STATISTICS FOR R EIELGRILEL

INDUSTRY AND

TECHNOLOGY N Kannan 3
x H.N. Nagaraja
\ tditors

Advances In
Ranking and
Selection, Multiple
Comparisons, and
Reliability

Methodology and Applications

Birkhawuser







Statistics for Industry and Technology

Series Editor

N. Balakrishnan

McMaster University

Department of Mathematics and Statistics
1280 Main Street West

Hamilton, Ontario L8S 4K1

Canada

Editorial Advisory Board

Max Engelhardt
EG&G Idaho, Inc.
Idaho Falls, ID 83415

Harry F. Martz

Group A-1 MS F600

Los Alamos National Laboratory
Los Alamos, NM 87545

Gary C. McDonald

NAO Research & Development Center
30500 Mound Road

Box 9055

Warren, MI 48090-9055

Kazuyuki Suzuki

Communicgtion & Systems Engineering Department
University of Electro Communications

1-5-1 Chofugaoka

Chofu-shi

Tokyo 182

Japan



Advances in Ranking and Selection,
Multiple Comparisons, and Reliability

Methodology and Applications

N. Balakrishnan
N. Kannan
H.N. Nagaraja
Editors

Birkh&duser
Boston ¢ Basel ¢ Berlin



N. Balakrishnan N. Kannan

Department of Mathematics and Statistics Department of Management
McMaster University Science and Statistics
Hamilton, Ontario L8S 4K1 University of Texas at San Antonio
Canada 6900 N. Loop 1604 W
San Antonio, TX 78249-0632
US.A.
H.N. Nagaraja
Department of Statistics
Ohio State University
1958 Neil Avenue
Cockins Hall, Room 404
Columbus, OH 43210-1247
US.A.

AMS Subject Classifications: 62F03, 62F07, 62F10, 6215, 62N01, 62NOS
Library of Congress Cataloging-in-Publication Data

Advances in ranking and selection, multiple comparisons and reliability
/N. Balakrishnan, N. Kannan, H.N. Nagarjuna, editors.
p- cm. - (Statistics for industry and technology)
Includes bibliographical references and index.
ISBN 0-8176-3232-8 (alk. paper)
1. Ranking and selection (Statistics) 2. Statistical hypothesis testing. 3. Statistical

decision. I. Balakrishnan, N., 1956- II. Kannan, N. Iil. Nagaraja, H. N. (Haikady
Navada), 1954- IV. Series.

QA278.75.A38 2004

519.5-dc22 2004062299
ISBN 0-8176-3232-8 Printed on acid-free paper.
®
©2005 Birkhiuser Boston Birkhduser

All rights reserved. This work may not be translated or copied in whole or in part without the written permission
of the publisher (Birkhiiuser Boston, c/o Springer Science+Business Media Inc., Rights and Permissions, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by

similar or dissimilar methodology now known or hereafter developed is forbidden.

The usein this publication of trade names, trademarks, service marks and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

987654321 SPIN 10925294

www.birkhauser.com



In Honor of S. Panchapakesan



S. Panchapakesan



Contents

Preface

S. Panchapakesan—Life and Works
Contributors

List of Tables

List of Figures

PART I: INFERENCE

1 Score Test: Historical Review and Recent Developments

C.R. Rao

11
1.2

1.3
1.4
1.5
1.6

1.7
1.8

Introduction 3

Asymptotic Tests of a Simple Hypothesis 4

1.2.1 Notation 4

1.2.2 Three possible tests of a simple hypothesis:
The Holy Trinity 5

1.2.3 Motivation for the score test of a simple
hypothesis 5

1.2.4 Test of a composite hypothesis 6

1.2.5 Special form of composite hypothesis 7

Neyman’s C(«) Test and Neyman-Rao Test 8

Some Examples of the RS Test 9

Some Advantages of the RS Test 10

Some Anomalies 10

1.6.1 Behavior of the power function 10

1.6.2 Examples of non-invariance of the Wald test

1.6.3 Weak dependence of the RS statistic on
alternatives to the null hypothesis 12

Power Comparisons 13

Some Recent Developments 14

References 15

vii

11

XV
xvii
xxxi
XXXV
XXXix



viii

Contents

2 EM Algorithm and Optimal Censoring Schemes for
Progressively Type-II Censored Bivariate Normal Data

N. Balakrishnan and J.-A. Kim

2.1 Introduction 21
2.2 Conditional Distributions of Concomitants of
Order Statistics 24
2.3 The EM Algorithm 25
2.4 Asymptotic Variances and Covariances 28
2.5 Ilustrative Example 32
2.6 Optimal Censoring Scheme 35
Appendix 39
References 43

3 Inference Guided Data Exploration

Greg Yothers and Allan R. Sampson

3.1 Introduction 47

3.2 Inference Guided Data Exploration Restricted
by Minimum Subset Sample Size 50
3.2.1 Two-sided Z-test assuming known variance
3.2.2 Two-sided t-test 51
3.2.3 Two-sided t-test, upper bound 53

3.3 Inference Guided Data Exploration Restricted
by Half-Intervals of a Covariate 54
3.3.1 Two-sided t-test 55
3.3.2 ANCOVA 1-test 58

3.4 Application 59

3.5 Summary and Discussion 60
References 63

21

47

50

4 Discriminating Between Normal and Laplace Distributions

Debasis Kundu

4.1 Introduction 65
4.2 Ratio of Maximized Likelihood 67

65

4.3 Asymptotic Properties of the Logarithm of RML 68

4.4 Determination of Sample Size and Testing 71
4.4.1 Minimum sample size determination 71
4.4.2 Testing of hypotheses 72

4.5 Numerical Experiments 73

4.6 Data Analysis 74

4.7 Conclusions 77
References 78



Contents ix

5 A Simple Classification Rule for Directional Data
Ashis SenGupta and Supratik Roy 81

5.1 Introduction 81
5.2 Construction of the Rule 82
5.2.1 A distance measure 82
5.2.2 Average distance of a point from a group 83
5.2.3 The Chord-based rule 83
5.2.4 An extension of the Chord-based rule 84
5.3 Relationship of the Chord-based Rule with
Other Rules 85
5.3.1 Fisher’s rule 85
5.3.2 Cox’s logistic discrimination rule 86
5.4 Exact Distribution of D(8) 87
5.5 Efficiency of the Rule 89
5.6 A Real-life Example 89
References 89

PART II: RANKING AND SELECTION

6 On Some Ranking and Selection Procedures for
MANOVA Models with Applications
Deng-Yuan Huang and Ren-Fen Lee 93

6.1 Introduction 93
6.2 MANOVA Model with Equal Factor Levels 94
6.3 MANOVA Model with Unequal Levels 109
6.4 Conclusion 116

References 116

7 A Restricted Subset Selection Rule for Selecting At
Least One of the t Best Normal Populations in Terms
of Their Means: Common Known Variance Case
Lifang Hsu and S. Panchapakesan 117

7.1 Introduction 117
7.2 PCS and Its Infimum over 2(6*) for Rule Ryp 119
7.3 Properties of Ryp 128
7.4 Expected Size of the Selected Subset for Rule Ryp 129
7.5 Concluding Remarks 130
References 131



8 Selecting the Best Population with Two Controls:

9

An Empirical Bayes Approach
Wen-Tao Huang and Yao-Tsung Lai

8.1 Introduction 133
8.2 Formulation of Problem and a Bayes Selection Rule
8.3 An Empirical Bayes Selection Rule 138
8.4 Some Large Sample Properties 140
References 142

Simultaneous Selection of Extreme Populations:
Optimal Two-stage Decision Rules
Neeraj Misra and Ishwari D. Dhariyal

9.1 Introduction 143

9.2 Formulation of the Problem 145

9.3 The Optimal Second Stage Selection Rule 150

9.4 The Optimal Two-Stage Selection Rule 158
References 160

PART III: MuLTIPLE COMPARISONS AND TESTS

10

11

Comparing Variances of Several Measurement
Methods Using a Randomized Block Design
with Repeat Measurements: A Case Study
Ajit C. Tamhane and Anthony J. Hayter

10.1 Introduction 165
10.2 Graphical Analyses and Descriptive Statistics 168
10.3 Formal Statistical Analyses 171
10.3.1 Model 171
10.3.2 Multiple comparison procedures 172
10.4 Return to Example 174
10.5 Concluding Remarks 176
References 177

Impact of Missing Data and Imputation Methods
on Multiple Test Procedures
Alka Indurkhya

11.1 Introduction 179

11.2 The Therapeutic Window 180

11.3 Bootstrap Procedures to Estimate the
Therapeutic Window 182

11.4 Missing Data Mechanisms 185

11.5 Simulations 185

134

Contents

133

143

165

179



Contents

12

11.6 Results and Discussion 186
References 189

Asymptotic Second-order Efficiency for Two-stage
Multiple Comparisons with Components of a
Linear Function of Mean Vectors

Makoto Aoshima and Takuya Kushida

12.1 Introduction 191
12.2 Main Results 194
12.3 Moderate Sample Performances 199
12.4 Concluding Remarks 201
Appendix 201
References 211

PART IV: AGREEMENT ASSESSMENT

13

14

Measuring Agreement in Method Comparison Studies
— A Review
Pankaj K. Choudhary and H. N. Nagaraja

13.1 Introduction and General Overview 215
13.2 Early Approaches 218
13.2.1 The limits of agreement (LOA) approach 219
13.2.2 Intraclass correlation and related measures 222
13.2.3 Concordance correlation approach 224
13.3 Recent Developments 226
13.3.1 Approaches based on percentiles and
coverage probability 226
13.3.2 Approaches based on the intersection-union
principle 229
13.4 An Example 232
13.5 Selection Problems in Measuring Agreement 235
13.5.1 Selection of the best 236
13.5.2 Assessment of agreement and selection of
the best 238
13.6 Concluding Remarks 239
References 240

Measures of Concordance for Assessing Agreement
in Ratings and Rank Order Data
M. Raghavachari

14.1 Introduction 245
14.2 A General Measure of Concordance 247
14.3 A New Measure of Concordance for Rank Order Data 252

101

215

245



xii

14.4 Example 255

14.5 Distribution of @ when the M Judges are
Independent 258

14.6 Distribution of the Intraclass Correlation
Coefficient 261

14.7 Summary and Discussion 261
References 262

PART V: RELIABILITY

15 Cost-effective Analysis of Optimal Order-replacement

Policies
T. Dohi, N. Kaio and S. Osaki

15.1 Introduction 267

15.2 Preliminaries 269
15.2.1 Notation (continuous time models) 269
15.2.2 Notation (discrete time models) 270
15.2.3 Assumptions 271
15.2.4 Definition of cost effectiveness 271

15.3 Order-Replacement Policies in Continuous Time
15.3.1 Model description 271
15.3.2 Special case: t] — 00 275
15.3.3 Special case: ¢t} =0 277

15.4 Order-Inspection Policies in Continuous Time 278

15.4.1 Model description 278
15.4.2 Special case: t] — o0 279
15.4.3 Special case: t] =0 280

15.5 Order-Replacement Policies in Discrete Time 281

15.5.1 Model description 281
15.5.2 Special case: n] — oo 284
15.5.3 Special case: n] =0 286
15.6 Order-Inspection Policies in Discrete Time 287
15.6.1 Mode! description 287
15.6.2 Special case: nf — co 289
15.6.3 Special case: n] =0 290
15.7 Numerical Illustrations 291
15.7.1 Continuous time models 291
15.7.2 Discrete time models 292
References 295

Contents

267



Contents xiii

16

17

Estimating Reliabilities Following Purely Sequential
Sampling from Exponential Populations
Nitis Mukhopadhyay and Greg Cicconetti 303

16.1 Introduction 303
16.2 A One-sample Problem: Sequential Estimation
of the Mean 305
16.2.1 Comparing estimators of a population mean 307
16.2.2 Estimation of a reliability parameter following
purely sequential procedure in (16.7) 308
16.3 A Two-sample Problem: Sequential Estimation of the
Difference of Means 316
16.3.1 A simulation study 319
16.4 Some Examples and Data Analyses 325
Appendix: Proof of Theorem 16.3.1 327
References 329

Empirical Bayes Estimation of Mean Lifetime for an
Exponential Distribution: Unequal Sample Sizes Case
Tachen Liang 333

17.1 Introduction 333
17.2 The Empirical Bayes Estimation Problem 335
17.3 Construction of Empirical Bayes Estimators 336
17.3.1 Kernel function 336
17.3.2 The proposed empirical Bayes estimators 337
17.4 Rate of Asymptotic Optimality 339
Appendix 342
References 349

PAaRT VI: BIOSTATISTICS

18

Bayesian Analysis of Mixtures of Improper
Survival Distributions
Kaushik Patra, Dipak K. Dey and Samiran Ghosh 353

18.1 Introduction 353

18.2 A Two-component Model 355

18.3 Data 356

18.4 The Likelihood and Full Conditionals 358
18.4.1 Model 1 358

18.5 Results From Fitting Model 1 360

18.6 A Three-component Model: Model 2 361

18.7 Results From Fitting Model 2 364

18.8 Conclusion 364



xiv

19

20

Contents

References 368

Multivariate Survival Analysis with PVF
Frailty Models
Madhuja Mallick and Nalini Ravishanker 369

19.1 Introduction 369
19.2 Properties of the PVF Frailty 371
19.3 PVF as a Tilted Positive Stable 372
19.4 Likelihood and Prior Specification 374
19.5 Conditional Distributions 375
19.6 Illustration 377
19.7 Concluding Remarks 379

Appendix 382

References 383

A Two-stage Design for Choosing Among
Experimental Treatments in Clinical Trials
Linda Rollin and Pinyuen Chen 385

20.1 Introduction 385

20.2 Assumptions, Definitions, Goals, and Proposed
Procedure 387

20.3 Size, Power, and the Least Favorable
Configuration 390

20.4 Table 399

20.5 An Example 400

20.6 Sample Size Comparison 402
References 409

Index 411



Preface

Prof. S. Panchapakesan has made significant contributions to the area of rank-
ing and selection. Besides ranking and selection, he has also published in many
other areas of statistics including order statistics, reliability theory, stochastic
inequalities, and inference.

In order to reflect his diverse interests and also to recognize his important
contributions to different areas, we invited a number of authors to write arti-
cles for this volume. These authors form a representative group from coauthors,
friends, colleagues and other close professional associates of S. Panchapakesan,
in addition to being experts working in one or more of the above-mentioned
areas. All the articles present here have been peer reviewed and carefully or-
ganized into 20 chapters. For the convenience of the readers, this volume has
been divided into the following parts:

e INFERENCE

RANKING AND SELECTION
MuLTIPLE COMPARISONS AND TESTS
AGREEMENT ASSESSMENT ANALYSIS
RELIABILITY

BIOSTATISTICS

The above list has taken into account various types of inferential problems
of interest. This volume is not a proceedings, although many of the authors
were present at an International Conference held in honor of S. Panchapakesan
during December 2002 in Chennai, Tamilnadu. India.

Our sincere thanks go to all the authors who have contributed to this vol-
ume. They all share our admiration and appreciation of S. Panchapakesan for
all his contributions and sincere work during the past 35 years, and have given
us their full cooperation and support in bringing this volume out. We are also
indebted to the referees for helping us in the evaluation of the manuscripts and
in improving the quality of this publication. In particular, we thank Professors

Dipak Dey, Wen-Tao Huang and Nitis Mukhopadhyay for their assistance in
the editorial process.

XV



xvi Preface

Special thanks are due to Mrs. Debbie Iscoe for the excellent typesetting of
the entire volume. Finally, we thank Mr. Thomas Grasso (Editor, Birkhauser,
Boston) for the invitation and encouragement to undertake this project.

With great pleasure, we dedicate this volume to our beloved friend and
colleague, S. Panchapakesan.

N. Balakrishnan
McMaster University, Hamilton, Canada
N. Kannan
University of Texas, San Antonio, U.S.A.
H. N. Nagaraja
The Ohio State University, Columbus, U.S.A.
October 2004



S. Panchapakesan
Career and Accomplishments

Subramanian Panchapakesan was born on August 27, 1933, to Subramanian
and Visalakshi, in Mylapore, Madras (currently known as Chennai). In 1938,
his whole family moved to Pudukkottai in Tamilnadu where he completed the
first thirteen vears.of his studies - first to eleventh standards of his school in
an institution run by the Church of Swedish Mission, and then two years of
Intermediate in Arts and Sciences at the Rajah’s College. He then moved to
Madras for further studies at Vivekananda College, obtaining a B.A. (Honours)
in Mathematics from the University of Madras in 1954. This B.A. (Honours)
degree was equivalent to the M.A. degree, but he had to wait for a year to get
the M.A. degree in Mathematics because of some technical reasons.

During 1955-1960, he served as a Lecturer in Mathematics at Islamiah Col-
lege in Vaniyambadi, Tamilnadu. He left this position in 1960 to join the Indian
Statistical Institute (ISI), Calcutta, where he obtained a M.Stat. degree in 1962.
For the next two vears, he held a Research Assistantship in the Research and
Training School of the ISI. During this period, he also spent six months in Hy-
derabad. Andhra Pradesh, as Officer-in-Charge of Evening Centre run by the
ISI and the rest of the period as an instructor at the International Statisti-
cal Education Centre (ISEC). This training centre was run by the ISI under
a United Nations program. In February 1965, he joined the technical staff in
the Data Processing Unit of the Research and Training School of the ISI. After
six months, he resigned to go to Purdue University, West Lafayette, Indiana,
to do his graduate study in statistics. He received his Ph.D. in Mathematical
Statistics in 1969 for his thesis entitled Some Contributions to Multiple Deci-
sion (Selection and Ranking) Procedures written under the guidance of Professor
Shanti Swarup Gupta. With this, he started his illustrious career and made pi-
oneering contributions to the area of Ranking and Selection Methodology and
many other areas of Statistics.

Subsequent to his Ph.D., he took a one-year visiting Assistant Professorship
in the Department of Statistics at Purdue University. In 1970, he joined the De-
partment of Mathematics at Southern Illinois University, Carbondale, Illinois,

xvii



xviii S. Panchapakesan

as an Assistant Professor. He was promoted to the rank of Associate Professor
in 1974 and then to Full Professor in 1980. After a 28-year service there, he
retired on June 1, 1998, and currently holds the title of Professor Emeritus in
that department.

He had visiting appointments in the Department of Statistics at Purdue
University during the fall term of 1975, and the spring terms of 1984 and 1986.
He also went as a Visiting Expert to the Institute of Mathematics at Academia
Sinica, Taipei, Taiwan, during the spring term of 1980.

He has provided valuable service to many research journals in various capac-
ities. Included in this list are: Member of the International Editorial Board of
Communications in Statistics during 1985-1994. Associate Editor of Journal of
Statistical Planning and Inference during 1984-2000. Member of the Editorial
Board of American Journal of Mathematical and Management Sciences since
1993, and Associate Editor of Communications in Statistics since 2001.

S. Panchapakesan, through his pioneering research in the area of ranking and
selection over the last 35 years, has made a significant impact in this area. He
has not only inspired and encouraged, but also mentored and helped numerous
young researchers.

Now that he is retired and is free from teaching and administrative duties,
we are confident that he will continue to make fine contributions to the field
with renewed interest, enthusiasm and energy. In addition, he will also have
more time to enjoy the Indian classical music, his lifelong interest.



Publications

Books

1. Multiple Decision Procedures: Methodology of Selecting and Ranking Pop-
ulations (co-authored with S. S. Gupta), New York: John Wiley & Sons.
1979. Republished as: Classics in Applied Mathematics, 44, SIAM.
Philadelphia, 2002.

2. Advances in Statistical Decision Theory and Applications (co-edited with
N. Balakrishnan), Birkh&user, Boston. 1997.

Articles in Journals/Books and Technical Reports
1967

1. Order statistics arising from independent binomial populations (with S.
S. Gupta), Mimeograph Series No. 120, Department of Statistics, Purdue
University, West Lafayette, Indiana.

1969

2. Some selection and ranking procedures for multivariate normal popu-
lations (with S. S. Gupta), In Multivariate Analysis II: Proceedings of
the Second International Symposium on Multivariate Analysis (Ed.. P. R.
Krishnaiah), pp. 475--505, Academic Press, New York.

3. On the distribution of the maximum and minimum of ratios of order
statistics (with R. E. Barlow and S. S. Gupta), Annals of Mathematical
Statistics, 40, 918-934.

4. Selection and ranking procedures (with S. S. Gupta), In The Design of
Computer Simulation Ezperiments (Ed., T. H. Naylor), pp. 132-160, Duke
University Press, North Carolina.

5. Some contributions to multiple decision (selection and ranking) proce-
dures, Mimeograph Series No. 192. Department of Statistics, Purdue
University, West Lafayette, Indiana.

Xix



10.

11.

12.

13.

14.

S. Panchapakesan

1971

. On a subset selection procedure for the most probable event in a multino-

mial distribution, In Statistical Decision Theory and Related Topics (Eds.,
S. S. Gupta and J. Yackel), pp. 275-298. Academic Press, New York.

Contributions to multiple decision (subset selection) rules, multivariate
distribution theory and order statistics (with S. S. Gupta), Technical Re-
port ARL 71-0218, Aerospace Research Laboratories, Dayton, Ohio.

1972

On a class of subset selection procedures (with S. S. Gupta), Annals of
Mathematical Statistics, 43, 814-822.

. On multiple decision (subset selection) procedures (with S. S. Gupta),

Journal of Physical and Mathematical Sciences, 6, 1-72.
1973

On order statistics and some applications of combinatorial methods in
statistics (with S. S. Gupta), In A Survey of Combinatorial Theory (Ed.,
J. N. Srivastava), pp. 217-250, North-Holland Publishing Company, Am-
sterdam.

On order statistics from equally correlated normal random variables (with
S. S. Gupta and K. Nagel), Biometrika, 60, 403-413.

Inference for restricted families: (A) multiple decision procedures; (B) or-
der statistics inequalities (with S. S. Gupta), In Reliability and Biometry:
Statistical Analysis of Life Length (Eds., F. Proschan and R. J. Serfling),
pp. 503-596, SIAM, Philadelphia.

1974

On moments of order statistics from independent binomial populations
(with S. S. Gupta), Annals of the Institute of Statistical Mathematics
Supplement, 8, 95-113.

1975

On a quantile selection procedure and associated distribution of ratios of
order statistics from a restricted family of probability distributions (with
S. S. Gupta), In Reliability and Fault Tree Analysis (Eds., R. E. Barlow,
J. B. Fusell and N. D. Singpurwalla), pp. 557-576, SIAM, Philadelphia.



Publications xxi

15.

16.

17.

18.

19.

20.

21.

22.

23.

1976

A modified subset selection formulation with special reference to one-way
and two-way layout experiments (with D.-Y. Huang), Communications in
Statistics— Theory and Methods, 5, 621-633.

1977

Subset selection procedures for A,-superior populations (with T. J. Sant-
ner), Communications in Statistics— Theory and Methods, 6, 1081-1090.

1978

A subset selection formulation of the complete ranking problem (with D.-
Y. Huang), Journal of the Chinese Statistical Association, 16, 5801-5810.

On a monotonicity property relating to gamma distributions, Journal of
the Chinese Statistical Association, 16, 6003-6005.

1980

Some statistical techniques in climatological data (with S. S. Gupta), In
Statistical Climatology: Developments in Atmospheric Science, 13 (Eds.,
S. Ikeda et al.), pp. 35-48, Elsevier Scientific Publishing Company, Ams-
terdam.

1981

ASA and statistical education (with S. S. Gupta), In Proceedings of the

American Statistical Association - Section on Statistical Education, pp.
27-29, Alexandria, Virginia.

1982

On eliminating inferior regression models (with D.-Y. Huang), Commu-
nications in Statistics— Theory and Methods, 11, 751-759.

Some locally optimal subset selection rules based on ranks (with D.-Y.
Huang). In Statistical Decision Theory and Related Topics-I1II (Eds., S. S.
Gupta and J. O. Berger). Vol. 2, pp. 1-14, Academic Press, New York.

1984
Some locally optimal subset selection rules for comparison with a control

(with D.-Y. Huang), Journal of Statistical Planning and Inference, 9, 63—
72.



Xxii

24

25.

26.

27.

28.

29.

30.

3l.

32.

S. Panchapakesan

. On some inequalities and monotonicity results in selection and ranking
theory (with S. S. Gupta and D.-Y. Huang), In Inequalities in Statistics
and Probability (Ed., Y. L. Tong), IMS Lecture Notes - Monograph Se-
ries, Vol. 5, pp. 211-227, Institute of Mathematical Statistics, Hayward,
California.

An estimation problem relating to subset selection from normal popu-
lations (with S. Jeyaratnam), In Design of Experiments: Ranking and
Selection (Eds., T. J. Santner and A. C. Tamhane), pp. 287-302, Marcel
Dekker. New York.

Edgeworth expansions in statistics: some recent developments (with S.
S. Gupta), In Colloquia Mathematica Societatis Jdnos Bolyai: 84. Limit
Theorems in Probability and Statistics, Vol. I (Ed., P. Révész), pp. 519-
565, North-Holland Publishing Company. Amsterdam.

1985

On the distribution of the studentized maximum of equally correlated nor-
mal random variables (with S. S. Gupta and J. K. Sohn), Communications
in Statistics—Simulation and Computation, 14, 103-135.

Subset selection procedures: review and assessment (with S. S. Gupta),
American Journal of Mathematical and Management Sciences, 5, 235-
311.

Shanti S. Gupta: an appreciation (with T. J. Santner), American Journal
of Mathematical and Management Sciences, 5. 347-369.

Estimation after subset selection from exponential populations (with S.
Jeyaratnam), Communications in Statistics-—Theory and Methods, 15,
3459-3473.

1986
Estimation of Pr(X > Y) for gamma distributions (with R. Ismail and
S. Jeyaratnam), Journal of Statistical Computation and Simulation, 26
253-267.

1987
Statistical selection procedures in multivariate models (with S. S. Gupta),

In Advances in Multivariate Statistical Analysis (Ed., A. K. Gupta), pp.
141-160, D. Reidel Publishing Company. Dordrecht, Holland.



Publications xxiii

33.

34.

35.

36.

37.

38.

39.

40.

1988

Inference about the change-point in a sequence of random variables: a
selection approach (with T. Liang), In Statistical Decision Theory and
Related Topics-IV (Eds., S. S. Gupta and J.O. Berger), Vol. 2, pp. 79-87,
Springer-Verlag, New York.

Selection and ranking procedures in reliability models (with S. S. Gupta),
In Handbook of Statistics 7: Quality Control and Reliability (Eds., P.
R. Krishnaiah and C. R. Rao), pp. 131-156, North-Holland Publishing
Company, Amsterdam.

Prediction intervals for balanced one-factor random models (with S. Je-
yaratnam), In Probability and Statistics: Essays in Honor of F. A. Gray-
bill (Ed., J. N. Srivastava), pp. 161-170, North-Holland Publishing Com-
pany, Amsterdam.

Selection from uniform populations based on sample midranges and an
associated estimation after selection (with S. Jeyaratnam), Communica-
tions in Statistics—Theory and Methods, 17, 2303-2314.

Prediction intervals for the random intercept linear model (with S. Je-
yaratnam), Communications in Statistics— Theory and Methods, 17, 3067-
3073.

1989

Entropy based subset selection from Bernoulli populations (with S. Je-
yaratnam), In Computing and Information (Eds., R. Janicki and W. W.
Koczkodaj), Vol. II, pp. 202-204, Canadian Scholars’ Press Inc., Toronto.

1990

Preliminary test based sometimes-pool estimator of the Bernoulli entropy
function (with S. Jeyaratnam), In Advances in Computing and Informa-
tion (Eds., S. G. Akl, F. Fiala and W. W. Koczkodaj), pp. 16-18, Cana-
dian Scholars’ Press Inc., Toronto.

1991
On sequential ranking and selection procedures (with S. S. Gupta), In

Handbook of Sequential Analysis (Eds., B. K. Ghosh and P. K. Sen), pp.
363-380, Marcel Dekker, New York.



xxiv

41.

42.

43.

44.

45.

46.

47.

48.

49.

S. Panchapakesan

An empirical Bayes procedure for selecting the most homogeneous multi-
nomial population according to the Gini-Simpson index (with T. Liang),
In The Proceedings of the 1990 Taipei Symposium in Statistics (Eds., M.
T. Chao and P. E. Cheng). pp. 447-460, Institute of Statistical Science,
Academia Sinica, Taipei, Taiwan.

1992

Ranking and selection procedures, In Handbook of the Logistic Distribu-
tion (Ed., N. Balakrishnan), pp. 145-167, Marcel Dekker, New York.

On a monotone empirical Bayes test procedure in geometric model (with
T. Liang), Annals of the Institute of Statistical Mathematics, 44, 133-140.

Isotonic selection with respect to a control: A Bayesian approach (with
T. Liang), In The Frontiers of Modern Statistical Inference Procedures, IT
(Eds., E. Bofinger et al.), pp. 273-285, American Sciences Press, Syracuse,
New York.

1993

A two-stage procedure for selecting §*-optimal guaranteed lifetimes in the
two-parameter exponential model (with T. Liang), In Multiple Compar-
isons, Selection, and Applications in Biometry: A Festschrift in Honor
of Charles W. Dunnett (Ed., F. M. Hoppe), Chapter 20, pp. 353-365,
Marcel Dekker, New York.

Selection and screening procedures in multivariate analysis (with S. S.
Gupta), In Multivariate Analysis: Future Directions (Ed., C. R. Rao),
North-Holland Series in Statistics and Probability. Vol. 5, Chapter 12,
pp. 223-262. Elsevier Science Publishers, Amsterdam.

Robustness of selection procedures: an overview, In Selection Procedures
I: Proceedings of the 3rd Schwerin Conference on Mathematical Statistics
(Eds., G. Herrendorfer and K. J. Miescke), pp. 134-146, Agricultural
University, Dummerstorf-Rostock, Germany.

Multistage subset selection procedures for normal populations and asso-
ciated second-order asymptotics (with N. Mukhopadhyay), Metron, 21,
25-42.

1994

An integrated formulation for selecting the best normal population and
eliminating bad ones (with P. Chen). In Compstat 1994 (Eds., R. Dutter
and W. Grossman). pp. 18-19, University of Technology and University
of Vienna, Vienna, Austria.



Publications XXV

50.

ol.

92.

53.

54.

395.

56.

57.

58.

59.

Selecting among the multinomial losers (with P. Chen and M. Sobel),
Sequential Analysis, 13, 177-200.

1995

Estimation of the location and scale parameters of the extreme value
distribution based on multiply type-II censored samples (with N. Bal-
akrishnan and S. S. Gupta), Communications in Statistics—Theory and
Methods, 24, 2105-2125.

Estimation of the mean and standard deviation of the logistic distribution
based on multiply type-II censored samples (with N. Balakrishnan and S.
S. Gupta), Statistics, 27, 127-142.

Selection of the normal population with the largest absolute mean, In
Bulletin of the International Statistical Institute, Contributed Papers of
the 50th Session, Book 2, pp. 955-956.

Selection and ranking procedures, In The Ezponential Distribution: The-
ory, Methods and Applications (Eds., N. Balakrishnan and A. P. Basu).
Chapter 16. pp. 259278, Gordon and Breach Science Publishers, Newark,
New Jersey.

Exponential classification and applications (with N. Balakrishnan and Q.
Zhang), In The Exponential Distribution: Theory, Methods and Applica-
tions (Eds., N. Balakrishnan and A. P. Basu), Chapter 32, pp. 525-546,
Gordon and Breach Science Publishers, Newark, New Jersey.

Multiple decision procedures in analysis of variance and regression anal-
ysis (with S. S. Gupta and D.-Y. Huang), Technical Report No. 95-44c,
Department of Statistics, Purdue University, West Lafayette, Indiana.

1996

A review of robustness of selection procedures, Journal of Statistical Plan-
ning and Inference, 54, 279-290.

Design of experiments with selection and ranking goals (with S. S. Gupta),
In Handbook of Statistics 13: Design and Analysis of Ezperiments (Eds.,
S. Ghosh and C. R. Rao), Chapter 17, pp. 555-585, Elsevier Science
Publishers, Amsterdam.

d-exceedance records (with N. Balakrishnan and K. Balasubramanian),
Journal of Applied Statistical Sciences, 4, 123-132.



xxvi

60.

61.

62.

63.

64.

65.

66.

S. Panchapakesan

1997

An integrated formulation for selecting the best from several normal pop-
ulations in terms of the absolute values of their means: common known
variance case (with S. Jeyaratnam), In Advances in Statistical Decision
Theory and Applications (Eds.. S. Panchapakesan and N. Balakrishnan),
Chapter 19. pp. 277-289, Birkhauser, Boston.

1998

Inverse sampling procedures to test for homogeneity in a multinomial
distribution (with A. Childs, B. H. Humphrey and N. Balakrishnan), In
Handbook of Statistics 17: Order Statistics and Their Applications (Eds.,
N. Balakrishnan and C.R. Rao), Chapter 14. pp. 259-265, Elsevier Science
Publishers. Amsterdam.

A two-stage procedure for selecting from normal populations the one with
the largest absolute mean: common unknown variance case (with S. Je-
yaratnam), In Proceedings of the 3rd St. Petersburg Workshop on Sim-
ulation (Eds., S. M. Ermakov, Y. N. Kashtanov and V. B. Melas), pp.
259-265. Saint Petersburg University Press, St. Petersburg, Russia.

2000

Selecting from normal populations the one with the largest absolute mean:
common unknown variance case (with S. Jeyaratnam), In Advances in
Stochastic Simulation Methods (Eds., N. Balakrishnan, S. M. Ermakov
and V. B. Melas), Chapter 16, pp. 283-292, Birkhauser, Boston.

2001

Simultaneous selection of extreme populations from a set of two-parameter
exponential populations (with K. Hussein), In Handbook of Statistics 20:
Advances in Reliability (Eds., N. Balakrishnan and C. R. Rao), Chapter
33, pp. 813-830, Elsevier Science Publishers. Amsterdam.

2002

On selection from normal populations in terms of the absolute values of
their means (with K. Hussein), In Advances on Theoretical and Method-
ological Aspects of Probability and Statistics (Ed. N. Balakrishnan), Chap-
ter 25, pp. 371-390, Taylor and Francis Publishers, New York.

Selecting the normal population with the largest mean: a restricted subset
selection rule (with L. Hsu), In Statistical Methods and Practice: Recent
Advances (Eds., N. Balakrishnan, N. Kannan and M.R. Srinivasan), pp.
145-161, Narosa Publishing House, New Delhi, India.



Publications xxvii

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

Estimation of the mean and standard deviation of the normal distribution
based on multiply type-II censored samples (with N. Balakrishnan and S.
S. Gupta), Journal of Statistical Studies, Special Volume in honor of Mir
Masoom Ali (Ed., M. F. Hossain), pp. 307-320.

Professor Shanti Swarup Gupta (with T. J. Santner), American Journal
of Mathematical and Management Sciences, 22, 173-198.

2003

Sequential procedures for selecting the most probable multinomial cell
when a nuisance cell is present (with M. Aoshima and P. Chen), Commu-
nications in Statistics— Theory and Methods, 32, 893--906.

2004

Detecting signals simultaneously at k sites (with P. Chen), Communica-
tions in Statistics—Theory and Methods. 33, 1667-1688.

Selection procedures for type I extreme value populations in terms of
location parameters and a related homogeneity test (with S. Jeyaratnam),
In Extreme Value Distributions: Theory, Methods and Applications (Ed.,
N. Balakrishnan), Taylor and Francis Publishers, New York (to appear).

Gupta, Shanti Swarup, In Encyclopedia of Statistical Sciences, Second
Edition (Eds., N. Balakrishnan, C. B. Read and B. Vidakovic), John
Wiley & Sons, New York (to appear).

Signal Processing, Selection approaches in (with P. Chen), In Encyclopedia
of Statistical Sciences, Second Edition (Eds., N. Balakrishnan, C. B. Read
and B. Vidakovic), John Wiley & Sons, New York (to appear).

Ranking and Selection procedures, In Encyclopedia of Statistical Sciences,
Second Edition (Eds., N. Balakrishnan, C. B. Read and B. Vidakovic),
John Wiley & Sons, New York (to appear).

On some variable selection procedures based on data for regression models
(with D.-Y. Huang and R.-F. Lee), Journal of Statistical Planning and
Inference (to appear).

A monotonicity property for gamma distributions (with G.C. McDonald),
Journal of Statistical Planning and Inference (to appear).

A nonparametric procedure based on early failures for selecting the best
population using a test for equality (with H. K.T. Ng and N. Balakrish-
nan), Journal of Statistical Planning and Inference (to appear).



xxviii S. Panchapakesan

78. A restricted subset selection procedure for selecting in terms of means at
least one of the t best from k normal populations with common known
variance (with L. Hsu). In this volume.

79. Restricted subset selection procedures for normal means: A brief review
with a fresh look at the classical formulation of Bechhofer and Gupta,
Commaunications in Statistics— Theory and Methods (to appear).

80. A restricted subset selection procedure for selecting in terms of means at
least one of the ¢ best from k normal populations with common known
variance, II (with L. Hsu), Under preparation.

Book Reviews

1. Selecting and Ordering Populations: A New Statistical Methodology, by
J. D. Gibbons, I. Olkin and M. Sobel (John Wiley & Sons), Journal of
Qualtiy Technology, 12 (1980), 239-240.

2. The Complete Categorized Guide to Statistical Selection and Ranking Pro-
cedures, by E. J. Dudewicz and J. O. Koo (American Sciences Press),
Mathematical Reviews, 84g (1984).

3. Selected Tables in Mathematical Statistics, Volume 11, Eds., R. F. Odeh,
J. M. Davenport and N. S. Pearson (American Mathematical Society),
Mathematical Computation, 51 (1989), 252-253.

4. Modern Mathematical Statistics, by E. J. Dudewicz and S. N. Mishra
(John Wiley & Sons), Mathematical Reviews, 89g:62002 (1989).

5. Fundamentals of Mathematical Statistics, Vol. I: Probability for Statistics,
Vol. II: Statistical Inference, by H.T. Nguyen and C. S. Rogers (Springer-
Verlag), Mathematical Reviews, 90i:62003a,b (1990).

6. A Statistical Model: Frederic Mosteller’s Contributions to Statistics, Sci-
ence, and Public Policy, Eds., S. E. Fienberg, D. C. Hoaglin, W. H.
Kruskal and J. M. Tanur (Springer-Verlag), Mathematical Reviews,
92a:01079 (1992).

7. A First Course in Order Statistics, by B. C. Arnold, N. Balakrishnan and
H. N. Nagaraja (John Wiley & Sons). Mathematical Reviews, 94a:62076
(1994).

8. Multistage Selection and Ranking Procedures, by N. Mukhopadhyay and
T. K. S. Solanky (Marcel Dekker), Mathematical Reviews, 95h:62032
(1995).



Publications xxix

10.

11.

12.

13.

Measurement, Regression. and Calibration, by P.J. Brown (Oxford Uni-
versity Press). SIAM Review, 37 (1995), 635-636.

Design and Analysis of Experiments for Statistical Selection, Screening,
and Multiple Comparisons, by R. E. Bechhofer, T. J. Santner and D.
M. Goldsman (John Wiley & Sons), Mathematical Reviews, 96k:62001
(1996).

Theory of Statistics, by M. J. Schervish (Springer-Verlag), Mathematical
Reviews, 96m:62001 (1996).

Tables for the Use of Order Statistics in Estimation, by H. L. Harter and
N. Balakrishnan (CRC Press), Mathematical Reviews, 97d:62097 (1997).

Robust Diagnostic Regression Analysis, by A. Atkinson and M. Riani
(Springer-Verlag), Mathematical Reviews, 2003a:62001 (2003).



Contributors

Aoshima, Makoto Institute of Mathematics, University of Tsukuba, Ibaraki
305-8571, Japan
aoshima@math.tsukuba.ac. jp

Balakrishnan, N. Department of Mathematics and Statistics, McMaster
University, Hamilton, Ontario, Canada L8S 4K1
bala@univmail.cis.mcmaster.ca

Chen, Pinyuen Department of Mathematics, Syracuse University, Syracuse,
NY 13244-1150 U.S.A.
Pinchen@syr.edu

Choudhary, Pankaj K. Department of Mathematical Sciences, University
of Texas at Dallas, Richardson, TX 75083-0588 U.S.A.
pankajQutdallas.edu

Cicconetti, Greg Department of Mathematical Sciences, Muhlenberg Col-
lege, Allentown, PA 18104 U.S.A.
cicconet@muhlenberg.edu

Dey, Dipak K. Department of Statistics, University of Connecticut, Storrs,
CT 06269 U.S.A.
dey@stat.uconn.edu

Dhariyal, Ishwari D. Department of Mathematics, Indian Institute of Tech-
nology Kanpur, Kanpur 208 016, India
idd@iitk.ac.in

Dohi, T. Department of Information Engineering, Hiroshima University, 4-1

Kagamiyama 1 Chome, Higashi-Hiroshima 739-8527, Japan
dohi@rel.hiroshima-u.ac.jp

xXxx1



xxxii Contributors

Ghosh, Samiran Department of Statistics, University of Connecticut, Storrs,
CT 06269 U.S.A.

samiran-g@msn.com

Hayter, Anthony J. School of Industrial and Systems Engineering, Geor-
gia Institute of Technology, Atlanta, GA 30332 U.S.A.
ajh@isye.gatech.edu

Hsu, Lifang Department of Mathematics, LeMoyne College, Syracuse, NY
13214 U.S.A.

hsu@lemoyne.edu

Huang, Deng-Yuan Department of Business Administration, Fu-Jen
Catholic University, Taipei, Taiwan, R.O.C.
xz028554Qispeed.com. tw

Huang, Wen-Tao Department of Management Sciences and Decision Mak-
ing, Tamkang University, Tamsui, Taipei, Taiwan, R.O.C.
wentao@mail.tku.edu.tw

Indurkhya, Alka Department of Society, Human Development and Health,
Harvard School of Public Health, Harvard University, Boston, MA 02115
U.S.A.

aindurkh@hsph.harvard.edu

Kaio, N. Department of Economic Informatics, Hiroshima Shudo University,
1-1-1 Ozukahigashi, Asaminami-ku, Hiroshima 731-3195, Japan

Kim, J.-A. Department of Mathematics and Statistics, McMaster Univer-
sity, Hamilton, Ontario, Canada L8S 4K1
kimja3Qunivmail.cis.mcmaster.ca

Kundu, Debasis Department of Mathematics, Indian Institute of Technol-
ogy Kanpur, Kanpur 208 016, India
kundu@iitk.ac.in

Kushida, Takuya Graduate School of Pure and Applied Sciences, Univer-
sity of Tsukuba, Ibaraki 305-8571, Japan
kushidai9512@nissay.co. jp

Lai, Yao-Tsung Department of Mathematical Statistics and Actuarial Sci-
ence, Aletheia University, Tamsui, Taipei. Taiwan, R.O.C.

Lee, Ren-Fen National Kaohsiung University of Applied Sciences, Kaohsi-
ung, Taiwan, R.O.C.



Contributors xxxiii

Liang, Tachen Department of Mathematics, Wayne State University, De-
troit, MI 48202 U.S.A.
liang@math.wayne.edu

Mallick, Madhuja Department of Statistics, University of Connecticut,
Storrs, CT 06269 U.S.A.
madhujamallick@hotmail.com

Misra, Neeraj Department of Mathematics, Indian Institute of Technology
Kanpur, Kanpur 208 016, India
neeraj@iitk.ac.in

Mukhopadhyay, Nitis Department of Statistics, University of Connecti-
cut, Storrs, CT 06269-4120 U.S.A.

nmukhop@uconnvm.uconn.edu

Nagaraja, H. N. Department of Statistics, The Ohio State University,
Columbus, OH 43210-1247 U.S.A.
hnn@stat.ohio-state.edu

Osaki, S. Department of Information and Telecommunication Engineering,
Nanzan University, Nagoya, Japan
osaki@nanzan-u.ac. jp

Panchapakesan, S. Department of Mathematics, Southern Illinois Univer-
sity, Carbondale, IL 62901-4408 U.S.A.

spkesan@yahoo.com

Patra, Kaushik Department of Statistics, University of Connecticut, Storrs,
CT 06269-4120 U.S.A.

Raghavachari, M. Decision Sciences and Engineering Systems, Rensselaer
Polytechnic Institute, Troy, NY 12180 U.S.A.
ragavm@rpi.edu

Rao, C.R. Department of Statistics, Pennsylvania State University, State
College, PA 16802 U.S.A.

crri@psu.edu

Ravishanker, Nalini Department of Statistics, University of Connecticut,
Storrs, CT 06269-4120 U.S.A.
nalini@stat.uconn.edu

Rollin, Linda Richard L. Gelb Center for Pharmaceutical Research and De-
velopment, Bristol-Myers Squibb Company, Wallingford, CT 06492-7660
U.S.A.

Linda.rollin@bms.com



xxxiv Contributors

Roy, Supratik Department of Statistics, University College of Cork, Cork,
Republic of Ireland
supratik@stat.ucc.ie

Sampson, Allan R. Department of Statistics, University of Pittsburgh,
Pittsburgh, PA 15260 U.S.A.
asampson@pitt.edu

SenGupta, Ashis Applied Statistics Division, Indian Statistical Institute,
Kolkata 700 035, India

ashis@isical.ac.in

Tamhane, Ajit C. Department of IE/MS and Department of Statistics,
Northwestern University, Evanston, IL 60208 U.S.A.
ajit@iems.northwestern.edu

Yothers, Greg National Surgical Adjuvant Breast and Bowel Project
(NSABP), Pittsburgh, PA 51213 U.S.A.
Yothers@nsabp.pitt.edu



List of Tables

Table 2.1

Table 2.2
Table 2.3

Table 3.1
Table 3.2

Table 3.3
Table 3.4

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 5.1

Table 6.1
Table 6.2

Simulated progressively Type-II censored samples from a
bivariate normal distribution

Information about p

Trace of variance-covariance matrix

Minimum subset size, & = 0.05, N = 10,000

Selected type I error rates for the 0.05 level ¢-upper and
Z approximations to critical p-value for the t-test
Half-intervals, a = 0.05, N = 10,000

P-values of the t-test comparing all patients no older than
age 36

The probability of correct selection based on Monte Carlo
simulations (MC) with 10,000 replications and also based
on the asymptotic results (AR) when the true model is
normal

The probability of correct selection based on Monte Carlo
simulations (MC), the asymptotic results (AS) and bias
corrected asymptotic results (BC) with 10,000 replica-
tions and when the true model is Laplace

The observed and the expected frequencies for the normal
and Laplace distributions for data set 1

The observed and the expected frequencies for the normal
and Laplace distributions for data set 2

Comparison of Fisher’s and chord-based rules

Questionnaire
Orthogonal design

XXXV

32

37
38

52
54

56
61

73

74

76

78

88

95
96



XXXVi

Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 6.7
Table 6.8
Table 6.9
Table 6.10
Table 6.11
Table 6.12
Table 6.13
Table 6.14
Table 6.15

Table 6.16
Table 6.17
Table 6.18

Table 7.1

Table 7.2
Table 7.3

Table 10.1
Table 10.2
Table 10.3

Table 11.1

Table 11.2

Table 12.1
Table 12.2
Table 12.3
Table 12.4
Table 12.5
Table 12.6

Table 13.1
Table 13.2
Table 13.3

Ranks assigned to the stimuli listed in Table 6.1
Responder A’s Spearman p

Results for responder A

Questionnaire

Orthogonal design

Rank order given to stimuli in Table 6.6
Results for responder B

Questionnaire

Rank orders (or scores) for responder C

Results for responder C

Questionnaire

Orthogonal design

The ranks assigned by responder D to the stimuli in Table
6.13

Interaction effects between price and seal
Responder D’s Spearman p

Results for responder D

Values of A* = V28 g0 rule Ryp

Values of A* = Y22 for rule Rps
Values of e(P*, k,t,m, c) defined in (7.20)

Insertion gain (yi;x) in decibels
Analysis of variance
Cell means §;;., cell variances s?j and z;; = In s?j

Comparison of familywise error rate using bootstrap pro-
cedures in the presence of missing data

Comparison of familywise error rate using bootstrap pro-
cedures after imputation of missing data

Values of a and aGy(a)/Gp(a) in (12.12)
Values of t, for MCA and MCC when a = .10
Values of t, for MCB when a = .10

Simulated results for MCA

Simulated results for MCB

Simulated results for MCC

ANOVA table for estimating the ICC p; of (13.4)
Summary of various approaches for assessing agreement
Estimates of various measures of agreement and their 95%
CI’s

Tables

96
101
102
103
104
104
106
107
107
109
110
111
111

112
115
116

124

126
127

167
171
175

187

188

196
197
198
202
203
204

223
231
235



Tables

Table 14.1

Table 14.2

Table 15.1

Table 15.2

Table 15.3

Table 15.4

Table 15.5

Table 15.6

Table 16.1
Table 16.2

Table 16.3

Table 16.4

Table 16.5

Table 16.6

Table 16.7

Table 16.8

Table 16.9

Table of ag-’) values for the data [see (14.19)]
Table for the data: Spearman case

Dependence of failure parameter a on the optimal policy
in continuous time: k; = 0.1, k; = 0.05, k,, = 0.01,
c1=2,¢c=1,¢c3=3, u; =0.01, up =0.02, 3 =2.0
Dependence of failure parameter 3 on the optimal policy
in continuous time: k; = 0.1, k; = 0.05, k,, = 0.01,
c1=2,c=1,c3=3, uy =0.01, yg =0.02, o = 1600
Dependence of cost parameter ¢3 on the optimal policy in
continuous time: k; = 0.1, ks = 0.05, k,, = 0.01, ¢; = 2,
ca =1, p1 = 0.01, g = 0.02, @ = 1600, 8 = 2.0
Dependence of failure parameter ¢ on the optimal policy
in discrete time: k; = 0.1, ks = 0.05, k,, = 0.01, ¢; = 2,
c=1¢3 = 3, n = 0.1, P2 = 0.2, ﬂ =20

Dependence of failure parameter 8 on the optimal policy
in discrete time: k; = 0.1, k, = 0.05, k,, = 0.01, ¢; = 2,
co=1,¢c3=3,p1 =0.1, po = 0.2, ¢ = 0.999

Dependence of cost parameter ¢z on the optimal policy
in discrete time: k; = 0.1, k, = 0.05, k,, = 0.01, ¢; = 2,
ca=1,p =0.1,p3 =02, ¢g=0.999, =20

Comparisons of the estimators of A;

Summary for estimation of the mean A; = 5, m* = 100,
M=5k=5A=1

Comparisons of invariance-based estimators and Taylored
estimators: m* =100, \; =5, k=5, A=1

Summary for estimation of the mean A\; = 5,m* = 100,
AM=5k=10,A=1

Comparisons of invariance-based estimators and Taylored
estimators: m* =100, \; =5, k=10, A=1
Performance of templates and A-estimators seen through
the average values (7 — 1) x 10%; m* = n* = 50, \; =
Ae=5,k=5

Performance of templates and A-estimators seen through
the average values (7 — 1) x 10%; m* = n* = 50, A\; =
A=5k=10

Estimators of Aj, Ag,6(t) for Proschan’s (1963) air-
conditioner dataset

Estimators of 7xy(t) for Proschan’s (1963) air-
conditioner dataset

xxxvii

257

257

293

293

293

294

294

204

309
313

313

315

315

321

321

327

328



xxxviii Tables

Table 18.1 Posterior estimates of Model 1 parameters 360
Table 18.2 Posterior estimates of Model 2 parameters 361
Table 19.1 Posterior summary of model parameters 378
Table 20.1 Design parameters for procedure Pyy 404
Table 20.2 (h, g) value for Taneja and Dudewicz’s procedure 406

Table 20.3 Comparison of sample sizes for Taneja and Dudewicz’s 407
two-stage selection procedure and procedure Pyy at a =
.05, 6; =0.00, 83 = 0.20, and 0; = 0.5 x 4,8 =1,...,k



List of Figures

Figure 4.1
Figure 4.2
Figure 10.1
Figure 10.2

Figure 10.3
Figure 10.4

Figure 11.1

Figure 11.2

Figure 13.1

Figure 15.1
Figure 15.2
Figure 15.3

Figure 15.4

Empirical survival function, fitted normal and fitted
Laplace survival functions for data set 1
Empirical survival function, fitted normal and fitted
Laplace survival functions for data set 2

Box plots of median-centered insertion gains for subjects
Run chart of insertion gains for subject 3
Run chart of insertion gains for subject 6
Box plots of median-centered insertion gains for methods

Algorithm for the SD bootstrap procedure to estimate
the therapeutic window
Principle of multiple imputation

The scatter plot and the mean versus difference plot (or
the Bland-Altman plot) of the plasma volume measure-
ments

Configuration of order-replacement model in continuous
time
Configuration of order-inspection model in continuous
time
Configuration of order-replacement model in discrete
time
Configuration of order-inspection model in discrete time

XXXiX

75
(i
169
169

170
170

184

186

233

272

279

282

288



x|

Figure 16.1

Figure 16.2

Figure 16.3

Figure 16.4

Figure 16.5

Figure 16.6

Figure 18.1

Figure 18.2
Figure 18.3

Figure 18.4
Figure 18.5
Figure 18.6

Figures

Performance of template estimators for the one-sample
problem. Triangles: Invariance-Based (9; x,1=1,2,3,4;
Circles: Taylored §;x, 1 = 1,2,3,4, corresponding to es-
timators based on t for which 6x = 0.875 and 0.75, re-
spectively

Performance of template estimators for the one-sample
problem. Tria.ngle§: Invariance-Based 6;x, i = 1,2,3,4;
Circles: Taylored 8}y, i = 1,2,3,4, corresponding to es-
timators based on t for which 8y = 0.25 and 0.625, re-
spectively

Performance of template estimators for the two sample
problem ¢ is chosen such that fx (t) = 8y (¢) = 0.875; Tri-
angles: Invariance-based estimators, ¢ = 1,2, 3, 4; Circles:
Univariate Taylored estimators, i = 1,2,3,4; Squares:
Bivariate Taylored estimators, i = 1,2,3,4

Performance of template estimators for the two sample
problem ¢ is chosen such that 8x (t) = 8y (t) = 0.75; Tri-
angles: Invariance-based estimators, ¢ = 1, 2, 3, 4; Circles:
Univariate Taylored estimators, i = 1,2,3,4; Squares:
Bivariate Taylored estimators, i = 1.2,3,4

Performance of template estimators for the two sample
problem ¢ is chosen such that 8x (t) = 8y (t) = 0.50; Tri-
angles: Invariance-based estimators, i = 1, 2, 3, 4; Circles:
Univariate Taylored estimators, i = 1,2,3,4; Squares:
Bivariate Taylored estimators, i = 1,2.3,4

Performance of template estimators for the two sample
problem ¢t is chosen such that 6x (t) = 0y (t) = 0.25; Tri-
angles: Invariance-based estimators, ¢ = 1,2, 3, 4; Circles:
Univariate Taylored estimators, ¢ = 1,2,3,4; Squares:
Bivariate Taylored estimators, i = 1,2,3,4

Kaplan-Meier estimate of CDF for individual and com-
bined group

Posterior distribution of Model 1 parameters

Estimated CDF for model 1. Top left (Figure 18.3a) for
no-prior group. Top right (Figure 18.3b) for prior group.
Bottom (Figure 18.3¢) for combined group

Posterior distribution of Model 2 parameters

Estimated CDF for combined sample from model 2
Histogram of censored and uncensored observations for
No-Prior group

312

314

323

323

324

325

357

362
363

365
366
367



Figures xli

Figure 19.1 Estimated cross-ratio function of male patients for the 380
PVF frailty

Figure 19.2 Estimated cross-ratio function of male patients for the 381
positive stable frailty



Advances in Ranking and Selection,
Multiple Comparisons, and Reliability



PART 1
INFERENCE



1

Score Test: Historical Review and Recent
Developments

C.R. Rao

Department of Statistics, Pennsylvania State University, State College,
Pennsylvania, U.S.A.

Abstract: The three asymptotic tests, Neyman and Pearson Likelihood Ratio
(LR), Wald’s statistic (W) and Rao’s score (RS)are referred to in statistical
literature on testing of hypotheses as the Holy Trinity. All these tests are
equivalent to the first-order of asymptotics, but differ to some extent in the
second-order properties. Some of the merits and defects of these tests are
presented.

Some applications of the score test, recent developments on refining the
score test and problems for further investigation are presented.

Keywords and phrases: Composite hypothesis, Lagrangian multiplier (LM)
test, Likelihood ratio (LR), Neyman’s C(a), Neyman-Rao test, Rao’s score
(RS), Wald’s statistic (W)

1.1 Introduction

The Score test was introduced in Rao (1948) as an alternative to the likelihood
ratio test of Neyman and Pearson (1928) and Wald (1943) test. A few years
later Aitchison and Silvey (1958) and Silvey (1959) gave an interpretation of the
score statistic in terms of a Lagrangian Multiplier used in optimizing a function
subject to restrictions, and called it the Lagrangian Multiplier (LM) test.

The score (RS) test went unnoticed for a number of years after it was intro-
duced. The first application of the score test. apart from the examples given
in Rao (1948, 1950, 1961) appeared in econometric literature [Byron (1968)].
During the late 1970s and 1980s, the RS test was applied to a variety of prob-
lems in econometrics. Reference may be made to survey papers by Breusch
and Pagan (1980), Engle (1984). Kramer and Sonnberger (1986). and Godfrey
(1988). Most of the recent textbooks on econometrics also discuss the RS test.
Some of them are by White (1984, pp. 72-74), Amemiya (1985, pp. 141-146),

3
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Judge et al. (1985. pp. 182-187), Kmenta (1986, pp. 493-495), Spanos (1986,
pp. 326-336), Maddala (1988, pp. 137-139), Green (1990, pp. 357-359), and
Harvey (1990, pp. 169-177).

The distributional aspects of the RS statistic are covered in books by Rao
(1973, pp. 418-419), Serfling (1980, pp. 156-160), Godfrey (1988, pp. 13-15),
Lehmann (1999, pp. 451, 529, 532, 534, 539, 541, 570), and Bickel and Doksum
(2001. pp. 335-336. 399-402).

The study of the power properties of the RS test started with a paper by
Chandra and Joshi (1983) and continued by Chandra and Mukherjee (1984,
1985), Chandra and Samanta (1988), Ghosh (1991) and others. Reference may
be made to Peers (1971) for a comment on a conjecture I made about the
local properties of the LR test, which motivated the work of others on power
properties.

In this chapter, a brief review is given of the RS statistic and its merits and
demerits in terms of power properties compared to LR and W are discussed.
Some of the recent developments and refinements and modifications of the RS
statistic are presented and some problems for future research are indicated.

1.2 Asymptotic Tests of a Simple Hypothesis

1.2.1 Notation

Let X = (z;.....7,) be an iid sample of size n from the density function p(z, 8)
where 6 is a p-vector parameter, and denote the joint density by P(X,0) =
p(z1,0) ...p(x,,0) and the log likelihood by L(#|X) = logP(X,8). The score
vector of p components, as defined by Fisher, is

1 0P

s(0) = 9" (51(6)....,5p(8)), (1.1)
si(6) = —Ilggg i=1,...,p

The Fisher information matrix of order p x p is defined by
ni(6) = 1(6) = E[s(6)s'(6)] = (irs(6)) (1.2)

where i,4(0) = E [s,(8)s4(8)]. The maximum likelihood estimate of § is obtained
as a solution of the p equations

Si(o) = 0, i=1,.... P (13)

which we represent by §. Under suitable regularity conditions [Lehmann (1999,
pp. 499-501)], using the multivariate cental limit theorem

n~125(8) ~ N, (0,i(6p)) (1.4)
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where §; is the true value, and
n'/2 (6.~ 60 ) ~ N (0, [i(60)) ") (1.5)

where N,(0, A) is a p variate normal distribution with -mean zero and covariance
matrix A.

1.2.2 Three possible tests of a simple hypothesis:
The Holy Trinity

Let Hy : 6 = 6, (a specified p-vector) be the null hypothesis to be tested. Three
tests which are in current use are as follows.

1. Likelihood ratio test [Neyman and Pearson (1928)]

LR=2 [L(élX) - L(GOIX)] (1.6)
where L(0]X) = log P(X.9).
2. Wald test [Wald (1943)]
W = (6 - 60)'1(6)(9 — 8). (1.7)
3. Rao Score test [Rao (1948)]
RS = [s(80)) [1(60)]™" [s(60)} (1.8)

All the three statistics known as the Holy Trinity have an asymptotic chi-square
distribution on p degrees of freedom.

1.2.3 Motivation for the score test of a simple hypothesis

Consider the case of a single parameter § and Hy : 8 = 6y. If w C R™ is the
critical region of size v in the sample space, then the power of the test is

(6) = / P(X,0)dv with 7(6,) = / P(X.80)dv = a.

S w

To find a locally most powerful one-sided test (# > 6y) we maximize

' (60) = / P/(X.80)do

subject to m(fy) = «. Using the Neyman-Pearson Lemma, the optimal region
is defined by
P'(z.8p)

P(I.GO)

> Xors(fy) > A
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where A is chosen such that the size of the region is a, as shown in Rao and
Poti (1946). The test can be written in the form

> A2, (1.9)

In the multiparameter case, the slope of the power function in the direction
a=(a1,...,ap), at by is

a151(60) + - - - + apsp(fo) = a’s(6p) (1.10)

and the statistic (1.9) takes the form

[as(60)]?
1@ (1.11)
Maximizing with respect to a yields the statistic
[5(80)]'[(80)) ™ 5(60)] (1.12)

which is the same as (1.8).

1.2.4 Test of a composite hypothesis

Under the same setup as in Section 1.2.1, let the hypothesis to be tested be
Hy : h(8) = ¢, where h is an r x 1 vector function of the p-vector § with p > r
and c is a given r-vector of constants. The corresponding Holy Trinity is as
follows:

1. Likelihood ratio test [Neyman and Pearson (1928)]
LR=2 [z(ém - z(é|X)] (1.13)

where @ is the ml of @ under the restriction h(f) = c.

2. Wald test [Wald (1943)]

w = [n(6) - | [40)] - () -] (1.14)
where

A(B) = HOIO) ' HO),
H(8) = (0hi(6)/06;) , h(6) = (h1(0). ... he(6))',

and I(6) is as defined in (1.2).
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3. Rao Score test [Rao (1948))]

RS = [s(8))'[16)) [s(9)] (1.15)

All the three statistics have an asymptotic chi-square distribution on r degrees
of freedom.

An alternative way of expressing the RS statistic is as follows. Note that 8,
the restricted ml of f, is a solution of the equation

s(8) + [H(O)'A =0, h(8) = ¢

where ) is an r-vector of the Lagrangian Multiplier so that [s(8)]' = —X'H(8).
Substituting in (1.15) we have

RS = NH(O)[I(6))"[H(8)]'A = N[A(8)]A (1.16)

where A(f) is as defined in (1.14). Silvey (1959) expressed the RS statistic
(1.15) in the form (1.16) and called it the Lagrangian Multiplier (LM) test. (In
econometric literature, the RS test is generally referred to as the LM test.)

1.2.5 Special form of composite hypothesis

In many problems, the p-vector parameter 6 consists of two parts, 8; an r vector
and 62 a (p — r) vector and the null hypothesis is of the form Hy : 6; = 619
(a specified vector) and 6, (known as a nuisance parameter) is arbitrary. This
becomes a special case of the composite hypothesis considered in Subsection
1.2.4 if we take h(#) = 6. Denote the unrestricted ml of (6;,6;) by (6;,6,) and
its asymptotic covariance matrix by

cov(8,0) = [1(6)]™*
_ 111(0) 112(0) _1_ A B
—<121(0) 122(0)) —<B’ C>

where the partitions of the information matrix, Iyy. I12. and Iy; are matrices of

orders r x v, r x (p —r) and (p — r) x (p — r), respectively, The Wald statistic
can be written as

010)1 A = A(é)

W = (6; — 630) A=Y (6, —
'I,.2(6)(6; — 619) (1.17)

= (6) - 610)
where
Lo =In - Il

the Schur complement of Iy;.
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To compute LR and RS statistics, we need to find the restricted ml estimates
of 61,0 under the restriction 6; = 6,9. Using the Lagrangian multiplier we have
to maximize

L(8lz) — A(61 — 610)

with respect to f. The estimating equations are
31(0.) = /\, Sz(é) = 0, él = 010.

The Rao score statistic is

RS = [31(9:),’0,]’[1(9.)]—1[31@),»0']
[s1(0) [112(0)][s1(6)]
= X[L200)] '\ (1.18)
The LR statistic is
LR =2 {L(o‘) - L(é)] (1.19)

All the three statistics have asymptotically chi-square distribution on r d.f.

1.3 Neyman’s C(a) Test and Neyman-Rao Test

Neyman (1959, 1979) considered the problem of testing the hypothesis Hp :
6, = 61p (given) and fs,...,0, are arbitrary (nuisance) parameters. Hall and
Mathiason (1990) considered the more general problem of testing the composite
hypothesis

Hn:91 =910,...,9q=0q0 and 0q+1,...,9p

are arbitrary by generalizing Neyman’s results using the type of the argument
used in Rao (1948) as in Section 1.2.3. Consider the slope of the power curve
in the direction (a1,....a4,0,...,0)

a181+ - + g8,

where s; is the derivative of the log likelihood with respect to 8;, and define the
Neyman statistic N as

a1y + - +ay8,)?
N=ma,x(11+ a430)
a V((1181+"°+(lq5q)

(1.20)

subject to
cov(si, 0181 + - +aq8.) =0, i=q+1,...,p. (1.21)
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Using notation
S1 = (81,...,Sq),, 52 = (8q+1,...,$p)/,
a = (al,...,aq)',
E(S1Si) = I, E(S}Sé) = s, E(SQS&) = I99,
the problem (1.20), (1.21) can be written as

2

N(em, @2) = max(a SI)

1.22
a a'lja ( )

subject to Izya = 0, where ©19 = (b10,....040) .02 = (0g+1....,0p)". Using
standard algebra, the optimum N is obtained as

N(©10,03) = (81 — Naly! S5) (112) 181 — Thals' Sa) (1.23)

where 11'2 = 111 - 11212—21[21.
Neyman chose /n as the consistent estimate of ©; to obtain his statistic

N=N (em,éz) . (1.24)

This form of the N statistic, obtained as a generalization of Neyman’s single
parameter test, is called the Neyman-Rao test by Hall and Mathiason (1990).
The asymptotic distribution of N as in (1.24) is chi-square on ¢ degrees of
freedom. If ©, is estimated by the constrained ml method, the test reduces to
the RS test (1.19).

1.4 Some Examples of the RS Test

Godfrey (1988) gives a comprehensive account of the applications of the RS test
in econometrics. A few examples mentioned in the paper by Bera and Ullah
(1991) are as follows.

Chi-square goodness-of-fit: Given a parametric specification of the cell
probabilities in a multinomial distribution, Pearson developed the chi-square
goodness-of-fit test based on observed frequencies. This test can be seen to be
the RS test of a composite hypothesis [Rao (1948)].

Linear model: The analysis of the linear model y; = z/8 +¢€;, i = 1,...,n,
is based on four basic assumptions: correct linear functional form, normal-
ity of the distribution of the error term, homoscedasticity and serial indepen-
dence. The RS test for normality has been derived by Bera and Jarque (1981),
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for homoscedasticity by Breusch and Pagan (1979). for serial independence by
Breusch (1978) and Godfrey (1978a,b) and for linearity by Byron (1968).

For further examples and interpretation of several well-known tests in terms
of the score functions, reference may be made to Bera and Ullah (1991) and the
papers in the special issue on Rao’s score test, Vol. 97. pp. 1-200 of Journal of
Statistical Planning and Inference (2001).

1.5 Some Advantages of the RS Test

1. In general. it is simple to compute the RS statistic as it depends only on
estimates of parameters under Hy.

2. The test is invariant under transformation of the parameters, unlike the
Wald test (see Section 1.6 for examples). Transformation of parameters
may simplifv the estimation of parameters without effecting the value of
the statistic.

3. The RS test has the same local efficiency as the Wald and LR tests.

4. The distribution of RS is not affected by parameters being on the bound-
ary of the parameter space under Hy. In such a case the LR test, and in
some cases the W test, is not applicable.

5. There are situations where nuisance parameters are not identifiable under
Hj leading to singular information matrix. In such cases the RS test can
be suitably modified as illustrated in Davies (1977. 1987).

1.6 Some Anomalies

1.6.1 Behavior of the power function

The LR, W and RS tests are consistent in the sense that for a fixed alternative
to the null hypothesis the power tends to unity as the sample size n — oc.
However, for a fixed sample size, the power function may not be monotonically
increasing with increase in the distance (defined in some sense) of the alternative
hypothesis from the null.

Example 1.6.1 Let rq....,. rn be an iid sample from the Cauchy distribution
with density 7~![1 + (z — 6)?]~1.
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The RS test for Hy : § = 6y against the alternatives § > 6y rejects when

(zi ~ 6p)
Ugy- 1.25
\/72 1 + :I‘l — 90 ( )

As the alternative # — oo, min(z; — 6g) — oo in probability, so that for fixed
n, the left-hand side of (1.25) tends to zero. Since u, > 0 (for a < 1/2), the
power of the test as § — oo for fixed n tends to zero. [See Lehmann (1999, p.
532) for further details).

Example 1.6.2 Let x1,...,z, be independent binary response variables such
that
q -1
Plz;=1)= |1+exp (— Zﬂizzj)} Li=1,...,n, (1.26)
i=1
where z;1 = 1 and 2;,..., 2y are observations on g covariables. To test the

hypothesis Hp : 8, = 0 against the alternative H : G; # 0, the Wald statistic is
W = 32 /ig (1.27)

where 3, is the ml estimate of 8, and i, is the estimated variance of B,.
Hauck and Donner (1977) show that for fixed n, W — 0 as §; — oo for fixed
B1,- .-, B4-1, so that the power of the test decreases as 3, increases. For further
examples of such anamolies associated with Wald’s statistic, reference may be
made to Vaeth (1985) and Le Cam (1990).

The above examples do not contradict the claims made about RS and W
about the local power of the tests. Nonetheless, they suggest a caution in the
use of these tests [see Mantel (1987)]. It would be of interest to construct an

example of the type of anomaly noted above for the RS and W tests in the case
of the LR test.

1.6.2 Examples of non-invariance of the Wald test

The Wald test is not invariant for transformations of the parameter while the LR
and RS statistics are. Different choices of parameters using the Wald statistic
may lead to different inferences.

Example 1.6.3 Consider the likelihood P(X.6) based on observed data X

and a single unknown parameter 6. Let § be the ml estimate of 6 and I(8), the
estimated information.

The Wald statistic for testing the hypothesis Hy : 8 = 0 is

~

g+/1(6) (1.28)



12 : C. R. Rao

which is asymptotically distributed as N(0,1). An equivalent hypothesis is
Hp : 6° = 0 and the Wald test based on the parameter #° (using the d-method
to compute the variance of 3, Rao (1973, p. 388) is

(93/3(92) \/@ = g 1(6) (1.29)

which is asymptotically normal as N(0,1). The p-values based on (1.28) and
(1.29) can be quite different.

Example 1.6.4 [Gregory and Veal (1985)]. Consider the linear model
y=p0r+vyz+u, u~N(0,02) (1.30)

and tests based on n observations. Let 3 and 4 be the maximum likelihood
estimates (MLEs) of 8 and v with the estimated variance-covariance matrix

&2 (wu U-’lz)
wr1 W22
where & is the least squares estimate of o. To test the hypothesis Hy : v =1,
the Wald statistic is

(85 - 1)?
. 5’2(;)\’21011 + 2,3")111;12 + ﬂ2w22)

(1.31)

which is asymptotically chi-square on 1 d.f., while the test for the equivalent

hypothesis 3 = 7! is

(8-4"1)? B (87 — 1)

62w + 29 2wz + 4 wn)  02(F2wir + 2wz + Y 2wys)

(1.32)

which is different from (1.31) and is also asymptotically chi-square on 1 d.f.

For another example of non-invariance of Wald’s test, reference may be
made to Fears, Benichow and Gail (1996) and Pawitan (2000).

1.6.3 Weak dependence of the RS statistic on alternatives to
the null hypothesis

In general, when the null hypothesis is rejected, one looks for alternative stochas-
tic models for the observed data. The score test depends on the slope of the
likelihood function at the null hypothesis. There may be different likelihoods
all giving the same score statistic. If the score test is significant, there is no
way of knowing what the alternative is.
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Test for normality: Suppose we start with the Pearson family or Gram-
Charlier type of distributions and construct a test for normality. The same RS
statistic is obtained for both alternatives [Bera and Bilias (2001)}.

Test for homoscedasticity: The RS statistic for testing homoscedasticity is
the same for alternatives such as multiplicative and additive homoscedasticity
[Breusch and Pagan (1979) and Godfrey and Wickens (1981)].

Testing for serial independence: The RS statistic for testing serial inde-
pendence is the same whether we consider as alternatives the pth order autore-
gressive or pth order moving average model [Breusch (1978), Godfrey (1978a)].

Such difficulties may exist with other test criteria and it would be of interest
to construct some examples.

1.7 Power Comparisons

The following is a sumnmary of numerous papers devoted to power comparisons
of LR, W and RS tests.

Taniguchi (1988, 1991): The first-order local powers are the same for all the
tests. The second-order local powers are different but no one dominates the
other.

Taniguchi (2001). In terms of Bahadur efficiency, they are the same up to the
second order.

Bing Li (2001): They are all sensitive to changes in the values of the nuisance
parameters.

Chandra and Joshi (1983): Rao’s test is more powerful to the order (1/n) than

LR and W, when one modifies the critical regions to have the same size up to
order (1/n).

Ghosh and Mukherjee (2001): RS is more (or equally) efficient than LR and W
under the criteria of maximinity and average local power. See also Mukherjee
(1990, 1993) for results on asymptotic efficiency of Rao’s Score.

Further investigation of power properties of LR, W and RS tests would be
of interest.
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1.8 Some Recent Developments

In this Section, we consider some modifications and refinements made on the
RS statistic and indicate the need for further research in some cases.

1. In testing a composite hypothesis the estimated score vector s(é), where
§ is the restricted ml estimate of 6 under the hypothesis, is used in com-
puting the RS statistic. It was argued that s(d) is close to zero if the
hypothesis is true. But E[s(f)] may not be zero unless the null hypoth-
esis is a simple one. In such a case Conniffe (1990) suggested the use of
the quadratic form

[s(é) - Es(8))'J(6)[s(6) - Es(é)] (1.33)

where J is the inverse of the covariance matrix of s(8) — E[s(6)). The
computation of (1.33) and its improvement over the RS statistic needs
further study.

2. White (1982) developed score type of statistics based on estimating equa-
tions and the quasi-likelihood functions. This introduces some robustifi-
cation in inference procedures. See also Godfrey and Orme (2001).

3. Several authors tried to adjust the RS statistic similar to a Bartlett (1937)
type of adjustment to the LR statistic. Harris (1985) suggested an ad-
justment based on Edgeworth-type expansion. Dean and Lawless (1989)
suggested a different type of adjustment in certain models. Ghosh and
Mukherjee (2001) developed a method of adjustment when the RS statis-
tic is based on quasilikelihood. This is an area where further research
is needed. Reference may also be made to a recent contribution by Tu,
Chen and Shi (2004) on Bartlett type correction to the Score test in the
Cox regression model.

4. The RS statistic (1.8) for testing a simple hypothesis Hy : § = 6 is
[s(60))' (1(60)) ™" [s(60)]
which involves the computation of the information matrix
I1(80) = E [5(60)s(60)'] -

Instead of I(6y), one could use the p x p matrix of second derivatives of
the log likelihood with a minus sign

A(8) = — (53%5;) (1.34)
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leading to the statistic

[s(80)] (A(60)) ™" [5(6o)] - (1.35)

Terril (2001) suggests further simplification by using what he calls the
gradient statistic

F? = [s(6))'(6 — 6o) (1.36)

where 0 is the ml estimate of §. The suggestion by Terril is attractive
as it is simple to compute. It would be of interest to investigate the
performance of the statistic (1.36).

5. In considering the score statistic, Rao (1948) used the ml estimates of
parameters. A similar theory can be developed using BAN estimators.

6. Rao (1951) suggested the use of score tests in sequential analysis for test-
ing a simple null versus a simple alternative hypothesis. Bradley (1953)
considered a nice application of Rao’s sequential test in clinical trials. An
application in quality control is given by Box and Ramirez (1992). For
some comments on sequential score test and possible applications refer-
ence may be made to Sen (1997).

Acknowledgments: I am gratified to see the large number of papers con-
tributed by econometricians on the application of the score statistic to prob-
lems in econometrics and the extensions and improvements they have made.
My special thanks are due to Professor A. K. Bera whose papers provided me
all the information I needed in preparing this chapter.
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EM Algorithm and Optimal Censoring Schemes
for Progressively Type-II Censored Bivariate
Normal Data

N. Balakrishnan and J.-A. Kim

Department of Mathematics and Statistics, McMaster University,
Hamilton, Ontario, Canada

Abstract: The EM algorithm is used to find the maximum likelihood esti-
mates (MLEs) of the parameters of a bivariate normal distribution based on
progressively Type-II right censored samples. The asymptotic variances and
covariances of the MLEs are derived, using the missing information principle,
from the Fisher information matrix as well as from the partially observed infor-
mation matrix. Optimal censoring schemes are then investigated with respect
to minimum trace of the variance-covariance matrix of the MLEs and also with
respect to the maximum information about p.

Keywords and phrases: EM algorithm, maximum likelihood estimates, con-
comitants of order statistics, progressive type-II right censoring, asymptotic
variances, missing information principle, optimal censoring scheme

2.1 Introduction

In many life-testing experiments, the experimenter may not observe all failure
times either unintentionally or intentionally. For example, some of the exper-
imental units may break accidentally, or subjects in clinical trials may drop
out for personal reasons in the middle of the trial. In some life-testing studies
involving expensive units, it will be beneficial if some of the units placed on
the test could be removed early on from the test so that those units could be
used for other tests as well. In some clinical trials, duration of survival after a
treatment may be many years and the experimenter may terminate the study
prior to observing the durations of survival for all the individuals in the trial.
Censored data arises in all these situations wherein the experimenter does not
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obtain complete information for all the units or individuals under study.

Different types of censoring arise based on how the data are collected from
the life-testing experiment. Let us consider a life-testing experiment wherein
n items are placed on test. Suppose the experiment has to be terminated at
a prefixed time, say T. Then one can only obtain failure times which are less
than or equal to T, and the data so obtained are called Type-I censored data.
Instead of prefixing the total time of the experiment, the experimenter may
wish to discontinue the experiment after the first r failures are observed. In
such a situation, the data are said to be Type-II censored. A generalization of
this Type-II censoring is called Progressive Type-1I censoring. which arises as
follows. Of the n items placed on a life-test, suppose R; functioning items are
randomly removed from the test right after the first failure. Similarly, immedi-
ately after observing the second failure, R, items are randomly removed from
the remaining n — R; — 2 items on the test, and so on until each item is taken
care of either due to its failure or due to its removal from the test. The data
obtained in this manner are said to be progressively Type-II censored data.
Inference under Type-I and Type-II censoring for various parametric families of
distributions have been discussed by Nelson (1982). Cohen and Whitten (1988),
Balakrishnan and Cohen (1991). and Cohen (1991). Inference for Weibull and
exponential distributions under progressive Type-II censoring have been dis-
cussed by Mann (1969, 1971), Viveros and Balakrishnan (1994), and Ng, Chan
and Balakrishnan (2002). Further references and details on progressive censor-
ing can be found in the book by Balakrishnan and Aggarwala (2000).

Let (X1,Y1).....(X,.Y,) be a random sample from a bivariate normal den-
sity function, @p(x,y), where 8 = (ux.ox.py.oy.p), (ux.py) are the means,
(o0x,0y) are the standard deviations, and p is the correlation coefficient be-
tween X; and Y;. Suppose X;, X3, ..., X, are the life-times of the n units
placed on a life-test, and Y1, Y3, ..., Y, are the corresponding covariates. Prior
to the experiment, a number m < n is fixed as the number of complete fail-
ures to be observed and the progressive censoring scheme (Ri, Ra,...,Rm)

m
with R; > 0 and )} R; + m = n is also pre-specified. During the experi-
=1

ment, immediately after the jth failure is observed, R; functioning items are
randomly removed from the test. The m complete (ordered) life-times thus

observed are denoted by X;f,;;,',“‘R’"), j=12..., m. For convenience, some-
times the progressive censoring scheme will be omitted in the notation of the
Xj.mms. These completely observed failure times are referred to as progres-
sively Type-II right censored order statistics: see Balakrishnan and Aggarwala
(2000). Let Yjjmun = Yi if Xjun = X; for j = 1,...,m. Then, one can
have the concomitants (David, 1973) Y{;.m.n). J = 1.....m, of the progressively
Type-II right censored order statistics, which are also called the induced order

statistics [Bhattacharya (1974)]. The exact and asymptotic distribution theory
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of Y};.nj. concomitants of the usual order statistics from some bivariate distri-
butions, were studied by Yang (1977) and the asymptotic distribution of the
concomitants from a bivariate normal distribution were derived by David and
Galambos (1974). David and Nagaraja (1998) provided a detailed review of
developments on concomitants of order statistics including the role of concomi-
tants in the estimation of regression parameters and correlation coefficient and
the analysis of censored bivariate data. Based on a Type-II right censored bi-
variate normal sample, Harrell and Sen (1979) derived the maximum likelihood
estimators (MLEs) of the parameters and their asymptotic variance-covariance
matrix. Balakrishnan and Kim (2005) derived the MLEs of the parameters and
their asymptotic variance-covariance matrix based on a progressively Type-II
right censored bivariate normal data.

The Expectation-Maximization (EM) algorithm [Dempster et al. (1977),
McLachlan and Krishnan (1997)] is a useful tool to estimate the parameters of
the distribution based on an incomplete data, especially when the estimation
based on complete data is relatively easy. In the EM algorithm for incomplete
data problems, the parameters are estimated after filling in initial values for
the missing data. Then the initial values for missing data are updated by their
expected values using the initially estimated parameters. The parameters are
then re-estimated, and so on, proceeding iteratively until convergence. The
progressively censored data mentioned above can be viewed as an incomplete
data and the EM algorithm can then be applied to obtain the MLEs. It should
be mentioned that the EM algorithm for progressively Type-II right censored
univariate data has been discussed recently by Ng et al. (2002). These authors
also used the Missing Information Principle [Orchard and Woodbury (1970),
Louis (1982), Tanner (1993)] to derive the asymptotic variances and covariance
of the MLEs when the EM algorithm is used for progressively Type-II right cen-
sored univariate data. The EM algorithm for Type-II right censored bivariate
data has been discussed recently by Balakrishnan and Kim (2004).

In Section 2.2, conditional distributions of censored data given observed
data are determined for progressively Type-II right censored samples from a bi-
variate distribution using which conditional expectations of censored data given
observed data are derived for the case of the bivariate normal distribution. In
Section 2.3, the EM algorithm for finding the MLE of 6 of a bivariate normal
distribution is discussed. In Section 2.4, asymptotic variances and covariances
of the MLE:s are derived using the missing information principle from the Fisher
information matrix as well as from the partially observed information matrix.
An illustrative example is presented in Section 2.5. Optimal progressive censor-
ing schemes with respect to minimum trace of the variance-covariance matrix of
the MLEs and also with respect to maximum information about p are examined
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and presented in Section 2.6 with some comments.

2.2 Conditional Distributions of Concomitants of
Order Statistics

For convenience, the following notation will be adopted throughout this
chapter:

Fz(z) — cdf of a random variable Z,
fz(2) — pdfof a random variable Z,
fyix(ylr) — conditional pdf of YgivenX = r,
Lz — likelihood function based on the random variableZ.
Let
Xobs = (Xtmn: Xomemo -y Xmemin)
and

YObS = (Y[lzm:n]a Y[2:m:n].~ ces vY[m:m:n])T
be the observed data, and

Xeen = (X(1) X(2)» - - s X my) T

and
Ycen = (Y'(l)v ))(2)a cey Y'(m))T

be the censored data, where X(j) and Yy are 1 x R; vectors with X(;) =
(le,ij, e anRj) and Y(]) = (le,ng, v ,Y}Rj) for ] = 1, ca.,Mm. Combine
(Xobss Yobs) and (Xcens Yeen) to form (X,Y) which is the complete data, where

= (X%, XZ,) and Y = (Y] ,YZI ). The joint density of (X,Y) is given by

fx.y)(x,y)
m R,
=C H H fY(X(yU:m:n],zj:m:n)fX (l'j:m:n)fYIX(yjklxjk)fX(xjk)a (2-1)
j=1k=1
where C =n(n— Ry —1)---(n- Ry — Ry — -+ — Ry — m + 1). The joint

density of (X,ps, Yops) can be written as
f(xnhs-ynhs ) ('TObs’ yObs)

= C H leX(y[j:m:n]l-Tj:m:n)fX (xj:m:n)[l - FX(-Tj:m:‘n)]st
j=1
Timn < < Tmemeny,  —00 < Ylj:m:n) < 00. (22)
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From (2.1) and (2.2), the conditional joint distribution of censored data, given
observed data, can be written as

f(xr‘.r.n ,Ypm)I(X,,;,s,Yobs)(l‘cens ycenlxobs» yObS)

m R; f A
x (Tjk)
= Fyix Wsklzjx ,
)l;Ilkl.——.Il X l ’ ){1 - FX(:L'j:m:n)}
Tjimn < Tjk < +00, =0 < Yjk < +00. (2.3)

Therefore, the density function of (Xjk, Yik), given (Xobs, Yobs)s 3 =1,2,...,m
and k = 1,2,....Rj, is

FX 50 YN (X obsYobs) (Ziks Yk | Tobs, Yobs)
= f(xjk‘yjk)‘xj:m:n(x]'k‘yjlejinlin = xj:m:n)

fx(zx)
= fo "y . ,
Frix Wsklzse) 1= Fx(@m)]
Tjmn < Tjk < +00, —00 < yjk < +00. (2.4)

From (2.4), we can derive the first and second moments of Y}, and the product
moment of X and Yji, given (Xops, Yobs), when (X,Y) are from a bivariate
normal distribution with parameter 8 = (ux,0x,uy, 0y, p), as follows:
E[ij[Xj:m:n = 17j:m:n] = uy + pUYQj» (25)
E[Yﬁchj;m:n = Tjmm| = of,(l + p2ZjQ]') + 2poy py Q; + [J.%/, (2.6)
E{Xjkyjk‘xj:m:n = xj:m:n]

= py(px +oxQ;) + poy(uxQj +ox + 0x2;Q;), (2.7)

where z; = 51—'201\—“—" and Q; = Tf_g(% with ¢(-) and ®(-) denoting the stan-
dard normal pdf and cdf, respectively.

2.3 The EM Algorithm

The progressively Type-II right censored bivariate normal data can be viewed
as an incomplete data and the EM algorithm can then be applied to determine

the MLE of the parameter §. The log-likelihood function [(6;x,y) based on the
complete data (X,Y) is
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{(6;x,y) = constant —nlogox —nlogoy — glog(l - 0%
n
1 $j—MX)2 (Ij—#x)(yj—#v) (yj-uv)z
2(1 - p?) Z{( ox 2 ox oy + oy
]=
= constant — nlogox —nlogoy — glog(l -p%)
_ 1 “ Tjm:n — UX )2 (xj:m:n — kX ) (—y[jlmm] - [lY)
2(1 - p?) Zl { ( ox % ox oy
]:
+ (y[j:m:n] - Uy )2
oy
"z Bx\? Tjk — Yik — 4
_ ik —Bx\* ik = WX ik = Ly
2(1-172)22{( ox ) 2p( ox )( oy )
i=1 k=1
+ (yﬂr - MY)2
ay
where (zjk,yjk), j = 1,...,m, k = 1,..., R;, are the censored data. Based on

the complete data, it is well-known that the MLE of 6 = (ux,0x, py, oy, p) is
given by [see Kotz, Balakrishnan and Johnson (2000, p. 294))]

m R;j

. 1|
bx = — ZXj:m:n+ZEXjk : (28)
nli= i=1k=1
1 m m R %
0"x = ; Z(Xj:m:n - I:"X)2 + Z Z(Xjk - ﬂx)z ! (29)
j=1 j=1k=1
1=
= j=lk=

N

m m R;j

A 1 . 2 .

by = [;{ {§ (Yiomenm) = )2+ (Yie = MY)Q}] . (210
j=1 j=lk=1

%{Z] 1(X7 im: n"/-‘\)(y[] imin] T “Y)+21 le I(X]k l‘/\)(yjk—ﬂY)}

p= Gx6y

(2.12)

Hence, in the (h + 1)th iteration of the EM algorithm, the values of ftg?“),

“E‘?H) ‘gf’ “), 51 and 5+ are calculated as follows:

AV = LT T + ) RIE(XGH X 2> Tjomen, 8%, 6%0)] 5 (213)
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~{h+1 ~(h+1) A(h
G§(+ )= [%{ ;n=l x,?:m:n + Z:T:l R7E(X]2k|XJk 2 xj:m:naﬂ()(+ ),Ug())}

1
~(h+1 2
— (AR, (2.14)
h+1
l§’+)— [ j= lJ[Jmn]
- ~(h - h) -
+Ej.—_1 R7E( jk‘Xj:m:n =$j:m:n‘ﬂ(;’<l+l),ag(+l),u§z) ( ) (h))]
(2.15)

~(h+1
U§,+) = [ {Z] 1yL71nn]
~(h+1) s(h+1) ~(h+1) (h) a
+Zj=1 RJE( jk{Xj:m:n =Ij:m:mﬂf(x+ ),O'g(+ ),N§/+ ) Ugr),p(h))}

1

1
~(ay ), (2.16)
ey A- 77[1(h+1)”(h+1) -
e E BC ' (217)
where
m
A= ij:m:ny[j:m:n]

A A ~(h - ”
+ZR E[ Jkyjkl obﬁsYobs)w#()?+l)vU%1+1) /J‘(Y+1) a(h+1) p(h)]

’ WYY
Bz{
b

b

1
2

~(h+1) ~(h ~(h+1
‘z?mn+ZR E[ lejkzmj:m:nalg(+ )’ §(+1)]—n(tu‘(x+ ))2} ’

MSZ

=1
and
m
2
C = {Z Ylj:m:n)
j=1
- h+1 h+1 h+1 h+1
+ ST RE[YEI Xjimin = Tjomen, T, 510HD, G{HD 4D (k)
j=1
3
_n(ﬂ(}f‘*'l))2} .

The first and secorid moments of X, given Xjx > Zj.m:n, are given by [see
Cohen (1991, p. 10))

E(Xik| Xk 2 Tjmm, ix,6x) = 6xQj + fix, (2.18)

E(X?lclxjk > x_j:m:n,ﬁx:&X) = 5’3((1 + ZjQJ') + Q&XﬁXQj + /1%(,
(2.19)
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where 2; and @Q; are as defined earlier (with ux and ox replaced by jix and
6x, respectively). Now, by using Egs. (2.5), (2.6), (2.7), (2.18) and (2.19) in
Egs. (2.13)-(2.17). we can find the MLE of 8 via the EM algorithm.

By the fact that (jix,6x) is the MLE of (ux.0ox) based on X, alone
[see Balakrishnan and Kim (2005)], the EM algorithm can be separated into
two parts, with one iterating for ({ix.dx) and the other for (fiy.dy, p), which
results in reducing the computational time.

2.4 Asymptotic Variances and Covariances

The Fisher information of complete data. I.,m,(8). for a bivariate normal dis-
tribution is known to be [see Kotz, Balakrishnan and Johnson (2000, p. 294)]

Icomp(g)
B [821(9; X,Y)}

062
1
( 70 0 ~orer o 0 )
2—p _ —_—p
o5 (1-p%) ? oxay{l-p?) ox(1-p%)
=n AT 0 0
2-p? .
oy (1-p?) GY(I;pT)
Ltp
k (1-p%) /
(2.20)

The log-likelihood function for (X, Y;x) which is the censored data at the time
of the jth failure, given the observed data, can be derived from (2.4) to be

lmiss,j(a» (Xjkv ij)‘Xj:m:n = l'j:m:n)
1 .
= constant — log oy — 3 log(1 - p?)
1 oy

2
poy
~ o5 { Yik — Yy — —(Tjk —HX)}
20%(1 - p?) {y] H ox

~logox — 2—7($.1k — ux)? - log {1 - ®(z;)},
Tx
Ik 2 Zjmn. —0C < Yjx < OC. (2.21)

Then, the missing data information. I'nss. j(6), in one observation (X, Yji), is
given by

Imissj(o) = FEx. [E' (- a2lmiss~j(0‘ (Xjk’ lec)‘Xj:m:n = xj:m:n))}

062
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*.11 *,12 *13 *,14 =15
Imiss,j Imiss,j Imiss.j Imiss,j miss,j
I*.22 *,23 I*,24 %25
miss.) mgse’s.j mgs[ie,j miss,j
*, x, *,
= Exjt"'-rn Imiss.j Imiss,j miss,j (222)
[T e
miss.} miss,j
It,55
miss,j
E 3
= EXj:m:n [ miss,j] ’ (2'23)
where
I p? 1+21Q1—Qj 12 nQ; n Q;(1+22~2;Q;)
miss,j o?“.(l-pQ) 03( ’ miss,j 0‘2\_(1_,,2) ;{( s
«13 p 14 _  p%Q;
Imiss,j T Taxoy(1-p)° Imiss.j - m’ 3 22
D A .. ) 2 o 20450, | H3Q+50,-2Q)
miss,j ax{(1-p%)’ miss,j O?Ygl—Pz) o% ’
23 _ PQ; 24 _ _ PA(1+2Q))
mises = -W» missg = ooy (=)
*, p 2.0 x, _ 1
Imiss,j == a'\-(l—p’j) ’ Imiss,]’ = ol (1-p?)°
*34 _ pQ; x*35 _ __Qj
Imiss,j - o (1-p?)° Imiss.j T oy(1-p¢)?
w44 2 pP1+2Q)) w45 p1-3Q)
Tmissj = o3 T oy (1-p%) ° I""'SS-J' T oy(1-p)
*55 222 1+2;Q;
Imiss,j T (1-p%) + — 2
bed
Let w;a °d) be defined by
. d
PetD _ p {6(Z;)}Z5
-’ s | T2 P - B2
* kil

By taking expectation of I\, . . with respect to the jth progressively censored
order statistic X;.,,.n, we can obtain the information for the missing data as

11 12 13 14 15
Imiss.j Imiss,j Imiss.j Imiss,j Imiss,j
122~ i 123~ i 124' L2
miss,j gnazss,] gzzss,] %nszss,]
Imiss,j(e) = Imiss.j Imiss.j Imiss,j ' (2'24)
447 5
miss miss

miss
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where
(1011) __, (2020) (1010)
oo e + e, Y nz -7 2]
miss,j gg((]._,ﬂ) ”3c ' mtse] (1..,,2)
) X 1010 1012 2021
+(¢§ )y {1012 _y, (2020
ag( !
13 pzw(xmo)
— 14 — i
Imns] = —m’ Imzss] T Toxoy(1-p?)’
5 L (1010) » P2(14 w101y
Imnq; = Tex(1=p)" Imzss] = o2 (1-p%)
2+w“°”’+w“°”) ¢(2022)
62 )
93 m,}(uno) o (1+¢(10n)) X
Imns] = T axoy(i-p2)’ I""“J = UY"’Y( 1-p?)°
2 p(1+1b(-w“)) " '1
Brises = ~=oxti=my Tmiss.i = =7y
a4 pp(1010) HU1010)
— ] 35 —_ ]
Lnissj = oZ(1-p9)" Iiniss.; = ay(i=7
2 (1011) ,(1011)
44 _ 2 , PO+vT) 45 pO-¥ )
Imzes,J - ;"{ + o2 (1-p2) ' Imzs‘s_] - oy (1-p%) !
55 = 2% Lyt
miss,j T (1-p%)? (1-p)
bed . . .
1,/);“ “d) can be expressed in terms of moments of the smallest usual order statistic

from different sample sizes using the density function of Z; = )—(M given
by Balakrishnan et al. (2002) as

j=1
fz;(z)) = Y cijo(Ri+1,.. Rio1 +1)fz(z) {1 - Fz(z)}% 1,
i=0
—~00 < z; < 00,
where
d = nn-Ri—-1)---(n-Ry—-- —Rj_1 —j+1),
j-1
R/ = (Rj+1)+ ) (Re+1), Rj=n-j-Ri—-—Rj,
k=j—1
LY
cir(ar) = (=1) for a,=(ay,aq,...,a,).

i r—i+l r—i
{Hz=1 Zk_r——1+1ak}{ =1 Lkt ak}

To determine w(1010) E [T%JZLS] for example, using the above density func-

tion of Z;, we need to find an integral of the form [°7 {6(z)}? {1 - ®(z)}°dz
for a > 0 (an integer), where ¢(-) and ®(-) are the standard normal pdf and
cdf, respectively. Balakrishnan and Kim (2005) have expressed that

1

mE[lea-i-Q]’ (225)

[ 6@y {1~ 2(@)de = -
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where Z;.,42 is the smallest order statistic in a sample of size a + 2 from the
standard normal distribution. Therefore, w§1010) can be expressed in terms
of expected values of the smallest usual order statistic from different sample
sizes from the standard normal distribution. Similarly, w;mu)’ ¢§1012)’ d)](lma),

w(zozo)’ w](_2021) and 1,9;2022) can all be expressed in terms of the first, second,

third and fourth moments of the smallest usual order statistic from different
sample sizes from the standard normal distribution, with the use of the following
formulas:

o0 a _ 1
/_oox {8(2)}* {1 - 8(z)}dz = CESVCED) {1 - E[Z%:a-f-?]} ;
(2.26)
/;oo z? {¢(z)}* {1 - &(z)}*dz = m {2E[lea+2] - E[Zian]} :
(2.27)
[ e 6P - 0@yde = g {3E(2 sl - ElZbral},
(2.28)
o0 e _ 2
~/—00 {¢(2")}3 {1 - (D(.'II)} dz = —(a + 1)(0 + 2)(0, + 3) {1 - E[Z%:a+3]} !
(2.29)

/ O;x{¢(:c)}3{l — 8(z)}°dz

TS i sy OB rass] ~ 2B(Zaal}, (230)

[ e@) (1 - o)z

J o0
1

N (a+1)(a+2)(a+3) {2 =~ 8E[Z] ,4a] + 2E[Ziiza+3]} - (231)

From (2.20) and (2.24), we can obtain the Fisher information matrix for the
observed data as

m
I=lomp = Y Rilmiss ;- (2.32)
j=1
By inverting the Fisher information matrix above, we can obtain the asymptotic
variance-covariance matrix of the MLE of 6 as

Vii. Viz Vis Wiy Vis

i Voo Vaz Voy Va5
Vg = Vaz Vag Vis |, (2.33)

Via Vs

Vss
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Table 2.1: Simulated progressively Type-II censored samples from a bivariate
normal distribution

R=(25.0,....0)

(13.9534. 5.2440)
(18.7286.10.4529)
(18.7648. 5.8012)
(19.5882, 5.3824)
(20.6655, 7.7746)

{21.1502.10.5074)
(21.4592.10.4308)
(23.1105. 9.0242)
(23.2390. 7.9312)
(23.4543.10.8688)

(23.6538. 7.1682)
(23.7090.10.1993)
(25.9404.11.9220)
(26.6553.10.4963)
(27.4103. 8.9235)

(27.5243.10.1348)
(28.1226, 9.3579)
(28.3778,11.4975)
(28.6203. 8.2270)
(28.7939.11.2662)

(29.1558, 9.2772)
(29.8880, 9.8495)
(31.5465,10.6816)
(34.8827,12.1457)
(35.8427,10.9435)

R=(5.5.5.5.5.0.....0)

(13.9534. 5.2440)
(16.6970, 4.8205)
(18.7286.10.4529)
(18.7648. 5.8012)
(19.5882, 5.3824)

(19.7357. 6.0263)
(20.6655. 7.7746)
(21.1502,10.5074)
(21.6218.11.0130)
(22.4708. 8.1816)

(22.5961. 8.5164)
(23.0072. 9.7782)
(23.1105, 9.0242)
(24.0908. 9.4917)
(24.3373. 8.0105)

(25.9404.11.9220)
(27.4103. 8.9235)
{27.5243.10.1348)
(28.1226. 9.3579)
(28.7939.11.2662)

(29.1832, 8.8002)
(29.8880. 9.8495)
(30.5462, 9.2462)
(31.5465,10.6816)
(32.4081.10.6757)

where the V-matrix is the inverse of the I-matrix evaluated at 8 = .
Alternatively, the information matrix for the observed data can also be
obtained directly from the likelihood function of the observed data in (2.2), and
the corresponding expressions can be found in Balakrishnan and Kim (2005).
It can be shown that
T Rl = -y Bzl oy R = m - TR, EIZD)
(2.34)

where Z; = &ﬂo"\——-‘i see the Appendix for a proof. Using the relationships in
(2.34), it can be shown that the information matrix presented by Balakrishnan
and Kim (2005) and the information matrix derived in (2.32) by the use of
the missing information principle are exactly the same. If I7 ;. . is used in
(2.32) instead of Ipss j, then the partially observed information matrix I* =
ie1 BRI, ; is obtained. Note that in this case there is no need to

calculate w;ab“i)

I comp —

values [as required in the computation of I in (2.32)].

2.5 Illustrative Example

To illustrate the proposed EM algorithm for the computation of the MLE of
0, a progressively Type-II right censored bivariate normal data with n = 50,
m = 25 and 6 = (25,5, 10, 2,0.6) were generated. Progressive censoring schemes
(25,0,...,0) and (5,5.5,5,5,0,...,0) were applied. The samples obtained are
as follows.

A computer program has been written in FORTRAN to compute the MLE
of @ via the EM algorithm. Sample means, standard deviations and the sample
correlation coefficient are used as initial estimates for the parameters and the
level of accuracy of 1 x 108 was used in the EM algorithm. After 35 iterations,
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the estimates of (jx,0x) converged to py (o) = 25.4999 and oy (o) = 4.9449
for the data with the progressive censoring scheme (25,0,...,0). The EM
algorithm for (uy,oy.p), using px(ec) and ox(cc). Yielded py (o) = 9.4513,

Oy (00) = 1.8946 and p() = 0.6200 after 24 iterations.
ces evaluated at 6 were

The information matri-

3.3218 0 -5.3754 0 0
R 5.3666 0 -3.3328 -10.1843
Icomp(8) = 22.6278 0 0 .
36.5571 —26.5806
182.6682
1.5680 0.2577 -2.6877 -0.0765 —0.2337
m R 21723 -0.1234 -1.5211 —4.6480
)" Rjlniss j(0) = 11.3139  0.3220  0.9839 |,
j=1 17.8992 —14.4495
87.7917
and
j=1
1.7538 -0.2577 -2.6877  0.0765 0.2337
3.1944 0.1234 -1.8118 —5.5363
= 11.3139 -0.3220 -0.9839
18.6579 -—12.1310
94.8765
From this, we obtain the asymptotic variance-covariance matrix of

0= (px,0x.py.0y,p) as

0.9137 0.0835 0.2171
0.4076 0.0198
0.1401

0.0123
0.0600
0.0052
0.0674

1) =

0.0064
0.0315
0.0027
0.0121
0.0139

On the other hand, we obtain the asymptotic variance-covariance matrix of

9 from the partially observed information matrix I* as

0.9315 0.0667 0.2213 0.0098
0.4121 0.0158 0.0607
0.1410 0.0037

0.0682

()71(6)

0.0051
0.0318
0.0019
0.0126
0.0142
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Note that there are slight differences between I=1(8) and (I*)1(f), but the
advantage of the use of (I*)~1(d) is that it did not require the determination

(abed)
of zbj values.

For the progressively Type-II right censored sample with the censoring
scheme R = (5,5,5.5,5,0,...,0), the estimates of (ux,0x) converged to px (o)
= 24.6950 and o () = 4.4439 after 73 EM-iterations. The EM algorithm for
(ny,0v,p), using px(oo) and Ox(co), Yielded iy (o) = 9.0029, Oy (o) = 1.9092
and p() = 0.6293 after 36 iterations. The information matrices evaluated at 6
were

41923 0 -6.1412 0 0
6.7242 0  —3.8649 —11.7248
Leomp(8) = 22.7133 0 0 :
36.4305 —27.2909
191.3843

1.8300 0.6586 -3.0706 -—0.2666 —0.8087

m ) 24282 -0.4236 -1.5798 —4.7926
Y RjImiss j(6) = 113566  0.9859  2.9909 |,
j=1 17.3944 —16.1355

88.1383
and

1(9) = Icorn.p(g) - Z RjImiss.j (0)
Jj=1
2.3623 —0.6586 —3.0706  0.2666 0.8087
4.2959 0.4236 -2.2851 —6.9322
= 11.3566 —0.9859 —2.9909
19.0360 —11.1555
103.2460

From this, we obtain the asymptotic variance-covariance matrix of
0= (ﬂXa&X*ﬁY96Y*ﬁ) as

0.6931 0.1138 0.1874 0.0194 0.0097
0.3204 0.0308 0.0545 0.0274

I746) = 0.1402 0.0118 0.0059
0.0658 0.0110

0.0128
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If we use the partially observed information matrix I* instead of I, we obtain
the asymptotic variance-covariance matrix of 8, (I*)~!, as

0.6920 0.1159 0.1871 0.0197 0.0099
0.3195 0.0313 0.0544 0.0273

(I*)"48) = 0.1401 0.0119 0.0060
0.0656 0.0109

0.0127

Once again, the asymptotic variance-covariance matrices of g from the Fisher in-
formation matrix I and the partially observed information matrix I* are nearly
the same.

2.6 Optimal Censoring Scheme

In this section, we discuss optimal censoring schemes in terms of minimum trace
of the variance-covariance matrix of the MLEs and also maximum information
about p.

From Egs. (2.32) and (2.34), the Fisher information for p can be determined

as
2mp? w1 E|Z]]
I(p) = 1 2.35
where, as before, Z; = z(-f—ﬂa—:———"—" The Fisher information about p will be

affected by the progressive censoring scheme only through the term FE [Z}] and
monotonically increases as p increases for a fixed progressive censoring scheme.
The Fisher information about p was calculated for various n, m, and p values
and for all the possible progressive censoring schemes for each n and m chosen.
The results for the best, worst, left and right censoring schemes are presented
in Table 2.2 for n = 10 and n = 20 along with the relative efficiency of the
censoring scheme compared to the best progressive censoring scheme (one which
gives the most information about p among all the possible progressive censoring
schemes). When p is large, say 0.9, the relative efficiency of the worst censoring
scheme is at least 96% for all n and m considered. indicating that the censoring
scheme does not seem to matter much in this case. However, the relative
efficiency of the worst censoring scheme decreases as p decreases, and the loss
could be as high as 27.8% in this case. Further, the progressive censoring scheme
(n-m.,0,..., 0) is one of the best progressive censoring schemes in almost all
the cases. Efficiency of the progressive censoring scheme (n —m,0,...,0) does
decrease by 0.46-8.15% as p decreases and censoring proportion increases. On
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the other hand, the progressive censoring scheme (0, ...,0,n — m) seems to be
nearly the worst censoring scheme in most cases.

In order to investigate the performance of the two extreme censoring schemes
further, the trace of the variance-covariance matrix [obtained by inverting the
Fisher information matrix, I, in (20)] was determined for each of the n, m, and
p values. The results for the best, worst (right), and left censoring schemes
are presented in Table 2.3 along with their relative efficiencies compared to the
best progressive censoring scheme (one which gives the least trace value among
all possible progressive censoring schemes). It seems that heavy censoring at
the beginning of the experiment is more efficient than heavy censoring towards
the end of the experiment. The progressive censoring scheme (0,...,0,n — m)
turns out to be the worst censoring scheme in the sense that it gives the largest
trace value of the variance-covariance matrix for all combinations of n and
m. considered. Efficiency loss in using the censoring scheme (0,...,0,n — m)
increases as p decreases.

Therefore, from both these considerations, it is observed that Type-II right
censoring is not to be recommended in general, and that the progressive censor-
ing scheme (n—m,0....,0) is nearly as efficient as the best progressive censoring
scheme for each combination of n and m considered. So, if the censoring can
be implemented by the experimenter, then the scheme (n - m,0,---,0) will be
the best choice for inferential purposes.
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Appendix

Here, as presented earlier in (2.34), we will show that

m

m
SR = - E(z),
Jj=1 i=1

m m
ZRﬂ/);wm m— ZE[Zfl
j=1 j=1

Xjimin~#x
L im:in
where Z; = —-?————ax .

PROOF. First, using the joint density function of Zi..,.n, Z2:mums- - -+ Zjim:n given by
Balakrishnan and Aggarwala (2000, p. 13) as

fZl:m:anmm:nv~~~Zj:nx:n(zl’ 22’ M z])

=Tl(n—R1 "‘1)(”—R1 —122—2)‘“(11_-121 ~--—Rj_; _]+1)
Jj-1
«TT 0 {1 - 22} 6(25) {1 = o)y~ o,
i=1

—00<z Lzl <z; <00,

we can write

ij§1010) _ RjE[ #(Z;) ]

1-9(Z;)
¢ x e
= Rj/ / / Mn—- R —1)(n- Ry — Ry - 2)
X--(n—Ry—-—Rj_1—j+1)

j-1
x [T ¢(z) {1 - 82} {6(2)))
1=1
x {1 - @(z))} T RinmIml g, de. (2.36)

Let IT; = [ {$(z))}* {1 - @(2,)}" "%~ ~%1"7"1 4z, Then,

1 e d o
IT = —_ 2 ) — _ 2 n~-Ry—-~R -1
j (n-Rl—"‘"Rj—l*j)/zj_l¢(])dzj{l ®(z;)} i
= - 1 . _ . 'Il—Rl—""‘Rj_l—j zj=oc
- (n—Ry—-~R;_1 —j) [¢(ZJ){1 ®(2;)} l:,—:zj_,

1=1

+[x Zj¢(2j) {1 - @(zj)}”_R‘_'”_Rj—l—j dz]]

1
(= Ri—— Ry - J)
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X [¢(z.‘i—l) {1 — (I)(zj_l)}n—ﬂl_..._Rj_l_j
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Hence, (2.36) becomes

amoy _ Ri(n—Ri—---—-Rj_1—-j+1)
v - (n—=Ry~----Rj_y - j)

x/ / / nfn—-Ry-1)---(n-Ri—---—Rj_2-j+2)
j=2

x [T otz {1 - (2} {2521} {1 - ®(z5_0) )"~ Rimad
i=1

dZJ'_l "'le
R;

- E(Z)).

Oy ey e R

Integrating by parts

T, = / {B(zj=1)} {1 = ®(25-1)} 7R T gy,

2j-2
we get ij;low) as
Rjd);xom)
_ Ri(n-Ri— -Ri~j+)(n—Ry—-—Ria—j+2)
m-R—----Ri1-j)Jn—-R —---—Rj_a—j+1)
oo oo 00
x/ // n(n— Ry —1)(n- R; — Ry - 2)
-0 721 V253
X~--(n—-R1—--'--—Rj_.3—-j+3)

13
x [ 6(z:) {1 - (z)}™ {8(2j-2)}
=1

x {1 _ Q(zj_2)}n_Rl—""‘Rj—3_j+1 de_.2 .. ‘le
_ Rin-Ry—----Rj_1—j+1)
(n—R1—---—-Rj_l—j)(7l—R1—-“— j_z—j+1)
R;
- E(Z;).
(n=Ry—---—Rj_1-j) (Z3)

E(Z;_1)

1010)

By repeating this process, Rjz/1§ can finally be written as

(1010) _
RJLJ- =

_ Riln—-Ri—----Rj_1—j+1)n—-Ri—-—Rj_2—j+2)---(n-Ri1—-1)
n-Ri---~Rj_,—j)n-Ry—---—Rj_o—j+1)---(n=R - 2)(n~-1)

E(Z))
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_R,-(n—Rl—~~—Rj_1—j+1)(n——R1—---—R,-_z—j+2)~-~(n—R1—-Rz—?)
m-Ri- ~Ra-n-Ri— —Rja—j+1) - (n-Ri-2)
x E(Z2)
_Rj(n—Rl—~-'—R,-_1—j+l)(n-R1—~--— i—2—j3+2)--(n—Ry —Ra— Rz —3)
m-Ri— —R—)(n-Ri— —R;-2—j+ 1)~ (n—Ri— Rz - 3)
)(E(Z:;)
_ Rin-Ri— - —Rj_1—j+1)(n—R1—- —Rj_2—j+2)
(m-Ri——-Ri—j)n-Ri— ~Rya—j+1)(n-Ri— ~Rj_3—-j+2)
XE(Z]'..z)
Ri(n—Ri—---—Rj_1 —j+1)
- - - E(Z;-
R B - Nm-Ri- - —Ra=jn
R;
- E(Z;).
(n—Ri—-—Rj-1 - j) (23)
Therefore, the summation of ijﬁmm) for j =1,....m will end up as a linear
combination of E(Z;) for j = 1,...,m, and so all we need to do is show that
the coefficient of E(Z;) is —1 for j = 1,...,m. The term E(Z,) comes only
from men}OlO and its coefficient is — n_Rl_._._ﬂ’m_I*m) =-1sincen—-m=
Ry + Ry + -+ + Ry In general, the coefficient of E(Z;) is given by
_ R,
(n=Ry—-~Rj_1-j)
~Rjsxn =Ry = =Rj=j)x[(n=Ri—- =Ry —j—1)(n =Ry —--- = Rj_; — 5)]!
~[Rjg2(n—Ri~- -~ Rjs1~j-1){n= Ry —--- = Rj - j)]
X[(n=Ri— ~Rjs1~—j—-D(n-Ri— —Rj—j~1{n-R~ —Ry_y —j)]!
~[Rm-r(n=Ri— = Rpz=m+2):--(n=Ry = ~Rjp1 =j=1)(n-Ry - = R - j)]
x{n~Ry—- =Rm_2-m+1)(n-—Ry ~- - ~Rm-z—m+2)---
-~(n—R1—~--—Rj—j—1)(n—R1—--~—R,-_1—j)]_l
~[Rm(n—Ri = ~Rm_1—m+1)(n =Ry = —Rm_2-m+2)---(n= Ry -+ = Rj = j)]
x[n-Ry— - —Rpm_1—-m){(n—Ry =~ =Rpm_2—-m+1)--
c(n=Ry—-=Rj=j-1(n~-Ri~ =R -7 (2.37)
which is simply —1 by using the relationshipn—~R;—Ry—-+-—Rm_1—m = R,,.

Next, let us write

RO — R]-E[ Zj(b(zj)}

1-3(Z)
- R]/ /zl / n(n~ Ry~ 1)(n =Ry - Ry — 2)
(n—Ry—--- -Rj_1-j+1)

XH¢z1 {1-@ } ZJ{¢ZJ}

X {1 - zj)}" Ry——Rj1—j-1 de coedzy. (238)
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Let Ir; = z;'i] zj {¢(Z] } {1 — ZJ }n R]—--‘.—RJ 1—3- ldz] Then,

1
IT™ _
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o0 d i
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_ 1
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Eq. (2.38) then becomes
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Integrating by parts IT;_,,---,IT], we obtain R]w (1011)
ijﬁ_wu)
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+

+

+

So, the summation of Rjd)](-

[Rj(n-Rl—~--—Rj-1—j+1)(n—R1—---—Rj_g—j+2)°--
.+-(n = Ri — Ry — Rs - 3)}{1 - E(23)}
x((n—Ry - —Rj-1—j)n-Ri - ~Rj_a—j+1)---(n—Ri — Ry - 3))~"
[Ri(n =Ry == Rmi—j+1)(n— Ry — - = Rj—a — j + 2){1 - E(Z_5)}]
x((n=Ri—- =Ry —j)(n-R1 - —Rj2~j+1)
x(n—Ri—-—Rj_a—3j+2)"}
[Ri(n— Ry — - = Rj_y — j + 1){1 - E(Z}_1)}]
X((n=Ri—-=Rja—j)(n—Ri—-—Rjma—j+1))7
(n—Rl—'---R,--l—j){l E(Z;)}

101) for j=1,...,mwill end up as a linear combina-

tion of 1 — E(Z2) for j =1,...,m. The collection of coefficients for 1 — E(Z?)
is the same as in (2.37) but with a positive sign, which reduces to 1. This

completes the proof. n
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Inference Guided Data Exploration

Greg Yothers and Allan R. Sampson

National Surgical Adjuvant Breast and Bowel Project (NSABP), Pittsburgh,
Pennsylvania U.S.A.
Department of Statistics, University of Pittsburgh, Pennsylvania U.S.A.

Abstract: We consider comparing two treatments using a given hypothesis
test on the full sample and on all possible subsets, and we separately consider
restricting the subsets considered to be those defined based on half-intervals
of a covariate. Rather than treating this as a family of hypothesis tests, we
instead choose the minimum p-value from the group of hypothesis tests as our
test statistic. Simulation is employed to find an approximate critical value to
control the type I error for our novel test statistic. These techniques may be
used as a rule of thumb for judging the potential significance of a result after
a “fishing expedition” has been caried out on a dataset, i.e., a large number
of tests of hypothesis were performed on subsets of the data or a subset was
selected after inspecting the data. When the technique is restricted to subsets
defined based on half-intervals of a covariate, it may be useful as a planned
methodology for analyzing an experiment.

Keywords and phrases: Multiple subset testing, selecting population, fishing
expedition

3.1 Introduction

For a variety of reasons, researchers are often tempted to look at numerous
subset analyses of their data. One situation that commonly motivates this is
in non-significant critical scientific studies where the study sponsors can feel
compelled to find subpopulations where the treatment under study had an
effect. This situation is sometimes refered to as a “fishing expedition”. Clearly,
formal control of the type I error is difficult when the same hypothesis is tested
repeatedly on subsets of the original data. Given the ad hoc nature of the
hypotheses tested in this context, formal inference is not really possible, but
some sort of “rule of thumb” for deciding whether the most extreme p-value
observed during a fishing expedition is likely to occur purely by chance would
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be quite useful in practice. A related problem arises when the number of formal
tests of hypothesis is small, but the subsets which are tested are selected after
inspecting plots or summary measures of the data or the raw data itself.

To further motivate our concern about this problem, we note that small
biotechnology and pharmaceutical companies which are not well capitalized
sometimes have their corporate success depending on the outcome of a single
study of their experimental treatment in a particular population. If this study
has a negative result, the company may very well want to identify, if possible, a
subset of the study population for which their treatment is effective. One goal
in doing this is to atempt to secure additional funding for a new study, and
perhaps more importantly, to allow their company to continue to exist.

We first consider the problem where the company, in effect, can be viewed as
considering all subsets where a treatment comparison is possible. Our rationale
for this is that the company may have done much data snooping and considered
the effects of numerous variables. In theory, if we could identify all search
strategies that were used, we could restrict our subset considerations. Barring
this, our conservative approach is to base the first part of our approach on all
subsets. In the second part of our approach, we do consider restrictions on the
subsets of interest.

The group of hypothesis tests is not viewed as a family of tests. Instead, we
choose as our test statistic the minimum p-value from all tests. Qur aim is the
determination of a critical value to control the type I error for this test statistic.
Analogous to the Scheffé procedure, which gives one critical value which allows
for comparison of all contrasts in the analysis of variance, we would like to
derive a critical p-value which would allow hypothesis testing on all possible
pairs of subsets while controlling the type I error at level a.

Let S; and S, denote the sets of individuals who received treatment and
control, respectively. With samples of size n; from treatment and n. from
control, the number of possible pairs of unique, unordered, and non-empty
subsets is (2™ — 1)(2" — 1). Let Sy and S.; denote the ith and jth subsets
from treatment and control. We define P;; to be the p-value from a test of
hypothesis on the responses associated with the pair of subsets Sy and S;.
Depending on the test statistic used. the cardinalities of S;; and Sc;, denoted
by |Su| and |Sgj|, typically must be at least 2 for P;; to be defined. The most
extreme p-value (P*) obtained by testing all possible pairs of subsets where
each treatment has at least 2 observations would be:

P* =inf {Pj, (4,7} : |Su| > 2 and |S;| > 2}. (3.1)

Given the large number (2™ — 1 — n;)(2" — 1 — n.) of possible pairs of
subsets which could be compared in evaluating (3.1), one may wish to consider
some restriction criteria. If the universe of subsets for hypothesis testing is
restricted, then we would expect to see less extreme p-values than if all possible
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subsets are considered. One natural restriction criteria would be to increase the
cardinality of the sets in (3.1) to a number larger than two.

Our first approach, which considers all pairs of subsets, may find a significant
result corresponding to a pair of subsets, but there may be no meaningful way
of defining the corresponding populations. To circumvent this, as well as the
very small critical p-values, our second restriction criterion chooses subsets of
the original sample based on half-intervals of a relevant covariate. For example,
if the pertinant covariate is age, one would consider pairs of all subjects in
treatment and control older (or younger) than a varying threshold of age.

To amplify on the method based on half-intervals, consider a study con-
cerning treatments for wound healing, where the healing rate may be correlated
with initial wound area. It may be that the difference in mean response be-
tween treatment and control also depends on initial wound area, where larger
wounds heal faster when treated, but treatment has little or no effect on smaller
wounds. The choice of inclusion/exclusion criteria in a study in this situation
can be problematic. Choosing eligibility criteria which are too liberal with
respect to the covariate may include patients where the treatment effect is neg-
ligible making it difficult to prove the treatment superior to control for the
entire study population. Conversely, choosing eligibility criteria which are too
conservative with respect to the covariate may lead to denying therapy to pa-
tients who may benefit when the treatment is finally approved. A useful design
would include all patients who could potentially benefit from treatment, but the
analysis would determine the largest subset with respect to the covariate where
treatment is significantly better than control. Such a method would allow the
target population for the treatment to be determined by the data rather than
being chosen somewhat arbitrarily prior to the trial. We note that there are a
number of other approaches that can be used in the half-intervals setting [see
Yothers (2003) or Fleiss (1986) for linear responses].

For both all subsets and half-intervals, the Bonferroni procedure clearly
would be extremely conservative due to the large number of comparisons. More
specialized multiple comparison procedures tend to be targeted at the problem
of comparing multiple treatments on the same endpoint or the problem of mak-
ing the same treatment comparison on multiple endpoints and hence do not
apply here [Miller (1981) and Hsu (1996)].

There are parallels in our considerations to a problem in spatial statistics,
considered by Worsley (1992), who addressed the problem of finding regions of
brain activity using PET scans. Such experiments may include 10° voxels or
brain scan sub-regions, so the problem of determining which voxels are active
is difficult. His approach is not really applicable to our setting due to a lack
in our case of an analog for the “distance” between non-overlapping subsets,
and dealing with the problem of overlapping subsets. Koziol and Wu (1996)
consider a problem where the response is binary and the probability of success
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is monotonically related to the value of the covariate. They approach finding
the region of the covariate where the probability of success differs for values of
the covariate less than a threshold value.

The problem of comparing all pairs of subsets of at least a minimum subset
sample size is considered in Section 3.2 for normal data with both known and
unknown variances. In Section 3.3 we restrict our interest to subsets formed by
considering only those observations where a covariate falls in a half interval and
consider the two sample ¢-test, the two sample Wilcoxon test, and an analysis
of covariance model. An example is provided in Section 3.4 and we conclude in
Section 3.5 with a discussion.

3.2 Inference Guided Data Exploration Restricted
by Minimum Subset Sample Size

Define P; ., the most extreme p-value observed after testing all pairs of subsets
with cardinality at least n,,;,, as follows:
P*

Nmin

= inf {Pij, (i.j) : ISM > Nynin and |Scj| > nmin} . (3.2)

The number of pairs of subsets is:

N,,,,i,,s=[ i (';‘) x i (’i)} (3.3)

A critical value for P; _ which controls the type I error at level a can be
estimated via simulation as follows: (1) sample responses for S; and S, from a
specified null distribution; (2) calculate P;  for the sample; (3) repeat steps 1
and 2 N times; and (4) estimate the critical value as the (N a)th order statistic
from the N values of P; .

This procedure, while computationally intensive, is feasible for small sam-
ple sizes. Obviously the estimated critical value depends on the model and
test statistic, the sample sizes for treatment and control (n; and n.), and the
minimum subset size (N,in)-

3.2.1 Two-sided Z-test assuming known variance

As a first step, we consider applying the method of inference guided data explo-
ration restricted by minimum subset sample size to the known variance normal
setting with the two sample Z-test as our statistic. For the Z-test, the p-value
does not depend on the underlying sample sizes used in the calculation, so that
one can directly determine a critical Z-score for our method (the ¢ statistic, for
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example, has a p-value which depends on the degrees of freedom i.e., sample
sizes).

Observe that the Z-statistic depends only on the difference in means and
the sub-sample sizes. If we consider all pairs of sub-samples of size n; from
treatment and n; from control, then the most extreme Z-score for this com-
bination of sub-sample sizes comes from the pair having the largest difference
in means. This corresponds to comparing the largest n; order statistics from
treatment with the smallest n; order statistics from control or vice versa. We
generically refer to these two combinations as tests comparing maximal order
statistics to minimal order statistics. Clearly we need only consider the 2(n; -
Nnin + 1)(Ne = Mmin + 1) — 1 comparisons where maximal order statistics are
compared to minimal order statistics as opposed to the large number in (3.3).

For this setting our simulation results are presented in Table 3.1 in the
columns headed Z-test. Due to invariance, the simulations (N = 10,000) for
both the treatment and control samples are drawn from the same null distri-
bution N(0, 1). The table lists the relevant parameters (n;, nc, and npin), the
critical value for the test statistic to control the type I error at level 0.05 (| Z]),
and the p-value associated with the critical value (p(|Z])).

Note that critical values can be quite extreme when a large number of pairs
of subsets are considered. For instance, for n, = 40, n, = 40, and npin, =
20, we would conceptually consider [329,, (4ro)]2 ~ 3.83 x 10%2 comparisons,
although our shortcut allows us to calculate the critical value with only 2(n; —
Nmin + 1)(Ne = Nmin + 1) — 1 = 881 comparisons. The critical value for this
entry is 6.5656 as compared to 1.96 for a critical value for a single comparison.
Thus the evidence must be particularly striking in such a fishing expedition
to demonstrate a significant difference. Generally, holding other parameters
fixed, the critical p-value tends to decrease (become more extreme) as n; or n
increases and increase as n,,;, increases.

3.2.2 Two-sided t-test

The preceding shortcut method does not apply for the two-sided t-statistic.
Unlike the Z-statistic, the variance is based on the treatment and control sam-
ples under consideration, so that the most extreme statistic for a given pair of
sub-sample sizes may not necessarily come from the pair having the largest sep-
aration in means. Table 3.1, in the columns headed t-test, provides the results
of simulations applying the inference guided data exploration restricted by min-
imum subset sample size method to normal independent identically distributed
samples and using the two-sample two-sided ¢t-test. Due to the large amount of
computation time required to run the simulations for larger sample sizes, these
tabulations are not as extensive as those for the Z-test. The critical value must
be determined based on the p-value for the t-test due to the varying degrees
of freedom. The Z-score corresponding to the critical p-value is tabulated only
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Table 3.1: Minimum subset size, a = 0.05, N = 10,000

Nmin

Z-test

t-test

t-test, upper-bound

2]

p(Z])

P

Z(p)

P

Z(p)

2.6111

9.025E-03

4.629E-03

2.8318

5.848E-03

2.7562

1.9595

5.005E-02

5.322E-02

1.9331

5.322E-02

1.9331

2.4516

1.422E-02

8.010E-03

2.6517

8.923E-03

2.6150

2.8055

5.023E-03

1.905E-03

3.1047

2.807E-03

2.9882

2.9926

2.766E-03

8.358E-04

3.3407

1.472E-03

3.1802

1.9664

4.926E-02

5.133E-02

1.9487

5.133E-02

1.9487

2.6002

9.316E-03

3.816E-03

2.8930

5.087E-03

2.8015

2.9464

3.215E-03

9.524E-04

3.3042

1.574E-03

3.1606

3.1406

1.686E-03

3.785E-04

3.5547

7.333E-04

3.3768

3.2925

9.929E-04

1.798E-04

3.7458

4.130E-04

3.5316

2.6354

8.403E-03

4.945E-03

2.8106

5.268E-03

2.7902

1.9643

4.950E-02

4.701E-02

1.9862

4.701E-02

1.9862

3.5435

3.948E-04

4.736E-05

4.0683

1.248E-04

3.8365

3.3580

7.852E-04

1.598E-04

3.7753

2.923E-04

3.6220
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for convenience of interpretation.

As expected, the p-values (and associated Z-scores) are slightly more ex-
treme for the t-test than the corresponding values for the Z-test. For example,
the entry corresponding to n, = 16, n, = 16, and n,;, = 14 has a critical
p-value of 8.143 x 107* for the t-test, but a less extreme critical p-value of
2.563 x 1073 for the Z-test. The large amount of computer time required to
simulate the critical p-values for the relatively small sample sizes considered
for the t-test suggests that this approach is impractical if not impossible for
moderate to large sample sizes.

3.2.3 Two-sided t-test, upper bound

Due to the computational requirements to implement the t-test, we examined
the consequences of applying the shortcut used for the Z-test to the t-test (i.e..
only compare the most extreme n; order statistics from treatment with the most
extreme n; order statistics from control for each pair of sub-sample sizes). Our
simulations show that this approach for a given data set often misses the most
extreme p-value obtained by considering all pairs of subsets but overall produces
critical p-values which are not terribly liberal. In the columns headed ¢-test up-
bound, Table 3.1 provides these resulting critical p-values for the two-sample
two-sided t-test. Of necessity, these p-values of course are at least as large as
the true t-test extreme p-values. Thus the critical values are upper-bounds.
To examine the applicability of this upper-bound and the Z-test approx-
imation for the critical p-values of the t-test, we compare in Table 3.2 select
entries of Table 3.1. For both the t-upper and Z approximations, we list the
percentile from the empirical distribution of the minimum p-value of the t-test
corresponding the 0.05 level critical p-values from the approximations. Use of
the t-upper approximation results in type I error rates ranging from near nom-
inal (ny = 5. n. = 5, and nypin = 4; Ny = 6. n. = 6, and Ny, = 4; and ny =
16, n. = 16, and n;,;, = 14) to roughly a doubling of the nominal 0.05 level
(ng = 6. ne = 6. and nmn = 2). The exact nominal level for the entry n; =
16, n, = 16, and nni, = 14, an apparent coincidence, indicates that for the
particular simulations carried out, the fifth percentile of the minimum p-value
was the same to the number of decimal places recorded for both the shortcut
method and the exhaustive search method. Table 3.2 also allows comparison of
the potential methods of approximating the critical p-value for the t-test, the
Z-test and the upper bound for the t-test. The Z aproximation is inferior to
the t-upper approximation for all entries in Table 3.2. In Table 3.1 we see that.
for nearly every combination of parameters, the critical p-value for the Z-test
is larger than the necessarily liberal critical value of the t-upper approximation.
