
proposition, so that Φ maps σi to ci. Hence Φ(σi − ci) = 0 for all i, which
implies that Φ induces a K-algebra homomorphism ϕ : A → R. It follows
easily that ϕ has the desired property.

The splitting of f(x) over A is thus “universal” in the sense that any other
splitting is a homomorphic image of this one.

The Dimension of A. Our next task is to compute dimKA. By Section 2.1.3,
the dimension is the number of solutions, counted with multiplicity. Let K an
the algebraic closure of K and fix a splitting

f(x) = (x− α1) · · · (x− αn) ∈ K[x].

Using this, we can describe the solutions of (2.41) as follows. If (β1, . . . , βn) ∈
K

n
is a solution, then the substitutions xi �→ βi take (2.40) to

f(x) = (x− β1) · · · (x− βn) ∈ K[x].

Thus the βi’s are some permutation of the αi. Since f(x) has distinct roots by
hypothesis, there is a unique σ ∈ Sn such that βi = ασ(i) for all i. It follows
easily that (2.41) has precisely n! solutions given by
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(ασ(1), . . . , ασ(n)), σ ∈ Sn.

We can determine the multiplicities of these solutions as follows. Since σi− ci
has degree i as a polynomial in x1, . . . , xn, Bézout’s theorem tells us that
(2.41) has at most 1 · 2 · 3 · · ·n = n! solutions, counting multiplicity. Since we
have n! solutions, the multiplicities must all be 1. It follows that

dimKA = n!.

The Action of Sn. The symmetric group Sn acts on K[x1, . . . , xn] by per-
muting the variables. Since σi − ci is invariant under this action, the action
descends to an action of Sn on the splitting algebra A.

The Emergence of Splitting Fields. Although f splits over A, this algebra
need not be a field. So how does A relate to the splitting fields of f over K?
We will analyze this following Kronecker’s approach.

Since K is infinite, f0 = t1x1 + · · · + tnxn takes distinct values at the
solutions of (2.41) for most choices of t1, . . . , tn ∈ K. Thus, as σ varies over
the elements of Sn,

f0(ασ(1), . . . , ασ(n)) = t1ασ(1) + · · ·+ tnασ(n) (2.42)

gives n! distinct elements of K. Since all solutions of (2.41) have multiplicity 1,
the characteristic polynomial of Mf0 on A is

CharPolyMf0
(u) =

∏
σ∈Sn

(
u− (t1ασ(1) + · · ·+ tnασ(n))

)
(2.43)

and the linear map Mf0 is non-derogatory. By Proposition 2.1.12, it follows
that the map sending u to [t1x1 + · · · tnxn] ∈ A induces a K-algebra isomor-
phism

K[u]/〈CharPolyMf0
(u)〉 � A.

Now factor CharPolyMf0
(u) into a product of monic irreducible polyno-

mials in K[u], say

CharPolyMf0
(u) =

r∏
i=1

Gi(u).

Since CharPolyMf0
(u) has distinct roots, the Gi(u) are distinct. Hence we get

K-algebra isomorphisms

A � K[u]/〈CharPolyMf0
(u)〉 �

r∏
i=1

K[u]/〈Gi(u)〉︸ ︷︷ ︸
Ki

. (2.44)

Each Ki is a field, and since the projection map A → Ki is surjective, each
Ki is a splitting field of f over K. Thus the factorization of the characteris-
tic polynomial of Mf0 shows that the splitting algebra A is isomorphic to a
product of fields, each of which is a splitting field of f over K.

While the decomposition A � ∏r
i=1 Ki is nice, there are still some unan-

swered questions:
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• Are the fields Ki isomorphic?
• When r > 1, A involves several splitting fields. Why?

We will answer these questions in Sections 2.5.2 and 2.5.3.

History. The methods described here date back to Galois and Kronecker.
For example, in 1830 Galois chose t1, . . . , tn such that the n! values (2.42) are
distinct and showed that

V = t1α1 + · · ·+ tnαn

is a primitive element of the splitting field. He also used the polynomial on the
right-hand side of (2.43). In all of this, Galois simply assumed the existence
of the roots.

In 1887, Kronecker gave the first rigorous construction of splitting fields.
His method was to prove the existence of t1, . . . , tn as above and then fac-
tor CharPolyMf0

(u) into irreducibles. Letting Gi(u) be one of the factors of
CharPolyMf0

(u), he showed that K[u]/〈Gi(u)〉 is a splitting field of f over K.

2.5.2 Some Galois theory

We now use the above description of the splitting algebra A to prove some
standard results in Galois theory. We begin by observing that A has two
structures: an action of Sn and a product decomposition

A �
r∏

i=1

Ki,

where Ki is a splitting field of f over K. As we will see, the Galois group arises
naturally from the interaction between these structures.

Since the decomposition A � ∏r
i=1 Ki is unique up to isomorphism, it

follows that for 1 ≤ i ≤ r and σ ∈ Sn, we have σ(Ki) = Kj for some j. Then
we get the following result.

Proposition 2.5.2. Sn acts transitively on the set of fields {K1, . . . ,Kr} and
for each i = 1, . . . , r, there is a natural isomorphism

Gal(Ki/K) � {σ ∈ Sn | σ(Ki) = Ki}.
Proof. Under the isomorphism

K[u]/〈CharPolyMf0
(u)〉 � A,

Sn permutes the factors of CharPolyMf0
(u) =

∏r
i=1Gi(u). Over K, the fac-

torization becomes

CharPolyMf0
(u) =

∏
σ∈Sn

(
u− (t1ασ(1) + · · ·+ tnασ(n))

)
.
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This shows that Sn must permute the Gi(u) transitively. By (2.44), we con-
clude that Sn permutes the Ki transitively.

For the second assertion, let Gali = {σ ∈ Sn | σ(Ki) = Ki}. Since every
σ induces an automorphism of Ki, we get an injective group homomorphism
Gali → Gal(Ki/K). To show that this map is surjective, take γ ∈ Gal(Ki/K).
Under the projection A → Ki, the cosets [xi] map to roots of f(x) lying in
Ki. Then γ must permute these according to some σ ∈ Sn. Since the roots
generate Ki over K and σ permutes the roots, we have σ(Ki) = Ki. It follows
that σ ∈ Gali maps to γ. This gives the desired isomorphism.

We can use Proposition 2.5.2 to prove some classic results of Galois theory
as follows. We begin with the uniqueness of splitting fields.

Theorem 2.5.3. All splitting fields of f over K are isomorphic via an iso-
morphism that is the identity on K.

Proof. Let L be an arbitrary splitting field of f over K. Then splitting of f
over L must come from the universal splitting via a K-algebra homomorphism
ϕ : A → L. Furthermore, ϕ is onto since the roots of f generate L over K.
Using the decomposition A �∏r

i=1 Ki, we obtain a surjection

r∏
i=1

Ki −→ L.

It is now easy to see that L � Ki for some i. (Exercise: Prove this.) Then we
are done since this is an isomorphism of K-algebras and the Ki are mutually
isomorphic K-algebras by the transitivity proved in Proposition 2.5.2.

Theorem 2.5.4. #Gal(Ki/K) = [Ki :K].

Proof. As above, let Gali = {σ ∈ Sn | σ(Ki) = Ki}. Thus Gali is the isotropy
subgroup of Ki under the action of Sn on {K1, . . . ,Kr}. Since this action is
transitive by Proposition 2.5.2, we see that

#Gali =
n!
r
.

However, we know that the K1, . . . ,Kr are mutually isomorphic. Thus

n! = dimKA = [K1 :K] + · · ·+ [Kr :K] = r [Ki :K].

Combining this with the previous equation gives #Gali = [Ki :K]. Then we
are done since Gali � Gal(Ki/K) by Proposition 2.5.2.

Theorem 2.5.5. If the characteristic of K doesn’t divide #Gal(Ki/K), then
K is the fixed field of the action of Gal(Ki/K) on Ki.
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Proof. Let α ∈ Ki be in the fixed field and set N = #Gal(Ki/K). We may
assume that α �= 0. Let p ∈ K[x1, . . . , xn] map to αi ∈ Ki and to 0 ∈ Kj for
j �= i. Then P =

∑
σ∈Sn

σ · p is symmetric and hence is a polynomial in the
σi by the Fundamental Theorem of Symmetric Polynomials. In A, this means
that [P ] ∈ K, so that P projects to an element of K in each of K1, . . . ,Kr.

Now consider the projection of P onto Ki. If

σ ∈ Gali = {σ ∈ Sn | σ(Ki) = Ki} � Gal(Ki/K),

then σ · p projects to σ(α) = α. On the other hand, if σ /∈ Gali, then σ · p
projects to 0 since Ki ∩ σ(Ki) = {0} for such σ. (Exercise: Prove this.) It
follows that the projection of P onto Ki is Nα. Thus Nα ∈ K, and then
α ∈ K follows by hypothesis.

A more general version of Theorem 2.5.5 is proved in [EL02].

Resultants. The characteristic polynomial CharPolyMf0
(u) is a resultant in

disguise. More precisely, we claim that

Res1,1,2,...,n(u− f0, σ1 − c1, . . . , σn − cn) = −CharPolyMf0
(u). (2.45)

To prove this, recall from Theorem 2.3.5 of Section 2.3 that this resultant
equals the characteristic polynomial multiplied by

Res1,2,...,n

(
(σ1 − c1)1, . . . , (σn − cn)n

)
,

where (σi − ci)i consists of the terms of σi − ci of degree i. This is obviously
just σi, so that this multiplier reduces to

Res1,2,...,n(σ1, . . . , σn).

This resultant equals −1 by Exercise 11 of Section 3 of Chapter 3 of [CLO98].
Hence we obtain (2.45) as claimed.

Action of the Symmetric Group. Finally, we will describe the action of
Sn on the product decomposition A = K1 × · · · × Kr. If we let αij ∈ Kj be
the projection of [xi] ∈ A onto the jth factor, then α1j , . . . , αnj are the roots
of f(x) in Kj . So we have r isomorphic copies of the splitting field together
with an ordered list of the roots in each field. Let

ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ K1 × · · · ×Kr,

where the 1 is in the jth position. Then by abuse of notation we can write
αij ej ∈ A. Now take σ ∈ Sn and suppose that σ(ej) = e� (this is a precise
way of saying that σ(Kj) = K�). Then one can show without difficulty that
σ([xi]) = [xσ(i)] implies that

σ(αij ej) = ασ(i)� e�. (2.46)

(Exercise: Prove this.) In the special case when σ comes from an element of
Gal(Kj/K), (2.46) gives the action of the Galois group on the roots. The nice
thing about (2.46) is that it tell us what happens when we apply an arbitrary
permutation, not just those coming from Gal(Kj/K).
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2.5.3 Primary decomposition

The Galois group of f consists of all permutations in Sn that preserve the
algebraic structure of the roots. In this section, we will use primary decom-
position to describe “the algebraic structure of the roots” and see how the
Galois group “preserves” this structure. We will work over Q for simplicity.

Given f = xn − c1xn−1 + · · · + (−1)ncn ∈ Q[x] as in Section 2.5.1, the
splitting algebra is

A = Q[x1, . . . , xn]/〈σ1 − c1, . . . , σn − cn〉,

where as usual σi is the ith elementary symmetric polynomial. We’ve seen
that A is a product

A =
r∏

i=1

Ki,

where each Ki is a splitting field of f over Q. But we also have the primary
decomposition

〈σ1 − c1, . . . , σn − cn〉 =
r⋂

i=1

Ii,

where Ii is maximal in Q[x1, . . . , xn]. These decompositions are related by

Ki = Q[x1, . . . , xn]/Ii, i = 1, . . . , r.

Each Ii is larger than 〈σ1 − c1, . . . , σn − cn〉. The ideal 〈σ1 − c1, . . . , σn − cn〉
encodes the obvious relations among the roots, and the polynomials we add
to get from Ii to 〈σ1 − c1, . . . , σn − cn〉 reflect the extra algebraic relations
between the roots that hold in the splitting field Ki. Having more relations
among the roots means that Ii is larger and hence Ki and the Galois group
are smaller.

For instance, if the Galois group of f is Sn, then 〈σ1 − c1, . . . , σn − cn〉
is a maximal ideal and the splitting algebra is the splitting field. This means
that the only relations among the roots are the obvious ones relating the
coefficients to the roots via the elementary symmetric polynomials.

Let’s see what happens when the Galois group is smaller than Sn.

Example 2.5.6. Let f = x3 − c1x2 + c2x − c3 ∈ Q[x] be an irreducible cubic.
The splitting algebra of f is A = Q[x1, x2, x3]/〈σ1 − c1, σ2 − c2, σ3 − c3〉. It is
well-known that

the Galois group of f is isomorphic to

{
S3 if ∆(f) /∈ Q2

Z/3Z if ∆(f) ∈ Q2,

where ∆(f) ∈ Q is the discriminant of f . By the above analysis, it follows
that A is the splitting field of f when ∆(f) /∈ Q2.
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Now suppose that ∆(f) = a2 for some a ∈ Q. In this case, the splitting
algebra is a product of two copies of the splitting field, i.e., A = K1×K2. Let

√
∆ = (x1 − x2)(x1 − x3)(x2 − x3) ∈ Q[x1, x2, x3].

In the splitting algebra A, we have [
√
∆]2 = [∆(f)], so that

[
√
∆]2 = [a]2.

Since A is not an integral domain, this does not imply [
√
∆] = ±[a]. In fact,

[
√
∆] ∈ A cannot have a numerical value since [

√
∆] is not invariant under

S3. Yet once we map to a field, the value must be ±a. But which sign do
we choose? The answer is both, which explains why we need two fields in the
splitting algebra.

In this case, we have the primary decomposition

〈σ1 − c1, σ2 − c2, σ3 − c3〉 = I1 ∩ I2,

where

I1 = 〈σ1 − c1, σ2 − c2, σ3 − c3,
√
∆− a〉

I2 = 〈σ1 − c1, σ2 − c2, σ3 − c3,
√
∆+ a〉.

(Exercise: Prove this.) Note also that this is compatible with the action of S3.
For example, (12) ∈ S3 maps I1 to I2 since (12) · √∆ = −√∆. It follows that
(12) maps K1 to K2 in the decomposition A = K1 × K2. This is consistent
with the description of the Sn action given at the end of Section 2.5.2.

Example 2.5.6 is analogous to what happens in quantum mechanics when
an observation forces a mixed state (e.g. a superposition of pure states with
different energy levels) to become a pure state (with a fixed energy level). In
Example 2.5.6, the idea is that [

√
∆]2 = [D(f)]2 = [a]2 means that [

√
∆] is

somehow a “mixed state” which becomes a “pure state” (i.e., ±a ∈ Q) when
“observed” (i.e., when mapped to a field).

The quartic is more complicated since there are five possibilities for the
Galois group of an irreducible quartic. We will discuss the following case.

Example 2.5.7. Let f = x4 − c1x3 + c2x2 − c3x+ c4 ∈ Q[x] be an irreducible
quartic with splitting algebra

A = Q[x1, x2, x3, x4]/〈σ1 − c1, σ2 − c2, σ3 − c3, σ4 − c4〉.

One of the tools used in solving the quartic is the Ferrari resolvent

x3 − c2x2 + (c1c3 − 4c4)x− c23 − c21c4 + 4c2c4. (2.47)

Euler showed that if β1, β2, β3 are the roots of (2.47), then the roots of f are
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1
4

(
c1 ±

√
β1 + c21 − 4c2 ±

√
β2 + c21 − 4c2 ±

√
β3 + c21 − 4c2

)
,

provided the signs are chosen so that the product of the square roots is c31 −
4c1c2 + 8c3. Also, as shown by Lagrange, the roots of the resolvent (2.47) are

α1α2 + α3α4, α1α3 + α2α4, α1α4 + α2α3. (2.48)

The Galois group G of f over Q is isomorphic to one of the groups

S4, A4, D8, Z/4Z, Z/2Z× Z/2Z,

where D8 is the dihedral group of order 8. Three cases are easy to distinguish:

G �

⎧⎪⎨⎪⎩
S4 if ∆(f) /∈ Q2 and (2.47) is irreducible over Q
A4 if ∆(f) ∈ Q2 and (2.47) is irreducible over Q
Z/2Z× Z/2Z if ∆(f) ∈ Q2 and (2.47) is reducible over Q.

The remaining case is when ∆(f) /∈ Q2 and (2.47) has a root in Q. Here, the
Galois group is D8 or Z/4Z. We state without proof the following nice fact:

G � D8 ⇐⇒ ∆(f) /∈ Q2, (2.47) has a root b ∈ Q and
〈σ1 − c1, σ2 − c2, σ3 − c3, σ4 − c4〉 = I1 ∩ I2 ∩ I3,

is the primary decomposition, where
I1 = 〈σ1 − c1, σ2 − c2, σ3 − c3, σ4 − c4, x1x2 + x3x4 − b〉
I2 = 〈σ1 − c1, σ2 − c2, σ3 − c3, σ4 − c4, x1x3 + x2x4 − b〉
I3 = 〈σ1 − c1, σ2 − c2, σ3 − c3, σ4 − c4, x1x4 + x2x3 − b〉.

The reason for three ideals is that b is one of the three combinations of roots
given in (2.48). To get a field out of the ideal 〈σ1−c1, σ2−c2, σ3−c3, σ4−c4〉,
we must commit to which combination gives b. This gives the ideals I1, I2, I3
as above.

The Galois group. We also observe that primary decomposition gives an
algorithm for computing the Galois group of f = xn−c1xn−1 + · · ·+(−1)ncn.
To do this, pick f0 = t1x1 + · · · + tnxn such that Mf0 : A → A is non-
derogatory and let

CharPolyMf0
(u) =

r∏
i=1

Gi(u)

be the irreducible factorization of the characteristic polynomial in Q[u]. Then
Proposition 2.4.13 implies that we have the primary decomposition

〈σ1 − c1, . . . , σn − cn〉 =
r⋂

i=1

Ii
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where
Ii = 〈σ1 − c1, . . . , σn − cn, Gi(f0)〉.

Furthermore, Sn permutes the Ii since 〈σ1− c1, . . . , σn− cn〉 is invariant, and

Gal(Ki/Q) � {σ ∈ Sn | σ(Ii) = Ii}.

Using a Gröbner basis of Ii, we can determine whether σ(Ii) equals Ii for any
given σ ∈ Sn. Hence, by going through the elements of Sn one-by-one, we get
a (horribly inefficient) algorithm for computing the Galois group. However,
in simple examples like Examples 2.5.6 or 2.5.7, the Galois group is easy to
determine from the primary decomposition. (Exercise: Do this computation.)

Finally, we note that many of the ideas in Section 2.5 are well-known
to researchers in computational Galois theory. See, for example, [AV00] and
[PZ89].
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Summary. This tutorial gives an introductory presentation of algebraic and geo-
metric methods to solve a polynomial system f1 = · · · = fm = 0. The algebraic
methods are based on the study of the quotient algebra A of the polynomial ring
modulo the ideal I = (f1, . . . , fm). We show how to deduce the geometry of solutions
from the structure of A and in particular, how solving polynomial equations reduces
to eigenvalue and eigenvector computations of multiplication operators in A. We
give two approaches for computing the normal form of elements in A, used to ob-
tain a representation of multiplication operators. We also present the duality theory
and its application to solving systems of algebraic equations. The geometric meth-
ods are based on projection operations which are closely related to resultant theory.
We present different constructions of resultants and different methods for solving
systems of polynomial equations based on these formulations. Finally, we illustrate
these tools on problems coming from applications in computer-aided geometric de-
sign, computer vision, robotics, computational biology and signal processing.

3.0 Introduction

Polynomial system solving is ubiquitous in many applications such as com-
puter geometric design, geometric modelling, robotics, computer vision, com-
putational biology, signal processing, . . . Specific methods like minimization,
Newton iterations, . . . are often used, but do not always offer guarantees on
the result. In this paper, we give an introductory presentation of algebraic
methods for solving a polynomial system f1 = · · · = fm = 0. By a reformu-
lation of the problem in terms of matrix manipulations, we obtain a better
control of the structure and the accuracy of computations. The tools that
we introduce are illustrated by explicit computations. A maple package im-
plements the algorithms described hereafter and is publicly available on the
Internet3. We encourage the reader to use it for his own experimentation on
3 http://www.inria.fr/galaad/logiciels/multires/
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the examples illustrating the presentation. For more advanced computations
described in the last section, we use the C++ library synaps available on the
Internet4. Our approach is based on the study of the quotient algebra A of the
polynomial ring by the ideal (f1, . . . , fm). We describe, in the first part, the
well known method of Gröbner basis to compute the normal form of elements
in A which yields the algebraic structure of this quotient. We also mention a
recent generalization of this approach which allows to combine, more safely,
symbolic and numeric computations.

In the second part, we show how to deduce the geometry of solutions from
the structure of A. In particular, we show how solving polynomial systems
reduces to the computation of eigenvalues or eigenvectors of operators of mul-
tiplication in A. In the real case, we also show how to recover information on
the real roots from this algebra.

We also study duality theory and show how to use it for solving polynomial
systems.

Another major operation in effective algebraic geometry is projection. It is
related to resultant theory. We present different notions and constructions of
resultants and we derive methods to solve systems of polynomial equations. In
practice, according to the class of systems that we want to solve, we will have
to choose the resultant construction adapted to the geometry of the problem.
Finally, we illustrate these tools on problems coming from several areas of
applications.

For more details on the material presented here, see [EM].

3.1 Solving polynomial systems

The problem of solving polynomial equations goes back to the ancient Greeks
and Chinese. It is not surprising that a large number of methods exists to
handle this problem. We divide them into the following families and we will
focus essentially on the last two classes.

3.1.1 Classes of solvers

Analytic solvers

The analytic solvers exploit the value of the functional f = (f1, . . . , fm) and
its derivatives in order to converge to a solution or all the solutions of f = 0.
Typical examples are Newton-like methods, Minimization methods, Weier-
strass’ method [Dem87, SS93, Bin96, MR02].

4 http://www.inria.fr/galaad/logiciels/synaps/
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Homotopic solvers

The idea behind the homotopic approaches is to deform a system with known
roots into the system f = 0 that we want to solve. Examples of such con-
tinuation methods are based on projective [MS87b], toric [Li97, VVC94] or
generally flat deformations of f = 0. See Chapter 8 and [AG90b] for more
details.

Subdivision solvers

The subdivision methods use an exclusion criterion to remove a domain if
it does not contain a root of f = 0. These solvers are often used to isolate
the real roots, if possible. Exclusion criteria are based on Taylor’s exclusion
function [DY93], interval arithmetic [Kea90], the Turan test [Pan96], Sturm’s
method [BR90, Roy96], or Descartes’ rule [Usp48, RZ03, MVY02].

Algebraic solvers

This class of methods exploits the known relations between the unknowns.
They are based on normal form computations in the quotient algebra [CLO97,
MT00, MT02] and reduce to a univariate or eigenvalue problem [Mou98].

Geometric solvers

These solvers project the problem onto a smaller subspace and exploit geo-
metric properties of the set of solutions. Tools such as resultant constructions
[GKZ94, EM99b, BEM00, BEM01, Bus01a] are used to reduce the solutions
of the polynomial system to a univariate or eigenvalue problem. This reduc-
tion to univariate polynomials is also an important ingredient of triangular
set methods [Tsü94, Wan95, ALMM99].

3.1.2 Notation

We fix the notation that will be used hereafter. Let K be a field, K be its
algebraic closure, R = K[x1, . . . , xn] = K[x] be the algebra of polynomials in
the variables x = (x1, . . . , xn) with coefficients in K. For the sake of simplicity,
we will assume that K is of characteristic 0.

Let f1, . . . , fm ∈ R be m polynomials. Our objective is to solve the system
f1 = 0, . . . , fm = 0, also denoted by f = 0. If α = (α1, . . . , αn) ∈ Nn, |α| =
α1 + · · ·+ αn,xα = xα1

1 . . . xαn
n .

Let I be the ideal generated by f1, . . . , fm in R and Z(I) be the affine
variety {ζ ∈ K

n
: f1(ζ) = · · · = fm(ζ) = 0}. We will assume that Z(I) =

{ζ1, . . . , ζd} is a non-empty and finite set. The algebraic approach to solve the
system f = 0 is based on the study of the K-algebra A = R/I. The hypothesis
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that Z(I) is finite implies that the K-vector space A is of finite dimension over
K, see Theorem 2.1.2 in Chapter 2. We denote by R̂ (resp. Â) the dual of the
vector space R (resp. A).

Algebraic solvers exploit the properties of A, which means that they must
be able to compute effectively in this algebra. This can be performed by a so-
called normal form algorithm. We are going to describe now two approaches
to compute normal forms.

3.1.3 Gröbner bases

Gröbner bases are a major tool in effective algebraic geometry, which yields
algorithmic answers to many question in this domain [CLO97, BW93, AL94,
Eis95]. It is related to the use of a monomial ordering.

Definition 3.1.1. A monomial ordering is a total order > on the set of mono-
mials of K[x] such that

i) ∀α �= 0, 1 < xα,
ii) ∀(α, β, γ) ∈ (Nn)3, if xα < xβ then xα+γ < xβ+γ .

Some well known monomial orderings are defined as follows:
Let α = (α1, . . . , αn) ∈ Nn and β = (β1, . . . , βn) ∈ Nn.
– The lexicographic ordering with x1 > · · · > xn: xα <l xβ iff there exists

i such that α1 = β1, . . . , αi = βi, αi+1 < βi+1.
– The graded lexicographic ordering with x1 > · · · > xn: xα <gl xβ iff

|α| < |β| or (|α| = |β| and xα <l xβ).
Given a monomial ordering >, we define as in the univariate case, the

leading term of p ∈ R as the term (the coefficient times its monomial) of p
whose monomial is maximal for >. We denote it by L>(p)

(
or simply L(p)

)
.

We write every p ∈ R as p = a0xα0+· · ·+alxαl , with ai �= 0 and α0 > · · · > αl.
Let f, f1, . . . , fm ∈ R. As in the Euclidean division there are polynomi-

als q1, . . . , qm, r such that f = q1f1 + · · · + qmfm + r, where no term of r
divides any of L(f1), . . . ,L(fm) (in this case we say that r is reduced with re-
spect to f1, . . . , fm). This is the multivariate division of f by f1, . . . , fm. The
polynomials q1, . . . , qm are the quotients and r the remainder of this division.

If I is an ideal of R = K[x], we define L>(I)
(
or simply L(I)

)
to be the

ideal generated by the set of leading terms of elements of I.
By Dickson’s lemma [CLO97] or by Noetherianity of K[x], this ideal L>(I)

is generated by a finite set of monomials. This leads to the definition of
Gröbner bases:

Definition 3.1.2. A finite subset G = {g1, . . . , gt} of the ideal I is a Gröbner
basis of I for a given monomial order > iff L>(I) =

(L>(g1), . . . ,L>(gt)
)
.

Some interesting properties of a Gröbner basis G are:
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– For any p ∈ R, the remainder of the multivariate division of p by G is
unique. It is called the normal form of p modulo the ideal I and is denoted
by N(p) (see [CLO97]).

– The polynomial p ∈ I iff its normal form N(p) = 0.
– A basis B of the K-vector space A = R/I is given by the set of monomials

which are not in L>(I). This allows us to define the multiplication table by an
element a ∈ A: We multiply first the elements of B by a as usual polynomials
and then normalize the products by reduction by G.

The ideal I can have several Gröbner bases but only one which is reduced
(i.e. the leading coefficients of elements of G are equal to 1, and every g ∈ G
is reduced with respect to G \ {g}). Efficient algorithms and software have
been developed over the past decades to compute reduced Gröbner bases. We
mention in particular [Fau99], [GS], [GPS01], [Roba].

Example 3.1.3. Let I be the ideal of R = Q[x1, x2] generated by

f1 := 13x2
1 + 8x1 x2 + 4x2

2 − 8x1 − 8x2 + 2 and f2 := x2
1 + x1 x2 − x1 − 1

6 .

The reduced Gröbner basis G of I for the graded lexicographic ordering with
x1 > x2 is (on Maple):

> with(Groebner); G:= gbasis([f1,f2],tdeg(x[1],x[2]));

(30x1x2 − 30x1 − 25− 24x2
2 + 48x2, 15x1

2 + 12x2
2 − 24x2 + 10,

216x2
3 − 648x2

2 + 5x1 + 632x2 − 200).

The leading monomials of elements of G are x1 x2, x1
2, x2

3. Then a basis of A
is {1, x1, x2, x

2
2}. Using the reduction by G, the matrix of multiplication by x1

in this basis is:

> L:= map(u->normalf(u,G,tdeg(x[1],x[2])),
> [x[1],x[1]^2,x[1]*x[2],x[1]*x[2]^2]);

(x1,−4/5 x2
2+8/5 x2−2/3, x1+5/6+4/5 x2

2−8/5 x2,−839

270
x2+8/5 x2

2+
53

54
x1+

85

54
)

> matrixof(L,[[1,x[1],x[2],x[2]^2]]);

⎛⎜⎜⎜⎜⎜⎝
0 −2/3 5/6 85

54

1 0 1 53
54

0 8/5 −8/5 − 839
270

0 −4/5 4/5 8/5

⎞⎟⎟⎟⎟⎟⎠ .
This is the matrix of coefficients of elements of the monomial basis multiplied
by x1, expressed in this basis.
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Since the variety Z(I) is finite, a lexicographic Gröbner basis with xn >
· · · > x1 contains elements g1, . . . , gn such that gi ∈ K[x1, . . . , xi] and L(gi)
depends only on xi. This reduces the problem of solving f = 0 to solving a
triangular system, hence to the problem of finding the roots of a univariate
polynomial. Unfortunately the lexicographic Gröbner bases are not used in
practice because of their high complexity of computation. We proceed as fol-
lows: First we compute a Gröbner basis for another monomial ordering and
then we use a conversion procedure to obtain a lexicographic one. For more
details see for instance [FGLM93].

3.1.4 General normal form

The construction of Gröbner bases may not be numerically stable, as shown
in the following example:

Example 3.1.4. Let

> f1:= x[1]^2+x[2]^2-x[1]+x[2]-2; f2:= x[1]^2-x[2]^2+2*x[2]-3;

The Gröbner basis of (f1, f2) for the graded lexicographic ordering with x1 >
x2 is:

> G:=gbasis([f1,f2],tdeg(x[1],x[2]));

(2x2
2 − x1 − x2 + 1, 2x1

2 − x1 + 3x2 − 5).

The leading monomials of elements of G are x2
1 and x2

2. A monomial basis
of A is {1, x1, x2, x1x2}. Consider now a small perturbation of the system
f1 = f2 = 0 and compute its Gröbner basis for the same monomial ordering:

> gbasis([f1,f2+1.0/10000000*x[1]*x[2]],tdeg(x[1],x[2]));

(−2x2
2 + x1 + x2 − 1 + 0.0000001x1x2, x1

2 + x2
2 − x1 + x2 − 2,

x2
3 − 10000000.9999999999999950000000000000125x2

2

+5000000.2500000124999993749999687500015625000781250x1

+5000000.7500000374999931249999062500171875002343750x2

−5000000.2500000624999993749998437500015625003906250).

The leading monomials of this Gröbner basis are x1 x2, x1
2, x2

3 and the cor-
responding basis of the perturbed algebra is {1, x1, x2, x

2
2}. After a small per-

turbation, the basis of the quotient algebra may “jump” from one set of mono-
mials to another one, though the two set of solutions are very close from a
geometric point of view. Moreover, some polynomials of the Gröbner basis of
the perturbed system have large coefficients.

Thus, Gröbner bases computations may introduce artificial discontinuities due
to the choice of a monomial order. A recent generalization of this notion has
been proposed in [Mou99, MT00]. It is based on a new criterion which gives
a necessary and sufficient condition for a projection onto a vector subspace of
R to be a normal form modulo the ideal I. More precisely we have:
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Theorem 3.1.5. Let B be a vector space in R = K[x1, . . . , xn] connected to
the constant polynomial 15. If B+ is the vector subspace generated by B ∪
x1B ∪ . . .∪xnB, N : B+ → B is a linear map such that N is the identity on
B, we define for i = 1, . . . , n, the maps

Mi : B → B

b �→ Mi(b) := N(xib).

The two following properties are equivalent:

1. For all 1 ≤ i, j ≤ n, Mi ◦Mj =Mj ◦Mi.
2. R = B ⊕ I, where I is the ideal generated by the kernel of N .

If this holds, the B-reduction along ker(N) is canonical.

In Chapter 4, you will also find more material on this approach and a proof
of Theorem 3.1.5, in the special case of 0-dimensional ideals.

This leads to a completion-like algorithm which starts with the linear
subspace K0 generated by the polynomials f1, . . . , fm, which we wish to solve,
and iterates the construction Ki+1 = K+

i ∩L, where L is a fixed vector space.
We stop when Ki+1 = Ki. See [Mou99, MT00, Tré02] for more details. This
approach allows us to fix first the set of monomials on which we want to do
linear operations and thus to treat more safely polynomials with approximate
coefficients. It can be adapted very naturally to Laurent polynomials, which is
not the case for Gröbner bases computations. Moreover it can be specialized
very efficiently to systems of equations for which the basis of A is known a
priori, such as in the case of a complete projective intersection [MT00].

Example 3.1.6. For the perturbed system of the previous example, the normal
forms for the monomials on the border of B = {1, x1, x2, x1x2} are:

x1
2 = −0.00000005x1x2 + 1/2x1 − 3/2x2 + 5/2,

x2
2 = +0.00000005x1x2 + 1/2x1 + 1/2x2 − 1/2,

x1
2x2 = 0.49999999x1x2 − 0.74999998x1 + 1.75000003x2 + 0.74999994,

x1x2
2 = 0.49999999x1x2 − 0.25000004x1 − 0.74999991x2 + 1.25000004.

This set of relations gives the matrices of multiplication by the variables x1

and x2 in A. An implementation by Ph. Trébuchet of an algorithm com-
puting this new type of normal form is available in the synaps library (see
Solve(L,newmac<C>())).

3.2 Structure of the quotient algebra

In this section we will see how to recover the solutions of the system f = 0
from the structure of the algebra A, which we assume to be given through a
normal form procedure.
5 Any monomial xα �= 1 ∈ B is of the form xix

β with xβ ∈ B and some i in
{1, . . . , n}.
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3.2.1 Dual of the quotient algebra

First we consider the dual R̂ that is, the space of linear forms from R to
K. The evaluation 1ζ at a fixed point ζ is an example of such linear forms:
p ∈ R �→ 1ζ(p) := p(ζ) ∈ K. Another class of linear forms is obtained by
differential operators, namely for α = (α1, . . . , αn) ∈ Nn,

dα : R → K

p �→ 1∏n
i=1 αi!

(
(∂1)α1 · · · (∂n)αnp

)
(0),

where ∂i is the derivative with respect to the variable xi (see also Section
2.2.2 of Chapter 2). If α = (α1, . . . , αn) ∈ Nn and β = (β1, . . . , βn) ∈ Nn,

dα

( n∏
i=1

xβi

i

)
=
{

1 if αi = βi for i = 1, . . . , n
0 otherwise.

It follows that (dα)α∈Nn is the dual basis of the monomial basis (xα)α∈Nn of
R. Notice that (dα)α∈Nn can be defined for every characteristic. We assume
again that K is a field of arbitrary characteristic. We deduce that for every
Λ ∈ R̂ we have Λ =

∑
α∈Nn Λ(xα)dα.

The vector space {∑α∈Nn cα dα1
1 . . .dαn

n : cα ∈ K} (where dαi
i denotes

the map p ∈ R �→ 1
αi!

(∂αi
i p)(0)

)
of formal power series in d1, . . . ,dn with

coefficients in K is denoted by K[[d]] = K[[d1, . . .dn]]. The linear map

Λ ∈ R̂ �→
∑

α∈Nn

Λ(xα)dα ∈ K[[d]]

defines a one-to-one correspondence. So we can identify R̂ with K[[d]]. Under
this identification, the linear form evaluation at 0 corresponds to the constant
power series 1; it is also denoted d0.

Example 3.2.1. Let n = 3. The value of the linear form 1 + d1 + 2d1d2 + d3
2

on the polynomial 1 + x1 + x1x2 is:

(1 + d1 + 2d1d2 + d3
2)(1 + x1 + x1x2) = 4.

The dual R̂ has a natural structure of R-module: For (p, Λ) ∈ R× R̂,
p · Λ : q ∈ R �→ (p · Λ)(q) := Λ(p q) ∈ K.

If p ∈ R and αi ∈ N∗, we check that dαi
i (xi p) = 1

(αi−1)!

(
∂αi−1

i p
)
(0). Conse-

quently, for p ∈ R and α = (α1, . . . , αn) ∈ Nn with αi �= 0 for a fixed i, we
have

(xi · dα)(p) = dα(xi p) = dα1
1 · · ·dαi−1

i−1 dαi−1
i dαi+1

i+1 · · ·dαn
n (p).

That is, xi acts as the inverse of di in K[[d]]. This is the reason why in the
literature such a representation is referred to as the inverse system (see for
instance [Mac94]). If αi = 0, then xi · dα = 0. Then we redefine the product
p · Λ as follows:
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Proposition 3.2.2. (see also [MP00], [Fuh96]) For p ∈ R and Λ ∈ K[[d]],

p · Λ = π+

(
p(d−1

1 , . . . ,d
−1
n )Λ(d)

)
,

where π+ is the projection on the vector space generated by the monomials
with positive exponents.

Example 3.2.1 (continued).

(1 + x1 + x1x2) · (1 + d1 + d1d2 + d3
2) = 3 + d1 + d1d2 + d3

2 + d2.

The constant term of this expansion is the value of the linear form 1 + d1 +
d1d2 + d3

2 at the polynomial 1 + x1 + x1x2.

3.2.2 Multiplication operators

Since the variety Z(I) is finite, the K-algebra A has the decomposition

A = A1 ⊕ · · · ⊕ Ad, (3.1)

where Ai is the local algebra associated with the root ζi (see also Section 2.7,
Chapter 2). So there are elements e1, . . . , en ∈ A such that

e1 + · · ·+ ed ≡ 1 , e2
i ≡ ei , eiej ≡ 0 if i �= j.

These elements are called the fundamental idempotents of A, and generalize
the univariate Lagrange polynomials. They satisfy Ai = eiA and ei(ζj) = 1 if
i = j and 0 otherwise. The dimension of the K-vector space Ai is by definition
the multiplicity of the root ζi, and it is denoted by µζi

.
We recall that a linear form on A can be identified with a linear form on R

which vanishes on the ideal I. Thus the evaluation 1ζ , which is a linear form
on R, is an element of Â iff ζ ∈ Z(I).

The first operators that come naturally in the study of A are the operators
of multiplication by elements of A. For any a ∈ A, we define

Ma : A → A
b �→ Ma(b) := a b.

We also consider its transpose operator

Mt
a : Â → Â
Λ �→ Mt

a(Λ) = Λ ◦Ma.

The matrix of Mt
a in the dual basis of a basis B of A is the transpose of the

matrix of Ma in B.
Example 3.1.3 (continued). Consider the matrix Mx1 of multiplication by x1

in the basis B = {1, x1, x2, x1x2} of A = K[x1, x2]/(f1, f2): We multiply the
monomials of B by x1 and reduce the products to the normal forms, so
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1× x1 ≡ x1 , x1 × x1 ≡ −x1x2 + x1 +
1
6
, x2 × x1 ≡ x1x2 ,

x1x2 × x1 ≡ −x1x2 +
55
54
x1 +

2
27
x2 +

5
54
.

Then

Mx1 =

⎛⎜⎜⎜⎜⎜⎝
0 1

6 0 5
54

1 1 0 55
54

0 0 0 2
27

0 −1 1 −1

⎞⎟⎟⎟⎟⎟⎠ .
The multiplication operators can be computed using a normal form algo-

rithm. This can be performed, for instance by Gröbner basis computations
(see Sections 3.1.3 and 3.1.4). In Section 3.5, we will describe another way
to compute implicitly these operators based on resultant matrices (see also
Section 2.3, Chapter 2).

Hereafter, xE = (xα)α∈E denotes a monomial basis of A (for instance
obtained by a Gröbner basis). Then any polynomial can be reduced modulo
(f1, . . . , fm) to a linear combination of monomials of xE .

The matrix approach to solve polynomial systems is based on the following
fundamental theorem:

Theorem 3.2.3. Assume that Z(I) = {ζ1, . . . , ζd}. We have

1. Let a ∈ A. The eigenvalues of the operator Ma (and its transpose Mt
a)

are a(ζ1), . . . , a(ζd).
2. The common eigenvectors of (Mt

a)a∈A are (up to a scalar) 1ζ1 , . . . ,1ζd
.

Proof. 1) Let i ∈ {1, . . . , d}. For every b ∈ A,(
Mt

a(1ζi
)
)
(b) = 1ζi

(a b) =
(
a(ζi)1ζi

)
(b).

This shows that a(ζ1), . . ., a(ζd) are eigenvalues ofMa andMt
a , 1ζi

is an eigen-
vector of Mt

a associated with a(ζi), and 1ζ1 , . . . ,1ζd
are common eigenvectors

to Mt
a , a ∈ A.

Now we will show that every eigenvalue of Ma is one a(ζi). For this we
consider

p(x) =
∏

ζ∈Z(I)

(
a(x)− a(ζ)) ∈ K[x].

This polynomial vanishes on Z(I). Using Hilbert’s Nullstellensatz we can find
an integer m ∈ N such that the operator

pm(Ma) =
∏

ζ∈Z(I)

(
Ma − a(ζ) I

)m

vanishes on A (I is the identity operator). We deduce that the minimal poly-
nomial of the operator Ma divides

∏
ζ∈Z(I)

(
T − a(ζ))m, and that the eigen-

values of Ma belong to {a(ζ) : ζ ∈ Z(I)}.
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2) Let Λ ∈ Â be a common eigenvector toMt
a , a ∈ A, and γ = (γ1, . . . , γn)

such that Mt
xi

(Λ) = γi Λ for i = 1, . . . , n. Then all the monomials xα satisfy(
Mt

xi
(Λ)

)
(xα) = Λ(xi xα) = γiΛ(xα).

From this we deduce that Λ = Λ(1)1γ . As Λ ∈ Â = I⊥, Λ(p) = Λ(1)p(γ) = 0
for every p ∈ I, and 1γ ∈ Â.

Since xE = (xα)α∈E is a basis of A, the coordinates of 1ζi
in the dual

basis of xE are (ζα
i )α∈E . Thus if xE contains 1, x1, . . . , xn (which is often the

case), we deduce the following algorithm:

Algorithm 3.2.4 Solving in the case of simple roots.

Let a ∈ A such that a(ζi) �= a(ζj) for i �= j (which is generically the case) and
Ma be the matrix of multiplication by a in the basis xE = (1, x1, . . . , xn, . . .) of
A.

1. Compute the eigenvectors Λ = (Λ1, Λx1 , . . . , Λxn
, . . .) of Mta.

2. For each eigenvector Λ with Λ1 �= 0, compute and output the point ζ =(
Λx1
Λ1
, . . . ,

Λxn

Λ1

)
.

The set of output points ζ contains the simple roots (i.e. roots with multi-
plicity 1) of f = 0, since for such a root the eigenspace associated to the
eigenvalue a(ζ) is one-dimensional and contains 1ζ . But as we will see in the
next example, it can also yield in some cases the multiple roots.
Example 3.1.3 (continued). The eigenvalues, their multiplicities, and the cor-
responding normalized eigenvectors of the transpose of the matrix of multi-
plication by x1 are:

> neigenvects(transpose(Mx1),1);

{
−1

3
, 2, V1 =

(
1,−1

3
,
5
6
,− 5

18
)}

,

{
1
3
, 2, V2 =

(
1,

1
3
,
7
6
,

7
18

)}
.

As the basis of A is (1, x1, x2, x1x2), we deduce from Theorem 3.2.3 that the
solutions of the system f1 = f2 = 0 can be read off from the 2nd and the
3rd coordinates of the normalized eigenvectors: So Z(I) = {(− 1

3 ,
5
6 ), ( 1

3 ,
7
6 )}.

Moreover, the 4th coordinates of V1 and V2 are the products of the 2nd by the
3rd coordinates. In this example the multiplicity 2 of the two eigenvalues is
exactly the multiplicity of roots ζ1 and ζ2 (see Chapter 2, Proposition 2.1.14).

In order to compute exactly the set of roots counted with their multiplicity,
we use the following result. It is based on the fact that commuting matrices
share common eigenspaces and the decomposition (3.1) of the algebra A.

Theorem 3.2.5. [Mou98, MP00, CGT97] There exists a basis of A such that
for all a ∈ A, the matrix of Ma in this basis is of the form
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Ma =

⎛⎜⎝N1
a 0

. . .
0 Nd

a

⎞⎟⎠ with Ni
a =

⎛⎜⎝a(ζi) �
. . .

0 a(ζi)

⎞⎟⎠ .
Proof. For every i ∈ {1, . . . , d}, the multiplication operators in Ai by elements
of A commute. Then using (3.1) it is possible to choose a basis of Ai such
that the multiplication matrices Ni

a by a ∈ A in Ai in this basis are upper-
triangular. By theorem 3.2.3, Ni

a has one eigenvalue, namely a(ζi).

We deduce the algorithm:

Algorithm 3.2.6 Solving by simultaneous triangulation.

input: Matrices of multiplication Mxi
,i = 1, . . . , n, in a basis of A.

1. Compute a (Schur) decomposition P such that the matrices Ti = PMxi
P−1,

i = 1, . . . , n, are upper-triangular.
2. Compute and output the diagonal vectors ti = (t1i,i, . . . , t

n
i,i) of triangular

matrices Tk = (tki,j)i,j.

output: Z(I) = {ti : i = 1, . . . ,dimK(A)}.

The first step in this algorithm is performed by computing a Schur decompo-
sition of Ml (where l is a generic linear form) which yields a change of basis
matrix P. Then we compute the triangular matrices Ti = PMxi

P−1, i = 1, . . . , n,
since they commute with Ml.

3.2.3 Chow form and rational univariate representation

In some problems it is important to have an exact representation of the roots
of the system f = 0. We will represent these roots in terms of solutions of a
univariate polynomial. More precisely, they will be the image of these solutions
by a rational map. The aim of the foregoing developments is to show how to
construct explicitly such a representation.

Definition 3.2.7. The Chow form of the ideal I is the homogeneous polyno-
mial in u = (u0, . . . , un) defined by

CI(u) = det(u0 + u1 Mx1 + · · ·+ un Mxn
) ∈ K[u].

According to Theorem 3.2.5, we have:

Proposition 3.2.8. The Chow form

CI(u) =
∏

ζ∈Z(I)

(u0 + u1ζ1 + · · ·+ unζn)µζ .
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Example 3.1.3 (continued). The Chow form of I = (f1, f2) using the matrices
of multiplication by x1 and x2 is:

> factor(det(u[0]+ u[1]*Mx1+ u[2]*Mx2));

(
u0 +

1
3
u1 +

7
6
u2

)2(
u0 − 1

3
u1 +

5
6
u2

)2

.

It is a product of linear forms whose coefficients yield the roots ζ1 = (− 1
3 ,

5
6 )

and ζ2 = (1
3 ,

7
6 ) of f1 = f2 = 0. The exponents are the multiplicities of the

roots (here 2). When the points of Z(I) are rational (as in this example) we
can easily factorize CI(u) as a product of linear forms and get the solutions
of the system f = 0. But usually, this factorization is possible only on an
algebraic extension of the field of coefficients (see Chapter 9 for more details
on this task).

From the Chow form, it is possible to deduce a rational univariate repre-
sentation of Z(I):

Theorem 3.2.9. (see [Ren92, ABRW96, Rou99, EM99a, Lec00]) Let ∆(u)
be a multiple of the Chow form CI(u). For a generic vector t ∈ Kn+1 we write

∆

gcd
(
∆, ∂∆

∂u0

) (t + u) = d0(u0) + u1d1(u0) + · · ·+ undn(u0) +R(u) ,

where di(u0) ∈ K[u0], R(u) ∈ (u1, . . . , un)2, gcd
(
d0(u0), d0′(u0)

)
= 1. Then

for all ζ ∈ Z(I), there exists a root ζ0 of d0(u0) such that

ζ =
(
d1(ζ0)
d′0(ζ0)

, . . . ,
dn(ζ0)
d′0(ζ0)

)
.

Proof. We decompose ∆(u) as

∆(u) =
( ∏

ζ=(ζ1,...,ζn)∈Z(I)

(u0 + ζ1u1 + · · ·+ ζnun)nζ

)
H(u) ,

with nζ ∈ N∗, where
∏

ζ∈Z(I)(u0+ζ1u1+· · ·+ζnun)nζ and H(u) are relatively
prime. Let

d(u) =
∆(u)

gcd
(
∆(u), ∂∆

∂u0
(u)

) =
( ∏

ζ∈Z(I)

(u0 + ζ1u1 + · · ·+ ζnun)
)
h(u) ,

where
∏

ζ∈Z(I)(u0 + ζ1u1 + · · · + ζnun) and h(u) are relatively prime. If t =
(t1, . . . , tn) ∈ Kn and t = (0, t1, . . . , tn) ∈ Kn+1, we have

d(t + u) =
( ∏

ζ∈Z(I)

(
(t, ζ) + u0 + ζ1u1 + · · ·+ ζnun

))
h(t + u)

= d0(u0) + u1d1(u0) + · · ·+ undn(u0) + r(u) ,
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with (t, ζ) = t1ζ1 + · · ·+ tnζn, d0, . . . , dn ∈ K[u0], r(u) ∈ (u1, . . . , un)2, and

h(t + u) = h0(u0) + u1h1(u0) + · · ·+ unhn(u0) + s(u) ,

with h0, . . . , hn ∈ K[u0] and s(u) ∈ (u1, . . . , un)2. By identification

d0(u0) =
( ∏

ζ∈Z(I)

(
(t, ζ) + u0

))
h0(u0) , and for i = 1, . . . ,n,

di(u0) =
( ∑

ζ∈Z(I)

ζi
∏
ξ �=ζ

(
(t, ξ) + u0

))
h0(u0) +

( ∏
ζ∈Z(I)

(
(t, ζ) + u0

))
hi(u0).

If t ∈ Kn is generic,
∏

ζ∈Z(I)

(
(t, ζ) + u0

)
and h0(u0) are relatively prime. Let

ζ0 = −(t, ζ) be a root of d0(u0), then h0(ζ0) �= 0 and

d0
′(ζ0) =

(∏
ξ �=ζ

(
(t, ξ)− (t, ζ)

))
h0(ζ0) ,

di(ζ0) = ζi

(∏
ξ �=ζ

(
(t, ξ)− (t, ζ)

))
h0(ζ0) , for i = 1, . . . , n.

Moreover we can assume that the generic vector t is such that (t, ζ) �= (t, ξ)
for (ζ, ξ) ∈ Z(I)2 and ζ �= ξ. Then

ζi =
di(ζ0)
d0

′(ζ0)
, for i = 1, . . . , n.

This result describes the coordinates of solutions of f = 0 as the image
by a rational map of some roots of d0(u0). It does not imply that any root of
d0(u0) yields a point in Z(I), so that this representation may be redundant.
However the “bad” prime factors in d0(u0) can be removed by substituting
the rational representation back into the equations f1, . . . , fm.

In Proposition 3.5.4 we will see how to obtain a multiple of CI(u) without
the knowledge of a basis of A.
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Algorithm 3.2.10 Rational univariate representation.

Input: A multiple ∆(u) of the Chow form of the ideal I = (f1, . . . , fm).

1. Compute the square-free part d(u) of ∆(u).
2. Choose a generic t ∈ Kn and compute the first terms of

d(t + u) = d0(u0) + u1 d1(u0) + · · ·+ un dn(u0) + · · ·

3. Compute the redundant rational representation

d0(u0) = 0 ,
( d1(u0)
d0

′(u0)
, . . . ,

dn(u0)
d0

′(u0)

)
.

4. Factorize d0(u0), keep the “good” prime factors and output the rational
univariate representation of Z(I).

Example 3.1.3 (continued). From the Chow form, we deduce the univariate
representation of Z(I):(

u0 +
3
2

)(
u0 +

1
2

)
= 0 , ζ(u0) =

(
− 1

6 (1 + u0)
,

11 + 12u0

12 (1 + u0)

)
.

This gives the solutions

u0 = − 3
2 , ζ1 = ζ(− 3

2 ) =
(

1
3 ,

7
6

)
and u0 = − 1

2 , ζ2 = ζ(− 1
2 ) =

(− 1
3 ,

5
6

)
of f1 = f2 = 0.

3.2.4 Real roots

Now we assume that the polynomials f1, . . . , fm have real coefficients: K = R.
A natural question which arises in many practical problems is how many real
solutions does the system f = 0 have ? We will use properties of the linear
form trace to answer this question.

Definition 3.2.11. The linear form trace, denoted by Tr, is defined by

Tr : A → R

a �→ Tr(a) := tr(Ma),

where tr(Ma) is the trace of the linear operator Ma.

According to Theorem 3.2.5, we have

Tr =
∑

ζ∈Z(I)

µζ 1ζ .
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We associate to Tr and to any h ∈ A the quadratic form:

Qh : (a, b) ∈ A×A �→ Qh(a, b) := Tr(hab) ∈ R,

which gives the following generalization of a result due to Hermite for counting
the number of real roots.

Theorem 3.2.12. (See [PRS93, GVRR99]) Let h ∈ R[x]. We have:

1. The rank of the quadratic form Qh is the number of distinct complex roots
ζ of f = 0 such that h(ζ) �= 0.

2. The signature of Qh is equal to

#{ζ ∈ Rn : f1(ζ) = · · · = fm(ζ) = 0, h(ζ) > 0}− #{ζ ∈ Rn : f1(ζ) = · · · =
fm(ζ) = 0, h(ζ) < 0}, where # denotes the cardinality of a set.

In particular, if h = 1, the rank of Q1 is the number of distinct complex
roots of f = 0 and its signature is the number of real roots of this system.
This allows us to analyze the geometry of the real roots as illustrated in the
following example:
Example 3.1.3 (continued). By direct computations, we have

Tr(1) = 4 , Tr(x1) = 0 , Tr(x2) = 4 , Tr(x1x2) =
2
9
.

We deduce the value of the linear form Tr on the other interesting monomials
by using the transpose operators Mtxi

as follows:

> T0 := evalm([4,0,4,2/9]):
> T1 := evalm(transpose(Mx1)&*T0): T2:= evalm(transpose(Mx2)&*T0):
> T11 := evalm(transpose(Mx1)&*T1): T12:= evalm(transpose(Mx2)&*T1):
> T112:= evalm(transpose(Mx2)&*T11):
> Q1 := matrix(4,4,[T0,T1,T2,T12]);
> Qx1 := matrix(4,4,[T1,T11,T12,T112]);

So we obtain

Q1 =

⎛⎜⎜⎝
4 0 4 2

9
0 4

9
2
9

4
9

4 2
9

37
9

4
9

2
9

4
9

4
9

37
81

⎞⎟⎟⎠ , Qx1 =

⎛⎜⎜⎝
0 4

9
2
9

4
9

4
9 0 4

9
2
81

2
9

4
9

4
9

37
81

4
9

2
81

37
81

4
81

⎞⎟⎟⎠ .
The rank and the signatures of the quadratic forms Q1 and Qx1 are

> rank(Q1), signature(Q1), rank(Qx1), signature(Qx1);

2 , (2, 0) , 2 , (1, 1) ,

which tells us (without computing these roots) that there are 2 real roots, one
with x1 < 0 and another with x1 > 0.
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3.3 Duality

In this section m = n. Let us define the notion of Bezoutian matrix that will
be useful in the following.

Definition 3.3.1. The Bezoutian Θf0,...,fn
of f0, . . . , fn ∈ R is the polynomial

Θf0,...,fn
(x,y)=

∣∣∣∣∣∣∣
f0(x) θ1(f0)(x,y) · · · θn(f0)(x,y)

...
...

...
...

fn(x) θ1(fn)(x,y) · · · θn(fn)(x,y)

∣∣∣∣∣∣∣ ∈ K[x,y],

where

θi(fj)(x,y) =
fj(y1, . . . , yi−1, xi, . . . , xn)− fj(y1, . . . , yi, xi+1, . . . , xn)

xi − yi .

Set Θf0,...,fn
(x,y) =

∑
α,β aα,βxαyβ with aα,β ∈ K, we order the monomials

xαyβ , then the matrix Bf0,...,fn
:= (aα,β)α,β is called the Bezoutian matrix

of f0, . . . , fn.

The Bezoutian was initially used by E. Bézout to construct the resultant of
two polynomials in one variable [Béz64].

When f0 is the constant 1 and f is the polynomial map (f1, . . . , fn), the
Bezoutian Θ1,f1,...,fn

will be denoted by ∆f .
We will define the residue τf associated to f = (f1, . . . , fn) and we will

give some of its important properties (for more details see [SS75], [Kun86],
[EM96], [BCRS96], also Chapter 1 of this book).

The dual Â of the vector space A has a natural structure of A-module: If
(a, Λ) ∈ A× Â, the linear form a.Λ : b ∈ A �→ (a.Λ)(b) := Λ(ab).

Definition 3.3.2. The finite K-algebra A is called Gorenstein if the A-
modules Â and A are isomorphic.

Set ∆f =
∑

α,β aα,β xαyβ with aα,β ∈ K, we define the linear map

∆f
� : R̂ → R

Λ �→ ∆f
�(Λ) :=

∑
α

(∑
β

aα,β Λ(yβ)
)
xα.

This map induces naturally a linear one also denoted by ∆f
� : Â → A. Since

the number of polynomials m is equal to the number n of variables and the
affine variety Z(I) is finite, one can prove that ∆f

� is an isomorphism of
A-modules (see [SS75], [Kun86], [EM96], [BCRS96]). Then A is a Gorenstein
algebra. Thus we can state the following definition:

Definition 3.3.3. The residue τf of f = (f1, . . . , fn) is the linear form on R
such that
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1. τf (h) = 0,∀h ∈ I,
2. ∆f

�(τf )− 1 ∈ I.
In the univariate case, let f = fd xd + · · ·+f0 be a polynomial of degree d. For
h ∈ R let r = rd−1x

d−1 + · · ·+ r0 be the remainder in the Euclidean division
of h by f , then

τf (h) =
rd−1

fd
. (3.2)

In the multivariate case, if for each i = 1, . . . , n, fi depends only on xi, then

τf (xα1
1 . . . xαn

n ) = τf1(x
α1
1 ) . . . τfn

(xαn
n ). (3.3)

If the roots of f1 = · · · = fn = 0 are simple (this is equivalent to the fact
that the Jacobian of f , denoted by Jac(f), does not vanish on Z(I)

)
, then

τf =
∑

ζ∈Z(I)
1ζ

Jac(f)(ζ) .
But in the general multivariate setting the situation is more complicated.

We will show how to compute effectively τf for an arbitrary map f .
An important tool in the duality theory is the transformation law.

Proposition 3.3.4. (Classical transformation law)
Let g = (g1, . . . , gn) be another polynomial map such that the variety de-

fined by g1, . . . , gn is finite and

∀ i = 1, . . . , n , gi =
n∑

j=1

ai,jfj with ai,j ∈ K[x].

Then τf = det(ai,j) · τg.
Proposition 3.3.5. (Generalized transformation law [BY99, EM96]).

Let (f0, . . . , fn) and (g0, . . . , gn) be two maps of K[x0,x] = K[x0, x1, . . . , xn]
which define finite affine varieties. We assume that f0 = g0 and there are pos-
itive integers mi and polynomials ai,j such that

∀ i = 1, . . . , n , fmi
0 gi =

n∑
j=1

ai,jfj .

Then τ(f0,...,fn) = det(ai,j) · τ(gm1+···+mn+1
0 ,g1...,gn)

.

If f0 = x0 andm1 = · · · = mn = 0, the generalized transformation law reduces
to the classical one.

Another important fact in this theory is the following formula:

Jac(f) · τf = Tr , (3.4)

where Tr : a ∈ R �→ Tr(a) ∈ K (Tr(a) is the trace of the endomorphism of
multiplication by a in the vector space A). If the characteristic of K is 0, we
deduce from this formula that dimK(A) = τf

(
Jac(f)

)
.
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3.3.1 Residue calculus

The effective construction of the residue of the polynomial map f = (f1, . . . , fn)
is based on the computation of algebraic relations between f1, . . . , fn and the
coordinate functions xi (see also Section 1.5.4 of Chapter 1). We give here a
method using Bezoutian matrices to get them.

Let f0, . . . , fn be n+1 elements of R such that the n polynomials f1, . . . , fn
are algebraically independent over K. For algebraic dimension reasons there
is a nonzero polynomial P such that P (f0, . . . , fn) = 0. We will show how to
find such a P by means of the Bezoutian matrix.

Proposition 3.3.6. (see [EM00]) Let u = (u0, . . . , un) be new parameters.
Then every nonzero maximal minor P (u0, . . . , un) of the Bezoutian matrix
of the elements f0 − u0, . . . , fn − un in K[u0, . . . , un][x] satisfies the identity
P (f0, . . . , fn) = 0.

This proposition comes from the fact that we can write the Bezoutian ma-
trix of f0 − u0, . . . , fn − un (up to invertible matrices with coefficients in
K(u1, . . . , un)

)
as ⎛⎜⎜⎜⎜⎜⎜⎝

Mf0 − u0I 0

0 ∗

⎞⎟⎟⎟⎟⎟⎟⎠ (3.5)

where I is the identity matrix, Mf0 is the matrix of multiplication by f0 in the
vector space K(u1, . . . , un)[x]/(f1 − u1, . . . , fn − un). By Cayley-Hamilton’s
theorem every maximal minor of this Bezoutian matrix gives an algebraic
relation between f0, . . . , fn (for more details see [EM00]).

In practice, we use a fraction free Gaussian elimination (Bareiss method)
in order to find a nonzero maximal minor of the Bezoutian matrix (see the
implementation of the function melim in the multires package).

We will see now how to compute effectively the residue τf .

Proposition 3.3.7. For i ∈ {1, . . . , n}, let

Pi(u0, . . . , un) = ai,0(u1, . . . , un)umi
0 + · · ·+ ai,mi

(u1, . . . , un)

be an algebraic relation between xi, f1, . . . , fn. If for each i there is ki ∈
{0, . . . ,mi − 1} such that ai,ki

(0) �= 0, then for h ∈ R the computation of
the multivariate residue τf (h) reduces to univariate residue calculus.

Proof. If ji = min{k : ai,k(0) �= 0}, we have

gi(xi) = ai,ji
(0)xmi−ji

i + · · ·+ ai,mi
(0) =

n∑
j=1

Ai,jfj , Ai,j ∈ K[x].
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By the transformation law and (3.3) there are scalars cα such that

τf (h) = τ(g1,...,gn)

(
hdet(Ai,j)

)
=

∑
α=(α1,...,αn)

cα τg1(x
α1
1 ) . . . τgn

(xαn
n ).

If w are formal parameters, similarly for every h ∈ R, τf−w(h) is
a rational function in w whose denominator is the product of powers of
a1,0(w), . . . , an,0(w). But it is not clear how to recover τf (h) from this func-
tion. For an arbitrary map f , τf (h) can be computed using the generalized
transformation law.

For (α1, . . . , αn) ∈ Kn and a new variable x0, we define the multi-index
m = (m1, . . . ,mn) and the polynomials Ri, Si as follows: If Pi(u0, . . . , un) is
an algebraic relation between xi, f1, . . . , fn, then there are Bi,j ∈ K[x0, . . . , xn]
such that

Pi(xi, α1x0, . . . , αnx0) =
n∑

j=1

(fj − αjx0)Bi,j (3.6)

= xmi
0

(
Ri(xi)− x0Si(xi, x0)

)
. (3.7)

From the transformation laws we deduce the following result:

Proposition 3.3.8. If for each i = 1 . . . n, the univariate polynomial Ri does
not vanish identically, then for h ∈ R we have

τf (h) =
∑

k∈Nn:|k|≤|m|
τ
(x

|m|+1−|k|
0 ,R

k1+1
1 ,...,Rkn+1

n )

(
Sk1

1 . . . S
kn
n hdet(Bi,j)

)
.

Proof. From (3.6) and Proposition 3.3.5, we have

τf (h) = τ(x0,f1−α1x0,...,fn−αnx0)(h) = τ
(x

|m|+1
0 ,R1−x0S1,...,Rn−x0Sn)

(
hdet(Bi,j)

)
.

Using the identities

R
|m|+1
i − (x0Si)|m|+1 = (Ri − x0Si)

|m|∑
ki=0

R
|m|−ki

i (x0Si)ki , i = 1 . . . n,

and Proposition 3.3.4 we deduce the formula in Proposition 3.3.8.

Propositions 3.3.6 and 3.3.8 give an effective algorithm to compute the
residue of a map in the multivariate setting. They reduce the multivariate
residue calculus to the univariate one.

We will show how to use the residue for solving polynomial systems. Let
ζ1, . . . , ζD be the solutions of the system f = 0 (each solution appears as many
times as its multiplicity). Let us fix i ∈ {1, . . . , n}. Using formula (3.4) and
Theorem 3.2.5, we can compute the Newton sums
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Sj = τf
(
xi

jJac(f)
)

= Tr(xi
j) = ζ1,i

j + · · ·+ ζD,i
j ,

where ζ1,i, . . . , ζD,i are the i-th coordinates of ζ1, . . . , ζD. If σ1, . . . , σD are the
elementary symmetric functions of ζ1,i, . . . , ζD,i (i.e. σj =

∑
1≤i1<···<ij≤D ζ1,i1 . . . ζD,ij

),
we can obtain the univariate polynomial

Ai(T ) = (T − ζ1,i) . . . (T − ζD,i) = TD + σ1T
D−1 + · · ·+ σD

by means of the Newton identities:

kσk = −Sk − σ1Sk−1 − · · · − σk−1S1 , 1 ≤ k ≤ D. (3.8)

The residue τf allows us to find the univariate polynomials Ai(T ), 1 ≤ i ≤ n,
and then to deduce the i-th coordinates of the roots of the system f1 = · · · =
fn = 0.

For other applications of residue theory see [EM98, EM].

3.4 Resultant constructions

Projection is one of the most used operations in effective algebraic geometry
[Eis95, CLO98]. It reduces the dimension of the problem that we have to solve
and often simplifies it. The resultant is a tool to perform such a projection and
has many applications in this domain. It leads to efficient methods for solving
polynomial equations based on matrix formulations [EM99b]. We present here
different notions of resultants (see also Chapter 1).

We recall that a resultant of a polynomial system fc on a complete variety
X is a polynomial ResX(fc) on the coefficients c of this system (considered
as variables) such that the vanishing of ResX(fc) is a necessary and sufficient
condition for fc to have a solution in the variety X. The best known formu-
lation of the resultant is in the case of two univariate polynomials. It is given
by the Sylvester matrix. Another classical one is the projective resultant of n
homogeneous polynomials in n variables. It can be computed using Macaulay
matrices (see Chapter 2, Section 2.3, or [DD01]). Recently a refined notion
of resultants (on toric varieties) has been studied. It takes into account the
actual monomials appearing in the polynomials. Its construction follows the
same process as in the projective case except that the notion of degree is re-
placed by the support of a polynomial (for more details see Chapter 7). Here
we will focus on an even more recent generalization of these resultant notions.

3.4.1 Resultant over a unirational variety

A natural extension of the toric resultant is to replace the monomial parame-
terization by a rational one. The polynomial system fc is defined on an open
subset of Kn and is of the form
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fc :=

⎧⎪⎪⎨⎪⎪⎩
f0(t) =

∑k0
j=0 c0,j κ0,j(t)

...
fn(t) =

∑kn

j=0 cn,j κn,j(t)

(3.9)

where t = (t1, . . . , tn) ∈ Kn and the κi,j are nonzero rational functions, which
we can assume to be polynomials by reduction to the same denominator.

Let Ki = (κi,j)j=0,...,ki
and U be the open subset of Kn such that Ki(t) �= 0

on U for i = 0, . . . , n. Assume that there exists σ0, . . ., σN ∈ R defining a map

σ : U → PN

t �→ (
σ0(t) : · · · : σN (t)

)
,

and homogeneous polynomials ψi,j(x0, . . . , xN ), i = 0, . . . , n, j = 0, . . . , ki,
satisfying

κi,j(t) = ψi,j

(
σ0(t), . . . , σN (t)

)
and deg(ψi,j) = deg(ψi,0) ≥ 1.

Let Xo be the image of σ and X be its closure in PN . In order to construct
the resultant associated to the system (3.9) on the variety X we assume the
following conditions (D):{

(D1) The Jacobian matrix of σ = (σi)i=0,...,N is of rank n at one point of U,
(D2) For generic c, f1 = · · · = fn = 0 has a finite number of solutions in U.

We will show that these conditions are sufficient to define the resultant. Let
Uo = {t ∈ U : κi,0(t) �= 0 for i = 0, . . . , n} be the dense open subset of U and
consider the parameterization

τ : Pk0−1 × · · · × Pkn−1 × Uo → Pk0 × · · · × Pkn × PN

(c̃0, . . . , c̃n, t) �→
(
c0, . . . , cn, σ(t)

)
with ci = (ci,0, c̃i) and ci,0 = − 1

κi,0(t)

∑ki

j=1 ci,jκi,j(t). We denote by W o the
image of τ , W its closure in Pk0 ×· · ·×Pkn ×PN , π1 : Pk0 ×· · ·×Pkn ×PN →
Pk0×· · ·×Pkn , and π2 : Pk0×· · ·×Pkn×PN → PN the canonical projections.

Theorem 3.4.1. Under the conditions (D), the variety W is irreducible and
projects onto a hypersurface Z = π1(W ). Moreover if ResX(fc) is one equation
of Z, for any specialization of the parameters c = (ci,j), ResX(fc) = 0 if and
only if there exists (c, x) ∈ W such that f̃i(x) :=

∑ki

j=0 ci,j ψi,j(x) = 0 for
i = 0, . . . , n.

Proof. The variety W is the closure of a parameterized variety, so it is irre-
ducible and its projection Z is also irreducible.

According to (D1), the Jacobian of σ is of rank n on an open subset of
U . This implies that the dimension of the variety X is n. The fibers of the
projection π2 : W o → Xo are linear spaces of dimension

∑n
i=0 ki − n− 1, for
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we have Ki(t) �= 0 when t ∈ U . By the fiber theorem ([Sha77] or [Har95]), we
deduce that W is of dimension

∑n
i=0 ki − 1.

Consider now the restriction of π1 to W o. According to (D2), there exists
an open subset of Pk0 × · · · × Pkn on which the number of solutions of the
system f1 = · · · = fn = 0 is finite. The fibers of π1 on this open subset is
therefore of dimension 0. This shows that the projection π1(W o), and thus
Z, is of the same dimension as W , that is a hypersurface of Pk0 × · · · × Pkn

defined (up to a scalar) by one equation ResX(fc).
As the fibers of π2 above Xo are of dimension

∑n
i=0 ki − n − 1 and W

is of dimension
∑n

i=0 ki − 1, π2(W ) is an irreducible variety of dimension n
containing Xo. This shows that X = π2(W ). Consequently for a specialization
of the coefficients c, ResX(fc) = 0 iff there exists x ∈ X such that (c, x) ∈W ,
i.e. f̃i(x) = 0 for i = 0, . . . , n.

The degree of the resultant ResX(fc) in the coefficients ci,j of fi is
bounded by (but not necessarily equal to) the generic number of points of
Vi = Z(f̃0, . . . , f̃i−1, f̃i+1, . . . , f̃n) ∩ X. In the case where the linear forms
f̃i(ζ), ζ ∈ Vi, in ci,j , are all distinct, the degree of ResX(fc) in the coeffi-
cients of fi is exactly the number of generic roots of Vi. This is the case when
t1, . . . , tn appear among the κi,j , j = 0, . . . , ki, as it is illustrated below.

We can compute a non-trivial multiple of ResX(fc) using the Bezoutian
matrix.

Theorem 3.4.2. Assume that the conditions (D) are satisfied. Then any
maximal minor of the Bezoutian matrix Bf0,...,fn

is divisible by ResX(fc).

This theorem is a consequence of hypotheses (D) and the fact that if the
variety defined by f1, . . . , fn is finite then the Bezoutian of f0, . . . , fn admits
a block decomposition of the form (3.5), for more details see [BEM00].

Example 3.4.3. Consider the three following polynomials:⎧⎨⎩ f0 = c0,0 + c0,1t1 + c0,2t2 + c0,3(t12 + t22)
f1 = c1,0 + c1,1t1 + c1,2t2 + c1,3(t12 + t22) + c1,4(t12 + t22)2

f2 = c2,0 + c2,1t1 + c2,2t2 + c2,3(t12 + t22) + c2,4(t12 + t22)2.

We are looking for conditions on the coefficients ci,j such that these three
elements have a common “root”. The projective resultant of these polynomials
in P2 is zero (for all the values of parameters ci,j), because the corresponding
homogenized polynomials vanish at the points (0 : 1 : i) and (0 : 1 : −i)

)
.

The toric resultant also vanishes (these polynomials have common roots in
the associated toric variety). Now we consider the map

σ : K2 → P3

(t1, t2) �→ (1 : t1 : t2 : t21 + t22).

The rank of the Jacobian matrix of σ is 2 and
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ψ0 = (x0, x1, x2, x3) , ψ1 = ψ2 = (x2
0, x0x1, x0x2, x0x3, x

2
3) ,

where (x0 : x1 : x2 : x3) are the homogeneous coordinates in P3. We have
fi =

∑
ci,jψi,j ◦ σ for i = 0, 1, 2. For generic values of the coefficients ci,j , the

system f1 = f2 = 0 has a finite number of solutions in K2. By Theorem 3.4.2,
any nonzero maximal minor of Bf0,f1,f2 is divisible by ResX(f0, f1, f2).

> mbezout([f1,f2,f3],[t1,t2]);

The Bezoutian matrix of f1, f2, f3 is of size 12×12 and has rank 10. A maximal
minor is a huge polynomial in (ci,j) containing 207805 monomials. It can be
factored as q1q2(q3)2ρ, with

q1 = −c0,2c1,3c2,4 + c0,2c1,4c2,3 + c1,2c0,3c2,4 − c2,2c0,3c1,4

q2 = c0,1c1,3c2,4 − c0,1c1,4c2,3 − c1,1c0,3c2,4 + c2,1c0,3c1,4

q3 = c0,3
2c1,1

2c2,4
2 − 2c0,3

2c1,1c2,1c2,4c1,4 + c0,3
2c2,4

2c1,2
2 + · · ·

ρ = c2,0
4c1,4

4c0,2
4 + c2,0

4c1,4
4c0,1

4 + c1,0
4c2,4

4c0,2
4 + c1,0

4c2,4
4c0,1

4 + · · ·
The polynomials q3 and ρ contain respectively 20 and 2495 monomials.
As for generic equations f0, f1, f2, the number of points in the varieties
Z(f0, f1), Z(f0, f2), Z(f1, f2) is 4 (see for instance [Mou96]), the resultant
ResX(f0, f1, f2) is homogeneous of degree 4 in the coefficients of each fi.
Thus, ResX(f0, f1, f2) is equal to the factor ρ.

3.4.2 Residual resultant

In practical situations the equations have common zeroes which are inde-
pendent of the parameters of the problem. These ”degenerate” zeroes are
not interesting for the resolution of this problem. We present here a resul-
tant construction which allows us to remove these degenerate solutions when
they form a complete intersection [BEM01] (for more details see [BEM01],
[BKM90, CU02, Bus01a]).

We denote by S (resp. Sν for ν ∈ N) the set of homogeneous polynomials
(resp. of degree ν) in the variables x0, . . . , xn with coefficients in K.

Let g1, . . . , gr be r (with r ≤ n + 1) homogeneous polynomials in S of
degree k1 ≥ · · · ≥ kr, and let d0 ≥ · · · ≥ dn be n+ 1 integers such that dn ≥
max(k1, kr + 1). We assume that G = (g1, . . . , gr) is a complete intersection
and we consider the system

fc :=

⎧⎪⎨⎪⎩
f0(x) =

∑r
i=1 hi,0(x) gi(x)

...
fn(x) =

∑r
i=1 hi,n(x) gi(x)

where hi,j(x) =
∑

|α|=dj−ki
ci,jα xα is the generic homogeneous polynomial of

degree dj − ki. We look for a condition on the coefficients c = (ci,jα ) such that
fc has a solution “outside” the variety defined by G. Such a condition is given
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by the residual resultant defined in [BEM01]. This resultant is constructed as
a resultant over the blow-up π : X̃ → X = Pn of Pn along the coherent sheaf
of ideals G associated to G ([Har83]).

If G̃ is the sheaf on X̃ inverse image of G by π and G̃di
= G̃ ⊗ π∗(OX(di)

)
,

the degree of the residual resultant in the coefficients of each fi is Ni =∫
X̃

∏
j �=i c1(G̃dj

), with c1(G̃dj
) is the first Chern class of G̃dj

. Using intersection
theory [Ful98], we can give an explicit formula for Ni if G is a complete
intersection. More precisely we have:

Theorem 3.4.4. [BEM01] There exists an irreducible and homogeneous poly-
nomial ResG,d0,...,dn

in K[c] which satisfies

ResG,d0,...,dn
(f0, . . . , fn) = 0 ⇔ Z(F : G) �= ∅.

Moreover, if for a fixed j ∈ {0, . . . , n} we denote by d the n-tuple d =
(d0, . . . , dj−1, dj+1, . . . , dn) , σ0(d) = (−1)n , σ1(d) = (−1)n−1

∑
l �=j dl ,

σ2(d) = (−1)n−2
∑

j1 �=j,j2 �=j,j1<j2
dj1dj2 , . . . ,

σn(d) =
∏

l �=j dl, rj(T ) = σn(d) +
∑n

l=r σn−l(d)T l, and

Prj
(y1, . . . , yr) = det

⎛⎜⎜⎜⎝
rj(y1) · · · rj(yr)
y1 · · · yr
...

...
yr−1
1 · · · yr−1

r

⎞⎟⎟⎟⎠ .
The degree of ResG,d0,...,dn

in the coefficients of each polynomial fj is

Nj =
Prj

P1
(k1, . . . , kr).

The polynomial ResG,d0,...,dn
is called the residual resultant. In order to com-

pute it, let ∆i1...ir
be the r × r minor of the matrix (hi,j)1≤i≤r,0≤j≤n corre-

sponding to the columns i1, . . . , ir, (e0, . . . , en) and (ẽ0, . . . , ẽn) be two bases
of the S-module Sn+1. A matrix whose determinant is a non-trivial multiple
of ResG,d0,...,dn

can be constructed using the following result:

Theorem 3.4.5. [BEM01] For ν ≥ νd,k =
∑n

i=0 di − n − (n − r + 2)kr, the
map

∂ν :

( ⊕
0≤i1<...<ir≤n

Sν−di1−···−dir +
∑r

i=1 ki
ei1 ∧ . . . ∧ eir

)⊕(i=n⊕
i=0

Sν−di ẽi

)
−→ Sν

ei1 ∧ . . . ∧ eir −→ ∆i1...ir

ẽi −→ fi

is surjective if and only if Z(F : G) = ∅. In this case, every nonzero maximal
minors of size dimK(Sν) of the matrix of ∂ν is a multiple of ResG,d0,...,dn

, and
the gcd of all these minors is exactly the residual resultant.
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This result is based on the resolution of the ideal
(
(f0, . . . , fn) : G

)
given

in [BKM90].

Example 3.4.6. (The residual of two points in P2). We consider the following
system in P2: ⎧⎨⎩ f0 = a0x2

0 + a1x0x1 + a2x0x2 + a3(x2
1 + x2

2)
f1 = b0x

2
0 + b1x0x1 + b2x0x2 + b3(x2

1 + x2
2)

f2 = c0x
2
0 + c1x0x1 + c2x0x2 + c3(x2

1 + x2
2).

If G = (x0, x
2
1 + x2

2), νd,k = 2 and a nonzero maximal minor of the matrix of
∂ν is ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 b0 c0 0 0 0

0 0 0 −b1c3 + c1b3 −b2c3 + c2b3 −c1a3 + a1c3

a1 b1 c1 0 −c3b0 + b3c0 0

c2 b2 c2 −c3b0 + b3c0 0 a0c3 − c0a3
a3 b3 c3 0 −b1c3 + c1b3 0

a3 b3 c3 −b2c3 + c2b3 0 −c2a3 + a2c3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The formula for the degrees gives N0 = N1 = N2 = 2 and we check that
this minor is the residual resultant times c3(c1b3 − c3b1). It has the minimal
degree N0 in the coefficients of f0. In this example the projective and toric
resultants vanish identically.

Example 3.4.7. (The residual of a curve in P3). We consider the following
system of cubics in P3 containing the umbilic:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0 = (a0x0 + a1x1 + a2x2 + a3x3)(x
2
0 + x2

1 + x2
2) + (a4x

2
0 + a5x

2
1 + a6x

2
2 + a7x

2
3+

a8x0x1 + a9x0x2 + a10x0x3 + a11x1x2 + a12x1x3 + a13x2x3)x3

f1 = (b0x0 + b1x1 + b2x2 + b3x3)(x
2
0 + x2

1 + x2
2) + (b4x

2
0 + b5x

2
1 + b6x

2
2 + b7x

2
3+

b8x0x1 + b9x0x2 + b10x0x3 + b11x1x2 + b12x1x3 + b13x2x3)x3

f2 = (c0x0 + c1x1 + c2x2 + c3x3)(x
2
0 + x2

1 + x2
2) + (c4x

2
0 + c5x

2
1 + c6x

2
2 + c7x

2
3+

c8x0x1 + c9x0x2 + c10x0x3 + c11x1x2 + c12x1x3 + c13x2x3)x3

f3 = (d0x0 + d1x1 + d2x2 + d3x3)(x
2
0 + x2

1 + x2
2) + (d4x

2
0 + d5x

2
1 + d6x

2
2 + d7x

2
3+

d8x0x1 + d9x0x2 + d10x0x3 + d11x1x2 + d12x1x3 + d13x2x3)x3

Let G = (x3, x
2
0 + x2

1 + x2
2). The previous construction gives N0 = N1 =

N2 = N3 = 15. The size of the matrix Mν of ∂ν is a 84 × 200. A maximal
minor of rank 84 whose determinant has degree 15 in the coefficients of f0 has
been constructed as follows. We extract from Mν 69 independent columns (by
considering a random specialization). We add to this submatrix the columns
of Mν depending on the coefficients of f0 and independent of the 69 columns,
in order to get a 84 × 84 matrix with a nonzero determinant. It yields a
nonzero multiple of the residual resultant. Notice that the projective and
toric resultants are identically 0 in this example.
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3.5 Geometric solvers

Let us describe now how to exploit the resultant constructions to solve poly-
nomial systems.

3.5.1 Multiplicative structure

Let f0, . . . , fn ∈ R and M0 =
(
M00 M01

M10 M11

)
be the transpose of the matrix

defined in Section 2.3 of Chapter 2. Here, we use the natural convention that
the columns of the resultant matrices represent multivariate polynomials.

Theorem 3.5.1. [PS96, ER94, MP00, CLO98] For generic systems f1, . . . , fn,
the matrix of multiplication by f0 in the basis

xE0 = {xα0
0 . . . xαn

n : 0 ≤ αi < deg fi, i = 1, . . . , n}
of A = R/(f1, . . . , fn) is the Schur complement of M1,1 in M0, namely Mf0 =
M00 − M01M11−1M10.

Proof. (see also proof of Theorem 2.3.2 of Chapter 2) Since xE0 is a basis of
the quotient by the polynomials xd1

1 , . . . , x
dn
n , it remains a basis for generic

polynomials f1, . . . , fn of degree d1, . . . , dn.
In order to compute the matrix of Mf0 in this basis, we have first to

multiply the elements of the basis by f0. This is represented in a matrix form

by the block C0 :=
(
M00

M10

)
. Then we have to reduce these polynomials in terms

of the basis xE0 by multiples of polynomials f1, . . . , fn. The multiples that

we use are represented by the coefficient matrix C1 :=
(
M01

M11

)
. The reduction

corresponds to the matrix operation C0 − C1 M
−1
11 M10 which yields the block

Mf0 := M00 − M01M11
−1M10.

Example 3.1.3 (continued). The matrix M0 associated to the polynomials f1, f2
of example 3.1.3, and a generic linear form f0 = u0 + u1x1 + u2x2 is:

> M_0 := mresultant([u[0]+u[1]*x[1]+u[2]*x[2],f1,f2],[x[1],x[2]]);

M0 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 0 0 0 0 0 2 0 0 − 1
6

ub2 u0 0 0 2 0 −8 0 − 1
6 0

ub1 0 u0 0 0 2 −8 − 1
6 0 −1

0 u1 u2 u0 −8 −8 8 0 −1 1
0 0 u1 0 0 −8 13 −1 0 1
0 u2 0 0 −8 0 4 0 0 0
0 0 0 0 0 13 0 1 0 0
0 0 0 0 4 0 0 0 0 0
0 0 0 u1 13 8 0 1 1 0
0 0 0 u2 8 4 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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In this example a basis of A is S0 = {1, x1, x2, x1x2}. The Schur complement
M00 − M01M11−1M10 of M11 in M0 is the 4× 4 matrix:

> M(u):= uschur(M_0,4);

M(u) :=

⎛⎜⎜⎜⎜⎜⎝
u0 − 25

24 u2
1
6 u1

5
54 u1 − 5

54 u2

u2 u0 + 2u2 0 2
27 u1 + 5

54 u2

u1 − 5
4 u2 u0 + u1

55
54 u1 − 55

54 u2

0 u1 + 5
4 u2 u2 − u1 u0 − u1 + 2u2

⎞⎟⎟⎟⎟⎟⎠ .
By Theorem 3.5.1, the coefficient of ui in M(u) is the matrix of the operator
Mxi

.
An advantage of this approach is that we have a direct matrix representa-

tion of the multiplication operator without using an algorithm to compute a
normal form in A. This formula is a continuous function of the coefficients of
input polynomials in the open set of systems such that M11 is invertible. Thus
it can be used with approximated coefficients, which is useful in many practi-
cal applications. However the main drawback is that the size of the matrix M0

increases very quickly with the number of variables. One way to tackle this
problem consists in exploiting the structure of the matrices (i.e. their sparsity
and quasi-Toeplitz structure) as described in [MP00, BMP00]. Another way
to handle it and to keep a continuous representation of the matrix of multipli-
cation has been proposed in [MT00]. In some sense, it combines the previous
resultant approach with the normal form method proposed in section 3.1.4,
replacing the computation of a big Schur complement M00 − M01M11−1M10 by
the inversion of much smaller systems.

In the next table, we compare the size of different systems to invert (first
lines) with the size m of the matrix M11 to invert in Macaulay’s formulation,
in the case of projective resultants of quadrics (di = 2) in Pn. Here D is the
Bézout bound or the dimension of the K-vector space A.

n 5 6 7 8 9 10 11

5 6 7 8 9 10 11
20 30 42 56 72 90 110
30 60 105 168 252 360 495
20 60 140 280 504 840 1320
5 30 105 280 630 1260 2310

6 42 168 504 1260 2772
7 56 252 840 2310

8 72 360 1320
9 90 495

10 110
11

Σ 80 192 448 1024 2304 5120 11264

m 430 1652 6307 24054 91866 351692 1350030

D 32 64 128 256 512 1024 2048
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3.5.2 Solving by hiding a variable

Another approach to solve a system of polynomial equations consists in hiding
a variable (that is, in considering one of the variables as a parameter), and
in searching the values of this hidden variable for which the system has a
solution. Typically, if we have n equations f1 = 0, . . . , fn = 0 in n variables, we
“hide” a variable, say xn, and apply one of resultant constructions described
before to the overdetermined system f1 = 0, . . . , fn = 0 in the n− 1 variables
x1, . . . , xn−1 and a parameter xn. This leads to a resultant matrix S(xn) with
polynomial entries in xn. It can be decomposed as

S(xn) = Sd x
d
n + Sd−1x

d−1
n + · · ·+ S0,

where Si has coefficients in K and the same size than S(xn). We look for the
values ζn of xn for which the system has a solution ζ ′ = (ζ1, . . . , ζn−1) in the
corresponding variety X ′ (of dimension n − 1) associated with the resultant
formulation. This implies that

v(ζ ′)t S(ζn) = 0, (3.10)

where v(ζ ′) is the vector of monomials indexing the rows of S evaluated at
ζ ′. Conversely, for generic systems of the corresponding resultant formulation
there is only one point ζ ′ above the value ζn. Thus the vectors v satisfying
S(ζn)t v = 0 are scalar multiples of v(ζ ′). From the entries of these vectors,
we can deduce the other coordinates of the point ζ ′. This will be assumed
hereafter6.

The relation (3.10) implies that v(ζ ′) is a generalized eigenvector of St(xn).
Computing such vectors can be transformed into the following linear general-
ized eigenproblem⎛⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎣
0 I · · · 0
...

. . . . . .
...

0 · · · 0 I
St
0 St

1 . . . S
t
d−1

⎤⎥⎥⎥⎦− ζn
⎡⎢⎢⎢⎢⎣

I 0 · · · 0

0
. . . . . .

...
...

. . . I 0
0 · · · 0 −St

d

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ w = 0. (3.11)

The set of eigenvalues of (3.11) contains the values of ζn for which (3.10)
has a solution. The corresponding eigenvectors w are decomposed as w =
(w0, . . . ,wd−1) so that the solution vector v(ζ ′) of (3.10) is

v(ζ ′) = w0 + ζnw1 + · · ·+ ζd−1
n wd−1.

This yields the following algorithm:
6 Notice however that this genericity condition can be relaxed by using duality,

in order to compute the points ζ′ above ζn (when they form a zero-dimensional
fiber) from the eigenspace of S(ζn).
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Algorithm 3.5.2 Solving by hiding a variable.

input: f1, . . . , fn ∈ R.

1. Construct the resultant matrix S(xn) of f1, . . . , fn (as polynomials in
x1, . . . , xn−1, with coefficients in K[xn]) adapted to the geometry of the
problem.

2. Solve the generalized eigenproblem S(xn) v = 0.
3. Deduce the coordinates of roots ζ = (ζ1, . . . , ζn) of f1 = · · · = fn = 0.

output: The roots of f1 = · · · = fn = 0.

Here again, we reduce the resolution of f1 = 0, . . . , fn = 0 to an eigenvector
problem.

Example 3.5.3. We illustrate this algorithm on the system⎧⎨⎩ f1 = x1 x2 + x3 − 2
f2 = x1

2x3 + 2x2 x3 − 3
f3 = x1 x2 + x2

2 + x2 x3 − x1 x3 − 2.

We hide x3 and use the projective resultant formulation (see Section 2.3 in
Chapter 2). We obtain a 15× 15 matrix S(x3), and compute its determinant:

> S:=mresultant([f1,f2,f3],[t1,t2]):det(S);

det(S) := x3
4 (x3 − 1)

(
2x3

5 − 11x3
4 + 20x3

3 − 10x3
2 + 10x3 − 27

)
.

The root x3 = 0 does not yield an affine root of the system f1 = f2 = f3 = 0
(the corresponding point is at infinity). Substituting x3 = 1 in S(x3), we get
a matrix of rank 14. The kernel of S(1)t is generated by

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

This implies that the corresponding root is (1, 1, 1). For the other eigenvalues
(which are the roots of the last factor in det(S)), we proceed similarly in order
to obtain the 5 other (simple) roots of f1 = f2 = f3 = 0. Here are numerical
approximation of these roots:

(0.511793− 1.27671 i, 0.037441 + 1.92488 i,−0.476671− 0.937337 i),
(0.511793 + 1.27671 i, 0.037441− 1.92488 i,−0.476671 + 0.937337 i),
(−1.38186 + 0.699017 i,−0.171994 + 0.704698 i, 2.25492 + 1.09402 i),
(−1.38186− 0.699017 i,−0.171994− 0.704698 i, 2.25492− 1.09402 i),
(0.0734678, 0.769107, 1.9435).

3.5.3 Isolated points from resultant matrices

In this section, we consider n equations f1, . . . , fn in n unknowns, but we do
not assume necessarily that they define a finite affine variety Z(f1, . . . , fn).
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We are interested in computing a rational univariate representation of the
isolated points of this variety. We denote by I0 the intersection of the primary
components of I = (f1, . . . , fn) corresponding to isolated points of Z(I) and
Z0 = Z(I0). We denote by C0(u) the Chow form associated to the ideal I0
(see Section 3.2.3).

First we consider that I = I0. Let f0 = u0 + u1x1 + · · ·+ unxn be a
generic affine form (the ui are considered as variables). We choose one of the
previous resultant constructions for f0, . . . , fn which yields a matrix

M0 =
(
M00 M01

M10 M11

)
such that M11 is invertible (if it exists). The blocks M00, M10 depend only on
the coefficients of f0. From Section 3.5.1 and according to the relation(

M00 M01

M10 M11

)(
I 0

−M−1
11 M10 I

)
=
(
M00 − M01M

−1
11 M10 M01

0 M11

)
we deduce that det(M0) = det(Mf0) det(M11). This means that det(M0) is a scalar
multiple of the Chow form of the ideal I. Such a construction applies for a
system which is generic for one of the mentioned resultant formulations. We
can obtain a rational univariate representation of Z(I) applying Algorithm
3.2.10.

If the affine variety Z(I) is not finite, we can still deduce a rational uni-
variate representation of the isolated points from the previous resultant con-
struction in (at least) two ways.

When the system is not generic for a given construction, a perturbation
technique can be used. Introducing a new parameter ε and considering a
perturbed system fε (for instance fε = f + ε f0), we obtain a resultant matrix
Sε(u) whose determinant is of the form

∆(u, ε) = εk∆k(u) + εk+1∆k+1(u) + · · · with ∆k �= 0.

It can be shown that ∆k(u) is a multiple of the Chow form of I0. Applying
Algorithm 3.2.10 to this multiple of the Chow form yields a rational univariate
representation of Z0 (see [Gri86, Chi86, Can90, GH91, LL91] for more details).

The use of a new parameter ε has a cost that we want to remove. This can
be done by exploiting the properties of the Bezoutian matrix.

Proposition 3.5.4. [EM99a, BEM00] Any nonzero maximal minor ∆(u) of
the Bezoutian matrix of polynomials f0 = u0 + u1x1 + · · ·+ unxn, f1, . . . , fn
is divisible by the Chow form C0(u) of the isolated points of I = (f1, . . . , fn).

The interesting point here is that we get directly the Chow form of the isolated
points of Z(I) even if this variety is not finite. In other words, we do not need
to perturb the system for computing a multiple of C0(u). Another advantage
of this approach is that it yields an “explicit” formulation for ∆(u), and its
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structure can be handled more carefully (for instance, by working directly on
the matrix form instead of dealing with the expansion of minors). So we have
the following algorithm:

Algorithm 3.5.5 Rational univariate representation of the iso-
lated points.

Input : f1, . . . , fn ∈ K[x1, . . . , xn]

1. Compute a nonzero multiple ∆(u) of the Chow form of f1, . . . , fn, from
an adapted resultant formulation of f0 = u0 +u1x1 + · · ·+unxn, f1, . . . , fn
(for instance using the Bezoutian matrix).

2. Get a rational univariate representation of the isolated (and maybe some
embedded) roots of f1 = · · · = fn = 0 by applying Algorithm 3.2.10.

In practice, instead of expanding completely the polynomial d(t+u) in Algo-
rithm 3.2.10, it would be advantageous to consider u1, . . . , un as infinitesimal
numbers (i.e. u2

i = uiuj = 0 for i, j = 1, . . . , n) in order to get only the first
terms d0(u0) + u1d1(u0) + · · ·+ undn(u0) of the expansion of d(t + u). More-
over, we can describe these terms as sums of determinants of matrices deduced
from resultant matrices. This allows us to use fast interpolation methods to
compute efficiently d0(u0), . . . , dn(u0).

3.5.4 Solving overdetermined systems

In many problems (such as in reconstruction in computer vision, autocalibra-
tion in robotics, identification of sources in signal processing, . . . ), each ob-
servation yields an equation. Thus, we can generate as many (approximated)
equations as we want but usually only one solution is of (physical) interest.
Thus we are dealing with overconstrained systems which have approximate
coefficients (due to measurement errors for instance).

Here again we are interested in matrix methods which allow us to handle
systems with approximate coefficients. The methods of the previous sections
for the construction of resultant matrices M0 admit natural generalizations
[Laz77] to overconstrained systems, that is, to systems of equations f1 =
. . . = fm = 0, with m > n, defining a finite number of roots. We consider a
map of the form

S : V1 × · · · × Vm → V

(q1, . . . , qm) �→
m∑

i=1

fi qi

where V and Vi are linear subspaces generated by monomials of R. This yields
a rectangular matrix S.

A case of special interest is when this matrix is of rank N − 1, where N is
the number of rows of S. In this case, it can be proved [EM] that Z(f1, . . . , fm)
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is reduced to one point ζ ∈ Kn, and if xF = (xα)α∈F is the set of monomials
indexing the rows of S that

(ζα)α∈F S = 0.

Using Cramer’s rule, we see that ζα/ζβ (α, β ∈ F , ζβ �= 0) can be expressed
as the ratio of two maximal minors of S. If 1, x1, . . . , xn ∈ xF (which is the
case most of the time), we obtain ζ as a rational function of maximal minors
of S, and thus of input coefficients of f1, . . . , fm.

Algorithm 3.5.6 Solving an overconstrained system defining a
single root

Input: A system f1, . . . , fm ∈ K[x1, . . . , xn] (with m > n) defining a single
solution.

1. Compute the resultant matrix S for one of the proposed resultant formu-
lations.

2. Compute the kernel of S and check that it is generated by one vector
w = (w1,wx1 , . . . ,wxn

, . . .).

Output: ζ = (wx1
w1
, . . . ,

wxn

w1
).

Let us illustrate this algorithm, with a projective resultant construction.

Example 3.5.7. We consider the case of 3 conics:

> f1:= x1^2-x1*x2+x2^2-3;
> f2:= x1^2-2*x1*x2+x2^2+x1-x2;
> f3:= x1*x2+x2^2-x1+2*x2-9;
> S:=mresultant([f1,f2,f3],[x1,x2]);

S :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 0 0 0 0 0 0 0 0 0 0 −9 0 0 0
0 −3 0 0 0 0 −1 0 0 0 −9 2 0 0 0
0 0 −3 0 0 0 1 0 0 0 0 −1 0 0 −9
−1 0 0 −3 0 −1 −2 0 1 0 −1 1 −9 0 2
0 1 −1 0 −1 −2 0 1 1 0 0 0 −1 2 1
0 −1 1 0 0 1 0 −1 −2 −1 1 0 2 0 1
0 0 0 1 −2 0 0 1 0 0 0 0 0 1 0
0 0 0 −1 1 0 0 −2 0 0 0 0 1 1 0
0 0 0 1 0 0 0 1 0 1 0 0 1 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0 −9 −1
1 0 0 0 0 0 1 0 −1 −9 2 1 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 0 1 2 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The rows of S are indexed by

(1, x2, x1, x1x2, x1
2x2, x1x2

2, x1
3x2, x1

2x2
2, x1x2

3, x1
2, x2

2, x1
3, x2

3, x1
4, x2

4).
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We compute the kernel of St in order to check its rank and to deduce the
common root ζ of the system:

> kernel(transpose(S));

{(1, 2, 1, 2, 2, 4, 2, 4, 8, 1, 4, 1, 8, 1, 16)}.
Considering the list of monomials which index the rows of S we deduce that
ζ = (1, 2).

In case that the overdetermined system has more than one root, we can
follow the same approach. We chose a subset E of F (if possible containing
the monomials 1, x1, . . . , xn) such that the rank of the matrix indexed by
the monomials xF\E is the rank r = N − D of S. The set xE will be the
basis of A. Assuming that the monomials xi xE , i = 1, . . . , n, are also in
xF , we complete the matrix S with the block of coefficients of f0 xE0 , where
f0 = u0 +u1 x1 + · · ·+un xn. By a Schur complement computation, we deduce
the matrix of multiplication by f0 in the basis xE of A. Now, by applying the
algorithms of Section 3.2.2, we deduce the roots of the overdetermined system
f1, . . . , fm (see [EM99b] for more details on this approach).

3.6 Applications

We will use the tools and methods developed above to solve some problems
coming from several areas of applications.

3.6.1 Implicitization of a rational surface

A rational surface (S) in K3 may be represented by a parametric representa-
tion:

(S) : x =
f(s, t)
d1(s, t)

, y =
g(s, t)
d2(s, t)

, z =
h(s, t)
d3(s, t)

,

where f, g, h, d1, d2, d3 ∈ K[s, t] or by an implicit equation (i.e. F ∈ K[x, y, z]
of minimal degree satisfying F (a, b, c) = 0 for all (a, b, c) ∈ (S)

)
. These two

representations are important for different reasons. For instance, the first one
is useful for drawing (S) and the second one to intersect surfaces or to decide
whether a point is in (S) or not.

We will investigate the implicitization problem, that is the problem of
converting a parametric representation of a rational surface into an implicit
one.

These last decades have witnessed a renewal of this problem motived by
applications in computer-aided geometric design and geometric modelling
([SAG84], [Buc88a], [Hof89], [Kal91], [CM92], [AGR95], [CGZ00], [AS01],
[CGKW01]). Its solution is given by resultants, Gröbner bases, moving sur-
faces (see [SC95], [BCD03], [D’A01]). The techniques based on resultants and
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moving surfaces fail in the presence of base points (i.e. common roots of
f, g, h, d1, d2, d2). The Gröbner bases methods are fairly expensive in practice
even if the dimension is small. Recently, methods using residual resultants and
approximation complexes have been proposed but only under some restrictive
geometric hypotheses on the zero-locus of base points which are difficult to
verify ([Bus01b], [BJ03], [BC]). We propose an approach based on the residue
calculus extending [GV97]. This method works in the presence of base points
and no geometric hypotheses on the zero-locus of base points are needed.

In order to find an implicit equation of (S), as in Proposition 3.3.6 we can
compute a nonzero maximal minor of the Bezoutian matrix of polynomials
xd1 − f, yd2 − g, zd3 − h with respect to s, t. In general, this yields a multiple
of the implicit equation as shown below.

Example 3.6.1. Let (S) be the surface parameterized by

x = s , y =
t2s+ 2t+ s

t2
, z =

t2 − 2st− 1
t2

.

The Bezoutian matrix of x − s, yt2 − t2s − 2t − s, zt2 − t2 + 2ts + 1 in
(K[x, y, z])[s, t] is a 4× 4 matrix.

> melim([x*d1-f,y*d2-g,z*d3-h],[s,t]);

(z − 1)2(4x4 − 4x3y + x2z2 − 8x2z + 2xyz + 4x2 + y2 + 4z − 4).

The second factor in this expression is the expected implicit equation.
The use of the Bezoutian matrix produces an extraneous term along with

the implicit equation. We will see how to use the residue calculus in order to
remove it from this equation.

Let us consider the polynomials in (K[x, y, z])[s, t]⎧⎨⎩ F (s, t) = x d1(s, t)− f(s, t)
G(s, t) = y d2(s, t)− g(s, t)
H(s, t) = z d3(s, t)− h(s, t).

Let Z0 = {ζ ∈ K(y, z)
2

: G(ζ) = H(ζ) = 0} = Z1 ∪ Z2, where Z1 is the alge-
braic variety Z0∩Z(d1d2d3) = {ζ ∈ K(y, z)

2
: G(ζ) = H(ζ) = d1d2d3(ζ) = 0}

and Z2 = Z0\Z1. If Z2 is finite, let Q(x, y, z) be the following nonzero element

Q(x, y, z) =
∏

ζ∈Z2

F (ζ) =
( ∏

ζ∈Z2

d1(ζ)
)(
xm + σ1(y, z)xm−1 + · · ·+ σm(y, z)

)

where m is the number of points (counting their multiplicities) in Z2 and
σi(y, z) is the i-th elementary symmetric function of

{ f(ζ)
d1(ζ) : ζ ∈ Z2

}
.
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Theorem 3.6.2. The implicit equation of the surface (S) is the square-free
part of the numerator of

E(x, y, z) := xm + σ1(y, z)xm−1 + · · ·+ σm(y, z) ∈ K(y, z)[x].

Proof. Let us choose a point (y0, z0) in the open subset U of K
2

such that the
specialization Z̃2 of Z2 is finite in K

2
and the denominators of σ1, . . . , σm do

not vanish. Then we have Q(x0, y0, z0) = 0 if and only if

xm
0 + σ1(y0, z0)xm−1

0 + · · ·+ σm(y0, z0) = 0 ,

which is equivalent to the existence of an element ζ0 ∈ Z̃2 such that
x0 = f(ζ0)

d1(ζ0)
. In other words, the numerator of E(x, y, z) vanishes on a point

(x0, y0, z0) ∈ U if and only if it belongs to (S), which implies that the square-
free part of the numerator of E(x, y, z) is up to a scalar the implicit equation
of the surface (S).

The coefficients σi(y, z) in Theorem 3.6.2 can be computed using the New-
ton identities (3.8). So we need to compute the Newton sums Si(y, z) =∑

ζ∈Z2

( f(ζ)
d1(ζ)

)
, i = 0, . . . ,m. By adding a variable we can assume that d1 = 1.

Algorithm 3.6.3 Implicitization of a rational surface

input: Polynomials f, g, h, d1, d2, d3 in K[s, t].

1. Compute an algebraic relation As(u0, u1, u2) (resp. At(u0, u1, u2)) between
s, G = y d2 − g, H = z d3 − h (resp. t,G,H) in K[y, z][s, t].
• If the univariate polynomials Rs = As(s, 0, 0), Rt = At(t, 0, 0) do not

vanish identically (which is often the case), let M be the 2× 2 matrix

such that
(
Rs

Rt

)
=M

(
G
H

)
.

– Compute the degree

m = τ(G,H)

(
Jac(G,H)

)
= τ(Rs,Rt)

(
Jac(G,H) det(M)

)
in x of the polynomial E(x, y, z) ∈ K(y, z)[x] in Theorem 3.6.2.
– For i from 1 to m, compute

Si(y, z) = τ(G,H)

(
Jac(G,H)f i

)
= τ(Rs,Rt)

(
Jac(G,H) det(M)f i

)
.

• If the polynomial RsRt ≡ 0, the power sums Si(y, z), for i = 0, . . . ,m,
are computed using the algebraic relations As(u0, u1, u2), At(u0, u1, u2)
and the formula in Proposition 3.3.8.

2. Use the Newton identities (3.8) to obtain the elementary symmetric func-
tions σi(y, z) from the Newton sums Si(y, z), i = 1, . . . ,m.

output: The numerator of xm + σ1(y, z)xm−1 + · · ·+ σm(y, z) ∈ K(y, z)[x].
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Example 3.6.1 (continued). In this case, the univariate polynomials Rs and
Rt are equal to

Rs = −4 + 4z3 + 4s4 + 4s2 + 21s2z2 − 16s2z − 4s3y − 12z2 − 10z3s2

+z4s2 − 8zs4 + 4z2s4 + 2yz3s+ 8ys3z − 4ys3z2 − 4z2ys
+2zsy + y2 − 2y2z + z2y2 + 12z,

Rt = 4z − 4− 8t3y + 8t3yz + 16t2 − 20t2z + 4z2t2 + 4t4z2 − 8t4z + 4t4.

The computation of the Newton sums gives

S0 = 4, S1 = y, S2 = −1
2
z + 4z + y − 2, S3 =

1
4
y(−3z2 + 18z − 12 + 4y2)

S4 =
1
8
z4 − 2z3 − z2y2 + 9z2 − 12z + 6y2z + y4 − 5y2 + 6.

And the implicit equation of (S) is

x4 − x3y +
1
4
x2z2 − 2x2z + x2 +

1
2
zxy + z +

1
4
y2 − 1.

3.6.2 The position of a camera

We consider a camera which is observing a scene. In this scene, three points
A,B,C are identified. The center of the camera is denoted by X. We assume
that the camera is calibrated, that is, we know the focal distance, the projec-
tion of the center of the camera, . . . Then, we easily deduce the angles between
the rays XA, XB, XC from the images of the points A,B,C.

We denote by α the angle between XB and XC, β the angle between XA and
XC, γ between XA and XB. These angles are deduced from the measure-
ments in the image. We also assume that the distances a between B and C, b
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between A and C, c between A and B are known. This leads to the following
system of polynomial constraints:⎧⎨⎩x

2
1 + x2

2 − 2 cos(γ)x1x2 − c2 = 0
x2

1 + x2
3 − 2 cos(β)x1x3 − b2 = 0

x2
2 + x2

3 − 2 cos(α)x2x3 − a2 = 0
(3.12)

where x1 = |XA|, x2 = |XB|, x3 = |XC|. Once we know the distances
x1, x2, x3, the two symmetric positions of the center X are easily deduced. The
system (3.12) can be solved by direct polynomial manipulations, expressing
x2 and x3 in terms of x1 from the two first equations and substituting in the
last one. After removing the square roots, we obtain a polynomial of degree
8 in x1, which implies at most 16 positions of the center X in this problem.
Another simple way to get this equation is to eliminate the variables x2, x3,
using the Bezoutian construction (from the multires package), and we obtain

> melim([f1,f2,f3], [x2,x3]);

2 cos(α)
(
64 cos(β)2cos(α)2cos(γ)2 − 64 cos(β)3 cos(α) cos(γ) − 64 cos(β) cos(α)3 cos(γ) + 16 cos(γ)4

−64 cos(β) cos(α) cos(γ)3 + 16 cos(β)4 + 32 cos(β)2cos(α)2 + 32 cos(β)2cos(γ)2 + 16 cos(α)4

+32 cos(α)2cos(γ)2 + 64 cos(β) cos(α) cos(γ) − 32 cos(β)2 − 32 cos(α)2 − 32 cos(γ)2 + 16
)

x8
1 + · · ·

Once this equation of degree 8 in x1 is known, the numerical solving is easy.

3.6.3 Autocalibration of a camera

We consider here the problem of computing the intrinsic parameters of a
camera from observations and measurements in 3 images of the same scene.
Following the approach described in [Fau93], the camera is modeled by a pine
hole projection. From the 3 images, we suppose that we are able to compute
the fundamental matrices relating a pair of points in correspondence in two
images. If m, m’ are the images of a point M ∈ R3 in two photos, we have
m Fm’=0, where F is the fundamental matrix.
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From 3 images and the 3 corresponding fundamental matrices, we deduce the
so-called Kruppa equations on the 6 intrinsic parameters of the camera. See
[Kru13], [Fau93] for more details. This is a system of 6 quadratic homogeneous
equations in 6 variables. We solve this overdetermined system by choosing 5
equations among the six, solving the corresponding affine system and choosing
the best solutions for the last equation among the 32 solutions. This took 0.38s
on a Alpha 500Mhz workstation for the following experimentation:

Exact root Computed root
1.049401330318981 1.049378730793354
4.884653820635368 4.884757558650871
6.011985256613766 6.011985146332036
.1726009605860270 .1725610425715577
1.727887086410446 1.727898150468536

The solver used for this computation has been developed by Ph. Trébuchet
[Tré02] and is available in the library synaps [DRMRT02] (see Solve(L,
newmac<C>()).

3.6.4 Cylinders through 4 and 5 points

We consider the problem of finding cylinders through 4 or 5 points. The system
that we use is described in [DMPT03].

The number of solutions for the problems that we consider are the following:

• Cylinders through 5 points: 6 = 3× 3− 3 solutions.
• Cylinders through 4 points and fixed radius: 12 = 3× 4 solutions.
• Lines tangent to 4 unit balls: 12 solutions.
• Cylinders through 4 points and extremal radius: 18 = 3 × 10 − 3 × 4

solutions.
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Here are experimental results also performed with the solver developed by
Ph. Trébuchet:

Problem time max(|fi|)
Cylinders through 5 points 0.03s 5 · 10−9

Parallel cylinders through 2×4 points 0.03s 5 · 10−9

Cylinders through 4 points, extremal radius 2.9s 10−6

The computation was performed on an Intel PII 400 128 MB of RAM.
max(|fi|) is the maximum of the norm of the defining polynomials fi eval-
uated at the approximated roots. The relatively huge time spent in the last
problem is due to the treatment of multiple roots.

3.6.5 Position of a parallel robot

Consider a parallel robot, which is a platform controlled by 6 arms:

From the measurements of the length of the arms, we would like to know the
position of the platform. This problem is a classical benchmark in polynomial
system solving. We know from [RV95, Laz93, Mou93] that this problem has
at most 40 solutions and that this bound is reached [Die98]. Here is the 40
degree curve that we obtain when we remove an arm of the mechanism:
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The geometric constraints describing the position of the platform are trans-
formed into a system of 6 polynomial equations:

‖RYi + T −Xi‖2 − d2i = 0 , i = 1, . . . , 6,

where R equals

1
a2 + b2 + c2 + d2

⎛⎜⎜⎝
a2 − b2 − c2 + d2 2 ab− 2 cd 2 ac+ 2 bd

2 ab+ 2 cd −a2 + b2 − c2 + d2 2 bc− 2 ad

2 ac− 2 bd 2 ad+ 2 bc −a2 − b2 + c2 + d2

⎞⎟⎟⎠
i.e. the rotation of the platform with respect to a reference frame, and
T = (u, v, w) is its translation. Using again the solver by Ph. Trébuchet
and a different modelisation (with point coordinates in the first column, and
quaternions in the second column), and one deduced from the residual resul-
tant construction (in the column “redundant”) as described in [Bus01a], and
different numerical precision, we obtain the following results:

Direct modelisation Quaternions Redundant
250 b. 3.21s 128 b. - 250 b. 8.46s 128 b. 6.25s 250 b. 1.5s 128 b. 1.2s

Here n b. denotes the number n of bits used in the computation.

3.6.6 Direct kinematic problem of a special parallel robot

Resultant constructions can also be used for some special geometry of the
platform. Here is an example where two attached points of the arms on the
platform are identical. We solve this problem by using the Bezoutian formula-
tion, which yields a 20×20 matrix of polynomials in one variable. The number
of complex solutions is also 40. The code for the construction of the matrix is
generated in a pre-processing step and the parameters defining the geometry
of the platform are instantiated at run time. This yields the following results.
There are 6 real solutions, one being of multiplicity 2:
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We obtain the following error |‖RYi + T − Xi‖2 − d2i | < 10−6 and the time
for solving is 0.5s on an Intel PII 400, 128 MB of RAM.

3.6.7 Molecular conformation

Similar resultant constructions can also be used, in order to compute the
possible conformations of a molecule when the position and orientation of
the links at the extremity are known. The approach is similar to the one
described in [RR95]. It was developed by O. Ruatta, based on the synaps
library. Here also, the resultant matrix is constructed in a preprocessing step
and we instantiate the parameters describing the geometry of the molecule at
run-time. In this example, we obtain 6 real solutions among the 16 complex
possible roots:
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The numeric error on the solutions is bounded by 10−6 and the time for solving
is 0.090s, on a standard workstation.

3.6.8 Blind identification in signal processing

Finally, we consider a problem from signal processing described in detail in
[GCMT02]. It is related to the transmission of an input signal x(n) of size p
depending on the discrete time n into a convolution channel of length L. The
output is y(n) and we want to compute the impulse response matrix H(n)
satisfying:

y(n) =
L−1∑
m=0

H(m)x(n−m) + b(n),

where b(n) is the noise. If b(n) is Gaussian centered, a statistic analysis of
the output signal yields the equations:

L−1∑
m=0

p∑
i=1

hα,i(m)hβ,i(m)(−1)n−m = E(yα(n)yβ(n− l)) ,

where hα,i(m) are the unknowns and the E(yα(n)yβ(n− l)) are known from
the output signal measurements. We solve this system of polynomial equations
of degree 2 in 6 variables, which has 64 solutions for p = 1, with the algebraic
solver of Ph. Trébuchet and we obtain the following results:
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A real root
x0 -1.803468527372455
x1 -5.162835380624794
x2 -7.568759900599482
x3 -6.893354578266418
x4 -3.998807562745594
x5 -1.164422870375179
Error = 10−8, Time = 0.76s
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Summary. This chapter is devoted to laying the algebraic foundations for border
bases of ideals. Using an order ideal O, we describe a zero-dimensional ideal from the
outside. The first and higher borders of O can be used to measure the distance of a
term from O and to define O-border bases. We study their existence and uniqueness,
their relation to Gröbner bases, and their characterization in terms of commuting
matrices. Finally, we use border bases to solve a problem coming from statistics.

4.0 Introduction

El infinito tango me lleva hacia todo
[The infinite tango takes me towards everything]

(Jorge Luis Borges)

The third author was invited to teach a course at the CIMPA school in
July 2003. When the time came to write a contribution to the present volume,
he was still inspired by the tunes of classical tango songs which had been
floating in his mind since his stay in Buenos Aires. He had the idea to create
some variations on one of the themes of his lectures. Together with the first
and second authors, he formed a trio of algebraists. They started to collect
scattered phrases and tunes connected to the main theme, and to rework them
into a survey on border bases. Since the idea was welcomed by the organizers,
you have now the opportunity to enjoy their composition.

In the last few years it has become increasingly evident how Gröbner
bases are changing the mathematical landscape. To use a lively metaphor, we
can say that by considering a Gröbner basis of an ideal I in the polynomial
ring P = K[x1, . . . , xn], we are looking at I from the inside, i.e. by describing
a special set of generators. But a Gröbner basis grants us another perspective.
We can look at I from the outside, i.e. by describing a set of polynomials which
forms a K-vector space basis of P/I, namely the set of terms outside LTσ(I)
for some term ordering σ. However, Gröbner bases are not optimal from the
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latter point of view, for instance, because the bases they provide tend to be
numerically ill-behaved.

This leads us to one of the main ideas behind the concept of a border
basis. We want to find more “general” systems of generators of I which give
rise to a K-basis of P/I. Quotation marks are in order here, since so far the
generalization only works for the subclass of zero-dimensional ideals I. In the
zero-dimensional case, the theory of border bases is indeed an extension of
the theory of Gröbner bases, because there are border bases which cannot be
associated to Gröbner bases. Moreover, border bases do not require the choice
of a term ordering. Our hope is that the greater freedom they provide will
make it possible to construct bases of P/I having additional good properties
such as numerical stability or symmetry.

Even if these considerations convince you that studying border bases is
useful, you might still ask why we want to add this survey to the current
literature on that topic? Our main reason is that we believe that the alge-
braic foundations of border bases have not yet been laid out solidly enough.
Important contributions are scattered across many publications (some in less
widely distributed journals), and do not enjoy a unified terminology or a co-
herent set of hypotheses. We hope that this chapter can be used as a first
solid foundation of a theory which will surely expand quickly.

Now let us look at the content more closely. In Section 4.1 we describe
some techniques for treating pairwise commuting endomorphisms of finitely
generated vector spaces. In particular, we describe a Buchberger-Möller type
algorithm (see Theorem 4.1.7) for computing the defining ideal of a finite set
of commuting matrices. Given pairwise commuting endomorphisms ϕ1, . . . , ϕn

of a finite dimensional K-vector space V , we can view V as a P -module via
f · v = f(ϕ1, . . . , ϕn)(v) for f ∈ P and v ∈ V . Then Theorem 4.1.9 yields
an algorithm for checking whether V is a cyclic P -module, i.e. whether it is
isomorphic to P/I for some zero-dimensional ideal I ⊆ P .

Section 4.2 is a technical interlude where order ideals, borders, indices,
and marked polynomials have their solos. An order ideal is a finite set of
terms which is closed under taking divisors. We use order ideals to describe
a zero-dimensional ideal “from the outside”. The first and higher borders of
an order ideal can be used to measure the “distance” of a term from the
order ideal. The main tune in Section 4.2 is played by the Border Division
Algorithm 4.2.10. It imitates the division algorithm in Gröbner basis theory
and allows us to divide a polynomial by a border prebasis, i.e. by a list of
polynomials which are “marked” by the terms in the border of an order ideal.

And then, as true stars, border bases appear late in the show. They enter
the stage in Section 4.3 and solve the task of finding a system of generators of
a zero-dimensional polynomial ideal having good properties. After we discuss
the existence and uniqueness of border bases (see Theorem 4.3.4), we study
their relation to Gröbner bases (see for instance Propositions 4.3.6 and 4.3.9).
Then we define normal forms with respect to an order ideal, and use border



4 Border Bases 171

bases to compute them. Many useful properties of normal forms are collected
in Proposition 4.3.13.

In the final part of Section 4.3, we explain the connection between border
bases and commuting matrices. This variation leads to the fundamental The-
orem 4.3.17 which characterizes border bases in terms of commuting matrices
and opens the door for our main application. Namely, we use border bases
to solve a problem coming from statistics. This application is presented in
Section 4.4, where we discuss the statistical background and explain the role
of border bases in this field.

Throughout the text, we have tried to provide a generous number of ex-
amples. They are intended to help the reader master the basics of the theory
of border bases. Moreover, we have tried to keep this survey as self-contained
and elementary as possible. When we had to quote “standard results” of
computer algebra, we preferred to rely on the book by the second and third
authors [KR00]. This does not mean that those results are not contained in
other books on the subject; we were merely more familiar with it.

Albert Einstein is said to have remarked that the secret of creativity was
to know how to hide ones sources. Since none of us is Albert Einstein, we
try to mention all sources of this survey. We apologize if we are unaware of
some important contribution to the topic. First and foremost, we would like to
acknowledge the work of Hans J. Stetter (see [AS88], [AS89], and [Ste04]) who
used border bases in connection with problems arising in numerical analysis.
Later H. Michael Möller recognized the usefulness of these results for computer
algebra (see [Möl93], [MS95], and [MT01]). These pioneering works triggered a
flurry of further activities in the area, most notably by Bernard Mourrain (see
for instance [Mou99]) from the algorithmic point of view. A good portion of
the material presented here is taken from the papers [CR97], [CR01], [KK03a],
[Rob98], [Robb], and [RR98]. Moreover, many results we discuss are closely
related to other surveys in this volume.

Naturally, much work still has to be done; or, as we like to put it, there is
still a huge TODO-list. A path which deserves further attention is the connec-
tion between border bases and numerical computation. Many ideas about the
interplay of numerical and symbolic computation were proposed by Stetter,
but we believe that there remains a large gap between the two areas which
has to be addressed by algebraists. What about the algorithmic aspects? Al-
most no computer algebra system has built-in facilities for computing border
bases. Naive algorithms for computing border bases, e.g. algorithms based
on Gröbner basis computations, require substantial improvements in order to
be practically feasible. This is an area of ongoing research. Some results in
this direction are contained in Chapter 3. On the theoretical side we can ask
whether the analogy between border bases and Gröbner bases can be further
extended. First results in this direction are contained in [KK03a], but there
appears to be ample scope for extending the algebraic theory of border bases.
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Finally, wouldn’t it be wonderful to remove the hypothesis that I is zero-
dimensional, i.e. to develop a theory of border bases for the case when P/I
is an infinite-dimensional vector space? At the moment, despite the infinite
tango, we are unfortunately lacking the inspiration to achieve this goal. Some
ideas are presented in [Ste04, Ch. 11].

As for our notation, we refer the readers to [KR00]. In particular, we let
P = K[x1, . . . , xn] be a polynomial ring over a field K. A polynomial of
the form xα1

1 · · ·xαn
n , where α1, . . . , αn ∈ N, is called a term (or a power

product). The monoid of all terms in P is denoted by Tn.

4.1 Commuting endomorphisms

Tango has the habit of waiting
(Ańıbal Troilo, virtuoso bandoneonist)

Every polynomial ideal I is accompanied by the quotient algebra P/I.
A zero-dimensional ideal I corresponds to an algebra P/I of finite vec-
tor space dimension over K. The first part of this section reviews how the
K-algebra P/I is characterized by its P -module structure and how the latter is
given by n pairwise commuting multiplication endomorphisms of theK-vector
space P/I. In particular, for zero-dimensional ideals these endomorphisms can
be represented by pairwise commuting multiplication matrices. Then we ad-
dress the converse realization problem: Which collections of n pairwise com-
muting matrices can be preassigned as multiplication matrices corresponding
to a zero-dimensional ideal? A necessary and sufficient condition is that these
matrices induce a cyclic P -module structure. Whether a P -module structure
on a finite-dimensional K-vector space is cyclic can be checked effectively –
an algorithm is presented in the second part.

4.1.1 Multiplication endomorphisms

Given a K-vector space V which carries a P -module structure, there exist
endomorphisms of V which are associated to the multiplications by the inde-
terminates.

Definition 4.1.1. For i = 1, . . . , n, the P -linear map

ϕi : V −→ V defined by v �→ xi v

is called the ith multiplication endomorphism of V .

The multiplication endomorphisms of V are pairwise commuting, i.e. we have
ϕi ◦ϕj = ϕj ◦ϕi for i, j ∈ {1, . . . , n}. The prototype of such a vector space is
given by the following example.
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Example 4.1.2. Let I ⊆ P be an ideal. The quotient algebra P/I possesses a
natural P -module structure P × P/I → P/I given by (f, g + I) �→ fg + I.
Hence there are canonical multiplication endomorphisms Xi : P/I −→ P/I
such that Xi(f + I) = xi f + I for f ∈ P and i = 1, . . . , n. Note that P/I is a
cyclic P -module with generator 1 + I.

Remark 4.1.3. Let ϕ1, . . . , ϕn be pairwise commuting endomorphisms of a vec-
tor space V . The following three constructions will be used frequently.

1. There is a natural way of equipping V with a P -module structure such
that ϕi is the ith multiplication endomorphism of V , namely the structure
defined by

P × V −→ V such that (f, v) �→ f(ϕ1, . . . , ϕn)(v)

2. There is a ring homomorphism

η : P −→ EndK(V ) such that f �→ f(ϕ1, . . . , ϕn)

3. Every ring homomorphism η : P −→ EndK(V ) induces a P -module struc-
ture on V via the rule f · v = η(f)(v).

The following result allows us to compute the annihilator of V , i.e. the
ideal AnnP (V ) = {f ∈ P | f · V = 0}.
Proposition 4.1.4. Let V be a K-vector space equipped with a P -module
structure corresponding to a ring homomorphism η : P −→ EndK(V ). Then
we have AnnP (V ) = ker(η).

Proof. By Remark 4.1.3, we have f · V = 0 if and only if η(f) = 0. �

Of particular interest are P -module structures on V for which V is a cyclic
P -module. The following proposition shows that such structures are essentially
of the type given in Example 4.1.2.

Proposition 4.1.5. Let V be a K-vector space and a cyclic P -module. Then
there exist an ideal I ⊆ P and a P -linear isomorphism

Θ : P/I −→ V

such that the multiplication endomorphisms of V are given by the formula
ϕi = Θ ◦Xi ◦Θ−1 for i = 1, . . . , n.

Proof. Let w ∈ V be a generator of the P -module V . Then the P -linear map
Θ̃ : P −→ V given by 1 �→ w is surjective. Let I = ker Θ̃ be its kernel and
consider the induced isomorphism of P -modulesΘ : P/I → V . The P -linearity
of Θ shows Θ

(
Xi(g + I)

)
= ϕi

(
Θ(g + I)

)
for 1 ≤ i ≤ n and g + I ∈ P/I. �
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By [KR00], Proposition 3.7.1, zero-dimensional ideals I ⊆ P are charac-
terized by dimK(P/I) < ∞. Hence, if the vector space V in this proposition
is finite-dimensional, the ideal I is necessarily zero-dimensional. Now we want
to answer the question, given ϕ1, . . . , ϕn, when is V a cyclic P -module via
the structure defined in Remark 4.1.3.1? We note that if the P -module V is
cyclic, then there exists an element w ∈ V such that AnnP (w) = AnnP (V ).

Proposition 4.1.6 (Characterization of Cyclic P-Modules).
Let V be a K-vector space which carries the structure of a P -module.

1. Given w ∈ V , we have AnnP (V ) ⊆ AnnP (w). In particular, there exists a
P -linear map Ψw : P/AnnP (V ) −→ V defined by f + AnnP (V ) �→ f · w.

2. Let w ∈ V. The map Ψw is an isomorphism of P -modules if and only
if w generates V as a P -module.

Proof. The first claim follows from the definitions. To prove the second claim,
we note that if Ψw is an isomorphism, then we have V = P · w. Conversely,
suppose that V = P ·w. Then the map Ψw is surjective. Let f ∈ P be such that
f+AnnP (V ) ∈ ker(Ψw). Then f(ϕ1, . . . , ϕn) ·w = 0 implies f(ϕ1, . . . , ϕn) = 0
since w generates V . Hence we see that f ∈ AnnP (V ) and Ψw is injective. �

4.1.2 Commuting matrices

In what follows, we let V be a finite-dimensional K-vector space and µ its
dimension. We fix a K-basis V = (v1, . . . , vµ) of V . Thus every endomorphism
of V can be represented by a matrix of size µ×µ overK. In particular, when V
is a P -module, then M1, . . . ,Mn denote the matrices corresponding to the
multiplication endomorphisms ϕ1, . . . , ϕn.

Using the following variant of the Buchberger-Möller algorithm, we can
calculate AnnP (V ) as the kernel of the composite map

η : P −→ EndK(V ) ∼= Matµ(K)

where η is the map defined in Remark 4.1.3.2. Moreover, the algorithm
provides a vector space basis of P/AnnP (V ). To facilitate the formula-
tion of this algorithm, we use the following convention. Given a matrix
A = (aij) ∈ Matµ(K), we order its entries by letting aij ≺ ak� if i < k,
or if i = k and j < �. In this way we “flatten” the matrix to a vector in Kµ2

.
Then we can reduce A against a list of matrices by using the usual Gaußian
reduction procedure.

Theorem 4.1.7 (The Buchberger-Möller Algorithm for Matrices).
Let σ be a term ordering on Tn, and let M1, . . . ,Mn ∈ Matµ(K) be pairwise
commuting matrices. Consider the following sequence of instructions.

M1. Start with empty lists G = [ ], O = [ ], S = [ ], N = [ ], and a list L = [1].
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M2. If L = [ ], return the pair (G,O) and stop. Otherwise let t = minσ(L) and
delete it from L.

M3. Compute t(M1, . . . ,Mn) and reduce it against N = ([N1, . . . ,Nk]) to
obtain

R = t(M1, . . . ,Mn)−
k∑

i=1

ciNi with ci ∈ K

M4. If R = 0, then append the polynomial t −∑
i cisi to the list G, where si

denotes the ith element of S. Remove from L all multiples of t. Continue
with step M2.

M5. If R �= 0, then append R to the list N and t −∑
i cisi to the list S.

Append the term t to O, and append to L those elements of {x1t, . . . , xnt}
which are neither multiples of a term in L nor in LTσ(G). Continue with
step M2.

This is an algorithm which returns the reduced σ-Gröbner basis G of AnnP (V )
and a list of terms O whose residue classes form a K-vector space basis
of P/AnnP (V ).

Proof. Let I = AnnP (V ), and let H be the reduced σ-Gröbner basis of I.
First we prove termination. In each iteration either step M4 or step M5

is performed. By its construction, the list N always contains linearly inde-
pendent matrices. Hence step M5, which appends an element to N , can be
performed only finitely many times. By Dickson’s Lemma (see [KR00], Corol-
lary 1.3.6), step M4 can be performed only finitely many times. Thus the
algorithm terminates.

To show correctness, we prove that after a term t has been treated by the
algorithm, the following holds: the list G contains all elements of H whose
leading terms are less than or equal to t, and the list O contains all elements
of Tn \ LTσ(I) which are less than or equal to t.

This is true after the first term t = 1 has been treated, i.e. appended
to O. Now suppose that the algorithm has finished an iteration. By the
method used to append new terms to L in step M5, all elements of the set
(x1O ∪ · · ·xnO) \ (O ∪ LTσ(I)) are contained in L. From this it follows that
the next term t chosen in step M2 is the smallest term in Tn \ (O ∪ LTσ(I)).
Furthermore, the polynomials appended to S in step M5 are supported in O.
Hence the polynomial t−∑k

i=1 cisi resulting from step M3 of the next iteration
has leading term t.

Now suppose that R = 0 in step M4. By construction, the matrix of
the endomorphism η(si) is Ni for i = 1, . . . , k. Therefore the polynomial
g = t−∑k

i=1 cisi is an element of I = AnnP (V ). Since the support of
∑k

i=1 cisi
is contained in O, the polynomial g is a new element of H.

On the other hand, if R �= 0 in step M5, then we claim that the term t is
not contained in LTσ(I). In view of the way we update L in step M5, the
term t is not in LTσ(G) for the current list G. By induction, the term t is
not a proper multiple of a term in LTσ(H). Furthermore, the term t is not
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the leading term of an element of H because such an element would be of the
form t −∑k

i=1 c
′
isi ∈ I with c′i ∈ K in contradiction to R �= 0. Altogether it

follows that t is an element of Tn \ LTσ(I) and can be appended to O.
In both cases we see that the claim continues to hold. Therefore, when the

algorithm terminates, we have computed the desired lists G and O. �

Let us illustrate the performance of this algorithm with an example.

Example 4.1.8. Let V = Q3, and let V = (e1, e2, e3) be its canonical basis.
Since the two matrices

M1 =

⎛⎝0 1 1
0 2 1
0 1 1

⎞⎠ and M2 =

⎛⎝0 1 0
0 1 1
0 1 0

⎞⎠
commute, they define a Q[x, y]-module structure on V . Let us follow the itera-
tions of the algorithm in computing the reduced σ-Gröbner basis of AnnP (V ),
where σ = DegLex.

1. t = 1, L = [ ], R =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ = I3, N = [I3], S = [1], O = [1], L = [x, y].

2. t = y,L = [x], R =

⎛⎝0 1 0
0 1 1
0 1 0

⎞⎠ = M2, N = [I3,M2], S = [1, y], O = [1, y],

L = [x, y2].

3. t = x, L = [y2], R =

⎛⎝0 0 1
0 1 0
0 0 1

⎞⎠ = M1 −M2, N = [I2,M2,M1 −M2],

S = [1, y, x− y], O = [1, x, y], L = [x2, xy, y2].

4. t = y2, L = [x2, xy],R =

⎛⎝0 0 0
0 0 0
0 0 0

⎞⎠ = M2
2−M2−(M1−M2),G = [y2−x].

5. t = xy, L = [x2], R =

⎛⎝0 0 0
0 0 0
0 0 0

⎞⎠ = M1M2 − 2M2 − (M1 −M2),

G = [y2 − x, xy − x− y].

6. t = x2, L = [ ], R =

⎛⎝0 0 0
0 0 0
0 0 0

⎞⎠ =M2
1 − 3M2 − 2(M1 −M2),

G = [y2 − x, xy − x− y, x2 − 2x− y].
Thus we have AnnP (V ) = (y2−x, xy−x− y, x2− 2x− y), and O = {1, x, y}
represents a K-basis of P/AnnP (V ).

Now we are ready for the main algorithm of this subsection: we can check
effectively whether a P -module structure given by commuting matrices defines
a cyclic module.



4 Border Bases 177

Theorem 4.1.9 (Cyclicity Test).
Let V be a finite-dimensional K-vector space with basis V = (v1, . . . , vm),
and let ϕ1, . . . , ϕn be pairwise commuting endomorphisms of V given by their
respective matrices M1, . . . ,Mn. We equip V with the P -module structure
defined by ϕ1, . . . , ϕn. Consider the following sequence of instructions.

C1. Using Theorem 4.1.7, compute a tuple of terms O = (t1, . . . , tµ) whose
residue classes form a K-basis of P/AnnP (V ).

C2. If dimK(V ) �= µ, then return "V is not cyclic" and stop.
C3. Let z1, . . . , zµ be further indeterminates and A ∈ Matµ(K[z1, . . . , zµ]) the

matrix whose columns are ti(M1, . . . ,Mn) · (z1, . . . , zµ)tr for i = 1, . . . , µ.
Compute the determinant d = det(A) ∈ K[z1, . . . , zµ].

C4. Check if there exists a tuple (c1, . . . , cµ) ∈ Kµ such that the polynomial
value d(c1, . . . , cµ) is non-zero. In this case return "V is cyclic" and
w = c1v1 + · · ·+ cµvµ. Then stop.

C5. Return "V is not cyclic" and stop.

This is an algorithm which checks whether V is a cyclic P -module via
ϕ1, . . . , ϕn and, in the affirmative case, computes a generator.

Proof. This procedure is clearly finite. Hence we only have to prove correct-
ness. By Proposition 4.1.6, we have to check whether Ψw : P/AnnP (V ) −→ V
is an isomorphism for some w ∈ V . For this it is necessary that the dimen-
sions of the two vector spaces agree. This condition is checked in step C2.
Then we use the basis elements {t̄1, . . . , t̄µ} and examine their images for lin-
ear independence. Since we have Ψw(t̄i) = ti(ϕ1, . . . , ϕn)(w) for i = 1, . . . , µ,
the map Ψw is an isomorphism for some w ∈ V if and only if the vectors
{ti(M1, . . . ,Mn)(c1, . . . , cµ)tr | 1 ≤ i ≤ µ} are K-linearly independent for
some tuple (c1, . . . , cµ) ∈ Kµ. This is checked in step C4. �

If the field K is infinite, the check in step C4 can be simplified to checking
d �= 0. For a finite field K, we can, in principle, check all tuples in Kµ. Let us
apply this algorithm by applying it in the setting of Example 4.1.8.

Example 4.1.10. Let V andM1,M2 be defined as in Example 4.1.8. We follow
the steps of the cyclicity test.

C1. The residue classes of O = {1, x, y} form a K-basis of P/AnnP (V ).
C2. We have µ = 3 = dimQ(V ).
C3. We compute I3 · (z1, z2, z3)tr = (z1, z2, z3)tr as well as M1 · (z1, z2, z3)tr =

(z2 + z3, 2z2 + z3, z2 + z3)tr and M2 · (z1, z2, z3)tr = (z2, z2 + z3, z2)tr.

Thus we let A =

⎛⎝z1 z2 + z3 z2
z2 2z2 + z3 z2 + z3
z3 z2 + z3 z2

⎞⎠ and calculate d = det(A) =

(z1 − z3)(z22 − z2z3 − z23).
C4. Since K is infinite and d �= 0, the algorithm returns "V is cyclic". For

instance, since d(1, 1, 0) = 1, the element w = e1 + e2 generates V as a
P -module.
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The following example shows that V can fail to be cyclic even when the
dimensions of V and P/AnnP (V ) agree.

Example 4.1.11. Let V = Q3, and let V = (e1, e2, e3) be its canonical basis. We
equip V with the Q[x, y]-module structure defined by the commuting matrices

M1 =

⎛⎝0 0 0
1 0 0
0 0 0

⎞⎠ and M2 =

⎛⎝0 0 0
0 0 1
0 0 0

⎞⎠
Let us apply the cyclicity test step-by-step.

C1. The algorithm of Theorem 4.1.7 yields O = {1, x, y}.
C2. We have µ = 3 = dimQ(V ).

C3. We calculate A =

⎛⎝z1 0 0
z2 z1 z3
z3 0 0

⎞⎠ and d = det(A) = 0.

C5. The algorithm returns "V is not cyclic".

We end this section by considering the special case n = 1. In this univariate
case some of the topics discussed in this section look very familiar.

Example 4.1.12. Suppose we are given a finitely generated K-vector space V
and an endomorphism ϕ of V . We let P = K[x] and observe that V becomes
a P -module via the rule (f, v) �→ f(ϕ)(v). When is it a cyclic P -module? Let
us interpret the meaning of the steps of our cyclicity test in the univariate
case. To start with, let M be a matrix representing ϕ.

C1. The algorithm of Theorem 4.1.7 applied to M yields a monic polynomial
f(x) = xd + cd−1x

d−1 + · · · + c0, which is the minimal polynomial of M
(and of ϕ), and the tuple O = (1, x, x2, . . . , xd−1).

C2. The minimal polynomial ofM is a divisor of the characteristic polynomial
of M, and the degree of the latter is dimK(V ). So the algorithm stops at
step C2 only if the minimal polynomial and the characteristic polynomial
differ.

C3. The matrix A can be interpreted as the matrix whose columns are the
vectors v, ϕ(v), . . . , ϕd−1(v) for a generic v. If det(A) = 0, then the endo-
morphisms 1, ϕ, . . . , ϕd−1 are linearly dependent, a contradiction. Hence
det(M) necessarily is non-zero and V is a cyclic P -module.

In conclusion, steps C3, C4, C5 are redundant in the univariate case. This
corresponds to the well-known fact that V is a cyclic K[x]-module if and only
if the minimal polynomial and the characteristic polynomial of ϕ coincide.
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4.2 Border prebases

Given a zero-dimensional polynomial ideal I, we want to study the residue
class ring P/I by choosing a K-basis and examining the multiplication ma-
trices with respect to that basis. How can we find a basis having “nice” prop-
erties? One possibility is to take the residue classes of the terms in an order
ideal, i.e. in a finite set of terms which is closed under forming divisors.

The choice of an order ideal O yields additional structure on the monoid
of terms Tn. For instance, there are terms forming the border of O, i.e. terms
t outside O such that there exist an indeterminate xi and a term t′ in O
with t = xit

′. Moreover, every term t has an O-index which measures the
distance from t to O. The properties of order ideals, borders, and O-indices
are collected in the first subsection.

The second subsection deals with O-border prebases. These are sets of
polynomials each of which consists of one term in the border of O and a
linear combination of terms in O. Using O-border prebases, we construct a
division algorithm and define normal remainders.

4.2.1 Order ideals

Let Tn denote the monoid of terms in n indeterminates. Moreover, for every
d ≥ 0, we let Tn

d be the set of terms of degree d and Tn
<d =

⋃d−1
i=0 Tn

i . The
following kind of subset of Tn is central to this section.

Definition 4.2.1. A non-empty, finite set of terms O ⊂ Tn is called an order
ideal if it is closed under forming divisors, i.e. if t ∈ O and t′ | t imply t′ ∈ O.

Order ideals have many other names in the literature. For instance, sta-
tisticians sometimes call them complete sets of estimable terms (see Sec-
tion 4.4). In Chapter 3, the more general notion of “sets of polynomials con-
nected to 1” is used.

Definition 4.2.2. Let O ⊂ Tn be an order ideal.

1. The border of O is the set

∂O = Tn
1 · O \ O = (x1O ∪ · · · ∪ xnO) \ O

The first border closure of O is the set ∂O = O ∪ ∂O.
2. For every k ≥ 1, we inductively define the (k + 1)st border of O by
∂k+1O = ∂(∂kO) and the (k + 1)st border closure of O by the rule
∂k+1O = ∂kO ∪ ∂k+1O. For convenience, we let ∂0O = ∂0O = O.

The kth border closure of an order ideal O is an order ideal for every k ≥ 0.
In Chapter 3, the kth border of O is denoted by O[k].

Example 4.2.3. Let O be the order ideal {1, x, y, x2, xy, y2, x3, x2y, y3, x4, x3y}
in T2. Then we visualize O and its first two borders as follows.
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Let us collect some properties of order ideals, their borders and border
closures.

Proposition 4.2.4 (Basic Properties of Borders).
Let O ⊂ Tn be an order ideal.

1. For every k ≥ 0, we have a disjoint union ∂kO =
⋃k

i=0 ∂
iO.

2. For every k ≥ 1, we have ∂kO = Tn
k · O \ Tn

<k · O.
3. We have a disjoint union Tn =

⋃∞
i=0 ∂

iO.
4. A term t ∈ Tn is divisible by a term in ∂O if and only if t ∈ Tn \ O.

Proof. The definition of the first border closure of O yields ∂O = O∪Tn
1 · O.

Inductively, it follows that ∂k+1O = ∂kO ∪ Tn
1 · ∂kO = ∂kO ∪ Tn

k+1O. This
proves the first claim. Then the second claim is a consequence of the equality
∂k+1O = ∂k+1O \ ∂kO. The third claim follows from the observation that
every term is in ∂kO for some k ≥ 0.

Finally, the fourth claim holds because the second claim implies the fact
that t ∈ ∂kO for some k ≥ 1 is equivalent to the existence of a factorization
t = t′t′′ where deg(t′) = k − 1 and t′′ ∈ ∂O. �

The above partition of Tn allows us to define a “distance” between a term
and an order ideal.

Definition 4.2.5. Let O ⊂ Tn be an order ideal.

1. For every t ∈ Tn, there exists a unique number k ∈ N such that t ∈ ∂kO.
We call k the index of t with respect to O and write indO(t) = k.

2. For an arbitrary polynomial f ∈ P \ {0}, we define the index of f with
respect to O by indO(f) = max{indO(t) | t ∈ Supp (f)}.
By this definition, the kth border of O consists precisely of the terms

of index k. Notice that every polynomial f ∈ P \ {0} has a representation
f = c1t1 + · · ·+ csts where c1, . . . , cs ∈ K \ {0} and such that t1, . . . , ts ∈ Tn

satisfy indO(t1) ≥ · · · ≥ indO(ts). However, this representation is in general
not unique since several terms in the support of f may have the same index
with respect to O.

Let us point out some of the most useful properties of the index.
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Proposition 4.2.6. Let O ⊂ Tn be an order ideal.

1. For a term t ∈ Tn, the number k = indO(t) is the smallest natural number
such that t = t′t′′ with a term t′ ∈ Tn of degree k and with t′′ ∈ O.

2. Given two terms t, t′ ∈ Tn, we have indO(t t′) ≤ deg(t) + indO(t′).
3. For f, g ∈ P \ {0} such that f + g �= 0, we have

indO(f + g) ≤ max{indO(f), indO(g)}
4. For f, g ∈ P \ {0}, we have

indO(f g) ≤ min{deg(f) + indO(g),deg(g) + indO(f)}
Proof. The first claim follows from the proof of Proposition 4.2.4.4. The second
claim follows from the first. The third claim is a consequence of the inclusion
Supp (f+g) ⊆ Supp (f)∪Supp (g). The last claim follows from the observation
that Supp (fg) ⊆ {t′t′′ | t′ ∈ Supp (f), t′′ ∈ Supp (g)} and from the second
claim. �

Although the partial ordering on Tn defined by the index appears similar
to a term ordering, it has a serious drawback: this ordering is incompatible
with term multiplication, i.e. indO(t) ≥ indO(t′) does not, in general, imply
indO(t t′′) ≥ indO(t′ t′′). Our next example is a case in point.

Example 4.2.7. Let O = {1, x, x2} ⊂ T(x, y). Then O is an order ideal with
border ∂O = {y, xy, x2y, x3}. The following sketch illustrates the situation.
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Multiplying the terms on both sides of the inequality indO(y) > indO(x2)
by x2, we get indO(x2 · y) < indO(x2 · x2). Similarly, if we multiply the terms
on both sides of the equality indO(y) = indO(x2y) by x, we get the inequality
indO(x · y) < indO(x · x2y).

4.2.2 Border division

In this subsection we introduce an important tool for dealing with zero-
dimensional ideals: an O-border prebasis, i.e. a set of polynomials of which
each is a linear combination of one term in ∂O and terms in O. In this way
we imitate the definition of a Gröbner basis where each polynomial is a lin-
ear combination of the leading term and smaller terms. Then we present a
process for dividing arbitrary polynomials by those of an O-border prebasis.
However, the remainder of this division process is not uniquely determined.
This indicates that O-border prebases are a first step in the right direction
and that we must take one more step in the next section.
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Definition 4.2.8. Let O = {t1, . . . , tµ} be an order ideal, and let ∂O =
{b1, . . . , bν} be its border. A set of polynomials G = {g1, . . . , gν} is called an
O-border prebasis if the polynomials have the form gj = bj −

∑µ
i=1 αijti

such that αij ∈ K for 1 ≤ i ≤ µ and 1 ≤ j ≤ ν.
In particular, a border prebasis can be interpreted as a tuple of polynomials

marked by the border terms (b1, . . . , bν) in the following sense.

Definition 4.2.9. A pair (g, b) is said to be a marked polynomial if g is a
non-zero polynomial and b ∈ Supp (g) with coefficient 1. A tuple of polynomials
(g1, . . . , gν) is marked by a tuple of terms (b1, . . . , bν) if (g1, b1), . . . , (gν , bν)
are marked polynomials.

The definition of a border prebasis only fixes the shape of our generators.
Note that this notion requires a bit more than that of marked polynomials –
the unmarked terms in the polynomial’s support have to be in the order ideal.
Border prebases are already sufficient to perform polynomial division with
remainder. The following algorithm provides a fundamental tool in working
with border prebases. It is similar to the procedure called “B-reduction” in
Chapter 3.

Proposition 4.2.10 (Border Division Algorithm).
Let O = {t1, . . . , tµ} be an order ideal, let ∂O = {b1, . . . , bν} be its border, and
let {g1, . . . , gν} be an O-border prebasis. Given a polynomial f ∈ P , consider
the following instructions.

D1. Let f1 = · · · = fν = 0, c1 = · · · = cµ = 0, and h = f .
D2. If h = 0, then return (f1, . . . , fν , c1, . . . , cµ) and stop.
D3. If indO(h) = 0, then find c1, . . . , cµ ∈ K such that c1t1 + · · · + cµtµ = h.

Return (f1, . . . , fν , c1, . . . , cµ) and stop.
D4. If indO(h) > 0, then let h = a1h1+· · ·+ashs such that a1, . . . , as ∈ K\{0}

and h1, . . . , hs ∈ Tn satisfy indO(h1) = indO(h). Determine the smallest
index i ∈ {1, . . . , ν} such that h1 factors as h1 = t′ bi and so that the term
t′ ∈ Tn has degree indO(h)−1. Subtract a1t′gi from h, add a1t′ to fi, and
continue with step D2.

This is an algorithm which returns a tuple (f1, . . . , fν , c1, . . . , cµ) ∈ P ν ×Kµ

such that
f = f1g1 + · · ·+ fνgν + c1t1 + · · ·+ cµtµ

and deg(fi) ≤ indO(f)− 1 for all i ∈ {1, . . . , ν} with figi �= 0. This represen-
tation does not depend on the choice of the term h1 in Step D4.

For the reader’s convenience we reproduce the proof from [KK03a].

Proof. First we show that Step D4 can be executed. Let k = indO(h1). By
Proposition 4.2.4.2, there is a factorization h1 = t̃ ti for some term t̃ of degree k
and some ti ∈ O, and there is no such factorization with a term t̃ of smaller



4 Border Bases 183

degree. Since k > 0, we can write t̃ = t′ xj for some t′ ∈ Tn and j ∈ {1, . . . , n}.
Then we have deg(t′) = k − 1, and the fact that t̃ has the smallest possible
degree implies xj ti ∈ ∂O. Thus we have h1 = t′ (xj ti) = t′ bk for some
bk ∈ ∂O.

Next we prove termination. We show that Step D4 is performed only fi-
nitely many times. Let us investigate the subtraction h − a1t′gi in Step D4.
Using the representation gi = bi −

∑µ
k=1 αkitk given in Definition 4.2.8, this

subtraction becomes

h− a1t′gi = a1h1 + · · ·+ ashs − a1t′bi + a1t′
µ∑

k=1

αkitk

Now a1h1 = a1t′bi shows that a term of index indO(h) is removed from h and
replaced by terms of the form t′ tl ∈ ∂k−1O which have strictly smaller index.
The algorithm terminates after finitely many steps because, for a given term,
there are only finitely many terms of smaller or equal index.

Finally, we prove correctness. To this end, we show that the equation

f = h + f1g1 + · · ·+ fνgν + c1t1 + · · ·+ cµtµ
is an invariant of the algorithm. It is satisfied at the end of Step D1. A poly-
nomial fi is only changed in Step D4. There the subtraction h − a1t′gi is
compensated by the addition (fi + a1t′)gi. The constants c1, . . . , cµ are only
changed in Step D3 in which h is replaced by the expression c1t1 + · · ·+ cµtµ.
When the algorithm stops, we have h = 0. This proves the stated representa-
tion of f . The additional claim that this representation does not depend on
the choice of h1 in Step D4 follows from the observation that h1 is replaced
by terms of strictly smaller index. Thus the different executions of Step D4
corresponding to the reduction of several terms of a given O-index in h do not
interfere with one another, and the final result – after all those terms have
been rewritten – is independent of the order in which they have been taken
care of. �

Notice that in Step D4 the algorithm uses a representation of h which is
not necessarily unique. Moreover, to make the factorization of h1 unique, we
chose the index i minimally, but this choice had not been forced upon us.
Finally, the result of the division depends on the numbering of the elements
of ∂O, as our next example shows.

Example 4.2.11. Let n = 2, and let O = {t1, t2, t3} with t1 = 1, t2 = x, and
t3 = y. Then the border of O is ∂O = {b1, b2, b3} with b1 = x2, b2 = xy,
and b3 = y2. The polynomials g1 = x2 + x + 1, g2 = xy + y, and g3 =
y2 +x+1 constitute an O-border prebasis. We want to divide the polynomial
f = x3y2 − xy2 + x2 + 2 by this O-border prebasis.

For easy reference, the next borders are ∂2O = {x3, x2y, xy2, y3}, ∂3O =
{x4, x3y, x2y2, xy3, y4}, and ∂4O = {x5, x4y, x3y2, x2y3, xy4, y5}. We apply
the Border Division Algorithm and follow its steps.
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D1. Let f1 = f2 = f3 = 0, c1 = c2 = c3 = 0, and h = x3y2−xy2 +x2 +2. The
O-indices of the terms in h are 4,2,1 and 0 respectively, so h has index 4.

D4. We have x3y2 = xy2 · b1 with deg xy2 = ind(h)− 1. Thus we put f1 = xy2

and h = x3y2 − xy2 + x2 + 2− xy2(x2 + x+ 1). The terms in the support
of h = −x2y2 − 2xy2 + x2 + 2 have O-indices 3,2,1 and 0 respectively.

D4. We have x2y2 = y2 · b1 with deg y2 = ind(h)− 1. Add −y2 to f1 to obtain
f1 = xy2 − y2 and put h = −x2y2 − 2xy2 + x2 + 2 + y2(x2 + x+ 1). The
terms in the support of h = −xy2 +x2 +y2 +2 have O-indices 2,1,1 and 0
respectively.

D4. We have xy2 = y · b2 with deg y = ind(h)− 1. Put f2 = −y and put h =
−xy2+x2+y2+2+y(xy+y). The terms in the support of h = x2+2y2+2
have O-indices 1,1 and 0 respectively.

D4. We have x2 = 1 · b1 with deg 1 = ind(h) − 1. Add 1 to f1 to obtain
f1 = xy2 − y2 + 1 and put h = x2 + 2y2 + 2− 1(x2 + x+ 1). The terms in
the support of h = 2y2 − x+ 1 have O-indices 1,0 and 0 respectively.

D4. We have y2 = 1 · b3 with deg 1 = ind(h)− 1. Add 2 to f3 to obtain f3 = 2
and put h = 2y2 − x + 1 − 2(y2 + x + 1). The terms in the support of
h = −3x− 1 have O-indices 0 and 0. Thus indO(h) = 0.

D3. We have h = −1 · t1−3t2 +0t3. The algorithm returns the following tuple
(xy2 − y2 + 1,−y, 2, 1, −3, 0) and stops.

Therefore we have a representation

f = (xy2 − y2 + 1)g1 − y g2 + 2 g3 − 1 t1 − 3 t2 + 0 t3

Second we perform the algorithm with respect to the shuffled tuple
(g′1, g

′
2, g

′
3) = (g3, g2, g1).

D1. Let f1 = f2 = f3 = 0, c1 = c2 = c3 = 0, and h = x3y2−xy2 +x2 +2. The
O-indices of the terms in in the support of h are 4,2,1 and 0 respectively,
so h has index 4.

D4. We have x3y2 = x3 · b′1 with deg x3 = ind(h) − 1. Thus we put f ′1 = x3

and h = x3y2 − xy2 + x2 + 2− x3(y2 + x+ 1). The terms in the support
of h = −x4 − x3 − xy2 + x2 + 2 have O-indices 3,2,2,1 and 0 respectively.

D4. We have x4 = x2 · b′3 with deg x2 = ind(h) − 1. Add −x2 to f ′3 to obtain
f ′3 = x2 and put h = −x4−x3−xy2 +x2 +2+x2(x2 +x+1). The terms in
the support of h = −xy2 + 2x2 + 2 have O-indices 2,1, and 0 respectively.

D4. We have xy2 = x · b′1 with deg x = ind(h) − 1. Add x to f ′1 to obtain
f ′1 = x3 +x and put h = −xy2 +2x2 +2+x(y2 + y+1). The terms in the
support of h = 2x2 + xy + x+ 2 have O-indices 1,1,0 and 0 respectively.

D4. We have x2 = 1 · b′3 with deg 1 = ind(h) − 1. Add 2 to f ′3 to obtain
f ′3 = x2 + 2 and put h = 2x2 + xy + x+ 2− 2(x2 + x+ 1). The terms in
the support of h = xy − x have O-indices 1 and 0 respectively.

D4. We have xy = 1 · b′2 with deg 1 = ind(h)− 1. Add 1 to f ′2 to obtain f ′2 = 1
and put h = xy − x − 1(xy + y). The terms in the support of h = x − y
have O-indices 0 and 0. Thus we have indO(h) = 0.
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D3. We write h = 0t1 + 1t2 − 1t3. The algorithm returns the following tuple
(x3 + x, −1, x3 + x, 0, 1, −1) and stops.

Therefore we have a representation

f = (x3 + x)g′1 − 1 g′2 + (x2 + 2) g′3 + 1 t1 − 3 t2 − 1 t3
= (x2 + 2)g1 − 1 g2 + (x3 + x) g3 + 0 t1 + 1 t2 − 1 t3

These calculations show that the order of the polynomials does affect the
outcome of the Border Division Algorithm.

If we fix the tuple (g1, . . . , gν) then the result of the Border Division
Algorithm is uniquely determined. The given polynomial f is represented
in P/(g1, . . . , gν) by the residue class of the linear combination c1t1+· · ·+cµtµ.
We introduce a name for this linear combination.

Definition 4.2.12. Let O={t1, . . . , tµ} be an order ideal, let G = {g1, . . . , gν}
be an O-border prebasis, and let G = (g1, . . . , gν). The normal O-remainder
of a polynomial f with respect to G is

NRO,G(f) = c1t1 + · · ·+ cµtµ
where f = f1g1 + · · ·+ fνgν + c1t1 + · · ·+ cµtµ is the representation computed
by the Border Division Algorithm.

Example 4.2.13. Let G = (g1, g2, g3) and G′ = (g′1, g
′
2, g

′
3) be the tuples con-

sidered in Example 4.2.11. The above computations lead to

NRO,G(f) = −3x− 1 and NRO,G′(f) = x− y

So the normal O-remainder depends on the ordering of the polynomials in G.
In the next section we shall encounter a special kind of border prebasis for
which this unwanted dependence disappears.

An important consequence of the Border Division Algorithm is that the
residue classes of the elements of O generate P/(g1, . . . , gν) as a K-vector
space. But, as the above examples show, this system of generators is not
necessarily a basis.

Corollary 4.2.14. Let O={t1, . . . , tµ} be an order ideal and G = {g1, . . . , gν}
an O-border prebasis. Then the residue classes of the elements of O gener-
ate P/(g1, . . . , gν) as a K-vector space. More precisely, the residue class of
every polynomial f ∈ P can be represented as a linear combination of the
residue classes {t̄1, . . . , t̄ν} by computing the normal remainder NRO,G(f) for
G = (g1, . . . , gν).
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4.3 Border bases

After all these preparations we are ready to introduce the fundamental notion
of this article: border bases. They are special systems of generators of zero-
dimensional ideals which do not depend on the choice of a term ordering,
but the choice of an order ideal. We discuss their existence and uniqueness
and compare them to Gröbner bases of the given ideal. Then we show how
one can use border bases to define normal forms, and we characterize border
bases by the property that the associated multiplication matrices are pairwise
commuting.

4.3.1 Existence and uniqueness of border bases

As above, let P = K[x1, . . . , xn] be a polynomial ring over a fieldK. Moreover,
let I be a zero-dimensional ideal in P .

Definition 4.3.1. Let O = {t1, . . . , tµ} be an order ideal and G = {g1, . . . , gν}
an O-border prebasis consisting of polynomials in I. We say that the set G is
an O-border basis of I if the residue classes of t1, . . . , tµ form a K-vector
space basis of P/I.

Next we see that this definition implies that anO-border basis of I actually
generates I.

Proposition 4.3.2. Let O = {t1, . . . , tµ} be an order ideal, and let G be an
O-border basis of I. Then I is generated by G.

Proof. By definition, we have (g1, . . . , gν) ⊆ I. To prove the converse inclusion,
let f ∈ I. Using the Border Division Algorithm 4.2.10, the polynomial f can
be expanded as f = f1g1 + · · ·+ fνgν + c1t1 + · · ·+ cµtµ, where f1, . . . , fν ∈ P
and c1, . . . , cµ ∈ K. This implies the equality of residue classes 0 = f̄ =
c1t̄1 + · · ·+ cµt̄µ in P/I. By assumption, the residue classes t̄1, . . . , t̄µ form a
K-vector space basis. Hence c1 = · · · = cµ = 0, and the expansion of f turns
out to be f = f1g1 + · · ·+ fνgν . This completes the proof. �

Remark 4.3.3. Let O = {t1, . . . , tµ} be an order ideal and G an O-border
prebasis which generates an ideal I. We let 〈O〉K = Kt1 + · · · +Ktµ be the
vector subspace of P generated by O. Then Corollary 4.2.14 shows that the
residue classes of the elements of O generate P/I. Since the border basis prop-
erty requires that these residue classes are linearly independent, the following
conditions are equivalent.

1. The set G is an O-border basis of I.
2. We have I ∩ 〈O〉K = {0}.
3. We have P = I ⊕ 〈O〉K .
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Having defined a new mathematical object, it is natural to look for its
existence and possibly its uniqueness. In the following theorem, we mention
the field of definition of an ideal. For a discussion on this concept, see [KR00],
Section 2.4. Furthermore, given an ideal I ⊆ P and a term ordering σ, we
denote the order ideal Tn \ LTσ(I) by Oσ(I).

Theorem 4.3.4 (Existence and Uniqueness of Border Bases).
Let O = {t1, . . . , tµ} be an order ideal, let I be a zero-dimensional ideal in P ,
and assume that the residue classes of the elements in O form a K-vector
space basis of P/I.

1. There exists a unique O-border basis G of I.
2. Let G′ be an O-border prebasis whose elements are in I. Then G′ is the
O-border basis of I.

3. Let k be the field of definition of I. Then we have G ⊂ k[x1, . . . , xn].

Proof. First we prove Claim 1. Let ∂O = {b1, . . . , bν}. For every i ∈ {1, . . . , ν},
the hypothesis implies that the residue class of bi in P/I is linearly dependent
on the residue classes of the elements of O. Therefore I contains a polynomial
of the form bi −

∑µ
j=1 αijtj such that αij ∈ K. Then G = {g1, . . . , gν} is

an O-border prebasis, and hence an O-border basis of I by Definition 4.3.1.
Let G′ = {g′1, . . . , g′ν} be another O-border basis of I. If, for contradiction,
there exists a term b ∈ ∂O such that the polynomials in G and G′ marked
by b differ, their difference is a non-zero polynomial in I whose support is
contained in O. This contradicts the hypothesis and Claim 1 is proved.

To prove the second claim, it suffices to observe that, by Definition 4.3.1,
the set G′ is an O-border basis of I and to apply the first part. Finally, we
prove Claim 3. Let k be the field of definition of I, let P ′ = k[x1, . . . , xn],
and let I ′ = I ∩ P ′. Given a term ordering σ, the ideals I and I ′ have the
same reduced σ-Gröbner basis (see [KR00], Lemma 2.4.16). Hence we have
Oσ(I) = Oσ(I ′), and therefore dimk(P ′/I ′) = dimK(P/I). The elements of O
are in P ′ and they are linearly independent modulo I ′. Hence their residue
classes form a k-vector space basis of P ′/I ′. Let G′ be the O-border basis
of I ′. Then G′ is an O-border prebasis whose elements are contained in I.
Thus the statement follows from Claim 2. �

Given an order ideal O consisting of dimK(P/I) many terms, does the
O-border basis of I always exist? The answer is negative, as our next example
shows.

Example 4.3.5. Let P = Q[x, y], and let I be the vanishing ideal of the set of
five points X = {(0, 0), (0,−1), (1, 0), (1, 1), (−1, 1)} in the affine space A2(Q),
i.e. let I = {f ∈ P | f(p) = 0 for all p ∈ X}. It is known that dimK(P/I) = 5.
In T2, the following order ideals contain five elements:

O1 = {1, x, x2, x3, x4}, O2 = {1, x, x2, x3, y}, O3 = {1, x, x2, y, y2},
O4 = {1, x, x2, y, xy}, O5 = {1, x, y, y2, y3}, O6 = {1, y, y2, y3, y4},
O7 = {1, x, y, xy, y2}
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Not all of these are suitable for border bases of I. For example, the residue
classes of the elements of O1 cannot form a K-vector space basis of P/I since
x3 − x ∈ I. Similarly, the residue classes of the elements of O6 cannot form a
K-vector space basis of P/I since y3 − y ∈ I.

So, let us strive for less and ask another question. Does a given zero-
dimensional ideal possess a border basis at all? Using Theorem 4.3.4, we can
rephrase the question in the following way. Given a zero-dimensional ideal I,
are there order ideals such that the residue classes of their elements form a
K-vector space basis of P/I? This time the answer is yes, as we can show
with the help of Gröbner bases.

Given an order ideal O ⊂ Tn, its complement Tn \O is the set of terms of
a monomial ideal. Recall that every monomial ideal has a unique minimal set
of generators (see [KR00], Proposition 1.3.11). The elements of the minimal
set of generators of the monomial ideal corresponding to Tn \O are called the
corners of O. A picture illustrates the significance of this name.
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Proposition 4.3.6. Let σ be a term ordering on Tn. Then there exists a
unique Oσ(I)-border basis G of I, and the reduced σ-Gröbner basis of I is the
subset of G consisting of the polynomials marked by the corners of Oσ(I).

Proof. By Macaulay’s Basis Theorem (see [KR00], Theorem 1.5.7), the residue
classes of the elements in Oσ(I) form a K-vector space basis of P/I. Thus
Theorem 4.3.4.1 implies the existence and uniqueness of the Oσ(I)-border
basis G of I.

To prove the second claim, we let b ∈ Tn \ Oσ(I) be a corner of Oσ(I).
The element of the minimal σ-Gröbner basis of I with leading term b has the
form b − NFσ,I(b), where NFσ,I(b) is contained in the span of Oσ(I). Since
the Oσ(I)-border basis of I is unique, this Gröbner basis element agrees with
the border basis element marked by b. Thus the second claim follows and the
proof is complete. �

To summarize the discussion, the ideal I does not necessarily have an
O-border basis for every order ideal O consisting of dimK(P/I) terms, but
there always is an O-border basis if O is of the form O = Oσ(I) for some term
ordering σ. This motivates our next question. Do all border bases belong to
order ideals of the form Oσ(I)? In other words, is there a bijection between
the reduced Gröbner bases and the border bases of I? The answer is no, as
our next example shows.
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Example 4.3.7. Let P = Q[x, y], and let X ⊂ A2(Q) be the set of points
X = {p1, p2, p3, p4, p5)}, where p1 = (0, 0), p2 = (0,−1), p3 = (1, 0),
p4 = (1, 1), and p5 = (−1, 1). Furthermore, let I ⊂ P be the vanishing
ideal of X (see Example 4.3.5). The map eval : P/I −→ Q5 defined by
f + I �→ (f(p1), . . . , f(p5)) is an isomorphism of K-vector spaces.

Consider the order ideal O = {1, x, y, x2, y2}. The matrix of size 5 × 5
whose columns are (eval(1), eval(x), . . . , eval(y2)) is invertible. Therefore the
residue classes of the terms in O form a Q-vector space basis of P/I, and I has
an O-border basis by Theorem 4.3.4.1.

The border of O is ∂O = {xy, x3, y3, xy2, x2y}. The O-border basis of I is
G = {g1, . . . , g5} with g1 = x3 − x, g2 = x2y − 1

2y − 1
2y

2, g3 = xy − x− 1
2y +

x2 − 1
2y

2, g4 = xy2 − x− 1
2y + x2 − 1

2y
2, and g5 = y3 − y. To show that this

border basis is not of the form Oσ(I), consider the polynomial g3 in more
detail. For any term ordering σ we have x2 >σ x and y2 >σ y. Moreover,
either x2 >σ xy >σ y

2 or y2 >σ xy >σ x
2. This leaves either x2 or y2 as the

leading term of g3. Since these terms are contained in O, the order ideal O
cannot be the complement of LTσ(I) in T2 for any term ordering σ.

The upshot of this example is that the set of border bases of a given zero-
dimensional ideal is strictly larger than the set of its reduced Gröbner bases.
Therefore there is a better chance of finding a “nice” system of generators
of I among border bases than among Gröbner bases. For instance, sometimes
border bases are advertised by saying that they keep symmetry. While this is
true in many cases, the claim has to be taken with a grain of salt. Just have
a look at the following example.

Example 4.3.8. Let P = Q[x, y] and I = (x2 + y2 − 1, xy − 1). The ideal I is
symmetric with respect to the indeterminates x and y. Moreover, we have
dimK(P/I) = 4. The only symmetric order ideal consisting of four terms is
O = {1, x, y, xy}. But I does not have an O-border basis, since we have
xy − 1 ∈ I. It may be interesting to observe that the residue classes of the
elements 1, x− y, x+ y, x2 − y2 form a K-vector space basis of P/I.

Let us investigate the relationship between Gröbner bases and border bases
a little further. A list (or a set) of marked polynomials ((g1, b1), . . . , (gν , bν))
is said to be marked coherently if there exists a term ordering σ such that
LTσ(gi) = bi for i = 1, . . . , ν. Furthermore, recall that an O-border (pre)basis
can be viewed as a tuple of polynomials marked by terms in the border of O.

Proposition 4.3.9. Let O be an order ideal such that the residue classes of
the elements of O form a K-vector space basis of P/I. Let G be the O-border
basis of I, and let G′ be the subset of G consisting of the elements marked by
the corners of O. Then the following conditions are equivalent.

1. There exists a term ordering σ such that O = Oσ(I).
2. The elements in G′ are marked coherently.
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3. The elements in G are marked coherently.

Moreover, if these conditions are satisfied, then G′ is the reduced σ-Gröbner
basis of I.

Proof. Let us prove that 1) implies both 2) and the additional claim. The fact
that G′ is the reduced σ-Gröbner basis of I follows from Proposition 4.3.6.
Hence G′ is marked coherently. Now we show that 2) implies 3). For every
polynomial g ∈ G\G′, there exists a polynomial g′ ∈ G′ such that the marked
term of g is of the form b = t LTσ(g′). Then the support of the polynomial
g − t g′ is contained in O, and therefore g = t g′. This proves that also g is
marked coherently with respect to σ.

Since 3) ⇒ 2) is obvious, only 2)⇒ 1) remains to be shown. Let σ be a term
ordering which marks G′ coherently. Denote the monomial ideal generated by
the leading terms of the elements in G′ by LTσ(G′). Since LTσ(I) ⊇ LTσ(G′),
we get Oσ(I) = Tn \ LTσ(I) ⊆ Tn \ LTσ(G′) = O. Also the residue classes
of the elements of Oσ(I) form a K-vector space basis of P/I, and hence the
inclusion is indeed an equality. �

The proposition applies for instance to the monomial ideal I generated
by the corners of O. Later we shall see that the equivalent conditions of this
proposition apply for a particular type of zero-dimensional ideals, namely the
vanishing ideals of distracted fractions (see Example 4.4.5). The following
remark will be useful in the last section.

Remark 4.3.10. Assume that there exists a term ordering σ such that every
corner of O is σ-greater than every element in O. Then we have O = Oσ(I)
for all ideals I such that the residue classes of the terms in O form a K-vector
space basis of P/I. We do not know whether the converse holds, but we believe
it does.

4.3.2 Normal forms

In Gröbner basis theory one can define a unique representative of a residue
class in P/I by using the normal form of a polynomial f . The normal form
is obtained by computing the normal remainder of f under the division by
a Gröbner basis. It does not depend on the Gröbner basis, but only on the
given term ordering and the ideal I. Hence it can be used to make the ring
operations in P/I effectively computable. In this subsection we imitate this
approach and generalize the normal form to border basis theory.

Let O = {t1, . . . , tµ} be an order ideal, let G = {g1, . . . , gν} be the
O-border basis of a zero-dimensional ideal I, and let G be the tuple (g1, . . . , gν).
In this situation the normal O-remainder of a polynomial does not depend on
the order of the elements in G.

Proposition 4.3.11. Let π : {1, . . . , ν} −→ {1, . . . , ν} be a permutation, and
let G′ = (gπ(1), . . . , gπ(ν)) be the corresponding permutation of the tuple G.
Then we have NRO,G(f) = NRO,G′(f) for every polynomial f ∈ P .
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Proof. The Border Division Algorithm applied to G and G′, respectively, yields
representations

f = f1g1 + · · ·+ fνgν + NRO,G(f) = f ′1gπ(1) + · · ·+ f ′νgπ(ν) + NRO,G′(f)

where fi, f ′j ∈ P . Therefore we have NRO,G(f)−NRO,G′(f) ∈ 〈O〉K ∩ I. The
hypothesis that I has an O-border basis implies 〈O〉K ∩ I = {0}. Hence the
claim follows. �

This result allows us to introduce the following definition.

Definition 4.3.12. Let O={t1, . . . , tµ} be an order ideal and G = {g1, . . . , gν}
an O-border basis of I. The normal form of a polynomial f ∈ P with respect
to O is the polynomial NFO,I(f) = NRO,G(f).

The normal form NFO,I(f) of f ∈ P can be calculated by dividing f by
the O-border basis of I. It is zero if and only if f ∈ I. Further basic properties
of normal forms are collected in the following proposition.

Proposition 4.3.13 (Basic Properties of Normal Forms).
Let O be an order ideal, and suppose that I has an O-border basis.

1. If there exists a term ordering σ such that O = Oσ(I), then we have
NFO,I(f) = NFσ,I(f) for all f ∈ P .

2. For f1, f2 ∈ P , we have NFO,I(f1 − f2) = NFO,I(f1)−NFO,I(f2).
3. For f ∈ P , we have NFO,I(NFO,I(f)) = NFO,I(f).
4. For f1, f2 ∈ P , we have NFO,I(f1 f2) = NFO,I

(
NFO,I(f1) NFO,I(f2)

)
.

5. Let M1, . . . ,Mn ∈ Matn(K) be the matrices of the multiplication endo-
morphisms of P/I with respect to the basis given by the residue classes of
the terms in O. Suppose that t1 = 1, and let e1 be the first standard basis
vector of Kν . Then we have

NFO,I(f) = (t1, . . . , tν) · f(M1, . . . ,Mn) · e1
for every f ∈ P .

Proof. Claim 1) follows because both NFO,I(f) and NFσ,I(f) are equal to the
uniquely determined polynomial in f + I whose support is contained in O.
Claims 2), 3), and 4) follow from the same uniqueness. To prove the last
claim, we observe that e1 is the coordinate tuple of 1 + I in the basis of P/I
given by the residue classes of the terms in O. Since Mi is the matrix of the
multiplication by xi, the tuple f(M1, . . . ,Mn) · e1 is the coordinate tuple
of f + I in this basis. From this the claim follows immediately. �
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4.3.3 Border bases and commuting matrices

The purpose of this subsection is to provide the link between border bases
and the theory of commuting endomorphisms discussed in the second section.
More precisely, we shall characterize border bases by the property that their
corresponding formal multiplication matrices commute.

Let O = {t1, . . . , tµ} be an order ideal with border ∂O = {b1, . . . , bν},
and let G = {g1, . . . , gν} be an O-border prebasis. For j = 1, . . . , ν, we write
gj = bj −

∑µ
i=1 αijti with α1j , . . . , αµj ∈ K.

In Section 4.1 we saw that a K-vector space basis of P/I allows us to
describe the multiplicative structure of this algebra via a tuple of commuting
matrices. If G is a border basis, we can describe these matrices as follows.

Remark 4.3.14. In the above setting, assume that G is a border basis. Then
{t̄1, . . . , t̄µ} is a K-vector space basis of P/I, and each multiplication endo-
morphism Xk of P/I corresponds to a matrix Xk = (ξij), i.e.,

Xk(t̄1) = ξ11t̄1 + · · ·+ ξµ1t̄µ
...

Xk(t̄µ) = ξ1µt̄1 + · · ·+ ξµµt̄µ

In these expansions only two cases occur. The product xk tj either equals some
term in the order ideal tr ∈ O or some border term bs ∈ ∂O. In the former
case we have

Xk(t̄j) = 0 t̄1 + · · ·+ 0 t̄r−1 + 1 t̄r + 0 t̄r+1 + · · ·+ 0 t̄µ

i.e., the jth column of Xk is the rth standard basis vector er. In the latter case
we have xktj + I = bs + I = α1st1 + · · ·+αµstµ + I, where the coefficients αis

are given by gs = bs −
∑

i αisti. Therefore we have

Xk(t̄j) = α1st̄1 + · · ·+ αµst̄µ

i.e., the jth column of Xk is (α1s, . . . , αµs)tr. Observe that all matrix compo-
nents ξij are determined by the polynomials g1, . . . , gν .

In view of this remark, at least formally, multiplication matrices can be
defined for any border prebasis.

Definition 4.3.15. Let O={t1, . . . , tµ} be an order ideal and G = {g1, . . . , gν}
an O-border prebasis. For 1 ≤ k ≤ n, define the kth formal multiplication
matrix Xk column-wise by

(Xk)∗j =

{
er, if xk tj = tr
(α1s, . . . , αµs)tr, if xk tj = bs
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To get some insight into the meaning of this definition, let us have a look
at example 4.3.7 “from the outside.”

Example 4.3.16. Let P = Q[x, y], and let O = {t1, t2, t3, t4, t5} be the order
ideal given by t1 = 1, t2 = x, t3 = y, t4 = x2, and t5 = y2. The border
of O is ∂O = {b1, b2, b3, b4, b5} where b1 = xy, b2 = x3, b3 = y3, b4 = x2y,
and b5 = xy2. The polynomials g1 = xy − x − 1

2y + x2 − 1
2y

2, g2 = x3 − x,
g3 = y3 − y, g4 = x2y − 1

2y − 1
2y

2, and g5 = xy2 − x− 1
2y + x2 − 1

2y
2 define a

border prebasis of I = (g1, . . . , g5). Now we compute the formal multiplication
matrices X and Y.

On the one hand, we have x t1 = t2, x t2 = t4, x t3 = b1, x t4 = b2, and
x t5 = b5. On the other hand, we have y t1 = t3, y t2 = b1, y t3 = t5, y t4 = b4,
and y t5 = b3. Thus we obtain

X =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
1 0 1 1 1
0 0 1/2 0 1/2
0 1 −1 0 −1
0 0 1/2 0 1/2

⎞⎟⎟⎟⎟⎠ and Y =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 1 0 0 0
1 1/2 0 1/2 1
0 −1 0 0 0
0 1/2 1 1/2 0

⎞⎟⎟⎟⎟⎠
By Example 4.3.7, this border prebasis is even a border basis of I. Hence the
formal multiplication matrices are the actual multiplication matrices. As such
they commute.

The following theorem is the main result of this subsection. We charac-
terize border bases by the property that their formal multiplication matrices
commute. A more general theorem is contained in Chapter 3.

Theorem 4.3.17 (Border Bases and Commuting Matrices).
Let O = {t1, . . . , tµ} be an order ideal. An O-border prebasis {g1, . . . , gν} is
an O-border basis of I = (g1, . . . , gν) if and only if its formal multiplication
matrices are pairwise commuting. In that case the formal multiplication ma-
trices represent the multiplication endomorphisms of P/I with respect to the
basis {t̄1, . . . , t̄µ}.
Proof. Let X1, . . . ,Xn be the formal multiplication matrices corresponding to
the given O-border prebasis G = {g1, . . . , gν}. If G is an O-border basis, then
Remark 4.3.14 shows that X1, . . . ,Xn represent the multiplication endomor-
phisms of P/I. Hence they are pairwise commuting.

It remains to show sufficiency. Without loss of generality, let t1 = 1. The
matrices X1, . . . ,Xn define a P -module structure on 〈O〉K via

f · (c1t1 + . . . cµtµ) = (t1, . . . , tµ)f(X̃1, . . . , X̃n)(c1, . . . , cµ)tr

First we show that this P -module is cyclic with generator t1. To do so, we
use induction on the degree to show ti · t1 = ti for i = 1, . . . , µ. The induction
starts with t1 = (t1, . . . , tµ)Iµ · e1. For the induction step, let ti = xj tk. Then
we have
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ti · t1 = (t1, . . . , tµ)ti(X1, . . . ,Xn)e1 = (t1, . . . , tµ)Xj tk(X1, . . . ,Xn)e1
= (t1, . . . , tµ)Xjek = (t1, . . . , tµ)ei = ti

Thus we obtain a surjective P -linear map Θ̃ : P → 〈O〉K such that f �→ f · t1
and an induced isomorphism of P -modules Θ : P/J → 〈O〉K with J = ker Θ̃.
In particular, the residue classes t1 +J, . . . , tµ +J are K-linearly independent.

Next we show I ⊆ J . Let bj = xk tl. Then we have

gj(X1, . . . ,Xn)e1 = bj(X1, . . . ,Xn)e1 −
µ∑

i=1

αijti(X1, . . . ,Xn)e1

= Xk tl(X1, . . . ,Xn)e1 −
µ∑

i=1

αijei = Xk el −
µ∑

i=1

αijei

=
µ∑

i=1

αijei −
µ∑

i=1

αijei = 0

Therefore we have gj ∈ ker Θ̃ for j = 1, . . . , ν and I ⊆ J , as desired.
Hence there is a natural surjective ring homomorphism Ψ : P/I → P/J .

Since the set {t1 + I, . . . , tµ + I} generates the K-vector space P/I, and since
the set {t1 +J, . . . , tµ +J} is K-linearly independent, both sets must be bases
and I = J . This shows that G is an O-border basis of I. �

The following example shows that the formal multiplication matrices cor-
responding to an O-border prebasis are not always commuting.

Example 4.3.18. Let P = Q[x, y] andO = {t1, t2, t3, t4, t5} with t1 = 1, t2 = x,
t3 = y, t4 = x2, and t5 = y2. Then the border of O is ∂O = {b1, b2, b3, b4, b4}
with b1 = xy, b2 = x3, b3 = y3, b4 = x2y, and b5 = xy2. Consider the set
of polynomials G = {g1, g2, g3, g4, g5} with g1 = xy − x2 − y2, g2 = x3 − x2,
g3 = y3 − y2, g4 = x2y − x2, and g5 = xy2 − y2. It is an O-border prebasis of
the ideal I = (g1, . . . , g5). Its multiplication matrices

X =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 1 1 0
0 0 1 0 1

⎞⎟⎟⎟⎟⎠ and Y =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 1 0
0 1 1 0 1

⎞⎟⎟⎟⎟⎠
do not commute:

X · Y =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 1 0
1 1 1 0 1

⎞⎟⎟⎟⎟⎠ �= Y · X =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 1 0
1 0 1 0 1

⎞⎟⎟⎟⎟⎠
By the theorem, the set G is not an O-border basis of I.
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The condition that the formal multiplication matrices of a border basis
have to commute can also be interpreted in terms of the syzygies of that
basis (see [Ste04]). Based on the results of this section one can now imitate
the development of Gröbner basis theory for border bases. For instance, the
border basis analogues of the conditions A – D which characterize Gröbner
bases in [KR00], Chapter 2, are examined by the first two authors in [KK03a].

4.4 Application to statistics

Fifty percent of the citizens of this country
have a below average understanding of statistics.

(Anonymous)

In this last section we see how to solve a problem in computational commu-
tative algebra whose motivation comes from statistics. Does this sound strange
to you? Well, come and see. Our problem comes up in the branch of statistics
called design of experiments. If you want to get a more detailed understanding
of this theory, we suggest that you start exploring it by reading [Rob98]. Or,
if you prefer the statisticians’ point of view, you can consult [PRW00].

To get to the heart of the problem, let us introduce some fundamental
concepts of design of experiments. A full factorial design is a finite set of
points in affine space An(K) ∼= Kn of the form D = D1×· · ·×Dn where Di is
a finite subset of K. Associated to it we may consider the vanishing ideal ID =
{f ∈ P | f(p) = 0 for all p ∈ D}. It is a complete intersection ID = (f1, . . . , fn)
such that fi ∈ K[xi] is a product of linear forms for i = 1, . . . , n. For instance,
in A2(Q) we have the full factorial design

............................... ................

........

.......................

................

x

y

• •
•

•
•
•

•

•
• •

• • •

whose vanishing ideal in Q[x, y] is ID =
(
x(x−1)(x−2)(x−3), y(y−1)(y−2)

)
.

The particular shape of the generators of ID implies that they are the reduced
σ-Gröbner basis of ID with respect to any term ordering σ. Hence the order
ideal OD = Tn \ LTσ(ID) is canonically associated to D. In the example at
hand we have for instance

OD = {1, x, y, x2, xy, y2, x3, x2y, xy2, x3y, x2y2, x3y2}

If a particular problem depends on n parameters and each parame-
ter can assume finitely many values Di ⊆ K, the full factorial design
D = D1 × · · · ×Dn corresponds to the set of all possible experiments. The
main task in the design of experiments is to identify an unknown function
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f : D −→ K. This function is a mathematical model of a quantity which
has to be computed or optimized. Since it is defined on a finite set, it can
be determined by performing all experiments in D and measuring the value
of f each time. Notice that a function f defined on a finite set is necessarily
a polynomial function.

However, in most cases it is impossible to perform all experiments corre-
sponding to the full factorial design. The obstacles can be, for instance, lack
of time, lack of money, or lack of patience. Only a subset of those experiments
can be performed. The question is how many and which? In statistical jargon
a subset F of a full factorial design D is called a fraction. Our task is to
choose a fraction F ⊆ D that allows us to identify the model. In particular,
we need to describe the order ideals whose residue classes form a K-basis
of P/IF . Statisticians express this property by saying that such order ideals
(or complete sets of estimable terms, as they call them) are identified by F .

Even more important is the so-called inverse problem. Suppose we are
given an order ideal O. We would like to determine all fractions F ⊆ D
such that the residue classes of the elements of O form a K-basis of P/IF .
The main result of [CR97] was a partial solution of this inverse problem. More
precisely, all fractions F ⊆ D were found such that O = Oσ(IF ) for some term
ordering σ. However, we have already pointed out that some order ideals O
do not fit into this scheme (see Example 4.3.7). Later, in the paper [CR01]
the full solution was presented, and the main idea was to use border bases.

Before delving into the general solution of the inverse problem following
the technique employed in [CR01], let us briefly explain an example of an
actual statistical problem. This example is taken from [BHH78] and adapted
to our setting and terminology.

Example 4.4.1. A number of similar chemical plants had been successfully
operating for several years in different locations. In a newly constructed plant
the filtration cycle took almost twice as long as in the older plants. Seven
possible causes of the difficulty were considered by the experts.

1. The water for the new plant was somehow different in mineral content.
2. The raw material was not identical in all respects to that used in the older

plants.
3. The temperature of filtration in the new plant was slightly lower than in

the older plants.
4. A new recycle device was absent in the older plants.
5. The rate of addition of caustic soda was higher in the new plant.
6. A new type of filter cloth was being used in the new plant.
7. The holdup time was lower than in the older plants.

These causes lead to seven variables x1, . . . , x7. Each of them can assume
only two values, namely old and new which we denote by 0 and 1, respectively.
Our full factorial design D ⊆ A7(Q) is therefore the set D = {0, 1}7. Its
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vanishing ideal is ID = (x2
1−x1, x

2
2−x2, . . . , x

2
7−x7) in the polynomial ring

P = Q[x1, x2, . . . , x7].
The model f : D −→ Q is the length of a filtration cycle. In order to

identify it, we would have to perform 128 cycles. This is impracticable, since
it would require too much time and money. On the other hand, suppose for a
moment that we conduct all experiments and the output is f = a+ b x1 + c x2

for some a, b, c ∈ Q. At this point it becomes clear that we wasted many
resources. Had we known in advance that the polynomial has only three un-
known coefficients, we could have identified them by performing only three
suitable experiments! Namely, if we determine three values of the polynomial
a+ b x1 + c x2, we can find a, b, c by solving a system of three linear equations
in these three indeterminates. If the matrix of coefficients is invertible, this is
an easy task.

However, a priori one does not know that the answer has that shape indi-
cated above. In practice, one has to make some guesses, perform well-chosen
experiments, and possibly modify the guesses until the process yields the de-
sired answer. In the case of the chemical plant, it turned out that only x1

and x5 were relevant for identifying the model.

In this example there is one point which needs additional explanation. How
can we choose the fraction F such that the matrix of coefficients is invertible?
In other words, given a full factorial design D and an order ideal O ⊆ OD,
which fractions F ⊆ D have the property that the residue classes of the ele-
ments of O are a K-basis of P/IF ? This is precisely the inverse problem stated
above. In order to explain its solution, we introduce the following terminology.

Definition 4.4.2. For i = 1, . . . , n, let �i ≥ 1 and Di = {ai1, ai2, . . . , ai�i
} ⊆

K. Then we say that the full factorial design D = D1 × · · · × Dn ⊆ An(K)
has levels (�1, . . . �n).

The polynomials fi = (xi−ai1) · · · (xi−ai�i
) with i = 1, . . . , n generate the

vanishing ideal ID of D. They are called the canonical polynomials of D.
Since {f1, . . . , fn} is a universal Gröbner basis of ID (i.e. a Gröbner basis
with respect to every term ordering), the order ideal

OD = {xα1
1 · · ·xαn

n | 0 ≤ αi < �i for i = 1, . . . , n}

represents a K-basis of P/ID. We call it the complete set of estimable
terms of D.

The following auxiliary result will be useful for proving the main theorem.

Lemma 4.4.3. Let D be a full factorial design, let {f1, . . . , fn} be its canon-
ical polynomials, let K be the algebraic closure of K, and let I be a proper
ideal of K[x1, . . . , xn] such that ID ⊆ I.
1. The ideal I is a radical ideal. It is the vanishing ideal of a fraction of D.
2. The ideal I is generated by elements of P , and I ∩ P is a radical ideal.
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3. The polynomials of every border basis of I are elements of P .

Proof. First we prove Claim 1. Let An(K) be the affine space of dimension n
over K, and let F ⊂ An(K) be the set of zeros of I. Since ID ⊆ I, we have
F ⊆ D. By localizing the ring A = K[x1, . . . , xn]/ID at the maximal ideals m
corresponding to the points of d, we see that either IAm = (1) or IAm = mAm.
Therefore I is a radical ideal, and hence it is the defining ideal of F .

Since I is the defining ideal of a finite set of points with coordinates in K,
it is the intersection of ideals generated by linear forms having coefficients
in K. Consequently, the ideal I is defined over K which proves Claim 2. The
third claim follows from Theorem 4.3.4. �

Now we are ready to state the main result of this section. Our goal is to
solve the inverse problem. The idea is to proceed as follows. We are given a
full factorial design D and an order ideal O. By Theorem 4.3.4, ideals I such
that O represents a K-basis of P/I are in 1-1 correspondence with border
bases whose elements are marked by the terms in ∂O. Except for the bor-
der basis elements which are canonical polynomials of D, we can write them
down using indeterminate coefficients and require that the corresponding for-
mal multiplication matrices are pairwise commuting. For I to be the vanishing
ideal of a fraction contained in D, we have to make sure that I contains ID. To
this end, we require that the normal O-remainders of the canonical polynomi-
als of D are zero. By combining these requirements, we arrive at the following
result.

Theorem 4.4.4 (Computing All Fractions).
Let D be a full factorial design with levels (�1, . . . , �n), and let O = {t1, . . . , tµ}
be a complete set of estimable terms contained in OD with t1 = 1. Consider
the following definitions.

1. Let C = {f1, . . . , fn} be the set of canonical polynomials of D, where fi is
marked by x�i

i for i = 1, . . . , n.
2. Decompose ∂O into ∂O1 = {x�1

1 , . . . , x
�n
n } ∩ ∂O and ∂O2 = ∂O \ ∂O1.

3. Let C1 be the subset of C marked by ∂O1, and let C2 = C \ C1.
4. Let η = #(∂O2). For i = 1, . . . , η and j = 1, . . . , µ, introduce new inde-

terminates zij.
5. For every bk ∈ ∂O2, let gk = bk −

∑µ
j=1 zkjtj ∈ K(zij)[x1, . . . , xn].

6. Let G = {g1, . . . , gη} and H = G ∪ C1. Let M1, . . . ,Mn be the formal
multiplication matrices associated to the O-border prebasis H.

7. Let I(O) be the ideal in K[zij ] generated by the entries of the matrices
MiMj −MjMi for 1 ≤ i < j ≤ n, and by the entries of the column
matrices f(M1, . . . ,Mn) · e1 for all f ∈ C2.

Then I(O) is a zero-dimensional ideal in K[zij ] whose zeros are in 1-1
correspondence with the solutions of the inverse problem, i.e. with fractions
F ⊆ D such that O represents a K-basis of P/IF .
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Proof. Let p = (α11, . . . , αµ η) ∈ Kµη
be a zero of I(O). When we substitute

the indeterminates zij by the coordinates of p in the matrices M1, . . . ,Mn,
we obtain pairwise commuting matrices M1, . . . ,Mn which feature the addi-
tional property that f(M1, . . . ,Mn) · e1 = 0 for every f ∈ C2.

Now we substitute the coordinates of p in the polynomials of G and get
polynomials ḡk = bk−

∑µ
j=1 αkjtj ∈ P . Then we form the setsG = {ḡ1, . . . , ḡη}

and H = G ∪ C1, and we let I be the ideal generated by H. Since the set H
is an O-border prebasis of the ideal generated by it, the set H is an O-border
prebasis of I. Moreover, the fact that M1, . . . ,Mn are the formal multipli-
cation matrices of H implies that M1, . . . ,Mn are the formal multiplication
matrices of H. Hence we can apply Theorem 4.3.17 and conclude that H is
the O-border basis of I.

By definition, we have C1 ⊆ I. Using Proposition 4.3.13.5, we see that
f(M1, . . . ,Mn) · e1 = 0 implies NFO,I(f) = 0, and therefore f ∈ I for
all f ∈ C2. Altogether, we have C = C1 ∪ C2 ⊆ I, and thus ID ⊆ I. By
Lemma 4.4.3.1, it follows that I is the vanishing ideal of a fraction of D.

Conversely, let F be a fraction of D such that O represents a K-basis
of P/IF . Consider the O-border basis B of IF and write B = B1 ∪ B2 such
that B1 contains the polynomials marked by ∂O1 and B2 contains the poly-
nomials marked by ∂O2. Since ∂O1 ⊆ ∂OD, the polynomials in B1 have the
shape required for OD-border basis elements of ID, i.e. they agree with the
polynomials in C1. The polynomials in B2 are of the form ḡk = bk−

∑µ
j=1 αkjtj

where bk ∈ ∂O2 and αkj ∈ K. Let p = (αij) ∈ Kµη. We claim that p is a zero
of I(O).

The point p is a zero of the entries of the matrices MiMj −MjMj for
1 ≤ i < j ≤ n, since the matrices M1, . . . ,Mn obtained by substituting p
inM1, . . . ,Mn are the formal multiplication matrices of B and thus commute
by Theorem 4.3.17. The point p is a zero of the entries of f(M1, . . . ,Mn)·e1 for
f ∈ C2, since f(M1, . . . ,Mn) · e1 equals NFO,IF

(f) by Proposition 4.3.13.5,
and this normal form is zero because f ∈ C2 ⊆ ID ⊆ IF . Altogether, we have
shown that p is a zero of I(O), as claimed. �

Using distracted fractions (see [RR98]), one can show that there always
exists at least one solution of the inverse problem. Let us look at an example
to illustrate the method.

Example 4.4.5. Let D be the full factorial design D = {0, 1, 2, 3} × {0, 1, 2}
contained in A2(Q), and let O = {1, x, y, x2, xy, y2, x3, x2y} ⊂ OD. The
order ideal O can be visualized as follows.

............................... ................

........

.......................

................
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•
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We want to find a fraction F ⊆ D such that O represents a K-basis
of P/IF . One solution is to use the distracted fraction whose points are ex-
actly the points marked by bullets in the above sketch, i.e. the following set
F = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0)}. An easy computa-
tion shows that the vanishing ideal of F is

IF =
(
x(x− 1)(x− 2)(x− 3), x(x− 1)(x− 2)y, xy(y − 1, y(y − 1)(y − 2)

)
Moreover, these three generators are a universal Gröbner basis of IF and
Oσ(IF ) = O for every term ordering σ.

We end this section with two examples intended to explain how Theo-
rem 4.4.4 solves the inverse problem.

Example 4.4.6. Let D be the full factorial design D = {−1, 0, 1} × {−1, 1}
with levels (3, 2) contained in A2(Q). The complete set of estimable terms
of D is OD = {1, x, y, x2, xy, x2y}. We want to solve the inverse problem for
the order ideal O = {1, x, y} and follow the steps of Theorem 4.4.4.

1. The set of canonical polynomials of D is C = {f1, f2}, where f1 = x3 − x
and f2 = y2 − 1.

2. We decompose ∂O = {x2, xy, y2} into ∂O1 = {y2} and ∂O2 = {x2, xy}.
3. Let C1 = {f2} and C2 = {f1}.
4. Let η = 2. Choose six new indeterminates z11, z12, z13, z21, z22, z23.
5. Define g1 = x2 − (z11 + z12x+ z13y) and g2 = xy − (z21 + z22x+ z23y).
6. Let G = {g1, g2} and H = {g1, g2, f2}. The formal multiplication matrices

associated to H are

M1 =

⎛⎝0 z11 z21
1 z12 z22
0 z13 z23

⎞⎠ and M2 =

⎛⎝0 z21 1
0 z22 0
1 z23 0

⎞⎠
7. Let I(O) ⊆ Q[z11, . . . , z23] be the ideal generated by the entries of the

matrices M1M2 −M2M1 and f1(M1,M2) · e1 = (M3
1 −M1) · e1. We

obtain I(O) = (z12z21 − z11z22 − z21z23 + z13, z21z22 + z23, z22z23 + z21,
z222 − 1, z13z22 − z12z23 + z223 − z11, z22z23 + z21, z11z12 + z13z21,
z212 + z13z22 + z11 − 1, z12z13 + z13z23).

Using a computer algebra system, for instance CoCoA, we can check
that I(O) is a zero-dimensional, radical ideal of multiplicity 18. This means
that among the 20 =

(
6
3

)
triples of points of D, there are 18 triples which

solve the inverse problem. The two missing fractions are {(0, 0), (0, 1), (0, 2)}
and {(1, 0), (1, 1), (1, 2)}.

When we apply the theorem to larger full factorial designs, the calculations
involved in determining the zeros of I(O) quickly become voluminous.
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Example 4.4.7. Let D be the full factorial design D = {−1, 0, 1} × {−1, 0, 1}
with levels (3, 3) contained in A2(Q). The complete set of estimable terms
of D is OD = {1, x, y, x2, xy, y2, x2y, xy2, x2y2}. We want to solve the in-
verse problem for the order ideal O = {1, x, y, x2, y2} and follow the steps
of Theorem 4.4.4.

1. The set of canonical polynomials of D is C = {f1, f2}, where f1 = x3
1−x1

and f2 = x3
2 − x2.

2. We decompose ∂O = {x3, x2y, xy, xy2, y3} into ∂O1 = {x3, y3} and
∂O2 = {x2y, xy, xy2}.

3. Let C1 = {f1, f2} and C2 = ∅.
4. Let η = 3. Choose 15 new indeterminates z11, z12, . . . , z35.
5. Define g1 = x2y− (z11 + z12x+ z13y+ z14x2 + z15y2) and g2 = xy− (z21 +
z22x+z23y+z24x2+z25y2) and g3 = xy2−(z31+z32x+z33y+z34x2+z35y2).

6. Let G = {g1, g2, g3} andH = {g1, g2, g3, f1, f2}. The formal multiplication
matrices associated to H are

M1 =

⎛⎜⎜⎜⎜⎝
0 0 z21 0 z31
1 0 z22 1 z32
0 0 z23 0 z33
0 1 z24 0 z34
0 0 z25 0 z35

⎞⎟⎟⎟⎟⎠ M2 =

⎛⎜⎜⎜⎜⎝
0 z21 0 z11 0
0 z22 0 z12 0
1 z23 0 z13 1
0 z24 0 z14 0
0 z25 1 z15 0

⎞⎟⎟⎟⎟⎠
7. Let I(O) be the ideal in Q[z11, . . . , z35] generated by the entries of the

matrixM1M2−M2M1. Thus I(O) is the ideal generated by the following
20 polynomials:

z21z23 + z25z31 − z11 z21z22 + z11z24 − z31
z13z21 + z15z31 − z21 z21z32 + z11z34 − z21

z22z23 + z25z32 − z12 + z21 + z24 z222 + z12z24 − z32
z13z22 + z15z32 + z11 + z14 − z22 z22z32 + z12z34 − z22

z223 + z25z33 − z13 z22z23 + z13z24 + z21 + z25 − z33
z13z23 + z15z33 − z23 z23z32 + z13z34 − z23 + z31 + z35

z23z24 + z25z34 − z14 + z22 z14z24 + z22z24 − z34
z13z24 + z15z34 + z12 − z24 z24z32 + z14z34 − z24
z23z25 + z25z35 − z15 z15z24 + z22z25 + z23 − z35
z13z25 + z15z35 − z25 z25z32 + z15z34 − z25 + z33

Again we can use a computer algebra system and check that I(O) is a zero-
dimensional, radical ideal of multiplicity 81. This means that among the
126 =

(
9
5

)
five-tuples of points in D there are 81 five-tuple which solve the

inverse problem.
One of the zeros of I(O) is the point p ∈ Q15 whose coordinates are

z11 = 0 z12 = 0 z13 = − 1
2 z14 = 0 z15 = − 1

2

z21 = 0 z22 = −1 z23 = − 1
2 z24 = 1 z25 = − 1

2

z31 = 0 z32 = −1 z33 = − 1
2 z34 = 1 z35 = − 1

2
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The corresponding O-border basis is {x3− x, x2y− 1
2y− 1

2y
2, xy− x− 1

2y+
x2− 1

2y
2, xy2−x− 1

2y+x2− 1
2y

2, y3− y}. The fraction defined by this basis
is

F0 = {(0, 0), (0,−1), (1, 0), (1, 1), (−1, 1)}
This is our old friend of Example 4.3.7!

In view of our discussion in Section 4.3.1 it is natural to ask how many
of the 81 fractions F found above have the property that O is not of the
form Oσ(IF ) for any term ordering σ. We have seen in Example 4.3.7 that at
least the fraction F0 is of that type. By combining Theorem 4.4.4 and some
techniques discussed in [CR97], one can show that 36 of those 81 fractions
are of that type. This is a surprisingly high number which shows that border
bases provide sometimes a much more flexible environment for working with
zero-dimensional ideals than Gröbner bases do.

There will never be a last tango
(Brad Hooper)
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5.0 Introduction

These lectures, prepared for the CIMPA School on “Systems of polynomial
equations” (Argentina, 2003), have two goals: to present the underlying ideas
and tools for computing primary decompositions of ideals, and to apply these
techniques to a recent interesting class of ideals related to statistics. Primary
decompositions generalize the notion of solving systems of polynomial equa-
tions, to the cases where there are infinitely many solutions, or to the case
when the multiplicity of solutions is important.

Primary decompositions are an important notion both in algebraic geome-
try and for applications. There are several algorithms available (the two closest
to what we present are [GTZ88] and [SY96]). A good overview of the state of
the art is the paper [DGP99]. Primary decompositions, and related computa-
tions, such as finding minimal and associated primes, the radical of an ideal,
and the equidimensional decomposition of an ideal, are all implemented in
most specialized computer algebra systems, such as CoCoA [Roba], Macaulay
2 [GS], and Singular [GPS01]. Several years ago, these algorithms and their
implementations could handle only very small examples. Now, with improved
implementations, and more efficient computers, larger ideals can be handled.

However, if the number of indeterminates is large, the implemented algo-
rithms often are unable to find a primary decomposition, or even to find the
minimal primes. This is the case for many of the ideals associated to Bayesian
networks that we consider here.

Our first goal in these lectures is to describe some basic methods for ma-
nipulating components of an ideal. We put these together into an algorithm
for primary decomposition. We challenge our students to combine these tech-
niques in novel ways to obtain more efficient useful algorithms.
� The author would like to acknowledge partial financial support by the National

Science Foundation through grant DMS-9970348.
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Our second goal is to define some interesting ideals, called Markov ideals,
associated to a Bayesian network. In applications, Bayesian networks have
been used in many ways, e.g. in machine learning, in vision and speech recog-
nition, in attempting to reconstruct gene regulatory networks, and in the
analysis of DNA micro-array data. These Markov ideals provide a very inter-
esting relationship between multivariate statistics and algebra and geometry.
In these lectures, we do little more than provide a glimpse into this poten-
tially powerful relationship. Here is one short glimpse: hidden variables in some
Markov models correspond to secant loci of Segre embeddings of products of
projective spaces (see [GSS] for details).

These Markov ideals often have many components, and can have relatively
complicated primary decompositions. We apply the techniques that we have
learned to compute some of these primary decompositions. Instead of giving
canned algorithms for computing primary decompositions, we will describe
several tricks of the trade that can be used on a given ideal, to help find
the primary decomposition “by hand” (although with the help of a computer
algebra system!). It is likely that superior algorithms exist. Again, we challenge
our students to find one!

Lecture 1: We set up the situation, and describe the first two tools of
computing primary decompositions: ideal quotients, and splitting principles.
As an example, we find fixed points of some finite dynamical systems.

Lecture 2: We define Bayesian networks and consider independence state-
ments between a set of discrete random variables. Given a Bayesian network,
we can associate an ideal, whose primary decomposition is often hard to com-
pute, yet very likely carries interesting information. These ideals provide a
striking new link between algebra/geometry and statistics.

Lecture 3: We describe several more tools for computing primary de-
compositions. We ask several questions: (1) How do we find zero divisors to
use with our splitting principles? (2) How do we detect if an ideal is prime,
or primary? The tools we develop include birational maps, and the flattener:
a polynomial obtained by analyzing the fibers of a projection map. Both of
these techniques rely heavily on a Gröbner basis using product orders. We use
Macaulay 2 to investigate these methods on a simple example.

Lecture 4: In the final lecture, we put all of these techniques together
and write relatively complete algorithms. A final technique that we address is
removing redundancy in the computation as soon as possible. We also present
some open problems related to the primary decompositions of Markov ideals.

Throughout, we provide both straightforward and challenging exercises. It
is worthwhile to do these! One important exercise is to prove each of the lem-
mas and propositions which are presented without proof. During the lectures,
we spend more time using these results than proving them, although we do
include some proofs.

A good elementary introduction to get ready for these lectures is the book
by Cox, Little, and O’Shea [CLO97]. The first chapter of the recent book by
Hal Schenck [Sch03a] introduces ideal quotients and primary decompositions
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in a very nice way. His book also has Macaulay 2 examples throughout. A good
overview of the known algorithms for primary decomposition is presented in
[DGP99]. For delving more deeply into the Bayesian network material, look
at [GSS], and the references contained in there.

Example computer sessions are included for Macaulay 2 [GS]. This is a
system that Dan Grayson and I have been working on for the last ten years.
The system is freely available, and easy to install on most computers. The
web page can be found on the Internet2.

5.1 Lecture 1: Algebraic varieties and components

Throughout these lectures, let k be a field, and let R = k[x1, . . . , xn]. If
J = (f1, . . . , fr) ⊂ R is an ideal, we let

V (J) = {p ∈ kn | f1(p) = . . . = fr(p) = 0}.

If the base field k is algebraically closed, then there is a beautiful dictionary
which relates the geometry of X = V (J) to algebraic properties of the ideal
J . We refer the reader to Cox-Little-O’Shea [CLO97] or Schenck [Sch03a] for
the details. (If the field is not algebraically closed, the dictionary still exists,
but relates the algebra of J to properties of the scheme corresponding to J).

For example, if the base field is algebraically closed, and if J ⊂ R is a
prime ideal (that is, fg ∈ J implies f ∈ J or g ∈ J), then V (J) is irreducible
(that is, cannot be written as a union V (I1) ∪ V (I2) of zero sets which are
properly contained in V (J)).

Every ideal J in R has a primary decomposition, that is, a decomposition

J = Q1 ∩ . . . ∩Qr,

where each Qi is primary (i.e. if fg ∈ Qi, then f ∈ Qi or gN ∈ Qi, for some
integer N .) The radical

P =
√
Q = {g ∈ R | gN ∈ Q, for some N}

is a prime ideal, and Q is called P -primary.
The primary decomposition is called irredundant if each Pi :=

√
Qi is dis-

tinct, and if removing any one term Qi breaks the equality. Every primary
decomposition can be pruned to obtain an irredundant primary decomposi-
tion.

If the primary decomposition is irredundant, then the P1, . . . , Pr are called
the associated primes of J . This set is independent of the particular (irredun-
dant) primary decomposition. The minimal elements of this set of primes
(with respect to inclusion) are called the minimal primes of J . The radical

2 http://www.math.uiuc.edu/Macaulay2
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of J is the intersection of these minimal primes. If P is a minimal prime,
the corresponding primary ideal is unique (i.e. doesn’t depend on the specific
irredundant primary decomposition). If P is an associated prime, but not min-
imal, then P is called an embedded prime. The primary ideal of an embedded
prime is not unique.

Example 5.1.1. Let J = (xy) ⊂ k[x, y]. Geometrically, the zero set xy = 0 is
the union of the two coordinate axes. Algebraically, this is seen in the primary
decomposition J = (x) ∩ (y). Both (x) and (y) are minimal primes.

If J = (x3y) ⊂ k[x, y], then geometrically, the zero set is the union of the
x-axis and a “triple line” x = 0. The primary decomposition is J = (x3)∩ (y).
Both associated primes are minimal, but this time the ideal (x3) is primary,
but not prime.

Example 5.1.2. Let J = (xy, xz) ⊂ k[x, y, z]. Geometrically, the zero set xy =
xz = 0 is the union of the plane x = 0 and the line y = z = 0. The primary
decomposition of J is J = (x) ∩ (y, z).

Example 5.1.3. Let J = (x2, xy) ⊂ k[x, y]. For each N ≥ 1, we obtain a
different primary decomposition of J :

J = (x) ∩ (x2, y) = (x) ∩ (x2, xy, yN ).

The associated primes are P1 = (x) and P2 = (x, y), where P1 is the only
minimal prime, and P2 is embedded. The primary ideal Q1 = (x) is the same
no matter which primary decomposition we use, but the primary ideal Q2

of P2 depends on the decomposition. Geometrically, V (J) is simply the line
x = 0. Thinking algebraically (or, using schemes), the zero set should really
be considered as the union of this line, and a “fat” embedded point at the
origin.

Exercise 5.1.4. Find (by hand) a primary decomposition of the ideal J =
(x3, xy2z, y2z3) ⊂ k[x, y, z].

In these lectures, what computations concern us? Given J , we would like
to be able to compute (in roughly increasing order of difficulty):

• The radical of J .
• The set of minimal primes of J .
• P -primary component Q of J , where P is a minimal prime,
• The set of associated primes of J .
• An irredundant primary decomposition of J .

5.1.1 Tool #1: Ideal quotients

One of the most important constructions in ideal theory is the operation of
ideal quotient.



5 Computing primary decompositions 207

Definition 5.1.5 (Ideal quotient and saturation). If I ⊂ R is an ideal,
and f ∈ R, then define the ideal quotient

(I : f) := {g ∈ R | gf ∈ I},
and the saturation of I by f :

(I : f∞) := {g ∈ R | gfN ∈ I, for some N},
This somewhat opaque definition gives little clue of their importance.

Lemma 5.1.6. Let Q be a P -primary ideal, and let f ∈ R. Then
(a) If f �∈ P , then (Q : f) = Q.
(b) If f ∈ P , but f �∈ Q, then (Q : f) is P -primary.
(c) If f ∈ Q, then (Q : f) = (1).

An elementary fact, which follows directly from the definition, is that

(I1 ∩ I2) : f = (I1 : f) ∩ (I2 : f),

and so

Lemma 5.1.7. If J = Q1∩ · · · ∩Qr is an irredundant primary decomposition
of J , where Qi is Pi-primary, and if f ∈ Qj only if j ≥ s+ 1, then

J : f = (Q1 : f) ∩ · · · ∩ (Qs : f)

is an irredundant primary decomposition of J : f .

Saturations have even simpler behavior.

Lemma 5.1.8. Let Q be a P -primary ideal, and let f ∈ R. Then
(a) If f �∈ P , then (Q : f∞) = Q.
(b) If f ∈ P , then (Q : f∞) = (1).

Lemma 5.1.9. If J = Q1∩ · · · ∩Qr is an irredundant primary decomposition
of J , where Qi is Pi-primary, and if f ∈ Pj if and only if j ≥ s+ 1, then

J : f∞ = Q1 ∩ · · · ∩Qs

is an irredundant primary decomposition of (J : f∞).

This says that, geometrically, the components of V (J : f∞) are precisely
the components of V (J) which do not lie on the hypersurface f = 0.

What makes ideal quotients so useful is that they may be computed using
Gröbner bases.

Proposition 5.1.10. Let J ⊂ R = k[x1, . . . , xn] be an ideal, where k is a ring
(e.g. a field, or a PID), and let f ∈ R. If L = J + (tf − 1) ⊂ k[t, x1, . . . , xn],
then

(J : f∞) = L ∩ k[x1, . . . , xn].
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This is not always the most efficient method to compute saturations. It
also doesn’t allow one to compute ideal quotients easily. There are (at least)
two further ways to compute ideal quotients which are often used: the reverse
lexicographic order, and syzygies. We’ll describe the method using the reverse
lexicographic order, but we’ll leave out the syzygy method.

If f = xn is a variable, and if J is homogeneous, then (J : xn) and (J : x∞n )
may be computed using a single reverse lexicographic Gröbner basis. The key
insight is that if > is the term order (or ordering) in the following proposition
and g is a homogeneous polynomial, then xn|g if and only if xn|in(g).
Proposition 5.1.11 (Bayer). Let J ⊂ k[x1, . . . , xn] be a homogeneous ideal,
and let > be the graded reverse lexicographic order (GrevLex) with x1 > . . . >
xn. If the Gröbner basis of J is

{g1, . . . , gr, hr+1, . . . , hs},

where gi = xai
n hi, each ai > 1, and xn does not divide the hi, then

(a) {xa1−1
n h1, . . . , x

ar−1
n hr, hr+1, . . . , hs is a Gröbner basis of (I : xn), and

(b) {h1, . . . , hs} is a Gröbner basis of J : f∞.

Exercise 5.1.12. This idea can be used to compute J : f and J : f∞ when
f is not an indeterminate.

(a) Show that if J is homogeneous, and f is homogeneous of degree d, then
Bayer’s method applied to the homogeneous ideal J + (f − z), where z is a
new variable having degree d, can be used to compute J : f and J : f∞.

(b) Show how to compute the homogenization of an ideal by using satura-
tion.

(c) Show how to use homogenization and the trick in (a), to compute J : f
and J : f∞ when J and f are not necessarily homogeneous.

Example 5.1.13. Consider the ideal J = (c2−bd, bc−ad) ⊂ Q[a, b, c, d]. Notice
that the plane c = d = 0 is contained in the zero set of J . Let’s look at this
ideal in Macaulay 2.

i1 : R = QQ[a..d];

i2 : J = ideal(c^2-b*d, b*c-a*d)

2
o2 = ideal (c - b*d, b*c - a*d)

o2 : Ideal of R

First, here is the primary decomposition of J :
i3 : primaryDecomposition J

2 2
o3 = {ideal (d, c), ideal (c - b*d, b*c - a*d, b - a*c)}

o3 : List

The reverse lexicographic order is the default in Macaulay 2:
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i4 : gens gb J

o4 = | c2-bd bc-ad b2d-acd |

1 3
o4 : Matrix R <--- R

i5 : J : d

2 2
o5 = ideal (c - b*d, b*c - a*d, b - a*c)

o5 : Ideal of R

i6 : saturate(J,d)

2 2
o6 = ideal (c - b*d, b*c - a*d, b - a*c)

o6 : Ideal of R

i7 : J == intersect(ideal(c,d),J:d)

o7 = true

5.1.2 Tool #2: Splitting principles

The key technique on which almost all algorithms for primary decomposition
are based is the following very simple lemma.

Proposition 5.1.14. If (J : f∞) = (J : f �), then

J = (J : f∞) ∩ (J, f �).

Proof. Suppose that g ∈ (J : f∞) and also that g ∈ (J, f �). We want to show
that g ∈ J . So g = a + bf �, for some a ∈ J and b ∈ R. However, gf � ∈ J , so
bf2� ∈ J . Therefore b ∈ (J : f∞) = (J : f �), and so g ∈ J . "#

If a polynomial f satisfies (J : f) �= J and f � �∈ J , for any �, we’ll call f a
splitting polynomial for J . As a simple exercise, show that there is no splitting
polynomial for J if and only if J is a primary ideal.

If we are only interested in finding the set of minimal primes, we may take
the radicals of both sides to obtain: for any f ∈ R,

√
J =

√
J : f∞ ∩

√
J, f.

Another useful splitting formula is: if f1f2 . . . fr ∈ J , then
√
J =

√
J, f1 ∩ . . . ∩

√
J, fr.

If we have a way of finding, given an ideal J , a splitting polynomial for J ,
then we may build a recursive algorithm to compute a decomposition of J .
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5.1.3 An example: Finite dynamical systems

As an example, let’s consider finite dynamical systems: given a prime number
p, let Fp be the finite field with p elements, let R = Fp[x1, . . . , xn], and let
F : Fn

p −→ Fn
p be defined by

a = (a1, . . . , an) �→ (f1(a), . . . , fn(a)),

where fi ∈ R.
All finite dynamical systems can be written in this form:

Exercise 5.1.15. Show that, for any natural number n > 0 and any function
f : Fn

p −→ Fn
p there are polynomials gj ∈ Fp[x1, .., xn] such that f(a) =

(g1(a), . . . , gn(a)) for all a ∈ Fn
p .

By iterating F , we obtain a directed graph whose vertices are the pn points
of Fn

p , and there are directed edges from a to F (a).
In this example, we are interested in finding the fixed points of F , or more

generally, of F r (apply F r times) for some integer r. The fixed points of F
are the zeros of the ideal J = (x1−f1, . . . , xn−fn) which have all coordinates
in Fp. The problem is that there may be solutions over an extension field of Fp

and we are not particularly interested in these solutions. Notice that if x ∈ Fp,
then x ∈ Fp if and only if xp − x = 0. So, if we include these polynomials,
then our zero set will only contain elements of the field we are interested in.

These ideals are always equal to their own radical, and so we need not
worry about embedded components:

Lemma 5.1.16. Let J = (g1, . . . , gs, x
p
1 − x1, . . . , x

p
n − xn) ⊂ k[x1, . . . , xn].

For any choice of gi’s, J =
√
J .

Exercise 5.1.17. Prove this lemma. Use (or prove!) the fact that if J ⊂
k[x1, . . . , xn] is a zero dimensional ideal, then the radical of J is

√
J = J + (h1, . . . , hn),

where hi is the squarefree part of the generator of the ideal J ∩ k[xi].
See for example Chapter 2, Section 2.1.2.

We may use any of these splitting principles to compute the minimal
primes (and therefore the primary decomposition) of J , since we have many
zero-divisors around: each xi is (potentially) a zero-divisor!

Example 5.1.18. Let R = k[x1, . . . , x4], where k = F2. Let F : k4 −→ k4.
The associated directed graph has 24 = 16 nodes. Let’s find the fixed

points of one such finite dynamical system, with the aid of Macaulay 2. In
such a small example, we can compute the fixed points by hand. For larger
examples, e.g. p = 3, n = 20, this is not so easy!

i8 : R = ZZ/2[x_1 .. x_4];
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i9 : L = ideal(x_1^2 + x_1, x_2^2 + x_2, x_3^2 + x_3, x_4^2 + x_4);

o9 : Ideal of R

Our sample finite dynamical system:
i10 : F = matrix {{x_1*x_2*x_4+x_1+x_4,

x_1*x_3*x_4+x_2*x_4+x_2,
x_1*x_3+x_3*x_4+x_3,
x_1*x_3*x_4+x_1+x_4}}

o10 = | x_1x_2x_4+x_1+x_4 x_1x_3x_4+x_2x_4+x_2 x_1x_3+x_3x_4+x_3 x_1x_ · · ·
1 4

o10 : Matrix R <--- R

Fixed points of F are precisely the zeros of the following ideal.
i11 : J = L + ideal (vars R - F);

o11 : Ideal of R

i12 : transpose gens gb J

o12 = {-1} | x_1+x_4 |
{-2} | x_4^2+x_4 |
{-2} | x_3x_4+x_1 |
{-2} | x_2x_4+x_3x_4 |
{-2} | x_3^2+x_3 |
{-2} | x_2^2+x_2 |

6 1
o12 : Matrix R <--- R

Although we could solve these equations by hand, we instead blindly follow
the recursion using indeterminates as (potential) zero divisors. We start with
x1.

i13 : J1 = J : x_1

o13 = ideal (x + 1, x + 1, x + 1, x + 1)
4 3 2 1

o13 : Ideal of R

i14 : J2 = ideal gens gb(J + ideal(x_1))

2 2
o14 = ideal (x , x , x + x , x + x )

4 1 3 3 2 2

o14 : Ideal of R

The intersection of these ideals is J .
i15 : J == intersect(J1,J2)

o15 = true

The first ideal is already linear, so its zero set is a point. From the description
of J2 we could write down the rest of the solutions, but let’s continue. Split
using x3:

i16 : J21 = J2 : x_3
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2
o16 = ideal (x , x + 1, x , x + x )

4 3 1 2 2

o16 : Ideal of R

i17 : J22 = ideal gens gb(J2 + ideal(x_3))

2
o17 = ideal (x , x , x , x + x )

4 3 1 2 2

o17 : Ideal of R

Now we can split each of these using x2, obtaining 5 solutions total. Already,
one can imagine ways to improve the efficiency of even this small example.
For larger problems, these improvements can make the difference between
obtaining an answer and waiting forever!

We could have computed this directly in Macaulay 2. The decompose rou-
tine provides the list of minimal primes. The primaryDecomposition routine
provides an irredundant primary decomposition.

i18 : C = decompose J;

Display these ideals:
i19 : C/(I -> (<< toString I << endl));
ideal(x_2,x_3,x_4,x_1)
ideal(x_2+1,x_3,x_4,x_1)
ideal(x_2+1,x_3+1,x_4,x_1)
ideal(x_2,x_3+1,x_4,x_1)
ideal(x_2+1,x_3+1,x_4+1,x_1+1)

Exercise 5.1.19. Let R = F3[x1, . . . , x20]. Choose F = (f1, . . . , f20) such
that each f� is a sum of two randomly chosen quadratic monomials xixj . Find
the fixed points of this finite dynamical system. Also find the points of order
2, i.e. those points a such that a = F (F (a)).

Here is an open question: can you characterize the graphs (of 320 vertices)
which arise from F in this way?

5.2 Lecture 2: Bayesian networks and Markov ideals

The emerging field of algebraic statistics [PRW00] advocates polynomial al-
gebra as a tool in the statistical analysis of experiments and discrete data.
Statistics textbooks define a statistical model as a family of probability dis-
tributions, and a closer look reveals that these families are often algebraic
varieties: they are the zeros of some polynomials in the probability simplex
[GHKM01], [SS00].

We begin by reviewing the general algebraic framework for independence
models presented in [Stu02, §8]. Let X1, . . . , Xn be discrete random variables
whereXi takes values in the finite set [di] = {1, 2, . . . , di}. We writeD = [d1]×
[d2]×· · ·× [dn] so that CD denotes the complex vector space of n-dimensional
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tables of format d1×· · ·×dn. We introduce an indeterminate pu1u2···un
which

represents the probability of the event X1 = u1, X2 = u2, . . . , Xn = un. These
indeterminates generate the ring C[D] of polynomial functions on the space of
tables CD. We could also use the field R. The points of interest from statistics
are those in the probability simplex ∆: the set of points whose coordinates are
in the interval [0, 1], and whose coordinates sum to 1.

A conditional independence statement has the form

A is independent of B given C ( in symbols: A ⊥⊥ B | C) (5.1)

where A,B and C are pairwise disjoint subsets of {X1, . . . , Xn}. If C is empty
then (5.1) means that A is independent of B.

Example 5.2.1. Let X1 be the statement: it will rain today. Let X2 be the
statement: a puddle will form next to my car door. Let X3 be the statement:
I will get wet when I step out of the car. These are all binary random variables.
Given that the puddle has formed, the other two are independent statements:
X1 ⊥⊥ X3 | X2.

By [Stu02, Proposition 8.1], the statement (5.1) translates into a set of
homogeneous quadratic polynomials in C[D], and we write IA⊥⊥B|C for the
ideal generated by these polynomials. The following example gives the basic
idea and method for finding these ideals.

Example 5.2.2. Let X1, X2, X3 be three random variables, with d1 = d3 = 2
and d2 = 3. Let’s write down the ideal in k[pu1u2u3 ] (12 variables) which
defines the set of probability distributions which satisfy X1 ⊥⊥ X2 | X3.

A probability distribution satisfies this independence condition if

Pr(X1 = u1, X2 = u2 | X3 = u3) =
Pr(X1 = u1 | X3 = u3)Pr(X2 = u2 | X3 = u3),

for all choices of ui ∈ [di]. By removing the conditional probabilities, and
multiplying by Pr(X3 = u3), we obtain

p++u3pu1u2u3 = pu1+u3p+u2u3 ,

where we have replaced Pr by p, and a “+” means sum over all possible values
in that variable (i.e. marginalize over that variable). For example,

p1+2 = p112 + p122 + p132.

It is a simple exercise in determinants to show that the ideal generated by

{p++u3pu1u2u3 − pu1+u3p+u2u3 | all u1, u2, u3},
is the same as the ideal generated by the six 2 by 2 minors of the matrices
M1 and M2, where

Mi =
(
p11i p12i p13i

p21i p22i p23i

)
Note that all 12 indeterminates appear, and each matrix has 6 of them.
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The general case goes the same way: The ideal IA⊥⊥B|C is generated by
the 2 by 2 minors of matrices Mi, for i = 1..c, where c is the number of
possible values of C. Each matrix is obtained by making an a × b matrix
where the (j, k)th entry is the linear polynomial in the pu1...un

which represents
Pr(A = j, B = k,C = i).

Since the ideal generated by the 2 by 2 minors of a generic matrix of
indeterminates is prime, we have the following fact (see [Stu02]).

Proposition 5.2.3. For any choice of A,B, and C, the ideal IA⊥⊥B|C is
prime.

The interesting part begins when we have more than one independence
statement.

Definition 5.2.4. If M = {A1, A2, . . . , Ar} is a set of independence state-
ments, define

IM = IA1 + · · ·+ IAr
.

Example 5.2.5 (The contraction lemma). In statistics, there is a lemma that
says that any probability distribution which satisfies the two independence
statements X1 ⊥⊥ X2 | X3, and X2 ⊥⊥ X3, also satisfies X2 ⊥⊥ {X1, X3}.

In this example, we investigate the algebraic analog of this statement. Let

M = {X1 ⊥⊥ X2 | X3, X2 ⊥⊥ X3}.
Let’s suppose for now that d1 = d2 = d3 = 2, i.e. we have three binary random
variables. The first independence statement translates into two quadratics:

φ1 = det
(
p111 p121
p211 p221

)
, φ2 = det

(
p112 p122
p212 p222.

)
The second statement translates into a single determinant:

φ = det
(
p+11 p+12

p+21 p+22

)
,

where for example p+11 = p111 + p211.
So IM = (φ1, φ2, φ).
If we consider the indeterminates of our polynomial ring to be p+jk and

pijk, for i ≥ 2 (instead of the pijk), the ideal IM is a binomial ideal in C[D], i.e.
generated by polynomials which are differences of two monomials. Binomial
ideals enjoy many nice properties. For instance, a reduced Gröbner basis, in
any term order, consist of binomials, and they have primary decompositions
where each associated prime and primary ideal is binomial. For more details,
see [ES96].

The algebraic analog of the contraction lemma is the primary decomposi-
tion of this ideal. The ideal IM has 3 components in its primary decomposition
(all prime).
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IM = P1 ∩ P2 ∩ IX2⊥⊥{X1,X3},

where P1 = (p+11, p+21, φ2), and P2 = (p+12, p+22, φ1). This implies that any
probability distribution which satisfies the two independence statements M
also satisfies the statement: X2 ⊥⊥ {X1, X3}. The algebraic picture is more
complicated: outside of the probability simplex ∆, these two zero sets differ.

As a warmup for computing primary decompositions later, try

Exercise 5.2.6. (a) Show, using Macaulay 2, that this is a primary decom-
position of IM.

(b) Consider the same M, but now suppose that d1 = d2 = 2 and d3 = 3.
Write down the ideal IM and find a primary decomposition for IM. Is this
ideal radical? What if d3 ≥ 4?

5.2.1 Bayesian networks and associated ideals

A Bayesian network is an acyclic directed graph G with vertices X1, . . . , Xn.
For a given node Xi, let pa(Xi) denote the set of parents of vertex Xi in

G (a node Xj is a parent of Xi if there is a directed edge from Xj to Xi, and
let nd(Xi) be the set of non-descendants of Xi, excluding the parents of Xi.
(A non-descendant of Xi is a vertex Xj such that there is no directed path
from Xi to Xj . Since the graph is not acyclic, parents are non-descendants).

The local Markov property on G is the set of independence statements

local(G) = {Xi ⊥⊥ nd(Xi) | pa(Xi) : i = 1, 2, . . . , n},

The global Markov property , global(G), is the set of independence state-
ments A ⊥⊥ B | C, for any triple A,B,C of subsets of pairwise disjoint vertices
of G such that A and B are d-separated by C.

The notion of d− separated (“directed separated”) is a bit technical. The
intuition is that the nodes of C block directed paths from nodes of A to nodes
of B, but the notion is slightly more subtle. Since we don’t really need the
definition for these lectures, we refer to [GSS] or to [Lau96] for the definition.

For any Bayesian network G, we have local(G) ⊂ global(G). Therefore we
have inclusions Ilocal(G) ⊂ Iglobal(G), and Vglobal(G) ⊂ Vlocal(G).

Example 5.2.7. Let G be the network on four binary random variables shown
in 5.1. Download the file markov.m2 from the website3. This file contains code
for displaying a directed acyclic graph, computing independence conditions
(given a graph), and for computing the ideals corresponding to these inde-
pendence conditions. The documentation for the code is contained in the file.

i20 : load "markov.m2"

3 http://www.math.cornell.edu/~mike/bayes/
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4

3 2

1

Fig. 5.1. A Bayesian network on 4 vertices

The function makeGraph takes as input a list of lists: the ith list is the list of
direct descendants of the ith node.

i21 : G = makeGraph {{},{1},{1},{2,3}};

The Markov conditions come as a list of triples of sets of integers. Each triple
represents a single independence statement.

i22 : LM = localMarkovStmts G;

i23 : LM/print;
{Set {1}, Set {4}, Set {2, 3}}
{Set {3}, Set {2}, Set {4}}

i24 : GM = globalMarkovStmts G;

i25 : GM/print;
{Set {1}, Set {4}, Set {2, 3}}
{Set {3}, Set {2}, Set {4}}

Note that for this example, local(G) and global(G) are both the same set:

{1 ⊥⊥ 4 | {2, 3}, 2 ⊥⊥ 3 | 4}.
A polynomial ring with the indeterminates pu1u2...un

is created via:
i26 : R = markovRing(2,2,2,2);

i27 : numgens R

o27 = 16

i28 : gens R

o28 = {p , p , p , p , p , p , p · · ·
1,1,1,1 1,1,1,2 1,1,2,1 1,1,2,2 1,2,1,1 1,2,1,2 1, · · ·

o28 : List

Our two independence statements translate to the 2 by 2 minors of the fol-
lowing six matrices (and, since each is only 2 by 2, the ideal is generated by
six quadrics).

i29 : M = markovMatrices(R, LM);



5 Computing primary decompositions 217

i30 : M/(m -> (<< m << endl << endl));
| p_(1,1,1,1) p_(1,1,1,2) |
| p_(2,1,1,1) p_(2,1,1,2) |

| p_(1,1,2,1) p_(1,1,2,2) |
| p_(2,1,2,1) p_(2,1,2,2) |

| p_(1,2,1,1) p_(1,2,1,2) |
| p_(2,2,1,1) p_(2,2,1,2) |

| p_(1,2,2,1) p_(1,2,2,2) |
| p_(2,2,2,1) p_(2,2,2,2) |

| p_(1,1,1,1)+p_(2,1,1,1) p_(1,2,1,1)+p_(2,2,1,1) |
| p_(1,1,2,1)+p_(2,1,2,1) p_(1,2,2,1)+p_(2,2,2,1) |

| p_(1,1,1,2)+p_(2,1,1,2) p_(1,2,1,2)+p_(2,2,1,2) |
| p_(1,1,2,2)+p_(2,1,2,2) p_(1,2,2,2)+p_(2,2,2,2) |

By changing coordinates as discussed above so that e.g. p1111 refers to p+111,
and p2111 still refers to p2111), the ideal will be binomial in the new coordinates.
The function marginMap makes a ring map which will make this change of
coordinates.

i31 : F = marginMap(1,R);

o31 : RingMap R <--- R

i32 : F p_(1,1,1,1)

o32 = p - p
1,1,1,1 2,1,1,1

o32 : R

The routine markovIdeal yields the ideal generated by the 2 by 2 minors of
the above matrices. After changing coordinates, the ideal is binomial:

i33 : J = F markovIdeal(R,LM);

o33 : Ideal of R

i34 : transpose generators J

o34 = {-2} | -p_(1,1,1,2)p_(2,1,1,1)+p_(1,1,1,1)p_(2,1,1,2) |
{-2} | -p_(1,1,2,2)p_(2,1,2,1)+p_(1,1,2,1)p_(2,1,2,2) |
{-2} | -p_(1,2,1,2)p_(2,2,1,1)+p_(1,2,1,1)p_(2,2,1,2) |
{-2} | -p_(1,2,2,2)p_(2,2,2,1)+p_(1,2,2,1)p_(2,2,2,2) |
{-2} | -p_(1,1,2,1)p_(1,2,1,1)+p_(1,1,1,1)p_(1,2,2,1) |
{-2} | -p_(1,1,2,2)p_(1,2,1,2)+p_(1,1,1,2)p_(1,2,2,2) |

6 1
o34 : Matrix R <--- R

The ideal J is minimally generated by 6 binomial quadrics.

One of the most useful aspects of Bayesian networks is that they provide
a factorization of the joint probability distribution of the n random variables.
In this example, note that
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Pr(X1 = u1, . . . , X4 = u4) =
Pr(X4 = u4)× Pr(X3 = u3 | X4 = u4)× Pr(X2 = u2 | X3 = u3, X4 = u4)
×Pr(X1 = u1 | X2 = u2, X3 = u3, X4 = u4)

= Pr(X4 = u4)× Pr(X3 = u3 | X4 = u4)× Pr(X2 = u2 | X4 = u4)
×Pr(X1 = u1 | X2 = u2, X3 = u3)

If we set Pr(X4 = 1) := a and Pr(X4 = 2) := 1 − a, and similarly
let Pr(X3 = 1 | X4 = k) := bk, let Pr(X2 = 1 | X4 = k) := ck, and
Pr(X1 = 1 | X2 = j,X3 = k) := djk, then the joint probabilities factor. For
example, p1111 = ab1c1d11, p1112 = (1−a)b2c2d11, p1121 = a(1− b1)c1d12, and
so on. Instead of requiring 15 parameters, such a probability distribution may
be specified using 10 numbers. This is a small example; when the number of
vertices is large and the graph is sparse, the savings is dramatic.

If we denote C[E] := C[a, b1, b2, c1, c2, d11, . . . , d22], we may define a ring
map

Φ : C[D] −→ C[E].

In what follows we shall assume that every edge (i, j) of the Bayesian
network G satisfies i > j. In particular, the node 1 is always a sink and the
node n is always a source.

For any integer r ∈ [n] and ui ∈ [di] as before, we abbreviate the mar-
ginalization over the first r random variables as follows:

p++···+ur+1···un
:=

d1∑
i1=1

d2∑
i2=1

· · ·
dr∑

ir=1

pi1i2···irur+1···un
.

This is a linear form in our polynomial ring C[D]. We denote by p the product
of all of these linear forms.

As in the example, given a Bayesian network G, we obtain a factorization
map:

Φ : C[D] −→ C[E].

The main theorem, which is the algebraic analog of the factorization for the
joint probabilities for a Bayesian network is the following:

Theorem 5.2.8. The prime ideal ker(Φ) is a minimal primary component
of both of the ideals Ilocal(G) and Iglobal(G). More precisely,(

Ilocal(G) : p∞)
=

(
Iglobal(G) : p∞)

= ker(Φ). (5.2)

For the precise definition of Φ and a proof, see [GSS].
This result suggests many questions, most of them unsolved. For example:

Problem 5.2.9. Find conditions on G so that Iglobal(G) is a prime ideal (and
therefore equal to kerΦ).
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Problem 5.2.10. Find the dictionary relating basic operations on directed
acyclic graphs (e.g. deletion of an edge, or of a node, or contraction of an edge)
with properties of the primary decomposition of the corresponding ideals.

Problem 5.2.11. Find the primary decomposition of Ilocal(G) or of Iglobal(G).

Perhaps more manageable is to determine certain features of the primary
decomposition (e.g. the ideal being radical, or having no embedded compo-
nents) in terms of the data G, and (d1, . . . , dn).

In the remainder of these lectures, we will develop the tools needed to
answer these questions computationally, for small networks G.

5.3 Lecture 3: Tools for computing primary
decompositions

In order to use the techniques we have already considered to make an algo-
rithm for computing a primary decomposition, we must answer the following
questions.

• Question #1: How do we find splitting polynomials or zero divisors to use
with one of our splitting principles?

• Question #2: How can we detect that an ideal is prime or primary?
• Question #3: Practice shows that the splitting tree is highly redundant.

How should we fight this problem?

We will provide answers to these questions. But: keep your mind open. We
challenge you to find better methods yourself!

Example 5.3.1. As a running example throughout this lecture, let’s consider
the simple example which occurred in the contraction lemma in the second
lecture. This is an ideal generated by 3 quadrics, in 8 indeterminates. Let’s
rename the indeterminates so that we can avoid indices.

i35 : R = QQ[a..h];

i36 : J = ideal(a*d-b*c, e*h-f*g, a*f-b*e);

o36 : Ideal of R

Just so we know the answer ahead of time, here is the primary decomposition:
i37 : (primaryDecomposition J)/print;
ideal (b, a, f*g - e*h)
ideal (f, e, b*c - a*d)
ideal (f*g - e*h, d*g - c*h, b*g - a*h, d*e - c*f, b*e - a*f, b*c - a*d)

There are three primary components. In many ways, this is too simple an
example: all of the components have the same dimension (five), and all of the
primary components are prime, so this is a radical ideal. The example still
provides a good picture of the different tools and also some of the problems
which occur.
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5.3.1 Finding splitting polynomials and zero divisors

Given an ideal J = (f1, . . . , fr) ⊂ k[x1, . . . , xn], how can we find a zero divisor
g mod J (i.e. an element g for which J : g �= J)? One method that often works
is to examine the generators fi and see if they factor. If so, use a factor as the
zero divisor g. Often no fi will factor. In this case, one may start computing a
Gröbner basis, and examine each new Gröbner basis element gi. If gi factors,
use this factorization to split the ideal (This is the basic description of what is
known as the factorizing Gröbner basis algorithm.) The exact details of how
best to use this are not clear, and vary with the problem domain. There is
definitely room for improvement here in existing algorithms!

Suppose that you cannot find a factor with one of these methods, or,
perhaps, are unwilling or unable to look there for zero divisors? What then?
Our answer is obtained by analyzing projection maps.

5.3.2 Projections and elimination of variables

Let R = k[x] = k[x1, . . . , xn], where k is a field. Choose a subset of variables

t = {t1, . . . , td} ⊂ x = {x1, . . . , xn},
and let u = x \ t. The inclusion k[t] ⊂ k[u, t] = k[x] corresponds geo-
metrically to the projection map kn −→ kd defined by sending a point
(u, t) = (u1, . . . , un−d, t1, . . . , td) to t ∈ kd. The map of rings φ : k[t] −→
k[u, t]/J corresponds to the projection map π : V (J) ⊂ kn −→ kd, and
the map of rings k[t]/J1 ↪→ k[u, t]/J corresponds to the projection map
π : V (J) −→ V (J1) = π(V (J)), where J1 = ker(φ). If J is not a radical
ideal, or k is not an algebraically closed field such as C, then this correspon-
dence between the algebra and geometry needs to be defined more carefully:
this is where schemes enter the algebraic geometry picture. For us though, we
will think geometrically, but work algebraically, and so we won’t be concerned
with these subtleties.

Recall that we can compute L = ker(φ) by using Gröbner bases. A term
order on k[x] = k[u, t] is called an elimination order (eliminating u) if in(f) ∈
k[t] implies that f ∈ k[t].
Proposition 5.3.2. If > is an elimination order eliminating u, and J ⊂
k[u, t] is an ideal, with Gröbner basis {f1, . . . , fr, h1, . . . , hs}, where hi ∈ k[t],
but each fi �∈ k[t], then {h1, . . . , hs} is a Gröbner basis (and therefore a gen-
erating set) of J1 = J ∩ k[t].

For the purpose of analyzing projection maps, the product order u >>
t is a good choice (this is sometimes called a block order): uatb > uctd if
ua >grevlex u

c, or ua = uc and tb >grevlex t
d.

Example 5.3.3. Continuing Example 5.3.1, suppose that t = {a, b, c, d} and
u = {e, f, g, h}.
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i38 : R1 = QQ[e,f,g,h,a,b,c,d, MonomialOrder=>ProductOrder{4,4}];

i39 : L = substitute(J,R1)

o39 = ideal (- b*c + a*d, - f*g + e*h, - e*b + f*a)

o39 : Ideal of R1

i40 : transpose gens gb L

o40 = {-2} | bc-ad |
{-2} | eb-fa |
{-2} | fg-eh |
{-3} | ead-fac |

4 1
o40 : Matrix R1 <--- R1

So J ∩ k[a, b, c, d] = (bc− ad), since this is the only element whose lead term
bc is in the subring k[a, b, c, d]. This whole process can be accomplished more
easily using the Macaulay 2 “eliminate” package.

i41 : load "eliminate.m2"

This next command ensures that e, f, g, h refer to elements of the ring R.
i42 : use R;

i43 : eliminate(J,{e,f,g,h})

o43 = ideal(b*c - a*d)

o43 : Ideal of R

5.3.3 Tool: Birational projections

Suppose that J contains an element f which is linear in a variable, say, x1.
Write f = gx1 + h, where g, h don’t involve x1. If g is a non-zero divisor on
J , then the projection map k[t]/J1 −→ k[t, x1]/J is birational (where t =
{x2, . . . xn} and J1 = ker(k[t] −→ k[x1, t]/J). Geometrically, this means that
for almost all points p of V (J1) ⊂ kn−1, there is a unique point (p1, p) ∈ V (J)
which maps to it. If g(p) �= 0, then this value is p1 = −h(p)

g(p) .
Birational maps are well-behaved with respect to primary decompositions:

Proposition 5.3.4. Let J ⊂ k[x1, . . . , xn] be an ideal, containing a polyno-
mial f = gx1 +h, with g, h not involving x1, and g a non-zero divisor modulo
J . Let J1 = J ∩ k[x2, . . . , xn] be the elimination ideal. Then

(a) J =
(〈J1, gx1 + h〉 : g∞

)
,

(b) J is prime if and only if J1 is prime.
(c) J is primary if and only if J1 is primary.
(d) Any irredundant primary decomposition of J1 lifts to an irredundant

primary decomposition of J .

This tool may often be used to prove that an ideal is prime (if it is!), and
can sometimes simplify the work to look for zero divisors. However, caution is
required: the resulting ideal J1, although it is an ideal in one fewer variable,
can sometimes be much more complicated than J .
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Exercise 5.3.5. Prove this proposition. (There are at least two related meth-
ods to do this: Use pseudo-division by gx1 + h; or use localization by powers
of g).

Example 5.3.6. Continuing Example 5.3.1, all variables occur linearly, and so
we may choose any one we wish, e.g. a. The corresponding coefficient is d.

i44 : use R;

In this example, d is not a zero divisor:
i45 : J : d == J

o45 = true

As above, we use the Macaulay 2 “eliminate” package for eliminating variables.

i46 : I1 = eliminate(J,a)

o46 = ideal (f*g - e*h, b*d*e - b*c*f)

o46 : Ideal of R

The variable f occurs linearly, with coefficient g. It so happens that g is also
a non-zero-divisor:

i47 : I1 : g == I1

o47 = true

So I1 is birational to
i48 : I2 = eliminate(I1,f)

o48 = ideal(b*d*e*g - b*c*e*h)

o48 : Ideal of R

This single element has three factors:
i49 : time factor I2_0

-- used 0.01 seconds

o49 = (b)(- d*g + c*h)(e)(-1)

o49 : Product

The original ideal J is birational to I2. Another way to factor this is to find
the primary decomposition of I2!

i50 : time primaryDecomposition I2
-- used 0.43 seconds

o50 = {ideal e, ideal b, ideal(d*g - c*h)}

o50 : List

Therefore, the original ideal has three components, all prime.

Exercise 5.3.7. Use this factorization, and ideal quotients, to produce the
three primary components.
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5.3.4 Tool: The flattener of a projection

One method to find a splitting polynomial is to compute the flattener of
a projection. We develop this method now. This method has many other
applications, some of which which we will see later.

Let J ⊂ k[x1, . . . , xn] be an ideal. A subset of variables t = {xi1 , . . . , xid
}

is called a maximal independent set of J if J ∩ k[t] = (0) and t has maximal
cardinality over all such subsets with this property.

Proposition 5.3.8. Let in(J) be the initial monomial ideal of J ⊂ k[x] with
respect to some arbitrary term order. Then every maximal independent set of
in(J) is also a maximal independent set of J .

The cardinality d of a maximal independent set of J is called the dimension
of J .

Geometrically, if J ∩ k[t] = (0), the map V (J) −→ kd is dominant , i.e. the
closure of the image is all of kd. In this case, every component of J which also
maps dominantly to kd must have the same dimension d as J . A component of
J which maps into a subvariety of kd (algebraically: a primary ideal Q of J for
which Q∩ k[t] �= (0)) can either have dimension d, or have smaller dimension.

Suppose that t ⊂ x is a maximal independent set for in(J) and therefore
for J , let u = x \ t, and let > be the product order u >> t defined above. Let
{g1, . . . , gr} be a reduced Gröbner basis for the ideal J , where

gi = αi(t)uAi + lower terms in the u variables.

Since J ∩ k[t] = (0), each of the monomials uAi �= 1. Define inu(J) =
(uA1 , . . . , uAr ) ⊂ k[u].

Let h ∈ k[t] be any non-zero element such that for each minimal generator
uA of the monomial ideal inu(J), there is an element g of J , such that g =
h(t)uA +lower terms in u. For example, we could take h = lcm{α1, . . . , αr} ∈
k[t]. Any such element h is called a flattener for J with respect to t.

The reason that h is called a flattener comes from commutative algebra.
One can prove that the inclusion of localized rings k[t]h ⊂ k[u, t]h/J is a
flat extension. Caution though: our element h enjoys more properties than an
arbitrary element that satisfies this flatness.

The key properties of a flattener, for our purposes, is the following obser-
vations.

Proposition 5.3.9. If h ∈ k[t] is a flattener for J with respect to t, and if P
is an associated prime ideal of J , then h ∈ P if and only if P ∩ k[t] �= (0).

Since a component P of J which satisfies P ∩ k[t] = (0) must have dimen-
sion at least the cardinality of t, this implies:

Corollary 5.3.10. If h ∈ k[t] is a flattener for J with respect to t, then
(J : h∞) is equidimensional of dimension d, and in particular has no embedded
components.
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So, either h is a splitting polynomial, or J is equidimensional. In the first
case, we may split J . We will discuss the second situation later.

Example 5.3.11. Let’s use the flattener method to compute the primary de-
composition of the ideal of Example 5.3.1. Even though this is a simple ex-
ample, it highlights several possible efficiency problems.

First, we find a maximal independent set of J . (The Macaulay 2 routine
independentSets returns the maximal independent sets of the initial mono-
mial ideal of J . Each monomial represents one independent set. For example,
the first set found is t = {a, b, d, f, h}).

i51 : independentSets J

o51 = {a*b*d*f*h, a*c*d*f*h, a*c*e*f*h, c*d*e*f*h, a*b*d*g*h, a*c*d*g* · · ·
o51 : List

We find 8 maximal independent sets.
i52 : R1 = QQ[c,e,g, a,b,d,f,h,MonomialOrder=>ProductOrder{3,5}];

i53 : L = substitute(J,R1)

o53 = ideal (- c*b + a*d, e*h - g*f, - e*b + a*f)

o53 : Ideal of R1

i54 : gens gb L

o54 = | eh-gf eb-af cb-ad gbf-afh caf-ead |

1 5
o54 : Matrix R1 <--- R1

By examining the lead terms and coefficients, we see that inu(J) = (c, e, g),
and that the lead coefficients of c are af and b, the lead coefficients of e are
b and h, and the lead coefficient of g is bf . Therefore abf is a flattener. Let
F = abf . A better choice for a flattener would be bf . We choose abf instead to
show some of the complexities which arise when you choose a flattener which
is not the simplest. As an exercise, you should do the same computation here
with the flattener bf .

i55 : use R

o55 = R

o55 : PolynomialRing

i56 : J1 = saturate(J,a*b*f)

o56 = ideal (f*g - e*h, d*g - c*h, b*g - a*h, d*e - c*f, b*e - a*f, b* · · ·
o56 : Ideal of R

i57 : J1 == J : (a*b*f)

o57 = true

So J = J1 ∩ J2, where
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i58 : J2 = trim(J + ideal(a*b*f))

o58 = ideal (f*g - e*h, b*e - a*f, b*c - a*d, a*b*f)

o58 : Ideal of R

i59 : J == intersect(J1,J2)

o59 = true

As it turns out, J1 is a prime ideal. How can we see this? Since the initial
ideal inu(J1) = (c, e, g), this means that the projection map is birational, and
therefore the ideal J1 is prime and even more, is rational.

i60 : Q1 = J1;

o60 : Ideal of R

Now let’s decompose J2.
i61 : independentSets J2

o61 = {c*d*e*f*h, a*b*d*g*h, a*c*d*g*h, c*d*e*g*h}

o61 : List

We’ll use the first one.
i62 : R1 = QQ[a,b,g, c,d,e,f,h,MonomialOrder=>ProductOrder{3,5}];

i63 : L = substitute(J2,R1)

o63 = ideal (g*f - e*h, - a*f + b*e, - a*d + b*c, a*b*f)

o63 : Ideal of R1

i64 : gens gb L

o64 = | gf-eh af-be ad-bc bde-bcf bge-aeh b2e b2cf abeh a2eh2 |

1 9
o64 : Matrix R1 <--- R1

In this case inu(J2) = (a, b, g) (So the saturation will again be rational and
prime, as before). One choice for a flattener is f(de− cf).

i65 : use R

o65 = R

o65 : PolynomialRing

i66 : Q2 = saturate(J2,f*(d*e-c*f))

o66 = ideal (b, a, f*g - e*h)

o66 : Ideal of R

i67 : J3 = trim(J2 + ideal(f*(d*e-c*f)))

2
o67 = ideal (f*g - e*h, b*e - a*f, b*c - a*d, d*e*f - c*f , a*b*f)

o67 : Ideal of R

i68 : J == intersect(Q1,Q2,J3)

o68 = true
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One more time. Let’s decompose J3.
i69 : independentSets J3

o69 = {a*b*d*g*h, a*c*d*g*h}

o69 : List

i70 : R1 = QQ[c,e,f, a,b,d,g,h, MonomialOrder=>ProductOrder{3,5}]

o70 = R1

o70 : PolynomialRing

i71 : L = substitute(J3,R1)

2
o71 = ideal (- e*h + f*g, e*b - f*a, c*b - a*d, - c*f + e*f*d, f*a*b)

o71 : Ideal of R1

i72 : transpose gens gb L

o72 = {-2} | eh-fg |
{-2} | eb-fa |
{-2} | cb-ad |
{-3} | fbg-fah |
{-3} | cfa-ead |
{-3} | fab |
{-3} | cf2-efd |
{-4} | fa2h |
{-4} | f2a2 |
{-4} | fa2d |
{-5} | ea2d2 |

11 1
o72 : Matrix R1 <--- R1

This time, inu(J3) = (c, e, f), and so once again the saturation will be a
prime rational ideal. A flattener that works this time is ab. Notice that there
are other choices for flatteners, but the others are more complicated and would
add extra work.

i73 : use R

o73 = R

o73 : PolynomialRing

i74 : Q3 = saturate(J3,a*b)

o74 = ideal (f, e, b*c - a*d)

o74 : Ideal of R

i75 : Q3 == J3 : (a*b)

o75 = false

i76 : Q3 == J3 : (a*b)^2

o76 = true

This time,
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i77 : J4 = trim(J3 + ideal(a^2*b^2))

2 2 2
o77 = ideal (f*g - e*h, b*e - a*f, b*c - a*d, d*e*f - c*f , a*b*f, a b )

o77 : Ideal of R

But notice that
i78 : J == intersect(Q1,Q2,Q3)

o78 = true

Therefore, we may avoid the primary decomposition of J4, since it will only
consist of redundant terms. You should check, but the primary decomposition
of J4 has seven primary ideals, and J4 is not a radical ideal.

Exercise 5.3.12. Apply this technique to other Bayesian network examples,
such as the example from the contraction lemma. Consider the cases when
di > 2 for a nice challenge.

5.3.5 Primary decomposition of equidimensional ideals

Here is the situation: Suppose that J ⊂ k[x1, . . . , xn] = k[u, t], where t is
a maximal independent set, as above, and that h ∈ k[t] is a flattener, and
J : h∞ = J . How can we tell if J is prime, or primary? And, if not, how do
we find a primary decomposition of J?

In the previous example, we used the following fact, which we leave (as
usual!) for you to prove as an exercise.

Proposition 5.3.13. Suppose that t is a maximal independent set for J , u =
x \ t, and h is a flattener for J with respect to t. If inu(J) is generated by the
set of indeterminates t, then (J : h∞) is a prime ideal, and is also rational.

With certain kinds of ideals, such as Markov ideals, this happens quite
frequently, as we saw in the previous example. If not, what do we do then?
Once again, the flattener comes to the rescue. Algebraically, the flattener h
allows us to compute the “generic fiber”:

Proposition 5.3.14. If h ∈ k[t] is a flattener as defined above, then

(J : h∞) = J k(t)[u] ∩ k[u, t].

But notice! Since t is a maximal independent set, J k(t)[u] is a zero dimen-
sional ideal of k(t)[u]. This means that if we can find the primary decomposi-
tion of zero dimensional ideals, then we can compute a primary decomposition
of the equidimensional ideal J .

Proposition 5.3.15. If Jk(t)[u] ∩ k[u, t] = J , and if Q̃1 ∩ · · · ∩ Q̃s is an
irredundant primary decomposition of Jk(t)[u], and if Qi = Q̃i ∩ k[u, t], then
J = Q1 ∩ · · · ∩Qs is an irredundant primary decomposition of J .
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This is great! It allows us to use the results from David Cox’s lectures
(Chapter 2) on computing the primary decomposition of zero dimensional
ideals. These techniques tell us in particular that, if Jk(t)[u] is prime or pri-
mary, then J will have the same property.

Exercise 5.3.16. Refer back to Chapter 2, and write an algorithm for com-
puting the primary decomposition of an equidimensional ideal. Apply your
algorithm to the equidimensional ideal J = (ad2 + bde + ce2, ad2 + bdf +
cf2, ae2 + bef + cf2) ⊂ Q[a, . . . , f ].

5.4 Lecture 4: Putting it all together

In this lecture we apply all of our techniques and present a relatively com-
plete algorithm. Keep in mind though that if you have a difficult ideal whose
decomposition you desire, canned algorithms often will not finish. Using the
techniques we have discussed may make it possible to find its decomposition,
by applying them in novel ways, or using some extra information you have
regarding your ideal.

5.4.1 Useful subroutines

Some of the techniques that we have considered so far can be summarized by
the following routines.

saturation(J,f) , returns the pair (�, J : f∞), where (J : f∞) = (J : f �).

independentSet(J) , returns a maximal independent set for the ideal J .

We did not discuss an algorithm for this, but it is a good exercise to find
one. See also [DGP99].

flattener(J,t) , given a maximal independent set t of J, returns the pair
(h, inu(J)), where h is a flattener of J with respect to t, u = x \ t, and inu(J)
are all as in the last lecture.

equidimensionalPD(J, t, h), where t is a maximal independent set of J , h
is a flattener, and J : h = J . This routine returns a list of pairs {P,Q} such
that Q is P -primary, and the intersection of all of the Q is J . Note that the
P are all of the same dimension, and there are no embedded primes.

As discussed later, in order to handle redundancy, we instead use the
following variant.

equidimensionalPD(J, t, h, L) , where t is a maximal independent set of
J , h is a flattener, and J : h = J , and L is an ideal. This routine returns
a pair (PQ,L′), where PQ is a list of pairs {P,Q} as above except only the
pairs (P,Q) with L �⊂ P are returned, and L′ is the intersection of L with all
of the Q’s.
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5.4.2 Fighting redundancy

Suppose that we have an algorithm for finding a splitting polynomial for an
ideal J , if one exists. Call these routines thereIsASplittingPolynomial and
splittingPolynomial. Recall that if no splitting polynomial exists, then J
is primary.

Here is the most naive method based on splitting principles:
PDsplit = (J) -> (

-- input: an ideal J
-- output: a list of primary ideals whose intersection
-- is a primary decomposition of J
if thereIsASplittingPolynomial(J)
then (

f := splittingPolynomial(J);
(d,J1) := saturation(J,f);
J2 := J + ideal(f^d);
return join(PDsplit(J1), PDsplit(J2)) -- join the 2 lists
)

else
-- J is already primary
-- So, return a list with one element.
return {J}

);

This algorithm is written in Macaulay 2 form for convenience, but in or-
der to run, routines thereIsASplittingPolynomial, splittingPolynomial
must be provided.

There are several problems with this algorithm. One difficulty is that the
algorithm does not return an irredundant primary decomposition. It is far
worse: it computes the primary decomposition for a potentially large number
of useless redundant ideals.

We may think of this computation as a binary tree, where J is the root,
J1 the left node, and J2 the right node. By choosing splitting polynomials
for each leaf, we continue to build a larger and larger binary tree, until no
splitting polynomials can be found, and then each leaf is a primary ideal.

At any time during the construction of this tree, the intersection of all of
the leaf ideals is equal to J . The problem of redundancy is: many leaves or
whole subtrees are not needed. How can we detect this?

There are two simple methods that help.

Method #1

If we don’t mind computing extra ideal quotients, then we can remove many
redundant components from this tree.

Lemma 5.4.1. If (J : f∞) = J and (J : g∞) = (J : g�), then

J = (J : g∞) ∩ ((J + (g�)) : f∞).

The proof is almost identical to the proof of Lemma 5.1.14.
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Method #2

The second trick is to process this tree from left to right, and keep the inter-
section L of all primary components found so far. Ignore a node Jr if L ⊂ Jr.

Exercise 5.4.2. Convince yourself that both of these methods are valid.

5.4.3 The overall algorithm

We now describe one way to put these techniques together into an algorithm.
This is a version of the Gianni-Trager-Zacharias (GTZ) algorithm, which often
works quite well.

Before we present the algorithm, you should spend some time working
on the following exercise. If you can solve it quickly, then find other, better,
solutions!

Exercise 5.4.3. Write an algorithm which computes a primary decomposi-
tion of an ideal J ⊂ k[x] = k[x1, . . . , xn]. You may use any of the techniques
presented so far, and any of the subroutines saturation, independentSet,
etc.

Try to implement your solution, and try it on several examples, includ-
ing some Markov ideals, as in the second lecture. Some questions you should
consider are: (1) How to process and compute with as few redundant compo-
nents as possible? (2) The precise element which one splits the ideal by has
a dramatic effect on the complexity of the computation. Is there any way to
control this?

The GTZ algorithm, as we have it here, splits the ideal J by using a
flattener. It is relatively easy to compute the primary decomposition of the
left hand side (ideal J1 below), since this ideal is equidimensional. We have
indicated that one way to do this is to use multiplication maps, as in Chapter 2.
Another way is to use a change of coordinates to bring the ideal into a nice
position. See [GTZ88] and [DGP99] for more details. The right hand side
(ideal J2 in the algorithm) causes more problems, since by adding fd to the
ideal, the number of components can become quite large. This is the reason
for using the redundancy control method #2 above. The ideal L which is an
argument to GTZ and equidimensionalPD implements this method.

The final algorithm is here:
PD = (J) -> (

-- input: J is an ideal
-- output: a list of pairs {P,Q} such that Q is P-primary
-- and the Q form an irredundant primary decomposition
-- of J.
L := ideal(1_(ring(J)));
(PQ,L) = GTZ(J,L);
-- at this point, L should equal J.
PQ
);
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GTZ = (J, L) -> (
-- input: J is an ideal.
-- L is an ideal, which is the intersection of all
-- primary components found so far.
-- output: a pair (PQ, L’), where
-- PQ is a list of {P,Q}’s, where P is prime, Q is
-- primary to P
-- L’ is the intersection of L with all of the Q’s in PQ.
-- The set of Q’s in PQ form that part of the primary
-- decomposition of J with primary ideals not containing L.
if isSubset(L,J) then return ({}, L);
t := independentSet(J);
(f,inJ) := flattener(J,t);
(d,J1) := saturation(J,f);
if degree inJ == 1
then (

-- J1 is prime
PQ1 = {J1,J1};
L = intersect(L, J1);
)

else
-- This also replaces the L with the intersection
(PQ1,L) = equidimensionalPD(J1,u,L);

if d == 0 then return (PQ1,L);
J2 := J + ideal(f^d);
(PQ2,L) = GTZ(J2,L);
(join(PQ1,PQ2), L)
);

5.4.4 A harder example: the primary decomposition of a Markov
ideal

Exercise 5.4.4. Consider the graphG with 5 vertices, and directed edges 5 →
4, 5 → 3, 4 → 2, 3 → 2, 2 → 1 (see Figure 5.2). Find a primary decomposition
of the global Markov ideal of this graph, in the case when the five random
variables are all binary (i.e. d1 = . . . = d5 = 2).

Before looking at the answer below, try this on your own. You should use
the marginMap trick or something similar to make the resulting ideal as simple
as possible.

We now present the answer to this exercise using Macaulay 2. We do
not use canned algorithms, although we do use routines independentSet,
saturation0, and flattener. saturation0 is the same as in the description
of saturation, except only the ideal is returned. As of this writing, no system
can do these primary decompositions in a small amount of time using canned
algorithms. However, by the time you read this, specific computations might
be much faster. So you should read this solution with a skeptical eye: we have
chosen a technique that seems to work faster at the moment. Your solution
might be different, and possibly more elegant, or more efficient in use of time
and computer memory.

First, let’s generate the ideal, and see what we are up against. You can
find this next file at the same web location as markov.m2.
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1

2

3 4

5

Fig. 5.2. The Bayesian network in Exercise 5.4.4

i82 : load "cimpa-tools.m2";

i83 : G = makeGraph {{},{1},{2},{2},{3,4}};

i84 : GM = globalMarkovStmts G;

i85 : GM/print;
{Set {1}, Set {4, 5, 3}, Set {2}}
{Set {1}, Set {4, 5}, Set {2, 3}}
{Set {5, 3}, Set {1}, Set {4, 2}}
{Set {5}, Set {1}, Set {4, 2, 3}}
{Set {1}, Set {4, 3}, Set {5, 2}}
{Set {1}, Set {4}, Set {5, 2, 3}}
{Set {3}, Set {1}, Set {4, 5, 2}}
{Set {5}, Set {2}, Set {4, 1, 3}}
{Set {5}, Set {1, 2}, Set {4, 3}}
{Set {3}, Set {4}, Set {5}}

These global Markov statements are all consequences of X1 ⊥⊥ {X3, X4, X5} |
X2, X5 ⊥⊥ {X1, X2} | {X3, X4}, and X3 ⊥⊥ X4 | X5.

i86 : R = markovRing(2,2,2,2,2);

As mentioned previously, it is often better to change coordinates using the
following margin map.

i87 : F = marginMap(1,R);

o87 : RingMap R <--- R

i88 : J = trim F markovIdeal(R,GM);

o88 : Ideal of R

i89 : betti J

o89 = generators: total: 1 74
0: 1 .
1: . 74
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The ideal J is minimally generated by 74 homogeneous quadrics, 72 of which
are binomials, and the last 2 have 28 monomials each. These last two gen-
erators increase the difficulty of the computation, especially for canned algo-
rithms. This ideal has codimension 20 and degree 2240:

i90 : (codim J, degree J)

o90 = (20, 2240)

o90 : Sequence

Our plan is to determine a primary decomposition of the ideal J. We could
start our computation in a number of ways. We choose to use the GTZ method,
at least for this first step.

i91 : u = independentSet J;

i92 : (inJ,h) = flattener(J,u);

i93 : degree inJ

o93 = 1

Since the degree is one, the projection map is birational, and so the ideal J0,
which we will compute now, is a rational prime.

i94 : J0 = saturation0(J,h);

o94 : Ideal of R

i95 : betti J0

o95 = generators: total: 1 175
0: 1 .
1: . 74
2: . .
3: . 101

i96 : (codim J0,degree J0)

o96 = (20, 1496)

o96 : Sequence

The prime component J0 of J coincides with the canonical component coming
from the factorization theorem. This ideal is generated by J, together with
101 quartics.

We would like to perform the ideal quotient (J : J0), but J0 has 101
quartics, and so the computation takes some time. Often it is the case that
such an ideal quotient is equal to (J : f), for some f . This happens with the
first element we try:

i97 : Jrest = J : J0_74;

o97 : Ideal of R

i98 : J == intersect(J0,Jrest)

o98 = true
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Since these are equal, and since we have computed Jrest as an ideal quotient,
an irredundant primary decomposition of Jrest will give an irredundant pri-
mary decomposition of J. As an exercise, you should try to compute the
primary decomposition of (J, h). It has many components which are not
needed.

The ideal Jrest is generated by J and the following 8 quadrics.
i99 : L = ideal(p_(1,1,1,1,2)*p_(1,1,2,2,2)+p_(1,1,2,2,2)*p_(1,2,1,1,2)

+p_(1,1,1,1,2)*p_(1,2,2,2,2)+p_(1,2,1,1,2)*p_(1,2,2,2,2),
p_(1,1,1,1,1)*p_(1,1,2,2,2)+p_(1,1,2,2,2)*p_(1,2,1,1,1)

+p_(1,1,1,1,1)*p_(1,2,2,2,2)+p_(1,2,1,1,1)*p_(1,2,2,2,2),
p_(1,1,1,1,2)*p_(1,1,2,2,1)+p_(1,1,2,2,1)*p_(1,2,1,1,2)

+p_(1,1,1,1,2)*p_(1,2,2,2,1)+p_(1,2,1,1,2)*p_(1,2,2,2,1),
p_(1,1,1,1,1)*p_(1,1,2,2,1)+p_(1,1,2,2,1)*p_(1,2,1,1,1)

+p_(1,1,1,1,1)*p_(1,2,2,2,1)+p_(1,2,1,1,1)*p_(1,2,2,2,1),
p_(1,1,1,1,2)*p_(1,1,2,2,2)+p_(1,1,2,2,2)*p_(1,2,1,1,2)

+p_(1,1,1,1,2)*p_(1,2,2,2,2)+p_(1,2,1,1,2)*p_(1,2,2,2,2),
p_(1,1,1,2,1)*p_(1,1,2,1,2)+p_(1,1,2,1,2)*p_(1,2,1,2,1)

+p_(1,1,1,2,1)*p_(1,2,2,1,2)+p_(1,2,1,2,1)*p_(1,2,2,1,2),
p_(1,1,1,2,2)*p_(1,1,2,1,1)+p_(1,1,2,1,1)*p_(1,2,1,2,2)

+p_(1,1,1,2,2)*p_(1,2,2,1,1)+p_(1,2,1,2,2)*p_(1,2,2,1,1),
p_(1,1,1,1,1)*p_(1,1,2,2,1)+p_(1,1,2,2,1)*p_(1,2,1,1,1)

+p_(1,1,1,1,1)*p_(1,2,2,2,1)+p_(1,2,1,1,1)*p_(1,2,2,2,1));

o99 : Ideal of R

i100 : Jrest == J + L

o100 = true

The next step is to decompose Jrest. We proceed in the same manner.
i101 : u = independentSet Jrest;

i102 : (inJrest,h) = flattener(Jrest,u);

i103 : degree inJrest

o103 = 1

Once again, the component J1 which we now compute is a rational prime
ideal, since the projection is birational.

i104 : factors h

o104 = {p + p , p + p , p , · · ·
1,1,2,2,2 1,2,2,2,2 1,1,2,1,2 1,2,2,1,2 1,2,2,2,2 · · ·

o104 : List

i105 : J1 = saturation0(Jrest,h);

o105 : Ideal of R

The ideal J1 has the following generators, in addition to those of J or
Jrest.

i106 : M = ideal(
p_(1,1,1,2,2)+p_(1,2,1,2,2),
p_(1,1,1,2,1)+p_(1,2,1,2,1),
p_(1,1,1,1,2)+p_(1,2,1,1,2),
p_(1,1,1,1,1)+p_(1,2,1,1,1),
p_(2,1,1,2,2)*p_(2,2,1,1,2)-p_(2,1,1,1,2)*p_(2,2,1,2,2),
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p_(2,1,1,2,1)*p_(2,2,1,1,2)-p_(2,1,1,1,2)*p_(2,2,1,2,1),
p_(2,1,1,2,2)*p_(2,2,1,1,1)-p_(2,1,1,1,1)*p_(2,2,1,2,2),
p_(2,1,1,2,1)*p_(2,2,1,1,1)-p_(2,1,1,1,1)*p_(2,2,1,2,1),
p_(1,2,1,2,2)*p_(2,1,1,1,2)-p_(1,2,1,1,2)*p_(2,1,1,2,2),
p_(1,2,1,2,1)*p_(2,1,1,1,2)-p_(1,2,1,1,2)*p_(2,1,1,2,1),
p_(1,2,1,2,2)*p_(2,1,1,1,1)-p_(1,2,1,1,1)*p_(2,1,1,2,2),
p_(1,2,1,2,1)*p_(2,1,1,1,1)-p_(1,2,1,1,1)*p_(2,1,1,2,1));

o106 : Ideal of R

i107 : J1 == J + M

o107 = true

i108 : J1 == Jrest + M

o108 = true

i109 : betti J1

o109 = generators: total: 1 74
0: 1 4
1: . 70

i110 : (codim J1, degree J1)

o110 = (20, 170)

o110 : Sequence

We could continue in the same manner, taking ideal quotients, hoping that
the ideals still intersect to give Jrest. However, we can use symmetry to find
three more prime ideals. One symmetry that is evident from the graph is to
interchange random variables 3 and 4:

i111 : s = map(R,R,toList apply((1,1,1,1,1)..(2,2,2,2,2), x -> (
p_(x#0,x#1,x#3,x#2,x#4))))

o111 = map(R,R,{p , p , p , p , p · · ·
1,1,1,1,1 1,1,1,1,2 1,1,2,1,1 1,1,2,1,2 1,1,1 · · ·

o111 : RingMap R <--- R

i112 : s L == L

o112 = true

A second symmetry is to interchange the values 1 and 2 of the ith random
variable. The permutation t changes these values for the 3rd random variable
(this is the only one that produces new ideals).

i113 : t = map(R,R,toList apply((1,1,1,1,1)..(2,2,2,2,2), x -> (
p_(x#0,x#1,3-x#2,x#3,x#4))))

o113 = map(R,R,{p , p , p , p , p · · ·
1,1,2,1,1 1,1,2,1,2 1,1,2,2,1 1,1,2,2,2 1,1,1 · · ·

o113 : RingMap R <--- R

i114 : t J == J

o114 = true
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i115 : t (J+L) == J+L

o115 = true

We now produce three new prime ideals from J1.
i116 : J2 = trim(J + s M)

o116 = ideal (p + p , p + p , p · · ·
1,1,2,1,2 1,2,2,1,2 1,1,2,1,1 1,2,2,1,1 1,1,1 · · ·

o116 : Ideal of R

i117 : J3 = trim(J + t M)

o117 = ideal (p + p , p + p , p · · ·
1,1,2,2,2 1,2,2,2,2 1,1,2,2,1 1,2,2,2,1 1,1,2 · · ·

o117 : Ideal of R

i118 : J4 = trim(J + s (t M))

o118 = ideal (p + p , p + p , p · · ·
1,1,2,2,2 1,2,2,2,2 1,1,2,2,1 1,2,2,2,1 1,1,1 · · ·

o118 : Ideal of R

We could attempt to produce other ideals, but we just obtain ones we have
already seen.

i119 : J4 == J + t (s (t M))

o119 = true

The following ideal quotients remove these components, leaving Jrest5.
i120 : Jrest2 = Jrest : M;

o120 : Ideal of R

i121 : Jrest3 = Jrest2 : (s M);

o121 : Ideal of R

i122 : Jrest4 = Jrest3 : (t M);

o122 : Ideal of R

i123 : Jrest5 = Jrest4 : (s (t M));

o123 : Ideal of R

i124 : Jrest == intersect(J1,J2,J3,J4,Jrest5)

o124 = true

The intersection is still correct. If there were embedded components, this
approach would still find the associated primes, but would not produce the
primary decomposition.

So, all we need to do is decompose Jrest5. It is easy to identify the ideal
after viewing it.

i125 : (codim Jrest5,degree Jrest5)

o125 = (20, 64)

o125 : Sequence
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i126 : P = ideal(R_0 .. R_15)

o126 = ideal (p , p , p , p , p · · ·
1,1,1,1,1 1,1,1,1,2 1,1,1,2,1 1,1,1,2,2 1,1,2,1 · · ·

o126 : Ideal of R

i127 : Jrest5 == Jrest + P^3

o127 = true

i128 : transpose gens trim(J+L+P)

o128 = {-1} | p_(1,2,2,2,2) |
{-1} | p_(1,2,2,2,1) |
{-1} | p_(1,2,2,1,2) |
{-1} | p_(1,2,2,1,1) |
{-1} | p_(1,2,1,2,2) |
{-1} | p_(1,2,1,2,1) |
{-1} | p_(1,2,1,1,2) |
{-1} | p_(1,2,1,1,1) |
{-1} | p_(1,1,2,2,2) |
{-1} | p_(1,1,2,2,1) |
{-1} | p_(1,1,2,1,2) |
{-1} | p_(1,1,2,1,1) |
{-1} | p_(1,1,1,2,2) |
{-1} | p_(1,1,1,2,1) |
{-1} | p_(1,1,1,1,2) |
{-1} | p_(1,1,1,1,1) |
{-2} | p_(2,1,2,2,2)p_(2,2,2,2,1)-p_(2,1,2,2,1)p_(2,2,2,2,2) |
{-2} | p_(2,1,2,1,2)p_(2,2,2,1,1)-p_(2,1,2,1,1)p_(2,2,2,1,2) |
{-2} | p_(2,1,1,2,2)p_(2,2,1,2,1)-p_(2,1,1,2,1)p_(2,2,1,2,2) |
{-2} | p_(2,1,1,1,2)p_(2,2,1,1,1)-p_(2,1,1,1,1)p_(2,2,1,1,2) |

20 1
o128 : Matrix R <--- R

In order to show that Jrest5 is a primary component, it suffices to show that
it is equidimensional, since its radical is a prime ideal.

i129 : u = independentSet Jrest5;

i130 : (inJrest5,h) = flattener(Jrest5,u);

i131 : Jrest5 == saturation0(Jrest5,h)

o131 = true

Therefore, Jrest5 is a primary ideal.
So finally we have the following primary decomposition of the original ideal

J.
i132 : J == intersect(J0, J+M, J+(s M),J+(t M),J+((s(t M))),J+L+P^3)

o132 = true

The ideal is equidimensional, something that was not a priori obvious. It is
also not a radical ideal.

Exercise 5.4.5. This is a more difficult exercise! Let G be the graph with
directed edges 5 → 3, 4 → 3, 5 → 1, 4 → 1, 3 → 2, 2 → 1. Let J be the
global Markov ideal of G. Show that J has 23 minimal prime ideals, and 17
embedded prime ideals.
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5.4.5 Other algorithms, and what to read next

Good papers to read next include [GTZ88], [SY96], and [DGP99].
The algorithm of Shimoyama and Yokoyama [SY96] (the SY algorithm)

uses the following observation. Suppose that P1, . . . , Pr are the minimal primes
of J , and that s1, . . . , sr are separators, i.e. si ∈ ∩j �=iPj , but si �∈ Pi. If
(J : sdi

i ) = (J : s∞i ), then

J = (J : s∞1 ) ∩ . . . ∩ (J : s∞r ) ∩ (J, sd1
1 , . . . , s

dr
r ).

The SY algorithm uses this equality to split an ideal. Each Ji := (J : s∞i ) has
radical Pi, but possibly has embedded primes too (These are so-called pseudo-
primary ideals). The algorithm proceeds recursively by using flatteners to split
these pseudo-primary ideals. This algorithm requires that the minimal primes
be computed first. One method is to use characteristic or triangular sets . See
[DGP99] for a description. Another method is to keep splitting

√
J , either

using ideal quotients or a factorizing Gröbner basis algorithm.
All of these algorithms use similar methods, with some novelties. With

more commutative algebra background, the paper by Eisenbud, Huneke and
Vasconcelos [EHV92] has very interesting techniques for computing radicals,
identifying associated primes, and computing primary decompositions (and
more!).

5.4.6 Some open problems

We close with a few open problems. The first challenge is to find better primary
decomposition algorithms.

As for Markov ideals, there are many open problems, see [GSS] for the
ones presented here. You will find other open problems there as well.

Problem 5.4.6. Find an efficient method for computing the associated primes
of an ideal, without first computing the entire primary decomposition.

There is a very nice solution to this problem, in [EHV92], but unfortu-
nately, there are many practical situations where their algorithm uses too
much time or memory to be competitive.

Problem 5.4.7. What is the condition on Bayesian networks G, (d1, . . . , dn)
for the ideal Iglobal(G) to be prime? radical? without embedded components?
Can one characterize the primary decomposition in terms of G and the di?

Problem 5.4.8. Prove that every associated prime of Ilocal(G) or Iglobal(G) is
rational.

Problem 5.4.9. Find the best way of putting the techniques for primary
decomposition together to handle certain classes of ideals, e.g.
(1) local and global Markov ideals.
(2) binomial ideals
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Problem 5.4.10. Prove that the degree 2 part of the ideal ker(Φ) (from lec-
ture 2) is exactly the same as the degree 2 part of Iglobal(G).

This is true for binary random variables, with n = 5, and any random
variables, if n ≤ 4, see [GSS].



6

Algorithms and their complexities

Juan Sabia
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Summary. This chapter is intended as a brief survey of the different notions and
results that arise when we try to compute the algebraic complexity of algorithms
solving polynomial equation systems. Although it is essentially self-contained, many
of the definitions, problems and results we deal with also appear in many other
chapters of this book. We start by considering algorithms which use the dense repre-
sentation of multivariate polynomials. Some results about the algebraic complexities
of the effective Nullstellensatz, of quantifier elimination processes over algebraically
closed fields and of the decomposition of algebraic varieties when considering this
model are stated. Then, it is shown that these complexities are essentially opti-
mal in the dense representation model. This is the reason why a change in the
encoding of polynomials is needed to get better upper bounds for the complexities
of new algorithms solving the already mentioned tasks. The straight-line program
representation for multivariate polynomials is defined and briefly discussed. Some
complexity results for algorithms in the straight-line program representation model
are mentioned (an effective Nullstellensatz and quantifier elimination procedures,
for instance). A description of the Newton-Hensel method to approximate roots of
a system of parametric polynomial equations is made. Finally, we mention some
new trends to avoid large complexities when trying to solve polynomial equation
systems.

6.0 Introduction and basic notation

The fundamental problem we are going to deal with, as in most other chapters
of this book, is to solve (over the field of complex numbers C) a system of
multivariate polynomial equations with coefficients in the field of rational
numbers Q algorithmically, but our particular point of view is related to the
question of whether we can predict how long our algorithms will take. Of
course, we should define what it means to solve such a system. A first possible
answer would be to decide whether there are any solutions to the given system,
and, in case there are solutions, to describe them in a ‘useful’ or at least in
an ‘easy’ way.
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Many attempts to do this are based on trying to transform our problem
into a linear algebra one. The reason for this is that we know how to solve
many linear algebra problems effectively.

The focus of our attention will be the algorithmic solutions to these prob-
lems; so, we are going to define what an algorithm is for us (perhaps a rather
inflexible definition but necessary to meet the requirements of our work).
Roughly speaking, the less time an algorithm takes to perform a task, the
better. This will lead to the definition of algebraic complexity, a kind of mea-
sure for the time an algorithm takes to perform what we want it to.

One of the problems we have when we deal with multivariate polynomials
is that the known effective ways to factorize them take a lot of time, so we
will try not to use this tool within our algorithms.

In the different sections of this chapter, we are going to state the problems
that will be taken into account and describe (or just mention, if the description
is beyond the scope of this survey) some ways of solving them.

Before we begin considering the problems, we need to fix some notation
and give some definitions:

A system of polynomial equations is a system⎧⎨⎩ f1(x1, . . . , xn) = 0
. . .

fs(x1, . . . , xn) = 0

where f1, . . . , fs are polynomials in C[X1, . . . , Xn] and the solutions considered
will be vectors (x1, . . . , xn) ∈ Cn. Whenever we want to speak about a group
of variables or a vector, we often use just a capital or lower case letter with no
index; for example in this case, we could have written C[X] or x ∈ Cn. The set
V ⊂ Cn of all the solutions of such a system will be called an algebraic variety
(or simply a variety if the context is clear). Its dimension is the minimum
number of generic hyperplanes such that their common intersection with V
is empty. For example, a point has dimension zero (a generic hyperplane does
not cut it); a line has dimension one (a generic hyperplane cuts it, but two
generic hyperplanes do not), etc. For a more precise definition of dimension
see, for example, [Sha77] or [CLO97].

From the algorithmic point of view, we deal exclusively with polynomials
with coefficients in Q but we still consider all the solutions to our systems in
Cn.

Sometimes it will be useful to take into account fields other than Q and
C. If k is a field, k will denote an algebraic closure of k.

6.1 Statement of the problems

In this section we are going to state some of the questions we usually want
to answer when dealing with systems of polynomial equations. Some of these
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problems are also mentioned or studied in other chapters of this book, but we
present them here for the sake of this chapter being self-contained.

6.1.1 Effective Hilbert’s Nullstellensatz

Let X = {X1, . . . , Xn} be indeterminates over Q. Given s polynomials
f1, . . . , fs ∈ Q[X], if we want to solve the system of polynomial equations⎧⎨⎩ f1(x1, . . . , xn) = 0

. . .
fs(x1, . . . , xn) = 0

the very first question we would like to answer is whether there exists any
point (x1, . . . , xn) ∈ Cn satisfying this system (that is to say, if the equations
f1 = 0, . . . , fs = 0 share a common solution in Cn).

When all the polynomials f1, . . . , fs have degrees equal to 1, the system
we are dealing with is a linear system and there is a simple computation of
ranks of matrices involving the coefficients of the polynomials which answers
our question:

Suppose our linear system is given by A.xt = B (with A ∈ Qs×n and
B ∈ Qs×1). Then

∃x ∈ Cn / A.xt = B ⇐⇒ rank(A) = rank(A|B)

(where (A|B) denotes the matrix we obtain by adding the column B to the
matrix A).

The first step towards a generalization of this result when we deal with
polynomials of any degree (generalization in the sense that it relates the ex-
istence of solutions to some computations involving the coefficients of the
polynomials considered) is the following well-known theorem:

Theorem 6.1.1. (Hilbert’s Nullstellensatz) Let f1, . . . , fs ∈ Q[X1, . . . , Xn].
Then the following statements are equivalent:
i) {x ∈ Cn / f1(x) = · · · = fs(x) = 0} = ∅.
ii) There exist polynomials g1, . . . , gs ∈ Q[X1, . . . , Xn] such that 1 =

∑
1≤i≤s

gi.fi.

(See Chapter 4 for other versions of this theorem.)
A proof of this theorem can be found in almost any basic textbook on al-

gebraic geometry (see for example [Har83], [Kun85] or [CLO97]). This result
was already known by Kronecker and it essentially shows how a geometric
problem (Is the variety defined as the common zeroes of a fixed set of polyno-
mials empty?) is equivalent to an algebraic one (Is 1 an element of the ideal
(f1, . . . , fs)?).

We will call an algorithm an effective Hilbert’s Nullstellensatz, if given
as input the polynomials f1, . . . , fs, the algorithm computes polynomials
g1, . . . , gs (in case they exist) such that

∑
1≤i≤s

gi.fi = 1.

Later on, we will mention some effective Hilbert’s Nullstellensätze.
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6.1.2 Effective equidimensional decomposition

Supposing we already know that a particular system of polynomial equations
has solutions, we may need to answer some questions about the geometry of
the algebraic variety they define in Cn: Does it consist only of finitely many
points? Is there a whole curve of solutions? Are there isolated solutions?, etc.

All these questions can be answered by means of geometric decomposi-
tions of the algebraic variety defined by the original system of polynomials.
These decompositions we are going to define are intimately bound up with
the primary decomposition of ideals considered in Chapter 2 and Chapter 5
but they do not coincide because our approach is exclusively geometric while
these others are purely algebraic.

Definition 6.1.2. An algebraic variety C ⊂ Cn is called irreducible if it
satisfies

C = C1 ∪ C2 where C1 and C2 are algebraic varieties ⇒ C = C1 or C = C2.

The following is a classical result from algebraic geometry. It states that
the affine space Cn is a Noetherian topological space when considering the
Zariski topology (that is, the topology in which the algebraic varieties are the
closed sets) and its proof can be found, for example, in [Sha77] or [CLO97].

Proposition 6.1.3. (Irreducible decomposition) Let V ⊂ Cn be an algebraic
variety. Then, there exist unique irreducible varieties C1, . . . , Cr such that
Ci �⊂ Cj if i �= j and

V =
⋃

1≤i≤r

Ci.

From our point of view and our definitions, the irreducible decomposition is
not algorithmically achievable. If this were so, just by considering the case n =
1, we would be able to find all the roots of any univariate rational polynomial
(note that the irreducible decomposition of {x ∈ C /

∏
1≤i≤d(x− αi) = 0} is

exactly
⋃

1≤i≤d{αi}). This is the reason why we are going to consider a less
refined decomposition of a variety.

Let V =
⋃

1≤i≤r Ci be the irreducible decomposition of the variety V and,
for every 0 ≤ j ≤ n, consider the union of all the irreducible components of
V of dimension j

Vj :=
⋃

{i / 1≤i≤r
and dim Ci=j}

Ci.

It is obvious that V =
⋃

0≤j≤n Vj where, for every 0 ≤ j ≤ n, either Vj = ∅ or
dimVj = j. This unique decomposition is called the irredundant equidimen-
sional decomposition (or equidimensional decomposition for short) of V .

Note that the information given by this decomposition still allows us to
answer all the questions we asked above. For example, a non-empty variety
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V consists only of finitely many points if and only if V0 �= ∅ and Vj = ∅ for
every 1 ≤ j ≤ n.

The equidimensional decomposition has the following property, nice from
the algorithmic point of view:

Proposition 6.1.4. Let f1, . . . , fs ∈ Q[X1, . . . , Xn] be polynomials and let
V ⊂ Cn be the algebraic variety of their common zeroes. If Vj is one of the
components appearing in the irredundant equidimensional decomposition of V ,
then there exist polynomials in Q[X1, . . . , Xn] defining Vj.

The core of this result is that there are rational polynomials defining Vj , so
we have a chance to compute the irredundant equidimensional decomposition
algorithmically using only rational coefficients.

We will call an algorithm an effective equidimensional decomposition algo-
rithm if given an algebraic variety V ⊂ Cn defined by rational polynomials,
the algorithm describes the varieties involved in its equidimensional decom-
position (i.e. its equidimensional components) as separate varieties.

A final comment has to be made about the irreducible decomposition of
a variety defined by rational polynomials: we could take into account only
varieties defined by rational polynomials as closed sets to define the rational
Zariski topology in Cn. If this is the case, the irreducible components of a vari-
ety will be still definable by rational polynomials. For example, in the case of
the variety defined by a squarefree polynomial, its rational decomposition will
essentially coincide with the factorization of the considered polynomial, but as
we have stated before, we do not want to deal with polynomial factorization,
and this is why we are not going to consider this problem. (For an algorithm
yielding this irreducible decomposition numerically, see Chapter 8.)

6.1.3 Effective quantifier elimination

Many interesting geometric and algebraic problems can be formulated as first
order statements over algebraically closed fields and a well-known result from
logic states that any first order formula in the language of algebraically closed
fields is equivalent to another formula without quantifiers (see [CK90] for
details). This is the reason why, in the last decades, special efforts have been
made to find efficient algorithms to eliminate quantifiers.

For the sake of simplicity, we will state precisely what elimination of quan-
tifiers means only in a very particular case:

Theorem 6.1.5. Let X1, . . . , Xn, Y1, . . . , Ym be indeterminates over Q and
let f1, . . . , fs, g1, . . . , gt ∈ Q[X1, . . . , Xn, Y1, . . . , Ym] be polynomials. Let

V := {x ∈ Cn / ∃y ∈ Cm : f1(x, y) = 0 ∧ . . . ∧ fs(x, y) = 0 ∧

∧ g1(x, y) �= 0 ∧ . . . ∧ gt(x, y) �= 0}.
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Then, there exists a quantifier free formula ϕ involving only polynomials in
Q[X1, . . . , Xn], equalities, inequalities and the symbols ∧ and ∨ such that

V = {x ∈ Cn / ϕ(x)}.
Let us give some simple examples to make this statement clearer.

Example 6.1.6. Suppose we want to describe the set of all the polynomials of
degree bounded by d in one variable that have at least a root in C. This set is

V := {(x0, x1, . . . , xd) ∈ Cd+1 / ∃ y ∈ C : xdy
d + xd−1y

d−1 + · · ·+ x0 = 0}.
Evidently, the Fundamental Theorem of Algebra states that a quantifier-free
way of defining V is

V = {(x0, x1, . . . , xd) ∈ Cd+1 / x0 = 0 ∨ x1 �= 0 ∨ x2 �= 0 ∨ · · · ∨ xd �= 0}.
Example 6.1.7. A very well-known example of a quantifier elimination proce-
dure from linear algebra is the use of the determinant. The set

V := {(xij) ∈ Cn×n / ∃(y1, . . . , yn, y′1, . . . , y′n) ∈ C2n :

(y1, . . . , yn) �= (y′1, . . . , y
′
n) ∧

⎧⎪⎨⎪⎩
x11y1 + · · ·+ x1nyn = x11y

′
1 + · · ·+ x1ny

′
n

. . .

xn1y1 + · · ·+ xnnyn = xn1y
′
1 + · · ·+ xnny

′
n

}

is exactly the subset of Cn×n defined by the determinant:

V = {(xij) ∈ Cn×n / det(xij) = 0}.
Example 6.1.8. The classical resultant with respect to a single variable Y be-
tween two polynomials f1, f2 ∈ Q[X1, . . . , Xn][Y ] monic in Y and of degree r
and s respectively is another example of eliminating quantifiers (for the defi-
nition and basic properties of the classic resultant between two polynomials,
some of which will be used later, see, for example, [CLO97], [Mig92], [vdW49]
or [Wal62]):

{x ∈ Cn / ∃y ∈ C : f1(x, y) = 0 ∧ f2(x, y) = 0} =
= {x ∈ Cn / ResY (f1(x, Y ), f2(x, Y )) = 0}.

For a more general definition of resultants as eliminating polynomials see
Chapter 2 and Chapter 1.

As before, we will say that we have an efficient quantifier elimination
procedure if we have an algorithm that, from a formula of the type

∃y ∈ Cm : f1(x1, . . . , xn, y) = 0 ∧ . . . ∧ fs(x1, . . . , xn, y) = 0 ∧
∧ g1(x1, . . . , xn, y) �= 0 ∧ . . . ∧ gt(x1, . . . , xn, y) �= 0,

produces a quantifier-free formula ϕ defining the same subset of Cn.



6 Algebraic Complexity 247

6.2 Algorithms and complexity

When we speak about efficiency related to polynomial equation solving, we
mean the existence of algorithms performing different tasks. But what do we
call an algorithm?

The idea of algorithm we deal with is the following: given some data in
a certain way (numbers, formulae, etc), an algorithm will be a sequential list
of fixed operations or comparisons that ends in some logical or mathematical
‘object’ we would like to compute. For example, suppose you want an algo-
rithm to solve the equation ax = b with coefficients in Q and that you can
deal with rational numbers algorithmically (that is to say, comparisons and
operations between rational numbers can be performed somehow). A possible
algorithm to do this would be the one shown in Figure 6.1.

a b

No

No

a = 0 ?

b = 0 ?
x = b/a

x = b/a

Yes

Yes

xEvery
is a solution

There is no
solution

The only solution
is

Fig. 6.1. A possible algorithm to solve the equation ax = b

Speaking a little more formally, our algorithms are directed acyclic graphs.
Each node of a graph represents an element of Q, an operation or a comparison
between two elements of Q. Each ‘incoming’ arrow denotes that the previously
computed element or condition is needed to perform the following operation.
Of course, as any graph, our algorithms have only finitely many nodes. A
further comment has to be said about the graphs being ‘acyclic’. As we want
to predict how long our algorithms will take to compute some object, we will
handle a very fixed or restricted family of algorithms: no ‘WHILE’ instruction
is admitted in our algorithms. We can replace each ‘WHILE’ instruction by a
‘FOR’, provided we know beforehand how many times we have to repeat the
procedure involved. So, an instruction of the kind ‘WHILE x > ε DO...’ is not
acceptable in our algorithms, unless it can be translated into one of the type
‘FOR i = 1 TO n DO...’ and therefore ‘disentangled’ into a known number of
sequential operations to avoid cycles in our graph.

The idea of complexity of an algorithm is related to the time it would take
the algorithm to perform the desired task. The more ‘complicated’ our graph
is, the longer the time it will take. So, a first measure of complexity to be
taken into account may be the number of nodes in the graph. This will be the
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notion of complexity we are going to use throughout these notes, also known
as sequential complexity.

Needless to say, this measure of complexity is not very accurate. For ex-
ample, it is much simpler for a machine to perform the sum 1 + 1 than to
add two huge numbers but our measure of complexity does not take this into
account. Moreover, it is generally quicker to compute a sum than a product.
These considerations give place to a number of different kinds of complexities
(non-scalar complexity, bit complexity, etc) which we will not take into ac-
count. But, of course, if an algorithm has a very high complexity in our terms,
then it will be useless to try to run it on any computer.

There are other possible variables to be taken into account when consider-
ing the feasibility of an algorithm: for instance, the space in memory needed
to perform it or whether it is well-parallelizable (that is to say, roughly speak-
ing, whether it can be run fast enough provided we can use simultaneously
a considerable number of processors at a time, or more precisely, that the
depth of the algorithm is polynomial in the log of its sequential complexity).
However, our approach to the subject is intended to be basic and we are not
going to consider these aspects in this chapter either.

To run an algorithm, we need to encode some given data: for the moment,
we will refer to the number of nodes we need to encode the input data our
algorithm can deal with as the size of the input. This size generally depends on
some quantities such as the number of variables and the number and degrees
of polynomials involved. We will say an algorithm is polynomial when its
complexity is bounded by a polynomial function in the size of the input.

We will also use the usual O notation to express orders of complexities:
given two functions f : N → N and g : N → N, we say that f = O(g) if and
only if there exists k ∈ N such that f(x) ≤ kg(x) for all x ∈ N.

6.3 Dense encoding and algorithms

As we are trying to solve algorithmic problems involving polynomials, we
need to encode them somehow. The first (and most naive) way of encoding
a polynomial is to copy the usual way a polynomial is given: as a sum of
monomials. To do this in a way a computer can understand it, we need to
know a bound for the degree of the polynomial and the number of variables
involved in advance. Then, we should order somehow all the monomials of
degree less than or equal to the known bound for the degree in the number
of variables involved. Once this is done, we can encode the polynomial as the
vector of its coefficients in the preset order.

For example, let f(X,Y ) = X2− 2XY + Y 2 + 3 be a polynomial we want
to encode. As we know deg(f) = 2, we only have to store the coefficients of the
monomials up to this degree. We previously fix an order for all the monomials
up to degree 2 in two variables, for example (1, X, Y,X2, XY, Y 2) and, using
this order, the polynomial f will be encoded as (3, 0, 0, 1,−2, 1).
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This way of encoding polynomials is called the dense encoding.
Let f be a polynomial of degree bounded by d (d ≥ 2) in n variables and

let us consider how many coefficients it has, that is to say how many numbers
will be needed to encode it (i.e. its size when considered as an input), provided
we are given a previous monomial ordering. According to our definition, we
have to compute how many monomials in n variables of degree bounded by d
there are, and the exact number is

(
d+n

d

)
. If we consider that we are working

with a fixed number of variables n but that the degrees can change, taking
d ≥ 2, we have that (

d+ n
d

)
=

∏
1≤i≤n

d+ i
i

≤ 2dn.

Furthermore, asymptotically in d we have that these two quantities are of
the same order because

dn∏
1≤i≤n

d+i
i

≤ n!

and this is why we say that a polynomial of degree d ≥ 2 in n variables has
O(dn) coefficients.

6.3.1 Hilbert’s Nullstellensatz and dense encoding

As we have seen in Section 6.1.1, an effective Hilbert’s Nullstellensatz is any
algorithm that, given as input the polynomials f1, . . . , fs ∈ Q[X1, . . . , Xn],
decides whether there exist polynomials g1, . . . , gs ∈ Q[X1, . . . , Xn] such that∑

1≤i≤s

gi.fi = 1 (6.1)

and computes a particular solution (g1, . . . , gs) to this identity.
The first step may be to find a bound for the possible degrees of some

polynomial solutions g1, . . . , gs to Equation (6.1) as a function of s, n and a
bound d for the degrees of the polynomials f1, . . . , fs. If we are able to do
so, our problem can be easily transformed into a linear algebra problem: we
could write new variables for the coefficients of the polynomials g1, . . . , gs
up to the degree we found as a bound and Equation (6.1) would turn into
a linear system by identifying the coefficients on the left with those on the
right. That is why some authors consider the following problem an effective
Hilbert’s Nullstellensatz:

Show explicitly a function ϕ : N3 → N satisfying the following property:
Let f1, . . . , fs ∈ Q[X1, . . . , Xn] such that deg(fi) ≤ d (1 ≤ i ≤ s). If 1 ∈

(f1, . . . , fs), there exist polynomials g1, . . . , gs ∈ Q[X1, . . . , Xn] with deg(gi) ≤
ϕ(n, s, d) (1 ≤ i ≤ s) such that

∑
1≤i≤s gi.fi = 1.

In the case the polynomials we obtain by homogenizing f1, . . . , fs have no
common zeros at infinity, the Fundamental Theorem of Elimination Theory
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(see [Laz77] and Chapter 1, for example) shows that ϕ(n, s, d) ≤ n(d− 1)+1,
but in the general case this bound does not work.

Just as an example, we are going to show a very elementary result of this
kind, where we obtain bounds similar to the ones obtained by G. Hermann
[Her26], whose proof was corrected in [MW83].

Theorem 6.3.1. Let f1, . . . , fs ∈ Q[X1, . . . , Xn] such that deg(fi) ≤ d (1 ≤
i ≤ s). If 1 ∈ (f1, . . . , fs), there exist polynomials g1, . . . , gs ∈ Q[X1, . . . , Xn]
with deg(gi) ≤ (3d)2

n−1
(1 ≤ i ≤ s) such that

∑
1≤i≤s gi.fi = 1.

Proof. We shall prove this theorem using induction on n.
For n = 1, let f1, . . . , fs ∈ Q[X] and suppose deg f1 = d ≥ deg fi (2 ≤

i ≤ s). If 1 =
∑

1≤i≤s hi.fi, applying the division algorithm by f1 in Q[X], we
have

hi = f1.qi + ri (2 ≤ i ≤ s).
Then we obtain, rearranging the sum, that

1 = f1.(h1 +
∑

2≤i≤s

qi.fi) +
∑

2≤i≤s

fi.ri.

As deg ri ≤ d−1 (2 ≤ i ≤ s), we have that deg(f1.(h1+
∑

2≤i≤s qi.fi)) ≤ 2d−1.
Therefore, calling g1 = h1 +

∑
2≤i≤s qi.fi and gi = ri (2 ≤ i ≤ s) we get that

1 =
∑

1≤i≤s gi.fi and deg gi ≤ d− 1 (1 ≤ i ≤ s).
Suppose now the result is true for n. Let f1, . . . , fs ∈ Q[X1, . . . , Xn+1] be

such that deg(fi) ≤ deg(f1) = d (2 ≤ i ≤ s).
We want to deal with polynomials which are monic with respect to a vari-

able. To do so, consider the following change of variables (where λ2, . . . , λn are
new parameters): X1 = Y1, X2 = Y2 +λ2Y1, . . . , Xn = Yn +λnY1. The polyno-
mials we obtain when applying this change of variables have maximum degree
in Y1 and their leading coefficients in this variable are the homogeneous parts
of maximum degree of the original polynomials evaluated in (1, λ2, . . . , λn).
Choosing a suitable n − 1-tuple such that these homogeneous parts do not
vanish, we get the desired linear change of variables.

So, without loss of generality, we can suppose every polynomial fi is monic
in X1. Introduce new variables U1, . . . , Us, V1, . . . , Vs and consider the poly-
nomials

F :=
∑

1≤i≤s

Uifi and G :=
∑

1≤i≤s

Vifi in Q[U, V ][X1, . . . , Xn+1].

The resultant of these polynomials with respect to the variable X1,

ResX1(F,G) ∈ Q[U, V ][X2, . . . , Xn+1]

is bi-homogeneous in the groups of variables (U, V ) of bi-degree (d, d). We are
going to prove that, if we write
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ResX1(F,G) =
∑
α,β

hα,β(X2, . . . , Xn+1)UαV β ,

f1, . . . , fs have a common root in Cn+1 if and only if (hα,β)|α|=d,|β|=d have a
common root in Cn.

If (x1, . . . , xn+1) ∈ Cn+1 is a common root of f1, . . . , fs, then

ResX1(F,G)(x2, . . . , xn+1)(U, V ) = 0

and therefore, (hα,β)|α|=d,|β|=d have a common root in Cn.
On the other hand, if (x2, . . . , xn+1) is a common root of (hα,β)|α|=d,|β|=d,

consider the polynomialsF andG in Q(U1, . . . , Us, V1, . . . , Vs)[X1, X2, . . . , Xn+1].
Then, F (X1, x2, . . . , xn+1) and G(X1, x2, . . . , xn+1) share a common root in
Q(U, V ). But, as the roots of F (X1, x2, . . . , xn+1) lie in Q(U) and the roots of
G(X1, x2, . . . , xn+1) lie in Q(V ), the common root must be in C. That is, there
exists x1 ∈ C such that F (x1, . . . , xn+1) = 0 and G(x1, . . . , xn+1) = 0. As the
variables U, V are algebraically independent, we conclude that (x1, . . . , xn+1)
is a common root of the polynomials f1, . . . , fs.

Then we have reduced the number of variables by one. Note that, because
of Hilbert’s Nullstellensatz, we have shown that

1 ∈ (f1, . . . , fs) ⇐⇒ 1 ∈ (hα,β)|α|=d,|β|=d.

ResX1(F,G) can be written as a linear combination of F and G. Taking
into account the degrees of the polynomials involved, we can state that there
exist polynomials R and S in Q[U, V ][X] of degree bounded by 2d2 in the
variables X such that ResX1(F,G) = RF + SG. Rewriting this identity into
powers of U and V , we have that

hα,β =
∑

1≤i≤s

p
(α,β)
i fi

where the polynomials p(α,β)
i have degrees bounded by 2d2. Using the in-

ductive hypothesis for the polynomials (hα,β)|α|=d,|β|=d whose degrees are
bounded by 2d2, the theorem follows. �

Evidently, this kind of bound is not good for algorithmic purposes. There
are much better bounds for the degrees of the polynomials appearing in the
Nullstellensatz but the proofs are beyond the scope of this survey. Brow-
nawell, in [Bro87], obtained the first single exponential bound ϕ(d, n, s) =
3min{n, s}ndmin{n,s} in the characteristic zero case. Then, in [Kol88] and
[FG90] the most precise bounds known up to now for any characteristic were
found: ϕ(d, n, s) = (max{3, d})n. In [SS95] a better bound for the particular
case when d = 2, namely ϕ(2, n, s) = n2n+2, was shown.

More precise bounds involving other parameters than d, n and s were
obtained in [Som97], [KSS97] and [GHM+98] (see Section 6.6.2).
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Let us make a final comment on the complexity of an algorithm that, using
the dense encoding of polynomials, decides whether the variety they define is
empty or not and, if it is empty, gives as output a linear combination of the
input polynomials equal to 1.

If the input polynomials f1, . . . , fs have degrees bounded by d and the
bound for the degrees of the polynomials involved in the linear combination
given by the Nullstellensatz is ϕ(d, n, s), then we only need to solve a system of
O ((ϕ(d, n, s) + d)n) linear equations in O(sϕ(d, n, s)n) variables (or to prove
that this system has no solution). The complexity of doing this, using the
techniques in [Ber84] and [Mul87], is of order O(s4.(ϕ(d, n, s) + d)4n).

Therefore, using the best Effective Nullstellensäzte known up to now, that
essentially state ϕ(d, n, s) = dn, the complexity of any algorithm using dense
encoding will be at least of order O(sdn2

) (see Proposition 6.3.4 below).

6.3.2 Quantifier elimination and dense encoding

Suppose now we are given s + t polynomials in Q[X1, . . . , Xn][Y1, . . . , Ym] of
degrees bounded by d and we want to give algorithmically a quantifier-free
formula equivalent to

∃y ∈ Cm : f1(x, y) = 0 ∧ · · · ∧ fs(x, y) = 0 ∧ g1(x, y) �= 0 ∧ · · · ∧ gt(x, y) �= 0.
(6.2)

Rabinowicz’s trick allows us to consider only equalities by means of a new
indeterminate Z and therefore, the previous formula is equivalent to

∃y ∈ Cm ∃z ∈ C : f1(x, y) = 0∧ · · · ∧ fs(x, y) = 0∧ (1− z. ∏
1≤i≤t

gi(x, y)
)

= 0.

For a fixed x ∈ Cn, using Hilbert’s Nullstellensatz, this last formula is
equivalent to

∃/p1, . . . , ps, ps+1 ∈ C[Y1, . . . , Ym, Z] / 1 =
∑

1≤i≤s

pifi + ps+1

(
1− Z.

∏
1≤i≤t

gi
)
.

Any effective Hilbert’s Nullstellensatz providing upper bounds for the de-
grees of the polynomials pi involved allows us to translate this last formula
into a quantifier-free formula in the coefficients of the polynomials fi and gj
by means of linear algebra. Suppose the linear system involved is A.Xt = B
where A ∈ C�×k and B ∈ C�. The non-existence of solutions is equivalent
to the condition rank(A) �= rank(A|B). Using that the rank of a matrix can
be computed by means of the determinants of its minors, this last condition
can be translated into a (very long) formula involving ∧, ∨, equalities and
inequalities to zero. This formula works for every x ∈ Cn and therefore, this
formula is equivalent to (6.2).
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It is evident that the better the effective Nullstellensatz we are using, the
smaller the complexity of this kind of algorithm will be, provided we compute
the rank of the matrices involved in a smart way (for example, using the
algorithm in [Mul87]).

Given a first order prenex formula ϕ (‘prenex’ meaning that there are sev-
eral blocks of existential and universal quantifiers placed at the beginning of
the formula) with coefficients over an algebraically closed field, let |ϕ| be its
length, i.e. the number of symbols needed to encode ϕ, let n be the number
of indeterminates involved, let D be one plus the sum of the degrees of the
polynomials that appear in ϕ and let r be the number of blocks of quantifiers.
Heintz and Wüthrich (see [Hei83] and [HW75]) exhibited elimination algo-
rithms for algebraically closed fields of given characteristic with complexity
bounded by |ϕ|DnO(n)

. In fact, in the 1940s, Tarski already knew the exis-
tence of elimination algorithms but he did not describe them explicitly (see
[Tar51]). Later, using the fundamental techniques described in [CG83] and
[Hei83], Chistov and Grigor’ev considered the problem for prenex formulae
and obtained in [CG84] and [Gri87] more precise complexity bounds of or-
der |ϕ|DnO(r)

. However, these bounds depend on arithmetic properties of the
base field involved because polynomial factorization algorithms are used as
subalgorithms. None of the algorithms mentioned before are efficiently well-
parallelizable. Finally, in [FGM90], a well-parallelizable elimination algorithm
within the same sequential complexity bounds obtained in [CG84] and [Gri87]
is constructed combining the methods in [Hei83] with some effective versions
of Hilbert’s Nullstellensatz (see Section 6.3.1). Moreover, the complexity of
this algorithm does not depend on particular properties of the base field k.
Later, the same result was obtained in [Ier89]. In the context of quantifier
elimination, it is also worth mentioning the work of Renegar (see [Ren92]) on
elimination over real closed fields since the bounds obtained there are very
sharp and imply the bounds for elimination over complex numbers.

6.3.3 Equidimensional decomposition and dense encoding

Different algorithms describing decompositions of an algebraic variety V have
been given. Chistov and Grigor’ev (see [CG83]) exhibit an algorithm for the
computation of the irreducible decomposition provided an algorithm that fac-
torizes multivariate polynomials with coefficients in the base field is given.
Giusti and Heintz (see [GH91]) present an algorithm for the equidimensional
decomposition of algebraic varieties which is well-parallelizable. Although we
do not include the proof of this last result here, we can state their main
theorem and the complexity obtained:

Theorem 6.3.2. Let f1, . . . , fs be polynomials in Q[X1, . . . , Xn] of degree
bounded by d and let V be the variety they define. There exists an algorithm
of complexity s5dO(n2) which computes, for every 0 ≤ i ≤ n, dO(n2) polynomi-
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als of degree bounded by dn defining the equidimensional component of V of
dimension i.

A more recent algorithm to decompose an algebraic variety using Bézoutian
matrices can be found in [EM99a]. However, the decomposition obtained there
may not be minimal (embedded components may appear) and the algorithm
is probabilistic (see Section 6.6.1).

6.3.4 A lower bound

In this section, we are going to show that the better bounds already obtained
(and mentioned before) for the efficient Hilbert’s Nullstellensatz are of the
best possible order.

To do so, we are going to state a very well-known example by Masser and
Philippon (see [Bro87]) that gives a very high lower bound for the degrees of
the polynomials appearing in the Nullstellensatz:

Example 6.3.3. Take the following polynomials in Q[X1, . . . , Xn]:

f1 = Xd
1 , f2 = X1 −Xd

2 , . . . , fn−1 = Xn−2 −Xd
n−1, fn = 1−Xn−1X

d−1
n .

If g1, . . . , gn ∈ Q[X1, . . . , Xn] are polynomials such that 1 =
∑

1≤i≤n gifi,
consider a new variable T and evaluate the polynomials in the following vector
of elements in Q(T ):

(T (d−1)dn−2
, . . . , T d−1, 1/T ).

Note that, under such evaluation, all the polynomials fi vanish for 2 ≤ i ≤ n
and so we have that

1 = g1
(
T (d−1)dn−2

, . . . , T d−1, 1/T
)
T (d−1)dn−1

.

This identity implies that degXn
(g1) ≥ (d − 1)dn−1 and therefore deg g1 ≥

(d− 1)dn−1.

This simple example shows that, with the notation above, a lower bound
for the degrees of the polynomials gi appearing in the expression 1 =∑

1≤i≤s gi.fi is dO(n), and therefore we have

Proposition 6.3.4. Any general algorithm that, from an input of s polyno-
mials f1, . . . , fs ∈ Q[X1, . . . , Xn] of degrees bounded by d, computes (provided
they exist) polynomials g1, . . . , gs ∈ Q[X1, . . . , Xn] such that 1 =

∑
1≤i≤s gi.fi

and encodes them in dense form must have complexity of order at least O(dn2
).

Moreover, in [FGM90], it is shown that, from the point of view of overall
complexity, the complexities they attain for the quantifier elimination algo-
rithm are optimal when using dense encoding. In fact, they prove the following
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Theorem 6.3.5. There exists a sequence of first order formulae (containing
quantifiers and two free variables) ϕk (k ∈ N) over an algebraically closed field
with the following properties:

• |ϕk| = O(k)
• For each quantifier free formula θ equivalent to ϕk involving the polyno-

mials F1, . . . , Fs, there exists i, 1 ≤ i ≤ s, such that degFi ≥ 22ck

, where
c > 0 is a suitable constant.

Note that this theorem states lower bounds for the degrees of the poly-
nomials appearing in the output formula, and the greater the degrees, the
greater the number of nodes needed to encode them.

6.4 Straight-line Program encoding for polynomials

6.4.1 Basic definitions and examples

The comments in Section 6.3.4 show us that it is impossible to obtain more
efficient general algorithms when dealing with dense encoding of polynomials.
There are at least two ways of avoiding this problem: the first one is to change
the form the polynomials are encoded (that is to say, to try to find a shorter
way for encoding polynomials) while the second one is to design non-general
algorithms which can only solve special problems but within a lower com-
plexity. We will now discuss the first of these: changing the way we encode
polynomials.

One attempt that has been made to change the representation of poly-
nomials is the so-called ‘sparse’ encoding, which consists in specifying which
monomials of a given polynomial have non-zero coefficients and which are
these coefficients. Suppose a polynomial P has only a few monomials with
respect to its degree. The sparse encoding will consist of a number of vectors
which specify the (non-zero) coefficient of every monomial appearing in P . For
example, if P = 2X15Y 4 + 2X7Y 3 − 3X2 + 1, it can be encoded by a vector
of four three-tuples, one for each of the monomials appearing in P . In each
three-tuple, the first coefficient would stand for the degree of the monomial
in X, the second one for the degree of the monomial in Y and the third one
would be the coefficient of the monomial, that is, P would be encoded in the
following way

P := ((15, 4, 2); (7, 3, 2); (2, 0,−3); (0, 0, 1))

instead of using a vector of
(
21
2

)
= 210 coordinates.

This way of encoding polynomials has proved to be efficient when dealing
with particular families of polynomials (see, for example, Chapter 7 and Chap-
ter 3) and there is a lot of theory and many algorithms that use the sparse
encoding. For a complete background of this theory (including sparse resul-
tants, Newton polytopes, toric varieties and Bernstein theorem, among other
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interesting and very useful notions) we suggest the reader refer to [CLO98],
[GKZ94] and [Ful93].

However, it is not clear whether it is worth it to use this sparse encoding in
a general algorithm: the output polynomials may have too many monomials.
Moreover, the sparse encoding does not behave well under linear changes of
coordinates in the sense that a ‘short’ polynomial in the sparse form can
change into a very ‘long’ one by means of a linear change of variables: note
that

(X + Y )100 =
∑

0≤i≤100

(
100
i

)
XiY 100−i

(that is, a single monomial may turn into a polynomial with many monomials
under a linear change of variables).

An alternative way to encode polynomials (the one we are going to study
here) is based on the following idea:

Let P be the polynomial P := (X + Y )100 − 1. Why can we define this
polynomial so easily (that is to say, using a small number of symbols) but it
takes so much space to encode it for a machine (in both the sparse and the
dense encoding)?

The answer perhaps is that we are used to thinking of a polynomial as
a ‘formal expression’ rather than a function that can be evaluated. But, as
far as fields of characteristic zero are concerned, polynomial functions and
polynomials can be considered as the same objects. Therefore, if we define a
polynomial function by defining its exact value at every point (that is to say,
by means of describing how to evaluate it), we will be defining a polynomial.
In the previous example, the polynomial P would be the only polynomial in
Q[X,Y ] such that, to evaluate it at a pair (x, y), you have to compute the
sum of x and y to the 100-th power and subtract 1 from the result. This way
of encoding a polynomial will be called a straight-line program. Let us put
these ideas more precisely:

Definition 6.4.1. Let X1, . . . , Xn be indeterminates over Q and let R ∈ N.
An element β := (Q1, . . . , QR) ∈ Q(X1, . . . , Xn)R is a straight-line pro-
gram (slp for short) if each Qρ satisfies one of the following two conditions:

• Qρ ∈ Q ∪ {X1, . . . , Xn} or
• ∃ρ1, ρ2 < ρ and ∗ ∈ {+,−, ·,÷} such that Qρ = Qρ1 ∗Qρ2 .

We say β is a division-free slp if Qρ = Qρ1 ÷Qρ2 ⇒ Qρ2 ∈ Q− {0}.
From now on, we are only going to deal with division-free slp’s. Note

that, in this case, each element Qρ is a polynomial in Q[X1, . . . , Xn]. If F ∈
{Qρ / 1 ≤ ρ ≤ R}, we say that β computes or calculates F .

There are several measures of complexity that can be taken into account
when considering slp’s. For example:

• The total length of β (denoted by L(β)) is the quantity of operations
performed during the slp β (more precisely, it is the number of coordinates
Qρ defined as the result of an operation between two previous coordinates).
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• The additive length of β (L±(β)) is the quantity of sums and subtractions
performed during the slp.

• The non-scalar length of β (LQ(β)) is the number of products between two
non-rational elements performed during the slp.

Given any polynomial F ∈ Q[X1, . . . , Xn] we will define its total length
(also called total complexity) as

L(F ) := min{L(β) / β is an slp computing F}.
We can respectively define L±(F ) and LQ(F ).

Exercise 6.4.2. Prove that, for any F ∈ Q[X1, . . . , Xn], L(F ) = O((LQ(F ))2).

From now on, unless it expressly stated, we will only consider the total
length of an slp of a polynomial and, for the sake of shortness, we will simply
call it its length.

As an example, we are going to show an slp that calculates the polynomial
F (X) = 1+X+X2 +X3 + · · ·+X2j−1 efficiently. Of course, we can compute
every power of X and then add them up, but it would yield an slp of length
2j+1 − 3. A better slp computing F , based on the binary expansion of any
positive integer up to 2j − 1 is the following one :

β :=
(
1, X,X2, X4, . . . , X2j−1

, 1 +X, 1 +X2, 1 +X4, . . . , 1 +X2j−1
,

(1 +X)(1 +X2), (1 +X)(1 +X2)(1 +X4), . . . ,
∏

0≤i≤j−1

(1 +X2i

)
)

and L(β) = 3j − 2.
Another well-known example of slp encoding a polynomial is Horner’s rule

for univariate polynomials:

a0+a1X+a2X2+· · ·+adX
d = (a0+X(a1+X(a2+X(. . . (ad−1+adX) . . . ))).

The length of this slp is 2d and it involves d products and d sums. It
can be proved that the number of sums and the number of products involved
in any slp computing this polynomial are bounded by d when the elements
X, a0, . . . , ad are algebraically independent (see, for example, [BCS97]).

Exercise 6.4.3. Let P ∈ Q[X,Y ] be a polynomial whose sparse encoding is
P = ((m1, n1, c1), . . . , (ms, ns, cs)). Find a bound for L(P ).

Exercise 6.4.4. Find an infinite family of polynomials in Q[X,Y ] such that
the number of nodes needed to encode each of them into the sparse form is
(much) greater than its length.

Exercise 6.4.5. Given a generic polynomial of degree d in Q[X,Y ], find an
upper bound for its length.
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Exercise 6.4.6. Try to generalize the three previous exercises to the case of
n-variate polynomials.

A last comment has to be made about the complexity of algorithms when
dealing with straight-line programs. An slp can be obviously considered as a
directed acyclic graph without branchings and, therefore, it has nodes. The
complexity of an algorithm using the slp encoding will be the total number of
nodes, that is to say, the ones arising as operations or comparisons plus the
internal nodes of the slp’s involved.

6.4.2 Some apparent disadvantages

When we are dealing with slp’s to encode polynomials, we face a fundamental
problem: the same polynomial may be encoded by means of many different
slp’s. So, it is not straightforward to verify a polynomial identity.

Suppose you are given an slp of length L that evaluates a polynomial F
in n variables of degree bounded by d. If you want to know whether F ≡ 0, a
naive attempt would be to interpolate F , but it would take so many points to
do so that the complexity of doing this would again be too large (within the
same order as the number of nodes needed in the dense representation of F ).

Another way to solve the problem is to find a smaller particular set of
points such that two polynomials of bounded length and degree coincide if
and only if they coincide when evaluated in all these points. Luckily, there is
a result due to Heintz and Schnorr stating the existence of this set:

Theorem 6.4.7. (see [HS82]) Let W̃ (d, n, L) ⊂ Q[X1, . . . , Xn] be the set of
polynomials of degree bounded by d that can be calculated by means of an slp
of length L. Let Γ ⊂ Q be a set of 2L(1 + d)2 elements. Then, there exists a
set of points {α1, . . . , αm} ⊂ Γn with m = 6(L+ n)(L+ n+ 1) satisfying

F ∈ W̃ (d, n, L) such that F (αi) = 0 ∀ 1 ≤ i ≤ m⇒ F ≡ 0.

The set {α1, . . . , αm} is called a correct test sequence or a set of questors.
Unfortunately, we do not know how to construct such a set within a reasonable
cost. A way to avoid this problem is to consider probabilistic algorithms (which
we will briefly discuss later in Section 6.6.1).

Another question we can ask is how many polynomials can be evaluated
easily (that is to say, can be calculated by means of short slp’s). The answer
again, as we are going to see now, is not very encouraging (see [Sch78] and
[HS80]):

For fixed n, d and L, let us consider the set of all the polynomials F ∈
Q[X1, . . . , Xn] with deg(F ) ≤ d and non-scalar length LQ(F ) ≤ L.

Observe that each of these polynomials can be computed by a ‘non-scalar’
slp (that is to say, the only coordinates we are taking into account in this slp
are the products between non-scalar elements)
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β := (β−n+1, . . . , β0, β1, . . . , βL)

where β−n+i = Xi (1 ≤ i ≤ n) and, defining β−n := 1,

βk =

⎛⎝ ∑
−n≤j≤k−1

a
(k)
j .βj

⎞⎠ .
⎛⎝ ∑

−n≤j≤k−1

b
(k)
j βj

⎞⎠ .
Considering new variables A(k)

j and B(k)
j (1 ≤ k ≤ L; −n ≤ j ≤ k −

1), there exist polynomials Q(k)
α ∈ Q[A(k)

j , B
(k)
j ] such that the coefficients

of any polynomial Fk that can be computed in the k-th step of β are the
specializations of these polynomials in some rational vectors a and b, that is
to say

Fk =
∑
α

Q(k)
α (a, b)Xα.

So we have

Proposition 6.4.8. For every L, n ∈ N there exist Qα ∈ Z[T1, . . . , Tm] poly-
nomials with m = (L + n)(L + n + 1), α ∈ (N0)n, |α| ≤ 2L, degQα ≤ 2|α|L
such that for every F ∈ Q[X1, . . . , Xn] satisfying LQ(F ) ≤ L,

F =
∑
α

Qα(t)Xα for some t ∈ Qm.

Now, we can consider the morphism obtained by evaluating the family of
polynomials (Qα : |α| ≤ d):

(Qα : |α| ≤ d) : C(L+n)(L+n+1) → C(n+d
n ).

Therefore, if F :=
∑

α cαX
α ∈ Q[X1, . . . , Xn] is any polynomial that has

deg(F ) ≤ d and non-scalar length LQ(F ) ≤ L, considering it as the vector
(cα) ∈ Q(n+d

n ), it turns out that F ∈ Im(Qα : |α| ≤ d).
As a consequence, we have that, for fixed d, n, L ∈ N, the set

W (n, d, L) := Im(Qα : α ∈ (N0)n, |α| ≤ d) ⊂ C(n+d
n )

is a closed set that contains all the vectors of coefficients of polynomials F ∈
Q[X1, . . . , Xn] such that degF ≤ d and LQ ≤ L.

A very important remark is that, as W (n, d, L) is defined by means of a
polynomial function in (L+n)(L+n+1) variables, its dimension is bounded by
dimW (n, d, L) ≤ (L+n)(L+n+ 1). This can be interpreted in the following
way: the polynomials of degree bounded by d with non-scalar complexity
bounded by L considered in C(n+d

n ) (a space of dimension
(
n+d

n

)
), lie in a

variety of dimension (L+n)(L+n+1). So, as long as L satisfies (L+n)(L+
n + 1) <

(
n+d

n

)
, there are very few polynomials easy to evaluate since the
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complement of the variety they lie in is a non-empty open set in the Zariski
topology. Therefore, most polynomials are difficult to evaluate.

Taking these last observations into account, one may wonder if it would
be useful to deal with slp’s when trying to solve polynomial equations. The
answer is affirmative as we will see in the following sections.

6.4.3 A fundamental result

In [GH93], Giusti and Heintz obtain a fundamental result using for the first
time straight-line programs to solve algorithmically a problem related to solv-
ing a system of polynomial equations. In that paper, they give a polynomial
algorithm that can decide whether a given algebraic variety V is empty or
not from the polynomials defining V encoded in dense form. In fact, they go a
little further: given polynomials, encoded in dense form and defining a variety
V , they can find the dimension of V algorithmically in polynomial time.

In a first step, they design an algorithm that, given polynomials defining
a variety V , computes a variety Z, either zero-dimensional or empty, satis-
fying the following conditions (V0 will denote, as usual, the zero-dimensional
equidimensional component of V ):

• V0 ⊂ Z ⊂ V (that is to say, all the isolated points of V are in Z and all
the points of Z are points in the variety.)

• The way Z is presented makes it ‘easy’ to decide whether it is empty or
not (a more precise description of this way of presenting Z will be given
in Section 6.4.4).

Note that, if we already know that the variety V is either empty or has
dimension 0, we can decide if it is empty by means of this result (V = ∅ ⇐⇒
Z = ∅).

The general idea of the algorithm computing the dimension of V is the
following: suppose the variety V is defined by f1, . . . , fs ∈ Q[X1, . . . , Xn].
Generally, if it is not empty, when we cut it with a hyperplane H1, we will
obtain a variety V ∩H1 of dimension dimV − 1. Continuing this process with
‘generic’ hyperplanes, we have that, after dimV + 1 steps, by reducing the
dimension by one in each step, we get the empty set. Then, as dimV ≤ n,
when we cut it with n+ 1 ‘generic’ hyperplanes we obtain the empty set:

V ∩H1 ∩ · · · ∩Hn+1 = ∅.

So, we have that V ∩H1∩· · ·∩Hn is either the empty set or a variety consisting
only of isolated points and we are under the required hypotheses to decide
whether it is empty or not. If it is not empty, then dimV = n. If it is empty,
we consider the variety V ∩H1 ∩ · · · ∩Hn−1 and repeat the process. After at
most n+ 1 steps we will know the dimension of V (because it is equal to the
minimum number of ‘generic’ hyperplanes we have to cut V with to obtain
the empty set minus one).



6 Algebraic Complexity 261

The sets of n+1 hyperplanes that do not satisfy the desired conditions can
be considered as elements of a proper closed set in a proper affine space CN ,
that is to say the whole construction we have made works for almost every
set of n + 1 hyperplanes. This is what we meant by ‘generic’ hyperplanes in
the last paragraph.

The proof of the result by Giusti and Heintz is beyond the scope of this
survey, but we are going to take into account some of the ideas used there.

6.4.4 An old way of describing varieties: the Shape lemma

In [GH93], Giusti and Heintz use a particular way of defining zero-dimensional
varieties which was already used by Kronecker (see [Kro82]). This way of pre-
senting the variety is called a shape lemma presentation or a geometric resolu-
tion of the variety. (This same description is presented under different names
in other chapters of this book: single variable representation in Chapter 2,
univariate representation in Chapter 3 and shape lemma in Chapter 4.) The
idea of this presentation is quite simple:

Suppose we are given a zero-dimensional variety Z ⊂ Cn defined by poly-
nomials in Q[X1, . . . , Xn] and consisting of D points

x(1) = (x(1)
1 , . . . , x

(1)
n ), . . . , x(D) = (x(D)

1 , . . . , x(D)
n ).

Suppose also that their first coordinates are all different from one another.
Therefore, we can obtain a polynomial Q ∈ Q[T ] of degree D whose zeroes
are exactly these first coordinates; namely

Q =
∏

1≤i≤D

(T − x(i)
1 ).

Moreover, using interpolation, fixing an index j, (2 ≤ j ≤ n), there exists a
unique polynomial Pj ∈ Q[T ] of degree bounded by D−1 such that Pj(x

(i)
1 ) =

x
(i)
j for every 1 ≤ i ≤ D. Then,

Z = {x ∈ Cn / Q(x1) = 0 ∧ x2 − P2(x1) = 0 ∧ · · · ∧ xn − Pn(x1) = 0}.
This parametric description of Z (note that all coordinates are parame-

trized as functions of x1) has the additional property of telling us how many
points are in Z (this quantity coincides with the degree of Q).

The only inconvenience of this description is that we need the first co-
ordinates of the points to be different from one another and this is not al-
ways the case. The way to solve this is to consider an affine linear form
�(X) = u0 + u1X1 + · · · + unXn in Q[X1, . . . , Xn] such that �(x(i)) are all
different from one another (in this case we say either that � is a primitive
element of Z or that � separates the points in Z).

Now, we are able to define what we call a geometric resolution of a zero
dimensional variety:
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Definition 6.4.9. Let Z = {x(1), . . . , x(m)} ⊂ Cn be a zero-dimensional vari-
ety defined by polynomials in Q[X1, . . . , Xn]. A geometric resolution of
Z consists of an affine linear form �(X) = u0 + u1X1 + · · · + unXn in
Q[X1, . . . , Xn], and polynomials Q, P1, . . . , Pn ∈ Q[T ] (where T is a new
variable) such that:

• �(x(i)) �= �(x(k)) if i �= k.
• Q(T ) =

∏
1≤i≤D(T − �(x(i)))

• For 1 ≤ j ≤ n, degPj ≤ D − 1 and

Z = {(P1(ξ), . . . , Pn(ξ)) / ξ ∈ C such that Q(ξ) = 0}.
As this description of Z is uniquely determined up to � we call it the

geometric resolution of Z associated to �.
For the sake of simplicity, we also define the notion of geometric resolution

for the empty set, and in this case, the polynomial Q is 1.
Although this definition is quite easy to understand, the problem underly-

ing it is to find (given the zero-dimensional variety Z ⊂ Cn defined by polyno-
mials f1, . . . , fs) a proper linear form and the polynomials Q,P1, . . . , Pn (note
that our definition is based on the coordinates of the points in Z!).

In [GH93] Giusti and Heintz do not find the exact geometric resolution
of the isolated points of a variety V but they are able to find a linear form
� which separates the isolated points of V , a polynomial which vanishes over
the specialization of � in the isolated points of V and, by means of them,
they find a geometric resolution of a zero-dimensional variety Z, satisfying
V0 ⊂ Z ⊂ V . Given the polynomials defining V , in a first step they introduce
a new variable to make a deformation in order to reduce the problem to
the case of a zero-dimensional projective variety. Then, using some ideas and
results of [Laz77] about the regularity of the Hilbert function of a suitable
graded ring and some linear algebra algorithms ([Ber84] and [Mul87]), they
obtain the characteristic polynomials of several linear maps which allow them
to get the desired geometric resolution.

Note that, if the variety V is zero-dimensional, the algorithm of [GH93]
computes a geometric resolution of V . For an improved and more detailed
version of this construction of a geometric resolution of a zero-dimensional
variety from polynomials defining it, see [KP96].

6.4.5 Newer algorithms, lower bounds

The paper we have already mentioned ([GH93]) is a milestone in the devel-
opment of algorithms solving polynomial equations symbolically. The main
theorem proved there is:

Theorem 6.4.10. There exists an algorithm that, given polynomials f1, . . . , fs
in Q[X1, . . . , Xn] of degrees bounded by d in the dense encoding defining an
algebraic variety V ⊂ Cn, computes dimV within complexity sO(1)dO(n).
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Note that this result allows us to answer the first question concerning a
polynomial equation system (whether its set of solutions is empty or not) just
by computing its dimension.

Some of the problems stated have since been solved within polynomial
time (that is to say, by means of polynomial algorithms), by using different
tools.

In [GHS93], given polynomials f1, . . . , fs ∈ Q[X1, . . . , Xn] such that the va-
riety they define is empty, a family of polynomials g1, . . . , gs ∈ Q[X1, . . . , Xn]
such that 1 =

∑
1≤i≤s gi.fi holds is constructed. The polynomials g1, . . . , gs

have degree bounded by dO(n2) and are obtained in an slp encoding. The
complexity of the whole algorithm is sO(1)dO(n) (compare with the end of
Subsection 6.3.1). In [FGS95] the same problem is re-considered by using du-
ality theory and a complete different algorithm is designed so that the new
polynomials g1, . . . , gs obtained have degree bounded by dO(n).

A quantifier elimination algorithm using slp’s was obtained in [PS98]. The
main result there is more general than the one we have stated above, but
adapted to our case it would essentially mean that the elimination stated
before can be done in polynomial time in the size of the input.

We can also mention polynomial algorithms for the equidimensional de-
composition of varieties(see [JS02] and [Lec00]). However, these algorithms are
probabilistic (see Section 6.6.1 for a brief account on probabilistic algorithms).

6.5 The Newton-Hensel method

The use of slp’s as a way of encoding polynomials made it possible to adapt
algorithmically a very well-known concept, the Newton-Hensel method, which
can be seen as a particular version of the implicit function theorem. (Compare
with the Hensel operator defined in Chapter 9.)

Let T1, . . . , Tm, X1, . . . , Xn be indeterminates over a field Q. Given t ∈ Cm,
T − t will represent the vector (T1 − t1, . . . , Tm − tm).

Let f1, . . . , fn ∈ Q[T,X] be polynomials. We will denote by f the vector
of polynomials (f1, . . . , fn), by Df the Jacobian matrix of f with respect to
the indeterminates X and by Jf its determinant.

Lemma 6.5.1. Let f1, . . . , fn ∈ Q[T,X] and let (t, ξ) ∈ Cm × Cn such that

f1(t, ξ) = 0, . . . , fn(t, ξ) = 0 and Jf(t, ξ) �= 0.

Then, there exists a unique n-tuple of formal power series R = (R1, . . . ,Rn) ∈
C[[T − t]]n such that:

• f1(T,R) = 0, . . . , fn(T,R) = 0
• R(t) := (R1(t), . . . ,Rn(t)) = ξ.
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Proof. (This is only a sketch; for a very detailed proof of this fact, see for
example [HKP+00].)

Given f(X) = (f1(T,X), . . . , fn(T,X)), we define the Newton-Hensel op-
erator associated to it as

Nf (X)t := Xt −Df(X)−1.f(X)t.

Note that Jf(X) is not the zero polynomial (from our hypothesis, Jf(t, ξ) �=
0) and, therefore, our definition makes sense.

We define the following sequence of rational functions:{
R(0) := ξ
R(k) := Nf (R(k−1)) = Nk

f (ξ) for k ∈ N

The first thing to take into account is whether we can define this sequence
(that is to say, if we do not try to divide by zero) but this fact can be induc-
tively proved using that R(k)(t) = ξ.

The following conditions are fulfilled (this can be proved recursively):

• fi(T,R(k)) ∈ (T − t)2k ⊂ C[[T − t]] for every 1 ≤ i ≤ n
• R(k+1)

j −R(k)
j ∈ (T − t)2k ⊂ C[[T − t]] for every 1 ≤ j ≤ n

where (T−t) indicates the ideal in C[[T−t]] generated by T1−t1, . . . , Tm−tm.
Therefore, the sequences (R(k)

j )k∈N are convergent (1 ≤ j ≤ n) and the
n-tuples of their limits R := (R1, . . . ,Rn) is the vector we are looking for.

�

Just to show how this works, we are going to discuss an example briefly.

Example 6.5.2. Given n polynomials of degrees d1, . . . , dn in n variables defin-
ing a zero-dimensional variety V and for a generic linear form �, we show how
to compute, in many cases at least, the polynomial Q(T ) of Definition 6.4.9
that leads to a geometric resolution of V :

We consider generic polynomials f1, . . . , fn of degrees d1, . . . , dn in the
variables X1, . . . , Xn:

f1(T,X) =
∑

|α|≤d1

T (1)
α Xα

...

fn(T,X) =
∑

|α|≤dn

T (n)
α Xα

(note that each coefficient of fi is a new variable T (i)
α ).

Consider the variety W := {(x1, . . . , xn) ∈ Cn / xd1
1 −1 = 0, . . . , xdn

n −1 =
0}. Of course, we know all the points in this set: they are n-tuples of roots
of unity. Let t be the vector of coefficients of the polynomials defining W .
Therefore we are under the conditions needed to apply Lemma 6.5.1 because
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we have that, for every ξ ∈W , (t, ξ) is a particular instance of (T,X) that sat-
isfy the needed hypotheses (it is easy to see that in this instance, Jf(t, ξ) �= 0).
Then, by applying the Newton-Hensel algorithm we can approximate vectors
of power series in T − t which will be roots of the original system and we can
do it as precisely as we want.

We will have then
∏

1≤i≤n di different (approximations of) vectors of power
series that should be all the roots of the original system in C(T ) (it can be
seen that the system we are dealing with has dimension zero when we think
of T as a set of parameters and Bézout’s theorem states that the number of
solutions is bounded by

∏
1≤i≤n di).

Suppose that, from every ξ ∈ W , we obtain the associated solution Rξ ∈
C[[T − t]]n of the original system. Then∏

ξ∈W

(Y − �(Rξ))

is a polynomial in Q[[T − t]][Y ] that vanishes at every point Rξ. In fact, this
polynomial is the polynomial of minimal degree defining the image of our
original variety under the morphism

Q(T )
n → Q(T )
w �→ �(w)

As our original variety is definable with polynomials in Q(T )[X], this poly-
nomial we obtain must be in Q(T )[Y ] and therefore, by multiplying it by a
fixed polynomial h ∈ Q[T ] we obtain a polynomial M ∈ Q[T ][Y ] satisfying
the following:

M(T, �(X1, . . . , Xn)) ∈ (f1, . . . , fn)

(here we are using that the ideal the polynomials f1, . . . , fn define is radical).
Therefore, given n polynomials in n variables defining a zero-dimensional

variety V , provided the vector of their coefficients t0 do not lie in a hyper-
surface, we can obtain by evaluating M(T, Y ) in t0 a non-zero polynomial
M(t0, Y ) ∈ Q[Y ] which specialized in the linear form � vanishes over the ze-
roes of V . This is a fundamental step we mentioned before (see Sections 6.4.3
and 6.4.4).

Of course a lot of work has to be done to succeed in finding this polynomial.
For example one should know somehow up to what precision the Newton-
Hensel algorithm is needed, how to compute the polynomial h, and so on, but
this is just an example of how things work.

There are two main features to be taken into account when considering the
Newton-Hensel algorithm. The first one is that an approximation of the power
series vector up to a given precision can be obtained in very few steps (note
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that to obtain the series we are looking for up to degree θ we only have to
apply log2 θ steps of our iteration). The second one is that the Newton-Hensel
method deals essentially with slp’s. In fact, an algorithmic statement of the
Newton-Hensel method is the following lemma (see [GHH+97] for a proof):

Lemma 6.5.3. Under the same hypotheses and notation of Lemma 6.5.1, sup-
pose the polynomials f1, . . . , fn have degree bounded by d and are given by an
slp of length L. Let κ ∈ N, then there exists an slp of length O(κd2n7L)
which evaluates polynomials g(κ)

1 , . . . , g
(κ)
n , h(κ) ∈ Q[T ][X] with h(κ)(t, ξ) �= 0

which represent the numerators and the denominator of the rational functions
obtained in the κ-th iteration of the Newton-Hensel operator.

The Newton-Hensel method has been successfully used to obtain more ef-
ficient algorithms to solve polynomial equation systems. This tool has been
introduced in this framework for the first time in [GHM+98], where an algo-
rithm solving zero-dimensional systems was designed and an effective Null-
stellensatz was stated. However, these procedures required computing with
algebraic numbers. In [GHH+97], the first completely rational algorithm us-
ing the Newton-Hensel method was obtained and the complexity bounds were
improved in [GLS01] and in [HMW01]. The Newton-Hensel method has been
extensively applied to other problems: for example, to solve parametric sys-
tems (see [HKP+00] and [Sch03b]) and to obtain equidimensional decompo-
sitions of varieties (see [Lec00] and [JKSS04]). Some of these algorithms work
under certain particular hypotheses while the others work for any given input
probabilistically (see Section 6.6.1).

Moreover, in [Lec02] an extension of the Newton-Hensel operator adapted
to the non-reduced case was presented. Then, this extension was applied to
obtain an algorithm that computes the equidimensional decomposition of a
variety (see [Lec03]).

All these algorithms share an important feature: they all use the Newton-
Hensel operator, and therefore they can deal with input polynomials codified
by means of slp’s.

6.6 Other trends

In this last section, we would like to discuss briefly some ideas involved in
algorithmic procedures which have been mentioned earlier.

6.6.1 Probabilistic algorithms

Sometimes our algorithms may depend on the choice of an object satisfying
certain conditions (a linear form separating points, a point where a polynomial
does not vanish, etc). These choices may be very expensive from the algorith-
mic point of view. Think of a polynomial f in n indeterminates of degree d. If
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we want to get a n-tuple v such that f(v) �= 0 we have to check through many
points. Sometimes, they may even involve a procedure we do not know how
to accomplish (for example, we know we have to look for a point that is not a
root of certain polynomial of bounded degree, but we cannot compute exactly
the involved polynomial). To avoid this, one can choose a random point v to
go on. Of course, this may lead to an error. Then, a probabilistic algorithm
would be an algorithm that ‘generally’ performs the task we want accurately,
but with a bounded probability of error.

Most algorithms involving slp’s can be considered as probabilistic algo-
rithms if we do not know an adequate correct test sequence for the kind of
slp’s involved. In this case, if we want to decide whether an slp represents the
0 polynomial or not, we just choose a random point and evaluate the slp in
it. If the result is not zero, we are sure that the polynomial is not the zero
polynomial but if it is zero, we can suppose that the polynomial is the zero
one.

A clear example of this is the following (already mentioned in Sec-
tion 6.4.3): We have a non-empty variety V and we want to compute its
dimension. We cut it with a random hyperplane and consider what happens.
Suppose that this intersection is empty. We would assume that the original
variety is of dimension 0. It is generally the case, but if we are unlucky and
the original variety was lying in a hyperplane parallel to the one we chose,
our deduction would be false.

In most of the probabilistic algorithms we consider, the generic condition
a random point should satisfy is that it is not a zero of a given polynomial
f ∈ Q[X1, . . . , Xn] of bounded degree. The random point we choose has integer
coordinates taken from a finite subset of N big enough. The estimation of the
probability of success is done by means of the following well-known result (see
[Sch80] and [Zip79]):

Lemma 6.6.1. Let R ⊂ N be a finite subset. Let f ∈ Q[X1, . . . , Xn]− {0} be
a polynomial. Then, for random choices of elements a1, . . . , an ∈ R, we have
that

Prob(f(a1, . . . , an) = 0) ≤ deg f
#R

.

For example, some of the equidimensional decomposition algorithms al-
ready mentioned ([Lec00], [JS02], [JKSS04]) are probabilistic.

6.6.2 Non-general algorithms

In Section 6.4, we have mentioned that a possible way to avoid the high
complexities involved in dense encoding was to design specific algorithms that
would not work for every polynomial system but only for some of them. This
is already being done, in the sense that some of the algorithms being produced
in computer algebra may be general but work better (have lower complexity)
in special cases. This leads us to consider other invariants (not only the degree,
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quantity and number of variables of the polynomials involved) to compute the
complexity of the algorithms. Roughly speaking, the new invariants involved
have to do somehow with the geometry of the varieties involved (that is the
semantic features of the problem) and not with the way the variety is presented
(the syntactic ones). For a further discussion on this topic see, for example
[GHM+98]. Many of the previously mentioned results deal with this new kind
of invariants (see, for example, [GHH+97], [KSS97], [HKP+00], [Lec00] and
[JKSS04]).
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Summary. Toric (or sparse) elimination theory uses combinatorial and discrete
geometry to exploit the structure of a given system of algebraic equations. The
basic objects are the Newton polytope of a polynomial, the Minkowski sum of a
set of convex polytopes, and a mixed polyhedral subdivision of such a Minkowski
sum. Different matrices expressing the toric resultant shall be discussed, and effec-
tive methods for their construction will be described based on discrete geometric
operations, namely the subdivision-based methods and the incremental algorithm.
The former allows us to produce Macaulay-type formulae of the toric resultant by
determining a matrix minor that divides the determinant in order to yield the pre-
cise resultant. Toric resultant matrices exhibit a quasi-Toeplitz structure, which may
reduce complexity by almost one order of magnitude in terms of matrix dimension.

We discuss perturbation methods to avoid the vanishing of the matrix determi-
nant, or of the toric resultant itself, when the coefficients, which are initially viewed
as generic, take specialized values. This is applied to the problem of implicitizing
parametric (hyper)surfaces in the presence of base points. Another important ap-
plication from geometric modelling concerns the prediction of the support of the
implicit equation, based on toric elimination techniques.

Toric resultant matrices reduce the numeric approximation of all common roots
of a polynomial system to a problem in numerical linear algebra. In addition to a
survey of recent results, this chapter points to open questions regarding the theory
and practice of toric elimination methods.

7.0 Introduction

Toric (or sparse) elimination theory uses combinatorial and discrete geometry
to model the structure of a given system of algebraic equations. In particu-
lar, we consider algebraic equations with a specific monomial structure. It is
thus possible to describe certain algebraic properties of the given system by
combinatorial means. This chapter provides a comprehensive state-of-the-art
introduction to the theory of toric elimination and toric resultants, paying
special attention to the algorithmic and computational issues involved. Dif-
ferent matrices expressing the toric resultants shall be discussed, and effective
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methods for their construction will be defined based on discrete geometric op-
erations, as well as linear algebra. Toric resultant matrices exhibit a structure
close to that of Toeplitz matrices, which may reduce complexity by almost
one order of magnitude. These matrices reduce the numeric approximation of
all common roots to a problem in numerical linear algebra, as described in
Section 7.5 and, in more depth, in Chapters 2 and 3. A relevant feature of
resultant matrices in general, is their continuity with respect to small pertur-
bations in the input coefficients.

Our goal is to exploit the fact that systems encountered in engineer-
ing applications are, more often than not, characterized by some structure.
This claim shall be substantiated by examples in geometric modelling and
computer-aided design as well as robotics; further applications exist in vision,
and structural molecular biology (cf. [Emi97, EM99b]). A specific motivation
comes from systems that must be repeatedly solved for different coefficients,
in which case the resultant matrix can be computed exactly once. This oc-
curs, for instance, in parallel robot calibration, see e.g. [DE01c], where 10,000
instances may have to be solved.

This chapter is organized as follows. The next section describes briefly
the main steps in the theory of toric elimination, which aspires to generalize
the results and algorithms of its mature counterpart, classical elimination.
Section 7.2 presents the construction of toric resultant matrices of Sylvester-
type. The following section offers a method for implicitizing parametric (hy-
per)surfaces, including the case of singular inputs, by means of perturbed
toric resultants. Section 7.4 applies the tools of toric elimination for predict-
ing the support of the implicit equation. The last section reduces solution of
arbitrary algebraic systems to numerical linear algebra, thus yielding methods
which avoid any issues of convergence.

This chapter will be of particular interest to graduate students and re-
searchers in theoretical computer science or applied mathematics wishing to
combine discrete and algebraic geometry. Some basic knowledge of discrete
geometry for polyhedral objects in arbitrary dimension is assumed.

Previous work and open questions are mentioned in the corresponding
sections. All algorithms discussed have been implemented either in Maple
and/or in C, and are publicly available through the author’s webpage. Most
are also available in the Maple library multires or the C++ library synaps,
both accessible on the Internet1.

7.1 Toric elimination theory

Toric elimination generalizes several results of classical elimination theory
on multivariate polynomial systems of arbitrary degree by considering their
structure. This leads to stronger algebraic and combinatorial results in general
1 http://www-sop.inria.fr/galaad/logiciels/
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[CLO98, GKZ94, Stu94a, Stu02]. Assume that the number of variables is n;
roots in (K

∗
)n are called toric, where K is the algebraic closure of the coeffi-

cient field. We use xe to denote the monomial (or power product) xe1
1 · · ·xen

n ,
where e = (e1, . . . , en) ∈ Zn; note that we allow integer exponents. Let the
input Laurent polynomials be

f1, . . . , fn ∈ K[x±1
1 , . . . , x

±1
n ]. (7.1)

Let the support Ai = {ai1, . . . , aimi
} ⊂ Zn denote the set of exponent vectors

corresponding to monomials in fi with nonzero coefficients:

fi =
mi∑
j=1

cijx
aij , for cij �= 0.

The Newton polytope Qi ⊂ Rn of fi is the convex hull of support Ai, in
other words, the smallest convex polytope that includes all points in Ai. This
is a bounded subset of Rn, of dimension up to n. Newton polytopes provide a
bridge from algebra to geometry since they permit certain algebraic problems
to be cast in geometric terms. For background information and algorithms on
polytope theory, the reader may refer to [Ewa96, Sch93]. For arbitrary sets A
and B ⊂ Rn, their Minkowski sum is

A+B = {a+ b | a ∈ A, b ∈ B},

where a+ b represents the vector sum of points in Rn. For convex polytopes
A and B, A+B is a convex polytope.

Definition 7.1.1. Given convex polytopes A1, . . . , An, A
′
k ⊂ Rn, the mixed

volume MV(A1, . . . , An) is the unique real-valued non-negative function, in-
variant under permutations, such that,

MV(A1, . . . , µAk + ρA′
k, . . . , An)

is equal to

µMV(A1, . . . , Ak, . . . , An) + ρMV(A1, . . . , A
′
k, . . . , An),

for µ, ρ ∈ R≥0. Moreover, we set

MV(A1, . . . , An) := n! Vol(A1), when A1 = · · · = An,

where Vol(·) denotes euclidean volume in Rn.

If the polytopes have integer vertices, their mixed volume takes integer values.
Two equivalent definitions are the following.
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Proposition 7.1.2. For λ1, . . . , λn ∈ R≥0 and for convex polytopes Q1, . . . , Qn

lying in Rn, the mixed volume MV(Q1, . . . , Qn) is precisely the coefficient of
λ1λ2 · · ·λn in

Vol(λ1Q1 + · · ·+ λnQn),

when the latter is expanded as a polynomial in λ1, . . . , λn. Equivalently,

MV(Q1, . . . , Qn) =
∑

I⊂{1,...,n}
(−1)n−|I| Vol

(∑
i∈I

Qi

)
.

In the last equality, I ranges over all subsets of {1, . . . , n}, so for n = 2 this
gives MV(Q1, Q2) = Vol(Q1 +Q2)−Vol(Q1)−Vol(Q2).

Exercise 7.1.3. Prove both formulae for the mixed volume from Proposi-
tion 7.1.2, in the case n = 2, using Definition 7.1.1. You may start by proving
that Vol(λ1Q1 + λ2Q2) lies in Z[λ1, λ2] and prove the first part of Proposi-
tion 7.1.2. Then prove the second part of the proposition for n = 2.

One may verify that mixed volume scales in the same way as the number
of common roots of a well-constrained polynomial system with generic coeffi-
cients. In particular, when some Newton polytope is expressed as a Minkowski
sum, this means that the corresponding polynomial equals the product of two
polynomials fif ′i . So, the mixed volume can be written as a sum of mixed
volumes, which corresponds to the fact that the generic number of common
roots is given by a sum of root counts, each count corresponding to a system
of polynomials including either fi or f ′i .

Such properties were used by Kushnirenko in proving a restricted version
of the following theorem, for the unmixed case [Kus75]. Then, Bernstein (also
spelled Bernshtěın) stated, in [Ber75], the now-famous generalization, also
known as the Bernstein-Kushnirenko-Khovanskii (BKK) bound. We are now
ready to state a slight generalization of this theorem.

Theorem 7.1.4. Given system (7.1), the cardinality of common isolated zeros
in (K

∗
)n, counting multiplicities, is bounded by MV(Q1, . . . , Qn), regardless

of the dimension of the variety. Equality holds when a certain subset of the
coefficients corresponding to the vertices of the Qi’s are generic.

Newton polytopes provide a “sparse” counterpart of total degree. The
same holds for mixed volume vis-à-vis Bézout’s bound, which is equal to the
product of all total degrees. The two bounds coincide for completely dense
polynomials, because each Newton polytope is an n-dimensional unit simplex
scaled by deg fi. By definition, the mixed volume of the dense system is

MV((deg f1)S, . . . , (deg fn)S) =
n∏

i=1

deg fi MV(S, . . . , S) =
n∏

i=1

deg fi,
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where S is the unit simplex in Rn with vertex set {(0, . . . , 0), (1, 0, . . . , 0), . . . ,
(0, . . . , 0, 1)}.

There is an intermediate bound between the classical Bézout bound and
mixed volume. It is called the m-homogeneous or, simply, m-Bézout bound,
and holds for multihomogeneous polynomials. Suppose that the n variables
are partitioned into r ≥ 1 sets of nj variables each, for j = 1, . . . , r. Then,
n1 + · · ·+ nr = n. We may assume that there is a homogenizing variable for
each variable subset j such that polynomial fi becomes homogeneous with
respect to each subset, and has degree dij for i = 1, . . . , n and j = 1, . . . , r.
Then, the m-Bézout number is given by

the coefficient of
r∏

j=1

x
nj

j in polynomial
n∏

i=1

⎛⎝ r∑
j=1

dijxj

⎞⎠ .
This number lies always between the classical Bézout bound and the mixed
volume. For a general discussion see [MSW95].

Exercise 7.1.5 (combinatorial). If all dij are equal to dj then recover the
classical Bézout’s bound. Furthermore, show that the mixed volume of a sys-
tem of multihomogeneous polynomials is given by the m-Bézout bound. For
this, write every Newton polytope as Qi =

∑
j dijSj , where Sj is the unit

simplex in nj dimensions.

Mixed volume is usually significantly smaller than Bézout’s bound for
systems encountered in engineering applications. One example is the simple
and generalized eigenproblems on k × k matrices. By adding an equation to
ensure unit length of vectors, the Bézout bound in both cases is 2k+1, whereas
the number of right eigenvector and eigenvalue pairs is 2k. This is precisely
the mixed volume. We might, alternatively, employ the m-Bézout bound to
the k × k system and obtain the exact count, namely k.

It is possible to generalize the notion of mixed volume to that of stable
mixed volume, thus extending the bound to affine roots [HS97b].

The mixed volume computation is tantamount to enumerating all mixed
cells in a mixed (tight coherent) subdivision of Q1 + · · · + Qn. The term
“decomposition” is also used in the literature, instead of “subdivision”. We
express the operation of Minkowski addition on n polytopes as a many-to-one
function from (Rn)n onto Rn:

(Q1, . . . , Qn) →
n∑

i=1

Qi : (p1, . . . , pn) �→
n∑

i=1

pi.

To define an inverse function, i.e., a unique tuple for every point in the sum,
lifting is a standard geometric method. Select n generic linear lifting forms
li : Rn → R, i = 1, . . . , n. Then define the lifted polytopes

Q̂i = {(pi, li(pi)) : pi ∈ Qi} ⊂ Rn+1, i = 1, . . . , n.
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Now consider the Minkowski sum Q̂1 + · · ·+ Q̂n, which is a convex polytope
in Rn+1. The lower hull of this Minkowski sum is an n-dimensional (convex)
polyhedral complex, i.e. a family of convex faces of varying dimensions that
includes all subfaces, such that the intersection of any two faces is itself a face
of both intersecting faces. The lower hull is defined with respect to the unit
vector along the xn+1-axis: It is equal to the union of all n-dimensional faces,
or facets, whose inner normal vector has positive last component.

Each facet of
∑n

i=1 Q̂i can be written itself as a Minkowski sum
∑n

i=1 F̂i

where every F̂i is a face of Q̂i, i = 1, . . . , n. The genericity of the li ensures two
things: First, that the lower hull projects bijectively onto the Minkowski sum∑n

i=1Qi of the original polytopes. Second, it guarantees tightness, which is
the formal term for expressing the fact that every lower hull facet is a unique
sum of faces F̂i so that

∑n
i=1 dim F̂i equals the dimension of the facet, namely

n. Note that for an arbitrary lifting we would have
∑n

i=1 dim F̂i ≥ n, but
tightness means that equality holds.

The subdivision of the lower hull into faces of dimensions from 0 to n
induces a subdivision of the Minkowski sum

∑n
i=1Qi into cells of respective

dimensions. Such a subdivision is called regular and is defined by projecting
each lower-hull face onto one cell. In particular facets, whose dimension is n,
are projected onto n-dimensional (hence, maximal) cells. Furthermore, each
(maximal) cell σ is expressed as the Minkowski sum of faces from the Qi:
Each Minkowski sum

σ = F1 + · · ·+ Fn

is unique, where each Fi is a face of Qi, so that
∑

i dimFi = dimσ. Each Fi

corresponds to F̂i that appears in the unique sum defining the corresponding
lower-hull facet that projects onto σ. This sum is said to be optimal since it
minimizes the aggregate lifting function over the given cell.

The regularity of the subdivision implies its coherence, i.e., a continuous
change of the optimal expressions of every cell σ as a sum of faces. This cell
complex is, therefore, a tight coherent mixed subdivision. We define the mixed
cells to be precisely those where all summand faces are one-dimensional.

Proposition 7.1.6. The mixed volume equals the sum of the volumes of all
mixed cells in the mixed subdivision.

Example 7.1.7. Consider the system

f1 = c10 + c11x1x2 + c12x2
1x2 + c13x1, f2 = c20 + c21x2 + c22x1x2 + c23x1.

These polynomials have Newton polytopes and Minkowski sum as shown in
Figure 7.1. The shown subdivision is achieved with l1 = −x1 − 2x2, l2 =
4x1 + x2.

It is clear that the mixed volume equals 3, which is the exact number of
common roots for two generic polynomials with these supports. However, the
system’s Bézout number equals 4.
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Fig. 7.1. The Newton polytopes and mixed subdivision in Example 7.1.7.

In the sequel, we shall see more examples of mixed subdivision. Some of
the simplest instances appear in Examples 7.2.2 and 7.4.5.

Exercise 7.1.8. Compute the mixed volume of

A1 = {(0, 0), (1, 0), (2, 0)}, A2 = {(0, 0), (0, 1), (0, 2)}.
Can you find a linear lifting that yields a single mixed cell, so that the mixed
volume equals the volume of a single cell?

In terms of complexity classes, the computation of mixed volume is #P-
complete. This computation identifies the integer points comprising a mono-
mial basis of the quotient ring of the ideal defined by the input polynomials.
Mixed, or stable mixed, cells also correspond to start systems (of binomial
equations, hence with an immediate solution) for a toric homotopy to the
original system’s roots. Such issues go beyond the scope of this chapter; see
Chapter 8 or [GLW99, Li97, VG95].

7.1.1 The toric resultant

For a more general introduction to resultants, one may consult Sections 1.3
and 1.6 of Chapter 1, Section 2.3 of Chapter 2, or Chapter 3. The resultant of
a polynomial system of n + 1 polynomials with indeterminate coefficients in
n variables is a polynomial in these indeterminates, whose vanishing provides
a necessary and sufficient condition for the existence of common roots of the
system. Simple examples and a formal definition follow.

The resultant can be expressed by Poisson’s formula, namely C
∏

α f0(α),
where f0 is one of the polynomials, evaluated at all common roots α of the
other n equations, and C is a function of the coefficients of these n polynomi-
als. It is then easy to see that the resultant is homogeneous in the coefficients
of each polynomial.

The history of resultants (and elimination theory) includes such luminaries
as Euler, Bézout, Cayley, and Macaulay. Different resultants exist depending
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on the space of the roots we wish to characterize, namely projective, affine,
toric or residual [BEM01, CLO98, EM99b, Stu02]. Projective resultants (also
known as classical) were historically the first to be studied and characterize
the existence of projective roots. We shall focus on toric resultants below.
Residual resultants were more recently introduced in order to study roots in
the difference of two varieties.

Example 7.1.9. The bilinear system fi = ci0+ci1x1+ci2x2+ci3x1x2, i = 0, 1, 2
is used in modelling a bilinear surface in R3 as the set of values (f0, f1, f2) ∈
R3; see Figure 7.2.

Fig. 7.2. A bilinear surface patch.

The bivariate system of the fi’s has toric resultant equal to

Res = det

⎡⎢⎢⎢⎢⎢⎢⎣
c00 c01 c02 c03 0 0
c10 c11 c12 c13 0 0
c20 c21 c22 c23 0 0
0 c00 0 c02 c01 c03
0 c10 0 c12 c11 c13
0 c20 0 c22 c21 c23

⎤⎥⎥⎥⎥⎥⎥⎦ ,

assuming the matrix [cij ]i,j≥0 is regular. Notice that the first three matrix rows
correspond to the input polynomials, whereas the last three rows correspond
to the same polynomials multiplied by x1. This determinant has degree 2 per
polynomial, which is precisely the mixed volume of two input polynomials;
remark that this is the generic number of roots. Hence the determinant equals
the toric resultant.

In the following sections, we shall discuss ways to construct this matrix
and, ultimately, the resultant. Two alternative ways are presented in Chap-
ter 1.

If our only tool were the projective (classical) resultant, one would consider
3 bivariate polynomials, each of total degree 2. The resultant has degree 4 per
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polynomial, hence 12 in total in the cij ’s. For the bilinear system, certain
coefficients must be specialized to zero. One can show that the projective
(classical) resultant vanishes identically in this case.

The simplest case, where the classical projective and toric resultants co-
incide, is that of a linear system of n + 1 equations in n variables. The de-
terminant of the coefficient matrix is the system’s resultant and, under the
assumption on the non-vanishing of certain minors, it becomes zero exactly
when there is a common root. Due to the linearity of the equations, this root
is then unique.

Exercise 7.1.10. Using linear algebra, prove that the resultant of a linear
system vanishes precisely when there exists a unique common root, provided
that certain minors are nonzero. Moreover, apply Cramer’s rule in order to
compute each coordinate of this root as a ratio of determinants.

The question of whether two polynomials f1(x), f2(x) ∈ K[x] have a com-
mon root leads to a condition that has to be satisfied by the coefficients of
both polynomials; again classical and toric resultants coincide. The system’s
Sylvester matrix is of dimension deg f1 +deg f2 and its determinant is the sys-
tem’s resultant, provided the leading coefficients are nonzero. This matrix rows
contain the coefficient vectors of polynomials xkfj , for k = 0, . . . ,deg fi − 1
and {i, j} = {1, 2}.

Bézout developed a method for computing the resultant as a determinant
of a matrix of dimension equal to max{deg f1,deg f2}. Its construction goes
beyond the scope of this chapter; the reader may refer to Chapters 1 and 3.

For an illustration, consider f1 = ad1x
d1 + · · ·+ a0, f2 = bd2x

d2 + · · ·+ b0,
with all coefficients nonzero. Their resultant is the determinant of the Sylvester
matrix, namely ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ad1 ad1−1 · · · a0 0 · · · 0
0 ad1 ad1−1 · · · a0 0 · · · 0
...

. . . . . .
0 ad1 ad1−1 · · · a0
bd2 bd2−1 · · · b0 0 · · · 0
0 bd2 bd2−1 · · · b0 0 0
...

. . . . . .
0 bd2 bd2−1 · · · b0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The interested reader may refer to Section 1.3 of Chapter 1 for a more detailed
discussion on resultants of univariate polynomials.

Exercise 7.1.11. Using the greatest common divisor of f1, f2 prove that the
resultant of these two polynomials vanishes precisely when they have a com-
mon root. Can you compute the coordinates of this root from the kernel
vectors of the Sylvester matrix?
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Toric resultants express the existence of toric roots. Formally,

f0, . . . , fn ∈ K[x±1
1 , . . . , x

±1
n ], (7.2)

fi corresponding to generic point ci = (ci1, . . . , cimi
) in the space of polyno-

mials with support Ai. This space is identified with projective space Pmi−1
K .

Then system (7.2) can be thought of as point c = (c0, . . . , cn). Let Z denote
the Zariski closure, in the product of projective spaces, of the set of all c such
that the system has a solution in (K

∗
)n. Note that Z is an irreducible variety.

A technical assumption is that, without loss of generality, the affine lattice
generated by

∑n+1
i=1 Ai is n-dimensional. This lattice is identified with Zn

possibly after a change of variables, which can be implemented by computing
the appropriate Smith’s Normal form [Stu94a].

Definition 7.1.12. The toric (or sparse) resultant Res = Res(A0, . . . , An) of
system (7.2) is a polynomial in Z[c]. If codim(Z) = 1 then Res is the defining
irreducible polynomial of the hypersurface Z. If codim(Z) > 1 then Res = 1.

An additional assumption we make is that the family A0, . . . , An is es-
sential. This means that, for every proper index subset I ⊂ {0, . . . , n} with
cardinality |I|, the following holds for the dimension of certain Minkowski
sums:

dim

(∑
i∈I

Ai

)
≥ |I|.

Essential support families are also discussed in Section 1.6 of Chapter 1.
Then, the toric resultant Res(A0, . . . , An) is homogeneous in the coeffi-

cients of fi with degfi
Res(Ai) = MV−i. The vanishing of Res(A0, . . . , An) is

a necessary and sufficient condition for the existence of roots in the projec-
tive toric variety X, corresponding to the Minkowski sum of the n+1 Newton
polytopes. A projective toric variety is the closure of the image of the following
map of the torus:

(C∗)n → Pm : t �→ (
tb0 : · · · : tbm

)
,

where the bi ∈ Zn are the vertices of the Minkowski sum. If all Newton
polytopes are identical, then these are simply the vertices of the Newton
polytope. For instance, when this polytope is the unit simplex, the toric re-
sultant coincides with Pn. In the case of bilinear systems (see Example 7.1.9),
X = P1 × P1. Toric varieties are also discussed in Chapter 3 as well as
in [Cox95, GKZ94, KSZ92].

Some fundamental properties of the toric resultant are as follows.

• The toric resultant subsumes the classical resultant in the sense that they
coincide if the polynomials are dense.

• Just as in the classical case, when all coefficients are generic, the resultant
is irreducible.
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• While the classical resultant is invariant under linear transformations of
the variables, the toric resultant is invariant under transformations that
preserve the polynomial support.

• In the case of non-generic coefficients, certain divisibility properties hold.
In particular, when a system of polynomials lies in the ideal generated
by another system, then the latter resultant is divisible by the former
resultant.

7.2 Matrix formulae

Different means of expressing each resultant are possible, distinguished into
Sylvester, Bézout and hybrid-type formulae [BEM01, CLO98, DE03, EM99b,
Stu02]. Ideally, we wish to express it as a matrix determinant, a quotient
of two determinants, or a divisor of a determinant where the quotient is a
nontrivial extraneous factor. This section discusses matrix formulae for the
toric resultant known as toric resultant matrices.

We restrict ourselves to Sylvester-type matrices; such matrices for the toric
resultant are also known as Newton matrices because they depend on the in-
put Newton polytopes. Sylvester-type matrices generalize the coefficient ma-
trix of a linear system and Macaulay’s matrix. The latter extends Sylvester’s
construction to arbitrary systems of homogeneous polynomials, and its de-
terminant is a nontrivial multiple of the projective resultant. Other types of
resultant matrices are discussed in Chapter 3.

The transpose of a Sylvester-type matrix corresponds to the following
linear transformation:

(g0, . . . , gn) �→
n∑

i=0

gifi, (7.3)

where the support of each polynomial gi is related to the matrix. If we ex-
pressed the gi’s in the monomial basis, then (g0, . . . , gn) would be a vector
that multiplies from the left the transposed matrix (or from the right, the
resultant matrix itself). The support of each gi is the set of monomials multi-
plying fi in order to define the rows that correspond to fi. These rows contain
shifted copies of the fi coefficients. The shift is performed in such a way so
as to obtain gifi as the product of gi-block of the vector, multiplied by the
block of rows corresponding to fi. The reader should consult the examples of
resultant matrices given above as well as in the sequel.

Overall, each row expresses the product of a monomial with an input
polynomial; its entries are coefficients of that product, each corresponding to
the monomial indexing the corresponding column. The degree of detM in the
coefficients of fi equals the number of rows with coefficients of fi. This must be
greater than or equal to degfi

Res. It is possible to pick any one polynomial
so that there is an optimal number of rows containing its coefficients; this
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number is obviously degfi
Res. This is true both in the case of Macaulay’s

matrix and in the case of the Newton matrix constructions below.

7.2.1 Subdivision-based construction

There are two main approaches to construct a well-defined, square, gener-
ically nonsingular matrix M , such that Res |detM . The second algorithm
is incremental and shall be presented later. The first approach (cf. [CE93,
CE00, CP93, Stu94a]), relies on a mixed (tight coherent) subdivision of the
Minkowski sum

Q = Q0 + · · ·+Qn,

which generalizes the discussion of Section 7.1. It uses n + 1 generic linear
lifting forms li : Rn → R to define the lifted polytopes. Maximal cells in the
subdivision are written uniquely as σ = F0 + · · · + Fn, where Fi ⊂ Qi and∑

i dimFi = n. Therefore, at least one face is a vertex. The mixed cells are
precisely those where all other summand faces are one-dimensional. If this is
a vertex from Qi, then the cell is said to be i-mixed.

It can been shown [Emi96] that the i-mixed cells are the same as the mixed
cells in the mixed subdivision the n Newton polytopes Q0, . . . , Qi−1,Qi+1, . . . ,
Qn, provided that we use the same lifting functions in both cases. A direct
consequence is that the mixed volume of f0, . . . , fi−1, fi+1, . . . , fn is given by
the sum of volumes of all i-mixed cells, thus extending Proposition 7.1.6.

The matrix construction algorithm uses a subset of (Q+ δ) ∩ Zn to index
the rows and columns of resultant matrix M , where δ ∈ Rn is an arbitrarily
small and sufficiently generic vector. This vector must perturb all integer
points indexing some row (or column) of the matrix in the strict interior of a
maximal cell. It can be chosen randomly and the validity of our choice can be
confirmed by the matrix construction algorithm. The probability of error for
a vector with uniformly distributed entries is bounded in [CE00].

Now consider an integer point p, such that p+δ lies in an arbitrary maximal
cell σ. The algorithm associates to p the pair (i, j) if and only if aij ∈ Qi is
a vertex in the optimal sum of σ and i is the maximum index of any vertex
summand. The row of M corresponding to p shall contain the coefficients of
polynomial

xp−aijfi.

The entries corresponding to column monomials that do not explicitly appear
in the row polynomial are set to zero. If σ is i-mixed, then aij is the unique
vertex summand. For non-mixed cells, the Minkowski sum has more than one
vertices, and the above rule defines a matrix with the minimum number of
rows with f0, because in these cases it shall avoid the 0 index.

Therefore, the number of f0 rows equals the number of integer points in
0-mixed cells, which equals

MV(f1, . . . , fn) = degf0
Res(Ai).
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As for the number of fi rows, for i > 0, this is larger or equal to the number of
integer points in i-mixed cells. The above argument tells us that this is at least
as large as degfi

Res. Now recall that the degree of the matrix determinant in
the coefficients of fi equals the number of its rows containing shifted copies of
the coefficient vector of fi. The algorithm may use an analogous rule to avoid
index i if we wish the matrix to have the minimum number of rows containing
fi, for i > 0.

It can be proven that every principal minor of matrix M , including its de-
terminant, is nonzero when the polynomials have generic coefficients [CE00].
The proof of this theorem uses an adequate specialization of the input coeffi-
cients, in terms of a new parameter t. In particular, the coefficient in fi that
multiplies the monomial xaj is specialized to tli(aj), where li is the lifting ap-
plied to Qi. Then, each row of the specialized matrix, indexed by some point
p, is multiplied by the power th−lk(as). Here, h denotes the vertical distance
of p ∈ Rn to the lower hull of

∑
i≥0 Q̂i and we have assumed that p has been

associated to the pair (k, s). The last step in the proof establishes that the
product of all diagonal entries in the new matrix equals the trailing term of
its determinant with respect to t.

Moreover, it is not so hard to show that the determinant of M vanishes
whenever Res = 0. We thus arrive at the following theorem.

Theorem 7.2.1 ([CE93, CE00]). We are given an overconstrained system
with fixed supports. With the above notation, matrix M is well-defined and
square. Its determinant is generically nonzero and divisible by the toric resul-
tant Res.

Example 7.2.2. Let us apply the subdivision-based algorithm to construct
Sylvester’s matrix. Take

f0 = c00 + c01x, f1 = c10 + c11x+ c12x2.

There are two possible subdivisions obtained with linear liftings; one is shown
in Figure 7.3, along with the δ perturbation.

For illustration, we note that the algorithm associates to point 2 the
pair (1, 2), i.e. the matrix row indexed by x2 shall contain the coefficients
of x2−2f1 = f1. A similar argument builds the other rows of the matrix. The
reader may check that this is indeed the well-known Sylvester matrix.

Example 7.2.3. For n = 2, let us apply the subdivision-based algorithm in the
case of linear polynomials. Take

fi = ci0 + ci1x1 + ci2x2, i = 0, 1, 2.

One possible linear lifting induces the subdivision in Figure 7.4. The same
figure shows the perturbation of choice, so that we recover the matrix of the
system’s coefficients, as expected. In fact, any vector δ ∈ R>0 would do.
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+ 2

δ

0 Q0Q1+

Fig. 7.3. The Minkowski sum of the lifted Newton segments and the induced sub-
division in Example 7.2.2.

Then, there are three integer points in the perturbed Minkowski sum,
namely (1, 2), (1, 1), and (2, 1). They are associated, respectively, to pairs
[2, (0, 1)], [1, (0, 0)] and [0, (1, 0)]. For instance, the row indexed by x1x

2
2 shall

contain polynomial x(1,2)−(0,1)f2 = x(1,1)f2.

+ +(0,0)

(0,1) +Q0 + (0,1)

(0,1)+ +

δ

Fig. 7.4. The mixed subdivision and the perturbation with respect to the original
Minkowski sum.

The resultant matrix is therefore

M =

⎡⎣ c01 c02 c03c11 c12 c13
c21 c22 c23

⎤⎦ ,
with rows corresponding to the polynomials x1x2fi and columns indexed by
x2

1x2, x1x
2
2, x1x2.

There is a greedy variant from [CP93] of the subdivision-based algorithm.
It starts with a single row, corresponding to some integer point, and proceeds
iteratively by adding new rows (and columns) as need be. For a given set
of rows, the column set comprises all columns required to express the row
polynomials. For a given set of columns, the rows are updated to correspond to
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the same set. The algorithm continues by adding rows and the corresponding
columns until a square matrix has been obtained.

Example 7.2.4. Consider a system of 3 polynomials in 2 unknowns:

f0 = c01 + c02xy + c03x2y + c04x,
f1 = c11y + c12x2y2 + c13x2y + c14x,
f2 = c21 + c22y + c23xy + c24x.

a12

a13
a02

01a

a24a21

a22 a2303

a a

a
a11

1404

Fig. 7.5. The supports and Newton polytopes in Example 7.2.4.

The Newton polytopes are shown in Figure 7.5. The mixed volumes are
MV(Q0, Q1) = 4, MV(Q1, Q2) = 4, MV(Q2, Q0) = 3, so the toric resultant’s
total degree is 11. Compare this with the Bézout numbers of these subsystems:
8, 6, 12; hence the projective resultant’s total degree is 26.

Assume that the lifting functions are l0(x, y) = Lx+L2y, l1(x, y) = −L2x−
y, l2(x, y) = x−Ly, where L& 1. The lifted Newton polytopes and the lower
hull of their Minkowski sum is shown below. These functions are sufficiently
generic since they define a mixed subdivision where every cell is uniquely
defined as the Minkowski sum of faces Fi ⊂ Qi.
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The lower hull of the Minkowski sum of the lifted Qi’s is then projected to
the plane, yielding generically a mixed subdivision ofQ. Figure 7.6 shows Q+δ
and the integer points it contains; notice that every point belongs to a unique
maximal cell. Every maximal cell σ is labeled by the indices of the Qi vertex
or vertices appearing in the unique Minkowski sum σ = F0 + · · · + Fn, with
ij denoting vertex aij ∈ Qi. For instance, point (1, 0) belongs to a maximal
cell σ = a01 +F +F ′, where F, F ′ are the edges (a14, a13) ⊂ Q1 and (a21, a24)
respectively. The corresponding row in the matrix will be filled in with the
coefficient vector of x(1,0)f0.

1
x x43x x2

01 01
01 24

1301,13 1301,22

01 23 23

12,2312
22

y

3y

y2

Fig. 7.6. A mixed subdivision of Q perturbed by (−3/8,−1/8), in Example 7.2.4.

The Newton matrix M appears below with rows and columns indexed by
the integer points in the perturbed Minkowski sum. M contains, by construc-
tion, the minimum number of f0 rows, namely 4. The total number of rows is
4 + 4 + 7 = 15, i.e., the determinant degree is higher than optimal by 1 and
3, respectively, in the coefficients of f1 and f2.
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1, 0 2, 0 0, 1 1, 1 2, 1 3, 1 0, 2 1, 2 2, 2 3, 2 4, 2 1, 3 2, 3 3, 3 4, 3

1, 0 c01 c04 0 0 c02 c03 0 0 0 0 0 0 0 0 0
2, 0 c21 c24 0 c22 c23 0 0 0 0 0 0 0 0 0 0
0, 1 0 0 c01 c04 0 0 0 c02 c03 0 0 0 0 0 0
1, 1 0 0 0 c01 c04 0 0 0 c02 c03 0 0 0 0 0
2, 1 c14 0 c11 0 c13 0 0 0 c12 0 0 0 0 0 0
3, 1 0 c14 0 c11 0 c13 0 0 0 c12 0 0 0 0 0
0, 2 0 0 c21 c24 0 0 c22 c23 0 0 0 0 0 0 0
1, 2 0 0 0 c21 c24 0 0 c22 c23 0 0 0 0 0 0
2, 2 0 0 0 0 0 0 0 0 c01 c04 0 0 0 c02 c03

3, 2 0 0 0 0 c21 c24 0 0 c22 c23 0 0 0 0 0
4, 2 0 0 0 0 0 c14 0 0 c11 0 c13 0 0 0 c12

1, 3 0 0 0 0 0 0 0 c21 c24 0 0 c22 c23 0 0
2, 3 0 0 0 c14 0 0 c11 0 c13 0 0 0 c12 0 0
3, 3 0 0 0 0 0 0 0 0 c21 c24 0 0 c22 c23 0
4, 3 0 0 0 0 0 0 0 0 0 c21 c24 0 0 c22 c23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The greedy version produces a matrix with dimension 14 which can be

obtained by deleting the row and the column corresponding to point (1, 3).

The subdivision-based approach can be coupled with the existence of a mi-
nor in the Newton matrix that divides the determinant so as to yield the exact
toric resultant [D’A02]. D’Andrea has proposed a recursive lifting procedure
that gives a much lower value to a chosen vertex ofQ0. The cells whose optimal
sum does not contain this vertex are then further subdivided by assigning this
special role to a vertex of Q1, and so on. This generalizes Macaulay’s famous
quotient formula that yields the exact projective resultant [Mac02].

The existence of a non-recursive algorithm, relying on a single lifting, is
still open in the general case. It is, nonetheless, possible for n = 2 and for
families of sufficiently different Newton polytopes. A glimpse of what this
lifting may look like is offered by the hybrid matrix constructed in [DE01b].

Example 7.2.5 (Continued from Example 7.1.9). The bilinear system fi =
ci0+ci1x1+ci2x2+ci3x1x2, i = 0, 1, 2, despite its apparent simplicity, does not
admit an optimal toric resultant matrix, when we apply the subdivision-based
algorithm. In contrast, the greedy variant may yield an optimal matrix and the
incremental algorithm of the next section produces the optimal 6× 6 matrix
in Example 7.1.9. It is possible to construct the following 9 × 9 numerator
matrix, using the subdivision-based algorithm:
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M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c00 c01 c02 c03 0 0 0 0 0
c10 c11 c12 c13 0 0 0 0 0
c20 c21 c22 c23 0 0 0 0 0
0 0 0 c00 c01 c02 0 0 c03
0 c10 0 c12 c13 0 c11 0 0
0 0 c20 c21 0 c23 0 c22 0
0 c20 0 c22 c23 0 c21 0 0
0 0 c10 c11 0 c13 0 c12 0
0 0 0 c10 c11 c12 0 0 c13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f0
f1
f2

x1x2f0
x1f1
x2f2
x1f2
x2f1
x1x2f1

The choice was δ = (2
3 ,

1
2 ) and the lifting is such that one vertex of the

first polytope has an infinitesimal lifting value compared to the other val-
ues. It is now possible to define a denominator matrix M ′, of dimension 3,
which is a submatrix of M . It is defined by the rows indexed by polynomi-
als f1, f2, x1x2f1 and the respective columns; these correspond precisely to
the integer points in non-mixed cells. The ratio of the determinants yields
precisely the toric resultant.

7.2.2 Incremental construction

The second algorithm [EC95], is incremental and yields usually smaller ma-
trices and, in any case, no larger than those of the subdivision algorithm. The
flexibility of the construction makes it suitable for overconstrained systems.
On the downside, there exists a randomized step so certain properties of the
subdivision-based construction cannot be guaranteed a priori.

The selection of integer points, which correspond to monomials multiply-
ing the row polynomials, uses a vector v ∈ (Q∗)n. The goal is to choose an
adequate subset of integer points in

Q−i :=
n∑

j=0,j �=i

Qj , i = 0, . . . , n.

This is achieved by first sorting all points p ∈ Q−i ∩ Zn according to their
distance, along v, from the boundary. This distance is defined as follows, for
point p:

v-distance(p) := max{s ∈ R≥0 : p+ sv ∈ Q−i}.
The construction is incremental, in the sense that successively larger point
sets are considered by decreasing the lower bound on the v-distance of the
set’s points. For given point sets, a candidate matrix is defined. If the number
of rows is at least as large as the number of columns and it has full rank for
generic coefficients, then the algorithm terminates and returns a nonsingular
maximal square submatrix. The determinant of this submatrix is a nontrivial
multiple of the toric resultant; otherwise, new rows (and columns) are added
to the candidate.
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In those cases where a minimum matrix of Sylvester type provably exists
[SZ94, WZ94], the incremental algorithm produces this matrix. For general
multi-homogeneous systems, the best vector is obtained in [DE03]. These are
precisely the systems for which v can be deterministically specified; otherwise,
a random v can be used. Different choices can be tried out so that the smallest
matrix may be chosen.

Example 7.2.6 (Continued from Example 7.2.4). Figure 7.7 shows Q−0 in bold
and randomly chosen vector v = (20, 11). The different point subsets in Q−0

with respect to v-distance are shown by the thin-line polygons. In fact, the
thin lines represent contours of fixed v-distance. The final point set from Q−0

is the following, shown with the respective v-distances:
{(0, 1; 3/20), (1, 0; 1/10), (1, 1; 1/10), (1, 2; 1/11)}.

v

y

x

Fig. 7.7. Q−0 subsets with different v-distance bounds and vector v.

This v leads to a 13×12 nonsingular matrixM shown below. Deleting the
last row defines the 12× 12 resultant submatrix.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1, 2 2, 2 0, 1 1, 1 2, 1 3, 1 1, 0 2, 0 3, 2 2, 3 3, 3 0, 2
0, 1 c02 c03 c01 c04 0 0 0 0 0 0 0 0
1, 0 0 0 0 0 c02 c03 c01 c04 0 0 0 0
1, 1 0 c02 0 c01 c04 0 0 0 c03 0 0 0
1, 2 c01 c04 0 0 0 0 0 0 0 c02 c03 0
0, 0 0 c12 c11 0 c13 0 c14 0 0 0 0 0
1, 0 0 0 0 c11 0 c13 0 c14 c12 0 0 0
1, 1 c11 0 0 0 c14 0 0 0 c13 0 c12 0
0, 1 0 c13 0 c14 0 0 0 0 0 c12 0 c11
0, 1 c23 0 c21 c24 0 0 0 0 0 0 0 c22
1, 1 c22 c23 0 c21 c24 0 0 0 0 0 0 0
1, 0 0 0 0 c22 c23 0 c21 c24 0 0 0 0
2, 1 0 c22 0 0 c21 c24 0 0 c23 0 0 0
2, 2 0 c21 0 0 0 0 0 0 c24 c22 c23 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Other techniques to reduce matrix size (and mixed volumes) include the

introduction of new variables to express subexpressions which are common to
several input polynomials. For an illustration, see [Emi97].

Clearly, mixed volume captures the inherent complexity of algebraic prob-
lems in the context of sparse elimination and thus provides lower bounds
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on the complexity of algorithms. On the other hand, several toric elim-
ination algorithms rely on Minkowski sums of Newton polytopes. There-
fore, a crucial question in deriving output-sensitive upper bounds is the
relation between mixed volume and the volume of these Minkowski sums.
In manipulating mixed volumes, some fundamental results can be found
in [Sch93]. In particular, the Aleksandrov-Fenchel inequality leads to the fol-
lowing bound [Emi96, Lut86]:

MVn(Q1, . . . , Qn) ≥ (n!)nVol(Q1) · · ·Vol(Qn).

For a system of Newton polytopes Qi, define its scaling factor s to be the
minimum real value so that Qi + ti ⊂ sQµ for all Qi, where Qµ is the poly-
tope of minimum euclidean volume and the ti ∈ Rn are arbitrary translation
vectors. Clearly, s ≥ 1 and s is finite if and only if all polytopes have an affine
span of the same dimension. Let e denote the basis of natural logarithms, and
suppose that the volumes Vol(Qi) > 0 for all i. Then, for a well-constrained
system, we have

Vol

(
n∑

i=1

Qi

)
= O(ensn)MV(Q1, . . . , Qn),

whereas for an overconstrained system the same techniques yield

Vol

(
n∑

i=0

Qi

)
= O

(
ensn

n

) n∑
i=0

MV−i,

where MV−i = MV(Q0, . . . , Qi−1, Qi+1, . . . , Qn) [Emi96].
As a consequence, the asymptotic bit complexity of both subdivision-based

and incremental algorithms is singly exponential in n, proportional to the total
degree of the toric resultant, and polynomial in the number of Qi vertices,
provided all MV−i > 0.

Newton matrices, including the candidates constructed by the incremen-
tal algorithm, are characterized by a structure that generalizes the Toeplitz
structure and has been called quasi-Toeplitz [EP02] (cf. [CKL89]). By ex-
ploiting this structure, determinant evaluation has quasi-quadratic arithmetic
complexity and quasi-linear space complexity in the matrix dimension (here
“quasi” means that polylogarithmic factors are ignored). The efficient imple-
mentation of this structure is open today and is important for the competi-
tiveness of the entire approach.

7.3 Implicitization with base points

The problem of switching from a rational parametric representation to an
implicit, or algebraic, representation of a curve, surface, or hypersurface lies
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at the heart of several algorithms in computer-aided design and geometric
modelling. Given are rational parametric expressions

xi = pi(t)/q(t) ∈ K(t) = K(t1, . . . , tn), i = 0, . . . , n,

over some field K of characteristic zero. The implicitization problem consists
in computing the smallest algebraic hypersurface in terms of x = (x0, . . . , xn)
containing the closure of the image of the parametric map t �→ x. The most
common case is for curve and surface implicitization, namely when n = 1 and
n = 2 respectively. Resultants offer an efficient approach for this problem, but
face certain questions due to degeneracy conditions, discussed below. Several
other algorithms exist for this problem, including methods based on Gröbner
bases, moving surfaces, and residues. Their enumeration goes beyond the scope
of this chapter; cf. also, Chapter 3.

Implicitization is equivalent to eliminating all parameters t from the poly-
nomial system

fi(t) = pi(t)− xiq(t), i = 0, . . . , n,

regarded as polynomials in t. The resultant is well-defined for this system,
and shall be a polynomial in x, equal to the implicit expression, provided
that it does not vanish and the parametrization is generically one-to-one.
Otherwise, the resultant is a power of the implicit equation. More subtle is
the case where the resultant is identically zero. This happens precisely when
there exist values of t, known as base points, for which the fi vanish for all
xi; in other words, the pi(t) and q(t) evaluate to zero. Base points forming
a component of codimension 1 can be easily removed by canceling common
factors in the numerator and denominator of the rational expressions for the
xj ’s. But higher codimension presents a harder problem.

Besides cases where the (toric) resultant vanishes, another problem with
non-generic coefficients is that the resultant matrix may be identically singu-
lar. We understand that avoiding degeneracies is an important problem, whose
relevance extends beyond the question of implicitization with base points.
In [DE01a], a toric (sparse) projection operator is defined by perturbing the
subdivision-based matrix such that, after specialization, this operator is not
identically zero but vanishes on roots in the proper components of the variety,
including all isolated roots.

This is a standard idea in handling degeneracies in the case of resultants.
In the classical context, Canny [Can90] perturbed each fi by adding a new
factor εxdi

i , where i = 1, . . . , n, and f0 by adding ε, where ε is a positive
infinitesimal indeterminate. Rojas proposed a perturbation scheme for toric
resultants in [Roj99a] which yields a perturbed resultant of low degree in ε but
is, nonetheless, rather expensive to compute. Our scheme generalizes [Can90]
and requires virtually no extra computation besides the matrix construction.

Suppose we have a family p := (p0(x) . . . , pn(x)) of Laurent polynomials
such that supp(pi) ⊂ Ai, and Res(p0, . . . , pn) �= 0. The Toric Generalized
Characteristic Polynomial (p-GCP) is
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Cp(ε) := Res (f0 − εp0, . . . , fn − εpn) .

Let Cp,k(y1, . . . , ym) be the coefficient of Cp(ε) of lowest degree in ε, namely
k. The coefficient Cp,k is a suitable projection operator. In fact, the polyno-
mials pi may have random coefficients and support including precisely those
monomials of fi which appear on the diagonal of the toric resultant matrix.
The perturbation has been implemented in Maple; see also Section 7.5.

Example 7.3.1 (Continued from Example 7.2.4). In the special case

f0 = 1 + x1 x2 + x2
1 x2 + x1, f2 = 1 + x2 + x1 x2 + x1,

the toric resultant vanishes for all c1j since the variety V (f0, f1) has positive
dimension: it is formed by the union of the isolated point (1,−1) and the line
{−1}×C. For a specific lifting and matrix construction, the trailing coefficient
in the perturbed determinant is that of ε2 and equals

−(c12c13)(c14 − c11 + c12 − c13)(c14 + c11 − c12 + c13).

So we can recover in the last two factors the value of f1 at the isolated zero
(1,−1) and the point (−1,−1) in the positive-dimensional component.

The next example illustrates the perturbation method in applying toric
resultants for system solving.

Example 7.3.2. This is the example of [Roj99a]. To the system

f1 := 1+2x−2x2y−5xy+x2 +3x3y, f2 := 2+6x−6x2y−11xy+4x2 +5x3y,

we add f0 := u1x+u2y+u0, which does not have to be perturbed. We use the
function spresultant from Maple library multires to construct a 16 × 16
matrix M in parameters u0, u1, u2, ε. The number of rows per polynomial are,
respectively, 4, 6, 6, whereas the mixed volumes of the 2×2 subsystems are all
equal to 4. Here is the Maple code for these operations, where e stands for ε:

M := spresultant ([f0,f1,f2], [x,y]):
DM := det(M): # in u0,u1,u2,e
degree (DM,e); # outputs 12
ldg := ldegree(DM,e); # outputs 1
phi := primpart(coeff(DM,e,ldg)):
factor(phi);

For certain ω and δ, we have used p1 := −3x2 + x3y, p2 := 2 + 5x2. The
perturbed determinant has maximum and minimum degree in ε, respectively,
12 and 1. The trailing coefficient gives two factors corresponding to isolated
solutions (1/7, 7/4) and (1, 1): (49 u2 + 4 u1 + 28 u0 ) (u2 + u1 + u0 ). Another
two factors give points on the line {−1} × C of solutions, but the specific
points are very sensitive to the choice of ω and δ. One such choice yields:
(−u0 + u1 ) (27 u2 + 40 u1 − 40 u0 ).
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Example 7.3.3. In the robot motion planning implementation of Canny’s
roadmap algorithm in [HP00], numerous “degenerate” systems are encoun-
tered. Let us examine a 3 × 3 system, where we hide x0 to obtain dense
polynomials of degrees 3, 2, 1:

f0 = 54x1
3 − 21.6x1

2x2 − 69.12x1x2
2 + 41.472x2

3 + (50.625 + 75.45x0)x1
2

+ (−92.25 + 32.88x0)x1x2 + (−74.592x0 + 41.4)x2
2+

+(131.25 + 19.04x0
2 − 168x0)x1 +

(−405 + 25.728x0
2 + 126.4x0

)
x2+

+(−108.8x0
2 + 3.75x0 + 234.375),

f1 = −37.725x1
2 − 16.44x1x2 + 37.296x2

2 + (−38.08x0 + 84)x1+
+ (−63.2− 51.456x0)x2 + (2.304x0

2 + 217.6x0 − 301.875),
f2 = 15x1 − 12x2 + 16x0.

The Maple function spresultant applies an optimal perturbation to an iden-
tically singular 14 × 14 matrix in x0. Now detM(ε) is of degree 14 and the
trailing coefficient of degree 2, which provides a bound on the number of affine
roots. We obtain

φ(x0) =
(
x0 − 1434

625

)(
x0 − 12815703325

21336

)
,

the first solution corresponding to the unique isolated solution but the second
one is superfluous, hence the variety has dimension zero and degree 1.

Our perturbation method applies directly, since the projection operator
will contain, as an irreducible factor, the implicit equation. The extraneous
factor has to be removed by factorization. Distinguishing the implicit equa-
tion from the latter is straightforward by using the parametric expressions to
generate points on the implicit surface.

Example 7.3.4. Let us consider the de-homogenized version of a system defined
in [Bus01b]:

p0 = t21, p1 = t31, p2 = t22, q = t31 + t32.

It has one base point, namely (0, 0), of multiplicity 4. The toric resultant here
does not vanish, so it yields the implicit equation

x3
2x

2
1 − x3

0x
2
1 + 2x3

0x1 − x3
0.

But under the change of variable t2 → t2 − 1 the new system has zero toric
resultant. The determinant of the perturbed 27 × 27 resultant matrix has a
trailing coefficient which is precisely the implicit equation. The degree of the
trailing term is 4, which equals in this case, the number of base points in the
toric variety counted with multiplicity.

Example 7.3.5. The problem of computing the sparse, or toric, discriminant of
a polynomial specified by its support can be formulated as an implicitization
problem [DS02, GKZ94]. Let us fix the polynomial support in Zm, and suppose
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that the support’s cardinality equals m + 1 + s, s ≥ 0. The case s = 2 was
studied in [DS02] and reduces to curve implicitization, though the approach
used in that article was not based on implicitization.

Here s = 3, so we have a surface implicitization problem with base points.
Base points forming a component of codimension 1 can be easily removed by
canceling common factors in the numerator and denominator of the rational
expressions for the x0, . . . , xs−1.

The parametric expressions for the xi’s and the ensuing implicitization
problem shall be defined in terms of the entries of some matrix B, specified
from the support of the input polynomial. Its row dimension is s and its
column dimension equals the cardinality of the polynomial support. We do
not go into the technical details of deriving B from the support.

Let us consider a specific example with m = 3 and s = 3, hence the sup-
port cardinality equals 7. The problem reduces to implicitizing the parametric
surface given by

xi =
7∏

j=1

(b0j + t1b1j + t2b2j)
bij , i = 0, 1, 2,

where the matrix B = (bij), for i = 0, . . . , 2, j = 1, . . . , 7, is as follows:

B =

⎡⎢⎢⎣
1 0 −1 0 2 −1 −1

0 1 −1 2 0 −1 −1

1 1 −2 1 0 −1 0

⎤⎥⎥⎦ .
There are base points forming components of codimension 2, including a single
affine base point (1,−1). Our algorithm constructs a 33 × 33 matrix, whose
perturbed determinant has a trailing term of degree 3 in ε. The corresponding
coefficient has total degree 14 in x0, x1, x2. When factorized, it yields the
precise implicit equation, which is of degree 9 in x0, x1, x2.

7.4 Implicit support

In this section, we exploit information on the support of the toric resultant
in order to predict the support of the implicit equation of a parametric (hy-
per)surface.

Our approach is to consider the extreme monomials i.e., the vertices of the
Newton polytope of the toric resultant Res. The output support scales with
the sparseness of the parametric polynomials and is much tighter than the one
predicted by degree arguments. In many cases, we obtain the exact support
of the implicit equation, as seen by applying our Maple program. Moreover,
it is possible to specify certain coefficients in this equation. Our motivation
comes mainly from two implicitization algorithms which apply interpolation,
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namely the direct method of [CGKW01] and the one based on perturbations
(cf. Section 7.3 or [MC92]).

The initial form Inω(F ) of a multivariate polynomial F in k variables, with
respect to some functional ω : Zk → R, is the sum of all terms in F which
maximize the inner product of ω with the corresponding exponent vector. Let
us define

k := |A0|+ · · ·+ |An|,
then ω defines a lifting function on the input system, by lifting every support
point a ∈ Ai to (a, ω(a)) ∈ Zn × R. This generalizes the linear lifting of
Section 7.2. The lower hull facets of the lifted Minkowski sum correspond to
maximal cells of an induced coherent mixed subdivision ofQ. If ω is sufficiently
generic, then this subdivision is tight; in the sequel, we assume our mixed
subdivision is both coherent and tight and denote it by ∆ω. If Fi ∈ Ai is a
vertex summand of an i-mixed cell, then the corresponding coefficient in fi is
denoted by ciFi

. We recall our assumption that the Ai span Zn.

Theorem 7.4.1. The initial form of the toric resultant Res with respect to a
generic ω equals the monomial

Inω(Res) =
n∏

i=0

∏
F

c
Vol(F )
iFi

, (7.4)

where Vol(·) denotes ordinary Euclidean volume and the second product is
over all mixed cells of type i in the mixed subdivision ∆ω.

For a detailed proof of this theorem, see [Stu94a]. This proof can be
obtained from the toric resultant matrix construction, by means of the
subdivision-based algorithm. Let us use the same specialization of the co-
efficients in terms of a new parameter t, as in the discussion that leads to
Theorem 7.2.1. Then, the resultant becomes univariate in t and the proof is
completed by relating, on the one hand, the degree of Inω(Res) in t and, on
the other, the sum of all exponents in expression (7.4). The latter, for fixed i,
equals MV−i = degfi

Res.
For a generic vector ω, the initial form Inω(Res) corresponds to a vertex

of the Newton polytope of the resultant Res. It is precisely the vertex with
inner normal ω. So, by varying the lifting ω, we can compute all vertices of
this Newton polytope, hence a superset of the resultant’s support.

A bijective correspondence exists between the extreme monomials and the
configurations of the mixed cells of the Ai. So, it suffices to compute all distinct
mixed-cell configurations, as discussed in [MC00, MV99].

Another (simpler) means of reducing the number of relevant mixed sub-
divisions is by bounding the number of cells. This bound is usually straight-
forward to compute in small dimensions (e.g. when n = 2, 3) and reduces
drastically the set of mixed subdivisions. For instance, when studying the im-
plicitization of a biquadratic surface, the total number of mixed subdivisions
is 19728, whereas those with 8 cells is 62.
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In certain special cases, we can be more specific about the Newton polytope
of the toric resultant. First, its dimension equals k− 2n− 1 [GKZ94, Stu94a].
Certain corollaries follow: For essential support families (defined in [Stu94a]),
a 1-dimensional Newton polytope of Res is possible if and only if all polynomi-
als are binomials. The only resultant polytope of dimension 2 is the triangle;
in this case the support cardinalities must be 2 and 3. For dimension 3, the
possible polytopes are the tetrahedron, the square-based pyramid, and poly-
tope N2,2 given in [Stu94a]; the support cardinalities are respectively 2, 2 and
3.

One corollary of Theorem 7.4.1 (and of its proof) is that the coefficients
of all extreme monomials are in {−1, 1} [GKZ91, CE00, Stu94a]. Sturm-
fels [Stu94a] also specifies, for all extreme monomials, a way to compute their
precise coefficients. But this requires computing several coherent mixed sub-
divisions, and goes beyond the scope of the present chapter.

The so-called Cayley trick introduces a new point set C := {(z, a0j , 1) :
a0j ∈ A0} ∪ {(ei, aij , 1) : i = 1, . . . , n, aij ∈ Ai} ⊂ Z2n+1, where z =
(0, . . . , 0) ∈ Nn is the zero vector and ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Nn has a
unit at the i-th position and n− 1 zeroes.

Theorem 7.4.2. The problem of computing all mixed subdivisions of supports
A0, . . . , An, which lie in Zn, is equivalent to computing all regular triangula-
tions of the set C defined above. This set contains k0 + · · ·+ kn points, where
ki = |Ai|.
Example 7.4.3 (Continued from Example 7.2.2). The Cayley trick in the uni-
variate case goes as follows. Consider f0 = c00 + c01x, f1 = c10 + c12x2, then
the points in the set C appear in the columns of matrix[

0 0 1 1
0 1 0 2

]
.

There are two possible triangulations of these points, namely([
0
0

]
,

[
0
1

]
,

[
1
2

])
,

([
0
0

]
,

[
1
0

]
,

[
1
2

])
,

which is the one shown in Figure 7.3, and([
0
0

]
,

[
0
1

]
,

[
1
0

])
,

([
0
1

]
,

[
1
0

]
,

[
1
2

])
.

Efficient algorithms (and implementations) exist for computing all regular
triangulations of a point set [Ram01]. Regular are those triangulations that
can be obtained by projection of a lifted triangulation.

We produce a superset of the monomials in the support of the im-
plicit equation of the input. Consider, as in Section 7.3 the polynomials
fi(t) = pi(t) − xiq(t), where we ignore the specific values of the coefficients.
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This is an interesting feature of the algorithm, namely that it considers the
monomials in the parametric equations but not their actual coefficients. This
shows that the algorithm is suitable for use as a preprocessing off-line step
in CAGD computations, where one needs to compute thousands of examples
with the same support structure in real time. This handles the implicitiza-
tion of (multiparametric) families of (hyper)surfaces, indexed by one or more
parameters.

Of course, the generic resultant coefficients are eventually specialized to
functions of the xi. Then, any bounds on the implicit degree in the xi may be
applied, in order to reduce the final support set. One step yields as by-product
all partial mixed volumes MV−i for i = 0, . . . , n, and hence the implicit degree
separately in the xi variables.

We examine our method on some small examples, and summarize the
results in Table 7.1 below.

Example 7.4.4. We consider the Folium of Descartes, shown also in Figure 7.8.
x = 3t2/(t3 + 1), y = 3t/(t3 + 1).

–3

–2

–1

0

1

2

–3 –2 –1 1 2

Fig. 7.8. The Folium of Descartes

The output monomials are {y3, x3, x3 y3, x y, y2 x2}. After applying the
degree bound d = 3 we obtain the support {y3, x3, x y}, which is optimal,
since the implicit equation is x3 + y3 − 3 x y = 0.

Example 7.4.5. An example in 3 dimensions comes from [Buc88b]; the surface
is drawn in Figure 7.9. The parametric expressions are: x = s t, y = s t2, z =
s2.

In order to apply toric elimination theory, we consider polynomials

f0 = c00 − c01st, f1 = c10 − c11st2, f2 = c20 − c21s2.

There are the following two possible mixed subdivisions, each containing ex-
actly three maximal cells, all of which are mixed, see Figure 7.10.

The computed support is optimal and the implicit equation is x4−y2z = 0.
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Fig. 7.9. The surface in Example 7.4.5.

c00

c01

c10

c11 c20

c21

Fig. 7.10. Mixed cells in the subdivisions, with vertex summands shown.

Example 7.4.6. Let us consider a system attributed to Fröberg and discussed
in Chapter 1.

x = t48 − t56 − t60 − t62 − t63, y = t32.

The Minkowski sum is the segment Q0 + Q1 = [0, 95]. One type of triangu-
lations, obtained from a non-linear lifting, divides it to the following 3 cells
(which are all segments):

(Q′
0 + 0), (a+Q1), (Q′′

0 + 32), where Q′
0 = [0, a], Q′′

0 = [a, 63],

and a ∈ A0 = {0, 48, 56, 60, 62, 63}. Every such triangulation yields a support
point ya. The triangulation (0+Q1), (Q0 +32), which is induced from a linear
lifting, yields support point x32. Note that only certain of these monomials
are extreme when we consider the resultant in terms of all input coefficients,
in order for the respective coefficients to lie in {−1, 1}.

Therefore, we find, as the toric resultant support, the triangle with vertices
(32, 0), (0, 48) and (0, 63). Equivalently, it is delimited by the y-axis and the
lines y = −(3/2)x+ 48 and y = −(63/32)x+ 63, as shown in Figure 7.11.

Counting the points with integer coordinates inside (and on the sides) of
the triangle, we see that there are 257 such points, which is seen to be optimal
by actually computing the resultant.
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Fig. 7.11. Toric resultant support.

Table 7.1. Predicting the implicit support.

Problem
Input
Degree

Degree of
Implicit Eq.

General
# monomials

# monomials
from [EK03]

Unit Circle 2 2 6 3

Descartes Folium, Ex. 7.4.4 3 3 10 3

Fröberg-Dickenstein, Ex. 7.4.6 63 63 1057 257

Buchberger, Example 7.4.5 1,2 4 35 2

Busé, Example 7.3.4 3 5 56 4

Bilinear, Example 7.1.9 1,1 2 10 9

Example 7.4.7. The well-known bicubic surface represents a challenge for our
current implementation: x = 3 t (t−1)2+(s−1)3+3 s, y = 3 s (s−1)2+t3+3 t,
z = −3s(s2−5s+5)t3 −3(s3 +6s2−9s+1)t2+ t(6s3 +9s2−18s+3)−3s(s−
1). We computed 737129 regular triangulations (by TOPCOM) [Ram01]. For
illustration purposes, we show one of them:

{2,3,4,7,13},{3,4,5,7,13},{3,5,6,7,13},{3,6,9,13,14},
{6,9,12,13,14},{3,6,9,14,15},{6,9,12,14,15},{6,12,13,14,16},
{6,12,14,15,16},{6,12,15,16,17},{3,6,9,15,18},{6,9,12,15,18},
{6,12,15,17,18},{3,9,15,18,19},{3,6,9,18,19},{6,9,12,18,19},
{6,12,16,17,20},{6,12,17,18,20},{3,6,9,19,23},{6,9,12,19,23},
{6,12,19,22,23},{6,12,22,23,24},{6,12,23,24,25},{3,6,9,23,26},
{6,9,12,23,26},{6,12,23,25,26},{0,2,4,7,13},{3,6,7,9,13},
{6,12,18,19,22},{6,12,18,20,24},{6,7,9,12,13},{6,12,18,22,24}.

The size of the file is 383 MBytes. This underlines the fact that we should not
compute all regular triangulations but only the mixed-cell configurations.
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7.5 Algebraic solving by linear algebra

To solve well-constrained system (7.1) by the resultant method we define an
overconstrained system and apply the resultant matrix construction. For a
more comprehensive discussion the reader may refer to Chapters 2 and 3,
or [CLO98, EM99c].

One advantage of resultant-based methods is that resultant matrix M
need be computed only once, for all systems with the same supports. So this
step is thought of as being carried out off-line, while the matrix operations to
approximate all isolated roots for each coefficient specialization constitute the
online part. Numerical issues for the latter are discussed in [Emi97, EM99c].

Resultant matrices reduce system solving to certain standard operations in
computer algebra. In particular, univariate or multivariate determinants can
be computed by evaluation and interpolation techniques. However, the de-
terminant development in the monomial basis may be avoided because there
are algorithms for univariate polynomial solving as well as multivariate poly-
nomial factorization which require only the values of these polynomials at
specific points; cf. e.g. [Pan97]. All of these evaluations would exploit the
quasi-Toeplitz structure of Sylvester-type matrices [CKL89, EP02].

We present two ways of defining an overconstrained system. The first
method adds to the given system an extra polynomial, namely

f0 = u0 + u1x1 + · · ·+ unxn ∈ (K[u0, . . . , un])[x±1
1 , . . . , x

±1
n ],

thus yielding a well-studied object, the u-resultant. Coefficients u1, . . . , un may
be randomly specialized or left as indeterminates; in the latter case, solving
reduces to factorizing the u-polynomial. It is known that the u-resultant fac-
torizes into linear factors u0 + u1α1 + · · · + unαn where (α1, . . . , αn) is an
isolated root of the original system. This is an instance of Poisson’s formula.
Now, u0 is usually an indeterminate that we shall denote by x0 below for
uniformity of notation. Matrix M will describe the multiplication map for f0
in the coordinate ring of the ideal defined by the system in (7.1).

An alternative way to obtain an overconstrained system is by hiding one of
the original variables in the coefficient field and consider the system as follows
(we modify the previous notation to unify the subsequent discussion):

f0, . . . , fn ∈ (K[x0]) [x±1
1 , . . . , x

±1
n ].

M is a matrix polynomial in x0, and may not be linear.
An important issue concerns the degeneracy of the input coefficients. This

may result in the trivial vanishing of the toric resultant or of detM when
there is an infinite number of common roots (in the torus or at toric infinity)
or simply due to the matrix constructed. An infinitesimal perturbation has
been proposed [DE01a] which respects the structure of Newton polytopes and
is computed at no extra asymptotic cost, cf. Section 7.3.
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The perturbed determinant is a polynomial in the perturbation variable,
whose leading coefficient is nonzero whereas the least significant coefficient
is detM . Irrespective of which coefficients vanish, there is always a trailing
nonzero coefficient which vanishes when x0 takes its values at the system’s
isolated roots, even in the presence of positive-dimensional components. This
univariate polynomial is known as a projection operator because it projects
the roots to the x0-coordinate. Univariate polynomial solving thus yields these
coordinates. Again, the u-resultant allows us to recover all coordinates via
multivariate factoring.

A basic property of resultant matrices is that right vector multiplication
expresses evaluation of the row polynomials. Specifically, multiplying by a
column vector containing the values of column monomials q at some α ∈ (K

∗
)n

produces the values of the row polynomials

αpfip
(α).

Computationally it is preferable to have to deal with as small a matrix as
possible. To this end we partition M into four blocks Mij so that the upper
left submatrix M11 is square, independent of x0, and of maximal dimension
so that it remains well-conditioned.

If the matrix is obtained from the subdivision-based algorithm, then we
know that M11 corresponds to the integer points in the 0-mixed cells. More
precisely, the columns of M11 are indexed by those points, whereas its rows
contain the multiples of f0 with the corresponding monomials. It can be proven
that these monomials form a basis of the quotient ring defined by the ideal
of f1, . . . , fn, namely K[x±1

1 , . . . , x
±1
n ]/〈f1, . . . , fn〉. For a proof, see [Emi96,

PS96].
Once M11 is specified, let A(x0) = M22(x0) −M21(x0)M−1

11 M12(x0). To
avoid computing M−1

11 , we may use its LU (or QR) decomposition to solve
M11X =M12 and compute A =M22 −M21X.

Let E be the monomial set indexing the rows and columns of M and let
B ⊂ E index A. If (α0, α) ∈ Kn+1

is a common root with α ∈ Kn
, then

detA(α0) = 0 and, for any vector v′ = [· · ·αq · · · ], where q ranges over B,
A(α0)v′ = 0. Moreover,[

M11 M12(α0)
0 A(α0)

] [
v
v′

]
=
[

0
0

]
⇒ M11v +M12(α0)v′ = 0,

determines v once v′ has been computed. Vector [v, v′] contains the values of
every monomial in E at α.

It can be shown that E affinely spans Zn and an affinely independent
subset can be computed in polynomial time [Emi96]. Given v, v′ and these
points, we can compute the coordinates of α. If all independent points are in
B then v′ suffices for solving. To find the vector entries that will allow us to
recover the root coordinates, it is typically sufficient to search in B for pairs of
entries corresponding to q1, q2 such that q1 − q2 = (0, . . . , 0, 1, 0, . . . , 0). This
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lets us compute the i-th coordinate, if the unit appears at the i-th position.
In general, the problem of choosing the best vector entries for computing the
root coordinates is open, and different choices may lead to different accuracy.

To reduce the problem to an eigendecomposition, let r be the dimension
of A(x0), and d ≥ 1 the highest degree of x0 in any entry. We wish to find all
values of x0 at which

A(x0) = xd
0Ad + xd−1

0 Ad−1 + · · ·+ x0A1 +A0

becomes singular. These are the eigenvalues of the matrix polynomial. Fur-
thermore, for every eigenvalue λ, there is a basis of the kernel of A(λ) defined
by the right eigenvectors of the matrix polynomial associated to λ. If Ad is
nonsingular then the eigenvalues and right eigenvectors of A(x0) are the eigen-
values and right eigenvectors of monic matrix polynomial A−1

d A(x0). This is
always the case when adding an extra linear polynomial, since d = 1 and
A1 = I is the r × r identity matrix; then

A(x0) = −A1(−A−1
1 A0 − x0I).

Generally, the companion matrix of a monic matrix polynomial is a square
matrix C of dimension rd. The eigenvalues of C are precisely the eigenvalues
λ of A−1

d A(x0), whereas its right eigenvector w = [v1, . . . , vd] contains a right
eigenvector v1 of A−1

d A(x0) and vi = λi−1v1, for i = 2, . . . , d.
We now address the question of a singular Ad. The following rank bal-

ancing transformation in general improves the conditioning of Ad. If matrix
polynomial A(x0) is not identically singular for all x0, then there exists a
transformation x0 �→ (t1y + t2)/(t3y + t4) for some ti ∈ Z, that produces a
new matrix polynomial of the same degree and with nonsingular leading co-
efficient. If Ad is ill-conditioned for all linear rank balancing transformations,
then we build the matrix pencil and apply a generalized eigendecomposition
to solve C1x + C0. This returns pairs (α, β) such that matrix C1α + C0β is
singular with an associated right eigenvector.
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Summary. In a 1996 paper, Andrew Sommese and Charles Wampler began de-
veloping a new area, “Numerical Algebraic Geometry”, which would bear the same
relation to “Algebraic Geometry” that “Numerical Linear Algebra” bears to “Linear
Algebra”.

To approximate all isolated solutions of polynomial systems, numerical path
following techniques have been proven reliable and efficient during the past two
decades. In the nineties, homotopy methods were developed to exploit special struc-
tures of the polynomial system, in particular its sparsity. For sparse systems, the
roots are counted by the mixed volume of the Newton polytopes and computed by
means of polyhedral homotopies.

In Numerical Algebraic Geometry we apply and integrate homotopy continua-
tion methods to describe solution components of polynomial systems. In particular,
our algorithms extend beyond just finding isolated solutions to also find all posi-
tive dimensional solution sets of polynomial systems and to decompose these into
irreducible components. These methods can be considered as symbolic-numeric, or
perhaps rather as numeric-symbolic, since numerical methods are applied to find
integer results, such as the dimension and degree of solution components, and via
interpolation, to produce symbolic results in the form of equations describing the
irreducible components.

Applications from mechanical engineering motivated the development of Numer-
ical Algebraic Geometry. The performance of our software on several test problems
illustrates the effectiveness of the new methods.

� This material is based upon work supported by the National Science Foundation
under Grant No. 0105653; and the Duncan Chair of the University of Notre Dame.

�� This material is based upon work supported by the National Science Foundation
under Grant No. 0105739 and Grant No. 0134611.
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8.0 Introduction

The goal of this chapter is to provide an overview of the main ideas developed
so far in our research program to implement numerical algebraic geometry,
initiated in [SW96].

We are concerned with numerically solving polynomial systems. While the
homotopy continuation methods of the past were limited to approximating
only the isolated roots, we developed tools to describe all positive dimen-
sional irreducible components of the solution set of a polynomial system. In
particular, our algorithms produce for every irreducible component a wit-
ness set, whose cardinality equals the degree of the component, as this set is
obtained by intersecting the component with a general linear space of com-
plementary dimension. A point of a witness set corresponds to what is known
in algebraic geometry as a generic point. Our main results [SV00, SVW01a,
SVW01b, SVW01c, SVW02c, SVW02b, SVW02a, SVW03, SVW, SVW04]
can be summarized in four items:

1. In [SV00] we presented a cascade of homotopies (extended in [SVW]) to
find candidate witness points for every component of the solution set. Sep-
arating the junk from the candidate witness points was done in [SVW01a],
where factorization methods based on interpolation implemented a numer-
ical irreducible decomposition. The use of central projections and a homo-
topy membership test to filter junk were the improvements of [SVW01b].

2. The treatment of high-degree components and components of multiplic-
ity greater than one can present numerical challenges. The use of mon-
odromy [SVW01c] followed by the validation by the linear trace [SVW02c]
enabled us to deal with high degree components of multiplicity one, using
only machine floating point numbers. In [SVW02b], we presented an ap-
proach to tracking paths on sets of multiplicity greater than one, which
in theory makes the algorithm for irreducible decomposition completely
general, although in practice this portion of the framework needs further
refinement. However, for the case of the factorization of a single multi-
variate polynomial, we can use differentiation to reduce the treatment of
higher multiplicity components to nonsingular path tracking, as we de-
scribed in [SVW04]. This addresses an open problem in symbolic-numeric
computing: the factorization of multivariate polynomials with approxi-
mate coefficients [Kal00].

3. Our new homotopy algorithms have been implemented and tested using
the path trackers in the software package PHCpack [Ver99a]. In [SVW03]
we outlined the new tools in PHCpack and described a simple interface
to Maple. Our software found the degrees of all irreducible components
of the cyclic 8 and 9 roots problems, which previously could only be done
via Gröbner bases (and only by the very best implementation [Fau99]).

4. Polynomial systems with positive dimensional components occur natu-
rally when designing mechanical devices which permit motion. We inves-
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tigated a special case of a moving platform, discovering through a nu-
merical irreducible decomposition [SVW02c] a component not reported
by experts [HK00]. This and other applications of our tools to systems
coming from mechanical design are described in [SVW02a].

In this chapter we will introduce these results, first explaining homotopy meth-
ods for isolated solutions. We can only mention some recent and exciting
new developments in fields related to numerical algebraic geometry: numerical
Schubert calculus ([HSS98], [HV00], [LWW02], [SS01], [VW02]) and numerical
jet geometry [RSV02].

8.1 Homotopy continuation methods – an overview

Homotopy continuation methods operate in two stages. Firstly, homotopy
methods exploit the structure of the system f(x) = 0 to find a root count
and to construct a start system g(x) = 0 that has exactly as many regular
solutions as the root count. This start system is embedded in the homotopy

h(x, t) = γ(1− t)g(x) + tf(x) = 0, t ∈ [0, 1], (8.1)

with γ ∈ C a random number. Secondly, as t moves from 0 to 1, numerical
continuation methods trace the paths that originate at the solutions of the
start system towards the solutions of the target system. The good properties
we expect from a homotopy are (borrowed from [Li97, Li03]):

1. (triviality) The solutions for t = 0 are trivial to find.
2. (smoothness) No singularities along the solution paths occur (because

of γ).
3. (accessibility) An isolated solution of multiplicitym is reached by exactly

m paths.
Continuation or path-following methods are standard numerical techniques

([AG90a, AG93, AG97], [Mor87], [Wat86, Wat89]) to trace the solution paths
defined by the homotopy using predictor-corrector methods. The smoothness
property of complex polynomial homotopies implies that paths never turn
back, so that during correction the parameter t stays fixed, which simplifies
the set up of path trackers. The adaptive step size control determines the
step length while enforcing quadratic convergence in Newton’s method to
avoid path crossing (see also [KX94] for the application of interval methods
to control the step size). At the end of the path, end games ([HV98], [MSW91,
MSW92a, MSW92b], [SWS96]) deal with diverging paths and paths leading
to singular roots.

Following [HSS98], we say that a homotopy is optimal if every path leads
to one solution. The classification in Table 8.1 (from [Ver99b]) contains key
words for three classes of polynomial systems for which optimal homotopies
are available in PHCpack [Ver99a]. These homotopies have no diverging paths
for generic instances of polynomial systems in their class.



304 A.J. Sommese, J. Verschelde, and C.W. Wampler

system model theory space

dense highest degrees Bézout Pn projective

sparse Newton polytopes Bernshtěın (C∗)n toric

determinantal localization posets Schubert Gmr Grassmannian

Table 8.1. Key words of the three classes of polynomial systems.

The earliest applications of homotopies for solving polynomial systems
([CMPY79], [Dre77], [GZ79], [GL80], [Li83], [LS87] [Mor83], [Wri85], [Zul88])
belong to the dense class, where the number of paths equals the product of
the degrees in the system. Multi-homogeneous homotopies were introduced
in [MS87b, MS87a] and applied in [WMS90, WMS92], see also [Wam92]. Sim-
ilar are the random product homotopies [LSY87a, LSY87b], see also [Li87]
and [LW91]. Methods to construct linear-product start systems were intro-
duced in [VH93], and extended in [VC93, VC94], [LWW96], and [WSW00]. A
general approach to exploit product structures was developed in [MSW95].

Almost all systems have fewer terms than allowed by their degrees. Im-
plementing constructive proofs of Bernshtěın’s theorems [Ber75], polyhedral
homotopies were introduced in [HS95] and [VVC94] to solve sparse sys-
tems more efficiently. These methods provided ways to start cheater’s ho-
motopies ([LSY89], [LW92]) and special instances of coefficient-parameter
polynomial continuation ([MS89, MS90]). The root count requires the cal-
culation of the mixed volume4, for which a lift-and-prune approach was
presented in [EC95]. Exploitation of symmetry was studied in [VG95] and
the dynamic lifting of [VGC96] led to incremental polyhedral continuation.
See [Ver00] for a Toric Newton. Extensions to count all affine roots (also those
with zero components) were proposed in [EV99], [GLW99], [HS97b], [LW96],
[Roj94, Roj99b], and [RW96]. Very efficient calculations of mixed volumes are
described in [DKK03], [GL00, GL03], [KK03b], [LL01], and [TKF02].

Determinantal systems (with equations like det(A|X) = 0) arise in prob-
lems of enumerative geometry. The homotopies in numerical Schubert calculus
first appeared explicitly in [HSS98], originating from questions in real enumer-
ative geometry [Sot97a, Sot97b]. While real enumerative geometry [Sot03]
is interesting on its own, these homotopies solve the pole placement prob-
lem ([Byr89], [RRW96, RRW98], [Ros94], [RW99]) in control theory. Recent
improvements and applications can be found in [HV00], [LWW02], [SS01],
and [VW02].

We end this section noting that homotopies have a wider application
range than “just” solving polynomial systems, see for instance [Wat02] for
a survey, [WBM87], and [WSM+97] for a description of HOMPACK. The

4 The mixed volume was nicknamed in [CR91] as the BKK bound to honor Bern-
shtěın [Ber75], Kushnirenko [Kus76], and Khovanskǐı [Kho78b].
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speedup of continuation methods on multi-processor machines has been ad-
dressed in [ACW89, CARW93, HW89].

8.2 Homotopies to approximate all isolated solutions

We first prove the regularity and boundedness of the solution paths defined
by homotopies, before surveying path following techniques. We obtain more
efficient homotopies by exploiting product structures and using Newton poly-
topes to model the sparsity of the system.

8.2.1 Regularity and boundedness of solution paths

To illustrate how homotopy methods work, let us consider a simple example
of solving two quadrics:

f(x, y) =
(
x2 + 4y2 − 4

2y2 − x
)
.

To solve f(x, y) = 0, we match it with a start system of two easily solved
quadrics:

g(x, y) =
(
x2 − 1
y2 − 1

)
,

with which we form the following homotopy:

h(x, y, t) =
(
x2 − 1
y2 − 1

)
(1− t) +

(
x2 + 4y2 − 4

2y2 − x
)
t. (8.2)

At t = 1, h(x, y, t = 1) = 0 is f(x, y) = 0, the system we wish to solve while
at t = 0, h(x, y, t = 0) = 0 is the start system g(x, y) = 0 we can easily solve.
As we usually move t from 0 to 1 when we solve the system, we may view the
movement of t from 1 to 0 as a degeneration of the system, i.e., we deform
the general hypersurfaces into degenerate products of hyperplanes.

But does this work? We will see in a moment that it does not, but that
there is a simple maneuver that fixes the trouble once and for all. For numerical
solving, we would need the solution paths to be free of singularities. A singu-
larity occurs where the Jacobian matrix Jh of the homotopy h(x, y, t) = 0 has
a zero determinant. The singularities along the solution paths are solutions of
the system{

h(x, y, t) = 0
det(Jh(x, y, t)) = 0 where Jh =

[
2x 8yt
−t 2y + 2yt

]
. (8.3)

If this “discriminant system” has any roots with t ∈ [0, 1), there is at least
one homotopy solution path with singularities. To explore this situation, let’s
solve this system by elimination. This is not a step that we normally perform



306 A.J. Sommese, J. Verschelde, and C.W. Wampler

in the course of solving f(x) = 0, but we do it here to reveal the flaw in the
naive homotopy of (8.2) and to illustrate how we fix the flaw. To solve this
discriminant system, we will eliminate from the system the variables x and y
to obtain one polynomial in the continuation parameter t. The roots of this
polynomial define the singularities along the solution paths.

While there are many ways to perform this elimination, we let Maple
compute a lexicographical Gröbner basis of the discriminant system. Below
are the Maple commands, to save space we suppressed most of the output.

> f := [x^2 + 4*y^2 - 4,2*y^2- x]; # target system
> g := [x^2 - 1, y^2 - 1]; # start system
> h := t*f + (1-t)*g; # the homotopy
> eh := expand(h); # expanded homotopy
> jh := matrix(2,2, # Jacobian matrix

[[diff(eh[1],x),diff(eh[1],y)],
[diff(eh[2],x),diff(eh[2],y)]]);

> sys := [eh[1],eh[2], # discriminant system solved by
linalg[det](jh)]; # pure lex Groebner basis in gb

> gb := grobner[gbasis](sys,[x,y,t],plex);
> gb[nops(gb)]; # discriminant polynomial

3 5 4 2 7 6
-1 + t + 10 t + 29 t + 13 t - 5 t + 12 t + 21 t

As the degree of this “discriminant polynomial” is seven, we have seven roots:

> fsolve(gb[nops(gb)],t,complex); # numerical solving
-.8818537646 - .9177002576 I, -.8818537646 + .9177002576 I,
-.2011599690 - .8877289373 I, -.2011599690 + .8877289373 I,

.006853764567 - .3927967328 I, .006853764567 + .3927967328 I,
.4023199381

We are troubled by the root around 0.4, because, as t moves from 0 to 1, we
will encounter a singularity. So our homotopy in (8.2) does not work!

We can fix this problem by the choice of a random constant γ = eθ
√−1,

for some random angle θ. Now, consider the homotopy

h(x, y, t) = γ
(
x2 − 1
y2 − 1

)
(1− t) +

(
x2 + 4y2 − 4

2y2 − x
)
t. (8.4)

The random choice of γ will cause all roots of the discriminant polynomial
to lie outside the interval [0, 1). That t = 0 is excluded is obvious (because
the start system has only regular roots), but at t = 1 we may find singular
solutions of the given system f .

Exercise 8.2.1. Modify the homotopy in the sequence of Maple commands
above taking h := t*f + (1+I)*(1-t)*g; and verify that none of the roots
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of the discriminant polynomial is real. The choice of γ as 1 +
√−1 does not

give the Gröbner package of Maple a hard time. If Maple is unavailable, then
another computer algebra system should do just as well.

The above example illustrates the general idea behind the regularity of
solution paths defined by a homotopy. The main theorem of elimination theory
says that the projection of an algebraic set in complex projective space is
again an algebraic set. Consider the discriminant system as a polynomial
system in x, t, and γ. If we eliminate x, we obtain a polynomial in t and γ.
This polynomial does not vanish entirely as the start system (at t = 0) has no
singular roots. Thus it has only finitely many roots for general γ. Furthermore,
a random complex choice of γ will insure that all those roots miss the interval
[0, 1). A schematic (as in [Mor87]) illustrating what cannot and what can
happen is in Figure 8.1.

x(t)

t

x(t)

t

Fig. 8.1. By a random choice of a complex constant γ, singularities will not occur
for all t ∈ [0, 1) as on the left, but they may occur at the end, for t = 1.

The same random constant γ ensures that all paths stay bounded for
all t ∈ [0, 1). By this we mean that no path diverges to infinity for some
t ∈ [0, 1). Equivalently, for all t ∈ [0, 1), the system h(x, t) = 0 has
no solutions at infinity (see Figure 8.2). To see this, invoke a homoge-
neous coordinatetransformation introducing one extra coordinate, and con-
sider the system in projective space. That is, consider the homogenized system
H(X,Y, Z, t) = 0 obtained by clearing Z from denominators in the expres-
sion h(X/Z, Y/Z, t) = 0. Now, instead of the discriminant system of (8.3) our
concern is the system {

H(X,Y, Z, t) = 0
Z = 0

Since h is homogeneous in X,Y, Z, the solutions live in projective space, which
we can restate to say that all solutions to H(X,Y, 0, t) = 0 must either satisfy
H(X/Y, 1, 0, t) = 0 or H(1, Y/X, 0, t) = 0 (or both, if neither X or Y is zero).
Either of these is a system of two polynomials in two variables and γ and so
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one can again apply elimination and see that, except for special choices of γ,
there will be no solutions at infinity for t ∈ [0, 1).

Note that if the polynomials in the start system g(x, y) = 0 have lower
degrees than their counterparts in f(x, y) = 0, then H(X,Y, Z, t) = 0 could
have solutions at infinity for t = 0. By matching the degrees of the polynomials
in g and f , we avoid this, which is key in proving the third property of a good
homotopy: accessibility.

Exercise 8.2.2. Consider the homotopy

h(x, y, t) =
({
x2 − 1 = 0
y2 − 1 = 0

)
(1− t) +

({
y2 − 1 = 0
x2 − 3 = 0

)
t.

For which values of t do we have diverging paths? Show that with a random
complex constant γ in h(x, y, t) = 0 (as in (8.4)) there are no divergent paths.

x(t)

t

x(t)

t

Fig. 8.2. By a random choice of a complex constant γ, divergence will not occur
for all t ∈ [0, 1) as on the left, but may occur at the end, for t = 1.

To understand why the homotopy has the accessibility property (defined
in Section 8.1), consider that whenever the number of equations is equal to
the number of variables x, continuity implies that an isolated root at t = 1
must be approached by at least one isolated root as t→ 1. Since there are no
singularities or solutions at infinity for t in [0, 1), we can carry this argument
backwards all the way to t = 0, where we know we are starting with all the
solutions of the homotopy.

The arguments described above can be found in [BCSS98], see also [LS87].

8.2.2 Path following techniques

Consider any homotopy hk(x(t), y(t), t) = 0, k = 1, 2. Since we are interested
to see how x and y change as t changes, we apply the operator ∂

∂t on the
homotopy. Via the chain rule, we obtain
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∂hk

∂x

∂x

∂t
+
∂hk

∂y

∂y

∂t
+
∂hk

∂t
= 0, k = 1, 2.

Denote ∆x := ∂x
∂t and ∆y := ∂y

∂t . For fixed t (after incrementing t := t+∆t),
for k = 1, 2, we solve the linear system[

∂h1
∂x

∂h1
∂y

∂h2
∂x

∂h2
∂y

] [
∆x
∆y

]
= −

[
∂h1
∂t

∂h2
∂t

]
and obtain (∆x,∆y), the tangent to the path. For some step size λ > 0, the
updates x := x+ λ∆x and y := y + λ∆y give the Euler predictor.

To avoid solving a linear system at each predictor step, we may use a
secant predictor. A secant predictor is less accurate and will require more
corrector steps, but the total amount of work for the prediction can be less.
Cubic interpolation, using the tangent vectors at two points along the path,
leads to the Hermite predictor. See Figure 8.3 for a comparison.

Hermite

Euler

secant
three predictors

[t1,x1]

[t0, x0]

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8 1

t

Fig. 8.3. Three predictors: secant, Euler, and Hermite.

The predictor delivers at each step of the method a new value of the contin-
uation parameter and predicts an approximate solution of the corresponding
new system in the homotopy. Then, the predicted approximate solution is
corrected by applying the corrector, e.g., by Newton’s method. With a good
homotopy, the solution paths never turn back as t increases. Therefore, the
continuation parameter can remain fixed while correcting the predicted so-
lution. This leads to so-called increment-and-fix path following methods. In
practice, determining the step length during the prediction stage is done by a
hit-or-miss method, which can be implemented by means of an adaptive step
size control, as done in the algorithm below.
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Algorithm 8.2.3 Following one solution path by an increment-and-fix
predictor-corrector method with an adaptive step size control strategy.

Input: h(x, t), x∗ ∈ Cn: h(x∗, 0) = 0, homotopy and root
ε > 0, max it, max steps, defines stop criteria
min step size,max step size. for step size control

Output: x∗, success if ||h(x∗, 1)|| ≤ ε. approximate root at end

t := 0; k := 0; initialization
λ := max step size; step length
old t := t; old x∗ := x∗ back up for t and x∗

previous x∗ := x∗; previous solution
stop := false; combines stop criteria
while t < 1 and not stop loop
t := min(1, t+ λ); secant predictor for t
x∗ := x∗ + λ(x∗ − previous x∗); secant predictor for x∗

Newton(h(x, t),x∗, ε,max it,success); correct with Newton
if success step size control
then λ := min(Expand(λ),max step size); enlarge step length

previous x∗ := old x∗; go further along path
old t := t; old x∗ := x∗; new back up values

else λ := Shrink(λ); reduce step length
t := old t; x∗ := old x∗; step back and try again

end if;
k := k + 1; augment counter
stop := (λ < min step size) 1st stop criterion

or (k > max steps); 2nd stop criterion
end loop;
success := (||h(x∗, 1)|| ≤ ε). report success or failure

The path following algorithm contains three key ingredients in its loop: the
predictor, the corrector and the step size control. The step size λ is controlled
by the functions Shrink and Expand which respectively reduce and enlarge
λ, depending on the outcome of the corrector.

The algorithm is still abstract because we did not specify particular values
for the constants, such as tolerances on the solutions, minimal and maximal
step size, maximum number of iterations of Newton’s method, etc.

8.2.3 Homotopies exploiting product structures

A typical homotopy looks as follows:
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h(x, t) = γg(x)(1− t) + f(x)t = 0, γ ∈ C,

where a random γ ensures the regularity and boundedness of the paths.
In general, for a system f = (f1, f2, . . . , fn), with di = deg(fi), we set up

a start system g(x) = 0 as follows:

g(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α1x

d1
1 − β1 = 0

α2x
d2
2 − β2 = 0

...
αnx

dn
n − βn = 0

where the coefficients αi and βi, for i = 1, 2, . . . , n, are chosen at random in C.
Therefore g(x) = 0 has exactly as many regular solutions as the total degree
D =

∏n
i=1 di. So this homotopy defines D solution paths. The theorem of

Bézout (which can be proven constructively via a homotopy) indeed predicts
D as the number of solutions in complex projective space.

Exercise 8.2.4. Consider the following polynomial system:{
x108 + 1.1y54 − 1.1y = 0
y108 + 1.1x54 − 1.1x = 0 .

This system was constructed by Bertrand Haas [Haa02] who provided with
this system a counterexample to the conjecture of Kushnirenko on the number
of real roots of sparse systems. Use phc (available via [Ver99a]) to determine5

how many solutions of this system are complex. How many are real?

In almost all applications, the systems have far fewer solutions than the
total degree (most solutions lie at infinity and are of no interest). Consider
the eigenvalue problem Ax = λx, A ∈ Cn×n. To make the system square,
we can add one general hyperplane to obtain a unique x for every λ. If we
apply Bézout’s theorem in a straightforward manner, we consider Ax = λx
as a system of n quadrics and obtain a homotopy with D = 2n to trace,
whereas we know there can be at most n solutions! This is a highly wasteful
computation, as 2n−n of our solution paths are certain to diverge to infinity.

Let us examine the smallest nontrivial case: n = 2. We consider a general
2-by-2 matrix A and scale the components of the eigenvector with a random
hyperplane c0 + c1x1 + c2x2 = 0. So we look at the system

f(x1, x2, λ) =

⎧⎨⎩a11x1 + a12x2 − λx1 = 0
a21x1 + a22x2 − λx2 = 0

c0 + c1x1 + c2x2 = 0
.

To compute the solutions at infinity, we go to homogeneous coordinates, re-
placing x1 by x1/x0, x2 by x2/x0, and λ by λ/x0. Clearing denominators:

5 This may take some time (especially on slower machines)...
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f(x0, x1, x2, λ) =

⎧⎨⎩a11x0x1 + a12x0x2 − λx1 = 0
a21x0x1 + a22x0x2 − λx2 = 0

c0x0 + c1x1 + c2x2 = 0
.

Solutions at infinity are solutions of the homogeneous system with x0 = 0
and not all components equal to zero. If λ = 0, then (x0, x1, x2, λ) =
(0, 1,−c1/c2, 0) represents one point at infinity. If λ �= 0, then the other so-
lution at infinity is represented by (x0, x1, x2, λ) = (0, 0, 0, 1). So we found
where two of the four paths are diverging to.

Now we embed our problem in multi-projective space: P × P2, separating
λ from x. To go to 2-homogeneous coordinates, we replace x2 by x2/x0, x1

by x1/x0 (as before), and λ by λ1/λ0 (this is new), clearing denominators:

f(x0, x1, x2, λ0, λ1) =

⎧⎨⎩a11λ0x1 + a12λ0x2 − λ1x1 = 0
a21λ0x1 + a22λ0x2 − λ1x2 = 0

c0x0 + c1x1 + c2x2 = 0
. (8.5)

Looking for roots at infinity of (8.5) we see that λ0 = 0 implies x1 = 0,
x2 = 0, and thus x0 = 0, so we have no proper solution at infinity with
λ0 = 0. For the solutions at infinity of (8.5) with x0 = 0, considering (8.5)
back in affine coordinates for λ (as λ0 cannot be zero), we are looking at a
homogeneous system of three equations in three unknowns: x1, x2, and λ. For
general matrices, the trivial zero solution is the only solution. Thus in P×P2,
the general eigenvalue problem has no solutions at infinity.

To arrive at a version of Bézout’s theorem for polynomial systems over
multi-projective spaces, we need to define our root count. Continuing our
running example, we record the degrees in λ and {x1, x2} of every equation in
a table. Corresponding to this degree table is a linear-product start system,
written in (8.6) in table format.

{λ} {x1, x2}
(1) 1 1
(2) 1 1
(3) 0 1

degree table

⇐⇒

{λ} {x1, x2}
(1) α10 + α11λ β10 + β11x1 + β12x2

(2) α20 + α21λ β20 + β21x1 + β22x2

(3) 1 β30 + β31x1 + β32x2

linear-product start system

(8.6)

The coefficients αij and βij in (8.6) are randomly chosen complex numbers.
Except for a special choice of these numbers, the linear-product start system
will always have two regular solutions. We derive a formal root count following
the moves we make to solve the linear-product start system:

B = 1 × 1 × 1 + 1 × 1 × 1 + 0 × 1 × 1.
(1)λ (2)x (3)x (2)λ (1)x (3)x (3)λ (1)x (2)x

(8.7)

The labels in (8.7) show the navigation through the table at the right of (8.6).

Exercise 8.2.5. The matrix polynomial
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p(λ) = Adλ
d +Ad−1λ

d−1 + · · ·+A1λ+A0, Ai ∈ Cn×n,

defines the generalized eigenvalue problem p(λ)x = 0. How many generalized
eigenvalue-eigenvector pairs can we expect for randomly chosen matrices Ai?

To show that B is an upper bound for the number of isolated solutions of
a polynomial system, we show the regularity and boundedness of the solution
paths in a typical homotopy, using a linear-product start system.

For many applications (like the eigenvalue problem) it is obvious how
best to separate the variables into a partition. But for black-box solvers and
systems with no apparent product structure, we need to find that partition
which leads to the smallest Bézout number. One strategy is to enumerate all
partitions and retain the partition with the smallest Bézout number. While
the number of partitions grows faster than 2n, finding the smallest Bézout
number for n = 8 by enumeration takes less than a second of CPU time.

Instead of using one partition of the variables to model the product struc-
ture of the system, we may use different partitions for different equations,
and extend this even further to construct in this way general linear-product
start systems. The solving of the start system now involves more work, but
we may expect the homotopy to be more efficient. Schematically, a hierarchy
of homotopies (and root counting methods) is given in Figure 8.4.

Coefficient-Parameter

Newton
Polytopes

Polynomial
Products

Linear Products

Multihomogeneous

Total Degree

⋃
⋃

⋃
⋃

⋃
⋃

easier
start

system

�

more efficient
(fewer paths)

��A

Fig. 8.4. A hierarchy of homotopies. All homotopies below the dashed line A can be
done automatically. Above the line, apply special ad-hoc methods or bootstrapping.
Homotopies at the bottom of the hierarchy are often used to find solutions for generic
instances of parameters in a coefficient-parameter homotopy.

We will not address the “polynomial products” of Figure 8.4 here; for
this, see [MSW95]. We introduce the Newton polytopes in the following two
sections.

For the relation between Newton polytopes and resultants, see Chapter 7.
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8.2.4 Polyhedral homotopies to glue real solutions

The purpose of this section is to introduce Newton polytopes and polyhedral
homotopies, but without mixed volumes. So we restrict ourselves to polyno-
mials in one variable. Instead of “just” solving a polynomial in one variable,
we consider a different problem:

Input: k distinct monomials in one variable x:
xa1 , xa2 , . . . , xak , with ai �= aj for i �= j.

Output: coefficients ca1 , ca2 , . . . , cak
such that

f(x) = ca1x
a1 + ca2x

a2 + · · ·+ cak
xak

has k − 1 positive real roots.

For example, take 1, x5, x7, x11 as monomials on input. Then the problem is
to find c0, c5, c7, and c11 such that f(x) = c01+c5x5 +c7x7 +c11x11 has three
positive real solutions. We will show that we can reduce this four dimensional
problem in that of one dimension, considering the homotopy

h(x, t) = t− x5 + x7 − x11t = 0, for t ≥ 0.

The alternation of signs in the coefficients is a deliberate choice to maximize
the number of positive real roots. The Newton polytope of a polynomial is
the convex hull of the exponent vectors of those monomials appearing with
a nonzero coefficient. The choice of powers of t with each monomial is such
that the lower hull of the Newton polytope of h contains among its vertices
all exponents of the given monomials, see Figure 8.5.

�(0,1)

�����������(5,0) �(7,0)���������(11,1)

Fig. 8.5. The Newton polytope of the homotopy h(x, t) = 0 is spanned by by the
exponent vectors of the monomials in h. The lower hull of the Newton polytopes is
drawn in solid lines.

At t = 0, the homotopy h(x, 0) = −x5 + x7 = x5(−1 + x2) = 0 has one
positive real root: x = 1. The idea is to choose t = ∆t > 0 such that Newton’s
method applied to h(x,∆t) = 0 converges quadratically to a positive real root
starting at x = 1. (Notice that by the fortunate choice of the powers of t in
the example, ∆t can be chosen arbitrarily large as h(1, t) ≡ 0, for any value
of t.)

Observe that the monomials in h(x, 0) correspond to the lowest middle
edge on the lower hull of the Newton polytope of h in Figure 8.5. For every
edge of the lower hull of the Newton polytope we will use one homotopy to
find one positive real root. Each time, the start system in the homotopy has its
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two monomials as vertices of an edge of the lower hull. To find the homotopies
with the other two edges, we need to consider the vectors orthogonal to the
edges (we call those vectors inner normals), see Figure 8.6.

�(0,1)

�����������(5,0) �(7,0)���������(11,1)

���
v1

�
v2

���
v3

Fig. 8.6. Inner normals v1 = ( 1
5
, 1), v2 = (0, 1), v3 = (− 1

4
, 1) on the edges of the

lower hull of the Newton polytope of the homotopy h(x, t) = 0.

The inner normal v1 attains the minimal inner product with those vertices
on the first edge of the lower hull. Consider the four values of the inner product
of v1 with the four vertices of the lower hull:

〈
(

1
5
, 1
)
, {(0, 1), (5, 0), (7, 0), (11, 1)}〉 =

{
1, 1,

7
5
,
16
5

}
.

Indeed, the minimal values occur with the first two vertices which span the
first edge. This geometric construction motivates the following change of co-
ordinates: let x = yt1/5, we obtain

h(y, t) = t− y5t+ y7t7/5 − y11t16/5 (8.8)

= t
(
1− y5 + y7t2/5 − y11t11/5

)
. (8.9)

We see that 1
th(y, 0) = 1− y5 = 0 has one positive real root: y = 1. Now we

can choose t = ∆t > 0 such that Newton’s method converges quadratically to
a positive real root starting at y = 1. Let y∗: h(y∗,∆t) = 0, then we find the
corresponding root in the original coordinates as x∗ = y∗(∆t)1/5.

We can even explicitly construct the fractional power series using Newton’s
method in a computer algebra system like Maple. The following sequence of
Maple commands achieve this:

> h := t-x^5 + x^7 - x^(11)*t:
> hy := subs(x = y*t^(1/5),h):
> hyt := simplify(hy/t):
> newton := x -> x - subs(y=x,hyt/diff(hyt,y)):
> x[0] := 1:
> for k from 1 to 6 do
> x[k] := newton(x[k-1]):
> s[k] := series(x[k],t=0,15):
> lprint(op(1,s[k]-s[k-1]));
> end do:

The output of the loop (done in Maple 9) shows the errors between two
consecutive series expansions:
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1
-301/15625*t^2
-84/3125*t^2
-2112/1953125*t^(18/5)
-32768/152587890625*t^(32/5)
-2147483648/23283064365386962890625*t^(64/5)

We observe the quadratic convergence, typical for Newton’s method. While the
particular values for the errors shows above may differ on other platforms with
different versions of Maple, the computed fractional power series expansion is
“exact”, here we see the series up to third order:

> series(x[6],t=0,3);

2/5 4/5 6/5 8/5 2 11/5
t t 34 t 266 t 11284 t t

1 + ---- + ---- + ------- + -------- + -------- - -----
5 5 125 625 15625 5

12/5 13/5 14/5
100947 t 14 t 12 t 3

+ ------------ - -------- + -------- + O(t )
78125 25 5

To find the third positive real root, we proceed in a similar fashion, using
the third inner normal v3 = (−1/4, 1) in the coordinate change x = yt−1/4.
As it turns out, we can take ∆t quite large. For ∆t = 0.1, h(x, 0.1) = 0 has
the following three positive (approximate) real roots: 0.73, 1.0, and 1.56. As
∆t grows larger, the real roots collide into multiple roots before escaping to
the complex plane.

Exercise 8.2.6. Compute the fractional power series for the third positive
real root, using Newton’s method like shown above. Make sure enough terms
in the series expansions are used so that the quadratic convergence is obvious.

In numerical implementations of polyhedral homotopies, we only use the
first term of the fractional power series (also known as Puiseux series). The
connection between these fractional power series and Newton polygons is clas-
sical for polynomials in two variables, see for example [Lef53] or [Wal62]. The
generalization to systems of equations can be found in [McD02].

Using Newton polytopes to construct real curves and hypersurfaces with a
prescribed topology is done by Viro’s method [IS03, IV96]. This homotopy to
glue real roots can be generalized to the case of complete intersections by the
use of mixed subdivisions, see [Stu94b, Stu94c]. We will define these mixed
subdivisions in the next section. We apply these co-called polyhedral homo-
topies to solve generic polynomial systems with given fixed Newton polytopes.
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8.2.5 The Cayley trick and Minkowski’s theorem

Mixed volumes were defined by Minkowski who showed that the volume of a
linear combination of polytopes is a homogeneous polynomial in the factors
of of the combination. The coefficients of this polynomial are mixed volumes.
We will visualize this theorem on a simple example by the Cayley trick.

The Cayley trick [GKZ94, Proposition 1.7, page 274] is a method to rewrite
a certain resultant as a discriminant of one single polynomial with additional
variables. The polyhedral version of this trick as in [Stu94a, Lem. 5.2] is due
to Bernd Sturmfels. See [HRS00] for another application of this trick.

Consider the following system:

f = (f1, f2)

=
{
x3

1x2 + x1x
2
2 + 1 = 0

x4
1 + x1x2 + 1 = 0

A = (A1, A2)
A1 = {(3, 1), (1, 2), (0, 0)}
A2 = {(4, 0), (1, 1), (0, 0)}

The sparse structure of f is modeled by the tuple A = (A1, A2), where A1

and A2 are the supports of f1 and f2 respectively. The Newton polytopes are
the convex hulls of the supports. The Cayley polytope of r polytopes is the
convex hull of the polytopes placed at the vertices of an (r − 1)-dimensional
unit simplex. Figure 8.7 illustrates this construction for our example.

(3,1,0) (1,2,0)

(0,0,0)

(4,0,1) (1,1,1)

(0,0,1)

(3,1,0) (1,2,0)

(0,0,0)

(4,0,1) (1,1,1)

(0,0,1)

Fig. 8.7. The Cayley polytope of two polygons. The first polygon is placed at the
vertex (0, 0, 0), the second polygon is placed at (0, 0, 1).

For our example, the Cayley polytope is so simple that a triangulation
is obvious (see Figure 8.8). As every simplex has four vertices, either the
simplex has three vertices from the same polygon (and the fourth one of the
other polygon), or the simplex has two vertices of each polygon. A simplex
of the first type is called unmixed, a simplex of the second type is mixed.
Imagine taking slices parallel to the base of the Cayley polytope. These slices
produce scaled copies of the original polygons in the unmixed simplices. In
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the mixed simplex we find one scaled edge from the first and another scaled
edge from the second polygon, see Figure 8.8.

(3,1,0) (1,2,0)

(0,0,0)

(4,0,1)

(1,2,0)

(4,0,1) (1,1,1)

(0,0,1)

(1,2,0)

(0,0,0)

(4,0,1)

(0,0,1)

Fig. 8.8. A triangulation of the Cayley polytope. The middle simplex is mixed, the
other two simplices are unmixed.

On Figure 8.9 we see in the cross section of the Cayley polytope a mixed
subdivision of the convex combination λ1P1 + λ2P2, λ1 + λ2 = 1, λ1 ≥ 0 and
λ2 ≥ 0, where P1 defines the base and P2 is at the top of the polytope. The
areas of the triangles in the cross section are λ2

1×area(P1) and λ2
2×area(P2),

as each side of the triangle is scaled by λ1 and λ2 respectively. The area of the
cell in the subdivision spanned by one edge of P1 (scaled by λ1) and the other
edge of P2 (scaled by λ2) is scaled by λ1 × λ2, as we move the cross section.

(3,1,0) (1,2,0)

(0,0,0)

(4,0,1) (1,1,1)

(0,0,1)

(3,1,0)
(1,2,0)

(0,0,0)

Fig. 8.9. A mixed subdivision induced by a triangulation of the Cayley polytope.

In Figure 8.10 we show the Minkowski sum of the two polygons P1 and P2,
with their mixed subdivision corresponding to the triangulation of the Cayley
polytope. For this example, Minkowski’s theorem becomes
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area(λ1P1 + λ2P2)=V (P1, P1)λ2
1 + V (P1, P2)λ1λ2 + V (P2, P2)λ2

2

=3λ2
1 + 8λ1λ2 + 2λ2

2.
(8.10)

The coefficients in the polynomial (8.10) are mixed volumes (or areas in our
example): V (P1, P1) and V (P2, P2) are the respective areas of P1 and P2,
while V (P1, P2) is the mixed area.

�
(0,0)

�(1,2)

�(3,1)

����
����
��

� � � � � � � � �
� � � � �

� � � � � � � � � �P1

�
(0,0)

�(1,1)

�
(4,0)

��
�����P2 �

(0,0)+(0,0)

�(0,0)+(1,2)

�
(0,0)+(4,0)

�(1,2)+(4,0)

�(1,2)+(1,1)

�
(3,1)+(4,0)����

����
��

����
����
��

� � � � � � � � �
� � � � �

� � � � � � � � � �
��

�����

λ1λ2

λ2
2

λ2
1

Fig. 8.10. A subdivision of the sum of two polygons P1 and P2. The sum is the
convex hull of all sums of the vertices of the polygons. The cells in the subdivision
are labeled by the multipliers for the area of λ1P1 + λ2P2.

The subdivisions we need are induced by a lifting. Such subdivisions are
called regular, they define polyhedral homotopies. For the example, the lifted
supports are Â = (Â1, Â2), with

Â1 = {(3, 1, 1), (1, 2, 0), (0, 0, 0)} and Â2 = {(4, 0, 0), (1, 1, 1), (0, 0, 0)}.
Figure 8.11 shows the mixed subdivision of Figure 8.10 as induced by the
lower hull of the sum of the lifted polytopes.

0 1 2 3 4 5 6 70
1

2
3

0.4
0.8

(1,2,0)+(1,1,1)

(3,1,1)+(4,0,0)

Fig. 8.11. A mixed subdivision is regular if it is induced by a lifting.

As there is only one mixed cell in the mixed subdivision of the Newton
polytopes of our example, there is only one homotopy to consider, for example:

h(x, t) =
{
x3

1x2t+ x1x
2
2 + 1 = 0

x4
1 + x1x2t+ 1 = 0 (8.11)

The powers of the t in h(x, t) = 0 are the lifting values of the supports which
induced the mixed subdivision shown in Figure 8.11.
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Exercise 8.2.7. Verify that the start system h(x, t = 0) = 0 in the polyhedral
homotopy (8.11) has indeed eight (= V (P1, P2)) regular solutions. Show that
any system with exactly two monomials in every equation has always as many
regular roots as its mixed volume, for any nonzero choice of the coefficients.

8.2.6 Computing mixed volumes and polyhedral continuation

In the previous subsections we introduced polyhedral continuation and mixed
volumes. With these two concepts we can state and prove Bernshtěın’s first
theorem. As the way we compute mixed volumes determines the way we solve a
generic system, this section presents two different methods to compute mixed
volumes. The first technique relies on the Cayley trick and computes all cells
in a mixed subdivision. The second method uses linear programming and leads
to an efficient enumeration of all mixed cells in a mixed subdivision.

With the Cayley trick we can obtain a regular mixed subdivision as a
regular triangulation of the Cayley polytope. We next introduce a method to
compute a regular triangulation of any polytope. Our method will construct
the triangulation incrementally, adding the points one after the other. The key
operation is to decompose one point with respect to one simplex. Consider
for example the simplex [c0, c1, c2] spanned by c0 = (0, 0), c1 = (3, 2), and
c2 = (2, 4). If we take one extra point, three possible updates can occur,
illustrated by Table 8.2.

point barycentric decomposition pivoting

x = (2, 3): x = + 1
8

c0 + 1
4

c1 + 5
8

c2 no new simplex

y = (5, 1): y = − 1
3

c0 + 9
4

c1 − 7
8

c2 [y, c1, c2][c0, c1,y]

z = (1, 5): z = + 1
8

c0 − 3
4

c1 + 13
8

c2 [c0, z, c2]

Table 8.2. Three possible updates of the simplex [c0, c1, c2] with one point, x, y,
or z. Either we have no, two, or one new simplex by interchanging the vertex with
negative coefficient with the point.

Solving a linear system we can write any point as a linear combination of
the vertices of a simplex, requiring the coefficients in that linear combination
to sum up to one. We call this linear combination a barycentric decomposi-
tion of a point with respect to a simplex. The negative signs of the coefficients
in this barycentric decomposition tell which vertices of the simplex to inter-
change with the new point to create new simplices in the triangulation of the
convex hull of the original simplex and the point. As we can see from Fig-
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(z, 1)

(y, 1)

Fig. 8.12. Pivoting to obtain a regular triangulation of a polygon. The construction
on the right shows how the triangulation can be obtained as the lower hull of y and
z lifted at height one, with [c0, c1, c2] sitting at level zero.

ure 8.12, any triangulation obtained by placing points (see [Lee91] for more
on triangulations) in this way is regular.

The algorithm to compute regular triangulations incrementally leads to
an incremental polyhedral solver, which solves polynomial systems adding one
monomial after the other, see [VGC96]. If the structure of a polynomial system
is such that most polynomials share the same support (or more generally span
the same Newton polytope), and thus there are only few distinct Newton
polytopes to consider, then the Cayley trick is not too wasteful.

The complexity of computing volumes and mixed volumes is discussed
respectively in [DF88] and [DGH98].

Theorem 8.2.8. (Bernshtěın’s theorem A) The number of roots of a
generic system equals the mixed volume of its Newton polytopes.

In his proof of this theorem, Bernshtěın [Ber75] used a homotopy (imple-
mented in [VVC94]), based on a recursive formula for computing mixed vol-
umes. This proof idea was generalized by Huber and Sturmfels in [HS95].
Note that the theorem concerns “generic systems”, which are systems with
randomly chosen coefficients. These generic systems serve as start system in a
coefficient-parameter homotopy to solve any specific polynomial system with
the same Newton polytopes.

For the coordinate changes in the polyhedral homotopies, we need to know
the inner normals to the mixed cells. Therefore, we use a dual representation
of polytopes, see Figure 8.13. The normal fan of a polytope is the collection
of the normal cones to all faces of the polytope. The normal cone to a face
contains all inner normals which define the face.
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(0,0)
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�
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�����P2
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(0,1)

�
�

�
(1,−1)

�
��

(−1,−3)

N (P2)

Fig. 8.13. Two polygons P1 and P2 and their normal fans, N (P1) and N (P2). The
labels corresponding to the edges in the fans are inner normals to the corresponding
edges of the polygons.

We are only interested in the mixed cells of a mixed subdivision, and in
particular, the inner normal to those lower facets of the Minkowski sum which
define the mixed cells. Figure 8.14 illustrates that the inner normal to a mixed
cell lies in the intersection of the normal cones to the edges which span that
mixed cell.
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Fig. 8.14. The dual representation of a mixed subdivision.

The search for all inner normals to the mixed cells in a mixed subdivision
naturally leads to a system of linear equalities and inequalities. For a tuple of
n supports (A1, A2, . . . , An), consider an edge of the kth polytope, spanned
by {a,b} ⊆ Ak. Then the inner normal v to this edge satisfies{ 〈a,v〉 = 〈b,v〉

〈a,v〉 ≤ 〈c,v〉, for all c ∈ Ak.
(8.12)

Enumerating all edges of a polytope is thus equivalent to enumerating all
feasible solutions to the system (8.12). Letting k range from 1 to n in (8.12)
applied to the lifted point sets Âk provides the dual linear-programming model
to enumerate all inner normals to the mixed cells in a regular mixed subdivi-
sion.

A lift-and-prune strategy to enumerate all mixed cells in a regular mixed
subdivision was proposed in [EC95] and dualized in [VGC96]. Recently, insight
in the linear programming methods has led to very efficient calculations of
mixed volumes, as developed in [DKK03], [GL00, GL03], [KK03b], [LL01],
and [TKF02].
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8.2.7 Bernshtěın’s second theorem

When tracing solution paths diverging to infinity, one may wonder when to
stop. After all, infinity is pretty far off, and even if good knowledge of the
application domain gives us good bounds on the size of the solutions, we do
not want to miss valid solutions with large components. If a path seems to
diverge, we must know whether we have true divergence or convergence to a
root with large components. Bernshtěın’s second theorem [Ber75] will provide
us with a certificate of divergence.

For a system f(x) = 0, supported by A = (A1, A2, . . . , An), we can write
its equations f = (f1, f2, . . . , fn) as

fi(x) =
∑
a∈Ai

ciaxa, i = 1, 2, . . . , n.

The Newton polytopes of f are denoted by P = (P1, P2, . . . , Pn), with Pi :=
conv(Ai), i = 1, 2, . . . , n. Then for any ω �= 0, we define the tuple of faces
∂ωP = (∂ωP1, ∂ωP2, . . . , ∂ωPn), as ∂ωPi := conv(∂ωAi), with

∂ωAi := { a ∈ Ai | 〈a, ω〉 = min
a′∈Ai

〈a′, ω〉 }. (8.13)

The set ∂ωAi is the support of the face of the ith polynomial fi:

∂ωfi(x) =
∑

a∈∂ωAi

ciaxa.

We write ∂ωf = (∂ωf1, ∂ωf2, . . . , ∂ωfn) as the face of the system f determined
by ω �= 0. The mixed volume of P is denoted by V (P) and C∗ = C \ {0}.
Theorem 8.2.9. (Bernshtěın’s theorem B) If ∀ω �= 0, ∂ωf(x) = 0 has
no solutions in (C∗)n, then V (P) is exact and all solutions are isolated. Oth-
erwise, for V (P) �= 0: V (P) > #isolated solutions.

Interestingly, the Newton polytopes may often be in general position, i.e.:
V (P) is exact for every nonzero choice of the coefficients. Consider for example
the following system:

f(x) =
{
c111x1x2 + c110x1 + c101x2 + c100 = 0

c222x
2
1x

2
2 + c210x1 + c201x2 = 0

We show the tuple of Newton polytopes in Figure 8.15.

Exercise 8.2.10. Verify that the mixed volume V (P1, P2) of the polygons P1

and P2 is indeed equal to four.

While the observation in Figure 8.15 would let us believe that the mixed
volume always provides a sharp root count, we have to keep in mind that
the vertices of the polytopes are not randomly chosen. The vertices occur as
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Fig. 8.15. Two Newton polygons in general position: ∀ω �= 0 : ∂ωA1 +∂ωA2 ≤ 3 ⇒
V (P1, P2) = 4 is always exact, for all nonzero choices of the coefficients of f , because
we need at least four monomials for ∂ωf(x) = 0 to have all its roots in (C∗)2.

the exponents in the polynomials. For instance, general Newton polytopes are
almost never simplicial, we usually find k-dimensional faces spanned by far
more than k + 1 vertices.

Following Bernshtěın we look at what happens when we consider the solu-
tion paths in a homotopy going from a generic to a specific polynomial system.
At the limit of the paths, we look at the power series expansion, using the
following result.

Theorem 8.2.11. ∀x(t), h(x(t), t) = (1− t)g(x(t)) + tf(x(t)) = 0,

∃s > 0, m ∈ N \ {0}, ω ∈ Zn:
{
xi(s) = bisωi(1 +O(s)), i = 1, 2, . . . , n
t(s) = 1− sm for t ≈ 1, s ≈ 0

The number m is called the winding number of the solution at the end of
the path (not to be confused with the multiplicity). The winding number is
the smallest number so that z(2πm) = z(0), if we consider z(θ) a solution
path of h(z(θ), t(θ)) = 0, winding around 1 with values for the continuation
parameter t defined by t = 1 + (t0 − 1)eiθ, as t0 ≈ 1.

At the end of a path, when does lim
t→1

xi(t) ∈ C∗? From Theorem 8.2.11, we

can characterize the divergence of the path x(t) by the leading exponents ω
in the power series:

xi(t)

⎧⎨⎩→∞
∈ C∗

→ 0
⇔ ωi

⎧⎨⎩< 0
= 0
> 0

From this simple observation we see that a solution at infinity and a solution
with zero components are regarded (or disregarded) equally.

Next we show the relation between face systems and power series. Assum-
ing lim

t→1
xi(t) �∈ C∗, and ωi �= 0, we consider a diverging path.

First we substitute the power series xi(s) = bisωi(1+O(s)), i = 1, 2, . . . , n,
t(s) = 1− sm, s ≈ 0 into the homotopy h(x, t) = (1− t)g(x) + tf(x) = 0. We
find

h(x(s), t(s)) = f(x(s))︸ ︷︷ ︸
dominant as s→0

+sm(g(x(s))− f(x(s))) = 0.
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Thus (as expected), the choice of the start system g(x) = 0 plays no role in
what happens as s approaches zero. Let us now see what the substitution does
to the ith polynomial:

fi(x) =
∑
a∈Ai

ciaxa → fi(x(s)) =
∑
a∈Ai

cia

n∏
i=1

bai
i s

〈a,ω〉(1︸ ︷︷ ︸
∂ωfi(x(s)) dominant

+O(s)).

Arranging the monomials in f(x(s)) in increasing order of powers of s, we see
that the monomials that become dominant as s → 0 have exponents whose
inner product is minimal with ω. Recall that we characterize these exponents
by the face of the support Ai in the direction of ω, see (8.13). Moreover, as
fi(x(s)) = 0 for s → 0, we see from the result of the substitution that then
∂ωfi(b) = 0, and thus ∂ωf(b) = 0 for some b ∈ (C∗)n.

This is the key idea in the proof of Bernshtěın’s second theorem. Like his
first theorem, his idea is very constructive: follow the direction of a diverging
path and (in addition to a solution at infinity) we find a face system which has
solutions in (C∗)n. This face system forms a certificate for the mixed volume
to overshoot the actual number of roots.

That Richardson extrapolation is useful to find ω is not so surprising. A
closer inspection of the errors of the error expansion reveals that a similar
extrapolation scheme can be applied to approximate the winding number m.

As we get closer to our target system, we have to decrease our step size
when dealing with a difficult path. For the purpose of extrapolation, we better
decrease the step size geometrically, i.e., for some λ, 0 < λ < 1, consecutive
values t0, t1, . . . tk of the continuation parameter t satisfy 1− tk = λ(1− tk) =
· · · = λk(1 − t0) and for the corresponding sequence of s-values we have
sk = λ1/msk−1 = · · · = λk/ms0.

Recall the form of the power series for a solution path x(s) for s ap-
proaching zero: xi(s) = bis

ωi(1 + O(s)) with t(s) = 1 − sm. Sampled along
s0, s1, . . . , sk, we obtain

xi(sk) = biλkωi/msωi
0 (1 +O(λk/ms0)). (8.14)

Since we are interested in the leading powers ωi, we take the logarithms of
the magnitudes of the points sampled along the path:

log |xi(sk)| = log |bi|+ kωi

m
log(λ) + ωi log(s0) + log

∣∣∣∣∣∣1 +
∞∑

j=0

b′j(λ
k/ms0)j

∣∣∣∣∣∣ .
A first-order approximation for ωi is given by vkk+1 with the general extrap-
olation formula in vk..l:

vkk+1 := log |xi(sk + 1)| − log |xi(sk)|, vk..l = vk..l−1 +
vk+1..l − vk..l−1

1− λ
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which results in ωi = m v0..r

log(λ) + O(sr0). While we can make the order r of
the extrapolation as high as we like (thereby increasing the accuracy of ωi).
Notice that the formula assumes we know the winding number m.

If we examine the expansion of the errors:

e
(k)
i = (log |xi(sk)| − log |xi(sk+1)|) (8.15)

−(log |xi(sk+1)| − log |xi(sk+2)|) (8.16)
= c1λk/ms0(1 + 0(λk/m)), (8.17)

we find similar extrapolation formulas to approximate m:

e
(kk+1)
i := log(e(k+1)

i )− log(e(k)
i ), e

(k..l)
i = e(k+1..l)

i +
e
(k..l−1)
i − e(k+1..l)

i

1− λk..l

with λk..l = λ(l−k−1)/mk..l . So we obtain mk..l = log(λ)

e
(k..l)
i

+O(λ(l−k)k/m)

The system of Cassou-Noguès is a very nice example. It illustrates how
symbolic results can be obtained by purely numerical means.

f(b, c, d, e) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

15b4cd2 + 6b4c3 + 21b4c2d− 144b2c− 8b2c2e
−28b2cde− 648b2d+ 36b2d2e+ 9b4d3 − 120 = 0

30c3b4d− 32de2c− 720db2c− 24c3b2e− 432c2b2 + 576ec
−576de+ 16cb2d2e+ 16d2e2 + 16e2c2 + 9c4b4 + 5184

+39d2b4c2 + 18d3b4c− 432d2b2 + 24d3b2e− 16c2b2de− 240c = 0
216db2c− 162d2b2 − 81c2b2 + 5184 + 1008ec− 1008de

+15c2b2de− 15c3b2e− 80de2c+ 40d2e2 + 40e2c2 = 0
261 + 4db2c− 3d2b2 − 4c2b2 + 22ec− 22de = 0

Root counts: D = 1344, B = 312, V (P) = 24, but there are only 16 finite
roots.

∂(0,0,0,−1)f(b, c, d, e) =

⎧⎪⎪⎨⎪⎪⎩
−8b2c2e− 28b2cde+ 36b2d2e = 0
−32de2c+ 16d2e2 + 16e2c2 = 0
−80de2c+ 40d2e2 + 40e2c2 = 0

22ec− 22de = 0

The winding number is m = 2. See [HV98] for more about polyhedral end
games.

8.3 Homotopies for positive dimensional solution sets

To introduce the numerical representation of positive dimensional solution
sets, we start off with a dictionary, linking concepts in algebraic geometry
to data and algorithms in numerical analysis. Witness sets form the central
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data and are obtained by a cascade of homotopies. The companion algorithms
to the witness sets are membership tests to decide whether any given point
belongs to a certain component of the solution set. We illustrate a numerical
irreducible decomposition on a simple example and give an overview of our
numerical factorization methods.

8.3.1 A dictionary

Kempf writes in [Kem93] that “Algebraic geometry studies the delicate bal-
ance between the geometrically plausible and the algebraically possible”. With
our numerical tools, we feel closer to the geometrical than to the algebraic
side, because we are not calculating with polynomials in the algebraic sense.
In [SVW03] we outlined the structure of a dictionary, presented as Table 8.3.

Numerical Algebraic Geometry Dictionary

Algebraic example Numerical
Geometry in 3-space Analysis

variety collection of points, polynomial system
algebraic curves, and + union of witness sets, see below

algebraic surfaces for the definition of a witness point

irreducible a single point, or polynomial system
variety a single curve, or + witness set

a single surface + probability-one membership test

generic point random point on point in a witness set; a witness point
on an an algebraic is a solution of the polynomial system on

irreducible curve or surface the variety and on a random slice whose
variety codimension is the dimension of the variety

pure one or more points, or polynomial system
dimensional one or more curves, or + set of witness sets of same dimension

variety one or more surfaces + probability-one membership tests

irreducible several pieces polynomial system
decomposition of different + array of sets of witness sets and
of a variety dimensions probability-one membership tests

Table 8.3. Dictionary to translate algebraic geometry into numerical analysis.

8.3.2 Witness sets and a cascade of homotopies

A witness set is the basic concept of numerical algebraic geometry as it allows
us to apply numerical methods for isolated solutions to positive dimensional
solution components.

Every irreducible component of a solution set is presented by a witness set
whose cardinality equals the degree of the irreducible component. To reduce
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a solution set of dimension k to a set of isolated points, we cut the k degrees
of freedom by adding k random hyperplanes L(x) = 0 to the system f(x) = 0
which defines the entire solution set.

One obstacle is that we have to deal with systems whose number of equa-
tions in not necessarily the same as the number of unknowns. If there are
fewer equations than unknowns, we simply add enough random hyperplanes
to make up for the difference, so underdetermined systems are easy to handle.

Let us consider overdetermined systems, say f consists of 5 equations in 3
variables. To turn f into a system of N equations in N variables where N is
either 3 or 5, we can respectively apply the following techniques:

randomization: Choosing random complex numbers aij , we add random com-
binations of the last two polynomials to the first three polynomials:⎧⎨⎩ f1(x) + a11f4(x) + a12f5(x) = 0

f2(x) + a21f4(x) + a22f5(x) = 0
f3(x) + a31f4(x) + a32f5(x) = 0

slack variables: We introduce two new variables z1 and z2 (so-called slack
variables) and add random multiples of these variables to every equation:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f1(x) + a11z1 + a12z2 = 0
f2(x) + a21z1 + a22z2 = 0
f3(x) + a31z1 + a32z2 = 0
f4(x) + a41z1 + a42z2 = 0
f5(x) + a51z1 + a52z2 = 0

While the randomization technique might seem at first more attractive be-
cause we are left with fewer equations, working with slack variables provides
a cascade of homotopies to compute candidate witness points on all positive
dimensional components.

In particular, considering f4 and f5 as hyperplanes L1 and L2 to cut the
solution set of the first three equations in f , we consider a cascade of three
systems. To get witness points on the two dimensional solution sets, we first
solve ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f1(x) + a11z1 + a12z2 = 0
f2(x) + a21z1 + a22z2 = 0
f3(x) + a31z1 + a32z2 = 0

L1(x) + z1 = 0
L2(x) + z2 = 0

Solutions with z1 = 0 and z2 = 0 define witness points on the two dimensional
solution components. Solutions with z1 �= 0 and z2 �= 0 provide start points
in the homotopy which removes L2 from the system, which leads to the next
system in the cascade:
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f1(x) + a11z1 + a12z2 = 0
f2(x) + a21z1 + a22z2 = 0
f3(x) + a31z1 + a32z2 = 0

L1(x) + z1 = 0
z2 = 0

The paths defined by this move end at witness points on the one dimensional
components, picked out by z1 = 0. Solutions with z1 �= 0 are used in the
homotopy which removes L1 to lead to the isolated solutions of the system.
The last system in the cascade is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f1(x) + a11z1 = 0
f2(x) + a21z1 = 0
f3(x) + a31z1 = 0

z1 = 0
z2 = 0

In the next section we give a specific example of this cascade.
The idea of slicing a solution set by hyperplanes to determine its dimension

appeared in [GH93] to prove that the theoretical complexity of this problem
is polynomial.

Exercise 8.3.1. Consider the adjacent minors of a general 2× 4-matrix:[
x11 x12 x13 x14

x21 x22 x23 x24

]
f(x) =

⎧⎨⎩x11x22 − x21x12 = 0
x12x23 − x22x13 = 0
x13x24 − x23x14 = 0

Verify that dim(f−1(0)) = 5 and deg(f−1(0)) = 8. This is the simplest in-
stance of a general family of problems introduced in [DES98], see [HS00] for
special decomposition methods.

8.3.3 A probability-one membership test

A probability-one membership test determines whether a given point p lies
on a pure dimensional solution set. Suppose we have witness points defined
by a polynomial system f(x) = 0 and hyperplanes L(x) = 0. A homotopy
method implements the probability-one membership test:

1. Define K(x) = L(x) − L(p). As K(p) = 0, the hyperplanes K pass
through p.

2. Consider the homotopy

h(x, t) =
(
f(x)
K(x)

)
(1− t) +

(
f(x)
L(x)

)
t = 0.

At t = 1 we start tracking paths at the witness set and find their end
points at t = 0.
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3. If p belongs to the solution set of h(x, 0) = 0, then it is also a witness
point of the pure dimensional solution set.

Notice that this test does not move the point p, which may be a highly singular
point. This observation is important for the numerical stability of this test.
The test is illustrated in Figure 8.16.

L K
f−1(0)

�p �∈ f−1(0)

Fig. 8.16. Illustration of a probability-one membership test using a homotopy. The
homotopy moves the line L of the witness set for f−1(0) to the line K, which passes
to the test point p. As none of the witness points on K equals p, p �∈ f−1(0).

8.3.4 A numerical irreducible decomposition

Consider the following example:

f(x) =

⎧⎨⎩ (x1 − 1)(x2 − x2
1) = 0

(x1 − 1)(x3 − x3
1) = 0

(x2
1 − 1)(x2 − x2

1) = 0

From its factored form we see that f(x) = 0 has two solution components: the
two dimensional plane x1 = 1 and the twisted cubic { (x1, x2, x3) | x2 − x2

1 =
0, x3 − x3

1 = 0 }.
To describe the solution set of this system, we use a cascade of homotopies,

the chart in Figure 8.17 illustrates the flow of data for this example.
Because the top dimensional component is of dimension two, we add two

random hyperplanes to the system and make it square again by adding two
slack variables z1 and z2:

e(x, z1, z2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(x1 − 1)(x2 − x2

1) + a11z1 + a12z2 = 0
(x1 − 1)(x3 − x3

1) + a21z1 + a22z2 = 0
(x2

1 − 1)(x2 − x2
1) + a31z1 + a32z2 = 0

c10 + c11x1 + c12x2 + c13x3 + z1 = 0
c20 + c21x1 + c22x2 + c23x3 + z2 = 0



8 Introduction to numerical algebraic geometry 331

where all constants aij , i = 1, 2, 3, j = 1, 2, and ckl, k = 1, 2, l = 0, 1, 2, 3 are
randomly chosen complex numbers. Observe that when z1 = 0 and z2 = 0 the
solutions to e(x, z1, z2) = 0 satisfy f(x) = 0. So if we solve e(x, z1, z2) = 0
we will find a single witness point on the two dimensional solution component
x1 = 1 as a solution with z1 = 0 and z2 = 0. Using polyhedral homotopies,
this requires the tracing of six solutions paths.

The embedding was proposed in [SV00] to find generic points on all positive
dimensional solution components with a cascade of homotopies. In [SV00]
it was proven that solutions with slack variables zi �= 0 are regular and,
moreover, that those solutions can be used as start solutions in a homotopy
to find witness points on lower dimensional solution components. At each stage
of the algorithm, we call solutions with nonzero slack variables nonsolutions.

In the solution of e(x, z1, z2) = 0, one path ended with z1 = 0 = z2, the
five other paths ended in regular solutions with z1 �= 0 and z2 �= 0. These five
“nonsolutions” are start solutions for the next stage, which uses the homotopy

h2(x, z1, z2, t)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(x1 − 1)(x2 − x2

1) + a11z1 + a12z2 = 0
(x1 − 1)(x3 − x3

1) + a21z1 + a22z2 = 0
(x2

1 − 1)(x2 − x2
1) + a31z1 + a32z2 = 0

c10 + c11x1 + c12x2 + c13x3 + z1 = 0
z2(1− t) + (c20 + c21x1 + c22x2 + c23x3 + z2)t = 0

where t goes from one to zero, replacing the last hyperplane with z2 = 0.
Of the five paths, four of them converge to solutions with z1 = 0. Of those
four solutions, one of them is found to lie on the two dimensional solution
component x1 = 1, the other three are generic points on the twisted cubic. As
there is one solution with z1 �= 0, we have one candidate left to use as a start
point in the final stage, which searches for isolated solutions of f(x) = 0. The
homotopy for this stage is

h1(x, z1, t) =

⎧⎪⎪⎨⎪⎪⎩
(x1 − 1)(x2 − x2

1) + a11z1 = 0
(x1 − 1)(x3 − x3

1) + a21z1 = 0
(x2

1 − 1)(x2 − x2
1) + a31z1 = 0

z1(1− t) + (c10 + c11x1 + c12x2 + c13x3 + z1)t = 0

which as t goes from 1 to 0, replaces the last hyperplane z1 = 0. At t = 0, the
solution is found to lie on the twisted cubic, so there are no isolated solutions.

The calculations are summarized in Figure 8.17. The breakup into irre-
ducibles will be explained in the next section.

8.3.5 Factorization methods

A recent trend in computer algebra is the adaptation of symbolic methods
to deal with approximate input data, which leads to the use of hybrid meth-
ods [CKW02]. One such problem is the factorization of multivariate poly-
nomials, listed as a challenge in [Kal00]. Recent papers on this problem are
[CGvH+01, CGKW02], [GR01, GR02], [HWSZ00], and [Sas01].
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Fig. 8.17. Numerical Irreducible Decomposition of a system whose solutions are
the 2-dimensional plane x1 = 1 and the twisted cubic. At level i, for i = 2, 1, 0, we
filter candidate witness sets Ŵi into junk sets Ji and witness sets Wi. The sets Wi

are partitioned into witness sets Wij for the irreducible components.

Monodromy to partition witness point sets

We can see whether a curve factors or not by looking at its plot in complex
space, i.e.: we consider the curve as a Riemann surface. Figure 8.18 was made
with Maple (see [CJ98] for instructions).

Looking at Figure 8.18, imagine a line which intersects the surface in three
points. Taking one complete turn of the line around the vertical axis z = 0
will cause the points to permute. For example, the point which was lowest will
have moved up, while another point will have come down. Such a permutation
can only happen if the corresponding algebraic curve is irreducible.
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Fig. 8.18. The Riemann surface of z3 − w = 0. The height of the surface is the
real part of w = z1/3, while the gray scale corresponds to the imaginary part of
w = z1/3. Observe that a loop around the origin permutes the order of points.

Based on this observation, we can decompose any pure dimensional set
into irreducible components. Our monodromy algorithm returns a partition
of the witness set for a pure dimensional component: points in the same subset
of the partition belong to the same irreducible component. Recall that witness
points are defined by a system f(x) = 0 and a set of hyperplanes L(x) = 0.
With the homotopy

hKL(x, t) = λ
(
f(x)
K(x)

)
(1− t) +

(
f(x)
L(x)

)
t = 0, λ ∈ C,

we find new witness points on the hyperplanes K(x) = 0, starting at those
witness points satisfying L(x) = 0, letting t move from one to zero. Choos-
ing another random constant µ �= λ, we move back from K to L, using the
homotopy

hLK(x, t) = µ
(
f(x)
L(x)

)
(1− t) +

(
f(x)
K(x)

)
t = 0, µ ∈ C.

The homotopies hKL(x, t) = 0 and hLK(x, t) = 0 implement one loop in the
monodromy algorithm, moving witness points from L to K and then back
from K to L. At the end of the loop we have the same witness set as the set
we started with, except possibly permuted. Permuted points belong to the
same irreducible component.
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Notice that the monodromy algorithm does not know the locations of
the singularities. See [DvH01] for the algorithms to compute the monodromy
group of an algebraic curve in Maple (package algcurves). Using homotopies
theoretically, the complexity of factoring polynomials with rational coefficients
was shown in [BCGW93] to be in NC.

Linear traces to validate the partition

When we run the monodromy algorithm, we may not have made enough loops
to group as many witness points as the degree of each factor, i.e.: the partition
predicted by the monodromy might be too fine. For a k-dimensional solution
component, it suffices to consider a curve on the component cut out by k− 1
random hyperplanes. The factorization of the curve tells the decomposition
of the solution component. Therefore, we restrict our explanation of using the
linear trace to the case of a curve in the plane.

Suppose we have three points in the plane obtained as (projections of)
witness points from some polynomial system. If the monodromy found loops
between those points, then we know that these points lie on an irreducible
factor of degree at least three. Whence our question: is this irreducible factor
on which the given three points lie of degree three?

To answer this question we represent the factor by a cubic polynomial f
in the form

f(x, y(x)) = (y − y1(x))(y − y2(x))(y − y3(x))
= y3 − t1(x)y2 + t2(x)y − t3(x)

Since deg(f) = 3, deg(t1) = 1, so t1 is the linear trace: t1(x) = c1x+ c0.
We now proceed as follows. Via interpolation we find the coefficients c0

and c1. We first sample the cubic at x = x0 and x = x1. The samples
are {(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}. To find
c0 and c1 we then solve the linear system{

y00 + y01 + y02 = c1x0 + c0
y10 + y11 + y12 = c1x1 + c0

With t1 we can predict the sum of the y’s for a fixed choice of x. For example,
samples at x = x2 are {(x2, y20), (x2, y21), (x2, y22)}, see Figure 8.19.
So our test consists in computing t1(x2) in two ways:

c1x2 + c0 =? y20 + y21 + y22.

If the equality holds, then the answer to our question is yes.

Efficiency and numerical stability

The validation with the linear trace is fast. Therefore, our implementation
does this validation each time a new loop with the monodromy algorithm
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Fig. 8.19. The linear trace test on a planar cubic. To find the trace we interpolate
through the samples at x = x0 and x = x1. Samples at x = x2 are used in the test.

is found. Even as we do not know the locations of the singularities, practical
experiences on many systems all lead to a rapid finding of permutations. While
this approach is suitable for irreducible factors of very large degree (e.g., one
thousand), strategies based purely on traces often perform better for smaller
degrees.

Related to the efficiency is good numerical stability: if we can compute
witness points with standard machine arithmetic, then we can also factor
using standard machine arithmetic. This feature is very important when the
accuracy of coefficients of the polynomial system is limited.

Exercise 8.3.2. Apply phc -f to factor

x**6 - x**5*y + 2*x**5*z - x**4*y**2 - x**4*y*z+x**3*y**3

- 4*x**3*y**2*z + 3*x**3*y*z**2 - 2*x**3*z**3 + 3*x**2*y**3*z

- 6*x**2*y**2*z**2 + 5*x**2*y*z**3 - x**2*z**4 + 3*x*y**3*z**2

- 4*x*y**2*z**3 + 2*x*y*z**4+y**3*z**3 - y**2*z**4;

which is a polynomial in a format accepted by phc.

Exercise 8.3.3. Consider again the system of adjacent minors from Exer-
cise 8.3.1. Determine the number of irreducible factors and their degrees.

See Chapter 9 for more on factorization methods.

8.4 Software and applications

8.4.1 Software for polynomial homotopy continuation

We agree with the statement: “It can be argued that the ‘mission’ of numerical
analysis is to provide the scientific community with effective software tools.”
(taken from the preface to [GVL83]). Aside from our missionary intentions,
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software has helped us in refining our algorithms, along the lines of the quote
(from [Knu96]): “Another reason that programming is harder than the writ-
ing of books and research papers is that programming demands a significant
higher standard of accuracy.”

The software package PHCpack [Ver99a] is currently undergoing the tran-
sition from being a toolbox/black-box for various homotopy continuation
methods to approximate all isolated solutions to a complete solving environ-
ment with capabilities to handle positive dimensional solution components
efficiently, both in terms of computer operations and user manipulations. By
the latter we hint at the search to find the right user interface, identifying the
right data flow and trying to balance the toolbox with the black-box approach.

While PHCpack offered the first reliable implementation of polyhedral
homotopies, its efficiency is currently surpassed by the implementations de-
scribed in [GL00, GL03, LL01] and [DKK03, GKK+04, KK03b, TKF02]. To
interact better with other codes, we are currently developing an interface from
the Ada routines in PHCpack to routines written in C. Another (but related)
interface concerns the interaction with computer algebra software. In [SVW03]
we describe a very simple interface to Maple.

8.4.2 Applications

A benchmark suite for systems with positive dimensional solution components
is gradually taking shape. Rather than listing summaries of a benchmark,
we choose to treat two very typical applications: the cyclic n-roots problem
from computer algebra and a special Stewart-Gough platform from mechanical
design.

The cyclic n-roots problem. This problem is already interesting not only
by its compact formulation and widespread fame in the computer algebra
community, but also by known theoretical results concerning the number
of isolated roots when n is prime [Haa96].
For n = 8, there are 16 one dimensional irreducible components: eight
quadrics and eight curves of degree 16. While approximations to all 1,152
isolated cyclic 8-roots were found already in the first release of PHCpack,
monodromy was needed to factor the curve of degree 144 into irreducibles.
To compute all witness points for the cyclic 9-roots problem, the software
of [LL01] was essential. While the factorization of a two dimensional com-
ponent of degree 18 into six cubics posed no difficulty, the homotopy mem-
bership test was required to certify that among the 6,642 isolated ones 162
cyclic 9-roots occurred with multiplicity four. In addition, multi-precision
arithmetic was used to confirm this result.
The isolated cyclic n-roots (up to n = 13, for which 2,704,156 paths were
traced) can be found on the Internet6 These roots have been computed
with PHoM [GKK+04].

6 http://www.is.titech.ac.jp/~kojima/polynomials/cyclic13.
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A special Stewart-Gough platform. The Stewart-Gough platform is a
parallel robot which attracted lots of interest from computational kine-
maticians and researchers in computer algebra. That the platform has
forty isolated solutions was first established computationally by continu-
ation [Rag93] and elimination methods [Laz92, Mou93], and later proved
analytically [Hus96], [RV95], and [Wam96].
A six-legged platform (similar to the general Stewart-Gough platform)
which permits motion was presented by Griffis and Duffy in [GD93] and
first analyzed in [HK00]. It is called the Griffis-Duffy platform. Instead
of forty isolated solutions we now consider a curve. In our formulation of
the two cases we studied, twelve lines corresponded to degenerate cases
deemed uninteresting from a mechanisms point of view. In the first case
we were then left with one irreducible component of degree 28, while in
the second case we found five components, four of degree six (one sextic
was not reported in the analysis of [HK00]), and one component of degree
four, see Figure 8.20.

Fig. 8.20. One component of the Griffis-Duffy platform. Starting at the configura-
tion at the left, we see the clockwise rotation of the end platform.

It is interesting to note that the running times for the factorization with
the monodromy-traces method do not seem to depend on the particular
geometry of the system, i.e.: the execution times are about the same in
both cases, when we deal with one irreducible factor of high degree or
with several factors of smaller degrees.

Acknowledgments

The authors thank Alicia Dickenstein and Ioannis Emiris for their invitation
to present their work at the summer school. We are grateful to Dan Bates
for his careful reading and comments. The revision benefited greatly from the
stimulating questions from Olga Kashcheyeva, Anton Leykin, Yusong Wang,
and Ailing Zhao at the MCS 595 graduate seminar. Some of the exercises
were first presented at the RAAG summer school on Computer Tools for
Real Algebraic Geometry, June 30-July 5, 2003, organized by Michel Coste,
Laureano Gonzalez-Vega, Fabrice Rouillier, Marie-Françoise Roy, and Markus
Schweighofer, whom we thank for their invitation.



9

Four lectures on polynomial absolute
factorization

Guillaume Chèze and André Galligo
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Summary. Polynomial factorization is one of the main chapters of Computer Al-
gebra. Recently, significant progress was made on absolute factorization (i.e., over
the complex field) of a multivariate polynomial with rational coefficients, with two
families of algorithms proposing two different strategies of computation. One is rep-
resented by Gao’s algorithm and is explained in Lecture 2. The other is represented
by the Galligo-Rupprecht-Chèze algorithm, presented in Lectures 4 and 5. The latter
relies on an original use of the monodromy map attached to a generic projection of a
plane curve on a line. It also involves zero-sums relations (introduced by Sasaki and
his collaborators) with efficient semi-numerical computations to produce a certified
exact result.

9.0 Introduction, definitions and examples

9.0.1 Rational and absolute factorization

A system of polynomial equations I = (g1, . . . , gn) corresponds to an algebraic
variety V = V (g1, . . . , gn). When the dimension of V is zero a natural question
is: What is the cardinality of V , and what are the coordinates of the points
of V ? When the dimension is not zero this natural question becomes: What
is the number of irreducible components of V , and what are the equations of
these components?

In the special case of one polynomial f(X,Y ) ∈ Q[X,Y ], the answer to
these questions is given by the absolute factorization of f(X,Y ). The ab-
solute factorization of f is the factorization f = f1 . . . fs, where the fi are
irreducible in C[X,Y ]. This provides the decomposition into irreducible com-
ponents V (f) = V (f1) ∪ . . . ∪ V (fs). Now, let us tell a short story about
absolute polynomial factorization.

Polynomial factorization is one of the main chapters of Computer Algebra.
The implementation of basic algorithms, derived from classical and elemen-
tary commutative algebra, appeared in the first Computer Algebra systems
in the 60’s. During the last 30 years, at every international conference in
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Computer Algebra, there have been new contributions on factorization algo-
rithms and their complexity. Several papers and books, including [vzG85] and
[Kal90], relate the early history of these topics and provide a comprehensive
bibliography till the end of the 80’s.

The early authors and implementors, like Berlekamp, Musser, Wang,
Zassenhaus and others, introduced many ideas that are now classical such
as reduction and Hensel liftings, genericity and randomization. The LLL lat-
tice basis reduction algorithm of Lenstra, Lenstra and Lovász (1982) allowed
for the first time a polynomial-time algorithm to be established for factor-
ing univariate polynomials over the rational numbers. In the early 80’s, this
was followed by many complexity results on univariate or multivariate fac-
torization algorithms (over different fields), which are either polynomial-time
or probabilistic polynomial-time. One of the first such results for multivariate
absolute irreducibility testing, e.g. over the complexes, for a polynomial with
rational coefficients, is due to Heintz-Sieveking [HS81]. It popularized in the
community of Computer Algebra and Complexity the use of Bertini’s theorem
(see Lecture 1) and was followed by many authors, including von zur Gathen
and Kaltofen.

The early works of Berlekamp (1967 and 1970), or Cantor and Zassenhaus
(1981) for univariate polynomials over finite fields could run in quadratic or
even subquadratic time. In practice, rational factorization of most polynomials
can be computed efficiently using Hensel lifting; see e.g. Musser (1975) and
Wang (1978). Lauder and Gao [Gao03] proved that the average running time
of a Hensel lifting based algorithm for factoring bivariate polynomials over
finite fields is almost linear. There are, however, infinitely many polynomials
that need exponential time via Hensel lifting (see [Kal85b]). Although this can
be improved, we can say that there are good algorithms and rather satisfactory
implementations to perform rational polynomial bivariate (and multivariate)
factorization.

Absolute factors of a polynomial with rational coefficients have coefficients
which are algebraic numbers. These can be represented either by elements in
a precisely described extension Q(α) of Q or in C by imprecise floating point
numbers which approximate them. This distinction gives rise to two families
of algorithms: one kind which ultimately relies on linear algebra and can be
developed on Q, e.g. the algorithms by Trager-Traverso, Kaltofen, Duval, Gao,
Cormier-Singer-Trager-Ulmer (see Lecture 3), and another kind which uses
topological properties of C2, Newton approximation or so-called homotopy
methods and for which floating point approximations are better suited, e.g.
the algorithms of Sasaki, Galligo-Rupprecht, Sommese-Verschelde-Wampler
(see Lecture 4). Once such an approximate absolute factorization algorithm is
available, it is still necessary to compute the exact factors. This has been done
by Chèze-Galligo and will be discussed in Lecture 5. One can say today that
the best algorithms were all discovered within the past ten years and there
is still progress to be made. Another important preliminary topic is absolute
irreducibility testing (see Lecture 2).
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Now we introduce basic definitions and statements.

9.0.2 Facts and definitions

Definition 9.0.1. Let A be a domain. We say that A is a unique factorization
domain if for all a ∈ A − {0} we can write a = u.p1 . . . ps where u is a unit
and p1, . . . , ps are irreducible in A and this decomposition is unique up to
reordering and multiplication by units.

Example 9.0.2. Z and all fields are unique factorization domains.

Theorem 9.0.3. If A is a unique factorization domain then A[X] is a unique
factorization domain.

Corollary 9.0.4. Let k be a field, then k[X1, . . . , Xn] is a unique factorization
domain.

This means: for all P ∈ k[X1, . . . , Xn], P = P1 . . . Ps (factorization), with
Pi irreducible in k[X1, . . . , Xn] and this decomposition is unique up to reorder-
ing and multiplication by constant factors.

Remark 9.0.5. Let k ⊂ K be an inclusion of fields and P ∈ k[X1, . . . , Xn].
P can be irreducible in k[X1, . . . , Xn] but reducible in K[X1, . . . , Xn]. For
example: k = Q, K = C and X2 + Y 2 = (X + iY )(X − iY ).

Definition 9.0.6. Let K = k be the algebraic closure of the field k, and P ∈
k[X1, . . . , Xn]. The factorization of P in K[X1, . . . , Xn] is called the absolute
factorization of P .

Exercise 9.0.7. Let P (X,Y ) ∈ Q[X,Y ], and P (X,Y ) =
∏s

i=1 Pi(X,Y ) its
factorization in C[X,Y ]. Show that this factorization is the absolute factor-
ization (i.e. Pi(X,Y ) ∈ Q[X,Y ]).
a) Set P1(X,Y ) = am(X)Y m + · · · + a0(X). Show that for all x ∈ Q, ai(x)
belongs to Q.
b) Let p(T ) =

∑k
i=0 piT

i ∈ C[T ] such that for all x ∈ Q, p(x) belongs to Q.
Prove that pi ∈ Q. (Hints: Write a Vandermonde system, and use Cramer’s
rule.)

There exist simple algorithms which compute absolute factorizations but
are not efficient for degree ≥ 15. For example, in Maple the command

evala(AFactor(.))

implements an algorithm which we will explain below.

evala(AFactor(X^2-2*Y^2));

gives

(X-RootOf(Z^2-2)Y)(X+RootOf(Z^2-2)Y).
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That means X2 − 2Y 2 = (X − √2Y )(X +
√

2Y ). We remark that the two
factors have the same monomials and their coefficients are conjugate over Q.
The next lemma generalizes this remark.

Lemma 9.0.8 (Fundamental Lemma). Let P ∈ Q[X,Y ] be a monic and
irreducible polynomial in Q[X,Y ]. P (X,Y ) = Y n+an−1(X)Y n−1+· · ·+a0(X)
with deg(ai(X)) ≤ n− i.
Let P = P1 . . . Ps be a factorization of P into irreducible polynomials Pi in
C[X,Y ]. Denote by K = Q[α] the extension of Q generated by all the coeffi-
cients of P1. Then each Pi can be written:

Pi(X,Y ) = Y m + bm−1(αi, X)Y m−1 + · · ·+ b0(αi, X),
with bk ∈ Q[Z,X], degX(bk) ≤ m− k, and where α1, . . . , αs are the different
conjugates over Q of α = α1.

Proof. We can suppose that each Pi is monic in Y , because P is monic in Y .
We set Pi(X,Y ) = Y ni + a(i)ni−1Y

ni−1 + · · · + a(i)0 (X) with a(i)k ∈ Q[X] and
degX(a(i)k (X)) ≤ ni− k. Let K be the field generated by all the coefficients of
P1; by the primitive element theorem we can set K = Q[α]. α is an algebraic
number over Q and we denote by α1 = α, α2, . . . , αk its k different conjugates
over Q, and by σ1, . . . , σk the Q-homomorphism from Q[α] into C such that
σi(α) = αi.

Now we prove that k ≤ s. Let M be the extension of Q generated by the
coefficients of P1, . . . , Ps; M is a finite extension of Q, and we have

C ⊃ M ⊃ K ⊃ Q.
We can extend to M all the σi. Then we extend σi to M[X,Y ], and we denote
this map by σ̃i. We have σ̃i(P ) = σ̃i(P1) . . . σ̃i(Ps) = P . Since Q[X,Y ] is a
unique factorization domain, there exists an index j0 such that σ̃i(P1) = Pj0 .
Furthermore, if σ̃i(P1) = σ̃j(P1) then σi = σj . So the map:

evP1 : {σ̃1, . . . , σ̃k} → {P1, . . . , Ps} : σ̃i �→ σ̃i(P1)
is injective and k ≤ s.

If k < s we get an absurd result. Indeed, consider F =
∏k

i=1 σ̃i(P1); this
polynomial divides P so if we prove that F ∈ Q[X,Y ], we are done.

Write P1(X,Y ) =
∑

a,b ca,bX
aY b where ci,j(T ) ∈ Q[T ]. Thus

F (X,Y ) =
∏k

i=1(
∑

a,b(αi)XaY b).
The coefficient of XaY b is written∑

i1+···+ik=a
j1+···+jk=b

ci1,j1(α1) . . . cik,jk
(αk).

It is a symmetric polynomial in α1, . . . , αk, so it is rational; we deduce that
F (X,Y ) ∈ Q[X,Y ].

Remark 9.0.9. For each P it suffices to get P1 to describe the absolute factor-
ization of P .
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A first method

Here we describe the absolute factorization algorithm implemented in Maple.
It consists of the following 4 steps.

Algorithm 9.0.10 Trager-Traverso algorithm.

Input: f(X1, . . . , Xn) ∈ Z[X1, . . . , Xn].

1. Compute a factorization in Z[X1, . . . , Xn] and reduce to 2 variables (see
below).

2. For each irreducible factor P ∈ Z[X,Y ]: Fix an integer value α of X such
that discY P (α) �= 0. Factorize P (α, Y ) over Z[Y ], choose an irreducible
factor q and make an alias: β = RootOf(q).

3. Compute a factorization of P in Q(β)[X,Y ], i.e. apply factor(P, β). This
does not provide a complete absolute factorization, but splits the polyno-

mials into (at least) two factors in K[X,Y ] with K =
Q[t]
q(t)

.

4. Lift the factorization.

Output: An absolute factor of f .

The first step uses Hilbert’s or Bertini’s theorem and the last step uses
Hensel’s theorem. In Lecture 1 we will study these theorems. Step 3 is vali-
dated by the following theorem (cf. [Kal85a] or [DT89]).

Definition 9.0.11. Let k be the algebraic closure of the field k, and let
(α, β) ∈ k2

. We say that (α, β) is a simple solution of P (X,Y ) ∈ k[X,Y ]
when P (α, β) = 0 and either ∂P

∂X (α, β) or ∂P
∂Y (α, β) is nonzero.

Remark 9.0.12. It is easy to see that if (α, β) is a simple solution of P (X,Y )
then (α, β) is a simple solution of just one absolute factor of P .

In step 2 of the algorithm we get a simple point (α, β) of P (X,Y ).

Theorem 9.0.13. Let (α, β) be a simple solution of P (X,Y ). Then one ab-
solute factor of P (X,Y ) belongs to k[α, β][X,Y ].

Proof. Let P = F1F2 . . . Ft be the factorization of P in k[α, β][X,Y ], where
F1 is such that F1(α, β) = 0. F1 is the only factor with this property. Suppose
that F1 is reducible in k[X,Y ]. We are going to show that this is absurd.

Write F1 =
∏ik

j=i1
Pj where Pj are absolute factors of P and suppose

that Pi1(α, β) = 0. With the same kind of arguments as those used in the
proof of the fundamental lemma, we can show that there exist a k(α, β)-
homomorphism σ and an index il �= i1 such that σ(Pi1) = Pil

. As Pi1(α, β) =
0, we have σ(Pi1(α, β)) = 0; we deduce that (α, β) is not a simple solution
and this contradicts the hypothesis.
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Example 9.0.14 (see [Rag97]). Let P (X,Y ) = Y 10−2X2Y 4 +4X6Y 2−2X10.
It is an irreducible polynomial in Q[X,Y ] since P (1, Y ) = Y 10−2Y 4+4Y 2−2

is irreducible in Q[Y ]. Let K =
Q[T ]
P (1, T )

. The factorization of P over K[X,Y ]

is the following:

>alias(beta=RootOf(x^{10}-2*x^4+4*x^2-2));
>factor(P,beta);

(Y 5−2Y 2Xβ+2Y 2Xβ3−Y 2Xβ5−Y 2Xβ7−Y 2Xβ9 +2X5β−2X5β3 +
X5β5+X5β7+X5β9)(Y 5+2Y 2Xβ−2Y 2Xβ3+Y 2Xβ5+Y 2Xβ7+Y 2Xβ9−
2X5β + 2X5β3 −X5β5 −X5β7 −X5β9)

The time needed by Maple for this computation is 691.531 seconds (on a
small PC). Here P1(X,Y ) = Y 5 + (β9 + β7 + β5 − 2β3 + 2β)Y 2X + (−β9 −
β7−β5 +2β3− 2β)X5 is an absolute factor of P and it satisfies P1(α, β) = 0.

The method is simple but the drawback is that K is too big. A smaller ex-
tension will work better and faster, in most cases. In our example, an absolute
factor is G(X,Y ) = Y 5 − √2XY +

√
2X5. Computing factor(P,sqrt(2))

takes only 0.27 seconds.
Note that this first method relies on a rational factorization algorithm.

9.0.3 Rational factorization

We can quickly summarize the polynomial factorization process over a finite
extension of Q with the following diagram.

P ∈ Q[α][X,Y ] with q(α) = 0 and q ∈ Z[T ] is irreducible.⏐⏐⏐> y0 generic Hensel lifting
in (y − y0)j

?⏐⏐⏐
f(X) = P (X, y0) ∈ Q(α)[X], f ∈ 1

D
Z[α][X]⏐⏐⏐> p a generic Hensel lifting

prime number in pj

?⏐⏐⏐
Df ∈ Z

pZ
(α)[X] with q(α) = 0 and q ∈ Z

pZ
[T ] is irreducible

We see that Hensel’s lifting is a very useful tool; we recall Hensel’s theorem
in Lecture 1.

9.1 Lecture 1: Theorems of Hilbert and Bertini,
reduction to the bivariate case, irreducibility tests

9.1.1 Hilbert’s irreducibility theorem

We present a simple version of Hilbert’s theorem (see [Lan83] and [Zip93]):
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Theorem 9.1.1 (Hilbert’s irreducibility theorem). Let K be a finite al-
gebraic extension of Q, and let f(T1, . . . , Tr, X1, . . . , Xs) be an irreducible poly-
nomial in Q[T1, . . . , Tr, X1, . . . , Xs]. Then almost all points (t1, . . . , tr) ∈ K r

are such that f(t1, . . . , tr, X1, . . . , Xs) is irreducible in K[X1, . . . , Xs].

Remark 9.1.2. This theorem is false if we replace K by a finite field F. Consider
f(X,Y ) = X2−Y , then for all points t of F = Z/2, f(X, t) is reducible. Below
we will study Bertini’s theorem which works also for finite fields. Furthermore,
Bertini’s theorem gives rise to a probabilistic statement.

9.1.2 Hensel’s lemma

The idea of Hensel’s lemma is to mimic Newton’s method in an algebraic set-
ting. Newton’s iteration method gives an exact solution from an approximate
one; here the approximation is I-adic, where I is an ideal in a ring A (see
[Eis95], [Gou97], [Zip93] for the definition of the complete ring AI and its
properties).

Hereafter all rings are commutative, unique factorization domains, and
Noetherian. Indeed in our setting A is one of the following rings:

Z,Z[X1, . . . , Xn],Q[X1, . . . , Xn],C[X1, . . . , Xn], where n ≥ 1.

Theorem 9.1.3. Let I be an ideal of a ring A. Let
F = (F1(X1, . . . , Xn), . . . , Fn(X1, . . . , Xn))

be polynomials over A, and denote their Jacobian with respect to the Xi by
Jac. Let (x1, . . . , xn) be a zero of F modulo I, such that the determinant

Jac(x1, . . . , xn) has an inverse in
A

I
.

Then there exist unique elements (x̂1, . . . , x̂n) of AI , x̂i = xi mod I for
which F(x̂1, . . . , x̂n) = 0.

This implies (see [Zip93]):

Theorem 9.1.4 (Hensel’s lemma). Let f(X) be a monic polynomial over
A, and I be an ideal of A. Assume there exist monic polynomials g1(X), h1(X)

in
A

I
[X] which are relatively prime and such that f(X) = g1(X)h1(X)

mod I. Then for every n ∈ N−{0} there exist monic polynomials gn(X), hn(X)

over
A

In
[X] such that gn(X) = g1(X) mod I, hn(X) = h1(X) mod I and

f(X) = gn(X)hn(X) mod In.
Furthermore, there exist unique polynomials ĝ(X) and ĥ(X) over AI such

that ĝ(X) = g1(X) mod I, ĥ(X) = h1(X) mod I, and for all n ∈ N, f(X) =
ĝ(X)ĥ(X) mod In.
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Lifting a factorization

Now we show how to get a factorization in C[X1, . . . , Xn] from a factoriza-
tion in C[X1, X2]. Let f(X1, . . . , Xn), f1(X1, . . . , Xn) and f2(X1, . . . , Xn) be
polynomials of C[X1, . . . , Xn] such that

f(X1, . . . , Xn) = f1(X1, . . . , Xn)f2(X1, . . . , Xn)

is the absolute factorization of f . We know f and we want to find the fi. We
set di = degXi

(f). Let J = (X3−x3, . . . , Xn−xn) be an ideal of C[X1, . . . , Xn]
where xi ∈ C for i = 1, . . . , n. We set

f̄ (2) = f(X1, X2, x3, . . . , xn)

the image of f in
C[X1, . . . , Xn]

J
, similarly

f̄ (3) = f(X1, X2, X3, x4, . . . , xn)

and so on. We will get recursively a factorization for all f̄ (k) f(X1, . . . , Xn). So
we start with an absolute factorization for f̄ (2) namely f̄ (2) = g1h1. Applying
Hensel’s lemma (with A = C[X2, X3] and I = (X3 − x3)), we can lift this
factorization to C[X2, X3][X1] and get:

f̄ (3) = gd3+1hd3+1 mod (X3 − x3)d3+1.

The degree condition with d3 and the unicity property in Hensel’s lemma
imply the following:

if

⎧⎨⎩ f1(X1, X2, x3, . . . , xn) = g1(X1, X2)
(1)

f2(X1, X2, x3, . . . xn) = h1(X1, X2)

then

⎧⎨⎩ gd3+1(X1, X2, X3) = f1(X1, X2, X3, x4, . . . , xn)
(2)

hd3+1(X1, X2, X3) = f2(X1, X2, X3, x4, . . . xn).

So we obtain a factorization of f̄ (3). Now we restart with A = C[X2, X3, X4],
I = (X4 − x4) and

f̄ (4)(X1, . . . , Xn) = f(X1, X2, X3, X4, x5, . . . , xn)
= gd3+1(X1, X2, X3)hd3+1(X1, X2, X3) mod (X4 − x4)

Then, after n− 2 liftings, we obtain the factorization of f .

Remark 9.1.5. We supposed that condition (1) is true, that is to say: f1(X1, X2,
x3, . . . , xn) and f2(X1, X2, x3, . . . , xn) are the absolute factors of f(X1,X2, x3,
. . . , xn). In other words we supposed that the fi(X1, X2, x3, . . . , xn) are irre-
ducible, but this is not always the case as we might have the following kind
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of phenomenon (see [Kal85b]):
f(X,Y ) = X4+(12Y 3−18Y 2−18Y +12)X3+(30Y 3−72Y 2+42Y −36)X2+
(−432Y 3 + 648Y 2 + 648Y − 432)X − 432Y 3 + 2592Y 2 − 2160Y is absolutely
irreducible but f(X, 0) = (X − 6)X(X + 6)(X + 12) is reducible.

In order to avoid this situation which gives rise to an algorithm with
an exponential complexity, we want to obtain a reduction from multivariate
polynomials to bivariate polynomials preserving irreducibility. Using Hilbert’s
theorem we do not know the probability for a polynomial to remain irreducible
after a substitution. Bertini’s theorem, which we now study, provides this
knowledge because it implies a useful probabilistic statement.

9.1.3 Bertini’s theorem

In the beginning of the 20th century, Bertini proved two important theorems
which bear his name; S. Kleiman gave in [Kle98] a comprehensive report on
the history, evolution and impact of these theorems. Although it was phrased
in the terminology of his time, Bertini’s second theorem says the following:
The intersection of an irreducible algebraic set in Cn of dimension r ≥ 2, with
a “generic” (n−r+1)−plane is an irreducible curve. Of course the meaning of
the adjective generic has to be specified. Together with considerations of more
general varieties this gives rise to several versions of the theorem. A complete
treatment is provided by Jouanolou’s book [Jou83].

In the community of Computer Algebra and Complexity theory, Bertini’s
(second) theorem was first used and popularized by Heintz-Sieveking [HS81]
in 1981, soon followed by Kaltofen, von zur Gathen and many others. In
[HS81], the following “General hyperplane section lemma” is stated, and a
short algebraic proof is given in an appendix.

Lemma 9.1.6. Let k be an algebraically closed field and X1, . . . , Xn be in-
determinates over k. Let P be a prime ideal of k[X1, . . . , Xn] which defines
an affine subvariety of kn of dimension r ≥ 2. Let Ai,j, Ai, i = 1 to r − 1,
j = 1 to n, be transcendental quantities over k, and let K be an algebraically
closed field containing k, Ai,j and Ai, i = 1 to r − 1, j = 1 to n. Then, the
ideal P + (X1 −

∑
j>1A1,jXj −A1, . . . , Xr−1 −

∑
j>r−1Ar−1,jXj −Ar−1) is

a prime ideal in K[X1, . . . , Xn].

The proof relies on College algebra (i.e. ring and field extensions). The
work [HS81] applies this lemma to the case k = C, P = (f), f ∈ Q[X1, . . . , Xn],
r = n − 1. By successive substitutions of Xi by

∑
j>iAi,jXj + Ai, i = 1 to

n − 2, in f(X1, . . . , Xn), one obtains a bivariate polynomial f0(Xn−1, Xn),
whose coefficients are polynomials in Ai,j and Ai.

Corollary 9.1.7. f is absolutely irreducible ⇐⇒ f0 is absolutely irreducible.

Then it is proven in [HS81] that this claim still holds if we replace the
indeterminates Ai,j and Ai by random values. They also provide bounds which
allow to control this randomness.
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In 20 years, these bounds and the presentation of the result have been
improved by several authors including Kaltofen, von zur Gathen, and Gao.
The sharpest and best result (as far as we know) is due to Gao and is a
consequence of his method that we will present in the next section.

Theorem 9.1.8 (Gao’s 2000 improved version of Bertini’s theorem).
Let K be a field and S a finite subset of K. Let f ∈ K[X1, . . . , Xn] of total

degree d and f0(x, y) = f(a1x + b1y + c1, . . . , anx + bny + cn). Suppose K is
either of characteristic zero (e.g. K = Q) or of characteristic larger than 2d2.
Then, for random choices of ai, bi, ci in S, with probability at least 1 − 2d3

|S| ,
all the absolute irreducible factors of f remain absolutely irreducible factors
of f0 in K[x, y].

We give a sketch of the proof in exercise 9.2.14 below.
This theorem and an absolute bivariate factorization algorithm, give a

randomized algorithm for factoring absolutely multivariate polynomials in
Q[X1, . . . , Xn]. The strategy is as follows. If d is the total degree of the input
polynomial f(X1, . . . , Xn), one chooses random values a1, b1, c1, . . . , an, bn,
cn from a set S in Q with |S| ≥ 4d3 and factors the bivariate polynomial
f0(a1x+ b1y + c1, . . . , anx+ bny + cn) over Q. With probability at least 1/2,
the factors of f0 correspond to the factors of f evaluated at Xi = aix+biy+ci,
i = 1 to n.

A finer general hyperplane section lemma than the one stated in [HS81],
is given by part 4 of Theorem 6.3, page 67, in the book of Jouanolou [Jou83].

Theorem 9.1.9 (Jouanolou’s 1983 version of Bertini’s theorem). Let
k be an infinite field, X a scheme of finite type and f : X → kn a
k−morphism. Suppose that dim f(X) ≥ 2 and X is geometrically irreducible.
Then, for almost all affine hyperplanes H in kn, f−1(H) is geometrically
irreducible.

In our setting, k = Q, X is an irreducible variety embedded in an affine
space km and defined by a prime ideal P of k[X1, . . . , Xm] of dimension r ≥ 2.
For m such that m ≥ r ≥ n ≥ 2, we project X surjectively onto the affine
space kn × 0 included in km, by f which is here the canonical projection. X
being geometrically irreducible means P absolutely prime. H is defined by
linear equations L which involve only the first n coordinates, and f−1(H)
geometrically irreducible means P + L is absolutely prime.

Then we see that this statement improves Lemma 9.1.6 because if we
choose n = 2 and get a surjective projection, then the generic linear equations
of H depend only on the first 2 coordinates.

9.1.4 Irreducibility testing

In the factorization process an important preliminary task is to test if a poly-
nomial is already irreducible. This is the case for rational factorization as well
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as for absolute factorization.
For example the polynomial P (x) = 5x4 + 17x3 − 15x2 + 12x+ 19 ∈ Z[X] is
irreducible because modulo 3 we get P (X) = 2x4 +2x3 +1 = −(x4 +x3−1) ∈
Z
3Z

[X] which is irreducible. Indeed, if we had P = P1.P2 in Z[X] with
deg(P1) > 0 and deg(P2) > 0, then lc(P1).lc(P2) = 5 ≡ −1 mod 3, P 1 and
P 2 would satisfy P = P 1.P 2 and deg (P 1) > 0, deg(P 2) > 0. This reduction
argument is very general and allows to reduce absolute irreducibility testing
to the bivariate case using Bertini’s theorem.

One can use a similar argument to derive the following simple absolute
irreducibility test which was successfully studied by J.F. Ragot in his Ph.D
thesis [Rag97]. It is efficient, easy to implement and works in most cases. Let
P ∈ Z[X,Y ] be irreducible. The idea is to find a simple point of the curve
P (x, y) = 0 over Z

pZ
for some prime p (see Definition 9.0.11); it proceeds by

an extensive sieve.
We denote by (∗) the following condition:

(∗)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f is irreducible in

Z
pZ

[X,Y ],

there exists a simple point (a, b) ∈
(

Z
pZ

)2

of f mod p,

the degree of f mod p is equal to the degree of f.

Algorithm 9.1.10 Ragot’s algorithm

Input: f(X,Y ) ∈ Z[X,Y ]
For p from 2 to (say) 101 do

if f mod p satisfies (∗) then return (“f is absolutely irreducible”) end if.
end for.
return (“I don’t know”)
Output:“f is absolutely irreducible” or “I don’t know”.

Often, the mathematical idea behind an irreducibility test can be extended
to get a factorization algorithm. This was the case for the irreducibility test
of Ruppert [Rup99], whose idea was later reused by Gao [Gao03] as we will
see in Lecture 2. This was also the case for the absolute irreducibility test of
Galligo and Watt [GW97], which was developed into a factorization algorithm
by Galligo and Rupprecht and was later improved by Chèze as we will see in
Lectures 3 and 4.

Before concentrating in the next subsection on generalizations of Eisen-
stein’s criterion, let us mention another active direction of investigation.
It deals with multivariate polynomials with complex coefficients, which are
known only with a given precision. See e.g. the works of [Nag02] and [KM03].

Eisenstein’s classical theorem (see e.g. [Eis95]) states that:

Theorem 9.1.11 (Eisenstein’s criterion). Let R be a unique factorization
domain and f = f0 + f1X + · · · + fnXn ∈ R[X]. If there is a prime p ∈ R
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such that all the coefficients except fn of f are divisible by p, but f0 is not
divisible by p2, then f is irreducible in R[X].

Example 9.1.12. Let R = C[Y ], p = Y and f(X,Y ) = X5 + 2Y X4 + (Y 2 +
3Y )X3 + (Y 3 + 6Y )X2 + (Y 4 + 10Y 2 + Y )X + Y + 1, then f is absolutely
irreducible by Eisenstein’s criterion.

Several mathematicians (Dumas [Dum06], Kurscak [Kur23], Ore [Ore23],
[Ore24b], [Ore24a], Rella [Rel27]) have generalized this criterion by using New-
ton polygons.

Construct a polygon in the Euclidean plane as follows. Suppose that the
coefficient fi is divisible by pai but not by any higher power, where ai ≥ 0
and ai is undefined if fi = 0. Plot the points (0, a0), (1, a1), . . . , (n, an) in the
Euclidean plane and form the lower convex hull of these points. This results in
a sequence of line segments starting at the y−axis and ending at the x−axis,
called the Newton polygon of f (with respect to the prime p). Dumas [Dum06]
determines the degrees of all the possible nontrivial factors of f in terms of
the widths of the line segments on the Newton polygon of f . Consequently a
simple criterion for the irreducibility of f is established.

Theorem 9.1.13 (Eisenstein-Dumas criterion). Let R be a unique fac-
torization domain and f = f0 + f1X + · · · + fnXn ∈ R[X] with f0fn �= 0.
Assume that f is primitive, i.e. gcd(f0, . . . , fn) = 1. If the Newton polygon
of f , with respect to some prime p ∈ R, consists only of a line segment from
(0,m) to (n, 0), and if gcd(n,m) = 1, then f is irreducible in R[X].

The condition on the Newton polygon means that ai ≥ (n − i)m/n for
0 ≤ i ≤ n where pai exactly divides fi. When m = a0 = 1, this condition is
the same as in Eisenstein’s criterion.

A somehow related criterion is used for local irreducibility of Weierstrass
polynomials for instance in the proof of the Newton-Puiseux theorem. A series
in Weierstrass form f = Y n +

∑n−1
i=0 ai(X)Y i ∈ C[[X])[Y ], with valuation

(ai(X)) = vi and v0 = m, is irreducible in C[[X]][Y ] when gcd(n,m) = 1 and
vi >

(n−i)m
n , for i=1 to n − 1. In that case, the upper Newton polygon of f

with respect to Y has only one segment [(0, n); (m, 0)]. Of course, this also
holds if we replace the series by polynomials vanishing at 0.

These two criteria have been generalized by Gao. After Ostrowski (1921
and 1970), he considered not only lower or upper Newton polygon but the
complete convex hull of the support {(i, j)/ai,j �= 0} of P =

∑
i,j ai,jX

iY j .
As application of this theorem, Gao obtained for instance the following nice
special criterion for absolute irreducibility for bivariate polynomials.

Theorem 9.1.14. Let F be any field and f = aXn + bY m + cXuY v +∑
ci,jX

iY j ∈ F [X,Y ] with a, b, c nonzero. Suppose that the Newton polytope
of f is the triangle with vertices (n, 0), (0,m) and (u, v). If gcd(m,n, u, v) = 1
then f is absolutely irreducible over F .
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Example 9.1.15. P (X,Y ) = X3 +Y 2 +X5Y 4 +X4Y 2 +X3Y 2 +X2Y +XY 2

and Q(X,Y ) = 2X3 + 7Y 2 +X5Y 4 + 10X4Y 2 +X3Y 2 +X2Y + 3XY 2 are
absolutely irreducible. Here n = 3,m = 2, u = 5, v = 4. The Newton polytope
of these two polynomials is shown in Figure 9.1.15:
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Fig. 9.1. The Newton polytope of an absolute irreducible polynomial.

Gao and his coworkers wrote several papers on these topics (e.g. [Gao01]).
They contain an extensive bibliography on the subject.

9.2 Lecture 2: Factorization algorithms via computations
in algebraic number fields

The first algorithms by Trager-Traverso, which we explained in the introduc-
tion, and the early ones by Kaltofen were used for getting complexity bounds.
But they were hardly efficient for degrees greater than 15 because they re-
quired the solution of huge linear systems over large algebraic number fields.
Then in the late 80’s, D. Duval presented in her PhD thesis an algorithm
relying on classical algebraic geometry of complex curves and algebraic func-
tion fields. This algorithm was able to compute, in a first step, the number of
absolute irreducible factors of a polynomial, and a minimal extension which
contains the coefficients of one factor.

9.2.1 Duval’s algorithm (1987)

Let P (X,Y ) ∈ Q[X,Y ] be irreducible. k is the algebraic closure of Q in

Q(x, y) =
Q(X)[Y ]
P (X,Y )

= K. Let C be the curve in C2 defined by P (X,Y ) = 0,
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K = Q(C) is the field of Q−rational functions on C and k is called its subfield
of constants.

Theorem 9.2.1. The number of absolute irreducible factors of P is [k : Q].
Moreover, P factorizes as follows: P =

∏
i σi(G) where G is the minimal

polynomial of y over k(X), and σi are the Q−isomorphisms of k in Q.

Proposition 9.2.2. k is a subfield of OK , the ring of integers of K over
Q[X].

These results give rise to an algorithm.

Algorithm 9.2.3 Duval’s algorithm

Input: P (X,Y ) ∈ Q[X,Y ] irreducible in Q[X,Y ].

1. Compute a basis of OK over Q[X].
2. Compute a basis of k over Q.
3. Compute an absolute factorization of P .

Output: An absolute factor of P (X,Y ).

The first step relies on the work of Ford-Zassenhaus or Dedekind-Weber.
The second step relies on the study of parameterizations of C by Q[[t]] and
valuations, in order to get special bases for OK on which one reads the result.
This study is related to normalization. The third step results from a gcd
computation in Q(α)(X)[Y ].

This algorithm was implemented by J.F. Ragot in 1994, in Maple. It was
more efficient than the former ones. But Gao’s algorithm, which we now
present, is simpler and more efficient.

9.2.2 Gao’s algorithm for absolute factorization

Gao’s algorithm is based on a geometric idea inspired by the proof of an irre-
ducibility theorem of W. Ruppert [Rup99] and by the work of H. Niederreiter
[Nie93] on factorization. In these notes we specialize Gao’s algorithm to the
following input and output.
Input: P (X,Y ) ∈ Q[X,Y ], irreducible in Q[X,Y ].
Output:

1. The number d of absolute irreducible factors.
2. A minimal polynomial q of α, deg(q) = d.
3. An absolute irreducible factor of P = P1(X,Y ) ∈ Q(α)[X,Y ].

Briefly, the algorithm will produce a Q−vector space F of dimension d,
whose elements are some rational solutions of a partial differential equation. A
basis of this F is computed by solving a rather large system of linear equations.
As we will see, a basis of F = F ⊗Q Q consists of s polynomials closely related
to the d factors of P (X,Y ).
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Remark 9.2.4. A version of Gao’s algorithm can be also used for finding a
rational factorization. Its complexity is polynomial and efficient (“almost”
quadratic for dense inputs). It extends to an effective Bertini irreducibility
theorem.

In order to ease the exposition of Gao’s approach, we point out two key
observations in his method.

First observation

Let P (X,Y ) =
∏s

i=1 Pi(X,Y ). Taking logarithms, this implies log(P (X,Y )) =∑s
i=1 log(Pi(X,Y )). Set

∂P

∂X
=

s∑
i=1

(
∏
j �=i

Pj) · ∂Pi

∂X︸ ︷︷ ︸
gi

,
∂P

∂Y
=

s∑
i=1

(
∏
j �=i

Pj) · ∂Pi

∂Y︸ ︷︷ ︸
hi

.

Then we have
∂

∂X
(logPi) =

1
Pi
· ∂Pi

∂X
=
gi
P

, and
∂

∂Y
(logPi) =

hi

P
.

The following relation expresses the classical Schwartz equality on the
second derivatives:

(∗) ∂
∂Y

(
gi
P

) =
∂

∂X
(
hi

P
) for i = 1 to s, and

s∑
i=1

gi =
∂P

∂X
,

s∑
i=1

hi =
∂P

∂Y
.

Moreover, we define the bidegree of a polynomial f ∈ Q[X,Y ] by:
bideg(f) = (degX(f),degY (f)) = (m,n).

If the previous factors Pi are in C[X,Y ], we have with respect to the natural
partial ordering:

(∗∗)
{

bideg(gi) ≤ (m− 1, n)
bideg(hi) ≤ (m,n− 1).

Therefore, to a polynomial factorization of P we naturally attach a set of
polynomials (gi, hi) which satisfy (∗) and (∗∗). In 1986, W. Ruppert derived
a condition for absolute irreducibility from similar data.

Let us note for algorithmic purposes that (∗) can be rewritten linearly in
gi and hi as

(∗′) P · (∂gi
∂Y

− ∂hi

∂X
) + hi

P

∂X
− gi ∂P

∂Y
= 0.

Definition 9.2.5. Let F be the Q−vector space of solutions (v, w) ∈ Q[X,Y ]2

of the PDE

(∗) ∂

∂Y
(
v

P
) =

∂

∂X
(
w

P
)

such that bideg(v) ≤ (m− 1, n), bideg(w) ≤ (m,n− 1).
Moreover we set F = F ⊗Q Q.
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Remark 9.2.6. A basis of F can be computed by solving a linear system with
m(n+ 1) + n(m+ 1) unknowns and 4mn equations.

Theorem 9.2.7 (Gao’s theorem). Let P be irreducible in Q[X,Y ], and∏s
i=1 Pi be an absolute factorization of P . Let gi =

∏
j �=i Pj .

∂Pi

∂X
and hi =∏

j �=i Pj .
∂Pi

∂Y
. Then dimQ F = dimQF is the number of factors s of P .

Moreover {(g1, h1), . . . , (gs, hs)} is a basis of F .

The proof of this theorem uses partial fraction decompositions over Q[X](Y )

of
∂

∂Y
(
v

P
) and of

∂

∂X
(
w

P
). It relies on the following lemma, which allows

grouping of terms by conjugacy classes.

Lemma 9.2.8. Let k = Q(X), let the derivation
d

dx
extend to K = k, and

assume we have
d

dx
(K) ⊂ K. Let α be algebraic over Q(X); if

dα

dX
= 0 then

α ∈ Q.

Proof. Let T = T (z,X) = zl + vl−1(X)zl−1 + · · ·+ v0(X), vi ∈ Q(X) be the
unique minimal polynomial of α.

Since T (α,X) = 0, taking the derivative (with respect to X) of this com-

position of functions gives
∂T

∂z
(α,X)

dα

dX
+
∂T

∂X
(α,X) = 0. As

dα

dX
= 0 we get

∂T

∂X
(α,X) = 0 which can be written

∂vl−1

∂X
(X)αl−1 + · · ·+ ∂v0

∂X
(X) = 0.

If this were not identically zero, it would contradict the fact that T is the

minimal polynomial of α. So we get
∂vi
∂X

= 0, therefore vi ∈ Q and α ∈ Q.

Proof (Gao’s theorem). Let n be the degree of P in Y . Consider the factoriza-
tion P =

∏s
i=1 Pi where Pi ∈ Q[X,Y ]. We can decompose this factorization

further over K[Y ], with K = Q[X], and get:

P = un(X)
n∏

j=1

(Y − ϕj(X)), ϕj ∈ K.

We set
Pi = ui(X)

∏
j∈Ii

(Y − ϕj(X))

where the disjoint union of the Ii gives {1, . . . , n}. The ϕj , j ∈ Ii, are conjugate

over Q[X]. Now
∂

∂X
and

∂

∂Y
act on K:

∂

∂X
(K) ⊂ K,

∂

∂Y
(K) = 0. We have

a unique partial fraction decomposition in K[Y ]. As degY (w) < degY (P ) and
degY (v) ≤ degY (P ), we have:

w

P
=
∑n

j=1

Aj

Y − ϕj
, where Aj =

w(X,ϕj(X))
∂P
∂Y (X,ϕj(X))

∈ K,
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v

P
=
∑n

j=1

Bj

Y − ϕj
+ v1, where Bj ∈ K, and v1 ∈ K.

By (∗) we get:

∂

∂X
(
w

P
) =

n∑
j=1

(∂Aj)/(∂X)
Y − ϕj

−
n∑

j=1

Aj

(Y − ϕj)2
∂ϕj

∂X
=

=
∂

∂Y
(
v

P
) =

n∑
j=1

−Bj

(Y − ϕj)2
.

So for all j we have
dAj

dX
= 0, and the previous lemma implies Aj ∈ Q.

Moreover, for each i, i = 1 to s, by conjugation, for all j ∈ Ii the Aj are
conjugated over Q(X). But since Aj ∈ Q they are equal, so we denote by λi

their common value. Hence
w

P
=
∑s

i=1

∑
j∈Ii

λi

Y − ϕj
=
∑s

i=1 λi

∂Pi

∂Y

Pi
and we

get w =
∑s

i=1 λihi as claimed.

Now we get
∂

∂Y
(
v −∑s

i=1 gi
P

) = 0 (because (v, w) and (gi, hi) satisfy (∗));

this implies
v −∑s

i=1 gi
P

= A(X). As degX(v) ≤ m − 1 we get A = 0 and

then v =
∑s

i=1 λigi.

We deduce two corollaries. The first is an irreducibility criterion and the
second gives rise to Gao’s algorithm.

Corollary 9.2.9. P is absolutely irreducible if and only if dimQ F = 1.

Corollary 9.2.10. If v =
∑s

i=1 λigi, where λi �= λj if i �= j, then

Pi = gcd(P, v − λi
∂P

∂X
).

Exercise 9.2.11. Prove Corollary 9.2.10. (Hint:
∂P

∂X
=
∑s

i=1 gi.)

Second observation

Now we are in the following situation: given v in E, we want to know its
coordinates λ1, . . . , λs in the basis {g1, . . . , gs}. Call E the first projection of
F , E = {v ∈ Q[X,Y ]≤(m−1,n)|∃w such that (v, w) ∈ F}. Note that E can be
embedded in Q[X,Y ]/P . We set E = E ⊗Q Q, E = Q < v1, . . . , vd >, and
E = Q < g1, . . . , gd >.

We have gi =
∏

j �=i Pj
∂Pi

∂X
and

∑s
i=1 gi =

∂P

∂X
, so{∀i �= j gigj ≡ 0 mod P

∀i g2i ≡ gi
∂P

∂X
mod P.
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Let v =
∑s

i=1 λigi, then vgj =
∑

i λigigj ≡ λjg
2
j ≡ λjgj

∂P

∂X
mod P . In other

words, the λi are the eigenvalues of the following linear map:

multv : E → E
′
,

where E
′
= Q < g1

∂P

∂X
, . . . , gs

∂P

∂X
>. In other words, the λi are the roots of

the characteristic polynomial qv(t) = Pchar(multv).
We can compute qv(t) for v ∈ E from our knowledge of the basis v1, . . . , vd

of E. Indeed if B is the matrix of the change of basis from {v1, . . . , vd} of E
to {g1, . . . , gd}, then it does the same job for E

′
. So

qv(t) = det(B) · Pchar(multv) det(B−1).

Finally we get the following algorithm:

Algorithm 9.2.12 Gao’s algorithm

Input: P (X,Y ) ∈ Q[X,Y ], irreducible in Q[X,Y ].

1. Choose a “generic” v in E.
2. Compute qv(t) = Pchar(multv), irreducible in Q[t]. If qv(t) has a multiple

root then go to the last step.
3. Call λ1 a root of qv(t), then v − λ1PX ∈ Q < g2, . . . , gd >, therefore this

polynomial is divisible by P1.

4. P1 = gcd(P, v − λ1PX) in
Q[t]
qv(t)

[X,Y ] = Q(λ1)[X,Y ].

Output: An absolute factor P1(X,Y ) ∈ Q[λ1][X,Y ], and the minimal polyno-
mial qv(t) of λ1 over Q.

Implementation, examples, and exercises

Among the implementations of Gao’s algorithm there is one by J. May in
Maple. It is well commented and available on the web1. We downloaded and
tested it on the example described hereafter.

We consider a polynomial R(X,Y ) ∈ Q[X,Y ] with bidegree (12, 12). The
PDE is written as a linear system: the number of coefficients of (v, w) is
2× (12× 13) = 312, and the number of equations is 24× 24 = 576 but many
are identically 0. This gives rise to a vector space E of dimension 4 over Q,
E =< v1, v2, v3, v4 >, where each vi is a polynomial of degree 11.

We choose a generic linear combination v = 8v1 − v2 − v3 + v4, then write
the 4×4 matrix multv: we first compute v1 ∂P

∂X , v2
∂P
∂X , v3

∂P
∂X , v4

∂P
∂X reduced by

P , to get 4 polynomials of degree 11.
1 http://www4.ncsu.edu:8030/jpmay/ECCAD01/
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Then we compute the reduction of v1 · v, v2 · v, v3 · v, v4 · v by P to get
4 polynomials of degree 11. After that, we solve 4 systems with 4 unknowns
and 276 linear equations. We first obtain the irreducible polynomial

q(t) = t4 − 1
3
t3 +

69791
2313

t2 − 73148
2313

t+
253583
20817

.

And finally we get an absolute factor. The total time (on a small PC) was 95
seconds.

J. May and E. Kaltofen have also developed recently a version of this
algorithm adapted to imprecise input data, i.e. polynomials with floating point
coefficients. See [KM03].

Theorem 9.2.7 and then Gao’s algorithm works for a field F of character-
istic zero and for fields of characteristic p > (2m − 1)n. Now we present an
exercise which follows the idea of Ruppert (see [Rup99], and [Gao03]). For an
explicit bound M in the following exercise you can see the proof in [Rup99].

Exercise 9.2.13 (Absolute irreducibility modulo p).
a) Show that X4 + 1 is an irreducible polynomial of Z[X].
b) Show that X4 + 1 mod p is reducible for every prime p.
c) Show that these kinds of phenomena cannot appear when we study an
absolutely irreducible polynomial P ∈ Z[X,Y ]. That is to say: show that if
P (X,Y ) ∈ Z[X,Y ] is absolutely irreducible, then there exists an integer M

such that for every prime number p > M , P (X,Y ) mod p ∈ Z
pZ

[X,Y ] is

absolutely irreducible. (Hints: Apply Theorem 9.2.7 to P , study the rank of
the linear system (see Definition 9.2.5) related to P and to P mod p, and
apply Theorem 9.2.7 to P mod p.)

Finally, we give an exercise on the proof of Bertini’s theorem (Theo-
rem 9.1.8).

Exercise 9.2.14 (Bertini’s theorem).
a) Show that we can assume that f is square free.
b) Suppose that f has r absolutely irreducible factors. Show that f0 =
f(a1X + b1Y + c1, . . . , anX + bnY + cn) has r absolutely irreducible factors
over L = F(a1, b1, c1, . . . , an, bn, cn). (Hint: Use Corollary 9.1.7).
c) Consider the linear systems for f0 over L (see Definition 9.2.5) and let M
be the associated matrix. Let N be the number of unknowns of the system.
Show that rank M ≤ N − r, and that N ≤ d(d + 1). (Hint: You can replace
Q by L in Theorem 9.2.7.)
d) Show that there is an (N − r)× (N − r) submatrix M1 of M whose deter-
minant is nonzero, and that all the (N − r + 1)× (N − r + 1) submatrices of
M have determinant zero.
e) Apply to det(M1) the following lemma (see [Zip93, p.192]) and conclude.

Lemma 9.2.15. Let P ∈ A[X1, . . . , Xn] be a polynomial of total degree D
over a domain A. Let S be a subset of A of cardinality B. Then

P(P (x1, . . . , xn) = 0|xi ∈ S) ≤ D
B .
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9.2.3 An algorithm using an ODE

In the same family of algorithms for computing an absolute factorization,
we also mention the work of Cormier et al. [CSTU02]. Their algorithm uses
for each polynomial P an adapted ODE which is a suitable generalization
of a minimal polynomial but with respect to differential Galois theory. It
has been implemented, it does not seem more efficient that Gao’s algorithm.
Nevertheless it has its own theoretical interest.

9.3 Lecture 3: Factorization algorithms via computations
in the complex plane

This section and the next one describe the main contributions of the two
authors to absolute factorization. It is divided into three parts.

The first one contains results on topology and algebraic geometry of plane
curves. The second describes their absolute factorization algorithm. The third
part briefly presents other contributions related to the use of floating point
and/or monodromy methods.

9.3.1 Topology and algebraic geometry of plane curves

Basic definitions and classical results

Here we recall some classical results, for the proof we refer e.g. to [Rot88].

Definition 9.3.1. Let X be a topological space, and x0 a point of X. Let
Γ (X,x0) = {γ ∈ C0([0, 1], X)|γ(0) = γ(1) = x0} be the loops space on X.
Homotopy between loops, denoted by the symbol ∼, is an equivalence relation
on Γ (X,x0). We denote by [γ] the homotopy class of γ, and by π1(X,x0) the

set
Γ (X,x0)
∼ .

It can be shown that π1(X,x0) equipped with the concatenation is a group,
in general non commutative.

Example 9.3.2. Take for X the complement in the real plane of a set of N
points; X = R2 − {p1, . . . , pN}. Then π1(X,x0) is a free group generated
by N small loops around the points pi. See Figure 9.2 where C ∼= R2 and
∆ = {p1, . . . , pN}.
Definition 9.3.3. Π : Y → X is a covering if Π is continuous and if all
x ∈ X have an open neighborhood Ux such that Π−1(Ux) is a disjoint union
of open sets Vi in Y , with Π/Vi

: Vi → Ux is an homeomorphism for every i.
We call Π−1

/Vi
: Ux → Vi a section of Π.
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Proposition 9.3.4. Let X be a connected topological space, and let Π : Y →
X be a covering. If there exists x0 ∈ X such that the cardinality of Π−1(x0)
satisfies |Π−1(x0)| = N then for all x in X, we have |Π−1(x)| = N . In this
situation, Π (or Y ) is called an N−fold covering.

Exercise 9.3.5. Let P (X,Y ) = Y n + an−1(X)Y n−1 + · · ·+ a0(X) be a poly-
nomial in C[X,Y ], C = {(x, y) ∈ C2|P (x, y) = 0}, pr1 : C2 → C be the projec-
tion on the first coordinate and ∆ = {x ∈ C|DiscY (P (X,Y ))(x) = 0}. Show
that pr1/C−pr−1

1 (∆) : C − pr−1
1 (∆) → C−∆ is an n−fold covering. (Hint: use

the implicit function theorem.)

C ⊂ C2

pr
1/C−pr−1

1 (∆)

C − ∆

Fig. 9.2. A ramified covering with a smooth generic fiber.

Theorem 9.3.6 (Lifting lemma). Let X be a connected topological space,
Π : Y → X be a covering and γ : [0, 1] → X a path such that γ(0) = γ(1) =
x0.

If y0 is in the fiber over x0 (i.e. Π(y0) = x0) then there exists a unique
path γ̃y0 : [0, 1] → Y such that γ̃y0(0) = y0 and Π ◦ γ̃y0 = γ.

With this lifting, we can define a group action on the fiber.

Proposition 9.3.7. Let X be a connected topological space, let Π : Y → X
be a N -fold covering, and x0 a point of X. We denote by F the fiber over x0

(i.e. F = Π−1(x0)). We have a group action:
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π1(X,x0)×F → F
([γ], y0) �→ γ̃y0(1)

and a group homomorphism:

π1(X,x0) → Aut(F) = SN

where SN is the symmetric group.

Now we give two useful lemmas about analytic paths.

Lemma 9.3.8. Let γ be a closed path in C−{p1, . . . , pd}. Then γ is homotopic
to an analytic closed path δ.

γ

δ

γ(0) = δ(0)

p1

p2
p3

p4 p5

p6

p7

Fig. 9.3. γ is homotopic to the analytic path δ.

Proof. We have a continuous map γ : [0, 1] → C − {p1, . . . , pd} such that
γ(0) = γ(1). We set E = {f ∈ C0([0, 1],C)|f(0) = f(1)}. Furthermore S =
Span({e2iπnθ|n ∈ Z}) is a dense subset of E for the ‖.‖∞ norm (‖f‖∞ =
supx∈[0,1] |f(x)|).

Now the distance between γ([0, 1]) and {p1, . . . , pd} is strictly bigger than
0, because these two compact sets are such that γ([0, 1]) ∩ {p1, . . . , pd} = ∅.
So we set d(γ([0, 1]), {p1, . . . , pd})/4 = ε and we have ε > 0.

Because of the density of S there exists a sequence (fn)n ∈ S with the
following property: there exists a number N such that for all n ≥ N we have
‖γ − fn‖∞ < ε. We set δ(t) = fN (t)− fN (0) + γ(0). Then,

‖δ(t)−γ(t)‖∞ ≤ ‖fN (t)−γ(t)‖∞+‖fN (0)−γ(0)‖ < d(γ([0, 1]), {p1, . . . , pd}).
So δ is homotopic to γ, δ is analytic and δ(0) = δ(1) = γ(0) = γ(1).

Lemma 9.3.9. The lifting (γ̃) of an analytic path γ in Theorem 9.3.6 is an-
alytic.

Exercise 9.3.10. Prove Lemma 9.3.9. (Hint: Use the implicit function theo-
rem.)
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Irreducibility and path connected spaces

Theorem 9.3.11. Let P (X,Y ) be a square-free polynomial of C[X,Y ],
∆ = {x|DiscY (P (X,Y ))(x) = 0}, and C = {(x, y) ∈ C2|P (x, y) = 0}.

Then:
P is irreducible in C[X,Y ] ⇐⇒ C − pr−1

1 (∆) is path connected.

We need two lemmas to prove this theorem.

Lemma 9.3.12. Let Π : Y → X be an n−fold covering, and Y1 be a connected
component of Y . Then Π/Y1 : Y1 → X is a d−fold covering with d ≤ n.
Exercise 9.3.13. Prove Lemma 9.3.12.

Lemma 9.3.14. Let P (X,Y ) = Y n + a1(X)Y n−1 + · · · + an(X), x ∈ C,
and y(x) be a root of P (x, Y ), then |y(x)| ≤ max(1,

∑n
i=1 |ai(x)|) ≤ 1 +∑n

i=1 |ai(x)|.
Proof. If |y(x)| ≤ 1 then the lemma is true.

If |y(x)| ≥ 1 then P (x, y(x)) = 0 thus y(x)n = a1(x)y(x)n−1 + · · ·+an(x).
It follows that |y(x)|n ≤ ∑n

j=1 |ai(x)||y(x)|n−i ≤ ∑n
j=1 |ai(x)||y(x)|n−1. So

|y(x)| ≤ ∑n
j=1 |ai(x)|.

Proof (Theorem 9.3.11). ⇒) We suppose that P is irreducible. First we re-
mark that C − pr−1

1 (∆) is locally path-connected because C − ∆ is locally
path-connected. So it suffices to show that C − pr−1

1 (∆) is connected.
Let C1 be a connected component of C − pr−1

1 (∆). Lemma 9.3.12 implies
that pr1/C1 : C1 → C−∆ is a d−fold covering with d ≤ n. Thus if we show
that d = n then we have C1 = C − pr−1

1 (∆) and we are done.
For every x0 ∈ C − ∆, we have pr−1

1/C1
(x0) = {y1(x0), . . . , yd(x0)} with

yi(x0) �= yj(x0) when i �= j. As pr1/C1 is a covering we have a neighbor-
hood Vx0 of x0 such that y1, . . . , yd are defined on Vx0 . Furthermore, we have
pr−1

1/C1
(x) = {y1(x), . . . , yd(x)} for every x ∈ Vx0 . Hence yi is analytic on Vx0 ,

by the implicit function theorem applied to P (x0, yi(x0)).
We consider the polynomial

(Y − y1(x)) . . . (Y − yd(x)) = Y d + S1(x)Y d−1 + . . .+ Sd(x).

The Si(x) are the elementary symmetric functions in yi(x). Si(x) is defined on
Vx0 , and we now see that Si(x) is a polynomial. First, we show that Si(x) is
defined on C−∆, secondly we show that Si(x) is defined on C, and bounded
by a polynomial.

Let x1 �= x0, as before there exit a neighborhood Ux1 of x1 and d analytic
functions ϕ1, . . . , ϕd, such that pr−1

1/C1
(x) = {ϕ1(x), . . . , ϕd(x)} for every x in

Vx1 . If Vx1 ∩ Vx0 �= ∅ then, as pr1/C1 is a covering and yi and ϕi are sections
of pr1/C1 , we have an element σ ∈ Sd such that yi = ϕσ(i) on Vx0 ∩ Vx1 .
Therefore, we have, for example
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s1(x) =
d∑

i=1

yi(x) =
d∑

i=1

ϕσ(i)(x) =
d∑

i=d

ϕi(x)

on Vx1 ∩ Vx0 , thus S1(x) is defined and analytic in Vx0 ∪ Vx1 . So if we repeat
this procedure we get d analytic functions Si(x) defined on C−∆.

Now we have to prove that Si(x) is defined on C. Let us do it for S1(x).
Let x0 be in ∆, and let (εn)n be a sequence of elements in C such that

limn→∞ εn = 0.
Then

lim
n→∞S1(x0 + εn) = lim

n→∞

d∑
i=1

yi(x0 + εn)

with yi(x) well defined and continuous in x0 (as they are the roots of the
polynomial P (x, Y )). We get

lim
n→∞S1(x0 + εn) =

d∑
i=1

yi(x0)

(here there exist i0 and j0 such that yi(x0) = yj(x0)). Thus there is no sin-
gularity on ∆, and we can extend analytically S1 to C. We proceed similarly
for all Si.

Let x be in C, and yi(x) be a root of P (x, Y ). Lemma 9.3.14 implies
|yi(x)| ≤ 1+

∑n
j=1 |aj(x)| ; this means that |Si(x)| is bounded by a polynomial,

then Liouville’s theorem implies that Si(x) is a polynomial.
Therefore, P1(X,Y ) = Y d +S1(x)Y d−1 + · · ·+Sd(X) belongs to C[X,Y ].

Now we perform the Euclidean division of P by P1, in C(X)[Y ]. As P1 is monic
we get P (X,Y ) = A(X,Y )P1(X,Y ) +R(X,Y ) with A(X,Y ), R(X,Y ) ∈
C[X,Y ] and R(X,Y ) = rd−1(X)Y d−1 . . . + r0(X). For every x �∈ ∆, we set
{y1(x), . . . , yd(x)} = {y|P1(x, y) = 0}, where yi(x) �= yj(x) if i �= j. As
(x, yi(x)) ∈ C1 ⊂ C − pr−1

1 (∆) we have P (x, yi(x)) = 0 for i = 1 . . . d. Hence
R(x, yi(x)) = 0 for i = 1 . . . d, and thus R(x, Y ) = 0 in C[Y ] for every x �∈ ∆.
So rd−1(X) = . . . = r0(X) = 0 in C[X], and then P1 divides P . Now as P is
irreducible, it follows that P1 = P and then d = n.
⇐) We suppose P = P1 ·P2 where Pi is irreducible in C[X,Y ], and P1 �= P2

because P is square free (if we have more than two factors the proof is similar).
We set V(Pi) = {(x, y) ∈ C2|Pi(x, y) = 0} and Ci = V(Pi)∩(C−pr−1

1 (∆)).
Ci is a closed subset of C − pr−1

1 (∆).
Furthermore, C1 and C2 are distinct, because pr1(V(P1) ∩ V(P2)) ⊂

DiscY (P ). Indeed, we have

DiscY (P ) = DiscY (P1) ·DiscY (P2) ·ResY (P1, P2)2.

So we can conclude that C − pr−1
1 (∆) = C1 #C2, and then that C − pr−1

1 (∆)
is not connected.
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Double point set and transpositions

Lemma 9.3.15 (Change of coordinates). Let P (X,Y ) ∈ Q[X,Y ] be of
total degree n. We consider the change of coordinates fλ(X,Y ) = P (X +
λY, Y ).

Let U be the subset of Q such that for every λ in U we have
degY (fλ(X,Y )) = n, and there exists x0 in C such that the polynomial
fλ(x0, Y ) ∈ C[Y ] has one root y0 of multiplicity two, all the other roots have

multiplicity one, and
∂fλ
∂X

(x0, y0) �= 0. Then there exists a finite subset F of
Q such that U = Q− F .

(X2 + Y 2)3 − 4X2Y 2 = 0 ((X + 1
2
Y )2 + Y 2)3 − 4(X + 1

2
Y )2Y 2 = 0

Fig. 9.4. Examples of a bad case f0(X, Y ) = P (X, Y ) = 0 and of a good case
f1/2(X, Y ) = 0.

Proof. First we show that V = {λ ∈ Q |degY (fλ(X,Y )) �= n} is a finite subset
of Q. We set P (X,Y ) =

∑
k+l≤n ak,lX

kY l ; then, for an(λ) ∈ Q[λ] we have

fλ(X,Y ) =
∑

k+l≤n

ak,l(
k∑

i=0

(
k

i

)
λiY iXk−i)Y l =

= an(λ)Y n + an−1(X,λ)Y n−1 + · · ·+ a0(X,λ).
Thus V = {λ|an(λ) = 0} hence V is finite.

Now we consider d1(λ,X) = DiscY (fY (X,Y )) ∈ Q[λ,X]. If (u0, v0) is a
singular point of P (X,Y ) then (u0 − λv0, v0) is a singular point of fλ(X,Y ).
So d1(λ, u0 − λv0) = 0 and X − (x0 − λv0) divides d1(λ,X). We denote by
(ui, vi), for i = 1 to d the singular points of P , then
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d1(λ,X) =
d∏

i=1

(X − (ui − λvi))eiq(λ,X)

and we set
d2(λ) = DiscX(q(λ,X)).

Now we claim that if λ is not a root of d2, and if the change of coordinates
preserves the degree in Y of P , then λ belongs to U ; this will prove the
lemma. Indeed, we choose (λ0, x0) in the following way:⎧⎨⎩d2(λ0) �= 0 (1)
d1(λ0, x0) = 0 (2)
x0 �= ui − λ0vi (3)

In order to satisfy (2) and (3), we choose a root

x0 of q(λ0, X) which is not ui − λ0vi.
Now we consider the root yi(X) ∈ C[X] of the polynomial

fλ0(X,Y ) ∈ C[X][Y ] and we get d1(λ0, X) =
∏

i�=j(yi(X)− yj(X)). So there
exist i0 and j0 such that yi(x0) = yj0(x0) with i0 �= j0 (because of (2)). There-
fore d2(λ0) �= 0 so q(λ0, X) does not have a multiple root, and ∂d1

∂X (λ0, x0) �= 0,
since x0 �= ui − λ0vi.

Furthermore,
∂d1
∂X

(λ0, X) = (
∂yi0
∂X

(X)− ∂yj0
∂X

(X))
∏

(i,j)�=(i0,j0)
i�=j

(yi(X)− yj(X))

+(yi0(X)− yj0(X))
∂

∂X
(

∏
(i,j)�=(i0,j0)

i�=j

(yi(X)− yj(X))).

Thus ∂d1
∂X (λ0, x0) �= 0 implies that for all (k, l) �= (i0, j0) and k �= l we have

yk(x0) �= yl(x0).
Then we conclude that fλ0(x0, Y ) has n − 1 distinct roots, and one root

has multiplicity two (yi0(x0) = yj0(x0)). As ∂fλ0
∂X (x0, yi0) �= 0 (because x0 is

not the abscissa of a singular point) the claim is proven.

Theorem 9.3.16. Let λ0 be as in Lemma 9.3.15, ∆ = DiscY (fλ0(X,Y )).
Then there exists X0 ∈ C −∆, γ a path in C −∆ such that the monodromy
action relative to X0 of γ on the fiber f−1

λ0
(X0, Y ) = {z1, . . . , zn} is for i0 �= j0:⎧⎨⎩ [γ].zi0 = zj0

[γ].zj0 = zi0
[γ].zi = zi if i �= i0 and i �= j0.

Proof. a) Let λ0, x0 and y0 be as in Lemma 9.3.15. We have:

fλ0(x0, y0) =
∂fλ0

∂Y
(x0, y0) = 0,

∂2fλ0

∂Y 2
(x0, y0) �= 0 and

∂fλ0

∂X
(x0, y0) �= 0.

We denote by y3, . . . , yn the simple roots of fλ0(x0, Y ). We have{∀i ≥ 3 fλ0(x0, yi) = 0

∀i ≥ 3
∂fλ0

∂Y
(x0, yi) �= 0.
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C − ∆δ1

δ2

δ3

x0

(x0, y0)

(x0, y1)

(x0, y2)

(x0, y3)

γ

Fig. 9.5. The monodromy action of γ gives the transposition (y1 y2).

So we can apply the analytic version of the implicit function theorem to
every (x0, yi). Thus, there exits a neighborhood Vy0 of y0, a neighborhood U0

x0

of x0, and an analytic function ϕ such that

x ∈ U0
x0
, y ∈ Vy0 and fλ0(x, y) = 0 ⇐⇒ x = ϕ(y) and y ∈ Vy0 .

For i ≥ 3, there exists a neighborhood U i
x0

of x0, Vyi
a neighborhood of yi,

and pi an analytic function such that:

x ∈ U i
x0
, y ∈ Vyi

and fλ0(x, y) = 0 ⇐⇒ y = pi(x) and x ∈ U i
x0
.

Now, we consider the parametrization x = ϕ(y). We have ϕ(y) =
x0 + a(y − y0) + b(y − y0)2 + . . . in a neighborhood of y0, with a =

−∂fλ0

∂Y
(x0, y0)(

∂fλ0

∂X
(x0, y0))−1 = 0, and

b = −1
2
∂2fλ0

∂Y 2
(x0, y0)(

∂fλ0

∂X
(x0, y0))−1 �= 0. Thus in a neighborhood of (x0, y0)

we have

(x− x0) = (y − y0)2[b+
∑
k≥1

ak(y − y0)k].

b) The equation z2 = b has two distinct nonzero roots r1 and r2. Near
r1 �= 0 the function c : C → C given by z �→ z2 has an analytic inverse because
c′(r1) = 2r1 �= 0. Let r be this inverse, r : Vb →Wr1 . Hence, in a neighborhood
V

(1)
y0 of y0 we define: R : V (1)

y0 →Wr1 : y �→ r(b+
∑

k≥1 ak(y − y0)k). Thus in
a neighborhood of (x0, y0) we have: x − x0 = (y − y0)2(R(y))2. We denote
by ψ the following map: ψ : V (2)

y0 → V0 given by y �→ (y − y0)R(y) where V0

is a neighborhood of 0, and V (2)
y0 is a neighborhood of y0 on which ψ is an

isomorphism (this is possible because ψ′(y0) = R(y0) = r(b) �= 0). We denote
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then by ξ the inverse of ψ. Thus we have a neighborhood Vy0 of y0 and a
neighborhood Ux0 of x0 such that

(∗) x ∈ Ux0 , y ∈ Vy0 and fλ0(x, y) = 0 ⇐⇒ x− x0 = ψ(y)2 and y ∈ Vy0

Now we remark that y0 is a root of multiplicity two of (ψ(y))2 = 0. ψ is a non
constant analytic function on Vy0 . So we have established (see [Car61] p 97,
Prop 4.2):

(∗∗) There exists V ′
y0

a neighborhood of y0, U ′
x0

a neighborhood of x0 such
that for all X0 �= x0 and X0 in U ′

x0
, (ψ(y))2 = X0−x0 has exactly two distinct

simple roots in V ′
y0

.

We set V = (∩i≥3U
i
x0

) ∩ Ux0 ∩ U ′
x0

; this is a neighborhood of x0. Now we
choose a real number ρ > 0 such that B(x0, ρ) ⊂ V and B(0,

√
ρ) ⊂ V0.

c) Lifting paths
We set: X0 = x0 + ρ and γ : [0, 1] → C − ∆ : t �→ x0 + ρe2iπt. Thus

fλ0(X0, Y ) has n distinct roots: z1, . . . , zn. Now we write all these roots with
ξ or pi. If X0 ∈ V and y ∈ V ′

y0
, then fλ0(X0, y) has two distinct roots z1

and z2 in V ′
y0

by (∗∗) and by (∗) we can set ψ(z1) =
√
ρ and ψ(z2) = −√ρ.

Hence z1 = ξ(
√
ρ) and z2 = ξ(−√ρ). Furthermore, X0 ∈ V and y ∈ Vyi

,
fλ(X0, y) = 0 ⇐⇒ y = pi(X0) for i = 3 . . . n. So we set zi = pi(X0). Now we
lift γ above z1 and z2. We set

γ1(t) = ξ(
√
ρeiπt) ; γ2(t) = ξ(−√ρeiπt).

These two paths are well defined, continuous and γi(0) = zi.
For all t ∈ [0, 1], γ(t)− x0 = ρe2iπt = [ψ(ξ(

√
ρeiπt))]2 because ψ ◦ ξ = id ,

then for all t ∈ [0, 1], γ(t)− x0 = [ψ(γ1(t))]2 = [ψ(γ2(t))]2.
By (∗) we get f(γ(t), γi(t)) = 0,∀t ∈ [0, 1]. Thus γ1 lifts γ above z1 and γ2

lifts γ above z2. As γ1(1) = z2 and γ2(1) = z1 we get: [γ].z1 = z2, [γ].z2 = z1.
Therefore we set γi(t) = pi(γ(t)) for i = 3 . . . n. We have

f(γ(t), γi(t)) = 0,∀t ∈ [0, 1],

by the definition of pi. Now, γi lifts γ above zi and γi(1) = pi(γ(1)) =
pi(γ(0)) = zi. Hence, for i = 3, . . . , n, [γ].zi = zi.

Transpositions will play an important role for the proof of Harris’ lemma
and its generalizations (see Theorem 9.3.20). Theorem 9.3.16 will be used with
the following lemma.

Definition 9.3.17. Let G×X → X be a group action. If for every two pairs
of points x1, x2 and y1, y2 (x1 �= x2 and y1 �= y2) there is a group element g
such that g.xi = yi, then the group action is called 2−transitive.

Lemma 9.3.18. Let G be a subgroup of Sn such that the action of G on
{1, . . . , n} is 2−transitive and such that there exists a transposition τ in G,
then G = Sn.
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Proof. We can suppose τ = (1 2). Let x and y be two distinct elements of
{1, . . . , n}. There exists a permutation σ ∈ G such that σ(1) = x and σ(2) = y
(because the action is 2−transitive). Then σ−1τσ = (σ(1) σ(2)) = (x y) ∈
G. Therefore every transposition belongs to G ; this implies that G = Sn.

Monodromy and genericity

We saw in the last subsection that when P is irreducible, the monodromy
action on the fiber is transitive ; that is, any two points yi and yj of the
fiber φ−1(x0) can be exchanged following a continuous path on the curve
on top of some loop γ. This result also expresses the connectivity of the
subspace formed by the curve C minus the ramification points. In fact there
is a stronger connectivity result which is a consequence of a lemma due to
J. Harris (see [Har80] or [ACGH85]) which was originally used to establish his
uniform position theorem on the generic hyperplane section of a projective
curve.

We will adapt Harris’ lemma to our setting in order to obtain what we call
an Affine Harris theorem. This theorem says that if we perform a generic
change of coordinates before taking the projection, not only the action of the
monodromy group is transitive but any permutation of the point of the fiber
φ−1(x0) can be obtained following a continuous path on the curve on top of
some loop γ. This key fact and its application to absolute factorization was
first observed by Galligo, stated in [GW97], then in [Gal99] and in [Rup00],
[Rup04]. However in these papers it was just indicated that this statement was
a consequence of Harris’ lemma and classical arguments in algebraic geome-
try. As Sommese-Verschelde-Wampler needed this statement to improve their
algorithm (see below), in [SVW02c] they gave a more complete proof of it
and made precise references to two textbooks ([ACGH85] and [GM83]). In
the next subsection, we will give a detailed exposition of this result. Let us
start by reviewing Harris’ lemma and its proof in the case of plane curves.

Lemma 9.3.19 (Harris’ lemma). Let C be an irreducible projective plane
curve, possibly singular, and call n its degree. Let U be the Zariski open subset
in P2(C)∗ of lines transverse to C, i.e. cutting C in n simple points. Consider
the incidence correspondence graph I and its second projection:

pr2 : I = {(p,H) ∈ C × U | p ∈ H} → U.

Then pr2 is a n-fold topological covering. We fix H0 ∈ U and let Γ0 denote
the set of n intersection points C ∩H0. Then the monodromy map

π1(U,H0) → Sn

is surjective.

Proof. Let G be the image of the monodromy map. We know by application
of Theorem 9.3.11 that C minus its singular locus is path connected. As by
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Theorem 9.3.16, U contains in its border a line H1 which is tangent to C
at a simple point and transverse to C at all the other n − 2 intersection
points, we deduce that G contains a transposition. So in order to apply Lemma
9.3.18 we need only to prove that G is 2-transitive. To express this property
geometrically let us set

I2 = {(p1, p2,H) ∈ C × C × U | p1 ∈ H, p2 ∈ H, p1 �= p2}
and similarly

J2 = {(p1, p2,H) ∈ C × C × P2(C)∗ | p1 ∈ H, p2 ∈ H, p1 �= p2}.
With this definition, obviously J2 is a line bundle over C × C − Λ where Λ is
the diagonal of C × C (indeed two distinct points define a line). Now Λ is a
complex subvariety of C × C of strictly smaller dimension, and C × C is path
connected because C is path connected. Therefore J2 is also path connected. As
I2 is obtained from J2 by subtracting a complex subvariety of strictly smaller
dimension, it is also path connected. This implies that G is 2-transitive.

The Affine Harris theorem

Theorem 9.3.20 ([GW97]). Let P ∈ Q[X,Y ] be a an absolutely irreducible
polynomial of total degree n. Let C be the corresponding affine curve in C2.
Then there exists a Zariski open set of affine changes of coordinates such that,
the projection on the new first coordinate x:

pr1 : C → C

induces on the fiber pr1−1(0) a monodromy map

π1(C−∆, 0) → Sn

which is surjective.

Proof. The theorem is a corollary of Harris’ lemma and a classical theorem
of van Kampen, recalled below as Theorem 9.3.21. With the notations of the
last subsection we identify C−∆ with the set of all lines in C2 parallel to the
Oy-axis and transverse to C. Then we include this set in the intersection of U
with the line of P2(C)∗ formed by all the lines passing through the point at
infinity corresponding to the Oy-axis. Moreover we suppose that O is not in
∆ and choose H0 = Oy. Then to prove the theorem, it suffices to show that
the induced group homomorphism

π1(C−∆, 0) → π1(U,H0)

is surjective.
We view U as the complement of a reduced projective curve in the dual

projective plane P2(C)∗, which is isomorphic to the usual projective plane
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P2(C). Then our theorem will be a consequence of a classical theorem of
E. van Kampen in 1933. A short, rigorous and self-contained exposition of
this last result was given in a paper by D. Cheniot in 1973. It contains a
precise description (by generators and relations) of the fundamental groups.
We summarize it as follows.

Theorem 9.3.21 (van Kampen). Let H be a reduced algebraic curve of
degree n in P2(C) and A be point not on H. Let Li for i = 1 to m and L∞ be
all the line passing through A and not transverse to H. Call λi for i = 1 to m
and λ∞ their direction in a P1(C) complement to A. Let L be a line passing
through A and transverse to H, and call λ its direction. Then

π1(P1(C)− {λ1, . . . , λi, λ∞}, λ) → π1(P2(C)−H, A)

is surjective.

With our notation, we get

π1(P1(C)− {λ1, . . . , λi, λ∞}, λ) = π1(C−∆, 0)

and we are done.

Remark 9.3.22. It would have been more elegant to provide an algebraic proof
of our Affine Harris theorem. A natural way to do this, is to adapt the proof
recalled in the last section, by using Jouanolou’s version of Bertini’s theorem
applied to the algebraic set I2. However, this only proves a weaker version of
our claim. Indeed, instead of obtaining the monodromy map associated to the
lines parallel to a generic direction Oy, we get the monodromy map associated
to the lines passing through a generic point of P2(C) and we cannot be sure
that we can choose such a point on the line at infinity. So we are led to rely on
a topological analysis, which in this situation gives more precise information.

Composite Monodromy
To validate the Galligo-Rupprecht algorithm, a result for the composite

case is needed.
When P has several factors, then C has several irreducible components

C1, . . . , Cs, and each of them has a monodromy action. So we can relate the
monodromy of C to the monodromies of the Ci. The result obtained in [Gal99]
and in [Rup00], says that after a generic change of coordinates, the following
group homomorphism is surjective:

π1(C −∆) → Sn1 ×Sn2 × · · · ×Sns
.

This result is a straightforward corollary of the proof of Theorem 9.3.20 that
we explained above.
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9.3.2 The Galligo-Rupprecht’s algorithm

The algorithm takes as input a bivariate polynomial with rational coefficients
irreducible over Q, performs a generic affine change of coordinates in order
to get a new polynomial P (X,Y ), and outputs an approximate absolute fac-
torization of P . This will be used in the next section to produce an exact
absolute factorization of P .

The algorithm first finds a key combinatorial fact about the target factor-
ization: the partition generated by the factorization on a smooth generic fiber
P (0, Y )−1(0).

This is obtained by analyzing the restriction of the factorization modulo
X3 which gives so called ’Zero sum’ relations (see below for the history of
this concept). Our Affine Harris Theorem proves that these relations indeed
provide sufficient and necessary conditions for the absolute factorization of P .
The corresponding factorization of P (0, Y ) is later lifted to a factorization of
P by Hensel liftings. In order to compute efficiently these ’Zero sum’ relations
and Hensel liftings we rely on good Newton approximation of the roots of
P (0, Y ) = 0.

So, first we perform some reductions on the input polynomial in order to
get a monic square-free polynomial which is irreducible (over Q). We consider
“generic” affine change of coordinates in 2 variables

X = x+ ay + b ; Y = y + c.

In practice, this means a change of coordinates whose coefficients (a, b, c) are
decimal numbers provided by a “random function” that one can find on any
computer.

Simplifying, we get a new monic polynomial in Q[x, y], that we call P :
yn + an−1(x)yn−1 + · · ·+ a0(x) with deg ai(x) ≤ n− i.
A consequence of the fundamental Lemma 9.0.8 is that the factors all have

the same degree.
As there are efficient algorithms for the detection of factors of degree 1,

we suppose that the degree of the factors of P is greater or equal to 2. This
assumption will be used in Lemma 9.3.23. Now we describe the main ideas
behind the Zero-sum relations.

Definition of the numbers bi and their properties

Let P be a square-free polynomial in Q[X,Y ] of total degree n, monic in
Y . For x0 ∈ Q, we denote by y1(x0), . . . , yn(x0) the roots of P (x0, Y ). Then
for all but at most n(n − 1) values of x0, these roots are distinct and the
curve defined by P is smooth at the points (x0, yi(x0)), for i = 1, . . . , n. If we
choose such a value for x0, then there exist analytic functions ϕi(X) in the
neighborhood of x0 (for i = 1, . . . , n) such that{

ϕi(x0) = yi(x0)
P (X,ϕi(X)) = 0.
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There exist complex numbers ai and bi (for i = 1, . . . , n) such that

ϕi(X) = yi(x0) + ai(X − x0) + bi(X − x0)2 + · · · .

If
α(x, y) =

∂P

∂x
(x, y), β(x, y) =

∂P

∂y
(x, y),

γ(x, y) =
∂2P

∂x2
(x, y), δ(x, y) =

∂2P

∂y2
(x, y), ε(x, y) =

∂2P

∂x∂y
(x, y)

then we have

ai = −α(x0, yi(x0))
β(x0, yi(x0))

and

bi = − 1
2β(x0, yi(x0))

(
γ(x0, yi(x0)) + 2ε(x0, yi(x0))ai + δ(x0, yi(x0))a2i

)
.

We use these formulas to introduce analytic functions a and b defined on
C−pr−1

1 (∆) which is a n-fold covering of an open subset of the complex plane
(see Subsection 9.3.1). We set

a(X,Y ) = −α(X,Y )
β(X,Y )

,

b(X,Y ) = − 1
2β(X,Y )

(γ(X,Y ) + 2ε(X,Y )a+ δ(X,Y )a) ∈ C(X,Y ).

Let U be a (small) open neighborhood of x0 in C where all the ϕi(X) are
defined for i = 1 to n. Then denote by V = ∪Vi its inverse image by pr−1

1 (U)
in C − pr−1

1 (∆). We also consider the restrictions of a(X,Y ) and b(X,Y ) to
each Vi, and set bi(X) = b(X,ϕi(X)).

As P (X,ϕi(X)) = 0 on U for all i, and P is monic in Y , we can write
P (X,Y ) =

∏n
i=1(Y − ϕi(X)).

For each k = 1, . . . , s, the factor Pk in the factorization P (X,Y ) =∏s
k=1 Pk can be written

Pk(X,Y ) =
im∏

j=i1

(Y − ϕj(X)). (1)

The total degree of Pk is m so we can write:

Pk(X,Y ) = Y m + (q1(X))Y m−1 + q2(X)Y m−2 + · · ·+ qm(X) (2)

where qj(X) ∈ Q[X] and deg(qj(X)) ≤ j. In particular, deg(q1(X)) ≤ 1
so the coefficient of its degree two term is zero. From (1) and (2), we get∑im

j=i1
ϕj(X) = q1(X), thus
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im∑
j=i1

bj(X) = 0.

So we have found a necessary condition on each factor Pk of P . Our aim is to
prove that such a Zero-sum relation is also a sufficient condition to characterize
a factor of P . The next lemma is an intermediate result in that direction.

Lemma 9.3.23. If P has no factor of degree 1, then for almost all values of
x0, the numbers bi are all non-zero (for i = 1, . . . , n).

Proof. We consider the analytic function on U defined by P =
∏n

i=1 bi(X) =∏n
i=1 b(X,ϕi(X)) ∈ C(X,ϕ1(X), . . . , ϕn(X)).
P is a symmetric rational function of the ϕi(X). Thus by definition of the

ϕi(X), we deduce that P is a rational function of the coefficients of P as a
polynomial in Y . So P belongs to C(X).

If P �= 0 in C(X) then for almost all x0 in C, P(x0) �= 0. Thus bi(x0) =
b(x0, ϕi(x0)) �= 0 for all i, and we are done.

If P = 0 in C(X), we shall see that we get a contradiction.
As P(x) =

∏n
i=1 b(x, ϕi(x)) = 0 in V and b(x, ϕi(x)) are analytic functions

on U , there exists an index i0 such that b(x, ϕi0(x)) = 0 on U (because the
ring of analytic functions on U is an integral domain).

This implies ϕ′′
i0

(x) = 0 on U then ϕ(r)
i0

(x) = 0 on U for every r ≥ 2.
Thus ϕi0(x) = yi0 + ϕ′

i0
(x0)(x− x0) on U .

We perform the Euclidean division of P (X,Y ) by

F (X,Y ) = Y − yi0(x0)− ϕ′
i0(x0)(X − x0)

in C(X)[Y ]. Since F (X,Y ) is monic in Y , we get

P (X,Y ) = A(X,Y )F (X,Y ) +R(X),

with A(X,Y ) ∈ C[X,Y ] and R(X) ∈ C[X].
Therefore, for every x ∈ U as F (x, ϕi0(x)) = 0, we have R(x) = 0 then

R(X) = 0 in C[X]. This implies that P has a factor of degree 1, contrary to
hypothesis.

Now we can prove the theorem:

Theorem 9.3.24. Let P be an irreducible polynomial of degree n. Consider
fλ(X,Y, λ) = P (X + λY, Y ). Then for almost all specializations (x0, λ0) of
(x, λ) in C×Q, none of the sums

∑
i∈J bi, for J � {1, . . . , n}, vanishes.

Remark 9.3.25. In the previous statement, “almost all” means that we have
to avoid a finite number of x0 and a finite number of λ0.
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Proof. First we perform a change of coordinates, and we choose λ0 such that
the conclusion of the Affine Harris Theorem 9.3.20 is true.

We denote by fλ0(X,Y ) the polynomial P (X + λ0Y, Y ). Hereafter, the
numbers bi, yi(x0) and the rational function b are related to fλ0 . We set
m < n.

Now we want to prove that for almost all x0, we do not have
∑

i∈I bi = 0
with I � {1, . . . , n} and |I| = m. We consider the functions BI =

∑
i∈I bi(X),

and B =
∏

Em
BI where

Em = {{σ(1), . . . , σ(m)}|σ ∈ Sn}.
B is a rational function inX,ϕ1(X), . . . , ϕn(X), and is symmetric with respect
to these last n arguments. So as in Lemma 9.3.23, we have that B is a rational
function of X. We want to prove that B �= 0 in C(X0). For this, we suppose
that B = 0 in C(X0), and show that we get a contradiction. Choose x0 �∈ ∆ =
DiscY (fλ0(X,Y )) such that for i = 1, . . . n, bi(x0) �= 0 (∗) (this is possible by
Lemma 9.3.23). Then for every x in U (the neighborhood where all the ϕi are
defined),

β(x, ϕi(x)) =
∂f

∂Y
(x, ϕi(x)) �= 0 for i = 1, . . . , n.

Therefore b(x, ϕi(x)) is well defined and analytic on U , thus BI(x) is analytic
on U . As B = 0, there exists a set I0 such that BI0(x) = 0 on U . We can
suppose I0 = {1, 2, . . . ,m}, and we set J0 = {2, 3, . . . ,m− 1,m,m+ 1}.

By the Affine Harris Theorem 9.3.20, there exists a closed path γ such
that [γ] acts on {y1(x0), . . . , yn(x0)} as the transposition (1 m+ 1). That is
to say: if we denote by γ̃yi

the lifting of γ above yi, so γ̃yi
= (γ, δyi

) where γ
and δyi

are analytic (see Lemma 9.3.9) then⎧⎨⎩ δyi
(0) = yi for i = 1, . . . , n

δyi
(1) = yi if i �= 1 and i �= m+ 1

δyi
(1) = ym+1 and δym+1(1) = y1.

Now we set H(t) =
∑m

i=1 b(γ(t), δyi
(t)). This is an analytic function on

]0, 1[ such that H(0) = BI0(x0) and H(1) = BJ0(x0).
As H(t) = BI0(γ(t)) for t ∈ γ−1(U) and BI0 = 0 on U , we get H = 0

because H is analytic. Thus BI0(x0) = BJ0(x0). This implies b1 = bm+1. We
can do the same thing for all the other indices, so we have b1 = . . . = bn.

Finally the necessary condition
∑n

i=1 bi = 0 gives bi = 0 for i = 1, . . . , n,
and this leads to contradiction (see (∗)).

With the same method of proof, we get the following theorem in the re-
ducible case:

Theorem 9.3.26. Let P be a polynomial of degree n and let
Q(x, y, λ) = P (x+λy, y). Then for almost any specialization (x0, λ0) of (x, λ),
the sums

∑
i∈J bi, with J in {1, . . . , n}, vanishes if only if it corresponds to

the union of roots of a family of factors of P .

The factorization algorithm uses also another similar generic property of
the number bi: the number bi (defined in Section 9.3.2) are all different. See
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[Rup00].

Terms of higher degree in the expansion of ϕi

We have seen that after a generic change of coordinates, a vanishing sum of
a subset of the numbers bi (defined in Section 9.3.2) corresponds to a factor of
P . We could also show the same result on other terms in the series expansion
near a root yi: if we write

ϕi(x) = yi + ai(x− x0) + bi(x− x0)2 + ci(x− x0)3 + · · ·

a factor of P (generically) corresponds to a vanishing sum of the numbers
ci. This remains true for terms of higher order. This could be used to get a
stronger certification on the partition of {1, . . . , n}. However it would take
time to compute these higher degree terms and their sums, and the condition
on the numbers bi is strong enough to discover the relation.

The Algorithm

This algorithm was implemented. The implementation made by D. Rupprecht,
is written in C using the PARI library for multiprecision computation and
computation in extensions of Q. The algorithm takes as input 2 constants
prec1 and prec2. The first one is used to test if a number is equal to 0 (if its
absolute value is lower than 10−prec1 then the number is 0). The other one
prec2 is the number of digits for computations.
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Algorithm 9.3.27 The Galligo-Rupprecht algorithm

Input: P (X,Y ) a square-free polynomial in Q[X,Y ], irreducible in Q[X,Y ].

1. After a generic linear change of coordinates X ← x + λ0.y + x0, Y ← y
(with rational coefficients), we get a monic polynomial in y, denoted by
Q(x, y).

2. Compute numerically the roots y1, . . . , yn of Q(0, y) and the second order
coefficients bi defined above.

3. Look for a minimal partition I1, . . . , Im of {1, . . . , n} such that card (I1) =
· · · = card (Im) and BIk

=
∑

j∈Ik
bk = 0 for k = 1, . . . ,m. Denote by Rk

the polynomial Rk =
∏

j∈Ik
(y − yj). We have Q(0, y) = R1 · · ·Rm.

4. By the last theorem, the polynomials Rk correspond to the trace of the
factors of Q for x = 0. Performing Hensel liftings on these polynomials,
one obtains new polynomials Qk such that{

Q = Q1 · · ·Qm mod xn+1

Qk(0, y) = Rk(y) for k = 1, . . . ,m·
5. Performing the inverse change of coordinates, one obtains numerical poly-

nomials P̃1, . . . , P̃m which provide a candidate for an absolute factorization
of P .

6. The last step of the algorithm is to find an extension of Q and conjugate
polynomials P1, . . . , Pm where P̃k is a good approximation of Pk. Finally
one can test if P1 is a divisor of P .

Output: P1(X,Y ) ∈ Q[α][X,Y ], an absolute factor of P (X,Y ), and the mini-
mal polynomial q(t) of α over Q.

Zero-sums BI

This problem is the difficult part of the algorithm. We have a set of complex
numbers b1, · · · , bn and we are looking for vanishing sums of these numbers.
This combinatorial problem could be solved by an extensive search among all
the 2n sums. For n = 60, we would have to compute more than 1018 sums (or
keep in memory some of these sums). D. Rupprecht [Rup00] proposed several
improvements for detecting vanishing sums ; then the complexity that he got
for this step is O(2n/4). With this we can easily factorize polynomials up to
degree 80.

Zero-sums and the knapsack problem

We write the problem of the vanishing sums in the following way. Let v1 =
(1, 0, . . . , 0,)(b1),*(b1)), . . . , vi = (0, . . . , 0, 1, 0, . . . , 0,)(bi),*(bi)), . . . , vn =
(0, . . . , 0, 1,)(bn),*(bn)) be n vectors of Rn+2 ()(z) is the real part of the
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complex number z and *(z) is the imaginary part). We consider the lattice
L generated by these vectors. A zero-sum

∑
i∈I bi = 0 corresponds to the

“small”vector of L:∑
i∈I

vi = (λ1, . . . , λn,
∑
i∈I

)(bi),
∑
i∈I

*(bi)) = (λ1, . . . , λn, 0, 0)

where λi = 1 if i belongs to I and λi = 0 otherwise. We call these vectors
zero-sum vectors, and the minimal zero-sum vector the vector corresponding
to the minimal zero-sum relation (i.e. there is no subset J � I such that∑

j∈J bj = 0).
Thus, instead of computing all the 2n sums, we can try to get a small

vector of L in order to obtain a zero-sum vector. Now we remark that the
matrix with rows corresponding to minimal zero-sums vectors is in a reduced
row echelon form. Indeed its n first columns contain, as entries, one 1 and
otherwise zero, moreover the last columns are identically zero.

Therefore we get the following method to obtain the zero-sum relations.
Firstly, we compute a new basis {w1, . . . , wn} of L with the LLL algorithm.
Secondly, we take all the wi with small norm. More precisely, we set:

L′ = {wi|‖wi‖ < B}

whereB is a small real number. Therefore we compute the reduced row echelon
form of the matrix whose ith row is the ith vector of L′. This gives, if B is not
too large, a zero-sum vector.

This method is very close to the algorithm of van Hoeij which factorizes
a polynomial f(X) over Z[X] [vH02] and has been developed by Chèze in
[Chè04]. One of the ideas of van Hoeij is to use 0-1 vectors, instead of using a
vector of coefficients of a divisor of f which can have much larger coordinates.

9.3.3 Contribution of other authors

Monodromy and homotopy methods

The first use of a monodromy method to provide an algorithm for computing
an absolute factorization was made by Bajaj et al. [BCGW93] in order to
prove a complexity result. Their algorithm was never implemented because
it amounts to considering all the loops around the points of the discriminant
locus ∆.

A.J. Sommese, J. Verschelde and C.W. Wampler developed a geometric
method, in a series of articles, to separate the components of an algebraic vari-
ety. Specialized to the case of a plane curve it provides a geometric algorithm
for computing an absolute factorization. It is based on numerical computations
and relies on so-called continuation or homotopy methods. This amounts to
following, in C or C2, integral curves of some differential equation and avoiding
singularities.
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As in the last section, suppose the input is a reduced plane curve C given
by a square-free polynomial P (x, y) of (total) degree n and monic in y. They
consider a generic smooth section, say for x = 0, which consists of n simple
points. So the question is to find the partition of this fiber by the irreducible
components of C.

The curve C is a ramified covering of degree n of C. Let ∆ be the discrim-
inant locus of the projection φ. We supposed that 0 is not in ∆. As we have
seen in a previous section, for any loop γ in C −∆, (starting and ending in
0), following the roots of P (γ(t), y) over such γ, one gets a permutation of the
fiber φ−1(x0).

Sommese, Verschelde and Wampler made the following important obser-
vation. They considered a few random loops γ in C−∆ (starting and ending
at 0), and noted that in general they generate enough permutations of the
fiber φ−1(x0) to recover the desired partition. So, in practice, they did not
need to follow all the loops as in [BCGW93].

It is not at all an easy task to follow precisely such a path γ and the
n paths over it to get the corresponding permutation of the fiber. Indeed,
if the chosen time step is too large near a value x0, then the computation
can cause a confusion between the various roots of P (x0, y), and the obtained
permutation could be false. Such scaling problems are really tough. They later
improved their algorithm by using a criterion based on our Zero-sum method;
see Chapter 8 in this book.

They demonstrate on a large problem, coming from an application in
robotics, that their strategy and implementation are efficient. Moreover, in
[CGKW02], R.M. Corless, A. Galligo, I.S. Kotsireas, and S.M. Watt proposed
a combination of a homotopy method with the other two approaches, in order
to diminish the potential risk of errors.

Zero-sum relations and the Japanese school

As above, the input is a square-free polynomial P (x, y) of (total) degree n
and monic in y. Consider the fiber over 0 and the corresponding factorization
into n linear factors in C[[x]][y]:

P =
∏

(y − ϕi(x)).

In [SSKS91], the authors became the first to develop an algorithm based
on Zero-sum relation, a concept that they introduced. Sasaki and his cowork-
ers also proposed an algorithm which proceeds as follows. They consider the
(integer) k powers of the ϕi(x)k of the ϕi(x). Their sums are called Newton
sums and are symmetric functions of the coefficients of P , hence are polyno-
mials in x of bounded degrees. So if we denote by |f |l the sum of terms of
degree ≥ l of f then we have, for some well chosen d ≥ n+ 1:

|ϕ1(x)k + . . .+ ϕn(x)k|d = 0.
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Conversely, as this is true for any polynomial factor of P , by searching for
the same kind of zero-sum relations among a subset of the n linear factor of
P on the ring of power series, we can find a family ϕi1(x), . . . , ϕim

(x) such
that (y − ϕi1(x)) · · · (y − ϕim

(x)) is a polynomial factor of P .
Each zero-sum gives rise to many relations on the coefficients of the n series

ϕi(x). The first coefficients can be computed within some approximation,
Sasaki and his coworkers derived a method using linear algebra for recognizing
the indices i of a factor. The Japanese school has been successful in inventing
original algorithms for that purpose. The algorithms of Sasaki et al. proceed by
filling a matrix with numerical coefficients coming from k-powers of the series.
Then they look for elements in the kernel of that matrix whose coefficients
are only zero or one. They were able to provide fine error analysis for their
method.

Remark 9.3.28. The above analysis has been recently completed in a work
of A. Bostan, G. Lecerf, B. Salvy, E. Schost and B. Wiebelt presented at
ISSAC’04 (see [BLS+04]). In this work, they use logarithmic derivatives (as
in Gao’s algorithm), and zero-sum relations (as in Sasaki’s algorithm). In the
special case of absolute factorization, their algorithm studies the subspace Lσ

of Cn × C[X,Y ]n−1 given by:

Lσ = {(l1, . . . , ln, Q)/
n∑

i=1

li
P (X,Y )

(Y − ϕ(X))
= Q+O(Xσ)}.

The idea here is, as in van Hoeij’s algorithm ([vH02]), to find 0-1 vectors
(e(i)1 , . . . , e

(i)
n ), such that Pi =

∏n
k=1(Y − ϕ(X))e

(i)
k . Since we have

P ′
i

Pi
P =

n∑
k=1

e
(i)
k

(Y − ϕk(X))′

(Y − ϕk(X))
P

(where P ′
i denotes the first derivative of Pi with respect to Y ), this leads

to consider Lσ. We denote by π(Lσ) the canonical projection of Lσ to Cn.
In their paper, they prove that if σ ≥ 3n − 2, then with π(Lσ) we can get
the absolute factors of P , and furthermore that this method is equivalent to
Sasaki’s. Finally, this method only uses Hensel’s lifting and linear algebra in
order to get 0-1 vectors (e(i)1 , . . . , e

(i)
n ). This method works in general for fields

of characteristic zero or at least n(n− 1) + 1.

9.4 Lecture 4: Reconstruction of the exact factors

Thanks to the results of the last section, we know how to compute an approx-
imate absolute factorization. Thus here we are in the following situation:

We have an irreducible polynomial P ∈ Q[X,Y ]. Let us denote by P =
P1 · · ·Ps its absolute factorization. Let Q[α] be the smallest extension of Q
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which contains all the coefficients of the factor P1. Let P ≈ P̃1 · · · P̃s be an
approximate absolute factorization of P . By this we mean that P̃i ∈ C[X,Y ]
and the coefficients of P̃i are numerical approximations of the coefficients of
Pi with a given precision ε. That is to say ‖Pi − P̃i‖∞ < ε, with respect to
the norm ‖∑i,j ai,jX

iY j‖∞ = maxi,j |ai,j |.
A natural question is: Can we get an exact factorization from the approx-

imate one? If it is possible, how can we find the minimal polynomial of α over
Q, and how can we express the coefficients of P1 in Q[α]?

We will answer positively if ε is small enough. As the coefficients of P̃1 are
given with an error ε, in order to find the minimal polynomial fα of α, (fα ∈
Q[T ]), we should have to recognize its coefficients which are rational numbers
from imprecise floating point numbers. David Rupprecht gave a preliminary
study of this problem in [Rup00]. Here we present a complete and satisfactory
answer. We closely follow the exposition given in [CG03].

9.4.1 Notations and elementary results

In all this lecture we have: P ∈ Q[X,Y ] and P = P1 · · ·Ps in C[X,Y ].
Pi are irreducible factors of P in C[X,Y ]. K is the smallest field which

contains all the coefficients of P1 ; this is a finite extension of Q. By the
primitive element theorem we can write K = Q[α]. Let x ∈ K, we denote by
fx the minimal polynomial of x over Q. OK is the ring of algebraic integers
in K: if x ∈ OK then fx(T ) ∈ Z[T ] and is monic.

Let x �= 0 be an element of K. We denote by mx the homomorphism of
multiplication by x in K, by Pchar(x)(T ) the characteristic polynomial of mx

and by TrK/Q(x) the trace of mx.
We recall that Pchar(x)(T ) = fk

x where k = [K : Q(x)] is the degree of K
over Q(x).

Let [K : Q] = s and (x1, . . . , xs) be an element of Ks. We define the
discriminant discK/Q(x1, . . . , xs) to be the determinant of the matrix whose
(i, j)-coefficient is TrK/Q(xixj) (for i, j = 1, . . . , s).

For the special case (1, α, α2, . . . , αs−1), where α is a primitive element of
K over Q, we set

discK/Q(α) = discK/Q(1, α, . . . , αs−1)

and call this number the discriminant of α. If fα(T ) = Tn+an−1T
n−1+. . .+a0

then we denote by Disc(fα) the number satisfying

Res(fα, f ′α) = (−1)n(n−1)/2Disc(fα)

where Res is the resultant and f ′α is the derivative of fα. When α is a primitive
element of K, we have

discK/Q(α) = Disc(fα).
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9.4.2 The strategy

Our aim is to compute the minimal polynomial of a primitive element α of K
and then the coefficients of P1 in K.

Our strategy is based on the following observations.
Let Pi(X,Y ) =

∑
u

∑
v a

(u,v)
i XuY v. Then we have (by the fundamental

lemma):

Pchar(a
(u,v)
1 )(T ) =

s∏
i=1

(T − a(u,v)
i ) = T s + cs−1T

s−1 + · · ·+ c0.

Furthermore if gcd(Pchar(a
(u,v)
1 ), ∂

∂T Pchar(a
(u,v)
1 )) = 1, then a(u,v)

1 is a
primitive element of K and consequently Pchar(a

(u,v)
1 )(T ) = f

a
(u,v)
1

(T ). So it
is easy to obtain theoretically the minimal polynomial of a coefficient which
is a primitive element of K. But in our situation we do not have exact data
a
(u,v)
1 ,. . . , a(u,v)

s ; we only have approximations a(u,v)
1 + ε1,. . . , a

(u,v)
s + εs and

a bound ε on the errors: |εi| < ε. Expanding
∏s

i=1(T − a(u,v)
i − εi) we get

T s + cs−1(ε)T s−1 + · · ·+ c0(ε),
and we have to recognize ci from ci(ε).

However, since we do not have a bound on the denominators of the rational
number ci, this might be hard.

In order to avoid this difficulty, we show that we can restrict our study
to a polynomial P (X,Y ) ∈ Z[X,Y ]. Then we prove that the coefficients of
Pi are algebraic integers over Z. Therefore, the coefficients of the minimal
polynomial will be integers, so it is easy to recognize them, and we can certify
the result.

In Section 9.4.6 we propose a method to obtain the expression of the
coefficients of P1 in K. We will use the fundamental lemma and adapted
representations of these algebraic integers over Z. The algorithm has been
implemented. The last subsection provides illustrative examples.

9.4.3 Reduction to Z[X, Y ]

Let Q(X,Y ) =
∑n

i=0

∑i
j=0 qj,n−iX

jY n−i be an irreducible and monic poly-
nomial in Q[X,Y ] of total degree n. Let d be a common denominator of the
coefficients of Q ; that is to say dqj,n−i ∈ Z. Then dnQ is irreducible in Q[X,Y ]
and dnQ(X,Y ) =

∑n
i=0

∑i
j=0 d

iqj,n−iX
j(dY )n−i. Setting Z = dY we define

P (X,Z) ∈ Z[X,Z] by

dnQ(X,Y ) = dnQ

(
X,
Z

d

)
= Zn + dq1,n−1XZ

n−1 + · · ·+ dnq0,0 = P (X,Z).

Since dnQ(X,Y ) is irreducible in Q[X,Y ], dnQ(X, Z
d ) is irreducible in Q[X,Z].

Hence P (X,Z) is monic in Z, irreducible in Q[X,Z] and belongs to Z[X,Z].
We state two lemmas whose proofs are obvious.
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Lemma 9.4.1. Let Q(X,Y ) be a polynomial satisfying the hypothesis of the
fundamental lemma and d a common denominator of the coefficients of Q.
Let Q(X,Y ) = Q1(X,Y ) · · ·Qs(X,Y ) be an absolute factorization. We set:

P (X,Y ) = dnQ

(
X,
Y

d

)
= dmQ1

(
X,
Y

d

)
· · · dmQs

(
X,
Y

d

)
.

Then P (X,Y ) ∈ Z[X,Y ] is irreducible in Q[X,Y ] and monic relative to Y ,
and Pi(X,Y ) = dmQi

(
X, Y

d

) ∈ C[X,Y ] are the irreducible factors of P in
C[X,Y ].

Lemma 9.4.2. Let K′ be the smallest field generated by the coefficients of Q1

and K the smallest field generated by the coefficients of P1. Then K′ = K.

So for now on, we can suppose that our input polynomial belongs to
Z[X,Y ].

9.4.4 The coefficients of Pi are algebraic integers over Z

Here we first prove a lemma, then we prove the following theorem.

Theorem 9.4.3. Let P ∈ Z[X,Y ] be monic in Y and irreducible in Q[X,Y ].
Then it admits a factorization P1 · · ·Ps in C[X,Y ] which consists of polyno-
mials whose coefficients are algebraic integers over Z.

Lemma 9.4.4. Let α be an algebraic number of degree s over Q and let
p(X) ∈ Q[α][X] be an integer over Z[X]. Then all the coefficients of p(X)
are integers over Z.

Proof. We denote by l the degree of p(X) relative to X. We remark that
Q(X)[α] is an extension of Q(X) of degree s. Moreover,

(∗) all the conjugates of p(X) belong to C[X] and have degree l.
As Z[X] is an integrally closed ring we deduce (see e.g. [Sam67] p. 45) that
(∗∗) the coefficients of the characteristic polynomial Pchar(p(X)) of p(X)

over Q(X) are in Z[X].
Let k = [Q(X)[α] : Q(X)[p(X)]]. We denote the conjugates of p(X) over

Q(X) by qi where i = 1, . . . ,
s

k
and q1 = p(X). Then

Pchar(p(X))(Z) =
s/k∏
i=1

(Z − qi)k

is the characteristic polynomial of p(X).
Now we prove by induction that all the coefficients of p(X) are integers

over Z. We start by the leading term of p(X). We have:
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Pchar(p(X))(Z) = Zs + (
∑

i

qi)Zs−1 + · · ·+
∏

i

qi

= Zs + cs−1(X)Zs−1 + · · ·+ c0(X)

with ci(X) ∈ Z[X] by (∗∗), and deg(cs−i(X)) ≤ il, because
deg(qi) = deg(p(X)) = l by (∗). Thus deg(cs−i(X)p(X)s−i) = deg(cs−i(X))+
(s − i)deg(p(X)) ≤ ls. As Pchar(p(X))(p(X)) = 0 in C[X], considering
the term of degree ls, we get: λs

l +
∑

i∈I lc(cs−i)λs−i
l = 0, where lc(ci)

is the leading coefficient of ci(X), λl = lc(p(X)) and I is the set I =
{i/deg(cs−i(X)p(X)s−i) = ls}.

The fact that all lc(ci) are integers implies that λl is an algebraic integer
over Z and therefore λlX

l is an algebraic integer over Z[X].
To prove the other steps of the induction, we remark that p(X) − λlX

l

belongs to Q[α][X] and is an integer over Z[X], then we can repeat the same
argument with p(X)− λlX

l instead of p(X).

Now we can prove the theorem.

Proof. As in the previous section, Q[α] is the extension field generated by all
the coefficients of P1, and the degree of α over Q is s. By Steinitz’s theorem,
there exists an algebraically closed field K such that K ⊃ Q(X) ⊃ Z[X] and

P (X,Y ) = Y n + an−1(X)Y n−1 + · · ·+ a0(X) =
n∏

i=1

(Y − ri(X))

where ri(X) ∈ K and ri(x) is an algebraic integer over Z[X]. To be more
precise in the description of ri(X), there is an integer p such that ri(X) ∈
C[[X1/p]]; see, e.g. [Eis95, p.300], Corollary 13.16.

Since P1(X,Y ) is a factor of P (X,Y ), then we have

P1(X,Y ) =
m∏

i=1

(Y − ri(X)) = Y m + pm−1(X)Y m−1 + · · ·+ p0(X)

where the pi(X) are in Q[α][X] and are integers over Z[X] because they are
polynomials in ri(X). Then we can apply the previous lemma to each pi(X).

9.4.5 Finding a primitive element

The coefficients of P1 generate an extension K of Q. We aim to get a primitive
element of K which is an algebraic integer over Z.

First we check if there is a primitive element among the coefficients of
P1. If this is not the case, we present a method which constructs a primitive
element.
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Recognition

We let Pi(X,Y ) =
∑

u

∑
v

a
(u,v)
i XuY v. The fundamental lemma implies that

Pchar(a
(u,v)
1 )(T ) =

∏s
i=1(T − a(u,v)

i ). Furthermore, a(u,v)
i �= a(u,v)

j for all i �= j
if and only if a(u,v)

1 is a primitive element of K. Thus,

a
(u,v)
1 is a primitive element of K

if and only if

gcd(Pchar(a
(u,v)
1 ),

∂

∂T
Pchar(a

(u,v)
1 )) = 1.

We derived the following characterization:

Lemma 9.4.5. With the previous notations, we have:

gcd(Pchar(a
(u,v)
1 ),

∂

∂T
Pchar(a

(u,v)
1 )) = 1

if and only if
a
(u,v)
1 is a primitive element of K.

In this case Pchar(a
(u,v)
1 ) is the minimal polynomial f

a
(u,v)
1

of a(u,v)
1 over Q.

Moreover a(u,v)
1 is an algebraic integer over Z.

This lemma allows us to recognize effectively a primitive element.

Construction

If all the coefficients of P1 are not primitive, we construct with high probability
a primitive element, which is integer over Z. By Lemma 9.4.5 we can check if
this constructed element is primitive.

We denote by σi (1 ≤ i ≤ s) the s independent Q-homomorphisms from
K to C and by a(u,v)

1 the coefficients of P1. We recall that they generate K.
For any pair (i, j) such that i �= j, there exists a coefficient a(u,v)

1 of P1

such that σi(a
(u,v)
1 ) �= σj(a

(u,v)
1 ). Thus the polynomial
H(λ(1,0), . . . , λ(2,n−1))

=
∏
i<j

((σi−σj)(a
(0,0)
1 )+λ(1,0)(σi−σj)(a

(1,0)
1 )+· · ·+λ(2,n−1)(σi−σj)(a

(2,n−1)
1 ))

is a nonzero polynomial in C[λ(i,j)]. So we can find (λ(1,0), . . . , λ(2,n−1)) with
λ(i,j) ∈ Z such that for ∀i �= j :

σi(a
(0,0)
1 + λ(1,0)a

(1,0)
1 + . . .+ λ(2,n−1)a

(2,n−1)
1 )

differs from
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σj(a
(0,0)
1 + λ(1,0)a

(1,0)
1 + . . .+ λ(2,n−1)a

(2,n−1)
1 ).

This means that a(0,0)
1 + λ(1,0)a

(1,0)
1 + . . . + λ(2,n−1)a

(2,n−1)
1 is a primitive

element. We apply Lemma 9.2.15 (see exercise 9.2.14) to the polynomial

H(λ(1,0), . . . , λ(2,n−1)) ∈ C[λ(i,j)]

and get the following proposition:

Proposition 9.4.6. Let P be a polynomial in Z[X,Y ], which is monic and
irreducible in Q[X,Y ], and P = P1 · · ·Ps its irreducible decomposition in
C[X,Y ]. Let a(u,v)

1 denote the coefficients of P1, and K the extension of Q
they generate.

Let S be a subset of Z. Then we have the following estimation of probability:
P ( a(0,0)

1 +s(1,0)a
(1,0)
1 + · · ·+s(2,n−1)a

(2,n−1)
1 non primitive | si ∈ S, 2 ≤ i ≤ r)

≤
(

s
2

)
|S| .

The a(u,v)
1 are integers over Z, so a(0,0)

1 + s(1,0)a
(1,0)
1 + · · ·+ s(2,n−1)a

(2,n−1)
1

is an algebraic integer over Z and the probability that this element is non-

primitive is less than (s
2)
|S| . So we can make the probability as small as we want.

Moreover as it is possible to check the result with Lemma 9.4.5 ; this provides
a method (efficient) and easy to implement.

Choice of the precision

In practice we can only compute an approximation of a minimal polynomial
fα(T ), with fα+ε(T ) =

∏s
k=1(T − (αk + εk)).

We have perturbed roots and we want to know if the perturbation on the
coefficients is smaller than 0.5 in order to recognize the polynomial fα from
fα+ε. The following map describes the situation:

ϕ : Cs −→ Cs⎛⎜⎜⎜⎜⎜⎜⎝

α1

...
αk

...
αs

⎞⎟⎟⎟⎟⎟⎟⎠ �−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

S1(α1, . . . , αs) = α1 + α2 + · · ·+ αs

...
Sk(α1, . . . , αs) =

∑
1≤i1<...<ik≤s

αi1 · · ·αik

...
Ss(α1, . . . , αs) = α1 × · · · × αs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We define ‖.‖∞ by ‖(α1, . . . , αs)‖∞ = maxi=1,...,s |αi|. We look for a condition
on ε which implies ‖ϕ(α + ε) − ϕ(α)‖∞ < 0.5. ϕ is a polynomial map such
that the degree of each component is less than or equal to s and is of degree
1 in each variable. With the notation
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s∑

i=1

εi
∂ϕ

∂αi
(α)

][k]

=
∑

i1+···+is=k
ij∈{0,1}

k!
i1! . . . is!

εi11 . . . ε
is
s

∂kϕ

∂αi1
1 . . . ∂α

is
s

(α),

the Taylor expansion of ϕ is

ϕ(α+ ε)− ϕ(α) =

[
s∑

i=1

εi
∂ϕ

∂αi
(α)

]
+

1
2!

[
s∑

i=1

εi
∂ϕ

∂αi
(α)

][2]

+ · · ·

+
1
s!

[
s∑

i=1

εi
∂ϕ

∂αi
(α)

][s]

.

We introduce the constants ε and M such that

• |αi| ≤M for all 1 ≤ i ≤ s
• |εi| < ε < 1.

Lemma 9.4.7. With the previous notation, we have

‖ϕ(α+ ε)− ϕ(α)‖∞ ≤
(

s∑
k=1

(
s

k

)
k! max(1, max

j=k+1,...,s
(
(
s− k
j − k

)
M j−k))

)
ε.

Proof. The total degree of the polynomial Sj is j, so we deduce

• If k > j then
∂kSj

∂αi1
1 . . . ∂α

is
s

(α) = 0.

• If k = j then
∂kSj

∂αi1
1 . . . ∂α

is
s

(α) = 1.

Moreover, we easily get the following upper bound, for k < j,∣∣∣∣ ∂kSj

∂αi1
1 . . . ∂α

is
s

(α)
∣∣∣∣ ≤ (

s− k
j − k

)
M j−k.

As a result we obtain∥∥∥∥ ∂kϕ

∂αi1
1 . . . ∂α

is
s

(α)
∥∥∥∥
∞
≤ max(1, max

j=k+1,...,s
(
(
s− k
j − k

)
M j−k)).

It follows that∥∥∥∥∥∥
[

s∑
i=1

εi
∂ϕ

∂αi
(α)

][k]
∥∥∥∥∥∥
∞

≤
∑

i1+···+is=k
ij∈{0,1}

k!
i1! . . . is!

|ε1|i1 . . . |εs|is

∥∥∥∥ ∂kϕ

∂αi1
1 . . . ∂α

is
s

(α)
∥∥∥∥
∞

then
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[

s∑
i=1

εi
∂ϕ

∂αi
(α)

][k]
∥∥∥∥∥∥
∞

≤
(
s

k

)
k!εk max(1, max

j=k+1,...,s
(
(
s− k
j − k

)
M j−k)).

Since ε < 1, we deduce the required result.

Corollary 9.4.8. With the previous notations, if the error ε on the roots is
bounded by

(∗) ε ≤ 0.5

(
s∑

k=1

(
s

k

)
k! max(1, max

j=k+1,...,s
(
(
s− k
j − k

)
M j−k))

)−1

then the error on the coefficient of fα+ε is smaller than 0.5.

So we have proven the following proposition.

Proposition 9.4.9. We denote by Digits1 the number of significant digits
used for the computation of the minimal polynomial. If Digits1 ≥

E

( ∣∣∣∣log10

(
0.5

(∑s
k=1

(
s
k

)
k! max(1,maxj=k+1,...,s(

(
s−k
j−k

)
M j−k))

)−1
)∣∣∣∣

+ log10(maxk=1,...,s(
(

s
k

)
Mk))

)
then we can recognize all the coefficients of fα(T ) from the coefficients of
fα+ε(T ).

To give an idea of the size of Digits1, we provide the following table.

s M Digits1
2 105 16
2 1010 31
2 1020 61
5 105 47
5 1010 91
5 1020 182

s M Digits1
10 105 97
10 1010 192
10 1020 382
15 105 147
15 1010 292
15 1020 582

9.4.6 A method to obtain the exact factorization

We start with a polynomial fα of a primitive element α of K, obtained as
explained in the last section. We will use another canonical representation of
the coefficients of P1.
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f ′
α(α) is a common denominator

We recall some classical results of algebraic number theory.

Definition 9.4.10. Let K be a finite extension of Q. Let M be a subset of K.
We set M∗ = {x ∈ K | ∀y ∈M,TrK/Q(xy) ∈ Z} and call it the complementary
set of M .

Proposition 9.4.11. (see [Rib01, page 242]) Let K be a finite extension of
Q, α ∈ OK a primitive element of K and fα its minimal polynomial. Then we

have OK ⊂ Z[α]∗ =
1

f ′α(α)
Z[α]. This implies that all a ∈ OK can be written

in the following way:
a =

z0
f ′α(α)

+
z1
f ′α(α)

α+ · · ·+ zs−1

f ′α(α)
αs−1 with zi ∈ Z.

Recognition of the coefficients of P1

Having the denominator f ′α(α), we only have to recognize the numerators. Let
a
(u,v)
1 be a coefficient of P1, so a(u,v)

1 belongs to OK. We have
a
(u,v)
1 =

z0
f ′α(α)

+
z1
f ′α(α)

α+ · · ·+ zs−1

f ′α(α)
αs−1.

Applying the Q-homomorphism σi, we get
a
(u,v)
i =

z0
f ′α(σi(α))

+
z1

f ′α((σi(α))
σi(α) + · · ·+ zs−1

f ′α(σi(α))
σi(α)s−1, then

(�)

⎛⎜⎜⎜⎝
1 σ1(α) σ1(α)2 · · · σ1(α)s−1

1 σ2(α) σ2(α)2 · · · σ2(α)s−1

...
...

...
...

...
1 σs(α) σs(α)2 · · · σs(α)s−1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
z0
z1
...
zs−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
f ′α(σ1(α))a(u,v)

1

f ′α(σ2(α))a(u,v)
2

...
f ′α(σs(α))a(u,v)

s

⎞⎟⎟⎟⎟⎠ .

We remark that in practice we do not have a(u,v)
i but a(u,v)

i +νi and we do not
have σi(α) but σi(α) + εi. So we need to solve the Vandermonde system and
take the nearest integer of each component of the solution. Now we explain
how to certify the result.

Choice of the precision

First we set some notation: Mm,n(C) is the ring of matrices with m rows
and n columns, with coefficients in C. If M = (mi,j)s−1

i,j=0 is a matrix of

Ms,s(C), let ‖M‖∞ = max
i=0,...,s−1

s−1∑
j=0

|mi,j |. If v is a vector of Cs (with i-th

coordinate equal to vi), then ‖v‖∞ = max
i=0,...,s−1

|vi|. With this notation we

have ‖Mv‖∞ ≤ ‖M‖∞‖v‖∞. Now we set: αi = σi(α), εi is the error on αi,
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νi is the error on a(u,v)
i , ei is the error on zi, ε is a real number such that{∀1 ≤ i ≤ s |εi| < ε < 1

∀1 ≤ i ≤ s |νi| < ε < 1 ,

M is a real number such that: max
i,u,v

|a(u,v)
i | ≤M ,

M(α) =

⎛⎜⎜⎜⎝
1 α1 α

2
1 · · · αs−1

1

1 α2 α
2
2 · · · αs−1

2
...

...
...

...
...

1 αs α
2
s · · · αs−1

s

⎞⎟⎟⎟⎠
−1

⎛⎜⎜⎜⎜⎜⎜⎝

f ′α(α1) . . . 0 . . . 0
...

. . .
...

0 . . . f ′α(αk) . . . 0
...

...
. . .

...
0 . . . 0 . . . f ′α(αs)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

z =

⎛⎜⎝ z0
...
zs−1

⎞⎟⎠ , a(u,v) =

⎛⎜⎜⎝
a
(u,v)
1
...

a
(u,v)
s

⎞⎟⎟⎠ , e =

⎛⎜⎝ e1...
es

⎞⎟⎠ , ε =

⎛⎜⎝ ε0
...
εs−1

⎞⎟⎠ , ν =

⎛⎜⎝ ν0
...

νs−1

⎞⎟⎠ .
Then we have the equality z + e =M(α+ ε)(a(u,v) + ν).

Now, we are going to give an expression for the coefficients of M(α) as a
function of αi. We will deduce that M(α + ε) = M(α) + εN , where N is a
matrix with bounded coefficients and hence get the bound

‖e‖∞ ≤ (‖M(α)‖∞ + ‖N‖∞(1 +M)) ε.

Expression of the coefficients of M(α) and M(α+ ε)

Lemma 9.4.12. Let M(α) = (mi,j(α))s−1
i,j=0 then we have:

mi,j(α) = (−1)s−i−1Ss−i−1(α1, . . . , αj , αj+2, . . . , αs).

Proof. We denote by V (α)−1 = (wi,j(α))s−1
i,j=0 the inverse of the Vandermonde

matrix.

The value of the polynomial lk(x) =
s−1∑
j=0

wj,kx
j is 1 when x = αk+1 and it

is 0 when x ∈ {α1, . . . , αs} \ {αk+1}. Hence lk(x) is the Legendre polynomial
and we get

lk(x) =
s∏

i=1
i�=k+1

(
x− αi

αk+1 − αi

)
=

s∏
i=1

i�=k+1

(x− αi)× 1
f ′α(αk+1)

.

Therefore wj,k(α) =
(−1)s−1−jSs−j−1(α1, . . . , αk, αk+2, . . . , αs)

f ′α(αk+1)
where Sk is

the symmetric polynomial (see Section 9.4.5), and we set S0 = 1. The defini-
tion of M(α) gives mi,j(α) = wi,j(α)f ′α(αj+1). Thus the claim is true.
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Corollary 9.4.13. There exists a matrix N ∈Ms,s(C) such that

M(α+ ε) =M(α) + εN

with ‖N‖∞ ≤ s
(

s−1∑
k=1

(
s− 1
k

)
k! max(1, max

j=k+1,...,s−1
(
(
s− 1− k
j − k

)
M j−k))

)
.

Proof. Apply Lemma 9.4.7.

Upper bound for ‖e‖∞
In the last paragraph we showed that M(α + ε) = M(α) + εN . So, we

deduce the following.

Lemma 9.4.14. With the previous notations, we have

‖e‖∞ ≤ (‖M(α)‖∞ + ‖N‖∞(1 +M))ε.

Proof. The equality z + e = M(α + ε)(a + ν) becomes z + e = (M(α) +
εN)(a + ν). Then, e =M(α)ν + εNa + εNν. We deduce that:
‖e‖∞ ≤ ‖M(α)‖∞ε+‖N‖∞ε2 +‖Na‖∞ε ≤ (‖M(α)‖∞+‖N‖∞+‖N‖∞M)ε.

Conclusion
The results of the previous parts lead to the following.

Proposition 9.4.15. If the error ε is such that

ε ≤ 0.5
(

max
i=0,...,s−1

(s
(
s− 1
s− i− 1

)
Ms−i−1) +

s

(
s−1∑
k=1

(
s− 1
k

)
k! max(1, max

j=k+1,...,s−1
(
(
s− 1− k
j − k

)
M j−k))

)
(1 +M)

)−1

then, with the system (�) (see Section 9.4.6), we can recognize the exact coef-
ficients of P1.

Proof. Lemma 9.4.12 gives
|mi,j(α)| ≤ Ss−i−1(|α1|, . . . , |αj |, |αj+2|, . . . , |αs|).

So |mi,j(α)| ≤
∑

1≤k1<..<ks−i−1≤s−1

Ms−i−1 ≤
(
s− 1
s− i− 1

)
Ms−i−1. It fol-

lows that

s−1∑
j=0

|mi,j(α)| ≤
s−1∑
j=0

(
s− 1
s− i− 1

)
Ms−i−1 = s

(
s− 1
s− i− 1

)
Ms−i−1.

Thus ‖M(α)‖∞ ≤ max
i=0,...,s−1

(s
(
s− 1
s− i− 1

)
Ms−i−1). Together with Corol-

lary 9.4.13 this implies
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‖e‖∞ ≤
(

max
i=0,...,s−1

(s
(
s− 1
s− i− 1

)
Ms−i−1)

+s

(
s−1∑
k=1

(
s− 1
k

)
k! max(1, max

j=k+1,...,s−1
(
(
s− 1− k
j − k

)
M j−k))

)
(1 +M)

)
ε.

So we get the stated bound.

Proposition 9.4.16. We denote by Digits2 the number of significant digits
used for the step of recognition of the exact coefficients of P1. If

Digits2 ≥ E
( ∣∣∣∣log10

(
0.5

(
max

i=0,...,s−1
(sCs−i−1

s−1 Ms−i−1)

+s

(
s−1∑
k=1

Ck
s−1k! max(1, max

j=k+1,...,s−1
(Cj−k

s−1−kM
j−k))

)
(1 +M)

)−1
⎞⎠∣∣∣∣∣∣

+ log10

(
max

i=0,...,s−1
(sCs−i−1

s−1 Ms−i−1)M
))

then we can recognize the coefficients of P1 from the solution of the system
(�).

In order to give an idea of the size of Digits2 we provide the following
tables.

s M Digits2

2 105 16
2 1010 31
2 1020 61
5 105 48
5 1010 93
5 1020 183

s M Digits2
10 105 98
10 1010 193
10 1020 383
15 105 149
15 1010 294
15 1020 584

9.4.7 Conversion

Let β ∈ OK. We have the following two representations:

β =
s−1∑
j=0

zj
f ′α(α)

αj =
s−1∑
i=0

qiα
i where zj ∈ Z and qi ∈ Q.

Let B(α) be the inverse of f ′α(α), and set αjB(α) =
s−1∑
i=0

bi,jα
i where

bi,j ∈ Q. It can be easily computed (once for all coefficients of P1).

Lemma 9.4.17. With the previous notations and with
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q =

⎛⎜⎝ q0
...
qs−1

⎞⎟⎠ , z =

⎛⎜⎝ z0
...
zs−1

⎞⎟⎠ , and MB = (bi,j)s−1
i,j=0 ∈ Ms,s(Q), we

have q = MB(z).

9.4.8 The algorithm

Algorithm 9.4.18 The Chèze-Galligo algorithm

Input: P ∈ Z[X,Y ] irreducible in Q[X,Y ], monic in Y .

1. Compute an approximate absolute factorization of P , with a number of
significant digits = Digits.
Compute Digits1 and Digits2. If max(Digits1, Digits2) ≥ Digits then
go to step 1 with Digits = max(Digits1, Digits2). Else go to step 2.

2. Recognize all the primitive coefficients of P1 and their minimal polyno-
mial. [If no coefficients are primitives then construct a primitive element.]
Choose a primitive element. We denote fα its minimal polynomial.

3. Recognize the exact coefficients of P1 by solving a Vandermonde system.
Give for each coefficient of Pi its canonical expression in Q[α].

Output: The minimal polynomial of a primitive element of K and
P1(X,Y ) ∈ K[X,Y ], an absolute factor of P .

9.4.9 Description of the algorithm

Input: P (X,Y ) = Y 4 + 2Y 2X + 14Y 2 − 7X2 + 6X + 47.

Step 1)
Apply an approximate absolute polynomial factorization to P withDigits = 4,
and get
P̃1(X,Y ) = Y 2 + 3.828X + 8.414,
P̃2(X,Y ) = Y 2 − 1.828X + 5.585.

We have s = 2 and we can takeM = 10 (in fact we have to chooseM ≥ 8.414)
Digits1 = 4, Digits2 = 4.

Step 2)
As before, we get
f

a
(0,0)
1

= T 2 − 14T + 47, and Disc(f
a
(0,0)
1

) = 8,

f
a
(1,0)
1

= T 2 − 2t− 7, and Disc(f
a
(1,0)
1

) = 32.
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α = a(0,0)
1 is a primitive element of K, and fα(T ) = T 2 − 14T + 47.

Step 3) (
1 8.414
1 5.585

)(
z̃0
z̃1

)
=
(

2.828× 3.828
−2.830× (−1.828)

)
.

This gives z̃0 = −5.989 and z̃1 = 1.998.

So z0 = −6, z1 = 2 and a(1,0)
1 =

−6
f ′α(α)

+ 2
α

f ′α(α)
.

We have fα(T ) = T 2 − 14T + 47, f ′α(T ) = 2T − 14 and

−1
2
fα(T ) + f ′α(T )(

1
4
T − 7

4
) = 1. This implies

1
4
T − 7

4
= f ′α(α)−1.

Thus a(1,0)
1 =

−6
f ′α(α)

+ 2
α

f ′α(α)
= −13 + 2α.

Output: fα(T ) = T 2 − 14T + 47, P1(X,Y ) = Y 2 + (−13 + 2α)X + α.
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de l’évanouissement des inconnues et sur les moyens qu’il convient
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[CG03] G. Chèze and A. Galligo. From an approximate to an exact factoriza-
tion. Submitted for publication, 2003.

[CGKW01] R.M. Corless, M.W. Giesbrecht, I.S. Kotsireas, and S.M. Watt. Numer-
ical implicitization of parametric hypersurfaces with linear algebra. In
Artificial intelligence and symbolic computation (Madrid, 2000), pages
174–183. Springer-Verlag, Berlin, 2001.

[CGKW02] R.M. Corless, A. Galligo, I.S. Kotsireas, and S.M. Watt. A geometric-
numeric algorithm for factoring multivariate polynomials. In T. Mora,
editor, Proc. Annual ACM Intern. Symp. on Symbolic and Algebraic
Computation, pages 37–45. ACM, 2002.

[CGT97] R.M. Corless, P.M. Gianni, and B.M. Trager. A reordered Schur factor-
ization method for zero-dimensional polynomial systems with multiple
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dimension d’une variété algébrique peut se faire en temps polynomial.
(the determination of isolated points and of the dimension of an alge-
braic variety can be done in polynomial time). In Computational alge-
braic geometry and commutative algebra (Cortona, Italy, 1991), Proc.
Symp. Math., XXXIV, pages 216–256. Cambridge University Press,
Cambridge, 1993.
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Riemann-Roch combinatoire au polynôme d’Ehrhart des polytopes en-
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Birkhäuser, Boston, 1985.

[Kun86] E. Kunz. Kähler differentials. Advanced Lectures in Mathematics.
Friedr. Vieweg & Sohn, Braunschweig, 1986.

[Kur23] J. Kurschak. Irreduzible Formen. J. Reine Angew. Math., 152:180–191,
1923.



408 References

[Kus75] A.G. Kushnirenko. The Newton polyhedron and the number of solu-
tions of a system of k equations in k unknowns. Uspekhi Mat. Nauk.,
30:266–267, 1975.

[Kus76] A.G. Kushnirenko. Newton Polytopes and the Bézout Theorem. Func-
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Comput. Sci., 15:77–110, 1981.
[Laz92] D. Lazard. Stewart platform and Gröbner basis. In Proc. ARK, pages
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[PRW00] G. Pistone, E. Riccomagno, and H.P. Wynn. Algebraic Statistics: Com-
putational Commutative Algebra in Statistics, volume 89 of Monographs
on Statistics and Applied Probability. CRC Press, Boca Raton, 2000.

[PS83] C. Peters and J. Steenbrink. Infinitesimal variations of Hodge struc-
ture and the generic Torelli problem for projective hypersurfaces (after
Carlson, Donagi, Green, Griffiths, Harris). In Classification of alge-
braic and analytic manifolds (Katata, 1982), volume 39 of Progrress in
Math., pages 399–463. Birkhäuser, Boston, Mass., 1983.
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Applications, volume 251 of London Math. Soc LNS, pages 473–482.
Cambridge University Press, 1998.

[RRW96] M.S. Ravi, J. Rosenthal, and X. Wang. Dynamic pole placement as-
signment and Schubert calculus. SIAM J. Control and Optimization,
34(3):813–832, 1996.

[RRW98] M.S. Ravi, J. Rosenthal, and X. Wang. Degree of the generalized
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[Sam67] P. Samuel. Théorie algébrique des nombres. Hermann, Paris, 1967.
[Sas01] T. Sasaki. Approximate multivariate polynomial factorization based on

zero-sum relations. In B. Mourrain, editor, Proc. Annual ACM Intern.
Symp. on Symbolic and Algebraic Computation, pages 284–291. ACM,
2001.

[SC95] T.W. Sederberg and F. Chen. Implicitizing using moving curves and
surfaces. In Proc. ACM Symp. SIGGRAPH, pages 301–308, 1995.

[Sch78] C.P. Schnorr. Improved lower bounds on the number of multiplica-
tions/divisions which are necessary to evaluate polynomials. Theor.
Comput. Sci., 7:251–261, 1978.

[Sch80] J.T. Schwartz. Fast probabilistic algorithms for verification of polyno-
mial identities. J. ACM, 27:701–717, 1980.

[Sch93] R. Schneider. Convex Bodies: The Brunn-Minkowski Theory. Cam-
bridge University Press, Cambridge, 1993.

[Sch03a] H. Schenck. Computational Algebraic Geometry, volume 58 of Lon-
don Mathematical Society Student Texts. Cambridge University Press,
Cambridge, 2003.

[Sch03b] E. Schost. Computing parametric geometric resolutions. J. Applic.
Algebra in Engin. Communic. & Computing, 14(1):349–393, 2003.

[Sha77] I. R. Shafarevich. Basic algebraic geometry. Springer-Verlag, Berlin,
1977.

[Sha90] R. Y. Sharp. Steps in Commutative Algebra. Cambridge University
Press, Cambridge, 1990.

[Som97] M. Sombra. Bounds for the Hilbert function of polynomial ideals and
for the degrees in the Nullstellensatz. J. Pure & Applied Algebra, 117–
118:565–599, 1997.

[Sot97a] F. Sottile. Enumerative geometry for real varieties. In J. Kollár,
R. Lazarsfeld, and D.R. Morrison, editors, Algebraic Geometry (Santa
Cruz, 1995), volume 62, Part I of Proc. Symp. Pure Math., pages 435–
447, Providence, R.I., 1997. AMS.

[Sot97b] F. Sottile. Pieri’s formula via explicit rational equivalence. Can. J.
Math., 49(6):1281–1298, 1997.

[Sot03] F. Sottile. Enumerative real algebraic geometry. In S. Basu and L.
Gonzalez-Vega, editors, Algorithmic and Quantitative Real Algebraic
Geometry, pages 139–180. AMS, Providence, R.I., 2003. Web-based
survey available at http://www.math.umass.edu/~sottile.

[SS75] G. Scheja and U. Storch. Uber Spurfunktionen bei vollständigen Durch-
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[Tsi92] A.K. Tsikh. Multidimensional residues and their applications, volume
103 of Translations of Mathematical Monographs. AMS, Providence,
R.I., 1992. Translated from the Russian (1988).
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Bézout, E., 24, 141, 275, 277

barycentric decomposition, 320
base point, 289, 291, 292
basis conversion, 90, 91
Bayesian network, 215
d-separated, 215
Macaulay 2 markov library, 215
global Markov property, 215
local Markov property, 215
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design of experiments, 195
determinant of a complex, 56, 57
discriminant, 26, 61, 104, 305, 379
discriminantal hypersurface, 26

distracted fractions, 199
dominant map, 223
dual space, 78, 79
duality, 80, 96, 132, 141, 142
dualizing form, 30

and computation of traces, 30
dualizing module, 80

Ehrhart polynomials, 14
Ehrhart-Macdonald reciprocity, 14
eigenvalue, 66, 93, 134–136, 154,

164, 165, 168, 273
eigenvalue problem, 311, 313

generalized, 153
eigenvalue theorem, 66, 67
eigenvector, 69, 93, 134–136, 154,

163–165, 168, 273
generalized, 77, 153

eigenvector method, 69, 70, 74, 93,
94

elementary symmetric polynomials,
114, 120

embedding dimension, 73, 84, 85,
106

encoding
dense, 249, 252–255, 262, 267
sparse, 255, 257
straight-line program, 255, 263

end game, 326
Euler predictor, 309
Euler, L., 121
Euler-Jacobi vanishing theorem

multidimensional case, 37
univariate case, 7

face system, 323, 324
factoring over finite fields, 104, 105
factoring over number fields, 100,

102, 112, 113
factorization theorem, 218
Ferrari resolvent, 121
field

extension, 342, 352, 379
perfect, 111, 112

finite commutative algebra, 63



INDEX 421

finite dynamical system, 210
finiteness theorem, 65
flattener, 223
form

Chow, 50, 51, 136, 137, 139, 155
normal, 68, 128–131, 134, 190,

191
formal multiplication matrix, 192
fractional power series, 316, 324
Frobenius map, 104

eigenspace of, 104
full factorial design, 195–198
fundamental theorem of invariant

theory, 51
fundamental theorem of symmetric

polynomials, 119

Galois group, 111, 117, 118, 120
algorithm for, 122
fixed field of, 118
of a cubic, 120
of a quartic, 121

Galois theory, 111, 114, 117
Galois, É., 117
general position, 323
generic change of coordinates, 363,

367, 369, 370
generic fiber, 227
generic system, 321
genericity conditions, 77, 78, 99
geometric modelling, 158
geometric resolution, 261, 262, 264
global Markov property, 215
Gorenstein algebra, 30, 80–85, 141
Gröbner basis, 23, 35, 42, 44, 50,

57, 66, 68, 86–91, 96, 108,
123, 128–131, 188, 195, 207,
208, 220

reduced, 70, 71
Griffis-Duffy platform, 337

Harris’ lemma, 367, 368
Hefer expansion, 31
Hensel lifting, 343, 344, 346, 370,

375

Hensel’s lemma, 345
Hermite predictor, 309
Hermite’s theorem, 140
Hermite, C., 140
hierarchy of homotopies, 313
Hilbert scheme, 78
Hilbert’s irreducibility theorem, 344
Hilbert’s Nullstellensatz, 65, 67, 134,

243, 249, 251, 252
effective, 243, 249, 252–254

Hodge structure, 41
homogenization, 18, 307
homotopy, 303, 358, 360

polyhedral, 319
solver, 127, 303, 319

Horner polynomials, 10
hypergeometric functions, 59

ideal
complete intersection, 31, 76, 96,

148
embedded prime, 108, 206
equidimensional, 227
homogeneous, 40
Jacobian, 41
maximal, 72–74, 84–86, 107, 108,

120
minimal prime, 205
primary, 72, 86, 100, 107, 205
primary decomposition, 32
prime, 107, 111, 205
pseudo-primary, 238
radical of, 72, 75, 107, 111, 205
strict complete intersection, 37
zero-dimensional, 31, 107, 109–

111, 113, 227
ideal membership, 11, 96
ideal of points, 90
ideal quotient, 206
idempotent, 133
implicit function theorem, 100
implicitization, 158, 160, 289, 291–

293, 295
algorithm, 161
curve, 22
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inner normal, 315
interpolating polynomial, 11, 32
interpolation, 10
intersection pairing, 41
inverse problem, 196
inverse system, 132
isolated point, 154

Jacobian, 28, 32
Jacobian matrix, 305
Jordan canonical form, 71

Koszul complex, 57
Koszul sequence, 41
Kronecker symbol, 31

local, 32
Kronecker, L., 100, 102, 104, 115–

117
Kruppa equation, 163

Lagrange polynomials, 133
Lagrange, J.L., 122
lattice tetrahedra, 14
Leibniz formula, 82, 84
lifting, 273, 293, 319
linear trace, 334
linear-product start system, 312,

313
linear-programming model, 322
local algebra, 133
local Markov property, 215
local ring, 73, 77, 79, 81, 83–85
lower hull, 274, 281, 293, 314, 319

Macaulay formula, 280, 285
Macaulay, F.S., 48, 100, 269, 275,

279, 285
marked polynomial, 182
maximal independent set, 223
maximal minor, 143, 147, 155
mechanical design, 303, 337
membership test, 329
minimal polynomial, 71, 75
Minkowski sum, 53, 271, 272, 274,

278, 280, 283, 284, 288, 293,
296, 318

Minkowski’s theorem, 318
missing variables, 70, 71, 94
mixed cell, 273, 274, 280, 293, 322
mixed subdivision, 273, 274, 280,

281, 283, 293–295, 319
mixed volume, 271–275, 280, 283,

287, 295, 319
stable, 273

molecular conformation, 166
monodromy, 333, 360, 364, 367–

369, 376
multi-projective space, 312
multiplication map, 13, 64, 66, 77,

79, 94, 133, 143, 151
characteristic polynomial of, 68,

75–77, 102, 103, 109, 111, 112,
116, 117, 119

dual of, 79, 80
eigenspaces of, 75
eigenvalues of, 66, 67
eigenvectors of, 69–71
endomorphism, 172
generalized eigenspaces of, 77
minimal polynomial of, 68, 69,

75, 110, 113
non-derogatory, 69–76, 85, 106,

116, 122
multiplication matrix, 67, 79, 80,

94, 95
algorithm for, 68
formal, 192

multiplicity, 133
algebraic, 78
geometric, 78
Hilbert-Samuel, 78
of a solution, 73, 77, 97, 100, 109

multivariate division, 128
multivariate factorization, 95

Nakayama’s lemma, 86
Newton identities, 13, 44, 145, 160
Newton polygon, 350
Newton polytope, 271–274, 278, 280,

283, 288, 292, 293, 314, 350
Newton sums, 13, 144, 160
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Newton’s method, 315
Newton, I., 271, 272
Newton-Hensel method, 263, 265,

266
Newton-Hensel operator, 264, 266
non-derogatory matrix, 69, 71, 93
normal cone, 321
normal fan, 321
numerical algebraic geometry, 302
numerical irreducible decomposition,

332
numerical stability, 78, 130

optimal homotopy, 303
order ideal, 179, 197

corners, 188
ordering

block, 220
elimination, 220
graded lexicographic, 128–130
graded reverse lexicographic, 208
lexicographic, 128
monomial, 128, 130
product, 220

overdetermined system, 156, 328

parallel robot, 164, 165, 270, 337
partial fraction decomposition, 12
Pascal’s mystic hexagon, 24, 39
path following, 309
polynomial

(total) length, 257, 258
precision (choice of), 384, 387, 390
predictor, 309
prenex formula, 253
primary component, 83
primary decomposition, 72, 77, 79,

83, 86, 87, 100, 107, 108, 110–
113, 120–122, 203, 205

GTZ algorithm, 230
minimal, 107
Shimoyama-Yokoyama algorithm,

238
primary decomposition algorithms
GTZ, 230

PDsplit, 229
PD, 230
equidimensionalPD, 228
flattener, 228
independentSet, 228
saturation, 228

prime avoidance theorem, 107
primitive element, 261, 382–384, 387,

391
probability simplex, 212
projection map, 220, 221
projection operator, 299
projective space, 19, 96, 307, 311
pseudo-division, 222
Puiseux series, 316, 324

quadratic convergence, 303, 314–
316

quadratic form, 140
quantifier elimination, 245, 246, 252–

254, 263
effective, 245, 246

quotient, 128
quotient algebra, 63, 65, 78, 94, 97,

100–102, 104, 106, 108, 114,
131

random constant gamma, 306
rational factorization, 344
rational hypergeometric functions,

61
rational over a field, 108–110
rational univariate representation,

136, 139, 155, 156
regular sequence, 31, 96
regular subdivision, 319
regular triangulation, 320
remainder, 128, 129

normal, 185, 190
remainder monomials, 66–68, 71,

86, 87, 89–91, 94
residual resultant, 148, 149
residue, 141, 143, 144

at infinity, 5
computation of global residues
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Bezoutian methods, 34
multivariable case, 33
normal form methods, 36, 42
univariate case, 8

dependence on coefficients, 6
elimination, 43
global duality, 8, 28, 80, 96
global multivariate, 28, 96
global to local, 8, 32
global univariate, 5, 10, 80
Grothendieck, 27
homogeneous, 40, 60
iterated, 34
local duality, 28
local univariate, 3
multidimensional

algebraic definitions, 30
definition via Bezoutian, 30
geometric definition, 29
integral definition, 27
Kronecker symbol, 31

projective, 40
toric, 8
transformation law

generalized, 142, 144
global, 29, 33, 42, 142
local, 29, 33

resultant, 145, 167, 275–277, 279,
289

as determinant of a complex, 57
Bezoutian matrix, 21, 48
determinantal formulas, 20, 53
history, 275
homogeneous, 44
homogeneous Poisson formula, 47
Macaulay formulas, 48, 49, 98
matrix, 279, 290, 298
multihomogeneous, 52, 59
multivariate, 44, 96, 97, 99, 119
normal form algorithm, 57
Poisson formula, 19
projective, 145, 154
residual, 54, 148, 149, 165
sparse, 53
Sylvester matrix, 18, 19, 48

toric, 53, 145, 147, 276–279, 281,
285, 289, 292, 293

unmixed systems, 50
Richardson extrapolation, 325
Riemann sphere, 19
Riemann surface, 332
robotics, 156, 270, 291, 337
root count, 24, 25, 140, 159, 272,

312, 323

saturation, 207
secant predictor, 309
signal processing, 156, 167
signature, 140
single-variable representation, 75,

76, 102, 105
slack variable, 328, 330, 331
software

multires, 125, 143, 162
synaps, 126, 131, 163, 166
CoCoA, 200, 203
Macaulay 2, 203, 205, 221, 222
Maple, 306, 315, 332
PHCpack, 302, 303, 336
Singular, 34, 37, 44, 203

solution
multiple, 136
real, 139
simple, 135

solution at ∞, 96, 97, 99
splitting algebra, 114–116, 118–122

universal, 115
splitting field, 116, 118, 120
splitting polynomial, 209, 220, 223
splitting principles, 209
squarefree decomposition, 75
start system, 303, 305, 321
statistical model, 212
step size control, 309
straight-line program, 256, 258, 260,

263, 266, 267
(total) length, 256–258, 266
additive length, 257
division-free, 256
non-scalar, 258
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subresultants, 58
support of polynomial, 271, 279,

290–296, 317, 350
Sylvester matrix, 145, 277, 281
Sylvester, J.J., 277, 279, 298
Sylvester-type matrix, 92, 279, 298
symmetric

functions, 361, 372, 373
group, 116, 117, 119, 120, 123,

360, 366

target system, 303, 325
theorem of the primitive element,

105, 106
toric variety, 40, 54
total degree, 311
trace, 30, 33, 44, 139

computation and Bezoutian, 30
computation using residues, 13,

30
transposition, 364–366, 373
triangular set, 238
triangulation, 317
twisted cubic, 51

van Kampen’s theorem, 369
Vandermonde system, 341, 387
variety

algebraic, 242, 244, 245, 253, 254,
260, 262

dimension of an algebraic, 242
irreducible algebraic, 244

Veronese map, 51

well-parallelizable, 248, 253
Wilkinson polynomial, 26
winding number, 324
witness set, 327

Zariski topology, 244, 245, 260
zero sum, 370, 375, 377
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