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Score Test: Historical Review and Recent 
Developments 

C.R. Rao 

Department of Statistics, Pennsylvania State University, State College, 
Pennsylvania, U.S.A. 

Abstract: The three asymptotic tests, Neyman and Pearson Likehhood Ratio 
(LR), Wald's statistic (W) and Rao's score (RS)are referred to in statistical 
hterature on testing of hypotheses as the Holy Trinity. All these tests are 
equivalent to the first-order of asymptotics, but differ to some extent in the 
second-order properties. Some of the merits and defects of these tests are 
presented. 

Some applications of the score test, recent developments on refining the 
score test and problems for further investigation are presented. 

Keywords and phrases: Composite hypothesis, Lagrangian multiplier (LM) 
test, Likelihood ratio (LR), Neyman's C(a), Neyman-Rao test, Rao's score 
(RS), Wald's statistic (W) 

1.1 Introduction 

The Score test was introduced in Rao (1948) as an alternative to the likelihood 
ratio test of Neyman and Pearson (1928) and Wald (1943) test. A few years 
later Aitchison and Silvey (1958) and Silvey (1959) gave an interpretation of the 
score statistic in terms of a Lagrangian Multiplier used in optimizing a function 
subject to restrictions, and called it the Lagrangian Multiplier (LM) test. 

The score (RS) test went unnoticed for a number of years after it was intro­
duced. The first application of the score test, apart from the examples given 
in Rao (1948, 1950, 1961) appeared in econometric literature [Byron (1968)). 
During the late 1970s and 1980s, the RS test was applied to a variety of prob­
lems in econometrics. Reference may be made to survey papers by Breusch 
and Pagan (1980), Engle (1984), Kramer and Sonnberger (1986). and Godfrey 
(1988). Most of the recent textbooks on econometrics also discuss the RS test. 
Some of them are by White (1984, pp. 72-74), Amemiya (1985, pp. 141-146), 
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Judge et al. (1985, pp. 182-187), Kmenta (1986, pp. 493-495), Spanos (1986, 
pp. 326-336), Maddala (1988, pp. 137-139), Green (1990, pp. 357-359), and 
Harvey (1990, pp. 169-177). 

The distributional aspects of the RS statistic are covered in books by Rao 
(1973, pp. 418-419), Serfling (1980, pp. 156-160), Godfrey (1988, pp. 13-15), 
Lehmann (1999, pp. 451, 529, 532, 534, 539, 541, 570), and Bickel and Doksum 
(2001. pp. 335-336, 399-402). 

The study of the power properties of the RS test started with a paper by 
Chandra and Joshi (1983) and continued by Chandra and Mukherjee (1984, 
1985), Chandra and Samanta (1988), Ghosh (1991) and others. Reference may 
be made to Peers (1971) for a comment on a conjecture I made about the 
local properties of the LR test, which motivated the work of others on power 
properties. 

In this chapter, a brief review is given of the RS statistic and its merits and 
demerits in terms of power properties compared to LR and W are discussed. 
Some of the recent developments and refinements and modifications of the RS 
statistic are presented and some problems for future research are indicated. 

1.2 Asymptotic Tests of a Simple Hypothesis 

1.2.1 Notat ion 

Let X = (.Ti,..., Xn) be an iid sample of size n from the density function p(x, 9) 
where ^ is a p-vector parameter, and denote the joint density by P{X, 9) = 
p{xi,9). ..p(xn.9) and the log HkeHhood by L{9\X) = logP{X,9). The score 
vector of p components, as defined by Fisher, is 

1 f)p 
s{0) = -p^ = isiie)....,s,id))', (1.1) 

1 dP 

The Fisher information matrix of order p x p is defined by 

ni{9) = m = E[s{9)s'{9)] = {irs{9)) (1.2) 

where irs[0) = E [sr{9)ss[9)]. The maximum likelihood estimate of ̂  is obtained 
as a solution of the p equations 

s,(d) = 0, 7;=1 p (1.3) 

which we represent by 9. Under suitable regularity conditions [Lehmann (1999, 
pp. 499-501)], using the multivariate cental limit theorem 

n-^/2^(eo)~iVp(0,i(^o)) (1-4) 
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where ô is the tnie vaKie, and 

n i / 2 ( ^ - e o ) ~ N p ( 0 , b W ] - ' ) (1.5) 

where Np{Q, A) is a p variate normal distribution with mean zero and covariance 
matrix A. 

1.2.2 Three possible tests of a simple hypothesis: 
The Holy Trinity 

Let H(j: 9 = Oo {a specified p-vector) be the null hypothesis to be tested. Three 
tests which are in current use are as follows. 

1. Likelihood ratio test [Neyman and Pearson (1928)] 

L{e\X) - LiOolX) (1.6) LR^2 

where L{e\X) = \ogP{X,e). 

2. Wald test [Wald (1943)] 

w^{e-eo)'ne){e-ec>). (1.7) 

3. Rao Score test [Rao (1948)] 

RS = [s{do)]'[I{eo)]-'[s{eo)]. (1.8) 

All the three statistics known as the Holy Trinity have an asymptotic chi-square 
distribution on p degrees of freedom. 

1.2.3 Motivation for the score test of a simple hypothesis 

Consider the case of a single parameter 6 and Ho : 6 = OQ. If it; C /?" is the 
critical region of size a in the sample space, then the power of the test is 

n{e) = I P{X,0)dv with TriOo) = / P{X.eo)dv = a. 

To find a locallĵ  most powerful one-sided test (̂  > ^o) we maximize 

7r'(0o)= j P\XMdv 
J w 

subject to 7r{0i)) = a. Using the Neyman-Pearson Lemma, the optimal region 
is defined bv 
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where A is chosen such that the size of the region is a, as shown in Rao and 
Poti (1946). The test can be written in the form 

.(̂ o) >,,,lf(M!>A^. 
vm) m) (1.9) 

In the multiparameter case, the slope of the power function in the direction 
a = (ai , . . . ,ap)', at ô is 

ai5i(^o) -f • • • + apSp{0o) = 0/5(̂ 0) 

and the statistic (1.9) takes the form 

a'I{ei))a ' 

Maximizing with respect to a yields the statistic 

[s{0o)]'[mr'[siOo)] 
which is the same as (1.8). 

1.2.4 Test of a composite hypothesis 

Under the same setup as in Section 1.2.1, let the hypothesis to be tested be 
Ho : h{0) = c, where /i is an r x 1 vector function of the p-vector 9 with p>r 
and c is a given r-vector of constants. The corresponding Holy Trinity is as 
follows: 

(1.10) 

(1.11) 

(1.12) 

1. Likelihood ratio test [Neyman and Pearson (1928)] 

LR = 2 i.{e\x)-mx) (1.13) 

where 9 is the ml of 9 under the restriction h{9) = c. 

2. Wald test [Wald (1943)] 

W = \h.i9) - cY \A{9) ^ [/i(i9) - c] (1.14) 

where 

A{9) = [H{9)][Ii9)]-'[H{9)]', 

H{9) = {dh,{9)/d9j),h{9) = ihi{9) hr{9))\ 

and I(9) is as defined in (1.2). 
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3. Rao Score test [Rao (1948)] 

RS=[si0)]'[m]-'[s{d)]. (1.15) 

All the three statistics have an asymptotic chi-square distribution on r degrees 
of freedom. 

An alternative way of expressing the RS statistic is as follows. Note that 9, 
the restricted ml of ^, is a solution of the equation 

s{e) + [H{9)]'X = 0, h{e) = c 

where A is an r-vector of the Lagrangian Multiplier so that [s{9)y = -'\'H{9). 
Substituting in (1.15) we have 

RS = >!H{e)[i{e)]-\H{e)^\ = >:[A{e)]\ (i.ie) 

where A{9) is as defined in (1.14). Silvey (1959) expressed the RS statistic 
(1.15) in the form (1.16) and called it the Lagrangian Multiplier (LM) test. (In 
econometric literature, the RS test is generally referred to as the LM test.) 

1.2.5 Special form of compos i te hypothes is 

In many problems, the p-vector parameter 9 consists of two parts, 9\ an r vector 
and ^2 a (p - r) vector and the null hypothesis is of the form Ho '• 9i = 9io 
(a specified vector) and 9^ (known as a nuisance parameter) is arbitrary. This 
becomes a special case of the composite hypothesis considered in Subsection 
1.2.4 if we take h{9) = ^i. Denote the unrestricted ml of (^i, ^2) by (^1, ^2) and 
its asymptotic covariance matrix by 

cov{9j) = [I{9)Y 
- 1 ^fhm ii2{e)y_(A B 

\l2l{9) l22{0)) \B' C 

where the partitions of the information matrix, / n , /12, and /22 are matrices of 
orders r x r, r x {p - r) and {p - r) x {p - r), respectively, The Wald statistic 
can be written as 

= ( ^ i - M ' A . 2 ( ^ ) ( ^ i - M (1-17) 

where 

^1.2 = / i i - /12/22 

the Schur complement of /22. 
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To compute LR and RS statistics, we need to find the restricted ml estimates 
of ^1, 2̂ under the restriction 6i = 9io. Using the Lagrangian multiplier we have 
to maximize 

L{e\x)-\{ei-eio) 

with respect to 0. The estimating equations are 

The Rao score statistic is 

RS = [si{e)\oy[iier'[si{9)\o'^ 
= A'(/i.2(^^)r^A, (1.18) 

The LR statistic is 
LR = 2 L{9)'L{e)\ (1.19) 

All the three statistics have asymptotically chi-square distribution on r d.f. 

1.3 Neyman's C{a) Test and Neyman-Rao Test 

Neyman (1959, 1979) considered the problem of testing the hypothesis Ho : 
9i = 1̂0 (given) and 92,...,9p are arbitrary (nuisance) parameters. Hall and 
Mathiason (1990) considered the more general problem of testing the composite 
hypothesis 

Ho : 9i = 9io,•",9q = 9go and ^^-^i,...,9p 

are arbitrary by generalizing Neyman's results using the type of the argument 
used in Rao (1948) as in Section 1.2.3. Consider the slope of the power curve 
in the direction (ai, — a<y, 0, . . . , 0) 

msi H h aqSq 

where Si is the derivative of the log likelihood with respect to 9i, and define the 
Neyman statistic N as 

N = ^ , (;i^i + - - + a , . , ) ^ (1.20) 
o V{aiSi H ^aqSq) 

subject to 
cov{si,aiSi + • • • 4- agSq) = 0, 7 = g + 1,... ,p. (1-21) 
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Using notation 

Si = ( 5 1 , . . . , Sg)', 52 = (5^4-1 , . . . , 5p ) \ 

a = (a i , . . . , ag) ' , 

£;(5i5l) = In. E{SiS'2) = Ii2^E{S2S'2)=^l22. 

the problem (1.20), (1.21) can be written as 

iV(eio,e2) = m a x ^ ^ (1.22) 

subject to /21a = 0, where 610 = (^lo,—^(7o)'.©2 = (^(?+i-• • ^^p)'- Using 
standard algebra, the optimum N is obtained as 

A^(eio,e2) = (5i - h2l22S2y{h.2r\Si - /l2/2-2'52) (1.23) 

where /1.2 = h\ - h2l22hv 
Neyman chose ^Jn as the consistent estimate of G2 to obtain his statistic 

iV = Â  (610 ,62) . (1.24) 

This form of the N statistic, obtained as a generalization of Neyman's single 
parameter test, is called the Neyman-Rao test by Hall and Mathiason (1990). 
The asymptotic distribution of A/' as in (1.24) is chi-square on q degrees of 
freedom. If 02 is estimated by the constrained ml method, the test reduces to 
the RS test (1.19). 

1.4 Some Examples of the RS Test 

Godfrey (1988) gives a comprehensive account of the applications of the RS test 
in econometrics. A few examples mentioned in the paper by Bera and UUah 
(1991) are as follows. 

Chi-square goodness-of-fit: Given a parametric specification of the cell 
probabilities in a multinomial distribution, Pearson developed the chi-square 
goodness-of-fit test based on observed frequencies. This test can be seen to be 
the RS test of a composite hypothesis [Rao (1948)]. 

Linear model: The analysis of the linear model yi = x'-0 -I- Ci, z = 1 , . . . ,n, 
is based on four basic assumptions: correct linear functional form, normal­
ity of the distribution of the error term, homoscedasticity and serial indepen­
dence. The RS test for normality has been derived by Bera and Jarque (1981), 
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for homoscedasticity by Breusch and Pagan (1979). for serial independence by 
Breusch (1978) and Godfrey (1978a,b) and for linearity by Byron (1968). 

For further examples and interpretation of several well-known tests in terms 
of the score functions, reference may be made to Bera and Ullah (1991) and the 
papers in the special issue on Rao's score test. Vol. 97. pp. 1-200 of Journal of 
Statistical Planning and Inference (2001). 

1.5 Some Advantages of the RS Test 

1. In general, it is simple to compute the RS statistic as it depends only on 
estimates of parameters under HQ. 

2. The test is invariant under transformation of the parameters, unlike the 
Wald test (see Section 1.6 for examples). Transformation of parameters 
may simplify the estimation of parameters without effecting the value of 
the statistic. 

3. The RS test has the same local efficiency as the Wald and LR tests. 

4. The distribution of RS is not affected by parameters being on the bound­
ary of the parameter space under Ho. In such a case the LR test, and in 
some cases the W test, is not applicable. 

5. There are situations where nuisance parameters are not identifiable under 
Ho leading to singular information matrix. In such cases the RS test can 
be suitably modified as illustrated in Davies (1977. 1987). 

1.6 Some Anomalies 

1.6.1 Behavior of the power function 

The LR, W and RS tests are consistent in the sense that for a fixed alternative 
to the null hypothesis the power tends to unity as the sample size n —* oo. 
However, for a fixed sample size, the power function may not be monotonically 
increasing with increase in the distance (defined in some sense) of the alternative 
hypothesis from the null. 

Example 1.6.1 Let : r i , . . . , ./>, be an iid sample from the Cauchy distribution 
with density Tr'^fl -f {x - 9f]-\ 
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The RS test for HQ : 6 = 60 against the alternatives 6 > 60 rejects when 

As the alternative 6 -^ oo, min(.Ti ~ OQ) -^ oo in probability, so that for fixed 
n, the left-hand side of (1.25) tends to zero. Since Ua > 0 (for a < 1/2), the 
power of the test as ^ —> oo for fixed n tends to zero. [See Lehmann (1999, p. 
532) for further details]. 

Example 1.6.2 Let xi,... ,Xn be independent binary response variables such 
that 

P{x-, = 1)=^ U+expl-^'^PiZiAl . ?; = l,...,7i, (1.26) 

where zn = 1 and Zi\,...,Ziq are observations on q covariables. To test the 
hypothesis iifo : ,5<̂  = 0 against the alternative H : !3q ^ 0, the Wald statistic is 

^V = 0lli,, (1.27) 

where 9q is the ml estimate of /3g and iqq is the estimated variance of $q. 
Hauck and Donner (1977) show that for fixed n, l^ —• 0 as /Ŝ  -^ oo for fixed 
/ ? ! , . . . , 0q-\, so that the power of the test decreases as dq increases. For further 
examples of such anamolies associated with Wald's statistic, reference may be 
made to Vaeth (1985) and Le Cam (1990). 

The above examples do not contradict the claims made about RS and W 
about the local power of the tests. Nonetheless, they suggest a caution in the 
use of these tests [see Mantel (1987)]. It would be of interest to construct an 
example of the type of anomaly noted above for the RS and W tests in the case 
of the LR test. 

1.6.2 Examples of non-invariance of the Wald test 

The Wald test is not invariant for transformations of the parameter while the LR 
and RS statistics are. Different choices of parameters using the Wald statistic 
may lead to different inferences. 

Example 1.6.3 Consider the likelihood P{X.9) based on observed data X 
and a single unknown parameter 9. Let 6 be the ml estimate of 9 and I{9), the 
estimated information. 

The Wald statistic for testing the hypothesis HQ : 9 = 0 is 

9 y/i0) (1.28) 
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which is asymptotically distributed as N{0,1). An equivalent hypothesis is 
Ho : 0^ = 0 and the Wald test based on the parameter 6^ (using the 5-method 
to compute the variance of 6^, Rao (1973, p. 388) is 

{e'/Ze')y/l0) = ^-^) (1.29) 

which is asymptotically normal as A^(0,1). The p-values based on (1.28) and 
(1.29) can be quite different. 

Example 1,6.4 [Gregory and Veal (1985)]. Consider the linear model 

y = /?x -f 72 + u, u^ iV(0, a^) (1.30) 

and tests based on n observations. Let /3 and 7 be the maximum likelihood 
estimates (MLEs) of 0 and 7 with the estimated variance-covariance matrix 

2̂ (mi u 
\W2l U 

12 

W22 

where a is the least squares estimate of a. To test the hypothesis HQ : P^y = 1, 
the Wald statistic is 

< ^ ^ - " ^ (1.31) 
. a^{^^Wu + 2P^Wi2 + 0'^W22) 

which is asymptotically chi-square on 1 d.f., while the test for the equivalent 
hypothesis /3 = 7""̂  is 

cr'^iwu + 27"2|i;j2 + 7~'*^22) a'^iy'^wn -f 2u;i2 4- 7~̂ Tî 22) 

which is different from (1.31) and is also asymptotically chi-square on 1 d.f. 

For another example of non-invariance of Wald's test, reference may be 
made to Fears, Benichow and Gail (1996) and Pawitan (2000). 

1.6.3 Weak dependence of the RS statistic on alternatives to 
the null hypothesis 

In general, when the null hypothesis is rejected, one looks for alternative stochas­
tic models for the observed data. The score test depends on the slope of the 
likelihood function at the null hypothesis. There may be different likelihoods 
all giving the same score statistic. If the score test is significant, there is no 
way of knowing what the alternative is. 
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Test for normality: Suppose we start with the Pearson family or Gram-
Charlier type of distributions and construct a test for normaUty The same RS 
statistic is obtained for both alternatives [Bera and BiHas (2001)]. 

Test for homoscedasticity: The RS statistic for testing homoscedasticity is 
the same for alternatives such as multiplicative and additive homoscedasticity 
[Breusch and Pagan (1979) and Godfrey and Wickens (1981)]. 

Testing for serial independence: The RS statistic for testing serial inde­
pendence is the same whether we consider as alternatives the pth order autore-
gressive or pth order moving average model [Breusch (1978), Godfrey (1978a)]. 

Such difficulties may exist with other test criteria and it would be of interest 
to construct some examples. 

1-7 Power Comparisons 

The following is a simimary of numerous papers devoted to power comparisons 
of LR, W and RS tests. 

Taniguchi (1988] 1991): The first-order local powers are the same for all the 
tests. The second-order local powers are different but no one dominates the 
other. 

Taniguchi (2001): In terms of Bahadur efficiency, they are the same up to the 
second order. 

Bing Li (2001): They are all sensitive to changes in the values of the nuisance 
parameters. 

Chandra and Joshi (1983): Rao's test is more powerful to the order (1/n) than 
LR, and W, when one modifies the critical regions to have the same size up to 
order (1/n). 

Ghosh and Mukherjee (2001): RS is more (or equally) efficient than LR and W 
under the criteria of maximinity and average local power. See also Mukherjee 
(1990, 1993) for results on asymptotic efficiency of Rao's Score. 

Further investigation of power properties of LR, W and RS tests would be 
of interest. 
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1.8 Some Recent Developments 

In this Section, we consider some modifications and refinements made on the 
RS statistic and indicate the need for further research in some cases. 

1. In testing a composite hypothesis the estimated score vector s{9), where 
6 is the restricted ml estimate of 0 under the hypothesis, is used in com­
puting the RS statistic. It was argued that s{9) is close to zero if the 
hypothesis is true. But E[s{9)] may not be zero unless the null hypoth­
esis is a simple one. In such a case Conniffe (1990) suggested the use of 
the quadratic form 

\^s{9) - Es{9)p{9)[s{9) - £5(^)] (1.33) 

where J is the inverse of the covariance matrix of s{9) - E[s{9)]. The 
computation of (1.33) and its improvement over the RS statistic needs 
further study. 

2. White (1982) developed score type of statistics based on estimating equa­
tions and the quasi-likehhood functions. This introduces some robustifi-
cation in inference procedures. See also Godfrey and Orme (2001). 

3. Several authors tried to adjust the RS statistic similar to a Bartlett (1937) 
type of adjustment to the LR statistic. Harris (1985) suggested an ad­
justment based on Edgeworth-type expansion. Dean and Lawless (1989) 
suggested a different type of adjustment in certain models. Ghosh and 
Mukherjee (2001) developed a method of adjustment when the RS statis­
tic is based on quasilikelihood. This is an area where further research 
is needed. R,eference may also be made to a recent contribution by Tu, 
Chen and Shi (2004) on Bartlett type correction to the Score test in the 
Cox regression model. 

4. The RS statistic (1.8) for testing a simple hypothesis ^o • ^ = ô is 

[^(^o)r[/(^o)]"M^(^o)] 
which involves the computation of the information matrix 

i{eQ) = E[s{eo)si9oy]. 
Instead of I{9o), one could use the p x p matrix of second derivatives of 
the log likelihood with a minus sign 

MO) = - -i—E- (1-34) 
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leading to the statistic 

[s{0o)]'{A{0o))-'[s{e,)]. (1.35) 

Terril (2001) suggests further simplification by using what he calls the 
gradient statistic 

F'' = [s{eo)]'{e-^eo) (i.36) 
where 6 is the ml estimate of 9. The suggestion by Terril is attractive 
as it is simple to compute. It would be of interest to investigate the 
performance of the statistic (1.36). 

5. In considering the score statistic, Rao (1948) used the ml estimates of 
parameters. A similar theory can be developed using BAN estimators. 

6. Rao (1951) suggested the use of score tests in sequential analysis for test­
ing a simple null versus a simple alternative hypothesis. Bradley (1953) 
considered a nice application of Rao's sequential test in clinical trials. An 
appUcation in quality control is given by Box and Ramirez (1992). For 
some comments on sequential score test and possible applications refer­
ence may be made to Sen (1997). 
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tributed by econometricians on the application of the score statistic to prob­
lems in econometrics and the extensions and improvements they have made. 
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Abstract: The EM algorithm is used to find the maximum Ukelihood esti­
mates (MLEs) of the parameters of a bivariate normal distribution based on 
progressively Type-II right censored samples. The asymptotic variances and 
covariances of the MLEs are derived, using the missing information principle, 
from the Fisher information matrix as well as from the partially observed infor­
mation matrix. Optimal censoring schemes are then investigated with respect 
to minimum trace of the variance-covariance matrix of the MLEs and also with 
respect to the maximum information about p. 

Keywords and phrases: EM algorithm, maximum likelihood estimates, con­
comitants of order statistics, progressive type-II right censoring, asymptotic 
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2.1 Introduction 

In many life-testing experiments, the experimenter may not observe all failure 
times either unintentionally or intentionally. For example, some of the exper­
imental units may break accidentally, or subjects in clinical trials may drop 
out for personal reasons in the middle of the trial. In some life-testing studies 
involving expensive units, it will be beneficial if some of the units placed on 
the test could be removed early on from the test so that those units could be 
used for other tests as well. In some clinical trials, duration of survival after a 
treatment may be many years and the experimenter may terminate the study 
prior to observing the durations of survival for all the individuals in the trial. 
Censored data arises in all these situations wherein the experimenter does not 
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obtain complete information for all the units or individuals under study. 

Different types of censoring arise based on how the data are collected from 
the life-testing experiment. Let us consider a life-testing experiment wherein 
n items are placed on test. Suppose the experiment has to be terminated at 
a prefixed time, say T. Then one can only obtain failure times which are less 
than or equal to T, and the data so obtained are called Type-I censored data. 
Instead of prefixing the total time of the experiment, the experimenter may 
wish to discontinue the experiment after the first r failures are observed. In 
such a situation, the data are said to be Type-II censored. A generalization of 
this Type-II censoring is called Progressive Type-II censoring, which arises as 
follows. Of the n items placed on a life-test, suppose Ri functioning items are 
randomly removed from the test right after the first failure. Similarly, immedi­
ately after observing the second failure, R2 items are randomly removed from 
the remaining n- Ri -2 items on the test, and so on until each item is taken 
care of either due to its failure or due to its removal from the test. The data 
obtained in this manner are said to be progressively Type-II censored data. 
Inference under Type-I and Type-II censoring for various parametric families of 
distributions have been discussed by Nelson (1982), Cohen and Whitten (1988), 
Balakrishnan and Cohen (1991). and Cohen (1991). Inference for WeibuU and 
exponential distributions under progressive Type-II censoring have been dis­
cussed by Mann (1969, 1971), Viveros and Balakrishnan (1994), and Ng, Chan 
and Balakrishnan (2002). Further references and details on progressive censor­
ing can be found in the book by Balakrishnan and Aggarwala (2000). 

Let (Xi, Ki ) , . . . , {Xn, Kn) be a random sample from a bivariate normal den­
sity function, (j>o{x,y), where 9 = {^IX^^^X^I^Y^^Y^P)^ (PX^I^Y) are the means, 
{(TX^CTY) are the standard deviations, and p is the correlation coefficient be­
tween Xi and Yi. Suppose Xi, X2, . . . , X„ are the life-times of the n units 
placed on a life-test, and Vi, Y2. . . . , Yn are the corresponding covariates. Prior 
to the experiment, a number m < n is fixed as the number of complete fail­
ures to be observed and the progressive censoring scheme (i?i,/?2i-• • i-Rm) 

m 
with Rj > 0 and Yl ^j -^ rii = n is also pre-specified. During the experi-

ment, immediately after the j t h failure is observed, Rj functioning items are 
randomly removed from the test. The m complete (ordered) life-times thus 
observed are denoted by XJ.„J;„ ' ""', j = 1,2 m. For convenience, some­
times the progressive censoring scheme will be omitted in the notation of the 
Xj:m:n^. Tlicse Completely observed failure times are referred to as progres­
sively Type-II right censored order statistics: see Balakrishnan and Aggarwala 
(2000). Let yjj.m:,,) = Yi if Xj:ni:n = Xi for j = l,.. . ,m. Then, one can 
have the concomitants (David, 1973) Y^.^.^], j = 1 m, of the progressively 
Type-II right censored order statistics, which are also called the induced order 
statistics [Bhattacharya (1974)]. The exact and asymptotic distribution theory 
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of yji-.n]. concomitants of the usual order statistics from some bivariate distri­
butions, were studied by Yang (1977) and the asymptotic distribution of the 
concomitants from a bivariate normal distribution were derived by David and 
Galambos (1974). David and Nagaraja (1998) provided a detailed review of 
developments on concomitants of order statistics including the role of concomi­
tants in the estimation of regression parameters and correlation coefficient and 
the analysis of censored bivariate data. Based on a Type-II right censored bi­
variate normal sample, Harrell and Sen (1979) derived the maximum likelihood 
estimators (MLEs) of the parameters and their asymptotic variance-covariance 
matrix. Balakrishnan and Kim (2005) derived the MLEs of the parameters and 
their asymptotic variance-covariance matrix based on a progressively Type-II 
right censored bivariate normal data. 

The Expectation-Maximization (EM) algorithm [Dempster et al. (1977), 
McLachlan and Krishnan (1997)] is a useful tool to estimate the parameters of 
the distribution based on an incomplete data, especially when the estimation 
based on complete data is relatively easy. In the EM algorithm for incomplete 
data problems, the parameters are estimated after filling in initial values for 
the missing data. Then the initial values for missing data are updated by their 
expected values using the initially estimated parameters. The parameters are 
then re-estimated, and so on, proceeding iteratively until convergence. The 
progressively censored data mentioned above can be viewed as an incomplete 
data and the EM algorithm can then be applied to obtain the MLEs. It should 
be mentioned that the EM algorithm for progressively Type-II right censored 
univariate data has been discussed recently by Ng et al. (2002). These authors 
also used the Missing Information Principle [Orchard and Woodbury (1970), 
Louis (1982), Tanner (1993)] to derive the asymptotic variances and covariance 
of the MLEs when the EM algorithm is used for progressively Type-II right cen­
sored univariate data. The EM algorithm for Type-II right censored bivariate 
data has been discussed recently by Balakrishnan and Kim (2004). 

In Section 2.2, conditional distributions of censored data given observed 
data are determined for progressively Type-II right censored samples from a bi­
variate distribution using which conditional expectations of censored data given 
observed data are derived for the case of the bivariate normal distribution. In 
Section 2.3, the EM algorithm for finding the MLE of ^ of a bivariate normal 
distribution is discussed. In Section 2.4, asymptotic variances and covariances 
of the MLEs are derived using the missing information principle from the Fisher 
information matrix as well as from the partially observed information matrix. 
An illustrative example is presented in Section 2.5. Optimal progressive censor­
ing schemes with respect to minimum trace of the variance-covariance matrix of 
the MLEs and also with respect to maximum information about p are examined 
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and presented in Section 2.6 with some comments. 

2.2 Conditional Distributions of Concomitants of 
Order Statistics 

For convenience, the following notation will be adopted throughout this 
chapter: 

Fz{z) - cdf of a random variable Z, 

fz{z) - pdf of a random variable Z, 

fvixiyW) •" conditional pdf of YgivenX = x, 
Lz — likelihood function based on the random variableZ. 

Let 

and 
yobs = (^[l:m:n]i ^[2:m:n]? • • • > ^[m:m:n] J 

be the observed data, and 

and 
Ycen = ( i ^ ( l ) , V | 2 ) , . . . , V ( m ) ) 

be the censored data, where X(j) and Vjj) are 1 x Rj vectors with A'(j) = 
{Xji,Xj2,.^-,XjR.) and y(j) = {Yji,Yj2,... .Yj^j) for j = l , . . . ,m. Combine 
(Xobsiyobs) and (Xceniî cen) to form (X, Y) which is the complete data, where 
X = ( X l , XlJ and Y = ( F X , F J J . The joint density of (X, Y) is given by 

/(x.Y)(x,y) 
m ^ j 

= ^ n n'^n^(2/L7:m:nll%m:n)/x(^j:m:n)/K|x(yjifc^ (2.1) 
.7=1*!= I 

where C = n{n - i?i - 1) • • • (n - /?i - /?2 ^m-i - m + 1). The joint 
density of (Xobs^yobs) can be written as 

f(Xo,,,Yohs)(^'obs.yobs) 
m 

= CY[ fY\xiy[j:m:n]\Xj:m:n)fx{Xj:m:n)[l " FxiXj:m:n)]'^\ 

^hm:n < •• < Xm:m:n, " 0 0 < y[j:m:n] < OO- (2-2) 
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From (2.1) and (2.2), the conditional joint distribution of censored data, given 
observed data, can be written as 

f{Xr.r.n^yre.n)\(Xohsyohs)i^Cen^ VcenlXobs^ Vobs) 

Xj.m.n < ^jk < +0C, ~0C < J/jfc < + 0 0 . (2.3) 

Therefore, the density function of {Xj^.Yjk), given (A(jj)s, Vo6s)i J — 1,2,..., fu 
and fc = 1,2,... ,i?j, is 

= f{Xj^.Yj,)\Xy.rr,:r.i^jk>yjk\Xj:rr,,n = Xj.mm) 

'3^y,m;.n < Xjk < + 0 0 , - 0 0 < IJjk < + 0 0 . (2.4) 

From (2.4), we can derive the first and second moments of Yjk and the product 
moment of Xj^ and Yj^, given {XobsiYobs)^ when (X,Y) are from a bivariate 
normal distribution with parameter 9 = (/ix?^X:MV'iCry,p), as follows: 

E[Yjk\Xj:m:n = Xj:m.:n] = MV + P^^YQJ, (2-5) 

£;[y/^|X^:m:n = :r^j:m:n] = Cry(l + P^ZjQj) + 2paYflYQj + A^y, (2.6) 

= f^vifiX + crxQj) + p(^Yif^xQj + ^X + crxZjQj), (2.7) 

where Zj = •̂?:-"̂ "̂ -/̂ -v ^i^j g . ^ j ^ ^ ^ with 0(-) and $(•) denoting the stan­

dard normal pdf and cdf, respectively. 

2.3 The EM Algorithm 

The progressively Type-II right censored bivariate normal data can be viewed 
as an incomplete data and the EM algorithm can then be applied to determine 
the MLE of the parameter 9. The log-likelihood function l{9; x, y) based on the 
complete data (X, Y) is 
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1(6; X, y) = constant - n log a.x - n log<Ty - - log(l - p^) 

2(1 

= constant - n log (TX - n log ay - - log(l ~ p̂ ) 

2(1 
yU:m:n] ^ l^Y ' 

(TY 

where (xjjt, yjk)^ 3 = 1, . . . . m, fc = 1,. . . , i?^, are the censored data. Based on 
the complete data, it is well-known that the MLE of ^ = (//Xi^x^Mr^^^yiP) is 
given by [see Kotz, Balakrishnan and Johnson (2000, p. 294)] 

^J'X = -n 

ax = 
n 

n 

m m ^ j 

2^ Xj:m:n + 2^22 ^J^ 
, 7=1 j = l A:=l 

^ 

1 m m ^j 

I j = l j = l AT=1 

m m J^i 

.7=1 j = l A:=l 

1 

(71/ = 

1 I 7" m '*^j 

J=l i=iJt=i 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

^ { Er=l (^'-'"- -A.V )(V :̂m:nl 'M+EJ^l E f j l (^Jl̂ -Ax X Ĵt "Av ) } 
^x<^y 

(2.12) 

Hence, in the {h + l)th iteration of the EM algorithm, the values of fi^ ^ 

^x » Ar 1 ^ r ^ and p̂ '*'̂ )̂ are calculated as follows: 

E.r=l ^i:-:n + E ^ ^ l RjEiXj,\Xj, > Xj:m:n. fi^x^^X^)] ' (2-13) 
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^T'^ = [̂  { E r = l 4m. + Er=l RjE{X%\X,, > X,.m:n,A'^'\4^)} 

-if^T''? (2.14) 

+ 

.(h+l) 

E r = l RMyjk\Xr.m:n = X,:^.:n, A ^ ' ^ ^ X ^ ' ^ Ai^'\ 4 ' ^ P^^^ 

(2.15) 

i iyrn 2 
n \ ^ j = l ^[7:m:n] 

.(h+l) .(/l+l) ~(h) ;.(Mx\ 

r,(''+i)\2 -(Ar'o^ 

where 
BC 

(2.16) 

(2.17) 

A — 7 ,3^j:Tn:n?/[;:m:n] 
j = l 

j - V f f r [ y V iry v ^ r/''+^) A(^"^^) r/̂ "̂̂ ) /v̂ '̂ +i) ;̂ (/i) 
i = i 

5 = E4m:.>E î̂ [̂ Ĵ Î î > î--A^^^^^^^ ' 
17 = 1 j = l 

and 

S=i 

2 

.7 = 1 

/ ' ^ ( / I + 1 ) N 2 \ ^ 

The first and second moments of Xjk, given Xjk > Xj:m:n, are given by [see 
Cohen (1991, p. 10)] 

E{Xjk\Xjk > Xj:m:n^flX^^x) = ^xQj + Ax, (2.18) 

E{X]f,\Xjk: > Xj:rn:n, Ax, ^ x ) = <7^(l + ZjQj) + ^Gx^xQj + Ax» 

(2.19) 
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where Zj and Qj are as defined earlier (with fix and ax replaced by fix ^^d 
ax, respectively). Now, by using Eqs. (2.5), (2.6). (2.7), (2.18) and (2.19) in 
Eqs. (2.13)-(2.17), we can find the MLE of 9 via the EM algorithm. 

By the fact that (fixi^x) is the MLE of (MX^^X) based on Xohs alone 
[see Balakrishnan and Kim (2005)], the EM algorithm can be separated into 
two parts, with one iterating for (Ax^^x) and the other for {flY^^Y,p)^ which 
results in reducing the computational time. 

2.4 Asymptotic Variances and Covariances 

The Fisher information of complete data. Icompi^)^ for a bivariate normal dis­
tribution is known to be [see Kotz, Balakrishnan and Johnson (2000, p. 294)] 

(0) i^comp 

= -E 

— n 

1 
4(l-p2) 

2 

0 

<T1-(1-/>2) 

p 
(TXCY^^-P^) 

0 
1 

old-p") 

0 
p ' 

cr.v(Ty(l-/j2) 

0 
2-p2 

4(1-/'') 

0 \ 
p 

<rA-(l-p^) 

0 
p 

(2.20) 

The log-likelihood function for {Xjk, y-ik) which is the censored data at the time 
of the jth failure, given the observed data, can be derived from (2.4) to be 

{9,[Xjk,yjk)\Xj :m:n — 

= constant - log cry - ~ log(l - p^) 

- log ax - l^i^ik - ^lx? -\og{l- $(2j)} , 

-r^jk > Xy,m:n. - O C < XJjk < OC- (2.21) 

Then, the missing data information, lmiss,j{0)^ in one observation (Xjk.Yjk), is 
given by 

miss.i :m:n — ^j:m:n) 
_ Imiss.jiO) = Ex^.,„,,. E -



EM Algorithm and Optimal Censoring Schemes 29 

= •SXj:„.:n 

/ / , miss J 

\ 

EY \r • • 

r*,12 
miss J 

T*,22 
m,iss.j 

r*.13 
mis.s,? 

7*,23 
miss,] 

r*.33 

r*,14 
m,iss,j 

r*,24 • 
m,issj 

^m.issj 
r*,44 
m,issj 

r*,15 
m.issj 

r*,25 
^miss,j 
r*,35 
^m,iss,j 
r*,45 
m,issj 

T*,55 
^m,issj 

(2.22) 

(2.23) 

where 

'^m.iss 

r*,13 
m,iss 

T*,15 

r*,23 
miss 

r*,25 
''^m.iss 

^m>%ss 

r*,44 
m,iss 

r*,55 
mtss 

- :;? 
p2 l ^ ^ j Q j - Q ] , . , 12 

4(l-p2) 

c7A'ay(l-p2)' 
_ p( l+3jQ,) 

^ ^ -4(1 V ) ' 

mi.ss,j 
r*.14 
m.iss,j 

r*,22 
missj 
r*,24 
miss J 
r*,33 
m,issj 

= r? 
P^Q; 

A-( i -p'; 
P^Q. 

P^(l4-^;Qy) 

1 
^ ( l -p2 ) ' 

r*,35 _ Qj 
^missj "~ (Tv(l-/72)? 

r*,45 ^ p(l-ZjQj) 
miss.j <7y(l-/)2) ' 

Let T/̂ J" ̂  be defined by 

^r'^=£^x,. {'/'(^j)}"^? 
{HZj)}»{i-^{Zj)Y 

By taking expectation of /^j^^j with respect to the jth progressively censored 
order statistic Xj:m:n, we can obtain the information for the missing data as 

/ / , 

•*^missj\") — 

11 
m.iss,j 

/12. . 
miss, 7 

r22 
•'^m,issj 

rl3 
m.iss,i 
r23 
miss.i 
r33 
m,iss,j 

/14, . 
miss, 7 

/ 2 4 : 
^m,iss,j 
/34. •. 
•^ miss, J 
744,j 

miss 

/ 1 5 , 
m.iss,7 

725 
•'^ miss J 
r35 
^miss.j 

m,iss 

m,iss 

, (2.24) 
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where 

i^y • = 
rO-P^) + 

1+^,('"")_0<.2O2O) 

^ 

2 / ( lOlO) 

/12. . = f 3 - J -
•'mts.sj <7^.(l-p2) 

(t/'^'°'°'+0|"'"^-0'/°"') 

/13 . = fi ^ 

, (1010) 

/ 1 5 . ̂  _ ^^ ; ^ 

(1010) 

2 . (1010) 

r22 •• P - ( l ^ ^ r " ) 
^ miss J <T2^.(l~p2) 

r23 _ , 

. , , , (1011)v 

/34 . ̂  M 

+ 
2+0<^O")+,/,("'^3)_^(2O22) 

4 

(1010) 

^missj (72,(l-p2)' 

.44 _ 2 , P ' d ^ ^ r " ' ) 
•"mutsj - ^ "̂  (rij,(l-p2) ' 4{1-P^) 

24 ^ /'^(1+^r"") 

-*mt55,j (Tx<7y(l-p2) » 

r33 _ 1 

,/,(1010) 

/35 = _:^j ^ 
^ miss J a K ( l - p 2 ) ' 

/ , / ( l O l l ) x 
^missj ory(l--p2) ' 

14-t/; (1011) 
r55 _ 2p2 , 
^ miss J - (l-p2)2 -^ (l-p2) 

,(a6crf) ^] can be expressed in terms of moments of the smallest usual order statistic 

from different sample sizes using the density function of Zj = ^^^""^-^ given 
by Balakrishnan et al. (2002) as 

i-Q 

- 0 0 < Zj < 0 0 , 

where 
c' = n{n-Ri-l)--{n-Ri Rj.x-j + 1), 

j-i 

R!l = ( i i ; 4 - l ) + J ] (i?fc + l) , R]^n-j-Rx Rj-x, 
k=j-i 

( -1 ) ' 
Ci,r(ar) = 

{nLiE^i;-^-Ui«4{n/=iUda4 
for ar = (ai,a2i- • • ^^r)-

To determine z/;]̂  ^ ' = JB L ^ L ^ ^ . J , for example, using the above density func­

tion of Zj, we need to find an integral of the form /f^ {0(^)}^ {1 ~ ^{x)}°'dx 

for a > 0 (an integer), where 0 ( ) and $(•) are the standard normal pdf and 

cdf, respectively. Balakrishnan and Kim (2005) have expressed that 

r {4>ix)}'{l-^x)rdx = -
./-OO (a + l)(a + 2) 

E[Zi:a+2], (2.25) 
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where ZI:Q^2 is the smallest order statistic in a sample of size a + 2 from the 
standard normal distribution. Therefore, t/̂ 'j ^ can be expressed in terms 
of expected values of the smallest usual order statistic from different sample 
sizes from the standard normal distribution. Similarly, i/;j \ tpj \ ipj , 
(̂2020)̂  ĵ202i) ^^^ ,̂j2022) ^^^ ^jj ^^ expressed in terms of the first, second, 

third and fourth moments of the smallest usual order statistic from different 
sample sizes from the standard normal distribution, with the use of the following 
formulas: 

/

oo 1 r ^ 

/

OO 

x2{0(x)}2{l-$(.x)}''dx 
-00 

(a + l)(a + 2) 

1 
(a + l)(a + 2) 

(2.26) 

{2E[Zv.a+2] - E[Zl,^,]}, 

(2.27) 

/

OO 1 . ^ 

r {<t>{x)}'{l-^x)rdx = - -
J-oo (a (o + l)(a. + 2)(a + 3) 

(2.28) 

{l-£^[2L+3]}, 

(2.29) 

r X {(l){x)f {1 - ^x)ydx 
./—OO 

x^ {(j){x)f {1 - ^x)rdx 
-OO 

1 -— {2 - 8£;[zL+3l + mzL^s]} • (2.31) 
(a + l)(a + 2)(a + 3) 

Prom (2.20) and (2.24), we can obtain the Fisher information matrix for the 
observed data as 

m 

(2.32) '^comp / ^ •'tjii miss J • 

By inverting the Fisher information matrix above, we can obtain the asymptotic 
variance-covariance matrix of the MLE of 0 as 

/ Vn Vn Vn V^ K15 \ 
V22 ^23 V24 V25 

V33 V34 V35 

V44 V 4̂5 

V V,, J 

V0) = (2.33) 
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Table 2.1: Simulated progressively Type-II censored samples from a bivariate 
normal distribution 

Rg(25.0 0) 

(13.9534. 5. 
(18.7286.10 
(18.7648. 5. 
(19.5882, 5. 
(20.6655, 7. 

2440) 
.4529) 
8012) 
3824) 
7746) 

(21.1502.10.5074) 
(21.4592.10.4308) 
(23.1105. 9.0242) 
(23.2390. 7.9312) 
(23.4543.10.8688) 

(23.6.538. 7.1682) 
(23.7090.10.1993) 
(25.9404.11.9220) 
(26.6553.10.4963) 
(27.4103. 8.9235) 

(27.5243.10.1348) 
(28.1226, 9.3579) 
(28.3778.11.4975) 
(28.6203. 8.2270) 
(28.7939.11.2662) 

(29.1558, 9.2772) 
(29.8880, 9.8495) 
(31.5465.10.6816) 
(34.8827,12.1457) 
(35.8427.10.9435) 

R=(5.5.5.5.5.0.. .0) 
(13.9534, 5. 
(16.6970, 4. 
(18.7286.10 
(18.7648. 5. 
(19.5882. 5. 

2440) 
8205) 
4.529) 
8012) 
3824) 

(19.7357. 6.0263) 
(20.6655. 7.7746) 
(21.1502,10..5074) 
(21.6218.11.0130) 
(22.4708. 8.1816) 

(22.5961. 8.5164) 
(23.0072. 9.7782) 
(23.1105, 9.0242) 
(24.0908, 9.4917) 
(24.3373. 8.0105) 

(25.9404.11.9220) 
(27.4103. 8.9235) 
(27..5243.10.1348) 
(28.1226. 9.3.579) 
(28.7939.11.2662) 

(29.1832, 8.8002) 
(29.8880. 9.8495) 
(30.5462, 9.2462) 
(31.5465,10.6816) 
(32.4081,10.67.57) 

where the V-matrix is the inverse of the /-matrix evaluated at 9 = 0. 
Alternatively, the information matrix for the observed data can also be 

obtained directly from the likelihood function of the observed data in (2.2), and 
the corresponding expressions can be found in Balakrishnan and Kim (2005). 
It can be shown that 

E7=i i?;!/']-" = - ^r=i ^[^>]' 5:7=1 m = "̂  - ^r=i ^(^']' 
(2.34) 

where Zj = J-^^^^^ ; see the Appendix for a proof. Using the relationships in 
(2.34), it can be shown that the information matrix presented by Balakrishnan 
and Kim (2005) and the information matrix derived in (2.32) by the use of 
the missing information principle are exactly the same. If I^issj is used in 
(2.32) instead of Imissj^ then the partially observed information matrix /* = 
Icamp - 1̂ 5=1 ^J^rnissj ^^ obtained. Note that in this case there is no need to 
calculate il)j values [as required in the computation of / in (2.32)]. 

2.5 Illustrative Example 

To illustrate the proposed EM algorithm for the computation of the MLE of 
^, a progressively Type-II right censored bivariate normal data with n = 50, 
m = 25 and 9 = (25,5,10,2,0.6) were generated. Progressive censoring schemes 
(25,0,.... 0) and (5,5,5,5,5,0,..., 0) were applied. The samples obtained are 
as follows. 

A computer program has been written in FORTRAN to compute the MLE 
of 9 via the EM algorithm. Sample means, standard deviations and the sample 
correlation coefficient are used as initial estimates for the parameters and the 
level of accuracy of 1 x 10"^ was used in the EM algorithm. After 35 iterations. 
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the estimates of {ftx^c^x) converged to /ix(oo) = 25.4999 and <TX(CX)) = 4.9449 
for the data with the progressive censoring scheme (25,0,... ,0). The EM 
algorithm for (A .̂v',fTy,p), using /ix(oo) ^^^ ^A:(OO)- yielded fiY(oo) = 9.4513, 
(7y(oo) = 1.8946 and pf^^c) = 0.6200 after 24 iterations. The information matri­
ces evaluated at 9 were 

/ 3.3218 0 -5.3754 0 ^ \ 
5.3666 0 -3.3328 -10.1843 

IccrmpiB) = 22.6278 0 0 

36.5571 -26.5806 
V 182.6682 ) 

m 

/ ^ ^j J- miss,j\") ^̂  

/ 1.5680 0.2577 -2.6877 
2.1723 -0.1234 

11.3139 

\ 

m 

I{9) = Ic(nnp{&) — / .Rjlmissdi^) 
1=1 

/ 1.7538 -0.2577 -2.6877 
3.1944 0.1234 

11.3139 

V 

-0.0765 
-1.5211 
0.3220 
17.8992 

0.0765 
-1.8118 
-0.3220 
18.6579 

1 

-0.2337 \ 
-4.6480 
0.9839 

-14.4495 
87.7917 / 

0.2337 \ 
-5.5363 
-0.9839 
-12.1310 
94.8765 / 

From this, we obtain the asymptotic variance-covariance matrix 
G = (Ax,^XiAvs<5-v,p) as 

of 

rHo) 

( 0.9137 

\ 

0.0835 
0.4076 

0.2171 
0.0198 
0.1401 

0.0123 
0.0600 
0.0052 
0.0674 

0.0064 \ 
0.0315 
0.0027 
0.0121 
0.0139 / 

On the other hand, we obtain the asymptotic variance-covariance matrix of 
9 from the partially observed information matrix /* as 

(rr'w = 

/ 0.9315 

V 

0.0667 
0.4121 

0.2213 

0.0158 

0.1410 

0.0098 
0.0607 
0.0037 
0.0682 

0.0051 \ 
0.0318 
0.0019 
0.0126 
0.0142 j 
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Note that there are slight differences between / ^{9) and (/*) ^{6), but the 
advantage of the use of (/*)""^(^) is that it did not require the determination 
of XIJJ ' vahies. 

For the progressively Type-II right censored sample with the censoring 
scheme R = (5,5,5,5,5,0,..., 0), the estimates of (/vx ^ <^x) converged to /xx(oo) 
= 24.6950 and <TX{OO) = 4.4439 after 73 EM-iterations. The EM algorithm for 
(M^i^y^p), using {ix^oo) and ^ (̂oo)̂  yielded /iv-(oo) = 9.0029, (7y(oo) = 1.9092 
and /9(oo) = 0.6293 after 36 iterations. The information matrices evaluated at Q 
were 

^compKP) ~ 

m 

/ 4.1923 0 -6.1412 0 ^ \ 
6.7242 0 -3.8649 -11.7248 

22.7133 0 0 
36.4305 -27.2909 

i, 191.3843 ) 

( 1.8300 0.6586 -3.0706 
2.4282 -0.4236 

11.3566 

\ 

1 

-0.2666 -0.8087 \ 
-1.5798 -4.7926 I 
0.9859 2.9909 
17.3944 -16.1355 

88.1383 / 

and 

m = 
7=1 

/ 2.3623 -0.6586 -3.0706 
4.2959 0.4236 

11.3566 

V 

0.2666 
-2.2851 
-0.9859 
19.0360 

0.8087 \ 
-6.9322 
-2.9909 

-11.1555 
103.2460 / 

Prom tliis, we obtain the asymptotic variance-covariance matrix of 
0 = {iix,arx-ftY,(^Y<p) as 

/ 0.6931 

r'W = 

0.1138 
0.3204 

0.1874 
0.0308 
0.1402 

0.0194 
0.0545 
0.0118 
0.0658 

0.0097 \ 
0.0274 
0.0059 
0.0110 
0.0128 / 
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If we use the partially observed information matrix /* instead of / , we obtain 
the asymptotic variance-covariance matrix of 9, (/*)~^ as 

{n-Ho):= 

( 0.6920 0.1159 0.1871 0.0197 0.0099 \ 
0.3195 0.0313 0.0544 0.0273 

0.1401 0.0119 0.0060 
0.0656 0.0109 

V 0.0127 / 

Once again, the asymptotic variance-covariance matrices of d from the Fisher in­
formation matrix / and the partially observed information matrix /* are nearly 
the same. 

2.6 Optimal Censoring Scheme 

In this section, we discuss optimal censoring schemes in terms of minimum trace 
of the variance-covariance matrix of the MLEs and also maximum information 
about p. 

From Eqs. (2.32) and (2.34), the Fisher information for p can be determined 
as 

^(^)=(rr7J2+ i_^2 ' (2-35) 

where, as before, Z^ = -Jiiii^izt2L ̂  xhe Fisher information about p will be 
affected by the progressive censoring scheme only through the term E[ZJ] and 
monotonically increases as p increases for a fixed progressive censoring scheme. 
The Fisher information about p was calculated for various n, m, and p values 
and for all the possible progressive censoring schemes for each n and m chosen. 
The results for the best, worst, left and right censoring schemes are presented 
in Table 2.2 for n — 10 and 7?. = 20 along with the relative efficiency of the 
censoring scheme compared to the best progressive censoring scheme (one which 
gives the most information about p among all the possible progressive censoring 
schemes). When p is large, say 0.9, the relative efficiency of the worst censoring 
scheme is at least 96% for all n and m considered, indicating that the censoring 
scheme does not seem to matter much in this case. However, the relative 
efficiency of the worst censoring scheme decreases as p decreases, and the loss 
could be as high as 27.8% in this case. Further, the progressive censoring scheme 
(n - m, 0 , . . . , 0) is one of the best progressive censoring schemes in almost all 
the cases. Efficiency of the progressive censoring scheme (n — rn, 0 , . . . , 0) does 
decrease by 0.46-8.15% as p decreases and censoring proportion increases. On 
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the other hand, the progressive censoring scheme (0, . . . , 0, n - m) seems to be 
nearly the worst censoring scheme in most cases. 

In order to investigate the performance of the two extreme censoring schemes 
further, the trace of the variance-covariance matrix [obtained by inverting the 
Fisher information matrix, / , in (20)] was determined for each of the n, m, and 
p values. The results for the best, worst (right), and left censoring schemes 
are presented in Table 2.3 along with their relative efficiencies compared to the 
best progressive censoring scheme (one which gives the least trace value among 
all possible progressive censoring schemes). It seems that heavy censoring at 
the beginning of the experiment is more efficient than heavy censoring towards 
the end of the experiment. The progressive censoring scheme (0, . . . , 0, n - m) 
turns out to be the worst censoring scheme in the sense that it gives the largest 
trace value of the variance-covariance matrix for all combinations of n and 
m considered. Efficiency loss in using the censoring scheme (0, . . . , 0, n - m) 
increases as p decreases. 

Therefore, from both these considerations, it is observed that Type-II right 
censoring is not to be recommended in general, and that the progressive censor­
ing scheme (n-m, 0, . . . , 0) is nearly as efficient as the best progressive censoring 
scheme for each combination of n and m considered. So, if the censoring can 
be implemented by the experimenter, then the scheme (n - m, 0, • • •, 0) will be 
the best choice for inferential purposes. 
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Appendix 

Here, as presented earlier in (2.34), we will show that 

E .̂̂ r"^ 
j = i 

jn 

E^.^r"' 
j = i 

J (Tx 

- -E^[^.i' 
j = i 

in 

= m.-^E[Z] 
j = l 

PROOF. First, using the joint density function of Zi:„,:Tn -̂ 2:m:ni • • •, 2'j:ni:n given by 
Balakrishnan and Aggarwala (2000, p. 13) as 

/ Z i . . ^ : n , 2 2 : m : n -^,:m:n (^1 1 ^2 , • . . , 2 j ) 

= n{n -Ri- l)(n - i?i - /is - 2) • • • (n - i?i Rj-i -j + l) 

J-i 
X H c(>{zi) {1 - $(^0}' '^ 4>{zj) {1 - $ ( ^ , . ) } " - ^ - - - ^ — ^ , 

-OO < 2l < 22 < • • • < 2j < 00, 

we can write 

I • • • / n(n - fl, - l)(n - fli - ^2 - 2) 

x . . . ( n - i ? i i ? j - i - j + l) 
j - i 

t = i 

X {1 - $ ( 5 ^ ) } " - « ' - - « ' - ' - J - i dzj •••dz,. (2.36) 

Let / r , = /;;;=_̂  Wzj)}' {l - $ ( 2 ^ . ) } " - « - - « ^ - " - ^ - i d,^.. Then 

ITi = 

(n-Ri Rj_^ -j) I ^zj^zj-i 

Jzj-i 

1 

(n-/?i Rj^i -j) 
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x [ < ^ ( r , _ i ) { l - $ ( z , - i ) } " - ^ ' - - « - - ^ 

Hence, (2.36) becomes 

/ • • • / n{n-Ri-l)-{n-Ri Rj-2-3 + 2) 

J-2 

X n <̂ (̂ i) {1 - *(^o}''' {<A(z,-i)}' {1 - $(z^_i)}"-«'--^^—^' 
dzj-i •'' dz\ 

{n-Ri Rj-i-j) 

Integrating by parts 

n^(^i)-

we get Rjiir^ ^ as 

Rjjn -Ri Rj-i -j + l)(n - .Ri Rj-2 - j + 2) 
(n - i?i i i j- i - j)(n -Ri Rj-2-J + 1) 

/

OO TOO /•OO 

/ •• • / n{n-Ri- l)(n - i?i - /22 - 2) 
x--{n-Ri Rj.3 -j + 3) 

xYl<l>{zi){l-^Zi)f^{cl>izj.2)}' 

i=l 

X {1 - $ ( 2 , _ 2 ) } " - ' " ' - - ^ ^ - ^ - ^ + l dZj-2 •dZi 
Rj{n-Ri- •••- Rj.i -j + 1) 

(n-Ri Rj.i - j){n - R^ Rj.2 - j + 1) 

T.^iZj). 

E{Zj-i) 

{n-Ri ilj_i -j) 

By repeating this process, Rjtjr^ ' can finally be written as 

p ,;,(1'>10) _ 

_ fij (» - -ffi Rj-i - j + l){n - Ri Rj-i-j + 2)---in-Ri-l) 
(n-Ri Rj-i - j)(n - Ri Rj-i-j + l)---(n-Ri- 2)(n - 1) ^ " 



EM Algorithm and Optimal Censoring Schemes 41 

^ Rj{n -Ri Rj-i - j -h l)(n - Ri Rj.2 - j 4- 2) • • (n - /^i - H2 - 2) 
{n-Ri Rj-i - j){n - Ri Rj.2 - j 4-1) • • • (n - Hi - 2) 

xE{Z2) 
_ Rj{n -Ri Rj-i - j 4- l)(n - Ri Rj.2 - j -f 2) • • • (n - Hi - H2 - H3 - 3) 

{n-Ri Rj.i - j){n - Ri Rj-2 - 7 4-1) • • • (n - Hi - H2 - 3) 
XE(Z3) 

Rjjn - Hi Rj.i - j 4- l)(n - Hi Rj-2 - j 4- 2) 
(n - Hi Rj.i- j)(n - Hi Rj.2 - j 4- l)(n - Hi Rj.3 - j + 2) 

xE(Zj>2) 
Rj{n-Ri R._,-j + i) 

(n - Hi H,-i - j)(n - Hi Rj-2 - j + 1) 

^ -T^(^.)-

E(Z,-i) 

( n - H i H , - i - j ) 

Therefore, the summation of Rjipj ^ for j = 1 , . . . , m will end up as a linear 
combination of E{Zj) for j = 1 , . . . , m, and so all we need to do is show that 
the coefficient of E{Zj) is - 1 for j = 1 ,m.. The term E{Zm) comes only 

from RmWm. and its coefficient is - 7 — 5 — ^ ^ r = ~1 since n- m Tm. and its coefficient is - . _^ _ /̂ ^ 

i?i + /?2 H 1- Rm- In general, the coefficient of E{Zj) is given by 

Ri "•3 

(n-Ri Rj-i-j) 

-[Rj^i(n - Hi Rj- j)] X [(n - Hi Rj - j - l)(n - Hi Rj-i - j)]"^ 

-(Hj+2(n - Hi Rj+i - j - l)(n - Hi Rj - j)] 

x[(n - Hi Hj+i - j - 2)(n - Ri Rj - 3 - l)(n - Hi H;-i - j)]"^ 

-[Hm-i(n-Hi Hm-2 - m + 2)- -(n-Hi H, + i - j - l)(n - Hi Rj - j)] 

x[[n- Ri Ryr,-2 -m4-l)(n-Hi Rm-3 - m 4-2) • • 

...(n-Ri R.-j-i)(n-Ri Rj-i - j)]-' 

-[Rm{n - Ri Rm-\ - m + l ) (n - /?i Rm-2 - m + 2) • • (n - Tli /?j - j)l 

x [ ( n - Hi Rm-i - m)(n- Ri Hm-2 - m 4- 1) • • • 

...(n-Ri Rj-j- l ) (n - Hi Rj-i - j ) ] - ^ / 2 3yN 

which is simply - 1 by using the relationship n - / ? i -i?2 Rm-i-m = Rm-
Next, let us write 

r. /(lOll) D I? [ ^j^i^j) 1 

/ • • • / n{n-Ri-l){n-Ri-R2-2) 

X • • • (n - /?i Rj_i -j + 1) 

xl[<l>{zi){l-^z,)}'''zj{c^{z,)f 
i = l 

X {1 - $ ( 2 ^ . ) } " - « > - - « > - i - i - i d2^. ..dzi. (2.38) 
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Let IT; = /~_^ zj {<^{zj)f {1 - ^,.)}n-R.--R^-^-J-l ^zj. Then, 

1 
IT* = 

J {n-Ri /?j_i - j) 

( n - i ? i i?j_i - j ) 

- r {<l>{z^) - z]<i>{zj)} {1 - $(^^)}"-«---«i—^ dz, 

Zj^Zj.i 

1 

X 

TOO 

/•OO I 

- / z]<i>izj) {1 - $(z,)}"-^---'^>—^d^J 
•^ î-i J 

Eq. (2.38) then becomes 

P .(1011) Rjjn-Ri fij^i-j + 1) 
•^ -^ (n- Ri • • - R j - i - j ) 

X / • • • / n(n - fli - 1) • • • (n - i?i Rj.2 -3 + 2) 

1 = 1 

{1 - $ ( 2 , _ , ) r - ' ' ' - - ^ ^ - ' - ^ dzi-i • • • d î • 
/?̂  {l-E{Z])} 

{n-R, R}-i-j) 

Integrating by parts IT*^-^,•••,IT^, we obtain Rjir^ as 

Rj^) (1011) 

= [i?j(n - fli Rj-i - j + l)(n - fii Rj-2 - j + 2) • • • (n - fl, - 1) 
x{ l -E(Z?)}] 

x((n - fl, flj_, - j)(n - fl, Rj.i - i + 1) • •• (n - fl, - 2)(n - 1)) ' 
+ [flj(n. - /?, Rj-i-j+ l)(n - J?i /?j-2 -j + 2)-{n-Ri-R2-2) 

x { l - E ( Z | ) } ] 
x((n - fli fl>-i - j){n ~Ri Rj-2-j + l)-(n-Ri- 2))'' 
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+ [Rj{n -Ri B.j-1 -j + l)(n - Ri Rj.2 - j + 2) • • • 

•••{n-Ri-R^-Rz- 3)]{1 - E{Zl)} 

x((n - Hi Rj-i - j)(n - Ri Rj-2 - j + 1) • • • (n - fli - flj - 3))"' 

+ 
+ [Rj{n -Ri Rj-i-j + l)(n - Ri Rj-2 - j + 2){1 - E{Z].2)}] 

x{{n-Ri Rj-i - j){n - Ri Rj-2 -j + l) 

x{n-Ri Rj.3-j + 2))-' 

+ [Rj{n -R, Rj., - j + 1){1 - E{ZU)}\ 
x({n- i?i Rj-i -j){n-Ri Rj-2-j + l))'^ 

+ ( „ -« . - . ^^ . , _ , )< ' -g (^ ) ) 

So, the summation of Rjipf for j = 1 , . . . , m will end up as a linear combina­
tion of 1 ~ E{Z'j) for j = 1,.. . ,m. The collection of coeifRcients for 1 - E{Z'j) 
is the same as in (2.37) but with a positive sign, which reduces to 1. This 
completes the proof. • 
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Inference Guided Data Exploration 

Greg Yothers and Allan R. Sampson 

National Surgical Adjuvant Breast and Bowel Project (NSABP), Pittsburgh, 
Pennsylvania U.S.A. 
Department of Statistics, University of Pittsburgh, Pennsylvania U.S.A. 

Abstract: We consider comparing two treatments using a given hypothesis 
test on the full sample and on all possible subsets, and we separately consider 
restricting the subsets considered to be those defined based on half-intervals 
of a covariate. Rather than treating this as a family of hypothesis tests, we 
instead choose the minimum p-value from the group of hypothesis tests as our 
test statistic. Simulation is employed to find an approximate critical value to 
control the type I error for our novel test statistic. These techniques may be 
used as a rule of thumb for judging the potential significance of a result after 
a "fishing expedition'' has been caried out on a dataset, i.e., a large number 
of tests of hypothesis were performed on subsets of the data or a subset was 
selected after inspecting the data. When the technique is restricted to subsets 
defined based on half-intervals of a covariate, it may be useful as a planned 
methodology for analyzing an experiment. 

Keywords and phrases: Multiple subset testing, selecting population, fishing 
expedition 

3.1 Introduction 

For a variety of reasons, researchers are often tempted to look at numerous 
subset analyses of their data. One situation that commonly motivates this is 
in non-significant critical scientific studies where the study sponsors can feel 
compelled to find subpopulations where the treatment under study had an 
eflFect. This situation is sometimes refered to as a "fishing expedition". Clearly, 
formal control of the type I error is difficult when the same hypothesis is tested 
repeatedly on subsets of the original data. Given the ad hoc nature of the 
hypotheses tested in this context, formal inference is not really possible, but 
some sort of "rule of thumb" for deciding whether the most extreme p-value 
observed during a fishing expedition is likely to occur purely by chance would 
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be quite useful in practice. A related problem arises when the number of formal 
tests of hypothesis is small, but the subsets which are tested are selected after 
inspecting plots or summary measures of the data or the raw data itself. 

To further motivate our concern about this problem, we note that small 
biotechnology and pharmaceutical companies which are not well capitalized 
sometimes have their corporate success depending on the outcome of a single 
study of their experimental treatment in a particular population. If this study 
has a negative result, the company may very well want to identify, if possible, a 
subset of the study population for which their treatment is effective. One goal 
in doing this is to atempt to secure additional funding for a new study, and 
perhaps more importantly, to allow their company to continue to exist. 

We first consider the problem where the company, in effect, can be viewed as 
considering all subsets where a treatment comparison is possible. Our rationale 
for this is that the company may have done much data snooping and considered 
the effects of numerous variables. In theory, if we could identify all search 
strategies that were used, we could restrict our subset considerations. Barring 
this, our conservative approach is to base the first part of our approach on all 
subsets. In the second part of our approach, we do consider restrictions on the 
subsets of interest. 

The group of hypothesis tests is not viewed as a family of tests. Instead, we 
choose as our test statistic the minimum p-value from all tests. Our aim is the 
determination of a critical value to control the type I error for this test statistic. 
Analogous to the Scheffe procedure, which gives one critical value which allows 
for comparison of all contrasts in the analysis of variance, we would like to 
derive a critical p-value which would allow hypothesis testing on all possible 
pairs of subsets while controlling the type I error at level a. 

Let St and Sc denote the sets of individuals who received treatment and 
control, respectively. With samples of size nt from treatment and ric from 
control, the number of possible pairs of unique, unordered, and non-empty 
subsets is (2'̂ ' - 1)(2^'' - 1). Let Su and Scj denote the ith and jth subsets 
from treatment and control. We define Pij to be the p-value from a test of 
hypothesis on the responses associated with the pair of subsets Sa and Scj-
Depending on the test statistic used, the cardinalities of Su and Scj, denoted 
by |5tt| and |5cj|, typically must be at least 2 for Pij to be defined. The most 
extreme p-value (P*) obtained by testing all possible pairs of subsets where 
each treatment has at least 2 observations would be: 

P* = inf{P,„ ( i , j ) : |5 , , |>2and \Scj\>2}. (3.1) 

Given the large number (2̂ ^̂  ~ 1 - nt){2'^'' - 1 - ric) of possible pairs of 
subsets which could be compared in evaluating (3.1), one may wish to consider 
some restriction criteria. If the universe of subsets for hypothesis testing is 
restricted, then we would expect to see less extreme p-values than if all possible 
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subsets are considered. One natural restriction criteria would be to increase the 
cardinality of the sets in (3.1) to a number larger than two. 

Our first approach, which considers all pairs of subsets, may find a significant 
result corresponding to a pair of subsets, but there may be no meaningful way 
of defining the corresponding populations. To circumvent this, as well as the 
very small critical p-values, our second restriction criterion chooses subsets of 
the original sample based on half-intervals of a relevant covariate. For example, 
if the pertinant covariate is age, one would consider pairs of all subjects in 
treatment and control older (or younger) than a varying threshold of age. 

To amplify on the method based on half-intervals, consider a study con­
cerning treatments for wound healing, where the healing rate may be correlated 
with initial wound area. It may be that the difference in mean response be­
tween treatment and control also depends on initial wound area, where larger 
wounds heal faster when treated, but treatment has little or no effect on smaller 
wounds. The choice of inclusion/exclusion criteria in a study in this situation 
can be problematic. Choosing eligibility criteria which are too liberal with 
respect to the covariate may include patients where the treatment effect is neg­
ligible making it difficult to prove the treatment superior to control for the 
entire study population. Conversely, choosing eligibility criteria which are too 
conservative with respect to the covariate may lead to denying therapy to pa­
tients who may benefit when the treatment is finally approved. A useful design 
would include all patients who could potentially benefit from treatment, but the 
analysis would determine the largest subset with respect to the covariate where 
treatment is significantly better than control. Such a method would allow the 
target population for the treatment to be determined by the data rather than 
being chosen somewhat arbitrarily prior to the trial. We note that there are a 
number of other approaches that can be used in the half-intervals setting [see 
Yothers (2003) or Fleiss (1986) for Hnear responses]. 

For both all subsets and half-intervals, the Bonferroni procedure clearly 
would be extremely conservative due to the large number of comparisons. More 
specialized multiple comparison procedures tend to be targeted at the problem 
of comparing multiple treatments on the same endpoint or the problem of mak­
ing the same treatment comparison on multiple endpoints and hence do not 
apply here [Miller (1981) and Hsu (1996)]. 

There are parallels in our considerations to a problem in spatial statistics, 
considered by Worsley (1992), who addressed the problem of finding regions of 
brain activity using PET scans. Such experiments may include 10^ voxels or 
brain scan sub-regions, so the problem of determining which voxels are active 
is difficult. His approach is not really applicable to our setting due to a lack 
in our case of an analog for the "distance" between non-overlapping subsets, 
and dealing with the problem of overlapping subsets. Koziol and Wu (1996) 
consider a problem where the response is binary and the probability of success 
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is monotonically related to the value of the covariate. They approach finding 
the region of the covariate where the probability of success differs for values of 
the covariate less than a threshold value. 

The problem of comparing all pairs of subsets of at least a minimum subset 
sample size is considered in Section 3.2 for normal data with both known and 
unknown variances. In Section 3.3 we restrict our interest to subsets formed by 
considering only those observations where a covariate falls in a half interval and 
consider the two sample tAest, the two sample Wilcoxon test, and an analysis 
of covariance model. An example is provided in Section 3.4 and we conclude in 
Section 3.5 with a discussion. 

3.2 Inference Guided Data Exploration Restricted 
by Minimum Subset Sample Size 

Define Pn^r^-n' ^^^ most extreme p-value observed after testing all pairs of subsets 
with cardinality at least Umin^ as follows: 

P*^^^ = mi{Pij, {ij) : \Sti\ > Umin and \Scj\ > Umin} . (3.2) 

The number of pairs of subsets is: 

^^pairs 

nt 

E ' X E 
Lr=nr, 

(3.3) 

A critical value for P* which controls the type I error at level a can be 
estimated via simulation as follows: (1) sample responses for St and Sc from a 
specified null distribution; (2) calculate P,t„,i„ ^̂ ^ ̂ he sample; (3) repeat steps 1 
and 2 N times; and (4) estimate the critical value as the (Â  a)th order statistic 
from the N values of P* 

This procedure, while computationally intensive, is feasible for small sam­
ple sizes. Obviously the estimated critical value depends on the model and 
test statistic, the sample sizes for treatment and control {nt and Uc), and the 
minimum subset size (nmin)' 

3.2.1 Two-sided Z-test assuming known variance 

As a first step, we consider applying the method of inference guided data explo­
ration restricted by minimum subset sample size to the known variance normal 
setting with the two sample Z-test as our statistic. For the Z-test, the p-value 
does not depend on the underlying sample sizes used in the calculation, so that 
one can directly determine a critical Z-score for our method (the t statistic, for 
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example, has a p-value which depends on the degrees of freedom i.e., sample 
sizes). 

Observe that the Z-statistic depends only on the difference in means and 
the sub-sample sizes. If we consider all pairs of sub-samples of size Ui from 
treatment and Uj from control, then the most extreme Z-score for this com­
bination of sub-sample sizes comes from the pair having the largest difference 
in means. This corresponds to comparing the largest n̂  order statistics from 
treatment with the smallest Uj order statistics from control or vice versa. We 
generically refer to these two combinations as tests comparing maximal order 
statistics to minimal order statistics. Clearly we need only consider the 2{nt -
'^min + l)(^c - ^min + 1) ^ 1 comparisous wherc maximal order statistics are 
compared to minimal order statistics as opposed to the large number in (3.3). 

For this setting our simulation results are presented in Table 3.1 in the 
columns headed Z-test. Due to invariance, the simulations {N = 10,000) for 
both the treatment and control samples are drawn from the same null distri­
bution A/'(0, 1). The table Usts the relevant parameters (n^rie, and rimin)^ the 
critical value for the test statistic to control the type I error at level 0.05 (|Z|), 
and the p-value associated with the critical value (p(|Z|)). 

Note that critical values can be quite extreme when a large number of pairs 
of subsets are considered. For instance, for nt = 40, ric = 40, and Umin = 
20, we would conceptually consider []Cr=20 (t^)]^ ^ 3.83 x 10^^ comparisons, 
although our shortcut allows us to calculate the critical value with only 2{nt -
'^Tnin + l)(^o - ^min + 1) - 1 = 881 comparisous. The critical value for this 
entry is 6.5656 as compared to 1.96 for a critical value for a single comparison. 
Thus the evidence must be particularly striking in such a fishing expedition 
to demonstrate a significant difference. Generally, holding other parameters 
fixed, the critical p-value tends to decrease (become more extreme) as ut or ric 
increases and increase as nmin increases. 

3.2.2 Two-s ided ^ t e s t 

The preceding shortcut method does not apply for the two-sided ^-statistic. 
Unlike the Z-statistic, the variance is based on the treatment and control sam­
ples under consideration, so that the most extreme statistic for a given pair of 
sub-sample sizes may not necessarily come from the pair having the largest sep­
aration in means. Table 3.1, in the columns headed f-test, provides the results 
of simulations applying the inference guided data exploration restricted by min­
imum subset sample size method to normal independent identically distributed 
samples and using the two-sample two-sided t-test. Due to the large amount of 
computation time required to run the simulations for larger sample sizes, these 
tabulations are not as extensive as those for the Z-test. The critical value must 
be determined based on the p-value for the t-test due to the varying degrees 
of freedom. The Z-score corresponding to the critical p-value is tabulated only 
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Table 3.1: Minimum subset size, a = 0.05, N = 10,000 

•'H 

3 
3 
4 
4 
4 
4 
5 
5 
5 
b 
5 
5 
6 
6 
6 
7 
7 
8 
8 
8 
10 
11 
12 
13 
14 
16 
20 
30 
40 

1 50 

/Ic 

3 
3 
2 
3 
4 
4 
2 
3 
4 
b 
5 
5 
6 
6 
6 
3 
7 
8 
8 
8 
10 
11 
12 
13 
14 
16 
20 

1 30 
! 40 
40 

'^min 

2 
3 1 
2 
2 
2 
4 
2 
2 
2 
2 
4 
5 
2 
3 
4 
2 
4 
2 
4 
8 
2 
2 
2 
2 
2 
14 
10 
15 
20 
35 

Z-test 

\z\ 
2.6111 

1.9595 ! 

2.4516 

2.8055 

2.9926 
1.9664 

2.6002 
2.9464 

3.1406 
3.2925 
2.6354 

1.9643 

3.5435 
3.3580 

3.0965 

3.1417 

3.4196 
3.9164 
3.7251 
1.9830 
4.2311 
4.3919 
4.5035 

4.6436 
4.7962 

3.0158 
5.1021 

5.8718 

6.5466 
4.8161 

P(l^l) 
9.025E-03 
5.005E-02 

1.422E-02 

5.023E-03 

2.766E-03 
4.926E-02 

9.316E-03 
3.215E-03 
1.686E-03 
9.929E-04 

8.403E-03 
4.950E-02 

3.948E-04 

7.852E-04 

1.958E-03 

1.680E-03 
6.272E-04 

8.989E-05 
1.953E-04 
4.737E-02 
2.326E-05 
1.123E-05 
6.685E-06 

3.423E-06 

1.617E-06 

2.563E-03 
3.360E-07 

4.312E-07 
5.886E-11 

1.464E-06 

t-test 

P 
4.629E-03 
5.322E-02 

8.010E-03 

1.905E-03 
8.358E-04 

5.133E-02 

3.816E-03 
9.524E-04 
3.785E-04 
1.798E-04 

4.945E-03 
4.701E-02 

4.736E-05 
1.598E-04 

6.872E-04 

2.871E-04 

8.143E-04 

Zip) 
2.8318 

1.9331 
2.6517 

3.1047 

3.3407 

1.9487 

2.8930 
3.3042 

3.5547 
3.7458 

2.8106 
1.9862 

4.0683 

3.7753 

3.3946 
3.6267 

3.3479 

t-test, upper-bound | 

P 
5.848E-03 
5.322E-02 

8.923E-03 

2.807E-03 

1.472E-03 

5.133E-02 

5.087E-03 
1.574E-03 
7.333E-04 
4.130E-04 

5.268E-03 
4.701E-02 
1.248E-04 

2.923E-04 

8.794E-04 

6.157E-04 
2.154E-04 

2.034E-05 
4.823E-05 
4.966E-02 
3.501E-06 
1.671E-06 
6.249E-07 

3.196E-07 

1.510E-07 

8.143E-04 

1.051E-08 

\ 1.304E-11 
1 2.309E-14 

1.393E-08 

Zip) 1 
2.7562 

1.9331 

2.6150 
2.9882 

3.1802 

1.9487 

2.8015 
3.1606 
3.3768 
3.5316 
2.7902 
1.9862 

3.8365 

3.6220 

3.3265 

3.4246 
3.7002 
4.2612 
4.0640 
1.9629 
4.6390 
4.7897 
4.9834 

5.1115 

5.2513 

3.3479 
5.7224 

1 6.7682 
i 7.6321 j 

[5.6743 
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for convenience of interpretation. 
As expected, the p-values (and associated Z-scores) are slightly more ex­

treme for the ^test than the corresponding values for the Z-test. For example, 
the entry corresponding to nt = 16, n^ = 16, and rimin = 14 has a critical 
p-value of 8.143 x lO"'^ for the t-test, but a less extreme critical p-value of 
2.563 >̂  10"^ for the Z-test. The large amount of computer time required to 
simulate the critical p-values for the relatively small sample sizes considered 
for the t-test suggests that this approach is impractical if not impossible for 
moderate to large sample sizes. 

3.2.3 Two-sided f-test, upper bound 

Due to the computational requirements to implement the i-test, we examined 
the consequences of applying the shortcut used for the Z-test to the t-test (i.e.. 
only compare the most extreme Ui order statistics from treatment with the most 
extreme Uj order statistics from control for each pair of sub-sample sizes). Our 
simulations show that this approach for a given data set often misses the most 
extreme p-value obtained by considering allpairs of subsets but overall produces 
critical p-values which are not terribly liberal. In the columns headed t-test up-
bound, Table 3.1 provides these resulting critical p-values for the two-sample 
two-sided t-test. Of necessity, these p-values of course are at least as large as 
the true f-test extreme p-values. Thus the critical values are upper-bounds. 

To examine the applicability of this upper-bound and the Z-test approx­
imation for the critical p-values of the /-test, we compare in Table 3.2 select 
entries of Table 3.1. For both the t-upper and Z approximations, we list the 
percentile from the empirical distribution of the minimum p-value of the t-test 
corresponding the 0.05 level critical p-values from the approximations. Use of 
the f-upper approximation results in type I error rates ranging from near nom­
inal {ut = 5, lie = 5, and Umin = 4; n̂  = 6, iic = 6, and rimin = 4; and rit — 
16, Uc — 16, and yimin = 14) to roughly a doubling of the nominal 0.05 level 
{rit = 6, rie = 6, and Jimin = 2). The exact nominal level for the entry Ut = 
16, The = 16, and iimin — 14, an apparent coincidence, indicates that for the 
particular simulations carried out, the fifth percentile of the minimum p-value 
was the same to the number of decimal places recorded for both the shortcut 
method and the exhaustive search method. Table 3.2 also allows comparison of 
the potential methods of approximating the critical p-value for the i-test, the 
Z-test and the upper bound for the i-test. The Z aproximation is inferior to 
the f-upper approximation for all entries in Table 3.2. In Table 3.1 we see that, 
for nearly every combination of parameters, the critical p-value for the Z-test 
is larger than the necessarily liberal critical value of the f-upper approximation. 
The approach of using the shortcut approximation for the critical p-value using 
the /-test, while being slightly liberal, would seem to be a better approximation 
than using the critical value from the Z-test. Also, since the direct approach 
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employed for the t-test is computationally intractable for even moderate sample 
sizes, we would recommend this approximation for the critical p-value of the 
f-test when using the method of inference guided data exploration restricted by 
minimum subset sample size. 

Table 3.2: Selected type I error rates for the 0.05 level f-upper and Z approxi­
mations to critical p-value for the t-test 

nt 
4 
5 
5 
6 
6 
6 
7 

[l6 

Uf. 

4 
5 
5 
6 
6 
6 
3 
16 

^min 

2 
2 
4 
2 
3 
4 
2 
14 

t-upper 

0.0798 
0.0972 
0.0527 
0.1015 
0.0770 

0.0595 

0.0869 
0.0500 

Z 
0.1306 

0.1785 
0.0777 
0.2152 

0.1508 

0.1061 
0.1704 

0.1065 

3.3 Inference Guided Data Exploration Restricted 
by Half-Intervals of a Covariate 

Suppose now that we observe a covariate along with the response in our experi­
ment, where one has reason to believe that the size of the treatment effect could 
be related to the value of the covariate. The notions of our multiple subsets 
procedure is then useful to find the range of the covariate where there is an 
effect. 

Let k index the order statistics of the observed covariate X, X(i),... , 
^{nt-^nr)'> where here we have combined the covariates of the treatment and 
control groups. Now, for convenience and without loss of generality, let the sets 
of individuals receiving treatment and control be denoted by St = {1, . . . ,nf} 
and Sc = {n̂  + 1,... ,nt 4- Uc}. Define the subsets of individuals where the 
covariate is no larger than the kth order statistic of the covariates as: 

5<̂ ') = {i:i<nt. x ,<X(^)}, (3.4) 

Sl^^ = [i :nt<i<nt-^ 71,, x^<X^k)}^ (3-5) 

where Xi is the value of the covariate associated with the zth individual. 
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We define Pk to be the p-value from a test of hypothesis on the responses 

associated with the pair of subsets Si ^ and Sc . Define Pn^.n^x^ ^^^ ^^^^ ^^~ 
treme p-value observed after testing all pairs of subsets defined by half-intervals 
of the covariate and with cardinality at least rimin^ ^s follows: 

Pnrmn^X = ^nf {Pfc, k '. \sl^^\ > Umin and \S^,^^\ > Umin} • (3.6) 

The number of pairs to be compared in (3.6) is at most {nt + nc- 2nmin + 2). 
A simulation procedure like that in Section 3.2 can again be used under 

certain assumptions to estimate a critical value for Pn^^tn^X which controls the 
type I error at level a. 

3.3.1 Twosided t-tesi 

We first apply the method of inference guided data exploration restricted by 
half-intervals of a covariate using the two-sample /-test. Assume that the data 
consist of a response, Y and a covariate, X which are jointly distributed as 
bivariate normal with correlation p. Both the treatment and control samples 
are drawn from: 

BVN (3.7) 

By invariance, the tabulated values correspond to any bivariate normal dis­
tribution with correlation p. Independent identically distributed samples are 
generated and the two-sample two-sided t-test is used for the test statistic. Ta­
ble 3.3 lists the relevant parameters (p, nt.Uc, and Umin)' The critical p-value, 
p, for the test to control the type I error at level 0.05 and the Z-score asso­
ciated with the critical p-value, Z(p), are given in the columns headed ^test. 
The number of simulations is 10,000. 

In contrast to Table 3.1, the comparable entries for critical p-values are not 
nearly as extreme in Table 3.3. There are two reasons for this. First of all, we 
have restricted our attention to pairs of subsets formed by half-intervals of a 
covariate which leads to fewer pairs of subsets to be compared per iteration. 
For instance the entry for ut = 10, Uc = 10, and Umin = 2, would consider 
2{ni - rimin 4- l)(n^ - rimin H-1) - 1 = 161 comparisons per iteration in Table 
3.1 (using the shortcut for the Z and t statistics respectively), while in this 
table we would only consider at most {nt + Uc - 2nmin -f 2) = 18 comparisons 
per iteration. Secondly, the shortcut for the Z and t statistics only considers 
pairs of subsets where maximal order statistics are compared to minimal order 
statistics, while in this table the subsets considered are more "typical". More 
specifically, consider the case of p = 0. This implies the response and covariate 
are independent under the assumption of a bivariate normal distribution. Now, 
selecting a subset of responses based on the covariate is like selecting a subset 
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Table 3.3: : Half-intervals, a = 0.05, N = 10,000 

p 
u 

1 0.25 1 
U.5 
0.75 1 
' 0.99 i 

! 1 

u 
0.25 

0.5 
0.75 

0.99 

1 
0 

0.25 

0.5 
0.75 
0.99 

1 
0 

0.25 

0.5 
0.75 
0.99 

1 
0 

0.25 

0.5 
0.75 

0.99 

1 
0 

0.25 

0.5 
0.75 
0.99 

1 1 

nt 
4 
4 
4 
4 
4 
4 
10 
10 
10 
10 
10 
10 
20 
20 
20 
20 
20 
20 
50 
50 
50 
50 
50 
50 
80 
80 
80 
80 
80 
80 
60 
60 
60 

j 60 
60 
60 

Uf, 

4 
4 j 
4 
4 j 

4 
4 
10 
10 
10 
10 
10 
10 
20 
20 
20 
20 
20 
20 
50 
50 
50 
50 
50 
50 
80 
80 
80 
80 
80 
80 
60 
60 
60 
60 
60 
60 

^min 
2 j 

2 
2 
2 
2 
2 
5 
5 
5 
5 
5 
5 
8 
8 
8 
8 
8 
8 
20 
20 
20 
20 
20 
20 
30 
30 
30 
30 
30 
30 
40 
40 
40 
40 
40 
40 

t-test 

P 
1.945E-02 i 

1.768E-02 

1.998E-02 
1.828E-02 

1.658E-02 

1.897E-02 

1.776E-02 

1.656E-02 

1.489E-02 

1.136E-02 
1.307E-02 
1.175E-02 

1.223E-02 

1.022E-02 

7.782E-03 

1.227E-02 

1.065E-O2 
9.637E-03 
8.994E-03 

6.775E-03 
1.084E-02 
1.108E-02 

9.396E-03 

8.049E-03 

5.562E-03 
1.912E-02 

1.832E-02 

1.684E-02 
1.400E-02 

9.906E-03 

Z{P) 
2.3369 
2.3722 

2.3267 

2.3599 1 

2.3959 

2.3461 

2.3707 

2.3963 

2.4351 

2.5313 

2.4818 
2.5194 

2.5053 

2.5683 

2.6614 

2.5041 

2.5540 
2.5886 
2.6123 

2.7077 
2.5480 
2.5401 

2.5973 

2.6500 

2.7725 

2.3432 

2.3591 

2.3902 
2.4572 

[2.5791 

ANCOVA t-test ] 
P 

1.677E-02 

1.736E-02 

1.677E-02 

1.754E-02 
1.590E-02 

* 

1.874E-02 

1.945E-02 
1.699E-02 

1.803E-02 

1.665E-02 
* 

1.381E-02 
1.330E-02 

1.135E-02 
1.349E-02 

1.238E-02 
* 

1.201E-02 
1.129E-02 
1.171E-02 
1.163E-02 
1.279E-02 

* 

1.123E-02 
l.lOOE-02 

1.090E-02 

9.993E-03 

1.025E-02 
* 

1.933E-02 

1.849E-02 

1.885E-02 
1.886E-02 
1.919E-02 

1 * 

Z{p) 
2.3916 

2.3790 
2.3917 
2.3752 
2.4111 

* 

2.3507 

2.3368 
2.3870 

2.3651 
2.3944 

* 
2.4622 
2.4756 

2.5316 

2.4706 

2.5011 
* 

2.5119 

2.5336 
2.5207 
2.5230 
2.4896 

* 

2.5355 
2.5426 

2.5460 

2.5761 

2.5672 
* 

2.3391 

2.3557 

2.3484 
2.3482 
2.3419 

* 

The ANCOVA model could not be fit with p=l due to zero variance 
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at random. In the case of p = 1, we would compare minimal order statistics to 
minimal order statistics in (3.4) or maximal order statistics to maximal order 
statistics (when xi > X(fc) in (3.4)). This is because restricting Xi < X^^) 
with p = 1 causes us to examine the minimal order statistics of the response. 
For either extreme and for intermediate values of the correlation, the pairs of 
subsets considered will tend to produce less extreme p-values than would be 
expected by comparing maximal order statistics to minimal order statistics as 
we do in Table 3.1. 

The critical p-value depends on the joint distribution of the response and 
the covariate. Further simulations with a fixed set of covariates and the re­
sponses generated from the conditional distribution of the response given the 
covariate revealed that the critical p-value also depends on the set of observed 
covariates. Thus, the results for the t-test in Table 3.3 do not apply to an 
analysis conditional on the observed covariates, but rather apply to the case 
of the response and covariate being jointly random. When analyzing a dataset 
where accuracy is critical and where covariates are fixed, we would recommend 
that simulations be carried out using the fixed covariates and generating the 
responses from the assumed null conditional distribution. 

When p = 1, the value of the response is determined by the value of the 
covariate. These entries are identical to what would be obtained by selecting 
subsets based on the order statistics of the response rather than the covariate. 
When the other parameters are fixed, the entries for p = 1 tend to produce the 
most extreme critical p-values when compared to other values of p. The few 
exceptions are likely due to sampling variation. For p = 1, outliers from one 
tail of the distribution of the response for each treatment will be included with 
certainty in the sub-samples. These outliers will be more and more influential 
as the sub-sample size decreases. To the extent that one treatment group 
has more outliers than the other; this may explain some of the most extreme 
p-values. We suspect the critical p-values for p = 1 are the most extreme 
because, for values of p less than one, outliers have some probability of being 
included in sub-samples, but are not included with certainty. This heuristic 
argument leads us to conjecture that the most extreme critical p-value for any 
joint distribution between the response and the covariate where the response 
has a marginal normal distribution corresponds to the case of p = 1. We 
would recommend that the critical p-value for p = 1 be used as a conservative 
estimate of the critical p-value whenever the joint distribution of the response 
and the covariate is unknown and the marginal distribution of the response 
can be assumed to be approximately normal. The empirical evidence supports 
this recommendation when the response and covariate are assumed to have a 
bivariate normal distribution. 
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3.3.2 ANCOVA t-test 

If there is a relationship between the expected value of the response and the 
value of the covariate, a suitable model can exploit this relationship to reduce 
the variance of the estimator of the mean response and provide a more powerful 
test. Our half-intervals methodology is applicable when the ANCOVA model 
y — 00-^ 01 I[Treatment] + 02^ -f £ is assumed to hold for at least a portion of 
the range of the covariate defined by a half-interval, where we suppose parallel 
slopes. 

Table 3.3, in the columns headed ANCOVA f-test, shows the results of 
simulations applying the method of inference guided data exploration restricted 
by half-intervals of a covariate. The data consist of a response and a covariate 
which are jointly distributed as bivariate normal with correlation p. If Y and 
X are the response and covariate, respectively, then both the treatment and 
control samples are drawn from the bivariate normal null distribution (3.7). 

Independent identically distributed samples were generated and the t-test 
that the coefficient of the treatment indicator {0i) is equal to zero in the AN­
COVA model, was used for the test statistic. The alternative again is two-sided. 
This model apparently controls for the correlation between response and covari­
ate so that it may be seen that the critical p-value no longer depends on the 
correlation. The small variation seen in the critical p-values when the other 
parameters are fixed appears due to sampling variation. 

In Section 3.3.1, we previously pointed out that the method restricted by 
half-intervals of a covariate produced critical p-values appropriate for an anal­
ysis where the response and covariate are jointly random and that, conditional 
on the observed set of covariates, the critical p-value depends on the covariates. 
In the current setting, we ran further simulations to explore whether the crit­
ical p-value for a fixed set of covariates would still depend on the covariates. 
Twenty-five simulations were run, where for each simulation, the set of covari­
ates was fixed at a single realization of X, ~ i.i.d. A (̂0, 1) and the Yj's were then 
generated from the model Yj = pXj + Sj where ej ~ i.i.d. N{0, 1). We used 
parameters rit = 50, n̂  = 50, rimin = 20, ^ = .5, and N = 10,000 iterations. 
The twenty-five simulated critical p-values were all consistent with the entries 
for ANCOVA in Table 3.3 corresponding to parameters ut = 50,nc = 50, and 
^min = 20. This is suggestive that the critical p-values for ANCOVA in Table 
3.3 are appropriate for an analysis conditional on the observed covariate when 
the dependence between the response and the covariate is properly modeled. 
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3.4 Application 

To illustrate the application of our methods, we use data from the National Sur­
gical Adjuvant Breast and Bowel Project (NSABP) [Mamounas (1997)]. The 
NSABP is a National Cancer Institute funded cooperative group which performs 
clinical trials to study breast and colorectal cancer. For this study, patients are 
randomized into three groups. The control group (arm 1) receives 4 cycles of 
Adriamycin Cyclophosphamide (AC) chemotherapy given preoperatively along 
with 5 years of Tamoxifen beginning concurrently with AC. The two experi­
mental groups receive the same AC chemotherapy and Tamoxifen followed by 
4 cycles of Taxotere (T) given preoperatively (arm 2) or postoperatively (arm 
3). Study inclusion/exclusion criteria are described in Mamounas (1997). 

In the present example, we are concerned with the change in tumor size 
between baseline (randomization) and surgery. We compare arms 1 and 3 com­
bined, both of which received 4 cycles of AC prior to surgery with arm 2 where 
patients received 4 cycles of AC followed by 4 cycles of T prior to surgery. Our 
response variable is proportional reduction in tumor size defined as (baseline 
tumor size - tumor size at surgery)/baseline tumor size. Our analysis is re­
stricted to patients whose baseline tumor size is at least 1.0 centimeter and for 
whom the tumor size at surgery is non-missing. A tumor size of zero at surgery 
is allowable and corresponds to a complete preoperative response to therapy: 
such patients will have a proportional reduction in tumor size value of 1.0. Our 
interest concerns the effect of a patient's age on her tumor response measured by 
its proportional reduction, and whether or not this effect is comparable between 
arms 1/3 and arm 2. 

Our previous experience with this dataset suggests the effect of Taxotere in 
helping to reduce tumor size is more pronounced in younger women. To examine 
this, we apply the method of inference guided data exploration by half-intervals 
of a covariate to this dataset using proportional reduction in tumor size as the 
response, age as the covariate with subsets formed by including all women no 
older than a series of decreasing age thresholds, and the two sample t-test as the 
test of hypothesis. The control group (arms 1/3) has 1,117 observations, and 
the group treated with Taxotere preoperatively (arm 2) has 512 observations. 
Our half-intervals procedure in ths example does not consider any subsets where 
either treatment arm has less than 50 observations, i.e., n^i„=50 in (3.6). A 
conservative estimate of the critical p-value was obtained by simulation using 
bivariate normal data and parameters a = 0.05, p = 1. yit = 512, ric = 1,117, 
'Timin = 50, and N = 10,000 iterations by the same methodology used in Section 
3.3.1 to produce Table 3.3. Since we do not know the true relationship between 
age and proportional reduction in tumor size, we used a correlation of 1 as 
this produced the most extreme critical p-values. The simulation yielded an 
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estimated critical p-value of 0.00267. 
To implement our approach, we performed a series of two-sample f-tests 

where we compared the control and treatment groups on subsets of the data 
beginning with the full sample comparison, then including women no older than 
the second highest age, and continuing in this fashion until the final compari­
son which included women no older than 36 years of age. The next comparison 
would have included women no older than 35, but was not performed since the 
treatment group would have had less than Umin = 50 observations. The results 
of these hypothesis tests are displayed in Table 3.4 where we observe that the 
minimum p-value obtained from this series of tests was p = 0.0000785 and cor­
responded to a subset defined as all women no older than 53 years of age. Since 
the observed minimum p-value (0.0000785) was less than the critical p-value 
(0.00267), we reject the null hypothesis of no difference in proportional reduc­
tion in tumor size between the treatments and suggest that among women no 
older than 53 years of age the reduction is greater in women receiving Taxotere 
than in women not receiving Taxotere at the a = 0.05 level. 

3.5 Summary and Discussion 

The method of inference guided data exploration restricted by minimum sub­
set sample size, considered in Section 3.2, provides a critical p-value for the 
minimum p-value after testing all possible pairs of subsets at least as large as 
the minimum sample size criteria. Direct application of the method can be 
computationally prohibitive for all but the smallest sample sizes as we observed 
in Section 3.2.2 where we applied the method using the two-sample t-test as 
our test of hypothesis. The shortcut method of only considering pairs of sub­
sets where maximal order statistics are compared to minimal order statistics 
makes the method computationally feasible, but this approach only yields ex­
act critical p-values for certain hypothesis tests such as the two-sample Z-test 
considered in Section 3.2.1. The shortcut method is also useful for finding an 
approximate critical p-value for other tests of hypothesis such as the two-sample 
i-test considered in Section 3.2.3. We found this approximate critical p-value 
to be a better approximation for the two-sample f-test than using the critical 
p-value from the two-sample Z-test. 

In applying the method restricted by minimum subset sample size, one tests 
the null hypothesis of no difference between treatments in any pair of subsets 
considered versus the alternative that the treatments differ in at least one of 
the pairs of subsets considered. Concluding the alternative does not lead to 
a generalizable result, but may lead to further research to identify the factors 
related to the variation in the effect of treatment. When considering only the 
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Table 3.4: P-values of the f-test comparing all patients no older than age 36 
Maximum Age 1 

79 
77 
76 
74 
73 
72 
71 
70 
69 
68 
67 
66 
65 
64 
63 
62 
61 
60 
59 
58 
57 
56 
55 
54 
53 
52 
51 
50 
49 
48 
47 
46 
45 
44 
43 
42 

1 41 

N control, 1 
in subset | 
1,117 

1,116 

1,114 

1,114 

1,114 

1,110 
1,106 

1,101 

1,091 

1,083 

1,079 

1,076 
1,072 

1,054 

1,040 

1,026 

1,009 

988 
969 
941 
912 
887 
856 
829 
801 
773 
739 
684 
627 
588 
540 
486 
440 
396 
365 
327 

1 297 

N treatment, 1 
in subset | 
512 
512 
512 
511 
509 
507 
506 
504 
501 
498 
495 
495 
488 
483 
473 
465 
460 
454 
447 
435 
422 
411 
399 
377 
361 
344 
333 
307 
292 
273 
245 
225 
199 
179 
162 
139 

1 122 

P-value 1 

0.0003732 

0.0003625 

0.0003719 
0.0003946 

0.0004917 

0.0004783 

0.0005853 

0.0004348 

0.0004135 

0.0004609 

0.0004810 

0.0004105 
0.0004817 
0.0004134 

0.0001582 

0.0003010 

0.0001957 

0.0001452 

0.0001578 

0.0002719 

0.0004558 

0.0009168 

0.0008892 
0.0015703 
0.0000785 
0.0000807 

0.0001388 
0.0001041 

0.0003315 
0.0008473 
0.0020021 

0.0024372 

0.0032663 

0.0026331 
0.0028408 

0.0052053 
1 0.0102753 
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Table 3.4 (continued): 
Mjocimiim Age 

40 
39 
38 
37 
36 

N control, 
in subset 

260 
225 
189 
155 
130 

N treatment, 
in subset 

102 
91 
75 
65 
58 

P-value 

0.0024475 
0.0050965 
0.0059949 
0.0102552 
0.0330878 

sample under study and not attempting to generalize the results, any pair of 
subsets tested which produce a p-value less than the critical p-value is identified 
as a pair of subsets where the treatments differ. This methodology will be useful 
to provide a "rule of thumb" for a statistician to judge potential significance 
when encountering a researcher who has already been on a fishing expedition 
in his or her data. 

The method of inference guided data exploration restricted by half-intervals 
of a covariate, considered in Section 3.3, provides a critical p-value for the 
minimum p-value after testing multiple pairs of subsets defined by including 
all observations where the covariate is at least as large as (not larger than) 
a series of threshold values. The half-intervals restriction provides critical p-
values which are much less extreme than those provided when the minimum 
sample size restriction is used. For half-intervals, the critical p-value depends 
on the relationship between the response and the covariate (correlation for 
a linear relationship), but, as seen in Section 3.3.2, the dependence can be 
removed when the relationship is suitably modeled (ANCOVA model for a linear 
relationship). In practice, the method could be employed by using the critical 
p-value from the worst case correlation (p = 1) which would make the method 
sHghtly conservative. The results in Sections 3.3.1 (t-test) only apply to the 
case where the response and covariate are jointly random. Conditional on a 
fixed set of covariates, the critical p-value depends on the covariates observed. 

We feel the methodology employing the half-intervals restriction considers 
the types of subsets a researcher would more commonly be interested in consid­
ering. For example, if the researcher believes that the effect of treatment may 
not be as strong in patients with very small values of a specific covariate, then 
this method could be employed to guard against inclusion criteria which were 
too liberal and possibly included patients where the effect of treatment was neg­
ligible. We again test the null hypothesis of no difference between treatments 
in any pair of subsets considered versus the alternative that the treatments 
differ in at least one of the pairs of subsets considered, however we are more 
comfortable in generalizing our results beyond the sample under study because 
the significant subsets are now identifiable based on the value of a covariate 
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exceeding some threshold. We beUeve the method employing the half-intervals 
restriction will be used to provide a "rule of thumb" for judging significance in 
situations where a researcher has already examined subsets with respect to a 
covariate and may also be used as a planned methodology when the aim of the 
research is primarily exploratory in nature. 
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Discriminating Between Normal and Laplace 
Distributions 

Debasis Kundu 

Department of Mathematics, Indian Institute of Technology Kanpur, India 

Abstract: Both normal and Laplace distributions can be used to analyze sym­
metric data. In this chapter, we consider the logarithm of the ratio of the 
maximized likelihoods to discriminate between these two distributions. We ob­
tain the asymptotic distributions of the test statistics and it is observed that 
they are independent of the unknown parameters. When the underlying dis­
tribution is normal, the asymptotic distribution works quite well even when 
the sample size is small. But when the underlying distribution is Laplace, the 
asymptotic distribution does not work well for small sample sizes. In this case, 
we propose a bias corrected asymptotic distribution which works well even for 
small sample sizes. Based on the asymptotic distributions, minimum sample 
size needed to discriminate between these two distributions is obtained for a 
given probability of correct selection. Monte Carlo simulations are performed 
to examine how the asymptotic results work for small sample sizes and two data 
sets are analyzed for illustrative purposes. 

Keywords and phrases: Asymptotic distributions, likelihood ratio tests, 
probability of correct selection, location scale family 

4.1 Introduction 

Suppose an experimenter has n observations and the elementary data analysis, 
say a histogram, stem and leaf plot, or the box plot, suggests that they have 
come from a symmetric distribution. The experimenter wants to determine 
which of normal or Laplace distributions fits the data better. 

It is well-known that the normal distribution is used to analyze symmetric 
data with short tails, while the Laplace distribution is used for data with long 
tails. Although these two distributions may provide similar fit for moderate 

65 
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sample sizes, it is still desirable to choose the better fitting model since the 
inference procedures often involve tail probabilities, where the distributional 
assumption becomes critical. Hence, it is important to make the best possible 
decision based on the available data. 

For a given data, determining whether it follows one of the two given dis­
tribution functions is a well-known problem. Discriminating between any two 
general probability distribution functions was studied by Cox (1961, 1962), 
Chambers and Cox (1967), Atkinson (1969, 1970), Dyer (1973), and Chen 
(1980). Dumonceaux and Antle (1973) discussed the problem of discriminating 
between the log-normal and Weibull distributions, while Dumonceaux, Antle 
and Haas (1973) considered the problem of discriminating between any two 
distribution functions from location-scale family. In both these articles, the au­
thors proposed test statistics and computed the critical values based on Monte 
Carlo simulations. Fearn and Nebenzahl (1991) and Bain and Engelhardt (1980) 
examined the problem of discriminating between the gamma and Weibull dis­
tributions. Wiens (1999), Kim, Sun and Tsutakawa (2002), Firth (1988), and 
Kundu and Manglick (2004) all discussed different aspects of discriminating 
between the log-normal and gamma distributions. 

In this chapter, we discriminate between the normal and Laplace distribu­
tions using the ratio of the maximized likelihoods (RML). It should be men­
tioned that Dumonceaux, Antle and Haas (1973) also used a statistic equivalent 
to the RML for discriminating between two distribution functions. They did 
not study any distributional property of the proposed statistic. Here, using 
the approach of White (1982a,b), we obtain the asymptotic distribution of the 
logarithm of RML. It is observed that this asymptotic distribution is normal 
and does not depend on the parameters of the underlying distribution function. 
Numerical study indicates that when the underlying distribution is normal, the 
asymptotic distribution works quite well even for small sample sizes but this is 
not true when the underlying distribution is Laplace. In the latter case, we pro­
pose a bias corrected asymptotic distribution which works quite well for small 
sample sizes as well. 

The asymptotic distribution can be used to compute the probabihty of cor­
rect selection (PCS). We also obtain the minimum sample size necessary to 
discriminate between the two distribution functions for a given PCS. 

The rest of this chapter is organized as follows. At the end of this section, 
we provide a list of notation. We briefly describe the likelihood ratio method in 
Section 4.2. Asymptotic distributions of the logarithm of RML statistics when 
the true model is normal and Laplace are obtained in Section 4.3. Sample 
size determination is discussed in Section 4.4. Some numerical experiments are 
performed in Section 4.5 and two real data sets are analyzed in Section 4.6. 
Finally, we draw some conclusions in Section 4.7. 

We use the following notation for the rest of this chapter. The density 
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function of a normal random variable, with location parameter -oo < /i < oc 
and scale parameter a > 0, will be denoted by 

fs{x\^i,a) = .— -e 2̂ 2 ^ -oc < X < 00. (4.1) 
v27ra 

A normal distribution with mean /i and variance a^ will be denoted by A/'(/x, o^). 
The density function of a Laplace distribution, with location parameter -oo < 
T) < oo and scale parameter ^ > 0, will be denoted by 

/ L ( ^ ; r]. e) = —e- ' r , - 00 < X < oo. (4.2) 

A Laplace distribution with location 77 and scale 6 will be denoted by L{T],6). 

In addition, almost sure convergence will be denoted by a.s. For any Borel 
measurable function /?.(•), £'^(/i(/7)) and Vrsi{h{U)) will denote the mean and 
variance of h{U) under the assumption that U follows A/'(/i,a'^). Similarly, 
we denote EL{h{U)) and Vi{h{U)) for the mean and variance of h{U) when 
U follows L{r],9). Moreover, if g(-) and /i(-) are two Borel measurable func­
tions, we define coviM{g{U),h{U)) = Es{g{U)h{U)) - EN{g{U))EN{h{U)) and 
COVL{9{U).HU)) = EL{g{U)h{U)) - EL[g{U))EL{h{U)). Finally, we define 

median{ai,...,a2m4-i} = ^m+i, 

median{ai,...,a2m} = "̂ "̂ "̂̂ -̂ ^ 

where a\ < a2 < " - < a2m4-i are the ordered values. 

4,2 Ratio of Maximized Likelihood 

Suppose we have a sample Xi , . . . , Xn from one of the two distribution func­
tions. The likelihood functions, assuming that the data follow A/'(/x, a^) and 
L{r],6), are 

/Ar(/x, CT) = n / ^ ( ^ i ; Â- ^) 

and 

lL{v.O) = flfL{Xr;ri,e). 
1=1 

respectively. The logarithm of RML is defined as 

T = In l^Jiiihfl] . (4.3) 
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Here, (/i, a) and {fj, 0) are the maximum likelihood estimators (MLEs) of (/x, a) 
and (77,6), respectively, based on the sample Xi,... ,Xn- So, T can be written 
as 

T = ^ ln2 - ~ InTT + nln^ ~ nlna + ^, (4.4) 

where 

^ 1=1 ^ t = l 

1 " 
r} = median{Xi,..., Xn} and ^ = - ^ |X^ - 7}|. 

" i = i 
(4.5) 

The following discrimination procedure can then be used. Choose the nor­
mal distribution if the test statistic T > 0, otherwise choose the Laplace dis­
tribution as the preferred model. Note that if the true model is N{fj.,a'^), then 
the distribution of T is independent of /i and a. Similarly, if the true model is 
L{r],0), then the distribution of T is independent of 7/ and 6. 

4.3 Asymptotic Properties of the Logarithm of RML 

In this section, we derive the asymptotic distributions of T when the true model 
is normal and Laplace. 

Case 1: The Data Follow Normal Distribution 

In this case, when the true model is A/̂ (/i, a^), we have the following result. 

Theorem 4.3.1 Under the assumption that the data follow N(i.i,a'^), the dis­
tribution ofT is asymptotically normal with mean Ej\r{T) and VN{T), 

To prove Theorem 4.3.1, we need the following lemma. 

Lemma 4.3.1 Suppose the data follow N{ii,a^), then as n -^ 00, we have 
(1) fj-^fj a.s., and 0-* 9 a.s., where 

EN {HfUX; 77,0))) = max Ej, (HfUX; r;, 0))). 

Note that fj and 0 may depend on /i and a, but we do not make it explicit for 
brevity. 
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(2) Let us denote 

r = in 
l.N{n,d) 

(4.6) 

Then, n'^'^ {T — ELN{T)) is asymptotically equivalent to n~2 (T* — Eii^{T*)). 

PROOF OF LEMMA 4.3.1. The proof follows using arguments similar to those 
for Theorem 1 of White (1982b). • 

PROOF OF THEOREM 4.3.1. Using the Central Limit Theorem (CLT), it can 
be easily seen that n"2 (T* - ELN{T*)) is asymptotically normally distributed. 
Therefore, the proof immediately follows from Part (2) of Lemma 4.3.1 and the 
CLT. • 

Comments: It should be mentioned here that the distance between L{f]^6) 
and N{^l, a) is minimum in terms of the Kullback-Liebler information measure. 

Now we compute fj, 6*, Ei^{T) and V)v(r). Note that 

EN {ln{fL{X;ri,e))) = ~ ln2 - ln0 <- E 

Since X follows iV(/x,(7 )̂, it is clear that 

/2" 
77 = / I and 9 =^ E\X - jj] = ad -

X-1) 

e 

(4.7) 

Now, we provide expressions for E^iT) and V^IT). Note that lim ^̂  ^ and 
n—>oo ^ 

Um ^ ^ exist. Let us denote lim ^^^^ = AM^ and lim ^ ^ = AV^. 
Since the distribution of T is independent of /x and a, for the derivation of 
EN{T) and V|v(T), without loss of any generality, we take /Lt = 0 and a = 1, 
i.e., X follows A/'(0.1). Therefore, for large 71, 

EN{T) 

n 

= EN 

AMN = EN \lnfN{X:0,l)-hiMX-^riJ) 

X-fj 1 X'^ 
•-ln(27r)- — + I n 2 + ln6i + d 

-^\n{2n)-EN | ^ j + ln2 + In^ + y^ f ;^ |X | 

In2 + - - l n 7 r = 0.0484172. (4.8) 
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Further, we have 

^ ^ « AVN = Vs{lnfN{X:0,l)-\nh{X:fiJ)) 

= l w ( X 2 ) + ^V0v(|X|)-y|co«N(XMX|) 

= l + ^ ( l - - ) - l = 0.0707963. (4.9) 
2 2 \ TT/ 

Case 2: The Data Follow Laplace Distribution 

In this case, when the true model is L{r],0), we have the following result. 

Theorem 4.3.2 Under the assumption that the data follow L{r},6), the distri­
bution ofT is asymptotically normal with mean Ei{T) and variance Vi{T), 

To prove Theorem 4.3.2, we need Lemma 4.3.2, which is similar to Lemma 4.3.L 

Lemma 4.3.2 Suppose the data follow L{r],6), then as n —• oo, we have 
(1) A ~* A "̂̂ v a —* (J a. 5, where 

EL (ln(/iv(X; /i, a))) = max EL {ln{fN{X; /i, a))). 

Here again, jx and a may depend on rj and 6, but we do not make it explicit for 
brevity. 

(2) If we denote 

then n""2 [T ~ EL{T)] is asymptotically equivalent to n~"2 [T* ~ EL{T^)]' 

PROOF OF LEMMA 4.3.2. It follows from Theorem 1 of White (1982b). 

• 

PROOF OF THEOREM 4.3.2. The proof is similar to that of Theorem 4.3.1. • 

Now, we explain how //, a, EL{T) and VL{T) can all be obtained. Consider 

ELMfN{X:i,,a))] = EL - l l n ( 2 . ) - h . . - ( ^ - ^ ^ ' 
2 ' ' 2a2 

Since X follows L{7],6), we readily have 

fi = 7] and a = v/2 9. (4.10) 
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Now, we provide expressions for EL{T) and Vi{T). As before, lim - ^ ^ and 

lim ^ i ^ exist and we denote lim ^ ^ = AML and lim ^ ^ = AVL. AS 
mentioned before, the distribution of T is independent of rj and 6 and so we 
take ry = 0 and ^ = 1, without loss of any generahty, for the calculations of 
AML and AV^. Hence, for large n. 

EL{T) 

n 
AML = EUln(/N(X;/i,a)) - ln(/z.(X:0,l))] 

= EL -I ln(27r) -\na- ^^ P + ln2 + \X\ 

and, further,. 

Vim ^ 
n 

= 

^ 

AVL 

VL\ 

0.25 

= - J l n ( 2 7 r ) - ^ l n 2 - J + ln2 + l =-0.0723649 (4.11) 

AVL = Fi [ln(/N(X; A,a)) - ln(/t(X;0,1))] 

X2 
+ |Xi = ^ ^ L ( ^ ' ) + ^^(1^1) - ^cot;i(X2, \X\) 

(4.12) 

4.4 Determination of Sample Size and Testing 

4.4.1 Minimum sample size determination 

In this subsection, we propose a method of determining the minimum sample 
size needed to discriminate between the normal and Laplace distributions for a 
given probability of correct selection (PCS). It is expected that the user specifies 
the PCS before hand. 

First we consider Case 1, i.e., the data follow N{n,a). Since T is asymp­
totically normally distributed with mean E_\r{T) and variance V^iT), the PCS 
is 

' EN{T) ' 
PCS = P[T > 0] «s $ = $ immy <-'' 

where $ is the distribution function of the standard normal distribution. Now, 
for determining the minimum sample size required to achieve at least p* pro­
tection level (viz., the PCS), we solve 

$ 
n X AM]\[ \ __ ^ 

(4.14) 
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to obtain 

where Zp* is the lOOp* percentile point of the standard normal distribution. 
Next, for Case 2, i.e., when the data follow L{T], 6), we similarly obtain 

Therefore, to achieve overall p* protection level, we need at least 

{JMT'' 0 ^ } '̂ * ^ ̂ ^{^0.2A7.7}zl, = 47.7 4 . (4.17) n = max 

4.4.2 Testing of hypotheses 

Cox (1961, 1962) and Dumonceaux and Antle (1973) considered the above 
discrimination problem as the following two testing of hypotheses problems: 

Problem 1: HQ : Normal vs. Hi : Laplace, (4.18) 

Problem 2: HQ : Laplace vs. Hi : Normal. (4.19) 

Dumonceaux and Antle (1973) provided the exact critical regions and the pow­
ers of the likelihood ratio tests based on Monte Carlo simulations. The asymp­
totic results derived in the last section can be used for testing the above two 
hypotheses as follows: 

Test 1: For Problem 1: Reject the null hypothesis /fo at a % level of signifi­
cance if r < n X 0.0484172 - z^ x y/n x 0.0707963, and accept HQ otherwise. 

Test 2: For Problem 2: Reject the null hypothesis ifo at a % level of signifi­
cance if r > -n X 0.0723649 -¥ z^ x y/n x 0.25, and accept Ho otherwise. 
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4.5 Numerical Experiments 

In this section, we present some numerical results performed to check how 
the asymptotic results work for different sample sizes. All computations were 
performed at the Indian Institute of Technology Kanpur, using Pentium IV 
processor. We used the random deviate generator RAN2 of Press et al. (1993) 
and all the programs were written in FORTRAN, which are available from 
the author. We computed the PCS based on simulations and also based on 
the asymptotic normality results derived in Section 4.3. Since the distribution 
(numerical value) of T is independent of the location and scale parameters, we 
took the location and scale parameters to be zero and one, respectively, in all 
cases. We considered sample sizes n = 20, 40, 60, 80 and 100. 

Table 4.1: The probability of correct selection based on Monte Carlo simulations 
(MC) with 10,000 replications and also based on the asymptotic results (AR) 
when the true model is normal 

n 

MC 

AR 

20 

0.80 

0.79 

40 

0.87 

0.88 

60 

0.92 

0.92 

80 

0.95 

0.95 

ioo 1 

0.96 

0.96 

First, we take the case when the true model is normal. In this case, we 
generated a random sample of size n from iV(0,l), computed T, and checked 
whether T is positive or negative. We replicated this process 10,000 times and 
obtained an estimate of PCS. These results are presented in Table 4.1. We 
obtained similar results when the true model is Laplace, and these results are 
presented in Table 4.2. 

It is quite clear from Tables 4.1 and 4.2 that as sample size increases the 
PCS increases as one would expect. The asymptotic results in Table 4.1 are 
quite close to the corresponding simulated results. This is not the case for Table 
4.2 wherein it is observed that for small sample sizes the asymptotic results do 
not match well with the simulated results. This is so because T is biased in this 
case. So, we propose the following biased corrected version for small sample 
sizes. We suggest to use AML = -0.0723649+ ^ and AVL = 0 .25- ^ . The 
results, based on the biased corrected version, are also provided in Table 4.2. 
The bias values were obtained by regressing the simulated mean and variance 
of T with the theoretical mean and variance, respectively, over a wide range 
of sample sizes. Based on the bias correction, the value of n in (4.16) can be 
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Table 4.2: The probability of correct selection based on Monte Carlo simulations 
(MC), the asymptotic results (AS) and bias corrected asymptotic results (BC) 
with 10,000 replications when the true model is Laplace 

n 

MC 

AS 

BC 

20 

0.65 

0.78 

0.68 

40 

0.79 

0.86 

0.79 

60 

0.86 

0.91 

0.85 

80 

0.90 

0.94 

0.89 

100 

0.93 

0.96 

0.92 

modified to 

n 
-'{h2SA\lL-zl.AVL)'¥J(l.28AhfL-z^^AVL)^'-4AMliOM^-^2mz'^,) 

2 A Ml 

and therefore, (4.17) and Test 2 can also be modified accordingly. 
Now we consider the discrimination problem as a testing of hypothesis prob­

lem as posed in the last section. Let us define the rejection regions as {T < 0} 
and {r > 0} for Problems 1 and 2, respectively. It is then immediate that 
P[Type I error] = 1 - PCS. From Tables 4.1 and 4.2, it is clear that P[Type I 
error] varies between 0.20 to 0.04 as the sample size varies between 20 to 100 
when the true model is normal, and when the true model is Laplace it varies 
between 0.35 to 0.07. Similarly, in these two cases, the power of the tests vary 
between .0.65 to 0.93 and 0.80 to 0.96, respectively, as sample size varies between 
20 to 100. 

4.6 Data Analysis 

In this section, we analyze two data sets and use our method to discriminate 
between the two distribution functions. 

Data Set 1: The first data set is as follows [Lawless (1982, p. 228)]. The 
data are the number of million revolutions before failure for each of the 23 ball 
bearings in the fife tests, and they are: 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 
48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.44, 68.64, 68.88, 84.12, 93.12, 98.64, 
105.12, 105.84, 127.92, 128.04, 173.40. 

Several authors have analyzed this data set using gamma, WeibuU, log-
normal, and generalized exponential models. We make the log transformation 
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Figure 4.1: Empirical survival function, fitted normal and fitted Laplace survival 

functions for data set 1. 

of the data and try to fit the normal and Laplace distributions. When we use 
the normal model, the MLEs of the parameters turn out to be // = 4.1506 and 
a = ().52L5, and the corresponding log-likelihood (LL) value is -17.6615. The 
Kolmogorov-Smirnov (K-S) distance between the data and the fitted normal 
distribution function is 0.0899 and the corresponding i>value is 0.99. Similarly, 
when we fit the Laplace model, the MLEs t\u'n out to be ff - 4.1506 and 6 
= 0.4200, and the corresponding LL value is -18.9899. The non-parametric 
survival function, fitted normal survival function, and fitted Laplace survival 
function are all presented in Figure 4.1. 

The K-S distance between the data and the fitted Laplace distribution func­
tion is 0.2473 and the corresponding p-value is 0.12. We also present the ol> 
served and expected frequencies for different intervals in Table 4.3. 

The x^ values are 0.579 and 2.089 for the normal and Laplace distributions, 
respectively. For data set 1, the K-S distances, x'^ values and Figure 4.1 all 
indicate that for the transformed data, the normal distribution is a better fit 
compared to the Laplace distribution. 

The logarithm of RML, i.e., T = 1.3284 > 0. This suggests the normal 
model as a better fit for the data. From (4.13), it is clear that if the data follow 
normal distribution, then based on a sample of size 23. PCS = 0.81 and if the 
data follow Laplace distribution, then the bias corrected PCS = 0.71. Hence, in 
this case, the PCS is at least min{0.7L 0.81} = 0.71. Based on the assumption 
that the data follow normal distribution, the p-value = 0.57. Similarly, ba^ed 
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Table 4.3: The observed and the expected frequencies for the normal and 
Laplace distributions for data set 1 

Intervals 
< In 35 

In 35-In 55 
In 55-In 80 
In 80 - In 100 

1 > In 100 

Observed 
3 
7 
5 
3 
5 

Normal 
2.92 
6.04 
6.48 
3.15 
4.41 

Laplace 
2.79 
5.38 
8.20 
2.73 
3.90 

on the assumption that the data follow Laplace distribution, the p-value = 0.11. 
Comparison of the p-values also suggests the normal distribution to be better 
than the Laplace distribution. Therefore, in this case, the LL values, x^ values, 
K-S distances and the proposed method all lead to the normal model and the 
probability of correct selection is at least 71%. If we consider the two testing 
of hypotheses problems in (4.18) and (4.19), then based on the data, we note 
that we can not reject the null hypothesis in both cases even at 10% level of 
significance. 

Data Set 2: Now consider the following data set simulated from the Laplace 
distribution, viz. L(0,1): -1.28, 0.36, -1.29, -0.80, 0.28, -0.06, -1.53, 0.28, 
-0.54, 0.17, 0.59, 6.22, 2.41, 0.33, -1.51, 0.25, 2.33, 2.81, -0.92, 2.12, -1.01, 
1.35, -0.37, -0.39, -4.39, -2.39, 0.97, -0.58, -2.24, -0.05. 

Using the normal model, the MLEs of the parameters are fi = 0.0373 and 
a = 1.8906, and the corresponding log-likelihood (LL) value is -61.6744. The 
Kolmogorov-Smirnov (K-S) distance between the data and the fitted normal 
distribution function is 0.1656 and the corresponding p-value is 0.3833. Simi­
larly, using the Laplace model, the MLEs are fj = 0.0373 are 6 = 1.3298, and the 
corresponding LL value is -59.3458. The non-parametric, the fitted normal, 
and the fitted Laplace survival functions are all presented in Figure 4.2. 

The K-S distance between the data and the fitted Laplace distribution func­
tion is 0.1499 and the corresponding p-value is 0.5100. The observed and ex­
pected frequencies are presented in Table 4.4. 

The x^ values are 1.356 and 1.035 for normal and Laplace distributions, 
respectively. For data set 2, K-S distances, x^ values and Figure 4.2 all indicate 
that the Laplace distribution is a better fit than the normal distribution. 

The logarithm of RML, i.e., T = -2.3286 < 0. Hence, the proposed method 
suggests the Laplace model over the normal. From (4.13), it is clear that if the 
data follow normal distribution, then based on a sample of size 30, PCS = 
0.84 and if the data follow Laplace distribution, then the bias corrected PCS = 
0.74. Hence, in this case, the PCS is at least min{0.74, 0.84} = 0.74. Based on 
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Figure 4.2: Empirical survival function, fitted normal and fitted Laplace survival 

functions for data set 2. 

the a.ssumption that the data follow normal distribution, the p-value < ().()()5. 
Similarly, based on the assiuiiption that the data follow Laplace distribution, 
the p-value > 0,62. Comparing the two i>values. it is (̂ lear that the Laplace 
distribution is preferable over the normal. Therefore, in this case, the LL values. 
X^ \'alues. K-S distances and the proposed method all lead to the Laplace model 
and the probability of correct selection is at least 74%. If we consider the two 
testing of hypotheses problems in (4.18) and (4.19). we reject the null hypothesis 
for the problem in (4.18) for any a < 0.005. 

4.7 Conclusions 

In this chapter, we (*onsider the problem of discrimination between the normal 
and Laplace families. We consider the statistic based on the ratio of maxi­
mized likelihoods and obtain the asymptotic distributions of the test statistics 
under the two true models. It is observed that the asymptotic distributions are 
avSymptotically normal and that they are independent of the parameters of the 
true model. This method can. in fact, be used for discriminating between any 
two members of the location-scale family. The exact mean and variance of the 
corresponding normal distribution needs to be derived in each case. Finally, 
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Table 4.4: The observed and the expected frequencies for the normal and 
Laplace distributions for data set 2 

Intervals 
<-3.0 

-3.0--1.5 
-1.5-0.0 
0.0 - 1.5 
1.5-3.0 

>3.0 

Observed 
1 
4 
11 
9 
4 
1 

Normal 
1.64 
4.42 
8.70 
8.71 
4.78 
1.75 

Laplace 
1.55 
3.22 
9.90 
10.34 
3.37 
1.62 

we should mention that for a given data set, it may happen that neither of 
the two distribution functions provide good fit, which should be clear from the 
K-S values and also from the x^ values. In such cases, some other distributions 
should be considered for the data at hand. 
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A Simple Classification Rule for Directional Data 
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Ireland 

Abstract: An intuitive and geometrically motivated chord-length based dis­
criminant statistic is proposed for the classification of a new observation into 
one of two circular populations when training samples are available from each of 
them. Assuming that each of the two underlying populations is von Mises, the 
exact distribution of this statistic is indicated and its relationship to Fisher's 
discrimination and Cox's Logistic discrimination rules are discussed. The per­
formance of this rule is presented and compared with Fisher's rule in terms of 
exact error probabilities and apparent error rates. This new rule is illustrated 
by a real-life data set. 

Keywords and phrases: Apparent error rate, classification rule, directional 
data, logistic discrimination 

5.1 Introduction 

Consider the problem of classifying a new observation into one of two distinct 
circular populations. For an introduction to analysis of circular or directional 
data, see e.g., Mardia (1972), Jammalamadaka and SenGupta (2001). Suppose 
we have observations as directional data from these two (identifiable) popula­
tions given as ^ij, j = 1, . . . , nj, z = 1,2. We will utilize these observations as 
training samples to provide estimates of parameters of the above two popula­
tions as needed. Let a new observation be denoted by 9. Denote the sample 
mean directions by 5 ,̂ i = 1,2. 

Morris and Lay cock (1974) have discussed the usual Fisher's discrimination 
rule for the von Mises or circular normal (CN) populations when the parame­
ters may possibly be unknown. El Khattabi and Streit (1996) have illustrated 
the use of classical Bayes rule with offset normal distribution on the circle and 
some other distributions on the sphere. Note that such parametric rules become 
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quite cumbersome even for applications, when invoked for other popular circu­
lar distributions, e.g., the family of symmetric wrapped stable distributions 
[SenGupta and Pal (2001)]. In a somewhat more extended context, Collett 
and Lewis (1981) have discussed the problem of discriminating between the 
von Mises and wrapped normal distributions given a set of data assumed to be 
coming from one (unknown) of these two populations. These works however 
apply the standard linear techniques and do not address the peculiarity and the 
distinctive features of directional data. 

In Section 5.2 we introduce a very simple and elegant chord-based discrim­
ination rule which is intuitively appealing and geometrically motivated specifi­
cally for circular data and which may be used for arbitrary circular distributions 
with possibly unknown functional forms. The basic idea used here is to find 
out the average "distance" (in an appropriate sense) from the new observation 
to the observations in the two known groups. If the distance from one group 
is less than from the other, then the new observation is classified as belonging 
to the "closer" population. Though this approach may be used for any circular 
distribution, here we illustrate it by the von Mises populations. Next we recall 
that in a linear setup, for the univariate or multivariate normal distributions 
the Fisher type discrimination rule, which coincides with the Logistic Discrim­
ination (LGD) rule of Cox (1966) with same variances and the Quadratic LCD 
rule [see e.g., Anderson (1975)] if variances are different, can be viewed as a 
quadratic distance function i.e., with variance-covariance matrix playing the 
role of the metric tensor. In Section 5.3 we show that a similar phenomenon 
holds for the class of directional distributions also. In Section 5.4 we discuss the 
exact distribution of the discriminant statistic and note how one can compute 
the threshold value numerically. Section 5.5 presents a study on the efficiency 
of the chord-based rule and compares it with Fisher's rule in terms of their Ap­
parent Error Rates (AERs). Finally in Section 5.6, the new rule is illustrated 
by a real-life data set. 

5.2 Construction of the Rule 

5.2.1 A distance measure 

The simplest distance that can be used for circular data is the arc-length, which 
in the case of the unit circle is equivalent to the radian measure subtended at 
the center of the circle, i.e., the value of the observation in radians. 

But to be a proper distance on the circle, the distance measure must be 
rotationally invariant, both in terms of magnitude as well as in the sense of 
rotation. Thus if we have to consider the arc-length in terms of radian mea­
sure, we have to transform it in a suitable way, i.e., take absolute value of the 
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difference in angles, modulo 27r. We may also have to consider the minimum of 
the two arc-lengths into which two points on the circle divides a circle. 

These problems do not arise if instead of the arc-length we consider the 
length of the chord cut off by the two points on the circle. This is always non-
negative, invariant under rotation, both in magnitude and displacement. As 
we shall see, this particular form has also other attractive properties due to its 
similarity to known descriptive measures, e.g., circular variance [Mardia (1972, 
p. 21)]. 

We observe that though the use of chord length as a descriptive measure is 
quite natural and may have been in use for long, the approach in the following 
section seems to be the maiden attempt in this direction. 

5.2.2 Average distance of a point from a group 

Let two points on the unit circle be denoted by ^i, ^2- Then the square of the 
chord-length between the two is given by 2 (1 - cos(^i - ^2))- Based on this we 
take the distance measure as 

dij = 1 - cos{e^-eJ). (5.1) 

Note that dij has the following properties : It is always non-negative, symmetric 
in its indices and is invariant under rotation. A measure of deviation between 
two points on a circle, e.g., two circular observations, the true mean direction 
and its estimator [SenGupta and Maitra (1998)], etc. may thus be based on it. 

The average distance di{9) of 9 from the group i, is given by 

di{9) = 1 - —Y,cos{9,j-9). (5.2) 
I Li 

3 

Note that this is similar to the sample circular variance with a shift in the mean 
direction. Let 

Ci = -J2''os{9ij), Si = -Y,sm{9^j), R, = V^SfT^, tan(50 = ^ . 

5.2.3 The chord-based rule 

Let the new observation to classify be 9. Let doi be the distance of 9 from 9i, 
the circular mean for group z, i = 1,2. Define D{9) = doi{9) - do2{9). Suppose 
that prior probabilities for the two populations are equal and let c be a real 
constant. The classification rule is then given as follows: 

If D{9) < c assign 9 to population 1, 

and assign 9 to population 2 otherwise. (5.3) 
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Now 
D{e) = (cos(^2) - cos(^i)) cos^ + (sin(^2) - sin(^i)) sin^. (5.4) 

Let 

Note that P(^i = 62) = 0, assuming that we are dealing with underlying 
continuous distributions and hence 0̂ is well defined (with probability 1). 

Then (5.4) can be written as 

D{e) = ^2 -2cos (^ i -^2 ) cos(^ - ^0). (5.6) 

Note that by (5.5), there will be two solutions for ^o-
The classification rule in (5.3) now reduces to an equivalent but a very 

simple form as 

If cos(^ - ^0) > ^ assign 6 to population 1, 

and assign 6 to population 2 otherwise, (5.7) 

where K is an appropriate constant. 

Remarks. 
1. The direction 9Q is orthogonal to the bisector of 9i and 62. 
2. As is often done for the sake of simplicity of the classification rule [see, 

e.g., Rao (1973, p. 575, Eq. (8e.l.8))], we can take K = 0. The rule as given by 
equation (5.7) then simply partitions the circle into sectors of width 180°. In 
this case, explicitly, the sectors can be specified as one semicircle having do as its 
midpoint, and the complementary arc. Note that if the sample mean directions 
are equal, unequal circular variances have no effect on the rule. In this case ̂ 0 
is simply the mean direction itself. However, when the sample mean directions 
are not equal, the circular variances do affect 9o. It is obvious that the rule 
can be modified trivially to cover the case of unequal prior probabilities also. 
Finally, in case specified misclassification probabilities are to be maintained, K 
can be suitably determined by using the distribution of cos(^ - ^0) ^ discussed 
in Section 5.4. 

5.2,4 An extension of the chord-based rule 

Let Vi = di(^i),V2 = ^̂ 2(̂ 2)1 ie., Vi is the average intragroup "distance" from 
each other for the observations in group or sample i. Note that K is nothing 
but the sample ''circular variance" for sample i, see, e.g., Mardia (1972, p. 21). 
Define the intra-group average da from the sample mean direction as 

da = I - —y<^os{9ij-ei). (5.8) 
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Then da = I - Ri = Vi. Take constants ai > 0, i = 1,2, and /3, and define 

DM = . , (dm - ^Ji±^) - a, (dm - i i ^ ) H- /?. 

The classification rule is given by 

If Di{9) < 0 assign 9 to population 1 

and assign 6 to population 2 otherwise. (5.9) 

Now Di {6) reduces to 

{a2Cos{62) - aiCos(^i)}cos^ + {a2sin(^2) - a;isin(^i)}sin0 

+ ~(ai-a2)(i?i+i?2). (5.10) 

Let 
^ a2sin(^2).--a,sin(^0 

^ ^ a2Cos(e2) - aicos(ei) ^ ^ 

Then by (5.11), there will be two solutions for ^o- However, as is done [see, 
e.g., Jammalamadaka and SenGupta (2001)] for defining 9, 9Q also may be 
defined uniquely by taking the quadrant specific arc-tan function by interpreting 
the numerator and denominator of the ratio in the right-hand side of (5.11) 
accordingly. 

5.3 Relationship of Chord-based Rule with Other 
Rules 

5.3.1 Fisher 's rule 

Assume that the underlying populations are in the CN family, i.e., CN{iii, Ki), 
2 = 1,2. Recall that the density function corresponding to CN{fi, K) is given by 

f{9; ju, K) = expk cos(^ - ^^)]^ 0 < ^ < 27r, K > 0. 

Note that, given the parameters, the standard Fisher type ('maximum Hkefi-
hood') function would have the form 

-ln/o(Ki) + ln/o(/C2) + {Kicos(/ia) - ^2Cos(/X2)}cos(^) 

-h{K,i sin(/xi) - K2 s\n{fi2)} sm{9) + /3 (5.12) 
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= ~ln/o(ACi) + ln/o(K2) + yKj+^2 ~ 2/ciK2Cos(/ii -/i2) 

f^ . _i/C2sin/i2 -/cisin/ii \ _ /̂  ,ox 
X cos ^ - tan ^— — — + 13. (5.13) 

\ K2 COS /i2 - '^l COS fix ) 
/C2COS/i2 - '^iCOS/il 

Putting ai = Ki in (5.10) and observing that 

d 

we have 

^^ln/o(K) = A{K), 

ln/o(K) = / A{K)dK. 

Recall from the ML estimation of K for the CN population, that R is asymp­
totically i4(«). Note also that KFO"/2 approximates the integral ^ A{K)dK by a 
triangle. Note also that 

^A{K) = 1 - A\K) - ^ 
dn K 

and hence that for small change in K, the order of change in A{K) is less than 
that of K. Therefore, 

ln/o(ACi) - ln/o(K2) = / A{K)dK ^ -[A{KI) + A{K2)]{K.2 - '^i), 

by the trapezoidal rule. Note that, if KI and K2 are very close to each other, 
asymptotically (5.10) approximates (strongly converges to) the corresponding 
portion of (5.12). The equivalence between Fisher's rule and our rule then 
becomes clear. Thus although we have kept the rule flexible by introducing the 
constants Of̂ s, a recommended choice in case von Mises distributions seem to 
be the underlying populations, is that which is found by substituting the pairs 

ki = A-^{Ri), i = 1,2. 

5.3.2 Cox's logistic discrimination rule 

In the above discussion, the modified rule can easily be identified as a semipara-
metric rule which approaches the Fisher type rule (ratio of densities) when the 
underlying populations are circular normals and they are close to each other in 
terms of population parameters. 

Since LGD models the ratio of densities in the case when the log ratio is 
linear in the underlying random variable, observe that LGD cannot be directly 
applied to discriminate between two von Mises populations. However, note that 
a simple generalization of LGD can still be used in such cases, since the log-
ratio in this case is linear on the sine and cosine transformations of 6, This also 
bypasses the rather computationally tricky problem of having to estimate K, 
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A{K) and their logarithms, as the constant term in the expression of the LGD 
subsumes all the Bessel function terms. This can also be approached through 
the method of Generalized Pseudo Maximum Likelihood estimation [see Roy 
(1999)]. Also, the rule based on chord lengths as given above, however then 
need not assume independence of the linear components as done for the LGD 
rule. 

5.4 Exact Distribution of D(6) 

The distribution of 9 conditional on i? = r is von Mises with mean direction 
/i and concentration parameter ^r. The joint distribution of C = RcosO, 
S =^ RsinO is given by 

/ ( a s ) = -^e'^("°'^(^)^^^^"(^)^)(^^(C2 + 5^^ (5.14) 

Here </>n is the density of R^ when ^ i , . . . , r̂j is a random sample from a circular 
uniform distribution. The joint distribution of C/ = aicos(^i) - a2COs(^2)^ 
F = a i sin(^i) - a2sin(^2), given i?i = r i , i?2 = r2, a i , a2, is given by 

m^v) = 
^Kir icos ( / i i )~+K2r2Cos( /X2)~ 

(27r)2/o(/.iri)/o(«2r2) 

X / exp < (/^in cos(jui)— + K2r2 cos(/i2)) cos(^2) 
J 02 I 0(1 

Ck2 ~ 1 -
+(ACirisin(/ii) f- A^,2^2sin(^2))sin(^2) M^2-

ai J 

Combining this with (5.14), we have the joint distribution of (C, 5, C/, V) (where 
cos(^) = C and sin{6) = 5), given i?i = ri,i?2 = r2,cki,cfc2. to be 

Kir I COs(/Xl)~+K2'"2 COS(fJL2)^-\-K,COs(9 — fJ.) 

f{C,S,U,V) = (27r)3/o(K)/o(/ciri)/o(«2r2) 

7^2 
^ ^(«irisin(/ii)^-fK2r2sin(/X2))sin(^2) .^ f5 15") 

To get the distribution of the statistic, the conditional density in (5.15) 
multiplied by the joint density hni{R\)hn2{R2) [for the definition of hn{R), 
see e.g., Mardia (1972, p. 94)] has to be integrated over regions of the form 
d = aCU + (1 - a)SV. This fact may be used in invoking numerical integra­
tion to obtain the constant K of Section 5.2 when specified misclassification 
probabilities are to be met. 
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Table 5.1: Comparison of Fisher's and chord-based rules 

ni = n2 = 10,/ii = 0, Ki = 0.10 
«2 = 0.10 

/̂ 2 
0.1 
0.2 
0.3 
0.4 

[0.5 

Ml 
0.05 
0.05 
0.05 

0.055 
0.05 

M2 
0.12 
0.17 
0.26 
0.36 
0.48 

Ri 
0.09 
0.091 
0.091 
0.092 
0.093 

R2 
0.09 
0.089 
0.09 
0.091 
0.092 

ERRx 
0.15 
0.14 
0.137 
0.135 
0.13 

AERi 
0.19 
0.16 
0.15 
0.148 
0.14 

ERR2 
0.13 
0.14 
0.146 
0.145 
0.148 

AER2 
0.25 
0.25 
0.24 
0.24 
0.21 

/C2 = 0.20 
M2 
0.1 
0.2 
0.3 
0.4 

1 0.5 

1 M2 
0.1 
0.2 
0.3 
0.4 
0.5 

Ml 
0.05 
0.05 
0.05 

0.055 
0.05 

Ml 
0.05 
0.05 
0.05 
0.055 
0.05 

M2 
0.12 
0.17 
0.26 
0.36 
0.48 

M2 
0.12 
0.17 
0.26 
0.36 
0.48 

Ri 
0.09 

0.091 
0.091 
0.092 
0.093 

R2 
0.18 
0.19 
0.19 
0.192 
0.192 

ERRi 
0.15 
0.14 
0.132 
0.129 
0.126 

K2 = 0.30 
Ri 

0.09 
0.091 
0.091 
0.092 
0.093 

R2 
0.28 

0.289 
0.29 
0.291 
0.292 

ERRi 
0.16 
0.14 
0.132 
0.129 
0.126 

AERx 
0.17 
0.16 
0.145 
0.14 
0.134 

AERi 
0.17 
0.16 
0.145 
0.14 

1 0.134 

ERR2 
0.25 
0.22 
0.2 
0.19 
0.18 

ERR2 
0.25 
0.22 
0.2 

0.19 
0.18 

AER2 
0.3 
0.26 
0.25 
0.24 
0.22 

AER-i 
0.3 
0.26 
0.25 
0.24 j 
0.22 
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5.5 Efficiency of the Rule 

As is apparent, closed form expressions for error probabilities do not exist and 
the actual values have to be numerically computed for each pair of training 
samples. 

Table 5.1 presents and compares the performances of the Fisher's and the 
chord-based rules, where we have taken IJLI = 0 (angles are given in radians) 
without loss of generality. ERR\ denotes the calculated error probability from 
the exact distribution of the modified statistic as given above, ERR2 the calcu­
lated error probability from the Fisher type (ratio of densities) discrimination 
rule, AERi the apparent error rate from the modified statistic as given above, 
and AER2 the apparent error rate from the Fisher type discrimination rule. It 
is clear that our proposed rule outperforms Fisher's rule in terms of both ERR 
and AER over all the parameter combinations considered. 

5.6 A Real-life Example 

We now consider the data on pigeon-homing, as referred to in Mardia (1972, 
pp. 156-157), in which the internal clocks of 10 birds were reset by 6 hours 
clockwise while the clocks of 9 birds were left unaltered. Assuming that the 
underlying distributions are von Mises with equal concentration parameters [as 
in Mardia (1972, p. 157)], we classify each observation in the two samples on 
the basis of the remaining observations, by comparing the average chord-length 
distance from each group. 

The result shows that the apparent error rate (AER) is 0.0 for the control 
group, 0.25 for the experimental group and 0.117 for the combined sample. 

The AERs or the sample misclassification probabilities show that the rule 
correctly classifies all the observations in the control group, and 75% in the 
experimental group. 
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Abstract: The interaction of product or service attributes may influence the 
preferences of consumers. If the numbers of stimuU (profiles) are large, then the 
combinations of the levels present difficulty for consumers to rank order in terms 
of their preference. In this chapter, our purpose is to propose a ranking and 
selection procedure to select the most preferred attributes in such situations. 
We use the orthogonal array design to build a suitable MANOVA model in 
conjoint analysis. A split-plot experiment is conducted and the method of 
moments is used to obtain unbiased estimators of the parameters. The fitness 
of the MANOVA models is also studied. Some examples based on a preference 
study of a household electrical appliance are discussed. 

Keywords and phrases: Ranking and selection, conjoint analysis, split-plot 
experiment, interactions, MANOVA model, utility, Spearman's rank correlation 

6.1 Introduction 

The conjoint analysis is an efficient tool in marketing research. Consumers are 
often asked to make a choice among the combinations of the levels of multi-
attribute products or services. The interactions among attributes may influence 
the resulting choice. The main purpose of this paper is to propose a ranking and 
selection procedure to select the most preferred attributes. For this purpose, we 
build a MANOVA model based on the orthogonal array design and the split-
plot experiment with interactions. The moment method of estimation is used 
to obtain an unbiased estimator of the part-utility. Then, we can overcome the 
difficulties in ranking a large number of profiles. The most favored product 
attributes and the most desirable levels of these product attributes are then 
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selected. We also study the fitness of the MANOVA models. The methods 
introduced in the chapter are illustrated by examples. 

6.2 MANOVA Model with Equal Factor Levels 

Let us consider the example of an appliance maker who wants to understand 
what factor levels are cared most about by consumers when buying a refriger­
ator. Assume that there are three main attributes (brand, volume and price) 
that the consumers care about for buying a refrigerator. We consider each of 
these attributes having three levels. The attributes and the corresponding levels 
are listed as follows: 

Factor Level 
A. Brand 0. Taiwanese 1. American 2. Other Asians 
B. Volume 0. Under 200 liters 1. 200-400 liters 2. Above 400 liters 
C. Price 0. Under NT$20000 1. NT$20000-NTS30000 2. Above NT$30000 

For the three attributes each with three levels, twenty-seven ( 3 x 3 x 3 ) 
combinations (profiles, stimuli) can be formed. To avoid the difficulty in ranking 
too many total number of profiles , we adopt an orthogonal fractional design 
as shown in Table 6.1, in which only eighteen stimuli are needed to be ranked. 
There are three steps in the split-plot experiment. 

Step 1: We choose a factor as the main attribute. 

Step 2: Fixing one level of the main attribute, we rank order the level combi­
nations of the other attributes (called subplot treatments). 

Step 3: Fixing another level of the main attribute, we rank order the subplot 
treatments which may not be the same subplot treatments as those ob­
tained in Step 2. Repeat this process until all levels of the main attribute 
have been considered. 

In the split-plot experiment, the order in which the main attribute levels 
are considered is randomly decided. 

Table 6.1 is an orthogonal array which is produced by the statistical software 
SPSS [SPSS (1994, pp. 1-36)]. The main attribute in Table 6.1 is brand. Under 
different levels of brand, the sets of subplot treatments are different. We want 
to evaluate the interaction between volume and price in the subplot treatments 
of different sets. In Table 6.2, the code numbers are adapted from Table 6.1. 
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Table 6.1: Questionnaire 

1. If the brand of the refrigerator is Taiwanese, please rank order or assign scores to the set of combinations, 

where the lower the value, the greater the preference. (The value 1' is the most prefen-ed, and the value *6' is 

the least prefen^ed.) 

D 

D 

D 

D 

D 

D 

Volume: under 200 liters 

Volume: under 200 liters 

Volume: above 400 liters 

Volume: above 400 liters 

Volume: 200-400 liters 

Volume: 200-400 liters 

Price: under NT$20000 

Price: above NT$30000 

Price: NT$20000-NT$30000 

Price: under NT$20000 

Price: NT$20000-NT$30000 

Price: above NT$30000 

2. If the brand of the refrigerator is American, please rank order or assign scores to the set of combinations, 

where the lower the value, the greater the preference. (The value 1' is the most preferred, and the value '6' is 

the least prefen^ed.) 

D 

a 

D 

D 

D 

D 

Volume: under 200 liters 

Volume: 200-400 liters 

Volume: above 400 liters 

Volume: under 200 liters 

Volume: 200-400 liters 

Volume: above 400 liters 

Price: NT$20000-NT$30000 

Price: under NT$20000 

Price: above NT$30000 

Price: above NT$30000 

Price: NT$20000-NT$30000 

Price: under NT$20000 

3. If the brand of the refrigerator is Other Asians, please rank order or assign scores to the set of combinations, 

where the lower the value, the greater the preference. (The value 1 * is the most preferred, and the value '6' is 

the least preferred.) 

D 

a 

D 

D 

D 

D 

Volume: above 400 liters 

Volume: 200-400 liters 

Volume: under 200 liters 

Volume: above 400 liters 

Volume: under 200 liters 

Volume: 200-400 liters 

Price: above NT$30000 

Price: above NT$30000 

Price: NT$20000-NT$30000 

Price: NT$20000-NT$30000 

Price: under NT$20000 

Price: under NT$20000 
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Table 6.2: Orthogonal design 

Stimulus no. 
(1) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

A. Brand 
(2) 

[0] Taiwanese 
[0] Taiwanese 

[0] Taiwanese 
[0] Taiwanese 
[0] Taiwanese 
[1] American 
[1] American 
[1] American 
[1] American 
[1] American 
[1] American 
[2] Other Asians 
[2] Other Asians 
[2] Other Asians 
[2] Other Asians 
[2] Other Asians 
[2] Other Asians 

B. Volume 
(3) 

[0] under 200 liters 
[0] under 200 liters 
[2] above 400 liters 
[2] above 400 liters 
[1] 200-400 liters 
[1] 200-400 liters 
[0] under 200 liters 
[1)200-400 liters 
[2] above 400 liters 
[0] under 200 liters 
[1] 200-400 liters 
[2] above 400 liters 
[2] above 400 liters 
[1] 200-400 liters 
[0] under 200 liters 
(2] above 400 liters 
[0] under 200 liters 
[1] 200-400 liters 

C. Price 
(4) 

[0] under NT$20000 
2]aboveNT$30000 
'l]NT$20000-NT$30000 
0] under NT$20000 
l]NT$20000-NT$30000 
2] above NT$30000 
1] NT$20000-NT$30000 
0] under NT$20000 
2]aboveNT$30000 
;21aboveNT$30000 
I1NT$20000-NT$30000 
0] under NT$20000 
'2]aboveNT$30000 
2] above NT$30000 
:i]NT$20OOO-NT$3OOOO 
I]NT$20OOO-NT$30OOO 

[OJ under NT$20000 
0) under NTS20000 

BC 
(5) 
(0] 
[21 
(0) 
[2] 
[2] 
fO] 
[1] 
[1] 
[1] 
[21 
[21 
[21 
[11 
[01 
(11 
[0] 
[01 
['1 

BC" 
(6) 
[0] 
[1] 
[11 
[21 
[01 
[21 
[2] 
[11 
[0] 
[11 
[01 
[21 
[01 
[2] 
[2] 
[1] 
[01 
t'l 

Footnote: The number in square brackets ( ) is the factor level 

Table 6.3: Ranks assigned to the stimuli listed in Table 6.1 

r i 

3 
r2 

6 
ra 
1 

r4 

5 
rs 
2 

re 
4 

7*7 

4 
rg 

3 
rg 

1 
no 
5 

n i 
2 

ri2 

6 
ri3 

4 
r i4 

6 
ns 
5 ^ 

r i6 

1 
rn 
2 

r i8 

3 

Ranking the combinations of the factor levels 

Let Tm represent the ranking result given by the responder to the mth stimulus 
in Table 6.1. Since under each brand, six subplot treatments are compared, 
the smallest value of r^ is 1 and the largest value is 6. The larger the value of 
Tm is, the more one dislikes this subplot treatment. Table 6.3 shows the ranks 
given by responder A to the stimuU in Table 6.1. 

According to Table 6.3, for the Taiwanese brand, we find that stimulus 3 -
the refrigerator with volume above 400 liters and price between NT$20000 and 
NT$30000 - is responder A's favorite. 

Since each factor has two degrees of freedom, each two-factor interaction has 
4 degrees of freedom. The interaction of volume and price is denoted as J5 x C 
It is easy to partition the two-factor interaction {B x C) into two orthogonal 
two-degrees-of-freedom components {BC and BC'^). Each component, having 
no physical interpretation, has two degrees of freedom [Montgomery (1991, pp. 
387-438)]. 

The component BC is constructed by using the equation Li = Z2 + Z3, 
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where Z2 is the level of the factor volume and Z3 is the level of the factor price 
in a particular subplot treatment. The level of BC is given by the value of 
Li(mod 3). That is, Li can take only values 0, 1 and 2. The component BC'^ 
is constructed by using the equation L2 = Z2 + 2Z3, and its level is given by 
the value of L2(mod 3). For example, for the second stimulus in Table 6.2 with 
Z2 = 0 and Z3 = 2 we get Z2 + Z3 = 2 and Z2 + 2Z3 = 1. So, the level of BC 
is 2 and the level of BC^ is 1, which are shown in the 5th and 6th columns of 
Table 6.2, respectively. The other corresponding levels of BC and BC^ for all 
the other stimuli are also listed in these two columns of Table 6.2. 

The relations between the rankings of stimuli given by a responder and the 
levels of factors can be represented by the following MANOVA model. 

Yi8xl = -^18xll/3iixl + ^18x1, (6.1) 

where Y ' = (looo. ^002. • • •, ^210)- In Yijk the subscripts z, j , k denote, respec­
tively, the levels of brand, volume, and price. We let Yijk = 7 - rm to convert 
the rankings for convenience of interpretation. The greater the value of Yijk 
is, the higher is a preference for the combination of levels. Then the converted 
data collected from responder A is 

(^000, ̂ 002^ ̂ 021, i^020i 5^011^ ̂ 012, ̂ 101^ ̂ llOi ̂ 122i ̂ 102, ̂ 111, 5^120^ ̂ 222, 5^212, 

^201i i^221. Y20O1 ^210) 

= (4,1,6,2,5,3,3,4,6,2,5,1,3,1,2,6,5,4). 

The error term 
P.o . - rp(^) ^ p(2) (1) (2) (1) J2) (1) (2) (1) (2) 

Jl) . J2) Jl) , J2) Jl) , J2) Jl) , J2)^ 
^2 "^^15'^2 "'"c-16 1^2 '+"^17'^2 "^^18/ 

satisfies 

E{e^^^) = 0, E{e^^^) = 0, Cov(£(^)) = E i , Cov(e(2)) = s^, 

In conjoint analysis, the part-utility is what is known as the "effect" in ex­
perimental design. In (6.1), /3' = [/x,ao,ai,6o.fci,co,ci,6co,6ci,6co,6ci], where 
fji is the overall mean, â  is the part-utihty of the zth level of brand (factor A), 
bj is the part-utility of the j th level of volume (factor B), Ck is the part-utility 
of the fcth level of price (factor C), fee., is the part-utility of the 5th level of BC, 
and bcl is the part-utility of the uth level of BC^. They satisfy the following 
conditions: 

ao -f ai -h a2 = 0, 6o + &! + 62 = 0, CQ + ci -h C2 = 0, 

bco + bci + bc2 = 0, and bcl + bcj + be] = 0. 
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The design matrix X 

^18x11 = 

8x11 for the orthogonal array in Table 6.2 is 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

1 
1 

-1 
-1 

0 
0 
1 
0 

-1 
1 
0 

-1 
-1 

0 
1 

-1 
1 
0 

0 1 0 
0 -1 -1 

0 1 
1 0 
0 1 

-1 -1 
0 1 
1 0 

-1 -1 

0 

1 

0 
0 
0 

-1 -1 
- 1 -1 

0 1 
0 1 
1 0 
1 0 

0 
1 
0 
1 
1 
0 

0 1 0 
- 1 0 1 

0 0 1 
-1 -1 - 1 

-1 - 1 - 1 -1 
0 1 - 1 - 1 

-1 1 
0 - 1 
1 -1 
1 0 
1 1 

0 
1 

0 
-1 
-1 
1 
0 
1 
0 

0 -1 - 1 - 1 - 1 
1 1 0 
0 - 1 - 1 
1 - 1 -1 
0 0 1 
0 1 0 
1 0 1 

For example, the 15th stimulus in Table 6.2 (Other Asian brands, volume under 
200 liters, and price between NT$20000 and NT$30000) can be expressed as: 

-(1) -(2) 5̂ 201 = n + a2 + £2 +bo + c\+bci+bc2 + £15 

= n - ao - ai + e2 + bo + ci + bci - b(^ - bc\ + £\^ . 

Similarly, the other stimuli can also be expressed as 

-(2) (6.2) 

-{1 Vboo = M + flo + £0 + 0̂ + Co + ĉo + bco + ei (2) 

5̂ 210 = / i - a o - a i + 4 +&i + co + bc i+6ci+q8. 

Let the set of 18 combinations in the orthogonal array (Table 6.2) be 

„ _ f (0,0,0).(0.0,2),(0,2,1),(0,2,0),(0,1,1),(0,L2),(1,0,1),(1.L0),(1,2,2), \ 
^ - \ (1,0,2).{1.1.1),(1,2,0).(2.2,2),(2.1.2),(2,0,1),(2.2,1),(2.0,0),(2,1,0) ] 

Let 

Y... 

y.i. 

2 2 2 

i=0 j=0 fc=0 

2 2 

(hj,k)eR 

/ ... — -̂ g , 

^ 3- ~ 6 ' 

2 2 

Y^., = E E Yijk. 
j=o k=0 

(iJ,k)eR 
2 2 

X.fc = E E Yijki 
t=o j = 0 

(ij.k)eR 

J I.. — 6 ? 



MANOVA Models 99 

Since 

E{Yooo) = fi + ao + bo + co + bcQ-^bcQ, 

E{Y2io) jj,- ao - ai + bi + CQ + bci + bc^, 

we get 

£;(y. J = ^£;(i8/i) = M, 

£'/'VbooH-ro2i4-Vbi2+V2i2-HV22i-fV20o)-(Vbo2+yo20-HVbii+y222-HV^^^^ 

= lE{9bco) = 6co, 

E /̂  ^000-+-̂ 002 + >^02l4-ro2()-^yoil4-Vbl2)-(V'l02 + V h l - f n 2 0 + V212H-̂ 1221-̂  __ ^ 

E /'^101-^^110-^^'l22-fVl02 + nil+V'l20)-(Vb02-t-Vb20 + Vbll+y2224-y20l4-y210)\ _ ^ 

£;(Fo. -y . . ) = 6o, E{Y,,,^YJ = bi. 

E(Y„o-YJ = co. £ ; (F . i -F . . ) = ci, 

^ (Yioi-{-Yno-^Yi22+Y222-\-y20i-^Y2io)-{Yio2-hYin-\-Yi2o-^Y2i2-^Y22i-^Y2oo)\ ^ ^^ 

^ /'(V000-t-y011-fn22 + V^lll-f-y222 + V200) _ y ^ \ ^ ^^2 

E /(Vbo2+yb2i-t-yiio4-yio2-fy22i4-^210) __ y - ^ _ ^^2 

Then, using the method of moments, the unbiased estimate of P is 

i9= 

do 
ai 

bo 
bi 

Co 

ci 

6co 

6Cn 

be 

(yooo+yoo2+yo2i-Hyo2o-i-yoii+vb2i)-(yio2+yiii-4-v'i2o-fy2i2+y22i+y2oo) 
9 (yioi+yiio+vi22->-yio2+yiii-Hyi2o)-(yoo2+yo2o+ybii+y222H-y2oi+y2io) 
9 __ 

(yoooH-yoo2-t-yioiH-yio2-t-y2oi+y2oo) __ v 
6 ^ •• 

(yoiiH-yoi2+yiio-Hyiii-fy2i2-Hy2io) _ v 
6 ^ ••• 

(yooQ+yo2o-fyiio4-yi2o-fy2oo+y2io) __ v 
6 ^ ••• 

(yo2i-Hyoii-fyioi+yiii+y2oi-fy22i) _ v 
(yooo+yo2i4-yoi2-fy2i2H-y22i4-y2oo)-(yoo24-yo2o4-yoii+y222-fy2oi-fy2io) 

9 (yioi-Hyiio4-yi22-fy2224-y2oi-hy2iQ)-(yio2-t-yiii-Hyi2()'fy2i2-t-y22i4-y2oo) 
(ypoQ-fypi 1 -f-yi22-Hyi 11+y222+y2oo) _ Y 

6 ^ • • 
(yoo2+yo2i-f-yiio-hyio2+y22i-t-y2io) _ v 

6 ^ ••• 
(6.3) 
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Now, using the data of responder A in (6.3), we have 

1 . 4 . 5 
p. = 3.5, do = - , di = - , 0.2 = - - , 

h 2 - 1 - 1 
bo = -^^b, = -,b2 = -. 

1 . , . 5 
Co = . - g - Ci = 1,C2 = - - , 

C 8 . - ^ 2 p 10 
OCQ = - , bci = - , oci = ——, 
-2 7 -2 1 ^2 3 
bcQ = - , bcj = - , 6c2 = - - . 

The total utiUty of a stimulus can be expressed as: 

The Total Utility = Overall Mean + Part-utility of Brand 
+ Part-utility of Volume + Part-utility of Price 
-f- Part-utility of Interaction of Volume and Price. 

The more the total utility is, the more the responder likes the stimulus. 
Using responder A's data, the total utility of the 2nd stimulus in Table 6.2 is: 

Overall Mean 4- Part-utility (Taiwanese Brand) 
+ Part-utility (Volume under 200 liters) 
+ Part-utility (Price above NT$30000) -I- bc2 + bc^. 

The estimate of this total utility is 

- - L - ,- r 2 7 1 / 2 \ / 5N / 10\ 1 4 

Similarly, the estimated total utility of the 5th stimulus is 5 + 5 + 5 + 1 + 

f ~ y j + g = y . Therefore, responder A prefers the fifth stimulus more than 

the second. 

Fitness of the MANOVA model 

The association coefficient Spearman p is used to evaluate the consistency be­
tween the predicted ranks obtained from the MANOVA model and the observed 
ranks. Using the responder A's data, the results are listed in Table 6.4. 

The Spearman p values in Table 6.4 are all positive and close to 1. It 
indicates that using the MANOVA model to predict someone's preference ranks 
is suitable. Kendall r is also useful to evaluate the goodness of fit. 
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Table 6.4: Responder i4's Spearman p 

Brand Spearman p 
Taisanese 0.97 
American 0.93 
Other Asians 0.94 

Selection procedures for the attribute with most relative importance 

Since the estimate of part-utihty is under the same scale, the relative importance 
of factors can be computed directly. The larger the part-utility range is, the 
more important the factor is. The ranges of the part-utility of the levels of the 
factors for responder A in Table 6.5 are as follows: 

the range of all the part-utility of the levels of the volume {B) is 

the range of all the part-utility of the levels of the price (C) is 

m_ax(ci - Cj) =^ci-C2 = l - f ~ - j = — . 

Fixing the level of brand, we compare the relative importance of volume and 
price. The relative importance score is computed by taking the range of all the 
part-utilities (volume (b) or price (c)) of a specific factor and dividing it by the 
sum of all the part utilities (volume (b) and price (c)) of the factors. If we let 
i?i = maxi:^j{bi — bj) and i?2 = max^^j(c2 — Cj), then the relative importance 
scores of the attributes are ^^*^ x 100%, / = 1,2. 

The selection procedure is: Select the attribute with the largest relative 
importance score as the most preferred factor. 

For responder A: 
The importance score of volume is -j/^l^i/^ x 100% = 38.9%. 

The importance score of price is -J/^JIIU^ X 100% = 61.1%. 

Based on the importance score (61.1%), we select the price as the most 
preferred factor for responder A. The above results for responder A are sum­
marized in Table 6.5. 

There are two special situations about the method we discussed. One is the 
interaction model without split-plot design. The second is the split-plot design 
but without interaction terms. These are described below. 
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Table 6.5: Results for responder A 

Factor 
Volume 

Price 

High part-utility 
1 

2 

1 

Low part-utility 
2 
3 
5 
6 

Range 
7 
6 
11 
6 

Importance score 
38.9% 

61.1% 

(1) The MANOVA model with interaction but without split-plot 
design 

We reconsider the example of the refrigerators. The new questionnaire is shown 
in Table 6.6. 

The difference between Tables 6.1 and 6.6 is that there are eighteen combi­
nations to be ranked in Table 6.6 whereas there are only six combinations to be 
ranked under each level of the main attribute in Table 6.1. Since the interaction 
terms are considered, the number of the questions in the present questionnaire 
is larger, namely 18. 

In Table 6.7 that follows, the code numbers are adapted from Table 6.6. 
The components {BC and BC^) of the interaction terms are constructed the 
same way as discussed earlier. 

The rank orders (or scores) given by responder B to the stimuH in Table 
6.6 are shown in Table 6.8. According to Table 6.8, we find that stimulus 7 -
refrigerator with Other Asians brand, volume above 400 liters and price between 
NT$20000 and NT$30000 - is the responder B's favorite. 

The relations between the rankings of stimuli given by a responder and the 
levels of factors can be represented by the following MANOVA model: 

Yi8xl = -^18xll/3iixl + ^18x1, (6.4) 

where Yig^i = [Yi,Y2,^..,Kig], and Yi = 19 -- TJ. The greater the value Yj is, 
the more the responder prefers the associated combination. Then the converted 
data collected from responder B is 

{Yi,Y2.Y3,Y4.Ys,Ye.Y7,Ys.Yg,Yio.Yu.Yu.Yu.Yi4,Yi,,Y^^^^^ 

= (7,16,4,5,1,8,18,10,12,14,3,6,13,15,11,9,2,17). 

The error term e' = (^i,-• • ,ci8), satisfies E{e) = 0, Cov(e) = 0. In (6.4), 
l3\ixi = {l^,CLQ,o,i^boihiCQiCi,bco,bci,bcl,bci), the components of which sat­
isfy the conditions: ao + ai + a2 = 0, 60 + 61 + 62 = 0, CQ + ci + C2 = 0, 
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Table 6.6: Questionnaire 

Please rank order or assign scores to the set of combinations, where the lower the value, the greater the preference. 

(The value ' T is the most preferred, and the value ' 18Ms the least preferred) 

D I. Brand: Taiwanese 

D 2. Brand: Other Asian 

D 3. Brand: Other Asians 

D 4. Brand: American 

D 5. Brand: Taiwanese 

D 6. Brand: Other Asians 

D 7. Brand: Other Asians 

D 8. Brand: Taiwanese 

D 9. Brand: American 

D 10.Brand: American. 

D 11. Brand: American 

D 12. Brand: Other Asians 

D 13. Brand: American 

D 14. Brand: Other Asians 

D 15. Brand: Taiwanese 

D 16. Brand: Taiwanese 

D 17. Brand: Taiwanese 

D 18. Brand: American 

Volume: under 200 liters 

Volume: above 400 liters 

Volume: 200-400 liters 

Volume: under 200 liters 

Volume: under 200 liters 

Volume: under 200 liters 

Volume: above 400 liters 

Volume: above 400 liters 

Volume: 200-400 liters. 

Volume: above 400 liters 

Volume: under 200 liters 

Volume: under 200 liters 

Volume: 200-400 liters 

Volume: 200-400 liters 

Volume: above 400 liters 

Volume: 200-400 liters 

Volume: 200-400 liters 

Volume: above 400 liters 

Price: under NT$20000 

Price: above NT$30000 

Price: above NT$30000 

Price: NT$20000-NT$30000 

Price: above NT$30000 

Price: NT$20000-NT$30000 

Price: NT$20000-NT$30000 

Price: NT$20000-NT$30000 

Price: under NT$20000 

Price: above NT$30000 

Price: above NT$30000 

Price: under NT$20000 

Price: NT$20000-NT$30000 

Price: under NT$20000 

Price: under NT$20000 

Price: NT$20000-NT$30000 

Price: above NT$30000 

Price: under NT$20000 
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Table 6.7: Orthogonal design 

Stimulus no. 
(1) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

A. Brand 
(2) 

[0] Taiwanese 

[2] Other Asians 

[2] Other Asians 

[ I ] American 

[0] Taiwanese 

[2] Other Asians 

[2] Other Asians 

[0] Taiwanese 

[ 1 ] American 

[ 1 ] American 

[ I ] American 

[2] Other Asians 

[ I ] American 

[2] Other Asians 

[0] Taiwanese 

[0] Taiwanese 

[0] Taiwanese 

[ 1 ] American 

S. Volume 
(3) 

: 0 ] under 200 liters 

[2] above 400 liters 

[1] 200-400 liters 

[0] under 200 liters 

[0] under 200 liters 

[0] under 200 liters 

[2] above 400 liters 

[2] above 400 liters 

[1] 200-400 liters 

[2] above 400 liters 

[0] under 200 liters 

[0] under 200 liters 

[1] 200-400 liters 

[1] 200-400 liters 

[2] above 400 liters 

[1] 200-400 liters 

[1] 200-400 liters-

[2] above 400 liters 

C. Price 
(4) 

0] under NT$20000 

2] above NT$30000 

;2] above NT$30000 

; i ] NT$20000-NTJ30000 

;2] above NT$30000 

;i]NT$20000-NT$30000 

;i]NT$20000-NT$30000 

;i]NT$20000-NT$30000 

0] under NT$20000 

2] above NT$30000 

2] above NT$30000 

0] under NT$20000 

;i]NT$20000-NT$30000 

;0] under NT$20000 

0] under NT$20000 

;i]NT$20000-NT$30000 

;2]aboveNT$30000 

0] under NT$20000 

BC 
(5) 
[0] 
[1] 
[0] 
[i] 
[2] 
[1] 
[0] 
[0] 
[1] 
[1] 
[2] 
[0] 
[2] 
[I] 
[2] 
t2] 
[0] 
[2] 

BC 
(6) 
[0] 
[0] 
[2] 
[2] 
[1] 
[2] 
[1] 
[1] 
[1] 
[0] 
[1] 
[0] 
[0] 
[I] 
[2] 
[0] 
[2] 
I2L 

Footnote: The number in square brackets ( ] is the factor level 

Table 6.8: Rank order given to stimuli in Table 6.6 

ri 

12 
r2 
3 

ra 
15 

r4 
14 

rs 
18 

re 
11 

r? 
1 

r» 
9 

rg 
7 

rio 
5 

rii 

16 
ri2 
13 

ri3 

6 
ri4 
4 

ri5 

8 
ri6 
10 

m 
17 

ns 
2 
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bcQ + bci + 6c2 = 0 and b(^ + ftcf + bcl = 0. The design matrix Xigxii for the 
orthogonal array in Table 6.7 is 

•^18x11 = 

' 1 1 
1 - 1 
1 - 1 
1 0 
1 1 
1 - 1 
1 - 1 
1 1 
1 0 
1 0 
1 0 
1 - 1 
1 0 
1 - 1 
1 1 
1 1 

i ^ ^ 
L 1 0 

0 
—1 
—1 

—1 
—1 

—1 

- 1 
0 
0 
0 
1 

1 
- 1 

0 
1 
1 
1 

- 1 
- 1 

0 
- 1 

1 
1 
0 
0 

- 1 
0 
0 

- 1 

0 
- 1 

1 
0 
0 
0 

- 1 
- 1 

1 
- 1 

0 
0 
1 
1 

- 1 
1 
1 

- 1 

1 
- 1 
- 1 

0 
- 1 

0 
0 
0 
1 

- 1 
- 1 

1 
0 
1 
1 
0 

- 1 
1 

It can be proved that the moment estimator 
of i^iixi, whei *e 

0 
- 1 
- 1 

1 
- 1 

1 
1 
1 
0 

- 1 
- 1 

0 
1 
0 
0 
1 

- 1 
0 

^0'n 

1 
0 
1 
0 

- 1 
0 
1 
1 
0 
0 

- 1 
1 

- 1 
0 

- 1 
- 1 

1 
- 1 

0 
1 
0 
1 

- 1 
1 
0 
0 
1 
1 

- 1 
0 

- 1 
1 

- 1 
- 1 

0 
- 1 

X1 are the 

1 
1 

- 1 
- 1 

0 
- 1 

0 
0 
0 
1 
0 
1 
1 
0 

- 1 
1 

- 1 
- 1 

unbi. 

0 
0 

- 1 
- 1 

1 
- 1 

1 
1 
1 
0 
1 
0 
0 
1 

- 1 
0 

- 1 
- 1 

ased 

0= 

no 
oi 
ho 
hi 
Co 

c\ 

bc\ 

bc^ 

bci J 

X 
{Yi+Y5+Ys+Yis+Yi^+Yn)-\Y3-i-Y7+Yn+Yn+Yi3+Yis) 

(Y^+Yg+Yio+Yii+Yi3+Yi8)-(Yi+Y-,+Ye+Yu+Yii+Yi6) 

Z{Yi+Y4+Yi+Y(i+Yu+Yi2)-T 

3{Y3+Y9+Yi3+Yu+Yir,+Yi7)-T 

3(yi+V9+yi2+ri4+Vi5+yi8)-r 

3{Y4+Ya+Y7+n+Yu+Yi6)-T 

(n+v3+y7+v8+Ki2+vi7)-V2+y5+Vf.+yi4+vis+yi6) 

(y2+y4+y6+y9+yio+yi4)-(y3+y7+yii+yi2+yi3+n8) 

3(yi+y2+yio+yi2+yi3+>^i6)-T 

3(y5+y7+y8+y9+yii+yi4)-r 
18 

(6.5) 

and 

Also, 

T=.Yi+Y2 + '" + Yu. 

02 = -Q'O - S i , ^2 = - ^ 0 - hi C2 = - C o - Ci, 

bc2 = —6co — 6ci, bc^ = —bcQ — ftcj. 
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Table 6.9: Results for responder B 

Factor High part-utility Low part-utility Range Importance score 
Brand L89 -2.33 l22 23.2% 
Volume 4.83 -4.50 9.33 51.2% 
Price 1.83 -2.83 4.66 25.6% 

Responder B's Spearman p == 0.97 

Using the data of responder B in (6.5), we have 

ft = 9.5, ao = -2.33, ai = 0.44, a2 = 1.89, 

bo = -4.5, 6i = -0.33, 62 = 4.83, 

Co = 1.83, ci = 1, C2 = -2.83, 

bco = -1.44, bci = 1, bc2 = 0.44, 

bcl = 1.33, be] = 0,33. bcl = -1.66. 

After computing, the results are as shown in Table 6.9. For responder B, the 
variable volume is the most important factor. 

Except for the error terms, models (6.1) and (6.4) are ahke. From (6.3) and 
(6.5), we know that the estimators of ^ '̂n^i ^^e also the same. However, in the 
split-plot experiment, the conclusions are made under each level of the main 
attribute. 

(2) The MANOVA model with split-plot design but without 
interaction terms 

Again, we consider the example of the refrigerators. The questionnaire is shown 
in Table 6.10. 

From Tables 6.1 and 6.10, we know that the split-plot design without in­
teraction terms does not need many questions in the questionnaire. Table 6.11 
shows the rank orders for responder C. 

The relations between the rankings of stimuli given by a responder and the 
levels of factors can be represented by the following MANOVA model. 

YQXI = X9x7^7xl + ^9x1, (6.6) 

where Y9X1 = [V012, ^021.. •., 2̂11]- In Yijk, the subscripts z, j , and k stand for 
the levels of brand, volume, and price level. We use the equation Yiji^ — 4 — Vm 
to convert the rankings (or ratings) for convenience in explanation. The greater 
the value Yijk is, the more the responder prefers the associated combination. 
Then the converted data collected from responder C is 

{You* ^0211^000. ^122. Yno, 1̂01,12201 ^202. ^̂ 211) = (3, L 2,3,2,1,3,2,1). 
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Table 6.10: Questionnaire 

1. If the brand of the refrigerator is Taiwanese, please rank order or assign scores to the set of combinations, where 
the lower the value, the greater the preference. (The value T is the most preferred, and the value 3' is the least 
preferred.) 

D Volume: 200-400 liters Price: above NT$30000 

D Volume: above 400 liters Price: NT$20000-NT$30000 

D Volume: under 200 liters Price: under NT$20000 

2'If the brand of the refrigerator is American, please rank order or assign scores to the set of combinations, where the 
lower the value, the greater the preference. (The value T is the most preferred, and the value '3* is the least 
preferred.) 

D Volume: above 400 liters Price: above NT$30000 

D Volume: 200-400 liters Price: under NT$20000 

D Volume: under 200 liters Price: NT$20000-NT$30000 

3-If the brand of the refrigerator is Other Asians, please rank order or assign scores to the set of combinations, where 
the lower the value, the greater the preference. (The value T is the most preferred, and the value *3' is the least 
preferred.) 

D Volume: above 400 liters Price: under NT$20000 

D Volume: under 200 liters Price: above NT$30000 

D Volume: 200-400 liters Price: NT$20000-NT$30000 

Table 6.11: Rank orders (or scores) for responder C 

ri r2 ra r4 rs r̂  r? rg 
1 3 2 1 2 3 1 2 3 
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In (6.6), jflyxi = (M)OOIOI,6O,6I,CO»CI), the components of which satisfy the 
conditions: OQ + ai + a2 = 0, 60 + ^1+^2 = 0, and CQ + Ci + C2 = 0. The 
components of the error vector 

^0 + ^012 

e = 

000 
-(1) ^ .(2) 
-1 + £ 122 
-(1) ^ .(2) 
-1 + £ 110 
-(1) ^ .(2) 
-1 + £ 101 

= ^^(1) = (e»^^+e^^O (2)> 

^2 + ^220 

£2 + =̂ 202 

L t2 +^211 

satisfy: £;(e(^)) = 0, E{£^^^) = 0, Cov(e(^)) = Si, Cov(e(2)) = j j , 
Cov(e| \ej') = 0. The design matrix XQX7 for the orthogonal array in Ta­
ble 6.10 is 

1 0 0 1 - 1 - 1 
1 0 - 1 - 1 0 1 

^ 9 x 7 = 

1 
0 
0 
0 

-1 
-1 
-1 

0 
1 
1 
1 

-1 
-1 
-1 

1 
-1 
0 
1 

-1 
1 
0 

0 
-1 
1 
0 

-1 
0 
1 

1 
-1 
1 
0 
1 

-1 
0 

0 
-1 
0 
1 
0 

-1 
1 

It can be proved that the moment estimator 0i^i is an unbiased estimator 
of ^7x1, where 

13 = 

^ -
M 
ai 
0-2 

61 
62 
Cl 

C2 

r -
9 

Voi2+Vb2i4-yboo . 3 
^''122+^'llO+^'lOi 

3 
'̂202 + ^'lQl+%0 

3 

3 

3 
^021+^101 + ^211 

L 3 

T 
9 
T 
9 
T 
9 
T 
9 
T 
9 
T 
9 

(6.7) 

r = ^ 5Z Yl ^ î̂ ' 3̂ = -^1 - ^2, 3̂ = ""̂ 1 - h, C3 = -Cl ~ C2, 
i j k 

(id,k)eR 
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and 

R - {(0,1,2),(0,2,1),(0,0,0),(1,2,2),(1,1,0),(1,0,1),(2,2,0), 

(2,0,2), (2,1,1)}. 

Using the data of responder C in (6.7), we have 

/i = 2, Si = 0, a2 = 0, as = 0, 

6i = -0.33, 62 = 0, 63 = 0.33, 

ci =0.33, C2 = - 1 , C3 = 0.67. 

The corresponding results are shown in Table 6.12. For responder C, the 
variable price is the most important factor. 

Table 6.12: Results for responder C 

Factor High part-utility Low part-utility Range Importance score 
Volume 033 -0.33 066 28.3% 
Price 0.67 - 1 1.67 71.7% 

6.3 MANOVA Model with Unequal Levels 

Throughout this section, we will use the carpet cleaner example used by Green 
and Wind (1973). There are five main attributes (brand, package design, price, 
a Good Housekeeping seal, and a money-back guarantee) in this study. The 
attributes and the corresponding levels are listed below. 

Factor 
A. Brand 
B. Package 
C. Price 
D. Seal 
F. Guarantee 

Level 
0. K2R 1. Glory 2. Bissell 
0. A* 1. B' 2. C* 
0. $1.19 1. $1.39 2. $1.59 
0. No 1. Yes 
0. No 1. Yes 

There are 108 combinations (profiles, stimuli) of levels to be considered in a 
complete design. To avoid the difficulty about the total number of profiles 
becoming too many for responders to rank or to rate, we adopt an orthogonal 
fractional design and split-plot experiment as shown in Table 6.13. 
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Table 6.13: Questionnaire 

1. if the brand of the deaner is K2R. please rani< order or 

lower the value, the greater the preference. (The value 'V 

preferred.) 

D 

a 

D 

D 

D 

a 

Package: C* 

Package: B* 

Package: A* 

Package: B* 

Package: A* 

Package: C* 

Price: $1.39 

Price: $1.59 

Price: $1.19 

Price: $1.39 

Price: $1.59 

Price: $1.19 

assign scores to the set of combinations, where the 

is the most prefen^ed. and the value '6' is the least 

Seal :yes 

Seal: yes 

Seal: no 

Seal: no 

Seal: no 

Seal: no 

Guarantee: no 

Guarantee: yes 

Guarantee: no 

Guarantee: no 

Guarantee: no 

Guarantee: yes 

2. If the brand of the deaner is Glory, please rank order or assign scores to the set of combinations, where the 

lower the value, the greater the preference. (The value V is the most preferred, and the value '6' is the least 

prefen'ed.) 

D 

D 

D 

D 

a 

D 

Package: C* 

Package: C* 

Package: A* 

Package: B* 

Package: B* 

Package: A* 

Price: $1.59 

Price: $1.19 

Price: $1.39 

Price: $1.39 

Price: $1.19 

Price: $1.59 

3. If the brand of the deaner is Bissell. please rank order < 

lower the value, the greater the preference. (The value *1 

prefen'ed.) 

D 

D 

D 

D 

D 

a 

Package: A* 

Package: C* 

Package: C* 

Package: A* 

Package: B* 

Package: B* 

Price: $1.39 

Price: $1.39 

Price: $1.59 

Price: $1.19 

Price: $1.19 

Price: $1.59 

Seal: no 

Seal: no 

Seal: yes 

Seal: no 

Seal: yes 

Seal: no 

Guarantee: no 

Guarantee: no 

Guarantee: no 

Guarantee: yes 

Guarantee: no 

Guarantee: yes 

or assign scores to the set of combinations, where the 

' is the most preferred, and the value '6' is the least 

Seal: no 

Seal: no 

Seal: yes 

Seal: yes 

Seal: no 

Seal: no 

Guarantee: no 

Guarantee: yes 

Guarantee: no 

Guarantee: yes 

Guarantee: no 

Guarantee: no 
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Table 6.14: Orthogonal design 

Stimulus no. 
(1) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

A. Brand 
(2) 

[0] K2R 
[0] K2R 
[0] K2R 
[0] K2R 
[0] K2R 
[0] K2R 
[1] Glory 
[1] Glory 
[1] Glory 
[1] Glory 
[1] Glory 
[1] Glory 
[2] Bissell 
[2] Bissell 
[2] Bissell 
[2] Bissell 
[2] Bissell 
[2] Bissell 

B. Package 
(3) 

[2]C* 
[1]B* 
[OJA* 
[1]B* 
[0]A* 
[2]C* 
[21C* 
[2]C* 
[0]A* 
[1]B* 
[1]B* 
[OJA* 
[0]A* 
[2]C* 
12]C* 
[0] A* 
[1]B* 
[1]B* 

C Price 
(4) 

[1]$1.39 
[2] $1.59 
10]$1.19 
[1]$1.59 
[2] $1.59 
[0]$1.19 
[2] $1.59 
[0J$1.I9 
[11$1.39 
[1]$1.39 
[0)$1.19 
[2] $1.59 
[l]$1.39 
[1]$1.39 
12) $1.59 
[0]$1.19 
[01$1.19 
[2] $1.59 

D. Seal 
(5) 

[l]yes 
[11 yes 
[0]no 
(01 no 
[0]no 
[01 no 
[0]no 
[01 no 
[l]yes 
[01 no 
[11 yes 
[01 no 
[01 no 
[01 no 
[11 yes 
[lives 
[01 no 

l 2 L l ! i _ 

F. Guarantee 
(6) 

[01 no 
[Ilyes 
[01 no 
[01 no 
[0]no 
[Ilyes 
[01 no 
[0]no 
[0]no 
[I] yes 
[01 no 
[Ilyes 
[01 no 
[Ilyes 
[0]no 
[Ilyes 
[01 no 
[0]no 

Table 6.13 is an orthogonal array produced by the statistical software SPSS 
[SPSS (1994, pp. 1-36)]. The main attribute in Table 6.13 is brand. Under 
different levels of brand, the sets of subplot treatments are different. Because 
we want to evaluate the interaction between the seal and price, the number of 
subplot treatments in different sets is large (Here it is six). In Table 6.14, the 
code numbers are adapted from Table 6.13. 

Let Tm represent the ranking result given by the responder to the mth 
stimulus in Table 6.14. Since under each brand, six subplot treatments are 
compared, the smallest value of r^ is 1 and the largest value is 6. The larger 
the value of Vm is, the more the responder dislikes this subplot treatment. The 
following table shows the ranks (or scores) assigned by responder D to the 
stimuH in Table 6.13. 

Table 6.15: The ranks assigned by responder D to the stimuli in Table 6.13 

r i 

1 
r2 

3 
ra 
4 

TA 

5 
rs 
6 

re 
2 

rj 

6 
rg 

3 
rg 

2 
no 
4 

ru 
1 

r i2 

5 
7*13 

5 
r*i4 

4 
ri5 

3 
r i6 

1 
r i 7 

2 
r i8 

6 

According to Table 6.15, based on the K2R brand, we find that stimulus 
1 - the cleaner with C* package, $1.39 price, seal and without money-back 
guarantee - is responder D's favorite. 
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The relations between the rankings (or ratings) of stimuH given by a re-
sponder and the levels of factors can be represented by the following MANOVA 
model: 

Yisx l = XiSxuPuxl + ^18xli (6.8) 

where Yig^i = (^^^2^ • • • .^is)- We use the equation Ym = 7 - rm to con­
vert the rankings (or ratings) for convenience in explanation. The greater the 
value of Ym, the higher is the preference of the responder. The converted data 
collected from responder D is 

{Yi,Y2, Ys, ^4, Vs, YQ, Y-r, Yg, Yg, Yio, Yu, Y^, Yis, Yu, Yi^, Vig, Yir, Yis) 

= (6,4,3,2,1,5,1,4,5,3,6,2,2,3,4,6,5,1). 

In (6.8), i^iixi = {fJ'^o.Q,ai,bQ,bi,co,ci,d, f.'y.S), where /i is the overall mean, 
ai is the part-utility of the zth level of the brand factor, bj is the part-utility of 
the jth level of the package factor, Ck is the part-utility of the kth level of the 
price factor, d is the part-utility of the 'yes' level of the seal factor, -d is the 
part-utility of the 'no' level of the seal factor, / is the part-utiHty of the 'yes' 
level of the guarantee factor, and - / i s the part-utility of the 'no' level of the 
guarantee factor. Both 7 and S are the part-utility of the interactions between 
the seal and price. They satisfy the conditions: 

ao + ai -h 02 = 0, 60 -f 61 + 62 = 0, and co 4- ci -h C2 = 0. 

The error term is 

^18x11 - 1̂ 0 + ^ 1 ' ^0 + ^ 2 ' • • • ' ^ 1 + ^ 7 ' ^0 + ^ 8 '•••>^2 + ^ 1 3 ' 
(1) (2) J l ) . J2) J l ) . J2) J l ) . J2) J l ) , J2)y 

^2 "̂  ^14 ' ^2 "̂  ^15 ' ^2 "̂  ^16 ' ^2 "̂  ^17 ' ^2 "̂  ^18 / 

and its components satisfy 

E{e^^^) = 0, £;(e(2)) = 0, Cov(e(^)) = Ei, Cov(e(2)) = j:2.Cov{e\^\ef) = 0. 

The interaction effects between price and the seal are listed in Table 6.16. 
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Table 6.16: Interaction effects between price and seal 

Price 
$1.19 
$1.39 
$1.59 

Seal 

No Yes 

- 7 7 
-S 6 

7 + (5 -J - 6 

The design matrix Xigxii for the orthogonal array in Table 6.14 and model 
(6.8) is 

^18x11 = 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

- 1 
- 1 
- 1 
— 1 

- 1 
— 1 

- 1 
0 
1 
0 
1 

- 1 
- 1 
- 1 

1 
0 
0 
1 
1 

- 1 
- 1 

1 
0 
0 

- 1 
1 
0 
1 
0 

- 1 
- 1 
- 1 

0 
1 
1 
0 
0 

- 1 
- 1 

0 
1 
1 

0 
- 1 

1 
0 

- 1 
1 

- 1 
1 
0 
0 
1 

- 1 
0 
0 

- 1 
1 
1 

- 1 

0 

0 

0 
0 
1 

- ] 

- ] 

—' 

—. 

- ] 

- ] 

- : 
- : 

—! 

L - ] 

— '. 

I - ] 

I - : 

. 0 
[ - 1 

I - 1 

L 0 

[ 1 

[ - 1 

I 1 

L - 1 

L 0 

[ 0 

L 1 

I 1 

I 0 

I 0 
I - 1 
I 1 
I - 1 
I 1 

— 1 

- 1 

0 
0 
1 , 

The equation (6.8) can also be written as follows: 

Yi 

We have 

/i + QoXii + aiXi2 + boXiz + biXi4 + coXjs + ciXie + dXa 

+fXif, + ^Xi^Xa + SX^eXi^ + e^. (6.9) 

E{Yi) = ^, + ao-bo + bi + ci+d-f + 6, 

£{¥2) = /i + ao + 6 1 - c o - c i + d + / - 7 - J , 

E{Y3) = ^ + ao + 6o + c o - d - / - 7 , 
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E{Y, 

E{Y5 

E{Ye 

EiYj 

EiYs 
E{Yc, 

E{Yio 

E{Yn 

EiYi2 

EiYis 

E{Yi4 

E{YK 

E{Yi6 

EiYir 

E{Yis 

H + ao -\- bi + ci - d - f - 6, 

-ci-d-f + j + 6, 

-d-f-f, 

/i + ao 4- 60 - Co - Ci - u - y T-y -r u, 

/x 4- ao - 60 - 61 + Co ~ d -f / - 7, 

M + ai - 60 - bi ~ Q) ~ ci - d - / + 7 + (5, 

/i + ai " 60 - 61 + Co 

t 4- ai + 60 + ci + d 

1 + ai +bi + Ci — d 

t + ai + 61 -f Co + d 

/i + ai + 60 - Co - ci 

— /i, 4- ai + 60 + ci + d ~ / 4- <5, 

= fi + ai + bi + ci - d + f - 6, 

/i 4- ai + 61 4- Co 4- d ~ / + 7, 

/i 4- ai + 60 - Co - ci - d + / 4- 7 + (J, 

= // — ao — ai 4- 60 4- ci — d — / ~ (J, 

= fi — ao - ai - bo - bi + ci - d -\' f - 6, 

= // - ao ~ ai ~ 60 ~ ̂ 1 - Co - ci 4- d - / - 7 - (J, 

= /v, - ao - ai + 60 4- Co 4- d 4- / + 7. 

= // - ao - ai + 61 4- Co - d - / ~ 7, 

= /x - ao ~ ai 4- 61 - Co - ci - d - / 4- 7 4- <J. 

Let 

^ ^2 ^3 .44 ^ 6 Mo 
^ 6 6 6 6 2 

72 = ^ 
As ^ A7 , Ag ^ An 

24 6 

Using the method of moments, the estimators of /3 can be obtained as follows: 

6 - t ^ f - T - X - <»'°) 

'̂  = 4 8 - ^ 1 6 ' 

Ti 1 . 

^ = T-2 '̂ 
>l2 A3 ^ 1 . 

""' = y-Ts + T' 
^ A3 1 . 1 . 

^ 18 9 3 ^ 3 ' 
- >l4 ^5 1 . 1 . 

°̂ = y-i8~r~3'^' 
f yi4 > i 5 , i ? 

Ae AT ̂ \ . 
^ = T -T8 + 3 '̂ 
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f Ai Ag 1-

A = ^,^y^lf- (6-11) 

Using the data of responder D in (6.10) and (6.11), we have 

Aiixi = [ 6 3 , 0 , 0 , - 4 , - 2 , 1 6 , 8 , - 1 , - 1 7 , - 8 , - 2 ] ' , 

Ti = -0.666667, T2 = 1.166667, 

d = 1.25, ^ = 0.6, 7 =-0.466667, 

ao = -0.155556, ai = -0.044444, 

60 = -0.377778, 61 = 0.2, 

Co = 1.177778, c i = 0 . 2 , 

/ = 0.4, A = 4.05. 

The total utiHty of a stimulus can be expressed as: 

The Total Utility = Overall Mean + Part-utility of Brand + Part-
utility of Package + Part-utility of Price + Part-utility of Seal + 
Part-utility of Guarantee 4- Part-utility of Interaction of Price and 
Seal. 

The more the total utility is, the more the responder likes the stimulus. 
Using responder D's data, the estimated total utility, for example, of the second 
stimulus in Table 6.14 is: 

4.05 - 0.155556 -f 0.2 - 1.177778 - 0.2 -f 1.25 4- 0.4 -h 0.466667 - 0.6 = 4.23333. 

The association coefficient, Spearman p, is used to evaluate the consistency 
between the predicted ranks and the observed ranks. The results for responder 
D's data are given in Table 6.17. The Spearman p values in Table 6.17 indicates 
that it is suitable to use the MANOVA model to predict someone's preference 
ranks. 

Table 6.17: Responder D's Spearman p 

Brand 
K2R 
Glory 
Bissell 

Sp< carman 
1.00 
1.00 
1.00 

P 
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Table 6.18: Results for respoiider D 

Factor 
Package 
Price 
Seal 
Guarantee 

High part-utility 
0.377778 
1.377778 

1.25 
0.4 

Low part-utility 
-0.2 

-1.177778 
-1.25 
-0.4 

Range 
0.577778 
2.555556 

2.5 
0.8 

Importance score 
8.98% 

39.72% 
38.86% 
12.44% 

From Table 6.18, we see that price is the most important factor to responder 
D when buying a carpet cleaner. 

6.4 Conclusion 

In this chapter, orthogonal array designs and split-plot experiments are em­
ployed in the conjoint analysis. Since the split-plot experiment is fixed at one 
level of the main factor at a time, the numbers of subplot treatments are few. 
Then, it is feasible for responders to rank the subplot treatments. We also 
discuss how to build a MANOVA model. Using a suitable model, the interac­
tion between factors and the utility of the stimulus can be estimated. Then 
we can understand the stimulus and the factor that are the most important to 
the consumer. The predictive ability of the model can also be evaluated by the 
Spearman p or the Kendall r. Our models and analyses can be easily extended 
to the case of two or more responders. We can obtain each part-utility as the 
average of that part-utility for all the responders. 
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Abstract: Consider k (> 2) normal populations with unknown means /xi , . . . , 
fMk and a common known variance a'^. Let ^[i] < • • • < fi[k] denote the ordered 
fii. Our goal is to select a non-empty subset of the k populations whose size is 
at most m {1 < m < k - t) so that at least one of the populations associated 
with the t {1 <t < k -1) largest means is included in the selected subset with 
a minimum guaranteed probability P*, whenever /irĵ _^4.i] - fi[k^t] > S* where 
P* and S* are specified in advance of the experiment. Santner (1976) proposed 
and investigated a procedure {Rs) based on samples of size n from each of the 
populations. We propose and investigate an alternative procedure RHP with 
the same sampling scheme. We compare our rule with that of a procedure that 
selects a subset of fixed size m. The special case of f = 1 was earlier studied by 
Gupta and Santner (1973) and Hsii and Panchapakesan (2003). 

Keywords and phrases: Selecting normal means, restricted subset size, fixed 
subset size, efficiency comparisons 

7.1 Introduction 

Let Hi,...,Ilfc be /c (> 2) normal populations with unknown means fix,... .fik^ 
respectively, and a common known variance a^. Let /Xh] < • • • < /xm denote 
the ordered /ij and let H^̂ j denote the normal population associated with /L̂ M, 
i = 1 , . . . , /c. We assume that there is no prior knowledge concerning the correct 
pairing of the ordered and the unordered /ij. Let 6* > 0 he a. given constant. 

117 
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Let 

Q = {/r= (/ii,...,/iA:) I - 0 0 < /ii < 00, i = 1,.. . ,A;}, 

if{S') = {/I e a(5*) I /i[i] = . . . = /i[fc_,, = /i.[fc_,̂ i] - (5* = •.. = fi[k] - (5*} . 

Our goal is to select a non-empty subset of the k populations whose size is 
at most m {I < m < k - t) so that at least one of the populations associated 
with t (1 <t < k - I) largest means (called the t best populations) is included 
in the selected subset with a minimum guaranteed probability P* whenever 
p e Q{S*), For any rule R, a connect selection (CS) is said to occur if the 
decision results in selection of a subset of size at most m that contains one of 
the t best populations. Let Pfi{CS \ R) denote the probability of a correct 
selection (PCS) corresponding to any parametric configuration /I. Any valid 
rule R is required to satisfy the condition: 

Pfi{CS \R)>P* whenever /x 6 n{6*). (7.1) 

The region Q{6*) over which the minimum PCS is to be guaranteed is known 
as the preference-zone. We propose the following rule based on independent 
random samples of size n taken from the k populations. Let Yi denote the 
sample mean from Hi and let Vjij < • • • < Vjit] denote the ordered Yi. The 
proposed rule is 

RHP' Select Hi if and only if 

y'^^-""^ >c. (7.2) 
Y[k] - y[k-m] 

where 0 < c < 1 is to be chosen so that the probability requirement (7.1) is 
satisfied. The form of the rule RHP in (7.2) explains the intuitive basis for the 
rule. However, we prefer to write it equivalently as 

RHP' Select Ili if and only if 

y,>(i-c)y[fe_„] + cr[fc]. (7.3) 

It is obvious that the populations corresponding to Vji], •. •, Vjit-m] will not be 
selected. Also, the population that gave Yĵ ] will always be included. Thus the 
rule RHP selects a non-empty subset of size at most m. 

Santner (1976) developed a general theory for the restricted subset selection 
with the goal of selecting one of the t best populations. Earlier, Santner (1975) 
developed the theory for the case of < = 1. As one of the examples of his 
procedure, Santner (1976) has considered the above problem of selecting from 
normal populations. His rule, in the case of t > 1, is 
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Rs: Select Ui if and only if 

Yi > max{y[fc_^+i), Y[k] ~ da/\/n}, (7.4) 

where d > 0 is to be chosen so that the probability requirement (7.1) is satis­
fied. The special case of Rs for t = 1 was earher investigated by Gupta and 
Santner (1973). The special case of RHP for f = 1 was investigated by Hsu and 
Panchapakesan (2003). 

In his general theory, Santner (1976) considered two types of probability re­
quirements differing in the parametric region over which the PCS is minimized. 
The requirement (7.1) using the region fi(5*) goes with the assumption that 
m <k -t\ this is referred to as the indifference-zone probability requirement. 
When m > fc - t, the probability requirement (7.1) is modified by replacing 
Q((5*) with Vt and is referred to as the subset selection probability requirement. 
What characterizes the latter case is the fact that a correct selection is always 
made when we randomly select m of the k populations. We do not consider 
this case in this chapter; it will be considered elsewhere. 

In Section 7.2, we obtain the PCS for the rule RHP and evaluate its infimum 
over ri((5*). We also discuss tables needed for the implementation of RHP and 
compare its efficiency with respect to a natural rule that selects a subset of 
fixed size m. Several properties of RHP are given in Section 7.3. The next two 
sections deal with the expected size of the selected subset (Section 7.4) and 
some concluding remarks (Section 7.5). 

7,2 PCS and Its Infimum over ^((5*) for Rule R R P 

We first state a lemma of Alam and Rizvi (1966) and Mahamunulu (1967), which 
is an immediate consequence of a result in Lehmann (1986, p. 116, Problem 15). 
This lemma concerns a family {F(-|^)} of cumulative distribution functions 
(c.d.f.'s) on the real line which is stochastically increasing in 6, that is, the 
distributions are distinct and 6\ < 62 implies F{x\6i) > F{x\62) for all x. 

Lemma 7.2.1. Let X i , . . . , X^ be independent random variables having c.d.f. ^s 
F{'\^i)^ i = 1 , . . . , /c, where the family {F{'\9)] is stochastically increasing in 0. 
Let il){x\^... ,Xjt) be non-decreasing (non-increasing) in Xi when all other Xj ^s 
are kept fixed. Then £ '{^(Xi , . . . , X^)} is non-decreasing (non-increasing) in 
diy when all other 9j ^s are kept fixed. 

We now prove the following theorem concerning the infimum of the PCS 
over Q((5*) for the rule RHP -

Theorem 7.2.1. min(s^) PfiiCS \ RHP) = inf^oj^*) P^{CS \ RHP) • 
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PROOF. Let Y^^^^ denote the sample mean from n(i), i = 1,. . . , fc. Then 

PpiCS I RHP) = PT{W > (1 - c)y[fe_ ]̂ + cY[,]} = £{V(K(i),..., y(fc))}, 

where W = max{Y^k.t+i), • • •, V(fc)} and 

It can be verified that ?/'(V(i),..., Vjfc)) is non-increasing in Y^i), i = 1,. . . , A; ~ <, 
and non-decreasing in Vĵ )̂, i = fc~f-hl,...,fc, when all other components of 
(Y^i),..., V(jt)) are kept fixed. The Y^^) are independent and y(j) has a normal 
distribution, A (̂/i[j],T )̂, with mean //[̂ j and variance r^ = a^/n. So, by Lemma 
7.2.1, it follows that P{CS \ RHP} is non-increasing in /i[t], i = 1,. . . , A: - t, 
and non-decreasing in fi^^, z = fc~t + l,...,fc, when all other components of p 
are kept fixed. Consequently, P{CS | RHP} is minimized over Ct{S*) when 

[̂1] = • • • = //[fc-t] = fi (say); //[it_t-fi] = • • • = M[fcl = M + <̂*- (7.5) 

This proves the theorem. • 
The configuration (7.5) for which the PCS attains its infimum over the 

specified region is called a least favorable configuration (LFC). We denote this 
infimum by PLFC{CS \ RHP}- Obviously, this infimum is independent of the 
value of fjL and so we can take /i = 0: Thus, 

PiFciCS I RHP) = Pr{H^ > (1 -- c)y[fc_ ,̂ + cY[k]} , (7.6) 

where 7(1),..., Y^^^t) are iV(0, r^) and V(fc-t+i), • • •, ̂ {fc) are N{S\T'^), We can 
now write 

it 

PLFC(C5 I i?//p) = E Pr{^ = Y^}andY(i)>{l-c)Y[k^m]+cYik]} 
i-k-t+i 

= t ?x{W = y(fe) and F(fe) > (1 - c)r[fc_^, + cr[fc,} 

= tg(say). (7.7) 

Now, we can write Q = Qi + Q2 + Qa- where 

Qi = Pr{lV = y(fc) and Fĵ ) = Y^^]) - (7-8) 
A:-t k-t 

^2 = E E P ' ^ ^ ^ = ^(fc)' ^(0 = >[fc-mlT(i) = V[,j, Fffe) > (1 - C)r(i) + CF(,)} , 
1=1 J = l 

(7.9) 
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and 

Y^k)>{l-c)Y(i) + cY(j)}- (7.10) 

Let Zi denote the standardized Y^^i^, i = 1, k, so that the Zj are i.i.d. 
iV(0,1) variables. Also, let A* = \/nS*/a. Then, it is easy to see that 

Qi = Pr{Zfc + A* > Zi, i = 1,. . . , fc - t; Zjk > Zj, j = fc - t + 1, . . . , fc - 1} 

= r ^'-\y)^''-'{y + A')<^(y) dy, (7.11) 
J — OO 

where $ and </> denote, respectively, the cumulative distribution function (c.d.f.) 
and the density function of a standard normal random variable. 

Next, 

Q, = ik- t){k - t - l)Pr{^ - '''''f''^!}'-:lY''~AY ''"') 

= (k - t){k - t - l ) g (' ; >) ( , ^- 1- 1 ^)if(a). (7.12) 

where a in the summation stands for the number of populations from the set 
of t best that give rise to Yi < Y^i^ = yik-m] ^^^ the probability denoted by 
H{a), after standardizing the Yi, is given by 

( Zi-hA* <Zu i = k-t + l,,..,k-t + a] 

Zi < Ẑ  + A* <Zit4-A*, j = fc-t + a + l , . . . , i fc- l ; 

H{a) = Pr < Z^ < Zi, r = 2 , . . . , fc ~ m - a; 

I Z\ < Zs < Zk-t, 5 = /c — m — a + l, . . . ,A:~t — 1; 

\ (1 - c)Zi + cZk-t < Zfc + A* < Zk-t 
poo /•OO pZk^t-^* 

= / / $"(2i-A*)$''-'"-'*-^(zi) 

X [$(2fc) - $(^1 - A*)f---\<i>{Zk-t) - $(2i)]'"+'^-*-V(2fc)<^(^fe-t) 

x<l){zi)dzkdzk-tdzi. (7.13) 

Proceeding along the same lines, we get 

Q3 = (. - l)(* - ,) g ( ' ; ') (^ _ * ; 1 " '_ ^ ) H » , (7.14) 
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where 

( Zi < Zk-i, i = k — t + l,...,k-t + a; 

\Zk-i<Zj<Zk,j = k-t + a + l,...,k-2; 

= Pr< Zr <Zfc_i+A*, r = l , . . . , J k - m - a - l ; 

Zk-i + A* < Zs < Zk-t, s = k — m-a,...,k-t — l; 

[ (1 - c)[Zk-i + A'] + cZk-t <Zk + A*< Zk-t 

= / / / ^'-"'-"-'{zk-i+A*) 

X(/>(2fc_i)(/»(2fc_t)(̂ (2jk) d0it d2fc-t dzk-i. (7.15) 

Combining all the above results, we have 

PiFciCS I R„p) = tiQi + Q2 + Qa) (7.16) 

where Qi is given by (7.11), Q2 is given by (7.12) and (7.13), and Q3 is given 
by (7.14) and (7.15). 

Remark 7.2.!• In the special case of t = 1, we can see that Q3 = 0 and the 
PCS in (7.16) reduces to the expression obtained for this special case earlier by 
Hsu and Panchapakesan (2003). 

Now., for convenience, we let i4c(fc,f,m. A*) = PLFC{CS \ RHP)- For given 
fc, t, m and A*, as c increases from 0 to 1, it is easy to see that Qi remains 
unchanged, Q2 decreases from Q2 to zero, and Q3 decreases from Q^ to zero, 
where Q2 and Q^ are obtained from the expressions for Q2 and Q3 by putting 
c = 0. Consequently, as c increases from 0 to 1, Ac{k,t,m,A*) decreases from 
t{Qi + Q2 + Q3) to tQi. Thus, for given fc, t, m and A*, we can find a unique 
c 6 (0,1) to satisfy the probability requirement (7.1) provided that 

tQi<P*<t{Qi + Ql + Ql) (7.17) 

First, note that Qi > l/fc. Technically, the lower bound for the admissible range 
for P* is zero. However, for a meaningful problem, P* > t/k; otherwise, we can 
randomly select one of the populations and satisfy the probabihty requirement. 
Also, we can satisfy the probability requirement (7.1) for any t/k < P* < tQi 
just by selecting the population that yielded the largest sample mean. 

When c = 0, the rule RHP selects the population that yielded the m largest 
sample means. In other words, RHP in this special case selects a subset of fixed 
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size m. We will refer to it in this case as rule Rfs .With the Y^i) as defined for 
(7.6), PLFC{CS I RFS) is given by 

Ao{kXm,A*) 

\ m J \Y(j) <min(y(i),...,y(^)), j = m + 1 , . . . , A: - tj 

where the Zi are i.i.d. N{0,1) random variables. Noting that U has density 

g{u) = m[l - $(u)]'"" V(w), -00 < u < 00, 

we get 

Ao{k,t,m,A*) = l~('^""^')m P $'=~^-^(u)$^(u-A*)[l-$(u)]^"V(tx)du. 

Now, by writing $ (̂tx - A*) as 1 - (1 - $^(u - A*)) in the above integral and 
splitting it into two integrals, we can obtain after some simplification, 

Ao{k,t,m,A*) 

(7.18) 

The upper bound for P* in (7.17) and the right-hand side of (7.18) are both 
expressions for AQ{k, t, m, A*) obtained by different arguments and so are equal. 
However, we are not successful in showing this directly. 

For implementing the rule RHP, given fc, t, m, S* and P*, we have many 
possible pairs of values for n and c such that the probability requirement (7.1) 
is met. We will later (Section 7.5) discuss some possible criteria that could 
be used for choosing a pair. Alternatively, given k. t, m, S*, P* and c, we 
can determine the minimum sample size n needed to satisfy the probabiUty 
requirement (7.1). For this purpose, given A:, t, m, P* and c, we need the value 
of A* that satisfies the equation: 

*(Ql+Q2 + Q3) = P ^ (7.19) 

By Lemma 7.2.1, Ac{k, t, m, A*), which is the left-hand side of (7.19), increases 
in A* for given /c, t, m and c. Therefore, we can find a unique A* satisfying 
(7.19). Values of A* are given in Table 7.1 for P* = 0.900,0.950,0.975; c = 
0.25,0.50,0.75; k = 3(1)10, and several selected values of (m,t). 
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Table 7.1: Values of A* = ^ ^ for rule RHP 

k 

[ s j 

6 

7 

8 

9 

m 

3 

3 
4 

3 
4 
5 
4 

3 
4 
5 
6 
4 
5 

3 
4 
5 
6 
7 
4 
5 

1 6 
1 5 

t 

2 

2 
2 

2 
2 
2 
3 

2 
2 
2 
2 
3 
3 

2 
2 
2 
2 
2 
3 
3 
3 
4 

P* = 0.900 1 
0.25 ] 

0.563 

0.862 
0.438 

1.055 
0.718 
0.349 
0.236 

1.197 
0.904 
0.613 
0.280 
0.488 
0.061 

1.307 
1 1.041 
1 0.793 

0.532 
0.225 
0.658 
0.314 
0.012 
0.336 

0.50 

1.000 

1.227 
0.954 

1.382 
1.157 
0.922 
0.581 

1.499 
1.301 
1.110 
0.898 
0.800 
0.492 

1.594 
1.411 
1.243 
1.074 
0.879 
0.950 
0.704 
0.439 
0.541 

0.75 

1.368 

1.549 
1.407 

1.678 
1.560 
1.440 
1.033 

1.778 
1.674 
1.574 
1.465 
1.190 
1.058 

1.859 
1.763 
1.678 
1.588 
1.490 

1 1.305 
! 1.193 
i 1.090 

0.889 

P' = 0.950 
0.25 1 

0.959 

1.234 
0.815 

1.415 
1.074 
0.713 
0.437 

1.548 
1.249 
0.959 
0.635 
0.707 
0.238 

1.653 
1.377 
1.130 
0.871 
0.574 
0.887 
0.513 
0.102 
0.518 

0.50 

1.388 

1.599 
1.319 

1.746 
1.512 
1.273 
0.826 

1.857 
1.648 
1.452 
1.240 
1.054 
0.726 

1.947 
1.755 
1.580 
1.408 
1.215 
1.207 
0.946 
0.669 
0.730 

0.75 

1.758 

1.928 
1.778 

2.050 
1.924 
1.799 
1.363 

2.145 
2.033 
1.930 
1.819 
1.513 
1.391 

2.222 
2.121 
2.030 
1.939 
1.838 
1.622 
1.518 
1.426 
1.147 

P* = 0.975 1 
0.25 1 

1.302 

1.557 
1.139 

1.726 
1.381 
1.025 
0.569 

1.853 
1.543 
1.256 
0.938 
0.857 
0.350 

1.954 
1.670 
1.416 
1.159 

1 0.871 
j 1.048 

0.644 
0.204 
0.630 

0.50 

1.722 

1.920 
1.632 

2.061 
1.815 
1.574 
1.011 

2.167 
1.946 
1.745 
1.533 
1.249 
0.904 

2.252 
2.052 
1.889 
1.700 
1.514 

i 1.410 
1.134 
0.849 
0.856 

1 

0.75 1 

2.094 1 

2.256 
2.098 

2.373 
2.238 
2.112 
1.651 

2.464 
2.345 
2.235 
2.127 
1.792 
1.685 

2.538 
2.427 
2.338 

I 2.245 
2.142 
1.929 
1.801 
1.727 
1.353 
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Comparison of R H P with fixed-size subset selection rule R F S • As 
we pointed out earlier, our rule RHP with c = 0 is the rule Rps - For f = 1, 
the rule Rps is a special case of the fixed-size subset selection rule of Desu and 
Sobel (1968) who considered selecting a subset of fixed size s that will contain 
all the t best populations. Now, for our goal, it will be of interest to study 
how much more we will have to pay in terms of the sample size for using the 
restricted subset size rule RHP with 0 < c < 1 in order to have the advantage 
of not necessarily selecting m populations but achieving the same guaranteed 
PCS P* as does Rps with a fixed subset size m. 

For such a comparison, we define 

e(P*,fc,tm,c) = M £ « ( f / ^ l Y ^ (7-20) 

where AJ^p(n//p) and A*fg{nFs) are the values of A* necessary to satisfy the 
probability requirement using the rules RHP (with the specified value of c) and 
RFS^ respectively. We first note that values of AJ^p are available from Table 7.1. 
Table 7.2 gives the values of A^^ for P* = 0.900,0.950,0.975; k = 3(1)10,15; 
and selected values of t and m. Table 7.3 gives the values of e{P*,k, f, m, c) for 
the same ranges of the arguments as in Table 7.2. 

Remark 7.2.2. For Table 7.2, we solve for A* by equating the right-hand 
side of (7.18) to P*. It is easy to show that Ao{k,t,m,A*) is increasing from 

1 (tVO to 1 as A* increases from zero to infinity. Thus, a solution for 

A* exists provided that 

1 - k-t\ Ifk 
m / / \m 

<P* <l. (7.21) 

The lower bound in (7.21) represents the PCS when we randomly select m of 
the k given populations. For any P* less than or equal to this lower bound, 
we can then have PCS > P* by randomly selecting m populations. Such cases 
are marked by asterisks (*) in Table 7.2. In these cases, randomly choosing a 
subset of m populations is the best because the probability requirement can be 
met without taking any observation. So these cases are marked with asterisks 
also in Table 7.3. 

We have seen that Ac{k,t,m,A*) = PLFC{CS \ RHP) decreases in c for 
given /c, t, m and A*. Also, as mentioned earlier, Ac{k,t,m,A*) increases in 
A* for given /c, f, m and c. Consequently, for given k, t, m, c and P*, we have 
e(P*, k, t, m, c) > 1 and increasing in c for 0 < c < 1. This fact is borne out by 
the tabulated values in Table 7.3. We see that (1) e(P*,/c,t,m, c) is increasing 
in m for given P*, k,t and c, and (2) e{P*,k, t, m, c) is decreasing in P* for given 
k, t, m and c. If we let PL denote the lower bound of P* in (7.21), then we see 
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Table 7.2: Values of A* = 
^6* 

for rule Rfs 

k 

5 

6 

7 

8 

9 

m 

3 

3 
4 

3 
4 
5 
4 

3 
4 
5 
6 
4 
5 

3 
4 
5 
6 
7 
4 
5 
6 
5 

t 

2 

2 
2 

2 
2 
2 
3 

2 
2 
2 
2 
3 
3 

2 
2 
2 
2 
2 
3 
3 
3 
4 

P* = 0.900 
* 

0.436 
* 

0.686 
0.206 

* 
* 

0.861 
0.457 
0.038 

* 
* 
* 

0.995 
0.635 
0.288 

* 
* 

0.087 
* 
* 

0.270 

P* = 0.950 

0.382 

0.792 
0.146 

1.031 
0.552 

* 
* 

1.199 
0.793 
0.377 

* 

0.523 
* 

1.327 
0.964 
0.617 
0.241 

* 

0.394 
* 
* 

0.462 

P' = 0.975 1 

0.714 

1.099 
0.463 

1.328 
0.850 
0.286 
0.385 

1.490 
1.082 
0.669 
0.151 
0.671 

* 

1.614 
1.247 
0.901 
0.528 
0.043 
0.658 
0.409 

* 

0.578 

For entries denoted by asterisks, see Remark 7.2.2. 
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Table 7.3: Values of e(P*,ifc,t,m,c) defined in (7.20) 

k 

5 

6 

7 

8 

9 

m 

3 

3 
4 

3 
4 
5 
4 

3 
4 
5 
6 
4 

3 
4 
5 
6 
7 
4 
5 
5 

c —• 

2 

2 
2 

2 
2 
2 
3 

2 
2 
2 
2 
3 

2 
2 
2 
2 
2 
3 
3 
4 

P* = 0.900 1 
0251 

* 

3.91 
* 

2.37 
12.15 

* 
* 

1.93 
3.91 

260.23 
* 
* 

1.73 
2.69 
7.58 

* 
* 

57.20 
* 

1.55 

0 5 0 ] 

• 

7.92 
* 

4.06 
31.55 

* 
* 

3.03 
8.10 

853.25 
* 
• 

2.57 
4.94 

18.63 
* 
* 

119.24 
* 

4.01 

5775] 

* ' 

12.62 
* 

5.98 
57.35 

• 

• 

4.26 
13.42 

1715.00 
* 
• 

3.49 
7.71 

33.95 
* 
* 

225.00 
* 

10.84 

P* = 0.950 
0.25 1 

6.30 

2.43 
31.16 

1.88 
3.79 

* 
* 

1.67 
2.48 
6.47 

• 

1.83 

1.55 
2.04 
3.35 

13.06 
* 

5.07 
* 

1.26 

0.50 

13.20 

4.08 
81.62 

2.87 
7.50 

* 
* 

2.40 
4.32 

14.83 
* 

4.06 

2.15 
3.31 
6.56 

34.13 
• 

9.38 
* 

! 2.50 

0.75 

21.18 

5.93 
148.31 

3.95 
12.15 

* 
• 

3.20 
6.57 

26.21 
* 

8.37 

2.80 
4.84 

10.82 
64.73 

* 
16.95 

* 

1 6.16 

P* = 0.975 1 
0251 

3.33 

2.01 
6.05 

1.69 
2.64 

12.84 
2.18 

1.55 
2.03 
3.52 

38.59 
1.63 

1.47 
1.79 
2.47 

i 4.82 
J 410.30 

2.54 
2.48 
1.19 

0501 

5 ^ 

3.05 
12.42 

2.41 
4.56 

30.29 
6.90 

2.12 
3.23 
6.80 

103.07 
3.46 

1.95 
2.71 
4.40 

i 1037 
j 1239.69 

4.59 
7.69 
2.19 

0 7 5 | 

8.60 

4.21 
20.53 

3.19 
6.93 

54.53 
18.39 

2.73 
4.70 

11.16 
198.42 

7.13 

2.47 
3.79 
6.73 

1 18.08 
j 2481.43 

8.59 
19.39 
5.48 

For entries denoted by asterisks, see Remark 7.2.2. 
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that e{P*,k,t,m,c) gets enormously large when P* is close to PL* One would 
rather anticipate this in view of the significance of this bound PL discussed in 
Remark 7.2.2. When e(P*, k, t, m, c) is close to 1, it is advantageous to use the 
rule RHP at a slightly additional cost of sampling compared to Rps- Table 7.3 
shows this advantage can be had by taking small values of c especially when 
P* is sufficiently larger than Pi. 

7.3 Properties of RHP 

In this section, we discuss some properties of our rule RHP- For convenience, 
let 

Pfi(i) = PV{RHP selects % ) | /!} = Pr{y(,) > (1 - c)y[fc_ î + cY[k]} • (7.22) 

Remark 7.3.1. By taking < = 1 in the proof of Theorem 7.2.1, we can see that 
Pf[{i) is non-decreasing in ^l^] and non-increasing in /i[j] ^ j ^ i^ each holding 
when all other components of jl are kept fixed. 

We now define consistency and strong monotonicity of any selection rule R 
based on samples of common size n from the given populations. 

Definition 7.3.1. R is said to be consistent w.r.t. the parametric region Q! if 
limn-.ooinfn'P(C5 I/?) = !. 

Definition 7.3.2. R is said to be strongly monotone in 11(1) if 

{ t in //[i] when all other components of /? are kept fixed, 

i in //[^], j ^ i, when all other components of /I are kept fixed. 

Theorem 7.3.1. For any z = 1,. . . , /c, rule RHP is strongly monotone in U^i). 

PROOF. The theorem is a consequence of Remark 7.3.1 and Definition 7.3.2. 

• 
Theorem 7.3.2. For every S* > 0, rule RHP is consistent w,r.t Vt{5*), 

PROOF. AS n —• GO, SO does A*. We must show that 

lim t(Qi+Q2 + Q3) = l- (7.23) 

Note that the integrands of the integrals that appear in the expressions for Qi, 
Q2 and Q3 are bounded and so the dominated convergence theorem applies. 
We can see that Q\ -^ I, Q2 -^ ^ and Q3 -• 0 as n -• 00. Hence the result 
follows. • 
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Remark 7.3.2. Theorem 7.3.2 says that, no matter what 6* > 0 and l/k < 
P* < 1 are chosen, rule RHP with any c € (0,1) can be made to satisfy the 
probability requirement (7.1) by taking a sufficiently large sample. 

Theorem 7.3.3. For every n and 0 < c < 1, 

lim inf P(CS|i2//p) = l. 

PROOF. As 6* -^ oo, so does A*. The result now follows from (7.23) being 
true. • 

Remark 7.3.3. Theorem 7.3.3 states that by taking 6* sufficiently large we 
can attain any P* (l//c < P* < 1) probability requirement for RHP based on 
any n and c (0 < c < 1). 

Remark 7.3.4. Theorems 7.3.1 through 7.3.3 represent properties parallel to 
those of Rs proved by Santner (1976). 

7.4 Expected Size of the Selected Subset for Rule 
RHP 

Let S denote the number of populations which the rule RHP selects, for any 
jl e Cl. It is easy to see that 

k k 

Efi{S I RHP) = Yl ^'^^(0 '^ ^^^^^^^^ by RHP] = ^ Pfi[i), (7.24) 
1=1 1=1 

where 

Pfi{i) =Pr{r(,) > (1 - c)Y^k-m\ + cY^k]] = Pr{V(o = Y[k])+ 
k k 

1 = 1 j = l 

(7.25) 

and yji) is distributed iV(/i[̂ ], r^), i = 1,. . . , fc. We have not studied the behavior 
of Efi{S I RHP) over Q due to the difficulty in analytically handling the integral 
expressions involved. We conjecture that the supremum of £^ (̂51 RHP) over fi 
is attained when //[i] = .. . = ^̂ ĵ j. 

Remark 7.4.1. For the case of t = 1 considered earlier by Hsu and Pan-
chapakesan (2003), the selection rule is still RHP defined in (7.3). Therefore, 
the expression for P (̂?:) given in (7.25) is the same for all ^ (1 < < < fc - 1). 
Consequently, so is the expression for £'/i(51 RHP)-
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7.5 Concluding Remarks 

In this section, we make several comments regarding our rule RHP- Given fc, t, 
m, S* and P*, there will be many choices of c and n satisfying the probability 
requirement (7.1). From its definition, it is clear that Pfi{i) (and consequently 
Efi{S I RHP)) is decreasing in c which means that the experimenter should seek 
to use rules with large values of c. On the other hand, for fixed 5* and P*, 
the larger the value of c, the larger A* (and hence n) must be to satisfy the 
probability requirement (7.1). Hence, the experimenter must decide what trade 
off among the values of n and c is acceptable. If the cost of sampling is negligible 
and the emphasis is solely on the expected subset size, then we should let c —• 1. 
If the sampling cost is important and we are satisfied with the subset size, no 
matter what, being only at most m, then we should let c = 0 in which case the 
rule reduces to Rps^ 

The problem of selecting at least one of the populations with the t smallest 
means is formulated in an analogous manner. The populations {11(1),• • • '>^(t)) 
are now called the t best and the preference-zone is Vl{5*) = {/T € f2 | /^[t+i] -
^i'[t] > <̂ *}- Following our earlier notations, let Ui = -Vi, i = 1,...,A:. Then 
Ui can be viewed as the mean of a random sample of size n from a N{9i,r'^) 
population where 0i = ~/ii. Since 0^^ = -//[jt-i+i], i = l , . . . , fc, we can for­
mulate the problem as one of selecting at least one the populations associated 
with the t largest ^ ŝ with the preference-zone Q{5*) = {9 = (^i,...,^fc) | 
O^k-t-^i] "- ^[k-t] ^ ^*}' We can thus apply the rules RHP and Rs based on the 
Ui, These rules, expressed in terms of the Yi for selecting one of the populations 
associated with the t smallest means //i, are: 

R'fjp: Select Ui if and only if 

Yi < CY[^ + (1 - c)Y[m^i] , 

where 0 < c < 1 is to be chosen so that the probability requirement (7.1) is 
satisfied, and 

iZ^: Select Hi if and only if 

Yi < mm{Y[m]^ Yfi] + da/y/n), 

where d > 0 is to be chosen so that the probability requirement (7.1) is satisfied. 
Note that Table 7.1 and Table 1 of Santner (1976) are now applicable to R'^p 
and -R ,̂ respectively. 

A natural next step in our investigation is to consider the case of unknown 
common variance a*^. As well known in the literature, we cannot have a single-
stage procedure in this case because the determination of the sample size n 
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(continuing with equal sample sizes) depends upon the unknown a. Following 
the earlier investigations in the case of fixed subset size procedures, one can 
consider two-stage procedures wherein the first stage samples are used to obtain 
an estimate of a. This is an important investigation yet to be carried out even 
with the Santner tj^pe restricted subset size procedures. 

Acknowledgment. The authors thank the referee for a critical reading of the 
manuscript and for several suggestions which have improved the presentation 
of the article. 
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Selecting the Best Population with Two Controls: 
An Empirical Bayes Approach 

Wen-Tao Huang^ and Yao-Tsung Lai^ 
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University, Tamsui, Taipei, Taiwan, R,O.C. 
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Abstract. Consider k {k > 2) populations whose means 6i and variances a? 
are all unknown. For given control values 60 and a^, a qualified subset is defined 
to be a set that contains every population whose mean is no smaller than ^0 
and whose variance is no larger than GQ. .We are interested in selecting the 
population with the largest mean from those members in the qualified subset if 
it is non-empty. If this subset is empty, we want no population to be selected. 
In this chapter we focus on the case of normal populations and consider a Bayes 
approach. An empirical Bayes selection procedure is derived and is shown to 
be asymptotically optimal. Analogous methods can be applied to cases other 
than the normal. 

Keywords and phrases: Selection, controls, empirical Bayes, asymptotic 
optimality 

8.1 Introduction 

In many practical problems, an experimenter often faces the problem of testing 
for homogeneity. When the hypothesis of homogeneity is rejected, the experi­
menter often needs to select one of several categories or treatments under con­
sideration according to his pre-fixed criterion or criteria. This multiple decision 
problem is considered as a problem of ranking and selection. Ranking and se­
lection theory has been developed over the last fifty years by many researchers, 
in particular by those of the Purdue School. Readers are referred to Gupta and 
Panchapakesan (1979) for an extensive bibliography. 

In the area of ranking and selection, a large part of the literature is concerned 
with using a single criterion. For example, a population is considered as the 
best if it is associated with the largest (or smallest) parameter in a finite set 
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of populations. In many practical situations, on the other hand, this may not 
satisfy the experimenter's demand. For example, in industrial applications, one 
not only looks for the product with the largest target value, but also wants 
to keep the variability of the product for certain measurements under control. 
Under such circumstances, a single criterion for selection of potential treatments 
does not meet our requirement. Gupta, Liang and Rau (1994) were the first to 
consider selecting the best normal population compared with a control using 
two criteria for selection; however, they relate to the same parameter, namely, 
the mean. Huang and Lai (1999) have considered the selection of the best 
normal population compared with two controls. They consider two different 
quantities, namely, mean and variance. They assume a prior distribution for 
the mean and permit no perturbation for the variance. In this paper, we allow 
perturbation for the variance. In a Bayes framework, we develop an empirical 
Bayes procedure for selecting the best normal population with a normal-gamma 
prior which, as is well known, is a joint conjugate prior for mean and variance. 

In Section 8.2, we formulate the problem and develop the Bayesian setup. 
In Section 8.3, we propose an empirical Bayes procedure. Section 8.4 deals with 
the large sample behavior of the proposed empirical Bayes rule. It is shown that 
the proposed empirical Bayes selection rule is asymptotically optimal. 

8.2 Formulation of Problem and a Bayes Selection 
Rule 

Suppose there are k populations (treatments, designs, etc.) TTI, . . . , TTĴ  such that 
TTt has the distribution function Fi{x) whose mean and variance are, respectively, 
0i and a^, i = 1, . . . , fc. We are interested in selecting the population that has 
the largest mean provided its variance is not large. More exactly, let ô and CTQ 
be two given control values. We want to choose the population with the largest 
mean provided that its mean is not less than ô and its associated variance is 
not larger than CTQ. We state this precisely as follows. 

Definition 8.2.1 Let 7ri,...,7rfc be k populations such that TTI has mean 0i 
and variance â ?, i = 1,. . . , fc. Let ô and (JQ be two control values (pre-fixed). 
Define S =^ {iTi \ a^ < a^}, A population TTJ is called a-quaHfied, if TTJ E 5. A 
population TT̂  is considered as the best, if it simultaneously satisfies the following 
conditions: 

(i) TT € 5, 

(ii) Oi > 9Q and 
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(iii) Oi = max7r,e5^j-

Let, e = {01,....Ok), a = (a i , . . . ,a / t ) and fi = {(^t,ai)| - oo < ^i < +cx), 
cĵ  > 0, z = 1 , . . . , /r} be the parameter space. Let a = (ao, a i , . . . , a t̂) denote 
an action, where ai = 0 or 1; z = 0 , 1 , . . . , fc, and X^J^Q ^̂  ~ *̂ ^̂  *̂ ~ -'̂ ' ^̂ ^ 
some i = 1 , . . . , fc, it means that population TTJ is selected as the best. When 
ao = 1, it means that no population is considered as the best, i.e., none of the 
k populations satisfies both restrictions (i) and (ii) in Definition 8.2.L Let A 
denote the action space, the set of all possible a. 

For the sake of convenience, we consider TTQ as a control population with 
the parameter vector (^o^^o)- Corresponding 0 = {9i,... ,9k) and ô̂  we define 
»' = (^o,^i,...,^j;:) as follows. 

Definition 8.2.2 For a given positive S and for i = 0 , 1 , . . . , fc, define 

Accordingly, those populations which do not meet the requirement (i) will 
also fail to meet the requirement (ii) in Definition 8.2.1 in terms of the trans­
formed parameter 6[. 

For our decision-theoretic approach, we adopt the loss function which has 
been used by Huang and Lai (1999), 

Definition 8.2.3 For J > 0, two control values ô̂  CTQ, and parameters 0,a 
(equivalently, 0' ,<T), if action a is taken, a loss L(d,cr,a) is incurred, defined 
by 

L(0,(T,a) = L(^',(T,a) 

= a ^[k] "" Z^ ^A 
1=0 

+ (1 - «) 5Z ̂ ^' \~ ~ ^) h<^i>cro}^ 
1=0 

(8.1) 

where a(0 < a < 1) and 7(> 0) are pre-fixed constants, and f̂̂ i = maxo<t<fc 6[. 

The properties of L(0,(T,a) defined in (8.1) have been discussed in Huang 
and Lai (1999). In this paper, we consider a Bayes approach for the problem 
of selecting the best normal population. 

Let Xii,..., XiM (i = 1 , . . . , fc) be a random sample of size M from the 
normal population TT̂  with mean 9i and variance af. The observed value is de­
noted by Xji , . . . , XiM. Let r̂  = l/<7f, i = 1 , . . . , fc. It is assumed that {9i, r^) is a 
realization of a random vector (Qi.Ti) with a normal-gamma prior distribution 
which is the product of conditional normal distribution N{fjLi, [{2ai - l)ri]"^) 
given Ti on Gj, and a marginal gamma prior distribution G{ai,l3i) on Tj. 
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For convenience, for i = 1,...,A;, we denote Xj = {xn,. ,.,XiM) and Xi = 
•^J^jLi^ij' R îffa and Schlaifer (1961) show that the conditional posterior 
distribution of 9i given x̂  and r̂  is a normal distribution N{(j)i{xi),[{2ai + 
M - l)ri]""^), where 

M^i) = £^[6t|xz,r,] = 2Q + M ~ 1 ' ^ ^ ^ 

and the marginal posterior distribution of Ti given Xj is a gamma distribution 
M 
2 

G(2ai + f - l , 7 / i ) , where 

^ i - A + 2 + 2(2a. + M ~ l ) • (̂ -̂ ^ 

The random vectors (6i ,Ti) , . . . , (6^, Tk) are assumed to be mutually indepen­
dent. 

Let X = (xi,...,Xfc) and let x be the sample space generated by x. A 
selection rule d = {do.di,.., ,dk) is a mapping defined on the sample space x 
into the A: +1 product space [0,1] x [0,1] x • • • x [0,1] such that ]C?=o ^(x) = 1, 
for all X G X- For every x G x» di{x) denotes the probabihty of selecting 
population TTJ as the best, z = 1,. . . , fc; and do(x) denotes the probability that 
none is selected as the best. 

For ease of notation, let TQ = I/OTQ, r = (TI, . . . , Tk), ix = (/xi,..., /x/k), a = 
(ai,. . . ,a)t), )9 = (/?!,...,/3ik), r; = (r/i,... ,7/̂ )̂, © = (ei,. . . ,0ib) and T = 
(Ti,...,Tjt). Let /i(d|x, r ; /x, a) be the joint conditional posterior probability 
density function of 0 given x and r-, and 5(T|x;a, rj) be the joint conditional 
posterior probability density function of T given x. Let fti(^i|xi,Ti;/iiQi) and 
gi{ri\x,i\air]i) be the marginally conditional probability density function of 6i 
and Ti, respectively. Under the preceding formulation, the Bayes risk of a 
selection rule d, denoted by r(d), is given by 

r(d) = ErE0ExL{e,T;d) 

= a I I I 0[,^^f{:ic\e,T)h{x\T;fi,a)g{T:a,f3)dxdedT 

^"^ I I I f^di{x)e\f{x\e,r)h{x\r',yL^ 

>< Ar*<To)/W^, T)/I(X|T; H, a)g{T; a,l3)dxd9dT 

= QI\ - ah + (1 - och), say. 

Then, straightforward computation yields 

h = J f ^[k]KQ\T\ M, cc)g{T; a, 0)de dr = C 
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for some constant C, and 

k 

2̂ = f f f'ydi{x)e'M9\x,r-n,a)g{T\y.,a,r])f{x)dedTdx 

= / Vdi lx ) / / {Oo - S)hi{ei\xi,Ti;^i,a)gi{Ti\xi;ai,T]i)deidTi 

+ / 0ihi{9i\xi,ri]^ii,a)gi{Ti\xi;ai.7]i)deidri 
JTQ J— OO 

= y Y.di{x)<i/i{xi)f{x)dx, 

f{x)dx 

'̂ i=0 

where 

<Ai(̂ j) =̂  (̂ 0 - (5)Gi(ro|xi,ai,r?i) + (t>i{xi){l - Gi{To\xi,ai,r]i)), (8.4) 

and Gt(To|xi; Oj, r̂ j) is the cumulative probability of gamma distribution G{2ai+ 
f -1 ,7 / i ) . Finally, 

fc 

' f{x)dx h = V]ldi{x) / ( . / — - 1) QiiTilxi, au Vi)dTi 

= tf^id^ix) 
M 
2 

r(2a, + f - 1 ) 

1 
xGi(ro|xi,ai - -,r7i) -Gi(To|xi,ai.r;i) /(x)dx. 

Hence, for some constant C, 

r(d) = a C - / ^di(x)f/i(x,)/(x)dx. (8.5) 

where 

C/i(xi) = a0;(x^) + (1 - a)7 
M 3> V^r?/r(2a, + f - § ) 

r(2fti + f - 1) 

xGi(ro|xi,Q:i - -,7/i) -Gi(ro|xi,ai,T?i) 

For each xE x- l̂ t 

(3(x) = \ i lUiixi) = max Uj{xj), i = l,...,k\ 
L I o<j<fc J 

(8.6) 

(8.7) 
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Then, define 

^ ^ \ min{z|i € Q(x), i i^ 0} otherwise. ^^'^^ 

Then, from (8.6)-(8.8), we derive a Bayes selection rule d^ = (d^, df,..., df) 
given by 

dl(y.) = 1 and df (x) = 0, for j ^ i\ (8.9) 

8.3 An Empirical Bayes Selection Rule 

In the problem formulated in Section 8.2, we consider that a i , . . . , â t are known. 
It is well-known that the exponential distribution is contained in this case. Since 
£/i(xi) still involves the unknown parameters /Xj, ^ j , i = 1,. . . , A:, the proposed 
Bayes selection rule d^ is not applicable. However, based on the past data, 
these unknown parameters can be estimated and a decision can be made if one 
more observation is taken. For i = 1,...,A:, let Xi^t {j = 1,...,M) denote 
a sample of size M from TTJ with a normal distribution N{9it,r^^) at time 
t {t = l , . . . ,n ) , where {OiuTa) is a realization of a random vector [QiuTu) 
which is an independent copy of {Qi.Ti) with a normal-gamma distribution 
described in the preceding section. It is assumed that {Qu, Tn), i = 1,. . . , fc, 
t = l , . . . ,n , are mutually independent. For our convenience, we denote the 
current irandom sample "̂̂ (̂̂ .̂1) by Xij, for j = 1, . . . , M, i = 1, . . . , fc. 

Consistent estimates of the parameters ^l^, Pi have been studied by several 
authors, for instance, Ghosh and Lahiri (1987) and Ghosh and Meeden (1986). 

For each TTJ, i = 1,. . . , A;, we estimate the unknown parameters /Xj and l3i 
based on the past data Xijt, j = 1, . . . , M, t = 1,. . . , n. We let 

J m ^ n 

^'^ "^ JfYl ^^^^' Xj (n) = - ^ X.i, 

- M . n 

— Y,{Xiit - Xu)\ and Whn) = - J^ Wl (8.10) Wl = — 
'' M j = i «=i 

For ease of notation, we define /ijn and îri as estimators of /Xj and /?i, 
respectively, given by 

fiin = Xi{n) and An = (a^ - l)W^{n). (8.11) 
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Also, for i = 1 , . . . , A;, we define 

V^r/ir(2ai + f - i) 
+ ( l - a ) 7 

L T{2ai + f - 1) 

xGtnlTolXj.Qi - -,riin) - Gi„(To|Xi, Oj, 77i„) , (8.12) 

where 

^ini^i) = (^0 ~ S)Gin{ro\Xi, a^ 7]in) + (t>in{Xi){l ~ Gin{ro\Xi, au r]in)), 

(8.13) 

{2ai - l)/zin + Mxi 
(t>in{Xi) 

2ai + M-\ 

and 

a , ( M - l ) 5 ^ , (2ai-l)Af(xi-Mm)' 
77in - iiin+ 2 + 2(2ai + A / - l ) 

Gtn(ro|xi,Qt,T;j„) = Gi(To|xi,ai,7?i„). 

(8.14) 

(8.15) 

(8.16) 

Note that [/on(xo) = ^o- We consider C/tn(xi) to be an estimator of Ui{xi). The 
properties of the estimators proposed above will be discussed in the following 
section. 

For each x € x i 1̂ ^ 

Qn(x) = \ i \Uin(xi) = max [/jn(xj) , i = 0 , 1 , . . . , A; I . (8.17) 

Again, define 

. . _,• . /x^ / O ifQ„(x) = {0}, 
" " ^ ^ \ min{i|t € Q„(x), i ^ 0} otherwise. ^ ' 

Then, from (8.12), (8.17) and (8.18), we obtain the empirical Bayes selection 
rule d*" = (d5",d^",..., djj") given by 

d*."(x) = l and d*''(x) = 0, f o r j / i ^ . (8.19) 
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8.4 Some Large Sample Properties 

In this section, we study the asymptotic optimality of the proposed empirical 
Bayes selection rule. First, we discuss the consistency of the estimators defined 
in (8.10) through (8.16) in the case of M > 2. These results are stated below 
in Lemma 8.4.1. Since proofs for all parts of Lemma 8.4.1 are routine, we omit 
them. 

Lemma 8.4.1 (i) < în(it) defined in (8J4)f Vin defined in (8.15) and Gm 
defined in (8J6)y are consistent estimators of 4>i{^i)i 'Hi ^^^ ^if ^^^pec-
tively, i = 1,... ,A;. 

(ii) Uin{xi) defined in (8,12), is a consistent estimator ofUi{xi)f i = 1,..., A:. 

Consider an empirical Bayes selection rule d'̂  = (dg, cf^,..., d]J) and denote 
its Baye^ risk by r(d^). Since r(d^) is the minimum Bayes risk, it implies that 
r(d^) - r(d^) > 0. Thus £^n[r(d")] ~ r(d^) > 0, where the expectation En 
is taken with respect to the past observations Xijt, i = 1,. . . , fc, j = 1,. . . , M, 
and t = 1,. . . , n, The non-negative difference £'n[r(d^)] - r(d^) can be used to 
measure the performance of the selection rule d^. 

Definition 8.4.1 A sequence of empirical Bayes selection rule {d'^j^i is said 
to be asymptotically optimal, if limn-^oo[^n[^(d'̂ )] - ^(d^)] = 0. 

Theorem 8.4.1 The empirical Bayes selection rule d*^{x), defined in (8.19) 
is asymptotically optimal 

PROOF. By straightforward computation and some simplification, we have 

£„ [ r (d - ) ] - r (d^ ) 

= En f[4{x)Ui.{xi.) - d*."(x)C;i;(xi.)]/(x)dx 

k 

{\UiniXi) - Ui{Xi)\ > \Ui{Xi) - eo\} \Ui{Xi) - eo\ fi{Xi)dXi 

+Pn |lt/,„(x,) - Uj{xj)\ > i mxi) - f/,(x^)l}] 

X \Ui{xi) - Uj{xj)\ fi{xi)fj{xj)dxidxj 

= /„ + / ; , say. 
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From (8.2) and (8.6), it can be shown that 

mx^) - eo\ < 
M\Xi - fiil ^ ^ ^^ ^^ 2 

+ b^{Xi-fli) 4-Ci, 

where 

bi = 

2ai + M - 1 

7^/7a(2ai - l )Mr(2ai + -^ - j ) 

4(2ai + M - l ) r (2a , + f - 1) 

and 

a = |^o-<5|+7 

It can then be shown that 

V/?5r(2a, + f - i ) / V 4 y J 

f \Ui{xi) - eo\fi{xi)dxi < 

where 

Cm a: = max < - — 
i<i<fc y2ai 

M 
+ 

M 

+ M-1 \2ai + M-l 
+ bi 

[M(3i^ {2ai-l){ai-l))^'^j-

For any e > 0, since C/m(xi) is a consistent estimate for Ui{xi), there exists 
Â i > 0 such that for any n> Ni, we have 

Pn{|t/i„(Xi)-t/i(xO|>^}< ' 

Let Xi = {xi : |t/i(xi) - ^o| < ^ } - We have 

ZK J ^^^max 

k 

h ^ J2 Pn{\UiniXi)-UiiXi)\>\Ui{x^)-eo\}\Uiix^)-9o\fiix^)dXi 

k 

+ E / ^" {\Uin{Xi) - Ui{Xi)\ > \Ui{x^) - ^o|} 

X \Uiixi) - ôl fi{:>^i)dxi 

< i{xi)dxi 

k 

X ; / Pn iWiniXi) - f/,(Xi)| > ^ \ \Vi{Xi) - 6Q\ fi{Xi)dXi + 
£ e _ 

2k •2kc„ 
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Hence, linin-̂ +oo In = 0. Similarly, limn— -̂oo In = 0. This completes the proof. 
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Simultaneous Selection of Extreme Populations: 
Optimal Two-stage Decision Rules 

Neeraj Misra and Ishwari D. Dhariyal 

Department of Mathematics, Indian Institute of Technology Kanpur, India 

Abstract: Consider k (> 2) independent populations H i , . . . , 11^, such that the 
observations from the population Hi, i = 1 , . . . , /c, have a probability density 
function (pdf) belonging to the exponential family c{6i)b{x)e^'^, a: G R (the 
real line), ^̂  ^ Q C R. Unknown populations associated with ^[j] = mini<i<fc Oi 
and [̂fc] = maxi<i<k6i are called the lower extreme population (LEP) and 
the upper extreme population (UEP), respectively. This chapter deals with 
optimal decision (or selection) rules for the goal of simultaneously selecting 
the LEP and the UEP in two stages: screening out non-extreme populations 
at the first stage and selecting the LEP (the ones associated with 6[i]) and the 
UEP (those associated with 0[k^) at the second stage. Let Vj denote the class of 
permutation invariant two-stage selection rules {u, r/, 6), where at Stage 1, i/ and 
T] decide about how many populations and which ones to select, respectively, 
as contenders for the LEP and the UEP, and at Stage 2, additional samples 
are taken from the selected populations and 6 makes the final decision about 
the LEP and the UEP from the respective set of these contending populations. 
After giving the formulation of the problem and defining two-stage selection 
rules, we derive an essentially complete class of two-stage permutation invariant 
selection rules under the assumption that the underlying pdfs are unimodal. 

Keywords and phrases: Exponential family, lower extreme population, up­
per extreme population, two-stage selection rule, permutation invariance, mono­
tone likelihood ratio property 

9.1 Introduction 

Let X i , . . . , Xfc denote k {>2) independent random variables representing the 
populations n i , . . . , n ) t , respectively, and suppose that Xi has a probability 
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density function (pdf) g{'\6i), i = 1,...,A:. Let U^i), i = l , . . . , fc, denote 
the population associated with ^[^j, the zth smallest of ^^s. Throughout we 
assume that 9\,.,,,6k are completely unknown and that there is no prior in­
formation about which of H i , . . . , 11^ is Ilji), i = 1 , . . . . A:. Suppose x is the 
sample space of the observation vector X and let fi denote the parameter space 
oi 6 = (^i,...,^fc). The populations 11(1) ^^^ ^{k)^ associated with ^[ij and 
[̂fc] respectively, are called the lower extreme population (LEP) and the upper 

extreme population (UEP), respectively. In case of ties for the LEP (or the 
UEP), we assume that one of the tied populations is arbitrarily tagged as the 
LEP (or the UEP), 

Mishra and Dudewicz (1987) considered the problem of simultaneously se­
lecting two non-empty and random subsets SL and Su o{ {!,.., ,k), where i is 
associated with Hi, such that the probability of the event {(1) € SL and {k) G 
Su) is at least P* {l/{k{k - 1)) < P* < 1), a pre-assigned constant; here (1) is 
associated with the LEP 11(1) ^^^ W is associated with the UEP TL(^k)' For this 
goal, they proposed a selection rule under the assumption that the 6iS are the 
location parameters and the underlying pdfs have the monotone likelihood ratio 
(MLR) property. Mishra (1986a,b) considered some variations of this problem 
under different population models. In an extensive decision theoretic study 
of the problem of simultaneously selecting the LEP and the UEP, Misra and 
Dhariyal (1994) and Dhariyal and Misra (1994) derived Bayes, minimax and 
the best permutation invariant selection rules under different loss functions. 
Recently, Hussein and Panchapakesan (2001) proposed selection rules for si­
multaneous selection of the LEP and the UEP from A: (> 2) two parameter 
exponential populations. 

For the goal of selecting the UEP U^k)^ Gupta and Miescke (1983) proposed 
a class of two-stage permutation invariant selection rules {(f>,^lj,S), where, at 
Stage 1, <t> and ^ , respectively, decide about how many and which populations 
to select, and at Stage 2, after additional samples from the populations selected 
at Stage 1 have been taken, S makes a final decision about the UEP from the 
contending populations selected at Stage 1. Under quite general loss functions 
and underlying pdfs from unimodal exponential family, Gupta and Miescke 
(1983) derived an essentially complete class of permutation invariant selection 
rules. Gupta and Miescke (1984) applied the results of Gupta and Miescke 
(1983) to a specific loss function under normal probabihty models. 

In this chapter, we extend the results of Gupta and Miescke (1983), derived 
for the goal of selecting the UEP, to the goal of simultaneously selecting the 
LEP and the UEP. In proving various results here, we make use of the work by 
Eaton (1967) which we briefly describe here. 

Eaton (1967) considered the general goal of partitioning {II i , . . . ,11^} into 
s (> 2) disjoint subsets i4i, . . . , i45, such that i4i contains populations corre­
sponding to the ki largest ^jS, A2 contains populations corresponding to the 
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next k2 largest OiS, • • •, and 4̂̂  contains populations corresponding to the ks 
smallest îS, where I < ki < k and ]Ci=i h — k. Here, the action space con­
sists of all partitions A = {>li,..., As) of {1 , . . . , k). Let G denote the group of 
permutations on indices {1 , . . . , fc}. Suppose that L{6, A) denotes the loss asso­
ciated with partition A when 6 is the true parameter value. For the partitions 
A = {Au...,As) andB = {Si , . . . , ^^} , with z 6 A^nB^+i, j € A^4-inB/3, 
A0[j{3) = B0\j{i], A^^i[j{i} = B^+iUO'}. Ai^Bu'il^ (5,(3+1 (for 
some 1 < /? < 5), suppose that L{6,A) < L{0,B), when 6i > 6j, and 
suppose that L{6,A) = L{g9,gA), for all 0,A and g G G; here, for a vec­
tor X = {xi,.,. ,Xk) E R^ (the fc-dimensional Euclidean space), a nonempty 
set B C {1,...,A:}, a partition A = {Ai,... ,As} of {1,...,A;} and g G G, 
gx = {Xg-ii,..,,Xg^ii,), gB ^ {gi: i e B} and gA = {gAi,,.. ,gAs}, where 
p"^ denotes the inverse of permutation g. Under the assumption that the pdf 
f{x;6) has the MLR property and the prior distribution T(-) is permutation 
symmetric, Eaton (1967) established that the natural selection rule which se­
lects the partition A* = {i4J,..., i4*}, where A^ contains the indices of popula­
tions corresponding to the ki largest X^s, A2 contains the indices of populations 
corresponding to the next k2 largest X^s, • • •, and A^ contains the indices of 
populations corresponding to the kg smallest XiS (breaking ties at random), is 
Bayes under any permutation symmetric prior. This selection rule is further 
shown to be the best permutation invariant and hence minimax and admissible. 

Now assume that the observations from the population Hi, i = 1,. . . , / : 
(fc > 3), belong to an exponential family and have a pdf c(^i)6(x)e^*^, x € M 
(the real line), Oi e Q C R^ with respect to measure n, which is either the 
Lebesgue measure on R or the counting measure on the set of integers Z; here, 
c(-) and b{') are nonnegative functions defined on Q and R, respectively. Further 
assume that 6() is log-concave, so that the underlying pdfs are unimodal. We 
consider the goal of simultaneously selecting the LEP and the UEP in two 
stages: screening out non-extreme populations at the first stage and selecting 
two populations associated with [̂ij and 9[kj at the second stage. In Section 9.2, 
we formulate the problem and give the definition of two-stage selection rules. 
In Sections 9.3 and 9.4, we derive an essentially complete class of two-stage 
permutation invariant selection rules. 

9.2 Formulation of the Problem 

For a set A, let \A\ denote the cardinality of the set. We will consider the 
following class of two-stage selection rules: At Stage 1, observe independent 
observations Xn,..., Xim from the population Hi, z = 1,. . . , fc, and based on 
these independent random samples, decide about the number of populations 
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to be selected as contenders for the LEP and the number of populations to 
be selected as contenders for the UEP, and then, based on this decision, select 
a disjoint and non-empty subset pair (SL.SU) such that SL,SU Q { 1 , . . . , fc}, 
where Si contains the indices of populations to be selected as contenders for 
the LEP and Su contains the indices of populations to be selected as contenders 
for the UEP. If | 5 L | = \Su\ = 1, then the procedure stops at Stage 1 and claims 
that the populations with indices in SL and Sy are the LEP and the UEP, 
respectively. In all other cases, the procedure proceeds to Stage 2. If, at Stage 
1, \SL\ = 1 and 2 < |5 ( / | < A: - 1 {\Su\ = 1 and 2 < \SL\ < fc - 1), then the 
procedure claims that the population with index in SL (SU) is the LEP (UEP) 
and the decision about the UEP (LEP) is made after taking n2 additional 
independent observations V^i,..., 1̂712 ^^"^ ^^^^ Ui, i € Su {i € SL). If at 
Stage 1, 2 < \SLI\SU\ < fc ~ 1, 4 < | 5 L | 4- \Su\ < k, SLHSU =^ 0, then, 
at Stage 2, n2 additional independent observations Yn,..., Yin2 are taken from 
each Ili, i E SLIJSU, and the final decision about the LEP and the UEP, 
respectively, is made from the corresponding contending populations having 
indices in SL and Su- Let Ui = Xn + -- - + Xim and Vi = Yn -\ h Fm2» 
z = 1 , . . . , fc, be sufficient statistics for Oi at stage 1 and stage 2, respectively, 
and / ( • ; 9i) and /i(- ; 6i) denote the pdfs of Ui and Vi, i = 1 , . . . , fc, respectively, 
so that 

and 

f{u; di) = {c{ei)f' bn, (^/)e^»^ u € R, ^̂  G fi, i = 1 , . . . , fc 

hiu'Ji) = (c(^i))^2 6n2(t/)e^^", u 6 R, ^i 6 n , i = 1 , . . . ,fc, 

where bmiu), z = 1,2, denotes the rij-fold convolution of b{u) with respect to 
/i. Let Wi^Ui + Vi, i = l,...,A:, V = {Uu,.,Mk). V = (Vi , . . . , V )̂ and 
W = (W^i,..., Wife)- We will consider only those selection rules which depend 
on observations only through sufficient statistics U and V. In order to define 
a two-stage selection rule, let 

i^ = {i^s^, 5, < = 1 , . . . , fc, 2< s + t<k}, 

where, for s, < = 1 , . . . , A;, 2 < s + t < k, i^sA') ^^ ̂  measurable map from R'̂  to 
[0,1] with the following interpretation: after observing U = u, i^sA^) denotes 
the conditional probability (given U = u) of selecting s indices in SL and t 
indices in Su at Stage 1. Let 

T]{u) = {r]s^t{{ai,a2)\u): ai,a2 C {1,. . . , / ; :}, ai,a2^(t>, a i n a 2 = 0, 

l^il = 5, \a2\ = ^ 5,f = 1 , . . . , A:, 2 < s-^t < k} , 

where 
X ; r/,,t((ai,a2)|u) = l, V u € R^ 

(ai,02):|ai|=5,|02|=t 
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and, for s,t e { l , . . . , / c} , ai,a2 C { l , . . . , / c} , ai,a2 ^ (f), ai D a2 = (j>, 
^5,t((ai^^2)|u) is a measurable map from R^ to [0,1] with the interpretation 
that r)s,t{{cL\,CL2)\^) denotes the conditional probability (given that U = u and 
given that v has decided to select 5 indices in SL and t indices in Su) of selecting 
subset pair (ai,a2), with |ai| = 5, |a2| = t at Stage 1. 

If i/(u) decides that |SL | = |5(/| = 1, then the procedure stops at Stage 1, 
and a final decision is based on 

{m,i(({0^{j})|u); i , j = l^-.-^/c, i T ^ j } . 

In all other cases the procedure proceeds to Stage 2. If at stage 1, r] selects 
SL = {i).Su = { j i , . . . , j j , withi 6 {l , . . . , fc}, { j i , . . . , j t } C {1,...,A:}, j i < 
J 2 . . . < jt, 2 < t < fc ~ 1, 5 L n 5(/ = 0 ( 5 L = {ii, . . . , is},5(7 = [j] with j e 
{l,...,fc}, {ii,...,?;s} c {!,..., fc}, n < 22... < is, 2< 5< fc-l, 5Ln5(/ = 
</)), then after having observed Vj^ = i;^^,..., V̂^ = i;̂ ^ (V ĵ = Ujj , . . . , K, = i^ij 
at Stage 2, a final decision is based on {<5ij,{i},5tr(u;t;ji,... , t ; j j ; j € 5(/} 
({(5i j 5^ {j}(u; iJj j , . . . , i;̂  J ; z 6 5 L } ) . On the other hand if, at Stage 1, r/ selects 
Sl = { i i , . . . , i s} and 5(7 = { j i , . . . , j j , with SL n Su = <?i, {n , . . - , i s} ^ 
{1,...,A:}, { j i , . . . , i j C {!,..., A:}, ii < Z2... < is, j i < J2 • • • < jt, 5,< € 
{2 , . . . , fc - 2}, 4 < 5 + i < /c, then after having observed K^ = Vi^,..., F ,̂ = 
^i.s' ^1 = ^jn • • • 1 ^f = ĵf» ^he final decision is based on 

{<^ij,SL,5c/(u;^2n---i'^i.s;^jn---,^.7f); ^ ̂  SLJ e Su}, 

where < î,j,ai,a2 is a measurable map from R^ X RI«II+I«2| to [0,1] with 

and has the following interpretation: <Jij,ai,a2ii € ai, j 6 a2, is the conditional 
probability (given the observation and given that subset pair (ai, 02) is selected 
at Stage 1) of selecting the population Hi {i G ai) as the LEP and the population 
Uj (j e a2) as the UER Define 

^ = {^ij,ai,a2 • i 6 a i , j E a2, ai,a2 7»̂  0, ai,a2 C {!,... ,/c}, ai na2 = 0, 

3 < |ai | + |a2| <k}. 

Definition 9.2.1 For i/, rj and 6 explained above, the triplet (i/, r/, J) will be 
referred to as a two-stage selection rule. 

Let T> denote the class of all two-stage selection rules and let G denote the 
group of permutations on the indices { 1 , . . . , k}. For p 6 G, J5 = { i i , . . . , z/} C 
{ 1 , . . . , fc}, jB ^ (j), and x E R'̂ , let gB = {gii,.. ..gii} denote the image of B 
under g E G and let (/x = (^^-ii, • • •, ^^-i/)^ where g~^ denotes the inverse of 
permutation g. 
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Definition 9.2.2 We say that a two-stage selection rule (i/, r], 5) is permutation 
invariant if 

(i) i/,,^(u) = i/,,e(5u), VpeG, Vu€R^ V5,« G {1, . . . ,fc}, 2 < 5 + t < fc, 

(ii) for every 5,i G {1, . . . ,A:}, 2 < s + t < k, ai,a2 C {l,...,fc}, ai na2 = 0, 
with |ai| = 5, \a2\ = i, and u € M ,̂ 

(iii) for every ai = {n,...,?;^} C {1,...,A:}, a2 = 0'i , . . . , jf} C {l,...,fc}, 
with ai,a2 7̂  0, aif)a2 = (̂ , ii < 22 < ... < 1*5, ji < J2 < • • • < 
jt. gai = {zi,... , i ;} , ffa2 = 0 1 , . . . , Jt}, i'l < 22 < ... < K. j'l < J2 < 
... <j[, and every {ui,,... ,Vi,,Vj,, ...,Vj,) eW^\ 

= ^9i>93.9ai .9a2 (&"; t;^'^,. . . , t;i/,; t ^ j j , . . . , t^j;), 

V5GG, 

Let P j denote the class of all two-stage permutation invariant selection 
rules. Let r ( ) be a permutation symmetric prior on the fc-dimensional space 
n*̂  (= fix • • • xfi). Let L{6, (ai, 02), i,j) denote the loss incurred in selecting the 
subset pair (ai,a2) at Stage 1 and then finally selecting populations Hi and lij 
(z 6 ai, j 6 02) as the LEP and the UEP, respectively. Assume that L is non-
negative and, V ai,a2 C {l,...,fc}, a\,a2 ^ (t>, CLif]^2 - <̂ , ij G {l,...,fc}, 
d € 0, and V p e G, 

L(0,{ai,a2)JJ) ^ L{ge,{gai,ga2),ghgj). (9.1) 

In addition to (9.1), suppose that the loss function satisfies: 
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{a) L{e,{{i},{j})4J) < L{d,m,{j}),i',j), ioT9i<ee. i^j, i'^ j ) 

{h) L{9,{{i},{j]),ij) < L{d,{{i},{j'}),ij% iovej>df, i^j, i^f 

(c) L{0, ({ai}, {02}), i, j) < L(a, ({ai}, {as}), i', j) , 

for di < 6i', i,i' € ai, j € 02, ai n 02 = 0 

(d)L(6l,({ai},{a2}),i,j)<L(6l,({ai},{a2}),i,/)-

for 9j > 9ji, i e ai, j , j ' G 02, oi n 02 = (̂  
(e) For ai = {ii,... Ar-\,i}, 02 = {ji,--•, j s - i , i } , ai = {h,. • • ,ir-i,i'}, 

02 = {ii , --- , js- i , j '} , withaina2 = 0, aiflas = </>, a ina2 = 0, 

di n 02 = 0, q € ai n oi and m € a2 0 62, the following hold: 
(i) L(0,({ai},{o2}),g,m)<L(0,({ai},{a2}),g,m), for ^i-> î 

(ii)L(0,({ai},{a2}),9,m)<L(0,({ai},{a2}),9,m), for ^̂  > ̂ v̂ 

{iii)L(6l,({ai},{a2}),i,m)<I(0,({ai},{o2}),i',m), for ^̂  < ̂ ẑ 

(iv) L{e,i{ai},{a2}),qJ) < L{e,{{ai},{a2}),q,f), for Oj > dy. 

(9.2) 

Remark 9.2.1 A class of loss functions satisfying (9.1) and (9.2) is 

L(0,(ai,a2),i,j) = c(|ai| + |a2|) +/i(^i - ^l^^W - ^j), 

6 6 M'̂ , ^1,^2 ^ {1- • • ifc}, ai na2 = 0, i € ai, j G a2, 

where /i(-, •) is a non-negative function which is non-decreasing in its arguments, 
with /i(0,0) = 0, and c > 0 is the cost for every population that enters Stage 2. 

Under the above setup, we will first find the optimal second stage selection 
rule and then the optimal two-stage selection rule. 
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9.3 The Optimal Second Stage Selection Rule 

For s,t C {1 , . . .,A;}, ai.ag C {1 , . . .,fc}, ai,02 7̂  (̂ , ai n 02 = <f>, with |ai | = 
s, I02I = t, and u e R*̂ , define 

r ? , , ( ( a i , « 2 ) | u ) - | Q ^ otherwise, 

where, for u 6 K'^ and 5, < G { 1 , . . . , /c}, and Hu{s, t) is given by 

{(ai,a2) : |ai | = 5, \a2\ = i ,ai na2 = (^,iti < Ug < Uj, 

Vz 6 a i , j € a2,9 € aj 002) . . 

Given that the decision (by u) of selecting s indices in Si and t indices in Su 
has been made, r]lf selects the indices of populations yielding the 5 smallest 
observed values of C/,;s in Si and selects the indices of populations yielding the 
t largest observed values of UiS (breaking ties at random) in Su-

Similarly, for ai = { i i , . . . , is}, a2 = { j i , . . . , j j , with h < " - < is, ji < 
••• < je, s,t > 1, ai na2 = 0, u G R^, {vi,....,ViJ € E ^ {vj,,... ,Vj,) € 
R^ lu/ = u/ + t;/, / G ai U 02, define 

^^,j,ai ,02 (^'^'n ' • • • ' ^i/> ^ j n • • - ^jt) 

|C'.s,^.ai,a2(^ti> • • ',Wi^\Wj^,, . . , l t ; j j | " ' \ 

if {i,j) € C^.f,01,02(^111 • • • 1 "^^; ^ ' j i . • • • 1 ̂ j J ( 9 -3 ) 

0, otherwise, 

where 

Cs,i,ai,a2(^in---^^t,;^7i»---ii^7f) = \ {hj) ' ^t = minK;^ and Wj =maxwg > . 
(̂  <7€ai g€o2 J 

Given that the decision (by 1/ and rj) of selecting the subset pair (01,02), with 
I ail = 5 and |a2| = t, has been made at Stage 1, 5* selects the index of the 
population yielding the smallest value of the WjS in Si and selects the index of 
the population yielding the largest value of the WiS in Su. 
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Now, the risk of a selection procedure (i/, rf, S) at 0 6 fi is given by 

= EE^(^'(W'{j})'^'^)^«(^u(u)»?u(({i},U})|u)) 
1=1 i= i 

k k-l 
/ 

+ EE^« t̂ i.t(U) 5;; m.t(({0-«2)|U) 

jea2 

I 
k-l k 

s=2 j = l 

t/.,,(U) ^ r,,,i((a,,(j})|U) 

V iq¥'J^Q=^ S 

i£ai I 

k k 

S=2 f=2 . 

5+Kfc y 

.̂,*(u) 5^ ?7s,f((ai,a2)|U) 
( a i . a 2 ) : n i = ( i i . ...i.s) 

a2={jl,-Jt}.''l'~'<»2=<* 

X XI E ^(^ ' («!'«2),i, j)(5ij,a,,o2(U; Vi,,..., K,; F j , , . . . , FjJ 
i€ai ,7602 

The Bayes risk for (y,r\,S) under the prior r(-) is given by 

(T,(t.,7?,,5))= / R{e,{iy,v^s))dT{d). 
7n* 

(9.4) 

Let ru((i/,77, (5)) denote the conditional posterior risk of a selection procedure 
{i',r},5) given U = u. In order to find a selection rule which minimizes (9.4), 
it is sufficient to find a selection rule which minimizes ru((j/,rj,5)), for every 
u e R*". Now, 

r:,(('^,r/,(5)) = j ; A ( u , ( i / , 7?, <)-)), (9.5) 
1 = 1 
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where 

Diiu,{u,T],5)) 
k k 

= '^u(u)J]5]m.i(({0.0})|u)£:(i(d,(W,0}K^j)|u = u), 
t = i j= i 

k fc-1 

D2iu,{i^,r),S)) = 5 ] X ; ' ^ M ( U ) E ViA{{i},a2)\n) 
1=1 t=2 a2-'»2 = {Jl h) 

X £; J]L(«,({i},a2),i,jX^^^^^^^ 
^j€02 

A : - l Jt 

P3(u,(t/,r/,(J)) = ^J2^sa{u) E '?^.i((°i.{j})l") 
S=2 j = l oi:«l = {«l «a} 

ta9^i.9=l s 

\ i€c i / 

JD4(u,(i/,r?,(J)) 
k k 

= XI 51 '̂'''̂ (̂ ) S 7/5,t((ai,a2)iu) 

\i€aij€a2 J 

and the expectations involved in the above expressions are the posterior expec­
tations (of 0 given U = u). 

Since the underlying pdfs have the MLR property and our loss function 
satisfies (a) and (b) of (9.2), Lemma 4.2 of Eaton (1967) is applicable. Hence, 

Di(u,(i/,77,(5)) 
k k 

= '̂ i.H") E E^i-i(({^}' {j})\^)Eim {{i}, {j}um=u) 

k k 

(9.6) 
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For ai = {ii , . . . , is}, 02 = {ji,...,jt}, oina2 = (j). |ai|,|a2| > 2, on writing 

Dii{u,iaua2)) 

= E{J2 Yl ^(^' ("i'«2),i, j)«5ij,ai,a2(u; Vi„...,Vi,,;Vj„..., Vj,,)\V = u), 
i€ai 7602 

we have 

1)4(11,(1/, 7;, J)) 

= E E '̂ M(U) E 
S = 2 '=2 (a i ,02 ) :o i={ t i , . . . , i j ) 

«+«<« a2={ji,...,jt},aina2=<i> 

»?M((ai'02)|u)I>f,e(u, (01,02)). 

(9.7) 

Now 

^(5 D,%(u,(ai,a2)) 

t€ai j€a2 

A: 

where 

fL{e,{ai,a2)AJ)flf{u,;e,) H h{v,;eg)dT{0) 

rn{u) = l^(l[f{u,:e,)\dT{e). 

Using Fubini's theorem, we get 

Df^i(u,(ai,a2)) 

= (^(u))"^ / V y'<Ji,j,ai,a2(u;t;ti,...,i;t,;i^ji,...,t;jJ 
»/lR*̂  777 777 

n /̂̂ (̂ 9)> 
(?6aiUa2 

?€ai j€a2 

/ L{e, (oi,02),?;,j) n{/("9;^9)Mi'<?;^9)}dr(») n '̂ /̂ (̂ '•) 
r = l 

= (m(u)) M IIfe„2(?;,) E E '̂ i.Mi-''2(";̂ ' 

X J y"^L(0,(ai,fl2),i,j)f[{(c(0,))"'+"^e("'+"'>^'}dr(e) 

' i i , . . . , t̂ i., 5 Vji 1' • ' ^'^jt) 

Y[dfl{Vr), 
r = l 
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where 
f ^ 

m ( u ) = / llUc{e,)re''MdT{d). 

Making the change of variable Uq + Vq = Wg, q = I,.,. ,k, in the above integrals, 
we get 

Dlt{u,{aua2)) 

= (m(u))-^ 

X / V ] V Sij^ai ,a2 (« ; '̂ai - U^,, . . . ,Wi, - Ui,; Wj^ - Ujj, . . . , Wj, - Uj,) 
./III*̂  "̂"̂ ^ r""̂ ^ 

where 

dm = {n ici9,)r 
,=1 

+ ̂ 2 ) drid). 

Note that df{6) is permutation symmetric in 0. For a j , 02 C { 1 , . . . , A;}, ai , 02 7̂  
(/>, ai n 02 = 0, define 

Eii{ai,a2UJH= I L(«,(ai,a2),7:,j)e^^'='' ' '"'df(^). 

Then, 

Df,,(u,(ai,a2)) 

= (m(u))-i 

•/R* . ^ , '^-

•E'i((oi.«2),i,j|w) { 
k I fc 

9=1 

(9.8) 
r=l 

We now prove the monotonicity of £'i((ai.a2),r, j | w ) . 

Lemma 9.3.1 Suppose ?', z' € ai and j , j ' 6 a2, ^/len /or every fixed w 6 R'^, 

(i) £ ' i((ai,a2),i , j |w) > £'i((ai,a2),z', j | w ) , i/u'^ > ti^, 

("MJ £^i((ai,a2),i, j | w ) > £^i((ai,a2),i, j V ) , ?/ii;/ > u^j. 
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PROOF. We prove only the first assertion, as the proof of the second assertion 
follows exactly on similar lines. For proving (i), consider 

£;i((ai,a2),i,j |w) ~£^i((ai,a2),z',j |w) 

J{e:ei>e^,} 

+ / [L{e.{a,.,a2).iJ) - L{e,{ai,a2)j\j)]e^n^^'^^^df{e), 
J{e:ei<o.,} 

Since f(-) is permutation symmetric, using (a) and (c) of (9.2), the second 
integral is seen to be zero. On interchanging the roles of 9i and 9if in the third 
integral and using the fact that f(') is permutation symmetric, we get 

£^i((ai,a2),?:,j|w) - -£i ( (a i ,a2) , i ' , j |w) 
k 

= / [L(0 , (a i ,a2) ,z , jVL(0, (a i ,a2) , i ' , j ) ] TT ^^''"^ 
J{e:9,>e,,} ^̂ 1 

> 0 , 

on using the MLR property and property (c) of (9.2). • 

Lemma 9.3.2 Forai C {i j , . . . Js} anda2 C { j i , . . . , j ^ } , 5,t > 2, a ina2 = (t> 
and for every S, 

Df,,(u,(ai,a2)) > Df;,(u,(ai,a2)), (9.9) 

where S* is as defined by (9,3). 

PROOF. On using Lemma 9.3.1 and from the definition of S*, it follows that 
for every fixed v/ eR^' and u E R'̂ , 

x£;i((ai,a2),i , j |w) 

ieai jE02 

x£;i((ai,a2),z,j |w). 

Now the result follows from (9.8). • 
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For i,j = l,...,k, ai C {ti , . . . , is}, 02 C {ji,.. .,jt},2 < s,t < 
fc-1, { i } ^ 02,0} ^ 0 1 , let 

Dliu, {{i},a2)) = £ ( E ^(^ ' ({0,a2).i, j)<Ji,̂ .{i},a.(u; K,.,..., Vj,) | U = u 
V€a2 

and 

£>ll(u, («1. 0})) = £̂  ( E ^(^ ' («!' {j})' ̂ 'j)<^U.a..{i}(»; ̂ M. • • • . V'iJ I U = U ) . 
\ieai / 

Thus, 

fc A:—1 

£>2(u, («., ̂ , 'J)) = E E '^i.'(") E ^i.'(({^}' «2)|u)£>l,(u, ({z}, 02)) 
1=1 <=2 «2='»2=i>i' . i t} 

jq^hq=l f 

(9.10) 
and 

k-l k 

Ds{u,{u,ri,5)) = J2E^sAn) E VsAiai,{J})\»)Dii{u,{ai,{j})). 
5 = 2 j = l a i :a i={ t i , . . . , i . , } 

(9.11) 
Now, 

Dltiu,{{i},a2)) 

= {m{^))-'l^lflbn,{w,-uA 

and 

= (^(u))~^ / {n ^"2K - "<?) 

E <^»J.»i.{i}("' "'•I ~ " ' 1 , . •., tî i, - Ui,)Ei{{au {j}),?:, j |w) J J d^(«;r). 
ieoi r=l 

The proof of the following lemma is similar to that of Lemma 9.3.2. 
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Lemma 9.3.3 For i, z' € ai , j,f € a2 and ai fl a2 = <?!>, 

(i) / ) l i (u , ( a i , { j} ) )>Df ; i (u , ( a i , { j} ) ) , 2 < s < f c - l , (9.12) 

(ii) Df,(u,({i},a2))>DG(u,({z},a2)) , 2 < t < A: - 1. (9.13) 

The following theorem establishes the optimality of the selection rule S*. 

Theorem 9.3.1 Let T(-) be a permutation symmetric prior and suppose that 
the loss function L satisfies (9.1) and (9.2), Then 

(i) r{r, {u, f), 6*)) < r{r, (i., r?, 5)), V (^, ri,S)eV 

and 
(ii) Rie,{u,fi,S'))<R{e,{u,T],6)), V(i/,7?,(J)eP;, 

fj is the same as i] except that ffii — T]\-^ . 

PROOF, (i) From (9.6) and from the definition of T), it follows that 

Dx{n,{v,ri,6))> D^{n,{u,fi.S)l V (i/,r,,(5) G P . (9.14) 

Also, from (9.7) and (9.9), we get 

£>4(u,(i/,7?,<5)) > Z)4(u,(i/,r?,.5*)), V (z/,»?,<5) 6 I?. (9.15) 

Similarly, from (9.10) and (9.13), we get 

£'2(u, (i/, r?, S)) > D2(u, {v, r?, <5')), V {u, r,, S) e V, (9.16) 

and, from (9.11) and (9.12), we get 

D3(u,(i/,7?,<5)) > £>3(u,(i/,7/,(5')), V (i/,r,,<5) G V. (9.17) 

Now, on using (9.14)-(9.17) in (9.5), we get 

r*J{i^.ri,S))>r;,{{iy.rj,S)),^{u,rj,6)eV, 

which proves the first assertion, 
(ii) For (i^,r/,(5) E P / , we have 

R{e, (i/, 77, (J)) = R{ge, (i/, r,, (J)), V 5 G G. (9.18) 

Fix 0 eR^ and let r be a prior that puts equal weight on each of the permu­
tations of 0. Then, on using (i) and (9.18), we get 

^Y.Rige^i.yJjjn) < ^5]i?(5a,(^,7y.<J)),V(i/,r?,<5)6P/. 
• geG ' geG 

Thisimplies i?(a,(j/,7],5*)) < R{d,{u,Ti,6))., "i {u,r]J) eVj. 
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9.4 The Optimal Two-Stage Selection Rule 

For l < s , t<fc — 1, 3 < s + t < k, we can write 

^l't(u. (01.02)) 

= (m(u))-^ / (rainmin / L(0,(ai,a2),i,j)e^*=i'''"''df(d) 1 

X < Ylbnj{Wg-Ug) 
9=1 

n df^M 
r=l 

it 

= (m(u)) W I*(w,(ai,a2))< rfftnju;,-u,) 
•/"^ .=1 

n < /̂̂ ('"r), 
r = l 

where 

L'(w,(oi,a2)) = minmin / L(a,(ai,a2),i,;)e^«='*'"''<if(a) 
teoi j€02 7n* 

= minminEi((ai,a2),i,j|w). 

The following lemma proves the monotonicity of L'. 

Lemma 9.4.1 Let ai = {ii,... ,ir-i,i}, 02 = {ju--Js-i,j}, a\ = 
{ii , . . . , tr-i , i '} , 0.2 = { j i , . . . , j s - i , / } , |ai|,|a2|,|oi|,|a2| > 1, r + s > 3, with 
Oi n 02 = <̂ i ci n 02 = </>, ai n 02 = ^, 01 n 02 = <̂ . Then 

(i) L*(w, (01,02)) < L*(w, (01,02)), ifwi> > Wi, 

(ii) L*(w,(oi,a2)) < L*(w, (01,02)), ifwj > wy. 

PROOF, (i) For g 6 di n oi and m € 02, consider 

£^i((di,02),g,m|w) - £i((oi,02),9,m|w) 

[I(«,(oi,a2),g,m) - L(tf,(oi,02),g,m)]e^S=i''''"'df(tf) = / , 
{B0i>9i.) 

+ / [L(0, (oi,02),9,m) - L(d, (01,02),g,m)] ê *=> ''''"'df(a) 

+ / [L(d. (oi, 02). q, m) - L{0, q, m)] e^U ^""""drie). 
J{0:ai<e,,] 
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Since f (•) is permutation symmetric, using property (c) of (9.2), we conclude 
that the second integral is zero. Since f ( ) is permutation symmetric, on inter­
changing the roles of 9i and Oi^ in the third integral, we get 

Eiiiai, a2),g,m|w) - Ei{{ai,a2),g,m|w) 

= / [L(»,(ai ,a2),g,m)~L(»,(ai ,a2),9,m)] TT e '̂'̂ ^ 
J{e:ei>e,.} ^^, 

> 0, if Wi' > Wi, 

on using the MLR property and property (c)-(i) of (9.2). 

Again using the same arguments, we get 

•Ei((ai,a2),i',m|w) - jEi((ai,a2),i,m|w) > 0. 

(ii) Follows in a similar fashion. • 

Now we present the main theorem. 

Theorem 9.4.1 Let T(-) be a permutation symmetric prior and suppose that 
the loss function L satisfies (9.1) and (9.2). //6(-) is log-concave (so that the 
underlying pdfs are unimodal), then 

(i) r{rAiy.v\S*))<r{T,{u,v.S)). V (i/, r/, J) G P 

and 

(ii) R{e, (i/, 7]\ S^) < R{d, (i/, /?, (5)), V (i/, r,, 6)eV!. 

PROOF, (i) From Theorem 9.3.1, we have 

r{T.. (i/, fi,6*))< r{T, (i/,r?,6)), V (i/,r?,6) € V. (9.19) 

For 5 , f > l , Z < s + t <k, consider the problem of partitioning { 1 , . . . , fc} into 
three (two) disjoint subsets of sizes 5, k - s -t and t {s and t) with s + t < k 
{s + t = A:). Since log-concavity is preserved under convolutions, it follows 
that 6^2(2:), X 6 R or X 6 Z, is log-concave, i.e., 6n2(^ ~ '^) has the MLR 
property in {w, u). Also, using Lemma 4.1, it is easy to see that L*(w, (ai, a2)) 
has the property of the loss function assumed by Eaton (1967). Hence, for 
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Y^ r?5,^((ai,a2)|u)Df^'^(u,(ai,a2)) 
2):|oi|=.s, 

= (m(u))"^ V %,i({ai,a2)|u) / L*(w,(ai,a2)) 

( a i , a 2 ) : | o i | = . s , 

|a2|=^aina2=<^ 

|a2|=^ai 0 0 2 = 0 

A: 

]][fen2(^'g - U ^ ) 
7=1 

Y[dlJ.{Wr) 
r = l 

> (m(u)) - ' V <,( (a i ,a2) |u) / r ( w , ( a i , a 2 ) ) 
( a i , a 2 ) : | o i | = . s . 

|o2|=^,aina2=<? 

[<7=1 J r=l 

E <t((«i^«2)|u)I>i;(u,(a,,a2)). (9.20) 
iai,n2):\ai\=s. 

\a2\=t,ainQ2=(t> 
Now the result follows from (9.5), (9.19) and (9.20). • 

Corollary 9.4.1 Under the assumptions of Theorem 9.3. U if for a given u, 
(i/,r;*,(S*) is minimax in P / , theri (î , r?*,<5*) is minimax in V. 

PROOF. Since the group of permutations G is finite, the result follows from 
Blackwell and Girshick (1954, Chapter 8). • 

Remark 9.4.1 (i) Under the assumptions of Theorem 9.4.1, the class of selec­
tion procedures (i/,r/*,(J*) G P / is essentially complete in X>/. 

(ii) For finding a Bayes selection rule with respect to a permutation sym­
metric prior or for finding the best permutation invariant selection rule, it is 
enough to optimize i/, which decides about how many indices to select in SL 
and how many indices to select in 5̂ r at Stage 1. 
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Comparing Variances of Several Measurement 
Methods Using a Randomized Block Design with 
Repeat Measurements: A Case Study 
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Abstract: In this chapter we consider the problem of comparing variances of 
several measurement methods in a randomized block design with repeat mea­
surement methods. The analysis is presented in the context of. an actual con­
sulting study, which motivated this chapter. We demonstrate how in a practical 
data analysis, a combination of informal graphical methods and formal infer­
ential methods (multiple comparison methods) are employed to detect outliers, 
identify patterns and draw conclusions with confidence. 

Keywords and phrases: Multiple comparisons of variances, graphical meth­
ods, normal theory methods, robust methods, mixed model, audiological mea­
surements 

10.1 Introduction 

Professor Panchapakesan's contributions have been instrumental for a number 
of advances in the fields of ranking and selection, and multiple comparison 
procedures. Practical applications of these methods are still lagging, however. 
Most published applications use simple one-way layout designs. To spread the 
applications of these methods, it is important to publish actual case studies 
involving more complex designs used in practice. This chapter is a contribution 
in this direction. 

We consider the problem of comparing variances of several measurement 
methods/instruments when repeat measurements are made with each method 
on a randomly selected sample of subjects/items. Such a design is frequently 
used in laboratory experiments in physics, chemistry, biology and psychology, 
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to name a few. The purpose here is to iUustrate how a combination of graph­
ical and formal inference (in particular, multiple comparison) methods aids in 
the analysis of data. The following example from our consulting experience is 
typical of such studies, and will be used to illustrate the various methods. 

Example: The insertion gain of a hearing aid is defined as the difference 
between the sound pressure level (SPL) measured at the eardrum of the wearer 
with the hearing aid in place and the SPL at the eardrum with no aid in place, 
the stimulus being the same under both conditions. For clinical measurement 
of insertion gain, the stimulus is presented over a nearby loudspeaker and the 
response is measured by a probe microphone in the ear canal of the subject. The 
standard practice was to locate the loudspeaker in the ear-level horizontal plane 
of the subject. It was claimed that loudspeaker locations above the horizontal 
plane would yield more precise (less variable) results. A study was conducted 
at the Department of Communication Studies and Disorders at Northwestern 
University to check this claim. The study compared the following loudspeaker 
locations: 

• Location 0: 0"̂  azimuth, 0° elevation (Standard/Control), 

• Location 1: 45° azimuth, 0° elevation (New), 

• Location 2: 0° azimuth, 90° elevation (New), 

• Location 3: 45° azimuth, 45° elevation (New). 

There were 10 subjects with five replicate measurements of insertion gain 
(obtained by measuring the SPL with and without the hearing aid in a random 
order in pairs) at each of the four loudspeaker locations. The order of the 
locations presented was randomized for each subject. Measurements of insertion 
gains were made at 6000 Hz frequency. Table 10.1 gives the raw data. The 
measurements are presented in the order they were taken. The investigator 
was primarily interested in comparing the within-subject variances for different 
measurement methods (loudspeaker locations). The locations apparently affect 
the variability of measurements because the measurement error depends on the 
angle of incidence of the sound waves at the ear drum. 

The outline of this chapter is as follows. Section 10.2 gives graphical analyses 
for detecting outliers and identifying patterns in the data. Section 10.3 shows 
how the conventional normal theory and related robust methods can be adapted 
to compare the variances in the present setting. Section 10.4 applies these 
methods to the data under study. Section 10.5 gives some concluding remarks. 
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Table 10.1: Insertion gain {yijk) in decibels 

Methods 
1 

11.4 
11.5 

0 15.0 
10.0 
9.0 
9.2 
8.0 

1 15.0 
10.3 
9.5 

16.8 
17.7 

2 23.8 
18.5 
19.2 
11.3 
9.8 

3 13.0 
11.0 
10.7 

2 
4.7 
4.5 
8.5 
3.8 
3.3 

-1 .0 
6.3 
4.0 
2.5 
4.0 

16.0 
23.2 
17.0 
15.5 
17.3 
4.7 
8.3 
8.0 
6.2 
7.0 

3 
31.2 
35.5 
27.2 
31.8 
36.5 
28.2 
30.2 
22.0 
23.8 
30.8 
39.5 
41.0 
31.7 
34.2 
45.2 
28.0 
31.2 
23.0 
26.5 
35.7 

4 
22.5 
19.0 
16.5 
18.6 
18.8 
22.8 
17.0 
14.0 
15.5 
17.3 
26.2 
21.2 
23.5 
22.5 
24.3 
19.3 
14.2 
15.0 
15.2 
17.0 

Subject 
5 

17.5 
11.5 
13.5 
18.0 
15.5 
14.0 
9.2 

11.0 
16.0 
13.8 
20.3 
16.5 
18.5 
23.3 
20.0 
15.5 
9.2 

12.2 
15.2 
14.7 

6 
16.0 
3.0 

19.7 
1.2 

14.2 
14.7 
0.0 

15.3 
-0 .3 
14.5 
20.5 

5.0 
22.0 

3.5 
18.5 
12.0 

-2 .3 
11.8 

-4 .0 
12.0 

7 
19.5 
14.3 
8.5 

15.0 
12.5 
16.0 
9.5 
8.0 
9.8 
8.2 

25.3 
19.0 
17.2 
18.5 
20.8 
20.0 
11.5 
8.8 
1.7 

10.8 

8 
6.5 

12.0 
8.5 
2.0 
4.5 
7.5 
6.5 
4.5 
6.0 
4.0 

13.0 
15.0 
12.5 
11.7 
10.7 
3.8 
5.0 
2.3 
3.0 
1.7 

9 
22.2 
21.0 
19.5 
18.0 
17.8 
16.5 
13.7 
13.5 
17.7 
12.8 
25.2 
20.5 
20.7 
21.3 
18.5 
13.5 
10.7 
10.7 
13.0 
9.7 

10 
14.0 
7.5 

11.0 
7.5 
9.5 
0.0 

-2.5 
4.5 
5.5 
4.5 

19.0 
19.0 
17.0 
17.0 
18.0 

7.0 
4.5 
9.0 
7.5 
7.0 
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10.2 Graphical Analyses and Descriptive Statistics 

Before proceeding with detailed analyses it is important to examine the data for 
any excessive or systematic variability and to determine whether the data on 
any subjects should be discarded or modified. We first made box plots (shown in 
Figure 10.1) for each subject of his/her median centered measurements (using 
the separate median for each set of five subject x method measurements). 
Note that because of the median centering, four out of the twenty centered 
measurements for each subject are forced to be zero. From these plots it appears 
that subjects 3 and 6 have a much higher variability than other subjects. To 
examine the reasons for this high variability, run charts were made for the two 
subjects using the methods as labels. These plots are shown in Figures 10.2 
and 10.3 for subjects 3 and 6, respectively. We see that there is something 
unusual going on with these two subjects: for subject 3, the second and fifth 
measurements are the largest while the remaining three are the smallest for each 
method. For subject 6, the pattern is more pronounced: measurements form two 
distinct clusters for each method with the second and the fourth measurements 
close to zero while the remaining three measurements are much larger, about 
10 to 20. Such systematic patterns were not found for any other subjects. It 
could not be determined why these systematic patterns occurred for subjects 3 
and 6, and not for others. Because of these systematic patterns (more than 
for reasons of high variability), these two subjects were discarded from further 
analyses. Note that these systematic patterns could not be revealed by the box 
plots. 

In order to compare the within-subject variabilities of the methods, box 
plots were made of the same median centered measurements but now stratified 
by the method. Note that this forces eight of the 40 centered measurements (for 
eight subjects) to be zero. The result is shown in Figure 10.4. This plot provides 
a preUminary answer to the question under study, namely, an indication that the 
current method has a higher variability than the new methods, with method 3 
having the least variability. We shall investigate this suggestion more fully and 
determine whether any differences are significant. 

Summary statistics for all cells (means y ĵ , variances sfj and logarithms of 
variances given by xij = Insjj) as well as the corresponding statistics for the 
row (method) margins are shown later in Table 10.3. Subjects 3 and 6 are not 
included in the calculation of the marginal statistics for the methods. These 
summary statistics generally confirm the findings of the graphical displays. 

To study the structure of the cell means, a mixed model analysis of variance 
(treating the methods fixed and the subjects random) of the data (omitting 
subjects 3 and 6) is given in Table 10.2. Using the F-tests as guidehnes (be­
cause of the violation of the homoscedasticity assumption; however, due to the 
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Table 10.2: Analysis of variance 

Source 
Methods 
Subjects 
Methods x Subjects 
Error 
Total 

SS 
2225.8 
2593.2 
435.3 
848.8 

6103.0 

DF 
3 
7 

21 
128 
159 

MS 
741.92 
370.45 
20.73 
6.63 

F 
35.80 
17.87 
3.13 

p-vakie 
0.000 
0.000 
0.000 

balanced design the F-tests should be quite robust), we see that all three effects 
as significant. However, the main effects of the methods and subjects dominate 
over their interaction effect. Thus the structure of the cell means appears to 
be additive. This can be verified by fitting an additive model to the data and 
studying the residuals. 

One could make more plots to detect further quirks and patterns in the data, 
but one should be cautious of not crossing the boundary between prudently se­
lected graphics and data-dredging. So we will stop here and summarize our 
findings thus far: subjects 3 and 6 were discarded because they exhibited ex­
cessive and, more importantly, systematic variation. After omitting these two 
subjects, the remaining subjects form a relatively homogeneous group, both 
with regard to their means and SDs. The data on these subjects indicate that 
method 3 has less within-subject variability than method 0. Methods differ in 
their mean levels (with method 2 giving the highest readings and method 1 
giving the lowest readings for most subjects) and the structure of the means is 
roughly additive. 

10.3 Formal Statistical Analyses 

10.3.1 M o d e l 

Let there be i\/ > 2 new measurement methods, whose variances are to be 
compared with a control method, labeled 0. Suppose we have available Â  > 2 
randomly selected subjects and we make uij >2 repeat measurements on the 
j th subject using the ith method (0 < i < M). The following mixed-effects 
model [Scheffe (1959, Ch. 8)] is proposed for the data: 

Vijk = mij -f eijk {0<i<MA<j<NA<k< mj). 

Here (moj,mij, f^^Mj) for j = 1,...,A^ are assumed to be i.i.d. random 
vectors from an (il/ + l)-variate distribution (not necessarily normal) with mean 
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vector (//Q.Mil • • • - /^A/) and covariance matrix E = (cTij/). Furthermore, for each 
method i, the measurement errors Cijk are assumed to be i.i.d. (not necessarily 
normal) with mean 0 and variance af, and they are independent of the rtiij. 
Note that in this model any two observations ?/I;A- and j/i'j'A" are correlated 
(assuming a general E with nonzero off-diagonal elements) if and only if j = 
f. All parameters in the model are unknown. The primary interest lies in 
comparing the imprecisions of the methods as measured by the af. 

10.3.2 Multiple comparison procedures 

Let y^j, and the eij. be the cell means of the yij^ and eijk, respectively. Then 
the 

are distributed independently of the vector (moj, mi j , . . . , rriMj) with 

E{zijk) = 0, Var(zi,fc) = af ("^^i^ ,Cov(zi,^,z,,v) = - — • (10.1) 

Note that the widths of the box plots in Figure 10.4 are roughly proportional to 
SD{zijk) = CiMuij - l)/nij. Furthermore, the Zjjk (1 < fc < Uij) are mutually 
independent for 0 < i < M and I < j < N. Hence for each method z\ the 
within-subject sample variances 

2 _ ^k=\ \ik sf = -^=^ 'f (10.2) 
Jlij - 1 

are mutually independent with 

Eisfj) = af and Var(4) = af + ^ , 

where 7ij is the kurtosis of the distribution of the e.ijk [see Bartlett and Kendall 
(1946)]. Therefore standard procedures based on the independence assumption 
can be used to make inferences on the a\ from the 5̂ .̂ Below we briefly discuss 
such normal theory procedures, and robust procedures that do not assume that 
the ei'^k are normally distributed. 

Normal theory procedures 

Under the normality assumption, ^{j = 0, .ŝ ^ ~ ^fxlt /^U ^^^ the minimum 
variance unbiased estimate of aj is 

2 ^ J = l "^V^ij 2 2 / 
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where Uij = Uij - 1 and Ui = ICjLi ^ij- The usual normal theory procedures can 
be applied to the 5^ to make inferences about the a}. For example, Hartley's 
(1950) Finax test can be used if all pair wise comparisons between the a^ are of 
interest. An illustration of a normal theory procedure for comparing the new 
method variances erf {I < i <3) with CTQ is given in Section 10.4. 

Robust procedures 

It is well-known that normal theory procedures for variances are not robust 
when the assumption of normality is violated. Box (1953) proposed a robust 
procedure for testing the equality bf variances in a one-way layout. This pro­
cedure randomly divides each sample into subsamples of equal sizes and calcu­
lates an estimate of the treatment variance from each subsample. In the present 
problem, the necessity of forming random subsamples is obviated because for 
each method we have N "natiu'al" subsamples, namely {{jijk, ^ ^ k < riij] 
for j = 1 , . . . , N. Thus Box's procedure can be used as follov/s: Compute the 
subsample variances s^j using (10.2) and let 

vCji — ms^^*. 

Then the Xij are independent and, for large riij, are approximately normally 
distributed with 

E{xij) % Inaf and Var(xjj) % \—-: 
Uij — 1 Uij 

see Bartlett and Kendall (1946). The appropriate procedure depends on the 
sample sizes Uij and the assumptions we are willing to make about the 7ij. 
For instance, if uij = n for all i, j and if we assume 7ij = 7 for all ?", j , then 
the Xij have approximately a constant variance. Therefore the usual ANOVA 
procedures can be used to compare the \naj. Multiple comparisons with a 
control can be carried out using Dunnett's (1955) method. This method is 
illustrated in the next section. 

An alternative to the above procedure is to use a nonparametric procedure. 
Different approaches are possible, but a simple one is as follows: Compute the 
Wilcoxon signed rank statistics for comparing the current method with each 
one of the new methods using the xij as the data values, and then refer these 
statistics to the critical point of the null distribution of the maximum of such 
correlated statistics. This test procedure due to Nemenyi (1963) is described in 
Section 2.3.2 of Chapter 9 of Hochberg and Tamhane (1987) and is illustrated in 
the following section. A test based on the signed ranks of xoj-Xij = \n{slj/s'fj) 
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will not only avoid the problems caused by lack of normality of the original 
data or lack of approximate normality of the Xij caused by insufficiently large 
n, but will also be resistant to outliers in the orginal data. 

10.4 Return to Example 

We now return to the example of Section 10.1. Table 10.3 gives the cell vari­
ances, sfj, and their logarithms, Xij, for the data given in Table 10.1. As noted 
in Section 10.2, subjects 3 and 6 are deleted as outliers. All subsequent analyses 
are based on the remaining iV = 8 subjects. 

In this example, one-sided comparisons of new methods with the current 
method are of interest because new methods would be useful only if they reduced 
the variability as compared to the current method. To see if it is appropriate 
to analyze the data under the normality assumptions, we first made normal 
plots of the residuals Zij^ for each method. (Note that this strictly requires 
that the zij^ be independent, which they are not. However, (10.1) gives the 
CoYr{zijk,Zijk') = - l / ( n - 1) = - 1 / 4 , which is fairly small.) The plots, not 
shown here, do not exhibit any gross violation of normality. Therefore we 
consider 100(1 ~ a)% simultaneous upper one-sided confidence limits based on 
normal theory: 

^ < i f | (z = 1,2,3). 

Here, c is the lower 100a percentage point of the smallest of M random vari­
ables, xli/xto (1 ^ ^ ^ M), where the x^, ^re independent chi-square random 
variables with i/j d.f. In the present example, M — 3, Ui = 32 and the sj are the 
middle entries in the last column of Table 10.3. The values of c have been tab­
ulated by Gupta and Sobel (1962). For 1 - a = 0.90, M = 3 and common d.f. 
= 32 for all sample variances, we find c = 0.5314 from Table 3 in their paper. 
Therefore the upper confidence limits for cr?/(TQ for i = 1,2,3 are 1.858, 1.385 
and 1.204, respectively. The ordering of these confidence limits are in agree­
ment with Figure 10.4. Thus none of the ratios cr^/^o ^^^ be demonstrated to 
be less than 1, and hence none of the methods can be shown to significantly 
improve on the current method using a family wise type I error rate of a = 0.10. 

If one does not wish to make the normality assumption, a robust analysis 
can be based on the transformation xij = In sj^ discussed in Section 10.3.2. In 
this case, approximate 100(1 - a)% simultaneous upper one-sided confidence 
limits on ln(af/(TQ) are given by 

\ii{ai/al) < X, - xo 4- ds^.^jT/N (1 < / < A/), 
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Table 10.3: Cell means y^ .̂, cell variances 5̂ ^ and their logs Xij = In 5̂ ^ 

Method 

0 

1 

2 

3 

1 
11.40 
5.15 
1.639 
10.40 
7.29 
1.987 
19.20 
7.40 

2.001 
11.IC 
1.37 

0.315 

2 
4.9() 
4.24 
1.445 
3.10 
7.24 
1.980 
17.80 
9.67 

2.269 
6.84 
2.13 

0.7.56 

3 
32.44 
13.84 
2.628 
27.00 
15.37 
2.732 
38.32 
29.16 
3.373 
28.88 
23.23 
3.145 

4 
19.08 
4.67 
1.541 
17.32 
11.09 
2.406 
23.54 
3.53 
1.261 
16.14 
4.16 
1.426 

Subj 
5 

15.20 
7.45 

2.008 
12.80 
7.24 
1.980 
19.72 
6.25 
1.833 
13.36 
7.13 
1.964 

MX 

6 
10.82 
67.73 
4.216 
8.84 

67.40 
4.211 
13.90 
79.39 
4.374 
5.90 

68.56 
4.228 

7 
13.96 
15.92 
2.768 
10.30 
10.76 
2.376 
20.16 
9.92 
2.295 
12.56 
18.58 
2.922 

8 
6.70 
14.59 
2.680 
5.70 
2.07 

0.728 
12.58 
2.59 

0.952 
3.16 
1.66 

0.507 

9 
19.70 
3.61 
1.284 
14.84 
4.54 
1.513 
21.24 
6.00 
1.792 
11.52 
2.69 

0.990 

10 
9.90 
7.40 

2.001 
2.40 
12.04 
2.488 
18.00 
1.00 

0.000 
7.00 
2.63 

0.967 

Average 

12.613 
7.879 
1.921 
9.615 
7.784 
1.932 
19.030 
5.795 
1.550 
10.218 
5.044 
1.231 

The upper entry in each cell is y,̂ ., the middle entry is 6*̂^ and the lower entry is 
Xij = Insfj. The entries in the 'Average' column are the corresponding averages, 
yj..,5? and Xj, over subjects (excluding subjects 3 and 6). 

where d is the upper lOOa percentage point of the maximum of M jointly 
distributed student t random variables with u = (A/ -f 1){N - 1) d.f. and 
common associated correlation coefficient p = 1/2. The values of d have been 
tabulated by Bechhofer and Dunnett (1988). For 1 ~ a = 0.90, M = 3 and i/ = 
28, we find d = 1.78935 from Table 1 in their paper. Also, 5^, the pooled sample 
standard deviation of the Xjj, is calculated to be 0.733. Therefore simultaneous 
90% upper one-sided confidence limits on \n{a}lal) are calculated to be 0.667, 
0.285 and -0.034 for i = 1,2,3, respectively. The corresponding confidence 
hmits on aj/al are then 1.948, 1.330 and 0.967, respectively. These limits are 
not too different from the confidence limits calculated from the normal theory, 
but here we are able to show that method 3 is significantly better than the 
method 0. (This finding is in accord with the box plots shown in Figure 10.4.) 
It should be noted, however, that these robust confidence limits are based on 
approximate normality of the xij which holds only if the uij are large, whereas 
in the present example uij equal only 5. 

If we do not wish to rely on the approximate normality of the xij, then we 
can use the nonparametric tests referred to previously. The Wilcoxon signed 
rank statistics between method 0 and the three new methods (calculated us­
ing the Xij) are as follows: Wi = 13,1^2 = 22 and Wz = 33. It is well-
known that the joint null distribution of 1^1,1^2, ^̂ '̂ 3 is not distribution-free 
[see Hochberg and Tamhane (1987, p. 255)], and so the exact critical points 
of max(Wi, W21 Ŵ a) ^le not available. We can apply the Bonferroni method 
by comparing the one-sided marginal p-value of 1̂ 3 with 0.10/3 = 0.033. This 
p-value is found to be 0.0195 from Table H in Lehmann (1975) for N = 8. 
Hence method 3 is shown to be significantly better than method 0 at a type I 
family wise error rate of a = 0.10. Alternatively, we can calculate a large sample 
approximate critical value of max(lV'i. H 2̂, W â) given by [see equation (2.16) of 
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Hochberg and Tamhane (1987, Ch. 9)] 

NiN + l) 1 IN{N + 1){2N + 1) 
4 + 2 "̂  ̂ fc.iAay 24 ' 

where 2fc,i/2,Q is the upper a critical point of k equicorrelated standard normal 
variates with common correlation = 1/2. For /c = 3 and a = 0.10, we find 
^k.i/2,Q = 1-7336 using Dunnett's (1989) program. By substituting iV = 8, we 
obtain the desired critical value to be 30.88, which is exceeded by W^. The 
other two methods are not significantly better than method 0. 

One can use Steel's (1959) sign test procedure above if the assumption of 
the symmetric distribution of the Xij - XQJ is not valid. The three sign statistics 
are 5i = 3,52 = 5 and S3 = 7 (because only one subject, viz. subject 7, has 
less variability for method 0 than for method 3). Using Table 1 of Rhyne and 
Steel (1965), we find that the exact multiplicity adjusted p-value of Sj = 7 
equals 0.066 < 0.10. Hence the conclusion drawn using the Wilcoxon signed 
rank is confirmed. Alternatively, we can calculate a large sample critical value 
of max(5i, 52,53) given by [see equation (2.7) of Hochberg and Tamhane (1987, 
Ch. 9)] 

N 1 \/N 

For fc = 3 and a = 0.10, we find 2̂ ,1/3,0 = 1-7738 using Dunnett's (1989) pro­
gram available at the web site http://lib.stat.cmu.edu/general. By substituting 
iV = 8, we obtain the desired critical value to be 7.01, which 53 just fails to 
exceed. 

10.5 Concluding Remarks 

We have given an example of a case study that employed a combination of 
graphical methods and formal multiple comparison methods to arrive at prac­
tically useful conclusions. Graphical examination of the data is helpful in not 
only revealing the main patterns in the data, but also in identifying outliers 
that can vitiate the formal analyses. We demonstrated how standard multiple 
comparison methods for one-way layouts can be readily modified to a more 
complex (but balanced) design used here. 

Based on the graphical displays and formal statistical analyses we can con­
clude that method 3 is more precise (less variable) than method 0 at a = 0.10. 
It is interesting that only the normal theory method for comparing variances 
did not support this conclusion. Since this conclusion is based on the data from 
only eight subjects, it would be desirable to do further experimentation to con­
firm this finding. The investigator should be advised to find possible reasons 
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for the systematic and excessive variability observed in subjects 3 and 6, and 
to avoid those sources of variation in future experimentation. 
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Impact of Missing Data and Imputation Methods 
on Multiple Test Procedures 

Alka Indurkhya 

Department of Society, Human Development and Health, Harvard University, 
Boston, MA U.S.A. 

Abstract: This chapter illustrates how two common missing data mechanisms 
(missing completely at random, and missing at random) influence the Type 
I familywise error rate of the therapeutic window of a drug using multiple 
test procedures. A therapeutic window is determined by the minimum dose 
needed to effectively treat a condition or ailment, and the maximum dose that 
can be safely administered. The effect of multiple imputation procedures for 
these missing data mechanisms is also assessed. Simulation results suggest that 
multiple imputations reduce the familywise error rate of the therapeutic window 
in the presence of missing data. 

Keywords and phrases: Multiple comparisons, missing data, multiple impu­
tation, bootstrap, therapeutic window, step-down procedure 

11.1 Introduction 

Most drugs need to satisfy the minimum effectiveness and maximum safe dose 
threshold criteria during clinical trials before they are marketed. In order to 
measure the doses that correspond to the minimum effectiveness and toxicity, 
respectively we need an experimental design that measures effectiveness and 
toxicity for a range of doses. The range delimited by the minimum effective 
dose (MINED) and the maximum safe dose (MAXSD) of a drug is defined as 
the therapeutic window of the drug. A therapeutic window is determined using 
two approaches: 1) The MINED and MAXSD may be obtained simultaneously 
[Thall and Chen (1999) and Tamhane and Logan (2002)] or, 2) The MINED 
and MAXSD may be obtained individually from the data [Tamhane, Hochberg 
and Dunnett (1996), Tamhane et al. (2001)]. If the experimental design does 
not contain data to simultaneously evaluate both safety and efficacy, then the 
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latter approach may be used to obtain the therapeutic window of the drug. 
However since safety is always a concern in all phases of a clinical trial, data 
on safety and efficacy are generally available to estimate MINED and MAXSD 
simultaneously. Contrary to popular belief that randomized controlled clinical 
trials rarely contain missing data, recent evidence suggests that this is not the 
case [Shekelle et al. (2003), USFDA (2003)]. 

A recent review of the literature indicates that most Phase II and III reports 
from clinical trials do not indicate whether any of the data was missing or 
censored. In the rare case that they do, no mention is made of what procedures 
were used to handle such data in order to estimate the therapeutic window. In 
particular, the impact of missing data on multiple test procedures for estimating 
the therapeutic window has to date received no attention. This paper attempts 
to fill this void in the literature by studying the effect of different missing data 
mechanisms, and multiple imputation procedures on simultaneous estimation 
of MINED and MAXSD. 

11.2 The Therapeutic Window 

Following the traditional notation used in estimation of the therapeutic window 
of a drug, let i = 0 ,1 , . . . , A; correspond to increasing levels of a drug dose whose 
therapeutic window is to be estimated. Let dose i = 0 represent the control unit, 
and doses 1 <i < k represent the experimental units. Let the bivariate random 
variable (Xij.Yij) represent the observed effectiveness measure Xij, and safety 
measure yij, respectively, for subject j treated with dose i. Further, suppose 
that rii subjects are treated with dose i and Â  = Yli=o ^i ^̂  the total number 
of subjects. 

Let {Xij.Yij) ~ A^(e,S) where 

and 

S = 
a^ par 

par r^ 

It is customary to assume that values of /ij that exceed fiQ indicate high 
efficacy, while values of r/̂  that exceed r/o indicate high toxicity. In order to 
formally define MINED and MAXSD we need to consider prespecified threshold 
values for efficacy and toxicity. Let Se be the threshold value for efficacy and 
Ss be the corresponding threshold value for toxicity. Thus if fii > /XQ 4- (Je and 
Vi < 0̂ + ŝ» then dose i is both effective, and safe. 
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Definition 11.2.1 The minimum effectiveness dose for a drug is defined as 

De = MINED = min {fii > MO + Se] 
l<i<k 

and tlie maximum safe dose for a drug is defined as 

Ds = MAXSD = max {ru <7]o + 6s} 
l<j<k 

Note that if De < Ds in Definition 11.2.1 then [De.Ds] is the desired ther­
apeutic window of the drug where all doses greater than De must be effective, 
and all doses less than Ds must be safe. The aim is to estimate De and Ds such 
that for a prespecified Type I family wise error rate a: 

Pr(an unsafe dose declared safe or an ineffective dose declared effective) < a. 
(11.1) 

De is said to exceed k if there exists noi such that /i^ > /io + 5e. Similarly, 
Ds does not exceed 1 if there is no dose j for which r/j < TJQ + Jg. Let De and 
Ds denote the estimated dose levels for De and Ds, respectively. If De > Ds^ 
then we conclude that no therapeutic window for the drug can be found; if De 
does not exist, then we estimate that De > k, and if Dg does not exist, then 
we conclude that Ds < I-

The null and alternate hypotheses to test for efficacy for different dose levels 
of a drug are: 

Hi : 111 < fio + ^e^ 

A\:^i > no + 5e, z = l ,2, . . . , fc, (11.2) 

and to test for safety of the drug, these are given by: 

H^'Vj > Vo-^Ss, 

A^:rij < m-^Ss, j = l ,2 , . . . , /c . (11.3) 

Note that the null hypotheses in (11.2) corresponds to the hypotheses that 
the ith dose is ineffective, while the null hypotheses in (11.3) states that the 
j th dose is unsafe. As discussed in Tamhane and Logan (2002), the following 
t-statistics are used to develop the test procedures to test the hypotheses in 
(11.2) and (11.3), respectively. 

• e __ Xi — XQ — Oe 

dyjl/ni + 1/no 

i^ = J^^M^. M = l,2....,̂ . (11.4) 
•' T^/l/m + l /no ' 
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Thus it follows from equations (11.2) through (11.4) that the estimates of 
De and Ds are: 

De = min {i: Hf is rejected } , 

Ds = maxjj : Hj is rejected >. (11-5) 

The main assumptions in estimating the therapeutic window are that there 
exist predetermined efficacy and safety end points for the drug, and that there 
exists a lower bound for efficacy, and an upper bound for toxicity of the drug. 
Recall that we have also assumed that the data come from a bivariate normal 
distribution, and that the variance across different dose levels is the same, 
namely, a for effectiveness, and r for toxicity. The correlation p between the 
toxicity and efficacy measures is also assumed to be constant across all dose 
levels. 

11,3 Bootstrap Procedures to Estimate the 
Therapeutic Window 

It has been recently demonstrated [Tamhane and Logan (2002)] that the boot­
strap versions of the procedures based on normal theory have several advan­
tages. First, we can relax the assumption of bivariate normality; second, we do 
not need to know the correlation coefficient between efficacy and toxicity; and 
last, significant gains in power are achieved for simultaneous testing of efficacy 
and toxicity. 

The algorithm of the bootstrap SD procedures that has been rigorously 
tested by Tamhane and Logan (2002) is described in Figure 11.1. The pro­
cedure begins after centering the data with respect to the sample means for 
efficacy and safety, respectively. 

Suppose we are to determine the therapeutic window for a drug with three 
dose levels, i.e., i = 1,2,3 along with a control level (z = 0). We first use the 
bivariate sample data to compute the f-statistics for each dose level using the 
formulae in (11.4). Let us denote these by t^.tj for z, j = 1,2,3. 

The BOOTSTRAP FUNCTION in Figure 11.1 starts by generating M ran­
dom samples of size M* for each of the dose levels (i = 0, L 2,3). The t-statistics 
for each of the M bootstrap samples are then computed using (11.4). The func­
tion BOOTSTRAP STATISTICS returns an M dimensional bivariate array of 
these f-statistics for dose levels 1 through 3. Note that the control data is also 
used in (11.4) to obtain the requisite t-statistics at dose levels 1 through 3. 

The BOOTSTRAP SD PROCEDURE (see Figure 11.1) estimates the ther­
apeutic window by performing a series of hypothesis tests using the t-statistics 
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from the BOOTSTRAP FUNCTION and the original dataset, for each dose 
level at a prespecified level of type I error. We denote the t-statistics correspond­
ing to the original dataset by using a single subscript (if, tj), and those from the 
bootstrap with a double subscript (tf̂ , f j^) for i = 1,2,3 and 5 = 1,2,..., Af. 
The hypothesis H^ D H{ for the SDl version is tested using the empirical p-
values. These are (11.6). For the SD2 version, we need to only omit the 
maximum criteria for the t-statistics to obtain the adjusted SD2 p-values. 

e _ E p i l I[^^^l<i<Lr<j<k{tt9^^g) ^ maXi<i</tf] 
P/,r - Jj " . 

P?,r = M 
where 

is the indicator function of the set {maxi<i<i^r<j<k{t^git^jg) ^ maxi<i</tf}. 
Thus it is the number of bootstrap samples for which 

If both P I J and P3 ^ are > a, then we get the estimated therapeutic window 

[4, 0], i.e, no therapeutic window exists as Dg > Ds-
If both P31 and P3j are < a, then we reject both H^ and H{ and test the 

hypothesis iff H H2 using the p-values P2̂ 2 ^^^ P2,2- ^ ^̂ Ŷ ^2 ^ ^̂  ^^^^ ^^ 
test the hypothesis H2DH^. If both p^ 3 and P2 3 are > a, then we need to test 

only the efficacy hypothesis as Dg > 3, i.e., all doses are safe. We can test the 
efficacy hypothesis Hf by calculating the empirical p-value in (11.7) given by 

e E j i i /[maxKK/ tf > maxKK/ t^i] , , , ^, 
p, = - ^ = ^ - — . (11.7) 

If pf is > a, then we have estimated the therapeutic window as [1, 3], i.e., 
all doses are effective and safe. 

However if only i/f < Qf. then we test the hypothesis i/f fl ifl- ^̂  only 
Pi,2 ^ »̂ ^̂ ^̂ ^̂  ^^ ^^^d to test only the safety hypothesis as De < 1, i.e., all 
doses are effective. We can test the safety hypothesis H^ by calculating the 
empirical p-value in (11.8) given by 

^. _ ZgLiI[rmXr<j<kt'jg > maxr<j<k^] 
p, . (11.8) 

If P3 is > a, then we have estimated the therapeutic window £ts [1, 3], i.e.. 
all doses are effective and safe. 
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function BOOTSTRAP STATISTICS (sample) returns ^-statistics for 
efficacy and safety 

inputs: sample is a random sample of size M* from each dose of the mean 
centered bivariate dataset 

return t̂ ,̂ ^^ for i\ j = 1,2,..., A: 

function BOOTSTRAP SD PROCEDURE {^statistics, a) returns thera­
peutic window [Z?e, Ds] 

\ivp\iis:t'statistics from original dataset, and from M bootstrap sam­
ples of size M* using function BOOTSTRAP STATISTICS 
a is the probability of type I error 

initialize / = fc, r = 1 

i f / > O o r r < f c + l and Hf and ifj- are rejected at level afor alH > / +1 , 
and j < r - 1 
then test Hf r\H^{oxl>\ and r<k 

if Hf is rejected at level a then set / = / ' - ! where /' is the index 
corresponding to the maximum f-statistic D^ value between 1 and /. 
else return De = I + 1 
if H^ is rejected at level a then set r = r' -H 1 where r' is the index 
corresponding to the maximum f-statistic value between r and k. 
else return Ds = r - 1 
else if / = 0 and r = fc -h 1 return [De < l.Dg > k], 
else ifr = fc + l , / > l while Hf is rejected at level a and / > 0 
set / = / ' - 1 where /' is the index corresponding to the maximum f-statistic 
value between 1 and /. 
if Hf is not rejected at level a return [De = / + L D.s > fc] 

if / = 0 return [De <l,Ds> k] 
else if / = 0, r < /c while H^ is rejected at level a and r < A: 4-1 
set r = r' + 1 where r' is the index corresponding to the maximum t-
statistic value between r and /c. 
if H^ is not rejected at level a return [De < l.Dg =^ r - I] 
if r = fc -h 1 return [De < 1, Ds > k] else return[De = / + 1, Ds = r - 1] 

Figure 11.1: Algorithm for the SD bootstrap procedure to estimate the thera­
peutic window 
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11.4 Missing Data Mechanisms 

Whenever we encounter missing data in clinical settings, the mechanism that 
causes data to be missing [Little and Rubin (1987)] is either (1) Missing com­
pletely at random (MCAR), or (2) Missing at random (MAR), or (3) Not miss­
ing at random (NMAR). Data are said to be MCAR if the missing values bear 
no relationship to the variables in the dataset. Data are said to be MAR when 
the missing values depend on the values of some variables in the dataset, but 
for the fact that conditional on those values the data are MAR. If the data 
are neither MCAR nor MAR then they are said to be NMAR. This mecha­
nism requires the missing data to depend on unobserved variables. Since we 
are assuming that the efficacy and safety data for different dose levels follow 
a bivariate normal distribution we will focus on only the MCAR and MAR 
mechanisms. 

Many approaches have been investigated in the last two decades to handle 
missing data [Little and Rubin (1987); Schafer (1997)]. The advantage of using 
statistical models that predict missing values is that they allow us to incor­
porate uncertainty in the prediction of missing values. Multiple imputation 
procedures are becoming the tool of choice in estimating missing values as they 
include a random component to reflect the fact that these imputed values are 
estimated. Thus datasets with imputed values are no longer unique due to the 
random component used in estimating the missing values. Hence with multi­
ple imputation, an incomplete dataset will have the missing values estimated 
several times. Each imputed dataset is then separately analyzed as if it were 
complete. The variance of each parameter of interest is now composed of two 
parts: the estimated variance within each imputed dataset, and the variance 
across the datasets. The principle of multiple imputation is summarized in 
Figure 11.2. 

11.5 Simulations 

We generated 100 observations from a bivariate normal distribution with means 
{fii = z, 7]i = z), standard deviations {a = .5, r = .75), and correlation p = .5 for 
z = 0,1,2,3,4. The threshold constants for efficacy and toxicity were specified 
as Sc = 1.01 and S^^ = 1-99 respectively. The true family wise error rate is 
a = .05. 

We performed 5000 repHcations on an IBM workstation using SAS/IML. We 
simulated data missing completely at random by randomly deleting 5%, 10%, 
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Step 1 Generate M sets of imputed values fiim for the missing data thereby 
creating M complete datasets. 

Step 2 Obtain the point estimates {fiim^Vim) and variances i^^.r^) of 
the parameters of interest for r7i = 1,2,..., Af complete datasets from Step 1. 

Step 3 Obtain the adjusted estimates and variances from the imputa­
tions in Step 2 by 

(a) adjusted parameter estimates //j = Z)m=i fiim/^I estimates of the param­
eter value 

(b) adjusted parameter variance a^ = ^rn^i ^̂ " + [̂ f̂f_j|̂ ĵ Em=i(Mim~Mz)^. 

Estimates for fji and f̂  are obtained by following Steps 2 and 3 above by 
replacing /x with r/, and a with r respectively. 

Figure 11.2: Principle of multiple imputation 

and 15% of the observations from (a) efficacy only: (b) safety only; and (c) 
efficacy and safety. We used the SAS procedure PRQEX3 to estimate the 
MCAR data. Then 700 bootstrap samples were generated to estimate the 
therapeutic window using the SDl and SD2 procedures. Note that the doses 
here are linear. Next, we simulated MAR data by deleting 5%, 10%, and 15% of 
the observations from a particular dose for the three situations described above. 
Again, 700 bootstrap samples were generated to estimate the familywise error 
rate of the therapeutic window. The NORM program by Schafer (1997) was 
used to impute data when values were missing at random. 

11.6 Results and Discussion 

We first present the results for the familywise error rate for (11.1) in Table 
11.1 for the different missing data mechanisms, and the bootstrap estimation 
procedures. The mechanism column indicates the missing data mechanism as 
applied to the efficacy, or safety, or both components of the dataset. The 
percent missing column indicates the amount of data that is missing from the 
dataset. The last column indicates the empirical familywise error rate from 
the booststrap SDl (SD2) procedure. Thus if 10% of the data are missing at 
random from the safety column for a particular dose level, then average Type 
I familywise error rate from the SD1(SD2) bootstrap procedure is .076(.062) 
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which is a bit higher than the true error rate of .05. 

Table 11.1: Comparison of family wise error rate using bootstrap procedures in 
the presence of missing data 

Mechanism 

MCAR [Efficacy] 

MCAR [Safety] 

MCAR [Safety and efficacy] 

MAR [Efficacy] 

MAR [Safety] 

MAR [Safety and efficacy] 

Percent Missing 

5% 
10% 
15% 
5% 
10% 
15% 
5% 
10% 
15% 
5% 
10% 
15% 
5% 
10% 
15% 
5% 
10% 
15% 

Error SDl (SD2) J 

.034 (.020) 1 

.048 (.039) 

.062 (.054) 

.030 (.026) 

.046 (.042) 

.060 (.058) 

.023 (.020) 

.028 (.034) 

.042 (.044) 

.044 (.050) 

.067 (.059) 

.083 (.064) 

.060 (.046) 

.076 (.062) 

.091 (.078) 

.043 (.040) 

.091 (.067) 

.112 (.089) 

The results show that regardless of the type of missing data mechanism, 
the familywise error rate increases as the percent of missing data increases. 
Further, data missing at random has a higher familywise error rate than data 
missing completely at random. This is not surprising as we may be incorrectly 
estimating a particular dose if a large percent of missing data happened to be 
from that particular dose. Note that the error rates for the situation when data 
are missing completely at random from the concatenated safety and efficacy 
vector are the lowest. This may be an indication of ample power in the sample 
due to the reduced probability of eliminating both safety and efficacy data 
simultaneously from a particular dose response. 

Tamhane and Logan (2002) showed that the SD2 bootstrap procedure pro­
vided a 5 percent advantage in power for a linear dose configuration as com­
pared to the SDl bootstrap procedure because it does not use the maximum of 
f-statistics in computing the adjusted p-values. We find that this advantage is 
demonstrated in most of the error rate values of Table 11.1. 

The results from multiple imputations for the two missing data mechanisms 
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Table 11.2: Comparison of family wise error rate using bootstrap procedures 
after imputation of missing data 

1 Mechanism 

1 MCAR [Efficacyl 

MCAR [Safety] 

MCAR [Safety and efficacy] 

MAR [Efficacy] 

MAR [Safety] 

II MAR [Safety and efficacy] 

Percent Missing 

5% 
10% 
15% 
5% 
10% 
15% 
5% 
10% 
15% 
5% 
10% 
15% 
5% 
10% 
15% 
5% 
10% 
15% 

error SDl (SD2) | 

.0327.619) 1 

.034 (.029) 

.036 (.034) 

.030 (.024) 

.032 (.030) 

.041 (.033) 

.021 (.020) 

.028 (.024) 

.022 (.024) 

.024 (.020) 

.027 (.019) 

.033 (.021) 

.031 (.020) 

.026 (.022) 

.031 (.018) 

.033 (.030) 

.031 (.027) 

.032 (.019) 1 

are presented in Table 11.2. The most important difference is that imputation 
does markedly decrease the family wise error rates for estimating the therapeutic 
window. The imputations are especially helpful when data is missing at random, 
i.e., the missing data mechanism depends on a particular dose level. We also 
assessed the familywise error rate for step dose configuration where //Q = 0, //i = 
1 and fii = 2 for i = 2,3,4, and r/o = 0,7/i = 1 for i = 1,2,3,4. The rest of 
the parameter specifications were identical to the linear dose configuration. 
The results were similar to those obtained in Tables 11.1 and 11.2 with one 
important difference: SDl performed consistently better than SD2, i.e., had 
lower familywise error rates. 

In conclusion, it is important to assess the amount of missing data at each 
dose level before proceeding to estimate the therapeutic window of a drug. 
Appropriate multiple imputation methods may be helpful in controlling the 
familywise error rate during estimation of the therapeutic window of a drug in 
the presence of missing data. 
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Abstract: We consider an asymptotic second-order efficiency of two-stage pro­
cedures for multiple comparisons concerning components of a linear function of 
mean vectors from Np{^^, E^), z = 1,..., A:, where E^'s are unknown but spheri­
cal structures. The sample size is determined by using a two-stage procedure so 
that simultaneous confidence intervals for component contrasts will cover the 
true parameters with a guaranteed high accuracy and a specified narrow width. 
It is shown that no matter how the initial sample size is chosen, the two-stage 
multiple comparisons procedures do not become asymptotically second-order 
efficient even under the assumption that a known lower bound is available for 
a spherical parameter of each E^. An adjustment of the design constant and a 
proper choice of the initial sample size that occur in the two-stage procedure 
are proposed in order to have the asymptotic second-order efficiency. Numerical 
examples are presented to show how much sample the modified procedure saves 
in each of the multiple comparisons methods. 

Keywords and phrases: Asymptotic consistency, exact consistency, multiple 
comparisons, sample size, second-order efficiency, sphericity, two-stage proce­
dure 

12.1 Introduction 

Suppose that there exist k independent p (> 2)-variate normal populations 
TTj : iVp(^-,Ei), i = 1,...,A;, where /Xj is unknown and E^ = {(T^i)rs) {> 0) is 
unknown, but has spherical structure, i.e., it holds that 

^{i)rr + (T(^i)ss - 2(7(^)^5 = 2 T ^ {I < V < S < p) ( 1 2 . 1 ) 

191 
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with Ti (> 0) unknown. A special case of the spherical model is the intraclass 
correlation model such as E^ = <^i{{^''Pi)Jp+PiJ} for some pi, where J denotes 
a p X p matrix of all Is. Let us consider a linear function of the mean vectors, 
namely, ^ = X)f=i fe;;AXi, where bi's are known and nonzero scalars. We are 
interested in conducting multiple comparisons experiments concerning its cor­
related components (61 'MCP) ^S p treatments along the Hues of Tukey's (1953) 
method of all pairwise multiple comparisons (MCA), Hsu's (1984) method of 
multiple comparisons with the best (MCB), and Dunnett's (1955) method of 
multiple comparisons with a control (MCC). This type of multiple comparisons 
is motivated by the situation in which the user would be typically interested 
in both the direction and magnitude of differences concerning the correlated 
p time components ({i,...,{p) among several populations. See Hochberg and 
Tamhane (1987). 

Let Xii, Xi2,... be a sequence of i.i.d. random vectors for each TT̂ . Having 
recorded Xii,...,Xini from each TTI, let us write Xin, = ^ i ' ^Zl j i i -^u ^^^ 
define Ynn = Zlf=i biXin- with n = (ni, ...^n^:). Then, as for three methods 
stated above, for specified d > 0 (suitably narrow), the following simultaneous 
confidence intervals are defined by using Yn = {Ym^ •••1 Ypn)-

(MCA) For the p{p - l ) /2 differences of component effects, 

Rn = {̂ 1 & - 6 € [Yrri - ^ n - d, Yru -Ysn + dll<r<s< p}; 

(MCB) For comparing each component with the best of the other compo­
nents when a larger component effect is supposed to be better, 

Rn = {̂ 1 ir - maxts € [{Yrn - niaxy^n ~ d)". {Yrti - maxXsn + d)"^], 

r = l , . . . ,p}, 

where x"*" = max{0,a:} and x" = min{0,x}; 
(MCC) For comparing each component with a control component, 

Rn = {̂ 1 ^r ~ Cp e [Yrn - Ypn - rf, ^ n - Vpn + d], r = 1, ...,p - 1}, 

where the component p is supposed to be the control. 
Note that MCB implies the inference of both the indifference-zone and the 

subset selection methodologies for ranking and selection of the best component. 
See Hsu (1984, 1996) for the details. For each method, we want to construct 
Rfi such that 

Pgi^ eRn)>l-a for all d, (12.2) 

where 0 = (/ij, ...,^fc,Ei,...,EA:) with S^s satisfying (12.1), and d (> 0) and 
a 6 (0,1) are both prespecified. 

It is shown for MCA and MCC that 
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where Gp{y) ior y > 0 is defined by 

roo 

Gp{y)=P {$(x) - $(x - v/y)}P-id$(x) for MCA, (12.4) 
. / - O O 

/

oo 
{$(x + v1/) - $(x - ^)V-'d^x) for MCC (12.5) 

-OO 

with $(•) representing a A (̂0,1) c.d.f. It is shown for MCB that 

where 

Gp{y) = r mx + ^)Y-'dHx). (12.7) 
^ ~ o o 

[See Aoshima (2001) for the details.] So, the sample sizes n for MCA, MCB 
and MCC which minimize the sum 5Zi=i ̂ i while satisfying requirement (12.2) 
are given as the smallest integer such that 

k 

ni>^\bi\nJ2\b,\rj = < ( s a y ) (12.8) 
"̂  j = i 

for each TT̂ , where a (> 0) is the constant such that Gp{a) = I - a with Gp(-) 
defined by (12.4), (12.5) or (12.7) accordingly for each method. Since r '̂s are 
unknown, Aoshima (2001) proposed the following Stein (1945)-type two-stage 
procedure to determine the sample sizes n for each method. 
Two-stage procedure 

(Tl) First, take a pilot sample Xij = (Xiji, ...,Xi^p), j = l,...,m, of size 
m (> 2) and calculate Sf = i/"^ Z^^^i Z^JLii^iir -'^ij. - '^i.r + X^J^ with 
1/ = ( p - l)(m - 1) as an estimate of r^ for each TTJ. Here, Xjj. = p"^ Ylr=i ^ijri 
JC-^ = m-^ YlT=i ^ijr î̂ d 'X^,, = (pm)-i Zr=i E"Li ^ur- Define the total 
sample size of each TTJ by 

Ni = max < m. + 1 >, (12.9) 

where [x] denotes the largest integer less than x and ti,{> 0) is a design constant. 
Aoshima (2001) suggested that one may determine t^, as the solution f = t^ to 
the equation 

roo 

k / Gj,{ty/u) (1 - F,{y)f-^ dF,{y) = 1 - a, (12.10) 
./o 
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where Gp() is defined by (12.4), (12.5) or (12.7) according to method and Fr(-) 
denotes a chi-squared distribution function with r degrees of freedom (d.f.). 

(T2) Next, take an additional sample X^^^i^, ...,Xi^^. of size Ni - m for 
each TTj. Let N = {N\,..,,Nk)' By combining the initial sample and the 
additional sample, calculate Xis^ = Â "̂"̂  YLjLi Xij for each TTJ. Then, Aoshima 
(2001) showed that the simultaneous confidence intervals Rj^ based on the 
components (V^jy,..., Kjv) ^̂  ̂ N ~ Yli=i biXn^. satisfies requirement (12.2) 
(exact consistency). 

Here, we consider asymptotic second-order properties of the above two-stage 
procedure. If it holds, for any 0, that 

( k ^ \ 

y]iVi~y]n* I <oo. the two-stage procedure is asymptotically second-order efficient. Aoshima (2001) 
showed that in the case that /c = 1 if it is possible to assume a known and pos­
itive lower bound for the spherical parameter r, a proper choice of the initial 
sample size m makes the two-stage procedure asymptotically second-order ef­
ficient. However, it will turn out here that when A: > 2, no matter how the 
initial sample size m is chosen even under the assumption that a known and 
positive lower bound is available for each r̂ , the two-stage procedure cannot 
become asymptotically second-order efficient. To overcome this disadvantage, 
we shall propose an adjustment of the design constant ti^ in (12.9) so that a 
proper choice of m makes the two-stage procedure asymptotically second-order 
efficient under the assumption that there exists a known and positive lower 
bound for each TJ. Numerical examples are given to illustrate how the proposed 
modification works well to reduce the sample size required in each multiple 
comparisons method. Proofs of all the results are postponed to the Appendix. 

12.2 Main Results 

When fc = 1, Aoshima (2001) showed that if it is possible to assume a known 
and positive lower bound for the spherical parameter r, a proper choice of the 
initial sample size m makes the two-stage procedure (12.9) with (12.10) asymp­
totically second-order efficient. The following theorem shows that it cannot 
possess that property if A; > 2. 

Theorem 12.2.1 When A: > 2, the two-stage procedure (12.9) with (12.10) 
cannot become asymptotically second-order efficient no matter how the initial 
sample size m is chosen even under the assumption that a known and positive 
lower hound is available for the spherical parameter Ti. 
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When fc > 2, instead of nsing the design constant tj, given by (12.10), we 
shall propose an adjustment of tj^ to make the two-stage procedure asymptoti­
cally second-order efficient. 

Theorem 12.2.2 (i) For MCA and MCC in the cases that p = 2,3 and for 
MCB in the case that p < 45, define the design constant ti, in (12.9) as the 
solution t = tj, to the equation 

fOO TOO 

k / Gp{ty/u)dF,{y) -{k-l) Gp{ty/u)dF,^i{y) = 1 - a, (12.11) 
Jo Jo 

where u = {p - l)(m ~ 1) and Gp{') is defined by (124), (12.5) or (12.7) as 
appropriate. Then, the two-stage procedure satisfies requirement (12.2) (exact 
consistency). 
(a) Otherwise, define ty by 

a ( aG''{a)\ 
t . = a + - U - l - — ^ (12.12) 

y G'r,{a) 

with Gp(a) = 'S^Gp{y)\y^a o.'^d so on, where a is the constant such that Gp{a) = 
1 — a. Then, the two-stage procedure possesses the asymptotic consistency as 
ly -^ 00, i.e., 

Pffi^ e Rj^) > I - a + o{iy-^) for alio. (12.13) 

Remark 1 It is easy to see that the right-hand side in (12.24) (in the Ap­
pendix) is asymptotically expanded as in (12.27). Then, we notice that the 
design constant t^ defined by (12.11) is coincident with that defined by (12.12) 
up to the order 0(i/~^). When fc = 1, the expression (12.11) is the same as 
(12.10). 

Table 12.1 gives the values of a and aGp{a)/Gp{a) required in the calculation 
of the formula (12.12) for each method when p = 2(1)10 and a =.10, .05. When 
p = 2,3, Table 12.2 gives the value of i^ for MCA and MCC for a = .10, k = 
2(1)5 and m = 10(10)50 by solving (12.11) numerically. When p = 2(1)5, Table 
12.3 gives the value of t,, for MCB for a = .10, k = 2(1)5 and m = 10(10)50 by 
solving (12.11) numerically. In both Tables 12.2 and 12.3, the corresponding 
value oitiy computed by (12.12) using Table 12.1 is given within parentheses in 
each cell. 

We observe from Tables 12.2 - 12.3 that when p = 2,3, the expansion 
formula (12.12) gives a good approximation to the value of tjy defined as the 
solution to the equation (12.11) when m or i/ is large. As for MCB, especially 
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Table 12.1: Values of a and aG"ia)/G'ia) in (12.12) 

p 

iMCA MCB 
»6;,'(«) 

MCC 

Q = .10 
2 
3 
4 
5 
6 
7 
8 
9 
10 

5.41109 
8.42381 
10.50049 
12.09844 
13.40088 
14.50161 
15.45551 
16.29756 
17.05150 

-1.85277 
-2.29929 
-2.60623 
-2.84397 
-3.03912 
-3.20509 
-3.34971 
-3.47798 
-3.59328 

3.28475 
4.97379 
6.01019 
6.75846 
7.34385 
7.82445 
8.23196 
8.58558 
8.89785 

-1.32119 
-1.59689 
-1.75086 
-1.85588 
-1.93475 
-1.99748 
-2.04931 
-2.09332 
-2.13146 

5.41109 
7.34419 
8.50398 
9.33375 
9.97960 
10.50807 
10.95510 
11.34233 
11.68378 

-1.85277 
-2.19464 
-2.38784 
-2.52026 
-2.62002 
-2.69952 
-2.76533 
-2.82127 
-2.86981 

a = .05 
2 
3 
4 
5 
6 
7 
8 
9 
10 

7.68292 
10.98586 
13.19985 
14.88151 
16.24164 
17.38518 
18.37245 
19.24146 
20.01779 

-2.42073 
-2.98420 
-3.36242 
-3.65142 
-3.88649 
-4.08507 
-4.25720 
-4.40921 
-4.54539 

5.41109 
7.34466 
8.50438 
9.33408 
9.97988 
10.50831 
10.95531 
11.34251 
11.68395 

-1.85277 
-2.19793 
-2.39105 
-2.52314 
-2.62258 
-2.70183 
-2.76742 
-2.82319 
-2.87159 

7.68292 
9.78702 
11.03533 
11.92449 
12.61489 
13.17894 
13.65556 
14.06807 
14.43159 

-2.42073 
-2.82086 
-3.04585 
-3.20027 
-3.31681 
-3.40987 
-3.48702 
-3.55271 
-3.60977 
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Table 12.2: Values of t^ for MCA and MCC when a = .10 

p 
MCA 

2 

3 

MCC 

2 

3 

m 
•~io~ 

20 
30 
40 
50 
10 
20 
30 
40 
50 
10 
20 
30 
40 
50 
10 
20 
30 
40 
50 

2 
7.555 (7.126) 
6.312 (6.224) 
5.980 (5.943) 
5.827 (5.807) 
5.739 (5.726) 
10.161 (9.968) 
9.197 (9.155) 
8.921 (8.903) 
8.790 (8.780) 
8.713 (8.707) 
7.555 (7.126) 
6.312 (6.224) 
5.980 (5.943) 
5.827 (5.807) 
5.739 (5.726) 
8.811 (8.648) 
7.997 (7.962) 
7.764 (7.749) 
7.653 (7.645) 
7.589 (7.584) 

3 
8.393 (7.727) 
6.645 (6.508) 
6.187 (6.130) 
5.977 (5.946) 
5.856 (5.837) 

10.715 (10.436) 
9.436 (9.377) 
9.073 (9.048) 
8.902 (8.888) 
8.802 (8.793) 
8.393 (7.727) 
6.645 (6.508) 
6.187 (6.130) 
5.977 (5.946) 
5.856 (5.837) 
9.293. (9.056) 
8.206 (8.155) 
7.897 (7.875) 
7.751 (7.739) 
7.666 (7.659) 

A-
4 

9.217 (8.329) 
6.977 (6.793) 
6.394 (6.317) 
6.127 (6.084) 
5.974 (5.947) 

11.253 (10.904) 
9.674 (9.599) 
9.225 (9.193) 
9.014 (8.996) 
8.890 (8.879) 
9.217 (8.329) 
6.977 (6.793) 
6.394 (6.317) 
6.127 (6.084) 
5.974 (5.947) 
9.766 (9.464) 
8.413 (8.348) 
8.030 (8.002) 
7.848 (7.833) 
7.743 (7.733) 

5 
10.017 (8.930) 
7.307 (7.078) 
6.600 (6.503) 
6.277 (6.223) 
6.091 (6.057) 

11.775 (11.372) 
9.908 (9.820) 
9.376 (9.339) 
9.125 (9.104) 
8.978 (8.965) 
10.017 (8.930) 
7.307 (7.078) 
6.600 (6.503) 
6.277 (6.223) 
6.091 (6.057) 
10.226 (9.872) 
8.619 (8.541) 
8.162 (8.129) 
7.946 (7.927) 
7.820 (7.808) 
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Table 12.3: Values of U for MCB when a = .10 

p m 

IF 
20 

2 30 
40 
50 
10 
20 

3 30 
40 
50 
10 
20 

4 30 
40 
50 
10 
20 

5 30 
40 
50 

2 
4.300 (4.132) 
3.721 (3.686) 
3.562 (3.548) 
3.488 (3.480) 
3.445 (3.440) 
5.765 (5.691) 
5.330 (5.314) 
5.203 (5.196) 
5.143 (5.139) 
5.108 (5.106) 
6.665 (6.623) 
6.310 (6.300) 
6.204 (6.200) 
6.154 (6.152] 
6.124 (6.123) 
7.323 (7.295] 
7.019 (7.012] 
6.928 (6.925] 
6.884 (6.882] 
6.858 (6.857] 

3 
4.805 (4.497) 
3.923 (3.859) 
3.688 (3.661) 
3.579 (3.564) 
3.517 (3.507) 
6.091 (5.968) 
5.471 (5.445) 
5.294 (5.282) 
5.209 (5.203) 
5.160 (5.156) 
6.914 (6.845] 
6.421 (6.406] 
6.276 (6.269] 
6.206 (6.203] 
6.166 (6.164] 
7.527 (7.482] 
7.111 (7.101] 

1 6.987 (6.983] 
6.928 (6.926] 

1 6.893 (6.891] 

4 
5.329 (4.862) 
4.131 (4.032) 
3.816 (3.774) 
3.672 (3.649) 
3.589 (3.574) 
6.419 (6.244) 
5.614 (5.575] 
5.384 (5.368] 
5.276 (5.267] 
5.213 (5.207] 
7.163 (7.068] 
6.532 (6.511] 
6.347 (6.338] 
6.259 (6.254] 
6.208 (6.204] 

( 7.731 (7.670] 
7.204 (7.190] 

1 7.047 (7.041 
6.972 (6.969 

) 6.928 (6.926 

5 
5.865 (5.227) 
4.343 (4.205) 
.3.946 (3.887) 
3.765 (3.733) 
3.662 (3.641) 
6.749 (6.520) 
5.757 (5.706) 
5.476 (5.454) 
5.343 (5.331) 
5.265 (5.258) 

1 7.412 (7.290) 
1 6.644 (6.617) 

6.419 (6.407) 
I 6.312 (6.306) 
I 6.249 (6.245) 
) 7.934 (7.858) 
1 7.296 (7.279) 
) 7.107 (7.100) 
) 7.016 (7.012) 
) 6.963 (6.960) 
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when 4 < p < 45, the formula (12.12) would give a fairly good approximation 
to the value of t„ with sufficient accuracy. 

Now, we shall show the asymptotic second-order efficiency of the two-stage 
procedure (12.9) with (12.11) or (12.12). To derive asymptotic properties up to 
the second order, it is crucial to assume that there exists a known lower bound 
Tii, (> 0) for Tj. [See Mukhopadhyay and Duggan (1997).] We assume that 

Theorem 12.2.3 Define the initial sample size m by 

k 

(12.14) 

m = max < mo, + 1 (12.15) 

with THQ (> 2) fixed. Then, the two-stage procedure (12.9) with ty defined by 
(12.11) or (12.12) asserts for any 9 satisfying (12.14) that 

\\m EMNi - n*) = ^ "^^ ^ 1 + ^ (12.16) 

for each TTI , and hence 

C/--0 S[^^ {r{') 2 ( p ~ l ) m i n i < K , | 6 , h . E ? = i | 6 ; h . 2 
(12.17) 

By using (12.16)-(12.17) for each method, one may estimate the discrepan­
cies between the expected and observed sample sizes. The specification of the 
lower bound n^s is crucial to reduce the required sample sizes. By observing 
the value of aG^^{a)/Gp{a) tabulated in Table 12.1, we notice that MCB has 
the most significant improvement when d -^ 0. 

12.3 Moderate Sample Performances 

In order to study the performance of the modified two-stage procedure (12.9)-
(12.15) with (12.11) or (12.12), we resort to computer simulations. We fix 
p = 4, k = 2 and (61,62) = (1 , -1) . Independent pseudo-random normal 
observations from TTJ : Ar4(/x-,Ei), i = 1,2, were generated where /Lt̂ s were 
fixed as /xi = (0.1,0.1,0.1,0.1)', ^3 = (0.1,0.2,0.3,0.4)', and E^s were fixed as 
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Si = 5( | /4 + \J). S2 = 5(| /4 + \J) with J a 4 X 4 matrix of all Is. That 
is, Ti = 1 and T2 = 0.5. 

Tables 12.4, 12.5 and 12.6 present simulated results for MCA, MCB and 
MCC, respectively. Our goal is to construct 90% fixed-width simultaneous 
confidence intervals for the components of ^ = /ij — /i2- ^^ other words, we 
have a = .10. Then, from Table 12.1, a = 10.50049 (MCA), a = 6.01019 (MCB) 
and a = 8.50398 (MCC). Let n^ (= nj + n$) be 100, 200 or 300, whereas with 
a fixed value of n* one easily obtains from (12.8) that d= .486, .344 or .281 for 
Table 12.4, d= .368, .260 or .212 for Table 12.5 and d= .437, .309, or .253 for 
Table 12.6. 

In Tables 12.4-12.6, the findings obtained by averaging the outcomes from 
10,0.00 (= /?, say) replications are summarized in each situation. Under a fixed 
scenario, suppose that the rth replication ends with Ni = nir {i = 1,2) ob­
servations and the corresponding fixed-width simultaneous confidence intervals 
Rrir based on rir = (nir, n2r) for r = l,...,i?. Now, rii = ^~^Z^f=i^ir 
which estimates n* with its estimated standard error s{ni) where s'^{ni) = 
(/?^ - R)^^ 5lf=i(^ir - ^i)^i i = 1>2. Then, n (= ni + 712) estimates the to­
tal fixed-sample-size n* (= n\ + nl) with its estimated standard error s{n), 
computed analogously. In the end of the rth replication, we also check whether 
^ belongs to the constructed simultaneous confidence intervals Rur and define 
Pr=l (or 0) according as ^ does (or does not) belong to jRrir̂  ^ = 1, ...,i?. Let 
p = R^^Yl^^riPr which estimates the target coverage probability, having its 
estimated standard error s{p) where.5-̂ (p) = jR~^p(l - p). 

We studied the performance of the modified two-stage procedure (12.9)-
(12.15) with (12.12) for MCA and MCC or with (12.11) for MCB, under the 
additional assumption that we knew some positive lower bounds for the un­
known Ti's. We considered two situations: With the previous setup of SiS, we 
had fixed two separate cases for Tables 12.4-12.6: (Tu,r2*) = (0.6,0.3) and 
(TU»'^2*) = (0.9,0.45). For the first choice, the known lower bounds are far 
off from the assumed true values whereas in the case of the second choice, the 
known lower bounds are much closer to the true entries. 

Let us explain, for example, the entries from the third block in the first part 
of Table 12.4 (MCA). We consider n* = 300 and hence d = .281, n\ = 200, n^ = 
100 from (12.8). One obtains m = 36 using (12.15) (having mo = 10, for exam­
ple) and thus U = 10.861 using (12.12). Then, we also gave the corresponding 
value due to Aoshima's procedure (12.9) with (12.10) within the parenthesis. 
With the initial sample of size m = 36, one obtains U = 11591 using (12.10) in 
Aoshima's procedure. Next, from 10,000 independent simulations, we observed 
ni = 206.98 (220.86), s{ni) = .241 (.257), riz = 103.52 (110.45), 5(712) = 
.105 (.112) and n = 310.50 (331.31), s{n) = .316 (.337). Also, we had p = 
.9066 (.9235), s{p) = .00291 (.00266) and ui - n\ = 6.98 (20.86), n2 - n^ = 
3.52 (10.45), n-n* = 10.50 (31.31). The values within parentheses are those 
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corresponding values due to Aoshima's procedure (12.9) with (12.10) as before. 
One has Ci = 6.87, C2 = 3.53 (C = Ci + C2 = 10.40) which express the 

values of the right side in (12.16) for i = 1,2. We note that rii and n are closer 
to n* and n*, respectively, and that their estimated standard errors have gone 
down compared with the entries within parentheses for Aoshima's procedure. 
Theorem 12.2.3 indicates that one may expect n̂  ~ n* to fall in the vicinity 
of the value of Ci, i = 1,2. Our experimental evidence favors that sentiment. 
One will observe that the values of EQ^NI ~ n*) are approximated fairly well 
by these asymptotic values for small d. We clearly observe that the extent 
of over-sampling has reduced when we moved from the first set of TI^S to the 
next in Table 12.4 as expected in Theorem 12.2.3. The specification of the 
lower bounds is crucial to reduce the sample size from each TTI. Throughout, by 
considering both p and s(p) values, we may claim that the modified procedure 
(12.9)-(12.15) with (12.11) or (12.12) seems to satisfy requirement (12.2) well 
for both small and moderate values of n* and n*s under consideration. 

12.4 Concluding Remarks 

The asymptotic expressions from Theorem 12.2.3 provide useful guidelines by 
explaining the discrepancies between the expected and observed results, even 
when the total fixed-sample-size n* is not very large. We have reduced the 
amount of over-sampling significantly by considering an adjustment of the de­
sign constant in Theorem 12.2.2. Section 12.3 includes encouraging findings 
based on extensive computer simulations. 

To achieve the goal described above, we have simply used a common number 
for the initial sample size of all Tr̂ 's by taking mini<i<)t \hi\Ti^ in (12.15). How­
ever, once we focus on the reduction of the sample size, that choice of the initial 
sample size might not be always an optimal one. The initial sample size should 
be determined for each TT̂  by reflecting on each prior information through TJ* 
and may be a different number for each -Ki. See Aoshima and Miyajima (2001) 
for such an attempt. 

Appendix 

The following lemma is crucial for the proof of Theorem 12.2.1. 

Lemma 12.4.1 The design constant ti, in (12,9) with (12.10) is asymptotically 
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Table 12.4: Simulated results for MCA 

n* 

nl 

n5 

n* 

nl 

"2 

n* 

nl 

"5 

n* 

nl 

n5 

n* 

nl 

"2 

n* 

"1 

n$ 

100 

66.67 

33.33 

200 

133.33 

66.67 

300 

200.00 

100.00 

100 

66.67 

33.33 

200 

133.33 

66.67 

300 

200.00 

100.00 

d 
TU = 

.486 

.344 

.281 

n* = 
.486 

.344 

.281 

m 
= 0.6, 

12 

12 

24 

24 

36 

36 

= 0.9, 

27 

27 

54 

54 

81 

81 

tu 
T2. = 0.3, 
11.648 
(12.932) 

11.049 
(11.938) 

10.861 
(11.591) 

T2* = 0.45 
10.986 
(11.824) 

10.739 
(11.341) 

10.658 
(11.155) 

n 
C = 10.40, 
110.79 
(122.89) 
73.83 
(81.92) 
36.96 
(40.97) 
210.47 
(227.32) 
140.23 
(151.48) 
70.23 
(75.84) 
310.50 
(331.31) 
206.98 
(220.86) 
103.52 
(110.45) 

, C = 5.18, 
105.21 
(113.14) 
70.00 
(75.30) 
35.22 
(37.84) 
205.31 
(216.76) 
136.79 
(144.44) 
68.52 
(72.33) 
305.33 
(319.50) 
203.47 
(212.93) 
101.86 
(106.58) 

s{n) P 
. Ci = 6.87. C2 = 

.200 
(.222) 
.153 
(.169) 
.067 
(.074) 
.266 
(.287) 
.203 
(.219) 
.088 
(.096) 
.316 
(.337) 
.241 
(.257) 
.105 
(.112) 

.9147 
(.9329) 

.9087 
(.9228) 

.9066 
(.9235) 

, Ci = 3.33, C2 — 
.124 
(.133) 
.094 
(.102) 
.041 
(.044) 
.171 
(.181) 
.130 
(.137) 
.057 
(.060) 
.206 
(.216) 
.157 
(.164) 
.069 
(.072) 

.9042 
(.9233) 

.9004 
(.9155) 

.9027 
(.9138) 

5(P) 
3.53 
.00279 
(.00250) 

.00288 
(.00267) 

.00291 
(.00266) 

1.85 
.00294 
(.00266) 

.00299 
(.00278) 

.00296 
(.00281) 

n-n* 

10.79 
(22.89) 
7.17 

(15.25) 
3.62 
(7.64) 
10.47 
(27.32) 
6.90 

(18.15) 
3.57 
(9.17) 
10.50 
(31.31) 
6.98 

(20.86) 
3.52 

(10.45) 

5.21 
(13.14) 
3.33 
(8.63) 
1.88 
(4.51) 
5.31 

(16.76) 
3.46 

(11.10) 
1.85 
(5.66) 
5.33 

(19.50) 
3.47 

(12.93) 
1.86 
(6.58) 
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Table 12.5: Simulated results for MCB 

d m t^, n s{n) p s{p) fi-n* 
Tu = 06 , T2, = 0.3, C = 8.02, Ci = 5.29, Cz = 2.74 ~ 

n* 100 .368 6.540 108.83 .198 .9355 .00246 8.83 
(7.257) (120.66) (.220) (.9453) (.00227) (20.66) 

66.67 12 72.55 .151 5.88 
(80.45) (.167) (13.79) 

n*2 33.33 12 36.28 .066 2.95 
(40.21) (.073) (6.87) 

n* 200 .260 6.256 208.50 .264 .9227 .00267 8.50 
(6.771) (225.56) (.286) (.9337) (.00249) (25.56) 

n\ 133.33 24 139.04 .201 5.71 
(150.43) (.218) (17.10) 

nl 66.67 24 69.45 .088 2.79 
(75.12) (.095) (8.46) 

n* 300 .212 6.170 308.47 .317 .9181 .00274 8.47 
(6.595) (329.63) (.338) (.9291) (.00257) (29.63) 

nl 200.00 36 205.72 .240 5.72 
(219.84) (.257) (19.84) 

n5 100.00 36 102.75 .106 2.75 
(109.79) (.113) (9.79) 

Tu = 0.9, Ta, = 0.45, C = 4.12, Ci = 2.63, Cg = 1.49 
n* 100 .368 6.227 104.33 .124 .9339 .00248 4.33 

(6.714) (112.39) (.134) (.9422) (.00233) (12.39) 
nj 66.67 27 69.47 .094 2.81 

(74.87) (.102) (8.20) 
n5 33.33 27 34.85 .041 1.52 

(37.52) (.044) (4.18) 
n* 200 .260 6.115 204.35 .170 .9213 .00269 4.35 

(6.466) (215.99) (.180) (.9279) (.00259) (15.99) 
n\ 133.33 54 136.18 .130 2.85 

(143.96) (.137) (10.63) 
n$ 66.67 54 68.16 .056 1.50 

(72.04) (.060) (5.37) 
n* 300 .212 6.080 303.97 .208 .9189 .00273 3.97 

(6.369) (318.39) (.218) (.9268) (.00260) (18.39) 
nl 200.00 81 202.55 .158 2.55 

(212.18) (.165) (12.18) 
n5 100.00 81 101.41 .069 1.41 

(106.22) (.073) (6.22) 

We observed that the fixed-sample procedure (12.8) of size n* = 100, with (12.7) 
guaranteeing the inequality (12.6), had p = .9272 {s(p) = .00260). When n* ^ 200 or 
300, it was p = .9175 {s{p) = .00275) or p = .9143 (sip) = .00280). 
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Table 12.6: Simulated results for MCC 

m U n s{n) sm n — n* 
Ti« = 0.6, T2» = 0.3, C = 9.79, Ci = 6.47, C2 = 3.33 

n* 

"T 

«2 

n* 

n« 

"5 

n* 

n* 

"2 

n* 

"T 

"5 

n* 

"T 

"5 

n* 

"1 

n2 

100 

66.67 

33.33 

200 

133.33 

66.67 

300 

200.00 

100.00 

100 

66.67 

33.33 

200 

133.33 

66.67 

300 

200.00 

100.00 

.437 

.309 

.253 

Tu = 
.437 

.309 

.253 

12 

12 

24 

24 

36 

36 

= 0.9, 

27 

27 

54 

54 

81 

81 

9.377 
(10.423) 

8.922 
(9.646) 

8.778 
(9.373) 

T2. = 0.45 
8.873 
(9.557) 

8.685 
(9.175) 

8.624 
(9.029) 

110.64 
(122.88) 
73.75 
(81.93) 
36.89 
(40.95) 
210.31 
(227.31) 
140.18 
(151.52) 
70.14 
(75.79) 
310.45 
(331.41) 
206.95 
(220.93) 
103.50 
(110.48) 

, C7 = 4.91, 
105.14 
(113.14) 
69.98 
(75.33) 
35.16 
(37.81) 
205.04 
(216.55) 
136.58 
(144.25) 
68.46 
(72.29) 
304.84 
(319.11) 
203.11 
(212.62) 
101.73 
(106.49) 

.203 
(.226) 
.154 
(.171) 
.068 
(.076) 
.266 
(.287) 
.202 
(.218) 
.089 
(.096) 
.317 
(.339) 
.243 
(.259) 
.105 
(.112) 

.9136 
(.9316) 

.9074 
(.9243) 

.9049 
(.9208) 

Ci = 3.15, C2 = 
.124 
(.134) 
.095 
(.102) 
.041 
(.045) 
.169 
(.179) 
.130 
(.137) 
.056 
(.059) 
.203 
(.213) 
.155 
(.162) 
.068 
(.071) 

.9092 
(.9260) 

.9049 
(.9160) 

.9029 
(.9163) 

.00281 
(.00252) 

.00290 
(.00265) 

.00293 
(.00270) 

1.76 
.00287 
(.00262) 

.00293 
(.00277) 

.00296 
(.00277) 

10.64 
(22.88) 
7.09 

(15.26) 
3.56 
(7.62) 
10.31 
(27.31) 
6.85 

(18.19) 
3.47 
(9.13) 
10.45 
(31.41) 
6.95 

(20.93) 
3.50 

(10.48) 

5.14 
(13.14) 
3.32 
(8.66) 
1.83 
(4.48) 
5.04 

(16.55) 
3.24 

(10.92) 
1.79 
(5.63) 
4.84 

(19.11) 
3.11 

(12.62) 
1.73 
(6.49) 
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expanded as v -^ oo as folloxus: 

t^^a^^^^O{v-'l (12.18) 

where i/ = (p - l)(m - 1), a is the constant such that Gp(a) = 1 - a for each 
Gp{') defined by (12.4), (12.5) or (12.7), and ai = E{mmi<i<k Zi) with ZiS 
being i.i.d. N{0^1) random variables. 

Remark 2 Note that ai < 0 when A: > 2. 

PROOF OF LEMMA 12.4.1. We note that (12.10) can be rewritten as 

where W^s are i.i.d. chi-squared random variables with z/ d.f. By using the 
technique similar to Lemma 1 (ii) in Aoshima and Takada (2004), the left-hand 
side in (12.19) is asymptotically expanded as 

v ^ 2 a ^ ^ (12.20) 

Then, the expression (12.18) is obtained in a straightforward manner. • 

PROOF OF THEOREM 12.2.1. Once we obtain the design constant t^y expanded 
in the form (12.18), the proof is essentially same as that of Theorem 1 in 
Aoshima and Takada (2004). • 

The following lemma is used in the proof of Theorem 12.2.2. 

Lemma 12.4.2 (i) For MCA, MCB and MCC, -Gp{y) is convex for y > 0 
whenp = 2,3; 
(ii) For MCA and MCC, -Gp{y) is not always convex for y > 0 when p > 4, 
where Gp{') is defined by (12.4), (12.5) or (12.7) according to the method. 

Remark 3 As for MCB with p > 4, we numerically observed that -Gp{y) is 
convex for y > 0 unless p > 46. 

PROOF OF LEMMA 12.4.2. (i) When p = 2, we see that G2{y) < 0, y > 0 for 
each method since 

p - y / 4 / I i \ 
G'iiy) = - - — = ~ + - (for MCA and MCC); 

^y/Tvy \2 yj 
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It shows that ~G2(y) for each method is convex for y > 0. When p > 3, we 
have that 

G;{y) = P ( P - y P - 2 ) r {$(^) _ $(;, _ ^)}P-^4,{x - ^)}'d^x) 
^y ./~oo 

/

OO 

{$(x) - ^{x - ,/y)}P-^x(l)ix - v/j/)rf$(x) (for MCA); 
'OO 

G';{y) = ^P-'^l^P-^^ r {$(0; + v^)}''-3{cA(x + Vy)}'d^x) 
^y ./-ex 

"^V^ (i + ^) /_ J^(^ + y/y)V-'Hx + v/y)rf$(.x) 

-^^f^ r {$(x + v/y)}''-̂ x<A(x + v/y)d$(x) (for MCB); 
4j/ 7-00 

G;'(y) = ^^"^]^^"^^ /_ j$(x + ^) - ^x - ^)y-' 

{(l>{x + y/y) + (t>{x - ^)}^d^x) 

{</)(x + v^) + 0(x - y/y)}d^x) 

- ^ ^ /_ J^(^ + v/y) - ^x - ^)r-'x 
{4>{x + y/y) - (t>{x - y/y)}d^x) (forMCC), 

where (f>{-) denotes a N{0,1) density function. To evaluate Gp{y) when p = 3, 
the following formulae are useful: 

e-y/3 

/

CX) 

{Hx + Vy)}'d^x) = 
-OO 

/

OO r5-y/3 

J<^(:r-yy)}2d$(a:) = ^ , 
3) / (l>{x + ,/y)<t>{x - ^)d$(x) = - ^ , 

^ - 0 0 ZyOTT 

4) |_" $(x + v^)0(a; + ^)d^x) = ^ $ ( ^ ) , 

5) J_^^x + ^mx-^)d^x) = -^^ Ufj , 

6) / " $(x - ^)<^(x+^)d^x) = ̂ ^ ( - \ / ? ) ' 
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(7) | _ " $(x - ^)cb{x - v/y)d$(x) = | ^ $ ( - ^ 1 ) , 

(8) £ .^(. + V-vm. + )̂d.(x) = 0 ! - ̂ ^ (/f) , 

(9) £ x ^ ( . + ^)^(. - ^)d^(.) = ^ + ̂ ^ ( / f ) , 

/

CX) 

3-$(x - v/y)</>(a; + ^/y)d^x) 
-OO 

v^^""^%f_./¥V 
4\/37r 4\/7r V V 2 

v/3 . A7P-W/4 
(u) £ x*(x - vv)*(x - vvm^) = ^ + ̂ * ( - / I ) , 

(12) « W - *(0) = ~ - x + \F3{X'). 

where F^{') denotes a chi-squared distribution function with 3 d.f. Then, a 
tedious calculation yields 

iVSTT 4y?y V2 ^ y J V2 ^ 2-

(for MCC). 

Since G%{y) < 0, y > 0 for every method, the convexity of —Gz{y) is proved, 

(ii) We first note that 

$(x)-$(o) = 4=r'(̂ )'̂ "'̂ '̂ * 
V27r ./o 

T T „5 (^^^^^^ ^ 71^ — 2(2n - 1)!! n îiSo^2"̂ (̂-') 
g-x2/2 OO ^in-\ 

E 

snice 

27r „t;{2n-l)!! ' 

n ^ ^ 2(2n-l)!! = v i ^"^ „lim^2r,+i(x2)=0. 



208 M. Aoshima and T. Kushida 

So, when j / (> 0) is small, 

v/2^ „t ' i (2^^-l)" v/2i ^tl (2^^-!)" 
g-x2/2 ^ ^2n-~l 

E v/2^ „t'i(2n-l)!! 
p-xV2 

(1+X 
v/2^ 

= N/j/<A(a:) + 0(y). 

Similarly, when j/ (> 0) is small, 

Hx + v/y) - ^(^ - v/J/) = 2v/y</)(a;) + 0(j/). 

Also, for small y (> 0) it holds that 

(t>{x ± v/y) = <t>ix){l T xv/y + 0{y)). 

After combining these results, a tedious calculation shows that 

(^M-^Jf^^y'^*0(y'^) (for MCA); 

G;iy) = "-'%:'^^^-'\'i'+0(v'i') (forMCC). 

So, when p > 4, one may conclude that Gp{y) > 0 for small y (> 0). Hence, 
-Gp{y) for MCA or MCC is not always convex when p > 4. • 

PROOF OF THEOREM 12.2.2. Let us take a constant < (> 0) instead of t^, 
given by (12.10). Since vS^jrf is distributed as the chi-squared distribution 
with 1/ = (p - l)(m - 1) d.f., we have from (3.2) in Aoshima (2001) that 

PQ{ii e RN) > Eg IG, (lH^i^i) ] ' (12.21) 

where W^'s are i.i.d. chi-squared random variables with v d.f. and 

\bi\Ti/Wi 
a = E?=i|6ilVW'/ 
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In view of Lemma 12.4.2 and Remark 3, when -Gp{y) is convex for y > 0, the 
expression (12.21) is bounded below by 

= kE [G, (V?)} - Y. EB IY-CA (;«'•') I. (12.22) 

By using the technique given by Takada and Aoshima (1997, p. 358), we have 
for each i 

Ee IE^JGP {U/vf) \<E\G, (^-Wf)]{\ - Eg{c.)), (12.23) 

where W^'s are i.i.d. chi-squared random variables with u + l d.f. Substituting 
(12.23) into (12.22), we have 

(12.24) 
Then, part (i) is obtained. 

In view of Lemma 12.4.2 and Remark 3, wlien -Gp{y) is not always convex 
for 2/ > 0, we note that the expression (12.21) is rewritten as 

Pe{^eRN)>EQ{Gp[tX,:)}, (12.25) 

where Xiy = u~^ lZi=i ^i^f- Then, by using the technique similar to Theorem 2 
in Aoshima and Takada (2004), the right-hand side in (12.25) is asymptotically 
expanded as 

G^{t) + U-' [c'^imi -k) + G;it)t' E / ' } + ̂ ('^'')' (12.26) 

where fi = \bi\Ti/ Yl'j=\ l^jkj- We formally put t — a + u'^b into (12.26) where 
a is the constant such that Gp{a) = 1 - a for each method and 6 is a constant 
free from u. Then, we have 

>l-a + u-' IG;(a)6 + G'p{a)a{\ - k) + G;{a)a^ J ] ff\ + o{u-') 

> 1 - a + u-^{G'j,ia)b + G'p{a)a{l - k) + G'^ia)a^} + o(z^-^), (12.27) 
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where the inequaUty (12.27) follows from the facts that Gp{a) < 0 for a nominal 
level of a (see Table 12.1) and Y!,i=i fi ^ 1- So, if the constant b is chosen as 
in (12.12), the two-stage procedure (12.9) possesses the asymptotic consistency 
in (12.13) as 1/ -• 00. Then, part (ii) is obtained. • 

PROOF OF THEOREM 12.2.3. We first recall from Remark 1 that both the 
design constant t̂ /'s defined by (12.11) and (12.12) have the same expression 
up to the order 0(i/-^). Let AT* = [{tu/d'^)\bi\SiZUi l̂ jl'̂ jl + ^' ^^^ ^ ^^^^ 
(12.14), it follows that 

mPg{Ni = m) = o(l) as d -> 0. 

So, we have from (12.9) that 

EgiNi) = Eg{N*) + 0(1) as d-^0. 

Let 
1. r 1-

Ji=^^\bi\SiJ2\bj\Sj-

(12.28) 

Then, we have as d —• 0, 

tu EffiN*) = EQ\^Y1 MbjlSiSj + 1 - EgiJi) 
j = i 

=i'-M*-' aG';{ay 
G'ia) . 

xhM + EMf>j\''i^j{^-^)\ + ^-^e(Ji) + oii) 

= n* + 2k-Z-^-^]i:Mbj\rirj-^bhf 
j = i 

(12.29) 

2u(P 

+l-EgiJi) + oil). 

Prom Theorem 3 in Takada (2004), it follows that 

Eg{Ji) = 1/2+ o{\) as d^O. (12.30) 

By combining (12.29)-(12.30) with (12.28), the proof is completed. • 
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Measuring Agreement in Method Comparison 
Studies - A Review 

Pankaj K. Choudhary^ and H. N. Nagaraja^ 
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Richardson, TX U.S.A. 
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Abstract: Assessment of agreement between two or more methods of measure­
ment is of considerable importance in many areas. In particular, in medicine, 
new methods or devices that are cheaper, easier to use, or less invasive, are 
routinely developed. Agreement between a new method and a traditional refer­
ence or gold standard must be evaluated before the new one is put into practice. 
Various methodologies have been proposed for this purpose in recent years. We 
review the literature focussing on the assessment of agreement between two 
methods, and on the selection of the best when several methods are compared 
with a reference. A real data set is analyzed to illustrate the various approaches. 

Keywords and phrases: Limits of agreement, gold standard, intersection-
union tests, intraclass correlation, concordance correlation, selection of the best 

13.1 Introduction and General Overview 

When multiple methods are available for measuring a variable of interest, one 
is led to the task of some sort of comparison that depends on the objective of 
the study General goals of such studies are [Lewis et al. (1991)]: 

(a) Comparison: A new method has to be evaluated by comparison with an 
established standard, often called a gold standard or a reference method. 
Neither method may be accurate or precise. The goal is to learn the extent 
to which the measurements from the two methods agree and understand 
the nature of their differences. If the methods agree sufficiently well, we 
can use them interchangeably or use the new one, which is cheaper or 
more convenient, in place of the gold standard. 

215 
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(b) Calibration: Compare an approximate method with a known accurate 
and precise method whose measurement error is negUgible. The goal is 
to establish a mathematical relationship between their measurements so 
that the approximate method can be used as a predictor of the accurate 
and precise method (and hence of the true measurement). 

(c) Conversion: Compare two approximate methods that measure two vari­
ables in different units that are surrogates for the same underlying quan­
tity. The goal is to interpret the results of one in terms of the other. 

The focus of this chapter is on surveying the recent, growing literature on 
the first topic. We concentrate only on the case when the measurements are 
continuous. Lin (2003), Lin et al. (2002) and Shoukri (1999) provide brief 
reviews of this area, but our scope is comprehensive and broader. The problem 
of assessing agreement in the categorical measurements case has been discussed 
extensively elsewhere. See the reviews by Kraemer, Periyakoil and Noda (2002), 
and Banerjee et al. (1999), and the books by Shoukri (2004) and Fleiss (1981). 
Also, see Cameron (1982) for an introduction to calibration problems, and to 
Lewis et al. (1991) for conversion problems. 

Bland and Alt man (1986) who present the limits of agreement approach 
and Lin (1989) who introduces the concordance correlation coefficient are the 
two classical references. The former, a favorite of medical researchers, has 
over 6100 citations in the Institute for Scientific Information database at the 
time of writing. When two methods are compared, the data consist of a random 
sample of paired measurements, {Xij, X2j), j = 1 , . . . , n, taken from a bivariate 
population (Xi,X2), where Xi and X2 arise from the reference and the test 
method, respectively. The following model is often assumed: 

Xij = Tj+0i + eij] i = 1,2, j = l,...,n; where, (13.1) 

(a) Tj is the true unobservable measurement for the j t h subject, distributed 
as N{^iT,(Jj): 

(b) /3i is the fixed bias of the ith method; 

(c) €ij is the random error having N{0,a'^.) distribution, i = 1,2, and 

(d) (rj,cij,€2j) are mutually independent for all j . 

This model is known as the Grubbs' model in the literature when the objective 
of the experiment is to estimate the bias and precision of the methods [see 
e.g., Grubbs (1982) and Dunn and Roberts (1999)]. The quantity a^ is also 
known as the between-subject variance and cr̂  as the within-subject variance 
for, or the measurement errvr variance of the zth method. Let E{Xi) =z fii = 
I^T + A. Var{Xi) = a^ z=: a^ + cr̂ ,̂ i = 1,2, and p = cr^/{cTia2). Then 
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(Xi, ^2) is bivariate normal with means /xi, /i2> variances al^a^, and correlation 
p. Notice that p = (piP2)^^^, where pi = ^ ^ / ( ^ r + ^u)^ ^^ *^^ reliability 
coefficient of the zth method [see, e.g., Fleiss (1986)]. Now, define D = X2-X1 
and Dj = X2J - Xij] j = 1 , . . . , n. Thus, Z) is A^(/i, cr^), where /x = /X2 ~ Mi and 
cr'^ =z ai+a2 - 2pcT\G2 = cr̂ j + cr̂ ^̂  and the Dj are a random sample from this 
population. 

In the above setup, the two methods are in perfect agreement if all the 
paired measurements {X\j,X2j) He on the 45̂ ^ line through the origin. It can 
be characterized by any of the following equivalent conditions: 

(Al) ^ i=/32,c72^=a2^=0; 

(A2) 111 =/i2, ^1 =or| , p = 1; 

(A3) i.i = 0, CT2 = 0. 

Typically, the criteria (A2) and (A3) are used in the literature. Although 
they are equivalent when there is perfect agreement, quantification of disagree­
ments differ. In applications, point estimators are followed by confidence inter­
vals on relevant parameters that are generally obtained by inverting a test of 
hypotheses of the form 

H : The methods lack satisfactory agreement vs 

K : The methods have satisfactory agreement. (13.2) 

The advantage of this formulation is that we look for evidence in the data to 
claim satisfactory agreement. This way the type-I error is actually the error of 
wrongly concluding satisfactory agreement. This formulation was first proposed 
by Lin (1992) and is now well established. However, there is no unanimity on 
what the best formulation of (if, K) is, in terms of parameters of the data. In 
the terminology of the US Food and Drug Administration, satisfactory agree­
ment is also referred to as substantial equivalence [see, e.g., Lin, Whipple and 
Ho (1998)]. 

If insufficient agreement is inferred, it helps to pay attention to the nature 
and extent of disagreement. It may happen that Xi and X2 are highly correlated 
and have similar means, but â ^ is smaller than a'^^. Then the new method is 
certainly worthy of adoption. Many times a simple linear calibration of the new 
method {X2 = a + 6X2) may be enough for sufficient agreement between X2 
and Xi. 

Let Xi, Sf and Su be the usual unbiased estimators of E{Xi), Var{Xi) and 
Cov{Xi,X2). The components of variance in the model (13.1) are estimated as 
a^ = 5i2 and al = Sf - Sn. These are also known as Grubbs' estimators [see 
Grubbs (1982)]. Thus, the various parameter estimators are: fti = Xi, af = Sf, 
P = Sv2/{SiS2). fi = X2-Xi and a^ = S? + 5 | ~ 25i2. 
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A key issue is how much a method (say, the gold standard) agrees with 
itself, because it limits the amount of agreement that is possible between two 
methods. Popular terms for this phenomenon of agreement with itself include 
"reliability", "reproducibility" and "repeatability". But these terms have been 
used in other settings too [see, e.g., Lin (1989) and Bland and Altman (1999)]. 
The various measures of this agreement include the intraclass correlation (or the 
rehabihty coefficient) computed from one-way models [see, e.g., Fleiss (1986) 
and Dunn (1989, 1992)], intraclass correlation from two-way models [see e.g., 
Fleiss (1986)], within-subject variance [see Bland and Altman (1999)], and 
within-subject coefficient of variation [see Quan and Shih (1996) and the re­
lated correspondence]. See also the comments in Hawkins (2002), and Dunn 
and Roberts (1999). Generally, this issue is addressed in a separate reliability 
study and will not be discussed here. 

This chapter is organized as follows. Sections 13.2 and 13.3 discuss various 
approaches for assessment of agreement between two methods. In Section 13.4 
we provide an illustrative real example. In Section 13.5 we change our focus 
to the comparison of k (> 2) methods with a gold standard. The goal of this 
comparison is to select the best among k — the one that agrees most with the 
reference. Some concluding remarks are presented in Section 13.6. 

In what follows, $(•) and 0() are the standard normal cdf and pdf, respec­
tively, and $ 2 ( T ; p) is the cdf of a bivariate standard normal distribution with 
correlation p. A x^-distribution will be denoted by x|^ and a ^-distribution will 
be denoted by tk, where k is the degrees of freedom. An F distribution with 
degrees of freedom I and m will be denoted by F{l,7n), The notation Hi {Ki) 
is used for a null (alternative) hypothesis, with i = 0,1, — 

13.2 Early Approaches 

The examples in Altman and Bland (1983) indicate that the-correlation 

arising from the model (13.1), was a widely used measure of "agreement" in 
the medical literature. Further, a statistically significant result of testing Ĵ o • 
p = 0 vs KQ : p ^ 0 was often taken as evidence of agreement. But this 
test is generally useless because two methods designed to measure the same 
quantity will rarely be uncorrelated. Also, p is just a measure of strength of 
Hnear relationship, not of agreement. It is possible to have p = 1 even when 
;i2 - /ii = a (T*̂  0) and al/al = 6 (7̂  1). Altman and Bland (1983) and Bland 
and Altman (1986, 1990, 1995a) draw attention to the following deficiencies of 
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(a) The value of p increases as (Jx/^u ii^creases. In practice, investigators try 
to assess the agreement of methods over a wide range of subjects resulting 
in large <JJ and p values. This property makes p unsuitable as a measure 
of agreement, because how a^ and a^ compare is not related to the goal 
of assessing agreement. 

(b) A consequence of (a) is that, on its own, the value of p does not tell us 
much about agreement. It is possible to have two data sets such that 
(i) the differences of the paired measurements in one set is identical with 
those in the other (and hence the two sets exhibit the same degree of 
agreement), but (ii) the estimate of p is quite low in one case and is very 
high in the other [see also Atkinson and Nevill (1997)]. 

These concerns also hold for other correlation type measures, namely concor­
dance correlation and intraclass correlation, discussed later in this section. 

Other popular, but inappropriate, early approaches include a paired-t test 
oi HQ : fi = 0, and a test of Ho : slope = 1, intercept = 0, when the test 
method is regressed on the reference method. Notice that the paired-t test only 
assesses whether the methods agree on average, not for every subject. Further, 
as Lin (1989) demonstrates with both graphs and real data, both these tests can 
be misleading. They may reject HQ if the scatter around the 45^ line is near zero 
(indicating good agreement), and may fail to reject it if the scatter is very high 
(indicating poor agreement). In addition, a correct regression approach must 
account for the fact that even the reference method measures with error. But 
again, since our goal is to quantify the disagreement between methods, and not 
how accurately one method can be predicted from the other, we do not discuss 
regression models with errors in variables or structural equations models here 
and refer the reader to Kelly (1985), Linnet (1993), Nix and Dunston (1991), 
and Fuller (1987). 

13.2.1 T h e l imits of agreement (LOA) approach 

Bland-Altman Plot 

The basic idea due to Bland and Altman (1986) is that if a large propor­
tion (such as 95%) of the differences are sufficiently close to zero then the two 
methods have satisfactory agreement. The process of judging this agreement 
has two components: (a) 95% LOA, defined by fi± 1.96a, and (b) the plot of 
mean, [Xi + X2)/2, versus difference, D, with LOA superimposed. This plot 
is popularly known as the Bland-Altman plot. Statistical software SAS JMP 
produces such a plot for matched pair data. 

The LOA estimate the set (/x- 1.96a, /i+1.96a). One could declare sufficient 
agreement if the differences within these limits are not practically (or clinically) 
important as determined by the investigator specified threshold (5o (> 0). Bland 



220 P. K. Choudhary and H. K Nagaraja 

and Altman recommend that this So be specified in advance and Bland and 
Alt man (1999) observe that its choice "will depend on the use to which the 
result is put, and is a question of clinical judgement." See also Hawkins (2002). 

The uncertainty in the estimation of LOA is accounted for by the approx­
imate 95% confidence intervals (CIs) for the two limits. It is (/i - 1.96a) ± 
<n-.i(ck/2)1.71(j/n^/^ for /JL - 1.96a (and similar for the upper limit), where 
tk{ct) is the upper ath percentile of a tk distribution. 

The Bland-Altman plot is an excellent supplement to the usual scatterplot 
of the data. It reveals interesting features of the data and also helps in diagnos­
ing departures from the various model assumptions and suggesting remedies. 
Hawkins (2002) describes how the Bland-Altman plot can be used in conjunc­
tion with the standard regression diagnostics, and presents several real examples 
to illustrate the common model violations and discusses ways to handle them. 
He says, "the ideal plot resembles the ideal plot of residuals against the fitted 
values in a regression problem". Some common departures are: 

(a) LOA band not centered at zero or that is wide: A plot not centered at 
zero indicates a bias between the methods. If the rest of the features of 
the plot are close to ideal, the new method can be recalibrated by adding 
a constant for good agreement with the old. However, if the points do 
not lie in a narrow band, it suggests that the variability of the differences 
is not small. This will result in wide LOA, and is a serious problem to 
resolve. 

(b) Linear trend: The differences increase (or decrease) with increasing mag­
nitude of the measurements in the range of measurement [see also Bland 
and Altman (1995b)]. Under the model in (13.1), this implies that the 
â . are different. If â ^ > ^^^ ^ possible resolution is to recalibrate the 
new method by multiplying with a constant. Otherwise, the new is more 
precise than the old, and obviously is preferred. As another possible reso­
lution. Bland and Altman (1986, 1999) suggest that a log transformation 
of the data may make the variabilities comparable. The analysis then pro­
ceeds with the log-scale differences, and the results are back-transformed 
to the ratio scale for interpretation. 

(c) Heteroscedasticity: If the scatter of differences does not remain the same 
over the range of measurement, the model assumption that a? is not re­
lated to /ij is violated for one or both of the methods. A common violation 
corresponds to a "right opening megaphone" — an increase in scatter of 
differences as the magnitude increases. Often, a log transformation of 
the data corrects this problem. Sometimes a more sophisticated variance 
stabilizing transformation may be needed. 

(d) Outliers: Vertical outliers flag the subjects for whom the measurements 
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differ by an unusually large amount. It is recommended to assess the 
impact of the outliers on the results. 

(e) Non-linear curvature'. A non-linear recalibration may be needed to correct 
the problem. 

Significance Tests 

One can use the paired-t test for i/o • Mi = ^^2^ the Pitman-Morgan test 
for ifo • ̂ 1 = cr̂ , and the Bradley-Blackwood test for ifo • A'l = M2, ^i = ^2-
The last two are described in Krummenauer (1999). Bartko (1994) shows how 
all of these can be implemented using the standard two-way ANOVA output. 
These tests (of point null hypotheses) are generally used only to supplement the 
graphical analysis, and rarely play a prominent role in the assessment of agree­
ment [see also the discussion in Bland and Altman (1999)]. The hypotheses 
of whether the agreement is satisfactory or not is generally of the form (13.2). 
Bartko (1994) suggests adding an elliptical tolerance region of the bivariate dis­
tribution of the difference and the mean to the Bland-Alt man plot, so that the 
relative magnitudes of the between-subject and the within-subject variations 
can be ampHfied. 

The normality of differences can be assessed with the usual histogram and 
normal probability plot. 

Confidence Regions 

Beyond the plots, interest lies in quantifying disagreement by the estimation 
of the parameter region {fi - 1.96(j,// + 1.96cr), and its comparison with the 
threshold interval (-^o^^^o)- For this comparison we must use a CI estimate 
of the region so that the uncertainty in the estimation is also accounted for. 
The usual LOA approach achieves this by constructing separate two-sided CIs 
for the two endpoints. However, Lin et al. (1998) argue that instead of the 
two-sided CIs, we need one-sided CIs, an upper confidence bound (UCB) for 
/i+1.96(7 and a lower confidence bound (LCB) for /^-1.96(7, because the interest 
hes in bounding the region (/i - 1.96(7,// -f 1.96(7). Consequently, we can infer 
satisfactory agreement if 

(/i - anCf, i:L + a^a) C {-SQ, SO), 

where an = 1.96 + 1.71n~^/^t„_i(a). Based on this, Lin et al. (1998) derive 
a simple sample size formula for use in planning method comparison studies. 
They also indicate that the above rule can be thought of as a large-sample 
intersection-union test (lUT) [see Casella and Berger (2002, p. 380), for an 
introduction] of 

Hi : Complement of Ki vs. Ki : -SQ < M - 1.96a, /x + 1.96a < (5o, (13.3) 
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which is of the form (13.2). For these hypotheses, however, Liu and Chow (1997) 
have given an exact lUT in the context of assessment of individual bioequiva-
lence. This test rejects Hi if 

{fl - bnd, ft + bnCf) C (-(̂ 0, ^o), 

where bn = n^^'hn-i{ot,n^''^z{^)), z{^) is the (^)th upper percentile of a 
iV(0,1) distribution, and <A:(a, A) is the upper ath percentile of a non-central 
ijt-distribution with non-centrality parameter A. As shown in Choudhary and 
Nagaraja (2004a), the interval (/i - bnO.fi + bn^) can also be interpreted as a 
large-sample two-sided tolerance interval with 0.95 content at confidence level 
1 - a. See, e.g., David and Nagaraja (2003) or Guttman (1988) for an intro­
duction to tolerance intervals. A comparison of these two tests of (13.3) and 
the associated sample size formulae will be of interest. 

The strength of the LOA approach lies in its intuitive appeal and simplicity. 
Further, since the limits are based on difference, they are not affected by the 
between-subject variation in the data. This approach was recently generalized 
by Bland and Altman (1999) to accommodate replicate measurements on each 
subject from every method. 

13.2.2 Intraclass correlation and related measures 

Fleiss (1986, Ch. 1) gives an overview of the intraclass correlation coefficient 
(ICC) as a measure of agreement between k (> 2) methods. In our setting, the 
ICC is defined under the two-way mixed model (13.1) with additional assump­
tions that 2 = 1,. . . , fc (> 2), cr̂ . = cr̂  for all 2, and XliLi A = 0- Î  serves as 
an index of agreement among k methods and is given by 

P^ = 2 ^ i ^ 2' (13-4) 

where a^^ = Yli=\0il{k- 1). This ICC is also known as the inter-method (or 
inter-rater) reliabihty. Note that 0 < p/ < 1 and equals 1 only when there is 
perfect agreement among all the k methods. 

The ANOVA table for this model is given in Table 13.1 [see also McGraw 
and Wong (1996)] where Hi. = YTj=\ ^ i j / " - ^i = E t i ^n/^^ and X.. = 
Ei=i E"=i Xij/{nk). The ICC is then estimated by 

- ^ SMS-EMS 

^' SMS + {k- l)EMS + {k/n){IMS - EMS)' ^ ' ' 

Its approximate 100(1 - a)% LCB [McGraw and Wong (1996)] is 

njSMS - Fn-i,,.(a) EMS) 
F„_i,„(a) [k IMS + {k7i -k- n)EMS\ + n SMS' 
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Table 13.1: ANOVA Table for estimating the ICC pi of (13.4) 

Source 

Subjects 
Methods 
Error 

Total 

d.f. 

n - 1 
fc-l 
in-l){k-

nk - 1 

SS 

- 1) By Subtraction 

E?=IE;=I(^U-^-) ' 

MS 

SMS 
IMS 
EMS 

E{MS) 

koj- + a1 

where 

V = 
{alMS + bEMSy 

{k - l)-i(a/A/S)2 + [{n - l){k - l)]-\bEMS)^' 

a = {k/n)[pi/{l-'Pi)], b = l4-(n-~ 1) a, and F/m(Q^) is the upper a th percentile 
of an F{l,m) distribution. 

This model can accommodate several methods, but the assumption of equal 
error variance is generally not reasonable. Further, pj is non-negative but 
its estimates may be negative, and it is also sensitive to the between-subject 
variation. If pj is low, it is unclear whether the lack of agreement is due to low 
between-subject variation and/or high error variation and/or location bias. See 
also Miiller and Biittner (1994) for a critique of this measure. 

Assuming Xi and X2 have the same means, St. Laurent (1998) has consid­
ered the model 

-̂ 2.7 = Xij + CJ; j = 1 , . . . , n, 

and suggested the associated ICC as a measure of agreement. Here Cj is the 
measurement error in the test method. It is assumed that the (i) Xij and 
Cj are independent and identically distributed (i.i.d.) with means pi and zero, 
variances a^ and a^, respectively, and (ii) X\j and Cj are mutually independent. 
The ICC is then given by 

a' 
PC = j j ^ . (13.6) 

which is the squared correlation between Xi and X2. Clearly, pc > 0 and it 
equals 1 when a^ = 0. St. Laurent refers to PQ as the gold standard correlation. 
When Xij and Cj are normally distributed, the maximum likelihood estimator 
(MLE) of pG is 

'^° (n-lK + EwCf 
and the LCB of pc is given by 

Fn,n-l{(y) 

F,,,_i(a) + ( p - / - l ) ( 7 i - l ) / n 
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St. Laurent (1998) also develops a large sample theory for the non-normal case. 
Recently, Harris, Burch, and St. Laurent (2001) have developed a family of 
estimators of pc that includes the MLE and they indicate that at times other 
members of the family may be preferable to the MLE in terms of mean-squared 
error. Being an ICC, pc also suffers from the drawback of being sensitive to 
the between-subject variation. In addition, the assumption of no bias between 
the methods may not be justified. 

13.2.3 Concordance correlation approach 

Lin (1989) proposed a concordance correlation coefficient (CCC) as an index of 
agreement and defined it as 

n -^ E{Xi^X2)% _ 2pai(72 . . . . . 

It represents the expected squared distance of a point (Xi,X2) from the 45^ 
fine through the origin, scaled to lie between [-1,1]. This distance, 6 = 
E{Xi - ^2)^, is also referred to as the mean squared deviation (MSD). Thus 
p^ measures how close the (paired) observations are to the 45^ line. It can also 
be written as pCb, where 

Cb = 2/{v + l/v + u^), V = ai/a2, and u = (/ii - fi2)/{(Ti cr2f'^- (13.8) 

Thus the CCC has two components: (a) p, the correlation, which Lin calls the 
"precision" component, that measures how close the observations are to the 
best fit line, and (b) Ĉ  € (0,1], the "accuracy" component that measures how 
close the best fit Une is to the 45^ line. The CCC has the following properties: 

(i) \pc\ < \p\ < I1 (") Pc = 0 f̂f P = 0' (î O Pc = P iff <̂ i = ^2, Ml = M2, and 

(iv) p^ = ±1 iff p = ±1, (Ti = (J2i and /ii = //2. 

The estimator of p^, obtained by replacing the population moments with 
the sample moments, is 

2paia2 
(Ai - A2)̂  + ^1 + ^2 

PC = 77 r. x9 . 2̂ , -2' vl3.9) 

Under bivariate normality for (Xi,X2), Lin (1989) showed that pc is asymptot­
ically normal with mean pQ. He suggests the transformation W = tanh~ {pc) 
for faster convergence; W is asymptotically normal with mean tanh'~^(pc) and 
variance 

. 2 _ 1 
j i - 2 PHI-Ph) Pi^-Ph)' 2p2(l-p2,)2j' 
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where u is given in (13.8). Another advantage of this transformation is that the 
asymptotic CI for p^ is constrained to He within [~1,1] and an approximate 
level (1 — a) LCB for p^ is 

tanh (tanh"^(pc)"- z{(^)^w), 

where aw is obtained by replacing the population moments in cr^ with the 
corresponding sample moments. 

Based on the allowable losses in the "precision" and ''accuracy" components 
described above, Lin (1992) first computes PQ, which represents the smallest 
acceptable value of PQ that the investigator is willing to consider as evidence 
of satisfactory agreement. Then he proposes to test 

H2 : Pc<Pc ^5. K2: Pc> Pc^ 

using the LCB of pQ obtained as above. If it exceeds p^, one rejects if2 and 
infers satisfactory agreement. Lin also gave a sample size formula based on the 
above test of hypotheses. 

In practice, however, an LCB for p^ is computed and compared with a cutoff 
such as 0.75. The practice of accepting satisfactory agreement if the LCB for 
CCC (or ICC) exceeds 0.75 [see, e.g., Lee, Koh and Ong (1989) and Atkinson 
and Nevill (1997)] may not be wise. When p is close to 1, a location/scale bias 
may not be reflected well in these measures, and hence they may lead to wrong 
conclusions. See Section 13.4 for an example. 

The CCC formulation has motivated further research. Chinchilli et al. (1996) 
introduced a weighted version of p^ to handle repeated measurements data. 
King and Chinchilli (2001) have generalized p^ to incorporate distance func­
tions other than the squared error, and constructed robust forms of pQ. They 
also demonstrated the relationship between pQ and the kappa statistic, a mea­
sure of agreement for nominal/ordinal measurements, and introduced further 
extensions [see also Robieson (1999)]. Barnhart, Haber and Song (2002) have 
constructed an overall CCC, a weighted average of all pairwise CCC's, for 
measuring agreement between k {> 2) methods. Additionally, Barnhart and 
Williamson (2001) suggested a generalized estimating equations approach to 
model pQ when covariates are present. Vonesh, Chinchilli and Pu (1996) have 
used CCC type of index in goodness-of-fit contexts - to evaluate the agreement 
between observed values and the values predicted by a model and for model 
selection. 

Liao and Lewis (2000) allude to some deficiencies of CCC and suggest a 
slightly modified index. However, its performance tends to be similar. They 
also extend it to handle situations when parameters cannot be assumed to 
remain fixed over the entire range for measurement. 

Lin (1989) pointed out that the CCC tends to produce results similar to the 
ICC. It was finally noted by Nickerson (1997) that, when fc = 2, the estimate 
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of the ICC PJ defined in (13.5), becomes 

. _ 2pa\d2 
(Ai - 112^ + al-\-al'¥ a'^/n 

This differs from pc in (13.9) in the denominator by a^/n. She notes that this 
diflFerence tends to be small resulting in close values for these coefficients. 

There are two related issues with ICC, CCC and other such measures that 
have drawn much criticism in the Hterature [see, e.g., Miiller and Biittner (1994), 
Bland and Altman (1995b), Atkinson and Nevill (1997,) and Lin and Chinchilli 
(1997)]. Firstly, these measures depend on the between-subject variation. Thus 
deficiencies of correlation that were listed on Page 218 continue to hold for CCC. 

Secondly, although CCC is a convenient single index for agreement that lies 
in [-1,1] and combines components of a systematic bias, a difference in variabil­
ities and a low correlation, there lies its major weakness. If a lack of satisfactory 
agreement is concluded using CCC, the reason is unclear. To deal with this is­
sue Lin and Torbeck (1998) and Lin et al. (2002) suggest supplementing the 
CCC with CIs for its p ("precision") and Cb ("accuracy") components. 

Recently, Lin et al. (2002) compared the power properties of the test (of 
agreement) based on CCC with those based on total deviation index [Lin (2000)] 
and the coverage probability, and found that the CCC based test has inferior 
power properties. These terms and tests are introduced next. 

13.3 Recent Developments 

13.3.1 Approaches based on percentiles and coverage 
probability 

The LOA approach involved the following steps: 

(a) Specify a threshold interval (-(Jo.^o) such that the differences in this 
interval are practically equivalent to zero. 

(b) Quantify the observed disagreement by estimating the range in which a 
pre-specified large proportion of differences (say TTQ) are expected to lie. 

(c) If the estimated range in (b) is contained in (-(^o, 5Q), declare satisfactory 
agreement. 

In practice, the LOA approach takes TTQ = 0.95 and uses a CI estimate of 
(// ~ 1.96a,/x -f 1.96cr), the centrally symmetnc region of 95% probabihty con­
tent. Often times 6^ is not explicitly specified and the evaluation of agreement 
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proceeds by assessing whether the estimated range contains any chnically im­
portant differences. We saw in Section 13.2.1 that this approach can be thought 
of as testing the hypotheses (13.3), which can also be expressed as 

Hi : TTc < TTQ VS. Ki : TTC > TTQ, (13.10) 

where TTC is tlie proportion of centrally symmetric region contained in {—SQ, SQ). 
Lin (2000) and Lin et al. (2002) consider a slightly liberal variation on 

the above theme: instead of asking for TTQ proportion of central differences to 
lie in (~(5o,^o) for satisfactory agreement, they only ask for TTQ proportion of 
differences to lie in (-(5o,(5o)- There are now two theoretically equivalent ways 
to proceed. 

Total Deviation Index (TDI) 

For a specified TTQ, consider ^(Tro), the Troth percentile of |Z)|, as the measure 
of agreement and assess satisfactory agreement by testing 

Hs : g(7ro) > 6o vs. K3 : q{7To) < (So- (13.11) 

Lin (2000) proposes this approach and calls q{7To) the total deviation index. 
Since D is N{i.i,a'^) and Pr(^\D\ < q{7^o)) = TTQ. q(7ro) can be written as 

q{no) = <T{xlil-no,ii'/a')f\ (13.12) 

where X\{^^ ^) is the upper ath percentile of a non-central Xi-distribution with 
non-centrality parameter A. Lin (2000) argues that the inference based on the 
estimate of q(7ro) in (13.12) is intractable. So he approximates it by 

q*{no) = ((/i' + a')xi{l - TTcO))'/' - (//^ + aY'zii^ " ^o)/2), (13.13) 

and for assessing agreement, he modifies the hypotheses (13.11) to 

H*s : g*(vro) > 60 vs K3* : (/*(7ro) < Jo- (13.14) 

He suggests estimating the MSD 6 = (/x^+a^) = E{D'^) by 9 = ^liLi A V ( ^ - I ) 

and performing inference using the large-sample A^(0,1) distribution of ( log(^)-
log(^))/f, where 

f^ = 2{l-D^/e^)/{n-l) (13.15) 

is the estimated asymptotic variance of log(^). Thus the estimate of q*(7ro) and 
its approximate 100(1 - a)% UCB respectively become 

r ( ^o ) = 0'^^z{{l - 7ro)/2) and g*(7ro)exp ['^z{a)f]. 

A test for (13.14) rejects H^ if this UCB is less than SQ. Lin also gives a sample 
size formula associated with (13.11). 
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The approximation q*(7ro) for qino) will be good only when /i^/cr^ is small 
and Lin gives a range of values of TTQ and /i^/a^ where this approximation can be 
considered reasonable. Further, the above test of (13.14) has asymptotic level 
a and is consistent. This leads to the undesirable property that in the limiting 
case where n —• cx), with probability 1, there will be some regions where the 
agreement is satisfactory {q{no) < So), but the test will conclude otherwise (i.e., 
9(7ro) > So) and vice versa. Such regions depend on whether the approximation 
g*(7ro) is conservative (i.e., g*(7ro) > q{7ro)) or Hberal (i.e., q*{7ro) < qi^^o))-

Coverage Probability Approach 

This approach of Lin et al. (2002) takes the coverage probability (CP) TT = 
Pr{\D\ < So) of the threshold interval {-So, So) as the measure of agreement 
and tests 

if4 : TT < TTo VS. K4 : 7T > TTQ. (13.16) 

These hypotheses are equivalent to (13.11) for specified {So, no). 
Lin et al. (2002) estimate TT as 

where a^ = {n-l)a^/{n-3) and suggest performing inference through the large 
sample normahty of (A - A)/t/', where A = log(7r/(l - TT)), A = log(7r/(l - TT)), 
and 

'̂ ̂ (n^3)Al-^7r)2{N^Q ~ '̂ Ẑ̂ ) "" ^((-^« - ^)/^)]' 

i [cl>{{So - fj)/a) {{So - fi)/a) - ct>{{-So - ft)/a) {{-So - A ) / ^ ) ] ' } + 

is the estimated asymptotic variance of A. Thus, in particular, the approximate 
100(1 - a)% LCB for TT becomes 

e^7(l + e^") 

where A" = A - ^(a)^ . When this LCB exceeds the cutoff TTQ, H4 of (13.16) is 
rejected. 

Recent simulations by Choudhary and Nagaraja (2004a) reveal that this 
test is overly conservative for moderate sample sizes. When 30 < n < 50 and 
0*80 < TTo < 0.95, the empirical type-I error rate of this test is about 3% or less 
for a nominal 5% level. However, using the MLE of a^ in place of a^ greatly 
improves its performance. 

Lin et al, (2002) provide a sample size formula for (13.16) and note that 
TDI and CP approaches yield similar powers. 

Since the hypotheses (13.11) and (13.16) are equivalent, it is natural to ex­
pect that their tests should lead to the same conclusions when both are applied 
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to the same data set. However, this is clearly not the case for the proposals 
given above. This issue is addressed in Choudhary and Nagaraja (2004a) where 
an exact level a test of (13.16) (or equivalently (13.11)) is given and a good, 
simple approximation to its critical value is presented. 

In practice, it is easy to specify TTQ (generally, a number between 0.80 and 
0.95) but we have seen in Section 13.2 that choosing 6o is relatively difficult and 
depends on the purpose. In this sense, it can be argued that the formulation 
(13.11) is better than (13.16) as the former produces an UCB, q" (̂7ro), for q{no) 
for a specified TTQ. The interval (-•g"^(7ro), q'^i^To)) then can be used in the same 
way as the LOA without a specified SQ. However, its value must be explicitly 
specified in advance for the formulation (13.16). 

The hypotheses (13.16) are often used for the assessment of individual bioe-
quivalence where Xi and X2 are respectively the measures of effectiveness of 
a reference drug and a test drug [see, e.g., Anderson and Hauck (1990) and 
Wang and Hwang (2001)]. There is also a connection between them and the 
ones used in statistical quality control. In acceptance sampling with two-sided 
specification limits, D refers to the quality characteristic of an item. If D falls 
in the specified interval (/,u), the item is conforming, and is non-conforming 
otherwise. The parameter of interest here is the lot quality as measured by 
1 - TT and the decision to accept or reject a lot of items is based on the test of 

7/4 : 1 - TT < 1 - TTo v s . X 4 : 1 - TT > 1 - TTo, 

where 1 - TTQ is the specified acceptable quality level. Rejection of H'^ amounts to 
rejecting the lot. Notice that these hypotheses can be obtained by interchanging 
H4 and K4 of (13.16) while retaining the equaHty sign in the null. See Hamilton 
and Lesperance (1995) for a discussion of various tests of these hypotheses. 

13.3.2 Approaches based on the intersection-union principle 

All the formal approaches discussed so far use a single measure of agreement. 
Thus, when a lack of satisfactory agreement is inferred, we would not know the 
cause or extent of disagreement without additional investigation. Choudhary 
and Nagaraja (2004b) resolve this issue by giving two formulations of the hy­
potheses (13.2) that preserve the information on all causal indicators. The first 
tests 

H^ : {\^i\ > S^} U {(J > 6^} vs. K5 : {|/x| < 6,,} H {a < 6^}, (13.17) 

where 5^ and S^ reflect the extent of bias and variability in D, respectively, 
that the practitioner can tolerate and pre-specify. The second, more detailed 
formulation tests 

He : {|/i2 - /ill > 6^] U {^2/0-1 < 61 or a2/ai > 62} U {p < dp} vs. 

Ke : {|/i2 - Mil < S^} n {61 < (72/(71 < 62} n{p> 6p}, (13.18) 
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where the pre-specified 6p € (0,1) is large, and 0 < ($i < 1 < ($2. Usually 
5i = 1/62 is taken so that they are symmetric about zero on the log-scale. 

The hypotheses (13.17) and (13.18) are tested using the intersection-union 
principle [see Casella and Berger (2002, p. 380)], and the tests are inverted 
to give the CIs that quantify the extent of disagreement on individual indica­
tors. The individual 100(1 - a)% CIs for /z and a associated with (13.17) are, 
respectively, 

{min(0, fi - i„_i(a)n"*^/^(7) < /x < max(0, /x + tn-i(a)n~^/^a)} (13.19) 

and 
{ 0 < ( 7 < ( n - l ) V 2 a / x n - i ( l ~ a ) } . 

The 100(1 - a)% CI for /i2 - /̂ i associated with (13.18) is the same as (13.19) 
above. For a2/(Ji this CI is given by 

{ min(l, A") < (72/ai < max(l, A"^)}, 

where 

a2 y i - t2p2 _ti y/T^ A -f ^ ^2 x / r = l p 2 + ti^l ^ p2 
A" = —-^—^^^ \^ — ^ A"̂  = -

and fi = (n - 2 -h t2_2(c^))~ <n~2(<̂ )- Finally, for p one could use the interval 
suggested by Fisher's ^-transformation: 

{p > tanh (tanh~Hp) - z{a)/{n - 3)^/^)}. 

A practical strategy for soliciting the various thresholds from the investiga­
tors is described in Choudhary and Nagaraja (2004c). They also illustrate how 
these CIs can be used in the assessment of agreement if the pre-specification 
of the thresholds is difficult. A simple sample size formula associated with the 
test of (13.17) is also given there. 

Tests based on the lU principle tend to be conservative. Although the above 
overall lUT's have size a, it is attained in the limit as the variabihty diminishes 
to zero. But in practice, our major goal is to quantify the disagreement in a 
meaningful way. In this regard lU principle plays a natural role by producing 
CIs for individual disagreement indicators that are informative and easy to 
interpret. 

Table 13.2 summarizes the basic features of the various approaches we have 
discussed thus far. 

The hypotheses (13.17) and (13.18) resemble the ones used in bioequivalence 
studies [see, e.g., Berger and Hsu (1996)]. But for average bioequivalence, only 
the mean responses of the test and the reference drugs must be equivalent, and 
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Table 13.2: Summary of various approaches for assessing agreement 

Approach 

Limits of 
1 agreement 

Concordance 
correlation 

ICC 

1 Total deviation 
1 index(7ro) 
1 Coverage 
1 probability (So) 

JUT based on D 

lUT based on 

1 (^1,^2) 

Measure(s) of agreement 

( / i~ 1.96(7,/i + 1.96(j) 

2paia2 

(/ii - fi2)'^ + al + aj 

PG = (JI/{(TI + GI) 

g*(7ro) where 
Pr(|D|<q*(7ro))«7ro 

j ^^(1^1 < ^o) 

( M , ^ ) 

( M 2 ~ M 1 , ^ 2 M , P ) 

Remarks 1 

Easy to interpret; 
most popular | 

May be hard to interpret; 
sensitive to between-

subject variation | 
pi « CCC; 

PC requires a reference 
and assumes no bias; 

properties similar to CCC | 
Easy to interpret 1 

Specifying Jo 
may be hard 

Identifies sources and 
extent of disagreement j 

Similar to lUT based on 
D, but more informative 
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for population bioequivalence, the marginal distributions of the responses must 
be equivalent. In contrast, here we also need the correlation to be close to 1. 

A natural measure of agreement, already seen, is the MSD, 6 = EiD'^) = 
{fi^+a'^). The smaller the 9 is, the better the agreement is between the methods. 
As noted earlier, Lin (2000) suggests estimating ^ as ^ = Y17=i A V ( ^ "~ 1) ^^^ 
using the asymptotic normality of log(^) for inference. Hence, an approximate 
100(1 - a)% UCB for 6 becomes 0exp{z{a)f} where f is given in (13.15). 
However, the practical utility of 9 is limited by the fact that it is hard to 
interpret. Indeed, as Lin (1989, 2000) points out, the CCC and TDI approaches 
are attempts to translate this 9 into more easily interpreted measures. But, 
0 (or equivalently log(^)) has been the measure of choice in the selection of 
the instrument that agrees most with a reference. This is partly because the 
comparison of several methods in terms of this measure is more mathematically 
tractable. The problem of selection is the topic of Section 13.5. 

13.4 An Example 

We now illustrate the various approaches summarized in Table 13.2 using the 
plasma volume data from Bland and Altman (1999). The variable is measured 
as a percentage of expected values of normal individuals. Two sets of normal 
values, one due to Hurley (Xi) and the other due to Nadler {X2) are being 
compared. We will take the Hurley method in the role of reference for the 
purpose of illustration. Figure 13.1 gives the scatter plot and the Bland-Altman 
plot. The solid line in the scatter plot represents the line of equality and the 
broken lines in the Bland-Altman plot represent the 95% LOA. We see that 
the two methods are highly correlated and the Nadler method consistently 
gives higher measurements. Most of the differences lie between 5% to 15%, 
are centered at around 10%, and increase as the magnitude of measurements 
increase. 

Normal probability plots and formal tests indicate excellent normal fit for 
the differences and a reasonable bivariate normal fit for (Xi,A'2). Further, 
there is no evidence for heteroscedasticity or serious outliers in the mean versus 
difference plot. So we may assume that the model (13.1) holds along with 
normality. The positive trend observed in the mean versus difference plot is 
due to the higher variability of the Nadler method. 

The measurements observed by the two methods fall in (52.9,133.2) and 
the differences X2 - X\ range from 2.5 to 17.40 with middle 50% in between 
7.75 and 10.40. Since 7.75 and 10.40 respectively constitute about 10% and 
13% of the measurement scale, these differences seem to be too high for the 
methods to have satisfactory agreement. This graphical analysis also indicates 
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Figure 13.1: The sratter plot and the mean versus difference plot (or the Bland 
Alt man plot) of the plasma volume measurements 
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that the higher mean and variance of the Nadler method are the main sources 
of disagreement. 

The various parameter estimates for these data are the following: 

(A,a) = (9.26,2.40); (Ai,A2,^i,^2,p) = (89.24,98.50,13.89,15.18,0.99). 

Table 13.3 presents the estimates of various measures of agreement summarized 
in Table 13.2 and their CIs when (SQ, TTO) = (5,0.95). All the approaches, except 
perhaps the CCC, confirm that there is substantial disagreement between the 
methods. The CCC may actually indicate satisfactory agreement since its LCB 
0.78 is more than 0.75, a cutoff sometimes suggested for good agreement [see, 
e.g., Atkinson and Nevill (1997)]. The estimate of CCC is 0.82, which agrees 
with the estimate of ICC pi (defined in (13.4), not shown in the table) up 
to two decimal places. This supports Nickerson's (1997) claim that these two 
quantities tend to be similar in practice. The LCB of ICC pc is small. 

From the LOA CIs, we infer that the interval in which the middle 95% 
of the differences are expected to he can be as wide as (3.87,14.66). The TDI 
approach says that the 95th percentile of the absolute differences can be as large 
as 19.69, and the CP approach says that the proportion of differences in the 
threshold interval (-5,5) can be as low as 2%. The CI for /X2 ~ /xi from the two 
lUTs imply that /i2 (the mean of Nadler method) is higher because the lower 
limit of the CI is zero, and this difference can be as high as 9.66. The difference 
based lUT also suggests that if the methods were considered equivalent, then 
the differences from Ar(9.67,2.74-̂ ) must be considered acceptable. Note that 
the middle 95% of this distribution is between 9.67 ± 1.96 x 2.74 = (4.3,15.0). 
From the lUT based on (A'i,X2), we can also infer that cr2 is higher than ai 
and the ratio can be up to 1.12, and that the correlation p can only be as low 
as 0.99. 

Our investigation thus far indicates that p ~ 1, /i2 - /̂ i ^ 9.50 and a2/(Ji « 
1.10. Hence, a linear calibration of the Nadler method value (^2) as ^2 = 
aX2 + b may make the methods agree well in the sense that /i2 ~ Mi ^ 0 ^^^ 
ayai « 1 while their correlation remains close to one. Here/i2 = £"(^2) ^^^ 
(72 = SD{X2)' To find a and 6, note that 

^^2 " Ml = M̂2 + 6 - Ml ~ 9.50a + 6 - (1 - a)fi\; a'l/c^i = 0^021 o\ » 1.10a. 

This suggests that a = 1/1.10 and since /ii ?̂  90, 6 = (90(1.10-l)-9.50)/1.10 = 
-0.45 « -0.50. All of the resulting measures of agreement for the recahbrated 
Nadler method {X^ = X2/I.IO - 0.50) now show evidence of excellent agree­
ment. This calibration, however, needs to be validated using an independent 
experiment. 
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Table 13.3: Estimates of various measures of agreement and their 95% CIs 

Mesisure 

95% LOA, 
fi ± 1.96a 

ccc, PQ 
ICC, PG 

TDI, q*{0.95) 
CR 7r(5) 

lUT based on D, 

lUT based on 
(^1 ,^2) , 

1 {M2-M1,<^2M,P) 

Estimate 

(4.55, 13.97) 

0.82 
0.68 
18.84 
0.04 

(9.26,2.40) 

(9.26,1.09, 0.99) 

95% CI _J 
/x - 1.96a: (3.87, oo) 1 

H +1.96a: (-oo, 14.66) 
(0.78, 1.00) 
(0.60, 1.00) 
(0, 19.69) 

(0.02, 1.00) 
M: (0, 9.66) 
a : (0, 2.73) 

M2-Mi: (0,9.66) 
a2/ai: (1.00, 1.12) 

p: (0.99, 1.00) 

13.5 Selection Problems in Measuring Agreement 

We now discuss a class of method comparison problems where k{>2) methods 
are compared with the gold standard with the goal of either 

(a) selecting the best, i.e., the one that agrees most with the gold standard, 
or 

(b) selecting the best when there is evidence that the best agrees sufficiently 
well with the gold standard. 

In the literature, the problem (a) has been discussed in St. Laurent (1998), 
Hutson, Wilson and Geiser (1998), and Choudhary and Nagaraja (2004d), and 
the problem (b) in Choudhary and Nagaraja (2004c). We summarize them only 
for the /c = 2 case. 

Let G and W ,̂ i = 1,2, represent measurements on a subject by the gold 
standard and the ith method. Also let Di be the difference Wi - G. We assume 
that the vector D = [Di,D2) follows a bivariate normal (BVN) distribution 
with mean /x = (MI. jL/,2) and non-singular covariance matrix E = {(yij)2x2- Thus, 
the vector of squared differences D'^^ = (Z)f, D2) follows a continuous bivariate 
distribution with mean 6 = (^1,^2) and non-singular covariance matrix F = 
(7ij)2x2, where 6i = ii^+au and 7ij = 2aij{aij+2iJ.iiJLj), i,j = 1,2. Finally, let 
A = (Ai, A2) = (log(^i),log(^2)), and define 

* - {tij)2x2 

712 
6162 

OJll. 4 . 222 (13.20) 
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We take 6i (or equivalently Â ) as the measure of agreement between the ith 
instrument and the gold standard with preference for its smaller values. Thus 
the goal is to select the component of D^̂ ^ having the smallest mean. In the 
hterature on ranking and selection [see, e.g., Gupta and Panchapakesan (1979), 
for an excellent introduction], the problem of selecting the component having 
the smallest (or the largest) mean has been discussed in Mukhopadhyay and 
Chou (1984) for a fc-variate normal population when all the correlations are 
non-negative. However in our case: (a) the multivariate normal assumption 
for D^ )̂ is generally not reasonable — we are assuming it for D, and (b) the 
covariance matrix of D^̂ ^ is not free of 6, the parameter of interest. So we 
cannot assume any structure for this matrix and hence the standard techniques 
of multiple comparisons with the best (MCB) [see Hsu (1996, Ch. 4) for an 
introduction] cannot be directly employed. 

We assume each subject is measured only once by the three methods and 
suppose D; = {D\i,D2i), I = 1,2,..., is a sequence of i.i.d. observations on 
D. Let / i ^ = (/ii;mi/i2;m) and Em = (<5'ij;m)2x2 denote the usual unbiased 
estimators of ii and E based on the first m observations on D (unbiasedness is 
not necessary for the validity of the large-sample result; it only requires that 
the estimators be consistent). The estimators Om, Tm, Am and ^m are then 
constructed by plugging-in fi^ and Em for their population counterparts. We 
will omit the sample size from the notation of estimators when it is clear from 
the context. 

13.5.1 Selection of the best 

St. Laurent (1998) assumes a random effects model Wi = G + €{ for the 
measurements, where €i,i = 1,2, are correlated random variables with zero 
means and distributed independently of G. This model assumes that the 
two instruments and the gold standard have the same means. Hence the 
equal agreement is equivalent to the equality of variances of ci and C2. For 
the inference he uses a nonparametric bootstrap CI for the difference of the 
ICC's of {Wi,G) and (M^2,G). Recall from (13.6) that the ICC for {Wi,G) 
is Var{G)/{Var{G) + Var{ei)). This approach is ad hoc and the equaHty of 
means assumption cannot always be justified. In addition, we have seen that 
the ICC is hard to interpret. 

Hutson et al. (1998) consider a large sample 100(1 - a ) % CI for 9i/{61+62) 
constructed from a sample of size n. They infer the first (second) instrument 
as the true best if the upper (lower) bound of this CI is less (greater) than 
0.5, and remain indecisive if the interval contains 0.5. They estimate the mean 
vector and the covariance matrix of D^̂ ^ with their sample counterparts. When 
bivariate normality for D is assumed, the large sample 100(1 - a)% level CI for 
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^1/(^1 + ^2) becomes 

Using Monte Carlo simulations, Choudhary (2002) shows that this CI has 
a substantial under-coverage. Instead, they recommend Ai - A2, where Aj = 
log(5i), as the metric for comparison since the asymptotic procedures based on 
the estimators of Ai - A2 tend to do well for samples with sizes as low as 15. 
For the purpose of selection, they suggest two approximate CI for Ai - A2 both 
of which have asymptotic level I —a: 

[X, - A2 - n-^/2^n-i(a/2)t^5f, Ai - X2+n-'/\^i{a/2)xi^li^], 

[min{0, Ai - A2 - n~^^'^tn-i{a)'ip22 }' inax{0, Ai - A2 + n"^/^tn-i(<^)^22 }] • 

Here i/;22 is the estimate of ^22 in (13.20). Using the first interval, one infers the 
first instrument to be the best if its upper (lower) bound is negative (positive), 
and is indecisive otherwise. The second interval is a constrained (to contain 
zero) MCB CI for Ai - A2 [see Hsu (1996, ch. 4)]. If the possibihty that Ai = A2 
is ruled out, one infers the first (second) instrument as the best if the upper 
(lower) bound of this interval equals zero. But when this procedure identifies 
one instrument to be the best, it does not give a negative upper bound on 
how much better it is when compared to the unselected. On the other hand, 
the unconstrained interval allows such an inference. However, the advantage of 
sacrificing this information is that the constrained interval identifies an instru­
ment to be the best more frequently than the unconstrained one at the same 
asymptotic level. This sharper inference is desirable for us. Further, assuming 
Ai ^ A2 is reasonable from a practical viewpoint as it amounts to assuming 
that the two instruments do not agree equally with the gold standard. 

In practice, single-stage CI procedures such as the above may fail to dis­
tinguish between two instruments. This difficulty can be avoided by using a 
two-stage procedure. However, for this, the investigator has to pre-specify a 
threshold J (> 0) such that whenever |Ai - A2I < <5, the two instruments are 
considered practically equivalent^ and then the correct selection is not impor­
tant. This 6 is also known as the indifference-zone in the terminology of ranking 
and selection procedures [see, e.g., Gupta and Panchapakesan (1979)]. Consider 
the following two-stage procedure: 

Stage 1: Select a random sample of size m, compute T/'22;m, and define 

Nm = max I [ 4 _ i ( a ) t/;22;m S-^], m l , (13.21) 

where V̂ 22;m is the estimate of ij;22 in (13.20). 
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Stage 2: Take Nm - m additional i.i.d. observations if A^̂  > m and compute 
the estimates Xi^Nm^i = 1> 2, using the complete two-stage sample. Then select 
the instrument that produces the smaller estimate as the best. 

Choudhary and Nagaraja (2004d) show that when m is large and |Ai - A2I > 
S, the probability of correct selection with this procedure is approximately l ~ a . 
When the differences are bivariate normal, m = 15 is a reasonable choice for 
the first-stage sample size. 

13.5.2 Assessment of agreement and selection of the best 

Above we focussed on the issue of selection of the best when two instruments are 
compared with a gold standard. However, for a practitioner, knowing the best 
instrument is unhelpful unless it also agrees sufficiently closely with the gold 
standard. Often times this information is not available in advance. Assuming 
Ai 7«̂  A2, Choudhary and Nagaraja (2004c) address this problem by developing 
a two-stage procedure that first determines whether the best has satisfactory 
agreement with the gold standard through a test of 

H7 : A[i) > Ao vs K7 : A[i) < AQ 

before proceeding to its selection. Here [1] is the unknown label of the true best 
among the two instruments and AQ is a user-specified cutoff such that {Aj < AQ} 
is the region of satisfactory agreement. 

Let 5 be a threshold for practical equivalence of A[i] with AQ, and of Ai with 
A2, in the sense that whenever |A[i] — Ao| < 5 or |Ai — A2I < <J the distinc­
tion between the two quantities is not important from practical considerations. 
Finally, define 

A(i) = (A: - A2)/(Ai < A2) + A2, V (̂ii) = ( ^ " ^ ) ^(^^ ^ ^2) + ^ , 

where I{A) is the indicator function of event A, and take 

/N A A, -̂  '̂  1 /9 

i> = (^(11) - 7l2/(^1^2))/(^(ll)V^22) . 

For pre-specified a,/? (0 < a < 1 - / ? < 1), Ao, (5 (> 0) and m (> 2); Choudhary 
and Nagaraja (2004c) propose the following two-stage procedure: 

Stage 1: Take a random sample of size m and compute the estimates / i ^ and 
Em- Use them to compute t/'22;mi and ip{u);m and i>rn defined above. Then solve 
the equation 
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for Lm, and define Nm = max { \Lm], m} as the second-stage sample size, where 
\Lm] denotes the smallest integer > Lm-

Stage 2: Take Nm - m additional i.i.d. observations if Nm > ^i- Com­

pute \\)'^Nm ^̂ ^̂  ^(n);Nm ^sing the entire sample. Reject i/7 when A(i).;Vn, + 

Nm ^{^)^(iiyN ^ '̂ o- Further, when H7 is rejected, infer the instrument 

that produces ^lyNm ^ *̂ he best. 

This procedure has the property that, when m is large, 

Pr(reject i/7, correct selection) ^ 1 - P or more, 

whenever AQ - A[i] > S and |Ai - A2I > ^. Using simulation studies to verify the 
small-sample properties of this procedure, Choudhary and Nagaraja (2004c) 
suggest m = 15 to be a reasonable choice for the first-stage sample size. 

13.6 Concluding Remarks 

For the assessment of agreement, we assumed that both the measurements are 
random. To handle the case when the reference measurements are fixed (non-
random), some of the procedure presented here has been adapted by Lin et 
al. (2002). Further, the approaches discussed here are generally not robust 
to deviations from normality or outliers. When this assumption is a suspect, 
none of them are valid, but a simple nonparametric sign test can be used [see 
Bland and Altman (1999)]. Further, this sign test can be inverted to give a 
nonparametric UCB for g'(7ro). 

Our discussion assumed the simple model (13.1) for the measurements. It 
can be eatsily extended to handle replicate measurements. More complicated 
models such as those including method-subject interactions, covariates or the 
effect of time on the repeated measurements may be called for as well. See Dunn 
and Roberts (1999), Bland and Altman (1999), and Chinchilh et al. (1996), 
for some such models. The CCC approach has been generalized in several 
directions. Similar extensions of the difference based approaches will be of 
interest. 
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Measures of Concordance for Assessing Agreement 
in Ratings and Rank Order Data 

M. Raghavachari 

Decision Sciences and Engineering Systems^ Rensselaer Polytechnic Institute^ 
Troy, NY U.S.A. 

Abstract: Consider an array of ratings or rank orders provided by M judges 
or respondents on n subjects or products. We propose a new general measure 
of concordance (agreement) in this context. This measure when apphed to 
rank order data reduces to Kendall's (1948) measure of concordance. A new 
measure for rank order data that depends on the average Kendall's measure 
of rank correlation is also proposed and is also a special case of our general 
measure. This particular rank order measure can be considered as an alternative 
to the well-known Friedman's statistic for the two-way analysis of variance. 
The general measure is also compared with another measure proposed by Lin 
(1989). Relations to the intraclass correlation coefficient of the ratings data 
are pointed out. Some distributional results are also presented. The proposed 
concordance measures provide the basis for testing the agreement between two 
or more methods, instruments or respondents in biometric research or market 
research surveys. 

Keywords and phrases: Concordance coefficient, intraclass correlation, rank 
correlations, paired comparisons 

14.1 Introduction 

Consider M rankings of n subjects. Each ranking is a permutation of the 
integers 1,2,..., n. A measure W of concordance among the M rankings was 
proposed by Kendall and Smith (1939) and Kendall (1948) and they provided a 
test of hypothesis to test for independence of the rankings. For i = 1,2,..., n, 
let Rip denote the rank of the zth subject by judge p, p = 1,2,..., Af, and /?i. 
denote the sum of the ranks of the zth subject over all the M judges. The 
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concordance measure W is defined as 

where 
M{n + 1) 5=Eh-

1=1 

It measures the ratio of the variabiHty of the n row sums Ri, for the data to 
the variabihty of row sums when the M rankings are all identical. It is known 
that 0 < IV < 1. The measure W is linearly related to the average denoted by 
Ts of M{M — l)/2 Spearman correlation coefficients between pairs of rankings 
by the relation 

^^^ ~ 1 / , . ox 

'•• = irrr- <"-̂ ' 
See Kendall (1948, p. 82) for details. The measure W is also functionally 
related to Friedman's statistic (1937) for two-way analysis of variance. Suppose 
the data are not rank ordered but represent, for example, the ratings of n 
subjects by M judges or n products by M respondents in a market research 
survey. There has been some research, primarily in the area of biometrics, on 
the development of measures of concordance to assess the agreement of the M 
judges or respondents or methods when the data represents ratings rather than 
ranks. See for example Lin et al. (2002) for the case M = 2, and the references 
cited therein. See also the review by Choudhary and Nagaraja (2005) in this 
volume. 

The present paper studies the problem of concordance when the data set 
consists of interval scaled values. Here we propose a new general measure of 
concordance Q and investigate its properties. This measure is a modification 
of the intraclass correlation coefficient and is in the form of a quadratic form 
that depends on the correlation matrix. This measure can also be considered 
as a generahzation of the Kendall measure of concordance W to interval scaled 
data. This is because Q reduces to Kendall's W for the rank order data. The 
measure Q for the case M = 2 is also similar but different from the concordance 
correlation coefficient proposed by Lin (1989). 

Equation (14.2) shows the relationship of W with the Spearman correla­
tions. While commenting upon the feasibility of constructing a concordance 
measure for the rank order data that depends on Kendall correlation coeffi­
cients, Kendall (1948, p. 82) states that "The case we are considering is one 
wherein p (Spearman correlation coefficient) is a more convenient coefficient 
than T (Kendall's coefficient). There appears to be no simple method of ex­
pressing the average r in terms of the sum of ranks". Earlier Kendall and 
Smith (1940) proposed a coefficient of agreement in the case of paired com­
parison data and related it for the rank order data to the average r which is 
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the average of M{M - l ) /2 Kendall correlation coefficients between pairs of 
rankings. Following their work, Ehrenberg (1952) proposed the average r as 
a measure of concordance for rank order data as an alternative to the earlier 
Kendall's measure of concordance W. While W ranges from 0 to 1, average r 
proposed by Ehrenberg can be negative. Ehrenberg's measure is also linearly 
related to the measure of agreement proposed by Kendall and Smith (1940). 

In this paper, we show that the average r indeed can be expressed as a 
simple function of the rank order data. This leads to a new measure of concor­
dance WT for the rank order data and is based on the Kendall's rank correlation 
coefficients. The measure Wr is also related to the coefficient of agreement of 
Kendall and Smith (1940) and the average r. We show that W, Q, and Wr have 
the same structure and belong to a class of measures based on the appropriate 
correlation matrices and this fact unifies them according to a single principle. 
These measures are also shown to be functions of intraclass correlation coeffi­
cients applied to appropriate sets of data. Some discussion on the appropriate 
population measures of concordance for Q, W and WT is also presented. Distri­
butions of the general measure Q for the independent and the equi-correlated 
cases are derived. Relations of Q with intraclass correlation coefficient r* for 
the data are also pointed out. 

Fisher (1921) derived the distribution of r*. He did not give the complete 
derivation but stated the density function involving the terms of r* only. In 
this paper we derive and state completely the pdf of r*. This, in turn, provides 
what appears to be a new transformation of the intraclass correlation statistic 
that has an F distribution. Some future research work on the new measure Q 
and the new rank measure Wr is also indicated. 

14,2 A General Measure of Concordance 

Consider an array of numbers in M rows and n columns. Let tjip represent the 
element in the pth row and ith column, p = 1,2,... , M; i = 1,2,.. . , n. The 
element y^p may denote, for example, a rating for the ith product or subject 
by respondent or judge p. It could also be a rank of product or subject i by 
respondent or judge p. The score matrix (j/ip) can be shown as 

y i i 

J/12 

yiM 

2/21 •• 

2/22 •• 

y2M ' • 

• Vnl 

' yn2 

• VnM 

(14.3) 

When the yip's are rank orders i.e., for a given p = 1,2,... , A/, yip, y2p,..., ynp 
is a permutation of the integers 1,2,... ,n. Kendall proposed the measure of 
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concordance W given by (14.1). First we define a measure of concordance for 
the general data given by (14.3). Let 

n 

vp = Yl y*p ^"^ y-p ̂  y-p/^' p = i , 2 , . . . , M. 
i=l 

Further, let r = i : i ^ L i y . p / M , 

A g ^ ^ P : ^ ! ^ ' ' " ^ ! , P=1,2,...,M, (14.4) 

and /Xp = Xp/y/M, p = 1,2,..., M. 
Let R denote the M x M correlation matrix (rpq) where rpq is the Pearson 

correlation coefficient between yp = (yip, y2p,... , j/np) and y^ = (j/i^, j/2g, • • •, J/nc/)-
We propose a concordance measure Q defined by the quadratic form 

Q = M'RM (14.5) 

where / i ' = (MI> M2? • •, /̂ A/)- The rationale for the above expression arises from 
the consideration of the intraclass correlation coefficient of the data set (14.3). 
This measure is also motivated by the relationship between W in (14.1) and the 
average of the pairwise Spearman correlation coefficients of the rank order data. 

Relat ion t o Intraclass correlatipn coefficient r* 

The intraclass correlation coefficient arises in many fields; for example, in 
cluster sampHng and in the determination of correlation among the members 
of a class with regard to a particular characteristic. We review briefly the 
definition, which forms the basis for further analysis. 

Let tji, denote the total of the scores for the zth subject over the M judges, 

i.e., yi, = YlpLi Vip^ i = 1,2,..., n. Let y = Yl^^i Vil'^ be the mean per subject 

and Y = Y/M be the mean per element. Let Sl be the variance of the subject 

totals, 

M{n - 1) 

and S^ be the overall variance 

52 ^ ^i=l\y^• ^y ^ (14.6) 

a2 _ '^i=l^P=l(yiP ^) / 1 4 7X 
^ - (ATM-l ) • ^^^-^^ 

Then intraclass correlation coefficient r* among the judges is defined as 

^ {n-l)MSi-{NM-l)S' 
(nM - 1)(M - 1)S2 • ^ ' ' 
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See Cochran (1977, p. 243) for details where the intraclass correlation coefficient 
is introduced in the context of cluster sampling. We show first that r* is related 
to Q by the following relation. 

Proposition 14.2.1 The intraclass correlation can be expressed as 

, _ M^i'Rfji - 1 _ A f Q - 1 

^ ~ M - 1 A / - 1 ' 

where /x' = (/ii,/125 • • • ,MM) ™^^ Mp == Xp/vM, and R 25 i/ie M x M Pearson 
correlation matrix. 

PROOF. It follows from (14.6), (14.7) and (14.8) that 

A / ~ l 

Note that 

'EiiZUy^p-Yr 
- 1 (14.9) 

n n M M M n n M 

E ( 2 / « - ^ ) ' - E E ^ ' P + E E ( E J / ' P J ' ^ ^ ) + " ^ ' - 2 ^ E E 2 / ^ P - (14.10) 
1=1 1=1 p= l p= l g:^p 1 = 1 1=1 p= l 

This follows from the two equations, 

2 M M M 

{ZtLiVip) = 5Zj/i + $^I]2/ip2/ig and 
P = l P = l ^T^P 

= {ZiUvip) +Y'-2Yj2yiP-

p=l 

that hold for alH = 1,2,..., n. The right side of (14.10) can be written as 

n M M M n i " '̂  

EE4+EE{E2/«p2'^«--(E2/'p)(Ey»9)} 
1=1 p = i p = i g^p 1=1 i—i 1=1 

M M - n n __ 

+ E E ;^(E 2/'p)(E 2/'")+"^'- 2^"^^-
p = l q:/:p i = l i = l 

Note that n?^ - 2YnMY = nV^ - 2nY^ = -nV^. Further, 

n M _ n M 

2=1 p = l 2 = 1 p = l 
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After some algebra, we have 

1 Ep=iE;;pCov(yp,y^) + Z 
(14.11) 

where 
M M 

^ = E E ^ - ^ ^ + nMY^. 
P=i g^p 

^M 2 The first term in Z is ^[(Ep=i 2/.p) ~ (E j l i Vp)]- Hence it follows that 

M . A/ 

(14.12) 
p = i p = i 

From the definition of Ap in (14.4) and by (14.11) and (14.12), it follows 
that 

1 
r = M-1 

M M yM / ^ _x2 

p = i <y7̂ p Z^i=l Z-^p=l(j/ip ^ ) 

(14.13) 

Since 
n M n M M _ 

E E(2/.p - .̂p)' = E Eiy^p-)'' - YPV - ^)' 
1=1 p=i 1=1 p=i p=i 

and Tpp = 1, p = 1,2,..., M, (14.13) implies that 

M M 

•̂ = M^[EE ^p^ApAqr i 

In matrix notation, 

p=i g=i 

1 
r = (A'RA - 1) 

M - 1 

where A' = (Ai, A2,..., AM). Since /Xp = Ap/\/M, we have 

1 
r = A / - 1 (AVRM -1). (14.14) 

Remark 1. The intraclass correlation coefficient has traditionally been used 
as a correlation of a characteristic among the members of a class or family. It 
can also be used as a measure of agreement among these members. However, 
Q, while linearly related to r*, is a better measure of agreement. It ranges from 
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0 to 1 and has the appeaUng structure of a quadratic form. Later we will show 
that the well-known Kendall's measure of concordance is a particular case of Q 
when applied to the rank order data. 

Remark 2. The measure of concordance Q is related and yet different from 
the concordance correlation coefficient developed by Lin (1989, 1992). The 
measures developed by him and others are useful in assessing agreement of 
a new or generic process, methodology, and formulation in area of laboratory 
performance, and instrument or assay validation. See a review of such measures 
in Lin et al. (2002). Most of these studies are for comparing two samples of 
observations, and the measure proposed by Lin (1989) for this case takes the 
form 

where the two samples are xi, X2,. . . , Xn and yi, 2/2, • • • ^ yn and y,x,Sx,Sy,r = 
Sxy/sxSy are the usual sample statistics. Applied to this case, our Q is similar 
to this and is verified to be 

Our measure, however, is generalized to the case when there are more than two 
samples. 

Proposition 14.2.2 The concordance measure Q reduces to Kendall's measure 
of concordance W when the yip's are rank order data. 

PROOF. It is well known that the Pearson correlation coefficient between two 
rank orders is the Spearman rank correlation coefficient . Hence R is the matrix 
of Spearman rank correlation coefficients and Xp = M~^^^ and i.ip = M"^. Then 

/x'R/i = - ^ e ' R e (14.17) 

where e' is a 1 x p row vector of I's. This implies 

e^Re - M _ A/^(/x^R^) - M _ Mti'Kji - 1 

M{M - 1) ~ M{M - 1) " M ~ 1 
(14.18) 

However, (e'Re - M)/[M{M - 1)] is clearly equal to rg, the average of 
M{M - 1) Spearman correlation coefficients. We have from (14.2) 

_ MW ~ 1 

'^''~ A / - 1 • 

It follows that W = /x'R^t, where R here is the matrix of Spearman correlation 
coefficients. • 
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14.3 A New Measure of Concordance for Rank 
Order Data 

Kendall's measure of concordance W is related to the Spearman correlation 
coefficients between the judges. We propose a measure of the concordance Wr 
based on Kendall's r correlation coefficients. We also show that Wr is equivalent 
to the Q measure appHed to a transformation of the rank order data. 

For the pth ranking, p = 1,2,..., A/, define for i, j = 1,2,..., n, i 7̂  j , 

(n) I 1 if the rank of i > rank of 7, ,̂  ̂  ^.. 
alY = < (14.19) 

•̂  1-1 if the rank of i < rank of j . 

Let Tij = 53pli a^j- Then we define the measure of concordance Wr by 

1=1 j^i 

Proposition 14.3.1 Let f denote the average of M{M - 1) Kendall 's r cor-
relation coefficients between pairs of the M judges. It can be expressed as 

MWr - 1 

PROOF. Since Tij = Xlpli a\y, from (14.20) we have 

M 

n{n-l)M^Wr = 5^[$Z^-? 
i#j P=i 

M M 

M M 

p = l iT ĵ p^q i^j 

Note that for each p = 1,2,..., M, Ez#j(^!f )̂  = ^(^-1) ^nd Zi^j ('[f^lf 
= n{n - l)rp<, from (14.17), where Tpq is Kendall's r for the judges p and q. See 
also Daniels (1944). Expression (14.21) reduces, therefore, to 

A/ 

Mn{n "-1)4- n{n - 1) T^ ^pq-
p¥'q 
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This implies that 

MWr - 1 + f{M ~ 1). (14.22) 

Hence 

Thus, WT is a Hnear function of f. Ehrenberg (1952) proposed f as a measure 
of concordance for the rank order data. Note that f was also proposed as a 
coefficient of agreement in paired data by Kendall and Smith (1940). They also 
noted the equivalence of their coefficient of agreement with f. Note that f does 
not range from 0 to 1 and it can even be negative. We believe Wr is a more 
appropriate concordance measure since it ranges from 0 to 1 and has also the 
representation /x'R^ as the following proposition shows. It is also related to 
the intraclass correlation coefficient of transformed data defined in (14.19). 

Proposition 14.3.2 The measure Wr has the representation t̂'Rr/x with Rr 
as the correlation matrix of the Kendall correlations and ^p = M ~ \ p = 
1,2,...,M. 

verified that /ip = A/"\ p = 1,2,..., A/. This is because 
PROOF. Since the data is in the form of a^^ with values +1 or - 1 , it is easily 

I M 

IT^J P=1 i^i i^^j P=l i^j 

Then 

1 "' 1 
/x'Rr^ = ^ ( M + ^ T p , ) = -[i + f{M-l)] = Wr by (14.22). 

Proposition 14.3.3 Let T* be the intraclass correlation based on the aij 's. 
Then 

, MWr - 1 
r = = T. 

M-\ 

PROOF. Fi-om (14.8) it follows from the definition of the intra class correlation 
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coefficient applied to the a^'s that 

1 
M - 1 

1 
M - 1 

[ I (y"T2.)-ll 

« # j 

1 

= f by (14.23). 

Proposition 14.3.4 The intraclass correlation r* for the a|J data based on 
the Spearman setup equals fg. 

PROOF. In this case, 
a- — Rip Rjp 
u 

where Rip is the rank of the ith subject in the pth ranking; R^ is the Spearman 
correlation matrix. It can be verified that for p = 1,2,..., M, 

E4" = 0, 
t¥j 

ECalf)^ = n\n'-l)/6. 

Hence 
A/ n 

ijtj p=l i^j 

The correlation matrix is given by Rg, the matrix of Spearman correlation 
coefficients due to a well-known result, see Kendall (1948, p. 18) or Daniels 
(1944). Now 

1 ^̂  1 
n'RsH = j^{M + J2irsU = ^ [ 1 + fs{M -1)] = W by (14.2). 

Since ^l'Rs^l -=W^ (1 +r ; (M - 1))/M by (14.14), we have r* = f̂ . Since, by 
Proposition 14.2.2, Q reduces to W when the dataset is rank ordered, again by 
(14.14) we have that the intraclass correlation coefficient for the original rank 
order data is also the fg. • 
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Summarizing, for the raw rank data or the a^ data based on the Spearman 
setup, the intraclass correlations are the same. This imphes the concordance 
measures are also the same for both sets of data. However for a,-̂ ^ data based 
on Kendall's r setup, the intraclass correlations differ for both sets of data. See 
also the numerical example in Section 14.4. 

Population Analogues for Q, W and Wr 

Suppose that Yi, ̂ 2 , . . . , VM are M variables with means ^i,^2? • • • ^ ^M and 
standard deviations cri, (72,..., cr^/, respectively. The correlation matrix is given 
by the M x M matrix p = (pij)- Let 

1 ^̂  Cfp 

and fip = Ap/\/M. Then the population analogue for Q is 

QO = ( /X? ,M^, . . . ,M^/ )P(MI ,M2. - . - ,M"M) ' . 

The statistic Q can be considered as an estimate of QQ and the sample analogue 
of Qo- The quantity {MQo-l)/{M-l) can also be interpreted as the population 
analogue of the sample intraclass correlation coefficient. 

The population analogues for W and Wr for sample rank ordered data can 
also be defined. It is well known that population analogues for Spearman's 
rank correlation coefficient and Kendall's r are the grade correlation pc and 
Kendall's r respectively. See Kendall (1948) for details. Thus we can suggest 
the population analogue for W as 

(M - l)pG 4- 1 
M 

where pc is the average of the [M{M - l)/2] population grade correlation 
coefficients. Similarly the analogue for Wr is {(A/ - l)f + 1}/A/, where f is the 
average of the [M{M - l)/2] population Kendall's correlation coefficients. 

14.4 Example 

Consider the following ranks awarded by M = 4 judges P-S while evaluating 
n = 6 subjects A-F [Kendall (1948), p. 80]. 
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Judge 
P 
Q 
R 
S 

Subject 
A B C D E F 
5 4 1 6 3 2 
2 3 1 5 6 4 
4 1 6 3 2 5 
4 3 2 5 1 6 

Table 14.1 contains the corresponding a^ values for i,j = 1,...,6, and 
P = 1,2,3,4. 

Let Sij denote the score for the pair of judges i and j , i.e., difference between 
the number of concordant and discordant pairs among the six subjects so that 
the Kendall rank correlation coefficient TPQ between the judges P and Q is 
given by 2SpQ/n{n — 1). Now, 

5pQ = 9 - 6 = 3;Sp/j = 4 - 11 = -7;Sps = 10 - 5 = 5; 

5Qfl = 4 - 11 = - 7 ; 5 Q 5 = 8 - 7 = l;5/?s = 9 - 6 = 3, and 

T = 
3(30) 

{SpQ + Spjt + Sps + SQR + SQS + SRS} 

90^ < - r i - r a ; ^^ 

Thus, 

Also, from (14.20), 

Wr = 
(M - l)f + 1 7 

M 30' 

Hence r = —1/45 is also the intraclass correlation coeffcient for the Oij data. 
To verify this, we use the formula [see Cochran (1977), p. 243] 

r* = 
EiVi - Y)' 1 

T72 

Note that F = 0; J2i,j Vij = 4(30) = 120, and hence 

* - _Hl__i -_J_ 
^ ~ 3(120) 3 ~ 45' 

M-1 
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For the same example in Kendall (1948, p. 80), we can verify similar things 
based on the Spearman correlation coefficient applied to the original rank order 
data and corresponding aij data. We can also show that -1/35 is the intra-
class correlation coefficient for the aij data in the Spearman context. Here 

alj = Rip - Rjp where Rip is the rank of the ith subject in the pth ranking. 
Their values are given in Table 14.2. Since 

1̂  = 0; E ^S = 2(420) = 840; Y, vl = 768, 
t j 

' 3 L840 •35' 
For the original rank order data 

Y = Min + l)/2 = 4(7)/2 = 14, 

and the j/j.'s are the totals for each subject, given below. 

Subject 
Vi. 

A B C D E F 
15 11 10 19 12 17 

Hence 

Y^iVi. - y)2 = 1 + 9 + 16 + 25 + 4 + 9 = 64, ̂ y j = 364 
» j 

and 

Also, 

64 
^3 = 

W 

3(364-1(196)) 

12(64) 8 4W^-1 

35" 

~ 35 "'•''• 210(16) 35' 3 

Thus the intraclass correlation coefficient —1/35 is the same whether we 
consider the rank order data or the transformed ay data in the Spearman case. 
However, it was shown that the intraclass correlation coefficient for the Oij data 
defined for the Kendall case was -1/45. 

14.5 Distribution of Q when the M Judges are 
Independent 

We assume that Vip, V2p, • • •, Vnp are i.i.d. normal with mean 9 and variance 
a^, that is, Yip is N{6, a^), p = 1,2,..., M. Further Vii, Fi2,..., YiM are i.i.d. 
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N{0,a'^), z = 1,2,... ,n. In other words, there are M independent normal 
populations each with the same mean and variance and Yip, Y^p,..., Ynp is a 
random sample from the pth population. We have 

n M n M 

1=1 p = i 1=1 p = i 

n M n 

1 = 1 p = l 1 = 1 

n M 1 '̂  

i = l p = l i = l 

This implies 

MZUT^iivip - Y)' Er=i Epii(y.p - >')^' 

The first term on the right is Q by Proposition 14.2.1 and (14.9). Hence 

n(A/-l)Q _ MY:UiYi.-Y)y{n-l) 
in - i)(i - Q) EHi E;ii(j/ip - FOVn(M -1) • 

This is the F statistic for the ANOVA one way layout model and hence is dis­
tributed as F distribution with (n - 1) and n{M - 1) degrees of freedom. It 
also follows from the relationship between an F and a Beta random variable, 
Q has a Beta distribution with parameters (n - l)/2 and n{M - l)/2. 

Distribution of Q for the equicorrelated case 

We have the following array of random variables 

^11 Y2\ " ' Ynl 

Y\2 Y22 '" Yn2 

^\M Y2M '" Yn M-

The vector (y^i, 1̂ 2, • • •, Ymj) has a multivariate normal distribution with E{Yip) 
= iJi and Variance(yip) = cr̂ , p = 1,2,..., M and correlation coefficient between 
Yip and 1̂ ^ is p , p, 9 = 1,2...., M;p / g. Let A = p/{l - p). Define the 
concordance measure Q by (14.5) or equivalently 

MEUEUvip-Y)^ 
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Define 
^ ^ n{M - 1 ) Q 

(n - 1)(1 + AM) 1 ~ Q 

Proposition 14.5.1 The statistic G has F distribution with (n — 1) and 
n{M - 1) degrees of freedom. 

PROOF. Denote by P the correlation matrix. The eigenvalues of P are 1 + 
(M - l)p, 1 - p, 1 - p , . . . , 1 - p. Let C be an orthogonal matrix whose rows are 
the eigenvectors of P such that CPC equals the diagonal matrix with diagonal 
elements 1 + (A/ - l)p, 1 - p, 1 - p , . . . , 1 ~ p. The eigenvector corresponding 
to the eigenvalue 1 + (A/ - l)p is A/~^/^(l, 1,. . . , 1). Define Xij = X)pli ^JP^IP 

where Cjp is the {j,p)th element of C. With this definition we can take 

M - M 

^ ^ P = l 

since cip = A/"" /̂̂ , p = 1,2,...,A/. We also have Ylp^i^jp = 0 for j = 
2 ,3 , . . . , n. This follows from the facts that the eigenvectors are orthogonal 
to each other and cip = A/"^/^, p = 1,2, . . . ,A/. Xip for i = 2,3, . . . ,n 
are therefore i.i.d. Ar(0,or^(l - p)). They are also independent of Xn, which 
is 7V(\/M/x,a^(l 4- (A/ - l)p)). Make an additional orthogonal transforma­
tion (Xii,X2i,...,Xni) -^ (^ii,Z2i,...,Zni) with Zn = v/^^.i- The Z's 
are independent normal with common variance a^{l + {M - l)p) and means 
E(Zii) = ^/Mn^i and E(Za) = 0 for i > 1. Put Zij = Xjj for J > 1, and let 

n n M n M 

i=2 1=1 p=2 i=l p=2 

Consider the statistic 

^ t;/[(l + (M - l)p){n - 1)] 
V/[n(M - 1)(1 - p)] 

U/{n-l) 1 _ U/{n - 1 ) 1 
V/n{M - 1) {1 + (M - l)p}/(l - p) V/n{M - 1) (1 + AM)' 

where A = p/(l - p). Thus G is an F statistic with (n - 1) and n(M - 1) 

degrees of freedom. It can also be verified that U = M^A^iO^i- ~ ^ ) ^ and 

^ = Er=iE,^=i(yii-n)'sothat 
C ri{M-l) Q . 

where Q = {1 + (A/ ~ l)r*}/Af, and r* is the intraclass correlation coefficient 
of the M judges. • 
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14.6 Distribution of the Intraclass Correlation 
Coefficient 

Fisher (1921) derived the distribution of intraclass correlation coefficient r*. He 
did not give a complete derivation but stated the density function involving the 
terms of r* only. In this section we derive completely the pdf of r*. Since it is 
Hnearly related to Q defined in (14.14) by the relation Q = [1 + (M - l)r*]/M, 
the distribution of r* immediately follows from the distribution of G defined in 
(14.24) above where A = p/{l - p). It was shown in Proposition 14.5.1 that 
G has F distribution with (n - 1) and n(M - 1) degrees of freedom. It can be 
verified after some heavy algebra that the pdf of r* is given by 

c[l + {M - 2)p - (A/ - l)pr]~(^^^~^)/2(l - ^)(n(M~i)-2)/2[i ^ ( ^ ^ l)r](^-3)/2 

for r > -1/(M - 1). The constant c is given by 

p/n-l)p/n(M-l)x M{nM-3)/2 i^ ^ P\^''^ ^)\ \^ P) 

(14.25) 
Since Q = l + (M-l)r*, the above complicated distribution can be transformed 
to an F distribution by the transformation (14.24). This transformation appears 
not to have been mentioned in the literature of intraclass correlation coefficient. 

From the distribution of r* or from the distribution of G defined in (14.24), 
it is easy to derive the pdf of Q. In particular for M = 2, it is verified that the 
pdf of Q is 

e2(2-3)/2(i ^p^ 2pg)-(2--W/25(-3)/2(i ^ 9)(-2)/2^ 0 < g < 1, 

where c is given by (14.25) with M = 2. The expression for Q when M = 2 is 
shown in (14.16). This distribution appears to be more tractable than the dis­
tribution of Tc proposed by Lin (1989). In particular for the independence 
case where p = 0, the distribution is a Beta distribution with parameters 
(n - l)/2 and n/2 - a result we derived in Section 14.5. 

14.7 Summary and Discussion 

This chapter develops a class of measures to assess the concordance or agreement 
of ratings data in the form of M rows and n columns. The rows could be judges 
or methods or, in general, entities that provide the assessment, and the columns 
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could represent subjects or in general a sample of observations. The ratings data 
could be interval scaled or rank order data. The suggested general measure is 
a quadratic form that depends essentially on the sample variances and the 
correlation matrix, and is also a linear function of the intraclass correlation 
coefficients of the ratings data. When the distribution of judges is multivariate 
normal, the general measure has tractable and well-known distribution. For the 
rank order data, the proposed measure yields a new measure of concordance 
based on the Kendall rank correlation matrix and this can be considered as 
an alternative to the statistic proposed by Friedman (1937) for the two-way 
analysis of variance. 

Here we have derived the distribution of Q under two special cases. The 
distribution of Q under the general setting, even when the judges are indepen­
dent and in the case of multivariate normal with different means and standard 
deviations, appears to be complicated. Research is under way to study the 
measure for its general distribution for ratings and rank order data and the 
associated tests of significance. It would also be interesting to compare the two 
concordance measures for the rank order data and derive thjeir distributions and 
asymptotic efficiencies. For the general data of ratings, the proposed measure 
could also be compared with the concordance correlation coefficient available 
for the case of biometric data with two assessors. 
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Abstract: In this chapter, we present a cost-effective analysis of several order-
replacement policies for one-iinit systems. More precisely, we treat two types of 
models, called the order-replacement model and the order-inspection one, and 
derive analytically the optimal ordering policies maximizing the so-called cost 
effectiveness, which is defined as the mean up time per unit mean operating cost, 
in both continuous and discrete time setting. Some examples are devoted to 
illustrate the optimal ordering policies numerically. A comprehensive reference 
list in this research area is also provided. 

Keywords and phrases: Preventive maintenance, order-replacement, order-
inspection, cost effectiveness, continuous time, discrete time, stochastic models 

15.1 Introduction 

In reliability and maintainability engineering, the potential failure of an op­
erating unit (i.e., machine, equipment, part, etc.) may be predicted on the 
ba.sis of any probabilistic scenario like physical deterioration and human er­
ror. Reliability engineers often face some replacement problems such as an 
age replacement and/or a block replacement. These have been discussed by 
many authors [Barlow and Proschan (1965. 1975)]. For these two replacement 
policies it is assiuned that there exist an infinite number of spares on hand 
over an infinite time horizon, so that each spare can be provided immediately 
when it is desired. However, in practice, there may be a time lag between 
desire/order of spare and its supply/delivery, since spares are not always on 
hand. This type of delay is called the lead time and the maintenance policy 
with such a delay is called the order-replacement policy or simply ordering pol­
icy. Since the seminal works by Allen and D'Esopo (1968a.b) and Wiggins 

267 
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(1967). many kinds of ordering policies have been discussed in the literature. 
Nakagawa and Osaki (1974), Nakagawa (1976), Osaki and Yamada (1976), Os­
aki (1977) treat several types of order-replacement models as extentions of the 
age replacement model. Dohi. Kaio and Osaki (1996a,b, 1998), Nakagawa and 
Osaki (1978), Sheu (1997a,b), Thomas and Osaki (1978a.b), Kaio and Osaki 
(1977. 1978a,b.c.d. 1981a, 1990b). Kalpakam and Shaul (1981), Park and Park 
(1986a,b), Sridharan (1991), Subramanian and Sridharan (1989) extend Osaki's 
model (1977) in terms of both lead time structure and cost component. 

Kaio and Osaki (1979a. 1980a,b, 1990a) introduce the concept of discount­
ing in the cost representation and derive the optimal order-replacement ix)li-
cies under the expected total discounted cost over an infinite time horizon. 
The discrete-time order-replacement models are considered in Kaio and Osaki 
(1979b) and Dohi et al. (2004). Osaki, Kaio and Yamada (1981), Park and 
Park (1986a), Kaio and Osaki (1980d, 1981b), Kapur. Garg and Bhalla (1991). 
Sheu and Liou (1992, 1993.1994). Sheu. Liou and Tseng (1992), Sheu (1997a,b) 
analyze different order-replacement problems with minimal repair. Sung and 
Park (1986) and Simg and Kim (1987) apply the same technique to equipments 
with sensor and derive the other type of order-replacement policies. Kapur and 
Garg (1988) combine the order-replacement policy and the repair-cost limit 
replacement policy. Kaio. Dohi and Osaki (1998) formulate the determination 
problem of lead time for a fixed ordering time. Recently. Armstrong and Atkins 
(1996) solve the joint optimization problem of age replacement and the spare 
inventory. Csenki (1998. 1999) apply the well-known marginal cost analysis 
[Berg (1980)] and the asymptotic approach for the finite time horizon problem 
[Christer (1978)] to the order-replacement model, respectively. Kawai (1983a,b) 
extends the result in Mine and Kawai (1977) and prove the optimality of order-
replacement policy in the framework of semi-Markov decision processes. 

Dohi. Kaio and Osaki (1994. 1996a) consider the order-replacement poli­
cies for a two-unit standby redmidant system, under so-called cost effectiveness 
criterion [Hunter (1963), Trott (1965) and Winlund (1965)] and the common 
long-run average cost, respectively. In the order-replacement problems ba.sed 
on age replacement, if the failure occurs, then it can be detected immediately. 
Kaio and Osaki (1978e. 1982) and Kaio. Dohi and Osaki (1992) assume the sit­
uation where the fciihu'e can be detected by a periodic inspection and call this 
problem the order-inspection problem. They derive the optimal order-inspection 
policies maximizing the cost effectiveness criteria under milder conditions. The 
technique of analysis for both the order-replacement problems and the order-
inspection problems are applied to continuous review cyclic inventory models 
with emergency order [Dohi. Kaio and Osaki (1995a,b, 1997) and Dohi, Shibuya 
and Osaki (1997)]. The spare provisioning policy based on the block replace­
ment is considered by Acharya, Nagabhushanam and Alam (1986). Kabir and 
his co-authors (1996a,b, 1997) use the simulation technique to determine both 
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the optimal replacement timing and the spare provisioning policy. In the book 
chapters [Dohi, Kaio and Osaki (2003) and Kaio. Dohi and Osaki (2002)], mono­
graph [Kapur, Garg and Kumar (1999)] and text books [Osaki (1985,1992)], the 
reader will find surveys and tutorial articles on the order-replacement problems. 

Here, we present a cost-effective analysis of several order-replacement poli­
cies for one-unit systems. More precisely, we treat two types of models, called 
the order-replacement model and the order-inspection one. and derive analyt­
ically the optimal ordering policies maximizing the cost effectiveness, in both 
continuous and discrete time setting. The order-replacement problem under 
cost effectiveness in continuous time is considered in Dohi. Kaio and Osaki 
(2001). The remaining parts on the order-inspection problem and the discrete-
time analysis are all new results. The rest of this chapter is organized as fol­
lows. After describing notation and assumptions, we define cost effectiveness 
as a criterion of optimality to take into accomit the balance between the long-
run average cost and the steady-state system availability. Next, we consider 
the order-replacement model and the order-inspection one in (continuous time. 
The problems are at the moment formulated as two-dimensional optimization 
problems with the ordering time and inventory time limit. It can be shown that 
there exists a decomposition structure of two decision variables and that the 
two-dimensional problem can be essentially reduced to a simple one-dimensional 
one. We derive necessary and sufficient conditions for the existence of the o[> 
timal ordering policies analytically. The discrete time models are considered in 
a similar way. Some examples are devoted to compare the order-replacement 
policy with the order-inspection policy mmierically. 

15.2 Preliminaries 

15.2.1 Notation (continuous time models) 

X: failure time of unit (continuous random variable) 

F{t). f{t), 1/A (> 0): c.d.f.. p.d.f. and mean of X 

0(.) = 1 - '̂•(•) in general 

r(/) = f{t)/T(l): failure rate of F(t) 

c\: cost per unit amount for expedited order 

02: cost per unit amount for regular order 

cy. fixed inspection cost 
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kii inventory holding cost per unit time 

ksi shortage cost per unit time 

fc^: monitoring cost per unit time 

Li, 1/2: lead times for expedited and regular orders (continuous random vari­
ables) 

Gi{t), l/nj (> 0): c.d.f. and mean of Li {i = 1,2) 

R{t)=^{J^F{t + l2)dG2{l2)-F{t)}/T{t): conditional expected failure rate 
function during the interval (f, t + L2] 

to: regular ordering time (decision variable) 

ti: inventory time Umit (decision variable) 

Cj{to,ti),Vj{tQ,ti),Tj{to,ti): long-run average cost, expected cost during one 
cycle and mean time length of one cycle in Model j (= 0,1), where 
Model O and Model I denote the order-replacement model and the order-
inspection one, respectively. 

Aj{to,ti),Uj{to,ti),Ej{to,ti): steady-state system availability, mean up time 
during one cycle and cost effectiveness in Model j (= O, /) 

15.2.2 Notation (discrete time models) 

N: failure time of unit (discrete random variable) 

P{n),p{n), 1/A (> 0): c.d.f., p.m.f. and mean of N 

r{n) = p{n)/P{n): discrete counterpart of the function r{t) 

Li, L2' lead times for expedited and regular orders (discrete random variables) 

Gi{n)^ gi{n)^ l/fii (> 0): c.d.f., p.m.f. and mean of Li {i = 1,2) 

R{n) = X^/^=o{^(^ + '2) -" P{''^)}92{h)/P{'^)' discrete counterpart of the 
function R{t) 

UQ: regular ordering time (decision variable) 

rii: inventory time limit (decision variable) 

Cj(no,ni), Vj(no,ni),rj(no,ni): long-run average cost, expected cost during 
one cycle and mean time length of one cycle in Model j (= O, /) 

i4j(no, ni), (/j(no, ni), jEj(no, ni): steady-state system availability, mean up time 
during one cycle and cost effectiveness in Model j (= O, /) 
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15-2.3 Assumpt ions 

(A-1) ci + ks/^il > C2 + ksliJi2\ the sum of ordering and shortage costs by an 
expedited order is strictly larger than that by a regular one. 

(A-2) ki > km\ the monitoring cost per unit time is strictly less than the 
inventory holding cost. 

15.2.4 Definition of cost effectiveness 

In this chapter, we apply the cost effectiveness as a criterion of optimaUty. 
First, the cost effectiveness was introduced by Hunter (1963), Trott (1965) and 
Winlund (1965). For the continuous-time model, the cost effectiveness is defined 
by 

^j(*0 ,* l ) = 
limi_ooE[up time on (0,f]]/f 

lim -̂̂ cx) E[total cost on (0,i]]/< 

steady state system availability 

expected cost per unit time in the steady state 

= Aj{toM)ICj{to,tx) 

_ E[up time during one cycle] 

E [total cost during one cycle] 

= Uj{kM)lVj{tQM) (15.1) 

for Model j (= 0 ,7) , where E denotes the mathematical expectation operator. 
That is, the cost effectiveness is the mean operative time per unit mean op­
erating cost and is regarded as a unified criterion by taking account both the 
system availability and the economic justification. In a fashion similar to the 
continuous time model, we define the cost effectiveness in discrete time as 

Ej(no,ni) = i4j(no,ni)/Cj(no,ni) 
= t/^(no,ni)/V^^(no,ni) (15.2) 

for Model j ( = 0 , 7 ) . 

15.3 Order-Replacement Policies in Continuous Time 

15.3.1 Mode l description 

Consider an order-replacement problem for a one-unit system where each failed 
unit is scrapped and each spare is provided, after a lead time, by an order. 
The original unit begins operating at time t = 0, and the planning horizon 



272 T. Dohi, N. Kaio and S. Osaki 

h^Li^h 

'. «xpe4ii«d k«d time 

I \ fegi2l&f lead time 

I: iavcBtojy period 

-: 8y«t«m down HiRe 

I: system ep lime 

) ^ : failure 
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Figure 15.1: Configuration of order-replacement model in continuous time 

is infinite. If the original unit does not fail up to a prespec!ified time fo € 
[0. DO), the regular order for a spare is made at the time /Q and after a lead 
time Li the spare is delivered. Then if the original unit has already failed by 
f = f-o +1^2, the delivered spare takes over its operation immediately. But if the 
original unit is still working, the spare is put into the inventory and the original 
one is replaced/exchanged by the spare in the inventory when the original one 
fails/passes a prespecified time interval i\ after the spare is delivered, whichever 
occurs first. It is assumed that the spare in the inventory does not fail or 
deteriorate. On the other hand, if the original unit fails before the time fô  ^he 
expedited order is made inunediately at the failure time and the spare takes 
over its operation just after it is delivered after a lead time L\. In this situation, 
it should be noted that the regular order is not made. The same cycle repeats 
itself continually. The configuration of the basic model is illustrated in Figure 
15.1. 

Under this model, define the interval from one replacement/exchange to 
the following replacement/exchange as one cycle. Since the stochastic process 
under consideration is a renewal reward process and the points for replace-
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ment/exchange of a spare unit are the regenerative points, it is appropriate to 
consider the cycHc behavior of the stochastic process. The mean time length of 
one cycle is 

foo fiQ TOO rto-ri2 

Toito.ti) = / / {t + li)dF{t)dGi{h)+ / {to + l2)dF{t)dG2{l2) 
Jo Jo Jo Jto 

+ / / tdF{t)dG2{l2) 
Jo Jto-^-h 

roo /*c» 

+ / / {to + l2 + ti)dF{t)dG2{l2)' (15.3) 
Jo Jtn+h^U 

The expected cost for one cycle is given by 

roo rto a00 rto 

J hdFit)dGM 
roo fto+l2 X 

+ J I {to + h-t)dF{t)dG2{l2)} 
roo rto-{-l2-^ti 

+ciF(to) + C2F{to) -{-ki / {t-to- l2)dF{t)dG2{l2) 
Jo Jto+h 

roo roo rto 
+fĉ  / / tidF{t)dG2{l2) + km / F{t)dt 

Jo Jto-^h-^-h Jo 
( roo rto-^h ^ 

= ^{l/^i^-l/^i2)F{to) + j J F{t)dtdG2{l2)} 
roo rto-^-h+ti 

+ciF{to) + C2F{to) + ki / {t-to- l2)dF{t)dG2{l2) 
Jo Jto-¥l2 

roo roo rto 

+h / tidF{t)dG2{l2) + km F{t)dt (15.4) 
^0 Jto+h+h Jo 

The long-run average cost is, from the well-known renewal argument [see Ross 
(1970)], 

^ ,. . . ,. Efthe total cost on (0,til 
CoitoJ'i) = lim-^ '-^ 

t-*oo t 

= Voito,h)/To{to,ti). (15.5) 

On the other hand, since the mean up (operative) time during one cycle is given 
by 

roo rto+l2-\-ti 

Uo{toM) = / / tdF{t) 
Jo Jo 

roo roo 

+ / / {to^l2^ti)dF{t)dG2{l2) 
Jo Jto-\-l2-^ti 

roo rto+h-^tl 

= / / F{t)dtdG2{l2), (15.6) 
Jo Jo 
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the steady-state system availability is obtained as 

^o(^Oi^i) = lini Pr{the system is operating at t} 
t—*oo 

= Uo{to.ti)/To{to.ti). (15.7) 

Then, from the definition in (15.1), the cost effectiveness is formulated as 

Eoito.ti) = Uo{to^ti)/Vo{to,U), (15.8) 
and the problem is to obtain the optimal schedule (io*,*!*) € [0, oo) x [0, oo) 
which maximizes the cost effectiveness, namely, it satisfies 

Eo{tQ\ti*) = maxEoik.ti). (15.9) 
to,ti 

Define the numerator of the partial derivative of Eoito.ti) with respect to 
ti divided by J^ F{tQ + l2 + ti)dG2{l2)^ as qo{to, h). Then we obtain the follow­
ing result, which represents a decomposition structure in the cost effectiveness 
between the inventory time limit for a spare (ti) and the regular ordering time 
(to). 

Lemma 15.3.1 The function 9o(^0i*i) ^̂  a univariate function of to, i-e., 
Qo{to4i) = go(<o)-

PROOF. The direct calculation yields 

/•oo 

qo{to,ti) = {Voito,ti)}HdEo{to,ti)/dti)/ J F{to + l2 + h)dG2{l2) 

= Vo{to,ti) - kiTo{to,U) 

{l/l^l-l/fl2)F{to) + J^ J^ Fit)dtdG2{l2)} 
roo rto'\-l2 

+CiF(to) + C2F{to) -k, / F{t)dtdG2{l2) 
Jo Jo 

+km [ ' F{t)dt = qoito) (15.10) 
Jo 

and the result is trivial. • 

Theorem 15.3.1 For an arbitrary regular ordering time to {0 < to < oo), 
^/9o(*o) ^ 0, the optimal inventory time limit which maximizes Eo{to,ti) is 
ti* -^00, otherwise ti* = 0. 

PROOF. Prom Lemma 15.3.1, we have 

dEojtoM) J^F{to + l2'^ti)dG2{l2)^ .. . ...... 
5^ = T/ /, , \2 Qo{to)' (15.11) 
ati Vo\to,tiY 
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Thus, if qo{to) > 0, then Eo{to,ti) is increasing in ti and <i* —• oo, otherwise 
ti*==0. • 

Theorem 15.3.1 impUes that the two-dimensional maximization problem of the 
cost effectiveness, max^^t^t^^^ E{tQ,ti), can be reduced to one-dimensional prob­
lems in terms of to when tj = 0 and when t\ -^ cx). Hence, we focus our 
attention on these special cases. 

15.3.2 Special case : ti* —> oc 

Consider the case of ^i* -^ oc. Then the spare delivered by the regular order 
is put into the inventory until the original unit fails, if the original one is still 
operating (see Figure 15.1). In this case, the cost effectiveness is given by 

Eoito^^) = lim Eo{toM) = f/o(io,oc)/Vb(^o,oo), (15.12) 

where f/o(*o,oc) = 1/A and 

{ /•CX) rt()-\-l2 N 

(1//X1 - i//x2)F(^o)+y y F[t)dtdG2{i2)} 
+ciF(to) + C2F(fo) + ki I [ J{t)dtdG2{l2) 

./O Jto+h 
+km[°F{t)dt. (15.13) 

^0 

Define the numerator of the derivative of Eo{to, oo) with respect to to, divided 

by F{to). as ql^\to). 

Qo^\to) = ~ks{{l/^i-l/fi2)r{to)^R{to)}-{ci-C2)r{to) 

+k^R{to) - kr,r, (15.14) 

The following lemma will be useful to characterize the optimal ordering 
policy. 

Lemma 15.3.2 The sign of the first derivative of the function i?(to) is the 
same as that of r{to), i.e. R{to) is increasing (decreasing) in to if and only if 
the lifetime distribution F{to) is IFR (DFR). 

See Dohi, Kaio and Osaki (1998) for the proof. From Lemma 15.3.2, we prove 
the following results. 

Theorem 15.3.2 (1) Suppose that F{t) is strictly IFR (increasing failure rate) 
under (A-1) and (A-2). 
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(i) /f ^Q (0) > 0 and QQ (oo) < 0, there exists a finite and non-zero optimal 

order-replacement time t^ (0 < to ^ ^ ) '^hich satisfies Eo{tQ, oo) = 

maxo<io<cx) Eoito, oo) and qo^\tQ) = 0. 

(ii) //^Q (0) < 0, the optimal order-replacement time is t^ = 0. On the other 

hand, if QQ {oo) > 0, the optimal order-replacement time is t^ ~> oo. 

(2) Suppose that F{t) is DFR (decreasing failure rate) under (A-1) and (A-2). 
- ^ ^ ( 0 , 0 0 ) > Vo(oo,oo), then the optimal order-replacement time is t^ —• 00, 
otherwise, fj = 0. 

PROOF. Differentiating Eo{to,oo) with respect to to and setting it equal to 

zero implies that QQ {to) = 0. Further, with respect to to, we have 

^ ^ ^ ^ = -r{to){ks{l/^^l-l/^i2) + Cl-C2}-{k^ + ks)R'{to), 

(15.15) 

where in general ip'{t) = dip{t)/dt. When the lifetime distribution is strictly 

IFR under the assumption (A-1), the function QQ {to) is strictly decreasing. 

If QQ {0) > 0 and g^ ^(00) < 0, then there exists a finite and unique optimal 

ordering time to* (0 < <o* < oo) as a finite and unique solution of QQ {to) = 0 
under (A-1) and (A-2), because 

Qo^Ho) = -r{0){{ci+ks/fii)-{c2 + ks/ii2)}-{ks + ki)R{0) 

+fci ~ km, (15.16) 

ql^Hoo) = -r{0){{ci-^ks/fii)-{c2 + ks/fi2)}-{ks-hki)R{oo) 

+ki-'km. (15.17) 

If 9o (0) - 0, then the function EQ{to) is decreasing and the optimal ordering 
time is to* = 0. If g^ ^(00) > 0, then the function EQ{to) is increasing and 
the optimal ordering time is to* -* oc. On the other hand, if F{t) is DFR under 
the assumptions (A-1) and (A-2), then the result is trivial. • 

Note in Theorem 15.3.2 that a sufficient condition that the cost effectiveness 
Eo{to, 00) is strictly concave (convex) in to under strictly IFR (DFR) assump­
tion, is given by the assumption (A-1). Also, if the assumption (A-2) does not 
hold, it can be shown that qQ{Q) < 0 and QQ {00) < 0 and that the cost 
effectiveness is a decreasing function of to. In other words, if the monitoring 
cost is relatively more expensive than the inventory holding cost, the optimal 
order-replacement policy becomes trivial. 
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15.3.3 Special case: ti* = 0 

Next, we consider the case of fi* = 0. In this model, the original unit is 
replaced/exchanged by the spare immediately when it is delivered by the regular 
order, irrespective of the state of the original one. Then, we have 

where 

and 

Eoito. 0) = Uoito. 0)/Vo{to. 0), (15.18) 

TOO rto-\-l2 

f/o(to,0)= / / F{t)dG2{l2) (15.19) 
Jo Jo 

Vo{to,0) = fc,{(l//xi-l/M2)F(to) + y J F{t)dtdG2{l2)} 

+ciF(fo) + C2F(to) + km f° F{t)dt. (15.20) 
./o 

In a fashion similar to the case of ti —» oo, define the numerator of the derivative 

of Eo{to,0) with respect to to, divided by F(to), as 9o (*o)' namely, 

qg'^(to) = R{to)Vo{to,0)-{[ks{l/ni-l/n2) + ci-C2]r{to) + ksR{tQ) 

+km}Uo{to,0). (15.21) 

We show the existence and uniqueness of the optimal ordering policy without 
the proof. 

Theorem 15.3.3 (1) Suppose that F{t) is strictly IFR under (A-l). 

(i) If qQ{0) > 0 and ĝ ^ (oo) < 0, there exists a finite and non-zero opti­

mal order-replacement time tQ {0 < t^ < oo) which satisfies Eo{tQ,0) = 
maxo<to<oo Eo{to,0) and ^^^(to) = 0. 

(ii) If QQ (0) < 0, the optimal order-replacement time is t^ = 0. On the other 

hand, if QQ {oo) > 0, the optimal order-replacement time tj —> oo. 

(2) Suppose that F{t) is DFR under (A-1). If 

C/o(0,0)Vb(oo,0) > C/o(oo,0)Vb(0,0), 

then the optimal order-replacement time is t^ = 0, otherwise, t^ -^ oo. 

It should be noted in Theorem 15.3.3 that the assumption (A-2) is not always 
needed to guarantee the non-zero finite optimal order-replacement policy. This 
point is a unique feature for the case of t\ = 0, since the cost effectiveness in 
the case of t̂  = 0 does not include the inventory holding cost. 
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15.4 Order-Inspection Policies in Continuous Time 

15.4.1 Model description 

Next, we consider the order-inspection model. The original unit begins oper­
ating at time < = 0, and the planning horizon is infinite. If the original unit 
does not fail up to a prespecified time to 6 [0, oo), the regular order for a spare 
is made at the time to and after a lead time L2 the spare is delivered. Then if 
the original unit has already failed as oi t = to + L2, the delivered spare takes 
over its operation immediately. But if the original unit is still operating, the 
spare is put into the inventory and the original one is replaced/exchanged by 
the spare in the inventory when the original one fails/passes a prespecified time 
interval ti after the spare is delivered, whichever occurs first. On the other 
hand, even if the original unit fails before the time to, the failure can be de­
tected at only the time to and the expedited order is made immediately at the 
time to instead of the regular order. The spare is delivered after a lead time Li. 
The same cycle repeats itself again and again over an infinite time span. The 
configuration of this model called the order-inspection model is illustrated in 
Figure 15.2. Similar to the order-replacement model, define the interval from 
one replacement/exchange to the following replacement/exchange as one cycle. 

The expected total cost for one cycle is 

{ roo rto-f/2 >! 

(I//II - l/M2)F(to) + y J Fit)dtdG2il2)} 
+CiFito) + C2F{to) + C3 
-^k^ / / F{t)dtdG2{l2)' (15.22) 

On the other hand, the mean up (operative) time during one cycle is given by 

Uiito^ti)^ / / F{t)dtdG2{l2Y (15.23) 
Jo Jo 

Then, the cost eff'ectiveness is formulated as 

Eiito^ti) = Ui{toM)IVi{toM), (15.24) 

and the problem is to obtain the optimal schedule (to*»*i*) ^ [0»oo) x [0,00) 
which maximizes Ei{to,ti), 

Define the numerator of the partial derivative of Ei{to,t\) with respect to 
ti divided by J^T{to + I2 + ti)dG2{l2), as 9/(<o,^i), i-e., 

roo 

gi{to,ti) = {Vi{to,ti)}HdEi{to,ti)/dti}/ J F{to + h + ti)dG2il2) 

= Vi{to,h)-kiUi{to,h). " (15.25) 
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Figure 15.2: Configuration of order-inspection model in continuous time. 

Lemma 15.4.1 The. fmiction qi{t(),ti) is univariate in to, i-e., 

roc /•/()+/ 

QJ ik^h) = K{{lhii-lhi2)F{t,,)^ j ^ jj ' F{t)dtdG2{l2)] 

+ciF{to) -\- C2F(/o) + c:3 - A-, /" / " ' F{t)dtdG2{l2) 
Jo ./o 

= Ql(to). (15.26) 

Theorem 15.4.1 For an arbitrary regular ordering time to (0 < to < oc), 
if qi{to) ^ 0. the optimal inventory time limit ivhich maximizes Ei{to^ti) is 
ti* = 0; otherwise ti* —^ oc. 

15.4.2 Special case: ti* -^ oc 

Let us consider the case of /i* —• oc. Then the spare deHvered by the regular 
order is put into the inventory initil the original unit fails, if the original one is 
still operating. In this case, the cost effectiveness is given by 

Ey(f{), oc) = l̂im J?/(/o, /i) = f//(/(). oc)/K/(/o. oc), (15.27) 
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where Uj{to,oo) = 1/A and 

f roc fto-^-h X 
V}(to,Oo) = ks{il/^ll-l/^i2)F{to) + J I F{t)dtdG2{l2)} 

+CiF{to) + C2F(to) + C3 
TOO rOO 

+k^ / / F{t)dtdG2{l2)^ (15.28) 

Define the numerator of the derivative of Ej{to,oo) with respect to to, di­

vided by F{to), as qji'^\to), 

-kiR{to)}. (15.29) 

Theorem 15.4.2 Suppose that F{t) is strictly IFR under (A-l). 

(i) If Qi (0) > 0, there exists a finite and non-zero optimal ordering time 
0̂ (0 "̂  0̂ "̂  ^ ) '^hich satisfies Ej{tQ,oo) = niaxo<io<oo^/(^OjOo) and 

(ii) If Qj (0) < 0, i/ie optimal ordering time is t^ = 0. 

Theorem 15.4.3 Under (A-l), 

(i) if dqj {to)/dto < 0, then either (i) or (ii) in Theorem 15.4-2 holds, 

(ii) ifdq\'^\to)/dtQ > 0, then tj = 0. 

15.4.3 Special case: ti* =0 

Next, we consider the case of fi* = 0. In this case, the original unit is re­
placed/exchanged by the spare immediately when it is delivered by the regular 
order, irrespective of the state of the original one. Then, we have 

£^/(<o,0) = C//(io,0)/K/(io,0), (15.30) 

where 

[ / ; ( fo ,0 )= / / F{t)dtdG2{l2) (15.31) 
./o ./o 

and 

Vi{to,0) = kx[{\|^lx-\|^l2)F{to) + j j F{t)dtdG2{h)} + ciFito) 

+C2F{to) + C3. (15.32) 

Similar to the case of tl —* oo, define the numerator of the derivative of £'/(to, 0) 

with respect to to, divided by F{to), as qj (to), 
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g f (to) = R{to)V{tQ,0) - { [A;I(1/MI - I/M2) + Ci - C2]r(to) 

F{to) 
+k,[R{to) + ^]}u,{to,0). (15.33) 

Theorem 15.4.4 Suppose that F{t) is strictly IFR under (A-1). 

(i) / / qj (0) > 0, there exists a finite and non-zero optimal ordering time 
*o (0 < 0̂ < ^ ) '^hich satisfies Ejit'^.O) — maxo<io<oc £^/(io,0) and 

(ii) //g^ ^(0) < 0, the optimal ordering time is t^ = 0. 

Theorem 15.4.5 Under (A-l), 

(i) if dq^{tQ)/dtQ < 0, then either (i) or (ii) in Theorem 15.4-4 holds, 

(ii) ifdq^j{to)/dto > 0, then f̂  = 0. 

15.5 Order-Replacement Policies in Discrete Time 

15.5.1 Mode l description 

Next, we consider similar models in discrete time setting. For a discrete time 
index n = 0 ,1 ,2 , - - , consider an order-replacement problem for a one-miit 
system where each failed unit scrapped and each spare unit is provided after a 
lead time, in order. Let P{n) be the unit failure time distribution with p.m.f. 
p{n) and finite mean 1/A (> 0). The original unit begins operating at time 
n = 0. If the original unit does not fail up to a prespecified time no G [0, oo), 
the regular order for a spare is made at that time and the spare is delivered 
after a lead time L2 with p.m.f. g2{n) and finite mean I//X2 (> 0). Then, if 
the original unit has already failed by time n = no + L2, the delivered spare 
takes over its operation from the delivery point. In this situation, if the original 
unit is still operating, the spare is put into the inventory and the original one 
is replaced/exchanged by the spare in the inventory when it fails/passes an 
allowable inventory period ni € [0, oc) after the spare is delivered, whichever 
occurs first. It is assumed that the spare in the inventory does not fail or 
deteriorate with probability 1. 
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Figure 15.3: Configuration of order-replacement model in discrete time 

On the other hand, if the original miit fails before the time no, an expedited 
order is made immediately at the failure time point and the spare takes over its 
operation just after it is delivered after a lead time Li with p.m.f. g\{n) and 
finite mĉ an l/fii (> 0). In this situation, the regular order is not made. Define 
the time interval from one replacement or exchange of the miit to the following 
repla(!ement or exchange as one cycle, where the same cycle repeats itself con­
tinually. Let ks (> 0) and Â  (> 0) denote the shortage and inventory holding 
costs per imit time, respectively. Also, we define the fixed costs associated with 
exjx^dited and regular orders by ci (> 0) and ('2 (>())• Figme 15.3 depicts the 
possible behavior of the one-miit system imder consideration. 

We derive the expected ('ost per luiit time in the steady state: 

Co(no.ni) = Vo{no.ni)/To{ni),ni), (15.34) 

where 

DC no-i X iin+lj-l 

Vo{no,ni) = A- ,{^ ^ Zi;j(n)<7i{/i)+X] L im + h - n)p(n)g2(l2)} 
; i=0 n=0 l2=0 n=n„ 
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oo no4- /2+n i - l 

+^i{ I ] Yl (^ - ^0 - I2)p{n)g2{l2) 
^2=0 n—no+h 

cx) oo 

+ 51 H nip(n)52(/2)} + ^li'lno - 1) 
/ 2=0n=no+/2+n i 

n o - l 

+C2P(no-l) + A;„ j ; P ( n ) (15.35) 

and 

00 n o - l oo no-|-/2-l 

r(no,ni) = 5 ] i ] ( n + /i)p(n)5i(/i)+53 J ] {m + l2)p{n)92(12) 
/ i = 0 n = 0 /2=0 '̂ ='̂ 0 

00 n o + / 2 + " i - l 

/2=0 n=Tio+/2 
00 00 

+ E E (no + /2 + ni)p(n)52(i2) (15.36) 
/2=0Ti=no+/2+ni 

are the expected total cost for one cycle and the mean time length of one cycle, 
respectively. On the other hand, the steady-state system availability is given 
by 

Aoini,no) = Uo{ni,no)/To{ni,no), (15.37) 

where 

oo n o - l oo no+h+ni-l 

Uo{ni,no) = Y. Y.'^P^^)9i{h) + Y. Y. M^)92{l2) 
li=0 n=0 h=0 n=no 

oo oo 

+ E E inQ + l2 + ni)p{n)g2{l2). (15.38) 
l2=On=no+J2+"l 

Hence, from the definition in (15.2) the cost effectiveness is given by 

Eo{no,ni) = t/o("o,ni)/Vb(no,ni). (15.39) 

Define the numerator of the difference of Eo{no,ni) with respect to ni 
divided by E~=oE~=no+/2+n,+iP(")52('2), as go(no,ni), i.e., 

Vo{no,ni + l)Vo{no,ni)lEo{no,ni + 1) - Eo{no,ni)\ 
qi{no,ni) = ^oo v̂ oo f \ n \ • 

Z./2=0 L n = n o + / 2 + r . i + l P ( " ) f ' 2 ( t 2 ) 

(15.40) 
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Lemma 15.5.1 The function goC^o^^i) is univariate in no, i.e., go(^o»^i) = 
90 (^o) • 

PROOF. It is straightforward to see that 

qo{no,ni) = Vb(no,ni+ 1)-fciVb(no,ni) 
oo UQ-I 00 no-f-/2-l 

= ^ {̂X! £ ^iP(^)5i('i)+Z Z (̂ o + /2-n)p(n)p2(/2)} 
/i=rO n=0 /2=0 n=no 

oo no—1 oo no—/2 —1 

/ j=0 n=0 /2=0 n=no 
00 00 no—1 

+ E E ("0 + /2)p(n)p2(/2)} + /Cm £ P(n) 
/2=0n=noH-/2 ^=0 

+ciP(no - 1) + C2P(no - 1). (15.41) 

Theorem 15.5.1 For an arbitrary regular ordering time no (0 < no < oo), 
if go (to) ^ 0, the optimal inventory time limit which maximizes Eoino^ni) is 
ui* —> 00, otherwise ni* =0 . 

PROOF. Prom Lemma 15.5.1, we have 

r fr. n. J^-W Vr (^ ^ \ E/%:0 E^no-f/2+ni-f 1 P(^)g2(^2) ^ , v 

to{no,ni + 1) - ±;o(no,ni) = -— ,.^.r / x g o N ) . 
Vb(no,ni + l)Vb(no,ni) 

(15.42) 
Thus, if go(^o) ^ 0, then Eo{nQ, ui) is increasing in ui and ni* —• oo, otherwise 
ni* =0 . • 

15.5.2 Special case: nj —̂  oo 

When nj -^ oo, the cost effectiveness is given by 

£'o(no, oo) = Uo{no, oo)/Vb(no, oo), (15.43) 

where 

00 n o - 1 oo n o + / 2 - l 

Vb(no,oo) = fcs{ Yl Z 'iP(^)^i('i) + Z Z (̂ 0 + 2̂ - n)p(n)52(/2)} 
f i=0 n=0 ^2=0 n=no 

oo oo 

+*̂ ^ Z Z (^ - ^0 - h)p{n)g2{l2) 
/2=0n=no+/2 

n o - 1 

+fcm j ] ; P(n) + ciF(no - 1) + C2P(no - 1) (15.44) 
n = 0 
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and UoiriQ.oo) = 1/A. Taking the difference of J5o(^o,oo) with respect to no, 
we define the function: 

9o°^(^o) = - /CS{(1/MI - l/M2)^(no) + R{no)} 

- (c i - C2)r(no) -f kilRino) - km- (15.45) 

Lemma 15.5.2 The function R{n) is decreasing (increasing) if the function 
r{n) is decreasing (increasing). 

PROOF. It is seen that 

/?(no + 1) - i?(no) - }^{ ^^—^^ 

-̂  ?M ^''^''^ 
= f y^^^) {r(no + /2 + 1) - r(no + 1)}. 

it^o P{no)P{no + /2 + 1) ^ J 
(15.46) 

For an arbitrary ^2, if ?'('̂ o + i2 + l) > (<)r(no + l) , then il(no + l) > {<)R{no). 

• 
Strictly speaking, the function r{n) = p{n)/P{n) is not a failure rate of the 
discrete failure time distribution P{n), because the failure rate should be defined 
as p{n)/P{n - 1) [see Barlow and Proschan (1975)]. 

Using Lemma 15.5.2, we can characterize the optimal ordering policy UQ 
maximizing Eo{no,oo) as follows. 

Theorem 15.5.2 (1) Under the assumptions (A-1) and (A-2), suppose that 
the function r{n) is a strictly increasing function ofn. 

(i) If Qo (0) > 0 and QQ (oo) < 0, there exists (at least one, at most two) 

optimal ordering time n^ (0 < nj < oo) satisfying QQ {UQ — 1) > 0 and 

gg»)(nS)<0. 

(ii) If QQ {0) < 0, the optimal ordering time is n^ = 0 with Eo{0,oo) = 

{ksXEi^^oEtoih - n)p{n)g2{l2)}-y / /gjr^(oo) > 0 nj - oo with 
£•0(00,00) = fcs/(MiA). 

(2) Under the assumptions (A-1) and (A-2), suppose that the function r{n) is 
a decreasing function of n. Then, the optimal regular ordering time is UQ = 0 
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PROOF. Taking the difference of £"0(720,00) with respect to no, we obtain 

Eoim + . .oc) - £;o(n„,oc) = ^ ^ ^ _ £ M _ _ , < ~ ) ( ^ ) . (15.47) 

Further difference yields 

q^^\nQ + l)-q^^\no) = -{r (no + 1) - r(no)}{A;,(l//xi - I/M2) 

+ci - 02] - {Rim + 1) - il(no)} 

x{ksil/^il-l/^l2) + ki}, (15.48) 

where 

gJr̂ (O) = -ks{{l/fii-l/fi2M0)^R{0)} 
"{ci - C2)r(0) + kiR{0) - km. (15.49) 

ql^\oo) = -A: ,{( l / / i i - l / / i2)r (oc) + /?{oc)} 

~(ci - C2)r(oo) 4- /cilCcx)) - fcrn- (15.50) 

Suppose that the function r{n) is strictly increasing with respect to n = 0,1, • • •. 

Since g^ (no) < 0 for all no under the assumptions (A-1) and (A-2), the 

function C(no,oo) is strictly concave in no- If QQ {0) > 0 and g^ ( ^ ) ^ 0' 

then the function QQ {no) monotonically decreases with respect to no and its 

sign changes at once from positive to negative. Hence, it is easily shown that 

there exists (at least one, at most two) optimal ordering time nj (0 < ng < 

GO) satisfying goo(no - 1) > 0 and goo(no) < 0. If QQ \0) < 0 under the 
assumptions (A-1) and (A-2) with the strictly decreasing property, then the 
function £"0(^0,00) is a decreasing function of no, and the optimal ordering 
time is no = 0. Conversely, if 9^^(00) > 0, then the function jE'o(no,oo) is 
an increasing function of no, and the optimal ordering time is nj —* 00. The 
decreasing case of the function r{n) is trivial. The proof is completed. • 

15.5.3 Special case: nl = 0 

On the other hand, when n\ = 0, we can obtain 

00 no - l 00 no+/2-l 

Vb(no,0) = ks[Y, tl ^^P(^)9i{h) + Y. Z i^^o + h - n)pin) 92(12)} 
/ i = 0 n=0 /2=0 "="0 

no- l 

+ciP(no - 1) + C2P(no - I)-^ km Yl ^ (^) (15-51) 
n=0 

and 
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oo riQ-l oc n o + / 2 - l 

/ i = 0 n = 0 l2=0 n=no 
oo oo 

+ E E iri, + l2)p{n)g2{l2). (15.52) 
/2=On=Tio+/2 

Taking the difference of £"0(^10,0) with respect to no, we have 

9o^(^o) = -{/C5[(l//xi - l/fi2)r{no) + i?(no)] + (ci - C2)r(no) 

+k^}Uo{no,0) + R{no)Vo{no,0), (15.53) 

Theorem 15.5.3 (̂ ij Under the assumption (A-l), suppose that the function 
r{n) is a strictly increasing function of n. 

(i) If qQ{0) > 0 and qQ{oc) < 0, there exists (at least one, at most two) 

optimal ordering time UQ (0 < TIQ < 00) satisfying QQ {UQ - 1) > 0 and 

gg'^(nS) < 0. 

(ii) If QQ {0) < 0, the optimal ordering time is rig = 0 with 

E^=o Zto np{n)g2{l2) + E/?=o Z^=i, hp{n)g2{l2) 

ksE^=oEtoil2-n)p{n)g2{l2) 
(15.54) 

otherwise UQ—^OO with £"0(00,0) = ks/{iiiX). 

(2) Under the assumption (A-1), suppose that the function r{n) is a decreasing 
function of n. Then, the optimal regular ordering time is UQ = 0 or UQ —• oc. 

15.6 Order-Inspection Policies in Discrete Time 

15.6.1 Mode l description 

Consider an order-inspection problem for a one-unit system where each failed 
unit is scrapped and each spare unit is provided after a lead time, placing 
order. The original unit begins operating at time n = 0. If it does not fail 
up to a prespecified time no € [0,oc), the regular order for a spare is made 
at that time and the spare is delivered after a lead time L2. Then, if the 
original unit has already failed by time n = no -h I/2, the delivered spare takes 
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X Mure point 
# replacement/exchange point 

— system down period 

operation period 

expedited lead time 

\ tegular lead time 

invetitory period 

n^O «^/ia n-^n^-fl^ n^n^rj^in^ 

— X I 4 

~ ^ — • 

• • • l^ . . .^ . .^ .̂.̂ .̂̂  J 

Figure 15.4: Configuration of order-inspection model in discrete time 

over its operation from the delivery point. In this situation, if the original 
\uiit is still operating, the spare is put into the inventory and the original one 
is replaced/exchanged by the spare in the inventory when it fails/passes an 
inventory time limit ni G [0. oc) after the spare is delivered, whichever occurs 
first. It is assumed that the spare in the inventory does not fail or deteriorate 
with probability 1. 

On the other hand, if the original unit fails before the time no, an expedited 
order is made at the inspection time no- Then the spare takes over its operation 
just after it is delivered after a lead time Li. In this case, the regular order 
is canceled. In Figure 15.4. the possible behavior of the one-unit system with 
order-inspection policy in discrete time setting is presented. 

The cost effectiveness is formulated as 

where 

Ej{n(),,ni) = t/y(m).ni)/V/(no,/7i). 

oo 1H) -1 

V7(no.̂ ?i) = ^^{Y^ 51 (̂ ^O"̂ '! ~^')^^(^)^i('i) 
/ i=0 n=0 

(15.55) 
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oo no-f/2-1 

+ Z! Yl K + ̂ 2-n)p(n)p2(/2)} 
/2=0 ri=no 

00 nQ-\-l2+ni-l 

+^i{Y. Y. (^ ~ ^0 ~ I2)p{n)g2{l2) 
/2=0 n=no-t-/2 

00 00 

+ S I ] niP(n)52{/2)} 
i 2=0n=no+/2+ni 

+ciP(no - 1) + C2P(no - 1) + C3 (15.56) 

and 
cx) no —1 00 no-f/2H-'^i —1 

Ui{no,ni) = Y. J2 M^)9i{h)+ J2 Y M^)92{l2) 
li=Q n=0 ^2=0 ^=^^0 

00 00 

+ E E ("o + /2 + ni)p(n)p202)- (15.57) 
/ 2=0n=no+/2+ni 

Define the numerator of the difference of Ej{no,ni) with respect to ni di­
vided by Ylt2=o'^rv=no+l2-\-ni-hl P(^)52(/2), asg/(fo,fi)-

Lemma 15.6.1 The function g/(no,ni) is univariate in no, i.e., g/(no,ni) = 
V7(no,ni) - kiUiiuQ.ni) = q/(no). 

Theorem 15.6.1 For an arbitrary regular ordering time no, if qiino) > 0, 
then the optimal inventory time limit is given by n\ -* 00, otherwise nj = 0. 

15.6.2 Special case: n\ —^ 00 

When n^ —̂  00, the cost effectiveness is given by 

Ej{no,oo) = V}(no,oo)/C//(no,oc), 

where 
00 no —1 

V/(no,oo) = ^s{Yl X] (̂ o + /i-/2)p(n)pi(/i) 
/ i = 0 n=0 

CX) no4-/2-l 

+ Z1 Y. i^o + I2 - n)p{n)g2{l2)} 
/2=0 n=no 

00 00 

+^^ Y 51 (^ - ^0 - I2)p{n)g2{l2) + ciP(no - 1) 
/2=0n=no-f/2 

+C2P(no - 1) + C3 (15.58) 
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and C//(no,oo) = 1/A. Taking the difference of ^/(nojOo) with respect to no, 
we define the function: 

Q]r\no) = -[ks{l/fjLi - l//i2) + ci- C2}r(no) 
Pjno) 
P{no) 

ki{R{no) + ^ ^ - kiR{no)}^ (15.59) 

Theorem 15.6.2 Suppose that r{n) is increasing in n under (A-l). 

(i) If Qj (0) > 0, there exists (at least one^ at most two) optimal ordering 

time UQ (0 < n5 < oo) which satisfies qj{n^ - 1) > 0 and ?/ (nS) < 0. 

(ii) If Qj (0) < 0, the optimal ordering time is n^ = 0. 

Theorem 15.6.3 Under (A-l), 

(i) ifqjino + 1) < 9/ (no), then either (i) or (ii) in Theorem 15.6.2 holds, 

(ii) ifq\'^\no + 1) > gi°°^(no), then 5̂ = 0. 

15.6.3 Special case: n\ = 0 

On the other hand, when nj = 0, we can obtain the cost effectiveness 

£^/(no,0) = V7(no,0)/f//(no,0), 

where 

and 

cx) no—1 

V/(no,0) = fcsjj^ 5](no-f/ i-n)p(n)5i(/ i) 
/ i = 0 n=0 

00 n o + / 2 - l 

+ E E i^ + h-n)p{n)92{l2)} 
^2=0 "="0 

+ciP(no - 1) + C2P(no - 1) + C3 (15.60) 

00 n o ~ l 00 no4-/2-l 

C /̂(^o,0) = 51 J ] np(n)pi(/i)+5]] Y. Mn)g2{l2) 
/ l = 0 n=0 I2-O ri=no 

00 00 

+ E E ir^Q + h)pin)92il2). (15.61) 
/2=OTi=no+/2 
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Taking the difference of Ei{no,0) with respect to no, we get 

Qf\rio) = - { [A:S(1/MI - I/M2) + Ci - C2]r(no) 

+ks [i?(no) + j ^ ] }f//(no,0) + R{no)Vi{no.0). (15.62) 

Theorem 15.6.4 Suppose that r{n) is strictly increasing in n under (A-1). 

(i) Ifqj ^(0) > 0, there exists (at least one, at most two) optimal ordering time 

UQ {0 < UQ < 00) which satisfies q\ (̂rig - 1) > 0 and q\ [UQ) < 0. 

(ii) If qj (0) < 0, the optimal ordering time is UQ = 0. 

Theorem 15.6.5 Under (A-1), 

(i) i/q/ (no + 1) < qj (no), then either (i) or (ii) in Theorem 15.6.4 holds, 

(ii) if qJ {no + 1) > 9/ (no), then n^ = 0. 

15.7 Numerical Illustrations 

15.7.1 Continuous time models 

We present some examples that determine the optimal order-replacement and 
order-inspection policies. For the continuous time models, suppose that the 
hfetime distribution obeys the Weibull distribution: 

F(x) = 1 - e-(^/")^ x > 0 , (15.63) 

where 1/A = ar{l -h 1//3) and r(-) denotes the standard gamma function. Also, 
it is assumed that the emergency lead time Li and the regular lead time L2 are 
the exponentially distributed random variables having 

Gi(x) = l - e - ^ ^ ^ (15.64) 

and 
G2(x) = 1 - e~^2x^ (15 65) 

respectively. In Table 15.1 we present dependence of the scale parameter a of 
the Weibull distribution on the optimal ordering policies. As a monotonically 
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increases, i.e., MTTF (mean time to failure) increases, the optimal ordering 
time becomes longer and its associated cost effectiveness increases. In this 
example, it can be seen that the case of tj = 0 is better than that of tj —> oo 
in terms of maximization of cost effectiveness. On the other hand, as the 
scale parameter increases, the cost-effectiveness of the order-inspection policy 
improves much faster than that of the order-replacement policy (the best policy 
is indicated by the underiine). In Tables 15.2 and 15.3, we examine the optimal 
ordering policies for varying shape parameter /3 of the Weibull distribution 
and the inspection cost C3, respectively. Similar to Table 15.1, the optimal 
policy is switched from the order-replacement policy (order-inspection policy) 
to the order-inspection policy (order-replacement policy) as /3 (03) increases in 
Tables 15.2 and 15.3, respectively. Also, in Table 15.3 the cost parameter C3 
is insensitive to the optimal policy except for the order-inspection policy with 
tl = 0. 

15.7.2 Discrete time models 

Of our next interest is the investigation of sensitivity of model parameters on 
the optimal ordering policy in discrete time setting. Suppose that the (discrete) 
failure time obeys the following discrete Weibull distribution; 

p(n) = ( 9 r ' - ( g ) ( " + ^ ) ' , (15.66) 

where 0 < g < l , m > 0 and n = 1,2,.... This mteresting discrete distribution 
was introduced by Nakagawa and Osaki (1975). Later, Stein and Dattero (1984) 
defined a somewhat different discrete Weibull distribution. Also, it is assumed 
that the p.m.f. of the expedited and regular lead times are given by the following 
geometric distributions: 

5i(/) = P i ( l - P i ) ' , (15.67) 

52(0 = P2( l -P2) ' , / = 1,2,..., (15.68) 

respectively, where pj {j = 1,2) 6 (0,1). Table 15.4 presents the dependence 
of the parameter q of the discrete Weibull distribution on the optimal order­
ing policies. As q monotonically increases, the optimal ordering time and the 
corresponding cost effectiveness increase. In this example, it is observed that 
nj —̂  00 is always better than nj = 0 in terms of maximization of cost effec­
tiveness. Also, in all the cases, it is optimal to perform the order-replacement 
policy. In Tables 15.5 and 15.6, we present the comparative results on the op­
timal ordering policies for varying shape parameter /3 and C3, respectively. In 
Tables 15.5 and 15.6, it is obvious that the cost effectiveness does not always 
increase monotonically. Similar to the continuous case, the inspection cost C3 
tends to be insensitive in most cases. 
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Table 15.1: Dependence of failure parameter a on the optimal policy in contin­
uous time: ki = 0.1, kg = 0.05, km = 0.01, ci = 2, C2 = 1, C3 = 3, /xi = 0.01, 
/X2 = 0.02, (3 = 2.0 

Q 1 
1000 
1200 
1400 
1600 
1800 i 
2000 
2200 

1 2400 

tS 
309.2 
359.2 
406.5 
451.8 
495.2 
537.1 
577.7 

1 617.0 

Order-I 
Eiit^O) 

56.2 
64.3 
72.1 
79.5 
86.7 
93.6 

100.2 
106.7 

nspection 

to 
547.8 
674.9 
802.1 
929.4 

1056.6 
1183.9 
1311.2 
1438.5 

Ei{to,oo) 
29.8 
30.8 
31.5 
32.1 
32.6 
32.9 
33.3 
33.5 ! 

Order-Replacement 

ts 
164.5 
205.2 
246.3 
287.6 
329.0 
370.4 
412.0 

1 453.6 

Eo{to,0) 
69.6 
73.2 
75.8 
78.0 
79.9 
81.4 
82.8 
83.9 

to 
1584.2 
2290.3 
3124.6 
4084.2 
5217.8 
6834.5 
7672.9 
9724.5 

Eoito.oo) 
42.7 
47.0 
50.8 
54.2 
57.0 
59.6 
61.9 
63.9 

Table 15.2: Dependence of failure parameter 0 on the optimal policy in contin­
uous time: ki = 0.1, ^5 = 0.05, km = 0.01,. ci = 2, C2 = 1, C3 = 3, /ii = 0.01, 
fi2 = 0.02, a = 1600 

0 
1.25 

! 1.50 
1.75 

i 2.00 
2.50 
3.00 
3.50 1 
4.00 

Order-Inspection | 

to 
329.3 
370.3 
411.5 
451.8 
527.3 
595.3 
655.9 

1 709.9 

Ei{t*o.O) 
47.1 
58.1 
68.9 
79.5 
99.6 
118.0 
134.6 
149.6 

to 
686.7 
786.5 
865.5 
929.4 
1026.1 
1095.6 
1148.0 
1188.9 

Ei {to, 00) 
24.8 
27.2 
29.6 
32.1 
37.0 
41.8 
46.5 
51.0 

Order-Replacement | 

5̂ 
278.2 
245.4 
261.0 
287.6 
348.7 
410.1 
467.8 

1 521.1 

Eoito.O) 
62.5 
69.2 
74.3 
78.0 
83.1 
86.2 
88.2 
89.6 

5̂ 
23080 
13883 
6921 
4084 
2565 
2073 
1844 
1718 

Eo{to,oo) 
55.4 
54.6 
54.3 
54.2 
54.3 
54.9 
55.6 
56.5 

Table 15.3: Dependence of cost parameter C3 on the optimal policy in continuous 
time: ki = 0.1, kg = 0.05, km = 0.01, ci = 2, ca = 1, Aii = 0.01, H2 = 0.02, 
a = 1600, p = 2.0 

C3 

0.5 
1.0 
1.5 

j 2.0 

2.5 
3.0 1 
3.5 i 
4.0 ! 

1 Order-Inspection ] 

to 
307.2 
345.0 
376.8 
404.6 
429.4 
451.8 
472.4 

1 491.4 

^/(^5,0) 
150.1 
124.8 
108.0 
95.9 
86.8 
79.5 
73.6 
68.7 

5̂ 
929.4 
929.4 
929.4 
929.4 
929.4 
929.4 
929.4 
929.4 

Ei (to, oc) 
34.0 
33.6 
33.2 
32.8 
32.4 
32.1 
31.7 
31.4 

1 Order-Replacement 

th 
287.6 
287.6 
287.6 
287.6 
287.6 
287.6 
287.6 

1 287.6 

Eoito.O) 
78.0 
78.0 
78.0 
78.0 
78.0 
78.0 
78.0 
78.0 

to 
4084.2 
4084.2 
4084.2 
4084.2 
4084.2 
4084.2 
4084.2 
4084.2 

£^0(^5,00) 1 
54.2 
54.2 
54.2 
54.2 
54.2 
54.2 
54.2 
54.2 
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Table 15.4: Dependence of failure parameter q on the optimal policy in discrete 
time: ki = 0.1, ks = 0.05, km = 0.01, ci = 2, C2 = 1, Ci = 3, pi = 0.1, P2 = 0.2, 
13 = 2.0 

Q 

0.992 
0.993 
0.994 
0.995 
0.996 
0.997 
0.998 
0.999 

Order-Inspection ] 

1 ^0 
9 

10 
11 
12 
13 
15 
19 

1 26 

iE;/{nS,0) 
1.57 
1.68 
1.80 
1.97 
2.18 
2.50 
3.00 
4.09 

UQ Ej(nQ,oo) 

1 2.14 
1 2.29 
1 2.46 
1 2.69 
2 2.99 
3 3.41 
4 4.09 
9 5.51 

[ Order-Replacement 

1 '̂ o 
5 
5 
6 
6 
7 
9 

12 
1 18 

Eoino.O) 
4.32 
4.59 
4.90 
5.31 
5.85 
6.64 
7.90 

10.61 

UQ EO {no, OO) 

0 _6J3 
1 J7,ll 
1 JL57 
1 Ml 
1 8.78 
2 9.69 
4 11.01 
9 13M 

Table 15.5: Dependence of failure parameter /? on the optimal policy in discrete 
time: ki = 0.1, ks = 0.05, km = 0.01, ci = 2, CQ = 1, C3 = 3, pi = 0.1, P2 = 0.2, 
q = 0.999 

0 
1.25 
1.50 
1.75 
2.00 

1 2.50 
1 3,00 

3.50 
4.00 

'̂ o 
103 
68 
41 
26 
12 
7 
5 

1 ^ 

Order-Inspecti 
Ej(nlO) 

7.10 
8.61 
5.93 
4.09 
2.33 
1.57 
1.16 
0.92 

UQ 

53 
38 
18 
9 
3 
2 
1 
0 

on 
EI {no, 00) 

0.04 
0.01 
0.10 
5.51 
3.03 
1.95 
1.40 
1.08 

1 Order-Replacement 

1 '̂ o 
112 
86 
36 
18 
7 
4 
3 

1 2 

Eo{n*o.O) 
17.29 
22.42 
15.14 
10.61 
6.53 
4.65 
3.57 
2.84 

UQ Eo{no,oo) 
96 0.07 

103 0.02 i 
24 0.22 
9 13.39 
3 9.05 
1 6.34 
0 4.69 
0 3.66 

Table 15.6: Dependence of cost parameter C3 on the optimal policy in discrete 
time: ki = 0.1, kg = 0.05, km = 0.01, ci = 2, C2 = 1, pi = 0.1, P2 = 0.2, 
q = 0.999, 0 = 2.0 

C3 

0.05 
0.10 
0.50 
1.00 
1.50 1 
2.00 
2.50 
3.00 

TIQ 

15 
15 
17 
20 
22 
23 
25 

[ 2 6 

Order-Inspect 

Ei{n*o.O) 
10.33 
10.02 
8.14 
6.69 
5.73 
5.04 
4.51 
4.09 

UQ 

9 
9 
9 
9 
9 
9 
9 
9 

ion 1 
Ei{no,oc) 

13.46 
13.13 
11.03 
9.19 
7.87 
6.89 
6.12 
5.51 

[ Order-Replacement | 

no 
18 
18 
18 
18 
18 
18 
18 

I 18 

Eo{no'.0) 
10.61 
10.61 
10.61 
10.61 
10.61 
10.61 
10.61 
10.61 

no Eo {no, 00) 
9 13.39 
9 13.39 
9 13.39 
9 13.39 
9 13.39 
9 13.39 
9 13.39 1 
9 13.39 i 
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Abstract: This problem stems from already implemented sequential minimum 
risk point estimation methodologies for a scale parameter or for comparing two 
scale parameters in exponential distributions. We move on to address the esti­
mation problem for the reliability parameter in a one-sample scenario. We in­
vestigate both invariance (of fixed-sample-size MLE) -based estimators as well 
as those depending upon bias-corrected forms using already gathered sequential 
data and the stopped sample size. While we derive important guidance from 
Mukhopadhyay et al. (1997), the present investigation is significantly broader 
in scope. The merits of the proposed estimators are critically examined through 
simulation. These ideas are subsequently extended to the two-sample problem 
where our goal is to estimate how many times more likely it is for an obser­
vation from one population to "survive" beyond time point t, compared with 
another population. Twelve estimators are developed and compared. Again, 
performances of both biased and bias-corrected estimators based on sample 
means from already gathered sequential data and the stopped sample sizes are 
investigated via simulation. Some real data examples are included. 

Keywords and phrases: Exponential distribution, mean, reliabiHty, MLE, 
sequential sampling, bias correction, one-sample problem, two-sample problem, 
Taylored estimators, estimator templates, simulations, real data examples 

16.1 Introduction 

Survival times with a constant failure rate are typically modeled by an ex­
ponential distribution. Of particular interest to us is the probability that an 
observation survives beyond time t. Let us denote the probability density func-
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tion (p.d.f.) for an exponential random variable with mean Ai > 0 as 

/ (x; Ai) = AJ"̂  exp(-x/Ai),x > 0. (16.1) 

In a one-sample problem, let X represent the life span of a randomly chosen 
manufactured product, for example, a particular kind of activation mechanism 
of an emergency sprinkler system. Assuming the exponential distribution (16.1) 
with an unknown mean survival time Ai(> 0), we may wish to estimate the 
reliability parameter, namely 

0x {t) = Px, {X>t)^ exp (~i/Ai), (16.2) 

where < (> 0) is some fixed number in time-scale. The distributional assumption 
leads to the so-called memoryless property. Many products, however, tend to 
exhibit "problems" near the beginning of their life or they start to deteriorate 
beyond a certain point, implying a non-constant failure rate. The notion of a 
constant failure rate is most useful when the failure of a system is perhaps due 
to some random shock, for example, a sudden surge of electricity may cause a 
computer chip to fail instantaneously. There are many models for survival times 
more sophisticated than (16.1), but in this chapter, we stay with exponential 
models for the sake of simplicity. 

For overviews on reliability theory, we refer to Lomnicki (1973), Barlow 
and Proschan (1975), and Ansell and Phillips (1989). The edited volume of 
Balakrishnan and Basu (1995) presented the whole wide spectrum of statisti­
cal research involving exponential distributions. A couple of articles addressed 
topics that were in spirit similar to our present investigation, including Tong 
(1977), Brown (1977), Beg and Singh (1979), and Beg (1980). Unfortunately, 
these articles were rather few and far between. One may look at this investi­
gation as a rebirth of the possible union of reliability estimation and sequential 
analysis in the light of the seminal papers of Epstein and Sobel (1953, 1954, 
1955) and Sobel (1956). Prom what one will see here, it should be clear that 
marrying the notions of reliability estimation and sequential analysis still re­
mains a novel idea worthy of revival and advancement. It is our hope that this 
report will energize analogous investigations in the future for models that are 
more sophisticated than (16.1), 

If we have two comparable products with different constant rates of failure 
Ai (> 0) and A2 (> 0), it is often of interest to compare the rehabiHty parameters 
beyond some time point <(> 0). Let us suppose that X and Y are the lifetimes, 
each modeled as an exponential random variable, with respective mean survival 
times Ai and A2. Now, we consider the parameter, 

rxy (t) = ex it) I6Y [t) = PA. {X > t) /Px, {Y>t). (16.3) 

Interpretation of rxy is very similar to that of a risk-ratio. As an example, 
suppose we know that PAI {X > t) = 0.5 and PA2 (^ > 0 = 0-25. Then, it is 
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natural to say that the chances of X lasting beyond t is twice as likely as Y 
lasting beyond t. 

Section 16.2 begins with a review of some of the results available concerning 
sequential estimation of the mean, Ai. This is an essential starting point for the 
tasks at hand and we discuss four sequential estimators for Ai in Section 16.2.1. 
Section 16.2.2 addresses estimation of the reliability parameter, 9x (t), and 
simulations are used to explore eight different estimators of 6x {t) in Section 
16.2.2. A small partition of these findings was presented at the MMR'2000-
Bordeaux conference as evidenced by the printed abstract [Mukhopadhyay and 
Cicconetti (2000)]. 

Section 16.3 is structured similarly as we turn our attention to the two-
sample problem: After sequentially estimating the difference of the means, 
Ai - A2, we subsequently address twelve estimators for TX,Y {t) from (16.3). 

We first focus on existing sequential procedures for estimating Ai or Ai — A2. 
In a one-sample problem, we work with the available dataset (Af, Xi, ,,.,XM) 

where M is a randomly stopped sample size associated with the purely se­
quential sampling scheme of Starr and Woodroofe (1972). In other words, 
starting with the dataset (M, Xi, . . . ,XA/ ) that was exclusively designed and 
implemented to solve one specific estimation problem for Ai, we propose and 
compare a class of estimators for Ai and 6x {t). This is the subject matter 
of Section 16.2. In a two-sample problem, we work with the available dataset 
(M, A/^,Xi,...,XM, Yi, ...,yiv) where M,N are the randomly stopped sample 
sizes associated with the purely sequential sampling scheme of Mukhopadhyay 
and Purkayastha (1994). In other words, starting with the dataset 
( M , N , X i , . . . , X M , Yi,..., Y}v), we propose and compare a class of estimators 
for Ai - A2 and rx,Y {t) which is the subject matter of Section 16.3. The deriva­
tions of some of these estimators and evaluating their performances are non-
trivial whether one deals with a one- or two-sample problem. The two-sample 
scenario is admittedly the more involved of the two. An Appendix provides 
proofs of some of the important results contained in Section 16.3. 

We end this investigation by demonstrating performances of these estima­
tors with the help of a well-known dataset from Proschan (1963) concerning the 
failure times of air conditioners. 

16.2 A One-sample Problem: Sequential Estimation 
of the Mean 

For completeness, we quickly summarize some of the initial results from Ci-
cconetti's (2002) doctoral dissertation. These were concerned with the one-
sample problem of sequential estimation of Ai. The estimators discussed herein 
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serve as building blocks to come up with the estimators of the reliability pa­
rameter Ox (t). 

Let us suppose that the observations Xi, X2,... originate from the distribu­
tion (16.1). Having observed a random sample of size m, we start with point 
estimation for Ai via the maximum likelihood estimator (MLE), Xm, under the 
weighted squared error plus observational cost as our loss function: 

Lm (Xm. Ai) =A(Xm- Xlf + CTU, (16.4) 

Here, A (> 0) and c (> 0) are known to the experimenter where c is the cost 
incurred for recording each observation. In light of an alternative estimator, T, 
say, for Ai we would consider the loss function Lm (Tm, Ai), simply replacing 
Xm with Tm in (16.4). Starr and Woodroofe (1972) investigated the problem 
of finding a minimum risk point estimator of Ai and worked with the risk 
associated with (16.4) which is given by 

Rm (c) = Ex, [Lm (Xm, Xi)] = AXlm'^ + m. (16.5) 

One may 'treat' m as a continuous variable and find m", the smallest fixed-
sample-size that minimizes the risk function (16.5), given by 

m* = {A/c)^^^ Xv (16.6) 

This expression of m* motivated Starr and Woodroofe's (1972) to propose a 
purely sequential stopping rule (M, X.v/) where 

M = M{c)== inf {m(> k):m> {A/cy^^Xm] • (16.7) 

That is, a pilot sample of size k (> 1) is chosen first. The need for any additional 
observation is evaluated prior to its collection while sampling terminates with 
the first observation causing m (> k) to exceed (or equal) {A/c)^''^Xm- Starr 
and Woodroofe (1972) proved that the associated regret, defined by Robbins 
(1959) as 

uj{c)=^ExALM]'-Rm^{c), (16.8) 

had the order 0{c) if and only if fc > 2. Woodroofe (1977) returned to provide 
the following finer second-order result: 

u;(c) = 3c + o(c) a s c ^ 0 i f f c > 3 . (16.9) 

Therefore, the difference between the sequential risk, Ex, [LM] , and the fixed-
sample-size optimal risk, Rm* (c), amounts to the cost of approximately three 
observations. Woodroofe also offered the following second-order expansion for 
the average sample size: 

Ex (M) = m* - 0.254965 + o{l) iik> 2. (16.10) 
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Let us mention in passing that the Umiting operation "c —• 0" is viewed as 
a simple mathematical device that makes the sample size "large". To re­
view the relevant literature, one may refer to Mukhopadhyay (1988, 1995) and 
Ghosh, Mukhopadhyay and Sen (1997). For completeness, let us mention that 
in a fixed-width confidence interval estimation problem for Ai, the associated 
second-order results were provided by Mukhopadhyay and Datta (1996). 

Upon termination of the purely sequential procedure (16.7), the customary 
estimator for Ai has been the sample mean, X\f. This estimator is intuitively 
pleasing since it mimics the fixed-sample-size MLE for Ai. However, Mukhopad­
hyay and Chattopadhyay (1991) and Mukhopadhyay (1988, 1995) argued that 
XM was a biased estimator for Ai, even asymptotically, and in fact they ob­
tained the following expression for the bias: 

Biase = Ex, [XM] ~ AI = - - ^ + O (^] if fc > 2. (16.11) 

In fight of (16.11), Mukhopadhyay and Chattopadhyay (1991) came up with a 
bias-corrected estimator, namely M (M - 1)"^ X^f, for Ai. 

On the other hand, as the purely sequential sampling procedure (16.7) ter­
minates, one genuinely expects M to be in a close proximity to m*. This 
idea prompted Mukhopadhyay.and Duggan (2000) to consider {c/A) ' M d& 
an alternative estimator of Ai. It should be noted that this latter estimator is 
based solely on the stopping sample size (plus known design constants c and 
A). This estimator does not involve X\,..,,XM at all! It can be shown that 
{c/A) ' M \s also a biased estimator of Ai. We are prompted, then, to consider 
the bias-corrected version of the Mukhopadhyay and Duggan estimator, namely 
{c/Af''^ (M + 0.254965). Let us denote 

TIM = XM,r2M = M ( M - l ) - ' X M , r 3 M = (cM)^/2M, 

and T^M = {c/Af'^ (M + 0.254965). (16.12) 

It should be noted that these four estimators, TJM^ j = 1,2,3,4, are each 
asymptotically risk efficient for estimating Ai in the sense of Robbins (1959). 
That is, one has: 

Vi = Vi {c) = Ex, [LM{TiMAi)]/Rm* (c) -^ 1 as c -^ 0, I = 1,2,3,4. (16.13) 

16.2.1 Comparing estimators of a population mean 

We look to compare the performances among the estimators TiM.i = 1,2,3,4 
for moderate values of m* and fixed Ai = 5, A = 1, A: = 5,10 and m* = 50,100. 
In each configuration, we used 5,000 independent simulation runs to obtain the 
average estimated sample size M, its estimated standard error s{M), as well 
as, the average Ti to estimate Ai and its estimated standard error s{Ti), for 



308 N. Mukhopadhyay and G. Cicconetti 

i = 1,2,3,4. The entity M estimates Ex^{M). We used the same simulation 
runs to obtain the average estimated risk Ri and its estimated standard error 
s{Ri), i = 1,2,3,4. We treat Ri asa simulated estimate of E[LM{TiMi ^i)]- We 
also provide the estimated values r/̂ , Ui respectively for rji and c«;i, i = 1,2,3,4. 
We refrain from supplying their estimated standard errors since one notes the 
following obvious relationships: 

s^rji) = s\Ri)/Ri.{c) and s\ui) = s^Ri). 

It is true that we seem rather ignorant about Ai before data collection 
begins, but as soon as we record the pilot sample of size k, we start "building" 
useful information. A larger pilot sample starts off with more information about 
Ai, and so the performance of an estimator is expected to improve when A: = 10 
instead of fc = 5. This feature is validated when we consider the overall message 
obtained from the Table 16.1. 

The bias-corrected form of the estimator TIM, namely T2M^ decisively per­
forms better than TIM, which is reflected by the fact that T2 is much closer 
to the fixed value Ai = 5, whereas the estimated standard errors 5(ri),5(r2) 
stay comparable. The bias-corrected estimator T2M also performs better than 
TIM in relation to their associated risks, Ri, R2, e^s well as, the associated risk 
efficiency and regret measures r]i,fJ2 and u;i,a;2. 

A similar feature is also noticed when the new bias-corrected estimator T^M 
is compared with the estimator T^M- What is truly remarkable about 74A/I 

which depends on the observed data only through the stopping variable M, 
is that it performs head-to-head with T2M' In other words, for all practical 
purposes, the Fisher-Information about the unknown parameter Ai provided 
by the data (M, XM), which is sufficient for Ai, appears to be nearly equivalent 
to the amount of Fisher-Information retained by a portion of the data through 
the stopping variable M alone. 

It will be very interesting to critically examine the process that lets the 
stopping variable M to eventually soak in the Fisher-Information from the 
sample mean XM-

16.2.2 Estimation of a reliability parameter following purely 
sequential procedure (16.7) 

Consider our observations X\,X2,>.. originating from the distribution (16.1). 
Given a time point i, we are interested in estimating the reliability parameter, 
Oxify' Having been initially charged with the estimation of the mean Ai, assume 
that the purely sequential algorithm (16.7) has been employed first and we have 
in hand the dataset ( M , X M ) where X M = {X\,X2, . . . ,XM) . 

Had our dataset been based on some fixed number of observations m, the 
MLE of Ox (t) would be exp [-t/Xm)> While exp [-t/Xm) is not an unbiased 
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Table 16.1: Comparing the estimators of Ai 

Case (i): m* = 50, c = 0.010, Rm'{c) = 1.000, Ai = 5 
A; = 5 A: = 10 

m = 49.5822, s(m) = 0.09858 
T i = 4.90046,72 = 4.98419 

Jz = 4.97408, r4_= 4.99958 
s{Ti) = 0.01047, siJj) = 0.01049 
SITJ) = 0.01050,5(r4) = 0.01050 

fli = 1.05543,^2-104632 
J?3 = 1.04927, i?4_= 1.04860 

5(^1) = 0.01464,5(^2) = 0.01326 
s(i?3) = 0.01446, s(i?4) = 0.01437 

771 = 1.05543,772 = 104632 
773 = 1.04927,^4 = 1.04860 
cUi = 0.05543,uJ2 = 0.04632 
aJ3 = 0.04927, UJ4 = 0.04860 

7n = 49.5906, s{m) = 0.09737 
Ti =4.87221,72 = 4.98718 

Jz = 4.94560, T4_= 4.97110 
siTi) = 0.01039, s(r2) = 0.01026 
siTz) = 0.01042,5(74) = 0.01042 

^1 = 1.05031,^2 = 102324 

Jiz = 1.04069, il4_= 1.03856 
s(Ri) = 0.01191, s( l2) = 0.01182 
s{Rz) = 0.01157, s{R4) = 0.01150 

77i = 1.05031,772 = 1.02324 
773 = 1.04069,^4 = 1.03856 
wi = 0.05031, (I;2 = 0.02324 
uJz = 0.04069,^4 = 0.03856 

Case (ii): m* = 100, c = 0.003, Rm'{c) = 0.500, Ai = 5 
fc = 5 fc = 10 

7^= 99.6026, s(m) = 0.12464 
71 = 4.94339,72 = 4.99353 

_73 = 4.98013,74_= 4.99288 
s(7i) = 0.00717, s(72) = 0.00717 
s(73) = 0.00718, £(74) = 0.00718 

^1 =0.50948,^2 = 0.50630 
_^3 = 0.50737, i?4_= 0.50703 

s{Ri) = 0.00529,5(^2) = 0.00525 
siRz) = 0.00525, s(i?4) = 0.00525 

^1 = 1.01897,772 = 1.01261 
773 = 1.01474,^4 = 1.01405 
a;i = 0.00948,uJ2 = 0.00630 
u;3 = 0.00737,0^4 = 0.00703 

M = 99.8124, s(m) = 0.12258 
7 i = 4.95378,72 = 5.00392 

Jz = 4.99062,74_= 5.00337 
5(7i) = 0.00721, s(72) = 0.00721 
5(73) = 0.00723, £(74) = 0.00723 

^1 =0.51187,^2 = 0.50973 
3 = 0.51080, ;R4_= 0.51072 

5(^1) = 0.00542,5(^2) = 0.00537 
s{Rz) = 0.00539, s(/24) = 0.00539 

771 = 1.02374,772 = 1.01946 
773 = 1.02160,174 = 1.02145 
uJi =0.01187,072 = 0.0097 

a;3 = 0.01080,a;4 = 0.01072 
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estimator for 9x (t), it is consistent and asymptotically normal with asymptotic 
variance given in terms of the inverse of the Fisher-Information. 

In terms of applications, it is our hope that such attractive asymptotic 
properties will begin to show at reasonable sample sizes. Indeed these are 
the fixed-sample-size properties that may motivate a practitioner to work with 
exp (-t/XAf)- Given the analogy between the fixed-sample-size MLE Xm and 
TIM{= XM)^ we may intuitively expect 

0ix it) = Oix {t.XM) = exp(-f/riA/) (16.14) 

to perform well by "appealing" to the invariance property of an MLE [Zehna 
(1966)]. We remind readers that as c —• 0, the bias in XM tends to zero as seen 
from (16.11). Mukhopadhyay, Padmanaghan and Solanky (1997) were thus 
inclined to seek an approximately unbiased estimator for 0x (t). They utilized 
the Taylor expansion of Ox (t) in a successful bid to find an approximately 
unbiased estimator for 6x (t) which is precisely stated below without a proof. 

Theorem 16.2.1 Given some fixed t{> 0), the estimator 

nx it) = ^Ix ( < . ^ M ) = { l + (^* - ^ M - l ) tX~MM-'\exp i-t/XM) 

(16.15) 

is approximately unbiased for 6, that is, E Wl^ (t) = ^x {t) + o (y/c) as c-*0. 
L J 

Incidentally, we should add that this expression corrects an error found 
in the 1997 paper of Mukhopadhyay, Padmanaghan and Solanky. We shall 
expand this idea in Section 16.3 by considering a bivariate Taylor expansion for 
the two-sample problem, and we shall outline a derivation in the Appendix. 

Also, we draw attention of our readers to a new phrase that we have coined. 
Incidentally, bias-corrected estimators and other variants obtained through ap­
plications of univariate (or bivariate) Taylor expansions are consciously referred 
to as univariate (or bivariate) Taylored estimators in the sequel. 

Estimator templates 

To facilitate our discussion here (and later when we consider the two-sample 
problem), we introduce a notion of estimator templates. Let us be reminded that 
it was the sample average XM that motivated the form of both Oix {t) in (16.14) 
and Olx (t) in (16.15). Clearly, we are interested in exploring the gain from 
employing (16.15) over (16.14). However, notwithstanding the fact that (16.15) 
was Taylored to be an estimator of 9x (t) based on XM^ the performances of 
T2MiT3M^T4M in simulations from Section 16.2 beg the question: What would 
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happen if we replaced TIM = ^M with these other estimators? We may view 

exit.Z) = exp(~f/Z) , (16.16) 

9*x{t,Z) = ll-}-(U-Z~l\tZ-^M-'^\exp{-t/Z), (16.17) 

as estimator templates and consider the performance of these templates under a 
generic estimator, Z, for Ai. We are particularly interested in the performance 
of these templates when we replace Z with TJA/, i = 1,2,3,4. To distinguish 
which estimator of Ai is used in a template, we shall add a subscript i. We shall 
refer to 6ix, i = 1,2,3,4 as invariance-based estimators since the estimators 
from this template are motivated by the fixed-sample-size invariance property 
of an MLE. Taylored estimators Ol^, i = 1,2,3,4, take their name because 
the template is obtained via the Taylor expansion of exp {-t/XM)- Next, we 
summarize the results from our simulations. 

Simulation results 

Simulations were used to mimic sampling from an exponential distribution with 
a scale parameter Ai = 5. For each combination of m* = 50,75,100,150 and 
fc = 5,10, we performed 5000 repetitions of the one-sample sequential sampling 
scheme (16.7). We collected the average performances of the univariate estima­
tors: M, TIM, TIM, TSM, T^M- Reliabihty estimates based on TiM, i = 1,2,3,4, 
and bias-corrected reliability estimates developed from the univariate Taylor ex­
pansion (Theorem 16.2.1) were computed. The values of t used in our simula­
tions were chosen so that Pxi {X > t) ^ 0.875,0.75,0.625,0.5,0.25. In addition, 
we also recorded the standard errors of these estimators. 

We naturally investigated the performances of our four estimators of Ai, 
namely Ti^, i = 1,2,3,4. These simulations were shown to correspond with 
our previous study and one may refer to the comments on the performances 
of TiM, i = 1,2,3,4, given in Section 16.2.1. We include summary statistics 
as a part of Tables 16.2-16.3 when m* = 100, Ai = 5, ^ = 1 with A: = 5,10 
respectively. 

We find that the reliability estimators performed more consistently for larger 
values of k and m*. The most dramatic improvement was seen when comparing 
the results in the cases corresponding with m* = 50 and m* = 75. The effect of 
the pilot sample size k dwindles as m* increases. Among eight estimators for 
9x {t) under consideration, arising from a combination of the invariance-based 
estimator (16.16) and Taylored estimator (16.17) templates with the T^^'s. Our 
simulations supported the following empirical findings: 
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Figure 16.1: Performance of template estimators for the one-sample prob­
lem. Triangles: Invariance-Based ^ix, ^ = 1,2,3,4; Circles: Taylored 6*^, 
i = 1,2,3,4, corresponding to estimators based on t for which 0x{t) = 0.875 
and 0.75, respectively 

Ex, [Oix it)] < Ex, [92X it)] < Ex, [B^x {t)] < Ex, [94x (<)] < Ex, fe (01 

< Ex, [ey it)] < Ex, fe it)] < Ex, fc it)l 

for ^ = 0.875,0.75. 
These findings are illustrated in Figure 16.1. In this figure, we explore the 

quantities {9ix {t) - Ox (0) and {9*^ (t) - 9x (<)), i = 1,2,3,4, and establish a 
benchmark for the proposed estimators as follows: Those falling closest to zero 
perform the "best". Circles used in Figure 16.1 correspond to the estimators 
based on t which yield 9x (t) = 0.875, whereas triangles correspond to the es­
timators based on t such that 9x {t) = 0.75. For each value of m* and it, these 
symbols highlight the average performance of an estimator. The first four cir­
cles (triangles), correspond to estimators 9ix (t), i = 1,2,3^4, respectively and 
the last four circles (triangles) correspond to estimators 9*^ {t),i = 1,2,3,4, 
respectively when t = 0.875 (0.75). 

For the two particular values of 9, we have noticed some interesting features: 

(i) Estimators for 9 incorporating bias-corrected estimators of A tend to be 
larger than their uncorrected counterparts; 
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Table 16.2: Summary for estimation of the mean Ai = 5, m* 100, Ai = 5, 

Tx 
T2 

Tz 
T, 
M 

Mean 
4.94914 
4.95928 
4.98606 
4.99880 
99.7212 

Risk 
Eff. ri 

1.00451 
1.00055 
1.00150 
1.00112 

-

Regret 
w 

0.00225 
0.00027 
0.00075 
0.00056 

-

se(est) 
0.00700 
0.00706 
0.00709 
0.00709 
0.14179 

se(risk) 
0.36306 
0.36020 
0.36104 
0.36085 

-

Table 16.3: Comparison of invariance-based estimators and Taylored estima­
tors: m* = 100, Xi=5,k = 5,A = l 

Ai-Estim 
Ti 
T2 
Tz 
74 

Ai-Estim 
Tx 
T2 
Tz 
TA 

Max se(.) 
Min se(.) 

ator 

ator 

xlO^ 
xlO" 

tx 

0.87263 
0.87288 
0.87352 
0.87383 

2̂ 3̂ *4 

Invariance-Based Estimator 
Template (16.16) 

0.74582 0.61963 0.49411 
0.74629 0.62025 0.49484 
0.74746 0.62185 0.49671 
0.74803 0.62261 0.49760 

h 

0.24543 
0.24614 
0.24799 
0.24887 

Taylored Estimator Template (16.17) 
0.87402 
0.87427 
0.87490 
0.87520 

1.77 
1.70 

0.74819 0.62255 0.49712 
0.74865 0.62317 0.49784 
0.74982 0.62476 0.49972 
0.75038 0.62552 0.50061 

3.24 4.36 5.08 
3.12 4.24 4.98 

0.24715 
0.24786 
0.24973 
0.25061 

4.95 
4.93 
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Figure 16.2: Performance of template estimators for the one-sample prob­
lem. Triangles: Invariance-Based Oix, i = 1,2,3,4; Circles: Taylored O^x^ 
i = 1,2,3,4, corresponding to estimators based on t for which Oxit) = 0.25 and 
0.625, respectively 

(ii) Estimators for 9 defined via stopping variable alone tend to be larger than 
the sample mean based counterparts; and 

(iii) Invariance-based estimators tend to be smaller than Taylored estimators. 

Changes occurred when we considered the results for Ox {t) = 0.625,0.5, 
and 0.25. Figure 16.2 is constructed analogously. Here, the thicker curve refers 
to 0x (t) == 0.25 and the thinner curve corresponds to 9x (t) = 0.625. 

For these values of 9x{t), the performances of dl^it), 9y{t) dropped 
slightly. That is, the bias-corrected estimators took hits, supporting the follow­
ing idea: 

Ex, [9ix (t)] < Ex, [92X it)] < Ex, [9lx (t)] < Ex, fe (t)| < Ex, [9sx {t)] 

< Ex, [9,x (t)] < Ex, [9lx it)] < Ex, fc (<)]. 

Hence, under these values of 9x{t), we note that "sample size"- based 
estimators for 9x (t) dominate "sample mean"-based estimators. We again 
notice 0ix (t) < 9*^ (t). 

Overall, the proposed estimators are fairly similar in performance with dis­
crepancies occurring only in the third decimal place or later. However, regard­
less of the true values of 93x (t) and t, d^x {t) appears to perform the "best". 
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Table 16.4: Summary for estimation of the mean Ai = 5,Tn* = 100, Ai 
A; = 10, ^ = 1 

= 5, 

Ti 
T2 
Tz 
T, 
M 

Mean 
4.95386 
4.96399 
4.99038 
5.00312 
99.8076 

Risk 
Eff. 7? 

1.02521 
1.02135 
1.02263 
1.02247 

-

Regret 
u 

0.01260 
0.01067 
0.01131 
0.01124 

-

se(est) 
0.00722 
0.00721 
0.00723 
0.00723 
0.14470 

se(risk) 
0.37764 
0.37474 
0.37666 
0.37652 

-

Table 16.5: Comparison of invariance-based estimators and Taylored estima­
tors: m* = 100, Ai = 5, A; = 10, .4 = 1 

Ai-Estim 
Ti 
T2 
Tz 
T4 

Ai-Estim 
Ti 
T2 
Tz 
T, 

Max se > 
Min se > 

ator 

ator 

<104 
:104 

h t2 3̂ 
Invariance-Based Estimator 

0.87269 
0.87295 
0.87358 
0.87388 

0.74595 
0.74641 
0.74757 
0.74814 

0.61981 
0.62043 
0.62201 
0.62277 

tA h 
Template (16.16) 
0.49434 
0.49507 
0.49691 
0.49781 

Taylored Estimator Template (16 
0.87408 
0.87433 
0.87495 
0.87526 

1.81 
1.73 

0.74831 
0.74877 
0.74992 
0.75048 

3.31 
3.19 

0.62273 
0.62335 
0.62491 
0.62567 

4.45 
4.33 

0.49735 
0.49808 
0.49992 
0.50081 

5.19 
5.08 

0.24572 
0.24643 
0.24825 
0.24913 

.17) 
0.24743 
0.24815 
0.24998 
0.25087 

5.05 
5.02 
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always falling closest to the zero benchmark. Recall that this estimator incor­
porated the "sample size"-based estimator TSM for Ai within the bias-corrected 
expression for 6x (t). We note that there is no fixed-sample-size analog of this 
estimator. One is encouraged to visually examine the results of these simula­
tions when m* = 100, Ai = 5, >! = 1 and /: = 5,10. These may be found in 
Tables 16.3 and 16.5 respectively. 

We conclude by noting that the standard errors for these reliability estima­
tors are comparable for a fixed value of t and larger values of t yielded larger 
standard errors. We also noted that as t decreased, the estimators tended to 
under-estimate 6x (t) to some degree. That is, estimators for 6x (t) are closer 
to their targets for larger values of t. 

16.3 A Two-sample Problem: Sequential 
Estimation of the Difference of Means 

We consider independent observations Xi, ^2,.. . and Vl,I2. ••• originating from 
distribution (16.1) with respective means Ai,A2. We say that the X's and 
y's originate from population 1 and population 2 respectively. While Section 
16.2.2 was concerned with estimating Ox (t) = PAI {^ > t) following sequential 
estimation of Ai, now we wish to find estimators for the ratio 

rxx{t)=^ex{t)/9Y{t),t>0, 

following sequential estimation of Ai ~ A2(= 6, say). 
Imagine that we have data, Xi, X2,..., Xm and Vi, 2̂? •-̂  î n? where m, n are 

fixed sample sizes. We measure the loss in estimating 6 by Xm ~ 5^n(= ^m^m 
say) with 

Lm^n = LmA^m.n] S) = A{Wm^n " 6)^ + c{m + n), (16.18) 

where A^c are known positive numbers as before. The risk associated with 
(16.18) amounts to 

Rm,n{c) = Ex.MlLmA^m^n: 6)] = ^(Aim'^ + A2rr^) + c{m + n). (16.19) 

The risk (16.19) is minimized when 

m = m* = {A/c)^/^\un = n* = (^/c)^/'^A2,n* = m'+n' = {A/c)^/^{Xi + X2), 

(16.20) 
with the fixed-sample-size minimum risk given by 

Rm^^n^ic) = 2c(m* + n*) = 2cn*; (16.21) 
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the magnitudes of m*, n* remains unknown, but the expressions of m*, n* would 
motivate a purely sequential stopping rule (M, Â , WM,N) where 

M = M{c) = milm{>k):m>{A/c)^^^JCm]. 

N = N{c) = miln{>k):n>{A/c)^^^Yn]. (16.22) 

That is, a pilot sample of size /c (> 1) is chosen first from both populations. 
The need for any additional observation from X or y is evaluated prior to 
its collection. Sampling terminates with the first observation causing m to 
exceed (or equal) {A/c)^^'^ X m CIS well as u to exceed (or equal) [A/c) Yn-
These two sampling schemes are performed independently of one another so 
that M and Â  are independent random variables. Finally, we estimate the 
difference Ai - A2 with XM - Yi\i. The two stopping rules in (16.22) can be run 
independently because m*{n*) involves the only unknown parameter Ai(A2) so 
that any allocation scheme along the lines of Robbins et al. (1967) is deemed 
irrelevant. 

This kind of purely sequential estimation procedure was investigated by 
Mukhopadhyay and Chattopadhyay (1991) in the exponential case and by 
Mukhopadhyay and Purkayastha (1994) when the parent population distribu­
tions are assumed unknown. 

We define N. = M + N to be the total number of observations required 
for point estimation of 6. Under the loss function (16.18), the associated risk 
function for estimating 6 is given by: 

EXUX2[LM,N] = Ex,M[A{WM,r,-6)^ + c{M + N)] 

= Ex, [A [XM - Ai)^ + cA/] + Ex, [A {YN - As)^ + civ] 

-2AEx,M [(^M - Al) {Y^r - X^)] . (16.23) 

Now, the associated regret function can be expressed as: 

w(c) = Ex,M [LM,N] - Rm',n'{c). (16.24) 

Then, we combine (16.21), (16.23) with (16.9) and (16.11) to rewrite u>(c). For 
A; > 2, we have the following second-order expansion as c -^ 0: 

u}{c) = 2{3c + o{c)} - 2A [AiA2(m'n*)-^] + o{c) = 4c + o{c). (16.25) 

For the average sample sizes, however, we can express the following second-order 
results. With A: > 2, as c -> 0: 

ExAM) = m*-0.254965 + 0(1). £A2 (A )̂ = n* - 0.254965 + o ( l ) , 

^A,,A2(^) - n ' - 0 . 5 0 9 9 3 0 + 0(1). (16.26) 
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Now, we return to seek estimators for TX^Y {i) • 
Recall the notion of an estimator template, introduced in Section 16.2.2. 

We proposed (16.14)-(16.15) involving the sample mean, TIM = ^M^ that 
led to templates for finding further estimators of Ox (t). In short, we replaced 
TIM with other estimators for Ai, namely T2M^TUI^T/^M from (16.12), in the 
expressions given by (16.14)-(16.15). Indeed, we found empirical evidence to 
suggest that some of these ad-hoc estimators of Ox (0 performed better than 
those given by (16.14)-(16.15). We shall continue on that path in our quest for 
finding a reasonable collection of estimators of rxy {t). 

In the two-sample situation, we offer three estimator templates for rxy {t). 
Should Z be an estimator for a population parameter, the addition of the sub­
script M(or N) would alert us to the fact that the estimator ZM{or Z^) esti­
mates a parameter from population l(or 2) based on M(or N) observations from 
that population. This notation allows us to easily keep track of stopping times 
and estimators under consideration. Three templates are now summarized: 

1. Invariance (of MLE) Based Estimators: We consider mimicking the 
fixed-sample-size MLE for Tx,y {t) since we have reasons to believe, based on 
the results presented for the one-sample problem, that this route will continue 
to provide success in this setting. Should ZM.ZJSJ be estimators of Ai, A2 re­
spectively, then the invariance-based estimator of TXX (t) is the ratio of our 
univariate invariance-based estimators (16.14), that is, 

Txx it) = rx,Y (f, ZA/, ZN) = Ox (̂  ZM) ih (t, ZN) = exp (-f(Z^^ - Zjj^)). 
(16.27) 

2. Univariate Taylored Estimators: It seems natural to consider the ratio 
of our univariate Taylored estimator from (16.15). The univariate Taylored 
estimators from a one-sample problem were found to be in close proximity 
of invariance-based estimators, and indeed outperformed the invariance-based 
estimators in the one-sample problem. So, it is intuitive to consider the ratio 
of univariate Taylored estimators in the present setting. Should ZM^ZJSJ be 
estimators of Ai, A2 respectively, this template is simply the ratio of estimators 
of the form (16.15), that is, 

^x,Y (0 = ^x,v' (<i ^M, ZN) = 0*x {t, ZM) /Oy (*• Z^) 

= {a(<, M, ZM)}-' a(t, iV, Zj,) exp (-i(Z^/ - Z^^)) (16.28) 

where a{t, r, Zr) = 1 + {^t ~ Zr - l) tZ]^^r-\ r = M, N. 

3. Bivariate Taylored Estimators: 

^X*Y (0 ~ ^xV (̂ ' ^^^' ^^) 

- /^l . \-t{ZM-^t(t-2ZM)) t(ZAr + ^t(f-h2Z^^)) 2t^ 1 ̂  ~ 

x e x p ( - i ( Z ; / ~ Z ^ i ) ) . (16.29) 
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The bivariate Taylored estimator (16.29) is developed in the Appendix, but 
for now let us motivate it. Given the results of Mukhopadhyay, Padmanaghan 
and Solanky (1997), we may intuitively propose to consider an estimator of 
61/62 as follows: 

^x ( i j7^ ( t ) = exp ( - f (X-J - Y'^')) . (16.30) 

But, even the fixed-sample-size version of the estimator from (16.30) is not 
unbiased for the ratio of parameters. Hence, we pursue a bivariate Taylor 
expansion of this estimator and then find the associated bias-corrected form. 

Theorem 16.3.1 For /c > 2, the bias-corrected version of the estimator from 
(16.30) based on the bivariate Taylor expansion, is given by 

-^(XA/- | t ( t -2XA/)) t(Yi, + ^t{t-¥2YN)) _ 2t^ 

xexp[-t(XlJ-Y-')). (16.31) 

In fight of Theorem 16.3.1, our third template shall take the form (16.29) 
with ZM and Zjsj replacing XM, and Ys-, respectively. 

16.3.1 A simulation s tudy 

In this simulation study, we have chosen to follow closely the precedence set 
in the case of the one-sample situation discussed in Section 16.2.2. We have 
conducted simulations of 1000 runs on each combination of the following pa­
rameters: 

m* = n* = 50,75,100,150; fc - 5,10; 
Ai = A2 = 5; and 4̂ = 1. 

More specifically, for each of the eight combinations above, we simulate indepen­
dent purely sequential sampling strategies from two exponential distributions 
with mean Ai = A2 = 5 along the line of (16.22). Once the sampHng opera­
tion was completed for a fixed set of parameter configuration, we subsequently 
investigated the performances of estimators of 6x {t), 6Y {t) and TX,Y {t). The 
values of t used in our simulations were again chosen so that 

PAI {X>t) = PA2 {Y >t)= 0.875, 0.75, 0.625, 0.5, 0.25. 

We have recorded the following entities from each run: 
TiM^ Tjjv, z = 1,2,3,4, allow us to compute the invariance-based estimators 

(3.10), namely 

Tixy (t) = exp {-t{T-j,] - T;^)), z - 1, 2, 3, 4; 
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hx^ OiY, i = 1,2,3,4, allow us to compute the univariate Taylored estima­
tors (16.28), namely 

r:x.Y{t) = 0ix{t)/9iY{t). 2 = 1,2,3,4. 

Together with bivariate Taylored estimators, namely T*J^ ^ (t), i = 1,2,3,4, we 
perform fairly exhaustive comparisons of these twelve estimators. 

Our interest, however, lies in the long-run performance of these estima­
tors. This said, we concentrate on the average performance of these competing 
estimators in the light of each of the eight configurations over 1000 runs. Ad­
ditionally, we also obtain the corresponding estimated standard errors for all 
aforementioned entities. One-sample analyses on the stopping sample sizes and 
average performance of the estimators TiM.Tn^ have strengthened our convic­
tion favoring the kinds of comments we made earlier in Section 16.2.2. 

Obviously rxy (t) = Ty ̂  {t), so that we think of TXX (0 ^ ^ means for 
comparing population 1 with population 2, but then ry-^xit) should reverse the 
perspective. Since we have run simulations assuming equal means for popula­
tions 1 and 2, the true value of TX^Y (i) is identically 1 under all configurations. 
Hence, we shall consider these estimators to be doing their "job" well if we find 
them to be close to 1. That is, we need only consider the magnitude of an 
estimator's deviation from 1, although we have noted when such estimator has 
under-(or over-)estimated the target. Tables 16.6-16.7 summarize some of the 
findings. These tables provide the deviations of estimators from the value 1. 

Let us comment first on features of the simulation study that were common 
to all the twelve estimators of rxy (*) • The role of the pilot sample size k reflects 
our comments made earlier and confirms our intuition. Generally speaking, 
larger pilot sample size leads to better performances of estimators. This feature 
was also noted in Section 16.2.1 when we compared the performances of TIM^ 
i = 1,2,3,4. This sentiment continued to hold true in Section 16.2.2 when 
discussing the eight estimators of 6x {t). When it comes to estimating TX.Y (t)» 
we again note that estimators based on pilot samples of size fc = 10 perform 
better than pilots based on A; = 5 observations. 

We fixed m* = n* but the common value plays its usual role as well. Recall 
that these values represent the optimal fixed-sample-sizes needed to estimate 
Ai, A2. Prom our findings discussed in Section 16.2, we know that the estima­
tors Ti, i = 1,2,3,4, converge in probability to 5 as c -* 0(or equivalently, 
as the optimal fixed-sample-sizes tend to infinity). Naturally, since the tem­
plates (16.27), (16.28), and (16.29) incorporated variants of these first-order 
risk-efficient estimators^ performances of the templates are expected to im­
prove as sample sizes became larger. These sentiments are expressed well by 
what one sees in Tables 16.6-16.7. Figures 16.3-16.6 have been constructed 
in a fashion similar in spirit to those in Figures 16.1-16.2. Since we are now 
discussing the performance of twelve estimators, we have allocated a separate 
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Table 16.6: Performance of templates and A-estimators seen through the aver­

age values (f - 1) X 10^; m* = n* = 50, Ai = A2 = 5, A: = 5 

A-Estimator 
T: 
T2 
T3 
n 

A-Estimator 
Ti 
T2 
Ti 
T4 

A-Estimator 
Ti 
T2 
T3 
T4 

h 

0.692 
0.671 
0.628 
0.614 

0.622 
0.605 
0.563 
0.551 

0.295 
0.281 
0.247 
0.239 

2̂ ^3 4̂ 

Invariance-Based Estimator 
Template (16.27) 

2.989 7.839 17.115 
2.878 7.521 16.395 
2.727 7.162 15.649 
2.663 6.986 15.245 

Univariate Taylored Estimator 
Template (16.28) 

2.685 7.135 15.959 
2.589 6.849 15.247 
2.448 6.515 14.537 
2.391 6.355 14.158 
Bivariate Taylored Estimator 

Template (16.29) 
-2.516 -12.319 -38.549 -
-2.493 -12.183 -38.143 -
-2.463 -11.934 -37.339 -
-2.438 -11.800 -36.933 -

h 

77.905 
69.336 
69.336 
67.113 

80.745 
74.845 
70.905 
68.426 

-234.793 
-233.071 
-229.207 
-227.308 

Table 16.7: Performance of templates and A-estimators seen through the aver­

age values (f ~ 1) X 10^; m* = n* = 50, Ai = A2 = 5, A: = 10 

t2 h tA 

A-Estimator 
Invariance of MLE-Based Estimator 

Template (16.27) 
Ti 
T2 
r3 
^4 

A-Estimator 
Tx 
T2 
T3 
T4 

A-Estimator 
Ti 
T2 
T3 
Ti 

0.099 
0.097 
0.116 
0.110 

0.078 
0.076 
0.096 
0.092 

-0.242 
-0.239 
-0.213 
-0.213 

1.569 5.160 12.289 
1.516 4.984 11.870 
1.530 4.852 11.720 
1.489 4.827 11.431 

Univariate Taylored Estimator 
Template (16.28) 

1.385 4.671 11.392 
1.338 4.511 10.998 
1.357 4.489 10.862 
1.320 4.374 10.590 

Bivariate Taylored Estimator 
Template (16.29) 

-2.951 -12.650 -38.927 
-2.919 -12.513 -38.524 
-2.833 -12.222 -37.704 
-2.803 -12.085 -37.292 

54.492 
52.600 
51.556 
50.292 

53.919 
51.997 
50.909 
49.625 

-236.708 
-234.950 
-231.068 
-229.145 
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figure for each value of t that we shall discuss. These figures also help to describe 
the behavior of these estimators when sample sizes increase. As we consider 
these figures, let us be reminded that it is the large deviation from the value 
1 that will mark a "poor" estimator. Let us not make the mistake of saying 
that some estimators appear to be overestimating or underestimating rxy (t). 
That is, we would simply prefer those estimators with deviations near zero. 
Notice that each figure consists of eight slides where each slide corresponds to a 
particular combination of n* = 50,75,100,150 and A: = 5,10. Inside each slide 
within a figure, one finds twelve symbols. The first set of four symbols (circles) 
corresponds to the invariance-based estimators (16.27), the second set of four 
symbols (triangles) corresponds to the univariate Taylored estimators (16.28), 
while the final set of four symbols (squares) corresponds to the bivariate Tay­
lored estimators (16.29). Within a set of four symbols, we retain the basic 
structure of Figures 16.1-16.2, namely that the ith symbol in a set corresponds 
to the template when Tm.Tis are used, i = 1,2,3,4. We do emphasize that 
each symbol represents the average performance of that particular estimator 
over a course of 1000 simulations. 

The value of t plays an important role in how accurate the estimators are. 
In particular, each estimator tends to perform better when t is relatively small. 
Figures 16.3-16.4 provide a visual summary of performances of all twelve esti­
mators when t is chosen to yield 6x {h) = 0.875 and Ox {h) = 0.75 respectively. 
In Figure 16.3, we note that all the estimators are performing admirably and it 
is quite difficult to decide which estimator is the best. Figures 16.4-16.6 each 
share a common feature: As n* increased, the estimators tended to do much 
better, that is, the range of the estimators shrank as m*,n'' increased. Since 
this feature is absent in Figure 16.3, we are led to believe that asymptotics start 
affecting performances in a positive way fairly quickly for this particular choice 
of t. In further support of this claim, we note that as t increased, the axis 
length of the figures also increased. That is, for larger values of t (or equiva-
lently, smaller values of 6x {t)), the range of the vertical axis in these figures 
became larger. 

We mention that Figures 16.3-16.4 provided the best support in favor of 
the bivariate Taylored estimators. For chosen values of t, there are configura­
tions that find these estimators performing better than their invariance-based 
and univariate Taylored peers. In particular, we note in Figure 16.3 that the 
bivariate Taylored estimators performed best in all but two cases. On the other 
hand, in Figure 16.4, these estimators performed best in half of the cases, and 
comparably in the remaining four. 

Figures 16.5-16.6 correspond to t values chosen so that Ox {t) = 0.5 and 
Ox (t) = 0.25, respectively. From these figures we realize some limitations of 
the bivariate Taylored estimators. In each slide within these figures, we find 
that the invariance-based estimators (16.27) and univariate Taylored estimators 
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Figure 16.4: Performance of template estimators for the two sample problem t is 
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i = 1,2,3,4; Circles: Univariate Taylored estimators, i = 1,2,3,4; Squares: 
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Figure 16.5: Pertoiii f template estimators for the two sample problem t is 
chosen such that Ox {t) = Oy {t) = 0.50; Triangles: Invariance-based estimators, 
i = 1,2,3,4; Circles: Univariate Taylored estimators, i = 1,2,3,4; Squares: 
Bivariate Taylored estimators, i = 1,2,3,4 

(16.28) perform in a superior fashion. However, we do take solace in the fact 
that as m*,n* increase, the discrepancy among these estimators became less 
pronounced. 

From these figures, we are tempted to offer some general guidelines con­
cerning the behavior of the estimators based on the particular mean-estimator 
TiR and Tis used in the template. We find that the following sentiments are 
supported by these figures: 

|T4x,y W - 1| < î 3X,y (0 - 1| < \r2XX it) - 1| < \rixx W " 1| 

4xy 

'4x,y 

( t ) - i 

( t ) - i 

3X,Y (*) ~ ^ 

3X.Y (*) ~" 1 T^* 

'^2X,Y 

^2X,Y 

it) 

it) 

f* ( 0 - 1 

^x.y ii) -1 

Let us remark that these broad range of comments simply reflect what is ob­
served in the majority of sHdes found in Figures 16.3-16.6. This in turn leads 
one to believe that regardless of a template, the mean-estimator (r4) seems 
to provide the best performance in estimating rxy (̂ ) • From these figures we 
may also suggest that in general, the univariate Taylored estimators offer the 
overall best possible template. With a fixed mean-estimator T̂ , its performance 
is uniformly superior to the invariance-based estimators. Its merit is best high­
lighted in the case of larger values of t when the bivariate Taylored estimators 
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Figure 16.6: Performance of template estimators for the two sample problem t is 
chosen such that 6x (*) = Oy {t) = 0.25; Triangles: Invariance-based estimators, 
i = 1,2,3,4; Circles: Univariate Taylored estimators, i = 1,2,3,4; Squares: 
Bivariate Taylored estimators, z = 1,2,3,4 

do not perform as well as the other templates. In our final section, we mention 
some examples and apply these techniques to a historic survival dataset. 

16.4 Some Examples and Data Analyses 

Example 16.4.1: Time to Relapse in Drug Rehabilitation Programs 

Cicconetti (2002) considered a dataset of Hosmer and Lemeshow (1998) 
which considered patients from drug rehabilitation programs. The response 
variable of interest was 'time to relapse'. A two-sample scenario was envisioned 
by considering patients from two treatment centers. In such a situation, it 
seemed canonical to estimate Ai, A2 sequentially and it also seemed prudent 
to continually update databases as patients returned. Hosmer and Lemeshow 
(1998) dataset prompted us to recreate the scenario. After sequentially sam-
pUng from a permutation of the data set, Cicconetti (2002) estimated the means, 
Ai, A2 using Tj, i — 1,2,3,4, of Section 16.2. Recall that an exponential distri­
bution is inherently right-skewed and the mean often provides a distorted view 
of a population. That is, we have an inflated view of 'central tendency'. By 
considering Q{i), better decisions might be possible. For example,.Cicconetti 
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(2002) showed that for both locations ^ («) « 0.52 for t = 100 days; that is, the 
proportion of patients making it beyond 100 days without a relapse is nearly 
52%. This information might be used to suggest installing mandatory follow-up 
meetings at both 1 and 2 months after release. Comparisons of estimators for 
Tx,Y {t) were similar and close to the ones for this example except in the case of 
the bivariate Taylored estimators. These provided estimates that were grossly 
different from the others. Should all estimators of TX,Y (<) be sizably differ­
ent from one another, an investigation into the practices at both sites would 
hopefully reveal reasons for inequity. 

Example 16.4.2: Proschan's Air Conditioner Data 

Proschan (1963) provides records of the duration of time between successive 
failures of air-conditioning systems of each member of a fleet of 13 Boeing 720 
jet airplanes. We came across this dataset in Olkin, Gleser and Derman's (1978) 
text that is riddled with great historical datasets. We shall use this particular 
dataset to demonstrate the techniques used here. In this dataset the airplanes 
have increasing identification codes. Let us assume that in the manufacturing 
stage of older planes, certain 'bugs' might have been encountered, and these 
were addressed while building the newer planes. Hence, we consider the first 
six planes (IDs: 7907, 7908, 7909, 7910, 7911, 7912) to represent population 1 
and the last seven planes (IDs: 7913, 7914, 7915, 7916, 7917, 8044, 8045) to 
represent population 2 because it seems fair to believe that planes built at a later 
date should possibly have more reliability. We might expect that this difference 
in reliability would be captured when we consider estimators of 0x {t), Oy (t), 
and Txy (t). In this demonstration, malfunction times have been permuted. 

Let us forget for the moment that we are working from a historical dataset 
and pretend that we are retrospectively soliciting this information. Perhaps we 
wish to examine the merit of the implemented changes retrospectively. In the 
absence of a database, one would find the data collection process to be very time-
consuming, and potentially costly. It conceivably may involve trips to repair 
facilities to scour log-books. For this example, we envision a value of A = 100 
and cost, c = 200. In addition, we chose a pilot sample of size k = 30. Probability 
plots based on the pilot samples indicated that an exponential distribution 
would be reasonable. 

Table 16.8 provides univariate summary statistics. We fix two values for t: 
40 hours and 60 hours. The observations we make here are in line with those 
made concerning our simulation study of Section 16.2. We find each estimator 
Tt, i = 1,2,3,4Jo behave fairly similarly. This feature is also echoed in the 
performance of 6x (40, Ti) and 6x (60,7^). Recall that our previous simulation 
studies gave us reasons to look toward Ox (40, Ta) = 0.634595 and Ox (60, Ta) = 
0.6925823 among eight contending estimators. This information might suggest 
a prudent mandatory maintenance check at, say, every 40 or 50 hours for the 
older and newer planes respectively. 
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Table 16.8: Estimators of Xi,X2,0{t) for Proschan's (1963) air-conditioner 
dataset 

Sample Si2« 
Mean 

Sample Size 
Based 

e{40,Ti) 

fl(40,r2) 
«(40,T3) 
0(4O.T4) 
0(6O,Ti) 
e{60,T2) 
«(60,T3) 
#(60,T4) 

Sample I 
A/ = 56 

Ti : 77.55357 

T2 : 79.1959C 

MLE-Based 
0.5970392 
0.5971101 
0.6034595 
0.6048425 
0.4613221 
0.4614043 
0.4687834 
0.4703959 

Sample II 
N = 77 

107.07792 

108.89444 

MLE-Based 
0.6882799 
0.6883111 
0.6925823 
0.6934224 
0.5710151 
0.5710539 
0.5763776 
0.5774267 

Bias-
Correrted 

Bias-
Corrected 

e* (40, Ti) 
fl'(40,T2) 
»*(40,T3) 
9* (40. T4) 
»•(60, Ti) 
9* (60. T2) 
»*(60.T3) 
9* {60,T4) 

Sample I 

T2 : 77.57143 

T4 : 79.55653 

Tavlor-Bfised 
0.6012200 
0.6012907 
0.6076251 
0.6090045 
0.4653470 
0.4654295 
0.4728379 
0.4744564 

Sample II 

107.09091 

109.25502 

Taylor-Based 
0.6910375 
0.6910686 
0.6953206 
0.6961568 
0.5740612 
0.5741000 
0.5794196 
0.5804677 

Results displayed in Table 16.9 also reflect the findings of our prior simula­
tion studies. For both < = 40 and t = 60, we observed some grouping among 
first eight estimators. The majority of estimators of rxy (40) fell around 0.87. 
One may interpret the reciprocal and say the newer planes are about 1.15 times 
more likely to last longer than 40 hours. However, when we came to the bivari-
ate Taylored estimators, we recall observing some disheartening performance 
through simulations. For the two particular choices of t here, we see the bi-
variate Taylored estimators return ratios that are much larger (smaller) than 
its competitors when * = 40 (60). The estimators based on the bivariate Taylor 
expansion have proven to be a rather unstable group and more investigations 
may be warranted. 

Appendix: Proof of Theorem 16.3.1 

Suppose that we have a function of two variables, 

/(x, y) = exp {-t{x-^ - y"^)), X > 0, y > 0. (A.1) 

Let us simply write X = XM and Y = Ypj, Then, using bivariate Taylor 
expansion [Thomas and Finney (1990)], we can rewrite (A.l) as follows: 

f{X,Y) 

1 + 
t{X-Xi) _ t{Y-\2) 

Aj Aj } 
i exp ( i i y : i ) [(X - Ai)^ ^ i ^ + (F - A,)^ ^ ^ 

- ( Y - A 0 ( F - A 2 ) ^ e x p ( ^ i ^ ) , 

(A.2) 
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Table 16.9: Estimators oirxy {t) for Proschan's (1963) air-conditioner dataset 

Estimator 

Tx,Y {ZR, ZS) 

T'X^Y {ZR, ZS) 

T^xy {ZR, ZS) 

Tx,Y {ZR, ZS) 

x̂,y {ZR,ZS) 

^x,Y i^R^ ^s) 
^,Y i^R^ ^s) 
x̂.y {^R^ ^s) 

^*x,Y (̂ «' ^s) 
T^,Y{ZR,ZS) 

f^V i^R^^s) 
Tx*Y i^R^ ZS) 

Z 
Z 

z 
z 
z 
z 
z 
z 
z 

,z 
\Z 

; z 

= Ti 

= T% 
= n 
= T4 
= Ti 
= 72 

= 73 

= 74 

= Ti 

= 72 
= T3 

= T, 

t = 40 hrs. 

0.8674367 
0.8675004 
0.8713182 
0.872257 
0.8700251 

0.8700883 

0.8738776 

0.8748094 

0.9105683 

0.9106254 

0.9152088 

0.9162191 

t = 60 hrs. 

0.8078982 
0.8079872 
0.8133269 
0.8146418 
0.8106226 

0.8107116 
0.8160544 

0.8173692 

0.7735883 

0.7737010 

0.7841508 

0.7863754 

where {U,V) is a random vector, with U = UM^N.V = VM,NI that Hes on 
the Hne segment joining the points (Ai, A2) and {X,Y). In what follows, we 
suppress "as c -^ 0" for convenience. 

Now, from Mukhopadhyay (1988) or (16.11), we have 

Ex, (X - Ai) = ~Aim*-^ + o (m*"^). 

A similar result for Ex2 (^ - A2), together with the fact that U —* Xi^V —* X2 
leads to the following asymptotic behaviors: 

t{t-2U) ft{U-V)\ P t{t-2\i) 
I F 
fc+2 
17T 

exp \̂  uv ) 
t(t+2V) (t{U-V)\ P t(t+2A2) 

exp \ uv ) "" -~^ 

exp I 

exp (A.3) (t(Xl-X2)\ . 
\ A1A2 ) ' 

TT^ exp [-UV-) -* AfAf ^^P V A1A2 j • 

Next, Anscombe's (1952) random central limit theorem allows us to claim: 

m* (X - Ai)' ^ Afxl and n* [Y - A2)' - 4x1 (A.4) 

Moreover, we know that 

E [(X - Ai) (F ~ A2)] = AiA2(m*n*)-i + o (c), (A.5) 

which was used earlier in (16.23). Cicconetti (2002) proved the following re­
sult regarding uniform integrability of the crucial terms involved in (A.2). For 
completeness, we state Cicconetti's result without reproducing its proof. 
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Lemma A. l Recall that X = XM 0''^d Y = Yp^. Let us denote 

he = {X - X,f ^-i^ exp {%P) , / , . = {¥ - A,)^ ^ i ^ exp {%^) , 

/3c = 2 (X - Ai) ( F - A2) ^ exp ( ^ i ^ ) . 

where {U,V) is a random vector, with U = UM^J^.V = VM^^J, that lies on the 
line segment joining the points (Ai,A2) and ( X , y ) . Then^ Ijc is uniformly 
integrable for 0 < c < CQ, j = 1,2,3. 

Now, we can combine (A.3)-(A.5) with Lemma A.l and (A.2) in order to 
express / (X, Y) up to the order o{c^^'^), and hence we are able to write 

f{X,Y)=Txy{t) [l + |^[_A,„.*-i]_^[_A,n-]| 

+ 2^x,r(<) 
Xlt{t- 2A) Xlt{t + 2A) i 2 

_ ^ ^ c ^ ^ ^ ^ ™ . 
m* Â  n* A^ A'fA^ 

+o{c^^^)' (A.6) 

The expression of rx,Y{t) is now obtained by dividing / (X, Y) with the expres­
sion that is given in the right-hand side of (A.6), disregarding the term o{c^^'^), 
and then replacing Ai, A2,nf,n* with X, Y, M, N respectively. • 
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Empirical Bayes Estimation of Mean Lifetime for 
an Exponential Distribution: Unequal Sample 
Sizes Case 

Tachen Liang 

Department of Mathematics^ Wayne State University, Detroitj MI U.S.A. 

Abstract: In this chapter, we study the empirical Bayes estimation of the 
mean Hfetime 6 in an exponential distribution with unequal sample sizes. It is 
assumed that 9 is in the interval [a, b] where 0 < a < 6 < oo. We investigate 
a method for constructing an empirical Bayes estimator (f^-^-i n ^J^der unequal 
sample sizes situation. The asymptotic optimality of (f^^i ^ is studied. We 
have proved that ^n-^i^n ^^ asymptotically optimal, and its regret converges to 

zero at a rate O f (Inn) ~ / n ) when both a and 6 are known, or at a rate 

0 ( ( lnn)^^^-^( ln lnn)Vn) when both a and b are unknown, where M is an 

upper bound of sample sizes. 

Keywords and phrases: Asymptotically optimal, empirical Bayes, rate of 
convergence, regret, unequal sample sizes 

17,1 Introduction 

In the empirical Bayes context as introduced by Robbins (1956, 1964), one 
considers a sequence of statistical problems, called the component problems, 
which have the same generic structure. In the ith component problem, let Xi 
be a random variable having a probability density fi{x\9i), x e Xi, 6i € fi, 
where Xi is the sample space of Xi. Xi may be viewed as a sufficient statistic 
for the parameter 6i based on a sample of size 7n{i). One is interested in the 
nature of state of the parameter 9i. Let A be an action space, and L > 0 be a 
loss function defined on il x ^ . A decision procedure (5 is a mapping from Xi into 
A such that S (xi) is an action about the parameter 9i when Xi = Xi is observed. 

333 
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It is assumed that 6i is a realization of a random variable Qi having a prior 
distribution G. Thus, the Bayes risk associated with the decision procedure 6 
is: 

Ri{G,6)= f I L{0,6{x))fi{x\9)dxdG{9). 

Let C be the class of all decision procedures. Thus, Ri (G) = mini?i (G, 6) is the 
SsC 

minimum Bayes risk. A decision procedure 6G such that Ri (G, SQ) = Ri (G) is 
called a Bayes procedure with respect to the prior distribution G. When G is 
unknown, it is not possible to implement the Bayes procedure SQ-

In the standard empirical Bayes framework, it is assumed that the sample 
sizes m(l),m(2),.., are all equal and Xi,X2--"> are marginally mutually inde­
pendent and identically distributed. At the present stage, say stage n + 1, 
we let Xi, ...,Xn denote the n past data and Xn-^i stand for the present ran­
dom observation. Let ^n+i be a realized value of the current random variable 
Qn+i' One shall take a decision about the nature of state of the present parame­
ter 0n-\-i based on the present observation Xn^i = x and the n past data X{n) = 
{Xi,..., Xn). An empirical Bayes procedure 6n-{^i,n{^* -^(^)) = ^n-\-i,n{^) is then 
considered to be an action about the parameter On-^i- The Bayes risk of the 
empirical Bayes procedure 6n-\-i,n for the (nH- l)-st component decision problem 
is: 

Rn^l (G, 6n^l,n) =^11 En[L {6, (Jn+l,n(x))] /n+1 (^l^) dxdG (9) , ,n) = / / En 

where the expectation En is taken with respect to X{n). Since Rn-\-i (G) is the 

minimum Bayes risk for the (n +. l)-st component problem, i?n-fi (G,(5n-M,n) -
i?n-f 1 (G) > 0 for all n. A sequence of empirical Bayes procedures {<5n+i,n}^i 
is said to be asymptotically optimal if Hm [/?n-fi (G, (5n-fi,n) "- Rn-\-i (G)] = 0. 

n—*oo 

In the practical applications, however, components with equal sample sizes 
are rare. For example, we may often have samples of different sizes from dif­
ferent component problems. Thus, it is essential to generalize the standard 
empirical Bayes approach to unequal sample sizes situation. In the literature, 
certain work has been done on component problems with unequal sample sizes. 
For example, see O'Bryan (1976, 1979), O'Bryan and Susarla (1976a,b), Stijnen 
and van Houwelingen (1990), van Houwelingen and Stijnen (1993), and Datta 
(2000). As pointed out by several authors, [for example, see O'Bryan (1976)], 
generalizations of the standard empirical Bayes approach beyond identical com­
ponents is not easy. 

In this paper, we study the empirical Bayes estimation of the mean life­
time for an exponential distribution with unequal sample sizes components. 
The paper is organized as follows. We introduce the concerned empirical Bayes 
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estimation problem in Section 17.2. In Section 17.3, we study a method for con­
structing empirical Bayes estimators, and an empirical Bayes estimator (p*^i ^ 
is proposed. The associated asymptotic optimality of v̂ n_|_i.n is investigated in 
Section 17.4. Assuming that the mean lifetime is in the interval [a, b] ,where 
0 < a < 6 < oc, we have proved that ^n+i,n ^^ asymptotically optimal, and 

its regret converges to zero at a rate O f (Inn) "" /n) when both a and b 

are known, or at a rate 0 when both a and 6 are 

unknown, where M is a known, positive integer. 

17.2 The Empirical Bayes Estimation Problem 

First, we introduce the empirical Bayes framework for the concerned esti­
mation problem involving unequal sample sizes components. At stage i, let 
X ii, ...,Xi^^(^) be a sample of size m(i) obtained from an exponential distri­
bution with mean lifetime 9i, where 9i is a realization of a positive random 
variable O .̂ It is assumed that {Xii,...,Xirn{i)^®i) • ^ = 1,2,... are mutually 
independent, and 9 i , 62,. . . are identically distributed, having the common, un-

m(i) 
known prior distribution G. Let ^ = Xl ^ij- Then Yi is a sufficient statistic for 

the parameter 6i. Given 9i,Yi follows a gamma distribution with a probability 
density 

ym(i)-l 
f (y|m(z), Oi) = ~ ^ — exp {-y/e^). (17.1) 

Let u{y\m{i)) = '{^^y c{ei\m{i)) = - ^ . 

At the present stage, say stage n + 1, Yn-^\ is the present random observation 
and Y{n) = (Fi, ...,Yn) is the n past data. We shall estimate the parameter 

^n+i using the squared error loss. For convenience, in the following, we use 
m = m{n -i- 1) to denote the sample size of the present stage. Suppose that 
J^ 9'^dG {9) < oc. If G were known, under the squared error loss, the Bayes 
estimator for 9n+i given Yn-^i = y is the posterior mean 

^„+i,G(?/|m) = E[e„+i |y„+i - y] = 7 ^ ) ^ , (17.2) 
JG {y\m) 

where 

fc {y\m) = P f (y|m, 6) dG {d) = u {y\m) J c {e\m) exp {-y/O) dG [6) 

= u{y\m)aG{y\m), (17.3) 
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c^GivH = j c{d\m) exp {-y/e) dG (B) = j - ^ exp {-y/d) dG (6), (17.4) 

to {y\m) = jef (2/|m, e) dG {6) = u (y|m) j ^ exp (-y/O) dG (9). (17.5) 

The minimum Bayes risk for the (n + l)-st component estimation problem is: 

^ + 1 {G) = Rn-^l (G,(/Pn-fl,G) = £'(r„+i,e„4.i) bn-fl ,G {Yn-\-l\m) - Qn+l] • 

(17.6) 
The expectation E^Yn+uen-^i) ^^ t^ken with respect to {Yn-^i, 671+1) • 

Note that the Bayes estimator ¥?n+i,G (j/l^) is a function of the prior distri­
bution G. When G is unknown, it is not possible to implement the Bayes estima­
tor (Pn-^i,G (y|^) for practical applications. Following the empirical Bayes idea 
of Robbins (1956,1964), we may incorporate information from the past data 
Y{n) to construct a "good" estimator, say (/?n+i,n(j/i Y(^)) = V̂ n+i,n (j/) ,for the 
present parameter ^„^.i,where y is an observed value of Yn-^-i- The Bayes risk 
of <pn-f i,n is: 

^ . + 1 (G,(^n-hl,n) = EnE^Yn^^^Q^^i) l^n-hhn {Yn-^l\m) ~ ©n+l ] . (17.7) 

Since ̂ n-\-i,G (j/l^) is the Bayes estimator for the (n + l)-st component problem, 
Rn-^i (G, (̂ n-f i,n)~^n+i (G, ¥?n-Hi,G) ^ 0 for all u. A sequence of empirical Bayes 
estimators (v̂ n-f i,n}^i is said to be asymptotically optimal, relative to the prior 
distribution G,at a rate O (sn) if i?n+i (G, (/?n4-i,n) - ^ + i (G, </?n-f I,G) = G (en), 
where {̂ n} is a sequence of positive, decreasing numbers such that lim Sn = 0. 

n—•oo 

In the following, we seek a way to construct empirical Bayes estimators pos­
sessing the desired asymptotic optimality. Throughout the chapter, we assure 
that ©i, 2 = 1,2,..., are bounded random variables, such that O < a < 0 i < 6 < 
00, where the values of a and b may be known or unknown. We also assume the 
sample sizes m{j), j = 1,2,..., satisfying 1 < m{j) < M < oo for some finite, 
known integer M. 

17.3 Construction of Empirical Bayes Estimators 

17.3.1 Kernel function 

Let Jy denote the Bessel function of the first kind of order v. Define 

K{t)^-^^Ji(2Vt)l{t) (17.8) 
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where / (t) = 1 if t > 0, and 0 otherwise. Then, 

K^^\t) = ( ^ l ) i ^ J ^ . ^ i (2Vt)l{t), j = 1,2,... (17.9) 

The kernel K has been used by Pensky and Singh (1999) for empirical Bayes 
estimation of reliability characteristics in gamma family distributions and by 
Liang (2002) for an empirical Bayes testing problem in a positive exponential 
family. The kernel K has the properties that [see Gradshteyn and Ryzhik 
(1994)], 

fif«Wexp(4)* = |:i^-^e-',.>0. (17.11) 

Define double arrays {{akj); A: = 0,1,2,...; j = 0,1,..., k} as follows: 

O'kk = 1, fc = 0,1,...; aio = 1, and for A: > 2 and each / = 0,1,..., A: - 1, 

(17.12) 
Note that for each /c, the values of a /̂, / = fc - 1,/c - 2,... can be obtained 
recursively. Solving (17.12), we obtain: Uki = TfcZnr?' = 0,1,.., fc; fc = 0,1,2,.... 

17.3.2 The proposed empirical Bayes estimators 

Under the assumption that O < a < 0 i < f e < oc,we have: a < (Pn-j-i,G (j/|^) ^ 
b. This property should be used when empirical Bayes estimators are con­
structed. Empirical Bayes estimators will be proposed according to whether 
the values of a and b are known or unknown. When both a and b are known, 
let h = h{n) = j j ^ , a^ = a, 6̂  = 6, c„ = ^ . When both a and b are 
unknown, let h = (,„„)(,„ J„)V(.A/-I). «n = 7 ^ , n̂ = (Inlnn)^/^^^^) ^^^ 
c„ = (lnn)(lnlnn)^/(^^+2) 

For each Yn+i =y, j = l,...,n, define 

oin+i{yJ,rn{J)-'m) 
(y,-y)-"'-u(v|m)/(y,-,) r ,.. , 

u(Yj\mUmm{j)-m) " ^\J> "^ ^ i-

m-mO) (^^-^^^ 
y " a ,^ /(K,-v)u(y|m) ;>'(i) / ' > l I l ^ if ̂ f , \ ^ < Q 
2 ^ " '"-"»0).J/ i '"-n(»+i„(y^|r„(j))-^ V '» / ^ • ' ' ' "* ^ "• 

1 " 
/r.+i(y) = - V ocn+1 {y,j. m{j) - m). (17.14) 

n •^—' 
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Pn-i-i {y,j,m{j)-m) 

«(Vj|m(j))r(m(j)+l-m) '̂  "^UJ "l £ U, 

= < (17.15) 

[ .1.^ Om-m(j)-i,i^m-mO)„(y'|mO))^ \>r)' Otherwise. 

1 " 
V'n+i(y) = - y^/^n+i iyj,rn{j) - m). (17.16) 

j = l 

Prom Lemmas A.2-A.3, we have: 

\Enfn+iiy)-fGiy\m)\ 

^ e-'^l^fG{y\m)^(b 
n_ /i^xm-mij) m-m{j) 

/ (m - m{j) + 1) 
i=0 ^ ' 

(17.17) 

Var (U^M) < '-^ t [rM^iIl-m)il (-0') " ^) d^-lS) 

l2 
+ t e ^ (y6)'"-(̂ ) / (m - m(j) + 1) 

|^nV'n+i(y)-^G(y|m)| 

/(m-m(j)) J] (̂ -j , < e-°/VG(j/|m)^/fey 
i=0 

(17.19) 

V a r ( , / ; „ ^ , ( y ) ) < ^ ^ ^ 
n" j = i 

r(m(j))6 
r ( m ( j ) - m + l)r(m) 

/ (m(j) - m + 1) 

(17.20) 

+ 1 ^ ^ «"-"«'(".-".«) 
Thus, /n+i(j/) and ?/̂ „+i(j/) are consistent estimators of /G( J / | ^ ) and ^GCJ/I^)? 

respectively. 
Now, we propose an empirical Bayes estimator as follows: For each observed 

Yn^i = y, define 

^n+l ,n(y) = / (ferS^-n)^^^ if o<^^^-
¥^n+l,n(Cn) if y>Cn' 

(17.21) 
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The Bayes risk of the empirical Bayes estimator (/:J*_,_I ̂  is: 

Rn+l (G,(^*+i,n) = ^n^(y„+i ,e„+i) [v^n-Hl,n. (^n+l) ~ © n + l ] • (17.22) 

17.4 Rate of Asymptotic Optimality 

In this section, the analysis is made on the case that n is sufficiently large 
such that ^ < 5, and when both a and b are unknown, 0 < an < a and 
bn > b > 0. The empirical Bayes estimator ^^-^i^n possesses the following 
asymptotic optimality. 

Theorem 17.4.1 Suppose the prior distribution G is such that G(a) = 0 and 
G{b) = I for some 0 < a < 6 < oo. Also the sample sizes m{j) are such that 
1 ^ ^ ( j ) < M for all j for some known integer M. Then the empirical Bayes 
estimator ^^rt-^-i.n ^^ asymptotically optimal; and 

(a) When both a and b are known, 

Rn+l (G, ^Ul,n) - Rn+l (G, ^n+l.o) = O ( ^ ^ ^ ^ ^ ^ ) ; 

(b) When both a and b are unknown, 

Rn^l {G, ̂ ;+i,„) - Rn+i (G, VPn+l.G) = O (^'""^'";'^'"'""^') . 

PROOF. Prom (17.22) and (17.6), the regret of </?;+!,„ is 

Rn+l (G, 'Pn+l,n) " - ^ + 1 (G, V'n+l.c) 

= EnEY„+, [fn+hn (^^n+l) - V?n+1,G (Vn+l |m) ]^ 
roo 

= En[ipUi,n{y)-^n+i,G{y\m)]^fG{y\m)dy. (17.23) 
JQ 

From Lemma A.4 and by the fact that a < (pGiylm) = 7 J 7 S < b < bn, it 
follows that 

En foa,„(y) - ^n^^,G {y\m)]' = En [ ( ^ V a„) A 6„ - f g ) ^ ] ' 

- idi^) {^" t̂ "+i(2/) - ^G iy\m)f + (26„)2 En [/„+i(y) - fGiy\m)]') . 
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Substituting the preceding inequality into (17.23) for 0 < 1/ < c„, we obtain 

•En [ipn+i{y) - tPc {y\m)fdy 
Jo IG {y\m) 

+ I ^-T^.En [/„+i(y) - fG {y\m)r dy f 
JQ 

+ r£„[^;+i,„(y)-yp„+i.G(y)] 'dy (17.24) 
Jcn 

fc iy\m) 

= A{n) + B{n) + C(n). 

Prom (17.19)-(17.20), 

^ (") = / " -rrT-\ K ' ' (^"+1 (j/)) + l^nt/'n+i iy) - i'G {y\mf] dy Jo JG{y\fn) L J 

r ( m ( j ) ) b / ( m ( j ) - m + l) 
r ( m ( j ) - m + l ) r (m) 

+ i ^ L Z ^ ^ (y6)—0) I{m-m (j)) 

+ 

/ j2 (m-mO)) - dy 

/ 
n^ 

m—m(j) —1 

dy 

A/f2Lm-m(j) 
J, m - m ( j ) + l r / ^ _ ^ f . • ) \ 

+ -
e-2«/^/i2 

n^ 
E ( Z ) /(".-".O)) E 
i=i t = 0 

= O (17.25) 
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From (17.17)-(17.18), 

r^" 8bl rCn QUI r -1 

^(") = / , r, \Var{U+x{y)) + \Enfn+,{y)- h{y\ni)?\dy 
Jo fG{y\m) L J 

< r^t r(M) / (m (j) - m) 

M^ \m-m(j) 

+ / 

+j;2M:r,{ybr''^''^Hrn-^m{j) + l) dy 

w 
Jl_ / l^\ m-m{j) 

.7 = 1 

m-m(j) H 2 

E U /(m-mO) + l) 5: 
1 = 0 

hV dy 

ILLL IV iL 

+-

= 0 

8fe2_£2«A 

his 

m—m(j) 

E^j-^On-^O,.:) E (j 
j = l 1=0 

/ l \ ^ 

n / i 2 M - i ; • 
(17.26) 

By Lemma A.l 

C{n)= / En K + l , n ( y ) - ^n+l,G (y|m)] / G {y\m) 
Jcn 

dy 

roo ^,m-l 

Jcn 

r(m)a"̂  

^2 m - l -

\y\nLju 

6 

Cn/b 

= ( 

^ - " " ^ f M a"̂^ "̂  

-Cn/6 /-oo p - y / 6 

+ / -y-(m-l)y—2dy 

1 (h^S-^^--nlb\ 
baJ^T (m) 

(17.27) 

Combining (17.24)-( 17.27) yields that 
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When a and b are known, h = j ^ , Cn = ^-^, bn = b. Hence, 

^- f I {G^ ¥̂ n-f l,n) "" ^ + 1 (G, (̂ n+l,G) = O I | . 

When a and bare unknown, h = -—w . '̂ vi/roAz-ni Cn = (Inn) (Inlnn)^^^^"*"^ ,̂ 
(inn)(lnlnn) '^' ' ' 

bn^{lnlnn)^^^^^^^\Then, 

Thus, the proof of Theorem 17.4.1 is complete. • 

Appendix 

We recall that the prior distribution G satisfies Assumption A: 

Assumption A: For some 0 < a < 6 < oo, G{a) = 0 and G{b) = 1. 

Lemma A.l Under Assumption Ay /G( J / | ^ ) ^ rrm)a^ ^xp(-y/fe). 

PROOF: A straightforward computation will lead to the result immediately. 

Lemma A.2 Under Assumption A, the following hold, 

(a) 

\Enan+i {y,j, m{j) -m)- fa {j/|m)| 

\EnUx{y)-fG{y\m)\ 

(b) 

\En0n-\-i iy,j, m{j) - m) - -ipciylm)] 

- / jm-m(j)- l ^ ^•'''' Z-^ V ^ / 
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lEni'n+iiy) - tl^G iy\m)\ 

j = l 

m(j)) 5^ 
1=0 

PROOF, (a) Let / = |m(j) - m\. If m( j ) -m > 1, then / = m{i)'-m, m{j)-l = 
m. 

EnOin+i {yj^rn{j) - m) = £"„ 
(y ,^yy-^u( j / |m) / (y ,~y) 

^(y,Hj))r(0 
\ / - i {t^yy-'u{y\m) 

Ly r(/) OiG{t\m{j))dt 

= /ro''"'rio""^ [/'̂ l̂"'̂ '̂))'̂ P(~(' + )̂/̂ ^̂ ^̂ ^̂ 1 

= / u(y|m)c(^|m(j))exp(-y/0) / -—exp (-s/^) ds dG(e) 

= I u (y|m) c(^|mO-))^'dG [9) = j u (y|m) c (^|m) dG {6) = fc {y\m), 

(17.28) 

since c{e\m{j)) x 9^ = ^ ^ = ^ = c{e\m). 
If m (j) - m < 0, then Z = m - m (j), and 

EnOin+i {yj, rn (j) -m)^ En 

I 

y nYi-y)u(y\m) j.(i) /V^-j/\ 

(17.29) 

where 

E, 
. \I{Yj-y)u{y\m) ,,^(Yj-y\] 
"[/i'+iu(y,|m(j))'' V /I ; j 

= / ~ ^1T!T^^^'^(*) [j[c(^|m(j))exp(-(y + M/^)dG(^) 

= j [ ^ ^ c ( e | m ( j ) ) e x p ( - y / e ) [ ^ ^ X ^ (.)exp ( - ^ ) ds 

= )^ y " (ylw) c (^|m (j)) exp (-y/^) 

hds 

dG{6) 

^i-iy-'' fh^^ 
^ (i-

Lfc=o 
{i-ky.\rei -ur^n"/^ hV 

dG{e) (17.30) 
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Substituting (17.30) into (17.29) and noting that ^ (i-k)\ "'» - ^ ^°^ ^^^ 
i=k 

A; = 0,1,...,/ - 1, and = 1 ior k = I, it follows that 

En[an+i{y,j,rn{j)-m)] 

^ a f 

= J I | r / " (2/IH c {0\m ij)) ( 
-y/e 

imM-^)' e h dG{e) 

= -g I u{y\Tn)c{e\Tn{j))i -y/e 

I k I 

dG{e) 

= yj^u{y\m)c{0\m{j))e-y/' 

.A:=0 
E ©•-&• (> ) • 

/ < 

dG(e) 

dG{e) 

Li=fc 

= ^j[«(y|m)c(^|m(j))e-«/ ' ' | (^y-j^aa(^y. 

= / . ( y H ^ i ^ e - v / ^ d G ( ^ ) 

= / u (y|m) c (̂ |m) e'̂ /̂ dG (̂ ) " E S / ^ ^ " ' ' ' ^ " ' ' " ^ ^ (̂ ) 
'̂  i=0 *̂ ^ 

= /.toN-t<"./s;Si^^-"'''-""'*GW. (17.31) 
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Here, 

< 

r u iv\rn) e'^^l^e^^l^ 0 < / y f l g x ^ J. dG{9) 

h'~' JO"' 
^-a/h^m—m{j)-i 

/ l ' - ' 
•fa {y\m). (17.32) 

Since an = 77375x1 thus, 

0< 
i=o •' 

—J 

j=0 

e-°/VG(y|m),^_^(,^^/^^' 
/ i ' E 

i=0 

/G (y|m) 

(17.33) 

Combining (17.28)-(17.33), we obtain 

\EnOtn+\ {y,j,m{j) - m) - fG{y\m)\ 

< 
/ i ' 

m-m{j) / 1 \ I 

/(m-m(j) + l) J ] -^ 
1=0 

Next, 

\Enfn-^i{y) - fc {y\m)\ = 
1 "̂  
~ V JSnan+i (y, i, m{j)-m)- fc (y|m) 
n -̂ -̂  j = i 

1 
< ~ y ] l̂ n̂Ô n+i {yj.rnij) -m)- fc {y\m)\ 

e-"/VG(yHv^ 
m~-m(jf) 

< 
n /i^ 

5^6—(^)/(m-m(j) + l) E ( l • 

Hence, the proof of part (a) is complete. 
Part (b) can be proved in a similar discussion. The detail is thus omitted. 

Lemma A.3 Under Assumption A^ the following hold. 
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(a) 

Var (a„+i {y, j , m{j)-m)) 

Varifn^iiy)) 

fG{y\m)^ r(m(j)) 

(b) 

< —-;̂  —— T-rr r—l \m[j) — m ) 

,̂ ^ r (m) r (m (j) - m) a ^ ^•" ' 

+ 

Vor(i3„+i(y, j ,m( j ) - m)) 

Far(^„+i(?/)) 

< / G ( y | m ) A r(m(j))b /fm(7)-Tn + l) 
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PROOF, (a) Let / = \m (j) - m|. As m (j) - m > 1, / = m (j) - m, and 

Var (a„ , . (y, j , m (j) - m)) ^ Var f L̂ ^ ' ^^^ "^ ( ^ I ^ ^ - - ^ ' i 
u{Yj\m{3))T{l) 

<En 
{Y^-yy-\{y\m)I{Yj-y) 

u{Y,\7n{j))T{l) 

°°u2(j/|m)(f,-y)2('-i) r 

Jt^y U 
/»00 

= u{y\m) / -

[i (<|m(j))r2(0 
c(0|m(i))e-'/^dG(^) dt 

{y + s\7n{j))rHl) 
f c{e\m{j))e-^y^'^/^dG{e) ds 

ym-lg2{l-l) 

< u {y\m) Ic{e\m (j)) e " ' ' / ^ ^ ^ M ^ r (/ - 1) e^-'dG (6) 

T{m{j))TH-l) ju[y\m) ,, 

~ r(m)r2(o j 6^+^ ^^^^^ 

e ""ds dG{9) 

(17.34) 

r{m(j)) /"ulj/lm) . 
\a J ^ri^m-aJ^^'''^''''^'^ 

r (m(i) ) 
7 G (y|m). 

r ( m ) r ( m ( j ) - m ) a ' 

In (17.34), the second inequality is obtained based on the fact that 

, m - l „ 2 { / - l ) /•oo 

A=0 

00 , , m - l „ 2 ( ( - l ) /-oo 

Js=i 

y 

,=o{y + sr-'{y + s) 
r'^ds 

{y + sr^^^-' 
PCX) Tn-lc2(l-l) roo 

As m (j) — m < 0, / = m - jn (j), and 

Var (a„+i (y, j , m (j) - m)) 

< £„ 

< (1+1) 
/l2(' 

Y- M(y|m)/(yj-y) (,, / y , - y \ 
£;; "/i'+iz.(F,|m(j)) V ^ J 

•1)^ r u ( y | m ) / ( y , - y ) . , , / y , - y n2 

. (17.35) 
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Since an = ^z:^, in (17.35), 

= hu{y\m)Jc{e\m{j))e-y/^ 

u{y\m) 
K^^ (s) 

l 2 
:-'<'IUs dG{d) 

s=o " (y + s/̂ l̂ i (J)) L 

< /lu (y|m) / c {e\m{j)) e"*'/̂  • y'"-"'(-''(iG (̂ ) 

(17.36) 

In (17.36), the second inequality is obtained due to the facts that m —m(j) > 0 
and 

/ 

u{y\m) l 2 
K(^{S)\ e-^'/^ds 

-L =0 (y + 5/i)"'(^^-^ 
/i:̂ )̂ ( s ) ds 

< ^ ^ - ^ ( j ) " / î w (. 
./s=0 '• 

s)l ds < y'"-'"(^\ 

since /̂ "̂ ^ [K^'^ {s)f ds = a ^̂ .̂  < 1. Substituting (17.36) into (17.35), we 
obtain 

/ + 1 ' 
Var{an+i{y,j,m{j)-m)) < A l _ L ^ / . j / — O ) ^ — 0 ) / ^ (y|m) 

t = 0 

< (J±lf_ym-mU}f,m~miJ)j^^y^^^ 

[m-m ( j ) + 1] m-m(i)Lm-mU) r / i x 
/j2(m-m(j))+l y ^ JG[y\m). 

(17.37) 
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From (17.34) and (17.37), we have 

Var (a„+i [y, j , m{j)-m)) 

r ( m ( j ) ) 

r (m) r (m (j) -m,)a 
< fc iy\m) I (m ij) - m) 

Thus, the proof of part (a) is complete. 
Part (b) can be obtained in a similar discussion. The detail is omitted. 

The following lemma is cited from Singh and Wei (1992). 

Lemma A.4 Let Y, Z be random variables and y, z ^ 0, C > 0 be real 
numbers. Then, for 0 < \ < 2, the following hold: 

E 1^1 
Z z 

l A 

AC < 
2 |^[i^_^i>]^(i^i^^)^^(i^_,i.]j 
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Bayesian Analysis of Mixtures of Improper 
Survival Distributions 

Kaushik Patra, Dipak K. Dey and Samiran Ghosh 

Department of Statistics, University of Connecticut, Storrs, Connecticut, 
U.S.A. 

Abstract. A mixture model is proposed to model the failure data where each 
component has a surviving fraction i.e., admits a positive probability of cure. 
The proposed model is fitted to a real data set describing recidivism of prisoners 
i.e., return to prison for any crime. The proposed model is computationally 
appealing, and the Markov Chain Monte Carlo (MCMC) methods are developed 
to sample from the posterior distribution of the parameters. Classification of a 
prisoner to different groups is also done based on the proposed model. 

Keywords and phrases: Improper distribution, Markov Chain Monte Carlo 
(MCMC) method, mixture distribution, surviving fraction 

18.1 Introduction 

A generalization of the usual survival models in order to allow for possible 
heterogeneity is useful in medical, criminology and other contexts. In particular, 
the distribution of the failure times, F , is allowed to be improper, i.e., to have 
F(oo) < 1, so that only a proportion a = F {oo) of the individuals under 
study are assumed eventually to fail. The complementary proportion 1 - a is 
considered to be 'immune" or possibly "cured", and never to fail. Most users 
of this method have modelled the distribution of observed failure or censored 
times by 

F{t) = aFo{t) (18.1) 

where FQ {t) is a proper distribution function describing the failure of "suscep­
tible" individuals, i.e., those who will eventually fail. A parametric form is 
chosen for FQ (.) and the parameters, together with a, are estimated from the 
sample. Ghitany and Mailer (1992) considered a parametric approach, using 
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the exponential distribution for FQ. It is also customary to use log normal or 
WeibuU distributions to model FQ. 

In general we cannot identify the immune individuals, if any, in a sample. 
We can only anticipate their presence if a relatively large number of failure times 
are censored at large values. If (18.1) is correct, we would, in fact, expect that 
a proportion of approximately 1 ~ a of the observations with the largest failure 
times will be censored. In addition, the failure times of non-immunes may be 
censored after being lost to follow-up. A plot of the Kaplan and Meier (1958) 
empirical distribution function Fn {t) from such a sample of size n, say, will 
tend to level off near the value a, provided the observation time is sufficiently 
long. Mailer and Zhou (1992) have used the estimator 

an = Fn{Tn). (18.2) 

where Tn is the maximum observed failure or the censored time. They inves­
tigated the asymptotic properties of the distribution of this estimator. Later, 
Mailer and Zhou (1994) investigated the presence of the "immune" proportion 
via an asymptotic test and illustrated using a criminological data set. 

In this chapter, we extend their modelling approach. Our objective is to 
extract information about the "cured" fraction when we have a mixture pop­
ulation; in particular, we consider a mixture model in which each improper 
component may have its own distinct fraction of immunes. The methodology is 
used to analyze the criminological data presented in Mailer and Zhou (1994), 
although it can be applied to other fields. In their original work. Mailer and 
Zhou considered two populations of prisoners separately; we treat them as one 
sample as coming from an overall population, where the subpopulations corre­
spond to different groups but group membership labels are not available. Hence, 
the notion of a mixture model comes into consideration. Each of the mixture 
components can have its own proportion of not failing where we define failure 
in a formal way in Section 18.2. After fitting the model, we can classify each 
individual to one of the groups in order to investigate the extent of misclas-
sification. Thus, the data set gives us a benchmark to validate the proposed 
model since we can actually compare the classification through our model with 
the truth. Of course, in practice, we would implement this methodology in 
situations where we do not know anything about the individual components of 
the mixture model. 

The format of the chapter is as follows. In Section 18.2, we propose a two-
component model for the recidivism data. A detailed description of the data 
is given in Section 18.3. Section 18.4 describes the likelihood and the full con­
ditionals for the parameters of the model proposed in Section 18.2. In Section 
18.5, the results from fitting the model are outlined with relevant Bayesian infer­
ences. 
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Section 18.6 proposes another competing model for the same data with as­
sociated results in Section 18.7. Finally, we conclude in Section 18.8 with 
description of possible future work. 

18.2 A Two-component Model 

In this section, we develop methods to handle mixture models where at least 
one component arises from an improper distribution. The notion of being "im­
proper" can be introduced with the idea described earlier. We illustrate our 
methodology with two components, with extension to more than two compo­
nents being straightforward. Let the survival functions of group 1, group 2 and 
overall population be denoted by 5i (t), 52 {t) and ST {t), respectively. Then 

5 T ( t ) = p 5 i ( t ) + ( l - p ) 5 2 ( t ) , (18.3) 

where 0 < p < 1. Now even though this form is widely reported in the literature, 
the crucial difference between this model and others is that both of the individ­
ual components have their distinct surviving fraction, i.e., Sj (oo) = 1 — aj, 
0 < aj < 1, j = 1,2. The presence of the surviving fraction can be es­
tablished from the context of the problem. Our approach is fully Bayesian 
with an intuitive introduction of the surviving fraction. We define failure as 
"recidivism", i.e., a return to prison for any offense. Suppose we have two 
groups of prisoners convicted for committing serious offenses, one with No-
Prior conviction (referred to as group 1) and the other with Prior conviction 
(referred to as group 2). Then the survival function is given by (18.3), where 
p = PT[A prisoner belongs to the No-Prior conviction group]. Evidently, each 
of the subpopulations will have a surviving fraction (a fraction of the popula­
tion which never returns to prison). We anticipate that the surviving fraction 
for group 1 will be higher than that for group 2. Let us derive the survival 
function incorporating the surviving fraction for each of the subpopulation. 
Suppose 0 = 1 if recidivism occurs, and 0 otherwise. The unconditional cu­
mulative distribution function corresponding to the first subpopulation is then 
given by 

Flit) - P r ( r < t ) 
= P r ( r < f | 0 = l ) P r ( < / . = l ) + P r ( r < # = O)Pr(</> = O) . 
= P r ( r < t | < ^ = l)Pr(</) = l) ^ ^^ 
= aiFio (t), 

where a i — Pr (recidivism] group 1). Hence Si (t) = I — QiFio(t). Defining 
02 = Pr (recidivism! group 2), we have similarly that ^2 (t) = 1 - a2F2o{t). 
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Note that Fio (.) and F20 (•) are proper cdfs whereas Fi (.) and F2 (.) are not. 
Hence the survival function corresponding to the overall population, S{t), is 
not a proper survival function, but rather a mixture of two improper survival 
functions. We adopt a Weibull distribution to model each of Fio (.) and F20 (.) 
i.e., Fjo (i) = 1 - exp (~6i<^0 for i = 1,2, as in Mailer and Zhou (1994) where 
separate models were fit for the two different groups. Now, (18.3) reduces to 

5 T ( < ) = P {1 - ai (1 ~ exp (-6it«0)} + g { 1 - ^ 2 ( 1 - e x p (-62*^2))} 

= 1 - pai (1 - exp (-6it"0) - Q0(2 (1 - exp (-62*"')). 
(18.5) 

Note that, ST (OC) = 1 - {pai + qa2). In practice, we will be able to obtain 
Kaplan-Meier estimates for the overall population. Usually we will have no 
idea about the values of the individual Weibull parameters and the surviving 
fractions. However, in the context of the current problem, we will assume that 
ai < a2, as remarked before. This kind of prior knowledge will provide us a 
guideline to develop an appropriate model. 

18.3 Data 

The criminological data presented in Mailer and Zhou (1994) are drawn from a 
large data set described by Broadhurst et al. (1988) that consists of two groups 
of prisoners convicted of serious sexual offenses, one with no prior records (No-
Prior group) and the other with prior convictions (Prior group) and released, 
following imprisonment for serious offense, after June 30, 1975. "Failure" for 
these individuals is "recidivism" (a return to prison for any offense), and we 
observe their times to return, possibly censored by the necessity to cease obser­
vation at a predetermined time (June 30, 1987). The data has been reported by 
failure times (in years). There are 296 prisoners in the No-Prior group and 121 
in the Prior group. For our analysis, we suppose a total sample of 417 prisoners 
coming from an overall population consisting of two groups. However, for fu­
ture benchmarking, in Figure 18.1, for the two groups individually and for the 
joint sample, we plot the Kaplan-Meier estimates of the cumulative distribution 
function treating the upper tails as described below. 

Assume that n possibly censored failure times <i, • • • , tn are observations on 
the minima of random variables with failure distribution F of the form (18.1) 
and random variables with a censoring distribution G. Censoring indicator Si, 
taking the value 0 or 1 according to whether or not U is censored, i = 1, ..,n, 
are also observed. We construct Fn (f), the Kaplan-Meier estimate of F(t), by 

i't{i)<t ^ 
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" T 1 1 \ 1 \ ! 1 r — 

0.0 1.5 3.0 4.5 6.0 7.5 90 10.5 120 13.5 

Tiffle(years) 

Figure 18.1: Kaplan-Meier estimate of CDF for individual and combined group 

where f(i) < • • < /(„) ar^ ordered failure times (with uncensored observations 
indexed before censored observations in the case of ties), and <5(j) is the censoring 
indicator associated with (̂j). Let T„ = maxi<Kri f(,) be the largest failure time. 
If Tn is uncensored. then (18.6) implies F,,. (T„) = 1; but if T„ is censored, then 
Fn{Tn) < 1. We do not redefine, Fn(Tn) = 1 in this case, as is sometimes 
advocated, because F„ (Tn) < 1 may be indicative of immunes in the population. 
In fact, Mailer and Zhou (1992) and Sposto, father and Baker (1992) have 
suggested the nonparametric estimator Sn = F„(r„) as an estimator of a in 
(18.1). The step function Fn {t) does not jump at the censored observations, 
so it is constant on the interval {T*,Tn), where T* is the largest uncensored 
failure time. Thus we also have a„ = F„ (T*). From Figure 18.1, we see that 
the cumulative distribution function levels off near 0.47 for the No-Prior group 
and 0.70 for the Prior group. Again, for our purposes, we can only presume to 
have the estimate of the overall siu'viving fraction which is approximately 0.55. 
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18.4 The Likelihood and Full Conditionals 

18.4.1 Model 1 

Let us denote the density and the survival function corresponding to overall 
population by / r ( ) and ST{-) respectively. The likelihood function can be 
written as 

L<xYlfT{y^y-'^ST{yif= [J /^(*') 11 ^^iCi) 
1=1 ii:Si=0 u:<5i=l 

where t/i is the observed time and Si is the censoring indicator, i.e., Yi = Ti 
if Ti < Ci,= Ci if Ti ^ Ci and 5i = I{Yi = Ci), i = l,..,n. The condi­
tional survival function Sriy) given z is Sriy) = SiiyyS2iy)'-' where ^ 
is the latent random variable which takes value 1 or 0 according to whether 
the observation corresponds to the first or second component of the mixture 
distribution with survival functions Si (y) and 52 (j/) defined earlier. Con­
sequently the conditional density /r(j/) given z is /T(2/) = fiivY f2{y)^~^ 
where fi{y) = aiaibiy^'~^ exp{-biy^') for z = 1,2. We fit the model us­
ing a Bayesian approach adopting weak but proper priors on the parameters. 
The prior distribution for p is taken as Beta {d\, 6.2) a p^^"^ (1 - p ) "̂"̂ . For 
the scale and the shape parameters of the individual WeibuU distributions, 
a diffuse Gamma {mi, 7712) prior distribution is used, where we assume that 
mi = m2 = 0.01. Assuming ai < a2, we specify 7r(ai,a2) = n{ai\a2)ir{a2) 
where 7r(ai|a2) = Uniform{0,a2) and 7r(a2) = Uniform{0,1). Let [x] de­
note the distribution of the vector x. Then the joint posterior of the model 
parameters and the latent random variables are given as 

[z, p, a, b, a] a [t I z, a, b, a] [z | p] [p] [a] [b] [a], (18.7) 

where [t | z,a, b, a] is the UkeHhood. In the sequel, we refer to (18.7) as Model 
1. Note that we can write 

and 

n fTiti)= 
i:Si=0 

n ST{Ci)= 
i:Si = l 

n /i (ti) 
i:(5i=0,2i=i 

n 5i (̂ i) 
i:<5i = l , 2 t = i 

n /2(g 
i:Si=0,Zi=o 

n s^ ê )̂ 
i:(5,=l,2i=0 
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Also [z I p] = nr=i P^' (1 ~ P)^ ^ I • The full conditional of z is proportional to 
[t I z,a, b,a] [z | p] and the full conditional of p is exactly Beta{Y^ Zi + di,n-
YA=I ^i'^d2)' The full conditional of the shape parameter ai is proportional to 

n /i (*o 

and that for a2 is proportional to 

n /2{io 
r.<5i=0,2i=o 

n ^1 (Ci) 

n 2̂ (c.) 

aij 

^2 

We get similarly expressions for 6i and 62 with [ai] replaced by [bi], 2 = 1,2. The 
full conditionals for bi and 62 will be Gamma {n-^ v,Yl vl^ + ^) f̂^ J = 1̂  2. 

The full conditionals for a\ and a2 are proportional to 

n /i (̂ )̂ 
2:(5i=0,2i = i 

n /2 (̂ )̂ 

n 1̂ (c«) 
2:57 = 1,21=1 

X — l ( 0 < a i < a 2 ) , 
a2 

n -̂ îc,) 
i:(5i = 1,2:1=0 

1 (ai < ^2 < 1) , 

respectively. Finally, we transform OLI and ^2 on the real line by taking logit 

transformation and hence the full conditional of a\ = log ( y ^ ^ j is proportional 

to 

1 exp(aj) 
n /i(̂ )̂ 

i:5i=0,2i=i 

n ^1 (Ci) 
i:(5f = l , 2 i = i 

0̂ 2 (l + exp(a*))' 

and that of a2 — log f y r ^ ) is proportional to 

n /2 (<o 
i:<5i=0,2i=o 

n ^2 (CO 
r.(5i = l ,2 i=o 

exp(a^) 

( l + e x p ( a ^ ) r 

We use Gibbs sampling to obtain the posterior distributions of the model pa­
rameters. Since the full conditionals of a\,a2,ot\ and a2 are non-standard, we 
use a Metropolis-Hastings step within each stage of Gibbs sampling. The pro­
posal density for a\ and a2 are taken to be Gam.m.a{n + f,bj Yliy >i ^^Vi + ^) 
for j = 1,2. For logit(ai) and logit(a2), we use the normal distribution as the 
proposal density with mean zero and standard deviation 1. 
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Table 18.1: Posterior Estimates of Model 1 parameters 

Parameters 

« i 

0 2 

P 
Oi 

6i 
0.2 

62 

Posterior 
Mean 
0.465 
0.701 
0.709 
0.986 
0.329 
1.166 
0.760 

Posterior 
Median 
0.465 
0.701 
0.709 
0.986 
0.329 
1.156 
0.749 

Posterior 
Std. Dev 

0.002 
0.002 
0.023 
0.057 
0.019 
0.110 
0.072 

95% credible 
interval 

(0.460,0.469) 
(0.696,0.704) 
(0.665,0.751) 
(0.875,1.090) 
(0.291,0.366) 
(0.975,1.407) 
(0.641,0.931) 

18.5 Results From Fitting Model 1 

Table 18.1 gives the posterior summary for the model parameters under Model 
1 and Figure 18.2 gives the posterior distribution for the model parameters. 
The posterior distribution of ai and 02 are quite symmetric and highly centred 
around the empirical estimates obtained from the Kaplan-Meier plot from Fig­
ure 18.1. The posterior mode of p is close to 0.7 which is consistent with 
the sample estimate. The estimated posterior predictive cumulative distri­
bution functions for the No-Prior and Prior groups are superimposed on the 
Kaplan-Meier estimators and are given in Figure 18.3a and Figure 18.3b, re­
spectively. The overall estimated cumulative distribution function is plotted in 
Figure 18.3c. From the graphs, Model 1 appears to give a reasonably good fit. 

Now let us consider the issue of classifying each individual into one of the 
prisoner groups based on the estimates. Note that the posterior distribution of 
Z given T = t will be a Bernoulli distribution with success probability 

Pz (*) = Ep.eue2\T=t 
pfi{t\9i)'-'Si{t\ei)' 

pfi im)'-' si imf + (1 - p) /2 {t\e2)''' 52 {tm' 
where ^i and 62 are the model parameters for first and second components, 
respectively. Using the posterior sample of size M, we obtain a Monte Carlo 
estimate of p, {t) as 
Pz{t) = 

1 ^' P^'^h{t\e\'y''s,{t\er) 

tipi^)f, {t\e[''^y-'s, {t\e\'^y + (1 -p(̂ )) h {t\ei'^y-'s2 {¥2'^)' 



Improper Survival Distributions 361 

Table 18.2: Posterior Estimates of Model 2 parameters 

Parameters 

a i 

« 3 

Pi 
P2 

P3 
ai 
bi 
02 

b2 

03 

1 bs 

Posterior 
Mean 
0.465 
0.700 
0.316 
0.420 
0.266 
0.658 
0.609 
1.034 
0.278 
1.230 
0.758 

Posterior 
Median 
0.465 
0.700 
0.301 
0.430 
0.267 
0.655 
0.605 
1.032 
0.277 
1.229 
0.757 

Posterior 
Std. Dev 

0.0002 
0.0002 
0.162 
0.145 
0.068 
0.539 
0.057 
0.053 
0.018 
0.088 
0.052 

95% Credible 1 
Interval | 

(0.464,0.466) 
(0.699,0.710) 
(0.037,0.659) 
(0.107,0.672) 
(0.130,0.402) 
(0.568,0.758) 
(0.518,0.719) 
(0.907,1.133) 
(0.247,0.314) 
(1.066,1.407) 
(0.658,0.864) 

where p^^\0\ and ̂ 2 ^ (^ = 1̂  -i ^^) are the /cth posterior sample values from 
the MCMC output. If pi (f(i)) > 0.5 we classify individual i to group 1, other­
wise to group 2. Since we know the actual classification, we can calculate the 
proportion of misclassification. For Model 1, we have 28.8% misclassification, 
i.e., we would classify roughly 71.2% correctly without knowing anything about 
the underlying heterogeneity. 

18.6 A Three-component Model: Model 2 

The prisoners from group 1, i.e., those with no prior conviction record are 
expected to be more heterogeneous compared to the group with prior conviction. 
This leads us to propose a competing model where we anticipate that the group 
1 is a mixture of two other improper Weibull distributions, i.e., the overall model 
is 

h {y) = Pi/ i {y) + P2/2 {y) + P^h (y) 

with corresponding survival function 

ST {y) = PiSi (y) + P2S2 {y) + P3S3 {y), 

where Pi + P2 + Ps = 1- Without going into detail, this model can be built 
in the same spirit as the two-component model. Each of the components will 
have a surviving fraction, say, a i , (̂ 2 and a^ with the constraint a i < a2 < 03. 



362 K. Patra, D. K. Dey and S. Ghosh 

8. 

S 

I I I 

0.455 0.460 0.465 C.470 

aiphal 

0.695 0.700 0.705 

alpha2 

0.65 0.70 0.75 0.80 

P 

1 A. 
0.8 0.9 1.0 1.1 1.2 

a1 

0.25 0.30 0.35 0.40 

bl 

0.8 1.0 12 1.4 1.6 

a2 

JL 
0.6 0.7 0.8 0.9 1.0 

b2 

Figure 18.2: Posterior distribution of Model 1 parameters 

Again, we write 

n friti) = 

and 

n ST{Ci)= 
/.:(5,=0 

n /i ('') 
i:Si=:() 

\zi={l,OS))' 

n /2(/.) 
z,=(0,l,O)^" 

n h(fi)\ 

Zi=(0,0,l)''' J 

n s,{Q) 
z ,= ( 1,0,0)' 

n ^̂ 2(G) 
i:Si=() 

Z; = (0 ,1 .0 ) ' 

n 3̂(c,) 
i:Si=0 

z,=(0,0,l) ' ' ' 



Improper Survival Distributions 363 

Time(>cars) Time {\ixs) 
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Figure 18.3: Estimated CDF for model 1. Top left (Figure 18.3a) for No-Prior 
group. Top right (Figure 18.3b) for Prior group. Bottom (Figure 18.3c) for 
combined group 

where zy = {zihZ2h,zsi) ~ Multinomial {p\,p2,p:\) and as before, J,{y) = 
QiCiibiy^^'^ exp {-biy^'), i = L 2,3. In fact, for the two conceptual components 
of group 1, we adopt distinct survival functions but assume a common surviving 
fraction where ai = a2 < aa- We also fit a model with different surviving 
fractions for group 1 components but virtually they are not distinct, hence 
omit the detail. The prior distributions of the model parameters are chosen 
in the same way as in the case of the two-component model, i.e., the WeibuU 
parameters follow a Gamma distribution and the joint prior of ai and a^ is the 
same as the previous one. 
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18.7 Results From Fitting Model 2 

It is obvious that Model 2 is a direct extension of Model L and thus can be 
fitted by the same approach as described in Section 18.4. Figure 18.4 gives 
the posterior distribution of the model parameters and Table 18.2 gives the 
corresponding estimates. Figure 18.5 gives the estimate of the overall cdf for 
model 2. Using the same argument as before we get the posterior distribution 
of z given T = t as a Trinomial {l,p[ (t) ,pi (f) .jrl (/)). where 

Pifim)'~^Siit\0if 

The classification rule would be as follows: an individual will be classified to 
group 1, if pi (f) -f PI (t) > PI (t). The misclassification percentage in this case 
is 29.0%. Model 2 is no better than Model 1 with respect to prediction but 
this is likely due to heavy censoring in the No-Prior group as evident from the 
histogram in Figure 18.6. The dark region of the histogram corresponds to 
the censored observations. Censoring in this group can occur for a variety of 
reasons unknown to us. Thus in the interest of parsimony, we would choose 
Model 1. 

18.8 Conclusion 

In this paper, we developed a model to fit a mixtiue distribution where all 
components contain surviving fractions. Bayesian analysis effectively extracted 
information about the unknown immune fractions. Extension to incorporate 
covariates into the model, where they are available, is straightforward. 
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Figure 18.4: Posterior distribution of Model 2 parameters 
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Figure 18.5: Estimated CDF for combined sample from model 2 
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Figure 18.6: Histogram of censored and uncensored observations for No-Prior 
group 
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Multivariate Survival Analysis with PVF Frailty 
Models 

Madhuja Mallick and Nalini Ravishanker 
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Abstract: In this chapter, we describe inference for multivariate Hfetimes data 
using a conditional proportional hazards model with a power variance family 
(PVF) frailty distribution and a WeibuU baseline hazard. The likelihood func­
tion is derived via the joint density of tilted positive stable random variables. 
Inference is carried out in the Bayesian framework, using Markov chain Monte 
Carlo techniques. We illustrate our approach on data involving recurrent infec­
tions due to insertion of a catheter in patients on portable dialysis machines. 

Keywords and phrases: Multivariate survival model, tilted positive stable 
density, proportional hazards model, Weibull baseline hazard 

19.1 Introduction 

The proportional hazards shared frailty regression model for multivariate sur­
vival times has the form 

h{tij\Xi,Zij) = ho{tij)exp w'ziA X^ (19.1) 

where for the jth (j = 1, • • • , m) subject in the ith (z = 1, • • • , n) group, tij is 
the observed value of the random survival time Tij, Zij is a fixed, possibly time 
dependent covariate vector of dimension p, and /3 is the p-dimensional vector 
of regression parameters. In (19.1), the dependence is generated by a frailty 
random variable X ,̂ which is assumed to follow a power variance family (PVF) 
frailty distribution [Hougaard (2000)], while 

h^iUj) ^ \ltl-\ A>0, 7 > 0 

denotes the Weibull baseline hazard function. Alternate parametric frailty spec­
ifications used in the recent literature include the gamma model [Clayton and 

369 
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Cuzick (1985)], the log-normal model [Gustafson (1997)], and the positive sta­
ble model [Qiou, Ravishanker and Dey (1999)]. Under the infinite variance 
positive stable frailty specification, the proportional hazards model holds un­
conditionally as well as conditionally [Hougaard (1986a,b) and Oakes (1994)], 
and also allows for a much higher degree of heterogeneity among the common 
covariates than would be possible under the finite variance gamma frailty. In­
ference for positive stable frailty models has been described in the literature by 
Hougaard (1986a,b, 2000), Manatunga and Oakes (1999), and Oakes (1994). 
Qiou, Ravishanker and Dey (1999) extended Buckle's (1995) idea for comput­
ing the density of a four-parameter stable distribution to frailty modeling, and 
described fully Bayesian inference for all parameters in the conditional propor­
tional hazard model with a positive stable frailty distribution and a correlated 
piecewise exponential prior process as baseline hazard. 

The PVF distribution, which was discussed in the context of frailty mod­
eling by Hougaard (1986a, 1995) and Hougaard, Harvald and Holm (1992) 
includes the positive stable and gamma frailties as special cases and thereby 
offers a flexible framework for modeling. Although the PVF distribution is 
conceptually simple, inference for the PVF frailty model is complicated due 
to the lack of a closed form expression for the density function of the PVF 
random variable. Hougaard (2000) discussed the usefulness of inference for the 
PVF frailty which incorporates intermediate dependence, but mentioned that 
all existing estimation procedures for this frailty model are complicated. In 
this article, we describe simultaneous inference for multivariate survival times 
with a PVF shared frailty distribution. For this, we derive the density function 
of the PVF variable by viewing this density as a tilted positive stable density 
Hougaard (1986a), and we employ the Bayesian approach using Markov chain 
Monte Carlo methods for carrying out inference. 

The format of this chapter is as follows. In Section 19.2, we review some 
general properties of the PVF distributions, with special attention to their role 
in modehng frailty. In Section 19.3, we derive the density function of the PVF 
frailty random variable by viewing it as a tilted positive stable density, thereby 
producing a computational vehicle for its evaluation. In Section 19.4, we present 
the likelihood for the multivariate survival model and derive the joint posterior 
distribution of the parameters. Section 19.5 describes the complete conditional 
distributions and the implementation of Bayesian inference. In Section 19.6, we 
present an illustration of this approach for data on multiple recurrence times 
(in days) to infection from the time of insertion of a catheter for patients on 
portable dialysis machines [McGilchrist and Aisbett (1991)]. We conclude with 
a few remarks in Section 19.7. The sampling algorithms are described in the 
Appendix. 
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19.2 Properties of the PVF Frailty 

In the three-parameter power variance family, denoted by PVF{a^S,9), the 
variance of the random variable is a power function of its mean. The parameter 
space of the PVF distribution consists of a < 1,(J > 0, and ^ > 0 for a > 0 
and ^ > 0 for a < 0. Under this parametrization, PVF{a,6,0) includes as 
special cases the gamma (for a = 0), the positive stable (for 9 = 0, 6 = 
a) , and the inverse Gaussian (for a = 1/2) distributions, among others. For 
frailty modeling in this article, we focus on the parameter region a > 0, for 
which the distribution is concentrated on T?,"*". When a < 0, the distribution is 
concentrated on 7̂ "̂  U {0}, implying that some groups have zero risk; this, of 
course, is impossible in the context of lifetimes because of its imphcation of a 
person's immortality. 

Let X ~ PVF{a,6,e), where a < 1, J > 0, and ^ > 0; then 

E{X) = 69^-^ and Var{X) = 6{I-a)^^"2. (19.2) 

When ^ > 0, all (positive) moments of the distribution exist. Let H{t) = 
/o ho {u) du denote the cumulative baseline hazard function; for the Weibull 
hazard, H{t) = \t^. Assuming a single covariate Z taking on the value 0 or the 
value 1, the ratio of unconditional hazards is 

hu{t) ^ -Ji\ogS^{t) ^ {9^uH{t)Y-^v 

ho{t) -pogSoit) {9 + H{t)}-^ ' 

which is a function of t; here, u = exp(/3), /? being the regression coefficient 
corresponding to Z. Unlike the positive stable, the unconditional hazards hi,{t) 
and ho{t) for the PVF family are not related via proportionaUty. 

Measures of dependence enable us to compute the association among tij's 
when the model is continuous. When a > 0, KendalPs r is given by the expres­
sion 

r = (1 - a) - 2^ + {A9^/a) exp {29/a) E^i/^).^ {29/a), (19.3) 

where Em (x) = J^ t~^e~^^dt is the generalized exponential integral. Hougaard 
(2000) and Hougaard, Harvald and Holm (1992) pointed out that although it 
is difficult to identify both parameters of the PVF frailty, it should be possible 
to determine the degree of dependence with reasonable precision, using say, 
Kendall's r. The median concordance is 

¥? = 4 exp -{2 {9/a + log2)^/^ - (^/a)^/^}^ + 9/a] ~ 1. (19.4) 
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The cross ratio function is another useful measure of local dependence and has 
the form 

xit) = 
sihM'-^§^ 

{^5(<i,«2)}{^5(ti,t2)} 

= l + ( l - a ) { ^ + /fi(<i) + H2(f2)}-"A (19.5) 

where Hi {U) = Xt],i = 1,2 is the integrated hazard function. 

19.3 PVF as a Tilted Positive Stable 

When a > 0, the power variance family is obtained as the exponential fam­
ily generated from the positive stable distributions [Hougaard (1986) and Jor-
gensen (1987)]. Specifically, suppose W follows a positive stable distribution, 

P(Q,a,0), where a G (0,1). For 5 > 0, the distribution oi X =^ ii)^^'^'^ is 
P(a,(J,0). Since the Laplace transform of the positive stable distribution is 

L{s) = Eexp{-sW) = exp(~5"), 5 > 0, 

it follows that the Laplace transform of X is 

For fixed a, the exponential dispersion model generated by the positive sta­
ble distribution is denoted by P{a,5,6), and the PVF random variable X has 
density [Jorgensen (1987)] 

where /a (•) and !/«(.) are, respectively, the positive stable density and Laplace 
transformation. This density is characterized by three parameters and its 
Laplace transform is 

L {s) = exp 
5{{e + sf--e""} 

a 
(19.6) 

For fixed a and 5, this corresponds to a one-parameter exponential family 
with canonical parameter —6, and is the tilted positive stable distribution. 
For ^ = 0 and J = a, (19.6) is the Laplace transform of a positive stable 
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variable, and when a -^ 0, it is the Laplace transform of a gamma variable. 
For 0 < a < 1, (corresponding to lifetimes data), Hougaard (1986a) expressed 
the unimodal PVF density as 

k 

fix) = -
1 

irx . A : = l 

ka\ / X ^5 

k\ a 
sin (akir) exp(-^x)exp se"" 

a 
(19.7) 

Since the PVF density has the form of exponential dispersion of a positive 
stable density, parameter estimation with the PVF frailty has the same diffi­
culty as with the positive stable frailty; the complication is due to the absence 
of a closed form expression for the density of a stable random variable. The 
density in (19.7) involves an infinite sum, and its use in a likelihood based frame­
work is therefore unwieldy. Hougaard, Harvald and Holm (1992) proposed an 
estimation of PVF frailty using the first two stages of Hougaard's three-stage es­
timation procedure but this technique conflicts with the probabihty mechanism 
behind the data. It would be also diflicult to extend the marginal likehhood 
approach described by Lam and Kuk (1997) for the PVF frailty model with 
constant baseline hazard {ho{t) = 1) to a. model with more general baseline 
hazards, such as the parametric Weibull baseline hazard. Here, we implement 
fully Bayesian inference for a PVF frailty model with Weibull baseline haz­
ard; this permits simultaneous likelihood based inference for all the parameters 
(baseline hazard parameters, regression coefficients and frailty parameters). We 
first give the derivation of a suitable form for the PVF density. 

The support of the positive stable distribution is TZ^, the distribution is 
totally skewed to the right, a 6 (0,1], and the scale parameter is held fixed 
at 1 for identifiability purposes. Buckle (1995) provided an expression for the 
joint density of n iid observations from a four-parameter stable distribution by 
utilizing a bivariate density function f{wi,yi\a) whose marginal density with 
respect to j/i is exactly the stable density. Specifically, let f{wi,yi\a) be a 
bivariate function which projects (-oo,0) x ( -1 /2 , Ẑ ) U (0, oo) x (/c^,l/2) to 
(0,oo): 

f{wuyi\a) a 

a 
exp 

Wi 

ra iVi) 

Q / ( Q - 1 ) 
Wi 

ra iVi) 

Q / ( a - l ) 

- . (19.8) 
Wi 

where 

Ta iVi) = 
sin(7rayi + ipa) cos TTJ/i 

( a - l ) / Q 

cosTTj/i [cos{7r (a - 1) j/i -f- ̂ a } . 

with Wi e (-00,00), yi e (-l/2,l/2),T/;a = min(a,2 - a)7r/2 and la = 

-xl)alT^ot' Then 

!{y^: 
a|u;i|i/("-i) /-i/a 

1/2 
exp 

Wi 

Ta (yi) 

a / ( Q - l ) 

Ta {yi) 

Q / ( Q - 1 ) 

dyi. 

(19.9) 
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Following Jorgensen (1987) and Hougaard (1986a), the density for the PVF 
family when a € (0,1] becomes 

f{xi\aj,9) = 
a|xd^/(°-^) (f)^/^"-^^exp(-gx, + ^ ) 

/ : 

rl/2 
X / exp 

-1/2 

| a - l 

To iVi) \s) 

1 , Q / ( a - l ) 

I Ta iVi) I 
C^J/t, (19.10) 

where X is (f j ^ ^ " H .̂ For S = 9^-", the mean is equal to 1 in (19.2). Hougaard 
(2000) discussed a reparametrization S = r/̂ ""̂ ' and 6 — rj; the resulting distri­
bution has mean 1 and variance (1 - a)/7]. After reparametrization of 5 and 0 
in terms of 77, (in order to yield mean 1), the density (19.10) becomes 

f{xi\a,ri) = 
a"/(^-i)|xi|V(«-i)r;exp(-rjXi + ^) 

r\/2 
X / exp 

J-l/2 

l a - l l 

X j 

Ta (j/t) 

a / ( a - l ) 

a«~ir/ 
^a (j/t) 

a / ( a - l ) 

dyu 

(19.11) 

The next section incorporates (19.11) into the likehhood formulation for mul­
tivariate times to events. 

19.4 Likelihood and Prior Specification 

Let Sij denote the indicator variable which is 1 if the jth subject is in the ith 
group fails, and is 0 otherwise. Then, Uj denotes the failure time of the jth 
subject in the ith group if 6ij = 1; otherwise, Uj is the censoring time. The 
triplet {Uj.Sij ,Zij) is observed for the jth subject in the ith group. Let all 
such triplets be denoted by Z, and let x = (xi , . . . , Xn) denote the frailty. We 
refer to (x, Z) as the complete data, and x is treated as an unknown parameter 
vector in the Bayesian formulation. 

The complete data likelihood is 

L(A,7,/5,77,a|Z,x) = nf^iH,-^ {AitJ ' 'exp [^%] x.}*'' 

X exp |-AtJexp{0'zij)xi\ . (19.12) 
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The observed data likelihood L (x,j,0,ri,a\zY which depends only on the 

observed data Z is obtained by integrating out the XjS from (19.12) using the 
PVF density in (19.11) as 

/

r 

X exp I -Xt]j exp (0'zij) Xi \ 

Q°/("-i)|xip/(°-i)7?exp(-77Xi + f ) 

^ / . 

| a - l | 
1/2 

JCi 

To iVi) 

a/(a-l) ^ _ 

exp 
1/2 

I | a / (a- l ) 
dj/i dxi, (19.13) ra(yi)l 

where j/i denotes an auxiliary variable [see (19.8)]. The complete data hkelihood 
corresponds to a conditional model given the frailty Xi while the observed data 
hkelihood corresponds to a marginal model in which the frailty is integrated 
out. 

The prior specification for the model parameters follows. We choose a 
Gamma(p, p) prior for A, a Gamma(/c, K) prior for 7, a Normal(e, D) prior for 
the p-dimensional vector /?, where D is a p x p matrix, a Uniform(0,l) prior for 
a, and a Gamma(c, c) prior for 77. The posterior density based on the observed 
data Hkehhood is proportional to the product of the Hkelihood and the joint 
prior (assuming independence of all parameters in the model), i.e., 

p(A,7,i9,r?,a|z)aL(A,7,^,r/,a|z)p(A)p(7)p(y9)p(77)p(a). (19.14) 

Notice that this posterior density involves a double integration with respect 
to X = (xi,. . . ,x„) and y = (yi, . . . , j/n)- However, we replace integration by 
Monte Carlo simulation and thereby compute the posterior density, and run 
the Gibbs sampler to generate samples from p (A,7,/3,77,a|Zj . Given initial 

values for A, 7,/?, 77, a, and the two "augmented" vectors x and y, we generate 
samples of parameters \^^(3,ri,ot as well as x and y from their respective 
complete conditional distributions, as described in the next section. 

19.5 Conditional Distributions 

We derive forms for the complete conditional distributions of the model param­
eters as being proportional to (19.14); in each case, the conditional distribution 
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is obtained by retaining only those quantities relevant to that parameter in the 
posterior density. Markov chain Monte Carlo algorithms then enable sampling 
from these distributions. 

The complete conditional distribution of A, given all other parameters and 
the data, is proportional to 

/ i (A) = A^-i ^r=i ^̂^ ^^-^ exp I 

The conditional distribution of A is then 

n m 

-^^Y^ tj exp [p'zij^ Xi - \p \. (19.15) 

{ n m n m I 

1=1 j = i 

The generation of samples of A is straightforward. The complete conditional 
distribution of 7 is proportional to 

1=1 j= l 

( n m 

- A ^ ^ t]- exp w'zij j Xi - 7K 
1=1 j = l 

) . (19.16) 

The ratio of uniforms method [Wakefield, Gelfand and Smith (1991)] is used 
to generate samples from /2 (7). The complete conditional distribution of /?« is 
proportional to 

h{(is) = exp< 

X exp 

2=1 j = l 1=1 j = l 

[p'zijj Xi -
2ds 

(19.17) 

where ê  is the prior mean of Ps and ds is the prior variance of /Js for 5 = 1,. . . , p. 
The complete conditional distribution of Xi is proportional to 

I m 
/4 (xi) = \xifT=i *"̂  + ^ exp ^ - A 5 ^ tr exp (;9'%) Xi 

| a / ( a - l ) _ j _ 1 
an-lyy _ ĵ Xi > . (19.18) 

Ta {Vi) 
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The ratio of uniforms method is again used to generate samples from fs {/3s) 
and fi {xi). The complete conditional distribution of r] is proportional to 

hiv) = n ,n+c—1 
exp -E 

1=1 

Xi 

raiUi) 

a / ( a - l ) 

a^-^T] 

E nri 
Xi + — 

1=1 

7JC, (19.19) 

Although this complete conditional appears to have the form of a Gamma 
distribution, this is not the case, since the values that would constitute the 
shape and scale parameters are not always positive. In particular, the term 

[Er=i l;;SyI)'' '^^''"^^^^ ^ ^^=1 ^i + ^ "̂  s i ŝ ^^^ ^'^^ys positive. Straight­
forward draws from a standard density are hence not possible, and we have 
used the multiple-try-Metropolis-Hastings algorithm with a lognormal proposal 
in order to generate posterior samples for r/. This algorithm incorporates a lo­
cal optimization step into an MCMC sampler in continuous state space [Chen, 
Shao and Ibrahim (2000)]. 

The conditional distribution of a is proportional to 

/6(tt) = 
^ n Q / ( Q - l ) 

|a-l|" 11 
1=1 

<exp - J ^ 

\Xi 
l / ( a - l ) 1 

1=1 

Xi 

Ta iVi) 

Ta iVi) 

a / ( o - l ) 

a / ( a - l ) ' 

_i_ nn 
a 

(19.20) 

Again, this does not correspond to any standard form. We use the Metropolis-
Hastings algorithm with a beta proposal [see Buckle (1995)] to generate poste­
rior samples for a. The complete conditional distribution of j/j is proportional 
to 

A iVi) = 
1 

ra iVi) 

n/(a-l) 

e x p < -
JLi 

TaiVi) 

a / ( a - l ) 
a"-i?7 (19.21) 

A rejection algorithm [Devroye (1986)] is employed. Some details of the sam­
pling algorithms are given in the appendix. 

19.6 Illustration 

We illustrate our approach using data on times to first and second occurrence of 
infection in 38 patients on portable dialysis machines [McGilchrist and Aisbett 
(1991)]. Here 5ij are binary variables representing respectively the censoring 



378 M. Mallick and N. Ravishanker 

Table 19.1: Posterior summary of model parameters 

Parameter Posterior Mean Posterior Median 95% 
Credible Interval 

PVFFrant}r ~ ~ ~ 
7 
0 
A 
a 
r] 

1.253 
-1.455 
0.014 
0.297 
0.784 

1.240 
-1.437 
0.013 
0.262 
0.733 

(0.945,1.598) 
(-2.681, -0.319) 

(0.003,0.036) 
(0.065,0.735) 
(0.181,1.820) 

Positive Stable Frailty 
7 
0 
A 
a 

1.357 
-2.106 
0.008 
0.569 

1.353 
-2.114 
0.005 
0.557 

(1.021,1.720) 
(-3.689, -0.434) 
(0.001,0.026) 
(0.402,0.773) 

Gamma Frailty 
7 
0 
A 

1/v 

1.066 
-1.105 
0.019 
0.201 

1.046 
-1.056 
0.017 
0.205 

(0.844,1.374) 
(-2.242, -0.206) 

(0.003,0.047) 
(0.107,1.99) 

indicators for the first and second recurrences. Occurrence of infection is indi­
cated by 1, and censoring by 0. The gender of the patients (0 indicating male, 
and 1 indicating female), is a covariate. Other covariates, such as age and dis­
ease type of each patient, are also available with this data, but are omitted in 
this analysis as their effect on infection times was shown to be insignificant in 
previous work of McGilchrist and Aisbett (1991). 

For the PVF(a,r;^~^,r;) frailty specification, we choose a noninformative 
prior for each parameter in the model. The prior for a is p(a) = 1, 0 < a < 
1, while the prior for rj is Gamma(0.1,0.1). We choose the value 0.001 for 
each of p and K in the prior specification. The prior on 0 is Normal(0,10^), 
where /? is the coefficient corresponding to gender. For the lognormal proposal 
for the generation of rj, we assume that the standard deviation of the normal 
distribution is 0.4. 

Using Gibbs sampling, we generate samples from the complete conditional 
distributions [see (19.15)-(19.21) and the Appendix]. Considering 10,000 iter­
ates for burn in, we use 20,000 additional iterates for making inference. The 
CPU time was approximately 4 hours and 45 minutes on the IBM SP model 
9076-2A4. In Table 19.1, we present the posterior means and quantiles of each 
parameter. 

The negative estimate of /? implies that the female patients have a slightly 
lower risk of infection. The estimated posterior distribution of all parame-
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ters except /? are very slightly skewed to the right. In terms of the original 
parametrization, the posterior parameter estimates of 6 and 9 are, respectively, 
0.843 and 0.784. The posterior estimates of a, S and 6 give us an idea about 
which frailty (gamma, positive stable or PVF) will give a better fit. For this 
data, none of the estimated values of a, 6 and 6 fall in the restricted parameter 
regions corresponding to the gamma or positive stable distributions; therefore, 
it appears that PVF frailty gives a better fit than either of these two (gamma 
or positive stable) frailties. 

The median concordance for the PVF frailty model is 0.2639 [see (19.4)], 
showing that the degree of dependence between infection times for each pa­
tient is not large. However, it does not indicate near independence either. The 
posterior estimate of Kendall's r [see (19.3)] is 0.2561 and has the same inter­
pretation as median concordance. We illustrate the behavior of x(ti,<2)^ the 
Monte Carlo estimate of the cross-ratio function [see (19.5)] for bivariate sur­
vival times evaluated at the posterior means of 7,/?, A, a and TJ. Figure 19.1 
shows the 3-dimensional plot of x(.) over a grid of (ii, ^2) values from 0 to 100, 
and supports the intermediate dependence property of the PVF frailty. The 
plot provides strong evidence that x{ii,t2) (cross-ratio) decreases as fi and 2̂ 
increase. However, the decrease in cross-ratio is not as large as in the positive 
stable frailty case (see Figure 19.2). 

For comparison, estimates of the posterior means and quantiles of the pa­
rameters of a positive stable frailty model with Weibull baseline hazard are 
also shown in Table 19.1. The 95 % credible interval for /S is wider than that 
corresponding to the PVF frailty model, while the median concordance and 
Kendall's r are respectively 0.4308 and 0.4313 (indicating lack of strong de­
pendence between infection times for each patient). Table 19.1 also presents 
posterior estimates under the Gamma(i;, v) frailty model with Weibull baseline 
hazard; here, the median concordance and Kendall's r are 0.0886 and 0.0913, 
respectively. Conditional Predictive Ordinate (CPO) plots indicate that the 
PVF frailty model is supported over the gamma frailty model by 62% and over 
the positive stable frailty model by 57% of the observations. 

19.7 Concluding Remarks 

This article develops inference for the PVF frailty model for multivariate sur­
vival data. Although we have considered a Weibull baseline hazard for simplic­
ity, the development of the likelihood function via a tilted positive stable density 
approach is completely general and should be useful for modeling a wide variety 
of lifetimes data. Further, for the case when a < 0, it is possible to use the 
compound Poisson representation of the PVF frailty density function to enable 
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Figure 19.1: Estimated cross-ratio function of male patients for the PVF frailty 
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>.^ 

Figure 19.2: Estimated cross-ratio fimction of male patients for the positive 
stable frailty 
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Bayesian inference. This will be useful in competing risks models and in studies 
of death incidence where occurrence of the event under study is uncertain, and 
will be addressed in future work. 

Appendix 

We present details of some sampling algorithms employed in Section 19.5. For 
details of other algorithms, the reader is referred to Qiou, Ravishanker and Dey 
(1999). 

The complete conditional distribution for r/ in (19.19) is not in standard 
form. We use the multiple-try-Metropolis-Hastings algorithm [Chen, Shao and 
Ibrahim (2000)], with a lognormal proposal. Let rjk-i denote the r/ value gener­
ated at the {k - l)th iteration. At the fcth iteration, the corresponding normal 
mean is set at log{r]k-i) and its variance is set at a reasonable value, so that 
the acceptance probability is not too high. At the kth iteration, a new T] is 
generated as follows: 

Step (i) Generate i samples vi,V2i"",Vi from a lognormal distribution whose 
mean and standard deviation are respectively determined from the normal mean 
^og{7jk^i) and normal standard deviation s. Compute w{vj, rjk-i) for j = 
1,... ,i where 

W{TJ, V)=P {r]\D) f{T], v)X (ry, v), 

/(.,.) is the lognormal proposal, and p{ri\D) is the complete conditional dis­
tribution of 7]. Here, A (r;, v) is a nonnegative symmetric function of rj and v\ 
A (77, v) > 0 whenever /(r;, v) > 0. We have considered A (77, t;) = 1. 

Step (ii) Select vi from among the VjS with probabiHty proportional to w{vj^ Vk-i)^ 
j = 1,...,z. Then draw i;]",i>2,..., î *_i from the lognormal distribution with 
mean log(i;/) and standard deviation s, and let v* = rj^^i. 

Step (iii) Generate u from Uniform(0,1). Set r?̂  = 77* if tx < a, and TJ^ = r/̂ ~̂  
otherwise, where the acceptance probability is given by 

a = mm 
1 ^i'^i^^k-iHw(v2,'nk^i)-^"-^w(vi,'nk-i) 

' iy(vpV()'fit;(i;J,t'/)-f-H-it'(u*,Vi) 

For the generation of j / , we have used a rejection algorithm [Devroye (1986)]. 
Clearly Ta (±5) = ±00, and r^ {la) = 0, where la = -Za/^ra and Za = 
min(a,2 - a)7r/2 [Buckle (1995)]. Here, a 6 (0,1] and Xi > 0, so that in 
(19.21), friyi) lies in the range (-1/2,1/2), and attains a maximum value of 
—^^P(-̂ )̂  at Ta ivi) = Xia^T]^. Rewriting /y (j/i) from (19.21), we have 
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friiVi) = l ^ r / ^ ' ^ - ' ^ " ^ ^ exp{l - | ^ | - / ( - i ) a ^ 7 y } . 

We see that this expression attains its maximum value of 1. Using the rejection 
algorithm (Devroye, 1986), we implement the following steps: 

Step (i) Generate i/i from Uniform(-l/2,1/2). 
Step (ii) Generate u from Uniform(0,1). 
Step (iii) Reject yi until u < fjj {yi). 
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Abstract: A two-stage selection and testing design is proposed for choosing 
among A: (> 2) experimental treatments, provided it is better than a specific 
standard. In the first (selection) stage, ranking and selection formulation is 
adopted to select the one most promising treatment. In the second (testing) 
stage, hypothesis testing formulation is used to determine if the treatment se­
lected at the first stage is better than the standard. The design allows for early 
termination at stage one if none of the treatments seem promising. The treat­
ments are assumed to follow normal distributions with unknown means and 
unknown variances. "Better than the standard" means the population mean of 
an experimental treatment is larger than the standard. Appropriate definitions 
of size and power are given. Sample size requirements are compared with an 
analogous pure selection procedure of Taneja and Dudewicz (1992). 

Keywords and phrases: Known standard, least favorable configuration, 
ranking and selection, unknown control 

20.1 Introduction 

There are many situations in which we may wish to select the one best among 
several experimental treatments. For example, a medical researcher may wish 
to choose the best among four cancer drugs. In this case, the best drug might 
be defined as the one producing the longest mean survival time in cancerous 
mice. However, it is often the case that even the best experimental treatment 
is not good enough. For example, potential serious effects and the cost of 
developing the new drug may prohibit its selection unless it is much better than 
the current standard of care for testing cancer. In this case a more appropriate 
goal is to select the best experimental treatment, but only if it is sufficiently 

385 
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better than a standard preset by the experimenter. This paper considers the 
setting in which k populations are normally distributed with unknown means 
and unknown variances. The goal is to select one of the populations, provided 
that it is better than a specific standard. If none of the k populations is better 
than the standard, then no population is to be chosen. We assume a large 
population mean is desirable and hence, "better than the standard" means 
that the population mean is larger than the standard. We propose a two-stage 
selection and testing design as a method of achieving this. 

For selecting one of several experimental treatments, provided that it is 
better than a specific standard, Bechhofer and TurnbuU (1978) proposed a 
ranking and selection formulation and two procedures: a single-stage procedure 
for the case of normal populations with common known variance and a two-
stage procedure for the case of normal populations with a common unknown 
variance. Dunnett (1984) proposed a single-stage procedure for the same goal, 
with a different formulation for normal populations with a common known 
variance. Dunnett's approach is similar to that of Bechhofer and TurnbuU, 
the main difference being that the known standard is replaced by an unknown 
control population. 

The two-stage selection and testing approach was first introduced by Thall, 
Simon, and EUenberg (1988, 1989) for the goal of comparing several binomial 
populations with a control population, the same goal studied by Dunnett (1984). 
Thall, Simon, and EUenberg's two-stage design consists of a first (selection) 
stage, in which ranking and selection techniques are used to screen out the one 
most promising population, and a second (testing) stage, in which hypothesis 
testing is used to determine if the chosen population is better than the control 
population. The design allows for early termination of the procedure at stage 
one if none of the populations seem promising. Thall, Simon, and EUenberg 
(1988) showed that their two-stage design for binomial populations required 
smaller sample sizes than the one-stage procedure of Dunnett (1984) for the 
same size and power requirements. 

This paper adopts the same selection and testing design as in Thall, Simon, 
and EUenberg (1988) for the goal of comparing several normal populations with 
a specific standard. The A; (> 2) experimental normal populations are assumed 
to have unknown means and unequal and unknown variances. A two-stage 
Dudewicz-Dalal-type approach is utilized in each of the selection phase and 
testing phase of our proposed procedure. This approach was chosen over a 
Rinott-type approach because of the stochastically increasing property of the 
Dudewicz-Dalal test statistic. We shall see that this property plays a crucial 
role in the proof of the least favorable configuration given in Section 20.2. 

This chapter is organized as follows. In Section 20.2 we state the assump­
tions, review the definitions and goals, and outline the details of the proposed 
procedure. In Section 20.3 the formulas for size and power are derived. An ex-
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pression for the probability of early termination is also derived in this section. 
In Section 20.4 we give an explanation of related tables that appear at the end 
of the paper, and describe how the tables were constructed. The tables provide 
the parameter values necessary to implement the procedure. An illustrative 
example is given in Section 20.5. Section 20.6 provides a comparison of sample 
sizes for our procedure and for the analogous Dudewicz-Dalal-type procedure 
of Taneja and Dudewicz (1992). 

20.2 Assumptions, Definitions, Goals, and Proposed 
Procedure 

We assume that we have k normal populations, TTJ, 7r2,..., TT̂ , having unknown 
means /ii, )ti2,..., MA:, respectively, and unknown variances erf,al,..., cr|. We 
also assume we have a fixed known standard, /XQ, to which the fii are to be 
compared. The ranked values of the population means will be denoted by 
M[il <M[2] < ••• < M[fc]-

The experimenter will specify constants SI and 62 (0 < JJ < S2) such 
that /xo + ^i represents only a marginal improvement over the standard, while 
/io + 62 represents a practically significant improvement over the standard. A 
population, n^ is considered 'acceptable' if its mean, /i^, satisfies /i7 > /io + <̂2-

The goal is to select from the k populations an acceptable population if 
one exists, and to select no population if all population means are at most a 
marginal improvement over the standard. We express the goal in the form of a 
null and alternative hypothesis as follows. 

Ho : /i[i] = /i[2] = • • • = fi[k] = /XQ. 

Ha : there is at least one acceptable population, 

and no /Xi lies in the interval (/XQ + <JI , MO + <̂ 2)- (20.1) 

We use the term 'preference zone' {PZ) to refer to the set of all parameter 
vectors /x = (JLXI,/X2, . . . ,/X)t) satisfying the alternative hypothesis. A decision 
resulting in the selection of some population coincides with rejecting HQ, while 
a decision to select no population coincides with failing to reject Ĵ o- Definitions 
of size (a), the power function (1 --/3(/i)), and the least favorable configuration 
{LFC) are given below. 

a = P(selecting TTJ for some z = 1,. . . , A: when HQ is true) 
1 - /3(/i) = P(selecting an acceptable population \fi) 
LFC = the parameter vector |x that minimizes the power function over all 

fxePZ 
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The selection and testing procedure which we propose when the af are 
unequal and unknown will be denoted by Vuu- UU refers to the variance 
assumptions, with the first U standing for unequal, and the second U standing 
for unknown. For pre-specified integers no > 2 and mo > 2 and positive 
constants yuy2,hi, and /12, procedure Vuu is defined as follows. 

Stage 1 (The Selection Stage): 

1. Take no observations X j j , A'i,2, • • •, Xi^no {i = 1 , . . . , fc) from each of the 
k populations TTI, 7r2,..., TT̂ . 

2. For i = 1 , . . . , /c compute 

Eno Y 

Aiinoj = —^ , 
no 

and 

Hi = max < no + 1, - ^ M" M ' 

where [x] denotes the greatest integer less than x. 

3. Take Ui - no additional observations Xî ô-f 1̂  • • • ? ^i,nj from each TT̂ , (i = 
1 , . . . ,/c), and define 

Hi 

Xi = 2^ o^ijXij (x = 1 , . . . , A;), 

where the aij (j = 1,2,... , n^; z = 1,2,.. . , fc) are chosen so that 
Hi 

/ ^Ciij = 1, a î = ai2 = • • • = flmoi ^^^ 

5fEa?, = | . (20.2) 
Denote the ordered values of the Xi by Xji] < A'[2] < • • • < X^ky 

4. If X[A:] > /io+J/i, then select the population TT̂  which produced the largest 

test statistic, X^k\'> ^^^ proceed to stage 2. 

If X^k\ < l^o + yi, then terminate the procedure and select no population. 
That is, do not reject HQ. 
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Stage 2 (The Testing Stage): 

1. Take mo additional observations Wi,W2,. •, ^mo from TT .̂ 

2. Compute 

W{mo) 
mo 

2 sumf^^iWj - W{7no)) 

m o - 1 
Si- = '-'' ' , ^ "" , and 

m = max < mo + 1, + 1 }• 
where [x] denotes the greatest integer less than x. 

3. Take m —mo additional observations Ĥ mo-f-î  • • • ^ ^ m from TT-̂ , and define 

m-

i=i 

where the fej (j = 1,2,.. . , m) are chosen so that 

m 

^ 6j = 1, 6i = 62 = • • • = &mo) 

m 2 

^a^E'^? = I - (20-3) 
j = i ''2 

4. If -^— > ^0 + 2/2 then reject H^ and select the population Tr-y. If 

-^^2— ^ Mo + 2/2 then select no population and do not reject i/o-

In the next section we will show how to choose the design parameters 
(no,mo, 2/1,2/2,̂ 15/̂ 2) in order to achieve the desired levels of size and power. In 
order to implement procedure Vuu, one must choose the constants aij and 6j to 
satisfy conditions (20.2) and (20.3), respectively. The fact that such constants 
can be chosen is proven in the next lemma. 

Lemma 20.2.1 Let z he any positive constant and suppose an integer n is cho­

sen so that n = max <no + l , ^ + l k where [x\ denotes the greatest integer 

less than x. Then constants ai, a 2 , . . . , an can be chosen so that Y^^i ^j — ^^ 

ai = a2 = • • • = ttno, and 5^ Yl%i ^j = ^' 
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PROOF. Set C = ^ (I + J l - ^ ( l - ^^^9^) J and set ai = aa = • • • = 

Ono = ;^ and a„o+i = • • • = On = j^fir- c is a real number as long as the 
quantity under the square root is non-negative. This is guaranteed because n 
has been chosen so that n > ^ and n - no > 0. Thus, 

( ' - ^ ^ ) ^ ' - ^ ( - ^ ) - -

Now, clearly, ai = a2 

riQ 

ann and *no 

n riQ n -

Finally, 

\no n - no / \ (n - no)no / 

( nc^ + no - 2noc\ _ 5^ / n 
(n - no)no / n - no V"o 

= S' -c^ + 1- 2c 

52 

n ~ no 

+ 1 

^ > - v > n 
no 

/ ( n - n o ) 2 \ 
V 52 ; 

__n_ / , (n-no)g\\ 
no V S^ )) 

+ 1 - 2 ! ^ 1 + 
n I iRP^ -no)2 ' 

52 

52 

n - no 
i ^ - i + i ! i : - ^ + i - 2 ^ 

n S^ n 
= z. 

20.3 Size, Power, and the Least Favorable 
Configuration 

In order to derive the least favorable configuration for procedure Vuu^ we shall 
use Mahamunulu (1967)'s result for stochastically increasing families of distribu­
tion functions. We will first need two lemmas. In the first lemma, we determine 
the distribution of the test statistics Xi used in procedure Vuu- In the second 
lemma, we show that the Xi do indeed form a stochastically increasing family. 
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Lemma 20.3.1 Let Xi, X2,. . . , A'no, • • •, ̂ n be iid N{fjL, a^) random variables, 

5^ = ^~^^ "̂  ̂ /~^ ""̂  , 2 a positive constant, and ai, 02,. . . , ano, n̂o-f 1? • • •, ^n 
constants that satisfy the conditions 

/ ^aj = 1, ai = a2 = • • • = ano? ^^^ 
j = i 

Let X be defined by X = Zlj=i ^j^jy ^^^ f̂  '̂ ^ defined by U = ^^. Then U 
has a student-t distribution with no ~ 1 degrees of freedom. 

PROOF. Since Xlj=i ^j = 1̂  ̂ ^ have 

Now, Ili2zil5_ has a chi -square distribution with no ~ 1 degrees of freedom, 
and conditional on 5^, the ajS and z = S'^Yl^i^^ ^^^ constant. Thus, the 
conditional distribution of U given S'^ = SQ is normal with a mean and variance 
given by 

Var(t/|52 = 5g) = Var | ^ ' ' 5^ = sU = i J ^ Var(a,X,) 
v/̂  r "/ s=. 

^ j=i ^ 0̂ Z.j=i S' j=i 0̂ 

On the other hand, a student-t random variable, T, with no - 1 degrees of 
freedom can be written as T = ^ = ^ where Y is a A/'(0, a^) random variable, 

^̂ ^̂ 2̂ — has a chi-square distribution with no - 1 degrees of freedom, and Y 
and 5 are independent. Thus, the conditional distribution of T given S^ = s\ 

is -^(O, prj- Since the conditional distribution of \J given 5^ is the same 

as the conditional distribution of T given S'^, U and T must have the same 
distribution. 
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Lemma 20.3.2 Let F{Xi\fii) denote the distribution function of Xi, and 
F{W\^i^) denote the distribution function ofW. Then the collections {F{Xi\fii) : 
i = 1,2,..., A:} and {G{W\fjL^) : 7 = 1,2,..., fc} form two separate stochastically 
increasing families. 

PROOF. We need to show that for fixed x, F{Xi\iJ,i) = P{Xi < x) is a non-
increasing function of /ii, and G(W |̂/i-y) = P{W < x) is a non-increasing func­
tion of /x .̂ Let /xi < jU2- Then 

> P{X2<x)^F{X2\ii2) 

where T is a Student-f random variable with no - 1 degrees of freedom. The 
inequality in the last line follows from the fact that /i2 ~ Âi > 0 by hypothesis. 
This shows that F{Xi\\ii) is a non-increasing function of /if. By replacing no 
with mo, the same argument can be used to show that G(W |̂/x )̂ is a non-
increasing function of /x .̂ • 

Theorem 20.3.1 The least favorable configuration for procedure Vuu is given 
in the form: 

M[i] = M[2] = • • • = /x[fc-i] = /xo + SI < /io + ^̂2 = M[fc]- (20.4) 

PROOF. We need to show that configuration (20.4) minimizes the power func­
tion over all possible configurations (/ii,/i2i • • • M̂fc) within PZ. For conve­
nience of notation we shall drop the square bracket notation and assume that 
Ml ^ M2 ^ • • • ^ Mib- A typical configuration in PZ has the form: 

Ml < /̂ 2 < • • • < ^J'k-m < Mo + ^I < Mo + ^2 ^ MA:-m+l < " ' < l^k (20.5) 

where 1 < m < fc, the lower bound on m following from the fact that at least 
one fit > Mo + <̂2- Let A = {fc - m + 1,. . . , fc} denote the set of indices of 
acceptable populations, and i4^ = {l, . . . ,A:~m}. Then 

^(selecting an acceptable population) 

= PI maxXi > maxXjimaxXi > yi + MO; ^ ̂  >y2 + Mo I (20.6) 
\ i€A jeA""' i€A 2 I 

where 7 is the index satisfying X^ = max{Xi,X2,---.Xk}- Let F(x/i|/Xj) 
denote the distribution function of X/i for /i = 1,2,..., fc. That is, F(i/i|M/i) is 
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the distribution function of ^T + Hh, where T is a Student-t random variable 
with no - 1 degrees of freedom. Similarly, let G{W\IJL^) denote the distribution 
function of 1^,7 = 1,2, ...,A:. That is, G{w\fji^) is the distribution function 
of ^T + ̂ ^, where T is a Student-f random variable with mo - 1 degrees of 
freedom. Note that Xi, X2,. . . , Xjt and W are independent random variables. 
Furthermore, by Lemma 20.3.2 {F{Xi\fii) : z = 1,2,... ,fc} and {G{W\^l^) : 
7 = 1,2,..., A:} form two separate stochastically increasing families. 

Define a function rp = '0(xi, £2? • • •, ifc? ̂ ) ^ follows: 

(I if maxi^A ii > maxĵ ĉ Xj and ^ 
^= I maxi^Aii>yi+ Mo and ^ ^ ^ > J/2 + Mo f (20.7) 

\ 0 otherwise J 

Then by (20.7) we have 

P(selecting an acceptable population) 

= E [E{ij{Xi, X2,. . . , Xk, W)\xuX2^..., Xfc} 

We will first show that t/̂  is a non-decreasing function of w when all Xh for 
/i = 1,2,..., fc are held fixed. This will allow us to apply Mahamunulu's result 
(Lemma 2.1 in his article) to the innermost expectation. For this purpose, 
assume w < w* and ii,i2^ • • • »̂ fc '̂̂ e fixed. Note that this implies that x^ = 
max{xi,£2» • • • jifc} is also fixed. We wish to show that '0(xi,X2,,.. ^Xk^w) < 
T/'(XI,X2,. .. ,XA:,it)*). If'0(ii,X2,... ,ifc»^) = 0 there is nothing to prove. If 
ip{xi,X2,>.',Xk,w) = 1, then 

max{xit_^+i,...,i)t} > maxjxi,... ,ifc_m}, (20.8) 

max{xk-m-^u...,Xk} > j/i +//0 (20.9) 

and 

- ^ ^ > ^ ^ > y2 + /io. (20.10) 

Equations (20.8), (20.9) and the second inequality in (20.10) follow from the fact 
that ip{xi,X2,..., Xfc, tt)) = 1. The first inequafity in (20.10) follows from the as­
sumption that w < w\ By (20.7), (20.8) and (20.9), ^(xi,X2,.. ^.Xk.w*) = 1. 
Thus jjjisa non-decreasing function of w when all x/i for /?. = 1,2,..., A: are held 
fixed. Applying Mahamunulu's Lemma 2.1, we conclude that E{ip\xi,X2,. •., x^} 
is a non-decreasing function of //^. By the order-preserving property of expec­
tation, it now follows that E[E{ip\xi,X2,. •. ,Xk}] — P(selecting an acceptable 
population) is also a non-decreasing function of /z .̂ 
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Next, fix i 6 i4 = {A: - m + 1,. . . , A;} and write 

P(selecting an acceptable population) 

= E [E{^p\xl,..., Xi>i, Xi+i,..., Xfc, iD}]. 

We wish to show that V̂  is a non-decreasing function of Xi when w and all 
Xh for /i 7̂  i are held fixed. For this purpose, assume Xi < x\ and fix w and 
all Xk for all h ^ i. For convenience of notation, denote ^(xi,X2,... ,Xit,ti)) 
by %!){,, Xi), We need to show that ip{,,Xi) < ^(.,x*). If ip{.,Xi) = 0 there is 
nothing to prove. If ^(.,ii) = 1, then 

max{xA:_rn+l, . . . , X*,. . . , XA:} > max{Xik-rrH-l, . . . , Xi, . . . , Xfc} 

> m a x { x i , . . . , Xfc^rn}» 

max{xA:_m-f 1,.. . , X*,..., Xjt} > max{x)fc-rn+î  • • •»^i. • • •. îb} > J/i + Mo 

and 

max{xi,...,x*,...,Xit} + it) ^ max{xi,... ,Xi,... ,Xit}+ ii; 
2 2 ^ ^ ^ + ^ ^ ' 

Therefore, ip{^jX*) = 1. Thus we have shown that ^ is a non-decreasing func­
tion of Xi when w and all x/j for /i 7)<̂  z are held fixed. Therefore, by Ma-
hamunulus Lemma 2.1 E{il;\xi,..., Xi-.i, Xi+i,...,x^t, i5} is a non-decreasing 
function of /ii. By the order-preserving property of expectation it follows that 
£"[£^{^^1x1,..., Xi-i,Xi-i-i,..., Xfc, w}] = P(selecting an acceptable population) 
is also a non-decreasing function of fii. 

Finally, fix j G >l̂  = {1,2,..., fc - m} and write 

P(selecting an acceptable population) 

= E{^iXuX2....,Xk,W)} 

= E[E{xl;{Xi,X2,..., Xfc, W^)|xi,..., Xj_i, Xj+i,...,x^, w}]. 

We wish to show that V̂  is a non-increasing function of Xj when w and all 
Xh for h ^ j are held fixed. For this purpose, assume Xj < x^ and fix w and 
Xh for h ^ j . We need to show that ip{.,Xj) > ^( . ,xp. If ^( . ,xp = 0 there is 
nothing to prove. If t/;(.,xp = 1, then 

max{xit-m-hî  "">ik} > max{xi,..., x*,...,Xk--m} 

> m a x { x i , . . . , Xj, . . . , X/c^rn}, (20.11) 

max{xk^rn+U"'^Xk} > J/1 + Mo (20.12) 

and 

^ ^ > y 2 + /xo. (20.13) 
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Inequality (20.12) and the first inequality in (20.11) follow from the fact 
that ipi-^Xj) = 1. The second inequahty in (20.11) follows from the assumption 
that Xj < X*. Inequahty (20.13) follows from the fact that T/;(., X*) = 1 and from 

the fact that (20.11) imphes 7 € i4, and hence ^h^ does not depend upon the 
value taken by Xj. Thus by (20.11), (20.12), and (20.13) V^(.,ij) = 1, and we 
conclude that V̂  is a non-increasing function of Xj when w and all x^, for h ^ j 
are held fixed. By Lemma 20.2.1, E{il)\xi,... ,Xj_i,Xj+i,.. . ,x/b,ii)} is a non-
increasing function of /Xj. By the order-preserving property of expectation it 
follows that E[E{xl;\xi,..., Xj_ i , i j+ i , . . . , i^, w}] = P(selecting an acceptable 
population) is also a non-increasing function of /ij. 

In summary, we have shown that P(selecting an acceptable population) is: 

1. a non-decreasing function of /Xj for z G ̂ 4 and 
2. a non-increasing function of fij for j e A^. 

It follows that P(selecting an acceptable population) is minimized when /x̂  
{i G A) is smallest and iij {j G ̂ 4̂ ) is largest. Subject to (20.5), this occurs when 
Mi = Mo + ^2, i G A, and i^j = fio + ^^ j € A^. Thus, for each m = 1,2,..., /c, 
the power is minimized at the configuration: 

Ml = M2 = • • • = Mfc-m = MO + ^1 < MO + ^̂2 = Mfc~m+i = *' * = Mfc- (20.14) 

It remains to show that over all possible configurations (20.14), the minimum 
power is achieved when m = 1. For this purpose, consider the subset of all mean 
vectors /x = (MI, M2? • • • ^ Mfc) that can be expressed in the form (20.14). For each 
m = 1,2,... ,fc let 

Am = {k -m + 1,... ,k} and A^ = {1,2,,.. ,k - m}. 

If mi < 7712, then 

and yl^j D A 
1712 * 

Then for any fixed values (xi ,X2,. . . , x^) we have 

max Xi < max Xi, 

max Xj > max Xj 

Thus , 

and similarly. 

max Xi > max Xj } C { max Xj > max Xj 
ieA.n^ jeA^^^ ' \ \ieAm2 j eA^ 

< max Xi> yi + fio? C I max Xi> yi+ ^o} . 
{i£Ami J [i^Amr^ J 
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On the other hand, for any (xi, ^2^ • • ^ îfc) satisfying maxi^Am ^i > ^^€A^ ij^ 
the distribution of '^2 ^^ independent of the value of m since, in this case, 
7 6 Am and hence /x̂  = /XQ + (̂ 2* Thus for every value of m, Xy is distributed 
as ^ T i + Mo + <52' and W' is distributed as ^T2 + Mo + ^̂ ^ where Ti and r2 
are Student-f random variables with no - 1 and mo - 1 degrees of freedom, 
respectively. 

It follows that mi < m2 =^ 

r. O ^ i> Xy + W \ 
P max Xi > max A,; max Xi >yi+ Mo; —-^ > J/2 + Mo 

\ i€i4mi J€i4^j ieAmi I J 

( X •\-W \ 

max Xi > max Xj] max Xj > j/i + MO; — -̂7; > 2/2 + Mo I • 
i€i4m2 i € > l ^ t€>1im2 ^ / 

That is, (20.6) is an increasing function of m. Thus, the minimum occurs 
when m = 1. 

Theorem 20.3.2 Let 61,62 (0 < JJ < 62), a, and \ - (3 he given. Then a size 
of a and, for any parameter vector n 6 PZ , a power of 1-0 can he achieved by 
choosing design parameters (no, mo, 2/1,2/21/̂ 1 /̂̂ 2) which simultaneously satisfy 
the equations: 

= 1- /3 (20.15) 
1/1 

and 

/•CX3 

7. <-' (t)F^o ( ^ t - 2/12) /n„(t)d« = a (20.16) 

ly/iene Fno(*) ^^^ /no(') denote the distribution function and density function, 
respectively f of a Student-t random variable with no - 1 degrees of freedom. 

PROOF. Let /x be an arbitrary vector in PZ. Let 7r(i) denote the population 
having population mean, M[̂ ] and let A'(i)(no), 5?^), n(^), a(,j)j, and X(i) denote 
the corresponding statistics produced by n^i) (i = 1 , . . . , fc). Note that under 
the LFC, there is only one acceptable population, namely n^ky 
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For (20.15), 

l - / ? ( / i ) > l - / 3 ( L F C ) 

= P(selecting acceptable population|Z-FC) = P(selecting ir^k^lLFC) 

= P(X(fc) >X(i), i = l , . . . , fc- l ;X(fc) > j/i+Mo; 

2 
>y2 + HQ\LFC 

V yi/h\ yi/hi yi/hi 

,. ^(fc)-M[fc] ^ yi+Mo-M[fci 
yi/hi yi/hi 

L€tTi = ^ ^ ^ , i = l ,2 » :andV = ! ^ . Then r , , r 2 , . . . , r j , V 
are independent random variables, and by Lemma 20.3.2 the TiS have Student-f 
distributions with no-I degrees of freedom, and V has a Student-t distribution 
with mo - 1 degrees of freedom. Therefore, (20.17) can be written as 

l-"/3(/x) > p f r f c > T , - ^ ( / / [ f c , - / i [ , ] , z = l , . . . , A : - l ; 

Tk > —(yi +M-WA:]); 

= p(Tk>Ti-^{S^2-5l), i = l , . . . , f c - l ; n > ^ ( y i - < 5 5 ) ; 

^ 7 ^ ^ + ^V '> j /2 -<52*) - (20.18) 

Conditioning on Tk, (20.18) becomes 

p(T^<t + ^{6*2 - SI), i = 1 , . . . , A: - 1; 
I V yi 

poo 

^^^(^'"'^'*"U;"'''-^"'^^^^'^* 
/»oo 

V J/2 ft 12/2 / 
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By hypothesis, the above expression has been set equal to the desired power. 
For (20.16), 

a = P{7ri is selected for some 2 = 1 , . . . , A:|ifo)-

Thus, the size a can be obtained by evaluating (20.15) at (J* + 1 = (̂ 2 ~ ^ 
and multiplying by fc. This gives 

a = k£F!:;\t)Fm, ( ^ i - 2/12) fno{t)dt, 

as desired. 
Of special interest is the case 61 = 0. Letting di = -2. and ^2 = ^ , we 

then have that (di,d2,/ii,/i2) are the parameters that simultaneously satisfy 
the equations 

r Fn;Ht + fld^)F^, (f^t - 2/12(1 - d2)) fnoit)dt = 1-0 

(20.19) 

and 

^ l ^ ^ i " 'W^mo ( ^ i - 2/12) U{m = a (20.20) 

where Fno(*) and /no(*) denote the distribution function and density function, 
respectively, of a Student-t random variable with no - 1 degrees of freedom. 

A useful feature of procedure Vuv is its capacity to terminate early if no 
population shows evidence of being superior to the standard. The probability 
of such early termination under the null hypothesis is given in the following 
corollary. 

Corollary 20.3.1 Let r^s denote the probability of terminating at stage 1 when 
HQ is true. Then TQ = F^^{hi)j where Fno(-) denotes the distribution function 
of a Student't random variable with no - 1 degrees of freedom. 

PROOF. 

P(terminating early) = P [X^k] < Mo + J/i) 

= p(X( i ) </io + j/i, i = l , . . . , fc j 

\ yi/hi yi/hi J 

= n ^ ( ^ ^ < ^ ( / ^ o - / ^ W + 2 / i ) ) (20.21) 
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where Ti are Student-t random variables with no - 1 degrees of freedom as 
defined in the proof of Theorem 20.3.1. Evaluating the above expression at the 
null hypothesis, ^o • Mi = M2 = • • • = MA: = Mo» we obtain P(terminating early 
\Ho) = F^Q(/II) . This completes the proof of the corollary. • 

20.4 Table 

For the special case, Table 20.1 gives design parameters (no,mo,(ii,c/2,/ii,/i2) 
which simultaneously satisfy equations (20.19) and (20.20) for a = .05, fc = 2 
and 3, and 1 - /? = .90. For each design, TQ = P(terminating at stage l\Ho) 
is provided, using the result from Corollary 20.3.1. Extra tables for other no 
values between 3 and 30 and for 1 - /? = .95 were also computed and they are 
available from the authors upon request. 

In order to obtain the table values, a FORTRAN code was written in which 
we first fixed the values of no,mo,cii, and d2, and then used the DNEQNJ 
subroutine from IMSL to find the simultaneous solutions (/ii, /12) to the integral 
equations (20.19) and (20.20). The DNEQNJ subroutine in IMSL requires a 
user-supplied Jacobian matrix. The required Jacobian matrix is given by: 

M7 
dl2 

^ 1 

dh2 J 

where 

h{h\,h2) 

f2{hi,h2) 

/•CX) 

A i ( i - F„tHt + Mi)F, mo \hidi 
t - 2/12(1 - d2) 

X fno{t)dt-{l-p). 

[ 7 . / C - 1 

no {t)F, mo(^^^t-2h2]fno{t)dt-a. 

The partial derivatives, computed by using a combination of Leibniz's Rule, 
The Fundamental Theorem of Calculus, and the chain rule, are given below. 

dhx 

= {dx-l)F'^;\h,)Fm, h2d2 
di 

- 2/12(1 - d2) Uihiil - di)) 

+ di r U{t){^tF'^-\t + h,d,)u frr*-2/̂ 2(1 -d2)[ 
Jhi{i-di) I h\d\ [hidi J 

h\di) >dt, + ik- 1)F, 
h2d2 
hid\ 

t - 2/12(1 - d2) F^;'{t + hidi)fno{t + 
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1 = r 
2 7/11(1-

p f c - 1 

X 

F:-'it + h^d^)fn,it) 

|/mu [ ^ < - 2/12(1 - d2)] [ ^ < - 2(1 - da)] jdi, 

a/2 

1 ^ = - f c F 4 - n / . l ) F ^ o ( ^ - 2 / ^ 2 ) / n o ( / l l ) 

= . />;Wno(t){u(^.-2.2)(^-2)}. . 

The single integrals in expressions (20.19) and (20.20) were evaluated us­
ing the IMSL subroutine DQDAGI. This subroutine is specifically designed to 
handle infinite limits of integration. DQDAGI allows the user to specify the 
values of two variables, ERRABS and ERRREL, such that the resulting in­
tegral approximation (RESULT) satisfies, We specified ERRABS = ERRREL 
=.000L The Student-i distribution function, required for the computation of 
(20.19), (20.20), and in Corollary 20.3.1, was evaluated using the IMSL subrou­
tine DTDF. 

20.5 An Example 

Suppose that a consumer is to decide whether or not to purchase one lot of 
bolts from among three that are being offered for his consideration. Assume 
that the tensile strength of a bolt from lot i (i = 1,2,3) is normally distributed 
with unknown mean /li and unknown variance a?. A lot is deemed acceptable 
only if the bolts in the lot have a mean tensile strength of at least 60,000 psi. 
Thus, fc = 3 and //Q = 60,000 psi. Suppose that the consumer requests a = .05, 
1 - /? = .90, S* = 0, and S2 = 250 psi. Suppose that no = 15 bolts are 
randomly sampled from each of the three lots, the tensile strength of each bolt 
is measured, and the sample standard deviations are Si = 350, 52 = 450, and 
S3 = 470. Consulting Table 20.1 with fc = 3, power = .90, and no = 15, we find 
the procedure parameters 

mo = 10, di = 2.0, d2 = 2.5, hi = 1.8540, /i2 = 0.6194. 
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250 Thus, we tabulate j/i = ^ = ^ = 125, and compute 

ni = max 

722 = n i a x 

na = max 

(^ [(1.8540)2(350) 

116, 

116, 

(125)2 

(1.8540)2(450)21 

(125)2 

(1.8540)2(470)2 

(125)2 

+ U = 27, 

+ 1 

+ 11 = 49. 

L}=45, 

Accordingly, we take an additional 27 - 15 = 12 observations from lot 1, 45 -
15 = 30 observations from lot 2, and 4 9 - 1 5 = 34 observations from lot 3. 
Following the approach suggested in the proof of Lemma 20.2.1, we set 

ci 

(ni -no)4 
ih 

si J 

- i - W ^ > - -
and set 

^1,1 

^1,16 

ci .5773 -_^_ , 
— cii 2 = • • • = cii 15 = — = = .0385 and 

no 15 
1 - ci .4227 ^ , , ^ 

= . . . = ai,27 = = -TTT- = .0352. 
n — no 12 

Similar computations show that C2 = .3808, 02,1 = 02,2 = • = a2,i5 = .0254, 
^2,16 = • • = a2,45 = .0206, C3 = .3482, as j = • • • = 03,15 = .0232, asje = 
• • • = ^3,49 = .0192. We now compute Xi = Yl]Li ^ij^ij (̂  = 1̂  2,3) , and rank 
the resulting statistics X[i] < X^2] ^ ^[z]- ^ ^[3] < 60,125 we terminate the 
procedure and do not buy any of the lots. Otherwise, we proceed to stage 2 and 
take an additional mo = 10 bolts from the lot which produced Xfaj. Suppose 
the sample standard deviation based on these 10 additional bolts is Syj = 420. 
Then we compute 7/2 = 3^ = ^ = 100, and tabulate 

m max (n, (0.6194)2(420)^ 
(100)2 + 1 } = 11. 
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Thus we take 1 additional bolt from the 'best' lot. Again, following Lemma 
20.2.1 we set 

1 1 -
( m - m o ) 0 m / , V"- "-0//1 2 

mo I SI w 

and set 

^ 1 0 r (420)2 ' ' - i i - ^ ^ ^ 

c 1.1364 , , „ ^ , 
61 = 62 = • • • 610 = — = —rr— = .11364 and 

mo 10 
1 - c -.1364 ^ _ . 

On = = — - — = -.1364. 
m — mo 1 

X,31+VV 
We now compute W = J2]Li f>jWj. If ±i^ip- > 60,100, then buy the selected 

2 lot. If P' ^ 60,100, then buy none of the lots. 

20.6 Sample Size Comparison 

We shall now perform a sample size comparison between our procedure Vuu 
and the Dudewicz-Dalal-type procedure of Taneja and Dudewicz (1992) for the 
case of unequal, unknown variances. The reason that we chose to compare with 
the Dudewicz-Dalal-type procedure of Taneja and Dudewicz (1992), rather than 
the Rinott-type procedures of Wilcox (1984) or Taneja and Dudewicz (1992), is 
that an expression for expected sample size was already provided by the authors 
for that procedure. On the other hand, no such expressions were provided by 
the authors for the other two procedures. Therefore, to avoid taking time 
away from the study of our own procedure in order to derive expected sample 
sizes for other procedures, we chose to utilize the expressions that were readily 
available. As before, the formulation of the problem for Taneja and Dudewicz's 
procedure is slightly different than for our procedure. The goal of Taneja and 
Dudewicz's procedure is to select the population with the largest mean, while 
the goal of our procedure is to select any acceptable population. Furthermore, 
Taneja and Dudewicz's preference zone consists of all mean vectors satisfying 
M[fc] ^ Mo + <5i ^nd [̂jt] > t^[k-i] + $2, while our preference zone consists of all 
mean vectors such that at least one jUi > //Q + ^2 ^^^ ^^ Mi l̂ ŝ in the interval 
(MO+^I , fio+^)' We obtain a special case under which the two formulations are 
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comparable by setting Taneja and Dudewicz's SQ = 0, our a = their(l - PQ )' 
our (1 - /3) = theirPj*, our (JJ = theirJJ, and our 6^ = their((JJ - (Ĵ )* 

Under these conditions we perform comparisons for fc = 2 and 3; ai = 0.5 x z, 
i = 1 , . . . , fc; a = .05; our 61 = 0; our S^ = .20; and 1-/3 = .90 and .95. Since the 
required total sample size of each procedure is a random variable, we examine 
the expected total sample sizes of the two procedures, comparing designs with 
the same initial sample sizes,no. Procedure Vuu offers several designs for the 
same probability requirements and the same initial sample size no (see Table 
20.1). For the purpose of sample size comparison, we chose the design with 
the smallest upper bound on expected total sample size, given that TQ (the 
probability of terminating early under HQ) is at least .5. 

In order to compute the expected sample sizes of Taneja and Dudewicz's 
procedure, our original intention was to use the extensive tables of procedure 
parameter values, (/i,p), that were provided by the authors in their 1992 paper. 
However, during the course of the sample size comparison, we discovered an 
error in the tabled values, rendering the existing tables unusable. In Ught of this, 
we chose to perform sample size comparisons for just a few cases, computing the 
correct values of {h, g) just for those cases. Accordingly, we calculated upper 
and lower bounds for the expected total sample size of Taneja and Dudewicz's 
procedure as follows. We first obtained the simultaneous solution [h,g) to 
equations (7) and (8) given on p. 68 of their 1992 paper. We accomplished this 
by writing a FORTRAN code similar to the one used to solve our equations 
(20.19) and (20.20), as described in Section 20.4. For reference, the values of 
{h,g) that we obtained are given in Table 20.2. 

We then used the above values of {h,g) in the expression given for E{NT) 
on p. 67 of Taneja and Dudewicz (1992), with all 6i = 0 and all 5̂  = 1, 
respectively, to obtain lower and upper bounds. The comparison results are 
given in Table 20.3. In order to verify the accuracy of the table entries, we 
also provide for each of the procedures simulation results for size, power, and 
expected sample size under both LFC and HQ. The simulation was based 
on 20,000 runs and used appropriately scaled pseudorandom numbers from a 
standard normal distribution generated by the IMSL random number generator 
RNNOR. 

The figures in the tables indicate that neither procedure is uniformly better 
than the other with respect to expected sample size. In general, for small values 
of no the upper bound on E{N) for procedure Vuu is smaller than the lower 
bound for Taneja and Dudewicz's procedure. However for larger values of no, 
the simulation results suggest that Taneja and Dudewicz's procedure performs 
better under the LFC, while procedure Vuu performs better under HQ-
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k = 2 

"0 1 
2 1 

6 

10 

IS 

20 

30 

Table 20.1: Design parameters for procedure Vuu 

PowCT=.90 a = 0.05 ^l«0.00 

w»0 
2 
3 
4 
S 
6 
10 

2 
3 
4 
5 
6 
8 
10 

2 ' 
3 
4 
5 
6 
8. 
10 

2 
3 
4 
5 
6 
8 
10 

2 
3 
4 
S 
6 
8 
10 

2 
3 
4 
5 
6 
8 

1 10 

<̂ l 1 
3̂0 
3.5 
3.0 
4.0 
4.0 
3.5 

3.0 
3.0 
2.0 
2.0 
2.5 1 
2.5 
2.5 

3.0 
3.0 
2.0 
2.0 
2.0 
2.0 
2.0 

3.0 
3.0 
3.0 
2.0 
2.0 
2.0 
2.0 

3.0 
3.0 
3.0 
2.0 
2.0 
2.0 
2.0 

3.0 
3.0 
3.0 
2.0 
2.0 
2.0 

1 2.0 

di 1 
TO 
1.5 
1.5 
1.5 
1.5 
1.5 

2.5 
2.0 
2.5 
2.5 
2.0 
2.0 
2.0 

2.5 
2.0 
2.5 
2.5 
2.5 
2.5 
2.5 

2.5 
2.0 
2.0 
2.5 
2.5 
2.5 

1 2.5 

2.5 
1 2.0 

2.0 
2.5 
2.5 
2.5 
2.5 

2.5 
2.0 
2.0 
2.5 
2.5 
2.5 

1 2.5 

__LJ 
4.7990 1 
2.8346 
3.2805 
2.4833 
2.4807 
2.8240 

1.5380 
1.2483 
1.8740 
1.8866 
1.4109 1 
1.4381 
1.4515 

1.4050 
1.1371 
1.6688 
1.6843 
1.6919 
1.6994 
1.7031 

1.3552 
1.0982 
1.1672 
1.6065 
1.6148 
1.6230 
1.6270 

1.3333 
1.0821 
1.1503 
1.5719 
1.5807 

1 1.5892 
1.5934 

1.3133 
1.0677 
1.1349 
1.5399 
1.5491 
1.5580 

1 1.5623 

1*2 1 
3.3170 
5.1861 
4.0354 
3.3062 
3.0676 
2.7507 

1.3005 
1.3722 
.9760 
.8556 
1.1389 
1.0401 
.9942 

1.2299 
1.3270 
1.0330 
.8911 
.8237 
.7586 
.7268 

1.2006 
1.3006 
1.0247 
.9108 
.8384 
.7695 
.7361 

1.1874 
1.2867 
1.0160 
.9213 
.8461 
.7750 
.7408 

1.1752 
1.2725 
1.0075 
.9323 
.8539 
.7806 

1 .7455 

0̂ 
J735 
.7957 
.8205 
.7711 
.7709 
.7951 

.8239 

.7507 

.8838 

.8856 

.7944 

.8011 

.8043 

.8158 

.7354 

.8747 

.8776 

.8790 

.8804 

.8810 

.8129 

.7305 

.7546 

.8738 

.8755 

.8771 

.8779 

.8116 

.7287 

.7532 

.8719 

.8738 

.8756 

.8765 

.8105 

.7272 

.7519 

.8701 

.8722 

.8742 
1 .8751 
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Table 20.1 continued 

k = 3 Power = .90 a = 0.05 ^1=0.00 1 

1 "0 
2 

6 

10 

IS 

20 

30 

ttlQ 

2 
3 
4 
5 
6 
8 
10 

2 
3 
4 
5 
6 
8 
10 

2 
3 
4 
5 

i 6 
8 
10 

i 2 
3 

i ^ 
5 
6 
8 
10 

2 
3 
4 
5 
6 
8 
10 

2 
3 
4 
5 
6 
8 
10 

dx 
2.0 
1.5 
2.0 
2.0 
2.0 
2.0 
3.5 

2.5 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 

2.5 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 

\ 2.5 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 

2.5 
2.0 j 
2.0 ! 
2.0 
2.0 
2.0 
2.0 

2.5 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 

di 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
1.5 

2.5 
2.5 
2.5 
2.5 
2.0 
2.0 
2.0 

2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 

2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 

2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 

2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 

Al 
9.9721 
12.9335 
10.5941 
10.6725 
10.7166 
10.7640 
4.3077 

1.9237 
2.1587 
2.1835 
2.1933 
1.7964 
1.7950 
1.7937 

1.7175 
1.8987 
1.9254 
1.9358 
1.9413 
1.9469 

j 1.9497 

j 1.6415 
1.8014 

j 1.8292 
1 1.8398 

1.8454 
' 1.8511 
i 1.8540 

1.6084 
1.7587 
1.7870 
1.7978 
1.8034 
1.8092 
1.8121 

1.5782 
1.7194 
1.7484 
1.7592 
1.7649 
1.7707 
1.7737 

f>2 1 

3.9283 
2.2652 
1.2599 
1.1303 
1.0631 
.9946 
2.3706 

1.3969 
.9995 
.7942 
.7173 
1.6071 
1.4945 
1.4413 

1.3262 
1.0192 
.8019 
.7222 
.6811 
.6392 
.6180 

1.2958 
1.0308 
.8062 
.7250 
.6833 
.6409 
.6194 

1.2819 
1.0370 
.8084 
.7265 
.6844 
.6418 
.6202 

1.2687 
1.0435 
.8108 
.7280 
.6856 
.6427 
.6210 

0̂ 
.9076 1 
.9281 
.9128 
.9134 
.9138 
.9141 
.7976 

.8407 

.8801 

.8837 

.8851 

.8143 

.8140 

.8137 

.8306 

.8709 

.8761 

.8780 

.8790 

.8801 

.8806 

.8267 

.8666 

.8727 

.8750 

.8761 

.8773 

.8779 

.8250 

.8645 

.8711 

.8736 

.8748 

.8761 

.8767 

.8235 

.8625 

.8696 

.8722 

.8736 

.8749 
I .8756 
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Table 20.2: 

«o 

H 

G 

"0 

H 

G 

"0 

H 

G 

"o 

H 

G 

«o 

H 

G 

"o 

H 

G 

»o 

H 

G 

«o 

H 

G 

2 

12.5447 

16.3100 

9 

2.2978 

3.7232 

2 

12.5447 

21.4040 

9 

2.2978 

4.1957 

2 

18.7589 

22.9176 

9 

2.5551 

3.9907 

2 

18.7589 

29.5656 

9 

2.5551 

4.4669 

{h,g) value for Taneja and Dudewicz's procedure 

* = 

3 

4.2731 

6.3145 

10 

' 2.2543 

3.6637 

* = 

3 

4.2731 

7.5306 

10 

2.2544 

4.1222 

* = 

3 

5.2918 

7.4133 

10 

2.4992 

3.9177 

•2 

4 

3.1659 

4.8847 

15 

2.1380 

3.5038 

••2 

4 

3.1659 

5.6627 

15 

2.1379 

3.9254 

= 3 

4 

3.7158 

5.4729 

15 

2.3509 

3.7233 

*=3 

3 

5.2918 

8.7472 

10 

2.4992 

4.3793 

4 

3.7159 

6.2863 

15 

2.3509 

4.1466 

^0^=.95 

5 

2.7640 

4.3525 

20 

2.0866 

3.4330 

^0=.95 

5 

2.7640 

4.9837 

20 

2.0866 

3.8387 

^0 = .95 

5 

3.1686 

4.7813 

20 

2.2861 

3.6381 

^0 = .95 

5 

3.1686 

5.4291 

20 

2.2861 

4.0449 

P.' = 

6 

2.5601 

4.0790 

25 

2.0577 

3.3930 

/>.* = 

6 

2.5601 

4.6390 

25 

2.0577 

3.7898 

/>; = 

6 

2.8971 

4.4337 

25 

2.2498 

3.5902 

/>,' = 

6 

2.8971 

5.0035 

25 

2.2498 

3.9879 

.90 

7 

2.4375 

3.9133 

30 

2.0392 

3.3673 

.95 

7 

•2.4375 

4.4318 

30 

2.0391 

3.7585 

.90 

7 

2.7362 

4.2260 

30 

2.2266 

3.5595 

.95 

7 

2.7362 

4.7511 

30 

2.2266 

3.9515 

8 

2.3560 

3.8024 

8 

2.3560 

4.2939 

8 

2.6302 

4.0884 

8 

2.6302 

4.5847 
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