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PREFACE

Aecrodynamics is a science engaged in the investigation of the motion of air and
other gases and their interaction with bodies, and is one of the most important
bases of the aeronautic and astronautic techniques. The continuous improvement
of the configurations of the airplanes and the space vehicles ad the constant
enhancement of their performances are closely related with the development of the
aerodynamics. In the design of new flying vehicles the aerodynamics will play
more and more important role.

The undertakings of aeronautics and astronautics in our country have gained
achievements of world interest, the aerodynamics community has made
outstanding contributions for the development of these undertakings and the
science of aerodynamics. To pronote further the development of the
aerodynamics, meet the challenge in the new century, summary the experience,
cultivate the professional personnel and to serve better the cause of aeronautics
and astronautics and the national economy, the present Series of Modern
Acrodynamics is organized and published.

The Series of Modern Aerodynamics consists of about 20 monographs divided
into theoretical and experimental parts. The theoretical part includes: Theory of
transonic aerodynamics, Theory of inviscid hypersonic aerodynamics, Rarefied
gas dynamics, Computational fluid dynamics-fundamentals and applications of
finite difference methods, Spectral methods of computational fluid dynamics,
Finite element methods of fluid mechanics, Heat transfer of hypersonic gas and
ablation thermal protection, Dynamics of multiphase turbulent reacting fluid
flows, High temperature nonequilibrium air flows, Turbulence, Vortex stability,
Wing engineering and industrial aerodynamics, Aerodynamics for airplane design,
and others. The experimental part includes: Wind tunnel testing, Wind tunnel

balance, Interference and correction on wind tunnel testing, Impulsive wind
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tunnels, Modern flow visualization, and others. The editors and writers of this
series uphold the following principles of writing. Firstly, it serves as a bridge from
the fundamental aerodynamics to the frontiers of the modern aerodynamics.
Secondly, it is a series of special monographs each devoted to a specialized topic.
Thirdly, the series pays attention not only to the already existing achievements but
also to the modern developments. Fourthly, each monograph introduces
systematically the knowledge and development of the special topic. Fifthly, the
series forms a complete whole, the monographs combined together cover various
fields of modern aerodynamics. To organize and promote the writing of the series
an editorial board with academician Zhuang Fenggan as its president was formed
in charge of working out the plane of writing, selecting writers, examining and
approving the manuscripts, recommending to the Judging Panel of the Publication
Foundation of National Defense Technical Books to apply for the financial
support. The Chinese A erodynamics Research and Development Center supported
the work of the editorial board in the aspects of personnel and expenditure. Each
monograph of this series after applying and receiving the support from the
Publication Foundation of National Defense Technical Books was chosen and

edited by the National Defense Industry Press.

This English version of Rarefied Gas Dynamics published by Springer-Verlag,
Berlin/Heidelberg, is a translation from its Chinese edition revised and updated by
the author. In particular, the 7.7 section is rewritten as a new Chapter §
‘Microscale Slow Gas Flows, Information Preservation Method’ to give more
comprehensive account of the subject and reflect some advances obtained after the
publication of the Chinese edition.

The flight, maneuver and braking of aerospace vehicles at high altitudes
demands from the gas dynamics the answer on questions of force and heat action
of the low density gas flow. When the density is lowered to a level that the mean
free path of the gas molecules is not a small magnitude in comparison with the
characteristic length of the flow, the ordinary methods of the continuum gas
dynamics are no longer suitable, the methods of discrete molecular gas dynamics,
or, of rarefied gas dynamics are required. Meanwhile the condition of high speed

flight leads to the necessity of consideration of the physical processes taking place



PREFACE vii

inside the molecules such as the excitation of the internal energies, the chemical
reactions and the excitation and transition of electronic levels. This leads to the
development and expansion of the gas dynamics towards micro scale scopes in
two aspects, i.e. the research of the gas flows with the discrete molecular effect
taken into account by involving the methods of rarefied gas dynamics, and the
consideration of the internal structure of the molecules. The application areas of
the rarefied gas dynamics besides aeronautics and astronautics include some
frontier realms of the advanced technical development such as: plasma material
processing in vacuum, micro-electronic etching, micro-electronic mechanic
systems and chemical industry. This makes the research on low speed rarefied gas
dynamics very important. In the world literature the research on gas dynamics on
the molecular level and on the internal physical processes inside molecules in the
gas flows is very active. Relatively the domestic works on these aspects is fewer.
From the viewpoint of the prospects of the subject and the demands of the
development of science and technology research on gas dynamics on the
micro-scale is a direction needs to be strengthened and further developed in our
country, and it is appropriate to advocate and promote in the scientific research
layout and education arrangement.

This book elucidates the methods of molecular gas dynamics or rarefied gas
dynamics which treat the problems of gas flows when the discrete molecular
effects of the gas prevail under the circumstances of low density, the emphases
being stressed on the basis of the methods, the direct simulation Monte Carlo
method applied to the simulation of non-equilibrium effects and the frontier
subjects related to low speed microscale rarefied gas flows. As the basis of the
discipline two chapters on molecular structure and basic kinetic theory are
introduced. The first chapter devotes a minimum space in brief and summarized
description of the molecular energy state structure and energy distribution as the
necessary basis for the investigation of the non-equilibrium in high enthalpy
rarefied gas flows. The second chapter discusses the basis of the kinetic theory
focusing on binary collisions, Boltzmann equation and the equilibrium state of the
gas, including the phenomenological molecular models: the VHS model of G. A.
Bird and also the VSS model the GHS model and the GSS model. The third

chapter discusses various realistic models of gas surface interactions, including the
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reciprocity principle reflecting the detailed equilibrium, the CLL model based on
this principle and the application in direct simulation in the cases including
incomplete energy accommodation and internal energy exchange. The fourth
chapter deals with the free molecular flows. Chapter 5 discusses the continuum
equations and slip boundary conditions applied for slip flow regime, including
Burnett equation the usability of which has been proved to be penetrated to more
rarefied range. This chapter also includes the discussion of some simple problems
solved by the Navier-Stokes equation plus slip boundary conditions and the
problem of thermophoresis. Chapter 6 introduces with fair comprehensiveness and
generality various analytical and numerical methods developed in transition
regime. Chapter 7 introduces the direct simulation Monte Carlo (DSMC) method
with emphasis stressed on the specific issues encountered in dealing with
non-equilibrium rarefied gas dynamics, including the work of the author and his
colleague in treating the excitation and relaxation of the internal energy, the
chemical reactions and the general coding of simulation of the flow field around
complex configurations, i.e. the generalized acceptance-rejection method in
sampling from the distribution with singularities, the sterically dependent
chemical reaction model and the derivation of the Ahrrenius-Kooij form of
reaction coefficient and the new version of the position element algorithm of the
general code of the DSMC simulation etc. Chapter 8 is dedicated to the simulation
of low velocity micro scale rarefied gas flows which becomes an actual and urgent
task encountered by the rarefied gas dynamics in the 21st century with the rapid
development of the micro-electro-mechanical system (MEMS). Some methods of
solution of the rarefied flow problems is examined from the point of view of
utilization in simulating the flows in MEMS. The information preservation (IP)
method is introduced with a general description, some validation of the method
and a program demonstrating the method. The resolving of the boundary condition
regulation problem in MEMS by using the conservative scheme and the super
relaxation method is illustrated on the example of flow in long micro channels.
The thin film air bearing problem with authentic length of the write/read head of
the Winchester hard disc drive is solved, and the use of the degenerated Reynolds

equation is suggested to solve the microchannel flow and to serve as a criterion of
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the merit of strict kinetic theory for testing various methods intending to treat the
rarefied gas flows in MEMS.

In choosing the contents of the book the author proceeds out of the
consideration to elucidate various essential basics of the subject and is influenced
by his own interests, so the quotation of literature is far from complete, hoping the
forgiveness and understanding of all the scientists having made contributions to
the development of the subject.

This book provides a solid basis for engaging in the studying of the molecular
gas dynamics for the senior students and graduates in the aerospace and the
mechanical engineering departments of universities and colleges, giving them an
overall acquaintance of the modern development of rarefied gas dynamics in
various regimes and leading them to reach the frontier topics of the
non-equilibrium rarefied gas dynamics and the low speed microscale gas
dynamics. [t will be also of benefit to the scientific and technical workers engaged
in the aerospace high altitude aerodynamic force and heating design and in the
research on gas flow in the MEMS when treating practical gas dynamics
problems.

The author would appreciate Prof. Hu Zhenhua and Prof. Fan Jing for many
helpful discussions concerning the contents of some sections of the book. The
author thanks Mr. Tian Dongbo, Mr. Jiang Jianzheng, Mr. Xie Chong, and Dr. Liu
Hongli who helped in making the drawings and layout of the book.

Zhongguancun, Beijing, China C. Shen
September, 2004
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sound speed, =W ; radius of a sphere particle
dynamic factor

distance of the closest approach, miss-distance
the magnitude of the molecule velocity
molecule velocity

molecule thermal velocity

molecule average velocity, average velocity
relative velocity

average thermal speed, = m

most probable molecular thermal speed, =2kT/m
mean value of the relative speed

mean squire root thermal speed, :m
specific heat at constant pressure

specific heat at constant volume

flow conductance, =Q/Ap

velocity slip coefficient

thermal creep coefficient

temperature jump coefficient

molecular diameter

molecular diameter of the hard sphere model
molecular diameter of the VHS model
molecular diameter of the VSS model

thermal diffusion coefficient
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specific energy

activation energy

velocity distribution function

another definition of velocity distribution function, = f/n

single particle distribution function, = f/N

incident flux

specularly reflected flux

diffusely reflected flux; impact stress originated from collision
external force

equilibrium state Maxwellian distribution

degeneracy

dimensionless temperature gradient, =|VT|a/T,

Planck constant, =6.6260755x10™*Js ;

height of the channel; height of the write/read head over the drive
platter

height of the write/read head over the drive platter at the outlet
Boltzmann H function; dimensionless height =h/h,

moment of inertia

rotational quantum number

Boltzmann constant, =1.380658x10%JK;

the ratio of the conductivity of gas to that of the particle, =K, /K,
force constant

forward reaction rate constant

reverse reaction rate constant

conductivity

Knudsen number, =A/L

unit normal vector

characteristic length of the flow field; length of the write/read head in

the hard disc drive
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molecular mass

reduced mass

Mach number, =U /a

molecular weight

gram molecular weight

number density; vibrational quantum number

Loschmidt number, =2.68666x10% ™

total number of degrees of freedom of the internal degree variable &,

=(53y)(y-D+1

Avogadro number, =6.022137x10%mol”’
pressure

pound per square inch, gauge, =6.895kPa above atm
pressure tensor

Prandtl number, =c u/K

dimensionless pressure, p/p,

heat flux vector

=q,

function of molecular velocity; partition function;
flow rate

flow rate of the Couette flow

flow rate of the Poiseuille flow

gas constant, =R /M=Fk/m

random fraction between 0 and 1

Reynolds number, =pUL/u

universal gas constant, =8.31451 Umol 'K ™
entropy; speed ratio, =U/c, =U/ N2RT
=c0,

temperature

velocity of oncoming flow
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u, gas velocity near the surface, gas velocity at outer edge of Knudsen
layer

14 potential energy of system

w dimensionless variable, =b/r

X =x/L

zZ relaxation collision number

Z, vibrational relaxation collision number

Z rotational relaxation collision number

o thermal accommodation coefficient; the power exponent of the cosine
of the deflection angle in VSS scattering model

B beta function

B reciprocal of the most probable thermal speed, =(2RT)™''?

Y ratio of specific heats

r gamma function

1) spacing between molecules

o, Kronecker tensor

£ molecular energy

g, molecular dissociation energy

£, molecular electronic energy

£, molecular rotational energy

g, molecular translational energy

£, molecular vibrational energy

& negative power exponent in the dependence of 0, on ¢,

¢ number of degrees of freedom; slip coefficient

n power exponent in the inverse power law model

1S characteristic temperature

K constant in the force power law

A molecular mean free path
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A mean free path in collision of the scattered molecules with the

oncoming molecules
A bearing number, =6uUL/p h’

viscosity, for hard sphere model u zl/Z(pE/'L)

collision frequency

P density
o tangential momentum accommodation coefficient
c' normal momentum accommodation coefficient
o, diffusion collision cross section
" momentum collision cross section
X reaction collision cross section
o, total collision cross section
o, viscosity collision cross section
T viscous stress tensor, =1
T mean collision time, =A/ Z ; temperature
T; shear stress tensor
¢, vibrational energy exchange probability
X deflection angle in collision
W wave function
w power exponent of temperature in the viscosity law;
super relaxation factor
Q number of ways of distributions of particles on different levels

SUPERSCRIPTS AND SUBSCRIPTS

e emitted, scattered; electronic

g gas

i incident; internal
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int

internal

left

particle

rotational; right
translational
vibrational
oncoming flow value
values after collision
average of «

cut off value of a

ENGLISH ABBREVIATIONS
AFE vehicle aero-assisted flight experiment vehicle
BGK equation Bhatnagar-Gross-Krook equation
BKW equation Boltzmann-Krook-Welender equation
CALTECH California Institute of Technology
CFD computational fluid dynamics
CLL model Cercignani-Lampis-Lord model
DSMC method direct simulation Monte Carlo method
EDM electric discharge machining
FORTRAN language formula translation language
GHS model generalized hard sphere model
GSS model generalized soft sphere model
HS model hard sphere model
IP method information preservation method
LB method Larsen-Borgnakke method
LBM lattice Boltzmann method



NOMENCLATURE  xvii

LIGA

MD method
MEMS

MIT

NEMS

NTC method
RSF method
STP

SSTO vehicle
TC method
UCLA

VHS model
VSS model

Lithographie = Galvanoformung Abformung
(German), Lithographic electroforming
molecular dynamics method
micro-electro-mechanical system
Massachusetts Institute of Technology
nano-electro-mechanical system

no time counter method

randomly sampled frequency method
standard temperature and pressure
single stage to orbit vehicle

time counter method

University of California, Los Angeles
variable hard sphere modet

variable soft sphere model
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0 INTRODUCTION

0.1 THE CONCEPTION OF RAREFIED GAS DYNAMICS

Under usual circumstances the continuum model is adopted for treating gas flows.
The properties of gases observed by the ordinary measuring apparatus are
continuous and smooth, so the continuum hypothesis is natural. In practice or in
the laboratory, the characteristic scale of flow under usual conditions has at least
the size of lcm, and the change of physical or dynamic properties of gas in the
range of 107cm would be very small, the sensing volume of 107°¢m’ would
give the measurement of the local properties of the gas. From the fact that the
Loschmidt number n, (the number of gas molecules in cm’ under standard
state) is 2.687x10"cm™ it can be seen, that under standard state in this very
small volume 107¢n?’ there are about 3x10'° molecules. This number is big
enough to ensure that the average property of the gas is not influenced by the
concrete number of molecules in this volume. But under the special condition of
extremely low density (or when the size of the body is extremely tiny), the
discrete particle effect becomes remarkable, and we are obliged to give up the
continuum hypothesis and to adopt the discrete model, i. e., the method of
molecular gas dynamics or the method of rarefied gas dynamics.

Strictly speaking, the failure of the continuum model happens when the shear
stress and the heat flux in the continuum equations of mass, momentum and
energy conservations can no longer be characterized by the macroscopic
magnitudes of lower order (velocity, temperature), that is, when the expressions of
the transport coefficients are no longer valid. This happens when the scale length
of the gradients of the macroscopic quantities becomes so small that it is
comparable with the molecular mean free path of the gas. The scale length of the

gradients of the macroscopic magnitudes is
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L=p/Adp dx). 0.1)

To characterize the degree of rarefaction the Knudsen number is introduced and
is defined as the ratio of the molecular mean free path A (the average distance
traveled by a molecule between two collisions) and the characteristic length of the
flow L

Kn=A/L. 0.2)

Generally, when Kr >0.1, the Navier- Stokes equation and the continuum
model is no longer valid. When L in Eq. (0.2) is taken as a global size of the
flow, Kn is not able to characterize the details of the flow, if L is taken as the
scale length of the local flow gradient (from Eq. (0.1)), then Kn is a local
Knudsen number, and can characterize the degree of non-continuum of the local
flow field. When Kr is less than 0.1 but is larger than 0.01, some discrete
effects such as the velocity slip and temperature jump appear, although the
continuum model is still valid. Such effects also belong to the category of rarefied
gas dynamics effects.

The density of the high altitude atmosphere decreases with descent of the
height, the molecular mean free path increases from about 0.07x10°m at the sea
level to about 1mm at 70km, and about lcm at 85km, and the rarefied gas
dynamics effects become important. In the problem of force action and the heating
of missiles, spacecrafts, satellites, space shuttles and space stations, rarefied gas
dynamics plays an important role. The modern rarefied gas dynamics is initiated
from the studying of the force and heating action exerted on bodies flying at high
altitude [1, 2]. In vacuum systems, with the enhancement of the vacuum degree,
the mean free path becomes comparable with the characteristic length of the flow,
and the molecular gas dynamics method is to be applied. When considering
problems like such of the shock wave structure, the macroscopic magnitudes
experience consistently drastic change in several mean free paths, so the molecular
description is to be invoked even under usual density conditions. Generally, under
usual density conditions, when the size of the subject of our investigation is small
enough to be comparable with the mean free path, the gas discrete effect reveals
itself, as in the case of the study of aerosol particles (of the size of micrometer or

less). In the last ten-odd years, the micro-electro-mechanicalsystems (MEMS)
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develops rapidly, and will play promoting role in the fields of micro electronics,
aeronautics and astronautics, optics, biology, medicine and other realms. Owing to
the tiny size of MEMS, when gas is used as the working media, the study of their

properties requires the involvement of the rarefied gas effects.

0.2 THE MOLECULAR MODEL OF GASES

The hypothesis that all matter (including gas) is composed of tiny particles
separated by vacuum traces the origin from Greek materialistic philosopher
Democritus (460-370 B.C.). He supposes that these particles are of different sizes
and shapes and are in persistent rapid motion, and attributes the differences in the
properties of matter to the differences in the kinds of particles and the differences
in their motion. Owing to the absence of any convincing evidence this closest to
truth hypothesis could be considered only as one of the many philosophic
conjectures about the structure of matter and had been rejected by the authority at
that time Aristotle (384-322 B.C.). The real quantitative argumentation of the
kinetic theory of gases can be thought initiated by Daniel Bernoulli (1700-1782).
In 1738 Bernoulli explained Boyle’s law, i.e. the pressure and density of a gas are
in direct proportion at constant temperature. From the fifties to eighties of the 1ot
century the work of Clausius (1822-1888), Maxwell (1831-1879) and Boltzmann
(1844-1906) accomplished the founding and the overall development of the
kinetic theory of gases. In 1857 Clausius introduced the concept of mean free path
(the average value of the distance traveled by a molecule between two successive
collisions) [3]. In 1859 Maxwell obtained the expressions of the transport
coefficients (viscosity ¢, conductivity K and diffusivity D) using the concepts
of mean free path and the velocity distribution function f introduced by
himself, and the equilibrium state velocity distribution function, i.e. the Maxwell
distribution f [4]. In 1872 Boltzmann proposed and proved the Htheorem,
improved the proof of the Maxwell distribution, and put forward the
integral-differential equation for the velocity distribution function f, i.e. the
Boltzmann equation [5]. At the beginning of 20" century the experiments of
Perrin el al. (1908) concerning the Brownian movement allowed people to really

observe (indirectly) the unceasing motion of the molecules hypothesized by the
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kinetic theory of gases, playing a key role in convincing the correctness of this
theory. Chapman (1889-1970) and Enskog (1887-1947) in 1916 and 1917
respectively derived the exact expressions of the transport coefficients through
entirely different mathematical ways [6, 7). Especially their derivation for gas
mixture resulted in the discovery of a new transport coefficient, i. e. the thermal
diffusivity D", and its expression. The phenomenon of thermal diffusion is
widely used in the separation of uranium and other isotopes, this is considered as

an important achievement of the kinetic theory of gases.

0.3 MEAN FREE PATH OF MOLECULES

As mentioned in the previous section the molecular mean free path is an important
fundamental concept of the kinetic theory of gases. According to the definition,
the molecular mean free path is the average distance traveled by a molecule
between two siccessive collisions. For general molecular model the sphere of
influence of the molecular force is very big, the happening of a collision is judged
by stipulating that a certain value the deflection angle must be surpassed. The

elucidation of the concept of mean free path is easy when using the hard sphere
model of molecule. Suppose the molecules are hard spheres of diameter d , and
first calculate the number of collisions happened in unit time, i. e., the so called
collision frequency v . Consider the collision of one test molecule with other field
molecules. A collision happens when the center of a field molecule is located

inside the sphere of radius 4 with the center of the test molecule as its center.
Obviously, multiplying the volume swept by this sphere (with collision section
o, =7d*) in unit time by the number density n yields the requested v. To
obtain the correct averaged value, suppose the test molecule moves with the mean
value of the relative speed Z Then the volume swept by the sphere of radius d

in unit time is c—r7m72 , and the collision frequency v is
v=con =cudn. (0.3)

For general molecular model, the collision section o, is dependent on c,

and the averaging extends over both ¢, and o, , and
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v=co.n,

see Eq. (2.207) to be derived in Chapter 2. As the distance traveled by a molecule

in unit time is the mean thermal speed c, obviously the mean free path is

1 0.4)

As c_'_=\/2c, see Eq. (2.214) in Chapter 2, the expression of the mean free path

A is obtained

1

T ©0.5)
or
1=t
Toed's 0.6)

Note, that from Eq. (0.6) one sees that Ap = consiant , i. e. the mean free path

and the density of the gas are in reverse proportion.

0.4 DIVISION OF FLOW REGIMES

Qian Xuesen (H. S. Tsien) [1] first divided the rarefied gas flows into three reaims
according to the degree of rarefaction, i. e., the slip flow regime, the transitional
regime and the free molecular regime. According to the range of the properly

chosen Knudsen number K, the three regimes are

0.01<Kn<0.1 Slip flow regime, 0.7)
0.1<Kn<l10 Transitional regime, (0.8)
Kn>10 Free molecular regime. 0.9)

In the slip flow regime in the gas flow appear some phenomena somewhat

different from those in the ordinary flows, which manifest themselves mainly at
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the vicinities of the boundaries, i. e. the velocity slip and the temperature jump
phenomena. In this regime, the ordinary gas dynamics equations are still valid, or
equations of order higher than Navier-Stokes can be obtained by using high order
terms of the Chapma-Enskog expansion, but it is necessary to introduce some
modifications into the boundary conditions. At the verge of large Knudsen number
where the gas is very rarefied, the collisions of the gas molecules with the surface
of the body prevail. And when A is much larger than L, the molecules
reflected from the surface of the body collide with other molecules only after
flying across a large distance, the velocity distribution function of the oncoming
molecules is not influenced by the presence of the body, i.e., is the known
equilibrium Maxwell distribution, and the momentum and energy action of the
oncoming flow on the body can be easily calculated. This regime is called the fiee
molecular flow. Of course, to obtain a complete solution certain assumption must
be made about the law of reflection of molecules on the surface. In the transitional
regime between the slip flow regime and the free molecule regime, the collisions
of the molkcules with the surface of the body and mutual collisions of the
molecules in the oncoming flow have the equal importance. The analysis becomes
difficult, and the molecular gas dynamics methods must be adopted.

When discussing the division of the flow regimes, it is to be noted that the flow
parameters in the flow are extremely non-uniform. When the characteristic length
is taken as the scale length of the gradients of the macroscopic quantities
L=pAdp/ dx)(see Eq. (0.1)), Kn number can characterize the local properties
of the flow. According to Eq. (0.7), to make the NavierStokes equation valid,
Kn must be less than 0.1. But the upper limit of the local Knudsen number for
the validity of the continuum hypothesis might be enhanced to as large as 0.2 .

For problems of hypersonic flow around bodies the demand for the flow to
satisfy the free molecular condition is more severe than the condition Eq. (0.9). In
Eq. (0.9) A is the mean free path of the molecules in the oncoming flow. But in
the context of hypersonic flow around body, the mean free path A of the
reflected molecules in the collision with the oncoming molecules is the essentially
relevant mean free path. This A is much less than A . Let us estimate the
magnitude of it. As the oncoming flow has the hypersonic speed, the relative

speed of the molecules of the oncoming flow and the body is much larger than the
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thermal speed of the molecules. At the same time the speed of the molecules
scattered from the surface is also small in comparison with the speed of oncoming
flow. And the relative speed between the scattered molecules and the oncoming
molecules can approximately be taken as the speed U of the oncoming flow. If
d is the diameter of the molecule, then the number of collisions of a scattered

molecule with the oncoming molecules in unit time is

nd’Un,. (0.10)

where n, is the number density of the oncoming molecules. The frequency is
independent of the coordinate system adopted. But the mean free path would vary
with the coordinate system used. In the coordinate system connected with the
body, the average speed of the scattered molecules is sz (see Eq.
(2.200)), where R is the gas constant, T, is the temperature of the body. In this
coordinate system the mean free path of the scattered molecule in collision with

the oncoming molecules is

A, :”djeU —. (0.11)

Comparison between Eq. (0.5) and Eq. (0.11) yields
A, =22 (0.12)
U
The basic condition for free molecular flow requires
A,
—->10,
L

or

U

\/ZV—. 0.13)

A
—>10
L

For cold wall assumption U >>v—e , Eq. (0.13) is much severer than Eq. (0.9),
t.e., more degree of rarefaction is required to ensure the occurrence of the

condition of free molecule flow. When the temperature of the body is extremely
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low (T, = 0), even though when the gas is very rarefied, Eq. (0.13) could not be
satisfied, that is, free molecular flow would not appear. This is the so called cold
wall paradox offree molecular flow.

In the problem of hypersonic flow around blunt body, the mean free path
behind the shock wave A and the shock detachment distance A to the body are
the appropriate mean free path and the characteristic length of the problem, so the

basic requirement for the continuum is

A A<< L.

The hypersonic flow theory states that the estimate of the ratio of A to the
radius of the nose R, is A/R ~p_/p, , where p_ and p, are the density of
the oncoming flow and the density behind the shock respectively, so this basic

requirement is equivalent to (see (0.27))

A/A~AIR ~Ma/Re<<l. 0.14)

For unsteady flows, the judgment of the division of regimes is accomplished
through comparison of the average collision time T=A/c and the time of
motion. Take the unsteady motion of the gas caused by the instantaneous
movement of a flat plate (the Rayleigh Problem) as an example. A flat plate of
infinite length acquires instantaneously velocity U and moves along its own
plane, thus causes the gas above it to move. The problem is unsteady and contains
two independent parameters: time ¢ counted from the instant of the start of the
motion and the vertical coordinate y. The ratio of the average time 7 between
two collisions and time ¢ is an important parameter, it can be expressed through

Mach number Ma =U /a and Reynolds number Re= pU’t/u

1- (0.15)
Ma® U u ~EC’1 T

~—

Re o’ pU  a’t t

Here the relation u= (1/2)pF/l (see Eq. (2.222)) has been used. According to the
value of this ratio the motion can be divided into free molecular flow regime,
transitional regime and continuum regime.

1. Free molecular flow regime (7/t>1). Just after the beginning of the

motion, ¢ does not reach the average time of collision, the molecules
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reflected from the flat plate have not enough time to collide with other
molecules. No matter how large is the gas density, at the initial stage there
always appears the free molecular flow regime.

2. Transitional regime (/= 0(1)). When the number of mutual collisions
between molecules and the number of collisions of molecules with the plate
surface are almost the same, the molecular dynamics method different from
free molecular method must be used.

3. Continuum regime (7/¢ <1). The number of collisions is big enough, the
ordinary gas dynamics equations can be used.

Take another example of dispersion of acoustic wave, the parameter
characterizing the degree of rarefaction is p/wu, where  is the frequency of
the acoustic wave. This parameter in fact is the ratio of the collision frequency to
the acoustic frequency, i. e. the ratio of the length of the acoustic wave to the

mean free path

ot (0.16)

0.5 NONEQULIBRIUM PHENOMENA AND RAREFIED GAS
DYNAMICS

The speed of the spacecraft flying over the high altitude atmosphere is
approximately between 7km/s and 10km/s . At the stagnation point such high
kinetic energy is to be converted into the internal energy. Using the energy

conservation equation of ideal gas, the stagnation temperature T, is derived as

2 2 -
Y Oy U Y SO Al YV ©0.17)
2 2T 2

C C
» »

Take the specific heat y=14 , the static temperature of oncoming
flow T=300K , it follows that T, =24700K ,when U=7km/s , and
T, =50100K , when U =10km/s . But the stagnation point temperature is by far

not so high, this is because the energy goes to excite the internal degrees of the gas
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molecules and is absorbed by the endothermic reaction such as the dissociation
process in the gas.

Owing to the quantum nature of the molecular structure, we proceed from the
Schrodinger equation. For the simplest rigid rotator model and harmonic oscillator
model representing the rotation and vibration of the molecule, Schrodinger
equation gives eigenfunctions with degeneracies, yielding the probabilities of the
configuration of molecules (see section 1.1). For gas dynamics of most importance
is the fact that the energy eigenvalues corresponding to the eigenfunctions, for

rigid rotator and harmonic oscillator, can attain only discrete energies:

Rigid rotator
RIJ+1) RPJ(J+1
£,,= (2 2)= (2 ),J:O,I,z,m. (0.18)
’ 8 ur 8l
Harmonic oscillator
1
£, ,= n+—2- hv,n=0,12,---. (0.19)

Corresponding characteristic temperature of rotation @, and characteristic

temperature of vibration © (the typical value of energy divided by & ) are

©,=h/(8n’Ik), (0.20)

e, =hv/k. 0.21)

In the above £/ is the Planck constant; k& is the Boltzmann constant; [/ is the
moment of inertia of molecule; v is the frequency of vibration, J and » are
the quantum number of rotation and the quantum number of vibration,
respectively, that can take only integer numbers. For N;, NO and O,, the
characteristic temperatures of rotation have the values in the range of only several
degrees: ©, =2.88K, 244K, 2.07K ; and the characteristic temperatures of
vibration are: © =3371K, 2719K and 2256K (see appendix I).

Just because the nitrogen and oxygen molecules have such low characteristic
temperatures of rotation, the rotational energy is fully excited under room

temperature, the rotational energy presents two degrees of freedom e =RT,
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¢,,=R, ¢,=(5/2)R, ¢,=(7/2)R, y=14.Here e is the rotational energy,
R is the gas constant, c,, is the rotational constant volume specific heat, ¢, is
the constant volume specific heat, ¢, is the constant pressure specific heat. And
as the characteristic temperatures of vibration have relatively high values, the
vibrational energy are being excited only at relatively high temperatures, a certain
portion of gas energy at high temperature goes to excite the vibrational energy.
The uncertainty principle (Heisenberg principle) tells us that the product of the
uncertainty |Ar] in coordinate and the uncertainty |Amd in momentum of a

particle is of the size of &
|Ar|-ame| ~ & (0.22)

In the problems of molecular gas dynamics, the typical scale to ascertain the

position of a molecule is the mean molecular spacing & ~n™'"

, and the typical
value of the average momentum is m\/:—;:m(3kT/ m)''*=(BmkT)"?, see Eq.
(2.201). If their product is much larger than /4, the quantum effects are not

important, thus yielding the condition for negligible quantum effects

(3mkT)'"" /(n'°h) >>1 (0.23)

It is seen by substituting the known data that under standard state this condition
is satisfied. Under situations of high temperature and low density which interest
us, it is all the more satisfied. This makes clear that we need not to use the
quantum mechanics method to describe the behavior of air molecules in treating
the aerodynamic problems. However, the above discussion of the rigid rotator and
harmonic oscillator shows, that the results of quantum mechanics, i.e., the
magnitudes of the characteristic temperatures of rotation and vibration obtained
therefrom, do influence the behavior of gas in totality at standard and high
temperatures.

The endothermic dissociation reaction occurred in the air explains further why
the stagnation temperature in a hypersonic flow does not attain the value expected

from Eq. (0.17). The dissociation energies &, and respective characteristic

d
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dissociation temperatures ©, (dissociation energies divided by &, see Table 1.1
in Appendix I) of O,, NO and N; are

g,=5.12V, 6.5eV, 9.76eV ,

0, =59500K, 75500K, 113500K.

When consider the dissociation in the stagnation region, there are two reasons
for the fact that though the temperature seems to be much lower than© , , there are
still apparent dissociations taking place. The first is the high probability of
collisions of particles with energies much higher than 47 . The second season is
that the recombination reaction is an exothermic reaction and the participation of a
third body is needed to carry away the dissociation heat, and as the probability of
the ternary collision is extremely small, mostly only dissociation reaction occurs.
And the higher characteristic temperature of dissociation (and hence the
dissociation energy) makes the decreasing temperature effect of dissociation more
remarkable.

When temperature attains even higher values, ionization reaction occurs and
becomes important. The ionization potentials and characteristic temperatures of

0O,,NO and N, are
£ =123eV , 9.34elV , 15.7eV,

©,=142000K, 108000K, 181000K .

The ionization manifests itself, when the temperature attains the value of about
10,000K .

From the discussion of the variation of the temperature in the stagnation region
of the hypersonic flow it is clear that the physico-chemical changes such as the
internal energy excitation, dissociation and ionization occurred in the air
drastically influence the magnitude of the temperature and the behavior of air in
the stagnation region. These phenomena commonly exist in the high altitude
flight. The excitation of the internal states and chemical reactions are all rate
processes, to accomplish a process certain time is needed and is measured as
relaxation time. As all the processes are accomplished in the collisions of

molecules, the relaxation time is proportional to the average collision time 7, the
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distance across which the relaxation occurs is proportional to the mean free path.
The relaxation time of rotation is usually about 5~10 mean collision times, and the
vibrational relaxation at normal temperature is usually two or three order of
magnitude slower than the translational and rotational relaxation. When the
relaxation time is large in comparison with the characteristic time of flow and the
relaxation distance (the distance traveled by the molecule during relaxation time)
is large in comparison with the characteristic length of the flow, the internal
energy and chemical reaction are out of equilibrium, i.e., there appears the internal
mode and chemical non-equilibrium. And this is the case where rarefied gas
dynamics effects prevail. The non-equilibrium phenomena always become more
severe when the flow condition changes towards rarefaction, and the internal
energy and chemical processes are usually in the state of non-equilibrium. The
maneuver and braking of aerospace vehicles at high altitudes demands the gas
dynamics to answer the question of force and heat action of the low density gas
flow. The high speed condition leads to the necessity to consider the
physico-chemical processes, sometimes including the quantum effects, such as the
internal energy mode excitation, chemical reaction, the excitation and transition of
electronic energy levels. The low density condition leads to the necessity to take
into account that the gas is a discrete system composed of individual molecules
and to discard the continuum hypothesis. This leads in two aspects to the
development of gas dynamics towards microscale. Rarefied gas dynamics enriches
our knowledge of the microscale level in these two aspects. Taking into account
the discrete structure of gas and the internal mode change, chemical reaction and
ionization and transition of quantum levels is the premise of the gas dynamics
research not only in the realm of aerospace but also in the new technology realms
to play remarkable role in the 21st century. These realms include plasma material
processing, micro-electronic etching, MEMS, laser techniques, chemical industry,

combustion and others

0.6 SIMILARITY CRITERIA

The Knudsen number introduced above
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Kn=A/L,

characterizes the degree of rarefaction in the flow. Knudsen number can be related
to the well known Mach number Ma =U /a and Reynolds number Re= pUL/u
[1]. According to the calculation of kinetic theory of gases [8], the viscosity g is
related to the density p, the thermal mean speed ¢ and the mean free path

through (see Eq. (2.222))

l -
u zEpd . 0.24)

To be more accurate, 1/2 is to be replaced by 0.491. According to the kinetic
theory of gases ¢ =~[8kT/mm , and the sonic speed is a=4JykT/m , here T is
the absolute temperature of the gas, y is the specific heat, k& is the Boltzmann

constant, m is the molecule mass, so we obtain

a:\/%z. (0.25)

From Eq. (0.24) and Eq. (0.25) one obtains

A=126fyulap. (0.26)
It is easy to obtain the following fundamental relationship

A
Kn===1 26,y Ma/Re . 0.27)

The characteristic length L in Re is the same as that in Kn . Thus, the
similarity of two flows in rarefaction requires that the ratio of Ma to Re
remains the same.

For not too high a speed the similarity of two flows requires the equality of
Mach number and Reynolds number, and thus, according to Eq. (0.27), the
equality of Knudsen number. Owing to Eq. (0.27) the similarity of flows requires
that any two of the three parameters Ma, Re and Kn are the same. Owing to
the difficulty in simulation of the slow micro-scale rarefied flow,

Hadjiconstantinou and Garsia [9] suggested to simulate such flow by keeping the
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Re number unchanged but allowing a larger Ma number in a scope where the
compressibility can be neglected. Such a way of doing simulation can not be
proved to be lawful. For with an allowance of larger Ma , the Knudsen number
would also be enhanced (see Eq. (0.27)), two flows will be different unless the
flow can be proved to be independent of Kn for Kn less than this enhanced
value.

As it can be seen in section 0.4 of the division of flow regimes, the criterion
Kn for the division must have various modifications relative to different
problems. For example, the basic requirement of the free molecular flow around
bodies in hypersonic gas streams is A/L >10U/\/3v_e, or Eq. (0.13), but not Eq.
(0.9), the relevant Kn number in Rayleigh problem is 7/t or M’/Re (see Eq.
(0.15)), etc.

For similarity of two flows, it is not always lawful to assure the same Knudsen
number by changing the length scale and the gas density (thus the mean free path).
When the characteristic scale of the problem considered is extremely small, the
real number of molecules in the characteristic volume may be so small, that the
problem of fluctuation of the macroscopic magnitudes arises. This happens when
considering the gas flows in MEMS. For example, when the characteristic length
is 0.1 um , the cube with the sides of this length contains only 3x10* molecules
under atmospheric pressure, the fluctuation would be of the order 1%, as the
variance of the macroscopic magnitude is in reverse proportion to the squire root
JN of the number of particles. This fluctuation is a real one in this problem of
small size. The mean free path is A ~0.07um under the pressure of one
atmosphere, so for this problem Kn=0.7 . If we proceeded to simulate the Kn
number under the pressure of 107 atmosphere, we would find that A ~70um,
and the flow scale becomes accordingly 100un, the cube with the sides of this
length would contain 3x10° molecules, the statistic variance reduces to
2x107% , and the fluctuation which is real disappears. For NEMS
(nano-electro-mechanical system) it is even more unlawful to keep Kn the same
by changing the length of the flow, the equality of the number of real molecules
will be the essential requirement, the fluctuations of the flow quantities are real.

For flows of very high speed in the astronautic realm, it is not sufficient to have

the similarity in K»n number and Ma number. The similarity criterion for high
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speed or high enthalpy reaction flows is the binary scaling law, i.e., two flows are

similar, when they have the same static temperature and the same

U,..p.L. 0.28)

This was first put forward by Birkhoff in the second edition of his famous book
Hydrodynamics [10] and was called there binary collision modeling law, which is
in fact more precise than the term binary scaling law, but the latter has gained the
wider spread. This similarity criterion requires the equality of the speed of
oncoming flow, allowing only the change of distance scale and density in reverse
proportion. For flows where only binary collisions are essential, this conclusion
can be drawn from the kinetic theory of gases. The equality of U_ is an
extremely severe requirement for experiment, but is necessarily to be satisfied.
This practically is the demand for the equality of the total enthalpy to assure that
the chemical reactions of the flows have the same supply of energies. The equality
of p_L ensures the equality of the ratio of the characteristic distance of the
relaxation process to the characteristic length of the body (flow field) (see Eq.
(0.26), where A is understood as relaxation distance). Binary scaling law can be
derived from the continuum equations (see [11]). Zhang Hanxin [12] obtained
from the Navier-Stokes equations with chemical reactions, that when only binary

collisions are important, the simulation parameters are

) Ma_U_,p.L,Ma_ =10~13. (0.29)

2) V,U_,p_L,Ma_=13~15, (0.30)

where V. =«/5Mam/\[1€ . Shen has shown in [11], that there is not the need to
distinguish the similarity in Ma_ and IZ . For if we have Eq. (0.29), the
similarity of Ma_and U_ leads to the similarity of the static temperature. And
when there is similarity of p L,U_ and equality of static temperature, the
Reynolds number Re_=p LU_/u is also the same, so the similarity of 17: is
also satisfied. That is, Egs. (0.29) and (0.30) are summed up as the equality of the

static temperature and the similarity of

U.p.L, 0.31)
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i.e., the binary collision modeling law or binary scaling law follows.

It is important to determine the applicability of the binary scaling law under
different conditions. Ellington [13] determined its scope of application at
relatively low speed. Shen et al. [14] calculated the electron densities around the
blunt nose at the altitude of 70km and higher using the thin viscous layer
approximation with chemical reactions and showed on numerical example the
applicability of the binary scale law in the continuum regime. The calculation of
Moss [15] by the direct simulation Monte- Carlo method [16] showed that at
certain altitude it is applicable to the discrete molecular method.

Owing to the important position of the direct simulation Monte-Carlo (DSMC)
method in rarefied gas dynamics, it is appropriate to discuss the similarity law of
simulation. The DSMC method uses simulated molecules of number much fewer
than the number of real molecules to represent the behavior of real molecules. In
early works the product of the number density and the cross section of the
molecules was kept constant to ensure the similarity of Kn number in the
simulated flow and the real flow. This led to the much larger seeming size of the
simulated molecules in comparison with the real molecules. But this had no
essential consequences, it was used only to ensure the correct collision frequency
under small number of simulated molecules. The current way of keeping similarity
is to determine the number of real molecules one simulated molecule represents,
and take into account that a simulated molecule represents a large number of real
molecules when counting the number of collisions and calculating the
macroscopic magnitudes. Appropriate choice of collision partners and implement
of certain number of collisions during one time step in a cell guarantees the
simulation of real flow. At least in the case of one-dimensional and
two-dimensional flows, small number of simulated molecules represents the
certain real situation in the real flow. In the one-dimensional flow, when we take
very narrow gap between the two cross sections along the direction of variation of
the flow field, the number of the real molecules is also very small, and the equality
of the simulated molecules and the real molecules can be reached. In the
two-dimensional flow, when we take very thin slice parallel with the flow plane as
the representative flow field, the same situation happens. Then in the real flow

field, as the number of molecules is extremely small, the fluctuations of the
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macroscopic magnitudes are real. From the theory of probability it is known, that
the standard deviation from its mathematical expectation of the measured value of
a physical magnitude in a volume containing N particles is proportional to

1/ JN . This is the reason why the number of simulated molecules and the sample
size should be taken sufficiently large. Owing to the limit in computer storage,

under the condition of certain number of simulated molecules, two types of
averaging processes, ie., the time average and the ensemble average are adopted
to reduce the variance. Time averaging is an averaging obtained by summing the
molecular properties over many time steps and is used in the steady problems to
obtain the macroscopic characteristics of steady flows. Ensemble averaging is here
referred to as an averaging process taken over a large number of instantaneous

averages in the same space element at the same time instant in an unsteady
problem to increase the sample size. Note, sometimes it & preferable to use large
number of simulated molecules and avoid the ensemble averaging in unsteady

flow problems to reveal the process in real time and study the physical instability.
Too large a difference between the number of simulated and real molecules
represents in some problems essential difficulty. For example, in the ionized gas,
to use the usual proportion of the numbers of simulated and real molecules to
simulate the re -entry ionized flow field, the electric field caused by the fluctuation
of the charged particles is much larger than the real electric field in the flow. Itisa
problem under investigation to simulate the electric field of the ionized gas around

are-entry body by the DSMC method.
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1 MOLECULAR STRUCTURE AND ENERGY
STATES

1.1 DIATOMIC MOLECULES

Air is a gas mixture composed of 76.3 % (mole fraction) of N, and 23.7% of O,.
At relatively high temperature the internal energy states change, air dissociates
into N and O, and NO is produced. Under even higher temperature ionization oc-
curs, and ions and electrons are produced accordingly (with radiation occurring).
To study the internal energy exchange, dissociation and ionization that are going
on in the air, some basic knowledge of quantum mechanics, statistical mechanics
and chemical kinetics is needed, it is not possible to introduce them comprehen-
sively. As a start and guidance, only the outline of the basic knowledge of the in-
ternal energies is given here. This is an attempt to build the understanding of the
internal energies, internal degrees of freedom and the distribution of internal ener-
gies on the basis of the same profoundness as the understanding of the transh-
tional energy in the next chapter. For the classic exposition of the mokcular struc-
ture see the book of G. Herzberg [1].

The starting point of description of the structure and the internal energy states
of an atommolecule system is the quantum mechanics or wave mechanics. For a
particle of mass m , the wave function ¥ depends on the coordinates x, y, and
z . Schrodinger postulates that y satisfies the following equation [1]

2 2
%+%+%+%(E—V)w=0, (1.1)
where V is the potential energy; F is the energy of the particle; 4 is the Planck
constant=6.626x107* Js . Equation (1.1) is called Schrodinger equation, the solu-
tion of it is naturally to be single valued, finite, continuous and to have zero value

at the infinity. This is possible only for certain values of the energy £, and such
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values £ are called the eigenvalues, i. e. the energy values of stable state. Such
values are usually discrete, that is, the energies are quantized. The corresponding

solutions y of the equation (or ¥ =ye ™"

) are called the eigenfunctions. Ac-
cording to Bohr’s hypothesis, ‘I"P*dr=|‘}’|2dr=|q/|2dr gives the probability of
finding the particle in the volume element dr at the position given by the coordi-
nates arguments of the function y .

The nucleons of the diatomic molecule repel each other due to the presence of
the protons, the interaction of the outer shell electrons keeps the atoms remain in
one molecule. The Schrodinger equation governing the diatomic molecule can be

written as

o’y
_Z[acz @}? +—52.T)+

2 2 2
S| S T S S v -0,

where m is the mass of the electron; M, is the mass of the kth nucleus; x,, y,, z
are the coordinates of the electrons; x,, y,, z, are the coordinates of the nuclei;
E is the energy of the system; V' is the potential energy of the system, i. e., the
sum of the potential V, of the electrons ( as the function of x,, y,, z, ) and the

Coulomb potential ¥, of the nuclei, i. €.

One may try to use the method of separation of variables to solve Eq. (1.2). Write
the solution in the form
W=, (X 0055 Y 2 W (X Ve Ziee ) (1.4)

where y, depends only on the coordinates of the nuclei. Let y,and w  satisfy the

following equations respectively

81([/ 'y 87‘52m{ ;
£ + £+ EC-V =0, .

1 | 0w 621//. oy, 87: ( ,
v I + VI E E? _ V = 0 3 .
o { R vl s ol W (1.6)
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Eq.(1.5) is the Schrodnger equation describing the notion of the electrons in
the field V, when the nuclei are fixed and motionless. V, depends on the distance
between the nuclei. The solution of Eq. (1.5), i.e., the eigenfunctions y, and the
eigenvalues E¥, also depends on the distance between the nuclei. Eq. (1.6) is the
Schrodinger equation describing the motion of the nuclei. In comparison with Eq.
(1.1), one can see that the sum E“ +V plays the role of the potential of the force
exerted by the nucleus, i. e., the sum of the electron energy E“ and the Coulomb

potential ¥,

E“+V, (1.7)

plays the role of the potential governing the vibration of the nuclei. The curve of
the variation of the value of Eq. (1.7) with the distance between nuclei is usually
called the potential curve of the molecule. 1t is seen that the condition for the satis-
faction of Eq. (1.2), when the w_and y_in Eq. (1.4) satisty Egs. (1.5) and (1.6), is
that

o M, dx, dx, dy, dy, 0z, 0z,

k

ZLH oV, v, 9V, 0V, V. IV, ) +

2]

o)  dyf oz

: (1.8)
is small in comparison with Eq. (1.5) and Eq. (1.6). This condition usually is satis-
fied.

Eq. (1.6) is the Schrodinger equation describing the behavior of the motion of
the nuclei under the action of the potential £+ . Two nuclei of the diatomic
molecule can accomplish motions of two modes, i.e., the rotation around the axis
passing through the mass center of two nuclei and perpendicular to the line joining
the nuclei (internuclear axis) and the vibration along the internuclear axis. Corre-
spondingly, under the first approximation the eigenfunction can be expressed

as
1
Ve STV (1.9)

where y, is the eigenfunction of the linear harmonic oscillator, dependent only

on (r—r), r being the instantaneous distance between nuclei, . being its value
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at equilibrium; y_is the eigenfunction of the rigid rotator, when the internuclear
distance retains the value at equilibrium, and y_ only depends on the orientation
of the molecule in space, ¥, =y (8,¢), where & ,¢ being the zenith angle and
the azimuth angle. In the following the harmonic oscillator and the rigid rotator
will be dis cussed successively.

Harmonic oscillator is referred to as a mass point acted upon by a force F pro-
portional to the distance x from the equilibrium location and directed to the equi-

librium location

F=—kx, (1.10)

where £ is the force constant, or, equivalently, the potential ¥ can be expressed as

1
V:E/cxz. (1.11)

That is, the harmonic oscillator model uses parabola to approximate the potential
energy curve. The harmonic oscillation of a diatomic molecule with the masses
M, and M, of two atoms can be reduced to the motion deviating from the equi-

librium location of a single mass point with the mass u

u ——M_ 1.12
M+ M, (1.12)
called as the reduced mass. The classic mechanics gives
d’x
=—fx. 1.13
e (1.13)
The vibrational frequency is obtained as
oL [
m\e (1.14)

The wave mechanics description of the harmonic oscillation of the two nuclei of a

diatomic molecule is given by the one-dimensional Schrodinger equation

d? 8’ 1

Making use of Eq. (1.14) and introducing the notations A =8m’uE/h’ |

a=4n’uv/h, and &= Jax , the above equation can be written as
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d*y,

Ve v (1o, =0. (1.15)
dg
The solution of this equation can be written in the fo llowing form

v, = Ce* ”ngén—(e’g2 ),n =0,12,---.

The second differentiation gives

d’y, PR IE
dg?

{(52 e (ef)ﬁg%(e—f)_z%(ge—f)} .

Applying to the last term the Leibnitz formula for the nth order derivative of the

production of functions

i=0

and substitutingy, and d’y, /d&* into Eq. (1.15), one sees that when

A z(n +l)2a ,
2

the equation is satisfied. Thus the solutions of Eq. (1.15) that are single-valued, fi-
nite, continuous and vanishing at e are possible only when the values E of the

energy of the oscillator take the following discrete eigenvalues
1
Ev.n: n+5 hV, n=0,1,2,3,“' (1.16)

i. e., the quantized (discrete) energy levels of the harmonic oscillator have equidis-
tance spacing, n is the vibrational quantum number, giving the ordinal number of
the energy levels.

The rigid rotator or the dumbbell model is the simplest model to represent the
rotation of a diatomic molecule: two mass points of masses M, and M, are fas-
tened at the ends of a weightless rigid rod (the length r being kept unchanged).

The moment of inertia of the system is



26 | MOLECULAR STRUCTURE AND ENERGY STATES

I=Mpr+My],
where
MZ M!
h=——"—r, h=———F,
M+ M, M, +M

or when expressed by u (Eq. (1.12))
[=ur. (1.17)

There is a relation between the energy E=(1/2)/w’ and angular momentum

P =Iw for the rotator in classical mechanics

2
E=—§7. (1.18)

As the rotator is rigid, so ¥ =0, and the Schrodinger equation has the form

2
9 1//2,. +87v,(/2 8%//2 87:2;1 By, =0
ox* oy & h

(1.19)

Quantum mechanics states, that the solutions ¥, of Eq. (1.19) that are single-
valued, finite, continuous and vanishing at o are possible only when the values E

of the energy of the rigid rotator take the following discrete eigenvalues

2
,Jz—g%J(JH), J=012,- (1.20)

™

i. e., the energy levels of the rotator increase in a quadric law (the spacing of the
energy levels increases as an arithmetic progression), J is the rotational quantum

number. The corresponding eigenfunctions are the surface harmonic functions
¥, = N,PM(cosf)e™”, (1.21)

where N, is the normalizing constant, P (cos6) is the associated Legendre

function

dJ+M

P (&)= -€) FEEaCR

M is the second quantum number and can take (2J +1) different values

=J(J-1)(J=-2), = {J-1),~/, (1.22)
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i. e., corresponding to one egenvalue of the rotation (see K. (1.20)) there are
(2J +1) eigenfunctions (see Eq. (1.21)). The probability of appearance of the par-
ticle in the orientation 0, ¢ is

2

v = N,?[é“' (cose)J (1.23)

which is independent of ¢ . That is, the probability distribution is axisymmetric,
the 8 dependent distributions are presented by the solid lines in Fig. 1.1. The
situation that a particle with the same energy can have different states is called de-
generate state, the number of linearly independent eigenfunctions corresponding to
one eigenvalue is called degeneracy. Thus, the rigid rotator having a rotational

quantum number J is in the degenerate state with degeneracy of (2J +1)

g, =2J+1. (1.24)

This corresponds to the space quantization of the angular momentum vector. From
Eq. (1.18) it is seen, that when E takes £_, (see Eq. (1.20)), the angular momen-
tum is
h h
P=—JJ(J+1)=J—,
2r 2
i.c., (h/2m) appears as the unit of angular momenta, and the angular nomentum

is approximately J times of (h/27).If M represents the angular momentum

vector of value P, then according to the quantum mechanics, the projection of M

(A1 =0
J=1 @@
M =0 M=l
= 8 R e
|Afl=0 ML M2
- s
[ A =0 M I=1 | A =2 AL =3

Fig. 1.1 The probability distributions of the rigid rotator for the rotational quantum num-
bers J=0,1,2,3
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on any direction (for example the electric or magnetic field) can only be the inte-

ger times of (h/2r), thatis M, -(hf2m), where
M,=J,(J -1),(J 2),---.~] . (1.25)

That is, M can only form certain angles with the given direction. Figl.2 shows

the space quantization of the angular momentum when J =1,2,3.

In the above discussion we have divided the molecular energy into three
modes : electronic, vibrational and rotational, leaving the electronic energy not de-
fined exactly. Generally, the electronic energy is defined as the minimum of
E“+V i. e. the minimum of the potential energy function of a given steady elec-
tronic state, and is denoted by &,. In the first approximation the vibratioinal en-
ergy €, and the rotational energy ¢ are given by the Egs. (1.16) and (1.20). Now
let us estimate the relative order of magnitude of the three modes of energies. Use
d to denote the linear scale of the molecule. The electronic energy €, is associated
with the motion of the electron with mass m in the molecular scope d, the order of
magnitude of the electron velocity v, according to the Heisenberg uncertainty
principle (see Eq. (0.22)), can be estimated as

h

Y~ —

md

The order of magnitude of £, is mv?, that is

Fig. 1.2 Space quantization of the angular momentum vector of value s (J +1) /271 in
the field F
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2
E, ~ .
¢ md?

(1.26)

The order of magnitude of the vibrational energy €, according to Eq. (1.16) and
Eq. (1.14), is h(k/M)vz, here M is the mass of the nucleus. The order of the
force constant £ can be obtained in this way: the change of the internuclear dis-
tance by a value of 4 would lead to the distortion of the form of the electronic
wave, and the change of the potential energy is ~kd”, the order of it should be

correspond to the electronic energy €,. So we have
k~eg, ld*,

from where the estimate of £ is obtained
NI
&, ~h( kI MY e /-”lge . (1.27)
\/Md M

The order of magnitude of the rotational energy ¢, according to Eq. (1.20) and Eq.
(1.17)is

2
m

£, ~—s~—F,.
Md® M

(1.28)

As the mass M of the nucleus is four orders of magnitude larger than the mass m
of the electron, M/m~10*, according to Eq. (1.27) and Eq. (1.28), one can ascer-
tain, that £_ is two orders of magnitude smaller than¢_, and ¢, is another two or-
ders of magnitudes smaller than ¢ .

Fig 1.3 is the diagram of two electronic energy levels with their vibrational and
rotational energy levels. A and B are the electronic energy levels;
n,,n, =0,1,23,---, are several first vibrational energy levels;/,,J/, =0,1,2,3,--- are
several first rotational energy levels. Any energy level in the figure represents the
energy of the molecule of energy ¢, and corresponds to certain electronic energy
level, certain vibrational quantum number and certain rotational quantum number.
£ can be presented as the sum of the electronic energy, the vibrational energy and

the rotational energy

E=¢g+E+E. (1.29)
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Fig. 1.3 Two electronic levels 4 and B with vibrational energy levels
n,,n, =0,1,2,3,--- and rotational energy levels J,,J/, =0,1,2,3,---

This certainly is an approximation, for there are mutual interactions between three
energy modes, and the vibrational mode can adopt the anharmonic oscillator
model with more realistic potential energy curve (to modify the parabola adopted
by the harmonic oscillator model), the rotational mode also can be improved by
the non-rigid rotator model. The vibrating rotator model (or the rotating oscillator
model) taking into account simultaneous rotation and vibration gives results in

better agreement with the observed fine structures of the spectra.

1.2 ENERGY DISTRIBUTION OF MOLECULES

In this section the methods of statistical mechanics are introduced to calculate the
equilibrium energy distribution of molecules. The statistical mechanics gets cogni-
tion of the macroscopic properties of matter basing on the staring point that matter

is composed of tiny particles without penetrating into the mutual interaction be-
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tween the particles, so the results of statistical mechanics are applicable not only

to gas molecules.

Consider a system composed of N particle with a total energy of E in the

volume V', each particle can have only discrete energies €,,£,,€,,+-,€ -+, the de-
generacies of them are g,,g,,g;,"",g,,-*- . At a specific instant the numbers of
molecules occupying corresponding energy levels are N, Ny, Ny,-- N -
N = 2 Ni (1.30)
E=ZN/5/' (1.31)

The problem we are concerned is: what is the most probable state of the distri-
bution of the energy over various energy levels? Or, in another formulation, what
portion in the whole number N of particles does the number V; of molecules pos-
sessing energy level ¢, constitute? To answer this question, the methods of statis-
tical mechanics are to be used, a bridging relation connecting statistical mechanics
with thermodynamics — the Boltzmann relation — is needed, and an even more
fundamental question must be answered: i.e., what in the number & of different
possible ways to distribute the N particles over certain allowable energy levels
€,,€),65,7,€ oo+, provided that they obey Eq. (1.30) and Eq. (1.31). If any possi-
ble distribution of the particles over the allowable energy levels in consistence
with the macroscopic state (N, V and E ) of the system is defined as a micro-
scopic state of the system, then the latter question is reduced to: for a given mac-
roscopic state what is the number Q of the microscopic states? In the following
we start the discussion of statistical mechanics from the Boltzmann relation, then
we get the total number of microstates from the Bose-Einstein statistics and the
Fermi-Dirac statistics, and give the answer to our question, i. ., how are the ener-
gies distributed over the energy levels. About the contents of this section readers
are referred to reference [2]. It is noted that the statistical mechanics is not con-

cerned with the nature of the particles and the interaction between them, so the re-
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sults are not limited to gas molecules. The exposition of this section is not an
overall discussion of the statistical mechanics, the main concern here is only the

problem posed in the beginning of the section.

1.2.1 BOLTZMANN’S RELATION

Boltzmann’s relation is an important relation connecting statistical mechanics and
thermodynamics, it presents entropy S of thermodynamics through the quantity

Q of statistical mechanics

S=khQ, (1.32)

where € is the number of ways in which the N particles are distributed over the

energy levels £,,¢,,€,,---,€ ,,---, as defined above, or, it is the number of possible

I

3

microstates of the system, and obviously it represents the “ randomness” of the
system. Boltzmann’s relation is a fundamental law of physics, its formation from
hypothesis into theory is determined by the verification in the practice and the
success of its theoretical system. Here the elucidation but not the proof of this re-
lation is given. To show the increase of the entropy with the randomness quantita-
tively the example of perfect gas is used, but this is done only with the purpose of

illustration. The validity of the relation is not limited to the case of perfect gas.

The definition of entropy S is given by the following differential relationship

_99
ds===, (1.33)

where dQ is the heat received by the system, and according to the first law of

thermodynamics
dQ=dE+pdV, (1.34)

where £ is the internal energy of the system; p is pressure. Substituting Eq.

(1.34) into Eq. (1.33) yields

1
dS:?(dE+pdV). (1.35)
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On the example of perfect gas after integration (and by utilizing the well known

thermodynamics relations) one obtains

- R P, const, (1.36)
y-1 pr
or
S:—]/R;llnT—-RInp+ const, (1.37)
y—

where R is the gas constant; v is the specific heat ratio.

Now we cite two examples when in a closed system (the number N of parti-
cles remains the same) the entropy increases and, correspondingly, the degree of
the randomness or the disorder of the system increases. First consider an example
of perfect gas, the temperature remains constant and the volume increases to V,,
say to two times of the original volume V|, and accordingly the pressure becomes
from p, to p, =(1/2) p; . Then the entropy of the system increases: due to the is o-

thermal condition, from Eq. (1.37) the entropy increase is obtained
S, =8 =Rin(p,/p,)=(In2)R .

As the volume is increased, it is possible to find the gas particles in larger volume,
the degree of uncertainty of the particles increases, correspondingly the degree of
disorder or randomness is also increased. Now consider the reversible heating of a
system of perfect gas having constant volume. This time due to the constancy of
the volume, we have p,/p =T ,[T,, from Eq. (1.37) it is seen, that with the in-
crease of the temperature, the entropy increases. The constancy in the volume
keeps the degree of uncertainty of the gas molecules in position constant, but the
increase in the temperature means the increase of the speed of the thermal motion,
i. e., the increase of the degree of uncertainty of the velocities of the molecules in
the system, so the degree of the disorder also increases. Thus, if the nunber Q of
the microstates is used to measure the degree of the disorder or the randomness of

the system, one can write

S=7(Q), (1.38)

here f isan undetermined function of Q.
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If combine two systems with numbers N,, N, of particles, entropies §,, §,,
and numbers Q , Q, of microstates into one combined system, the entropy of the

new system is S, +§,, and the number of microsystems is Q. . This specifies

2

the condition that fshould satisfy
f(‘ngz) :f(Q‘l) +f(§22) . (1.39)

Differentiating Eq. (1.39) first with respect to Q, and then to Q, yields
ngzf"(glgz) +f'(9192) =0,

or, by changing the argument,
QM)+ f'(Q)=0.
The general solution of it is

f(Q)=4AIQ+B. (1.40)

By substituting Eq. (1.40) into Eq. (1.39) one can prove that 4 is an absolute con-
stant independent of the number N of the particles of the system, denote it by &,
i. €., the Boltzmann constant. The constant B can be taken as B =0, which means
that the entropy of a completely ordered system ( Q =1 ) is defined to be 0. So one
obtains

S=knQ,

1. €., the Boltzmann relation (1.32) follows.

1.2.2 CALCULATION OF THE NUMBER Q OF MICROSCOPIC STATES

The task of calculation of the number Q of microstates is decomposed into three
steps. The first step is simple and concrete, i. e., to find, how many ways are there
to distribute N, particles over the energy states g, of energy £,? Or, pointing at
the more general cases, to find, how many ways are there to distribute N, parti-
cles over the energy range of small energy extents (5, ) neare, (the average en-
ergy of this range) including a number g, of energy states? The second step is,

relative to a certain combination of N to sum these known numbers of ways of
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distribution for different energy ranges ¢, to obtain the total number of all possi-
ble microstates for a certain combination of N, in accordance with the macro-
scopic state. The third step is to sum up the results of the second task for all possi-
ble combinations of N, to obtain the total number of microscopic states of the

system.

For the accomplishment of the first step, according to the difference in the
quantum properties of the particles, different statistics, i. e., Bose-Einstein statis-
tics or Fermi-Dirac statistics, must be employed. Bose-Einstein statistics applies
to bosons, 1. e., atoms or molecules composed of even number of elementary parti-
cles (electrons, neutrons, electrons). For bosons, any degenerated state of energy
level ¢, can be occupied by any number of particles. Fermi-Dirac statistics ap-
plies to fermions, 1. e., atoms or molecules composed of odd number of elementary
particles. Fermions obey the Pauli exclusion principle, i. e., one quantum energy

state can be occupied only by one particle.

The first task (to find, how many ways are there to distribute N, undistinguish-
able particles over specified energy states g, ) is mathematically equivalent to the
question of, how many ways are there to distribute N, undistinguishable particles
into g, marked containers? Or, if use the range between two neighboring vertical
bars aligned in one raw to represent a container (the space to the left of the first
bar and the space to the right of the last bar also represent two containers), the task
is reduced to: how many ways of arrangement are there to line up N, particles
and (gj —1) bars?

In Bose-Einstein statistics there is not restriction to the number of particles be-
tween the neighboring bars. At first assume artificially that the N, particles and
( g —1) bars can be distinguished from each other (having individual properties),

to line them up there are
(N, +g,-1)!

different ways of arrangement (permutation of (N/ +g;- 1) elements). But the as-

sumption that the particles are distinguished from each other is incorrect, it n-



36 1 MOLECULAR STRUCTURE AND ENERGY STATES

creased artificially the number of ways of arrangement by N,! too many times,

similarly, the distinguishing of (g/. ~ 1) bars also increased artificially the number

of ways of arrangement by (g,/ - 1)! too many times. So
(v, +g-1)

N(g,-1)! (1.41)

is the number of microscopic states when distributing N, undistinguishable parti-
cles into g, different energy states of the energy group £, with no restriction to
the number of particles in every energy state (Bose-Einstein statistics).

In the Fermi-Dirac statistics, at most only one particle can be put into each
container, so N, <g, . At first assume artificially that the N, particles can be dis-
tinguished from each other, the number of ways to put them into g, containers (at

most one particle into one container) is obviously
g.i(gj —1)~-~(g, -N,+ 1) >

for the first particle has the choice of g, containers, the second one has the choice
of (gj—-l) containers, .., the Nth particle has the choice of (g/.-NjH) con-

tainers. The above formula can be rewritten as
gj!/(g, _Ni)!'

But in reality the N, particles are undistinguishable, so the number of arrange-

ment has been increased by N ! times too many. So

g/[(g -N )N, (142)

is the number of microscopic states (Fermi-Dirac statistics), when distributing ~,
undistinguishable particles into g, different energy states of the energy group,
when in every energy state there can be at most only one particle (Pauli principle).

Now we proceed to the second task. For the whole macroscopic system, the
numbers of ways of arrangement in various energy levels (or energy ranges with

intervals (55,. )j having &, as average values) are independent of each other. For
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certain combination of N, satisfying Eq. (1.30), the number of ways of the energy
arrangement of the macroscopic system is the continued multiplication of the
numbers of microstates of various energy levels. From Eq. (1.41) and Eq. (1.42),
one obtains the total number of microstates under certain combination of N, for
Bose-Einstein statistics and Fermi-Dirac statistics respectively
N, +g, 1)

WBE(NJ)=1:[(—W, (1.43)

Weo(N,) = N =~ wo ,~-N )W, (1.44)

The third task is to sum over all possible macroscopic states, that is, to sum up
over all combinations of N, to obtain the total number of the microstates of the

system

Q= > w(N,).

N, satisfy Eq. (1.30) and Eq. (1.31)

(1.45)

It seemed very difficult to carry the calculation of the sum of Eq. (1.45). Fortu-
nately, closed result can be obtained when N — oo | and the N for systems we are
treating are as a rule very large. Under such circumstances in this sum only the
maximum term W__ has the most important contribution to £ . To be concrete, a
proof can be given (see at the end of this section) to show, that when in Q there
are N terms important and can be presented as NW__ and other terms can be ne-
glected, the following formula is valid

InQ/InW__ . —1. (1.46)

So, when utilizing Boltzmann’s relation In#__ can be used instead of InQ2 .

1.2.3 BOLTZMANN DISTRIBUTION

The number W of microstates counted in the last subsection gains the maximum

value W under some specific combination of N,. This state is defined as the

max
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most probable state. Now consider the condition under which InW gains the

maximum. From Eq. (1.43) and Eq. (1.44) one has

InWoe= Y[ In(N, +g,~ 1) Fn(g, 1)1, 1], (1.47)

W, = Y[ Ing,=1n(g, =N, )= N, 1] (1.48)
]

With the help of Stirling formula, when x — oo

Inx!=x lIox —x , (1.49)

Eq. (1.47) and Eq. (1.48) can be written

InW = Z{N m[Nf +1) ln(liiv—’-ﬂ. (1.50)

The condition under which In /¥ gains maximum is

dinW = EMdN =0.

After using Eq. (1.50) this condition becomes

S| EL41]an =0. (1.51)

From Eq. (1.30) and Eq. (1.31) two physical conditions that must be satisfied are
obtained

Ydn, =0, (1.52)

> e, dN,=0. (1.53)

Utilizing the Lagrange’s method of undetermined coefficients, multiplying Eq.
(1.52) and Eq. (1.53) by « and B respectively and combining with Eq. (1.51)
yields

J j

E[m(i’;—f'il}—a—ﬁeldiv,zo. (1.54)
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Let the coefficient of dN; to be 0, the relation which N, must satisfy is obtained

g.
ln[#il)—a—ﬂ&izo .

/

From this relation the specified value of N, that makes In# the maximum

InW,_, or the value of N, in the most probable macroscopic state, is

max

N, 1

J

T e (1.55)
S

From the discussion of the concrete energy levels of diatomic molecules in sec-

tion 1.1 it is seen, that the spacing between the energy levels is extremely small,

the particles are sparsely distributed among the allowable energy states, that is

g; >N, (1.56)

Under such circumstances the factor 1 in the denominator of Eq. (1.55) can be
omitted, and identical result is obtained for both Bose- Einstein and Fermi-Dirac

statistics

1
eu+ﬂ.ﬁ;, : (157)

T

e

This limiting result is called the Boltzimann limit and can be obtained utilizing the
Boltzmann statistics, or the classical statistics. In the Introduction it is shown, that

if the following equation (Eq. (0.23))

(B3mkT)" 1(n¥) >> 1 (1.58)

is satisfied, the quantum effects are not remarkable, and the classical methods can
be used to treat the motion of particles. It has also been shown there, that Eq.
(1.58) usually is satisfied in situations that are going to be discussed by us. This
shows, that in the problems concerned by us the classical statistics is correct, that
is, the limiting Eq. (1.57) is valid, and hence the condition Eq. (1.56) is valid.
Substituting Eq. (1.57) into the closure condition Eq. (1.30) and the energy

condition Eq. (1.31) leads to the equations for determining o and f
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g g.£.
& =N, XoG=E. (1.59)

From the first equation of Eq. (1.59) « is easily determined
_N
g e’ (1.60)
J

Substituting it into Eq. (1.57), one obtains the most probable distribution of parti-
cles over various energy levels

—Be
o ¢
N=NZ—
_ﬁE/ ’ .
R (1.61)
J

Substitution of Eq. (1.60) into the second equation of Egs. (1.59) yields

- fe,
N2
Se " (1.62)
J

To determine 8 we need to apply Boltzmann’s relation and in the calculation use
Inw__ instead of InQ2 (see Eq. (1.46)). For this reason we write In# (see Eq.
(1.50)) under condition g,> N, (Eq. (1.56)) as

1nW=2[Ni1n;—f+Nj]=2N{ln7"V%+ 1]. (1.63)

J J

Substituting the value of N’ into the above equation, one obtains In¥,

AN N
g.e Jl. i
anmx=2Nj ln[(2 d v )e =+1|=
g/eiﬁg/ ]
YN, In———+fe, +1|=

Yz’

N|In / +1 |+ BE.
s
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Owing to Eq. (1.46), one can replace InQ by the above expression. Thus

Bolt zmann’s relation yields
Yee
S=k Nln’T-H +BE]. (1.64)

From Eq. (1.35) we have

95y L 1.65
O J, v T (1.65)

Now differentiating Eq. (1.64), noting that § is a function of £ (see Eq. (1.62)),

o e Pu
() :k.{mi@[m&;ml}ﬂ@?ﬁ}.
oE VN 0B N 0E

With the help of Eq. (1.62) it is easily seen, that the partial derivative with respect

gives

to B inthe above expression is actually 0, i. e.

-fe -Be
g,e’’ -)> Eg.e
i N hlll——-%l +BE|=N Z’A_ﬁ +E:_N£+E—_—()_
B N Yg e N

Thus we have

as
(a_E)M =kp (1.66)

Comparison of Eq.(1.64) and Eq. (1.65) gives
B - 1.67
T (1.67)

Consequently, the most probable distribution of energy over different energy lev-
els is (see Eq. (1.61))

;= See ™ (1.68)

This is the renowned Boltzmann distribution. The sum in the denominator is called

the partition function
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—&']/A'T
0=Yge"". (1.69)
J

This result is obtained in the understanding that £, is an average value of the
energy range of interval (&, )j including a number g; of energy states. If now
consider the case in which the energy values ¢ of different energy states in the

energy ranges are all different, the partition function can be expressed as

0= Ze""” . (1.70)

where 2 means summation over all energy states. After introducing O the

i

Boltzmann distribution can be written as
N;=Nge "0 (1.68)

Note that after the determination of B and the introduction of partition func-

tion Q the energy E of the system can be expressed as
N eIk
E:EZf;‘jgje S (1.71)

Owing to the limitation in space the following fact is not expounded and proved
mathematically here, i. €., the number # of microstates as a function of N, is
very steep in the vicinity of N. It is namely the values of # corresponding to
those N, that are very near to N, make the main contribution to Q (see Eq.
(1.45)). That is, when there is even though only very small deviation of particle
distribution N; from the most probable distribution N, the number W of the
microstates would decrease drastically. Besides, we are standing on the foundation
of the ergodic principle that constitutes the basic starting point of statistical ne-
chanics, that is, all possible microscopic states have the same probability. Starting
from these two points we inevitably come to the conclusion: the system defined in
the beginning of this section, composed of N particles and having total energy

E , most time is necessarily in the macroscopic state satisfying Boltzmann distri-
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bution or in the macroscopic state that deviates extremely little from it. That is,

Boltzmann distribution Eq. (1.68) is the most probable distribution of energies.
Now we proceed to prove, that when in the total number Q (expressed by Eq.
(1.45)) of microstates of the system there are N terms important and can be pre-

sented as MW __ | while other terms can be neglected, the formula Eq. (1.46) is

max

valid. According to this condition, we have

n& InN

=1+ ,
InW, InW,,

max

where In W, is expressed by Eq. (1.64), then on the basis of Eq. (1.69) it can be

written as

InW,, =N(InQ-InN +1)+ BE .

Because E = ZN ;E; should be larger than the energy when only the transhtional
energy is fully excited, £>(3/2)NkT. As Q and f are independent of N | so
we have Eq. (1.46).

1.3 INTERNAL ENERGY DISTRIBUTION FUNCTIONS

In section 1.1 it is shown, that when the interaction between the various energy
modes are neglected, the intemal energy of molecules can be presented as the sum
of electronic energy &, vibrational energy € and rotational energy ¢ , if add the
kinetic energy &, of the motion of molecules, the energy of a molecule can be

presented as

E=E+E+EFE, . 1.72)

Correspondingly, it is seen from the form of the expression Eq. (1.70) of the parti-
tion function @, that the complete partition function has the factorization prop-
erty. i. e., it can be expressed as the product of the partition functions of the differ-

ent energy modes

0=0000, (1.73)



44 1 MOLECULAR STRUCTURE AND ENERGY STATES

Although the electronic energy of a molecule is re latively large in the order of
magnitude, but under not too high temperature the electronic state usually is not
excited, for the spacing between the lowest energy level and the second lowest en-
ergy level is much larger than 4T . For Ny, O;, No, N and O, when the basic state
energy €, is taken as 0, the partition functions of the electronic state (see Eq.
(1.69)) can be written

Nz : Qe =1 +0(e"”°°‘“’7)
0,: Q =3+2¢"7 +0(e~19<wr)
NO: Q =2+2e7" +0(e—6>0mﬁ)
N: Q=4 +0(e’28""‘¥")
0i Q=SHE I (e, 079

where the last terms of the right hand sides represent the orders of magnitude of
the neglected terms. These are the results obtained from the spectra data [3] of the
transition between different energy levels of the 5 components. For N, and N, the
electronic partition functions 0 are approximately constants. This is true in some
degree also for O, when the temperature is not too high (even though the second
term has been retained in the expression of Eq. (1.74)). For O and NO, under reh-
tively high temperature (7 =2000K ~ 3000K ) of practical production of O and
NO, the exponential functions e " in the second and the third terms of the third
and fifth expressions of Eq. (1.74) are approximately 1, so Q are also approxi-
mately constants. At higher temperature, for O,, the error caused by neglect of
¢ ¥ has little consequences owing to the smallness of the concentration of O, un-
der such temperatures. Thus, the electronic partition functions of the above 5
components can be approximately taken as constants. Due to the fact that the
value of energy (and also the specific energy and specific heat) is related to the de-
rivative of Q (see Eq. (1.75) below) the contribution of the electronic state to the
energy and specific heat usually can be neglected. Under higher temperature, elec-
tronic state may transit to higher energy level, and can radiate when transiting
from higher energy level to lower energy level, the contribution of the electronic

state is to be taken into account.
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For the kinetic energy of the molecular motion, the methods of the kinetic the-
ory can be used to get detailed information by analyzing the velocity distribution
function, as it will be done in the next chapter.

Thus, the internal energy discussed in this chapter is referred mainly to the vi-
brational energy £ and rotational energy £, . Now let us try to get the expressions
for total vibrational energy £ and total rotational energy E , and correspond-
ingly, the vibrational energy e, =E,/(Nm) per unit mass (the specific vibrational
energy) and the rotational energy e, =, /(Nm) per unit mass (the specific rota-
tional energy) from the expressions Eq. (1.16) of £ and Eq. (1.20) of ¢, for indi-
vidual molecules. And finally we give the expression of the internal energy distri-
bution function. In the present section m denotes the mass of the molecule.

To get the total energy, Eq. (1.71) is used. At first note, that differentiation of
Eq. (1.69) with respect to T'yields
Thus, substituting the above expression into Eq. (1.71) one obtains the following
expression for the total energy

N2 92 _ g2 9@

T T (1.75)

Correspondingly, the energy per unit mass of the gas (the specific energy) can be

written

E k0l
o=t KO pr 90

Nm m oT or ’ (1.76)

where R =kf/m is the gas constant per unit mass.
Note, e is calculated from the total energy E of the system, so it is an energy
in the average sense, i. e., the specific energy is the mean energy in unit mass.

For the vibrational energy of molecule, we have Eq. (1.16)

£, . =(n+%]hv, n=123,.-
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The zero point energy of a molecule (when n=0)1is ¢,, =(1/2) av, but this value
of € , isnonessential, and is neglected here, for only the change of the state of the

system is essential. Thus the allowable vibrational energy state can be written as

g, =nhv, n=0123,- (1.77)
From Eq. (1.69) and Eq. (1.77) the vibrational partition function is known as

— —nhv (kT
0, = Ze .

n=0

If introduce the characteristic temperature ©,

O, =mw/k, (1.78)

and put x =™ =7 as x<1, s0 O, can be written
0 —iﬂ—1+x+x2+~--———l———l— 1.79
v ~ 1-x 1-¢>7" (1.79)
According to Eq. (1.76), the specific vibrational energy is obtained as
RO

e, =—gm - (1.80)
e -1

For the rotational energy from Egs. (1.69), Eq. (1.20) and Eq. (1.24), the part i-

tion function can be written

= -J(J+1)hA
=) (2J +exp| ———|.
0, 120( ) 1{ o } (1.81)
If introduce the rotational characteristic temperature ©,
hZ
0 = 1.82
T8l (152)

and replace the summation over J by the integration with respect to J (that is
lawful for very small @r/T , and it is the case, as © is very small for N, NO and

0O,, see table 1.1 in the Appendix I)

Q=

>

O 8

(2J+ 1)e~J(J+1)®, Ty = ]:e-(@, /T)xdx
0

one obtains
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0.=T/09,. (1.83)

This result is valid only for heteronuclear molecules, i. e. diatomic molecules with
two different atoms. For the homonuclear molecules such as N; and O,, the result

must be divided by 2. But this does not influence the calculation of ¢ and ¢, for

only derivative of InQ, appears in the calculation. According to Eq. (1.76) the
specific rotational energy is obtained
k
e, =RT=—T. (1.84)
m
In the discussion of kinetic theory of gases in Chapter 2, the specific transh-
tional energy, or the internal energy associated with the translational energy per

unit mass, is obtained (see Eq. (2.31))

3 3k
e, =—Rl=——-T,
2 2m

As the translational energy of the molecule has three degrees of freedom, it is
seen that there is an energy of (1/2)kT/m shared by each degree of freedom. The
comparison with Eq. (1.84) shows, that the rotational energy is fully excited and
has two degrees of freedom. This is in agreement with the result of classical ne-
chanics. As to the vibrational energy, circumstances are different. If suppose the
vibrational energy has { degrees of freedom, then according to the principle of

equipartition of energies the specific vibratioinal energy can be written

k
ev:QRT £“-—T.
2 2m

I

(1.85)

From the comparison with Eq. (1.80), it is scen that the expression of { is given
by

20,/T
Qzﬁ. (1.86)

Only at very high temperature { — 2. According to the expressions of the trans-
lational energy, the vibrational energy and the translational energy, Eq. (2.31), Eq.
(1.80) and Eq. (1.84), the corresponding specific heats ¢, = (ae/aT)v are
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3
Cyyr =—2‘R,
c,, =R,
@ e@ T
Cov = (_vj o,/7_ %’
T (7)) (1.87)

Thus it can be seen, the contribution of the translational motion and the rotation of
molecules to the specific heat is (5/2) R, and the vibrational specific heat changes
with temperature. This conclusion arrived at through quantum mechanics is ver-
fied by the experiments

Now we require the general expression of the distribution function of the inter-
nal energy of molecules. If the number of molecules dN, out of a system com-
posed of N molecules, whose energy of certain mode lies between ¢, and ¢, +deg, ,

can be written as

ANIN = f(g)de,, (1.88)

then /(e ) is called the distribution function of that energy mode.
For the rotational energy according to Eqs. (1.68), (1.20), (1.24), (1.82) and
(1.83), we have

dN__ (2J+l)evs,_1/deJ e*f,,,"kT(2J+1)dJ _e—z‘,_z/de&_v

= , (1.89)
N 0. T/©, kT
or
-, , kT
£ )= 1.90
Ie) === (190)

For the translational energy, we make use of the results of the kinetic theory of
gases in Chapter 2. In section 2.11.1, the distribution function of the value of the
velocity x(c')dc is derived, i. e., the nunber fraction of the molecules between
¢ and ¢’ +dc’ is x(c)dc’ (see Egs. (2.197) and (2.198))

372 9
dn/n=4r| — cPexp| ~——— |dc'.
2nkT 2kT

Noting that the translational energy of a molecule is ¢, =mc’2/2, the above equa-

tion can be rewritten as
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2 1 -
dN/N:__ gl‘/ze—a,/l\ngn‘,
- (kT)s/z i (1.91)
or
2 1 Ik
fle,)=—= g/ e .
~ (kﬂ% (1.92)

In the light of the form of the distribution function f(g,) of rotational energy
with 2 degrees of freedom and the distribution function f(g,) of translational en-
ergy with 3 degrees of freedom (Eq. (1.90) and Eq. (1.92)) one can assume, that
generally the distribution function f'of an energy mode ¢ with { degrees of free-

dom has the follo wing form

f=C——C/—2—e“"/”. (]93)

The value of constant C is determined from the normalization condition

¢

2

82
(k)"

> = L
Cffd£=C'[ e“'”"rdS:C'[x2 le""dx=1,
0 0

or

C=1r((/2)

Thus, the distribution function of energy ¢ with { degrees of freedom is

1 5%71 .
= “eNT 1.94
/(#) r(g’/z)(kr)“Ze (1.94)

This is certainly true for vibrational energy €, with { degrees of freedom (see
Eq. (1.86)). According to the distribution function of vibrational energy in the
form of Eq. (1.94) (put € =¢,, { ={ ), the average value of the vibrational en-

ergy of molecules can be calculated as
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kT 7 gt &,/ kT
&4 g
r(g/z)g(kr)c’*‘e %
kT ]
S I
DI
kT g,
T(L,/2+1) =247
r(¢,/2) 2 (1.95)

This result is identical with the average vibrational energy (Eq. (1.85), where
£ is introduced according to Eq. (1.86)) obtained from the summation of molecu-
lar vibrational energy £, (Eq. (1.16)). This shows that the distribution function of

energy in the form of Eq. (1.94) yields the correct average value of energy.
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2 SOME BASIC CONCEPTS OF KINETIC THEORY

2.1 THE VELOCITY DISTRIBUTION FUNCTION

The concept of the velocity distribution f is similar with the number density in the
physical space r, but it is the number density in the phase space ¢, r, and it has
the probable sense, i.e., it is the probabilistic number density in the phase space.
For a system composed of N molecules, at any instant, the entire system is
represented by a point in the phase space of 6N dimensions (formed by velocity
¢ and position r). Consider a number of such systems, or ensemble of such sys-
tems. The probability of finding the system in the phase space element

dede,-- dc,drdr,---dr, near the phase space point ¢,,¢,,~+,¢,,1; F, 5,1y 1S

(N)
T (A A VN A ATEI W

Hdede,---de,d dr,---dr, . 2.1

This is the definition of the N particle distribution function F ™) The subscripts
1,2,3,---,N denote the mark numbers of the molecules, N is the total number of
molecules. The reduced distribution function of R molecules out of N molecules

is defined as

F(R)(CI €257 Cp Hsh ""srkyt): j“"[F(N)chH”'dCNdrRH.“d’:’V . (22)
That is, the probability of finding the molecules with mark numbers 1,2,---,R in
the phase space element dcdc,---dc drr,---dr, near the phase space point

€, €, - Cp ', T, I, TrTEspective of the positions of the other (N —R) molecules is
(R
F®d cde,---dcdrdr,---dr, .

When R =1, the single particle distribution function F" is obtained. That is, the
probability of finding the molecule with mark number 1 in the phase space ele-
ment dedr, near the phase space point ¢, r irrespective of the positions of the

other (N —1) molecules is F(I)dcldr] . Since the number of molecules in the entire



52 2 SOME BASIC CONCEPTS OF KINETIC THEORY

phase space is N, and all the molecules are identical, the probable number of
molecules in phase element decdr, is NF(‘)dcldr‘ . Kinetic theory of gases uses just
the single particle distribution function to treat the motions of mokcules.

The distribution function fused in this book is NFY e

fle,r, )= NFD (e,r, §) 2.3)

As f is the single particle distribution function multiplied by the number of
molecules, fdedr is not any more a probability, but is a probable number of mole-
cules in dedr, so fis the probable density in the phase space. By definition of the
velocity distribution function f(c,r,t), the number of molecules in time ¢ in the
physical space element dr=dxdvdz , with velocity in the velocity space element

dv = dudvdw (see Fig.2.1) near velocity ¢ is

fe,r, Hdedr . 2.4)

Practically the number of molecules in the phase space dedr would fluctuate,
fdcdr is the number of molecules in the average meaning, the definition formula
Eq. (2.4) contains the probabilistic sense and the distribution function is also
called probability function . Integrating this formula over the entire velocity space,
we obtain the number of molecules in dr, and the number density of the mole-

cules in the physical space is obviously

n=|fic. 2.5)

wi

c

R

v

U

Fig. 2.1 Velocity element dc, dec = dudvdw , in the vicinity of ¢ in the velocity space
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The distribution function f(c,r,t) introduced here is defined identically as in
the book of Chapman and Cowling [1]. This definition starts from the point that
fdedr is the (probable) number of molecules in dedr | i. e., f is defined as the
density in phase space. Some authors (e.g., Kennard [2],Vincenti and Kruger 3],
and Bird [4]) use

Se=Ff/n, 2.6)

as the definition of the distribution function. We must note the difference of these
two definitions. For example, instead of Eq.(2.5), for the distribution function f,

in Kennard or Bird, one would have

]of,(dczl.

2.2 MACROSCOPIC PROPERTIES

When the velocity distribution function f of the gas is known, all the macro-
scopic properties of the gas that are concerned in gas dynamics can be obtained by
finding the moments of f . By finding moments of / we mean multiplying f
by certain function of molecular velocity and taking integral over the entire veloc-
ity space.

According to the definition of f , Eq. (2.4) fdcdr= fdudvdwdxdydz is the
number of molecules in time ¢ in the physical space element dr=dxdydz near
r(x,y,z), with velocities in the velocity space element de =dudvdw near velocity
c(u,v,w) (in the following such velocities will be referred to as velocities in ¢,
dc, the molecules with such velocities will be referred to as molecules of class ¢).
Integrating Eq. (2.4) over the whole velocity space, one obtains the number of

molecules in dr. The density p of the gas in the physical space is obviously

Io) =m]: ]ﬁ deudvdwz m]ifdc =mn , 2.7)

—po =00 oo —co

where m is the mass of the molecule.
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For single-component gas ¢, is used to denote the mean molecular velocity ¢,
there are ndr molecules in the physical space element dr = dxdydz , their mass is

mndr , each molecule carries a momentum of mec . The definition of ¢ is
pdrc, = ch ,
or
ndrey =Y c. Q.7)’

2 ¢ is a summation over ndr molecules. The number of molecules in dr with ve-
locity ranging in ¢, de is fdedr . These molecules carry a velocity of cfdedr , in-

tegrating over the whole velocity space one obtains the value Y ¢

2 c= drf ddc.
Therefore from Eq. (2.7)" we obtain
- 1
¢, =C=—]cfic.. : 2.8)
n

The mean molecular velocity ¢, =¢ is the macroscopic stream velocity of the gas,
or the mean velocity, or the mass velocity of the gas.
Generally, if Q(c¢) is an arbitrary function of the molecular velocity, its mean

value 0 in the gas is defined as
ndrQ =30,

ZQ represents the summation over all ndr molecules in dr . The number of
class ¢ molecules in dr is fdedr, their contribution to Q is Q fdedr . Finding the
moment over the whole space ¢, one obtains the total value of O of all mokcules

m dr
Y o=drforic.

So for the mean value of arbitrary Q(c) one has the following expression
- 1
0=—ofe. 2.9)

O may represent scalar, vector or tensor.
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The velocity ¢ - ¢, of a molecule relative to the macroscopic stream velocity is
called the thermal velocity, or peculiar velocity, some times is also called the ran-

dom velocity of the molecule and is denoted by ¢’

c'=c—c,. (2.10)

A class of macroscopic magnitudes that we are concerned is related to the trans-
port of mass, momentum and energy in the flow caused by the molecular move-
ments. All of them require the calculation of the flux of certain magnitude across
some (elementary) area. Let us first obtain the expression of the flux across a dif-
ferential area element dS (see Fig. 2.2) of the quantity Q(c) associated with mo-
lecular velocity of each molecule, which may be the mass of the molecule, the
momentum or the energy of the molecule. The unit normal vector of this area ek-
ment is /. Consider molecules of class ¢ (i. e. molecules with velocity near ¢ in
dc). Such molecules that cross the area dS in a small (differential) time interval
dt are located, at the initial instant of df, in a cylinder situated on the opposite to
¢ side of dS with dS as the base and with a side length of cdt. If denote the vol
ume of this cylinder ¢-ldtdS by dr, then the number of class ¢ molecules that

cross dS in dt is

fdedr = fdcc-1dtdS . @2.11)

Fig. 2.2 The volume occupied by the molecules of class ¢ in the initial instant of d that
traverse &S intime ¢ , I : the unit normal of the surface element
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The flow quantity of O carried by the molecules crossing dS in dr is therefore

Qfdcc - 1dwds . 2.12)

To find the entire flow quantity of O carried by all classes of molecules crossing

dS in dt, one should integrate Eq. (2.12) over the entire ¢ space to obtain

dtds [ Qfc - lde = dtdSnQe-1 . (2.13)

When writing the last term, the expression Eq. (2.9) of the mean value of the
quantity carried by the molecules has been used. Dividing Eq. (2.13) by dSdt, we
obtain the flux of Q, i. e. the quantity of Q carried by the molecules crossing an

area per unit area per unit time
fofe-tde=nge-1. 2.14)

Equation (2.14) is a total flux, it includes the fluxes of molecules crossing the
area in the positive [ direction and in the opposite / direction. Some times the
flux crossing dS only in one direction is needed to be known. For example the

flux of Q in the positive [ direction is
nQc-1). ., (2.15)

As [ is an unit vector, Eq. (2.14) can be written as n-Q_c-l , and define né_c- as

the flux vector of quantity QO
nQc . (2.16)
The mass flux vector (Q=m) is
nme = pc, . 217

Pointing at the cases of the stress and heat flux to be discussed in the following,
the transports of momentum and energy of molecules concerned are the transports
in the reference frame of the macroscopic motion, i.e., the transports by gas mole-
cules moving with the mean velocity ¢, across an area dS also moving with ve-
locity ¢, . So we shall discuss the flux vector of the quantity O in the coordinate

system moving with the flow velocity ¢, , i. e., we shall discuss nQc’ .

02
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Let QO =mc’, we attain the expression of the momentum transport caused by the
thermal motion. The expression so obtained is a tensor with nine components, and

is called the pressure tensor P
P:nmc'c'zp_cvzmj‘c'c'fdc. (2.18)

The physical meaning of the pressure tensor P will become more articulate af-
ter understanding clearly its individual components. Consider the transport of the
momentum in the x direction across the surface dS with normal in the y direc-
tion in time dr . For the molecules of class ¢, this momentum is »u , the mok-
cules of this class crossing dS in dr are located in the cylinder of volume vdtdsS ,
the number of the molecules is fded:dS , the momentum in the x direction car-

ried by them is m/vudedtds . So the total flux of mu' is

jmfu'v'dc=nmu'v'zp717zP (2.19)

xy °

Similarly, the components of the pressure tensor P can be written as

12 pll'V' pulwl

P.vc P.‘(V P.\’Z pll
pP= P.m PW Pyz = pm pv'Z pm : (220)
sz sz Pzz pw'_u' pm p;v_'i

Obviously, P isasymmetrical tensor, and can be expressed in the reduced form

B =pcic =m[(¢= )¢ -q,)fdei=123, (2.21)

— [ —
=V,c, =W, ¢, =y

’ _ ’ +
where ¢, =u, ¢ o = Uy s

2 C, =V,

02 o> Ca = Wy-

At an arbitrary point P inside the gas, the pressure (pressure flux) p, acting
on 4§ and pointing in the positive direction of the surface is the flux of molecular
momentum mc across this surface along the positive direction (per unit time, per
unit area). To obtain this flux one should take Q=mc’ in Eq. (2.14), and let ¢ =¢’
(for we are considering the transport of momentum in the system connected with

the flow velocity of the gas), so we have

p,=nc']mc':pc',c':pl~c'c'=l-p:'c—'=l~P. (2.22)

The component of this pressure in the normal direction of this surface is



58 2 SOME BASIC CONCEPTS OF KINETIC THEORY

p,=1-pc ¢ =pc?. (2.23)

That is, this pressure is always positive. Pondering the definition of the pressure
flux, it shows that inside the gas the flux of the momentum crossing the surface in
the positive direction is always positive, and the surface with the external normal
1 is subjected from the gas to a pressure (the reaction of the pressure flux) pointing
in the opposite direction of /. This result shows, that the gas always exerts on a
surface a normal stress of compressing but not stretching nature. Note that the di-
rection of the stress exerted by the gas on the surface is opposite to the direction of
the momentum flux of the gas, and only when the force subjected by the surface
from the gas is pointed in the opposite direction of the external normal to the sur-
face, the surface is said to be subjected to positive pressure. For the same reason, i.
e., as the direction of the stress exerted by the gas on the surface is opposite to the
direction of the momentum flux, we define the viscous stress tensor T =7, as the
negative of the pressure tensor with the static pressure subtracted from the normal

components

? =1,=~(pc'c’;-8,p), 2.24)
where §, is the Kronecker tensor

8, =1i=j).8,=0G#),

p is the static pressure, defined as the average of the three normal components of

the pressure tensor
1 12 2 2 1 12
p:gpu +v'Hw =§pc . (2.25)

To obtain the expression of the heat flux q =g, , we start again from n@?’ , this

time one lets O=(1/2)mc®+¢,, where €, is the internal (vibrational or rota-

in>

tional) energy related to one molecule, then

q—-z-pc '+ ne, ¢’ :? c'c'zfdc+J.c g, fdc (2.26)

or
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m ) '
qi:-z—.[cic fde+ [ e, fe . 2.27)

Making use of the general expression of the mean value Eq. (2.9) and letting
0= (1/2)mc? , one obtains the expression of the (connected with the translational

energy) internal energy per unit mass

1 2 1 2
e =3¢ =—2;fc fde . (2.28)

From the expression Eq. (2.25) for the pressure p one obtains

2
p=3pe; (2.29)

The above discussions have been proceeded without any assumptions about the
state of the gas, that is, they are applicable both for the equilibrium and non-
equilibrium states. In the following we proceed to the discussion of the thermody-
namic temperature that is essentially a gas property in equilibrium state. The ideal

gas equation of state is
k
p=pRT=p—T =nkT . (2.30)
m

Here R isthe gas constant per unit mass, R =R /M =k/m, R is the universal gas
constant, i.e., the gas constant for a mole of gas, R =8.3145Jmol "K', M is the
molecular weight , & is the Boltzmann constant, k=mR=R /N , i.e. the gas con-
stant for one molecule, k=1.38066x102JK™", N is the Avogadro’s number,
N =6.0221x10%mol ™" . From Eq. (2.29)~Eq. (2.30) one can introduce the transla-

tional kinetic temperature

3k 1= 11— = —

=T =¢,=—c?==u"” +v >+ w?). 2.31

S = =3 2( ) 2.31)
Sometimes it is convenient to write Eq. (2.31) (by using Eq. (2.10)) in a form ex-

pressed by the average velocity and the molecular velocity:
o= 5 5 =,
mec" = 2m(c —c)= 2m(u +v© W —cp) . (2.32)

Note that such a definition of the temperature T, and the ideal gas equation of

state are applicable for the case when gas is in the state of non-equilibrium. One
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can define separately the translational kinetic temperatures for three velocity com-

ponents, for example
KT), = mu” . (2.33)

The difference between (7,) , (7;)»_, (7,). and T, and the differences between
themselves characterize the degree of non-equilibrium of the translational energy
mode in the gas.

In the gas of monatomic molecules 7 can be defined as the temperature of the
gas. The diatomic and polyatomic mo lecules have rotational and vibrational en-
ergy modes and the corresponding internal degrees of freedom (see sections 1.1
and 1.3). According to the number ¢ of degrees of freedom of some energy mode
and in analogy with the definition formula Eq. (2.31) of the translational tempera-
ture 7 (translational energy has 3 degrees of freedom), the temperature T, of

this internal energy mode can be defined as

¢k
Tl = - (2.33)
2m

The energy equipartition principle implies the equality of the translational and in-
ternal temperature of the gas in equilibrium state. In the non-equilibrium gas, an

overall kinetic temperature 7 can be defined
T, =, +{T)/(3+E). (2.34)
In the foregoing the derivation of the expressions of the macroscopic quantities
through the moments of the velocity distribution function is given in detail. This is
an essential step from the description on the level of velocity distribution function

towards the description via macroscopic quantities. The results thus obtained are

collected here

n=|fic, 2.5)

p=mn Emffdc, .7

- 1
c,=c =—Icfdc R 2.8)
n
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B = m.[(ci —G)e; — ) fde =pctic'; = po, Ty, 2.21)
T, =~(pcc' ~8,p), (2.24)
1 =
p =§pc s (2.25)
] 2
g,=[e'Gme?) fde +[c' e, e 2.27)
3k 1-=_3p

_—Tze,,.=lzjc‘z Jde=Zc (231

2m 2p°

It is noted that the above description and derivation have been aimed at sngle-

component gas. The extension to the gas mixture is direct and simple (see section
2.12).

2.3 BINARY ELASTIC COLLISIONS OF MOLECULES

The gas properties change (or are in a state of dynamic balance) because of the
encounters of the gas molecules with the solid surfaces or the collisions between
the molecules. In the present section we are going to discuss the binary elastic col-
lision which is the most important collision and is liable to be treated mathemati-
cally. Elastic collisions are collisions without interchange of translational mode
and internal modes of energies, and the momentum and energy conservation equa-
tions are used in the following as the starting point of our mathematical deriva-
tions. To see the importance of binary collision we first analyze the condition un-
der which the ternary collisions (three-body collisions) are rear events but the
binary collisions prevail. A three-body collision happens when a molecule collides
with a pair of molecules temporally encountered together in a binary collision.
The lifetime of the collision pair of two colliding molecules can be vividly thought
of the time of interlapping of the two molecules moving towards each other, the
order of magnitude of it can be estimated as ot /E: , where o is the cross section

area of the molecule, c_r is the relative velocity of the two molecules. The colli-
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sion frequency of the molecules is v = nac_,_ (see Eq. (0.3)). Obviously, the prob-
ability of the triple collision is the probability of the collision of a collision pair in
its lifetime with another molecule, its value is (0'% /c_,) (no‘z,—,) =c"n
=d’n=d’/8 where § =n"'"is the average molecular spacing (each molecule in
average occupies a volume of »'). That is, the condition under which the ternary

collision is not important is
418 «1. (2.35)

It is seen, when the condition of the dilute gas

S=n'">d, (2.35)

is satisfied, the condition that only the binary collision is important is also satis-
fied. Note, that the requirement of the dilute gas Eq. (2.35)' is more strict than the
condition Eq. (2.35).

For binary elastic collision there is no energy exchange between the transh-
tional mode and the internal modes. In this case specifying the pre-collision ve-
locities ¢, and ¢, of the two colliding molecules and using the momentum and
energy conservation equations (four scalar equations) is not sufficient to determine
the post-collision velocities ¢ and ¢, (six scalar unknowns). To determine en-
tirely the outcome of the collision of two molecules two impact parameters and
the intermolecular potential are to be known. The two impact parameters are the
distance b of the closest approach of the undisturbed trajectories of the two mole -
cules in centre of mass system of coordinates (or the projected distance between
the pre-collision velocities, it is also called the miss distance) and the angle € be-
tween the collision plane (in which the trajectories lie in this system of coordi-
nates) and some reference plane. Here we obtain at first the binary collision laws
without the specification of the impact parameters.

For two colliding molecules of mass m, and m, with pre-collision velocities ¢,

and ¢, , the momentum and energy conservation equations can be written as

me + me,=me +mye, =(m +nm,)c

m? (2'36)

2 2 _ 2 *2
me; +me; =me’ +mc,’ 2.37)

where the velocity ¢, of the centre of mass of the two molecules is introduced:
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me, + mye,
C, =—. (2.38)
m+m
Eq. (2.36) shows that this velocity does not change pre and post the collision. In-

troducing the pre-collision and the post-collision relative velocities ¢, and ¢,

¢ =c¢ —c,,
R (2.39)
¢ =¢ -¢;,
one obtains from Egs. (2.36),(2.38) and (2.39),
¢, =c 2.
m, +m,
(2.40)
m
¢, =c, - c,,
m,+m,
¢, =c, +—n13—c,*
ml +mz
(2.41)
m, s
¢, =c¢, - c,.
m+m,

From Eq. (2.40) it is seen, that in the center of mass frame of reference the pre-
collision velocities ¢, ~¢, and ¢, — ¢, are antiparallel and, if the molecules are
centers of force, the force between them initially lies in the plane determined by
these two velocities. The velocities of the colliding molecules remain in this plane
and so does the force between them. Eq. (2.41) shows, that in the center of mass
frame of reference the post-collision velocities are also antiparallel.

From Egs. (2.40) and (2.41) one obtains

mcl +mycl = (my +my)c + me’
" o 5 “ (2.42)
where the reduced mass m, is introduced
m,n,
m, = ——. (2.43)
m,+ m,

From the energy conservation Eq. (2.37) and Eq. (2.42) one obtains that the value

of the relative velocity pre to and after the collision remains the same
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¢, =c . (2.44)

From the conservation of the angular momentum

ch=cb",
r r

where 5" is the projected distance of the post-collision velocities, and from Eq.
(2.44) follows, that the projected distance b remains unchanged before and after
the collision. Thus we can draw the trajectories of the molecules in the center of
mass frame system as shown in Fig. 2.3. From Eq. (2.41) it is seen that it is suffi-
cient to calculate the angle y of deviation of the molecule to entirely determine
the velocities after the collision.

Denoting by r, and r, the position vectors of the two molecules which are

spherically symmetric point centers of force and by F the force between them,

the equations of motion of the molecules can be written as

mi =F,mjJ# =-F . (2.45)

Introducing the vector of relative velocity ¢, =F — K = F , one obtains
mi=F, (2.46)

i.e., the motion of molecule m, relative to molecule m,"is reduced to the motion
of a molecule of mass m_ relative to a fixed center of force (see Fig.2.4).

If two molecules have ¢ and ¢, as their pre-collision velocities, and the pro-
jected distance in the mass center frame of reference is b (see Fig. 2.3), then ow-
ing to the energy and momentum conservation equations and the symmetry of the
pre- and post-collision velocities, the post- collision velocities of them will be ¢,
and ¢, . This collision (c],¢;, = ¢,,c,) is called the inverse collision of the direct
collision (c,,c2 — c:,c;) .

Now we calculate the deflection angle x of the molecule in the assumption
that the molecules are force centers. Making use of the polar coordinate system
r,0 , the momentum and energy conservation equations of the particle of reduced

mass m, in the force field with center O can be written as

r*6 =bc, , (2.47)
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mo
"I/ r

Fig. 2.3 Trajectories of molecules conducting a binary collision in the centre of mass
framework ( b : the miss-distance, y : deflection angle)

Fig. 2.4 Trajectory of a molecule with reduced mass m, in the force field with fixed centre

1 . 1
Emr(fz +r°0%) +¢ =5m,c,2, (2.48)

where bc, and (1/2)m ¢’ are the constant asymptotic values of the angular no-
mentum and energy for r—oo; ¢ is the intermolecular potential and is related to

the central force F by the following formula
F=—d¢/dr. (2.49)

Eq. (2.47) and Eq. (2.48) can be combined with the time variable eliminated to
yield the orbit equation

(2.50)
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If transfer from the variable r to the dimensionless variable W

W =blr,
then the orbit equation is transferred into

d_W z=1_W2_ ¢
do 1 .

—m,C
2

™r

The solution can be written as

-1/2
w
o= 1—W2—1L aw .
]

2
-mc
2 ~r

At the intersection of the orbit with the apse line OA we have

dw[dO =0, when =6,

so we have

=-1/2

0,= |- w- ¢ aw

where W, is the positive root of the following equation
1-W? _L

1. 2

—mc,

2

=0.

And the deflection angle y of the relative velocity is

x=r-20,.

Q2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

Sometimes it is more convenient to use the supplementary angle § of the deflec-

tion angle x

d=m-x=20,.

(2.57)

Now we express the velocities ¢, cl* after the collision through the velocities

¢, ¢, before the collision and the angles x (or 8 ) and £. From Eq. (2.41) and

Eq. (2.38) it is seen, that it is sufficient to find ¢ to have the expression of ¢*, ¢

*
1
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(for the sake of convenience here ¢, ¢, are used to replace €, €, in the original

2
formulae).

Let OX, OY, OZ be the three axes of the rectangular coordinate system. OG
gives the opposite direction of ¢, , OG" gives the direction of ¢ . The points
X,Y,Z,G and G are located on the sphere with the center of O and the radius
of ¢, . The plane passing through ¢, and OX , i.e. the plane GOX , is taken as the
reference plane, ¢ is the angle between the collision plane GOG" and the refer-
ence plane, i.e. the angle GGX see Fig. 2.5). Consider the spherical triangle

GGX |, the cosine formula for the sides in the spherical trigonometry reads
c0sG X =cosGX cosGG +sinGX sinGG” cose . (2.58)

Obviously we have

cosG' X =u.lc,,
cosGX =-u /c,,therefore sinGX = (vf +ul ))é/ c,,

cosGG =cosd , sinGG’ =sind .
From Eq. (2.58) one obtains

u =-u, cosd + (v} + w’) *sind cose . (2.59)

Similarly, for spherical triangle GGY we have

Fig. 2.5 The schematic of obtaining the post-collision relative velocity according to the
spherical trigonometry (X,Y.,Z,G,G are located on a sphere of radius ¢, with O as the
centre, in the figire only the part of spherical surface stretched by XGG' is drawn,
OG =, , OG"=c’, GOG" is the collision plane, GOX 1is the reference plane)
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vi=—v cosS+ (u+w ) ?sinScosGGY (2.60)

where cosGGY =cos(e-¢,), and &, denotes the angle XGY . To attain the value

of cos&,, we consider the spherical triangle GXY and have

cos XY =cos GX cos GY +sin GX sin GY cosE, ,

ie.,
O=uyv +@>+w )W +w)"?cosé,,
therefore
-u,v
cosé, = L
: O +whH)' )+ whH'? ’
. w,C,
sing, = L

ovF+w) Pk + w,.zj/z '
Thus from Eq. (2.60) we have
v, =—-v cos8 +sind (w.c, sine— uy cose)/ (v} + w’}'? . (2.61)

Finally, for the spherical triangle GGZ we have

*

w.==w cosS +(u? +v?} *sindcosGGZ , (2.62)

r

where cosGGZ =cos(&, —¢), and from the spherical triangle GZX one obtains

cos&; =— 2_132‘”/"2 2172 °
O +w)) P +v})
sing; =— ) 1v/,2-cr T, IN/2C
)l 4 v)
And Eq. (2.62) yields
W =—w cosd +sind(v.c sing —u w cose)/ (v +w))'*. (2.63)

Now we list together the components of the post-collision velocity ¢, , and re-
place § in Egs. (2.59),(2.61) and (2.63) by x (according Eq. (2.57))

u, =u cosy +sinycose(v’ +w’)'?, (2.59)
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. . . 2 23172
v =v cosy+siny(cwsine— uv cose)(v,+w)'", .61y
. . . 2 1/2
w =w cos ¥ +sin x(c,v,sine —uw_cose)/(v:+w)''?. (2.63y

The expressions of ¢” and ¢, through ¢, ¢, ¥ and £ can be obtained from Eq.

(2.41) and Eq. (2.38)

. 1
u =u+, —u)cosz—g—+—2-[cf —(u, —u)*}"? sin ycose, (2.59)*
Vi=v+ @, —v)coszl+ Snx [e.(w, —w)sing —
2 (2.61)*
(u, —u)(v, —v)cosel/[c? —(u,—u)*]'?,
Wo=w(w, - w)coszl+ﬂ[cr(v, —V)sin € —
22 (2.63)*
(u, —u)(w, — wycosel/[e]} —(u, —u)*1'?,
. 2 X 1o, 2912 .
U, =u, —, —1)cos —2———2-{c,. —(u, —u)*]"?sin ycose, (2.59)%=
v =v, —v, —v)cosz-&— sm%[c,. (W, —w)sin€ —
2 2
(1 —u)(v, —v)cos€el/[c? —(u, —u)*]'?, 2.61)**
W o=w, —w, — w)coszi— e [c.(v, —v)sine —
2 2
(u, —u)(w, — wycosel/[c} —(u, —u)*]1"%. (2.63)**

2.4 COLLISION CROSS-SECTIONS AND MOLECULE
MODELS

To determine entirely the binary collision, i.e., to determine the post-collision ve-
locities, except the pre-collision velocities, the intermolecular potential and two
impact parameters that stipulate the geometrical relations of the two colliding
molecules must be given. One of these impact parameters is the miss distance 5,

that is, the distance of the closest approach of the trajectories unaffected yet by the
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intermolecular force of the two molecules in the center of mass reference frame.
The smaller the miss distance b, the more manifest is the effect of the collision.
The case of zero b is the case of head-on collision. With increase of b the deflec-
tion of the molecules resulted from collision decreases. When b exceeds certain
extent, the molecules factually do not interact with each other. In the mass center
frame of reference the plane in which lie the molecular trajectories is the plane of
collision, fixing except b further the orientation of the collision plane will identify
completely the collision. The angle £ between the collision plane and certain ref-
erence plane can be stipulated as the other impact parameter. Both 5 and ¢ are
shown in Fig 2.6. Consider the collision of two molecules with relative velocity

¢, , the relative velocity after crossing the differential area

bdbde (2.64)

becomes ¢, . The molecules crossing this area would scatter into the range of dx

and de near ¢/, or into the solid angle (see Fig.2.6)

dQ=sin ydyde . (2.65)

The differential collision cross-section ¢ is defined as the cross section corre-

sponding to unit solid angle, that is,

0dQ =bdbde , (2.66)

so one has

.67)

Fig. 2.6 Impact parameters b and &, and the calculation of the collision cross section
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The total collision section o, is obtained from the differential one through in-

tegrating over the entire solid angle

ar T
0, = [ 0dQ =2m [osinyd y =21 [bdb . (2.68)
[} 0

In writing the last equality we had been making use of Eq. (2.66) and the integra-
tion over £ had been carried out. To find the collision cross-section b is of course
not to be considered as simple geometrical coordinate and integrated. Only under
certain model of the intermolecular force, that is, when the relation between the
deflection angle x and b is known, the definition of ¢ and o, through b has
meaning.

In treating practical problems of molecular motion, not only the total cross-
section Eq. (2.68) plays important role, but the crosssections relevant to the
transport properties of the gas also play important role. These are the so called vis-
cosity cross-section o, and diffusion cross-section o,. Their expressions through

differential cross-section 0dQ = 2wbdb are

4r i
0, = | sin’ x0dQ =2n[ osin® xd =27 sin® xbdb, (2.69)
0 ]
34 Fiq
0, = | (1=cos x)odQ = 27 [ o (1-cos )sin xdy =27 [ (1=cos Y)bdb . (2.70)
0 ¢

Viscosity cross-section o, appears in the expression of the viscosity u in the

transport theory of Chapman-Enskog

= (5/8)(wmkT)"”

[m /(KT f clo , exp[-mc? [(4kT))de,
0

Q.71

(see Eq. (7.2) of reference [3], p.404; for the expression of o, see Eq. (8.8) of [3],
p.358). Similarly, the diffusion collision cross-section o, appears in the expres-
sion of the diffusivity of binary gas mixture in the transport theory of Chapman-
Enskog (for the expression of o, see Eq. (8.7) of reference [3], p.358). The latter
cross-section is also called momentum transfer cross-section. From Fig. 2.3 we

can see that the momentum change of the molecule in the direction of initial reh-
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tive motion is proportional to (1—cosx), this is the origin of the latter name, and

sometimes o, is designated also as ©,, .

2.4.1 HARD SPHERE MODEL

The simplest molecular model is the hard sphere model. When the distance of the

closest approach of the two molecules is less than

1
dy :E(dl +d2) 5

the two molecules collide as two billiards. From Fig.2.7 it is seen

b=d,sinf, = dlzcos(—;-x) ,

(2.72)
|dbrd x| =ld,2 sin lx .
2 2
Equation (2.67) yields the differential cross-section
o=d/4. 2.73)

This expression shows that & does not depend on the angle y, that is, the scat-
tered molecules after collision is uniformly distributed over all directions, or the
direction of ¢ has equal probability over any orientation. The total cross-section

can be easily found from Eq. (2.68)

Fig. 2.7. Collision of hard sphere molecules
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o, =ndy . (2.74)

This result can be obtained, of course, directly from the hard sphere model intui-
tively. The above result is valid for two identical molecules, in which case one has
d,=d.

What value one should take for 4 in practical applications? The practice
shows, that it is essential to take such a value of ¢ which ensures that the viscous
coefficient of the gas has the real value.

Obviously, for the hard sphere model, in the second equality of Eq. (2.69),

o =d,,/4 can taken out of the integration and one has

2
0. =307 (2.75)

Using the last equality of Eq. (2.69) with the help of Eq. (2.72), one can reach the
same result.

Substituting Eq. (2.75) into Eq. (2.71), the integration is easily calculated (see
Eq. (11.18) in the Appendix II), and the viscosity in the hard sphere model is

5 5
p= (k) o =T 7§/ d* (2.76)

If in the vicinity of reference temperature T,

Ly consider the gas using the hard

sphere model and the viscosity u,,, under 7, isknown, then d can be taken as
5 ' 1/2
d= [E( mkT,, /) "/ #,e/} . .77

And good result can be gained for slow motion when temperature variation is
small.

The post-collision velocities of hard sphere molecules are easily calculated, as
we have ¢’ =¢, and the uniformity of all directions of ¢ (see the discussion of
the calculation of the post-collision velocities at the end of section 2.4.5). The
shortcoming of the hard sphere model is that the dependence of ¢ on T is in
power of 1/2 (see Eq. (2.76)), which is different from the power in the reality of
approximately 0.75 for air. This is crucial for air at temperature of the order

1000K and higher.



74 2 SOME BASIC CONCEPTS OF KINETIC THEORY

2.4.2 THE INVERSE POWER LAW MODEL

The force and potential of the inverse power law model or the repulsion point cen-

ter model is given by the following force expressions
F=x/r". (2.78)
Or in terms of potential
¢=xK/l(n-Dr"1.

The hard sphere model is a special case of this model with n=oo.

To find the deflection angle one has Eq. (2.56) and Eq. (2.54). The ratio of the
potential energy to the asymptotic value of kinetic energy can be written through
W (see Eq.(2.51))

o 2 a2 ()"
Lo oo 7——1[%) ’ @79

where W, is the dimensionless miss distance

W, =b(m,c? k)"0 (2.80)

Thus the deflection angle can be written

x—n—z? 1-W2—i s " llde 2.81)
0 77_1 VV() ’ '

where W, is the positive root of the following equation (see Eq. (2.55))

1w 2| n'l—o
77—1 m) .

Note, for the inverse power law model with certain value of 77, the collision is
specified by the only impact parameter W, (dimensionless b ). The differential
cross-section of this model is obtained from Eq. (2.66)

2

-1
on:WO[ "2] d W de . (2.82)

m,c,
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When 1 has finite value, the integral of the total cross-section diverges, as can
be seen from Eq. (2.68). In such circumstances, it is usually necessary to make fi-
nite truncation either of miss distance b or deflection angle x. From Eq. (2.81) it
is seen, that  is a function of W, (or b ). The specification of the maximum
value #,,, stipulates the truncation value of x, and the total cross-section is

2

2 W —
A n-1
o= | jw{ "2} d Wde (2.83)
00 mce,
P
n-t
:ﬂwgm[ Kz] , (2.84)

Note, as the stipulation of W, is arbitrary, this total cross-section can not be used

0.
to define the collision frequency or the mean free path.

The integral in the expression Eq. (2.68) of the total crosssection for inverse
power law molecule is divergent, but the viscosity and diffusion collision cross-
sections are convergent. For these crosssections o, and o, (Eq. (2.70) and Eq.

(2.69)), expressing the differential cross-section od€2 by Eq. (2.82), we have

O'D:It(l—cos;()O'dQ=M[%Jﬁcﬁ%A,(n), (2.85)
P v
o, = j sin’ yodQ = 27:[7:—] ¢ A,m) , (2.86)
where
4,(m) E:J?(l —cosyW,dWw,, (2.87)
A, ()= Isinz IWAW, . (2.88)

The values of 4(n)) and 4,(n) can be integrated numerically with 7 as a pa-
rameter because of the functional relationship Eq. (2.81) between y and W .

Chapman and Cowling listed the values of 4 () and 4,(n) for several values of
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N (see Table 2.1, cited from [1], p.172). Substituting Eq. (2.86) into Eq. (2.71)

yields the viscosity for the inverse power law molecule

2
_ 5m(RT/7)"*(2mRT / k)™
p= > } : (2.89)

84,(MT|4-———
2(n){ -1

The advantage of the inverse power law is that the deflection angle y is de-
pendent only on one impact parameter W, (or b) and the power in the dependence
of 1 on T can be adjusted to be the same as in the real gas by choosing appropri-
ate 7 (see Eq. (2.89)). The shortcoming is that the specification of &, and hence
the collision frequency and mean free path depends on the arbitrary stipulation of
the value of W

", which is inconvenient. In the direct simulation of gas flows the

inverse power law model was in use (see [4]), but now is replaced by the variable
hard sphere (VHS) model (see 2.4.4).

2.4.3 MAXWELL MODEL

The special case of the inverse power law model with n =35 is called the Maxwel-

lian model, and W, in Eq. (2.81) can be found in explicit form as

1
172
, 2
Wo=We || T+— 1 -l
n

And the deflection angle y can be found through quadrature

1/2

Table 2.1 Several values of 4,(n) and 4, (n)

n 4,(n) 4 (1)
5 0.422 0.436
7 0.385 0.357
9 0.382 0.332
11 0.383 0319
15 0.393 0.309
21 - 0.307
25 - 0.306

oo 0.5 0.333
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2
X:ﬁ"_‘z‘—l“K l_l 1.{.1‘1 5
s 122w (2.90)

K (o) is the first kind complete elliptic integral

K((x):n.[ (l—asinzy)‘]/zdy . 2.91)

0

The expression Eq. (2.82) of the differential cross-section takes the form

1/2
cdQ =%[LJ d W de (2.92)
C m

r r

that is, the collision cross-section is inversely proportional to the relative velocity
¢, . In the Introduction we have shown that the collision frequency is proportional
to the product of the cross-section and the relative velocity, thus the collision fre-
quency in the gas of Maxwell molecules is independent of ¢, . This brings about
the possibility of simplification in the analytical methods (see the calculation of
the collision integrals in section 2.8), so the Maxwellian molecule is in wide ap-
plication in analytical works. But the viscosity of the gas of Maxwellian mokcules
is linearly proportional to the temperature. In fact, in Eq. (2.89) let n =35, one has

T ((m )"
== 1 —\ . 2.93
H 3nA2(5)[2k) 2.93)

This is unrealistic, and thus the Maxwell molecule has significant limitations.

2.4.4 VARIABLE HARD SPHERE (VHS) MODEL

The finite truncation of the miss distance b or the deflection angle x for the in-
verse power law is a practical necessity, but this inevitably introduces arbitrari-
ness, followed by the arbitrary determination of the molecular diameter and the
mean free path. We have seen, that by comparison of the Chapman-Enskog theo-
retical expression of the viscosity for hard sphere model and the viscosity meas-
ured in real gas the molecular diameter can be derived (see Eq. (2.77)). And the

isotropic distribution of the direction of the post-collision relative velocity of the
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hard sphere molecule is another advantage of this model. Unfortunately the hard
sphere molecule has fixed cross-section, but the collision crosssection of real gas
changes with the relative velocity (decreases with the increase of ¢, ). The differ-
ence of various molecular models manifests in the different dependence of the vis-
cosity 4 on the temperature T . For hard sphere, u is proportional to 7 in the
power of 1/2, but in real gas (for oxygen, nitrogen and air) this power isnear 0.75.
The problem is that any molecular model in classical kinetic theory is unable to
simultaneously possess a finite collision cross-section and reveal the correct de-
pendence of the viscosity on the temperature. Bird put forward the variable hard
sphere (VHS) model [5] and resolved this problem successfully. In this model the
molecules possess isotropic scattering probability as the hard sphere (see Eq.
(2.73) and the explanation following it), but the cross-section is a function of the
relative velocity between the molecules like the inverse power law mokcules (see
Eq. (2.84)). Possession of the same scattering law as the hard sphere makes the
sampling of the distribution of the direction of the post-collision velocity very
simple, and analysis and the practical application of the mathematical investiga-
tion show, that the way of scattering of molecules has little consequences on the
flow field. Choosing the collision cross-section (or the diameter) of the molecules
to be proportional to a certain inverse power of the relative velocity of the mole-
cules can lead to that the derived viscosity varies as a certain power of the tem-
perature, say, lead to that u to be proportional approximately to the 0.75 power of
T ,i.e. in the same way as in the real gas. The practical applications show, that the
influence of this dependence of the collision cross-section on the properties of the
flow field is essential.

The VHS model or the Variable Hard Sphere model [5] stipulates that the colli-
sion cross-section is proportional to the inverse power of the relative velocity. The
and ¢ are introduced for the total cross-

reference values o;,,,.d,,,c

ref Y- rref iref

section o, , molecular diameter d , relative velocity ¢ and relative translational
energy &, where o, and d,, are the values when the rehtive velocity is ¢
The VHS model can be defined as follows

rref *

(07/0pee))=(d1d, ) =(c, /¢,y V2 = (€, /6,00 ) " (2.94)
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¢ by definition is the (negative) power of ¢, in the dependence of collision cross-
section ¢, on the transational energy ¢, .

The deflection angle is the same as the hard sphere model (see Eq. (2.72))
b=dcos(x/2). 2.95)

That is, the deflection angle ) does not depend on ¢, explicitly. Thus, in the
VHS model in the integral( Eq. (2.69) of the viscosity the collision cross-section
o as in the case of hard sphere can be taken out of the integral and yield the
Equation (2.75). Now making use of Eq. (2.94), writing o, as (c,,/cm,,)ng Crper
and substituting into Eq. (2.71), one obtains

%(ﬂmk)"/z(élk /my T'**

= (2.96)
‘u F(4 —é)o-Tre/Crlz.;é'e/
Note, for the case of &=1/2 one has (I'(7/2) = (15/8)W7 )
o 2T <
= 2.96)
O-Trefcrref ( )

From the comparison of Eq. (2.76) and Eq. (2.96) it is seen, that the viscosity of
the hard sphere model is proportional to the 1/2 power of the temperature, but in
the VHS model u is proportional to the power (1/2+¢&) of T. By adjusting the
power & in the definition formula Eq. (2.94), one can attain the required power o

in the dependence of viscosity on temperature
T A 2.97)

For this one only needs to put
1
St {=o. (2.98)

We also list the relations of w and £ with the power 1 in the inverse power
law Eq. (2.78). From the Comparison of Eq. (2.97), Eq. (2.96) and Eq. (2.89) it is

easy to see

—. (2.99)
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For the hard sphere (HS) model one has w=1/2, 17=ec and £ =0, for the vari-
able hard sphere (VHS and also the inverse power law IPL) molecule with
w=0.75, one has n=9 and £=0.25, and for the Maxwellian molecule one has
w=1, n=5 and £=1/2. The hard sphere model with 7 =c is the most hard
molecule, and the Maxwellian molecule is the most soft among the nolecular
models under study.

The relation of the molecule diameter in dependence of the relative transla-

tional energy ¢, in a gas with viscosity law of Eq. (2.97) and having u,, at tem-

ref

perature 7, can be obtained by making use of Eq.(2.94), Eq. (2.96) and Eq.
(2.98)

1/2

| assym/ny (T, )
1

VHS T

(2.100)
T(9/2-w) & ?

rej

2.4.5 VARIABLE SOFT SPHERE (VSS) MODEL

For the hard sphere (HS) and the VHS models we have the relation of the viscos-
ity collision cross-section o, with the total cross-section o, (see Eq. (2.75))
2
o, = ;O’T .
Similarly, from the expression Eq. (2.70) of o, by using Eq. (2.73) we have
G,=0;. (2.101)

For VHS and HS models one has constant ratios of ¢, and o, to o, . But for
inverse power law molecule the ratio of 6, to o, is 4,(1)/4,(n) (see Eq.(2.85),
Eq.(2.86)), and for realistic values of 17, 4,(n)/4,(n) is quite different from the
value 6,/0, =15 for HS and VHS models (see Table 2.1 when n=9 and 11).
This results in quite large deviation from practice of the VHS model in consider-
ing multi-component gas mixture with diffusion playing essential role. Koura and
Matsumoto [6, 7] introduced the variable soft sphere (VSS) model and overcame

this shortcoming of the VHS model. They suggest that the total cross-section (or
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the molecular diameter) depends on the energy during the collision as in the VHS
model, i.e., Eq. (2.94) still holds, but instead of

b=dcos(x/2),

the scattering law of the VSS model is
b=dcos™ (x/2), (2.102)

where d and a both depend on the relative energy in the collision, o being the
power of the cosine of the deflection angle. As d is variable and for ¢ >1 (itis
the case for real gas, vide post) the deflection angel y, is less than the deflection
angle x,,, of the HS and VHS model, so it is named the variable soft sphere
model.

For the VSS model substituting Eq. (2.102) into Egs. (2.68), (2.69) and (2.70) it

is easy to obtain

o, =2n[bdb=nd’ (2.103)
= 2 e cos? XY i cos Y o5 (2502 ) s 2
c,=21 J.( ~cos“ x) cos; cos? =S, gnd —Su'3‘°'r7 (2.104)
aozzndzj(l-cosx)[co%j d(%) =S,md® = S,0,, (2.105)
where
§ =% 2.106
e+ Da+2)’ (2.106)
2

S, =— .

b= (2.107)

are called soft coefficients of viscosity and diffusivity collision cross-sections, re-
spectively. Equalizing the ratio o,/0,=(2/3)S,/S, (from Egs. (2.104) and
(2.105)) for the VSS model to the ratio ¢,/0,=4,(n)/4,(n) (from Egs. (2.85)

and (2.86)) for the inverse power law model, the value of « is obtained

o :{Al(’l_) _l} , ©.108)
A, 2
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under which the ratio o‘u/a,) of the VSS model would vary according to the same
law of the inverse power law model. The values of « and the corresponding S,
and S, for various gases can be determined from 4 () and 4,(n) correspond-
ing to n (and the value of £ is also determined according to Eq. (2.99)). The val-
ues of a for some gases determined in this way are listed in the 6™ column of Ta-
ble 2.2.

The viscosity p under the VSS model is obtained by substitution of Eq.
(2.104) into Eq. (2.71)

Myss = My 15,05 (2.109)

where 1, is given by Eq.(2.96), and
V.
_S(a 1) et 2)(mmk) 2 (4k Im¥T?

vss (2.109)
16al'(4 -&)o

28
Tz'efcr‘re/'

Correspondingly, the diameter of the molecule determined by the viscosity un-

der the VSS model is

dysg =d s 1S,°, 2.110)

where d,,,

is given by Eq. (2.100), i.e.,

1/2

S(o+ 1o +2)m/m Y P(kT, )
dyss = ( X Jon/r) ) . 2.110y

1
16al’(9/2 —w)yrdg,‘”‘;

This expression for d,, (which yields the expression Eq. (2.100) of 4, when

vss
a =1) gives the relation of the molecular diameter with the collision translational
energy of the VSS (and VHS) model, and can be used to implement the simulation
of VSS(VHS) molecules in DSMC. Obviously, the dependence on ¢, can be writ-

ten in a dimensionless form as

ey,

And the right hand side of Eq. (2.110)' can be written as

i

d. {(kT,.E, /e,)""% °)
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where d, is a value having the dimension of length and depending on u,,, and
T, . This is convenient. We defer the introduction of 4., (which differs from d,
by a coefficient) till section 2.11, for it is most convenient to define d,,, by using
the average value of ¢*' in the equilibrium state( see Eq. (2. 235)).

The way of determination of « is not unique. It could be determined also by
the fitting of the experimental data of the viscosity of various gases with the ex-
pressions like Eq. (2.109)' (and simultaneously determined also is the value of &),
in reference [7] the values of & and o are determined in this way in the tempera-
ture ranges 20K ~ 300K and 300K ~2000K . And Bird in reference [8] deter-
mined the value of a using the experimental data of the self-diffusion coefficient
of various gases. The values of o determined by these two means are also listed
in Table 2.2. It can be seen that the value of o determined by the experimental
data of the self-diffusion coefficient agrees quite well with that determined by the
viscosity data (in the temperature range of 300K ~2000K ). The values of Bird [8]
are recommended (see Appendix II).

The VHS and VSS collision models are peculiarly devised for being used in
DSMC simulations. The implementation of collision for the VSS model molecules
in DSMC simulation is more complicated than for the VHS molecules. For all HS,
VHS and VSS models there is the invariance of the relative velocity before and af-
ter collision (see Eq. (2.44)). For HS and VHS molecules there is the result of the
isotropic distribution of the post-collision velocity ¢ over all directions (see Eq.

(2.73) and the explanation after it). In a polar coordinate system with 6 as the

Table 2.2 The values of « for some gases

y y a 7]
n £ m (M al6] 20300 300~2000 o [8]
0, 84 027 0.381 03360 15775 1.92 1.429 14
N, 94 0238 03810 03273  1.5059 1.784 1.362 1.36
Air 84 0.27 03810  0.3360  1.5775 1.878 1.492
H, 129 0.168 03878 03130 13532  1.578 1.396 1.35
He 137 0.157 03898 03115 1.3309 1.349 1.431 1.26

Ar 7.5 0.308  0.383 0.3477 1.6624  1.856 1.425 1.40
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zenith angle and ¢ as the azimuth angle, the probability of ¢ pointing into an
element of solid angle dw =sin@d0d¢ is uniform. As dw =-d(cos0)d¢, so the
probability over cos@ and ¢ is uniform. ¢ is uniformly distributed between 0
and 27, and cos@ is uniformly distributed between —1 and 1. From Appendix
III the sampling from a variate uniformly distributed between a=-1 and b=1 is
easily obtained (see Eq. (II[-5)), and the values of cos® and ¢ into which ¢ is
directed can be sampled as

cos@ =2ranf -1,
@.111)

O =2mranf ,
where ranf is an uniform variate in the interval (1,0). The three components of ¢’
are easily obtained as ¢ sinBcos¢ ¢ sinOsing and ¢ cos® . The components of
the post-collision velocities of the two collision partners can be found from Eqgs.
(2.41) as

mu, +myu m
u]*': 1% 22 2

sin® cosgc;,

ml+m2 m‘ +m2
mu, +n,u m .
wy ==t 21 __<inf cosgc,
m+m,  m,+m,
my, + m,v m, ..
=Ll 224 2 sinBsingc,
my +m, m+m,
my, + m,v mooo
vy=—tl —22__ 1 inBsingc’,

my, +m, m, +m,

mw, + n,w m ,
W=t 242 __cosOc],
m, + m, my, +m,
mw, +m,w m
wy=—tt—2 21 __cosfc.
m, +m m +m, 2.112)

For the VSS model the scattering law is Eq. (2.102), and one has

cos;c=2K%) } ~-1. 2.113)

Because (b/a’)2 is uniformly distributed between 0 and 1, so cos x is sampled as

follows

cos y = 2(ranf)"'* -1 . (2.114)
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Though this is analogous with the sampling formula Eq. (2.111) of the VHS
model, but the three components of the post-collision relative velocity ¢, in the
VHS model are obtained easily through multiplication by cos,sinf cos¢ and
sin@sin¢g . But in the VSS model the components of the post-collision relative ve-
locity are to be obtained by using Egs. (2.59)', (2.61) and (2.63)'".

2.4.6 GENERALIZED HARD SPHERE (GHS) MODEL

In the VHS model the power & (in the dependence of collision cross-section o,
on the translational energy ¢, ) is related to the power 7 in the inverse power law
(Eq. (2.78)) and the power o in the dependence of viscosity on the temperature
(Eq. (2.97)) (see Eqgs (2.98) and (2.99)). The inverse power law describes the in-
termolecular action as a pure repulsion force. For flow fields around re-entry vehi-
cles the temperature variation range is very large, the dependence of viscosity on
the temperature can not be represented entirely by an one-exponent power law.
The interaction between molecules except the short distance repulsion force re-
veals the attraction character at large intermolecular distances. A molecular model
capable of reproducing attractive-repulsive potential is desirable. The generalized
hard sphere (GHS) introduced by Hassan and Hash [9], being a generalization of
the concepts of VHS model and VSS model, contains the intermolecular force that
possesses both attraction and repulsion. Its scattering law is similar with the hard
sphere model (or the soft sphere model), but the relation of its total cross-section
o, with the relative kinetic energy &, allows the reproduction of the attractive—
repulsive potential. More concretely, the GHS model suggests that &, can be writ-
ten
-

6,/ p* =2aj[i—’) , (2.115)

where ¢ has the dimension of energy, p has the dimension of length and is a pa-

rameter depending on the gas component, ¢, is, as before,

=—m.c . (2.116)
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If take only one term in Eq. (2.115), it can be seen to be the same as the definition
formula Eq. (2.94) of the VHS model, with only different definition of the con-
stants. Aiming at the expressions usually used in practice for the viscosity and in-
teraction potential, two terms in Eq. (2.115) are taken as follows

—él 752
a,/p2=a,[ﬁ) +a2(—i-’-] . 2.117)

&

If the scattering law is taken as the hard sphere, the relation between ¢, and o, is
Eq. (2.75):

Substituting Egs. (2.115), (2.116) and (2.75) into the expression Eq. (2.71) of the

viscosity, one obtains

lgs(nka)”z/p2

u= . (2.118)
Yo N(4-& kT /€)™
If the two-term expression Eq. (2.117) is used, then
— “()
s
(2.119)

)

:]5(7ka]’)1/2(kT)5. S az F(4—52)(£)5)52
8 al(4-£&)p* * o T@-&le)

In Eq. (2.119) let £ =0, &, =1, the viscosity law of Sutherland is obtained. For
the Lennard-Jones interaction potential
K, k'
F==k-—% n>7' (2.120)

rTl

Chapman and Cowing gives the following expression of the viscosity ([1], p.182)
;L:/,LIPL/(HST”‘], @2.121)

where 4, is the expression of the viscosity under inverse power law (see Eq.
(2.89)). Comparison of Eq. (2.119) and Eq. (2.121) yields
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2 2-n'+
51_ &= 4 77.
n-1 n-1

(2.122)

For the Lennard-Jones 6-12 (7 =13,n =7 ) model, one has & =1/6, £ =2/3.

2.4.7 GENERALIZED SOFT SPHERE (GSS) MODEL

Fan in [10] suggested the simultaneous adoption of the GHS dependence of ¢, on
€ (Eg. (2.115)) and the VSS molecular scattering law (Eq. (2.102)) which natu-
rally lead to the generalized soft sphere (GSS) model. In the GSS model o, is
calculated explicitly from its expression in dependence of ¢, (see Eq. (2.117)),
where the values of £ and p for Lennard-Jones 6-12 model have been tabled in
reference [11] (see Table 73, in section 4 of Chapter 8, and Table 1 of Appendix I
of [11], also Table 4 of Appendix I in the present book). The deflection angles of
the GSS molecules in collisions are determined by Eq. (2.102) or Eq. (2.113). To
imple ment the model the power o of the cosine of the deflection angle and the
parameters o, ¢, and £, in Eq. (2.117) need to be determined. For this purpose

the expression Eq. (2.71) for the viscosity is written as [11]

35 NTmkT
“-16 m > (2.123)
where
. 1 7
Q%Y =—=Jexp(-{*) o, d¢ , (2.124)
| :
k
§=c./ 2—T. (2.125)
m

»

Substituting Eq. (2.104) and Eq. (2.117) into Eq. (2.124), one obtains the viscosity
integral for GSS model

(2.2) _

; — -& - -&
n(a+1)(a+2)[alr(4 T4 + ol (4- &) |, (2.126)

where T, = kT /¢ . The parameters in Eq. (2.126) can be determined by compari-
son of its right hand side with those of Eq. (2.124), if the latter for certain potential
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can be expressed explicitly as function of 7,. In fact, the integral Q*?" for Len-
nard-Jones 6-12 potential has been calculated through numerical quadrature by
Hirschfelder, Curtiss and Bird and tabulated against 7, from 0.3 to 400 (see [11],
Table XII in the Appendix). As direct comparison shows, the following fitting

formula

Q(;’.Z)' :aln‘q + aZT*‘Cz , (2127)

with ¢ =1.1, a,=0.4, ¢, =0.133 and ¢, =1.25 gives a good fit to the exact tabu-
lated data of {11]. Comparison of Eq. (2.126) and Eq. (2.127) determines all pa-
rameters required by the GSS model:

a=15 «a =3962, a,=4558, £=0.133and £ =1.25. (2.128)

By modification of the coefficients @, and a, in Eq. (2.127) this fitting for-
mula can also be used to fit the exact numerical quadrature of Q@2 for the
Stockmayer potential [12], which takes into account the electrostatic interaction
between polar molecules (for details see [10]). The viscosity, self-diffusivity and
diffusivity calculated by the GSS model yield good agreement with the experi-
mental data in the entire range of variation of temperature. The GSS model is of

meaning especially for the case of low temperature and polar mokcules.

2.5 THE EIGHT VELOCITY GAS MODEL

In the present section a simplified discrete gas model, the eight velocity gas model
introduced by Broadwell {13}, is considered before the derivation of the Boltz-
mann equation in the next section. The eight velocity gas model is the first gas
model in researching gas flow problems by the discrete velocity method. A brief
consideration of this simple model also has the heuristic meaning for the easier
comprehension of the derivation of the Boltzmann equation.

In the eight velocity gas model the velocity of a molecule can be taken only as
one of eight velocities ¢, ¢,, -+ ¢, , formed by pointing from the center of a cube
(see Fig.2.8) to its eight corner points (1, 2, ..,8). The magnitude of every veloc-

ity is the same and equals to ¢ . The molecule with velocity ¢, is called molecule
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Fig. 2.8 The eight-velocity gas model, the velocities of the gas can attain only ¢,,¢;,s 6
in the figure only ¢,,¢,,¢;,¢, are shown

of class i . Obviously, the magnitudes ¢ of the components of every velocity are
the same and g=c/ V3. The momentum conservation requires the constancy of
the combination of signs of the velocity components of molecular pairs. The value

¢, of the relative velocity between molecules 1 and 2 is 2¢ = 2¢ A3, the values

2
of ¢,15,¢,4...,C,i AN be written easily as well.

Let », represent the number density of molecules of class i, and in general it is
a function of time and space coordinates. Giving the whole set (c,n),
(e3:m), .., (g, m)is equivalent to the fixing of the distribution function f . In
equilibrium state the magnitudes of various », equal each other, and n, =n/8,
where n is the density of the gas. Obviously, the collision frequency v of the

mo lecule can be calculated:

10.36

8
V=360 = co 1 =1295C0 . (2.129)
i=1

o, isthe collision cross-section of the molecule, the mean free path is obtained
c

== =0.772/(cn) . (2.130)

Now consider in the eight velocity gas the deplerion of the number of mole-

cules of class 1 caused by collisions with molecules of class 4. The number of col-

lisions of the type (1-4) that cause the reduction of molecules of class 1 in unit



90 2 SOME BASIC CONCEPTS OF KINETIC THEORY

time in unit volume is ¢ 0, p nn,, where p, is the probability that the result of
the (1-4) collision is the depletion of molecule of class 1. As the (1-4) collision has
two consequences of equal probability, (1-4)—> (4-1), and (1-4) —(2-3) (please

refer to Fig. 2.8), so one has

(2.131)

N |

P =

Molecules of class 1 deplete also because of the collisions with molecules of class
6, class 7 and class 8. So the number of the depleted (lost) molecules of class 1 as

the consequence of collisions in unit time in unit volume is ( p, = p, =1/2=p,,).
Ll :C)‘I4O-Tp14(r{ n4 + n1n6 +n!n7) +C!‘]86Tp1{l 1”8 ? (2' 1 32)

where

Y OS]

Py ==, (2.133)

as the (1-8) collision has four consequences of equal probability: (1-8) —(8-1),
(1-8) — (2-7), (1-8) —>(3-6) and (1-8) — (4-5), with three leading to the depletion
of molecules of class 1.

For planar two-dimensional flow the flow characteristics do not depend on z,

and the symmetry condition holds

B = RGN, = RGN SR, = (2.134)
Then Eq. (2.132) can be written as
— 12 3
L =to,|(2/3) " (nn,+nn, +niny) -i~5nln4 . (2.135)

Analogous reasoning yields the number of replenished (gained) molecules of

class 1 as the consequence of collisions in unit time in unit volume is
G, =€, 0,0, Py (mny +nyng + ning)+ ¢, 5,00 poy (mn, + nyng +n,ng) (2.136)

where

o=

. (2.137)

P s> P =

B
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For planar two-dimensional flow case by using the symmetry condition Eq.
(2.134) one has

— / 1
G = CGT[(2/3)I : (myny +n,n, +nmy) +-2—(n2n3 + myn; + nyn )} . (2.138)

The fact that the change rate in time dn, /df = 0n, [0t + 1 (0 1 /0x,) of the density
of mokcules of class | is caused by the depleting and replenishing collisions of

molecules of class | can be written

%+lllai+vla_n+wla_"l-= ai :Gl-LI, (2_139)
ot ax dy 0z at ),

where the terms G, and L, are given in Eq. (2.138) and Eq. (2.135). This is one of

the discrete velocity Boltzmann equations for the eight velocity gas. It is appropri-

ate here to write the Boltzmann equation without the external forces to be derived

in the next section

ai+ua—f+val +wai= s . (2.140)

gt dx dy dz \0dt),
It is noted that the whole set (¢, n),(c;,n,),---+-,(esn ) is equivalent to the dis-
tribution function f . Analogous equations for n,,n,,-- ,n, need to be added to

Eq. (2.139) to have the whole formulation of the problem which will be done later
in section 6.6.
Eq. (2.139) can be further simplified

%%— q%%—q%:(l +(2/3)") 20, (nany =mn,) .
or
%—q%%—q%z%(ﬂzm—nlmyn, (2.141)
where

1 -
0 :5(1 +(2/3))20,n=0.70v . (2.142)
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2.6 BOLTZMANN EQUATION

In the present chapter the concept of the velocity distribution function has been in-
troduced, various macroscopic quantities have been expressed through the velocity
distribution function, thus showing how the distribution function gives the statisti-
cal description of the gas on the nolecular level. Now the problem is how to find
this velocity distribution function. An equation first derived by Ludwig Boltzmann
in 1872 (see [14]) has given answer to this question and is known as the Boltz-
mann equation, it presents the evolution of the distribution function in dependence
of space position and time.

For N particle distribution function '™ (Eq. (2.1)), Liouville equation is the
basic statistical equation, this is a conservation equation of F™ in 6N dimen-
sional phase space. Successive integration of the Liouville equation leads to a hi-
erarchy of equations, the BBGKY equations named after the five authors Bo-
goliubov, Born, Green, Kirkwood and Yvon who first suggested these equations
independently (for the derivation of BBGKY equations and the original references
see e.g. [15]). Each chain of this hierarchy is an equation for certain reduced dis-
tribution function F® but involving higher order distribution function F**!)
The last chain of this hierarchy is an equation for single particle distribution func-
tion FV , involving also the two particle distribution function F? If at this stage

introduce the assumption of molecular chaos
F(Z)(Cl 16 l) = F“)(CP ¥ t)'F“)(Cz’rz’t) > (2.143)

a closed equation for FU is obtained. As there is a relationship Eq. (2.3) between
f and F" | the Boltzmann equation follows. But we would not go this road but
give a derivation in analogy with the conservation equation for f . Such a deriva-
tion has the advantage of independence on the Liouville equation and simplicity,
and also the ease in gaining clear comprehension of the physical meaning of vari-
ous terms of the equation. Note, the unknown f searched by us is the probabilis-
tic number of molecules in the vicinity of certain velocity ¢, so unlike ordinary
conservation, the unknown variable f changes as the sequence of the collision.
This is a peculiarity of the derivation of the Boltzmann equation in difference of

the derivation of ordinary conservation equations. The counting of the change of
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number of molecules of class 1 as the result of collisions with other molecules de-
scribed in the previous section for the eight velocity gas illustrates this situation.
Consider f(c,r,t) , the number of molecules at time instant ¢, in the physical
space volume element dr = dxdydz , with velocity in the velocity space element
de =dudvdw near ¢ is fdedr (see Eq. (2.4) and Fig. 2.1). In the fixed phase space

element the rate of change of the number of molecules is
d
gf(c,r, Hdedr . (2.144)

This change is caused by the following three processes: 1) The convection of
molecules across the surface of dr as they move with velocity ¢ . 2) The passing
through of the molecules across the surface of de in the phase space as the result
of the action of external force. 3) The depletion (loss) and replenishment (gain) of
molecules of class ¢ as a result of intermolecular collisions.

First consider the convection of molecules across the side surfaces of cubic ele-
ment dr=dxdydz, (see Fig. 2.9). The number of molecules interring dr at x in
time d¢ across surface dydz perpendicular to axis x is fdc-udtdydz . The number
of molecules leaving dr at x+dx crossing dydz in time dt is
[uf + (8 (uf)/ax)dx]dcdtdydz. Thus, the gain of number of molecules of class ¢ in

time ¢ caused by the flux across the two side surface perpendicular to axis x is
0
——uf Y drdt .
ox

And the gain of number of molecules of class ¢ across all side surfaces of dr is

9

—[éa;—(ufﬁ 5 vH+ a—i—(wf)} dedrdt .

As u,v,w, and x,y,z are equal arguments of f , this expression can be written as

{“%”'aa'y +w -(%j fdedrdt = —c -g—f;dcdrdz . (2.145)
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Fig. 2.9 Volume element dr in the physical space

Next let us consider the convection of molecules across various side surfaces of
de. Suppose there is external force acting on the gas molecules, characterized
quantitatively by the external force per unit mass F . F makes the molecules to
accelerate, its action in changing molecules in the phase space ¢ is analogous to
the action of velocity ¢ in changing molecules in the physical space. Taking ad-
vantage of the analogy between F,c¢ and c¢,r one can write the change of mole-

cules of class ¢ in time 4t passing through all side surfaces of dc.

{FK%+E.§;+E%)f~dcdrdt:—F-g—idcdrdt‘ (2.146)

Now consider the change of the molecules of class ¢ as the consequence of the
collisions in the element dedr intime dr :(9f /&t ) dedrdt. We consider the colli-
sion of molecules of class ¢ with molecules of class ¢, their velocities become
¢ and ¢ after collision. A molecule of class ¢ is considered as moving with
relative velocity ¢, in mass of molecules of class ¢, . In time dt the volume swept
out by this molecule of class ¢ is c¢,0dQdt (note, that the differential cross—
section is employed here), and the number density of molecules of class ¢, is
Jde, . Obviously, the number of collisions of this molecule of class ¢ with mole-

cules of class ¢, in 4t is

¢ fiodScd: .
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But in the phase space element dedr there are fdedr molecules of class ¢, so in
time dt in the phase space element the number of collisions between molecules of

class ¢ and molecules of class ¢, is

¢, fiodQdeded wit . (2.147)

This is the number of collisions of type (c,cl - c*,cf) in time dt in phase space
element dedr . In section 2.3 it is shown, that for the direct collision of type
(¢,e,—¢",¢;) there exists the inverse collision of type (c',¢] = ¢,¢,) (see Fig.2.3
and the paragraph following Eq. (2.46)). Denote the velocity distribution functions
of molecules of class ¢” and of class ¢/ by f* and f", according to the analogy
with Eq. (2.147), one can write the number of collisions of type (c*,cf — c,cl) in

time d¢ in phase space element dedr as

¢ f S (odQy de'de;ddt . (2.148)

Equation (2.44) shows ¢ =c, , and the symmetry of the direct and inverse colli-
sions guarantees that the Jacobian of the transformation between the values of the
product of the differential cross-section and phase space elements 0dQdedr for

the direct and the inverse collisions equals unity.

|(caQ)dede,| = ](adsz)*dc“ dcf| . (2.149)

So Eq. (2.148) can be written as
¢, f fodQdedcedrdr . (2.148Y

Noting that the direct collision (c,cl —c, cl) causes the depletion of molecules of
class ¢, while the reverse collision (c*,c: —)c,c,) causes the replenishment of
molecules of class ¢, one obtains the gain of the number of molecules of class ¢

in time ¢ as the result of collisions with molecules of class ¢, in phase space ele-

ment as

S - ) codQdededrdr . (2.150)

When counting the volume swept out by the molecule of class ¢ intime df,
the differential crosssection cdQ =bdbd¢ has been used, so in order to obtain the
total number of the increase of molecules of class ¢ intime dt in dedr, integra-

tion over the whole cross-section is needed, and as the collisions of mokcules of
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class ¢ with all molecules are to be taken into account, integration over entire
space of ¢, is needed. Thus, in the phase space dedr, the total increase of the

number of molecules of class ¢ caused by collisions is

~oo ()

(%1 dedrdt =U j( - ﬁl)c,.ondC,JdCd”dt- (2.151)

Dividing the sum of Eqs.(2.145), (2.146) and (2.151) by dt, the rate of change
of the number of molecules of class ¢ in the phase space dedr as the result of
convection and collision is obtained. Balancing Eq. (2.144) with this rate of
change, moving the convection terms to the left hand side of the equation, and
canceling the common factor dedr , the Boltzmann equation for the single-

component gas is obtained

of of F (Y _FF popm
E+c.5r.+p.§_(atl_”(_fﬁ ) eodQde, . (2.152)

2w 0

The Boltzmann equation has two important prerequisites which must be kept in
mind when using this equation. First, it is valid only for dilute gas, for only binary
collisions have been taken into account (see analysis of the condition under which
the three body collision is not important given in the beginning of section 2.3).
Then in counting the number Eq. (é.147) of collisions between molecules of class
¢ and molecules of class ¢, , the molecular chaos assumption has been adopted,
that is, the distribution function f of molecules of class ¢ has been assumed to
be uncorrelated with the distribution function f, of molecules of class ¢, . The ne-
cessity of the molecular chaos for the validity of the Boltzmann equation is explic-
itly seen in the derivation of it from the BBGKY equations (see Eq. (2.143)).

Boltzmann equation as written in the form of Eq. (2.152) is only valid for sin-
gle component monatomic gas. But in nature most gases are polyatomic gases
with rotational and vibrational degrees of freedom and possibly with excited elec-
tronic levels. In the polyatomic gases there are the exchanges of translational and
internal energies and more transport coefficients are to be introduced. Wang
Chengshu (known in the literature as Wang Chang, Chang is her husband’s family
name) and Uhlenbeck [16] proposed to treat the collision term in the Boltzmann

equation for the polyatomic gas semi-classically, 1.e., to treat the translational en-
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ergy classically and the rotational and vibrational energies quantunrmechanically.
Wang’s method of treatment and her method of the solution are both of value not
only for polyatomic gases but for treating other problems. The Boltzmann equa-
tion for the gas mixture is given in section 2.12.

Boltzmann equation is the basic equation of molecular gas dynamics and plays
a central role in rarefied gas dynamics. In the free molecular flow regime the colli-
sionless Boltzmann equation and sometimes the equilibrium solution of the
Boltzmann equation, i.e. the Maxwellian distribution, is employed. In the slip flow
regime the first approximation, the Navier-Stokes equation, or the second -
proximation, the Burnett equation, of the Chapman-Enskog expansion in solving
the Boltzmann equation is employed, with slip boundary condition derived also
basing on the Chapman-Enskog expansion, or, the fluid dynamics equations ob-
tained from the systematic asymptotic expansion in solving the Boltzmann equa-
tion are employed. In the transitional regime the Boltzmann equation or some
equivalent methods must be used to solve the problems of gas flows.

To obtain a certain solution of the Boltzmann equation the initial and boundary
conditions must be prescribed. Certain function of ¢ and r can be assigned as the
initial distribution function at the initial time. The problems related to the prescrip-
tion of the boundary conditions on body surfaces will be discussed separately in
Chapter 3.

Boltzmann equation is a differential-integral equation. Its right hand side term
is called the collision integral term or collision term. If divide it into two terms,
every term is a function of ¢,r and 7. In the second term (the depleting term)
f(e) can be taken out of the integral, for ¢ and ¢, are independent, but for the
first term (the replenishing term) there is not such a simplification. f~, f are the
distribution functions with the post-collision velocities ¢” and ¢/ as their argu-
ments, and ¢’ and ¢, can be expressed as functions of ¢ and ¢, and of angle ¥
and angle ¢ (see Eq. (2.41), Eq. (2.59)", Eq. (2.61)", Eq. (2.63)", Eq. (2.59) ", Eq.
(2.61)"", Eq. (2.63)" and Eq. (2.39)). In calculating the collision integral or its
moments the expressions of ¢ and ¢ through ¢ and ¢, are used. One can imag-
ine what enormous difficulty the presence of the collision term brings to the solu-

tion of the Boltzmann equation.
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Except the tremendous difficulty brought by the collision term, the Boltzmann
equation has the peculiarity of possessing many arguments. The advantage of the
simplicity of having only one unknown function f becomes not so essential
compared with the complexity brought by the large number of arguments. In gen-
eral (three-dimensional and unsteady flow case) f depends on seven independent
scalar arguments, and the velocity space needs to be extended to quite large ex-
tent. This sets difficulty of arranging the grid points in phase space for numerical
calculations, and in general case (complex geometry or large disturbances) it is

impossible to obtain analytical solutions.

2.7 COLLISION INTEGRAL AND TOTAL NUMBER OF
COLLISIONS

The multiplication of the right hand side of the Boltzmann equation Eq. (2.152) by
a function Q(c) associated with molecular velocity ¢ and integration over the en-

tire velocity space ¢ leads to an expression called collision integral

e oo 4y
Alol=[ [ o' 1 - pgodQde de. (2.153)
]
For the convenience of further application we discuss some modified forms of this
integral.

In the integral Eq. (2.153) let us interchange the places of ¢ and ¢, and replace
0=0(c) by 0, =0(¢,), the value of integral is unchanged, for this is simply the
change of the notations of the two molecules, so one has

oo oo 4

Alo)=[ [ [ o s - fif)e,0dQadede, . (2.154)

—co—c0 ()

In this integral interchange c,c,, f, f, with ¢’,¢".f".f,", and replace O, =Q(c;) by
o) EQ(C;), the value of integral is unchanged. This is because there are inverse
collisions, any collision is the inverse collision of another collision, and the result
of integration over ¢ and c,, is the same as that of integration over ¢ and ¢ .

Here the fact that the Jacobian of the transformation between the pre -collision and
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post-collision values of the product 6dQdedr (see Eq. (2.149)) is unity has been
used

oo oo 47

Alol= [ [ [oluhf -/ feodQdede, . (2.155)

—oomco 0

In this integral once more change the notations of ¢ and ¢ , one has
w0 oo 4
1=[[[ouh-1" £)eodQdede, . (2.156)
~oomoo (}

From Egs. (2.153), (2.154), (2.155) and (2.156) one finds easily

T T f(Q+ Q-0 -0 £ - 1) goddede, . (2.157)

-;sl'-‘

Equation (2.153) can be written in a form that brings out its physical meaning

in full relief. For this first write it like

co co 4

TT fo* ' c,0dQdede, - | [ [ Offc.odQde, de .

~<0 0

To the first term of the right hand side apply the reasoning that led to Eq. (2.155),
i.e., take advantage of the existence of the inverse collisions, the term Qf "f;" can

be replaced by O° ff; , so one has
Hj(g‘ -Q)f.fe.odQde, de . (2.158)
—oo—co ()

In this equation simple change of the notations of ¢ and ¢ leads to

= T jf T(Q; -0, f.fe,od Qdcde, . (2.159)

—oo—co ()

Add the above two equations and divide the sum by 2, one has
1P L.
Agl=5[ [ [@ +0i-0 - Q) fe,odQuede, . (2.160)
—oo—oo [

This equation shows that A[Q] is the change in the quantity QO summed over

all collisions. The appearance of 1/2 is to take into account the double counting of
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collisions when ntegrating. The change of Q ina (c,c, —>c*,c,’) collision is

(Q* +Q, 0 —Ql) . It is easily seen, that the integral

8

l2 T Tfnf“r"d Qdede, =% T T 0yc.f, fde,de 2.161)
LR LR

H

is the number of collisions in the gas in unit volume in unit time. In the derivation
of the Boltzmann equation we have seen, that f fcodQdcdcdrdt (see Eq.
(2.147)) is the number of collisions of type (c,c, —ac*,c;) in time dt in phase
space dedr . Integrating it over ¢ and ¢, and over the entire cross-section, one
obtains the total number of collisions between various molecules in time df in
space dr counted twice. Divide it by drdr and by 2, the above expressions is ob-
tained, it represents the total number N_of molecular collisions in unit time in

unit volume

N, == [ or¢.f fie,de . (2.162)

Similarly with the definition Eq. (2.9) of the mean value J of a quantity Q asso-
ciated with molecular velocity in gas, the mean value of a quantity associated with

the relative velocity is defined as
— 1
Q(c) = -n—sz Qe fdede . (2.163)

And Eq. (2.162) can be written

1
N, =—2-n20'Tc,. . (2.164)

2.8 EVALUATION OF COLLISION INTEGRALS

In the last section we have seen that the collision integral A[Q] is the summation
of the change of the quantity O over all collisions (see Eq. 2.160). In this section

we discuss the evaluation of this integral in some cases.
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When QO is either of the invariants —the mass m , the momentum mc or the
kinetic energy (1/2)mc’ — in the collision, the conservation of mass, momentum

and energy yields
0+0-0"-0,=0. (2.165)
Then from Eq. (2.160), one has, obviously
AlQ]=0, O0=(, u,v,w c?). (2.166)
The quantity O that satis fies condition Eq. (2.165) is called the summational
invariant. It can be proved, that the collision invariants (l,u YW ,cz) or their linear

combinations are the only summational invariants, that is, A[Q] =0, when and

only when
Q=4 +B c+ C. (2.167)

According to the definition of the collision integral one has, obviously, when a

and b are independent of ¢

AlaQ, +bQ,|=aA[Q]+bA[0,] . (2.168)

According to this property and the definition of the thermal velocity ¢ it is

easy to prove

Alee,]=4[cc ], (2.169)

Alec® J=a[ee? |+ 2¢.,8] ce; ] (2.170)

As an example of evaluation of A[Q], the case of Q=u? and the Maxwellian
molecules is chosen. For the Maxwellian molecules the differential cross-section
odQ can be written as Eq. (2.92), i.e., is inversely proportional to c_, thus the
expression ¢,0d€2 in the collision integral (like Eq. (2.153)) does not involve the

relative velocity
1/2
2K
c,0dQ =(——) W Wde . 2.171)
m

Making use of Eq. (2.158), one has
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Am{

For further evaluation the expression Eq. (2.59)* of the post-collision velocity

o0 27t oo 2]( 1/2
[ [J@™=u? ﬁq(7] WdWdededc, . (2.172)
o (3 0

through the pre-collision velocity is needed. Write u”-u* as

(Lz*—u)z +2u(zf —u). From Egs. (2.40) and (2.41) one has ¢, ~¢, =(1/2)(c: —c,_).
To keep the notation consistent with that used in Eq. (2.172), ¢ and ¢, need to be
used instead of ¢, and ¢, in Eq. (2.40), Eq. (2.41) (and also in Eq. €.39) to be
used in the following). Thus, one has (u*—-u) =(1/2)(u:—u,_) . Making use of Eq.
(2.59)", one has

* _ 1 N 1 el 2 1/2
u —u——z(u,, —u,)——g[(l —cos y)u, —sin ysin (v’ — w) ],

from where
2 21 22
U —u =—|:(l—cosx) u, -
4
2(1 —cos x)sin ysineu (v +w?)'"? +sin’ ysin’e(v?+ wl)}-
u[(l— cos x)u, —sin ysin (v’ + wf)m] .

Substituting this expression into Eq. (2.172) and noting that
i 2
[ sinede =0, [ sin’ede =7, (1-cos x)* =2(1-cos x)~sin’ x ,
0 0
the integral over £ can be written as
V4 1
| @ =uPyde =m(u - 20,)(1-cos x) —Zﬂ(3uf —¢sin’y .
0

Equation (2.39) gives u? =(u—u ) =u’ —u*+2u® — 2uu, =u* —u’ +2uu_, from
r 1 1 1 1 r

where

uf = 2uu = ulz —u?.
When this term is being integrated in Eq. (2.172) over the velocity space ¢,c, , be-

cause of that f and f is the same distribution function, x> and «° gives the

1 1

same result which cancels each other. According to the property Eq. (2.169), when

integrating, thermal velocity can be used to express u, :u’ =u* —2uu +u”, and
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the integration over ¢,¢, space gives 2n’u” . Similarly, ¢ *=u ’+v *+w’, the in-
tegral for v, and w, has the same result as for », and yields 2n°u” . Thus, the re-

sult of the whole collision integral is

1/2 2\
A[u2]=_§_7£(2_"_J nz[u'z—%)jsinz xXWAW, . (2.173)

2{m p

According to the definition of the shear stress 7 (Eq. (2.24), also see Eq. (2.25))
and the definition of 4,(n), Eq. (2.88), the collision integral being explored can

be written as
3 2 172
afut]= 7”A2 (n)(-—’ﬁJ L (2.174)
m

For Maxwellian molecules 1 =5,4,(5)=0.436 (see Table 2.1), and the viscos-
ity u is expressed by Eq. (2.93),and as nk7 = p , so we have

A[ﬂ—_—%%‘ 2.175)

Similarly, one can write, for the Maxwell molecules

3n 2%\ n pTy
Alce, |===4,(5)| = | =1, =51, 2.176
[ee]=2 m[m) il 2.176)
2K 1/’2n 2 2]7 2
A{:cic2 ] =374, (5)(7) —n;[r,.jc o 36],- ) =7n7(f,ycoj ';%) . (2.177)

The collision integrals Afu’], A[ci ;] and Alcc?] can also be evaluated for a
special kind of VHS molecules. That is, when their collision cross-section is in-
versely proportional to ¢, as in the Maxwellian molecular model, £=1/2 (see
Eq. (2.94)), and ¢ 6dQ is also independent of ¢, . The differential cross-section
o according to the hard sphere expression Eq. (2.73) is written as d”/4, and then
according to Eq. (2.94) is written as dfe,q_,‘e, /4c, . Writing dQ as sinydyde , the

collision integral can be written as

A[uz]: Iﬂ]i]:j:(u*z __uz)ff‘d_"z"/j_*'"’/_.sin xdxd &lcdcj ,

Transforming (u*z - u) as above and integrating first over ¢, one obtains
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2 M LT3 :5 drze/'c,«re/ﬂ .3 T n
Alu ]_—7;1 [u ——3—}—4—-—{5111 AL =G T (2.178)
Making we of the expression Eq. (2.96)' of the viscosity for Maxwell gas

model with £=1/2, one obtains
N ay
[ ]=

i.e. the same result Eq. (2.175) as for the Maxwell molecules. Similarly, for the
collision integrals Alc, ;] and Alcc?], using the VHS model and taking £=1/2,
the same results as for the Maxwell molecules are obtained (see Egs. (2.176) and

(2.177)).

2.9 THE MAXWELL TRANSPORT EQUATION — THE
MOMENT EQUATION

In section 2.2 it is seen, that the average value of quantity Q (being a constant or
a function of ¢ ) associated with a molecule in the gas can be obtained by finding
moment of the distribution function (see Eq. (2.9). Multiplying the Boltzmann
equation by QO and integrating each term over the entire velocity space, one ob-
tains the moment of the Boltzmann equation. This is the moment equation of the
Boltzmann equation. Historically, this equation was derived by Maxwell in 1866
before the derivation of the Boltzmann equation in 1872, so we also call it the
Maxwell transport equation. Maxwell by using this equation and with the help of
the Maxwellian molecular model (17 =5, and Eq. (2.92)) obtained the expressions
of various transport coefficients of the gas. Now the natural way of finding the
moment from the Boltzmann equation is used to derive the moment equation.

Multiplying the Boltzmann equation (2.152) by Q leads to

LigeLror L-of [/ - iy codnds,. 2.179)

—o {}

0
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To obtain the moment equation one must take integral of each term of this
equation over the entire velocity space ¢ . As Q is a function only of ¢, the result

of integration of the first term can be written as
j = (©Nde = [ [ (Qf)dc},
0

or , with the help of Eq. (2.9), as
L) 2.180
—((nQ).
» (2.180)

In the integral of the second term of Eq. (2.179) ¢Q can be taken into the symbol
of differential quotient, for ¢Q(c) is function of ¢, and ¢ and r are equal argu-
ments of f . But after multiplication by f(r,c,r) and integration over c, c@ is
dependent of the space coordinates, as the quantity 0 in Eq.(2.180) is a function
dependent of . Thus, the integral of the second term of Eq. (2.179) can be written

as
[V-(conde =V -nco. (2.181)
The integral of the third term of Eq. (2.179)

jQF afdc

can be written as
T d T 00
F-— de— | F-==fd
_fm S QNde= | F-== 1
Here the first integral is zero, for F is independent of ¢, and f -0, when
c—>oo!

a7 deyde, .

jF 30 (@) dadede, = j Fn|:

And the other integral can be written as
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—nF-a—Q. (2.182)
dc

The integral of the right hand side of Eq. (2.179) is the collision integral Eq.
(2.153) already discussed is section 2.7. Thus, the result of integration of Eq.
(2.179) can be written (making use of Eq. (2.180), Eq. (2.181), Eq. (2.182) and

Eq. (2.153))
g—(n'Q‘)w-n@—nF%Q-: [0]. (2.183)

t

C

This is the moment equation for @ . If the collision integral A[Q] is written in the
form of Eq. (2.160), thus it represents explicitly the change of quantity Q in the
collisions, and with such right hand side the equation (2.183) could have been de-
rived not from the Boltzmann equation. What Maxwell derived independently was
just Eq. (2.183) with A[Q] expressed in the form of Eq. (2.160). Such equation is
called the Maxwell transport equation.

The terms on the left hand side of Eq. (2.183) can be expressed by the macro-
scopic quantities of the gas, and AQ=0, when Q=m, mec or (1/2)mc®. The
equations thus obtained are the conservation equations of gas dynamics. We shall
discuss in detail the various cases of the conservation equations in section 5.2 of
Chapter 5.

2.10 MAXWELL DISTRIBUTION

An uniform in space single -component gas of monatomic molecules in the case of
absence of external force yields a solution of the Boltzmann equation, i.e., the dis-
tribution in equilibrium state. Historically, this distribution was obtained by Max-
well in 1860 [17] before the establishment of the Boltzmann equation, and is thus
called Maxwell distribution. Maxwell distribution, i.e. the velocity distribution

function under the equilibrium state of the gas, is

3/2
m m 12
=n exp| ———c" |=
f (MkT) p( 2kT ) (2.184)
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372
n —= exp{—l(u'2 +vi+ wiz) .
2mkT 2kT

The original derivation of Maxwell is not sufficiently strict, but is simple and

direct. It is of sense to know how historically this was done first, before cognition
of the mathematically strict derivation based on the Boltzmann’s H-theorem [14].
As the three components « , v and w of the molecular thermal velocity are per-
pendicular to each other, Maxwell assumed that the distribution of certain comp o-
nent is independent of the distributions of the other components. If the probability
that the value of the velocity component in the x direction is between u and
u +du is denoted by F(u')du‘, then according to the assumption F(u) is inde-
pendent of v and w . Similarly, the probabilitics that the values of the velocity
components in the y and z directions are between v and v +du’ and w and
w +dw are denoted by F(v')dv' and F(w')dw', respectively. According to the

definition of the distribution function

Slu'v,whde!

is the probabilistic number of molecules in unit volume with velocity in the ele-
ment dc =dudvdw near ¢, and in the assumption of independence of the veloc-

ity component distribution function on each other is to be equal to.

Flu' v ow)dudvdw' =nF (u')F(v)F (w)dudvdw '

For the quiescent gas the distribution function f (u’,v',w') can not distinguish
any peculiar direction, it can depend only on the value of the thermal velocity
¢ =\Ju+v % w?. Thus, basing on the consideration of the isotropy in the quies-

cent gas, one should have
nF (u)F (v)F(w')= f(u' v, w')= qb(u'Z +vi 4 w'z) :
The solution of this functional equation is
F(u')= ae™”
fluv,w)= ¢(zz’2+v Zy w'z) = na’ exp(bc’z) . (2.185)

Here @ and b are arbitrary constants, appropriate choosing them can make Eq.
(2.185) identical with Eq. (2.184).
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The strict mathematical derivation of the Maxwell distribution based on the
Boltzmann’s H-theorem is as follows. For the quiescent uniform gas without the
action of the external force 9/dr is zero and F is zero. Then the Boltzmann

equation is

%z [ (7 5 - 17) codnde, . (2.186)

—o {)
The H function introduced by Boltzmann is (see the definition of the average

value Eq. (2.9))
H=rlnf={fnfic. (2.187)

Taking O=In f, making use of the moment equation (2.183) and writing the col-
lision integral AQ in the form of Eq.(2.157), one can write
1 oo oo 47
% ij_{(lnfﬂn f-In f-Mn ff)
—eo—co ()
(f 1 - 1)cod ¥ ede=

o oo 417

S (s ) s =)o i ede. (2.188)

45

Obviously, if In(f/ f* £;*) is positive, then f"f'—/f, must be negative, if
In(ff/ f* f*) is negative, then ff" - f, must be positive. So the integral in Eq.
(2.188) must be negative or zero, that is, / can not increase

0H

—<0.
= (2.189)

This is the Boltzmann’s H theorem.

It is seen from the expression Eq. (2.187) of H, that H may diverse, as one
has f—0 and Inf ——e, when ¢ - . There arises a question: whether H
would decrease all the way to —eo, or approach a finite value? To answer this
question one may compare the expression Eq. (2.187) of H with the following in-

tegral

Tﬁzdc.
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This integral represents the total translational energy of the gas so is convergent.
Suppose that H =If1nfdc diverges, then —In f must tend to infinity more rap-
idly than ¢*, when ¢ — oo, or

Inf<-¢?,

ie.
f <exp(—c?).

That is to say, [ tends to zero more rapidly, than exp (—cz) . As
c" exp(—cz)le —0 forany n, H :J.flnfdc is surely convergent. So the &-
sumption that A diverges is not valid. H decreases with time monotonically and
tends to a finite bound. This corresponds to the state of the gas with

oH

e
From Eq. (2.188) it is seen, that this is possible when and only when the following
equality holds

SR =1h=0, (2.190)

or when and only when the following equality holds

Inf+ln f=ln /+In [ (2.191)

It is seen from Eq. (2.186), that dH /dt =0 leads to df /dt =0, that is, in equilib-
rium the probabilistic number of molecules in any velocity space element remains
unchanged with time.

The condition Eq. (2.191) shows, that in the state of equilibrium the quantity
Q=In f satisfies the condition 0+ Q- 0 - =0, i.e, O is the summational
invariant.. It is known, that the collision invariants — the mass m , the monentum
me and the kinetic energy (1/2)mc’ of the molecule —satisfies this condition. It
has been proved that the collision invariants and their linear combinations are the

only summational invariants (see [2], pp. 42~45). So one has

Inf=d4c*+B-c+C. (2.192)
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If introduce the thermal velocity ¢ according to Eq. (2.10), then the above equa-

tion can be written as
Inf=Ac*+(24c, +B )-c + Acy + B¢, +C.
As it is impossible to distinguish any peculiar direction in an equilibrium gas,

the distribution function should be isotropic and should not depend explicitly on

¢ . So one has

B=-24c,,
and
Inf=Ac?- Ac}+C,
ie.
f= exp(Ac'2 - Ac; +C) :
New constants can be introduced, let 4=-f", the negative sign is introduced to

satisfy the condition that f should be bounded and the coefficient of ¢ should

be negative. And for the sake of simplicity let exp (C + ﬁzcg) =o , one has
f=aexp(-pc?). (2.193)

The constants @ and B are determined from the expressions Eqs (2.5) and (2.31)

of the number density #» and temperature T . First making use of Eq. (2.5)

n ='[fdc = T exp(— 2’ )dc' =
] [ Jexpf - (47 o i aitvit =

a[}exp(_w)dx]} |

The integral Eq. (I1-11) in the Appendix II gives the value of the integral in the
last formula as \/7?/,8 . So one has

nza(«/;/ﬂf,
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3
a:n(ﬁ/ﬁ) ) (2.194)
Making use of Eq. (2.31)
3k o7 . 5y,
——T=—/|c expt—pc’)dc ,
2m 2n-, p( )

The value of the integral according to Eq. (IL.11) and Eq. (I1.13) in the Appendix
i
I can be evaluated as (3/2)7>/B°. The value B° is obtained after substituting the

value of & according to Eq. (2.194)
/ —-1
{9 -1
B’ :(2—T) =(2RT) . (2.195)
m

Substituting the value of & and f according to Eq. (2.194) and Eq. (2.195) into
Eq. (2.193), the expression for the equilibrium or Maxwell distribution is obtained

as (Eq. (2.184))
l'n\ 3/2 "
— S
f"""[znkr) eXp( 2T’ )

Sometimes it is expressed through f :

B _ﬁ_3 T B 172
f(,—n[ﬂl/z)exp( ¢*).B=(2RT) . (2.196)

Comparison with the most probable thermal velocity ¢, introduced in the next
section shows, that § is just the reciprocal of ¢, .

The Maxwell distribution Eq. (2.184) may be considered as a basic physical
law, it stipulates the most probable velocity distribution of the gas in the quiescent
equilibrium state. The molecular beam technique can measure with sufficient ac-
curacy the velocity distribution of molecules in an equilibrium, quiescent gas and
confirm the validity of the Maxwellian distribution.

The Boltzmann’s H-theorem has proven that the Maxwellian distribution is the
sufficient and necessary condition for the equilibrium state. Without the introduc-
tion of H :_[flnfdc , it is impossible to prove, that Eq. (2.191) or Eq. (2.192) is
the necessary condition of df /0t =0, for from Eq. (2.186) it is seen, that to make
the right hand side integral vanish, it is possible to maintain (f*fl—ff,) some-
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where positive and some where negative in the integration domain. The above
proof was aimed at the single component, monatomic molecule gas. But the Max-
wellian distribution applies also to the velocities of gas mixture and of diatomic
and polyatomic molecules. In Chapter 1 we introduced the equilibrium energy dis-
tribution derived by the method of statistical mechanics, i.e., the Boltzmann distri-
bution (see Eq. (1.68)), which is the more general distribution than the Maxwe I-
lain distribution derived from the kinetic theory. Maxwellian distribution can be
considered as a particular example of the Boltzmann distribution with
€, = (1/2)mc'2 .

2.11 EQUILIBRIUM STATE OF GASES

Many useful properties of gas in equilibrium state can be obtained from the Max-

wellian distribution, and these will be discussed in the following sections.

2.11.1 SOME PECULIAR SPEEDS OF GAS

Here we start from the introduction of the concepts of the most probable molecu-
lar thermal speed ¢, , the average thermal speed ¢ and the root mean thermal
speed ¢ .

For this in the velocity space we introduce the spherical coordinates (c',e,(p) )

the volume of the element in the velocity space is

dc =c’sin8d0dgdc .
According to the definition of the velocity distribution function the fraction of
molecules with velocity of value between ¢ and ¢ +dc, of the polar angle be-

tween 8 and 0 + d6 , and of the azimuth angle between ¢ and ¢+ d¢ is (see Eq.
(2.4) and Eq. (2.196))

d . . .
(B 1Y) exp(— P Y)sinOdOdpdc .
n
The fraction of molecules with speed in the velocity space between the sphere of

radius ¢ and the sphere of radius ¢ + dc obviously can be obtained from the -

tegration of the above equation over ¢ from 0to 27 ,and over 8 fromQto
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(4/\/")[5 Zoxp(~Bc?)de . (2.197)

A distribution function ){(c) of the value of the velocity can be defined, that
the fraction of the molecules with speed between ¢ and ¢ +dc s x(cl)dc'. Ob-

viously
372 '2
xle)= (4 Be? exp(- Zc'2)=47r[2;"7j c’zexp(—%)- (2.198)

The dimensionless distribution function y/B =(2k7/m)?y is shown in Fig. 2.10,
the abscissa is also represented by the dimensionless quantity Bc'= ¢'/(2kT/ m)f* .
The peculiar speeds mentioned in the beginning of this section can be evaluated
from the distribution function x(c").
The most probable molecular thermal speed ¢, is the value of ¢ where x(c)

reaches the maximum, from the differentiation dy /d¢'= 0 it is easy to obtain

12
. 2kT
cmzl/ﬁ=( - ] . (2.199)
m
The average thermal speed ¢' is defined by the following equation
X (Be)
F (Bu)f
0.8 -
i — %(Bc)
o6k -~ - F(Bu)
0.4F .
02 .- Y . . [}c
: b, Froer P
| [ .
0 T 3
Ba or Bc

Fig. 2.10 Equilibrium distribution function y(fc¢') of the molecular speed and the equilib-
rium distribution function F(fu ") of the component of the thermal velocity
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¢ = '[c' )((c dc
0
making use of the integral Eq. (II.14) in appendix 11, it is easy to obtain

E:z/(n"’zﬂ):[gk—T) . (2.200)

m

The root mean thermal speed c, is defined as ¢', = (c'_z)'/Z , and ¢ has been de-

fined in Eq (2.28) and can be expressed through ;((c') as

the result of integration (with the help f Eq. (I1.15)) gives
L e (3)° 3kT
= == / . 2.201
‘s (C ) [2 ) B ( )

The values of ¢, ¢ and ¢, are marked on the abscissa of Fig. 2.10 in the suc-
cessively increasing order in the proportion of V2, 877 and +/3 . This order is
caused by the high speed tail of the equilibrium distribution function.

From the Maxwellian distribution function Eq (2.196) the distribution function
for a component of the thermal velocity can be obtained. The fraction of molecules
with velocity having a component in certain range can be obtained through the in-
tegration of E. (2.196) over the other two components. For example, the fraction

of molecules with the x component of the thermal velocity lying between # and

u +du is

(ﬂ/n”z) exp(~ [j fexp[ B (v +w )]dv'dw')du',

—o0—00

or, making use of the table of integrals in Appendix 1I-2, it can be written as
Bln'" exp(—Bu’* )du' . (2.202)

And the distribution function for the # component of the thermal velocity is

12 a
F(u)=B/m" exp(~Bu 2)—(27:’1'{T) exp(—”;li’T). (2.203)
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This result can be reached by writing the Maxwellian distribution function Eq.
(2.196) as the product of the number density » and three equal distribution func-
tions F(u’) , F(v') and F(wy) of the components u', v and w . Here the prob-
abilities in the three directions have been supposed to be independent on each
other, and this is just the assumption introduced by Maxwell when deriving the
equilibrium distribution. The dimensionless distribution function
F/B=(2kT/m)/*F is also shown in Fig. 2.10. From the figure it is seen, the most
probable value of the component of the thermal velocity is zero. The average
value of the u component of the thermal velocity in the positive x direction is (by
using Eq. (I1.12) in Appendix II)

]:u'F(u' )du' /U F( Li)du' )=

0 0

(2.204)
T . . 1=
B/ 'l uexp(—-Bu?)du ||-2=1/(n""B)=—c".
[ ronmyas 2= n) -
The dominator on the left hand side of this formula is the normalizing factor, its
value is 1/2, because the molecules moving in the positive x direction obviously

constitutes half the entirety of molecules.

2.11.2 MOLECULAR COLLISION FREQUENCY AND THE MEAN FREE
PATH

In the following the Maxellian distribution function is used to obtain the molecular
collision frequency v and the mean free path A . In section 2.7 the total collision
number of molecules in the gas in unit volume in unit time was obtained (Eq.
(2.162))

N, :%]: Torc,_ﬁ ddc .

The relation of N, with the number density # and the collision frequency v of

each molecule is as follows

N ==m. (2.205)
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Here the symmetric factor 1/2 is introduced because every collision involves two

molecules. From Eq. (2.162) and Eq. (2.205) the expression for v is obtained as

v= %} T ¢, f fdede . (2.206)

—o0—00

Or, using the definition of the mean value Eq. (2.163), it can be written as

vV =no,c, . (2.207)

r

In the discussion of the collision cross-section in section 2.4 it is seen, that the
total collision cross-section o, in general varies in dependence of the relative ve-
locity ¢, , for the inverse power law model o ~c] ) see Eq. (2.84), for the
VHS model and the VSS model o, ~ ¢ *, see Eq. (2.94). Consequently, to calcu-
late v, it needs to calculate the mean value of some power of the relative velocity
¢, (for the definition of the mean value see Eq. (2.163)).

So we proceed to calculate the following integral
- 1 7%
,.:—Z—H S ks

where ¢ =c f, and f, givenby Eq. (2.184)

176 A

AL erea{ et sy ) e,

To calculate this integral the most convenient way is to transform the integration
variable ¢, ¢, to ¢, , ¢, . The Jacobian of the transformation

O(uy, vy w, 1y v 2 W)

a(ur7vr’ r ? L;n’ m? m)
is to be constructed by Eq. (2.40). From the form of Eq. (2.40) it is seen , that it is

sufficient to calculate the reduced one-dimensional Jacobian:

O, du,
Ou,u,) fﬂaum
o (u,,u,) - ou, ou,

myl(m+m) 1 iy
-my/(m,+my) 1 ’

from where it is concluded that the whole Jacobian is 1. The expression

(mlc,2 +mzc§) in the integral can be substituted according to Eq. (2.42). Then in
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the velocity space ¢, , ¢, introducing the spherical polar coordinates, and because

m

of the existence of the spherical symmetry integrating first over the polar angle

and the azimuth angle, we have
de, =4nclde , de, =4ncldc, .

There for

I
r

(mm, )3/2 o [_ (m,+m,)c? _mc

[[e e e XTI 2kT

3 :ldcmdcr S
ﬂ(kT ) o

or

= (2mm,)7 (m, +m )2, T me:
¢ = g explm cm‘lcr’ Pexp| — 2t e, (2.208)

Equation @.208) can be expressed through distribution functions ¢(c ) and
w(c,) of ¢, and ¢,

¢/ =[0(c,)de, [ chw (6 )de. (2.209)
0 [
where
4(m1+m2)3/2 2 _(ml +m2)crzn

#(c,)= ) > exp ot 2.210)

4m>"? mc?

—_— 2 _ ey
w(c,) ”1/2(2kr)3/2cr eXP( i ) @2.211)

Note, that ¢(c,) and y(c,) formally are identical with the distribution function
x(c) of the value of the thermal velocity (see Eq. (2.198)), only the mass m is to
be replaced by (m, +m,) and m,, respectively. Obviously, ¢(c,) and y(c,) have
been normalized (see Eq. (II.13) of Appendix)

o0 3

j¢(cm)dcm =1, _[u/(c,)dc,_ =1.

0 0

The second integral in Eq. (2.209) can be expressed through gamma function (see
Eq. (1I.1)), thus one obtains
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2

1/2
T

T[(j+3)/2](2kT/m,)" . (2.212)

¢l =

The most direct application of Eq. (2.212) is to obtain the mean value c—,_ofthe

relative velocity by letting j =1

¢, =(2/n"*)(2kT/im,)'". (2.213)

For a single-component gas m =m/2, with the help of Eq. (2.200) one obtains

the expression of c_, through the mean thermal speed ¢’
¢ =2"/(n")=2"c . 2.214)

In obtaining Eq. (0.5) in the Introduction we have used this result.
Now we use Eq. (2.207) to calculate the collision frequency of the VHS model
molecules. The collision cross-section o, is expressed according to Eq. (2.94),

and with the help of Eq. (2.98) one has

_ 2¢
Or =01/ €

rref

2& _ 2w-1 1-2w
C, "O-Trejc &

rref vr
Substituting it into Eq. (2.207) and making use of the result for c_j, Eq. (2.212)
with j=2-2w, one obtains

I-m
Vo =N07,0Gy %P[Z— w](Zk—T] : (2.215)

2 m

»

This result is valid also for the VSS model, for the relation of the collision cross-
section for the VSS model with the relative velocity is the same as for the VHS
model, only with different coefficient of proportionality (see Eq. (2.110))

In fact, we can make use of the expression Eq. (2.109)' of the viscosity for the
VSS model to express the collision cross-section v, (Eq. (2.215)). Note that
['(4-£) in Eq. (2.109), because of Eq. (2.98), can be written as

9 7 5 5
F(E -w) =(5— w)(; —w)r(z— ),

so one has

5(0(+l)(06+2) np .

T 20)(5—20) 1

(2.216)



2.11 EQUILIBRIUM STATE OF GASES 119

Making use of the definition of the molecular mean free path A =clv (see Eq.
(0.4)) and the expression of ¢ (Eq. (2.200)), one obtains the mean free path A,
for VSS model in the equilibrium state

_4o(1 -20)(5-20)( m J"Zﬁ
" S(a+l)(a+2) \2mkT ) p

(2.217)

In this equation let o =1, one obtains the result for the VHS model. For the VHS

model with the collision cross-section in reverse proportion with the relative ve-

locity (as for the Maxwellian molecule n=5, w=1), one has

172
ho=2f —— ] K. 2217y
0 (2nkT) 0 ( )

For simple hard sphere model, w=1/2, o,,,,=0,, m =m/2, one has

1 —_
vy :(4/n7)na,(kr/m)”2 =2"%n0,c . (2.218)

This result can be obtained also from the derivation given in the Introduction: for
this one just need to substitute the expression Eq. (2.214) of Z through ¢ into
Eq. (0.3). The number of collisions in the gas per unit volume per unit time is ob-

tained from Eq. (2.205) as

N, =2"n'cc . (2.219)

[

The mean free path A, of molecule in equilibrium is obtained from Eq. (0.4) and
Eq. (2.218) as

70 =(2n0, ) = (2 nmd?) (2.220)

If use the expression Eq. (2.76) of the viscosity for the hard sphere model, A, can

also be written as

16( m "
A =2 L (2.221)
S5\ 2mkT P
32 u =
A, :—_—:2.037u/(cp). (2.222)

hY/1 cp
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It is evident from the comparison of Eq. (2.221) and Eq. (2.217) that muitiplica-
tion of the mean free path of the usual HS model by a factor yields the result for
the VSS model. The value of this factor for more realistic values w=0.75 and
a=1.5 is 0.825, for w=0.75 and a=1 of the VHS model is approximately
0.8021, for the VHS model (a =1) with Maxwe llian character ( w=1) this factor
equals 5/8 =0.625.

2.11.3 THE MEAN VALUE OF COLLISION QUANTITIES

The mean value of a quantity O that is a function only of the relative velocity c,
averaged over all collisions is a quantity that will be needed in the following. Ac-
cording to the definition this mean value is obtained by multiplying the expression
in the integral of the collision frequency v (Eq. (2.206)) by @ and then normali-
zation of thus obtained integral by v . Or alternatively, by multiplying the expres-
sion in the integral of ;r’— (Eq. (2.208)) by @ and then normalization of thus ob-
tained integral by the value of c_rf (Eq. (2.212)), where the value of ; should

chosen equal to the power in the dependence of o,¢, on ¢,

{(j+3)2 - 2
— m 1 : mce
=2 r j+2 ——rr de .
© (szj F[(j+3)/2]5[QC" eXp( 2ij < (2.223)

For the VHS model, according to Eq. (2.94), o,¢ ~c!*, or according to Eq
(2.98), j=2-2w. So for the VHS model molecules we have

_ 2 m 572~ o 2(27 ) m Cz
= r C o, eX _ rr dc )
0 F(g_wj( 2kT) (I)Q ' P2 | (2.224)
2

Take the example of the translational kinetic energy in the frame of reference of
the center of mass € =(1/2)mc} . The substitution of Q=(1/2)m,c in the above

equation yields the mean translational kinetic energy in collisions
- (5
g = E—w kT . (2.225)

For the HS model w=1/2 (see Eq. (2.97))
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£ = 24T . (2.226)

The fraction of collisions in which the translational kinetic energy
g, =(1/2)m,c,” exceeds a certain prescribed value &, is an important characteristic
quantity and will be of use in discussing chemical reactions. To find this quantity

1
one can put Q=1 and set the lower limit for the integration to ¢, =(2¢,/m, )A and

5/2-w oo 2
A/\]/v B 52 [ 2’7T) e exp[—m}'c} ]dc" ' 2.227
r[—“w] 9 (25"/m,)“z 2k ( . )

2

obtain

The integral in the above expression is the incomplete gamma function (see Eq.
(I1.4)), one has

=— 0/ (2.228)

AN T(5/2-w,e,/kT)
N I'(5/2-w)

For the HS model, w=1/2, and the reduction formula Eq. (I1.5) in Appendix I

gives

AN/N= exp(—so /(kT))[lﬁ‘)—H). (2.229)

K

Sometimes we are not interested in the total translational kinetic energy in the
collisions but rather in the kinetic energy corresponding to the component of the
relative velocity along the apse line of the collision. That is to say, we need to cal-

culate the fraction of molecules in collisions in which the following condition

1
Em,.cf c0s’8, >¢€,, (2.230)

is satisfied (see Fig. 2.7)). The differential cross-section for HS and VHS mole-
cules is (see Eq. (2.66) and Eq. (2.69))

2

odQ = Dy sin ydxde =&sinxdxdg .
4 ar

And Eq. (2.56) gives

sinydy = -4sin@, cosf ,do , .
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The condition Eq. {2.230) determines the range of values of 8,

1/2
0<86, <COSA{(-2—8—0-J /c,}.
m,

Thus the effective total cross-section o, satisfying the condition Eq. (2.230)
should be

cos™’ [(2&‘0 /m, )l 2 /e, J

o. =-20; J. sinf, cosb 46, ,
0
Le.
2¢e
ogzor[l— "2]. (2.231)
m,c,

Thus to obtain the fraction of collisions in which the condition Eq. (2.230) is
satisfied, one should multiply the expression in the integral of Eq. (2.227) by a

factor [1—— 260/(”1’_0,,2 )]

5/2~m . 2
AV 2 2 J. c,.zu_m) 1- 28"2 exp J e, de, .
N T(5/2-w)| 24T m,c? 2T

(280 Im. )2

Introducing again the incomplete gamma function according to Eq. (I1.4) in Ap-

pendix II, we obtain

_é_N_———l__ T i—w& —.f_‘)_l" i_wi 2.232
N T(52-w) \2 kT kT 2 kT )| (2.232)

For the hard sphere molecules, w=1/2, the fraction of collisions in which condi-

tion Eq. (2.230) is satisfied is extremely simple

AV exp| - . (2.233)
N kT
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2.11.4 THE REFERENCE DIAMETER OF THE VSS MODEL AND THE
VHS MODEL

When the relation Eq. (2.110) between the molecular diameter 4, in the VSS
model and the translational kinetic energy &, was being obtained, it was pointed

out that d,. could be written in the form of

d, [(kT/s, )"’*QT .

Infact, d, (and d,,,, when «=1)can be written as
(l)"l 2

s =d,,¢,.{(krw,./e,) ZI/F(S/Z—w), (2.234)

where
1272
5(cc+1) e+ 2)(mkT,, /) 0.235)

T 405 - 20)(7- 20)u,, '

The d,,, defined by Eq. (2.235) is the reference diameter of the VSS model (and

VHS model, with a =1). The reason that there is a factor of 1/I'(5/2 —®) being
separated is because that the definition of 4, is obtained from the relation with

the value of ¢!

in the equilibrium state. In fact, according to Eq. (2.94) and Eq.
(2.98) the total cross-section o, =zd” can be written as

nd® =0, cont 1297 (2.236)
And Bird defines d,,, as

nd>, =0y,,,c20 30T (2.237)

rref

2m~1
»

librium. In Eq. (2.224) by setting Q="' one obtains

where ¢ is the mean value obtained in the assumption that the gas is in equi-

1
Cerfl — (ZkT/mr)ﬂ)“z/ 1—{%_ w] (2238)
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Substituting Eq. {(2.238) into Eq. (2.237), then expressing O'Tre_/qu,‘.’e;‘ by the u,,, of
the VSS model through Eq. (2.109), one obtains the expression of 4, , Eq.
(2.235).

The reference diameter d,,, is easily calculated at certain reference temperature

T ., and it is convenient to calculate the molecular diameters of the VSS model

ref >
and VHS model ( @ =1) according to Eq. (2.234). In Table 2 of Appendix I the
molecular weight m , the value of u at the reference temperature T, the viscos-
ity power @, the power a of the cosine of the deflection angle in scattering (see
Eq. (2.102)) and the reference diameter d,, of the VSS and VHS (a =1) models

calculated according to Eq. (2.235) are listed for some typical gases.

2.12 GAS MIXTURE

The previous exposition and derivation of this Chapter is aimed at the single-
component gas. Now consider a gas mixture composed of s species, the quantity
of each species is denoted by the subscript p or g, p and ¢ can take the values
from 1 to s. The concepts and results concerning the expression of the macro-
scopic quantities, the Boltzmann equation, the collision frequencies and the mean

free path etc. can easily be extended to the case of gas mixture.

2.12.1 THE MACROSCOPIC PROPERTIES

It is easy to extend the expressions of the macroscopic quantities of the single —
component gas through the distribution function to the case of the gas mixture (see
Egs. (2.5), (2.7), (2.8), (2.21), (2.24), (2.25), (2.27) and (2.31)):

component number density

n,=|fde,, (2.239)
total number density

n=yn,, (2.240)

density



2.12 GAS MIXTURE 125

p =2mpnp = pr ’
p=l p=1
average molecular weight

p =;Zn,E zimp(np/n) s

p=l

mass average velocity
1 5 —_—
Cy =—2m”nlp »
p p=1

thermal velocity

¢ =c —¢,,

species mean thermal velocity

¢, =c,—¢y,

species diffusion velocity

pressure tensor

pr Colip 2" m/) wCp 2

pAl p=l

stress tensor
( 2 P 4 w » up ] ’

scalar pressure

pr c’,

p]

heat flux

qi:Z{l.clp(l » pjfdc +J.C gipfpdcp:|’

l s
:;Z:!mﬁ,‘.cnfpdcp ’

(2.241)

(2.242)

(2.243)

(2.244)

(2.245)

(2.246)

(2.247)

(2.248)

(2.249)

(2.250)
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translational temperature

—kT:—ij,, —m,c}de, (2.251)

pl

2.12.2 THE BOLTZMANN EQUATIONS

To treat the gas mixture separate distribution functions f, for the components of
the mixture must be introduced, the behavior of which is governed by a system of
simultaneous Boltzman equations, the collision term of the ith equation for species
i is a sum over s collision integrals, with the jth term representing the collisions of
molecules of component i with molecules of component j. The Boltzmann equa-

tion for species i is written as (compare with Eq. (2.152))

Yy Uy 2

o 47
3 i ar oe [ J v J;_([ ffl*,"fffx/)crijo—ijdgdcu . (2.252)

2.12.3 NUMBER OF COLLISIONS, COLLISION FREQUENCY AND
MEAN FREE PATH

The total number of collisions of molecules of species p with molecules of spe-
cies g in unit time and unit volume is (see Eq. (2.162), as the collisions here are
collisions between different species, so the factor 1/2 appeared there to avoid

double counting is not needed).
N Py chquclqupfqdcpdcq . (2.253)

Making use of the definition Eq. (2.163) of the mean value in a collision, one can

write

1
O g = non J.J- TI)‘IC'qu f dc dc >

pq

consequently

Ny = 11 Gy Cra = 1V (2.254)

pq P oo
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where v, is the mean collision frequency between the p molecules and the ¢

molecules:

Vg = 14O 1pgCrpg - (2.255)

The mean collision frequency of p molecules with all species is

E3

V= Z(nt/O—Tpt/crpq) . (2.256)

g=1

The total number of collisions of molecules of all species in unit time in unit

volume is

1¢
N, =52n,,vp . (2.257)

p=1

If define the mean collision frequency v of molecules in the gas mixture as the

weighted average of the species collision frequencies
v=>v,(n,/n), (2.258)
p=l

then N_ can be written if the form of Eq. (2.205).
The mean free path of specie p can be written as
A, =c,v,, (2.259)
and the mean free path in the gas mixture is

A=Y (n/n). (2.260)

p=l

2.12.4 COLLISION FREQUENCY OF A MOLECULE OF SPECIES A
WITH MOLECULES OF SPECIES B IN GAS MIXTURE OF VSS (OR
VHS) MOLECULES

The value of the collision frequency of a molecule of species A with molecules of
species B in equilibrium state will be needed in the context of simulation of

chemical reactions. According to Eq. (2.255) this collision frequency is

v, .=no c. (2.261)

AB BT TABr
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For VSS (or VHS) model Eq. (2.94) with the help of Eq. (2.98) gives
1-wp
015/ (07,y) , = (0 0 ) " (2.262)

Substituting into Eq. (2.261) and calculating the integral according to Eq. (2.212)
with

j=2-2m,, (2.263)

one obtains

-,
20,5-1 2 2 2kT ’
Vs =1y (Orper ) ot —T| £ " . (2.264)

Expressing (o, ) cir with the help of Eq. (2.237) and using Eq. (2.238)

4p e
yields the searched collision frequency of a molecule of species A with molecules

of species B

v, =2 /z(dre/); n, [T/(Tm/ ), ]‘”““ [zk(rmj ), /m. ]1 ° (2.265)
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3.INTERACTION OF MOLECULES WITH SOLID
SURFACE

3.1 INTRODUCTION

Boltzmann equation (2.152) gives the rate of change of the distribution function
with space position and time. When considering the flows of gas around bodies,
for obtaining the solution of the Boltzmann equation certain boundary conditions
must be proposed, so it is necessary to know, how do the molecules incident with
certain velocity onto the body surface reflex from it. The interaction of the gas
molecules with the body surface is also the origin of the drag, the lift, the force
moment and the heat transfer subjected by the body from the gas flow. So the
proposal and application of the gas-surface interaction model in accordance with
the reality is the basis of correct prediction of the force and heat actions subjected
by the body in rarefied gas flows. Because of the physical complexity of this
problem both the theoretical and experimental research on it is far from attaining
perfection. In aerospace and other engineering practice for a long period of time
the so called complete diffuse reflection model has been in use, or alternatively,
the Maxwellian type boundary condition has been adopted, i.e., on the surface the
molecules are supposed to partially reflect in a fashion of diffuse reflection
model , and the remainder reflect specularly. Such simple models and the defini-
tions of the accommodation coefficients and reflection coefficients will be intro-
duced in section 3.2. Recently Cercignani and Lampis introduced a phenomenol-
ogical model which was extended by Lord to implement it in DSMC calculations.
This is the so called CLL (Cercignani, Lampis, Lord) reflection model. This
model satisfies the reciprocity principle, a general rule the molecules reflected
from the surface should obey, and can produce a number of distributions of the
reflected molecules that are physically reasonable with the introduction of pa-

rameters of direct physical meaning. It is easy to be implemented in the DSMC
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method and can include the practically important cases such as the diffuse reflec-
tion with incomplete energy accommodation and the reflection of molecules with
discrete energy distributions. In section 3.3 a simple version of the proof of the
reciprocity principle will be given. In section 3.4 the CLL reflection model, the
diffuse reflection with incomplete energy accommodation and the reflection of

molecules with discrete energy distributions will be elucidated.

3.2 SPECULAR AND DIFFUSE REFLECTION

In the description of the interaction of the gas mokcules with solid surface there
are two simple models proposed by Maxwell [1}in 1879 : the specular reflection
model and the diffuse reflection model.

The word ‘specular’ originated from specularis in Latin which means ‘mirror’,
the word diffuse originated from diffusus which in Latin means ‘spread abroad’,
‘scatter’. The specular reflection model assumes that the incident molecules re-
flect on the body surface as the elastic spheres reflect on the entirely elastic sur-
face, i.e., the normal to the surface component of the relative velocity reverses its
direction while the parallel to the surface components remain unchanged. Thus the
normal pressure originated from the reflected mokcules equals to that originated
from the incident molecules; the sheer stress subjected by the surface from the
reflected molecules has the opposite sign to that from the incident molecules and
the net sheer stress is zero; the total energy exchange with the surface is zero. The
complete diffuse reflection assumes that the molecules leaving the surface scatter
with an equilibrium Maxwellian distribution, the condition of equilibrium being
the equality of the surface temperature, the temperature in the Maxwellain distri-
bution and the static temperature of the incident flow. As the distribution function
of the reflected molecules is known, so the momentum flux and energy flux car-
ried by the reflected molecules are easily calculated.

Usually to characterize the scatter of the molecules on the surface the so called
scatter kernel or the scatter probability R(c,,c, r,t) of the molecules on the sur-
face is introduced, where ¢, denotes the velocity of the incident molecules, ¢,

denotes the velocity of the reflected molecules. And
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R(c,,c, rt)de, 3.1

represents the probability that the molecules with the incident velocity between
c, and c, +de reflect with velocity between ¢, and ¢, +dc, . For simplicity,
the following discussions will be limited to cases in which the reflection probabil-
ity is not dependent on the position r of the surface and time ¢. Thus in R
only ¢, and ¢, are retained as the arguments. If suppose that the incident mole-
cules are not absorbed on the surface, and this is usually the case, the normaliza-
tion condition of the scatter kernel

I R(c,c,)dc, =1

¢, >0

(3.2)

follows, where n is the external normal of the surface.

Weuse f7(¢) and f"(c,) to denote the velocity distribution functions of
the incident molecules (¢;-n<0) and the reflected molecules (c,-n>0), -
spectively. [ (¢)e¢;nde; is the number of incident mokcules striking on unit
area of the surface in unit time (the number flux of the incident molecules). Multi-
plying it by Eq. (3.1) and integrating over the whole half space ¢,-n <0, one gets
the number flux of the reflected molecules

(e )e, nde, =— J R(c;,¢.)e -nf " (¢;)de;-de,

¢ -n<

(3.3)

(¢,-n>0).

According to the definition, obviously the dis tribution function f* of the re-
flected molecules under specular reflection is obtained from the distribution func-

tion f~ of the incident molecules according to the following expression
£ (e)=f (e;-2n(c;-n)) (¢, n>0). 3.4

The scatter kernel of the specular reflection is
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R (¢ )=8(c —c, +2n[n-c]), (3.5)

where 6(7) is the Dirac & function, according to the definition
J.5(r—a)¢(r)dr=¢(u). (3.6)
Substituting Eq. (3.5) into Eq. (3.3), with the help of Eq. (3.6), one obtains the
velocity distribution Eq. (3.4) of the reflected molecules under specular reflection.

Similarly, the distribution function f* of the reflected molecules under dif-

fuse reflection is the Maxwellian distribution (see Eq. (2.184)) at temperature 7T,

A
(e )= " M 3.7
f(e) nr(znkT’J exp( T c ] (3.7)

The scatter kernel of the diffuse reflection is

1{ m m
R, (q,c,)=j2—7r-[;fjexp[—2k7‘ cf] (3.8)

When Eq. (3.8) is substituted into Eq. (3.3), as the above expression is not de-
pendent on ¢, it can be taken out of the integral, the remained integral over ¢,

jcf'”f_(ci)‘ki:Nn (3.9)
is just the total number flux of the incident molecules. As there is not accumula-
tion nor leakage of the molecules on the surface, the number flows of the incident
and reflected molecules equal each other, i.e.

KT,
2nm

N =N =n

i r

(3.10)

N_ is the number flow of the molecules scattered in the Maxwell distribution, the
last equality of Eq. (3.10) has made use of the result of Chapter 4 See Eq (4.17).
Thus from Eq. (3.8) and Eq. (3.3) one obtains Eq. (3.7).
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It is easy to verify that both the specular reflection model and the diffuse reflec-
tion model satisfy the normalization condition Eq. (3.2).

Now let us consider the implementation of the specular reflection and the dif-
fuse reflection in the DSMC simulations. For the specular reflection this is a sim-
ple and easy matter. At the surface the normal velocity component changes sign,
and the molecule moves with the changed velocity in the remainder of the time
step into new position. For the diffuse reflection the velocity distribution of the
scattered molecules is Maxwelian (see Eq. (2.196)). Here the distribution function
divided by n, f, =f/n,isemployed (see Eq. (2.6))

fe 2(;@2) exp(-Bc), G.11)

where

r

YA
gz(zﬁrj | (3.12)
m

Let ¢, be represented as (u,v,w), where u is the normal to the surface conr
ponent, v, w are the tangential components. The distribution functions of the

v, w components are (see Eq. (2.203))

F(v)= (ﬂ/n%)exp (—ﬁzvz)

(3.13)
F(w)= (ﬁ/?‘[%) exp(—ﬁzwz) )
So we have
_ ﬁz 2{ 2 2
F(v) F(w)dvdw="=exp(~B (v +w* ) )dvdw . (.14
T
If transform from the coordinates v, w to the coordinates V, 6
v=VFcosf, w=JVsing, (3.15)

one will have
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2

F(v)F(w) dvdwzﬁ-exp(—ﬁsz)VdVdB =
i1

CXp(*ﬁsz)d(ﬁsz)d(e/Zﬂ'). (3.]6)
B’V is distributed between 0 and - , and has the distribution function:

Fa.=exp(-BV?), (3.17)

i
and the cumulative distribution function (see Appendix III)

... =1 —exp(—ﬂsz) .

According to the sampling method based on inversion of the cumulative distri-
bution (see (I11.1)), by letting @ﬁz,,: equal to a random fraction ranf uniformly
distributed between 0, 1, solving the equality relative to  B°V?, the sampled V is

obtained. As ranf and (1-ranf) are equivalent, so V isobtained as
v =(~tn(ranf)y?/ B (3.18)

From Eq. (3.16) it is known that 6 is uniformly distributed between 0 and 27

0 =2nranf . (3.19)

From Eq. (3.18) and Eq. (3.19) the samples of V' and 6 are obtained through
generating the random fractions, then by using Eq. (3.15) two components of the
velocity of the scattered molecules according to Maxwellian distribution are ob-
tained. From the derivation given here it is found by the way that the sampling of
the components of the thermal velocity in an equilibrium gas can also be run as
follows: the resultant of the velocity is given by Eq. (3.18), and three values of 8
are successively generated according to Eq. (3.19), by taking sines of them and
multiplying the resultant velocity the searched values of the components are ob-
tained.

To obtain the sampling of the normal component u of the diffusely reflected

molecules, it must be taken into account that it is the product of w=c-I and the
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distribution function f that appears in the flux of the gas properties as distribu-
tion function, see Eq. (2.13) and Eq. (2.14). So the distribution function of the

normal component uz of the molecules scattered from the surface diffusely is
F(u)= Cuexp(— 2uz) .
The normalization condition J':F (u)du =1 gives
Fu)= 28%u exp(—ﬁzuz) .
So the distribution function of B%’ is
Fpp =e€xp (—Bzuz) .

This is identical with the distribution Eq. (3.17), and the sampling of « can ob-

tained according to
u= —(ln(rargf))%/ﬁ , (3.20)

i.e., the sampling of the normal component » in the diffuse reflection is identical
with the sampling of the resultant of the tangential components v and w.

The experimental research on the reflection of molecules on the body surfaces
reveals that pure specular reflection or complete diffuse reflection can not describe
properly the real situation of the scatter of molecules on the surfaces. Maxwell put
forward a model composed of these two reflection models [2]. He suggested that
the o portion of the incident mokcules reflects diffusely and the other (1-0)
portion reflects specularly, such a reflection model is called Maxwellian type
boundary condition.

In the ordinary problems of rarefied gas dynamics usually the flow of the gas
relative to the bodies is considered, in such case even when the molecules are
scattered from the surface according to diffuse reflection model, the distribution of
the gas near the body surface would not remain in equilibrium. For the stagnation
temperature of the gas flow is different from the static temperature, the tempera-

ture in correspondence with the Maxwell distribution of the reflected molecules
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would be different at least with one of the above two temperatures. So the distri-
bution function of the reflected molecules generally is different from that of the
incident molecules, so there is generally no equilibrium distribution function near
the body surface. Knudsen [3] introduced the concept of the thermal accommoda-
tion coefficient « to characterize in what degree the temperature of the reflected
molecules has accommodated (adjusted) to the situation (temperature) of the sur-
face

= qi — ql'
qi - qw

o (3.21)

In the above expression g¢,, g, are the energy fluxes of the incident and e-

flected molecules; g is the energy flux under complete diffuse reflection when
the temperature of the reflected flow equal to the temperature 7, of the body; «
characterizes the degree to which the reflected molecules has adjusted to the tem-
perature of the body surface. « =1 corresponds to the case of complete thermal
accommodation, the molecules reflect with the Maxwellian distribution under
temperature 7 =7, . =0 corresponds to the case when the incident molecules
are entirely not adjusted to the conditions of the surface, ¢ =g,.

By analogy with the introduction of the thermal accommodation coefficient «
one can introduce the accommodation coefficients ¢ and o of the normal and

tangential momentum components

o =Ll (3.22)

pi-p.

T,~T, T T,
- = . (3.23)

T, T, T

()

p and 7 represent the normal and tangential components of the momentum
flux; /i and r denote the values of incident and reflected flows respectively;
p, and 7 are the normal and tangential momentum fluxes in the case of conr
plete diffuse reflection with T =T , obviously one has 7 =0. In the case of
complete specular reflection ¢ =c =0, in the case of complete diffuse reflection

o =0=1.
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The accommodation coefficients @, ¢ and o are defined through macro-
scopic physical quantities that can be measured and are parameters describing
macroscopically the reflection mechanism. By measuring the heat flux and the
force actions of the gas flows on the body surfaces their values can be determined
separately. Provided that their values are known, in the regime of free molecular
flow the aerodynamic forces and heat transfer acted on the body can be calculated.
But they can not offer the quantitative information about the distribution function
of the reflected molecules, and in the transition regime they do not constitute the
boundary conditions of the Boltzmann equation for solving the problem. Besides,
when introducing the definitions Eq. (3.21), Eq. (3.22) and Eq. (3.23) of the ac-
commodation coefficients, it was implicitly supposed that they are independent of
the magnitude of the incident velocity, the angle between the incident velocity and
the normal to the surface and the body temperature, and that they are independent
of each other. But the experimental results show that what happens in the reality is
the opposite. All these impose restrictions on the application of the accommoda-
tion coefficients, especially the normal and tangential momentum coefficients.

For surfaces processed by usual industrial means at normal atmospheric tem-
perature and with not too high incident energy of the oncoming flow, the diffuse
reflection model with complete energy accommodation can serve as fairly good
approximation of the interaction of molecules with the body surface. But experi-
mental investigation shows that for the clean, precisely processed surfaces at high
temperature and in the high vacuum environment, when the incident energy is
high (for example, the energy flux corresponding to satellite speed), there is ap-
parent reduction of the degree of accommodation of the energy on the surface, «
is much smaller than 1. The molecular beam experiments also show that the dis-
tribution of the reflected molkcules has the leaf blade form in certain direction. All
these imply that more realistic molecular surface nteraction model must be put
forward to describe the scattering of the molecules on the body surface. In the next
section it will be seen that besides the normalization condition Eq. (3.2) the scatter
kernel should also satisfy the reciprocity principle, which is the basis of construc-

tion of the physically realistic reflection model.
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3.3 THE RECIPROCITY PRINCIPLE

The requirement of equilibrium between the incident molecules and the surface
imposes a restriction condition on the interaction between them, i.e., the reciproc-
ity principle or the principle of the detailed balance [4, 5, 6]. This manifests itself
as the limitation relation on the scatter kernel R(c;,¢,) of molecules on the sur-
face introduced in section 3.2. For the positive interaction scattering the molecules
from the range (c,c,+dc,) into the range (c,.c, +dc,) there is the reverse in-
teraction scattering the incident velocity (—c¢,,—¢,—dc,) into the range of
(-¢,—¢,—de;) . The reciprocity principle is a relation between the scatter kermnel

R(c,,c,) and the scatter kernel R(-c,,—c,)

i

¢, nR(—c,.~¢,)exp| -¢,, /(kT,) |=—c - nR(c,.c,)exp[ ~¢, [(KT,)]. (3.24)

In the above formula ¢ ¢, are the energy of the reflected and the incident

¢,
molecules.

Assume that the surface consists of a number of independent, identical con-
stituent elements (atoms, molecules or certain crystal units), and each element
interacts with the gas molecule only once. The constituent element of the surface
has momentum p, and energy ¢, before the collision with the gas molecule (i
denotes the initial status), after the collision the nomentum and energy become
p, and energy ¢, (fdenotes the final status). Correspondingly, the monentum
and energy of the gas molecule become from me, and ¢, to mc, and € . The

following formula
Ple.p —c,.p, |de.dp, (3.25)

is used to denote the probability of transformation in unit time for the velocity of
the molecule to transform from (c,c,+de,) into (c,,c, +dec,) and the momen-
tum of the surface element to transform from (p,, p, +dp,) into (p/,pf +dp,) .
In the interaction of the molecules with the surface the energy conservation is sat-

isfied
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€ t+E, =€ +E, . (3.26)

f
Summing up the probability of transformation Eq. (3.25) under the condition Eq.
(3.26) over the initial and final statuses yields obviously the transform probability
in unit time for the velocity of the gas molecule to transform from (c,,¢,+dc,)

into (c,,¢, +dc,):

a-nR(e,e)de,= [ [ Plo.n e.p,)
b Py

n(p,)é (Ef,- +e, ~E €, )dp,- dpdc, . (3.27)

In the above formula n(p,) denotes the density of the constituent elements of the
surface; the presence of the § function guarantees the energy conservation. As
the laws governing the change of the probability of transformation P (they are
essentially quantum mechanical) obey the invariant principle with time reversal,
so the value of P remains unchanged when changing places of the initial and

final statuses and reversing the sign of the momentum
P(c,.,pi — c,,,p/) = P(—c,_, S e ,~p,.) . (3.28)

Assume that the distribution of the orientations of the constituent elements of
the surface is random and the energy obeys the normal distribution characterized

by the wall temperature (see Eq. (1.68)' in Chapter 1)

n(p,)=Cexp(-¢,, /kT,). (3.29)

Substituting Eq. (3.29) into Eq. (3.27) gives

—¢,-nR(c,c,)dc, =

.[ I P(c,.,pi —c,p; )Cexp(—sm /kTZ‘,) .

pipf

(3.30)
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5(£Cl_ +5pl.—50r~£pf)dp,dp,dc,_.

Changing the places of the initial and the final statuses and mversing the signs,

one can rewrite the above equation as

¢,-nR(—¢ ,—¢)dc, =

1

_[ J. P(—c,,—p/—> —c,.,-p,.)Cexp(—sl{/ /kfv)'

Pipf
5(85, tE, €, 7€ p,-)dp,dpidcf : (3.31)

Substituting the time reverse invariant principle Eq. (3.28) and the energy conser-
vation Eq. (3.26) into Eq. (3.31) yields

cr : nR(—cr ’-ci)dcf =

_[ f P(c,.,p,. —e,.p; )Cexp(—sw /kTw) .
pipf

8(e, e, ~€, ~¢, |dpdp,oxp| (e, —&, ) /KT, Jde, (3.32)

Comparison of Eq. (3.32) and Eq. (3.30) gives the reciprocity principle given in

the beginning the present section
¢, nR(—¢,,—¢ )exp( -£,, /kTW) =—c, nR(c;c.)exp (—-q_l, / kTw) . (3.24)

It is easy to verify that both the specular and the diffuse reflection models satisfy

the reciprocity principle.

3.4 THE CLL GAS SURFACE INTERACTION MODEL

Cercignani and Lampis [7] constructed a scatter kernel that satisfies the normali-
zation condition Eq. (3.2), the reciprocity principle Eq. (3.24) and is positive, it
involves two adjustable parameters, the energy accommodation coefficients of the

tangential velocity component and the normal velocity component. The number of
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molecules scattered into given directions calculated by using this model is found
to be in good agreement with the experimental result of the molecular beam
measurement [8],[9]. Lord [10, 11] developed this model, implemented it in the
DSMC method and extended it to involve the cases such as the internal energy
exchange, the diffuse reflection with incomplete energy accommodation and the
discrete energy exchange.

In this CLL (Cercignani-Lampis-Lord) model the scatter kernels of the normal
velocity component u and the tangential velocity components v, w are inde-

pendent. The scatter kernel of the tangential component v normalized by

,[2RTM, is

(3.33)

o, is the tangential reflection coefficient in the CLL model. Obviously, Eq.

i

(3.33) satisfies the normalization condition (see Eq. (3.2)) of the following form
TR(\;,\;)dvr:l. (3.34)
For v the reciprocity principle Eq. (3.24) takes the following form
R(—v,_,—-v,.)exp(—\;_z) = R(v,.,v,_)exp(—-v,z) . (3.35)

Equation (3.33) satisfies apparently also this condition.
The scatter kernel Eq. (3.33) stipulates the mean value ; of the reflected tan-

gential velocity component

¥

= o R, b, -

[ ! (v -(-o)w)’|
iv,.\/ﬂol(z_o_’)exp{— 5 (2=0,) }dv.-(l—-o,)v..

(3.36)
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Thus, the meaning of o, introduced in Eq. (3.33) becomes apparent, it is identi-
cal with accommodation coefficient ¢ of the tangential velocity component in-

troduced according to Eq. (3.23)

=0,. (3.37)

. . —2 L
And the accommodation coefficient ¢, =(\;.2 -v, )/vf of the kinetic energy of the

tangential velocity component equals
o =0,(2-0,). (3.38)
Obviously
1-0,=(1-a,Y? . (3.38)

Thus, the scatter kernel of v, Eq. (3.33), can also be written as

oV, Y
L exp (v’ (1) Vi) . (3.39)

o a

For the scatter kernel of the normal velocity component u, the reciprocity prin-

ciple (Eq. (3.24)) is written as (u is normalized still by JZRTW )

u,R(—u,,—u, )exp(—u,z, ) =—u,R(u,u, )exp( -uiz) . (3.40)

And as u, is always positive, the normalization condition Eq. (3.2) is expressed

in a form different from Eq. (3.34)

[R(uu,)du, =1. (3.41)
0
The scatter kernel of the normal velocity component u is different from those of
the tangential components v, w, just as the sampling of u» is different from that
of v,w in the diffuse reflection model, there the sampling of « is the same as

the sampling of the resultant ¥ of v and w. Inthe CLL model the scatter ke r-
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kernel of u is also constructed by using the resultant velocity ¥ of v and w
whose scatter kernels are known. In the plane v,w introduce the polar coordi-

nates ¥V, 0

v=Vcos8, w=Vsin0, dvdw=VdVdo .
Without violating generality the coordinate system can be chosen according to the
direction of the incident velocity so that v, =V, and w, =0. The probability of
scattering from V, into ¥ (¥, —V,) is obviously the product of the probability
of (v,=V,—v,) and the probability of(w =0— w,) integrated over all direc-

tions, i.e.

= [R(V, % )R(0,w,)V,d6 =

g (Vrcose—(l—a))/zl/i)z
7= .

2. .2
[_V,_ sin O}V,d@:
o

v exp[——(l_ ) Z]Texp{z(l_a)/zl/%cose}d0=

0 o4

o o (3.42)

2 _ 2 o\
zV,.exp{ v+ (i-a), Hz(l ) V,V,]
o

I, 1s the first kind zero order modified Bessel function

=iJ.exp zcosO)d (3.43)
T 0

The expression Eq. (3.42) is taken as the scatter kernel of the normal velocity

component
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(24 a

n n n

R(uu,)= Zl" exp{—uf lt —a")u'z}l(,{z(l_a”)%u"ui}, (3.44)
where ¢ is the energy accommodation coefficient of the normal velocity com-
ponent u. It can be seen, the scatter kernel (Eq. (3.44)) satisfies the reciprocity
principle Eq. (3.40). To prove the normalization condition (Eq. (3.41)) Eq. (3.42)
is used, the integration of R(V,,,V,,) over ¥V from 0 to o is transformed to the
integration with arguments changing from V., 8 into v , w and range of
integration changing from —co to +eo. Because of the normalization conditions
of R(V,v,) and R(w,w ) the normalization of R(V,.V,) is verified.

The experiment of the molecular beam measurement is to direct a molecular
beam with certain distribution function to strike onto the body surface and to de-
termine the distribution function of the reflected molecules through the counting
of the number of molecules scattered in certain direction. For the ideal case when
the incident molecular beam is collimated and has single-velocity U, the prob-
ability that the reflected molecules scattered into unit solid angle in the direction

6, ¢ inunit time is

N(8.0)=[R(U,e)|e-n|c’dc’ . (3.45)
D
The scatter kernel R(U ,c) is easily constructed from the scatter kernel of the
tangential velocity component Eq. (3.33) and the scatter kernel of the normal ve-
locity component Eq. (3.44). Thus the quoted probability, or the ratio of the num-
ber of molecules scattered into unit solid angle in the direction 8 ,¢ in unit time
to the total number of the scattered molecules, can be obtained by simple quadra-
ture. For more realistic collimated thermal molecular beams the distribution func-
tion of the incident beam can be calculated and additional ntegration over U is
needed. The experimental result [8] of the argon beam of temperature 295K
scattered on a platinum surface at temperature 1081K is given in Fig. 3.1. The
experimental data for cases of incident angles of 15, 22.5, 30" and 45 are
given by small circles together with the calculated results by using the kernels Eq.
(3.33), Eq. (3.44) with o, =0.1 and ¢« =03 {[9]. One can see that the agree-
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Fig. 3.1 Comparison of the experimental data of [8] with the calculated results by using the

kernel Eq. (3.33) and (3.44), o0, =0.1, «, =03, ¥,=15", 22.5, 30" and 45 [9].

ment is quite good for all incident angles with the same values of the accommoda-
tion coefficients o, =0.1 and ¢, =0.3.Itis noted that both the experimental and

the predicted by CLL model distribution of the reflected mokcules has the leaf
blade form in certain direction, whereas the specular reflection would have a nar-
row peak in certain direction and the diffuse reflection would have a circular
(spherical) form indicatrix (see the discussion on the spatial distribution of the
diffuse reflection at the end of this section).

Now we proceed to the discussion of the implementation of the CLL reflection
model in DSMC simulations. According to Eq. (3.33), Eq. (3.36) and Eq. (3.38)
the probability that @ incident molecule with tangential velocity components
(v;,0) scatters into (v,,w,) is

v, —Z)z 2

R( v, y)R(O, w,.)dv,,dw,‘ =——l-—exp —— lexp s dv.dw, .
104 (04 (04

Now transform from the coordinates (v,,w,) into the polar coordinates (r,0)
with pole at point Q(v_,,O) , where r= (Vr— Z)2+wf (see Fig 3.2)). As

dvdw, = rdrd@ , the transform probability can be written as
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Fig. 3.2 The diagram showing the obtaining of the reflected velocity of the scattered mole-

cule

2

1 2
—e “rdrd0, (3.46)
oL

showing that the transform probability is uniformly distributed over 6 . Integrat-
ingover 6 from 0to 27 yields the distribution probability of r

2

2r —r
dr =—exp| — |dr. 3.47
S(r)dr == p( p ] (3.47)
The cumulative distribution function is
r }"2
F(r) =jf(r )dr :1—exp[—;). (3.48)
0

Again according to the inverse cumulative method (Appendix III.1) and because
of the equivalence of ranf and (1-ranf), the sample of r is obtained from

the following formula

2
r

ranf, =e @ .

(3.49)

As the searched probability is uniform for 6 in (0,2r)
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ranf, =0/2m . (3.50)

So the sampling of » and @ is obtained from the inversion of the above formu-

lae
r:,/—aln ranf,, O =2nranf,. 3.51)

Consequently the sampling of v, and w, is obtained

v, :v_r+rcose,w,, =rsinb (3.52)

where ; is given by Eq. (3.36).

As for the normal velocity component u_, as it is considered as the resultant
velocity ¥ of v and w , the sampling of it in DSMC implementation is the
same as the above method. Only the pole of the polar coordinates is taken as

(ZZ,O) , where E’_ is the average normal velocity of the scattered molecules

u, =J(1-a, ), . (3.53)

The sampling of u, uses the resultant of v, and w , Eq. (3.52), only with

v_,_ replaced by l_‘:

u, =\/;,_2 + 2ruTcosG +7r7. (3.54)

Now it is easy to explain the diagram of the CLL model (see Fig. 3.2) [10].
Point P represents the oncoming velocity (\7,. or Z) of the incident molecule,
in the case of tangential velocity, it is assumed that w, =0, so the framework can
be rotated so that v, is in the direction of the incident tangential velocity. Point
Q represents the average state of the scattered molecules, ; or u_r, its value is

given by Eq. (3.36) or Eq. (3.53), so one has

00/0P = J(1-a). (3.55)
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Point R represents the actually attained reflected velocity, its distribution along
the circle with ( as the center and r as the radius is given by Eq. (3.52). ON
and OM represent v and w, , and OR represents u, or m .

Now we discuss the issue of exchange of the internal mode energy of molecules
with the surface. From the dertvation of the reciprocity principle Eq. (3.24) and
the construction of the above scattering model it is seen that the model is not only
suitable for the velocity components but is also suitable for the description of the
exchange of the angular velocity component of a polyatomic molecule about the
principle axis of inertia. The scattering kernel Eq. (3.33) of the tangential velocity
component can be considered as a scattering kernel of an angular velocity com-
ponent ¢, , only this time the normalization factor of @, is \/2kT—/Iv, 1, be-
ing the rotational inertia of the molecule about the axis v . In the case of diatomic
molecule with two rotational degrees of freedom the two transverse moments of
inertia equal each other and the scattering probability of the resultant angular ve-
locity @ is described by Eq. (3.44) derived for the normal velocity u . It cer-
tainly satisfies the reciprocity principle Eq. (3.40) and the normalization condition
Eq. (3.41), where u is replaced by @ and ¢« replaced by the accommoda-
tion coefficient of the rotational energy.

If set E=u’, from Eq. (3.44) the distribution of the kinetic energy of the nor-

mal velocity of the scattered molecules can be written

_ _ s
f(E,)dE,:é-exp{—E”L(L a)E’}I(, A(-e)EE ] dE.. (3.56)

o

This distribution at the same time is also the distribution function of the kinetic
energy E=V? of the esultant tangential velocity and of the kinetic energy
E=0" ofthe angular velocity. In different cases the value of « should be taken
as o, «a and o« correspondingly. According to the proved normalization of

R(u,u,) obviously follows

dE, =1. (3.57)
(04

17 {_ E +(1-a)E }0 2{(1-a)EEY
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The CLL model can be extended to the case of discrete energy levels of the in-
ternal energy of molecules [11]. The above classic method in treating the internal
degrees of freedom is suitable for the case of rotational degree of freedom at ordi-
nary and fairly high temperatures, for the rotational characteristic temperature is
low and the spacing of the rotational energy levels is small. The spacing of the
vibrational energy levels is much larger, such levels are suitable to be treated by
the discrete energy method (see the discussion in section 1.1).

The harmonic vibrator model of the diatomic molecule gives the discrete vibra-

tional energy levels (Eq. (1.16))

sv_,,z(nnt%)hv, n=0,1,2,3,.

Let us try to construct the transition probability

R(m,.n,) (3.58)

for a molecule to transit from an initial state m,, E =(m, +1/2)E,, into the final
state n, E, =(n +1f2)E,, where E =M , m and n_ are the vibrational
quantum number of the molecule at incidence and at scattering. The reciprocity
principle and the normalization condition R(m;,n,) should satisfy for discrete

energy levels can be expressed as

R(n,,,mi)exp[—(nr +%)Eo} = R(ml.,n,. )exp[_(mi +‘;‘)Eo} (3.59)

> R(m,n)=1. (3.60)

=0
It is known that the energy distribution for scattered molecules having two de-
grees of freedom is Eq. (3.56), and now the vibrational energy of the incident
molecules are stipulated to be discrete, we can try to quantize the energy £ in
Eq. (3.56), relating all energy in the range between nE, and (n,+1}E, to the

n, th quantum state, thus obtaining a preliminary scattering kernel
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n,+1)E, _ - %
J. exp{ E +(1 OC)E,},O A{(1-a)EE} dE, (3.61)

1 (

R”(m"’”">:?.? " o a
nEq

where E, =(m, +1/2)E,. R, satisfies the normalization condition Eq. (3.60) (in
view of Eq. (3.57)), but can not satisfy the reciprocity condition Eq. (3.59). We
attempt to modify R, (m,,n,) so that the reconstructed scattering kernel is sym-
metric with m, and »_, or, which is the same, is symmetric with £ and E . It
is easily seen that the expression in the integral should be multiplied by a factor
exp(-E,), and the energy level m, should be formally obtained according to the
rule that relating all energy in the range between mE, and (m, +1)E, to the

mth quantum state. Thus the searched scattering kernel is written in the follow-

ing form

(m; +1)E,

J. exp (—E‘)R/) (mi’nr)dE; =

i

R( ) eXp(rnil‘:())
M. A} = ——————
) Cexp(-E,)

mEy

(m; +1)Ey
J. exp(~E,)x

m; Ey

exp(mE,) 1
1-exp(-E,) o

-dEdE, . (3.62)
[0

(4B _ _ )
f exp{_E,+(1 a)E,}[0 2{(1-a)EE}
o

mEy

The scattering kernel Eq. (3.62) now satisfies the reciprocity principle Eq. (3.59),

for one has
(1-exp(- £,)) exp[— [m,. +-1§)EU R(m,n)=
1 (m,+1)E, (n, +1)E, E, +Ei+%(XE0 -2{(1 —a)E,_E,.}%
— eXp| — 0
a m Ey nEy o a

L (3.63)
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dEAE, = (1-exp(-E,)) exp{—[n, +%JEO}R( n,m).

It still satisfies the normalization condition Eq. (3.60), for when summing over n,
the integral over E_(after multiplying by the factor 1/e ) yields I because of Eq.

(3.57), and the integration over E, gives

(m; +1)E,

J. exp— EdE, =(1-exp(-E,))exp(-mE,) . (3.64)

miEq

The implementation of the scattering kernel (Eq. (3.62)) in the DESMC simula-
tion is to replace the vibrational energy E, =(m,+1/2)E, by mE,+E . As the
probability density of E" between 0 and E, is an exponential function, the
sampling of E’ is obtained by using the inverse cumulative method (see Appen-
dix 111, let the cumulative distribution of E', (1—e Y(1—e ™), equal ranf)

E :—ln[l —ranf + ranfexp(—EO)] , (3.65)

where ranf is a random fraction uniformly distributed between 0 and 1. Then
the known method of sampling from the incident normal velocity u, = E]% is used
to get the sampling of u_, and consequently E =u’, the final quantum number
is n,=INT( E/E,),where INT means the integer of the argument.

Lord [11] further developed the CLL scattering model to include the case of
diffuse reflection with incomplete energy accommodation. To construct a model
including the case of diffuse elastic reflection, i.e. the speed of the reflected
molecule retains the value of the incoming molecule but the direction of reflection
follows the cosine law of the diffuse reflection, first we obtain the distribution
probability that the resultant speed reflects from ¢, into ¢, according to CLL
model when the tangential and the normal energy accommodation coefficients are
the same : «, = ¢, =« . In general, it is required to find the probability that the
incident velocity with u and v, not zero and w =0 scatters into
¢, (u,,v,,w,). This requires integration over all directions in four-dimensional po-

lar coordinates [11]. This probability is the same as the probability that the veloc-
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ity u,=c¢, v,=w,=0 scatters into ¢,(u,,v,,w,}. The derivation of the latter is

given here. In the spherical polar coordinates u,v,w are related with ¢,0,¢

=ccosf
v =csinfcosg .
w=csinf sing

(3.66)

The searched probability P(c, — ¢ )de, is the product of R(u,=c,—>u,) (see
Eq. (3.44)), R(0—v,) and R(0—w,) (see Eq. (3.33)) integrated over all di-

rections of 6,¢

2rem/2

P(¢, ¢)dc, —f J (4, =c,, 4. )R(0,v,)R(0,w, )¢’ sinBdOd ¢dc, =

(04

w2 W 2 2 _ 2
f J‘ 2c, cosB | { ( OC)/C,‘C,- cose}:xp‘:— clcos 0+ (1-a)c, }(
o 0 a

1 ¢! sin’fcos’ ¢
exp| —— -
(7[0()){ o

2 -2 2.2
c,sin” Gsin” ¢

()" o]

:|cf sin0dOd¢de, =

: Ly(1-a)e2 PR [2(1-a)”
ic‘%'e"p{ ¢ *(-a)e J J. 1{ (1=a) C,.c,-cose}cosesinededcr =
a a a

0

0

; P+(1-a)e |p o 2(1-a)?
ﬂ-exp{ o +(1-a)e, }J.I{ ( a))/ c,ciljltdtdc, .
o a

For the modified Bessel function one has

=1, (x)~=1,(x),

dx X

and

(3.67)
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dxl | ( Ax)

e Axl,(Ax).

Thus the above equation can be written

a
74
Z(I—a))/zc,.c,. [ o
2 _ 2 70 N2
2¢; l:Z(l a)/cc:!xexp[ ¢’ +(1-a)g }dc,,.

ca(l-ay? a (3.68)
The corresponding kinetic energy distribution is
% 2(1-a)EEY
P(E,)dE, =—L— 1, (- EEY” |
a[(1-a)E, ] «
E +(1-a)E,
exp —T dE . . (3.69)

The scattering kernel, in which the velocity is stipulated by Eq. (3.68) and the
energy distribution is stipulated by Eq. (3.69), also should satisfy the space distri-
bution of the complete diffuse reflection, i.e., the azimuth angle ¢ is uniformly
distributed between 0 and 27 and the polar angle 8 is distributed according to

the cosine law between 0 and 7/2. Such a scattering kernel is

R(cpe,)= 2cos8 ))/ { (l—ifx))/zc,.c }(exp{ _(la;L} (3.70)
neo(l-a

It is easy to see that equation (3.70) satisfies the normalization condition, for

rm/2 oo
.f J. R(c,,c, }}sinBd6dpdc, =_[P(q,q_)dc,_ .
0 0

0

S oy §
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The last integral is 1 because of the equation (3.67) and the normalization of
R(u,—u,),R(0—v,) and R(0—w,). The reciprocity condition of this scatter-

ing kernel can be written as (see Eq. (3.24))

¢,c086,R(—c,,—¢,) exp (-c,z,) =-¢cos8,R(c;,c,) exp(—ci2 ) ,

and is satisfied by Eq. (3.70).

The implementation in DSMC simulation of this diffuse reflection model with
incomplete energy accommodation according to the derivation is as follows. First
sample u, according to the method of sampling the reflected normal velocity
component (with incident value of wu ), then sample v and w according to
the method of sampling the reflected tangential velocity component (with incident
value of 0) with accommodation coefficient taken as «, =, = , the value of ¢,
is taken as ,/uf +v!+wl . The distribution of the direction of ¢, is sampled ac-

cording to that the azimuth angle ¢ is uniformly distributed between 0 and 27
¢=27nranf , (3.7D)
and the sampling of 6 follows the cosine law of diffuse reflection. The probabil-

ity that the reflected molecule is scattered by the surface into the solid aigle

dw =sinBd6d¢ is proportional to

cos8dw . (3.72)

which can be seen from the expression Eq. (2.14) of the flux of magnitude passing

unit area, ¢-/=ccos6 . The above probability can be written as

1
cosf sin6d6d¢=3d(sin26)d¢ . (3.73)

Thus, sin’@ is a random fraction uniformly distributed between 0 and 7/2. So

the sampling rule is

sin@ is sampled as Jranf,
cosf is sampled as ,/l——ranf.

(3.74)
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By using the above sampling method, provided that the values of E and o« are
determined, the distribution of E, obtained by sampling is accurately agreed
with the analytical expression Eq. (3.69) (see Fig. 3.3).

Take this opportunity let us get more acquainted with the nature of cosine law
of the diffuse reflection. For this draw a sphere with an arbitrary R as the radius,
with point O as the center which is tangent to the surface at point P of reflec-
tion of the molecules (see Fig. 3.4). The flux of diffusely reflected mokcules at

Q is proportional to cosf@sin6dB8d¢ according to Eq. (3.73). If introduce the
polar coordinates 8,90 at O,wehave 0 =20, so the above mentioned flux is
proportional to sin6*d60*d¢, which is just proportional to the elementary area of
sphere at Q . Consequently, the number of molecules diffusely reflected onto the
spherical surface near ( per unit time per unit spherical area is independent of
0",¢ . If make a hollow glass sphere, evacuate it, and put a source at P emitting
mercury vapor, then after a certain time on the whole spherical inner surface a
layer of mercury with uniform thickness will be plated provided the sphere is
small enough to neglect the effect of gravity. This result can be verified numeri-
cally by direct simulation, using the method of implementation of the diffuse re-

flection with help of sampling formulas for wu,v,w, Eq. (3.18), Eq. (3.19), Eq.

(3.15) and Eq. (3.20).

0.40
Frog,
035 g‘? S Incident energy-2kT
7 i, Adpha$
'z 030 -] &
] E] a o DSMC simulation result
zx 0.25 g ;”x\ e Thetical result, equation (3.69)
: 5
=z 020 o o,
g J th,
S o g EN
&,
9 N
0.10 o c&\b
o \
4 bA,ﬁ
40.05% 8§ g
é v VDxG“Q L e
0‘ OO 2 i 2 i £1
1] 1 2 3 4 & & 7

Kinctic cnergy (K3

Fig. 3.3 Energy distribution of the diffuse reflection with incomplete energy accommoda-

tion. Comparison of the sampling result with the theoretical prediction Eq. (3.69)
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p

Fig. 3.4 For the derivation of uniform flux distribution of the diffusely reflected molecules

on the sphere tangent to the surface
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4. FREE MOLECULAR FLOW

The free molecular flow is the regime of rarefied gas flow with the highest degree
of rarefaction. With the continuous increase of the degree of rarefaction, the mean
free path of the gas molecules may surpass the characteristic size of the body by
many times, and the molecules scattered from the body surface would move to a
distance far away from the body before colliding with the oncoming incident
molecules. When Kr =A/L -, the change of the velocity distribution function
of the incident gas caused by the collisions with the scattered molecules can be
entirely neglected. The neglect of such collisions is the starting point of the theory
of the free molecular flow. One can start from the basic equation of the free
molecular flow, the collision-less Boltzmann equation, to solve the problems in
free molecular flow regime. For the steady flows around bodies the velocity
distribution function of the undisturbed oncoming flow is the equilibrium

distribution, i.e., the Maxwell distribution, Eq. (2.184) or Eq. (2.196)

32 3
- m L o I AN I B _p2n
fo_n(znkT) exp[ 2kT(u Vit w ):1 n(;—){) exp( c ) “4.1)

Here n, T is the number density of molecules and the temperature of the
oncoming gas flow, m is the mass of the molecule. The momentum transfer and
the energy transfer of the incident molecules onto the body surface can be easily
calculated through finding moments of the Maxwellian distribution function. If the
interaction of the molecules with the surface is known (see Chapter 3), the
momentum fluxes and the energy fluxes carried away from the surface by the

reflected molecules are also easily calculated.
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4.1 THE NUMBER AND MOMENTUM FLUXES OF
MOLECULES IN GASES

The expression of the flux of the quantity O carried by the gas molecules in unit
time across unit area has been found in the beginning of section 2.2 (see Eq.
(2.14)). Now consider the gas moving with velocity U relative to the surface
element A. The external normal of the surface is /. The coordinate system is
chosen in such a way that the x axis is directed to the opposite direction of [,
U lies in the plane of xy and constitutes acute angle with the x axis and the -y
axis, and the surface element is lying in the plane of )z (see Fig.4.1, 6 isthe
angle between U and the x axis). Eq (2.14) gives the flux of quantity Q

relative to the surface in the direction of x (inward flux) as

nQc-1=nQu= | Qufde = | | [ Qufdudvaw , 4.2)
>0 Zee
where ¢ is the velocity of the gas molecule relative to the surface framework, in
the condition of free molecular flow f is the undisturbed Maxwellian
distribution function Eq. (4.1). Equation (4.2) at the same time is the flux of Q
carried by the gas molecules striking on the surface, when the body surface moves
with velocity —-U in the quiescent gas, the components u, v, w of ¢

along the axes x, y, z are related with the thermal velocity ', v, w’ by

the following formula

Fig. 4.1 The direction of the velocity U of the incident molecule, the direction of the

external normal [, the direction X,Y of the drag and lift, the directions x,y in the

expressions of the normal and tangent stresses
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u=u +Ucosf
v=v-Usinf . 4.3)

w=w

First calculate the number flux N, of molecules across surface A4, the suffix i
denotes incident flow. In Eq. (4.2) Iet 0= 1 and make use of Eq. (4.1), one obtains
N;

o0 oo oo

N, = [ [ [ufdudvaw=

—oo—c0 ()

S
<™
%
g3
g 8
—3
B

[¢]

>

o
——

-B? (L[2 +vi4 w'z)}dudvdw =

B TT bcj. u +U0059)

exp{—,B2 (u'z +vi+ w'z)} dudvdw'. 4.4)
With the help of the table of integrals in Appendix II (11.19), (11.20), one
obtains

kT cos0)’
N.=n %{e“ ) +~/7?(Scos€)[l+erf(5cos€)]}. 4.5)

Here erfa isthe error function

erfa = Tje“‘ dy, (4.6)
and
S=UB = UIN2RT =\fy12M, @.7)

is called the molecular speed ratio, it often @pears in the calculation of free
molecular flow instead of the Mach number Ma.
In the case of quiescent gas, i.e., when U=0, §=0, Eq. (4.5) yields the

number flux of molecules as



162 4. FREE MOLECULAR FLOW

RT 5
= === (4.8)

=M =
50 2 2mmkT

' =N

] i

This is an important and often cited result. It can be obtained with a some what
different reasoning: In section 2.11 of Chapter 2 it is obtained that the average
value of the component of the thermal speed in the positive direction is (1/2)2
(see Eq. (2.204)), and the molecules moving in the positive direction constitute
half of the molecules in the whole volume, so the number flow of molecules

passing unit area in unit time is

Sre=e.

The flux of the normal momentum of the gas across surface A, or the normal
pressure produced by the oncoming molecules on the body surface, is obtained by
letting QO =mu =m(« +ucos®) in Eq.(4.2) (see Eqgs. (I1.19), (I1.20) and (I1.21) in
Appendix IT)

oo oo oo

p; = _[ J‘ J.muzfdudvdw =

—wo=20 ()

nmU? 2
——=—{(ScosB)e "= +
st (Seos)

1 2
NG {E+(Scos(9) }[1 +erf(Scos0)]}. 4.9)
In the case of quiescent gas Eq. (4.9) yields
mm _p P
o= =—RT==, 4.1
b 5=0 4ﬁ2 2 2 ( O)

i.e., in the quiescent gas the normal pressure on the body surface originated from
the incident molecules is half the gas pressure.

The flux of the tangential (in the y direction) momentum of the gas molecules
across the surface A, or the shear stress 7, produced by the incident molecules
on the body, is obtained by putting in Eq. (4.2) Q=mv=m(V'+Usin6) (note,

the integration is the same as used to find N,)
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i

T, = ]ﬁ ]: Tmuvfdudvdw =
oomoo )

sin G{e’(““”)z + \/7?(5 0059)[1 +erf(S COSQ)]} . @.11)

2Wrs

4.2 THE AERODYNAMIC FORCES ACTED ON BODIES

Application of the results in the previous section for the incident molecules,
finding the contributions of the reflected molecules to the force and adding them
up yields the aerodynamic force acted on the body surface. As the theoretical and
experimental research on the reflection of molecules is far for attaining perfection,
the calculation of aerodynamic forces in free molecular flow is limited to the
application of the Maxwellian type boundary conditions, i.e., ¢ portion of the
molecules is reflected diffusely, and the (1-0) portion is reflected specularly.
This corresponds to use a unique ¢ to replace the accommodation coefficient
o’ of the normal momentum and o of the tangential momentum in Eq. (3.22)
and Eq. (3.23), and the o here means the portion that reflects diffusely. Note
that several authors use ¢ to denote the portion of specular reflection, then
£e=1-0.

The total pressure and the shear stress subjected by the body surface consist of

the incident part p,,7, and the reflection part p .7,

p=ptp, 4.12)
T=T-7T,. (4.13)
Then making use of Eq.(3.22) and Eq. (3.23) and letting ¢ =0 , onc has

p=(2-0)p+op,, @.14)

T=071,. 4.15)

In Eq. (4.14) p, is a quantity not determined yet, according to definition p_

is the flux of normal momentum of the molecules scattered with the Maxwellian
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distribution corresponding to the body surface temperature 7 , which can be

w

obtained by letting in Eq. (4.10) the density be p_=mn_, and the temperature be

w

mn
pu="ZRT,

. 4.16
5 RE, (4.16)

where n_ is the number density of the imaginary gas scattered from the internal
of the body surface with the Maxwellian distribution. For its calculation the
condition of no accumulation of molecules at the surface, or the condition of
equality of the number fluxes of the incoming and the reflected flows, is used. The
number flux N, of the incident molecules is given by Eq. (4.5), the number flux
N, of the reflected molecules, or the number flux of molecules scattered with the
Maxwellian distribution corresponding to T, can be obtained letting in Eq. (4.8)
T=T

w? w

n=n

No=n [l @.17)

n =N, 2
RT,
And according to Eq. (4.16)
p,=mN, ”IET“’ , 4.18)

where N, is given by Eq. (4.5).

Now it is easy to write the expressions of the normal pressure and the shear
stress acting on the element of the body surface. Substituting Eq. (4.9), Eq. (4.18)
and Eq. (4.11) into Eq. (4.14) and Eq. (4.15), one obtains

2;O-Scos6+z ,& o (Seos0)”
‘\/7? 2 T

U?
p=
2§
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{(2 —G){(Scos@)z %}r

%ﬁ(ScosB)}[Herf(SCOSB)H’

2
O'pZZ_S;n e { ~{Scos B) +_\/— S cos 6 [1 + e}f S COSB):I} 4.20)

(4.19)

The expression Eq. (4.19) is obtained under the assumption that the portion of
molecules conducting diffuse reflection is scattered with a Maxwellian
distribution corresponding to the wall temperature 7, . If the portion of molecules
conducting diffuse reflection has not accommodated completely with the surface
and is scattered with a Maxwellian distribution corresponding to temperature 7T,

then one canlet 7 =T in Eq. (4.19) and get the result for the normal pressure in

W ¥

this case

2
p = p U O- 59 +9'_ T; ScosO
28 JE 2NT

{(2—0){(8c0592)+ﬂ+

c nT
E\/:(SCOSQ)}[I +erf(ScosG)]] - 4.19)

To find the force acting on the body in certain direction one can integrate the

component forces acting in this direction over the body surface. From Eq. (4.19)
and Eq. (4.20) it is seen, in general the resultant force is dependent on 7. and
o . In the following the results of the drag and lift coefficients for plane plate,
cylinder and sphere are given.

The drag and lift coefficients for plane plate

The equations (4.19)' and (4.20) can be used to calculate directly the drag and

lift coefficients for plane plate with incident angle « . If the area of one side of



166 4. FREE MOLECULAR FLOW

the plate is taken as the characteristic area the lift coefficient obviously can be

written as

= T
0:2— o
cosa | 2 . ~(Ssina)”
Sz :F;(Z—2O')Ssmae +

[2(2-20)(Ssin ) +(2-0) Jerf (Ssiner) +oﬁ§—z. sin a} ,

,. 4.21)
where
S, =U/.2RT, . (4.22)
Analogously, the drag coefficient can be written
1 .
CD=1 {[Pg,r —Pe 1x }1na+
+ DZ =7—u¢ =T—a
) p
{r e =T| }cosa}z
O (e 1t
2 2
—17 i|:4sinzoc +20’cos(205)]e’(ss"'“)2 +
§*
sin|:l+ 287 +(1- 0')(1— 252 cos(Za))]-
. S* .,
erf(Ssma)+ O'\/;?Sm a;. (4.23)

The drag coefficient for cylinder
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For the straight cylinder with axis perpendicular to the direction of the
incoming flow the projected area 2al in the direction of the incoming flow is
taken as the characteristic area, where L is the length of cylinder, a is the
radius. Integrating Eq. (4.19)’ and Eq. (4.20) (see Egs. (11.30), (I1.31) and (11.32)
in Appendix II) one can obtain the following formula for the drag coefficient

k4

C, =;2J.(pcose +7sinf)ald6 =

1
EpU22aL 0

282 o )(2)

~8%/2
3 S

2 3/2
(s+2h(5 }xm ,
2 2)] 45 (4.24)

where 7, I, are the zero order and first order modified Bessel functions 1]

Iexp(z cos0)do ,
4]

I(,(z)=;1

T

I(z) =%J-e“°m cos9do .
[

The drag for sphere
For a sphere of radius a take ma’ as the characteristic area, the drag

coefficient is obtained as (see the integral formulae (11.25),(I11.26) and (I1.27))

. [7(poost +7sing)2ma” sin6do
D= =

%,()Uzna2
-$? 4 2
e o\ A4S +457 -1 201
(14282 S+ .
7 ( ) T RCAARTS (4.25)

It is seen from Eq. (4.25), the difference between the drag coefficients under
diffuse reflection and specular reflection in free molecular flow is that under

diffuse reflection there is a term  20~/7 /(3S ), but under specular reflection there
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is not such a term. This term is the contribution of the diffusely reflected
mo lecules and is dependent on the temperature they are accommodated with. In
the case of high speed incoming flow, cold wall and comparatively complete
thermal accommodation S > 1, the sphere drag under diffuse reflection and
specular reflection is the same and yields the result of 2 for the drag coefficient in
the hypersonic limit. This result for the diffuse reflection is easily understandable:
because of the cold wall the momentum contribution of the reflected molecules in
comparison with the hypersonic incoming flow can be neglected, and the total
momentum flux of the oncoming flow in the direction of the drag across the whole
sphere is pU*-ma’, when normalized by (1/2)pU*-7a’, the drag coefficient is
obtained as 2. For the specular reflection on the front windward side of the sphere
the contribution of the reflected normal pressure p, 1s almost the same as that of
p,, but when 8 > 45" the contribution of the reflected molecules to the drag is
negative, and on the whole spherical surface the shear stress is zero. The coupling
of these factors makes the drag of the sphere under diffuse reflection and diffuse
reflection the same.

The limit of the hypersonic flow

The case of S§>»1 and § >»1 is a meaningful circumstance usually
encountered in aerospace practice, and it is desired to have a formula giving fast
estimate of the drag. In the related formulas Eq. (4.5), Eq. (4.19) anf Eq. (4.20) if

assume Scosf — <o, and consequently e " 50 and erf(Scos)—1, then

N, =nUcos0,
p=(2-0)pU*cosh,

7 =0pU’ cosBsinb.

(4.206)
In the case of complete diffuse reflection
p=pU*cos’0,
T = pU’cosBsind.
4.27)

This corresponds to the complete neglect of the thermal speed of the molecules in

the oncoming flow and the speed of the diffusely reflected molecules in
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comparison with the ultra high speed of the oncoming flow. Such flow is called
superthermal flow. Equations (4.27) can be obtained directly in the assumption
that the oncoming molecules incidence onto the surface with parallel U and that
the contribution of the reflected molecules is completely neglected. By using Fig.
4.1 it is easy to see that the force acting on the surface element dA4 along the

direction of X axis (the drag) is

dD =(pcos® +7sin6)dd = pU’ cos@dA = pU’dd, (4.28)

where dA, =cos0dd is the projected area of d4 in the direction of the
oncoming flow. The total drag on the body is obtained through integrating over
the whole body surface

D=pU* [ d4,=pU%4,. (4.29)

cosf20

4, is the projected arca of the entire body in the direction of the oncoming flow.
Comparison with the exact formulas Eqgs. (4.5), (4.19) and (4.20) shows, that
provided Scosf >2 , the approximation is quite accurate.

In the condition of superthermal flow the drag coefficient of both cylinder and
sphere is 2. This is seen from Eq. (4.29), provided the projected area is used as the

characteristic area. For the plate, when Ssin® — oo, from Eq. (4.23) one has

C,=2sina -2(1-o)sinacos(2a) . (4.30)

The first term in the above formula is the result for the diffuse reflection o =1, or
the contribution of the oncoming flow, the latter term is the additional contribution
of the specularly reflecting molecules. Under the condition of complete diffuse

reflection

C,=2sincx. 4.31)

This can be obtained from Eq. (4.29) directly, for a plate with incident angle «
the projected areais Asin .
Although the drag coefficient in the hypersonic limit is 2 for both the diffuse

and specular reflection, but in fact different reflection model would yield
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completely different results for sphere drag. As an example consider the drag of
sphere under the diffuse elastic reflection model in the hypersonic limit. In the so
called diffuse elastic reflection molecules reflect from the surface elastically, i.e.,
there is no energy exchange and the speed preserves the value U of the
oncoming flow but the direction is completely random, obeying the cosine law of
the diffuse reflection. According to such reflection rule one can find after some
manipulation that the contribution to the drag coefficient of sphere of the scattered
molecules is 1. As indicated already, the contribution of the oncoming molecules
is two, so under the diffuse elastic model in the hypersonic limit the sphere drag

coefficient is 3.

4.3 HEAT TRANSFER TO SURFACE ELEMENT

As the calculation of the force acting on the surface element the calculation of the
heat transfer to the body surface in free molecular flow is also conducted
separately for the oncoming and reflected molecules. And, for the oncoming
molecules the heat flux is divided into two portions, i.e., the flux ¢, of
transitional kinetic energy and the flux g¢,,, of vibrational and rotational energy.
The flux ¢, of transitional kinetic energy of molecules is obtained by setting
0=(1/2)mc’ in Eq. (4.2)

oo oo

g, = J '[ T%m(uz +vit wz)ufdudvdw. (4.32)
0

—oo—co

Making use of the equations (IL.11),(I1.13),(I1.19),(IL20) and (I1.21) in Appendix

Il yields
A /.;ii{(sz +2)e 50 +J;( 5 +§)x
T

(Scose)[l+ erf(ScosQ)}}. (4.33)

In the case of quiescent gas Eq. (4.33) gives
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2RT
s=0= PRT\’T ; (4.34)

if introduce the number flux T’ of molecules in quiescent gas (see Eq. (4.8)),

qi.l r

one has

H= qr‘fr

nc
S=0=2kT7=2kT -T, (4.35)

Note that the average transitional kinetic energy of molecules is (see Eq. (2.31)
or Eg. (2.201))

e, =15mc7 =%/«T (4.36)
Equation (4.35) shows, that the average transitional kinetic energy carried by a
molecule crossing a surface in quiescent gas is not e, butis 247, i.e. is larger
than the average transitional kinetic energy in a portion of 4:3. This happens
because the probability of molecules with higher speed to cross a surface is higher
than the slower molecules.

To obtain the internal energy flux carried by the incident molecules the number
flux N, (Eq. 4.5) of the oncoming flow is multiplied by the average internal

energy carried by each molecule. The latter is

Err=Emrr ) @.37)
2 2

where ¢ is the number of the internal degrees of freedomand is related with the

total number of degrees of freedom

i=C+3. (4.38)

The specific heat ratio y is
_i+2 ¢+ 439
i g+3’ (4-39)

SO
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¢=(5-3)/(y-1). (4.40)

The internal energy flux carried by the incident molecules is

SZ3mRT
y-1 2

pRT E 5—3y {e~(Scm‘9)l+
2 \‘27[ Y-1

\/-77,'-(.5'0059)-[1-!- erf(ScosG)]}. @.41

iint

To obtain the transitional kinetic energy flux ¢,, of the diffusely reflected
molecules entirely accommodated to the wall surface, one should let 7'=T ,
n=n_ in Eq. (4.34), and according to Eq. (4.17) one has

g.,, =2mRTn_, f’;—T =2mRT N, =2mRT,N.. (4.42)
T

Correspondingly, the internal energy flux of such reflected molecules is

¢ ¢

Gine = MRTN, =—mRT.N, . (4.43)
’ 2 2
Consequently, the total energy flux of the reflected molecules is
mRT y+1
G = Gugr + i = (4+ L) 2N, = mRTN; . (4.44)

2('}/—'1) wi i

Now g, is calculated using Eq. (4.33) and Eq. (4.41), then by using Eq. (3.21)
and Eq. (4.44) the total heat transfer to the body surface of the incident and
reflected molecules in free molecular flow with thermal accommodation

coefficient o can be calculated as

q=q -9, =a(q,-q,)=

corr [EL [52+L_Y_+IT_W y
27 y=1 2(y-1)T (4.45)
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{e‘(sc"sm2 + '\/7_r( Scos@)[l +erf (S cos@)]} - —;-e"(ms o ] .

If assume that molecules are reflected at the body surface with the Maxwellian
boundary condition, i.e., ¢ portion reflects diffusely and (1-0) portion
specularly, and the diffuse reflection corresponds to a temperature 7, different

from the wall temperature 7, , then the total heat transfer to the body surface is
q :O-(q,- _q“’l z_:z)s

l.e., one should replace a by o and 7, by T in Eq. (4.45)
q=0pRT E Sz+___):_..__yi—_l__.£‘. .
Vzn y=1 2(y-1)T

{e*“““"f +~7(Scos0)[1+ erf (S 0056)]} - %e*“‘*‘”z ) : (4.45)

If the wall temperature of the adiabatic body surface adopts such a value 7, so
that the surface heat transfer is zero, then this temperature 7T, is called the

adiabatic temperature. From Eq. (4.45) it is seen

( _l_ef(ScosG)2

L2 v e 2 (4.46)
— 7(Sc050)2 ’ :

T  y+1 Ly 1 e +\/7zScose[l+erf(Scose)]

In the continuum flow regime the isentropic stagnation temperature 7, is (Eq.
0.17)

or, according to Eq. (4.7)

st (4.47)
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From Eq. (4.46) and Eq. (4.47) it is seen that under the condition of large § and
frontal incidence the ratio of the adiabatic temperature 7,.,, in free molecular

flow to the stagnation temperature 7, in continuum flow is

T

aFM

T,

2y
y+1°

5o (4.48)
That is T, 1is always higher than T, . This situation is controversy with that in
the viscous continuous flow: the adiabatic temperature in the boundary layer is
always less than T, . The physical eplanation that T, is higher than T,
when §-—>eo is as follows. In the limit case of large S the energy carried by
unit mass of the incident flow in either continuum or free molecular flow is
(I/Z)Uz. For continuum flow, when the flow is retarded, out of this energy
besides a portion going to increase the kinetic energy (3/2)R7, of the thermal
motion (the consideration is limited to the case of monatomic molecules) there is
still a portion R7, used for building up the pressure. Thus when the continuum
flow is retarded the energy (l/Z)U2 transforms to a total enthalpy of (S/Z)RTO.
But in free molecular flow in the equilibrium the energy of the oncoming flow is
emitted from the surface by scattering an energy of 2RT, per unit mass (see Eq.
(4.37)). Consequently, for monatomic gas we have T, /T, =5/4. Surely this
result is obtained also by letting y =1.667in Eq. (4.48). For diatomic molecules

y=14,and T, /T,=7/6.

4.4 FREE MOLECULAR EFFUSION AND THERMAL
TRANSPIRATION

The phenomenon of the molecules in an equilibrium gas streaming through a
small hole in a thin wall (or through thin plate made of porous material) into the
vacuum is called molecular effusion or transpiration. Historically, the flow
through porous thin plates has been first studied experimentally, later (in 1909)
Knudsen observed and studied the effusion of hydrogen, oxygen and carbon
dioxide through small holes. If the size of the hole is small in comparison with the
molecular mean free path of the gas , then the effusion of a molecule through the

hole would not be influenced by the other molecules flown through (in or out of)
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the hole, and the result of the free molecular flow obtained in section 4.1 can be

used. The number flux of molecules is given by Eq. (4.8)

r = _, /R_T.
"4 2

Obviously the mass flux of the free molecular effusion is

12
ey =L, = p(ﬂ) . (4.49)
2r

It is interesting to compare this result with the mass flux of a isentropic
outflow from a stagnation gas in continuum gas dynamics. The p and 7T in Eq.
(4.49) should correspond to the stagnation density and temperature in the
isentropic flow. From the isentropic flow theory it is known, the mass velocity
reaches its maximum when the flow speed at the exit is sonic (see Eq. (4.17) of
reference [2]), if denote the stagnation density and temperature in the isentropic
flow by p and T, then the maximum mass flux of the continuum flow through a

hole is
y+1

T, Z[LJZ”‘” p(yRTY" (4.50)
y+1

The ratio of the free molecular effusion to the continuum mass outflow is

Lo (m)\ 2

v+l
rme 1 (}/+1)2(yl) —

0.5494, for monatomic molecule ¥ =1.667

0.5826, for diatomic molecule y=14. @51

In the free molecular flow regime the outflow is a kind of effusion of individual
molecules in a quiescent equilibrium state by means of the molecular thermal
motion, whereas in continuum regime it is a stream with macroscopic velocity
reaching sonic speed at the exit. The latter is bigger than the former by a factor of
1.7~1.8.
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At the end of Chapter 3 we discussed the cosine law of the special distribution
of the diffusely reflected molecules. The spatial distribution of the gas molecules
of the effusion is identical with that of the diffusely reflected molecules. They are
both based on the assumption that there is a gas (for diffuse reflection, a
hypothetic gas) with equilibrium Maxwellian distribution emitting molecules.
From the discussion there it is seen, that the effusing molecules would strike with
even probability on any point of a sphere with an arbitrary radius R, and which is
tangent to the surface where the effusing hole is located (see Fig. 3.4)). The
number density flux will decay inversely with the squire of R.

The above result related to the mass flux can be applied to the case in which on
each side of the thin plate with small hole there is a container containing gas of the
same nature but with different equilibrium temperatures 7, and 7, . If the size
of the hole is small enough, the free molecular flow theory holds. The gas on each
side would effuse according to Eq. (4.49) to the other side. At the beginning the
fluxes are not the same, but the fluxes would regulate the densities in both
containers and reach a state that the fluxes towards different directions equal each

other

p.(RT,)" = p,(RT,)" .

As the gases on both sides are of the same nature, the R is the same, by using the

state equation p = pRT , the ratio of the pressures on the two sides is obtained
2
(Pa/ps)=(T,/T;)". (4.52)

Thus the container with higher temperature retains higher pressure. This is the so
called phenomenon of thermal transpiration. Reynolds conducted the experiment
on thermal transpiration the earliest (in 1879), in which the two
container-thermostats were connected not through small hole but through thin plug
made of porous material He observed that provided the size of the pores in the
porous material is small enough and the pressure of the gas is sufficient low, the
above theory holds. With the rising of the gas pressure deviation from the theory

occurs.
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Applying the above result to the free molecular effusion of a mixture of
different gases (with molecular massm,, m, ) through a thin film of porous
material into vacuum can explain the phenomenon of so called differential
effusion. The number densities of the gases before effusion are supposed to be
n

n A4 B

,» n,. After a certain period of time the ratio of the number densities »
of the two gases collected in the vacuum chamber will be different from the

original ratio. According to Eq. (4.8) one has

, i12
nanm ) @.53)
n'y  m\m,

It can be seen that by using this formula the molecular weight can be
determined, and also, by employing the phenomenon of differential effusion the
gases of different molecular weights can be separated, of course, with poor
accuracy. Ramsey was the first to use this phenomenon in the separation of helium
from nitrogen employing unglazed clay as the porous material. From Eq. (4.53) it
is seen, that the helium effuses through the clay at a rate in 2.6 times faster than
the nitrogen. After multiple repetitions helium of fairly purity can be obtained.
The gas separation caused by the differential effusion is the simplest one in gas
separation based on the phenomena of rarefied gas dynamics. The separation of
gases and isotopes employing the rarefied gas effects had been the subject of
considerable attention of the scientific community in the 70s of the 20" century,
readers interested in gaining comprehensive knowledge of this subject are referred

to the reviews [3, 4].

4.5 COUETTE FLOW AND HEAT TRANSFER BETWEEN
PLANE PLATES

In this section two simple one-dimensional steady flow problems, namely the
Couette flow problem and the heat transfer problem between plane plates will be
discussed.

We begin from the discussion of the Couette flow problem in free molecular

Sflow. Consider the gas flow between two plates, let the lower one be atrest and the
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upper one move with velocity U in its own plane, the gas flow caused by the
shear is the Couette flow. When the molecular mean free path of the gas between
the plates is large in comparison with the distance between the plates, the free
molecular flow takes place. In the case of complete diffuse reflection o =1, the
shear stress subjected by the lower plate can be obtained from Eq. (4.15) and Eq.
(4.11), and in the latter one should put 6 =7/2

T, = pU (RT/ 21" . @.54)

L

pUZ

Wrs
The discussion will be more complicated, when at the plate surface ¢ portion of
molecules reflects diffusely, and (1-0) portion reflects specularly. This time the
macroscopic velocity component along the direction of the plate of molecules
leaving the lower plate is not zero, suppose it to be cU . Because of the
symmetry, the macroscopic velocity component along the plate of molecules
leaving the upper plate must be (I1—c)U . Out of them there is o portion
reflecting diffusely and having the macroscopic velocity component U , the other
(1-0) portion reflects specularly and has the same macroscopic velocity ¢U as

the lower plate, consequently
oU+(1-0)cU =(1-c)U,

from where we obtain ¢ =(1-0)/(2-0). That is to say, the macroscopic velocity

(1-c)U leaving the upper plate is

Then from Eq. (4.20) by setting 8 =z/2 and the macroscopic velocity to be
U/(2-0), one obtains

If2

pU(RT /27) (4.55)

c
T=
2-0
Now consider the heat transfer between the plates when the distance between
them is small in comparison with the molecular mean free path, i.e., the

one-dimensional heat conduction problem in free molecular flow.
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Suppose the temperatures of the upper and lower plates are 7 and 7,, and
the accommodation coefficients are ¢, and «,. If let g and g, to denote
the energy fluxes carried by the molecules leaving the upper and lower plates, then
the application of the definition Eq. (3.21) of the accommodation coefficient to the
lower plate (for the latter ¢, is the energy flux of the incident molecules, ¢, is

the energy flux of the reflected molecules) yields
%‘qzzaz(%‘qwiz)’ (4.56)

where ¢, , is the energy flux of the reflected molecules with the Maxwellian

distribution at the temperature T, of the lower plate. Analogously, application of

the equation (3.21) to the upper plate yields
%=9,=0 (4~ q..) (4.57)

where g, is the energy flux of the reflected molecules with the Maxwellian
distribution at the temperature 7, of the upper plate. From the above two

equations it is easy to obtain

q qZ (q q 2 ) M (4‘ 58)
W, w
C{I C!Z Cth!Z

q,, and g, , are given by Eq. (4.42)
qw.i :2mR7i-'Nw‘i’ i:1’2’ (459)

N

lower plates (in unit time per unit area). Assume that the molecules leaving the

wis 1=1,2, are the actual number fluxes of molecules leaving the upper or
upper and lower plates are approximately at the Maxwellian distribution but
corresponding to 7,, and 7, ,, respectively, and the number densities of the
molecular flows are », and n,, respectively. The actual number fluxes of
molecules leaving the upper and lower plates, according to the derivation of Eq.
(4.8), should be

N, =2n, = (4.60)
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This formula in comparison with Eq. (4.8) has an extra factor 2, because that »;
represents only the density of molecules leaving one of the plates towards the
other but not the density of the whole gas (see the some what different reasoning
of the derivation of Eq. (4.8) below Eq. (4.8)), the density » of the gas between

the plates should be the sum of », and n,

n=nn,. (4.61)

According to the condition that there is not accumulation and disappearance of the

molecules at the wall surface N,, =N ,, from Eq. (4.60) one should have

mT =m[T., . (4.62)

From the above two formulas it is easy to obtain

-~ n}ly;.z _ ”“_\F:x
nl_‘[TTJ+Ji', nz—ﬁ+m. (4.63)

Now suppose the temperature of gas between the plates is 7', the number flux

N, ofthis gas to the upper and lower plates equalto N, and N, ,

N, =N, =N,. (4.64)

W W

RT. RT
N =n —R—T-=nl ———'l-'—+n2 i (4.65)
¥ 27 27 4

Then according to Eq. (4.58), Eq. (4.59) and Eq. (4.64) we can write the heat flux

And

between the two plates (from the upper to the lower) in free molecular flow as

oo ,RT
Drnr :ql—%:_—'—an E'zR(Y;_Tz)- (4.66)

o+ o, -,

To apply Eq. (4.66) the temperature 7 should be expressed through the known
wall temperatures. Substitution of Eq. (4.63) into Eq. (4.65) yields
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- JT_Z . (4.67)

Noting that the heat fluxes ¢,4,,9,,.9,, can all be expressed through
temperatures 7,,,7,,7,,T, by using formulas analogous with Eq. (4.59) and that
the factor N, , in four cases is the actual number flux of molecules leaving the

upper or lower plates, one can obtain from Eq. (4.56), Eq. (4.57) and Eq. (4.58)

TM:oz,T,+ocz(l~oc,)T2’Th2 _ah+a(1-a,)F . @69
o+ o oy, o+, ~oy,

Expressing the temperature 7 in Eq. (4.66) through the temperatures of the
plates and accommodation coefficients with the help of Eq. (4.67) and Eq. (4.68)
one obtains the searched solution of the problem.

When the accommodation coefficients of the upper and lower plates are both 1,
it is evident, that T, =T,, T,=T,,and ¢ =q,.,, ¢, =4, and the energy fluxes

of the molecules leaving the upper and lower plates are

=Zh(orT)", (4.69)

9, «/E

_ mn,

9, J7—[

(2RT,)¥". (4.70)

By using Eq. (4.63) the total energy flux between the plates (from the upper to the

lower) in free molecular flow with o, =«, =1 is obtained

P 3
Dy ZW(ZR)/Z TITZ (ﬁ"ﬁ) “.71)
Obviously, letting in Eq. (4.66) «, =a, =1 and using Eq. (4.67) and Eq. (4.68)
1 2

can yield the same result.

In the continuum flow the heat transfer between the plates is

If as usual assume K =CT”, obviously



182 4. FREE MOLECULAR FLOW

C dar’
w+l dy

Gc =~

In the quiescent gas g, should be constant, so that

Tmﬂ - _(w+]) qC
C

y+ D,
the constant D is determined to be T:TZ“”l from the condition T=7, at

y =0, and from the condition 7'=7, at y=/h the quantity g. is obtained as

C(Tlmﬂ _ 7—;(0“)

4.72
(w+1)h @72

qc =~

From Eq. (4.71) it is seen, for the heat transfer problem, in free molecular flow
the heat flux is proportional to the density between the plates and is independent
of the width of the gap between the plates; but from Eq. (4.72) it is seen the heat
flux in continuum flow is inversely proportional to the width of the gap between
the plates and is independent of the density. The ratio of the heat fluxes of the two
regimes is

E“ENZNKW 4.73)
When Krn>1, ie., in the free molecular flow, the heat flux calculated by the
continuum theory would exaggerate the correct heat transfer approximately by a
factor of Kn . When Kn<1, the continuum theory holds, the heat flux
calculated by the free molecular flow theory would exaggerate the correct heat

transfer approximately by a factor of Kn™'.

4.6 THE GENERAL SOLUTIONS, UNSTEADY FLOW

For solution of the unsteady problems in free molecular flow regime the natural
means is to solve the collisionless Boltzmann equation. In Eq. (2.152) abandon the
right hand side term and consider the case of no external force F =20, the

collision-less Boltzmann equation holds
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oF o
i =0, 4.74
e -=0 @.74)

The following initial condition is set for Eq. (4.74)

flert=0)=fi(c.r), @.75)

fy(e,r) is an arbitrary known function of ¢, r in certain domain. The

characteristic equations are (s is the parameter along the characteristics)

;’_iz , %:c, %: (4.76)
The solution is
t=s, r=cs+r, f=f,
or in the form
Slert)=fy(er—ct). 4.77)

This is the general solution of the collisionless Boltzmann equation, indicating that
the equation (4.74) stipulates that the distribution function remains constant along
the characteristics, i.e., the molecular trajectories. This general solution was first
pointed out by Yang and Lees [5]for the one-dimensional case when solving the
Rayleigh problem. Narasimha [6] suggested use the moment of solution Eq. (4.77)
(see Eq. (2.9))

nQ(r,t)= TQfO(c,r-ct)dc (4.78)

to obtain the macroscopic quantities of the flow field, and then employ the

transformation
F=r-ct 4.79)

to ease the calculation of the right hand side integral. The Jacobian of te

transformation (r'—¢) is
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a(xv,y',zv) s
—_— .
a(u,v,w)
SO
_ 1 2 _— )
nQ(r,t)=t—3!Qﬂ)(’ t’ ,r'jdr, (4.80)

the domain of integration is the extent of the gas in the moment r=0.

To illustrate the application of Eq. (4.80) first consider the problem of
one-dimensional free expansion. A quiescent uniform monatomic gas (of
temperature 7, and density n,) initially occupies the semi-space on the left of
the plane x =0 and is separated by a thin wall from a vacuum on the right of the
plane. At moment ¢=0 the separating plate is removed and the gas expands
freely into the vacuum. When the coordinate x is small in comparison with the
mean free path and the time ¢ is small in comparison with the mean collision time,
i.e., when the free molecular flow condition is satisfied, it is required to determine
the number density n(x,t) and the velocity u,(x,) of the gas as functions of
x and ¢.

For the one-dimensional problem under consideration Eq. (4.80) has the

following form
- 1 —x'
nQ(x,t)=;_[Qf,,ﬂ(—£t—x,x’)dx', @4.81)

where f, is the distribution function of the thermal velocity component in x
direction in equilibrium gas, which was already obtained in Chapter 2 (see Eq.
(2.203)

S =B/ exp(-plu’), B = (2R'g)‘lz , (4.82)

and x'=x—ut.
Substituting Eq. (4.82) into Eq. (4.81) and letting Q=1 yields the number

density
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T o Bimx)’ d(ﬁl(x—x')J (ﬁ]
—F X = =—ngrfc
' m{/,e p( t ] t 2" (4.83)

Letting Q=u in Eq. (4.81) yields the expression of the speed of the flow

2
a, = L ool o B
© 27, t ’

or

e

At the position x=0 from Eq. (4.83) one obtains » =(1/2)n1 , from Eq. (4.84)
one obtains u, =1/(x'"?8). Both n and u, at x=0 are not dependent on ¢,
and generally they are functions of (B x/t). At x=0 the number flux of
molecules is nu, =n /(2n'"*B,) = nlm . The result is the same as the number
flux of the steady effusion of molecules (see Eq. (4.8)).

Now discuss the problem of the expansion of point cloud. Consider the free
expansion of the cloud of gas initially in the equilibrium state into the surrounding
vacuum. At a distance far enough from the cloud the gas cloud can be considered
as a point. Thus one can assume that at moment ¢=0 there are N molecules
concentrated at the origin r=0 and having Maxwellain distribution (see Eq.
(2.196))

ﬁ)(c,r):(s(r)zv(ﬂijexp( -pc?), (4.85)

where (r) is the Dirac function.
According to Eq. (4.80) let Q=1, the expression of the number density is

obtained
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)= 8t o - 5 o

N(BY
7(;,7) exp(~Bx7/1%). (4.86)
In Eq. (4.80) by letting ¢ =c, one obtains
u,=rit. (4.87)

It is very natural to obtain the expression like Eq. (4.87) for the velocity, for only
molecules having velocity c¢=r/t in the gas cloud can reach r, then the
macroscopic velocity u, is as well c=r/t. The thermal velocity of the
molecules is ¢'=c ~u, =0, and the temperature is zero. The density at arbitrary

point rises from zero at moment #=0 to the maximum value at ¢=x(2/3)'"’

(3/2em)**N /x* = 0.0736N / x*, (4.88)

and decreases at large time as 7.

Finally, consider the Rayleigh problem in free molecular flow. The upper half
space above the plane y =0 initially is filled with quiescent uniform gas with
temperature 7, and number density #,. Suppose a plane plate at y =0 acquires
temperature T, at =0 and starts to move in its own plane with a velocity U .
Consider the flow of the gas when <<t and y<<A (t being the collision
time, A the molecular mean free path). The collision between molecules can be
neglected, and the expression Eq. (4.80) of the moments of molecular quantities
derived from the collisionless Boltzmann equation can be employed. Note, when
the wall temperature is different from the initial temperature 7, , the macroscopic
velocity except the component along the direction of the plate still has a
component along the direction perpendicular to the plate, so this Rayleigh problem

is not an one-dimensional flow problem. Write Eq. (4.80) in the following form

~ 1 —x y-y z=z )
nQ(y,t)z;g-“.J.Q}%(x — IZ,dexdydz , (4.89)
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the integration domain is that occupied by the gas at ¢=0. Superficially, this
domain is only the semi infinite space above the plane y =0, and the initial

distribution function of the gas (see Eq. (2.196)) is

n{%jexp[—ﬂf (w4 vie w))=

[ ol 5 [Hj [J

But the gas in the flow partially is originated from the reflection at the surface

(suppose the reflection is complete diffuse), one can imagine that this part of the
gas was located initially below the plane y =0 and has the following initial

distribution function

n, [%]3 exp{-B2[(u-U, ) +vi+ w =

B, 2| x=x ’ y=y 22 )
nw{#) exp —ﬁw[ - —UWJ +[ - JZ+( - J

Here the notion of the plate with velocity U  has been taken into account. The

number density #_ of the imaginary gas, as we has been doing for many times, is
obtained from the condition of the equality of the number fluxes along the positive

and negative y directions. From Eq. (4.8) we have
n,= (ﬂw/ﬁl)n’] .

Thus, from Eq. (4.89) one can write

o ] 17T ovol ] 2] 22

o0 () —co

\2 3
VAR A 1 1 ' ﬁ ﬁ
dxdyd:z _{W W
( ! ] T, ij] (4.90)
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0 {—ﬂiﬁx_x'—u“,] +[ﬂ) +(Z‘Z'J de'dy'dz‘.
t t t

Letting O=1,

u, v and (1/3)c?/R, the expressions of the number density, the

velocity components along the x and y directions and the transitional

temperature can be obtained

pott {”M(Q)Hﬁ}%(ﬁ )

bl B2 o 22 o

1

et o]

U 1
Loy Sofo (2 +v)).
t3R 3R 3R

4.91)

(4.92)

(4.93)

(4.94)

As the molecules reflected from the surface have not collided with the incident

molecules, so the molecules coming into interaction with the surface are not

disturbed. The pressure, the shear stress, the heat flux etc. subjected by the surface

can be obtained according to the formulas of p, 7 and ¢ subjected by the gas

moving steadily under free molecular conditions (see Egs. (4.19), (4.20) and
(4.45), where 6=n/2,0=1L,a=1)

(4.95)
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U
7=, (4.96)
2nB,

4«/_[3, { s ((yytll))[l _%ﬂ _ (4.97)

It is evident from Eqs. (4.91)~(4.94) that when the wall temperature of the plate

is the same as the temperature 7

" of the gas , the impulse motion of the plate

does not influence the gas density : »n=n,, and does not cause the gas motion
perpendicular to the plate: v =0, and the transitional temperature has a

disturbance related to the velocity component along the direction of the plate
T=T +u,(U,-u,)[3R . (4.98)
The latter has a very simple expression
1
uy=-U erfe(B, v/r). (4.99)

From Egs. (4.95)~(4.97) it can be seen that when T =T

p= PRI, 4.100)
r=%'—1mUu,=r~(mUW), 4.101)
ne( m, o5 m._
el o (e 4.102
=713 j (2 ) ( )

The expression I' = n;]/4 (see Eq. (4.8)) is the number flux of molecules in the
quiescent gas. It is seen that when T =T the impulsive motion of the plate does
not constitute disturbance to the pressure, and the shear stress and the heat transfer
are originated from the momentum mU, and (1/2)mU] carried by each
molecule leaving the plate. The conclusion concerning the pressure p= pRT
seems to be in contradiction with the expression of the temperature (except T

1
there is still disturbance term), but this is only superficial. In fact in the expression



190 4. FREE MOLECULAR FLOW

Eq. (4.100) the part contributed by the incident molecules is not influenced by the
reflected molecules but is provided by the gas with equilibrium distribution of
temperature 7;. The disturbance term of 7 in Eq. (4.98) is the result of the
calculation of the temperature considering two flows of the incident and the

reflected molecular as one system.

REFERENCES

1. Reizhik YM and Gradshtein YS (1951) Tables of Integrals, Sums, Series and Products,
Moscow (in Russian)

2. Shapiro AH. (1953) Compressible Fluid flow. Ronald Press, 1

3. Muntz EP and Hamel BB (1974) Rarefaction phenomena in gas and isotope separations.
In: M Becker and M Fiebig edited Rarefied Gas Dynamics, B 1-1, DFVLR, Germany

4. Muntz EP and Deglow TL (1979) Rarefaction phenomena in gas and isotope separation
with emphasis on jets and beams. In: R Campargue’ edited Rarefied Gas Dynamics, 1:
573-586

5. Yang HT and Lees L (1960) Rayleigh’s problem at low Reynolds number according to
the kinetic theory of gases. In: FM Devienne edited Rarefied Gas Dynamics, Pergamon
Press, 201-238

6. Narasimha R (1962) Collisionless expansion of gases into vacuum. J Fluid Mech., 12:

294-308



5 CONTINUUM MODELS

5.1 INTRODUCTION

When the gas is slightly rarefied or, to be more exact, when the appropriately
defined Kn number is in the scope less than 0.1 and larger than 0.01, the discrete
molecular effects do not manifest themselves sharply (see the discussion in 0.1 of
the Chapter Introduction), the gas flow can be investigated from the point of view
of the continuum model. An established practice has been and remains to start
from the Navier-Stokes equations with the employment of the slip boundary
conditions to obtain the solutions of certain problems. The asymptotic theory starts
from the Boltzmann equation by using the asymptotic analysis to obtain the
equations of fluid mechanics more exact than the NavierStokes equations and
corresponding slip boundary conditions to solve the problems in this regime . Qian
Xuesen (H. S. Tsien) [1] pointed out early in the forties of 20™ century, that the
Burnett equations obtained as the second order terms of the Chapman-Eskog
expansion should give results butter than those of the Navier-Stokes equations
(first order terms of the Chapman-Enskog expansion) when Kz is not so small
and Ma is large, and for the Burnett equations, as equations of order higher than
the Navier-Stoke equations, more boundary conditions should be proposed. Own
to the complexity of the Burnett equations and the instability problem related to
the high frequency disturbances there have been suspicions concerning reliability
of the Burnett equations. But recent investigations and the comparison with the
DSMC method and the experimental results show that the Burnett equations in the
slip flow regime are indeed superior than the Navier-Stokes equations. Grad [2]
employed the Hermite polynomials expansion up to the third order terms to solve
the Boltzmann equation yielding the thirteen moment equations, or the Grad
equations. To the Grad equations had been also attached great importance,

unfortunately the experimental and theoretical investigation did not verify their
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validity. In section 5.2 the Navier-Stokes equations, the Burnett equations and the
Grad thirteen moment equations are presented, and the reliability of them as the
basic equations of the continuum model is discussed. In section 5.3 the derivations
of the slip velocity and temperature jump boundary conditions are given and the
problem of the formulation of the boundary conditions in slip flow regime is
discussed. In section 5.4 solutions of some simple proble ms are discussed starting
from the Navier-Stokes equations and usual slip conditions. In section 5.5 the

problem of thermal creep is discussed.

5.2 BASIC EQUATIONS

5.2.1 EQUATIONS OF MASS, MOMENTUM AND ENERGY
CONSERVATION

In section 2.7 of Chapter 2 the mo ment equation or the Maxwellian transport

equation (2.183) of the Boltzmann equation (2.152) is obtained

d/ = — ad
g(nQ)%-V-an—nF '5%: (0], (5.1)
where the collision integral A{Q] can be expressed in the form of Eq. (2.160).
From there it is seen that when @ is taken as the mass m, the momentum mc
and kinetic energy (1/2)mc’, the right hand side of Eq. (5.1) is zero. And the
moments of Q and c¢Q are various macroscopic quantities in gas dynamics
discussed in detail in section 2.2 of Chapter 2 (see formulae collected at the end of
section 2.2). Thus, the following equations of mass, momentum and energy

conservation are obtained (cf. reference [3], section 2 and section 3 of Chapter 3)

dp  du,
— —_—
dt p ox,
%.}..a_p_ +___aT’7 =
dt  ox, Ox;
pf.pp% +T'_j%+§_q."_= 0.
dt a)g axj 8x,. (52)

0

0
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Equations (5.2) are the basic equations controlling gas flows, they can be
derived as well from the mass, momentum and energy conservation equations
starting from the continuum model assumption. These constitute an incomplete
system of equations. The unknown functions are p, p (or e, related with p,

p through Eq. (2.31)),u,.q 7,

, » among which 13 are independent (u,,g, contain 6

scalars, 7, according to the definition of Eq. (2.24) is a non-divergent symmetric
tensor and contains 5 independent scalars). But the number of the equations
(scalar equations) is five. Consequently the equations (5.2) must be added by some
relations to form a closed system. The continuum model handles this problem by
adopting certain relations between the stresses and the strain rates, and the heat
transfer and temperature gradient (the temperature T is related with p, p
through the equation of state Eq. (3.31)), thus mmke the system close. If let the
relation between the stress and the strain rate be linear (the Newtonian fluid
hypothesis) and the heat transfer be proportional to the temperature gradient
(Fourier law), then the Navier-Stokes equations are obtained. If adopt the invis cid
assumption by letting 7,=0, ¢, =0, then the equations (5.2) become the Euler
equations. The kinetic theory of gases, starting from the solution of the
Bolotzmann equation, obtains the expression of 7, and g, through u, and T
and calculates the proportional coefficients (the viscosity and the conductivity).
This is the method developed by Chapman and Enskog, expounded in detail in

reference [3].

5.2.2 CHAPMAN-ENSKOG EXPANSION

To solve the Boltzmann equation Chapman and Enskog expanded the distribution
function f into a series of the terms proportional to the powers of Knudsen

number (in the scope considered Kn is less than 1)

f=2f("), (5.3)
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where /' is the approximation of zero order and is taken as the equilibrium
Maxwellian distribution Eq. (2.184), f is the #* correction term of f . The

corresponding stress tensor £, and the heat transfer vector g, can be written

B=35", (5.4)
r=0
_N\ 0
qi"zqi > (5.5)
r=0
where
PV =m[c, ¢ fVde, (5.6)
(’)_m v a2 )
H=—lc"c de . 5.7
9; 2f : (5.7)

5.2.3 EULER EQUATIONS

If Take the zeroth order approximation as f = /' then

Substituting into Eq. (5.2) yields the Euler equations.

5.2.4 NAVIER-STOKES EQUATIONS

The first order approximation f™ of f is solved to be (see reference [3})

4K B> 0 4up® .
) _ 2.2 _Z InT _ Coi
s s [ Snk (ﬁ ) "ox, o o Ic’ Ox, ’ (5-8)

where c;.oc'}:c,fc'j—czd.,/} denotes the non-divergent tensor constituted from

;-
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In the first approximation

0 — o, Ot

T ==2U—L, 5.9

) =g 5.9
oT

g = K=, (5.10)

where u is the viscosity coefficient, K is the conductivity coefficient, the

Chapman Enskog theory gives

i- (5/8) (kT )" -
mj4kT NCFO' exp|—mc, [AkT )dc, .
4 ) 7 ’ 2
15 k

See reference [4], Eq. (7.2), Chapter 10. The expression au,./axj in Eq. (5.9) is
the non-divergent symmetric tensor constituted from au,,/ax,. In general the

non-divergent symmetric tensor is formed as:
- 1 1
4, =5(4, +A,,)—§5,/Akk. (5.13)

Substituting Eq. (5.9) and Eq. (5.10) into the equations of momentum and
energy conservation in Eq. (5.2), and introducing the enthalpy h=e+ p/p, one

obtains

du, op O du, Ou, ) 2 Qu
TR AN P (e R IS 5.14
Pa +8xi ox; ['L{axj ox, # (5-14)

iki@;i(ﬁl]

¢
+= :
¢t pd  po, o’ (-15)

where ¢ is the dissipation function
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k

2 2

y ou, au ou, 1 (0u, du, 2 (du,

—t =2 oy L | g 2R 5.16
o= v Mo o, 2“(ax}. ax,) 3“{8)5) 10

Equations (5.14) and (5.15) are the Navier-Stokes momentum equations and the

corresponding energy equation in the usual fluid mechanics.

5.2.5 BURNETT EQUATIONS

1. The form of the equations
Burnett [5] was the first to investigate the second approximation of f and gave

the corresponding stress tensor and the heat transfer vector (see Chapter 15 of [3])

D g M A, K;ﬁ 0 10p 0w %% ,0udu |,
p Ox, Ox; ox; pdx; ox, dx, o, O,

X u? T X u* op aT'K p? oToT W’ du du,
T dv,0x, ‘ppT ox aij > pT? ox, ax}.T * pox ox, ’ (5.17)

) g L2 OT g N2 [y 0, | ), 0T |
q pT dx; ox, *pT| 30x ox; ox; ox;

2 2 3
9“ P g 4 o +0,£ aTF”J-
ppax p ox, pT ox,

(5.18)

Here the notation of Eq. (5.13) is used, and K, and 6,! are both constants. For

Maxwellain molecules their values are

! In the first edition of reference [3] (1939) 6, was mistaken as +45/8, €, is mistaken as

T
3/2(5 —_Z’_/;):é’ Wang Chengshu and Uhlenbeck pointed out this error p], and
u

found out that the conclusion of Schamberg et al. about the impossibility to observe the

sound dispersion in air was originated from the erroneous 8, and 6, . In the second

edition of reference [3] the errors in 6, and 8, .are corrected.



5.2 BASIC EQUATIONS 197

K, =3333,K, =2,K, =3,
K, =0,K, =3,K, =8,
6,=9.375,0,=—45/8,6, = -3,6, =3,

6, =3[ 3574+ L |- 295,
udr

(5.19)
For hard sphere model their values are
K, =4.056,K, =2.028,K, = 2418,
K,=0.681,K, =0.219,K, =7.424,
6,=11.644, 6,=-5.822,6, = —3.090,
0, =2.418,6, = 25.157. (5.20)
Substituting
v, == el
g,=4"=¢" +¢" (5.21)

i

into Eq. (5.2), with 7{",¢" substituted by Eq. (5.9) and Eq. (5.10) and 7,4

i
substituted by Eq. (5.17) and Eq. (5.18), the Burnett equations are obtained.

2. The solution of the equations at hypersonic speed

Qian Xuesen (H.S. Hsien) analyzed the magnitudes of the ratios of the second
order terms to the first order terms and pointed out that in the slip flow regime at
high Mach number the Burnett equations must be adopted. At the same time he
pointed out, that as the additional heat transfer and the stress terms of the Burnett
equations contain derivatives of order higher than the first, the order of the system
of the partial differential equations is enhanced and more boundary conditions are
needed than usually required in the gas dynamics.

The progress of the later time application of the Burnett equations in the
hypersonic flows was not so successful. The Burnett equations are very complex
and they are very difficult to be treated. There were not generally adopted
opinions concerning the formulation of the correct boundary conditions suitable
for the Burnett equations. And theoretical and experimental results sometimes

showed evidence that Navier-Stokes equations were superior to the Burnett
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equations. This made people think that in the slip flow regime the basic equations
still should rely on the Navier-Stokes ejuations [7}. This situation started to
change from the late 80s of the 20" century. Fisco and Chapman [8] in 1988
investigated the structure of the one-dimensional shock wave to check the
reliability of the Burnett equations. The merit of choosing such a problem is the
possibility to get rid of the uncertainty in the formulation of the boundary
conditions. The result showed that the Burnett equations agreed with the
simulation result of DSMC method better that the Navier-Stokes equations. This
and similar investigations changed the opinion that the Burnett equations were
seemingly useless. In fact, before that there had been works showing that Burnett
equations were superior in comparison with the Navier-Stokes equations. The
measurement of the density distribution in the cylindrical uette flow by the
electronic beam fluorescence method published in 1971 by Alofs and Springer [9]
showed that the result at Kn =0.25 of using Bumett equations and higher order
slip conditions obtained by T.C. Lin and Street [10] agreed better with the
experimental result than that obtained by the Navier-Stokes equations and first
order slip condition.

Zhong, McCormack and Chapman [11] proved that Burnett equations Eq. (5.2),
Eq. (5.21) are not stable for short wave length disturbances and considered this is
the reason why the numerical solution of the Burnett equations met difficulties.
They suggested select some of the third order (the augmented) terms higher than

the original Burnett terns and add to the Burnett stress and heat transfer terms:

if if if
" (5.22)

{’L’.. =7 17
g, =9 +4,

In the above formulas .”,¢!® are given by Egs. (5.21), (5.9), (5.10), (5.17), and

i

(5.18), the augmented terms 7,”,g;’ are

3 2
= £ 3k Rr2[ 9
pi2 ox, | Jx,0x,

3 2 2
q_(“>=”‘_e7Ri 9T +66RT8(8p ’
" pp| T 9x| oxox, p 9| Ixx,

(5.23)

where
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K,=2p, 6,=-58, 6,=11/16.

Substitution of Eq. (5.22) and Eq. (5.23) into Eq. (5.2) yields the augmented
Burnett equations, which refrain from the problem of un-stability encountered in
the numerical calculations of the usual Burnett equations when the cell sizes are
small than the mean free path. Zhong et al. [12, 13] solved the problems of
hypersonic flows around two-dimensional blunted cylinder and axi-symmetric
spherical head using the augmented Burnett equations with first order slip
boundary conditions, and obtained better agreement with the calculation results of
DSMC method than the Navier-Stokes equations. The Burnet equations and the
first order slip boundary conditions were also used to solve the low density nozzle
flow field and the hypersonic flow around the three-dimensional ellipsoid in
transitional flow [14, 15].

If take the term containing the velocity gradient in Eq. (5.17) as the
representative term of the Burnett equations, the ratio of the Burnett stress term to
the ordinary stress term (see Eq. (5.9)) can be written as

(8 Ti(jl) = ﬁ% za_’?ig_ = MaKn, (5.24)
pox, pa L

where « is the speed of sound and u~apd (see Eq. (2.222)). Similarly, from
the analysis of the order of magnitudes of Eq. (5.18) and Eq. (5.10) one obtains
that the ratio of the Burnett heat transfer to the ordinary term of heat transfer is
also MaKn . This is the analysis of the order of magnitudes given by Qian Xuesen
(H.S. Hsien) in reference [1], from where he drew the conclusion that under high
Ma numbers when Krn is not small the Burnett equations should be adopted.
The many years discussion and the scientific practice concerning the suitability of
the Burnett equations verify the correctness of this conclusion.

3. Low speed non isothermal flows

For a class of low speed non-isothermal flows the following comparison of the
orders of magnitudes between the ordinary stress and the Burnett stress can be
obtained. Assume in such kind of flows Re<O(l), and Ma =ReKn<<1, but the
variation of the temperature is rather large : AT =6T , T

02 0

temperature, 8 <O(1) . Then the order of magnitude of the velocity is:

is the characteristic
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u=Reu/pL=ReapAd/pL=aKn , and the order of magnitude of the ordinary

viscous stress is

ou,
TS) = ,ua—x’z aplufL =a*pKn®. (5.25)

If separate specially the terms containing the first order and second order

derivatives of temperature in the second order approximation Eq. (5.17) of the

stress and call them the Burnett thermal stress

2 9T * 9T o
=g L Ty , (5.26)
pT o Ox, pT* & dr,

(7

p in the above defined slow

it is readily seen that the order of magnitude of 7

non-isothermal flows is

2
i) :;‘%z a*pX’ [’ = 0d pKn® . (5.27)

Comparison of Eq. (5.25) and Eq. (5.27) shows that if 8 =0(), then T;.T) and
r,.‘,." have the same order of magnitude, i.e., in the slow non-isothermal flows the
Burnett thermal stress and the usual (Navier-Stokes) stress have the same order of
magnitude. The consequence of taking into account of the thermal stress is the
occurrence of a new type of rarefied flows. Under usual pressure and ordinary
sizes the steady temperature field can not produce steady flow of gases. But in gas
of small Krn number when the temperature field is originated fromthe external
heat transfer but not by the transformation of the kinetic energy into the thermal
energy the slow non-isothermal flow convection takes place [16, 17]. This specific
phenomenon in the continuum Burnett approximation is called temperature stress
convection.

In rarefied gases the most remarkable flow phenomenon caused by the
non-uniformity of the temperature is the thermal creep originated from the slip

boundary condition, see the discussion in section 5.5. The asymptotic theory of
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Sone (see section 5.2.7) shows that at small Kn number there is the second order
thermal creep phenomenon called thermal stress slip flow taking place 18, 19].

4. Experimental verification

The most convincing experimental proof of the Burnett approximation should
be the direct experimental verification of some one of the Burnett stress or heat
flux terms (see Eq. (5.17), Eq. (5.18)), for example, the actual measurement of the
so called “viscous heat flux’ ¢\ =6,(247 /3pT)0(Tdu,/ & )/ &, (see the second
term of Eq. (5.18)). Unfortunately, this heat flux virtually is not possible to be
measured by experiment, for it takes place in the direction of the mass flux (the
flow direction). But in the gas flow of polyatomic molecules the external magnetic
field can produce a transverse heat flux perpendicular both with the velocity
gradient and the magnetic field, i.e., the so called “viscous-magnetic heat flux’.
This heat flux can be measured experimentally. Vestner [20] developed a theory
that can distinguish the Burnett bulk and the boundary layer contributions and
obtained the heat flux expression in dependence of the magnetic field orientation.
Hermans et al. [21] carried out the experiment for carbon monoxide and nitrogen
and obtained results in excellent agreement with the theory. Thus, the Burnett
approximation or the second order Chapman- Enskog approximation was verified

quantitatively by the experiment.

5.2.6 GRAD’S THIRTEEN MOMENT EQUATIONS

Grad [2] suggested a different method to solve the Boltzmann equation
considering p,pu; 7,9, as 13 equal unknown functions and obtained 13
moment equations of the Boltzmann equation. For this he expanded the velocity
distribution function into Hermite polynomials. If take the first four terms of this
expansion and represent the fourth term by the contraction of the Hermite

polynomials, then the function f can be written as
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‘2
S A § PUSEPS NS PP | 5.28

f=1 2pRT "7 pRT '| SRT (5:28)
Substituting this expression into the Boltzmann equation (2.152) and multiplying
the equation successively by m,c, (1/2)mc?,cc;,(1/2)ce? and integrating over all

possible velocities yields the equation (5.2) and the following equations

Jdt;, 9 28_q, du, ou g
—+—{ur |+ ==L+ T et p—L =T 5.29
5 T) sox, v, T, u ©-29)
%.}._aukqi +lqk% +£qk§_l.l_1i.+
ot 9dx, 5770x, 5 ox
, 7. 0P,
g i%+RT§£i+zTikRa_T_.L_L+
57 ox, d, 2" dx, p ox
5 0T  2p
—pR— = .
PR = T (5.30)

Equation (5.29) is an equation for the non-divergent symmetric tensor involving
five independent scalar equations, Eq. (5.30) involves three equations. Together
with the five equations of (5.2) there are thirteen independent equations. The
temperature 7 in Eq. (5.29) can be expressed through the equation of state
as p/pR . Equations (5.2), (5.29) and (5.30) contain altogether thirteen
unknowns: 0, p ,u,,q Ty - They constitute a complete system of equations, i.e., the
Grad thirteen moment equations. Similar great importance had been attached to
the Grad equations as to the Burnett equations. However, the expansion
expression Eq. (5.28) assumes that the distribution function is continuous in the
velocity space, but in fact, near the solid boundary the distribution function is
always discrete in the normal to the boundary direction for the velocity. Moreover,
the polynomial expansion can be proved to be divergent in some cases, for
example in the shock wave problem when the oncoming Ma number is greater

than 1.85. In contrast with the reattachment of great importance to the Burnett
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equations starting from the late eighties of the 200 century, the Grad equations
have not yield results supported by the experiments and direct statistical

simulations.

5.2.7 THE ASYMPTOTIC THEORY FOR SMALL KNUDSEN NUMBERS

Sony [18] established fluid-dynamic type system of equations and corresponding
slip boundary conditions to treat rarefied gas dynamics problems under small Kn
numbers by the systematic asymptotic analysis for the Boltzmann equation
assuming small deviation (of the order of the Knudsen number) from the local
Maxwellian distribution function. In the external region where the length scale is
the characteristic length L of the flow the expansion of the distribution function
in a power series of Kn is used and the fluid mechanics type equations thus
obtained are very like the Navier-Stokes equations except a thermal stress term.
Near the wall in the Knudsen layer (a layer of thickness of the mean free path) the
Knudsen layer corrections are introduced to describe the rather rapid variation of
the distribution function in the normal direction to the wall. These corrections are
the slip boundary conditions. The main conclusions which could be drawn from
the Sony’s asymptotic theory are:

1. Up to the second order of the Knudsen number the behavior of the rarefied
gas can be treated by the Navier-Stokes equations under the slip boundary
conditions. The effect of rarefaction reveals itself only trough the boundary
conditions of the slip type.

2. In the fluid-dynamic type equations except the usual Navier-Stokes terms
there is a term called thermal stress which can cause another type of flow called
thermal stress slip flow [19]. Under small Knudsen number the thermal stress at
the surface acts on the gas and results in the thermal stress slip which is a second
order thermal creep flow, the order of the velocity being aKn’, the order of the
thermal stress being a’K#’p . This flow is caused by the gas rarefaction effect and
is not expected in the classic gas dynamics.

3. Sony investigated the behavior in the continuum limit of gases by the
asymptotic analysis of the Boltzmann equation and showed that only by using the

analysis of the kinetic theory the correct description of the behavior in the
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continuum limit can be obtained, i.e., the classic continuum gas dynamics is not
complete. He showed by the asymptotic theory that something which only exists
for Kn#0 but does not exist in the limit of Kn=0, would affect the
temperature field in the limit Krn=0, and called it the “ghost effect”. In
particular, the solution of the classic heat conduction equation is different from the
temperature field of the quiescent gas obtained by the asymptotic analysis in the
limit of positive zero of the mean free path (see the review paper [22] and
references given there).

All these have important theoretical meaning and also appeal the experimental
verification. Meanwhile, the usual slip boundary conditions obtained from the
conditions of mass, momentum and energy conservation across the Knudsen layer
(see the next section) are applicable for both low speed and hypersonic speed
conditions and can involve situations of chemically non-equilibrium and catalytic
wall for multicomponent gases that the asymptotic theory has not treated yet
because of the physical complexity. Consequently, despite the existence of the
theoretically more strict asymptotic theory, in practice the solution of the
Navier-Stokes equations with the usual slip boundary conditions is still widely

used and has practical merits.

5.3 SLIP BOUNDARY CONDITIOINS
5.3.1 THE SIMPLE DERIVATION

The condition of equality of the tangential velocity components of the gas and of
the solid surface (the no slip condition) proposed in the usual gas dynamics is not
exact. Starting from the kinetic theory of gases a slip velocity near the wall can be
derived, the magnitude of which is proportional to the mean free path A, and
under ordinary conditions and for usual sizes of the subject it can be neglected. In
fact, the following simple reasoning can provide a roughly correct estimate of the
slip velocity. Near the body surface half of the gas molecules come from the

external flow and the other half are reflected from the body surface, the
macroscopic velocity should be the average of the velocities of these two parts.

Denote the velocity component of the gas along the direction of body surface as
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u, and suppose the variation of u along the normal direction y is known,
u=u(y). The average velocity of the molecules migrated from the external flow
arriving at the body surface should be the mean magnitude of the velocities
attained by the molecules in the last collision, i.e., the velocity at a distance ¢
from the surface, ¢ being a numerical coefficient near one. Denote the unknown

velocity of the gasnear the wall by u_, then the average velocity of the molecules

Ju
u+dA — .

Assume that the o portion of the reflected molecules is diffusely reflecting and

from the external flow is

the other (1—o0) portion is specularly reflecting, then the average velocity of the

half of molecules that are reflected from the surface is (the velocity of the surface

o-0+(1 —O'){uy-l»é’ﬂ[?—il)}.

u_should be the mean of the above two velocities

1 u ou
u, :E{uY +C/1(a—yl +(1 —0){”" +€A(-a—y—lj”,

from where the expression of the slip velocity is obtained

u, =3"—G§A[9"—] . (5.31)
I |

is supposed to be zero)

The derivation of Eq. (5.31) given here is not strict, but the result concerning the

dependence of w_ on o and (du/dy), is correct.
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5.3.2 THE CONSERVATION OF MOMENTUM AND ENERGY FLUXES IN
THE KNUDSEN LAYER

Now we proceed to the derivation of the slip velocity and temperature jump
boundary conditions for the mono-component gas. This derivation is based on the
conservation of momentum and energy fluxes in the Knudsen layer. The so called
Knudsen layer is a region of the gas near the body surface with the thickness of
the order of the mean free path, where the behavior of the gas is governed by the
kinetic theory of gases. At the outer edge of the Knudsen layer consider the
balance of the momentum and energy fluxes being transferred. Introduce the total
flux of the quantity being transferred ¢(c’) (the momentum or energy) in the

direction (the y,v direction) of the normal to the body surface
F=]][vele)s(e)ae, (5:32)

where f, is the velocity distribution function at the outer edge of Knudsen layer.

It is taken as the first Chapman Enskog approximation
f=r9% r0, (5.33)

where [, £V are given by Eq. (2.184) and Eq. (5.8), respectively. Similarly the
incident flux F,, the specularly reflected flux F,, and the diffusely reflected

flux F, of the quantity being transferred are introduced (at the outer edge of the

Knudsen layer)
F= T | Tv'¢(c')ﬂ(c')dc’, (5.34)
Fy= [ Tvole) £ (v v)ae (5.35)
F, = TTTV'(D(c')fW(C')dc' : (5.36)

where f is the Maxwellian velocity distribution function corresponding to the

wall condition. Obviously, the total flux at the outer edge of Knudsen layer
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consists of the incident flux, o portion of the diffusely reflected flux and

(1-0) portion of the specularly reflected flux, that is

F=F+(1-0)F, +0F,. (5.37)

sp

Substituting the quantity being transferred by the momentum and energy yields

the equations of momentum and energy conservation.

5.3.3 THE DERIVATION OF THE SLIP VELOCITY FORMULA

Now apply Eq. (5.37) to the derivation of the slip velocity along the wall surface
(in the x direction). The quantity being transferred in this case is the momentum in
the x direction, ¢=m(u +u'), where u_ is the velocity of the gas at the outer
edge of the Knudsen layer relative to the body surface. Suppose the macroscopic
velocity varies along the normal to the wall surface, u,=u,(y), and the
temperature varies along the wall surface, T =T(x). Thus the distribution

function f, can be written (according to Eq. (5.33) and Eq. (5.8))

_ o _AKB( gon 5) 10T 4uB' . .0u,
h=1 [ Snk Fe 2 ) T I “ oy | (5:38)

If use the momentum flux P to replace F ,then obviously

R :—P, P 20. (539)

Thus Eq. (5.37) has the form

P=0P. (5.40)

And P is

P= ]Q' J ];v'(us +u’)mn[%]exp(— 2c'z)x

—c0—05—00

2 4
- 4Kp i _3\ 19T e 4uB” du, IV e’ =
Snk 2)T % o

T I T P[%Jexp(—ﬁzc'z ){u Vit “(,5’,'

b
@
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2
—4KB ,Bzcl2 —2 l—aT ug_u'v'+u'2v/ -
Snk 21T oxt "o @

4
___4/1[3 %[ u v’ + u’ig'z Hdu’dvﬁw ‘)

o oyl e (5.41)

where the terms @®® after integration yield zero, for they are odd functions
relative to u'. The terms @@ ® can be calculated readily according to Egs.
(11.12), (11.13), (II.14) and (I1.15) in Appendix II

Km 1 oT 1
\'—_ __+_
Y 10kT Br¥ ox 2

nec ou
P =——mu el 5.42
T u » (5.42)
The calculation of P has the same under-integral expression, but the limits of the
integration for v’ are from —oo to +eo, so @,@ after integration also yield zero

for the under-integral expression being odd functions of v'. Thus

Ju
P=p—2.
u & (5.43)
From Eq. (5.40) one has
ou, nc Kn 1 o 1 du,
R N — 5.44
”ay (4”"“ 10kT Br? ox 2“ay (5.44)

Solving Eq. (5.44) relative to u_ and taking into account that the framework

connected with the body surface was chosen for the calculation, we have

_2-0 uprl? du, N Km oT
c o O 5kTp ox’

or (using the expressions (2.222) and (5.12) of u and K for the hard sphere

model)

2-0 Ju 3 u(adr
o=, =0998) S JA) 2 o | '
uy—o u“ ( o ) ( ay ]_VZO 4pT[ ax ]y-() (5 45)

This is the expression for the Maxwell slip velocity.

Equation (5.45) can be written in a more general form as
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Uy y—U, = Cmi%_" C _l.L_.a_Z:

5 O (5.45)

where C, is the velocity slip coefficient and C_ is the thermal creep coefficient,
there are many works devoted to determine the values of C, and C, more
accurately under different models.

In the isothermal case Eq. (5.44) can be written as
4 2 '

This equality can be assigned the following physical interpretation : at the body
surface (the outer edge of the Knudsen layer) the viscous tangential stress
(udu,/dy) partially consists of the viscous shear (1/2)(udu,/dy) of the
molecules moving towards the surface (constituting half the total molecules),
partially consists of the tangential momentum flux (1/4)n_c(m u,) originated from
the slip velocity u_, (1/4) ne is the number flux of the molecules (see Eq. (4.8)),
and when the momentum reflection coefficient is o, the action of the tangential
momentum subjected by the surface is only ¢ portion of the that carried by the
incident flow (see Eq. (4.15)). The theoretical analysis of the slip given by
Maxwell [23] is much more complex, but the line of reasoning is roughly like this
(see [24]).

5.3.4 THE DERIVATION OF THE TEMPERATURE JUMP EXPRESSION

Now apply again Eq. (5.37) but this time to the derivation of the temperature jump
formula. The quantity concerned and being transferred in this case is the energy of
molecules. Suppose the temperature varies along the normal to the wall surface,
T=T(y), and the influence of the velocity is not considered, thus the relevant
distribution function f, can be written as

- 7 1_4K52 22 3 197
A f{ - Bc 2vTay. (5.46)

Ifuse E denoting the energy flux to replace F in Eq. (5.37), then obviously
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E, =-E. (5.47)
From Eq. (5.37) one has
E=aE+QE,. (5.48)

Let us calculate the incident energy flux £ , for monatomic molecules having

only translational energy ¢=(1/2)mc”,

Ij‘mv'mclznf(o){ 4RE” (ﬁz ? EJ %—%—:—}dcv

3

%ij[ L. }expp 267)x

2
v _4KB ﬂzc'z—i v'2-1—£ dudvdw'.
Snk 2) Toy

(5.49)

According to Egs. (11.12), (I1.13), (11.14) and (11.15) in Appendix 11 one obtains

orT
= 2kT— —K—.
E,, 23 (5.50)

dy

The diffusely reflecting heat flux from the wall is (see Eq. (4.42))

nc
E,, =—2kTw—4—. (5.51)

If take into account that the molecules carry also the internal energy, then instead
of Eq. (5.50) and Eq. (5.51) one has (see Eq. (4.40))

ne 5-3y 1 aT
=_"| 2kT + kT {+=K—
4{ 2(y-1) } 2 9y’ (5-52)

nc 5-3y
E =——|2kT + kT 1. (5.53)
{ 2(r=1) }
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E has the same under-integral expression, but the limits of the integration for v
are from -—oo to +eo, obviously the contribution of the first term is zero,

consequently

oT
E=kZ".
> (5.54)

Substituting £, £, E into Eq. (5.48), one has

from where

2-a2(y-1) K dT
a k(y+1)nc dy

Making use of u =0.491p2)., kim=c,(y-1)/y and introducing Pr=uc,/K,

one can write the above formula as

7| -1 =098 222297} (5.55)
: y+1Pr oo {dy )
This is the Maxwell-Smoluchovski expression of the temperature jump.

Analogous with Eq. (5.45), Eq. (5.55) can be written as

T.,~T, =C,X%§, (5.55)
C is the temperature jump coefficient, from more careful analysis more accurate
result for different molecular models can be obtained. Smoluchovski first found
experimentally that near the wall exists the phenomenon of temperature
discontinuity predicted long ago by Poisson, and Maxwell by the reasoning
analogous with that he used to obtain the velocity slip came to the formula for
temperature jump. Some times Eqs. (5.45) and (5.55) are called

Maxwell-Smoluchovski slip conditions.
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5.3.5 THE EXTANSION TO CASES OF MULTI-COMPONENT GASES
AND NON-EQUILIBRIUM FLOWS

The method of derivation of the slip boundary conditions adopted here, i.c., the

method of employment of the momentum and energy flux conservation in the

Knudsen layer, is put forward by Patterson [25] (he called it the compatibility
condition) and further developed by Shidlowsky [26], but not alike their method
here the Chapman-Eskog first approximation Eq. (5.38) and Eq. (5.46) have been
used directly. Gupta, Scott and Moss [27] by the similar method and the
emp loyment of the Chapmen-Eskog distribution function for the multicomponent
gas mixture derived the slip boundary conditions for the multicomponent
non-equilibrium flow, giving the slip (ump) conditions of component
concentrations, pressure, velocities and temperature for high flight altitudes and

low Reynolds numbers taking into account the influence of the finite surface

catalysis and recombination reactions. Tang Jinrong and Tao Bo [28] did the

similar derivation, making some improvement in the definition of the component’
number density at the wall, the equation of balance of the normal momentum and
the calculation of the catalytic reaction rate, providing the slip boundary
conditions of general form. Tan Jinrong and Tao Bo also presented the
thermo -chemically non-equilibrium slip boundary conditions corresponding to the
basic equations based on the multi-temperature assumption. Zhao Jingye, Shen
Ching and Tang Jinrong [29] discussed the formulation of the slip boundary

conditions with injections from the wall and obtained the slip boundary conditions
with catalytic reactions on the wall for multicomponent gas mixture and with wall
injections. Shen Ching [30] obtained the concentration jump coefficients for gas

mixture by using the Boley Yip model equation for gas mixture.

5.4 THE SOLUTION OF SOME SIMPLE PROBLEMS

In the present section the slip boundary condition as the correction to the ordinary
fluid mechanics is adopted to solve several classic unidirectional flow problems,
i.e., the Couette flow, the Poiseuille flow and the Rayleigh problem under the low

speed condition (so the incompressible assumption holds). These simple examples
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can demonstrate the method of the treatment of the slip problems and the effect of
the slip boundary conditions. At the same time, as the interest towards the low
speed problems in the micro-electric-mechanical systems (MEMS) is increasing,
the solutions of these problems under low speed conditions can serve the bench

mark merits to test some new computational methods.

5.4.1 COUETTE FLOW

Consider the plane Couette flow, i.e., a hypothetic shear flow between two plates
of infinite length. Two parallel plates at a distance J apart each other with
infinite length move to opposite directions along their own planes with velocity
U/2 2 The center of the gap between plates is chosen as the origin of the
coordinate system, the direction of motion is taken as the x axis, with y axis
perpendicular to it (see Fig.5.1). It is evident that the flow is independent of x,
the velocity has only component « inthe x direction, and u and the shear
stress are only dependent on the y coordinate. The equation of balance of forces

acting on a gas element is (see Eqs. (5.2) and (5.14))

2 =(). (5.56)

That is

T, =Const=t,,

Xy

7, is the shear stress on the plate surface. In the scope of the Navier-Stokes

approximation T = u(dufdy), one obtains
,"d
u=r,[Z. (5.57)

For the case of slow motion the variation in temperature is small and u is a
constant. Thus the incompressible assumption yields the linear velocity
distribution

2 This formulation is equivalent to that in section 4.5 where the lower plate is quiescent

and the upper moves with a velocity U .
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Fig. 5.1 The Couette flow with slip

(5.58)

= I=

For the flow without slip boundary condition, u=U/2 at y=d/2, the shear

stress 1s obtained

T=u— (5.59)

When the mean free path A of the gas is not negligible in comparison with
d , the influence of the slip boundary condition must be taken into account. Then
at y=d/2

ul,gp=Uf2-u,, (5.60)

where u_ is the slip velocity. According to Eq. (5.45)

- -
c dy dy

2-0
=23, (5.61)
c
¢ 1is called the slip coefficient. Equation (5.58) remains the solution of the
problem, but with the boundary condition Eq. (5.60) the solution of the slip
boundary condition problem is

_ uufd

e aja (5.62)
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__yuld

u_1+2§/d' (5.63)

Under the model of hard sphere by using Eq. (2.221) the viscosity 4 can be
connected with the mean free path A . Introducing the Knudsen number
Kn =A/d and using the expression of the shear 7., in free molecular flow (see

Eq. (4.55)) to normalize 7 _, it is readily to obtain

Tyseiip St Kn

: 64
et 8[ g +2Kn} (5-64)
2-0

And the velocity normalized by the plate velocity can be written

Unssiip _ 2 Y
Uf2 1+2(2-0)Knfo d

(5.65)

The solution Eq. (5.64) in principle is suitable only for slip regime, it involves the
case of non-slip case (compare Eq. (5.62) for Krn=0 with Eq. (5.59)) and is
approximately correct in the free molecular flow limit: from Eq. (5.64) one has
Twssiipkno= = Try - Remarkably, it has also a fairly good agreement with the
numerical solutions of the Boltzmann equation in the transitional regime, but this

of course is only accidental coincidence.

5.4.2 THE POISEUILLE FLOW

Now consider the plane Poiseuille flow, i.e., a hypothetic flow of gas between two
parallel quiescent plates at a distance d apart under a constant pressure gradient
(see Fig.5.2). In the case of low speed the temperature variation is neglected, u

is a constant, from the NavierStokes equation (5.14) one obtains

d’u _dp[dx
_Z.—_L’ (5.66)
dy u

where u is the velocity component along the direction of the plate ( x

direction), y isthe coordinate perpendicularto x,the center of the gap between
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Fig. 5.2 The schematic of the Poiseuille flow with slip

plates is again taken as the origin of the coordinate system, the pressure gradient
dp/dx is a constant. The equation (5.66) is readily integrated

du_ydp Y dp

B was e (5.67)

Owing to the symmetry about the axis of the flow the constant of integration of
the first order is zero. When Kr number is small but is not negligible, the slip

boundary condition must be taken into account

du 2-0

Ulyoyp=—¢ @ g :Tl . (5.68)

The constant C can be determined from Eq. (5.68)

é’d+d2 4
2u 8u)dx’

from where the solution is obtained

1 dp (5.69)
=——(d* -4y’ +4Ld) ==
! 8,u( yorae )dx

di2
Define the mean velocity as U, = [ udy /(d /2), its value can be found
0

U, =-—1+622% kn ]dp
12u o dx
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Now let us search the mass flux Q flown in unit time through the gap

between the two plates (unit length in the z direction is taken). Obviously

d
1 2 -pdp 1 (1 , , 5.70
Lo pludy=2222 (1 o). 670
ZQ'" p'(‘:uy RdeSu[3 ¢

where the gas density p is written as p/RT to show explicitly that the formula
is dependent of the location. Similarly, as ¢=Q2-0)A/c and pA=const, so
writing ¢ as ¢,/ p reveals the dependence of ¢ on the position through p.
Multiplying Eq. (5.70) by dx and integrating it along the x axis from -//2 to
+1/2, 1 being the length of plate under consideration, keeping in mind that Q_
is constant along x and making the isothermal assumption, the value of O is

obtained

0,--2 L[]—(p2 —p2)+6—§~‘(p -p )} (.71
" 2du RT 2V TR gt '

where p,,p, are the pressure values at x=-I[/2 and x=I[/2. If write the

pressure distribution along x in the linear form

p=p,(1-ax/d), (5.72)
obviously, p,=(p, +p,)/2,(p,—p,)/l=—dp/dx=ap,/d . Writing s
approximately as ¢, =¢/ p,, the mass flux can be expressed as
2
0, =P [H 622 Kn:lpoRT . (5.73)
12u (o}

Using the relation Eq. (2.221) between A and u, and introducing ¢, =2RT

as the normalization velocity, the dimensionless Q_ can be written

0., 2 [ 2-0 }
= 1+6 Kn|. 5.74
apyc,d  15dmknl c (5.74)

Analogously, the dimensionless velocity can be expressed as

v __1 [1—iy-z-+4(—21)1<n] (5.75)
c

ac, srk,| 4
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5.4.3 THE RAYLEIGH PROBLEM

Now consider the Rayleigh problem. The infinite plane plate acquires
momentarily velocity U along its own plane and causes the motion of gas above
it. This is an unsteady flow problem including two independent arguments, i.e.,
the time ¢ counted from the start of the motion and the ordinate y (see Fig.
5.3). We consider the case when the ratio of ¢ to the collision time 7 is much
greater than 1: /7 >>1, i.e., the continuum flow regime, and obtain the solutions
both without slip and with the slip boundary condition taken into account basing
on Navier-Stokes equation. Under the low speed assumption, p =const, and

u =const , from the momentum Navier-Stokes equation (5.14) one obtains

ou 0%
e (5.76)

where v =u/p =const is the kinematic viscosity.
For the case of no slip boundary condition, the initial and boundary conditions

can be written

u(y,0)=0, 5.77)

u(0,0)=U. (5.78)

The employment of the Laplace transformation

Y

U+ {(du/dy)

u=((dwdy)

i x

b=
////‘////i]’/// SS 7

Fig. 53 The schematic of boundary condition for the Rayleigh problem with slip
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a:

=38

u(y,tyedt, (5.79)

can transform the equation (5.76) and the boundary condition (5.78) into

. du
pi =v—, (5.80)
dy
— U
i), o=—. (5.81)
P
The solution of the equation (5.80) that is finite at y =0 is
et (5:82)
Letting it satisfy the boundary condition (5.81), one obtains
- p\r
7 U oE (5.83)

p

The original function whose image is Eq. (5.83) is

u :U{l —erf—z—j%?]. (5.84)

This is the solution under the no slip boundary condition.
Now discuss the situation with slip boundary condition taken into account [31],

where the following formula should replace Eq. (5.78)

d
u(O,t):U+C£J,:O. (5.85)

The solution of the Laplace transformed equation is still Eq. (5.82), the boundary

condition is transformed into

- U du
],e=—+5—], . (5.86)
p A
From Eq. (5.82) and this boundary condition the value of C is readily

determined
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1 U

Coterer—————
Ny
Thus the solution of the transformed equation is

B
1 e 14;

e

- U
u:_
p

or

17:

o _Jok v y
[ S — ‘J;", =—, k=—.
Herdp) O W 65

The original function of this image (see the Mathematics Hand Book, p.564, Eq.
(0)) is

u =eifc(2i‘\/}r)—e“keaz'elfc(a t +;3.-]
t

Substituting the magnitudes of o and k& yields the solution of the Rayleigh

problem in the slip flow regime

e 2 e Ly
ep[§+czj f[ z +2«/\;]' (5.88)

u =erfc

y
vt

5.5 THERMAL CREEP AND THERMOPHORESIS

The phenomena caused by, and consequences on the flow originated from the
three terms of velocity and temperature gradients in the expressions of slip
velocity Eq. (5.45) and temperature jump Eq. (5.55) are different, despite that all
they are proportional to the mean free path. The velocity and temperature
gradients du/dy and dT/dy along the normal to the surface cause the velocity

slip and temperature jump of the gas near the wall. As the flows discussed in
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section 5.4 reveal, they only cause some corrections to the main flow and are a
kind of second order effects in the framework of viscous fluid flow. In this sense
their effects are always weak. The temperature gradient d7/dx along the body
surface also causes the velocity slip of the gas, which is called the thermal creep.
Under certain circumstances it could be the dominant factor, and some phenomena
happen that would not occur starting from the classic fluid mechanics.

Basing on the classic fluid mechanics a body set in quiescent gas with
temperature gradient does not subject to the force action. But when the size of the
body is sufficient small that the Knudsen number with the characteristic length
equal to the body size is not negligible, the temperature gradient along the body
surface pushes the gas from the region of lower temperature to the region of
higher temperature (thermal creep). If the body is not moving, the gas produces
the so called radiometric force on the body, if the body is not restrained, it moves
from the region of higher temperature to the region of lower temperature. The
transport of particles in the quiescent gas with temperature gradient is called the
thermophoresis (phoresis - being carried in Greek). The phenomenon of
thermophoresis has wide applications in aerosol research and industry. For
example, the thermal dust remover is very effective for the removal of particles
under lum in diameter, the sample collector based on the thermaophoresis
principle is extensively used for collecting small particles in the aerosol, the
thermophoresis causes the contamination on the heat exchanger in oil refining
industry, etc. Here the thermophoretic force on a spherical particle in the gas with
temperature gradient is given. Epstein [32] was the first to calculate this
thermophoretic force, but for a defect in the formulation of the boundary condition
in the slip regime the result is erroneous. Brock [33] gave the correct result. The
derivation given here follows the analysis in reference [34], this is a simple and

detailed derivation.

Consider a spherical particle of radius ¢ in the quiescent gas with temperature
gradient (see Fig. 5.4). Suppose the gas temperature is 7, =7,(1+7,) and the
particle temperature is 7, =T (1+7,). 7, and 7, satisfy the Laplace equation,
the condition of heat flux continuity and the temperature jump condition (see Eq.
(5.55)'), t, satisfies also the condition of constancy of the temperature gradient

VT at infinity
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U, = Uy (see Bq. (5.102))

v, =0, (5.89)
vz, =0, (5.90)

K, (ot Jor) =K, (o7, /or) _, (5.91)
1, -1,=CA(dr, for), at r=a, (5.92)
7, —(Gfa)rcosd, at r—reo. (5.93)

where G=|VT]a/7(") is the dimensionless temperature gradient; C s the
temperature jump coefficient; K, and K, is the conductivities of the gas and
the particle, respectively.

Write Eq. (5.89) in the spherical coordinate system

19,01, 1 of . .ot
Lofe P, 1 9hGele oy, .
rzﬁ[r or ]+rzsin989[sm 30 94
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By employing the method of variable separation, letting 7, = R(#) cos@ , from Eq.
(5.94) an ordinary differential equation for R(r) is obtained
PR +2rR -2R=0.

Substituting the solution of this Euler equation into 7, = R(s) cosf , one obtains

7, =(ay + a7 )cos6 . (5.95)

g

The solution of 7, has the similar form but as it should be finite at »=0,s0 one

has

7, =hrcosh. (5.96)

The three undetermined constants a,, a,, b, are readily determined from the
boundary conditions Eq. (5.91), Eq. (5.92) and Eq. (5.93), and the temperature 7,
of the gas and the temperature 7, of the particle are obtained

_ 3
7, = 1+L/"1"—3 " Geosh (5.97)
142k+2CAfa ¥ |a

_3k(r[a)GcosO

T, =, 5.98
? 142k +2CAfa (5.98)

where k=K,/K,.
The velocity field satisfies the Navier-Stokes equation (5.14) simplified
according to the steady and low speed conditions under consideration, i.e., the

Stokes equation and the continuity equation

1
Viu=—Vp, (5.99)
u

Veu=0. (5.100)

The conditions that the normal component of the velocity at the wall is zero and

the velocity at infinity is zero are
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“rl,:a =0u, = 0,u, >0, at r—oo (5.101)

And the velocity slip and the thermal creep condition at the wall (see Eq. (5.45)")

d(u 10u Cv(oT
= CA| re—| =& |+ —— s — . .
o ”ﬁ[rar[ r) ; 89:I+a7;[ ae),_a (5-102)

The first term of Eq. (5.102), the velocity slip, is written in such a form, because

is

the calculation of the momentum conservation Eq. (5.40) should be carried out in
the spherical coordinates. Now in the last term of the under-integral expression in
place of (du/dyu v’ there should stand the product 2e,u 'u,' of the strain
tensor d¢,/0x, and the dyad of the thermal velocities u 'u;'. The expression
is the r,0 component of the strain tensor in the spherical coordinates, that is

» ra(i +laur
28rkr 2r 06

erO

After the integration and calculation, the result gives that in Eq. (5.45) in place of
ou,/dy there is 70(u,/r)+(du,/36)/r,i.., the Eq. (5.102) holds.

Write Eq. (5.99) and Eq. (5.100) in the spherical coordinates
'u, 10, 20u,  ctgfdu, 20u, 2u, 2ctgd _13p

-

orr #00° ror r* 00 P00 1 Y _;g’
o’u, N 190%, + 2 du, N ctgfou, 2 du,  uy _1 dp

o2 206 ror P 00 106 risin’@ uol’
%.{._1_%4. 2u, +___.._u0dge =

. —r 0.
o rag r r (5.103)

Write the solution of the momentum equation in the following form

u, (r,8)= f(r)cos8,
Uy (r,0)=—g(r)sin,

(5.104)

Substituting Eq. (5.104) into Eq. (5.103), the equations can be written as
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1
g=5flr+f’ (5.105)
1
h:Ef”;zﬁ-}rf'+ 27, (5.106)
r3f1‘v+8r2f”+8’j’"_8f’:0 N (5107)

The general solution of the Euler equation (5.107) is

A B )
f=73—+-r—1—C+Dr.

The boundary conditions Eq. (5.101) give C=D=0 and B=-4/d’ ,

f=A'["—j~3),
s r

where A'=A4/a’. The velocity components thus obtained have the following
expressions (through Eq. (5.104) and Eq. (5.105))

consequently

u, =A‘("3 —ﬂJcose, (5.108)
roor
d(a a

U, =—(—3+—Jsin6 . (5.109)
21{r r

The solution of the pressure p is obtained with the help of Eq. (5.106)
.ooa
p=—Ap—cost . (5.110)
r

The value of the constant 4’ is determined from the velocity slip and thermal
creep condition Eq. (5.102), in particular when searching the temperature gradient
the solution of the temperature field Eq. (5.97) is employed

k+ CAla

4 =-(3Cu G/pa)(1+3cm/1/a)(1 +2k+2CAfa)

(.111)
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To find the total force on the particle, substituting Eq. (5.108), Eq. (5.109) and
Eq. (5.110) into the expressions of the normal stress and tangential stress on the

sphere surface

ou,
B, =-p+ 2#5,

10u, Odu, u
P = 00
0 ,u[ 30 or r )’

on the spherical surface r=a one has

4

P, ,.:a=—3Lcose ,
a

Rt? r=a” ‘u Sll’le
a

Projecting the stress acting on the ring (with an area 274”sin8d6 ), whose normal
has an angle 6 with the incident flow (the axis) and a width of ad@ , on the

axial direction and integrating over the whole spherical surface, one has

W =[(B, cos6 - P,sing)2ma’ sinfd0 =
0

Mazj[_ﬂf‘_cosz 6 +-3-‘isin29}inede =dmapd .

0 a a
According to Eq. (5.111) the thermophoretic force acting on the sphere is finally
found
k+CAfa
(1+ C,Afa)(1+ 2k + 2C Afa)

W =-12muvGC, (5.112)

This expression of the thermophoretic force acting on the spherical particle
owing to its derivation is only suitable for slip flow regime. But Talbot et al. [35]
found, when appropriate velocity slip coefficient C, , thermal creep coefficient
C, and temperature jump coefficient C are chosen, it agrees quite well with the

experimental data obtained early and in [35] in the whole transitional regime and
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can serve as the semi-empirical formula bridging the continuum and free
molecular flow.

When the thermophoretic force and the thermophoretic velocity of the particles
in the temperature field are known, the problem of deposition of particles carried
by the gas flow around cold body onto the surface can be solved. In the papers
[36] and [37] Shen discussed the general method of calculation of the
thermophoretic deposition of particles in the external flow around cold surfaces.
The effect of density variation (despite the small velocity) is explicitly shown in
solving the external flows, some solutions of typical two-dimensional and

axi-symmetric thermophoretic deposition problems of particles are given.

5.6 SECOND ORDER SLIP-JUMP CONDITIONS

In section 5.3.1 the first order slip velocity expression Eq. (5.31) was obtained
basing on a simple physical derivation. Near the body surface half of the gas
molecules was assumed to come from the external flow and the other half
reflected from the body surface. The average velocity from the external flow
arriving at the body surface was assumed to be the mean magnitude of the

velocities at a distance ¢l from the surface
ou

us + gﬂ’ (a_)() .
v

This expression would be exact if the velocity were linearly distributed along
the normal direction to the body surface. In general case of the velocity variation,
more terms of the Taylor series expansion of the velocity about u_ can be
involved. If retain only terms up to second order, the average velocity at a distance
A from the surface would be

Ou, ¢’A?

u, + gfl(g)o +T(5y_2)° . (5.113)

Repeating the derivation in section 5.3.1 instead of Eq. (5.31) we arrive at
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2
gj il o] (5.114)

U———{iGﬂo
Referring to Eq. (4.45)", Eq. (5.114) can be written in a more general form (with
c=1)

92
Uy~ = < >o+cmzl e = (5.115)

where C  and C_, are the first and second order velocity slip coefficients. The
second order slip conditions are obtained by Schamberg [38]
(C,=1.0,C ,=1309) Cercignani [39] (C,  =1.1466, C ,=0.8247 ) Deissler
(401 (C,,=1.0,C, ,=1.125) and Hsia and Domoto [41] (C =1.0,C ,=0.5)
basing on different derivations and determined different values of C  and C ,
With appropriate slip coefficients the second order slip conditions together with
Navier-Stokes equations can extend the applicability region of slip flow method
into the range of higher Kn numbers (e.g. see Sreekanth [42] in solving the

Poiseulle problem).
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6 TRANSITIONAL REGIME

6.1 GENERAL OVERVIEW

In section 0.4 the transitional regime is defined as the scope of Kn number
(A/L) between 0.1 and 10 (see Eq. (0.8)), i.e., the molecular mean free path A
is not too large, nor too small in comparison with the typical flow size L. In such
case the collisions between molecules and the collisions of molecules with the
surface must be taken into account simultaneously, both the comparatively simple
free molecular flow theory and the mature continuum method are not appropriate,
one has to solve the Boltzmann equation or to evoke equivalent to it
physic-mathematical handling. To solve the integral-differential Boltzmann equa-
tion with the collision term and an unknown function having as many as seven
arguments is so difficult that many researchers envisaged various methods to solve
the problems in transitional regime, some of these methods seemed to carry the
implication of roundabout tactics, but could lessen the difficulty and make the
problems readily tackled.

The methods of solution of the transitional regime problems can be distin-
guished into two categories: the analytic and numerical methods. The analytic
methods without exception start from the Boltzmann equation, but owing to the
complexity of this equation they often adopt the small disturbance or linearization
assumption (the linearized Boltzmann equation method), or make some assunmp-
tion relative to the form of the distribution function (for example the moment
method), or make some simplification even of the collision term itself (the model
equation method), these onstitute the contents of the sections 6.2~6.4. These
methods of solution despite their belonging to the analytical category seldom at-
tain the analytical solutions, to obtain the final results certain numerical calcula-
tions are required. It is noted that except the solutions of the linearized Boltzman

equation in the scope of small disturbances these solutions can hardly be called
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exact solutions. This is especially true for the model equation method, this is a
modification of the Boltzmann equation proper and replacement of it by a simpli-
fied equation, showing how difficult is the direct solution of the Boltzmann equa-
tion. The moment method owing to the arbitrariness and un-uniqueness of the
form of the distribution function does not possess either the merit of exact solu-
tion.

Two kinds of the numerical methods can be distinguished: the direct numerical
solution of the Boltzmann equation and the direct simulation of the flow physics
itself, even though the line of demarcation between them becomes not so absolute
because the direct simulation method can be proved to be consistent with the
Boltzmann equation. Among the methods of direct numerical solution of the
Boltzmann equation there is the method (finite difference method) which usesspe-
cific algorithm (the Monte Carlo method of quadrature) to calculate the collision
integral and uses the mature finite different method of the computational fluid
dynamics (CFD) to solve the Boltzmann equation, the method (discrete ordinate
or discrete velocity method) which assumes that the velocity space only has finite
number of discrete values thus significantly simplifying the calculation of the col-
lision integral, and the method ¢he integral method) that writes the Boltzman
equation in the integral from and solves it, they are introduced in sections 6.5~6.7.
These methods attempt to base the formulation on the exact Boltzmann equation
and have the property of exact solution in the limits of errors (of course, provided
the calculation method is correct).

With the development of the electronic computers a kind of methods staring
directly from the simulation of physics of the flows appears, including the method
of deterministic simulation —the molecular dynamics (MC) method and the prob-
ability simujation method which can be distinguished further into the test particle
Monte-Carlo method and the direct simulation Monte-Carlo (DSMC) method .
The direct simulation Monte-Carlo method deserves separate discussion owing to
its success in solving rarefied gas flow problems, especially the non-equilibrium
flow problems in the transitional regime. The DSMC method possesses the same
physical basis and assumptions (the molecular chaos and dilute gas assumption).
But DSMC method is different in some aspects from the Boltzmann equation. The

latter depends on the assumption of the reverse collisions so could not treat the
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three body collision problem but the DSMC method can be applied to complex
problems such as with recombination chemical reactions where three-body colli-
sions are involved. In treating the problems of molecular models and mole-
cule-surface nteraction when introducing physical models the DSMC method
because of its nature of physical simulation can naturally and easily ntroduce
more complicated and more close to reality models. But it is quite difficult to in-
troduce the real and conplex models into the mathematical formulation of the
Boltzmann equation. For the gas flow cases accompanied by the chemical reac-
tions and radiation the mathematical formulation in the framework of the Boltz-
mann equation is difficult to accomplish for practical application, but it is easy for
the DSMC method to implement the simulation of these flows. Even for flow
cases without such processes as chemical reactions and radiation to solve directly
the Boltzmann equation is rather difficult and sometimes is limited to simple ge-
ometry and sometimes to low speed. Thus, the deep rooted view point, i.e., the
view point that a simulation process can be accepted only if it is strictly derived
from the Boltzmann equation, seems to be antiquated and non-practical. The
DSMC method has been verified experimentally both in the aspect of global flow
characteristics and in the aspect of micro-level characteristics such as the velocity
distribution function. It is safe to say that the DSMC method is a method that
solves successfully various practical flow problems in the transitional flow e-
gime, its meaning and role has been recognized by the scientific community. Ow-
ing to the important meaning of the DSMC method in the transitional regime
Chapter 7 will be devoted specially to the discussion of this method. And this
Chapter will give an overall outline of various methods in the transitional regime

including a section 6.8 giving a parallel overview of the direct simulation method.

6.2 LINEARIZED BOLTZMANN EQUATION

It has been stated above that due to the complicated non-linearity of the collision
integral of the Boltzmann equation the direct solution of it is very difficult. The
existence of the solution of the Boltzmann equation under equilibrium of the gas,

the Maxwellian distribution (see section 2.10), allows us to suppose to find the
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solution of the linearized problem near this solution, this limits the solution to low
speed flow problems, i.e., the small disturbance solution about the quiescent gas.
For the slowly moving gas flow slightly deviated from the stationary state the
difference of its distribution function [ (r,c,t) from the Maxwellian distribution

is small, and it can be written in the following form

fret)=fi[1+o(ret)], (6.1)
where
fo= no(ﬁ/ﬁf exp(-C?), 6.2)
C=cf= <

k. 6.3)

i

Substituting Eq. (6.1) into the Boltzmann equation (Eq. (2.152) in section 5.2)
and retaining only the first order of ¢ yields

2 o
i ——L=J
YR (@), (6.4)

i

where J(@) is a collision operator linear relative to ¢ which can be written as
J(9)=[ (0" +0\ 0 —@,)chdbdede, . (6.5)

In obtaining Eq. (6.4) the fact, that f; £, = 1, f,, and f(c¢’) can be taken out of
the integration, has been taken into account.

The linearized Boltzmann equation (6.4) is still a complicated inte-
gral-differential equation, but as it is linear, in comparison with the Boltzmann
equation it is much simpler. Many authors discussed m detail this equation, see
Cercignani [1, 2]. These small disturbance solutions provide with important data
having value of reference when they are obtained without the assistance of arbi-
trary assumptions about the relevant parameters or the modification of the equa-
tion, they can serve as merits for other numerical methods and have practical ap-

plication value in the aspects of gas flow problems in MEMS. Even though the
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equation is linearized, the available solutions are limited mainly to certain class of
relative simple boundary conditions. Sometimes some works are discussing not
the linearized Boltzmann equation but the linearized mo del equation, one should
be careful when applying such results.

In the following the equation (6.4) will be written for the case when the space
variation occurs only in the y direction and the gas molecules are hard spheres,
and the formulation of the boundary conditions for the linearized Bolzmann equa-
tion will be discussed for the plane boundary case [3, 4]. When y is the only space
coordinate by using the dimensionless molecular velocity C (see Eq. (6.3)) Eq.

(6.4) can be written
o9

dg -
ﬂ;t—JrCyg—J(fp)- (6.6)

For hard sphere molecule it is easy to obtain
1 i i . T ~? * *
J(p)= - desinfdo | Ge ™ +@ - @—, ¢dC,, 6.7
() T——an! { i {o'+0- -0 }dc, ©6.7)

where G:ﬂcrzc,ﬂka/m , the definitions of ¢€,0,c, see Chapter 2,

w'z(p(C*),w;:go(C;); C",C; arc the velocities after collision of molecules

whose velocities before collision are C,C,. The relations between C°,C,; and
C,C can be found in Chapter 2 Eq. (2.59)*, Eq. (2.59)**, for example in the

1

direction of x
C.=C+(C,- Cx)cos2%+

%[Gz -(C.. -C, )2 jr/z sin ycos ¢,

*

c.=C, ~(C, —cx)cos%—

1x

%[Gz -(c,-CY) ]ﬂ sin Y cos €.

(6.8)

We discuss the case of the Maxwellian type boundary conditions, i.e., after inci-
dence onto the surface ¢ portion of the molecules reflects diffusely and the

other (1-0o) portion reflects specularly. Obviously, when o #0, the incident
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molecules and the reflected molecules have different distribution functions. For
the case of a plane surface perpendicularto the y axis the distribution function is
non-continuous with respect to the normal to the surface velocity component C, .
Then two distribution functions which are continuous by themselves are to be in-

troduced, they are defined each only in the half velocity space [3, 4]

f=r"(»C.1).C,>0,

6.9
f=1(»€.1),C,<0. ©9)

Correspondingly, different disturbance distribution functions ¢',¢~ are intro-
duced

I =f0[1+go*(y,c,z)],q, >0,

6.10
S =f[1+e (nCr)].c, <0 (6.10)

For the case when there is a velocity u, of the plane boundary, at plane y=y,
the boundary condition is (denote S, = Bu, =u, /N2ET/m)

[ (90:C.1)=(1=6) f*(5,C,. =C,.C..t ) +

on, (ﬂ/*/;)S e"p{‘[(cx =8, +Cl+ Cz}}

Neglecting the second order of §,, it can be written as

I (90,C.1)=(1=6) fF(1,C,, =C,.C.t ) +
6.11)

on, (BN ) exp(-C?)[1+2C,5,].

Substituting Eq. (6.10) into Eq. (6.11) and taking into account Eq. (6.2), one ob-

tains

0*(1,.C,.C,,C..t) =(1-6)9" (1,,C,.~C,,C_,1)+ 26C,S, . (6.12)
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The basic equation (6.6) and boundary condition Eq. (6.12) are applicable for
cases when the flow varies only in the direction normal to the plane boundary and

the boundary conditions are of the Maxwe llian type.
After finding ¢ the physical macroscopic quantities interesting us are easily

obtained, ¢.g., the macroscopic velocity ¢, and the stress 5,

1 .
Coi :71—".6'1' 0(1+(p)d€=ﬂ”/7‘[3/2.[ci(pe’cdc (6.13)
0

2n kT e
B =m|(¢ ¢ )~ ey ) /o (1+9)dC :—”372—jc,.c_,<pec ac (6.14)

With the help of the linearized Boltzmann equation Gross and Ziering [3] solved
the problem of stress flow between two plates, i.e., the Couette flow problem,
Gross and Jackson [4] solved the problem of unsteady flow caused by the instant
motion of the plane plate, i.e., the Rayleigh problem. They suggested to express

+
¢ as

0" =a,(y,1)C, +a; (»,t)C.C, . 6.15)

Such form of the dependence on the velocity originated from Chapman-Enskog

expansion, but as the discontinuous ¢ relative to C, is introduced, so

aj #a,,a; #a . Substituting the function ¢ defined in the whole velocity space
[ 1+signC, _[ 1=signC,
=09 = |t =1 (6.16)
2 2
where
signC =1, C, >0,signC, =-1,C, <0, 6.17)

into the basic equation (6.6), and multiplying both sides of the equation on C,
and C,C, and searching the moments separately in the upper half velocity space
and the lower half velocity space, the simultaneous equations relative to

a;,a,,q',q are obtained, the right hand sides are the integral terms including the
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collision term Eq. (6.7). For the hard sphere molecule the integral terms can be
evaluated. The boundary conditions after substitution of Eq. (6.15) can be trans-

formed into the boundary conditions relative to a;,a;,4,,a . So the whole prob-

NN AN AN
lem can be solved. In searching the solution of the linearized Boltzmann equation
the moment method (see section 6.3) has been employed. These were the early
attempts of the solution of the transitional regime .

Grad [5] and Cercignani [6] investigated the problem of further transformation
of the linearized collision operator J(@), the ntegration for ¢ is expressed
through zero order Bessel function of the first kind 7, (Eq. (3.43)), and for the
hard sphere model the integration relative to @ can also be accomplished. Thus

the linearized Boltzmann equation in the one-dimensional steady case is written as

0
C“%:m“‘ (0)~L,(0) ~v(C)9). 6.18)

where

L.(w)—ﬁﬂflc_él p(-¢ )+|C_é|2<p(y,é)d€, (6.19)

L(e) =2—\-/1-2—;JIC-§ICXP(—§Z)¢(y,€)d§ , (6.20)

V(C)zzl/——i-[exp(—cz) {2C+%J_‘:exp(—t2)dt:|. 6.21)

In the above expressions £ is the integration variable corresponding to C ,
dé =dEdEdE, CxE is the vector production of € and &, the integration
domain of L and L, is the whole space of the molecular velocity C (or &).
Sone, Owwada and Aoki et al. developed efficient numerical methods of em-
ploying the above linearized Boltzmann equations (6.18)~(6.21) in solving some
half space boundary problems — the temperature jump and Knudsen layer problem

[7], the problem of evaporation and condensation [8], the problem of shear and
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thermal creep [9] and some problems of flow between two plates — the Poiseuille
flow and thermal transpiration problem [10] and the Couette flow problem [11].
The solutions of these steady boundary value problems are obtained as the stabi-
lized solutions of the initial and boundary-value problems of the unsteady equa-
tion obtained from Eq. (6.18) by adding the term 9d¢/d¢ to its left hand side. The
unsteady problems are solved by the standard implicit finite difference scheme.
The key question is the calculation of the collision term. The distribution function
(or the reduced distribution function) is expanded by a set of the basis functions in
analogue with the basis functions in the finite element method. Thus, the collision
integral can be written as the matrix product of the collision integral kernel and the
values of distribution function on lattice points. The collision integral kernel is the
collision integral of the basis functions at the lattice points and thus can be evalu-
ated universally. As the computation of the collision integral is most
time-consuming, the method of computation of the collision integrals of a current
problem by using the prepared universal collision integral kernels demonstrates

the high efficiency advantage of the method.

6.3 THE MOMENT METHOD

The practice of the so called moment method is not to solve the Boltzmann equa-
tion itself but to solve its moment equation. The latter is obtained by multiplying
the Boltzmann equation by some molecular quantity @ and integrating over the
entire velocity space (i.e., the so called finding moment). For arbitrary form of O
we have obtained the general form of the moment equation (section 2.9, Eq.
(2.183))

I = — 90
g(ng)w.(ncg)—nr&-: [0]. (6.22)

The macroscopic characteristics that interest us are the average values of some
microscopic molecular quantities, i.e., the moments of the distribution functions
(see the expressions of the macroscopic properties in section 22). For example,
is

the density is the zero order moment, the velocity is the first order moment, F,
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the second order moment, p is the contraction of the second moment, Eq. (2.25),
g, 1s the contraction of the third moment, Eq. (2.27)), etc. Substitution of differ-
ent quantities Q into Eq. (6.22) yields the system of equations for the macro-
scopic quantities. In particular, when ( are the collision invariants m, mecand
(1/2)mc*, we have A[Q]=0, and obtain the conservation equations of the mac-
roscopic quantities. When O is certainpower of ¢, as there is the term @ on
the left hand side of Eq. (6.22), this causes the appearance of a moment of order
one order higher than before. When turning to the moment equation in expectation
to obtain equation for higher order moment, this term of higher order leads to even
higher order monent, and eventually to infinite equations and moments. The mo-
ment method assumes that the distribution function can be expressed as function
of certain moments (and the molecular velocity ¢, the space coordinate x and
time ¢ ), with specific forms of expression through the moments and ¢, but the
variation with the space coordinates is to be determined. The npment equation
thus obtained would have higher order of ¢, but for some flow cases and with
some specific treatnent, it can be expressed through moments of lower orders, and
one attains closed system of equations characterizing the variation in physical

space.

In discussing the basic equations of the continuum media (section 5.2 in Chap-
ter 5) we considered the Chapman-Enskog solution of the Boltzmann equation,
this is the expansion of the distribution function into the series of terms propor-

tional to the powers of Kn number
f= 2 f(l') )
r=0

ﬂ‘)) is the Maxwellian distribution, the corresponding zero order moment equa-
tion is the Euler equation (5.2) (with 7,=0,g,=0), the unknown functions are
p, u, and T. The first order distribution function of this expansion is the

Chapman-Enskog distribution function Eq. (5.8), yielding the expression of stress

and heat flux in the ordinary fluid mechanics. Substituting them into the corre-
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sponding conservation equations or the moment equations, one obtains the con-
tinuum NavierStokes equations (5.14), (5.15). The second order distribution
function of this expansion yields the expressions of the stress 7, and heat flux
g, , different from the ordinary continuum media mechanics, and gives the Burnett
equations. They have been listed in Chapter 2 as the basic equations of the con-
tinuum media, but they are applicable to larger scope of Kn, where the Na-
vier-Stokes equations become invalid. For their nature of the expansion into the
positive powers of the Kn number, they could not yield good results when Kn
is much larger than 0.1, but they can provide results more close to the exact solu-
tions than the ordinary slip flow solutions. How deep they can allow the contin-
uum equations method to penetrate into the transitional regime and to what extent
they can provide more exact solution depends on the method of solution and the
comparison with experiments and solutions having the merits of verifying stan-
dard. The development of effective solution methods for Burnett equations is still
an issue needing continuous efforts. The thirteen moment equations of Grad Eq.

(5.2), Eq. (5.29) and Eq. (5.30) have p, u

,» 1, 7,and g, as the basic argu-

ments and possess the character of general basic equations, but application of
them to the solution of peculiar problems didn’t lead to credible results, the possi-
ble reason for this has been discussed in section 5.2 of Chapter 5.

Except those above mentioned methods leading to basic equations possessing
general meaning, individual moment methods have been developed for different
problems and boundary geometries. Aiming at the physical feathers of different
problems the expressions of the distribution functions are proposed and useful
solutions have been obtained.

Among this kind of the moment methods the early and the most famous one is
certainly the method of binomial distribution function developed by Mott-Smith
for dealing with the problem of shock wave structure [12]. The distribution func-
tion f in the shock wave transition zone is expressed as the combination of the

upstream and downstream uniform distribution functions
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f=a(x)f +a,(x)f, = N(x)F(e)+ Ny (x)F, (c), (6.23)

where
Fl(c):éz(ﬂ]/\/;)}exp{—ﬁf [(umu ) +v 4], (6.24)
Fi(e) =L~ (B /) exp{=B2 [ (u=u) 407 + w7, 6.25)

in which f,, f, are the upstream and downstream equilibrium distribution
functions (see Eq. (2.196)), n,, n, are the upstream and downstream uniform
number densities, uy;, Uy, are the upstream and downstream uniform velocities,
a(x)=N(x)/n and a,(x)=N,(x)/n, represent the proportions the two
known upstream and downstream distribution functions occupy at different posi-

tions of x . Obviously
N, =n, N,=0,when x— -

N,=0, N,=n,,when x—oo.

The mass, monentum and energy across the shock wave are conserved

mfuj,"dc :nju e, e pu,=pu, =7, (6.26)
mfu’f de=mu’fde, ie. juy+knT= ju,+ kT, (6.27)
and
—rzzjuczf]dc z—’;lj.uczfzdc s
ie.
j(%+%%ﬂ]:j[%+%%ﬂ). (6.28)

These are the well known Rankine-Hugonio relations. To find the distribution
function, the mass conservation is applied to some upstream point and some point

inside the shock wave to yield
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m_[ujfdc :mJ.ufdc ,
i.€.,
nU,, = nu, 6.29)

From Eq. (6.23) and the definition of density (see Eq. (2.5)) one has
[ fde =n(x)=N,(x)+ N,(x). (6.30)

And according to Eq. (6.23) and the definition of the macroscopic velocity (see
Eq. (2.8))

nuofufdc =N (x)ug + N,y (x)u,, . (6.31)
Thus from Eq. (6.29) one has
umM(x)"' Ugy N, (x) =g, (6.32)

To determine three unknown functions n(x), N (x), N,(x), except Eq. (6.30)
and Eq. (6.32) one extra moment equation must be employed. Take Q=u?, for

the one-dimensional steady problem under discussion, this equation is
d ‘;) 2
—{m’ | =Alu”|. 6.33
dx( [ :l (6.33)

Discuss at first the right hand side of this equation with the purpose to express
it through the unknown functions n, N,, N,.The expression Alu’] is a colli-
sion term, this integral has been evaluated for Maxwellian molecules and VHS
molcules with £=1/2 (see Eq. (2.175) and Eq. (2.175)")

A[uzjzf%“.

For both these molecular models one has u=CT (see Eq. (2.93) and Eq.
(2.96)"), and with the employment of the expression of their mean free path Eq.
(2.217Y), the viscosity LU can be written



244 6 TRANSITIONAL REGIME

2 kl/Z
=P 2k
2 | ml

thus, one has

A[u?]= 2kT/”m ) m (6.34)

m

According to the definition of 7 (Eq. (2.24) and Eq. (2.25)), one has

T, =mn S l=mn u_+_v__—t_v_v__u-2 =%mn(v2—u ) (6.35)
- 3 3 3

When writing the last expression, the equality v =w” has been used, for the

12

problem is symmetric with the x axis. Obviously, u" can be written

u? =(u _“0)2 =u’ —2u1—10+¥=u_2—u§ .
According to the definition
mi =Ju2fdc = N,juzFldc-l» NZJ.uzedc,

where the first term is

3 e w s
N,_[uZF,dC':N]le/zJ. .f J'[um+(u—um):]2><

—B0—00—00

exp{—-ﬁlz [(u "1‘01)2 +V +w :|} dudvdw =
; Y 1 (2
Nl—ilﬁ' ”gl — | T2y Ot —| — | |=
4 B 267\ B,

Analogously, the second term is
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szuzedc =N, (u(fz + RTZ) .

And nv? can be written as

w? =N [V:Fdc +N,[v*Fde =NR T, + N,RT, .

Substituting the expressions of u” and V' into Eq. (6.35), one obtains

n 2 2 2 2
T ——3—m nuy — Nty — Nyu, | -

xx

Substitution of Eq. (6.30) and Eq. (6.31) enable the above equation to be written

as

Uy ~ uoz)2 . (6.36)

2]
In writing the last equality Eq.(6.32) has been employed.
Now discuss the left hand side term of Eq. (6.33). Similarly with the evaluation

of nu®, according to the definition

ni = N, [w'Fde +N, [ w'Fyde =

Nyt (g +3RT )+ Nyt (u, +3RT, ) =

Nyttg, (143, +3RT, —upy = 3RT, )+ muuy, (uly + 3RT, ).

With the help of Eq. (6.28) the expression ((u(f, +3RT,—uj, —3RT2) ) can be written

as (2/5)(u}, —u}), and the latter is independent of x, so one has

d(mﬁ) um(z Z)dNl (6.37)
dx

u —ug, —~
01 02 .
dx

| ro
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Substituting Eq. (6.36) (through Eq. (6.34)) and Eq. (6.37) into the moment equa-
tion (6.33) yields the equation relative to N, (x)/ n

d(Nl/nl):_a n N
FIEY (N 1)(1 n) (6.38)

where

5 (2/’c7;/m)ll2 Uy, — Uy,

= . 6.39
3n? Uy, Uy T Uy ( )
The solution of Eq. (6.38) is
N b
n 1+ exp[a (x/A, ):| ' (6.40)

Substituting this expression of N (x) and that of N,(x) (obtained from Eq.
(6.32)) into Eq. (6.23), one obtains the distribution function of the entire shock
wave transition zone. The density across the shock transition zone (with the em-
ployment of Eq. (6.30) and Eq. (6.32)) is

n(x) = N,(x) + N, (x) =N, +(a, — ;) 00 = 1[1__”_2_}_”2,

Uy ny

ie.,
n :2.2_[ 1— _].\ﬁ.].i. N1
moon n, n,
Substituting Eq. (6.40) into it yields
1 +n—zexp (ax{X)
% (6.41)

-;17_ 1+exp(axf/d,)

The post and pre shock density ratioc n,/n, can be expressed through the Ma
number in front of the shock (see for example [13]), e.g., for monatomic mole-
cules the specific heat ratio y =5/3, one has

Ma’

4
n Vreeeled) (6.42)

no 1+ exp(axfA)
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The solution of Mott-Smith is extended by Muckenfus [14] to other inverse
power law molecular models. When the power is chosen by fitting the viscosity
law, the Mott-Smith method under relatively strong Ma number can predict
fairly well the shock structure. The result of the method is dependent on the choice
of u’ as the object of averaging in the moment method [15]. Despande and Na-
rasimha [16] pointed out that the employment of 1’ should be better than the
employment of u°. However, the main problem of the Mott-Smith method is it
could not provide the correct description of the distribution function (see section
7.1).

The moment methods are mostly applied to steady one-dimensional problems,
for example the heat transfer problem between two plates [17] and the problem of
evaporation of the plane condensed phase [18], and others. Gross and others em-
ployed also the moment method in solving the Couette flow [3] and Rayleigh
problem [4] staring from the linearised Boltzmann equation. For the
two-dimensional and axi-symmetric flows it is difficult to construct distribution

function suitable for the flow field.

6.4 MODEL EQUATIOINS

The Boltzmann equation (Eq. (2.152))

¥ e ¥ () T
Vielip? ( )=”ff - 1) e od e, 6.43)

—oo

causes so tremendous difficulties to the mathematical solution for the complexity
of the right hand side collision term, that many researchers proposed the employ-
ment of simplified collision term or collision model to replace it. The most famous
model equation was put forward by Bhatnagar, Gross and Krook [19] and is called
the BGK equation (also was called Krook equation). This equation has the fol-

lowing form

Y, Y eI
a:” ar+F ac_v(J; 1), (6.44)
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where f, = f,(¢,,T) is the local equilibrium distribution or Maxwellian distribu-
tion and is the function of the density p, the flow velocity ¢, and the tempera-
ture 7, and they are obtained by integration of f (see Eq. (2.5), Eq. (2.8) and
Eq. (2.31))

fo= 72 SXP| — ) (6.45)
k .
(2n£T) 2—T
m m
n= J' fe, (6.46)
1
¢y ==|efde, (6.47)
n
1 2
T= I I(Ci —c()i) fdc . (648)
3—n
m

So the equation (6.44) is still a non-linear integral-differential equation, v is the
collision frequency, it is proportional to the density and is related to the tempera-
ture but is not dependent on the molecular velocity. Welander [20] almost simu I-
taneously independently proposed the same model equation, so this equation
sometimes is also called Boltzmann-Krook-Welander equation (for short BKW
equation).

It is evident that BGK equation gives the correct solution f = f, at equilib-
rium. It also provides the correct collision-less and free molecular solution, for
here the collision term is irrelevant. Employing the Chapman-Enskog method to
the BGK equation yields the conservation equations having the form of M-
vier-Stoke equations (for detail see Vincenti and Kruger [21]), unfortunately, the
transport coefficients thus obtained, i.e. the viscosity and the heat conductivity, do
not possess the correct values.

The collision integral of the Boltzmann equation is the sum of two terms : one

term involves -/ (¢) f(¢,), meaning the depletion of the molecules of class ¢
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caused by collisions, the other involves f(c*)f(c,*) , meaning the increase of the
number of molecules of this class caused by collisions.

In the model equation (6.44) the term —v f is used to replace the collision term
in the Boltzmann equation causing the depletion of the ¢ molecules. This can have
some explanation for a peculiar but not realistic molecular model, i.e., the Max-
wallian molecules. The function f(c¢) in the second term at the right hand side
of Eq. (6.43) is independent of ¢, and can be taken out of the symbol of integra-

tion, and the remamning expression

T Tflcrcd Qde, (6.49)
—oo ()

in general is dependent on ¢, for ¢, =c¢—¢ , but in the specific case of Maxwell
molecules it is independent of ¢, and is the collision frequency v '. So this term
of the BGK equation gained some kind of proof for the Maxwell molecules.

Replacement of the first term on the right hand side of the Boltzmann equation
(6.43) by vf, does not have such a kind of proof. We only can understand it as
an assumption, i.e., the number of molecules scattered out of the ¢ class in colli-
sions is assumed to be equal to the number of molecules scattered out of the ¢
class by the molecules in local equilibrium with a collision frequency independent
of the molecular velocity.

Employing the Chapman-Enskog method to the BGK equation yields the con-
servation equations in the form of NavierStoke equations with the transport coef-
ficients ([21], p.384, Eq. (3.13))

nkT
Hpox =—— (6.50)
1%
5( k \nkT
KBGK=5(ZJ b 6.51)

! The expression of the collision frequency v is Eq. (2.206), when O,c, is independent

. 1
of ¢, , it can be written as the product of Eq. (6.49) and — f fde=1.
n

—oo
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At the same time for the Boltzmann equation Chapman-Enskog method yields the
following values of u and K ([22],p.226, p.247)

[ =0.4990T4, (6.52)
15 1 _

K =——(0.49905A) . (6.53)
4 m

For ensuring a reasonable expression for ¢ one can adopt an expedient meas-
ure, i.e., instead of v =c¢/A the following expression is used for the collision

frequency
v =(7/3.992)(c/A). (6.54)

Thus the viscosity coefficient obtained from the BGK equation would have the
correct expression equal to Eq. (6.52). This is beneficial for solving the flow
problem with momentum exchange as the dominant effect, for it can lead to cor-
rect refetence parameters. But for flow problems with dominant energy exchanges
to ensure a reasonable expression for K the following expression for the collision

frequency should be adopted
v =(7/5.988)(c/A). (6.55)

Thus the conductivity coefficient K, (Eq. (6.51)) obtained from the BGK
equation would have the correct expression Eq. (6.53). Unfortunately, it is impos-
sible to ensure 4 and K to have the correct expressions simultaneously. From
Eq. (6.50) and Eq. (6.51) it is seen, that for the BGK model the Prandt! number
Pryge = ¢, tpx /K o =1 does not have the correct value of 2/3. This is already an
indication of the limitation of this expedient measure, it is powerless in solving
problems involving momentum and energy exchanges of equal importance.

The BGK model equation is widely used in the transitional regime for its sim-
plicity. For problems of small disturbance deviated not far from the equilibrium
the shortcoming of the approximation of the BGK equation becomes not so re-
markable. For the Maxwellian molecules it has been proved that the linear form of

the BGK equation is the first term of a model-series approximating the Boltzmann
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equation with arbitrary accuracy. There is a number of small disturbance problems
with practical meaning that are solved using the BGK model but not the Boltz-
mann equation. Some methods of statistical models for constructing the collision
term has been put forward which can provide with correct Prandtl number (see
e.g. [24]). For the system of Boltzmann equations of multi-component gas the
right hand sides involve the self-collision operator for molecules of one compo-
nent and cross-collision operators for molecules from various components . For the
self-collision operator the BGK model is applicable, for the cross-collision opera-
tors Boley and Yip [25] put forward the theory of obtaining the model equation
basing on the eigenfunction theory and obtained the system of model equations for
multi-component gas. There have been many works devoted to the research and
the application of the model equations on solving small disturbance problems of
simple geometry.

The BGK equation after all is an approximation using a simplified term to re-
place the exact term basing on solid physical reality. Its applicability scope must
be tested and verified by the experiments or exact computations. The DSMC
method has stood the strict test of the experiment (see next Chapter) and has the
merit of verified solution to test various approximation models. We simulated the
problem of the gas flow caused by the sudden wall temperature change and the
Rayleigh problem using the DSMC method with the employment of Maxwellian
molecular model [26, 27] and compared the results with the exact numercal re-
sults of solution of the BGK equation [28]. Fig.6.1 shows this comparison. From
this figure it is seen that near equilibrium (in 1~2 collision times) the BGK equa-
tion yields correct results (in agreement with the DSMC result), but when far from
equilibrium (after 5 or more collision times from the starting of the flow) the BGK
model equation is inexact (deviated from the correct DSMC simulation result).

The idea of the BGK equation considering the transition of a gas from its pre-
sent state to equilibrium as a simple relaxation process is applied to the solution of
the Euler equation and the Navier-Stokes equations. In section 5.2 we have seen
that the zero order approximation of the Chapman-Enskog expansion in the solu-
tion of the Boltzmann equation gives the Euler equation, the first order approxi-

mation gives the Navier-Stokes equations. Employment of the Chapman-Enskog
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eew=an [OSHC t/tc = 2.15, 4.3, 8.6, 17.21, 43.8
BEKI8) t/to = 1.0, 2.0, 4.0, 8.0, 20.0
x stretched 1.91 times

Fig. 6.1 Transients of temperature in the sudden temperature change problem. Comparison
of DSMC simulation [26] and BGK calculation [28]. In BGK the expedience of modifying

collision frequency is made

method to the BGK equation yields the same result. This leads Xu et al. to put
forward the gas kinetic scheme for solving the fluid mechanics equations [29].
For the two-dimensional flows the BGK equation in the x direction can be

written as
T = (6.56)

where for convenience the symbol is changed into g to denote the equilibrium
state the distribution function f approaches, 7 is the reciprocal of the collision
frequency v or the collision time of the particles. The equilibrium Maxwell dis-
tribution, when the thermal motion in the third dimension is considered as the in-

ternal energy, can be written as

N+2

g= n(!;]“‘z" exp[—ﬁz((u ~u, )2 +(v—v, )2 + & )},

where £ is the variable of internal degree of freedom and includes the internal
energy of the gas and the thermal motion in the z direction. The total number of
freedom of & is N=(5-3y)/(y-D+1, (5-3y)/(y-1) is the number of free-
dom of the internal energy (see Eq. (4.40)).
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The BGK kinetic scheme starts from the solution of the BGK equation (6.56) at

X,.,, of the grid boundary surface

v

f(x l,l,u,v,é]:l—_[ Xt vé 'v)/fdt'+e"/’ O[xA l—ut), (6.57)
/*3 /+§.

75

where x'=x,,,,~u(t—t") is the trajectory of the motion of the particle, and f
is the initial distribution function at the star of every time step ( £ = 0 ). For obtain-
ing f the unknown functions g and f, in Eq. (6.57) should be determined.
For the sake of simplifying the notation in the following x,,,,=0 is used to

represent the position of x,,,,.

In the early BGK scheme f, is supposed to be

(6.58)

g' and g are the Maxwell distributions on the left hand side and the right hand

side of the cell boundary. The slopes a' and a" are obtained from the space
derivatives of the Maxwell distribution, the latter has the unique relation of corre-
spondence with the slopes of the conservation variables. The basic assumption
here is, even when there is discontinuity on the cell boundary, the gas on both
sides of the discontinuity is assumed to be in equilibrium states. Such an assump-
tion is suitable for the case when the cell size Ax is large in comparison with the
thickness of the shock or the case of Euler equation. For the case when Ax is
small and the shock structure can be distinguished, i.e., when deal with the Na-

vier-Stokes equations, the initial distribution f

, should present the deviation

from the equilibrium Maxwell distribution and describe the interior structure of
the shock transition zone. So in the recent gas kinetic BGK scheme method aiming

at the application on equation solution the initial distribution function f, is as-

sumed to be

gl1+a'x—t{a'u+4') | x<0
fo= [ ( )]x (6.59)

gr[l +a"x—’r(a’u + A )],x >0
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The additional erms < (du+ A)g’, —w(a’u+ A")g" are the deviations of the
non-equilibrium state obtained from the Chapman-Enskog expansion of the BGK
equation from the Maxwell distribution.

The equilibrium state g to which the initial distribution f, approaches in
the recent version [30] is supposed to have two slopes at the two sides of the cell

boundary and have time derivative

g:go[1+(1—H(x))¢7x+ H(x)a"x+ Zt], (6.60)

where H(x) is the Heaviside function defined as

0,x<0
H(x) = R
1,x=20
and g, is the local Maxwell distribution at x=0.

&o

Itis noted, f, is discontinuous at the boundary surface x =0, on each side of
the boundary it is the non-equilibrium distribution function in local cell, g is

continuous at x=0, but has different slopes at x<0 and at x>0 .

d,a, 4.4, a—', @ and A characterize the deviations from the equilibrium
Maxwell state in space and time. Their determination see reference [30].
Substituting thus obtained f, and g into Eq. (6.57) yields the distribution
function f(x,,,,,,t 4,v£) of the gas at the cell boundary. The fluxes of the mass,
momentum and energy across the cell boundary can be obtained by searching the
moments relative to f . The technical details in the application of the gas kinetic
BGK scheme can not be explained here thoroughly (see [29, 30}). Here only con-
fine to noting that as the distribution function is introduced in the method, at the
wall the reflection model of the molecule surface interaction can be applied to
obtain the changes of the mass, momentum and energy of the molecules on the
boundary (suitable for the entire transitional regime) This under small Kn
number corresponds to the introduction of the slip boundary condition. Besides,
after ensuring the correct viscosity coefficient u through the modification of the
computation result of the heat flux the method can guarantee also the correct con-

ductivity coefficient K, so the correct Pr number is assured.
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The method has been applied to the Couette flow with temperature gradient, the
shock wave structure, the two-dimensional Mach=3 step flow, the interaction of
the laminar boundary layer with shock wave etc. (see reference [30]. As the effi-
ciency of the gas kinetic scheme is higher than that of the DSMC method, valida-
tion of the accuracy of the scheme by the DSMC or experimental results in its
applications to the near continuum and transitional regime is an interesting issue
having practical meaning.

Li and Zhang attempted to find a gas kinetic unified algorithm to solve the
transitional flow bridging the free molecular flow to the continuum flow [31]. The
starting point is that the basic equation of the kinetic theory is eplaced by the
model equation, the latter adopted the so called S-model equation [32] developed
by Shakhov from the BGK model. The authors introduced the discrete velocity
method, adapted the Gause-Hermite method of quadrature, applied and developed
the method of quadrature of Hua and Wang approximating multiple integral by
single sums, and employed the equally spaced three-point composite New-
ton-Cotes quadrature formula, and implemented the solution of the model equa-
tion successfully. The method was applied to one-dimensional shock-tube prob-
lems, the flows past two-dimensional circular cylinder, and the three-dimensional
flows around sphere and spacecraft with various Knudsen numbers. In the case
where the experimental data are available (the drags of the cylinder and sphere)
the agreement with experiment is fairly good. It is desirable to have more exact
quantitative comparison. The transplantation of the method to the solution of the

Boltzmann equation is of value.

6.5 THE FINITE DIFFERENCE METHOD

The most natural numerical method in solving the Boltzmann equation is analo-
gous to the finite difference method in the computational fluid dynamics(CFD).
The velocity distribution function is the unique dependent variable, but in general
(three-dimensional and unsteady flow) it is a function of seven independent argu-
ments, and it is a difficult task to solve it by the finite difference method. If allo-

cate in each dimension 100 cells, then for the 3D unsteady flow 10'* cells is
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required, and in addition the velocity space is infinite. The upper bound of the
finite velocity should be chosen reasonably to make the problem manageable. This
leads to even larger difficulty to the hypersonic flow, for in this case there are
some molecules having velocity much larger than that of most molecules, d-
though they constitute only a small portion of all the molecules, but have strong
influence on the whole macroscopic motion.

Except the above difficulty the peculiar trouble in solving the Boltzmann equa-
tion by CFD method is of course in the computation of the collision term. The
computation of the collision integral requires for each phase point the summation
over all points of the other velocity space, requires finding the contribution of the
reverse collision for each collision and each term should be summed over all im-
pact parameters of the collision. So the methods of the solution of the Boltzmann
equation are mainly embodied in the treatment of the computation of the collision
integral.

Nordsieck and Hicks [33] and Yen et al. [34] suggested a method of
Monte-Carlo quadrature of the collision term of the Boltzmann equation. Re-
placement of the direct numerical quadrature by this Monte-Carlo quadrature re-
duced the computation time by a factor of 10™. The infinite velocity space was
firstly replaced by the finite velocity domain R, which was taken large enough to
involve all except 0.1% molecules. The Monte-Carlo quadrature is to replace the
integration over the domain R by the product of the mean of the values of the
under-integral expression at N randomly chosen points and the volume of R.
The error of this replacement is proportional to N''?. The underintegral ex-
pression is the function of 8 arguments, i.e., ¢", ¢ and two impact parameters.
For the fluid dynamics terms on the left hand side of the equation the ordinary
finite difference method was employed. Here the usual problems of dependence
on the grid and the computational stability would be encountered. Nordsieck et al.
by using this method solved some one-dimensional problems including the struc-
ture of shock wave problem etc., satisfactory results were obtained

Tcheremissine, Aristov and others developed the algorithm to use the finite
difference method for solving the Boltzmann equation (for relatively recent refer-
ences see [36] and works cited there). In the computation of the collision integral

the Monte-Carlo quadrature method is still used, but some improvements are in-
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troduced. The symmetry of the binary collision is utilized to remarkably reduce
the arithmetic amount and a special projection technique is introduced for the cal-
culation of the collision integral to ensure the conservation of mass, momentum
and energy. These accelerated the solution process and enable to use the method to

solve some unsteady, 2-D and 3-D problems .

6.6 DISCRETE ORDINATE METHOD

In section 2.11 of Chapter 2 on the example of Couette flow we studied in detail
the 8 velocity gas model introduced by Broadwell [37], in which the velocities of

molecules can assume only 8 magnitudes ¢ ,¢,,,¢, (see Fig.2.9). Such an ap-

2
proach of using finite number of discrete velocities to replace the entire velocity
space is called the discrete ordinate or discrete velocity method. In an 8 velocity
gas the number density of the molecules having a certain velocity can be counted,
and corresponding to 8 velocities there are 8 number densities n,,n,,--,n, . The
velocity distribution function of the gas now is degenerated into the set of 8 num-
ber densities. For the molecules of class 1 Boltzmann equation is degenerated into
(see Eq. (2.141))

an_ o

an]
a T

+qg: 26(]12}’[3—}'11}14)/1’1. (661)

Analogously, the equations for molecules of classes 2, 3, and 4 can be written

) ) )

_;’72+q_£ci+q£z =20(mn, — mn;)fn , (6.62)
) ) F)

305y g =20 () (6.63
) ) )

_;: +q_;4 —q 2= 20 (mm, —nn, ) (6.64)

where ¢ is the magnitude of the projection of velocity on the rectangular coor-

dinate system, 6 1is a magnitude proportional to the collision frequency and
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equals to 0.7v (see Eq. (2.142)), n is the number density of the gas, for the
case of low speed to be discussed here n=const . In deriving the above equations
two-dimensional flow is assumed: the flow characteristics are not dependent on

z , hence the symmetry condition holds
7 M= Hg (6.65)

Now we continue to examine with the help of the 8 velocity gas the problem of
shear flow between two plates or the Couette flow, i.e., two plates separated by a

distance 4 moving in the x, z plane in opposite directions, the velocity in the
y directionis 0:

8

v =2vini/n=0 .

i=t

Thus one has
1
n,/n+ nS/n+ nz/n+ né/n:n3/n+n7/n +n4/n +ng/n = -2-

From the symmetry condition Eq. (6.65) we have

1
nf n+ i12/n=n3/n+n4/n=-4-. (6.66)

This condition makes the equations (6.62) and (6.64) out of the system
(6.61)~(6.64) superfluous, and Eq. (6.61) and Eq. (6.63) can be written as

5 05, m7 () (6.67)
on; _ aﬂ:_ﬁ(_n+ ) 6.68
o 1oy VTR (6.68)

For the steady flow d/dt=0, by introducing the dimensionless quantities
n=yld, a=0d[2q,
the equations (6.67) and (6.68) can be written as

-dn—‘=a(~nl +n,), (6.69)
dn
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dn,

%ﬁa(—nﬁng)- (6.70)

The boundary conditions for the Couette flow problem are

1:-1—(JW .
-T2

2

The mean velocity in the x direction leaving the upper plate at n=1/2 and the

mean velocity in the x direction leaving the lower plate at n=-1/2 are

DR CAONCE

6.71)
n L n—-l—(l—U /29)
1 2 8 W q >
1 I
-_— ==(1-U, [2q).
ra[ 2}/ 5 (1=Uy/29)
The solution of equations (6.69) and (6.70) satisfying Eq. (6.71) is
[ « U, 1 U
=— +1- & 6.72
nln 8 (a+1) ¢ £ 2(a+1) qjl ©.72)
[ o« v, 1 U
=— +1+ 21 73
m/n 8| (a+1) ¢ 1 2(a+1) q} 6.73)

The velocity of the fluid in the direction of x is obtained from the above density

solution

U= 2” /n =2g[-n/n+n/n+n/n-n,[n]=-

Uy - 6.74)

The shear stress is



260 6 TRANSITIONAL REGIME

Tx= pzuivi (n:/n) =2)Oq2[_n1 tn, +ny —”4]/n =

apg’ (=n+m)[n= pqUy . (6.75)

2(a+1)
Expressing 7, as u(@U/dy), from Eq. (6.74) the expression of u can be ob-

tained
u=pqd[20=pq’6 .

Substituting 6 =0.70c/A and g=c/~3 yields

1 =0.48pFA . (6.76)

Although this value is quite close to the viscosity expression Eq. (2.222) of the
Chapman-Enskog approximation for the hard sphere model, but if examine the
value of 7, in the entire transitional regime (when Kn=A/d is between 0.01
and 100) then the result of the discrete ordinate method of the 8 velocity approxi-
mation is not so good. This is undoubtedly the result of adopting a too simple dis-
crete velocity model to replace the continuous velocity space.

Broadwell in [37] investigated also the Rayleigh problem using the 8 velocity
model. He also tested the 6 velocity model (6 velocities with equal speed value
and pointed into the positive and negative directions of the x,y,z axes) applying
it to the study of shock wave structure [38]. Gatignol utilized the coplanar 6 veloc-
ity model [39] (pointed into the apexes of a right hexagon) to investigate the shock
wave structure and the Couette flow, and with help of the coplanar 4 velocity
model [40] discussed the boundary conditions and the H theorem in the discrete
velocity model. Cabannes {41] introduced the 14 velocity model (combined from
the Broadwell 8 velocity and 6 velocity models ) and investigated the Couette flow
problem. A result of universal meaning is that when 4 velocities in the flow plane
is eliminated from the 14 velocities the result on the contrary is improved. The

reason for this is that the molecules moving along the direction of the surface do
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not collide with the surface, are isolated from the surface, the existence of such
parasitic molecules causes the errors at the wall. Gatignol [42] and Cabannes [43]
introduced in general form the discrete velocity model, utilizing the set of
¢,¢,,+,c, to replace the entire velocity space and n, to represent the number
density in time ¢ at position r having velocity c,, and write the discrete

Boltzmann equation (compare Egs. (6.61)~(6.64))

p
%+ci ~—a-n,. = 22 Af(nkn, ——nin,.), i=12,---,p, 6.77)
ot or o 50)

where A;ﬁ' is the transition probability

4 =0.c;p) (6.78)

no summation convention is implied in Eq. (6.78)

Ho_ . . .
;pﬁ =1, valid forany i, j. (6.79)

p;ﬁ' is the probability the pair of molecules with velocities ¢,, ¢, before collision
changes into pair of molecules with velocities ¢,, ¢, after collision. An often
used model is the one in which the ends of the velocity vectors are the uniformly
distributed grid points in the phase space {44, 45]. Fig 6.2 shows a peculiar exam-
ple of such model in planar case with the values of velocity components equal to

semi -integers
1
u= n+5 Av,-5 <n £4,

v :(n +-;—)Av, -5 <n £4, (6.80)

Av/2KT[m = 0.667.

The semi-integer points are chosen because the molecules with velocities parallel

with the body surface would cause errors near the wall as indicated in reference
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[ S8

Fig. 6.2 The model with the ends of the velocity vectors as uniformly distributed grid
points is shown in planar case. In the figure are shown ¢,(1.5,2.5) and its certain collision
partner ¢,(-2.5,0.5) and the possible velocity pairs ¢,, ¢ after collision (shown by

small circles, altogether 4 of them)

[41]. For such a model Eq. (6.77) is written for each ¢,(u,v) (in Fig 6.2 the case
¢, =(1.5 &,2.5Ax) is shown). The partner ¢; of molecule ¢, goes through the
whole p velocity set (in the present example p =10x10, the figure shows the
case of ¢, =(-2.5Ax,0.5Ax) ). The conservation of momentum and energy yields
the invariance of the value of the relative velocity (Ici —cjl , in the present example
=J2_0Av) and the invariance of the velocity of the mass center. So all the after
collision velocity pairs lay on the circle with center at the end of the velocity vec-
tor of the mass center and diameter of the value of the relative velocity. In the fig-
ure the velocity pairs from set ¢, ¢,,--,c, satisfying such condition are shown by
the small circles connected by dashed lines (there are 4 pairs in the present exam-
ple). For hard sphere model the appearance of all after collision pairs are of equal

probability. The probability p,;‘.' in Eq. (6.77) is easily calculated

p,.jﬁ’ =1/N,.j ,valid forany &, [, (6.81)

where N, is the number of all possible ¢,, ¢, pairs after collision resulted

from the pre -collision ¢;, ¢, pairs. According to the discussion about the reverse
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collision in Chapter 2, the collision (¢,,¢, —¢;,¢;) is the reverse collision of
(c,¢; —¢;,¢,). So we have p,.'/‘ﬁ' = p¥ = pi , this result has been employed in writ-
ing Eq. (6.77).

The above expounding of the discrete velocity model and the discrete Bolt-
zamnn equation is only a kind of physical heuristic elucidation, the relationship of
them with the Boltzmann equation still requires strict mathematical proof. In 1994
Bobylev et al. [46] proved that the uniform grid discrete velocity model [44, 45,
47] converges to the Botzmann equation and gave an estimate of the error of the
quadrature by the discrete velocity method. This is an important development of
the discrete velocity method. From the heuristic explanation of the method for the
planar case where the ends of the velocity-vector pairs are situated on a circle and
at the same time are on the nodal points of a integer grid, it is understandable why
this mathematical proof is closely relevant to a congruence problem in number
theory related with the presentation of a integer number by the sum of three
squires. An assertion in number theory states: any number ¢ which is not con-
gruent to 7 relative to 8 (## 7(mod8)) can be represented as the sum of three
squires f =p*+g*+r?, and the number of ways of presentation grows suffi-
ciently fast with ¢.

Gatignol [48] discussed the boundary condition problem of the discrete velocity
model in detail. Despite the above progresses on the whole the problems solved by

the discrete velocity method are mainly of simple geometry and molecular models.

6.7 INTEGRAL METHODS

The Boltzmann equation (2.152) can be written in the following form

%:Jl(t,,,c)_ﬂz(,,r,c), (6.82)

where

oo 4

L= [ 1§ codde (6.83)
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o 471
Jo= [ [ ficode, . (6.84)
—o )

The differentiation is carried along a certain molecular trajectory. Equation

(6.82) can be considered as a ordinary differential equation relative to  f

L e ) =007 (6.85)

Suppose the f in J, and J, of Eq. (6.85)is known, the formal solution

of the first order linear ordinary differential equation can be written

f(tr,c) =f(t0,r —et —to),c)x

exp{—j.J2 (s,r —c(t- s),c)ds} JrJLJl (T,r —c(t —T),C)X

ty fy

exp {—j‘Jz (s,r —c(t —s),c)ds}dr i
. (6.86)
The right hand side of Eq. (6.86) includes unknown function f and is a inte-
gral equation relative to  f . This is the Boltzmann equation in the integral form.
Vallander [49] presented the direct physical derivation of the integral equation
(6.86) without citing on the Boltzmann equation, he initiated the method of solv-
ing the rarefied gas dynamics problems basing on the integral form of the basic
equation, i.e., the ntegral method [50]. The most convenient approach of search-
ing solution of the integral equation is of course the method of iteration. The itera-
tion method of the integral equation is utilized to prove the existence theorem of

the solution of the Boltzmann equation.

6.8 DIRECT SIMULATION METHODS

These are the methods different from those of numerical solution of the Boltz-

mann equation but based directly on the simulation of the physics of the flow.
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They were born with the appearance of the electronic computers and are fully de-
veloped with the enhancement of the speed and the capacity of the computers.
Direct simulation methods distinguish deterministic simulation methods and
probabilistic simulation methods. Both categories of methods trace the motion of
enormous number of molecules, their encounter with the boundaries, the collisions
between themselves, the exchange of internal energies during the collisions and
chemical reactions, etc. The simulation should ensure that the processes traced in
the computer are able to reproduce the processes in the real flows. In the computer
a time (clock) is introduced synchronously with the physical time in the flows.
The positions, velocities and the internal energies of the molecules are recorded,
they change due to the motion of the molecules, their interaction with the wall
surfaces and the collisions between themselves. Obviously such simulation calcu-
lation is an unsteady process. The steady process is obtained as the stabilized state
of the unsteady process.

The deterministic direct simulation method is the most early suggested physical
simulation method put forward by Alder and Wainwright {51} in 1957, and is
called the molecular dynamics (MD) method. In this method the probabilistic
method is employed only when distribute the initial position and velocities, and
when compute the molecular motion, thé interaction of molecules with the
boundaries and their collisions between themselves, the deterministic method is
used without exception. For example, when judge the occurrence of a certain col-
lision, the overlap of the collision cross sections of two mo lecules at the same time
is considered and the impact parameters of the collision are provided by the mu-
tual configuration of the molecules, and the velocities after the collision are de-
termined. Such a simulation method aims at the full reproduction of the physical
processes, so the size of the molecules, the number density of the molecules and
the flow geometry are to be simulated. Thus the number of simulated molecules in
a certain simulation region should keep entirely identical with actual situation of
the physical flow.

Such a requirement is more apt to be implemented for dense gas than for di-
Iute gas. This point can be explained through the consideration of the number of

molecules in a cube with side of one mean free path
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N, =nA. (6.87)

As A is inversely proportional to the number density » of the molecules, so
N, is inversely proportional to n*, with the help of Eq. (2.220) N, can be

written

N). =nl’ =———l———3—-— .
22(nd?) n?
If introduce the number density n,=2.687x10m> under the standard state

(p,=0.101325MPa, T,=273K ), the above equation can be written

C a2 (md?) i\

For certain definite molecule & is fixed, the expression before (n,/n)’ is a
constant, if take a typical value d=4x10""m (the VHS model gives
d=4.17x10""m for nitrogen and d=4.07x10""m for oxygen at 273K ), the

required number of molecules is written

n

2
N, =3856(£"-) : (6.88)

Thus, if study a certain problem involving N,, O, or gas of alike size under stan-
dard density using the MD method, around 3856 molecules should be allocated in
a cube of mean free path, which will be difficult for a three-dimensional problem
with a space scope of many mean free paths. But if study the same problem under
a density 100 times higher than the standard state, only less than half (0.39) a
molecule is needed to be allocated in a volume of A*, or in a cube of side of 104
allocate around 386 molecules. This is already a relatively easy task. Thus, the
molecular dynamics method is particularly suited for the simulation of dense gas
or liquid but not for simulating the dilute gas. At the same time the Boltzmann
equation is appropriate for the dilute gas where binary collision prevails but not

for the dense gas where some modifications are needed, ¢.g., the Enskog put for-
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ward the Enskog equation to take into account the influence of the dense gas. The
MD method supplement an additional computational means at the particle level in
the domain of dense gas and at the same time is a deterministic method, so it is
readily accepted by people working in this field.

The direct simulation Monte-Carlo (DSMC) method was put forward by G. A.
Bird and was first applied to the simulation of the relaxation in the uniform gas
[52] and the shock wave structure [53] problems, and then was developed to the
application in simulating two-dimensional, three-dimensional and problems with
complex geometry, including cases of flows with complex physic-chemical proc-
esses (see the monograph of Bird published in 1976 [54] and the new extended
edition 1994 [55]). The DSMC method as the MD method traces in the computer
the motion, the collisions and the change of internal energies etc. of enormous
number molecules, but its specific feature is the employment of the probability
processes. Not only the allocation of the initial positions and states of the mole-
cules, but also the judgment of the occurrence and the outcomes of the collisions
(including the change of the velocities and the internal energies of molecules), are
determined by the test (generation and transformation) of random functions. This
is just the origination of the name of Monte-Carlo method®. The DSMC method
traces the binary collisions in gas, and we see in the discussion at beginning of
section 2.3 that the binary collisions are prevailing over the three-body collisions
only for dilute gas. So the prerequisite of the probabilistic simulation of collisions
is the assumption of the dilute gas. This is entirely different from the MD method
suitable for simulation of dense gas. And it is not like the deterministic MD
method in which the equality of the number of simulated molecules in the simuk-
tion region and the number of molecules in the actual flow is required, but reh-
tively few simulation molecules are used to represent the enormous number of real

molecules. This is another difference between the DSMC method and the MD

2 Monte-Carlo — a city in Monaco dukedom, the world famous gambling city. The
Monte-Carlo method is so called because the implementation of its process depends on
the generation and transformation of the uniform random number as the outcome in the
turntable gambling depends on where the arrow stops. Von Neumann and Ulam put for-
ward this method when studying the reactor in 1949. The method is also called method of
statistical test.
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method. In the early stage of the method the product of the number density and the
collision cross section is kept identical for the simulated molecules and in the real
flow (so the mean free path similarity is gained) to ensure the similarity law of
Krn number. This led to very huge molecular size but did not have any essential
influence on the simulation. The present approach is to fix the number of actual
molecules a simulated molecule represents and take this into account when calcu-
late the collision number and the macroscopic quantities. The key point of the
DSMC method is also in the decoupling of the molecular motion and collision in a
time stepAr. Each molecule moves a distance according to its velocity and Ar
(taking into account the interaction with the boundary and the motion after reflec-
tion) and then calculate the representative collisions corresponding to this time
interval Ar .The foundation of algorithm of choosing the representative collisions
to ensure the identity of the motion and collisions in the simulation and in the real
flow is the kinetic theory of gases. In fact the assumption of molecular chaos and
dilute gas is the prerequisite for both the Boltzmann equation and the DSMC
method. And Bird proved that following the procedures of the DSMC method the
Boltzmann equation can be derived [56]. Wagner et al. proved that the DSMC
method converges to the Boltzmann equation {57, 58].

The test molecule Monte-Carlo method put forward by Haviland and Levin [59]
was one of the probabilistic simulation methods developed the earliest. The
Monte-Carlo method developed by Kogan in the book [60] is also a test molecule
method. This kind of method requires the initial estimate of the distribution func-
tion over the grid of the flow field and the allocation of the so called target mole-
cules. Then the trajectories of numerous so called test molecules are calculated,
their collisions with the target molecules are considered and the new distribution
of the target molecules is established basng on the trajectories of the test mole-
cules. [terate such processes until convergence is reached. This method was lim-
ited to the one dimensional steady flow owing to the necessity of starting the itera-
tion from the supposed known initial distubution and the proportionality of the
computation time to the number of trajectories of the test molecules.

Nanbu developed a version of DSMC method directly derived from the Boltz-
mann equation [61], the main feature of it is that only one of the two molecules

involved in each collision changes its velocity, this is consistent with the fact that
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the dependent variable of the Boltzmann equation is the single molecule distribu-
tion function. Thus, the momentum and energy conservation in each collision is
not satisfied. However, the Boltzmann equation does not require such conserva-
tion but requires the overall conservation of the physical space quantities, the
momentum and the energy, and this is satisfied in the simulation. The problem is:
when the molecular momentum and energy is not exactly conserved but is only
conserved in the average sense, the random walk is brought about, that is, the de-
viation from the mean value grows with the squire root of time. This must be
taken into account when dealing with small disturbance or low speed problems.
Babovsky gave the strict proof of the convergence of the method of Nanbu to the

Boltzmann equation [62].
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7 DIRECT SIMULATION MONTE-CARLO (DSMC)
METHOD

7.1 INTRODUCTION

The direct simulation Monte-Carlo (DSMC) method [1, 2] developed by G. A.
Bird is a method basing directly on the physical simulation of the gas flows. Con-
cerning its relation with the Boltzmann equation there are references [3, 4, 5] and
others proving its consistence with the Boltzmann equation. In fact, both DSMC
method and the Boltzmann equation are based on the same physical reasoning. In
handling the molecular collisions and the molecule wrface interactions both
methods need to introduce physical models. But as DSMC method deals with the
actions of individual molecules, it is easier for it to introduce models in agreement
with the physical realities, but it is relative difficult to involve the realistic models
in the mathematical solution of the Boltzmann equation. This is all the more so in
treating problems of gas flows accompanied by chemical reactions and radiation.
And as the DSMC method does not depend on the assumption of inverse colli-
sions, it can be applied to such complex phenomena as the recombination reac-
tions involving three-body collisions, which is beyond the capability of the
Boltzmann equation. Thus, it is unnecessary and impossible to verify each simula-
tion procedure involving complicated physic-chemical processes by strict proof
that it is derived from the Boltzman equation. But still the DSMC method is not a
method independent of the Boltzmann equation or a method which stands side by
side with the Boltzmann equation. The Boltzmann equation plays fundamental
roles in the formulation of the DSMC method. For example, the various molecular
models are based on the relation of the collision cross section with the gas viscos-
ity given by the Chapman-Enskog approximation in the solution of the Boltzmann
equation (see section 2.4). The sampling of collision pairs and the implementation

of collisions in DSMC is based on ensuring the matching of motion and collisions
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in simulation, keeping it consistent with the actual flow. This is achieved by the
satisfaction of conditions expressed through collision cross sections depending in
turn on the molecular models (see the exphnation in section 7.2). On the other
hand, the experimental verification played an important role for the general ac-
ceptance of the DSMC method. Both in the aspect of the global characteristics of
the flow field and in the aspect of the micro-structure of the flow the DSMC
method gave results in good agreement with the experimental data. The result of
simulation by the DSMC obtained for the space shuttle in the transitional regime
(including the ratio of drag to lift) [6] has excellent agreement with the flight ex-
perimental data. The experimental measurement of the distribution functions for
the molecular velocity in the flow direction and for the velocity in the transverse
direction in the strong shock wave structure was carried out as early as in 1966,
but as the result obtained had poor agreement with the available at that time theo-
retical result (the Mott-Smith solution [7], see also section 6.3), so it had not been
published until 1989, and was published in Science [8] only when the DSMC
calculations were carried out and excellent agreement with the experimental result
was obtained (see Fig. 7.1) and received general recognition of the scientific com-
munity. The verification of the DSMC method by the experiments enhanced its

status and significance.
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Fig. 7.1 The distribution functions of the parallel and normal velocities in the structure of
normal shock wave of helium (Ma =25 at x=0.565), comparison of the DSMC calcula-
tion and the experimental measurements [8]
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The DSMC method employs a large number of simulated molecules to simulate
the real gas. The number of simulated molecules must be large enough so that in
the cells of the flow field they can fully represent the distribution of the real gas
molecules. At the same time this number is much smaller than the number of real
molecules, i.e., each simulated molecule represents m enormous number of real
molecules. In the computer the position coordinates, the velocity components and
the internal energies of each simulated molecules are stored, they are changing
with the motion of molecules, their encounters with the boundaries and the colli-
sions between themselves unceasingly. The time parameter in the simulation is
identical with the physical time in the real flow. All computations are unsteady,
the steady flow is obtained as the long time asymptotic state of the unsteady flow.
The essential approximation of the DSMC method is: in a small time step Az the
molecular motion is decoupled with the molecular collisions. In time Az each
simulated molecule moves a certain distance according to its velocity, then the
representative collisions between the molecules in time Ar are calculated. The
time step At must be small in comparison with the local mean collision time.
The flow filed is divided into cells of linear size Ar used to choose collision
pairs among molecules in them, and also to sum molecular quantities to obtain the
macroscopic characteristics of the flow field. The size of Ar should be small in
comparison with the scale length of the gradient of the macroscopic quantities of
the flow field, in general, letting Ar to be 1/3 or so of the mean free path can
satisfy this condition. Corresponding to the motion in time A¢, how to choose the
collision pairs and how many representative collisions are to be implemented, is a
key issue in ensuring the consistency of the simulation with the processes occurred
in real gas. This issue will be discussed specially in the next section.

The calculation of the motion in time Az is a simple and direct deterministic
step. Whenever a molecule encounters with the boundary the interaction of it with
the boundary is taken into account, the DSMC method allows the introduction of
various reflection models, about them detailed discussion has been given in Chap-
ter 3. Except the specular reflection, which is a simple deterministic action, the
implementation of the diffuse reflection, the Maxwellian reflection and the CLL
model reflection requires the employment of the random fraction in obtaining the

sampling of the velocity after reflection (see sections 3.2 and 3.4). Then the
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molecules move according to the after-collision velocities, and the new positions
the molecules move to in the remaining time are obtained.

What are the velocities of the molecules after collisions depends on what kind
of molecular models are being employed, this plays a determinant role in the exact
modeling of the real gas flows. The DSMC method allows the introduction of the
phenomenological models capable of reflecting the essential features of the flow
field, in particular, the VHS model, the VSS model, the GHS model and the GSS
model and their imple mentation in the DSMC simulations have been discussed in
sections 2.4.4~2.4.7.

In section 7.2 the sampling and the counting of collisions will be discussed, in
section 7.3 the implementation of the DSMC method will be explained through a
simple example of Couette flow. In sections 7.4 and 7.5 the methods of handling
the excitation and relaxation of the internal energies and the chemical reactions are
introduced. In section 7.6 some development of the general codes in solving the

complicated flow field and the position element method are introduced.

7.2 SAMPLING OF COLLISIONS

The essential idea of the DSMC method is the decoupling of the molecular motion
and collisions. The correct implementation of the collision sampling, i.e., the ap-
propriate choice of the collision pairs and the implementation of a certain number
of collisions is the key issue in ensuring the matching of the collisions with motion
in time Ar and the consistency of the simulation with the actual flow processes.

The way of implementation by the time counter (TC) method introduced by
Bird [1] is: (1) Choose one pair randomly from all available molecules out of a
cell; (2) Take

S(,)/ S s (7.1)

as criterion, where S(c,)=co,, S is the maximum of S(c ) in the cell. To
this apply the acceptance-rejection method to determine if this pair is selected, if
not, return to (1); (3) If the pair is selected the collision is calculated according to

the molecular model the cell time is advanced a value
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NC=[%S(C,)I , (7.2)

where n and N are the number density and the number of molecules in the
cell; (4) the processes (1), (2), (3) are repeated until the cell time exceeds As.

The mean collision frequency of the molecules is (see Eq. (2.207))

v=nS(cr)‘ (7.3)

The number N, of collisions occurred in time At within a cell is

N aN ——
=—vAt =——S(c JAf. 7.4
= VA== (c,) (7.4)

From Eq. (7.4) it is seen intuitively, that whenever a collision occurs, letting the
cell time to advance a value A¢, (see Eq. (7.2)) will ensure the correct collision
frequency in the cell. There is a strict analytic proof in reference [1].

The TC method had been widely used for its high efficiency and for it can en-
sure the correct collision frequency when the number of molecules in a cell is
large enough. But when the number of molecules in a cell is not large enough, the

occasionally selected collision with very small probability ( S(c)/S__ very

small) would make the cell time advance too long a time (surpassing several At )
and distort the collision frequency, leading to errors. Koura [9] suggested the il
collision (NL) method, Ivanov et al. {10] suggested the major frequency (MF)
method, which can overcome this defect of the TC method and does not lead to
much increase of the computation time.

Bird [11] suggested the no time counter (NTC) method, which is widely used in
many simulations. The NTC method is a modification of the direct or Kac method.
The direct method considers all possible collision pairs in a cell, the number of

them is

Ny=— (1.5)
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The probability P, of the occurrence of collision of the two molecules of one
collision pair in time Az equals to the ratio of the volume swept by the collision
section with the relative velocity ¢, to the cell volume

_ F, SAt
V 3

«

Py (7.6)
where F, is the number of the actual molecules one simulated molecule repre-
sents. The efficiency of the direct method is low, for P, is very small, and the
computation time needed for all collision pairs is proportional to the squire of the
number N of molecules in the cell. The NTC method only considers a very
small portion of the N, collision pairs ( &, is multiplied by a small factor), but
at the same time P, is amplified accordingly by the reciprocal of the same pro-

portionality. It is readily seen that when this small factor is taken as

FNSmaxAt/Vc b

the probability of occurrence of the collision is changed into

P

NTC =

AYAY

max >

that is , is equal to the criterion Eq. (7.1) of TC method. And, the number of the
collision pairs need to be considered is changed accordingly
NN

chzTFNS A1V, , (1.7)

max’

where as F,, is large, N(N-1)/2 was replaced by N?/2, and to keep the lin-
ear relation of N,.. with the random number N, N > was replaced by
NN (ﬁ is the time or ensemble average of N ). Noting that -[\-/FN /V, in fact is
the number density » in the flow field, then according to Eq. (7.7) the number of

collision pairs to be considered is actually

Nype =—S8,, ¢ . (7.8)

The probability that the collision pair is selected is given by Eq. (7.1), it is seen
that the number of collisions that actually happened agrees with the theoretical

value (Eq. (7.4)).
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We suggested the randomly sampled frequency (RSF) method [12]. The way of
implementation of it is: M pairs of molecules are randomly selected from all

possible pairs with returning back when not selected, take

_— 1 M
Srsr=—2 5(c,) 7.9
o (7.9)
as the estimate of S(c ), thus the number of collisions occurred in each cell is
(see Eq. (7.4))

N_
Ny ="TSRSFAt . (7.10)

The pairs of molecules are chosen following the same steps as in the TC method
and are accepted or rejected until the number of collisions reaches the number of
Eq. (7.10). The analyss and test calculation in [12] show that, when M is cho-
sen as 1, sufficient accuracy can be reached.

Note, the NTC method calculates the number of collisions pairs that need to be
considered according to Eq. (7.8), while the RSF method calculates the number of
collisions that should happen in each cell according to Eq. (7.10), all these num-
bers thus calculated have to be rounded-off to integers and the remainders of the
number of collisions have to be stored. The concrete way of doing will be eluci-

dated in the practical example.

7.3 EXAMPLE OF SOLUTION OF PROBLEM BY THE DSMC
METHOD

In this section the details of concrete implementation of the DSMC method is pre-
sented through the example of a simple, one-dimensional problem of Couette flow.
The space between two parallel plane plates separated by a distance
Y~LENGTH = A/Kn is filled with gas of temperature 273K and pressure
0.0latm . The lower plate is located at y =0 and moves with a velocity
U_WALL/2 in the direction of positive x , the upper plate is located at
y=Y-LENGTH and moves with a velocity -U_WALL/2 in the direction of

negative x . The wall temperatures of the two plates are the same as the gas tem-
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perature, the gas molecules are reflecting diffusely at the wall. The FORTRAN
program of the solution of the Couette flow problem is listed in APPENDIX IV.

The flow chart of the program of problem by the DSMC method is shown in
Fig.7.2. This flow chart is suitable for the solution of any flow problem, and in-
cludes the cases of steady and unsteady flows. The program of the present exa m-
ple also follows this chart. The FORTRAN code of the Couette flow problem con-
sists of the main program, the FUNCTION RF(IDUM) generating the random
fraction and 7 subroutines. The 7 subroutines correspond to the 7 steps in the flow
chart (see Fig 7.2):

subcl set constants and initial values

subc2 set the initial velocities and positions of molecules

subc3 calculation of the motion and the reflection of the simulated molecules

at the surfaces

subcd the reordering and the indexing of the molecules

subcS calculation of the collisions

subc6 sampling of the flow properties

subc7 the summation of the characteristics of the flow field and on the sur-

faces

In the main program first the adjustable number of cells (no-cell), the number
of molecules in each cell (no-molecule-each-cell) and the total number of mok-
cules (no-molecule) are specified by the PARAMETER statement. As the IP (in-
formation preservation) method introduced in the next Chapter uses the same pro-
gram for illustration, the statements needed for the IP method are marked by the
symbols * and ==. The former marks statement that is used to replace the one
before it, the latter marks the statement that needed to be added anew. For exam-
ple, the IP method needs to use different number of cells (no-cell, 300 is used to
replace 50) and different total number of molecules (no-molecule, 9000 to replace
1500), so the PARAMETER statements marked by * are used to specify the
values required by the IP method. Then the COMMON and DIMENSION state-
ments introduce the variables which are commented in detail in the program and
are not explained here. After the assignment of the reverse rkn of the Kn
number, i.e., the specification of the K»n number, the subroutines of subcl,... are

called successively to implement the various steps of the DSMC simulation. Note
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Fig. 7.2 Flow chart of program of the DSMC-IP method
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in the program the following parameters are used to judge whether the code con-
tinues to proceed or goes back to the beginning of a loop.

iloop: the number of current loops; jris: the number of loops at which the sam-
pling starts; nloop: the total number of loops.

The statement CONTINUE labeled 100 is the position where the loop starts,
after it the loop counter iloop adds 1 to the record. After the calculation of colli-
sions by calling subc5 judge if the number (f/oop) of current loops is larger than
the number (jnis) of loops at which the sampling starts. If yes, the quantities on the
wall and in the flow field are sampled, if no, provided that iloop is less than nloop
go back to the beginning of the loop labeled 100. Proceed the cycle until the total
number (nloop) of loops is reached, and then accomplish the sampling and output.
The surface parameters are stored in surf-cout.dat and the flow field parameters
are stored in u-cou.dat.

In the subroutine subcl SET CONSTANTS AND INITIAL VALUES, the or-
dinary constants are exp lained by the comment lines following them. As helium is
chosen as the media and HS model is adopted DIAREF is taken as  3.659x107""m
(Table 2 of Appendix I). In the IP method DIAREF is taken as 3.963x10™"m
this statement is marked with *. Although in the present program the HS model
is adopted, but in preparing the expression for TKOM to be used in the calculation
of the collision frequency the notation of VHS-coe is retained, all one has to do is
let VHS —coe = (I'(5/2~w))*, the VHS model is obtained (see the comment line
before the assignment statement of TKOM ). Then the initial temperature, pressure
and the number density FND are set. Note, that in the DSMC method the wall
velocity U-WALL is taken as 100m/s, but in the [P method the wall velocity
U-WALL is taken as 1.0m/s. The molecular mean free path A (AMDA) is
calculated according to the hard sphere model (see Eq. (2.221)). The scope of the
flow field -LENGTH is taken as A/Kn, and the time step DTM is taken as
0.23A/c¢,, where c_ is the initial most probable speed denoted by VM_INI in the
program. AREA is a representative cross section area through which we observe
the flow field corresponding to the number of molecules and normal to the direc-
tion (y direction) of variation of the flow field. In the whole flow field only
NO-MOLECULE mokcules are introduced, and the scope of the flow field in the
ydirection is Y-LENGTH. If we observe the NO-MOLECULE molecules through
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AREA obtained in the program, then the number density in the simulation is just
the initial number density FND (=NO_MOLECULE/Y_LENGTH * AREA). This
AREA will be needed when calculating the molecular flux towards the surface.

In the subroutine subc2 the initial velocities and positions of all simulated
molecules are given. The initial velocity is the initial macroscopic velocity plus
the thermal velocity in the equilibrium gas, the generation of the components of
the latter see Eq. (3.18) and Eq. (3.19) and the discussion followed in section 3.2.
In the allocation of the positions of the simulated molecules in the cells first the
molecules are distributed according to the number NO_MOLECULE
_EACH_CELL of molecules in each cell to various cells, and then assign ran-
domly the locations of the NO_MOLECULE molecules in various cells. In com-
parison with the direct allocation of all the simulated molecules between 0 and
Y_LENGTH this method has taken into account the variance reduction principle.
In fact, according to Eq. (IIL.5) of the Appendix, in which if take
b=Y _LENGTH,a =0, x would be the random position of the molecule, but the
scatter-deviation would be very large. Following the variance reduction principle
the sampling should have been taken according to (II1.5)', and should take m=
NO_MOLECULE, the positions of the molecules of the initial distribution pos-
sesses the reduced variance. It is a general issue to take into account the variance
reduction principle, for example, when allocate the initial positions of the oncom-
ing molecules in three-dimensional flows, the equation (II1.5)' should be repeat-
edly used in two directions normal to the oncoming flow to fix the initial coordi-
nates of the molecules.

The subroutine sube3 is used to calculate the motion of molecules and the re-
flection and sampling at the upper and lower plates. Detailed explanation is given
in the comment lines of the program for the upper plate. Note, before the accunmu-
lative counting of the contribution of the incident molecules, the reference frame
is transferred to be connected with the upper plate (moving with velocity
-U_WALL/2). In the DSMC method it is required that p(l,m)= p(l,m)
+U_WALL/2.d0 , for the IP method it is required that vmean(l,m)
=vmean(l,m)+U _WALL/2.d0 . In UP_WALL(), I=1, 2, 3, 4, the following quan-
tities of the incident molecules are accumulatively counted: (1) number of mok-

cules; (2) tangential momentum; (3) normal momentum; (4) kinetic energy. For
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the sampling of the molecular velocities after the diffuse reflection from the plate

see Egs. (3.18), (3.19), (3.15) and (3.20) of section 3.2. In UP_WALL(), 1=5, 6, 7
the following quantities of the reflected molecules are accumulatively counted: (5)
tangential momentum; (6) normal momentum; (7) kinetic energy. Then the refer-

ence frame is transferred back to be connected with the stationary system and the

new positions the molecules move to are calculated. The reflection and the sam-

pling on the lower plate are similar with those on the upper plate.

The subroutine sube4 is used for the reordering and indexing of the molecules.
The molecule with the original identifying number M moves into the cell with
order number NCELL. IC(1,I) stores the number of molecules in the Ith cell,
IC(2,]) stores the order number of the first molecule in the Ith cell minus 1. When
recounting IC(1,NCELL), by letting K =IC(2, NCELL)+ IC(1, NCELL) the new
order number K of the molecule with the original identifying number M is
obtained. The original number M is stored in LCR(K).

The subroutine subcS is used to:calculate the collisions. Subroutine consists of
a loop which successively calculates collisions in each cell. Befre the label 300
the average (TKOM * VAVER) of S(c,) (see Eq. (7.1) and below) in the cell is
calculated, and the number of collisions N, (CNOIC, see Eq. (7.10)) that
should occur in the cell according to the randomly sampled frequency method is
obtained. Take into account the stored remainder of the number of collisions and
after rounding-off anew the number of collisions NCOLL that should actually
happen is calculated. After the label 300 two molecules are chosen randomly from
the cell and are been examined whether they are selected or not according to the
step mvolving Eq. (7.1), if yes, the velocities after collision are calculated, this
process continues until the number of collisions in the cell reaches NCOLL, and
the collisions in the next cell are calculated. In the above the number of collisions
in a cell is controlled by the randomly sampled frequency method. The NTC
method is the most used method for controlling the number of collisions. It is
readily to modify the present program to shift to the NTC method. For this one
needs to calculate first, before the label 300, the number N,,. of collision pairs
to be considered in the cell (see Eq. (7.8)), where §_ is obtained by multiplying
TKOM by YRMAN_ETASI, and then change the program segment between the

statement labeled 300 and the statement labeled 140 into a program segment cy-
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cling N, times (the number N, . obtained from Eq. (7.8) should be
rounded-off and the remainder of the number of collisions should be stored, etc.).

The subroutine subcé runs the summation of the parameters of the flow field
and stores the results in FIELD(N, NO_CELL), the subroutine subc7 outputs
these parameters and stores the parameters on the surface in surf-coue.dat, the
parameters of the flow field in u_coue.dat.

The program of the present section has been aimed at the problem of Couette
flow, but is readily modified to be applied to the solution of the problem of the
Poiseuille flow and the Rayleigh probem. Poiseuille flow as the Couette flow is a
steady flow problem, so the structure of the main program is not changed, the
changes are limited to the changes in subroutine subc 3. At the plate surfaces the
condition of stationary wall is put forward. At the same time, due to the influence
of the pressure gradient the velocities of the molecules during every time DTM
gain increments, which can be found from the momentum conservation equation.

When the change of the pressure is given by the:-following equation

p=p,(1+ax/h),

where h=Y_LENGTH is the distance between the two plates, the increment of
the velocity in At can be found to be (cf. the beginning part of section 8.5)

Au=—(ap,/ v ) . (7.11)

This increment is to be added to the thermal velocities and the IP velocities of the
simulated molecules. The molecules are retarded near the plate surfaces. The equi-
librium between acceleration and the retardation enable the flow to reach the
steady state.

For the Rayleigh problem according to its geometric condition the boundary
conditions in the subroutine sube3 is certainly to be modified. The lower plate
moves with velocity U_WALL in the positive direction of x. The scope of the
flow field Y_LENGTH should be taken large enough, so that the disturbance
originated from the lower plate could not reach the upper boundary of the flow

field during the time interval we are interested in. At the same time the specular
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reflection boundary condition is set at the upper plane of the boundary. As the
Rayeigh problem is an unsteady flow problem, so the structure of the main pro-
gram must be changed. The location of the beginning of the loop, i.e., the location
of the CONTINUE statement labeled 100 and the statement illop =illop +1 fol-
lowing it, should be shifted from the location before CALL SUBC3 to that before
CALL SUBC 2 (set the initial velocities and positions of the molecules). The con-
ditional statement after CALL SUBCS5 is to be cancelled, the program segment
between CALL SUBC 3 and CALL SUBC 6 is to be made a loop by a DO state-
ment to accomplish repeatedly the procedures ‘“calculation of the molecular
movement” , “ the indexing of the molecules” , “ the calculation of collisions” and
“the sampling of flow properties” , thus obtain the parameters of the flow field and
on the surface at various time moments. The conditional statement after the loop is
to allow return to the statement with label 100, so that to start the loop beginning
from the initial state. This is to ensure the obtaining of large enough sampling size
at various time noments utilizing the ensemble averaging, this is necessary for
small storage of the micro computers. If the workstation of large enough storage is
available, it is not necessary to restart the whole process from the statement labeled
100, obtaining large enough sampling size with one run is possible. This is the
right means to demonstrate an unsteady process in reaktime and to study the prob-

femof instability.

7.4 THE EXCITATION AND RELAXATION OF THE
INTERNAL ENERGIES

7.4.1 INTRODUCTION OF PHENOMENALOGICAL MODELS

For diatomic and polyatomic molecules, as we have seen in Chapter 1, the mole-
cules possess as well internal energies, i.¢., the rotational and vibrational energies.
How to simulate the behavior of the internal energies in the direct simulation is the
issue to be resolved in this section. In the equilibrium state various molecules can
be assigned according to Eq. (1.94) certain rotational energy (£ =2) and vibra-
tional energy (£, given by Eq. (1.86)). The problem of how to simulate the en-

ergy exchange between molecules in the collision is to be solved. Introduction of
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the traditional models that reflect the diatomic characteristics of the molecules,
such as the model of dual repulsive centers, the sphero-cylindrical model, the
rough-sphere model and the harmonic oscillator model, into the DSMC simulation
is unpractical, for in the simulation an enormous number of collisions must be
computed. And for the purpose of simulation it is essential to know, how the ener-
gies are distributed after the collisions, and to ensure, that the rate of excitation
and relaxation of the internal energies be in agreement with that given by the ex-
periments. Larsen and Borgnakke {13, 14] introduced a phenomenological model
and resolved this problem. The central idea is to assume that the kinetic energy
(expressed by the relative velocities) and the internal energy follow the conserva-
tion of energies, the internal energy after collision is sampled according to the
equilibrium distribution of the combination of the kinetic energy and the internal
energy, and the rate of relaxation process of the energy is determined by adjusting
the proportion of the elastic collisions and the inelastic collisions to make it satisfy
the result obtained from the experiment. Such an approach is very simple in the
conceptual and implemental aspects, and needs not much computation time. Such
phenomenological philosophy deserves attention in approaching other problems.
In the following the Larsen-Borgnnake model will be described, firstly in the as-
sumption of the continuum distribution of the internal energies, the case of colli-
sion between molecules of different components in a gas mixture will be dis-
cussed. When discussing the continuum distribution of the vibrational energy, the
combined cumulative distribution acceptance-rejection method in handling the
distributions with singularities own to { <2 is introduced. Then the implemen-
tation of the Larsen-Borgnakke model in the case of discrete vibrational energy
levels is discussed. Finally, the adjustment of the relaxation time by introducing

the exchange probability of the vibrational energy is discussed.

7.4.2 IMPLEMENTATION OF LARSEN-BORGNAKKE MODEL

In this section the Larsen-Borgnakke model is explained on the example of col-
lision between molecules of different components in the gas mixture. According to
Eq. (1.94) the distribution functions of internal energies of component 1 and

component 2 are proportional to
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(1_ En
fley) <2 'e'k'r" (7.12)
f(£i2)°<£i22 e ¥ (7.13)

respectively. Now the distribution function of the total energy of the collision pair
E=e,+¢, (7.14)

is to be found according to Eq. (7.12) and (7.13).

The probability that the internal energy of component 1 is in the interval from
£, to g, +de,, and the internal energy of component 2 is in the interval from
£, to &, +dg , is proportional to

& [£) E

e (E—g,)? ¢ Vde, ds,, (7.15)

Fix first the value of ¢, then dE =de,,, the integration over ¢, from 0 to

E. results in that the probability that the total internal energy is in the interval
from E, to E +dE, is proportional to

E ¢

f(E)dE, [J. gg_l(E’__g“)%_ldgm ]'e;%dEi =

co Mo(e)

o D 2 ) &
E ? #JE,

F §1+§2
2
that is
S(E) e EF eXP[—E’-} , (7.16)
KT

where
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Z:ﬂ (7.17)

is the mean value of the internal degrees of freedom of the two molecules.
In section 2.11 we discussed the mean value of the quantity O in collision
and obtained the expression Eq. (2.224). Expressing the relative velocity ¢, by

the relative translational energy ¢ =(1/2)mc’, one obtains
S o [0 £
Qo [Qe " exp| ——£ | de . (7.18)
0 kT 1

That is, the distribution function f(g,) of the relative translational energy is
proportional to

o Y2-m ___8,_
f&)<e, exp( kT],

where @ is the temperature power exponent of the viscosity of the
(mono-component) gas.

Suppose for different components 1, 2 a temperature power exponent @, , of
viscosity can be determined, then the distribution function of the translational en-
ergy in the collision between molecules of components 1 and 2 of the gas mixture

can be written as

o, £,
fle )<l exp(—;{;)- (7.19)

The total energy E, in the collision is the sum of the relative translational

energy ¢ and the total internal energy £
E =¢,+E,. (7.20)

According to Egs. (7.16) and (7.19) the distribution function of the translational

energy ¢ and the total internal energy E, can be written as

6’3/2 ""szif"l expl:_ (E/]:TE:' ) j‘ ,

or
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£f3ﬂ -, (Ec _EI)Z-I exp[_%} .

As the effective temperature 7 in the collision is determined by the total en-
ergy E_in the collision (see Eq. (7.26) to appear in the following), so the expo-
nential term is a constant, and the translational energy in the collision is propor-

tional to

gl (B, e ). (7.21)

In the collision the total energy E. =¢, +E, =€, 4€ , +& ,remains unchanged.
In the inelastic collision the translational energy &’ and the internal energy after
collision are sampled according to the equilibrium distribution Eq. (7.21), i.e. ,
g’/ E_ is sampled by the acceptance-rejection method from the following expres-

sion

3
* * ?‘"52 PN
EHE

the relative velocity after collision is obtained thereby equal to ,/28,*/ m, .
From Eq. (7.15) it is seen that the distribution of the post-collision internal en-
ergy E’=E —¢&° between the two molecules is sampled from the following for-

mula by using the acceptance-rejection method

* * gl‘" * g_z'l
P2 =N P T VS L (7.23)
E E; E’

The description of the Larsen-Borgnakke model given here is aimed at the col-
lisions between molecules of different components in the gas mixture. There is not
any difficulty to apply the above method in the description of collisions between
mono-component molecules. For the mono-component gas one has in Eq. (7.22)
w,=0, {=¢,andinEq.(7.23) ¢ =¢,=C.

In the analysis leading to Eqgs. (7.22) and (7.23) it was implicitly assumed that

the internal energy includes all modes of the internal energies. In fact, the internal
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energies of various modes after collision can be distributed one by one succes-
sively with the translational energy utilizing the Larsen-Borgnakke method, the
result will be the same as if to distribute all the internal energy modes together
with the translational energy (and then by using Eq. (7.23) to distribute the inter-
nal energy among various modes). This can be verified by computation test: for
example, the result of distribution of the total internal energy and the translational
energy according to Eq. (7.22) and the later distribution of the rotational energy
({. =2) and the vibrational energy ( { according to Eq. (1.86) ) according to Eq.
(7.23) is the same as the result of distribution of the rotational energy and the vi-
brational energy separately with the translational energy according to Eq. (7.22).

In Bird’s book there is an analytical proof of this inference (see section 5.5 of [2]).

7.4.3 CASES OF DISTRIBUTIONS WITH SINGULARITIES,
GENERAIZED ACCEPTANCE-REJECTION METHOD

When distribute various energies in the collisions according to the equilibrium
distribution in the Larsen-Borgnakke model, there are the following cases when in
the distributions appear singularities.

1. When distribute the initial vibrational energy according to the temperature of

the gas, the equilibrium distribution Eq. (1.94) is used

T (7.24)

where the number { of the vibrational degree of freedom (see Eq. (1.86)) is less
than 2

20 /T
g, _OJr . (7.25)

- exp(0,/T)-1

It is seen that, when ¢, - 0, singularity appears, as the power exponent of & is
less than 0. Then it is impossible to use directly the acceptance-rejection method
to sample energy according to Eq. (7.24). Near the singularity by using the method
of taking the truncated value can not gain the exact result as well. For example by

using the truncated value acceptance-rejection method according to Eq. (7.24) to
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distribute the vibrational energy, the average of the sampled values could not
reach the accurate correct average value ({, /2)kT (see Eq. (1.95)).

2. The sampling of the translational energy after the collision is done according
to Eq. (7.22), when in the collision pair one molecule is monatomic molecule and
only the vibrational mode of the other molecule is considered, one has CI =0,.
Then E< 1,{,<2 inthe equation (7.22) near &, = E_ appears singularity.

3. When the internal energy E; after collision is distributed between the two
molecules (according to Eq. (7.23)), and when one or both of {, and {, is less
than 2, the singularity appears at ¢, =0 and ¢, =E,. After the assignment of
the internal energy to a molecule, the distribution between different modes is also
assigned according to Eq. (7.23), then also appears the case of { <2 or {,<2
leading to singularity. The combined consideration of vibrational energy and the
rotational energy can make number of the degrees of freedom of the internal en-
ergytobe { = +{ toavoid the sampling from the singular distribution. But
in the initial distribution of the vibrational energy and the distribution of the inter-
nal energy after collision between the vibrational and the rotational modes, due to
the fact of { <2, the singularity is inevitable. In the equation (7.22) and equation
(7.24) the possible singularity is the single point singularity, but in equation (7.23)
it is possible to have singularities both at ¢, =0 and ¢, ,=E,, i, itis a double
singular distribution.

We developed the generalized acceptance-rejection method, or the combined
cumulative distribution acceptance-rejection method, and resolved the problem of
random sampling from the single or double singular distribution [15, 16]. The
explanation and the example of application of the method is given in the Appendix
3.

In handling the vibrational mode of energy besides the problem of appearance
of singularities in the distribution another problem raised is how to determine the
effective temperature in the collision to be used for giving the vibrational degrees

of freedom through Eq. (7.25). The total energy in the collision of comp onent 1 is

g +e€,,.
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The number of degrees of freedom of the relative translational energy in the colli-

sion with component 2 is (from comparison of Eq. (7.19) and Eq. (1.94))

{,=5-20,.

The number of rotational degrees of freedom is ¢ |, the number { , of vibra-

rls

tional degrees of freedom is given by Eq. (7.25). Thus (compare with Eq. (1.95))

1 20,,/T;
£/+£i.1_5‘lL5 2w12+§"]+eXp(®v_l/T,) kT,

from where the effective temperature in a collision of component 1 is obtained

h=3 G gi")/ke T (7.26)
= vl i -
> 0,+¢,,/[2 +—exp(®v_l/7])—l

This temperature is determined from the method of iteration, after this the number

of degrees of freedom of component 1 is determined from Eq. (7.25).

7.4.4 LARSEN- BORGNAKKE METHOD FOR DISCRETE ENERGY
LEVELS

In section 1.3 of Chapter 1 we have seen that the continuum distribution Eq. (1.94)
(i.e., Eq. (7.24), where (  is given by Eq. (1.86), i.e., Eq. (7.25)) of the vibra-
tional energy is actually derived from the discrete distribution. And as the spacing
between the vibrational energy levels is quite large (see section 1.1), it is appro-
priate to characterize the vibrational energy of the molecules directly by the dis-
crete energy levels. Haas et al. [17] and Bergemann and Boyd [18] expanded the
Larsen-Borgnakke method to the discrete energy levels. The implementation of it
in the DSMC simulation is direct and simple, and is introduced here.

The harmonic oscillator model of the quantum mechanics gives the vibrational

energy of level n (see Eq. (1.16), Eq. (1.77))

£, ,=nhv=nk®,, n=012,,-, (7.27)

where
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e, =m/k.

The equilibrium distribution function of the vibrational energy is Eq. (1.68),
where QO is given by Eq. (1.79). Substituting the values of Eq. (7.27) and intro-
ducing the Dirac & function, one can write this distribution in the following

form

fle.) =k—lT{1—exp(—®Tv HX exp(—lf} j5(ev -nk®,). (7.28)

Now consider the redistribution of the energy levels after collision of a molecule
of vibrational energy level n. The total energy in the collision in such case is
E =¢,+¢ = ¢+nk®, . The distribution of £ is given by Eq. (7.19), the distri-

bution function of the combination of ¢ and &, is proportional to
(E.~&,)"" ™ exp(~ E [kT)8 (¢, -nk®, ). (7.29)

The assignment of the energies after collision follows the distribution

)3/2—(152

(E ¢ exp(- E,[kT)8(e) —n'k©,). (7.30)

Because E_ is a constant, so the exponential term is constant. Normalizing the
above formula by its maximum value (at & =0), one obtains the distribution af-

ter the collision

«\/2-a
( _%J 5(e;-n'k.). @31)

(4

Or write it in a form of discrete value

* 32 -ay,
nk®
1 _1kO, . 7.31y
( - j (7.31)

(]

To this distribution apply the acceptance-rejection method to determine, whether
the energy level »" after collision is selected or not. »° is an integer selected

from the interval 0 to n”_with uniform probability, where
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Mo =| E/(KO,) ] (7.32)

The symbol | _| represents rounding-off.

7.4.5 RELAXATION COLLISION NUMBER AND VIBRATIONAL
EXCHANGE PROBABILITY

The above discussion concerns inelastic collisions. If in the DSMC simulation all
collisions without limitation were implemented as inelastic collisions, the process
of change from one state to anther of the internal (vibrational ad rotational) ener-
gies would be too fast, i.e. , the rate of change would be different from the rate of
the actual physical relaxation process. In general, the relaxation time 7, is intro-
duced to characterize the rate of change of the state, this is the time needed for the
deviation of the state function (temperature) to decay to 1/e of the initial devia-
tion when tends to equilibrium. This time is usually several times large than the

collision time
T,=Z/fv. (7.33)

Z, is called the relaxation collision number, e.g., Z is the vibrational relaxa-
tion collision number, Z is the rotational relaxation collision number. There are
a number of works investigating the vibrational and rotational relaxation times and
relaxation collision numbers [19, 20]. For the general purpose of computation
(basing on the comparison with the experimental data) usually adopt Z =5 and
Z, =50, and in the DSMC calculation the proportion of the elastic collisions to
the inelastic collisions controlled as (1-1/Z -1/ Z):(1/ Z):(1/Z) can maintain
roughly the relaxation rates of rotation and vibration.

One can introduce the exchange probability ¢, of the vibrational energy in the
collision to characterize the vibrational relaxation process. The average collision
probability P in each collision can be expressed through the exchange probabil-

ity ¢ of the vibrational energy

Pv=i=j¢v(Ec)f[ ijd[fT) (7.34)
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where ¢, is supposed to be dependent on the total energy E, in the collision,
where v is the collision frequency, f is the equilibrium distribution of the
energy in the collision (see Eq. (1.94), Eq. (7.26))

1 E, ¥ E,
f(E.[kT) —mﬁ) exp("ﬁj (7.35)

The vibrational energy exchange probability originally was assumed to be the
function of the relative velocity ¢ and proportional to exp(-c'/c,) (see refer-
ences [21, 22]). Boyd [23, 24] followed this thread and developed the energy ex-
change model between transhtional and vibrational modes, treating the vibrational
energy either as continuum distributed or as a set of discrete vibrational energy
levels, and letting 7, follow the experimental data of Millikan and White [19].
As ¢, is assumed to be the function of ¢, , then the instantaneous ¢ manifests
the tendency of preferential transfer from vibrational to translational modes for
high relative velocity, leading to the violation of the energy equipartition. Boyd
used the method of averaging the instantaneous probabilities for all collisions
during one time step in one cell and achieved energy equipartition (see [21, 22]).
In reference [16] on citing a series of references we showed that the vibrational
translational exchange probability not only depends on ¢, , but also on the rota-
tional and vibrational energies in the collision, and on this basis ¢, is supposed

to be dependent on E (see Eq. (7.34)), and have the following form

9, (EC):ZLEf exp(—-—j-é_—_—}, (7.36)

0

where Z,p,5" are determined by substituting into Eq. (7.34) and comparison
with the experimental data, and 7 is given by the experimental correltion of the

relaxation time given by Millikan and White [19]

pr=nklr = exp(A/TP + B). (7.37)
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For nitrogen and p =latm ,A= 220,8 =-24.8 . Substituting Eq. (7.35), Eq. (7.36)
into Eq. (7.34) after some mathematical manipulations (see [16]), the expressions
of §,B,Z, are obtained

s =2J(4p3Vk,

B=2+w +0.5( ,

T é—w
2 2

S* 2+¢ 5 =12
Zy = 2,]= expB| — | /Aulo, x| =-wliT,, . (7.38)
3 (5 ) 2 - 2
IN=-w+{
2

The vibrational exchange probability in the form of Eq. (7.36) is applied to
DSMC simulation of the relaxation process from the initial zero vibrational energy
to higher equilibrium translational energy, the relaxation process of the vibrational
temperature is the same as the result of the relaxation process given by the 7 of
the Millikan-White correlation. Introduction of Eq. (7.36) in the simulation of the
exchange of vibrational and translational energies in the quiescent gas reveals the
satisfaction of the energy equipartition principle and that the vibrational energy

follows the equilibrium Boltzmann distribution.

7.5 SIMULATION OF CHEMICAL REACTIONS
7.5.1 CHEMICAL REACTION RATE COEFFICIENT

In general bimolecular chemical reaction is expressed by the chemical formula

A+B=C+D. (7.39)

A,B,C, D are different molecular components. In the molecular gas dynamics and
in DSMC simulation the chemical reaction rate is most conveniently expressed
through the change of number densities of molecules, then the rate equation of Eq.

(7.39) can be written
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dn
- th =k (T)nyng =k T h oy, (7.40)

k(T) and k(T) denote the direst and reverse reaction rate constants, they are
only functions of the temperature. Usually the reaction rate constants can be ex-

pressed in the following form

kK(T)=aT’exp(-E,/ kT). (7.41)

This form of dependence on the temperature T in conformity with the multitu-
dinous experimental data was put forward by Kooij [25] in 1892, «,b are con-

stants, E is called the activity energy: when b=0

a

k(T)=aexp(-E,/kT), (7.42)

is called the Arrhenius formula. For different chemical reactions a,b,E, in the
reaction rate constant expressed in the form Eq. (7.41) are determined by the ex-

perimental data. Eq. (7.41) is called Kooij or Arrhenius-Kooij formula.

7.5.2 PHENOMENOLOGICAL CHEMICAL REACTION MODEL OF BIRD

When a molecule of component A collides with a molecule of component B,
chemical reaction happens with a certain probability. Usually the reaction cross

section o, is introduced, the ratio o,/c, of it to the total collision cross sec-
tion o, represents the probability with which the elastic collision leads to

chemical reaction and is called sterical factor. More over, for the occurrence of
the reaction, the total energy E in the collision, i.e., the sum of the kinetic en-
ergy &, in the mass center coordinate system and the internal energy must exceed
the activation energy E, . In the previous section we have obtained the equilib-
rium distribution f( E /kT) of the energy in collision (see Eq. (7.35)). Thus, the

probability of occurrence of reaction from the collision between 4,B is

[0 ZEf(E[kT)d(E/KT). (7.43)

iz
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Bird {26] introduced a phenomenological model of chemical reaction, the idea
is to ensure the reaction rate coefficient realized in the simulation by introducing

the appropriate o, to be in conformity with that given by the experimental data

R
in the form of Eq. (7.41). Bird supposes that the reaction cross section o, de-

pendson E and E, and has the form

(7.44)

Z+3/2-—m“

{O’R =0, when£k, <E,,

o, =0,G(E,~E,)*(1-E,/E.) , whenE >E, .

The total number of collisions between molecules 4 and B in unit time and

unit volume is according to Eq. (2.254)
Nep=ny,g (7.45)

where v, is the collision frequency of an 4 molecule with the B mole-
cules and is given by Eq. (2.265). The probability of occurrence of reaction in
these collisions is Eq. (7;43), in which f(E /kT) is given by Eq. (7.35). Thereby

the rate of the forward reaction is obtained

2 1-m 45
kT,
——-dnA =27 (d,.ef )2 nng )% —T— ———-—C’ X
dt 4 m, Tr‘e/' 5
T E‘— W,z + é’

- = 22, (E T E\,(E,
IE”,kT(Ec -E,) (1—Ea/Ec) 2 (ﬁ) xexp(— kT)d(kT)'

The integral can be expressed through the gamma function. By comparison with

Eq. (7.40) the forward reaction rate constant can be written as

= 5
ZCIO_W( KT )1/2 F(C +E—wAB + Cz] Lyt

E
k(T)= ref X exp( 4 ] (7.46)
S 2 — -, ’
en? | m F(C+§—w,w) Ter K

»

where € is the symmetry factor, £ =1 for different components, and € =2 for
A=B. Comparison of Eq. (7.46) with Eq. (7.41) determines C, and C, in the

definition of o,
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1 —_—
20, F(C+b+%) | 247,

kb ~14+w,, 2

= 5
+ - 12 —0 4
en'a F(C > W, ]( m, J Tr]ef y
of

(7.47)

C,=b-1+ow,.

Substitution of these constants into Eq. (7.44) yields the expression of the reaction

probability

7 5 . 1
O’R 507[1/27—;1;/- F(c +E—wA3)( m, i2 (Ec _ Ea )b+g +;
= (7.48)

7 2, T (T d] (3

3
Z+.i.-m »
¢

E

When E approaches E, , this probability should be finite, this requires that
b>-1/2-Z. When b< -1+,

E —eo.

»» the reaction probability tends to 0 together with

This reaction model of Bird is a phenomenological model. Assigning o, the
form of Eq. (7.44) is mainly for integrating the expression, but is not based on
physical considerations. From the above derivation it is seen, that the gas should
be in the equilibrium state (the distribution f(E /kT) of the form Eq. (7.35) is
used), and many times of collisions is needed. However, the practice has shown,
for gas in highly nonequilibrium state and with the consideration of only few col-
lisions, this model can provide the correct order of the value of reaction rate. This

model received quite wide application in practice.

7.5.3 A STERICALLY DEPENDENT CHEMICAL REACTION MODEL

We put forward a sterically dependent chemical reaction model. It started from a
microscopic criterion of occurrence of the dissociation or exchange reaction as the
result of the break down of the chemical bond of a diatomic molecule colliding
with another particle, and derived the chemical reaction rate constant in the Ar-
rhenius-Kooij form [27]. Fig. 7.3 shows the case of collision of a diatomic mok-

cule CD with another particle 4. v_ is the velocity of A relative to CD, 9,
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C 0O D

Fig. 7.3 Schematic of collision of a diatomic molecule CD with another paticle 4

is the angle between CD and DA, 0, is the angle between DA and v, . The
microscopic criterion of occurrence of the dissociation or exchange reaction as the

result of collision between CD and A4 is

(7.49)

max ?

F +F >F
where F is the impact stress occurred in the sphero-cylinder model molecule

CD due to collision [28]

F,= (kemCD )l " V,.COS(OI + 92) . (7.50)

k, is the force constant, m., is the mass of CD. F, is the stress acting on

CD

CD originated from the vibration
F,=(2ke,)" cosp, (1.51)

€, is the vibrational energy, ¢ is the phase angle of CD. F_  is the dynamic
breaking factor of the chemical bond CD. Suppose F_ is different from the

static breaking factor
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F=(2kg,) ", (7.52)
where ¢, is the dissociation energy, but

B = F (7.53)
where a, is called the dynamic factor. Substituting Eq. (7.50), Eq.(7.51) and Eq.
(7.53) into Eq. (7.49) yields

\ /-—;—mwvrcos(eI +0,) + cosq)‘/gz a, J{Z . (7.54)

The factor a, is introduced because the configuration of collision may influence
the energy structure of the system and change the breaking stress of the chemical
bond. This is not contradictory with the fact that the chemical bond energy is a
constant. After collision the energy of A4 and the separated atoms C,D is equal
to the total energy of CD and A4 before collision minus the dissociation en-
ergy €, . This assumption is in agreement with the theory that in the process of the
chemical reaction of two atoms with one collision partner there exists a transi-
tional state [29].

One can suppose that 6, and 6, are small, for only then the collisions lead to

the occurrence of the chemical reaction, so one has

cos(B, +8,) = cosf,cosf, = cosf, cosl, ,

6, is the angle between OA4 and CD (O is the middle point of CD), then

0

the equation (7.54) can be written as

A ,4E, — COSPA[E
VrCOSQ() ZM

’1 (7.55)
= Mo cosf,

This is the microscopic criterion of occurrence of the chemical reaction. If the
factor a, can be fixed and assume the uniform distribution of ¢, it is possible to
implement the simulation of chemical reaction in the DSMC calculation according
to this criterion. But here starting from this criterion we derive the expression of

the chemical reaction rate constant
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In section 2.11 it is obtained, that the fraction of collision pairs with the kinetic
energy, corresponding to the component of the relative velocity along the apse line
of the centers of the colliding molecules, exceeding a certain amount of energy €,
is exp(—¢,/ kT) (see Eq. (2.233), for HS model). This is to say, the proportion of
collisions in which v cos@, exceeds the right hand side (denoted byv, ) of Eq.
(7.55) is exp(-m v} /2kT). Basing on this result, integrating over all possible

$,0, and ¢, one obtains the probability of occurrence of the chemical reaction

2
R O WAL T )

meyp, cos’ kT,

f. de,dede, , (7.56)

where f, is the distribution function of the vibrational energy ¢, which we

obtained in Chapter 1 as Eq. (1.94). Thus, we obtained he probability of the

B! iy’
at} —cosgt?
j” j & "scexpl| —t —y . didod6,,  (1.57)

cos“ 0,

chemical reaction

b= c/z

where t=¢,/kT,, t,=€,/kT,, y=m,T Am +m )T, , { is the number of vi-
brational degrees of freedom, 7, is the vibrational temperature, 7, is the trans-
lational temperature. In general case when the temperature is not too high (for N,
when 7 <25000K ), one has 7, >1. Then the integral Eq. (7.57) can be calcu-
lated approximately. The integral relative to ¢ is (for simplicity, the lower index

of 0, is eliminated)

[ 1! 1]2
e a,t? —cosgt?
I= z‘2 exp| -y dr . (7.58)

cos’ 0

This integral can be found by the method of the steepest descend. Assume
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i 1\2

a,t? —cos ¢t?

(7.59)
Z=+-
4 cos’
It is readily seen that when
2
t= tm = adt* T
[ 1 cos’6 ] (7.60)
—————+C0s¢
Y cosd
one has
az
dt
Besides, it is easy to obtain the values of Z, and d*Z/dt’ at t= t
2
_ S 7 S
ZO—ZII:r,,, -7 1 s
—~cos’ 0+ cos’¢
4
a’t
Zo Zl o ———e
l005264- cos’¢
Y
According to the method of the steepest descend one has
S 1d°z 2
I= tnzl _[0 exp{Zo+ E—dtTl’:”" (Z —Z()) dt =
I 2
t? lexp - a"t; J,
cos’ ¢ +—cos’
v (7.61)

where

J=[re T ar, (1.62)
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2| alt.cos’@ ¥ cos¢

2 2 VZ 2
B:l[cos 6 +ycos ¢j| (1 cos 6+cos¢).

From the definition of y and Eq. (7.60) it is seen

to<<t,,
n <<L,

from where one has
J=a"/B . (7.63)
Then the chemical reaction probability Eq. (7.57) can be written
E
2 51 7,
v i) L
(7.64)

281)

a, -1
0
exp kT, c0s6(y cos¢) _ddo .

cos’ ¢ + -)l/-cos2 ] (y cos’ ¢ + cos® 9)57

Denote the right hand side integral by M , it can be written by applying the gerner-

alized theorem of mean value as

a, —=
M =exp| —— L |K(1,0), (7.65)

cos’ ¢ +—cos’ 0

where

-1
K(r.0)= J-lz/Z.f(n/Z cosB(y cosp)

0

T dodo . (7.66)

) (}/ cos’ ¢ + cosze)g7

The integrals M and K can be evaluated by the numerical quadrature. Define

the value of (cos’¢ +-1—00526 ) at some mean value point (5,5) that satisfies Eq.
4

(7.65) as
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p— 1 -—
L(y,C,ajt*)Ecosz¢+—cosze , (7.67)
Y

and call it the exponential factor of the reaction rate constant, then one can write

P as
r

(7.68)

a £p N
YT °"p[ L{r.L ) AT, }K@’)-

Note, that when y,{,r, and a, are given, K and L are quantities that can

be evaluated. Then the reaction rate constant &, =o,c P, can be written

k,.:a]f’exp{ (y—c_.“dj%} (7.69)
in which
_;;!
26412
a_GTC 3/2 (4’/2) (yag)(adk] s
P
2

K(y.$), Ly, ,a’t,) are defined by the equation (7.66) and equation (7.67).

The chemical reaction rate constant Eq. (7.69) has the Arrhenius- Kooij form of
dependence on the temperature given by the experiments (see Eq. (7.41)), all the
parameters appeared in it are determined by the physical properties of the conpo-
nents (CD and A4) taking part in the reaction, with the only exception that «,
is determined by comparison of Eq. (7.69) with Eq. (7.41) given by the experi-
mental data. The reaction of the dissociation of nitrogen occurred from its colli-

sion with argon

N,+ Ar =2N + 4r, (7.70)
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was provided with the measured data [30, 31] of the reaction rate constant. When
in Eq. (7.69) take a,=1.45 and 1.49, respectively, the rate constants have excel-

lent agreement with the experimental data of [30] and [31].

From both the microscopic criterion Eq. (7.54) and the form Eq. (7.69) of the
reaction rate constant k, derived from it, it can be clearly seen that the dissocia-
tion is dependent on the vibration relaxation. The ratio & (7,,T)/k (T.T) ob-
tained from the calculation of the present model is in good agreement with the
experimental results [32, 33]. For the detailed comparison concerning the above
two issues one can refer to [27].

The success of the chemical reaction model described in this subsection is also
in the introduction of the exponential factor of the rate constant. This enables the
explanation of the fact that the value of T in the exchange reaction rate constant
k,=aT "exp(~T./T) obtained experimentally is usually much less than & .k (see
[34, B]). And this fact seems haven’t received reasonable explanation before.

Consider the following exchange reactions

N,+0->NO+N, (7.71)
NO+0—0,+N . (1.72)

Under not too high temperature (7 =1000K ~6000 K ) the values of ale, /(L-k)
(see Eq. (7.69)) at a, =1 are really much less than £,/k and are very close to

the values of T provided by the experiments (see Table 7.1).

Table 7.1 The T values in the exchange reaction rate constant provided by the experi-

¥

ments compared with the T values calculated from the present model

5

£y

Reaction fkﬁ [34] 33] T34 T [33] ‘2—3( (when T = 3000K )

(7.71) 113000K 113200  37500K 38370K 37800K
(7.72) 76500K 75500K 19700K 19450K 26000K




310 7 DIRECT SIMULATION MONTE-CARLO (DSMC)METHOD

7.6 COMPUTATION OF COMPLICATED FLOW FIELDS

The space vehicles already developed by mankind (the space ships and the space
shuttles) and the space vehicles that will be developed — the space shuttles of vari-
ous countries and variousspace earth transportation systems — will more and more
fly in the transitional regime and utilize the aerodynamic force gained in it to do
the maneuver flight. The understanding of the aerodynamic force and heating on
the vehicle in the transitional regime becomes more and more important. The
experimental means in this regime is not complete, there is not such a high en-
thalpy facility that could simulate completely the non-equilibrium effects (satisfy-
ing the binary scaling low, i.e., the equality of total enthalpy and pL =cons, see
Eq. (0.3)). The numerical simulation of the aerodynamic force and heating be-
comes very important. Since 90ties of the 20" century the DSMC method has
been applied to solve the flow fields of AFE (Aero-assisted Flight Experiment)
vehicle, intersected blunt wedges, the plate with incidence, delta wing, sphere, full
scale space shuttle and planet vehicles (Viking and Magellan), the satellites, SSTO
(single stage to orbit) vehicle and other configurations.

For the demands in exploring the space it is necessary to continuously develop
space vehicles of various configurations satisfying various purposes of the inves-
tigation, from the point of view of the users it is desirable to have a high efficiency
general program that is readily applied to various complicated configurations and
capable of providing exact reliable results. Corresponding to such requirements
two types of DSMC simulation programs has been developed, one is the program
with unstructured body-fitted grid, the other is the program with the Cartesian
coordinate grid.

The body-fitted grid program is developed in the direct simulation of the flow
fields of AEF vehicle [35] and delta wing [36,37] by Celenligil and Moss et al.,
the hexahedron cells are used, each cell is further divided into 6 (or 5) tetrahedron
subcells. Such cells are readily combined with the triangle cells characterizing the
body surface and can ensure the exact representation of the configuration and the
implementation of the correct boundary conditions, and the alignment of the cells

are in conformity with gradients of the flow field characteristics. The problem is
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that the algorithm of tracing the molecules is rather complicated and time con-
suming.

The performance of the body fitted grid program was improved by Wilmoth et
al. [38]. Preprocessing software was directly used to the unstructured, surface and
volume grid generation files, the cell face geometrical quantities were pre-com-
puted, and the accuracy in tracking the molecules through the grid was improved.
The improved code was used to the computation of the SSTO vehicle.

The work of systematic use of the Cartesian grid code to solve the problem of
flow around complicated configurations was started by the position element
method of Bird [39]. The flow field was divided into multilevel Cartesian cells,
the most fine level was called the position elements the size of which represents
the accuracy of the locations of molecules and boundaries, the surface elements
allotted from them determined the surface of the body. Although the surface was
of stepped form, but as the direction cosines of the surface were stored, the surface
appeared with smooth characteristics. This general code of the position element
concept had efficiency of the level of the specific code. The agreement of the lift
to drag ratio of the space shuttle thus obtained with flight data [6] demonstrated
the bright prospective of the DSMC method in prediction of the flow characteris-
tics in the transitional regime. Rault [40] developed the Cartesian grid code with
flexible cell self adaptation, which was readily applied to various configurations,
such as the triangle wing, space shuttle, wave rider, AEF vehicle, planet vehicle
and the high altitude satellite etc. For the simulation of the high density region of
the windward side of the hypersonic vehicle, the local body fitted grid was em
bedded into the Cartesian grid [41], to describe properly the normal gradients near
the wall. In reference [38] a Cartesian grid algorithm was developed called DAC
(DSMC Analysis Code), in which the local refinement of the grid was allowed to
satisfy the requirement of improving the space resolution. Meanwhile, measures
had been taken to ensure the approximate equality of the number of molecules in
each cell to enhance the efficiency of computation. Two codes had been utilized to
solve the hypersonic rarefied gas flow field of the SSTO vehicle, results in excel-
lent agreement had been obtained for surface quantities, flow field quantities and
global aerodynamic characteristics (lift drag ratio, the center of pressure, the

pitching moment etc.). The Cartesian grid required less preparation work and was
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more efficient, n general judging by the computation time per molecule or per
time step, the Cartesian grid software was found 2~10 times faster than the body
fitted code.

We suggested a new version of the position element algorithm of using DSMC
method to calculate the three dimensional flow in transitional flow regime [42,
43]. This is a general code capable to simulate rarefied gas flow around multiple
complicated configurations. The configuration of the vehicle was marked not only
by the most frontier and the most rear position element cubes, but all the position
element cubes that intersect with the body surface were marked as surface ele-
ments. Whether the body was presented analytically or by digital data, the points
of intersection of the arrises of the surface element cubes with the body surface
were exactly determined, and the area AS of the body surface (consisted of sev-
eral triangles) stretched on each surface element was calculated and the directional
cosines of its normal were determined and stored. This was a kind of extension of
the 2-D scheme ‘rectangular subcells with adaptive body fitted cells’ [2] to the
three dimensions. AS was used to calculate the flux characteristics such as heat
transfer, pressure and shear, and also to judge on which surface element a mok-
cule is reflected, i.e., the so called probable criterion of collision of molecule with
the surface element was used (see [42, 43], the probability of glancing of mol-
cules was taken into account).

In the code the real numbers were used to record the position of molecule, the
surface position element was used only to present the form of the body, record
AS of the surface element and the direction cosines of the normal to the surface,
and thereby determine the reflection of the molecules a the surface. Thus, the
collision of the moving molecule with the body surface is a deterministic event,
the utilization of the above probability criterion of collision could lead to errors.
So in [44, 45] a deterministic criterion of collision of molecule with surface ek-
ment was developed, the reflection of molecule at the surface element was accu-
rately determined.

For either analytical or digital means of presentation of the body configuration,
the compiling of the surface element marking program in the position element
algorithm of the DSMC is very time consuming. The accomplishment of it by

individual user for specific configuration is a very complicated and arduous task.
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Reference [45] has made a successful attempt of marking the surface elements by
using a general code. This code met some difficulties in treating the nose of the
cone, the wingtip of thin aerofoil and other configurations, the apex might be
truncated, the tip of the aerofoil might be combined into a single surface. Aiming
at such circumstances, in [46] a new method of marking the surface elements is
suggested: The body surface is presented by small triangles with apexes located on
the plane templates normal to the body axis and equally spaced along the axis of
the body; the relations of the surface element-cubes with the body surface trian-
gles are determined; the reflections of the molecules on the surface are accurately
tracked by the deterministic criterion of molecular reflection. The position element
program embedded with this new surface marking code has been applied to the
computation of flows around sphere, the impingement of the 3-D plume onto plate
and the force action and the pollution problem of the discharge of residual liquid
of a space vehicle of complicated shape [46, 47], showing that the software is
convenient and prompt in treating the flow problems of different complicated con-

figurations.
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8.1 INTRODUCTION

The research on the rarefied gas flows carried out by mankind commenced at the
beginning of the 20® century from the study of the low speed flows of micro scale.
In the middle of the 20™ century owing to the demands in the aerospace explora-
tion the interest of the rarefied gas dynamics was concentrated mainly on the
flows around bodies flying with hypersonic speed. At the end of the 20" century
microscale low speed gas flows rekindled the interest of the rarefied gas dynamics
community. But after near a hundred years the motivation of the study has trans-
ferred from the research on the basic problems of science into the application
study related to the manufacture and the prediction of the performances of the
micro-machines. There are tremendous changes in the complexity of the flow pat-
terns and the tools of analysis of the problems.

At the beginning of the 20™ century there were the experimental research of
Knudsen on the mass flow rate of gas flowing through tiny tubes [1] and the ex-
perimental study by Millikan, Knudsen and Weber on the drag of small sphere in
the air [2, 3, 4]. All these were important basic research topics. Knudsen obtained
the result that the normalized mass flow rate through the tube had a minimum in
the transitional regime (the Knudsen paradox or Knudsen minimum), Millikan
measured the velocity of the charged oil drop and with the help of the formula of
the low speed drag of the small sphere in the air determined exactly the electric
charge of the electron (for this he won the Nobel prize in 1923).

Richard Feynman in his lecture ‘There’s plenty of room at the bottom’ at the
1959 annual meeting of the American Institute of Physics envisaged the possibil-
ity of manufacture of micromachines by the chip processing technology, analyzed
the difficulties that might encountered with the manipulation and control of mi-

cromachines, and even offered a reward of 1000 U.S. dollars for the manufacture
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of a micro motor with diameter less that 1/64 inch (400um). The reward was
won by McLellan in November 1960 for making a small motor which was rather
an art work than a machine. In the late 1980s commenced the fabrication and the
research of the flows in the micro-electro-mechanical systems (MEMS). By the
1990s the micromachinary fabrication techniques became mature, including the
combined surface-bulk silicon micro machining, EDM (electro discharge machin-
ing) and LIGA (abbreviation of German words Lithographie Galvanoformung
Abformung, i. e., lithographic electroforming) etc. The size of most tiny micro
motors at present day is 1~ 10nm . The Journal of Microelectromechanical Sys-
tems for paying deserved honor to R.P. Feynman for his farsightedness and insight
republished this 1959 lecture in the Journal’s initial issue [S]. (R. P. Feynman’s
main contribution, of course, is his fundamental research in quantum electrody-
namics for which he won the physics Nobel prize in 1965)

The micro electro mechanical systems (MEMS) fabricated by these techniques
are complicated systems in which simultaneously occur the motion of the working
media, the perception of the sensors and the retroaction controlled by the elec-
tronic components. The full system simulation of MEMS is beyond the scope of
this book: out of the three functions of MEMS only the motion of the working
media is concerned. And in the following sections only the case of gas media will
be addressed in detail. For the case of liquid media, as it was explained in section
6.8, the MD method is the appropriate means of simulation. The MD simulations
revealed strong density fluctuation of the liquid molecules along the normal direc-
tion near the wall [6] which is the result of layered structure of the liquid mole-
cules that have a tendency to arrange in rows parallel to the wall. The layering
phenomenon of the liquid molecules near the wall is the basis of the origination of
the slip boundary condition in liquid (see Thompson and Troian [7]) and the
anomalous diffusion (the diffusion coefficient in the vicinity of the wall decreases
or increases by a large portion in comparison with that in the bulk of the liquid).
Also, in the liquid such phenomena as the wetting, adsorption and electro-kinetics
(the accumulation of ions near the dielectric surfaces that can be driven by the
voltage difference) closely related to the surface effects become prevailing.

To have an idea of the typical spatial and temporal sizes and the flow parameter

(such as the Knudsen number etc.) ranges of the micro devices let’s have a close
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look at the modern Winchester hard disc drive [8, 9] and the micromachined
channel fabricated both by the UCLA- CALTECH [10, 11, 12] and MIT [13, 14]
groups.

In a Winchester-type hard disc drive the write/read head floats approximately
50nm above the spinning platter surface. The head, the platter and the gas layer
between them together form a thin film slider air bearing. The characteristic length
(the height) is less than the mean free path (~65nm ) of molecules in air at STP.
The typical Knudsen number is about 1.3. The platter speed is typically about
25m/s (at radius Scm of the magnetic disc rotating at 4800 revolutions per
minutes), corresponding to a Mach number of ~0.07 and a Reynolds number of
~0.12 (see Eq. (0.27)). To enhance the recording capacity the gap is expected to
further decrease resulting in a further increase of the Kn number, and with the
increase of the revolution the Mach number and Reynolds number can also in-
crease. The typical length of the slider bearings in disc drives is 1 mm, 1. e. ,
20,000 times the gap at the rear edge of the head, and the width is usually
1/10~1/3 of the length.

The UCLA- CALTECH group first proposed and fabricated an integrated mi-
cro-channel/pressure sensor system using the combined surface-bulk silicon mi-
cro-machining. The microchannels are formed by silicon with a 1.2um layer of
wet oxide on the silicon substrate then bulk-etched with HF to obtain a channel
with straight vertical walls of a height of 1.2,m . Surface micromachining also
enables them to make micro sized pressure sensors integrated with the flow sys-
tem. The second generation micro channel is 40um wide and 1.24m high with
11 pressure sensors uniformly distributed along 4000um length of the channel
with intervals of 400um , the reading from the other two end sensors are omitted
for the end effects. Both helium and nitrogen are used as working media. When
nitrogen is used, as the mean free path of nitrogen molecules i1s almost the same as
that of the air, the Knudsen number at the outlet of the channel under STP is
~0.055, but when helium is used, as the mean free path is inversely proportional to
the squire root of the molecular mass (see Eq. (2.222)), the Knudsen number is
~0.16, the flow is surely beyond the slip flow regime. Reference [12] showed that
under the conditions of the experiment the Reynolds number is less than 0.07 for

nitrogen and less than 0.009 for helium, corresponding to Mach number of
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~0.0026 and 0.00089 respectively. The MIT micro channel is fabricated approxi-
mately the same way with a height of 1.33, width of 52.25 and length of
7500um . To measure exactly the flow rate the modified accumulation techniques
have been developed and the thermal stability requirements have been decreased
by five orders of magnitude {13,14]. Nitrogen, argon, carbon dioxide and helium
have been used, the flow of argon has a Knudsen number of 0.05 at the exit at an
atmospheric pressure, that of helium has a Kn~2.5 at the exit at a low pressure of
6.5x10° Pa .

The silicon micromachining fabrication technology has manufactured besides
micro channels also micro nozzles, micro valves, micro accelerometers, micro
pumps, micro motors and other micro devices. The gas flows in them owing to the
micro scale of the devices usually enter into the slip flow regime, and the flows in
micro channel, micro pump, micro valve, micro nozzle and the hard disc drive
slider bearing enter the transitional flow regime. Thus for simulation of the gas
flows in MEMS the methods of molecular gas dynamics or rarefied gas dynamics
must be mvoked. The objects of study in comparison with circular pipes and
sphere studied in the beginning of 20" century are much more complicated. As for
the tools of solution various methods developed in the transitional regime and
elucidated in chapter 6 can be utilized. In MEMS the flow is usually very slow,
the information to noise ratio is very small, thus leads to difficulties in statistical
simulation. In the next section some methods of solution of the rarefied flow
problems, such as the method of linearized Boltzmann equation, the Lattice
Boltzmann method (LBM), the slip Navier-Stokes solution and the direct simula-
tion Monte Carlo (DSMC) method, will be examined from the point of view of
utilization for simulation of the flows in MEMS. In particular the unfeasibility of
LBM in simulation of transitional flow is shown by comparison with the DSMC
results. A method developed by Fan and Shen called the information preservation
(IP) method allows the simulated molecules to carry the macroscopic information
of the enormous number of molecules one simulated molecule represents, uses it
to obtain the macroscopic characteristics, and in principle has found the way to
overcome difficulties of large noisy to useful information ratio. The IP method
will be introduced in section 8.3, with a general description and some validation of

the method and a program demonstrating the method. In section 8.4 the results of
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IP simulation for the unidirectional flows are described. The specific features of
low flow speed and large length to height ratio of flows in MEMS pose a problem
of elliptic nature with boundary conditions set far apart and requiring to be speci-
fied in the process of solution, leading to the issue of mutual influence of the inlet
and outlet boundary conditions and the need to regulate them. The resolving of the
boundary condition regulation problem by using the conservative scheme of con-
tinuity equation and the super relaxation method is illustrated on the example of
flow in long micro channels in section 8.5. The thin film air bearing problem is
solved in section 8.6. By using the same scheme and method the IP simulation of
the flow of authentic length of the hard disc drive is described and compared with
the result of the Reynolds equation. The use of the degenerated Reynolds equation
is suggested by the author to solve the microchannel flow and to serve as a crite-
rion with the merit of strict kinetic theory to test various methods intending to
solve the transitional internal MEMS flows. The method, the comparison with the
experimental data and the IP calculation and the test of the LBM by it is given in

section 8.7. Finally, some review and summary are given in section 8.8.

8.2 METHODS FOR SOLVING THE RAREFIED GAS
FLOWS IN MEMS

In the previous section we have seen that the gas flows in MEMS typically are in
the slip and transitional flow regimes. The method of Navier-Stokes equation plus
slip boundary condition, the method of linearized Boltzmann equation, the Lattice
Boltzmann method and the direct simulation Monte Carlo (DSMC) method will
be examined in this section from the point of view of utilization for simulation the
flows in MEMS.

The solution of the rarefied gas dynamics problems by using the Na-
vier-Stokes equation with slip boundary conditions (see Chapter 5) can make ad-
vantage of the mature and efficient methods of the Computational Fluid Dynamics
(CFD). Karniadakis and Sherwin developed high order finite element (spectra
element) method [15] to solve the compressible and incompressible Navier-Stokes
equations with the first and higher order slip boundary condition, and by using the

so called x Flow code solved many interesting MEMS flow problems which
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were also reported in [16]. There is no doubt about the appropriateness of this
method in solving problem in the slip flow regime. Kardiadakis and Beskok ex-
tended the method for use in micro flows with Kr as high as 0.5. This seems to
be a kind of extrapolation beyond the reasonable application range. But it brings
into full play the high efficiency of the continuum model in treating the complex
geometries. Still one should be cautious relative to the results of the extrapolation.
Here we cite two examples with one showing the necessity of the caution and the
other showing the success of the extrapolation. The first example is the calculation
of mass flow rates through short micro channels [17]. The flow rates obtained by
the Navier-Stokes equation with slip boundary conditions and the DSMC methods
(see Fig. 8.1) differs significantly as Kn > 0.1, and the slip Navier-Stokes solution
can not yield the flux minimum predicted first by Knudsen [1] experimentally (for
more detailed account of the Knudsen minimum see section 8.4). The second ex-
ample is the flow in the air bearing between the read/write head and the hard disc
drive platter. The slip corrected Reynolds equation can provide result in fair
agreement with the DSMC result for Knudsen number as high as 4.2 (see [18]).
But the calculation by the generalized Reynolds equation based on the solution of
the linearized Boltzmann equation for the flow rate of Poiseulille flow by Fukui
and Kaneko [19] is in excellent agreement with the result of DSMC. This latter

success of course must attribute to the employment of the Boltzmann equation that
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Fig. 8.1 The variation of the mass flux through short channels calculated by the IP, DSMC
methods and the Navier-Stokes equation with slip boundary conditions [17]
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is appropriate in the entire transitional regime. (For more detailed account of the
thin film air bearing problem see section 8.6.)

The linearized Boltzmann equation (see section 6.2) is suitable for solution of
low speed problems in MEMS, and can serve as the criterion for testing other
methods. At the same time the linearized Boltzmann equation can be used to solve
the flow field with temperature variation which is the typical case in MEMS. 1t is
an actual task to develop the solution of the linearized Boltzmann equation to
complex geometry. Some times the equation being linearized is not the Boltzmann
equation but the BGK equation, in which case the solution is much simpler. But to
make the solution of the BGK equation corresponding to the physical reality,
some modification of the kind of parameter regulation is needed. And there are
still differences between such solution and the solution based on real molecule
models.

At the second half of 1980 years Frish et al. developed the lattice gas method
[20], in which particles are allocated at lattice consisting of equilateral triangles
with velocities either along the sides of the triangles or equal zero. Every time step
the particles move a cell length (except the particles with zero velocity), and it is
shown that Navier —Stoke equation can be obtained from such lattice gas. The
shortcomings of such lattice gas are: the amount of work increases with the in-
crease of Reynolds number, and it can only simulate incompressible fluid under
small Mach number and the statistical noise is large. The first two shortcomings
are tolerable for small speed micro flows. The latter shortcoming is essential and
is resolved by introducing the lattice Bolotzmann method (LBM, see [21] and [22],
and the literature cited in the latter). Lattice Boltzmann method integrates the ki-
netic theory equation (Boltzmann equation or its simplified version) at the location
of each lattice along each discrete velocity. The arithmetic operations of this
method are simple, and it is easy to treat arbitrary complex geometry and imple-
ment parallel computation. It seems especially suitable for treating micro scale
flows. Recently Nie, Doolen and Chen [23] simulated the flows in microchannels
under large Knudsen numbers in the transitional regime using the LBM and ob-
tained results of the pressure distribution etc. The microchannel flows under the
same parameters are simulated in [24, 25] using both Nie et al.’s LBM method and
DSMC method to examine the feasibility of the LBM method in the transitional
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regime. The simulation results show that for small Knudsen number
(Kn=0.0194) the LBM and DSMC methods agree fairly well. For Kn=0.194,
the velocity profiles of the LBM and the DSMC (as well the 1P) methods differ
slightly, but the pressure distribution results have apparent difference (see Fig.
8.2). In the transitional regime, when Kn=0.388, the DSMC simulation results
do not verify the negative deviation of the pressure from the linear distribution
predicted by the LBM method, and the results of the LBM and DSMC differ
significantly in magnitudes (see Fig. 8.3). This shows clearly that this version of
LBM is not able to simulate the MEMS flows in transitional regime.

The direct simulation Monte Carlo (DSMC) method (see Chapter 7) is an ap-
propriate method to treat gas flows in MEMS and is able to simulate flow prob-
lems in regimes from free molecular to continuum. The simulation results of
DSMC for bench mark problems can be used as criteria for other methods and it is
able to treat problems abundant physical contents, including chemical vapor depo-
sition, plasma processing and the flow field with temperature variations. But utili-
zation of DSMC method in MEMS flows encounters with the problems of the
excessively high demands to the storage and computation time of the computer.
Take the micro channels with embedded pressure sensors fabricated by the global

processing techniques [10, 11] as example, the size being 1.2x40x3000um’ .
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Fig. 8.2 Comparison of the deviation of the stream-wise pressure from a linear pressure
distribution given by LBM, DSMC, IP, and slip Navier-Stokes equation, for the case of
Kn=10.194 [24,25]
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Fig. 8.3 Comparison of the deviation of the stream-wise pressure from a linear pressure
distribution given by LBM, DSMC, IP, and slip Navier-Stokes equation, for the case of
Kn=10.388 [24,25]

When the cell dimension Ar is taken of the order of the mean free path 1, even
treating the problem as two-dimensional (neglect the span wise variation), 6 x10°

cells must be allocated. If distribute 20 molecules in each cell, about 10’ mole-
cules must be followed in the simulation. The macroscopic velocity of the gas
flow in the experiments of [10-14] is 0.2~ 0.5m/s, the time for transiting the
channel is about 107s, or 10°Ar (the time step Ar is taken as the order of the
collision time10™s). This makes un-accomplishable the task of gradual regulat-
ing the inlet and outlet boundary conditions of the channel to gain the steadiness
of the flow (this requires multiple transit times). The difficulty of simulating the
low speed flow in MEMS also lies in huge statistical scatter on the DSMC results.
The order of the useful information is of the order U=0.2m/s, and the back-
ground noise under room temperature ¢, = V2kT /m is of the order of 10°m/s.
Only when the sample size N is as big as 10°, the standard deviation ¢,/ JN

could be small enough, and this is an excessive requirement for the computation
time. This makes some researchers think that DSMC is not suitable for simulating
gas flows inside MEMS [26]. In fact there have been many experimental results of
the micro-channel flows [10-14], at the same time the DSMC simulation of the
micro channel flow has been limited to the high speed and even hypersonic cases
[27, 28].
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Recently the results of the DSMC method with fluctuations have been filtered
by using the flux-corrected transport (FCT) method [29] as filter. It is shown, that
when the flow velocities are much smaller than the thermal velocity and the num-
ber of the real molecules is much larger than the number of simulated molecules,
FCT can extract smooth solution from the noisy solution of DSMC with the high
frequency statistical fluctuations eliminated. But verification by experiment or
exact solution is needed to judge whether the filtered solution is in exact agree-

ment with physically real solution.

8.3 INFORMATION PRESERVATION (IP) METHOD
8.3.1 THE DESCRIPTION OF THE METHOD

Fan and Shen proposed a particle-based method, called the information preserva-
tion (IP) method [30, 31], to treat the problems encountered by the DSMC method
of the huge ratio of the noise to the useful information and the demand of ex-
tremely large sample size. This is a method imbedded in the DSMC method in
which each simulated molecule is assigned two velocities: thermal velocity ¢
and information velocity u,. The former is just the molecular velocity ¢ in the
DSMC method and is used to calculate the motion, collision and the reflection of
molecules at the surfaces following the same algorithms and models as the DSMC
method. Besides ¢ we suppose that each molecule carries the so called informa-
tion velocity (IP velocity) u, to record the collective velocity of the enormous
number of real molecules represented by each simulated molecule. The IP veloci-
ties do not produce any influence on the motion of molecules, and are used only
for summation to obtain the macroscopic velocities, the primitive information is
taken from the oncoming flow and the body surface. When the molecules reflect
from the surface, collide with each other, experience force action and enter from
boundary, the IP velocities attain new values [30-33, 17]:
1. For simulated molecules diffusely reflected from a wall, the reflected IP veloc-
ity u, has the same velocity as the wall. 1f the wall has a tangential momentum

accommodation coefficient of value o the reflected molecule with a probabil-
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ity of o has an IP velocity the same as the wall, and with a probability
(1-o) retains its tangential velocity before incidence.
2. For two simulated molecules colliding each other, the post-colliston IP veloci-

ties satisfy the momentum conservation

» * mu., +mu.
’ :u,—,Z: 17,1 27,2 , (8 1)

m +m,

*

where superscript * denotes post-collision quantities.

3. If there are external forces acting on a cell, acceleration a = F/pAV will con-
tribute an velocity increment @AV to each simulated molecule during a time
step Ar, where F is the sum of the external forces, p and AV are the
density and volume of the cell, respectively.

4. For simulated molecules entering the computational domain from boundaries,
u, is set to satisfy the boundary condition.

5. In general under the isothermal assumption (which is valid for slow subsonic
micro flows without heating) the IP velocity u, of the simulated molecule and
the IP velocity U and IP density o (or n) of the cell are introduced which

obey the mass conservation and momentum conservation equations

[ av = fjpu-tas (82)
”jp%dV:—ledS, (8.3)

where the integrals are taken on the volume and surfaces of a cell, I is the exter-
nal normal vector of the surface. It is noted that in the right hand side of the mo-
mentum equation only a non-viscous term is retained. In fact the IP quantities are

governed by a general momentum equation
ij%drfz—ﬁaldss-ﬂpzdm [[rtas (8.4)

where o is the pressure stress tensor and 7 is the viscous stress tensor. But as
the IP quantities are carried along by the simulated molecules of the DSMC proc-

ess which migrate across the cell surface in the positive and negative direction and
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implement the action of viscous transport, so although the IP quantities are written
formally as governed by an inviscid momentum equation, but as the IP process is
embedded in the DSMC process, the IP quantities are factually governed by a
more complete conservation law including the viscous transport. After a time step

At the cell IP density attains increment according to Eq. (8.2)
At
Ap=~—A—E/—HpU-IdS, (8.5)

from where the density and pressure are also renewed : p =nkT . The increment

of the IP velocity of the cell is, according to Eq. (8.3),

A
PAV

Au= [[ptas., (8.6)
and is added to the IP velocity of the simulated molecules in the cell. The renewed
quantities are used for the next step calculation. This step of the renewal of the IP
quantities is conducted after ‘calculation of collisions corresponding to time Ar’
(see Fig.7.2 Flow Chart of program of the DSMC-IP method). The calculation of
the macroscopic quantities should employ the information velocities introduced,
for example, the macroscopic velocity of a cell is obtained from the averaging of

the IP velocities of molecules in the cell
1 &
Uy = ‘N—C‘;”i,k (8.7)

where N, is the number of simulated molecules in the cell; % is the index of

the molecules in a cell. The shear stress on a surface element with area A4, is

given by
N, )
m(u,  —u, ;)
. 2, (8.8)
! tXAAW
where N, is the total number of molecules incident to the element during the

sampling time ¢ , subscript ¢ denotes the tangential direction of the element,
and superscripts i and r denote the incident and reflecting values of the IP

velocities, respectively.
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8.3.2 THE VALIDATION OF THE METHOD

Now we validate the reflection rule of the IP procedure [34]. For simplicity we
validate the case of diffuse reflection, namely, the statement ‘for simulated mole-
cules diffusely reflected from a wall, the reflected IP velocity u, has the same
velocity as the wall’ in step 1). The extension to the case of incomplete diffuse
reflection does not pose any principle difficulty. As a simulated molecule repre-
sents an enormous number of real molecules, we trace the velocities of the nu-
merous real reflected molecules and obtain the IP value by averaging. An individ-
ual molecule after diffuse reflection from a stationary surface would have velocity

with the components

u =—(In(ranf)"*1 B, (8.9)
v=Vcos@, (8.10)
w=Vsind, (8.11)
where

k -1/2

B=2=T)"", (8.12)
m

V =—(In(ranf))"'*/ B, (8.13)
0= 2rxranf , (8.14)

and ranf is a random fraction uniformly distributed between 0 and 1 (see Eqgs
(3.20), (3.15), (3.12), (3.18) and (3.19) of section 3.2). In the DSMC procedure
one records these individual components (with concrete values of ranf ) and then
uses them to obtain the macroscopic quantities only in the step ‘sampling of the
flow properties’. In the IP procedure we record the averaged values of », v and
w already at this stage of reflection. From the derivation of Eq. (3.20) (Eq. (8.9))
and the practice of the DSMC procedure, one sees that thus sampled velocity

components u in the whole guarantees the correct value of the mass flux of dif-
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fusely reflected molecules and yields no macroscopic velocity in the normal to
surface direction. So after averaging all u, the zero macroscopic velocity com-

ponent is obtained:
u=0. (8.15)
The averaging of v vyields:
v=Vcosf=Vcos0=0, (8.16)
as v and cosé@ are independent variates and
cosf =0

according to Eq. (8.14). Similarly one has

w=0. (8.17)

If the surface is not stationary but has certain velocity, the velocity components
would have been added tou,v,w, and after averaging this velocity would be ob-
tained as the IP velocity after diffuse reflection. So the statement ‘for simulated
molecules diffusely reflected from a wall, the reflected IP velocity u, has the
same velocity as the wall’ is verified.

Next we validate the collision rule of the IP procedure [34, 35]. The compo-
nents of the post-collision velocities of the two collision partners (with velocity
components u,v,,w, and u,,v,,w, before collision) have been found already in
section 2.4.5 (see Eq. (2.112)):

mu, + m,u m, . .
P22 2_sinfcosgc’,

u
1
mo+m,  m+m,
. mu +myu mo . .
u, =—-+—=>2 1 _sinfcosdc,,
m+m,  m+m,

. omy +my m, .o
y=—t1l—224 2 infsingc),

mo+m,  m +m,
myv, +m,V. m . .
vy=—1 22 1 infsingc,
m+m,  m+m,
. mw +m,w, m, .
w = + cosfc;,
m, + m, m, +m,
. MW, W, m .
wy=—1 2 2__ 1 coséc.

my +m, my +m, (8.18)
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where ¢ is a variate uniformly distributed between 0 and 27, and cos@ is a
variate uniformly distributed between -1 and 1. Here we understand
u, v, W, ,U4,,v,,w, as one set of the velocity components of many individual real
molecules the two colliding simulated molecule represent. In the IP procedure we
are not interested in recording the individual v/, w,u;,v;,w; but are intending
to record (preserve) the averages of velocity components of the enormous number

of molecules. For example, we have from the first equation of Egs. (8.18)

—  mu, +mu m, T
="t 2 —sinfcosgc;
mo+m,  m+m,
mu, +mu m, —
=—1l 224 > —sinfcosgc)
m, +m, m, +m, (8.19)
_myu +myu,
>
m, + m,

as the sin@ and cos¢ are independent variates and ¢ is uniformly distributed

between 0 and 27 . Analogously we have

= T mu +mu
* * 171 272
U, =y, =——1—22 (8.20)

m+m,

S my +myy,
v o=y, =2 (8.21)

m, +m,

—  mw, +mw
W, =w =] 2%

(8.22)
nm + m,

Thus, the IP collision rule, Eq. (8.1) of step 2), has been validated. As the IP

procedure uses the already averaged values to obtain the macroscopic quantities

(see Eq. (8.7)), it is natural that the sample size needed for convergent IP averag-

ing is much less than that needed in the DSMC procedure.
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8.3.3 PROGRAM DEMONSTRATING THE METHOD

In section 7.3 a FORTRAN program is given to demonstrate the solution of Cou-
ette problem by the DSMC method (see Appendix IV), it is also used to demon-
strate the IP method. In this program VMEAN(I, NO-MOLECULE), 7=1,2,3,
are introduced to denote IP velocities. The statements in the program used to im-
plement the changes in the IP method are marked with * and ™, the statement

*

marked with * signify that it is used to replace the statement before it, those

ok

statements marked with signify that they are the statements needed to be
added anew. The above described cases of changes of the IP velocities and the
procedure of obtaining the macroscopic quantities from the IP velocities are
shown in the program (see section 7.3 and the statements in the program in Ap-
pendix 1V marked with * and ™).

When employing the IP method, another change should be introduced as well.
This is the change in the collision cross sections of the molecules. In section 2.4
the expression of viscosity coefficient g for various molecular models has been
given according to the Chapman-Enskog transport theory in the kinetic theory (see
Eg. (2.71)), and the diameters of molecules have been determined (for HS model,
see Eq. (2.77), for VHS and VSS models, see Eq. (2.234), where the reference
diameter of molecules is given by Eq. (2.235)). In the IP method, when assigning
the IP velocities after collision, we stipulate they follow the macroscopic momen-
tum conservation law, Eq. (8.1), but in the DSMC method the velocities after col-
lision are assigned according to the momentum conservation in each collision (the
detailed conservation), and this is the condition implied in obtaining the expres-
sions of d for various models. The difference in the assignment of the post
—collision velocities leads to the necessity of modification of the collision cross
section in the IP method to obtain the correct value of viscosity . The concrete
method is to obtain the correct experimental value of # by varying 4, in em-
ploying the IP method to solve the Couette problem under small Kn number (see
[31]). Take the HS model as example. The collision diameter (see Eq. (2.77))

Sme,

d c =\ > .
s (16\/—2;/1 (8.23)
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is used as the initial value of the collision diameter in the IP method, the shear
stress 7., of each cell can be calculated according a formula analogous to Eq.
(8.8), from where the value of x, u=7 Ay/Au, of the cell is obtained, the vis-
cosity u 1s obtained as the average of the g values in various cells (except the
cells in the Knudsen layer). The diameter of HS mode! is modified according to
the difference between this value and the experimental u value (the increase of
d,, makes u decreasing), until the correct experimental x4 value is obtained.
The d,, thus fixed is the value to be used in the IP method. The reference di-
ameters of the VHS model can be obtained by analogous method [31]. Some val-

ues of d,; and reference diameters d,, of the VHS model are listed in Table 3

ref

of Appendix 1. In the example program demonstrating the I[P method, the collision
diameter of the A4r molecule, when employing the IP method , is replaced by
dys =3.963x107""m (see the first statement with * in subroutine subcl in the

program).

8.4 UNIDIRECTIONAL FLOWS

The Couette flow is a steady flow of gas occurred between two parallel plates
moving with velocity U, in opposite directions along their own planes. The ve-
locity profiles and the shear stress profile obtained by using the IP method in
simulating the Couette flow [30, 31] are given in Fig. 8.4 and Fig. 8.5. The veloc-
ity profiles are given under three Knudsen numbers, Kn=0.1128, Kn=1.128
and Kn=11.28, and are compared with the solutions of the linearized Boltzmann
equation [36], of the moment method [37] and of the Navier-Stokes equation plus
the slip boundary condition (see section 5.4.1, Eq. (5.65)). The velocity profiles of
the IP method under the small, medium and large K»n numbers are all in good
agreement with the solution of the linearized Boltzmann equation of Sone et al.,
but the agreement between the moment method of the second order approximation
by Gross and Ziering and the result of the linearized Boltzmann equation (and the
IP method) is not so good, especially for medium Knudsen number. The solution

of the Navier-Stokes equation plus the slip boundary condition yields relatively
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Fig. 8.4 Velocity profiles of the Couette flow for Kn, =0.1128, Kn, =1.128 and
Kn; =11.28 . Comparison of the IP method [30], the linearized Boltzmann equation [36],
the moment method [37] and the Navier-Stokes equation plus slip boundary condition

1.0 - = )
| o P
i Sone et al.
08pF ———— Gross & Ziering
[ - Slip N-S, o=1 ;
i FM ;
0.6
- -
o [
" [
04
02f
| /
i e
00k .‘.T.‘? sl e e ol
10° 10 107 10° 10" 10°

Kn

Fig. 8.5 Variation of the shear stress with Kn in the Couette flow. Comparison of the IP
method [30], the linearized Boltzmann equation [36], the moment method [37], the Na-
vier-Stokes equation plus slip boundary condition and the free molecular flow theory
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good result only for small Knudsen numbers. The shear stress in the Couette
problem solved by the Navier-Stokes plus slip boundary condition (see Eq. (5.64)
in Chapter 5) is a case incidentally appropriate for the entire transitional regime.
The solutions of the IP method, of the linearized Boltzmann equation, of the mo-
ment method and of the Navier-Stokes equation plus slip boundary condition are
in good agreement in the whole transitional regime (see Fig. 8.5, in which
Ty =PCU, ! Jr | see Eq. (4.54), note, the wall velocity U, here constitutes
only half of the velocity U in section 4. 5). It is noted that the IP method is in
exact agreement with the solution of the linearized Boltzmann equation, and si-
multaneously agrees with the theoretical solution of the free molecular flow in the
collisionless limit.

In section 7.3 it has been mentioned that the DSMC program aimed at the Cou-
ette flow problem can be amended to be used in solving the Poiseuille flow and
the Rayleigh problem, the same is true for the IP method. The results of solution
of the planar Poiseuille flow and the Rayleigh problem by the IP method were
presented in detail in [30, 31], here only the mass flow rate of the Poiseuille flow
and the velocity profile and the shear stress in the Raylegh problem will be dis-
cussed.

The mass flow rate of the Poiseuille flow has been calculated by the Na-
vier-Stokes equation with slip condition on the boundary in section 5.4.2 (see Eq.
(5.74)). This Q, is a monotonically descending function of Krn. But at the
beginning of the 20™ century Knudsen [1] discovered through experiments that
there appears a minimum of the mass flow rate in transitional regime, this is the so
called Knudsen minimum or the Knudsen paradox. This result was confirmed in
the later experiments [38] for many gases (air, helium, hydrogen, carbon dioxide
and Freon-12). Fig. 8.6 shows the comparison of various methods and the experi-

ment (v’ =ac,, a isapressure gradient factor, see Eq. (7.11)). The result of the

1P method agrees with Eq. (5.74) (for o =1) under small Kr numbers, yields
the Knudsen minimum under medium K» numbers and agrees with the numeri-
cal solution of the linearized Boltzmann equation [39] and the experimental
data, demonstrating the ability of the IP method in predicting the fine flow char-

acteristics in the transitional regime.
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Fig. 8.6 The variation of the dimensionless mass flux in the Poiseuille flow with Kn
number (comparison of IP [30] and linearized Boltzmann equation {39} with the experi-
mental data [38].)

The velocity profiles in the Rayleigh problem obtained by the IP method in the
initial stage of motion 7=0.01z, (z, collision time) agrees well with the result
of free molecular flow (see Eq. (4.99) in Chapter 4), and after many collision
times (¢ =100z,) agrees well with the solution of the slip Navier-Stokes equation
(Eq. (5.88) in Chapter 5) (for detailed account see [30, 31]). In the transitional
regime ¢=>57,, as there is no numerical solution of the Rayleigh problem by the
linearized Boltzmann equation, the calculation by the DSMC method has to be
employed to check the result of the IP method (see Fig. 8.7)). From the compari-
son it is seen that the agreement is excellent. But for the case of U, =1m/s, the
DSMC method has to employ enormous sampling size 2x10* to reduce the sta-
tistical scatter, in the result the computational time spent is 3x10* times of the IP
method. In Fig. 8.8 the comparison of the results of various methods of the shear
stress (normalized by the value in free molecular flow 7., = pc, U,/ 27 , see Eq.
(4.101)) of the Rayleigh problem is given. Except the results of the IP method, the
DSMC method [31], the slip Navier-Stokes equation and the FM theory, also
shown is the result of the moment method [40]. The agreement of the IP method

with the collisionless solution in the free molecular flow limit (¢ <« 7z, ), with the
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DSMC result in the transitional regime (¢~ 7,) and with the Navier-Stokes slip
solution in the slip flow regime (> 7, ) is uniformly good.
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Fig. 8.7 The velocity profiles in the Rayleigh problem at ¢ = 5z, obtained by the IP method,
the DSMC method [30, 31} and the moment method [40]. The sample size of the IP method
is 6x10’, of the DSMC method is 2x10°
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Fig. 8.8 The variation of the shear stress (normalized by r,, = pc,,,Uh_/2\/;) of the
Rayleigh problem with Kr number
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8.5 THE MICROCHANNEL FLOW PROBLEM

In treating the unidirectional motions utilization of the steps 1), 2), 3) and 4) given
in section 8.3 was sufficient for renewal of the IP velocities. Only when treat the
Poiseuille flow the expression of the IP velocity increment (Eq. (8.6) of step 5)

was used. When the pressure variation is expressed as
p=p(l+axlh), (8.24)

the velocity increment can be found from Eq. (8.6) as
Au=—(ap,/ ph)At . (8.25)

In fact, Eq. (7.11) in section 7.3 has been obtained in this way. In the
two-dimensional and three-dimensional cases the method of renewal of the cell IP
velocities U, the IP density p and the molecular IP velocities u described in
step 5) should be used systematically.

Various two-dimensional problems have been solved by the TP method, includ-
ing the microchannel flow [41, 42 , 43, 17], the flow around the plane plate [44,
45, 47}, the flow around the airfoil [46, 48], the cavity flow [49], non-circular
Poiseuille flow [50], the flow in membrane filter [51], etc.

Microchannel 1s the basic constituent of the MEMS devices, the geometric
form is regular and simple (see Fig. 8.9), but can reveal the specific features of the
low speed micro internal flows, i. e., the issue of the mutual influence of the
boundary conditions at the inlet and the outlet caused by the elliptic nature of the
problem. For the DSMC-IP procedure it is necessary to prescribe the values of the
pressure p and the velocity distribution U over the cross sections at the inlet
and the outlet of the channel to start any simulation. But fixing all p and U at
the inlet and the outlet simultaneously would over determine the boundary condi-
tions: The arbitrarily chosen p and U would be contradictory to each other.
The correct values of p and U at inlet and outlet must be obtained in the
process of solution of the problem. A method of fixing p as the same of the
prescribed (experimental) condition and allowing U change continuously and
finally reach the steady solution is adopted here [41]. Thus the process of the
DSMC-IP solution is always one of gradual adjustment towards a steady state. It is
very critical that the conservative form of the mass conservation equation must be

employed
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its second order central difference scheme yields the density increment

pi—l,jUi—l,j —pi-}-l,jUiH,j + pi,j—lV;,j—l _pi,j+lVi,j+l)

Ap=At
P ( 2Ax 2Ay

(8.27)

This density increment expression can be obtained from the integral form mass
conservation equation (8.5) directly by using an integration domain ABCD
(2Axx2Ay) with point (i, /) in the center (see Fig. 8.10). The adoption of the
conservative form of the continuum equation or the integral form of conservation
equation guarantees that the mass flux flown from the adjacent domain of area

ABCD will flow without any numerical error into the integral area and vice versa

by
D C
i+
Ay = X
il | i mlj
A i.jq’ B
Ax

Fig. 8.10 The control surface ABCD of the conservation equation and the cell central points
(i,j) in the IP method
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and avoids the accumulation of numerical errors from the non-conservative
scheme. This is an issue that must be taken into account whenever solving a slow
rarefied channel flow or any other slow internal rarefied gas flows.

The increments Ap and Au from Eq. (8.27) and Eq. (8.6) allow one to ob-
tain the renewed fields of pu and pv which are unfortunately with large fluc-
tuations and are smoothened by a averaging technique to avoid the amplification
of the errors which would influence the stability of the calculation. The increment
Ap obtained from Eq. (8.27) is only of the order of 107 of p with time step
At being of the collision time for slow gas motion in long micro-channels
[10-14]. For all simulations in such channel flows Ar has been taken as 1/2 av-
erage collision time at the inlet. Direct employment of this Ap to achieve the
steady (convergent) state is too time-consuming. A super-relaxation technique is

employed to speed up the convergence process

1+A

P =pl oM, (8.28)
where o s a super relaxation factor. In practical calculations @ 1s taken to be
between 100 and 2000 and trends to 1 when convergence is achieved'.

The necessity of using the conservative form of the mass conservation is illus-
trated on one of the flow cases under the experimental conditions considered [12].
Helium flows through a 1.2x40x4000zm" micro-channel with an inlet pressure of
19.0 psig into the atmosphere (outlet pressure 0 psig ). Fig. 8.11 and Fig. 8.12
show the evolution of mass fluxes at all cross sections along the channel by the 1P
calculation. The slip Navier-Stokes solution is adopted as the initial pressure dis-
tribution. It is different from the real distribution since the flow is in the transi-
tional regime. This resulted in a non-uniform mass flux distribution along the
channel length at the initial stage of simulation (at 1~2x10°A¢, the black trian-
gles in Fig. 8.11 and Fig. 8.12). By using the conservative scheme, Eq. (8.27),
and the super-relaxation technique, Eq. (8.28), a steady state is approached after

about 2x10° time steps (the hollow spheres in Fig. 8.11). And the averag-

' For short channels and not slow flow speed, Ap!; might be the same order of pl.’)/. ,and

an @ less than 1 is suggested to be used to stabilize the convergence process.
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ing-smoothing process gives a relatively smooth and almost uniform mass flux
distribution (solid line in Fig. 8.11). If the non-conservative scheme were used, the
mass flux would remain non-uniform. Fig. 8.12 shows the mass flux distribution
after 2x10° time steps (the hollow spheres, the solid line being the averaged
smoothened data) by using the non-conservative form of the continuity equation.

The mass fluxes at various cross sections have not been regulated by the simula-
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Fig. 8.11 Evolution of mass flux distribution in IP simulation of the micro-channe! gas flow
of [12], while the conservative form of the mass conservation equation is used
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Fig. 8.12 Evolution of mass flux distribution in IP simulation of the micro-channel gas flow
of [12], while a non-conservative form of the mass conservation equation is used
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tion relaxation process, for the adjusting act of the mutual influence of the inlet
and outlet boundaries have been damped by the numerical errors inherent in the
non-conservative scheme.

The effect of the acceleration action of the super-relaxation technique is illus-
trated on another experimental case [l11] of nitrogen flowing in a
1.2x30x3000um® channel with inlet pressure of 15psig into the atmosphere.
Figure 8.13 shows the evolution of the density p at the center of the cross sec-
tion located at 2500um from the inlet in the IP calculation by using a su-
per-relaxation factor @ of 1, 100 and 1000, respectively. While p approaches
the steady value of 1.39kg/m’ in about 6x10* time steps with a relaxation fac-
tor @ of 1000, the evolution for =100 is further than halfway apart from the
steady state after 6x10* time steps, and the value of p remains almost the
same when no super-relaxation is employed (with @ =1). The maximum value of
 allowed in simulation is dependent on the smoothing technique of mass fluxes
in the whole flow field: the smoother the mass flux, the larger value @ is al-
lowed. But exaggerated smoothing would distort the flow field. A simple averag-

ing from adjacent three points,

M (i, j,n)=(M(i=1,j,n=1)+M (i, j,n=1)+ M (i+1,j,n-1)) /3,

-

dﬁnsity (kg/ma)

1.35

0 20000 40000 60000
time steps

Fig. 8.13 The evolution processes of density o at a point located at 2500um apart
from the inlet under experimental conditions of [11] with different super-relaxation factors
w=1,0=100,0=1000, respectively
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where »n is the number of iterations, is used. The iterated averaging for n=15
has the desirable effect of smoothing, and retains the local trend of mass flux evo-
lution. Then the value @=2000 can be employed and the calculation remains
stable. It 1s noted that when the steady value of p is being approached the value
of @ and the smoothing procedure has little consequence on the final evolution
result, so after having experience one can prescribe @ a varying process from
say 2000 to 1 to reach the steady state, and the final result is entirely not effected
by the varying process. This is satisfactory for the purpose of the calculation, for it
is the final result but not the evolution process that is concerned.

In the practice of general IP method the DSMC simulated molecules move and
carry the IP quantities, the DSMC process determines the IP process and the IP
process has no reverse influence on the DSMC process. In the solution of channel
flow and other internal flow cases, where the macroscopic quantities on the
boundaries are to be regulated during the simulation, there is another specific fea-
ture, that is, the varying IP velocities on the boundaries are used to continuously
adjust the boundary conditions of the DSMC-IP procedure. This influences the
DSMC simulation and enables the DSMC finally to have the correct value on the
boundaries. Pure DSMC process is carried out by individual molecules and the
adjustment of boundary conditions is very slow and DSMC needs sufficient sam-
ple size to allow definite boundary values of U to emerge, while the IP process
is a global one: the changes of IP values happen simultaneously over the whole
domain of calculation and the adjustment is quick and not limited to the boundary
but spreads over all the channel length. Although the approach to the steady state
requires quite a long time in the example calculation under condition [11] (120
hours CPU time on a Pentium III 450, or 98.7% of the entire computation time),
but during this time the global DSMC quantities are also regulated. After arriving
at the steady state the sampling time required for yielding the final IP convergent
data is quite short (1.6 hour CPU time, or 1.3% of the computation time}.

In micro-channel experiments [10-14] the width (40~ 50m) is much larger
than the height (1.2 ~1.33um ). This made the span-wise influence negligible, and
the flows can be simplified as two-dimensional (the midline velocity profile and
the maximum velocity remains almost the same for rectangular cross section

channels with a width to height ratio larger than 5, but the flow rate is influenced
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in some minor degree by the slow down of the flow near the side wall even for
large width to height ratio, see [50]). As we have seen in section 8.1, the experi-
mental conditions [10-14] are in the slip and transition regimes.

An orthogonal coordinate system is employed with the origin located at point
O,and x and y axes along OO and OA, respectively (see Fig. 8.9). Since
the flows are symmetric about OO’, a computational domain of OO'B4 is con-
sidered only. Each of the uniform rectangular cells is sub-divided into a set of
uniform rectangular sub-cells within which collision pairs are selected. The num-
ber of cells is around 400x15 to 700x30and there are 5x2 sub-cells in each
cell. The cell size is much smaller in the cross sectional direction than in the
stream-wise direction, so is the sub-cell size. As shown by Nance et al. [28], the
flow field is insensitive to the stream-wise cell size because of a relatively small
velocity gradient in this direction. The test calculations observe that the smaller
stream-wise cell and sub-cell sizes provide the same results as the present sizes
being employed. For all cases the molecular interaction is described by the VHS
model. The reference collision diameter in VHS appropriate to the IP method has
been determined for common gases [31].

A specular reflection is used along the symmetrical boundary OO'. The chan-
nel surfaces are assumed to be diffusely reflecting with a tangential momentum
accommodation coefficient o (see Eq. (3.23)). Arkilic et al. [13, 14] developed a
modified accumulation technique to measure the mass flux through mi-
cro-channels. Comparing the measured mass flow rate with the slip Navier-Stokes
solution, they extracted o for the micro-channel surfaces of single-crystal sili-
con in their system. The values appeared to be 0.80+0.01 for argon and
0.88+£0.01 for nitrogen. The same means was also utilized by Shih et al. [11] to
extract o for their micro-channel surfaces, yielding 0.9905 for nitrogen and
1.1620 for helium. However, as we have seen in section 8.1, the microchannel
helium flow has a Knudsen number of 0.16 at the outlet and is in the transitional
regime. So extracting o from the slip Navier-Stokes solution became improper.
And the value 1.162 is beyond the physically realistic range of o . In contrast, the
nitrogen flow is in the slip regime and the value of o =0.9905 is reasonable.
This shows that the micro-channel surfaces in the UCLA system is close to the full
diffuse reflection. The values of ¢ used in simulation for nitrogen and helium
flows of [11, 12] are both 1.0 and for argon flow of [13] is 0.8 (the Knudsen
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number at the exit of the argon channel flow is 0.05, and the o value extracted
from the slip Navier-Stokes solution is valid).

In the case of the channel flow of nitrogen [12] the density increment obtained
by the conservative form of mass equation (8.27) and the super-relaxation method
Eq. (8.28) make the mass fluxes at various sections tend to be the same (see the
hollow spheres in Fig 8.11), at the same time the pressure distribution is adjusted
to the actual configuration. For the inlet pressure of 19.0psig the mass fluxes at
various cross sections are all equal to about 4.1x10"kg/s . This result is in good
agreement with the experimental result in [12].

Figure 8.14 compares the stream-wise pressure distributions given by the IP
method with experimental data of {11] with nitrogen as the working media for the
inlet pressures of 5, 10, 15, 20 and 25 psig, with the error bars showing the
measured confidence limits. Because of the small height of 1.2um , the velocity
gradient in the normal direction is quite large that leads to a strong viscous effect
which is clearly demonstrated by the non-linearity of the pressure profiles. The
pressure loss is subject to the local shear stress of the micro-channel surfaces that
becomes sensitive to the Knudsen number as Kn>0.01. For the same outlet
pressure of the atmosphere, the increase of the inlet pressure results in a more sig-
nificant stream-wise variation of Kn and therefore corresponds to a more obvi-
ous non-linear pressure profile. Fig. 8.15 shows the stream-wise pressure distribu-
tions at three different inlet pressures of 8.7, 13.6 and 19.0 psig given by IP and

30
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Fig. 8.14 Comparison of stream-wise pressure distributions of nitrogen flow given by IP
with experimental data of [11]. Kn, =0.055 .The pressure values indicated are the inlet
pressures.
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experiment for helium with an exit Knudsen number of 0.16, which also agree
with each other.

In Fig. 8.16 the simulated mass flux by the IP method at inlet pressures of 9.5,
15, 20, 26, 30 psig is compared against measured data of Shih et al. for nitrogen
[12]. Fig 8.17 shows the mass flux calculated by the IP method and measured by
Arkilic for argon [13]. The flows are in the slip flow regime and one can see, there
is a remarkable agreement between the IP and the experimental results.

Arkilic [14] has undertaken experiments under “extreme” flow conditions to
investigated flows in the transition regime. The inlet pressures of helium range
from 133kPa to 413kPa (with Kn, between 0.117 and 0.04), while the helium
exhausts to a low pressure of 6.5kPa that results in an outlet Knudsen number of
2.5. Therefore, a significant portion of the channel lied well beyond the slip flow
regime. Arkilic defined the flow conductance as the ratio C=Q/Ap of mass
flow to the differential pressure across the channel length and used it to check the
validity of the slip Navier-Stokes model. Arkilic obtained the slope of the meas-
ured flow conductance was approximately 11% greater than the slip Navier-Stokes
prediction [14] showing an obvious breakdown of the slip flow model. The data of
the flow conductance has been used in [17] to check the performance of the IP
method in the transitional flow regime. The value of flow conductance versus
mean pressure, P=(F+P,) /2, given by the IP method and the experimental data

of [14], except at the largest mean pressure range, where a difference of about 5%

20
P
[ a 19.0 psi
15 psig
I 13.6 psig

8.7 psig

1of

pressure (psig)

PERINNS ST TS S T [ T ST S
2000 3000 4000

x (pm)

L n P BT
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Fig. 8.15 Comparison of stream-wise pressure distributions of helium flow given by IP
with experimental data of [12]. Kn =0.16 . The pressure values indicated are the inlet
pressures
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Fig. 8.17 Relation of mass flux versus the inlet pressure for the argon flow. Comparison of

the IP simulation with the experimental data [13]. Kn, =0.055

appears, are generally in good agreement (see Fig.8.18). This is the first time that
the result of a method appropriate for the entire transitional flow regime is com-
pared with the experimental results of long microchannel (1.33x52.3x 7490 um’ )

flow at rather large Knudsen numbers ( Kn, =~ 2.5).
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Fig. 8.18 Relation of flow conductance to mean pressure for helium flow in the transition
regime. Kn, =2.5, o =0.85. Comparison of the IP simulation with the experimental data
of [14]

8.6 THIN FILM AIR BEARING PROBLEM

The general dimensional and flow characteristics of the modern Winchester-type
hard disc drive were described in section 8.1. The squeezed air bearing problem
may be schematically modeled as a lower plate (the surface of the spinning plat-
ter) moving in its own plane with a velocity of U under the upper stationary
tilted plate (the read/write head, see Fig. 8.19). The thin film air flow between the
plates is most appropriately described by the Reynolds equation, which is a dif-
ferential equation relating the pressure p, density o, platter velocity U and the

height 2 of the gap, firstly developed by Reynolds for continuum fluid [52]. The
| L |

Fig. 8.19 A schematic model of the thin film air bearing flow
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equation has been modified to include a number of rarefied gas dynamics effects
but is still called Reynolds equation. It is essentially a mass conservation relation
applied not to a fluid element but to the cross sections of the squeezed air flow and
is obtained from the continuity equation by integrating it over the vertical direc-
tion with the employment of the momentum equation. Burgdorfer [53] introduced
the velocity slip correction to the Reynolds equation, Fukui and Kaneko [54] de-
veloped a generalization of the equation suitable for the transitional regime.

The derivation of the Reynolds equation in the continuum regime is enlighten-
ing and can be easily extended to the slip flow and transitional flow cases so is
given here. For simplicity the two-dimensional assumption is made, as the head
width W is much large than the height 4 so the span wise motion can be ne-
glected.

Writing the continuity equation

oo v _

o ox Oy (8.29)
in the form
opv opu Op
——— = (),
o ( o a ) (8.30)
and integrating it over y across the whole flow region yields
h h
opu  Op
d(pv)y=—|{(——+—")dy . 8.31
Oj(p) J(ax b (8.31)

The left hand side of Eq. (8.31) vanishes, as there is no fluid flown into or out of

the walls. Interchanging the integration and differentiation gives
8" 8 '
— d + — h = 0 . - 2
axojpuy —(ph) (8.32)

For thin film flow with the inertial terms neglected the steady momentum Na-

vier-Stokes equation has the form

d_0, 0u
o ay(ﬂ ay)' (8.33)
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Integration across the gap with the non-slip boundary conditions

ul _=U, u

y=0

yen=0 (8.34)
yields the solution of the stream wise velocity component u

w=U(— ) hop ! ox
2u

y(l—-;—) : (8.35)

Substituting Eq. (8.35) into Eq. (8.32) and accomplishing integration over y, the
following equation is attained

2 Fpdp

)
= —=5)= 6[ (ph)+5;(phU)] (8.36)

This is the general form of the Reynolds equation for the two-dimensional case.

By introducing X =x/L,H =h/h,,P=p/p, and the bearing number
A=6uUL/p,h*, (8.37)

Eq. (8.36) for steady and two-dimensional case can be written in the normalized
form [18]

—(H P—) A - (PH). (8.38)

The first term of Eq. (8.35) is the slip-less solution of the velocity in the Cou-
ette flow when the upper plate is stationary and the lower plate moves towards the
right with velocity U (see section 5.4.1, compare with Eq. (5.63) with {=0),
the second term is the slip-less solution of the velocity in the Poiseuille flow when
the axis x is aligned along the lower plate (see section 5.4.2, the second term of
Eq. (8.35) can be obtained from Eq. (5.69) by a simple translation of the ordinate
v). The equation (8.38) shows that the flow rate across any cross section is the
sum of the flow rate of the Couette flow and the Poiseuille flow and this rate does
not change from one cross section to another in steady flow.

In section 5.4.2 we have seen that the flow rate of the Poiseuille flow with slip

boundary condition surpasses that of the slip-less case by a factor
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=(1+6

P.C

; 2-0

Gra Kn) (8.39)
o

see Eq. (5.73). As for the Couette flow the flow rates have a specific feature and

are identical in slip-less case and the slip case (and even in the transitional flow

case) and have the following value independent of the Knudsen number owing to

the symmetry of the flow (see Fig.8.20):
Q. =pUh/2. (8.40)
From the flow rate expressions (8.39) and (8.40) for Poiseuille and Couette

flows in the slip flow case one can conclude, that in the slip flow regime the fol-

lowing Reynolds equation is obtained in place of Eq. (8.38)

d [a+6

d 2-0 dP
ax

d
KnH’P=— = A—(PH), 8.41
" ax dx (PH) ( )
where Kn=A/h islocal Knudsen number.
When the slip boundary conditions
du

y:0: g 2

dy

du 2—-0
Ul pp=—¢—, {=—"1 (8.42)
dy c

u

instead of the non-slip boundary condition (8.34) is employed in solving the mo-
mentum equation (8.33), and the resulted velocity profile is substituted into the
mass conservation relation (8.32), one would arrive at the same slip corrected
Reynolds equation (8.41) [53, 18].

P AP L AL AL Ll

slip flow

slip-less flow

T U

Fig. 8.20 Velocity profiles and the flow rates of the slip-less and slip Couette flow, the

transitional flow is not shown but it has the same flow rate owing to the symmetry of flow
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Fukui and Kaneko [19] showed that the solution of the linearized Boltzmann
equation for the thin film bearing problem can be decomposed into the solutions
of the plane Couette flow and the plane Poiseuille flow [55]. On this basis they
derived the generalized Reynolds equation for the thin film air bearing problem by
employing the flow rates of the fundamental Poiseuille and Couette flows solved
by the linearized Boltzman equation. This generalized Reynolds equation in the

isothermal case can be written as [19]
d = s, dP  d
— L Qo K PZJ‘)}'}AE(‘DH ) (8.43)

where @ »mx(Kn) 1s the flow rate in transitional regime (normalized by the
slip-less value (@, .) calculated from the linearized Boltzmann equation for
Poiseuille flow and is shown to be the same as solved by Cernignani and Daneri
[55]. A tabled database of the calculated values of ép,m(Kn) for o=1,
0=09, 0=08 and o=0.7 isprovided in [56], and a fitted formula approxi-
mation for diffuse reflection ( o =1) by Robert is recorded in [18] (there the sec-

ond term on the right hand side is misprinted as 6A\/;Kn)

Oy r(Kn)=1+64Kn + E1<nlog(1 +BKn) , (8.44)
VA

where 4=1.318889 and B =0.387361. Alexander, Garcia and Alder [18] used
the DSMC method to simulate the short head length air bearing problem
(L=5um , h,=50mm=005um , U=25m/s, o=1), and found excellent
agreement of the DSMC simulation with the generalized Reynolds equation (8.43)
and Eq. (8.44). Note, their description of the latter as continuum hydrodynamic
Reynolds equation corrected for slip is misleading. As we have shown, the gener-
alized Reynolds equation is a global mass conservation relation applied to the
cross section of the air bearing flow with the flow rate calculated by the Boltz-
mann equation which is appropriate for transitional regime. The comparison made

in [18] for the cases (the ratio of the inlet to outlet heights is kept as 2:1)
L=15um, h,=15nm=0.015um, U=1539m/s, o=1.0;

L=5um, h =50nm=0.05um, U=25mls, o=07;
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L=5um, h =50mm=005um, U=3078m/s, oc=1.0;

showed good agreement of the generalized Reynolds equation with the results of
DSMC simulation, this just confirms that the generalized Reynolds can be used to
solve the air bearing problem in the entire transitional flow regime and can be
used to test other methods intended to solve the problem, say for longer bearing
head length (the authentic length of the Winchester disc drive read/write head is
~1000um , but the DSMC method was able to solve only short length (~5um)
problems).

The thin film air bearing problem is solved by the IP method in [57]. The rec-
tangular area (from x=0 to x=L, and from y=0 to y=h (x=0)) is di-
vided into 200x10 uniform cells for short ( L =5~ 25um ) length write/read head
and into 1000x10 cells for long ( L =1mm =1000um ) head. Some of them are
incised by upper surface into two parts, only the one under the upper surface is
within the computational domain. The cell of this part is called incomplete cell.
The smallest volume of the incomplete cells is onlyba very small portion of that of
the standard complete cell. During the process of the IP calculation, all the incom-
plete cells are combined with their lower adjacent complete cells. It is found that
the time step is better to be kept different for the DSMC part and the IP part of the
simulation process: for DSMC the usual size of the time step of the order of colli-
sion time is sufficient, but for the IP simulation a smaller time step would ensure
obtaining real macroscopic quantities of the solution without much increase of the
computation time. With the employment of appropriate super-relaxation factor
steady convergent results can be obtained. Fig.8.21, Fig.8.22 and Fig.8.23 show
the comparison of the pressure distributions for the cases of L=5um, L=25um
and L=1000um of the IP results and the results of the generalized Reynolds
equation. For L=5um the comparison with the DSMC simulation is given as
well. One can see the excellent agreement of the IP results with the generalized
Reynolds equation. This can be considered as a verification of the IP method by a
criterion with the merit of the strict kinetic theory. As the generalized Reynolds
equation is applicable only to a certain class of problems, where as the IP method

has the flexibility and the ability to treat problems with complex geometry, this
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verification encourages people to use IP method to treat various complicated flow

problems encountered in MEMS.
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Fig. 8.21 Pressure distribution in the disc driver bearing for Kn, =1.25,L=5um, com-
parison of IP, DSMC and the generalized Reynolds equation results [57], also shown is the
DSMC result of Alwxander et al. [18]
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Fig. 8.22 Pressure distribution in the disc driver bearing for Kn, =1.25,L =25um , com-
parison of IP and the generalized Reynolds equation results [57]
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Fig. 8.23 Pressure distribution in the disc driver bearing for Kn, =1.25,L =1000um , com-
parison of IP and the generalized Reynolds equation results [57]

8.7 USE OF DEGENERATED REYNOLDS EQUATION IN
CHANNEL FLOW

The generalized Reynolds equation (8.43) originally is derived for application in
the thin film air bearing problem with the lower plate moving with a velocity
U and the upper plate tilted. Shen [58] suggests degenerate this Reynolds equation
and use it to solve the microchannel flow problem. In the microchannel the lower
plate is stationary and the upper plate is parallel to the lower one. Owing to the
steadiness of the lower plate the right hand side term vanishes, as U =0 and
A =0, there is not any contribution of the Couette flow. Owing to the parallelity
of the two plates the value H is a constant and also can be dropped from the
equation. So the generalized Reynolds equation suggested for application to the
microchanel problems is degenerated to the form
%[@,MK@PZ—Q ~0. (8.45)
The values of P on the inlet and outlet of the channel are to be specified to

make the microchannel problem solvable. This degenerated Reynolds equation is
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suggested be used to solve the microchannel flow in transitional flow regime pro-
vided the flow rate of the local Poiseuille flow @P’,R(Kn) in transitional regime
(normalized by the slip-less value @, .) is known from the strict kinetic theory.
There are many works devoted to the solution of the Poiseuille flow providing the
database for the flow rates at different Knudsen numbers and for different bound-
ary conditions at the surface. With the database incorporated the degenerated
Reynolds equation is valid for any surface conditions of the plates and can be in-
tegrated numerically. For example, the incomplete diffuse reflection cases with
tangential accommodation coefficient o=1, ¢=09, 06=08 and o=07
were calculated in [S6] with tabled database of the values of ép,m(K”) provided
under these boundary conditions. If practice has the needs, even situation with two
plates having different accommodation coefficients could be considered. But for
the illustrative purpose only the case of complete diffuse reflection o =1, is ex-
pounded here. For the case of diffuse reflection, the fitted formula approximation
of é,,ym(Kn) , Eq. (8.44), can be used, and the degenerated Reynolds equation

attains the form

d 12 dP
——{[1+64Kn+~—Knlog(1+ BKn)|[P—} =0, 8.46
AL n+— Knlog( Rliore (8.46)

For the ease of integration the local Knudsen number Kr is most conveniently

expressed through P, e. g., for HS model 1t can be written as

C
X (8.47)

where

c=L o _ 4 ih=Kn,,, (8.48)
phN 2

for we have for hard sphere
RT
a=£ 2 (8.49)
pY 2

see Eq. (2.222). p, is the pressure at the outlet, 7, is the temperature of the
gas, u 1is the viscosity of the gas at 7;. The constant C has the physical
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meaning of the Knudsen number at the outlet of the channel (see Eq. (8.47), at
outlet P =1). Substituting Eq. (8.47) into Eq. (8.46), one arrives at

BC . dP

12
P+64C+—Clog(l+—)]-—==D, 8.50
[P+64C +—Clog(1+ =)} (8.50)

where D is an unspecified constant to be determined from the integration and
has the physical meaning of the flow rate across the channel normalized by the
slip-less flow rate value.

To illustrate the use of the degenerated Reynolds equation in solving the mi-
crochanel problem we calculate the pressure distribution for nitrogen in the
1.2x40x30004m> channel [11] and helium in the 1.2x40x4000um channel
{121

For T7,=294K the value of C for helium is 0.15579, and for nitrogen is
0.052325. Equation (8.50) is integrated under the following boundary condition

PIX:():pin/p,»ul > and PlX:I:pnm/pnm :1’ (8.51)

with p, provided by the experimental data in [11, 12]. The results of integration
are presented in Fig. 8.24 and Fig. 8.25. It is seen from the figures that the results
of the degenerated Reynolds equation agree well with the experimental data, and
the IP simulation results have excellent agreement with those of the degenerated
Reynolds equation, especially for the pressure distribution in the microchannel
with dimension 1.2x40x4000um’ for helium (the two curves almost coincide
with each other).

In section 8.2 we have shown the unfeasibility of using LBM in simulating
transitional flows in MEMS by comparison with the DSMC calculations [24, 25].
Here the LBM results [23] are compared (see [58]) with the calculations by using
the degenerated Reynolds equation to attain the same conclusions as in [24, 25],
but this time the conclusion is confirmed by a test stone with the merit of strict
kinetic theory. Equation (8.50) is integrated under the following conditions for a
short 1x100um® wmicrochannel that have been considered by LBM in Nie,
Doolen and Chen [23]:
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Fig. 8.24 The pressure distribution in a 1.2x40x3000um’ microchannel for nitrogen.
Comparison [58] of the degenerated Reynolds equation (8.50) (solid line), the IP method
(dashed line) and the experimental data [11]

3
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- — — = iP method
2_5; a 190 psig
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Fig. 8.25 The pressure distribution in a 1.2x40x4000um’ microchannel for helium.
Comparison [58] of the degenerated Reynolds equation (8.50) (solid lines), the IP method
(dashed lines, note that the solid lines and the dashed lines almost coincide) and the ex-
perimental data [12]
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The results of comparison of the integration of the degenerated Reynolds equa-
tion (8.50) with the LBM, the DSMC and IP results are shown in Fig. 8.26 and
Fig. 8.27. It is seen that the degenerated Reynolds equation, the DSMC method
and the IP method are in excellent agreement with each other but they are in appa-

degenerated Reynolds Eq.
F OSMC method
o} 1P method
a

175 LBM

Kn,=0.194

125

0 0.25 03

Fig. 8.26 Pressure distribution in a microchannel with Kn=0.194 at outlet (h/L =100).
Comparison [58] of the degenerated Reynolds equation, DSMC, IP methods and the LBM
method

bl
degenerated Reynolds Eq.
a DSMC method
[ ) ©  IP method
175 o LBM
| a
a
=]
a
[ S ] =]
ju]
o
o
[ Kn,=0.388 a
125 e v o
L o
1 L 3 1
0 028 05 0.75
X

Fig. 8.27 Pressure distribution in a microchannel with Kn=0.388 at outlet (#/L=100).
Comparison [58] of the degenerated Reynolds equation, DSMC, IP methods and the LBM
method
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rent disagreement with the LBM results. The LBM is shown to be unfeasible to
simulate the transitional flow again, but this time by a method having the merit of
kinetic theory

The generalized Reynolds equation (8.45) degenerated for application to the
micro-channel problems with the flow rate _Q—P’TR (Kn) provided by the linearized
Boltzmann equation is appropriate for solving the microchannel! flow problems in
the entire transitional regime. It can provide the pressure distribution, the flow rate
but not the detailed flow field such as the velocity profiles. But its significance lies
in that it can be used as criterion of strict kinetic theoretical merit to test various
methods aimed to solve the microchannel problems in transitional regime.

From the degenerated Reynolds equation (8.50) for the specific case of diffuse
reflection it is seen that the microchannel rarefied gas flow is entirely specified by
and P,

out >

the inlet and outlet pressure B, and the Knudsen number at the outlet
C = Knou/ >

Besides the air bearing problem and the microchannel flow problem the Rey-

the length of the channel does not enter as a determining factor.

nolds equation can also model the gas damping problem in micromechanical ac-
celerometers [59]. Database for the flow rates of the Poiseuille flow with various
combinations of possible surface properties calculated on the basis of linearized
Boltzmann equation or other rigorous kinetic theory is desirable for the solution of
microchanne! flow, thin film air bearing problem and also the damping problem in

the micromechanical accelerometers, especially in the form of fitting formulas.

8.8 SOME ACTUAL PROBLEMS AND CONCLUDING
REMARKS

When there are temperature gradients along the MEMS or channel surfaces there
occur the phenomena of thermal creep, thermal transpiration, thermal stress slip
flow and the temperature stress convection etc. (see chapter 5). The Knudsen
compressor in use of MEMS is worked out on the basis of thermal transpiration
[60]. So it is of significance to extend the IP method to the case of temperature
variation. Some useful attempt and exploration have undertaken in this aspect [32,
35, 46]. The difficulty encountered in extending the IP method to the case of tem-
perature variation is that the average energy flux of monatomic molecules in a

static gas through a surface element is 247TT,, where I', is the molecule num-

n?



8.8 SOME ACTUAL PROBLEMS AND CONCLUDING REMARKS 36t

ber flux, but the average energy carried by a single molecule is(3/2)kT , the IP
process can not satisfy the global energy balance across an interface. Sun [46] put
forward a model of additional energy transfer and a method of assignment of the
post collision IP temperature by which the IP method was able to simulate the
flow between two plates with different temperatures and obtain temperature result
m agreement with that of the DSMC method. But the density distribution is in
some minor difference with the DSMC method. In [35] the temperature compo-
nents in three directions are introduced and new method of assignment of the post
collision temperature is adopted, the agreement of the temperature and density
distribution with the DSMC is obtained in the flow between two plates. But these
constitute only partial success for such models can not provide general method of
simulation of the rarefied gas motion caused by the temperature variation. It is a
challenge to modify and develop the present IP algorithm to adapt it for employ-
ment in the case of temperature variation.

The micro scale flow is usually a low speed flow as well and the flow problem
1s of the elliptical nature. For the external flows the size of the flow field involved
in the simulation as a rule is much bigger than the body itself, thus most part of the
flow field can be described by the continuum equations. For internal flows the
region near the walls is described by the particle method, the region far from the
walls can be described by the continuum method. The hybrid continuum/particle
approach can make use of the advantages of both methods and can save enormous
computation time and thus has gained extensive attention. At the interface of the
continuum flow and the particle simulation boundaries (usually movable and
regulated unceasingly) information must be interchanged at each time step. For
ordinary particle methods owing to the huge statistical fluctuations, it is very
time-consuming to pose definite boundary conditions for the continuum flow. At
the same time, as the IP method preserves the macroscopic information, it is quite
easy to pose boundary conditions for the continuum flow. Sun et al. [61] used hy-
brid IP method with the Navier-Stokes equation plus slip boundary condition to
solve the flow around the plane plate and Couette flow problems and obtained
smooth solutions with enhanced efficiency.

Finally, we make some concluding remarks of this chapter.
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The linearized Boltzmann equation method and the DSMC method are appro-
priate for solving microscale rarefied gas flow problems and can be used as crite-
ria for testing various methods intending to solve the transitional flows, the latter
encounters the problem of huge statistical fluctuation for slow rarefied gas flows.
The IP method preserves the averaged information of the enormous number of
molecules that a simulation molecule represents, overcomes this difficulty and for
low speed cases saves the computation time by a factor of 10° ~10* and can treat
more easily problem of complex configuration in comparison with the linearized
Boltzmann equation.

The difficulty of regulating the inlet ad outlet boundary conditions of the inter-
nal flow problem is overcome by the use of conservation scheme and sup-
per-relaxation method in the IP method. The method is validated, and on the ex-
amples of unidirectional flow, the channel flow and thin film bearing problems is
checked by comparison with the experimental results, the linearized Boltzmann
equation, DSMC method, the generalized Reynolds equation and the its degener-
ated version (with the flow rate of Poiseuille problem calculated by the Boltzmann
equation). In regulating of the inlet and outlet boundary conditions the effect of
super-relaxation is different from the amplification of the time interval, the re-
quirement of sufficient small time steps remains in force to guarantee through
DSMC process the true trend of the variation of the flow quantities. The su-
per-relaxation factor amplifies the true trend and accelerates the approaching of
the true solution. The regulated IP values are used as the current boundary condi-
tions at the inlet and outlet of the DSMC process so the entire process of conver-
gence is quickened.

The generalized Reynolds equation is appropriate to treat the thin film air bear-
ing problem in the entire transitional regime. Example calculations and compari-
son with DSMC, IP and experimental results show the success of the suggestion of
using the degenerated Reynolds equation to solve the transitional microchannel
flow problem. Degenerated Reynolds equation with the Poiseuille flow rate calcu-
lated by the linearized Bolktzmann equation can serve as a test stone of the merit
of strict kinetic theory, in particular it gives an undoubted confirmation of the un-
feasibility of LBM in simulating the transitional flows. On the example of micro-

channel flow it provides a solid verification of the IP method.
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Table L1 Characteristic temperatures of some diatomic molecules

Gas Rotation Vibration Dissociation Jonization
8, (K) 8, (K) e, (K) 8,(K)
N, 2.88 3371 113500 181000
NO 244 2719 75500 108000
0, 2.07 2256 59500 142000

Table 1.2 The properties and reference molecular diameters of some molecules at standard

conditions
Gas Molecular Viscosity Viscosity o VHS VSS HS

Mass Coefficient  Coefficient Model M odel Model

Index
m H w Aoy Aoy dys

x107 kg x10° Nsm™? x10"m x10™m x10"m
N, 465 1.656 0.74 1.36 4.17 4.11 3.784
NO 49.88 1.774 0.79 4.20 372
0, 5312 1.919 0.77 1.40 4.07 4.01 3.636
H, 334 0.845 0.67 1.35 292 2.838 2.745
He 6.65 1.865 0.66 1.26 233 230 2.193
Ne 2975 2.975 0.66 1.31 2.77 272 2.602
Ar 663 2117 0.81 140 4.17 4.11 3.659
Kr  139.1 2.328 0.80 1.32 4.76 4.70 4.199
Xe 2180 2.107 0.85 1.44 4.76 5.65 4.939
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Table L3 Collision diameters of some molecules for HS model and reference diameter for
VHS model at 273K that should be adopted when applying the IP method [2]

N, 0, He Ar co,
d,sx10°m 4.128 3.948 2.365 3.963 5.013
yyisper X107 m 4312 4.295 2463 4.283 5.620

Table L4 Force constants in the Lennard-Jones 6-12 model, p and © in Eq. (2.117) [3]

N, NO O, H, He Ne Ar Kr Xe
ox10“m  3.681 347 3433 2968 2576 2789 3418 361 4.055
&fk (K) 915 119 113 333 1022 357 124 915 229
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APPENDIX II SOME INTEGRALS

1 GAMMA FUNCTION AND ERROR FUNCTION
1. The gamma function is defined as
r'(/) ='[:xj" exp(—x) dx . (IL.1)
The integration by parts yields the recursion formula
L(j+1)=,T(J). (11.2)
Obviously, I'(1)=1,I'(2)=1, hence, when = is an integer, one has
T(n+1)=n!. (113)

The incomplete gamma function is defined as
T(j,a)=] " exp(-x)dx. (11.4)

Again, the integration by parts yields the reduction formula
F(j+Lo)=,T(j,a)+a’exp(-a). (I1.5)

The values of the ' function with the values of the argument between 1.0 and
2.0 can be found in the mathematical hand books (p. 1312, [1]; p. 267, [2]; p. 75,
[31]), the values out of this range can be obtained by using Eq. (I11.2).

2. The error function is defined as

2 ,
erfa =7_7;j0 exp (—x* ) . (1L.6)
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The complementary error function is defined as
erfca=1-erfa. I1.7)

Some times the integral complementary error function is of use, which is defined

as

ierfca =Lexp(——a2)~aerfca (11.8)

Nz

The table of the error function can be found in [1, 2, 3] (the values given are

o) =erf(t/2)).

.2 SOME DEFINITE INGTEGTRALS
1. Here the values of the following integrals are given

f x"exp(—ﬁ2x2)dx, n=1,23,"--. (11.9)
The starting point of evaluation of the above integrals is the following integral
- 2 _ \/77
J.( exp(—x )dx— , (I1.10)
the easiest way of derivation is to find the squire of the above formula

I N e

Making use of Eq. (I1.10) and integration by parts, it is easy to prove successively

(supposing a=0 in Eq. (I1.9), starting from »n=0)

f:exp(—ﬁzxz)dx=%, (L11)

J.:xexp (—ﬁzx2 )dxzﬁz— , (I1.12)



1.2 SOMEDEFINITE INGTEGTRALS 371

[ %" exp(=px")ax =%’ (IL.13)
Jxtexp( i e = Tk (I1.14)
[ %" e (~px" ; é: (L15)
f:xs exp(—B7x" Jx :‘ﬁl?a (IL16)
[ %" exp (=B Jix 12 \gj a7
[, 7 exp(=p7x’ )dngg- (L18)

Making use of Eq. (I1.10), the definition of the error function Eq. (I1.6) and

integration by parts, it is easy to prove successively

[ exp (-8 2)4" 1+erf(ﬁa)) (I1.19)

J:xexp(—-ﬁzxz)dx=—2-é—§—exp(—ﬁza2) , (11.20)

Bacsp(-p'a’)

, 11.21)
2B’

L X exp(—B2 2)dx—-—[l+erf ﬁa ]

jﬁ x*exp(—Bx Z)dx—_(;_i(lwz @), 11.22)
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J::x“exp(_ﬂZ Z)dx__\/—[l"e;f Ba ] Eﬁfig_(l;s—ﬁ—a_)-[%*‘ﬁzaz), (11.23)
f;xs exp(—B°x* )dx = —(l;u(wﬂ +%ﬁ4a4). (1124)

2. According to the definition of the error function Eq. (II.6) and integration by

parts, it is easy to obtain

J.: xle ™ dx = gerfa —%aeﬂ'2 , 11.25)
r xerfxdx—l a’ -1 erfa+ L ae™ 11.26)

0 2 2 ) ’ ’
Joax3erj5cdx=%( at ——’D;—Jerfa+#;ae"z (az +§-) (I127)

3. The following integrals can be expressed through the modified Bessel functions
(definition of the latter see p.376, [2]; p.350, [4])

r ZCOS:i 7[
jo e cospdp=r1,(z), (|arg ] <5 ) (11.28)

Jﬂone:cos ¢d¢ — 7[]0 ( Z) . (1129)

Making use of Egs. (11.28), (11.29), after some manipulation one obtains
s? Sl
10(-—-2— )— 1,[—2—]J, (11.30)

jo"cosee;f(s cosf) d =S exp( —%2){10 (iz ]+ 1,[ %Z-H , (1.31)

7]

J.O”cosze exp(—Szcos2 G)de = %exp[_ﬁ]’—
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¥ 3 _
_[0 cos’ferf ( Scos)dl =
(11.32)
s Y2 (s7) 1.(s*) 4(S)2)
nwSexp| — || =1} — |+=1| — |[+——L 1.
The tables of 7, (x) and [(x) can be found in p.416, [2]; p.76. [3].
1.3 BETA FUNCTION
The beta function is defined as
P b1
B(a,p)=[ ¢ (1-1) dt. (11.33)
It is related with the gamma function
I'(a)-T(5)
B(a,b)=—~———~=B(b,a). .
(@b)=(asp) Bl (11.34)
The incomplete beta function is defined as
" b1
B (ab)=[r"(1-1) . (11.35)
or, the normalized by B(a,b) incomplete beta function is
1.(a,b)=B_ (a,b)/B(ab). (11.36)
The equation
1
1, (a,b):? (11.37)
can be inverted (see p.945, [2])
= (11.38)
X =—, .
a+b*

where
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weif L, 1 L (I1.39)
3\ 2a-1 B-1 26-1 -1 '
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APPENDIX Il SAMPLING FROM A PRESCRIBED
DISTRIBUTION

In the DSMC simulation and usual statistical simulations the sampling of variates
with certain probabilistic distributions is required, that is, obtaining the represen-
tative values of the variates successively is required. The basis of such sampling is
the set ranf of uniformly distributed between O to 1 variates (random fractions).
If the integral of the probabilistic distribution (the cumulative distribution func-
tion) can be inverted relative to the argument, the sampling of such rariate can be
accomplished by the method of inversion of the cumulative distribution function. If
the cumulative distribution function can not be inverted, the sampling can be ac-
complished by the acceptance-rejection method. If the probabilistic distribution
function has singularities, that is, it attains infinite values at some points, the sam-
pling is accomplished by the generalized acceptance—rejection method or the

combined cumulative distribution and acceptance-rejection method.

I1l.1 INVERSION OF CUMULATIVE DISTIRBUTION
FUNCTION

The probability that a variate x is lying between x and dx is

fdx, (I11.1)

/. is the normalized distribution function. If the values of x is confined be-

tween a and b, then obviously
.[bfxdx =1. (I11.2)

The cumulative distribution function of the variate is defined as
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Fo={ fdx. (IIL.3)

Generate a random fraction ranf and let it equal to F,, the sampled value of x

is found according to

F, =ranf . (111.4)
If (I11.3) can be inverted to find a function forx , then from (II1.4) one can obtain
an explicit expression of x through ranf .

Example 1 Variate x is uniformly distributed between a and 5, the con-

dition Eq. (1I1.2) gives

Jo= b-a
Equation (II1.3) gives
X—a
F =
S b-a
From (II1.4) one obtains
xX—a
=ranf .
b-a v

Solve it relative to x , it is found that x is sampled according to

x=a+b —a)ranf . (111.5)

If a number of represented values of the variate x uniformly distributed be-
tween a and b are required simultaneously, the sampling by repeatedly utiliz-
ing Eq. (II1.5) would lead to large variance of scatter. The so called variance re-
duction technique is to be employed, i.e., the specificity of the uniform distribu-
tion is utilized and set a grosso modo uniform distribution and sample according
to the random distribution only in small ranges. For example, m representative
values of x uniformly distributed between « and & are to be sampled, one

should sample m times starting from #n=1
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n—ranf
)———, n=123,,m. (I11.5)
m

x=a+p -a
Example 2 Variate x is distributed between @ and b with probability pro-
portional to x. Following the steps in the above example and utilizing Egs.

(111.2), (I11.3) and (111.4), it is easy to obtain the sampling formula of x
) 5 12
x=|:a + (b —az)ranf] . (111.6)

If multiple sampling is needed, e.g., when one needs to m times distribute
uniformly r in a ring with radius varying from « to b, r is to be sampled

according to the following formula (starting from r=1 for m times)

x-—l:a +p? -a)— ’“”f} , n=123,m (LIL.6)

The variance reduction method explained in examples 1 and 2 is to be used when
allocate the initial positions of the incident simulated molecules (for the uniform
linear and uniform axi-symmetric flow cases).

Example 3 The distribution of the value V of the resultant of the tangential

velocity of the molecules after the diffuse reflection (see Eq. (3.17)) is
]
the cumulative distribution function is
FﬂzyZ =1 —exp(—ﬁsz) .

As ranf and (I1-ranf) are equivalent, set Fﬂzy2 =(1-ranf) according to Eq.

(111.4), from where the result of inversion for ¥V is
v =(~In(ranf))" /B (I11.7)

The distribution function of the component u of the normal velocity of the

molecules after the diffuse reflection is identical with the distribution function of
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V' (see the discussion in section 3.2 leading to Eq. (3.20)), so the sampling of u

is the same as thatof V.

.2 ACCEPTANCE-REJECTION METHOD

The method of inversion of the cumulative distribution described in the above
section can be employed only when Eq. (II1.4) can be solved relative to x, but in
many cases the inversion of Eq. (II1.4) relative to x is impossible. In such case a
usually adopted method of sampling is the so called acceptance-rejection method.

The distribution function is normalized by its maximum

L= Sl o - (111.8)

First by using Eq. (II1.5) a value of x is sampled, a and b are the upper ad
lower limits of x, the value of f ' under this x is calculated and is compared

with a newly generated random fraction ranf . Examine
£ >ranf? (I11.9)

If Eq. (I11.9) is satisfied, then this value of x is accepted (selected), if Eq. (I11.9)
is not satisfied, then this value of x is rejected (not selected), this process is re-

peated until the appropriate value of x is selected.

Il1.3 GENERALIZED ACCEPTANCE-REJECTION METHOD

When the distribution function f(x) has singularities, i.e. , when the values of
the function are infinite somewhere between the upper and lower limits, the ac-
ceptance-rejection method can not be applied, we developed a generalized accep-
tance-rejection method, or the combined cumulative distribution and accep-
tance-rejection method [1, 2] and resolved the problem of sampling random values
with singular distributions. In the following the method is explained separately for
the distribution with single singularity ad with double singularities.

1. The case of distribution with single singularity
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Suppose the distribution has a singularity and can be e xpressed as
f(x)=fi(x) £(x), 0<x<1, (I11.10)

where f,(x) has a singularity, but the cumulative distribution of it can be found
that can be inverted, f(x) has no singularity. The random sampling can be
accomplished as follows: Find the normalized cumulative distribution function
F,(x)/ F,(1) of f,(x), generate a uniform random fraction, set it equal to
F,(x)/ F,(1). Inverse f,(x) to determine x,, then apply to f(x) the accep-
tance-rejection method to see if this x, is selected.

Example 4 Sample a value from the variate x with the distribution

fx)=x"(1-x)", 0<x<1, o<1, {<1. (IL11)
Let
f=x f=(-x)
one has
F(x)=[ fz(t)dt=—1—-_—(—1—§—_—i,

R(IR(0)=1 1)

Generate an uniform random fraction ranf,, set it equal to the above formula to
find x,

x, =1 —(l—ranfl)llc .

Whether this x, is selected depends on the result of applying the accep-

tance-rejection method to  f,(x),i.e., generate a ranf,, and consider

x> ranf,? (I1.12)
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The acceptance or rejection of x, depends on the satisfaction or non-satisfaction
of Eq. (I11.12).
2. The case of distribution with double singularities

Suppose the variate x has a distribution with two singularities which can be

expressed in the form

F(x)=£(x) £(x), 0<x<1, (IT1.13)

where f,(x), f,(x) have singularities in intervals [0,x,],[x,,0], respectively, but
both yield cumulative distribution functions which can be inverted. Firstly, the

probability that x is less than x, is determined

[ A0 £ )4
[hns€)a )dt

P(x<x,)= a. (I11.14)

Generate a random fraction ranf, . If ranf,>o , x lies in the interval
[xD,O] ,the sampling is accomplished by the method in the previous section with
f,(x) having single singular distribution. F ranf, <o, x lies in the nterval
[0,x,],the sampling is accomplished by the method in the previous section with
J,(x) having single singular distribution.

Example 5 Sample a value of x according to the distribution

b-1

x(1-x)", 0sx<1, a<l, b<l. (111.15)

Let f=x""f, =(1-x)", the singularities are at x=0 and x=1, respec-

tively. First determine x,, in the assumption a =1/2. According to

x . 1
e =) dt =—
).[0 ( ) t 27

be(a’b): B(a,b

one can determine (see Eq. (I1.38) and Eq. (11.39))

a

:——2 Ty
a+be”™
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1 1 1 1 1
w== + -1 - .
3{2a-1 -1 2b-1 Za-1
When a=5b, one has x,=1/2. Generate a random fraction ranf,, when
ranf, >0.5 , the following manipulation in the assumption that f,(x) has singu-
larity is accomplished (when ranf, < 0.5, the manipulation is similar and is omit-

ted here):

Generate  ranf,, set it equal to

fa(x)/f;(l)ﬂ—[l‘x]b,

1-x,
invert the above expression to obtain
_ b
x, =1-{1-xp ranf,"" .

Apply the acceptance-rejection method to f,(x), to see if this x, is selected.

Generate ranf, , and consider

["_) > ran, 2. | (IIL16)

Xp

The acceptance or rejection of this x, depends on the satisfaction or

2

non-satisfaction of (I11.16).
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APPENDIX IV PROGRAM OF THE COUETTE
FLOW

O 0O 000000

O O 00 000

APPENDIX-IV
The program of Couette problem (DSMC,*IP method)

The present DSMC program will be converted to the program for the IP
method, all one has to do is to use the sentence marked with * to replace
the sentence before it and add the sentences marked with ** anew.

implicit double precision (a-h,0-2)

parameter(no_cell=50)
no_cell: the number of the cells
parameter(no_molecule_each_cell=30)
no_molecule_each_cell: the number of the molecules in each cell
parameter(no_molecule=1500)
no_molecule : the total number of the molecules
parameter(jnis=1000,nloop=11000)
jnis : the number of loops, after which the sampling starts
nloop: the total number of loops
common /cons/ pi,boltz,eta5S1,y_length,dtm,
area,drag_ns,cell_height,

2 rmass,tkom,amda,rkn

For the explanation of these symbols see subcl.
common /init/ t_ini,pressure,fnd,t_wall,u_wall,vm_ini,
vm_wall,vrm_ini,vrmax_eta51
For the explanation of these symbols see subcl.
dimension p(4,no_molecule),vmean(3,no_molecule),

& Icr(no_molecule)

p(i,n), i=1,2,3: the velocity components of the molecule ninx, y, z
directions, respectively
p(4,n) is the y coordinate of the molecule n
vmean(i,n), i=1,2,3: the IP velocity components of the molecule n
in X, y, zdirections, respectively
ler(n):  to which the original identifying number of the molecule is allo
cated, with n as its new position number
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OO0 0000006000066 00O0 O o o6 o0

oo

dimension yc(no_cell),ic(2,no_cell),coll_remain{no_cell)
yc(i): the y coordinate of the center of the i-th cell
ic(1,i): the number of the molecules in the i-th cell
ic(2,i): the order number of the first molecule in i-th cell -1
coll_remain(i): the remainder collision number in i-th cell

dimension wall(7),up_wall(7),field(7,no_cell)
wall(i): the quantities added up on the lower wall:
(1): the number of the incident molecules;
(2),(5): incident and reflected tangential momentum;
(3),(6). incident and reflected normal momentum;
4),(7). incident and reflected kinetic energy
up_wall(i): the above quantities added up on the upper wall

field(i,no_cell): the sum up of flow quantities:
(1,n). the sum of the molecules in n-th cell;
(2,n),(3,n): the sum of the velocity (* IP velocity) components of the
molecules in n-th cell in x, y directions, respectively;
(4,n),(5,n),(6,n): the accumulative totals of the square of the velocity
components of the molecules in n-th cell in x, y, zdirections,
respectively

dimension op(8)
op(8): output data units

molecular type: Ar

rkn=10.0d0
tkn: the reciprocal of the KNUDSEN number

open(9,file='qcoul .dat')

Set constants and initial variables
call subcl(no_cell,no_molecule,yc,coll_remain)

iloop=0
iloop: the number of loops at present

Clear store of flow quantities

do ijk=1,7
up_wall(ijk)=0.0d0
wall(ijk)=0.0d0
do icell=1,no_cell

field(ijk,icell)=0.0d0

end do

end do
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C

c
100

oo

[¢]

24

o o0 o000

Set the initial velocities and positions of the molecules
call subc2(no_molecule,no_cell,no_molecule_each_cell,vm_ini,
1 cell_height,yc,p,vmean,y_length,u_wall)

continue
iloop=iloop+1
if(mod(iloop,100).eq.0) write(*,*)iloop=",iloop

Calculate the molecular movements and their reflections on the walls
call subc3(iloop,jnis,no_molecule,p,vmean,up_wall,wall)

Arrange the molecules in order in the cells, and number them
call subc4(no_molecule,no_cell,cell_height,p,vmean,ic,lcr)

Calculate collisions
call subc5 (no_cell,no_molecule,coll_remain,ic,lcr,p,vmean)

if(iloop.gt.jnis) then

Sample the molecules on the walls and in the flow, if the number of the
current loops is larger than the number of loops, at which begins the
sampling
call subc6(no_cell,no_molecule,ic,lcr,p,vmean,field)

end if

if(iloop.le.nloop) go to 100
Restart a new loop, if the number of current loops is less than the
total number of loops

Sample and output after attaining the total number of loops
call subc7(nloop,jnis,no_cell,yc,no_molecule_each_cell,
1 wall,up_wall,field,op)
close(3)
close(26)
format(1x,i4,f10.8,f15.5,7f10.5)
stop
end

subroutine subc1(no_cell,no_molecule,yc,coll_remain)

Set constants and initial variables, prepare some para meters used in
the subroutines

implicit double precision (a-h,0-z)
common /cons/ pi,boltz,eta51,y_length,dtm,
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o0 o0

QOO0 0000000

1 area,drag_ns,cell_height,
2 rmass,tkom,amda,rkn

common /init/ t_ini,pressure,fnd,t_wall,u_wall,vm_ini,
1 vm_wall,vrm_ini,vrmax etaS1

dimension yc(no_cell),coll_remain(no_cell)

pi=3.1415926d0
the ratio of the perimeter of a circle to its diameter
boltz=1.3805d-23
Boltzmann constant, k, (J/K)
viscosity=2.117d-5
the coefficient of viscosity of Ar, (Ns/m**2), see APPENDIX-I, Table 2
tref=273.0d0
reference temperature
rmass=6.63d-26
atomic mass of Ar, (kg), see APPENDIX-I, Table 2
diaref=3.659d-10
the diameter of Ar for the HS molecular model, (m), see APPENDIX-I,
Table 2
ifusing VHS model, set diaref=4.17d-10
diaref=3.963d-10
the diameter of Ar for the HS molecular model in IP method, (m), see
APPENDIX-I, Table 3
if using VHS model, set diaref= 4.283d-10
power=999999.940
power, namely ETA, the power in the inverse power law, Eq. (2-78),
the value given here corresponds to the HS model
if using VHS model, power=7.452d0, see Eq. (2-99) and APPENDIX-I,
Table 2

eta51=(power-5.0d0)/(power-1.0d0)
eta51: the power of S(CR) in the inverse power law model (see (7-1)),
cf. Eq. (2-84)
KSAI=2.0d0/(power1.0d0)
KSAI: see Eq.(2-99)
amr=rmass/2.0d0
reduced mass
cxsref=pi*diaref**2

The collision cross-section for VHS and VSS models can be calculated
according to Eq. (2-234).

Generally, if the powerbefore this is taken as the value in the VHS
model, and in the following set VHS_COE=(GAMMA (2-KSAI))**2,
the collision cross-section of the mokcules is obtained by
multiplying TKOM by CR**(-2.d0*KSAI), see Eq. (2-234), Eq.(2-99),
and TKOM multiplied by CR**ETAS51 is S(CR), see Eq.(7-1).

For the HS model, VHS_COE=1.0. But VHS_COE is reserved here
n order to adapt to more common cases.
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O o0 o006

[¢]

VHS_coe=1.0
tkom=cxsref*(2.0*boltz*tref/amr)**KSAI/VHS_coe

t_ini=273d0
pressure=101325d0
fnd=pressure/(boltz*t_ini)
The three quantities above are initial temperature, initial pressure and ini-
tialnumber density.
t_wall=273.0d0
u_wall=100.0d0
u_wall=1.0d0
The two quantities above are the temperature and the velocity of the wall.

vm_ini=dsqrt(2.0e0*boltz*t_ini/rmass)
vm_wall=dsqrt(2.0e0*boltz*t_wall/rmass)
vrm_ini=2.0*dsqrt(2.0/pi)*vim_ini
The three quantities above are initial most probable molecular thermal
speed, the most probable molecular thermal speed of the wall and the
initial relative velocity.
vrmax_etaS1=2.0d0*(vrm_ini)**etaS1
SMAX: the initial maximumvalue of S(CR) (see (7-1))

amda=viscosity*16.0d0/(5.0d0*dsqrt(pi)*rmass*fnd*vm_ini)
the mean free path for the HS model, LAMBDA, see Eq. (2-221)
write(*,*)'amda=",amda
y_length=rkn*amda
dtm=0.23*amda/vm_ini
Above are the scope of the flow and the time step.

area=no_molecule/(fnd*y_length)
AREA is the representative sectional area of the one-dimensional
flow we are studying, corresponding to the number of the simulated
molecules

cell_height=y_length/dble(no_cell)
cell height
do n=1,no_cell
ye(n)=(n-0.5d0)*cell_height
the coordinate of the center of the n-th cell
coll_remain(n)=rf(0)
the remainder collision number in each cell, its initial value is a random
fraction
end do
write(9,'(2x,4¢16.6)") rmass,eta51,tkom,dtm,
1 amda,y_length,area,cell_height
2

write(9,'(2x,4¢16.6)")  t_init_wall,pressure,fnd,
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1 u_wall,vm_ini,vm_wall
return
end

subroutine subc2(no_molecule,no_cell,no_molecule_each_cell,
1 vm_ini, cell_height,yc,p,vmean,y_length,u_wall)

Set the initial velocities and positions of the molecules

implicit double precision (a-h,0-z)
dimension p(4,no_molecule),vmean(3,no_molecule),yc(no_cell)

pi=3.1415926d0

do n=1,no_cell
do m=1,no_molecule_each_cell
iall=(n-1)*no_molecule_each_cell+m
do ijk=1,3
abc1=dsqrt(-dlog(rf(0)))
abc2=2.0d0*pi*rf(0)
p(ijk,iall)=abc1*dsin(abc2)*vm_ini
vmean(ijk,iall)=0.0d0
end do
The initial molecular velocities of the simulated molecules are generated
in this circle, i.e., the initial macro -velocities (0) are added by the ther-
malvelocity comp onents in equilibrium gas, cf. Eq. (3-18), Eq. (3-19)
and the discussion followed. The initial IP velocity is 0.

If (rf(0).gt.0.5d0) then
p(4,iall)=yc(n)+0.5%rf(0)*cell_height
else
p(4,iall)=yc(n)-0.5*rf(0)*cell_height
The initial random positions of the simulated molecules in cells are
given, here the principle of variance reduction has been adopted, cf.
APPENDIXIII, Eq. (IIT-5) and Eq.(III-5)'.
end if
end do
end do
return
end

subroutine subc3(iloop,jnis,no_molecule,p,vmean,up_wall,wall)

Calculate the molecular movements and their reflections on the upper
and lower walls, and sample

implicit double precision (a-h,0-z)
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common /cons/ pi,boltz,eta51,y_length,dtm,
1 area,drag_ns,cell_height,

2 rmass,tkom,amda,rkn

common /init/ t_ini,pressure,fnd,t_wall,u_wall,vm_ini,
1 vm_wall,vrm_ini,vrmax_eta51

dimension p(4,no_molecule),vmean(3,no_molecule)

dimension wall(7),up_wall(7)

do 180 m=1,no_molecule
y=p(4,m)+p(2,m)*dtm
Y, the position arrived at by the molecule with a velocity P(2,M) after a
time step DTM

if(y.ge.y_length) then
If Y is larger than Y_LENGTH, then the molecules reflect from the
upper wall.
dtr=(y-y_length)/p(2,m)
the remainder movement time of the molecules after reflection
if(iloop.ge.jnis) then
p(1,m)=p(1,m)+u_wall/2.0d0
vmean(1,m)=vmean(l,m)+u_wall/2.0d0
Here, the re ference framework is transferred to that associated with the
upper wall (moving with a velocity of -U_WALL/2.0D).
up_wall(1)=up_wall(1)+1.0d0
up_wall(2)=up_wall(2)+p(1,m)
up_wall(2)=up_wall(2)+vmean(1,m)
In the IP method, UP_WALL(2) is the sum of the IP velocities of the
incident molecules, see Eq. (8.7)
up_wall(3)=up_wall(3)-p(2,m)
up_wall(4)=up_wall(4)+0.5*(p(1,m)**2+p(2,m)**2+p(3,m)**2)
end if
If the number (ILOOP) o fthe current loop is larger than the number
(JNIS) of loops, at which sampling starts, sample the molecules on the
upper wall. UP_WALL(I) sums up the contributions of incident mole-
cules: (1) molecular number, (2) tangential momentum,(3) normal mo-
mentum, (4) kinetic energy
abcl=dsqrt(-dlog(rf(0))y*vm_wall
abc2=2.0*pi*rf(0)
p(1,m)=abcl*dsin(abc2)
p(3,m)=abcl *dcos(abc2)
p(2,m)=dsqrt(-dlog(rf(0)))*vm_wall
vmean(1,m)=0.0d0
vmean(2,m)=0.0d0
vmean(3,m)=0.0d40
The molecular velocities after diffuse reflection from the upper
wall are calculated, cf. Eqgs. (3-18), (3-19), (3-15), (3-20). The IP
velocity after diffuse reflection is 0 in the framework associated with
the upper wall.
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If (iloop.ge.jnis) then
up_wall(5)=up_wall(5)+p(1,m)
up_wall(5)=up_wall(5)+vmean(1,m)
In the IP method, UP_WALL(5) is the sum of the IP velocities of the
reflected molecules, see Eq. (8.7)
up_wall(6)=up_wall(6)+p(2,m)
up_wall(7)=up_wall(7)+0.5*(p(1,m)**2+p(2,m)**2+p(3,m)**2)
end if
In the above, the contributions of reflected molecules are summed up: (5)
tangential momentum (is 0), (6) normal momentum, (7) kinetic energy
p(1,m)=p(1,m)-u_wall/2.0d0
vmean(1,m)=-u_wall/2.0d0
vmean(2,m)=0.0d0
p(4,m)=y_length+p(2,m)*dtr
In the above, the tangential velocity of molecule reflected from the upper
wall is added by the velocity of the upper wall. The tangential and nor
mal IP velocities are assigned. The molecules arrive at new positions.

goto 180
end if

if (y.1e.0.0d0) then
If Y is smaller than 0.0, the molecules reflect from the lower wall.
The reflection and sampling of the molecules are analogous with those at
the upper wall.
dtr=y/p(2,m)
if (dtr.1t.1.0d-3*dtm) dtr=1.0d -3*dtm

if (iloop.ge.jnis) then
p(1,m)=p(1,m)-u_wall/2.0d0
vmean(1,m)=vmean(1,m)-u_wall/2.0d0
wall(1)=wall(1)+1.0d0
wall(2)=wall(2)+p(1,m)
wall(2)=wall(2)+vmean(1,m)
wall(3)=wall(3)-p(2,m)
wall(4)=wall(4)+0.5*(p(1,m)**2+p(2,m)**2+p(3,m)**2)
end if

abc1=dsqrt(-dlog(rf(0)))*vm_wall
abc2=2.0d0*pi*rf(0)
p(1,m)=abc1*dsin(abc2)
p(3,m)=abc1*dcos(abc2)
p(2,m)=dsqrt(-dlog(rf(0)))*vm_wall
vmean(1,m)=0.0d0
vmean(2,m)=0.0d0
vmean(3,m)=0.0d0

if (iloop.ge.jnis) then
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wall(5)=wall(5)+p(1,m)
* wall(5)=wall(5)+vmean(1,m)
wall(6)=wall(6)+p(2,m)
wall(7)=wall(7)+0.5*(p(1,m)y**2+p(2,m)* *2+p(3,m)**2)
end if

p(1,m)=p(1,m)+u_wall/2.0d0
*k vmean(l,m)=u_wall/2.0d0
** vmean(2,m)=0.0d0

p(4,my=p(2,m)*dtr
goto 180
end if
p(4,m)=y
180  continue
return
end

subroutine subc4(no_molecule,no_cell,cell_height,p,vmean,ic,lcr)

The molecule with the original identifying number M is re-indexed
according to the cell it arrived at after movement. Its new order num
ber is K. M is stored in LCR(K).

(eI e BN e BN eI ¢}

implicit double precision (a-h,0-z)
dimension p(4,no_molecule),vmean(3,no_molecule),lcr(no_molecule),
& ic(2,no_cell)

150  do icell=1,no_cell
ic(1,icell)=0
end do
do m=1,no_molecule
ncell=p(4,m)/cell_height+0.999999d0
if (ncell.eq.0) ncell=1
if (ncell.ge.no_cell) ncell=no_cell

c NCELL is the number of the new cell which molecule M arrived at
ic(1,ncell)=ic(1,ncell)+1
end do
C Here, the number IC(1,I) of the molecules in each cell of all NO_CELL
c cells has been counted. And this is done for obtaining IC(2,I).
ic2=0

do icell=1,no_cell
ic(2,icell)=ic2
c Now, IC(2,]) is the order number of the first molecule in i-th cell -1.
ic2=ic2+ic(1,icell)
ic(1,icell)=0
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end do

do m=1,no_molecule
ncell=p(4,m)/cell_height+0.999999d0
if (ncell.eq.0) ncell=1
if (ncell.ge.no_cell) ncell=no_cell
ic(1,ncell)=ic(1,ncell)+1
k=ic(2,ncell)+ic(1,ncell)
ler(k)=m
end do
In this circle, IC(1,1) is counted again, and the new order number K of the
molecule with original number M is obtained corresponding to its new
position. M is stored in LCR(K).
return
end

a oo

subroutine subc5(no_cell,no_molecule,coll_remain,
1 ic,lcr,p,vmean)

Calculate collisions

(e}

implicit double precision (a-h,0-z)
common /cons/ pi,boltz,eta51,y_length,dtm,

1 area,drag_ns,cell_height,

2 rmass,tkom,amda,rkn
common /init/ t_ini,pressure,fnd,t_wall,u_wall,vm_ini,

1 vm_wall,vrm_ini,vrmax_eta51
dimension p(4,no_molecule),vmean(3,no_molecule),lcr(no_molecule)
dimension ic(2,no_cell),coll_remain(no_cell)
dimension vre(3),veem(3)

c dimension vrc(3),veem(3),vreip(3),veemip(3)

190  do 140 m=1,no_cell
if IC(1,m).1t.2) goto 140

c If there is no molecule or only one molecule in cell M, skip collisions.
VAVER=0.0
c VAVER is the sum of CR**ETAS!1 in the cell

icontr=IC(1,m)
if (IC(1,m).eq.2) icontr=1
if (IC(1,m).eq.3) icontr=2

c ICONTR is the number of molecuk pairs that need to be selected in
c random in order to calculate the number of collisions in the cell
c during a time step DTM. See section 7.2, RSF method

do icoll=1,icontr
k=int(rf(0)*IC(1,m)*+1C(2,m)+0.9999999d0)
if (k.eq.IC(2,m)) k=k+1
1=LCR(k)
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c A molecule L1 in cell M is selected randomly.
210 j=int(rf(0)*IC(1,m)+IC(2,m)+0.9999999d0)
if (j.eq.1C(2,m)) j=j+1
if (j.eq.k) goto 210
12=LCR(j)
c Another molecule L2 in cell M is selected randomly
dok=1,3
vre(k)=P(k,11)-P(k,12)
end do

VR=dsqrt(vrc(1)**2+vrc(2)**2+vrc(3)**2)
VAVER=VAVER+VR**¢cta51
end do
VR is the relative speed between molecules L1 and L2, the VR**ETAS51
c thus obtained multiplied by TKOM yields S(CR). See Eq. (7.1).
VAVER=VAVER/icontr

(o]

CNOIC=IC(1,m)*(IC(1,m)/(AREA*cell_height))*tkom*VAVER
i *DTM/2.0d0

The number density n of the flow is in the double brackets.
TKOM*VAVER is the mean value of S(CR).
CNOIC is the number NRSF of collisions that should occur in the cell
during DTM according to RSF method, see Eq. (7.10).
cnoic=cnoic+coll_remain(m)
NCOLL=anint(CNOIC)

NCOLL is the number of collisions which should happen factually in the
cell obtained after rounding off and with the remainder number of colli

c sion during the last DTM taken into account.

a oo 6

o O

coll_remain(m)=CNOIC-NCOLL
if (NCOLL.1t.1) goto 140
NACOLL=0
C NACOLL is used to count the number of collisions occurred factually.

300 k=int(rf(0)*IC(1,m)+IC(2,m)+0.9999999d0)
if (k.eq.IC(2,m)) k=k+1
11=LCR(k)

310 J=int(rf(0)*IC(1,m)+IC(2,m)+0.9999999d0)
if (j.eq.IC(2,m)) j=j+1
if j.eq.k) goto 310
12=LCR()
c Two molecules L1,L2 are selected randomly in cell M.

dok=1,3
vre(k)=P(k,11)-P(k,12)
end do



394

APPENDIX IV PROGRAM OF THE COUETTE FLOW

c
140

O O 0 0 00

vr=dsqrt(vre(1)**2+vrc(2)**2+vrc(3)**2)
VR is the relative speed of the collision pair.
if (vr**eta51.gt.vrmax_etaS1)vrmax_eta51=vr**eta5]
a=vr**eta51/vrmax_eta51
b=rf(0) »
if (a.lt.b) goto 300
Judge whether the molecular pair is selected or not, using the acceptance-
rejection method, see Eq. (7.1). When ETA 51 is assigned appropriately,
VR**ETA 51 is suitable to include the VHS,VSS model.
b=1.0-2.0*rf(0)
a=dsqrt(1.0-b*b)
VRC(1)=b*VR
b=2.0*PI*rf(0)
VRC(2)=a*dcos(b)*VR
VRC(3)=a*dsin(b)*VR
VRC are the three components of the relative velocity after collision, see
Eq. (2-111). They can be used in the HS and VHS modek.
dok=1,3
VCCM(k)=0.5*(P(k,11)+P(k,12))
P(k,11)=VCCM(k)}+VRC(k)*0.5
pk,12)=VCCM(k)}- VRC(k)*0.5
VCCM are the velocity comiponents of the centre-of-mass of the molecu-
le pair.
Here, the velocities of the molecules 1.1,L2 after collision are obtained,
see Eq.(2-41)
ve_macro=0.5*(vmean(k,l1)+vmean(k,12))
vmean(k,11)=ve_macro
vmean(k,12)=ve_macro
IP collision rule: momentum is conserved and is distributed evenly be-
tween the two simulated particles, thus the post-collision IP velocities
are obtained, see Eq. (8.1).
end do
NACOLL=NACOLL+1
if (NACOLL.1t. NCOLL) GOTO 300
Repeat the calculation of collisions until the number of collisions NRSF,
Eq. (7-10), is attained, then calculate the collisions in the next cell.
continue
return
end

subroutine subc6(no_cell,no_molecule,ic,lcr,p,vmean,field)

Sum up of flow parameters. In FIELD(N,NO-CELL) stored are:
(1): the number of the molecules;
(2),(3): the sum of the 1% and ond component of the macro velocity,
respectively;
(4),(5),(6): the sum of the square of the three molecular velocity com-
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c ponents, respectively

implicit double precision (a-h,0-z)
dimension p(4,no_molecule),vmean(3,no_molecule),lcr(no_molecule),
1 ic(2,no_cell),field(7,no_cell)

do icell=1,no_cell
do molecule=1,ic(1,icell)
k=ic(2,icell)+rmolecule
1=ler(k)
field(1,icell)=field(1,icell)+1.0d0
field(2,icell)=field(2,icell)+p(1,])
field(2,icell)=field(2,icell)+vmean(1,])

*

c In IP method, field(2,icell) is the sum of the IP velocity of the molecules,
c see Eq. (8.7)
field(3,icell)=field(3,icell)}+p(2,])
* field(3,icell)=field(3,icell)+vmean(2,])
do ijk=1,3
field(3+ijk,icell)=field(3+ijk,icell)+p(ijk,1)**2
end do
end do
end do
return
end
subroutine subc7(nloop,jnis,no_cell,yc,no_molecule_cach_cell,
1 wall,up_wall,field,op)
c
c Output surface parameters and write in surf_coue.dat
c Output flow parameters and write in u_coue.dat
c
implicit double precision (a-h,0-z)
common /cons/ pi,boltz,eta51,y_length,dtm,
1 area,drag_ns,cell_height,
2 rmass,tkom,amda,rkn
common /init/ t_ini,pressure,fnd,t_wall,u_wall,vm_ini,
1 vm_wall,vrm_ini,vrmax_eta51
dimension wall(7),up_wall(7),field(7,no_cell),op(8),
1 yc(no_cell)
open(26,file="surf_coue.dat')
c
c In the following output the data on the upper surface

skn=1.0d0/rkn
sma=dsqrt(2.0d0/1.6670d0)*u_wall/vm_ini
write(26,10)skn,sma

10 format(1x,'Knudsen number=',F6.3,' Mach number='F6.3/)
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18

19

by

o o0 oo

21

9875

81

write(26,18)

format(1x,'properties on upper surface'/)

write(26,19)

format(1x,” sample size number flux pressure(in,re)
& shear stress(in,re) heat flux(in,re)")

OP(1)=wall(1)

(1): the number of molecules being counted, sample size, the number
of molecules striking on the upper plate during the time of:
(nloop-jnis)*dtm=t

a=(nloop-jnis)*dtm*(FND*AREA*vm_ini)
t*n*A*¥vm
OP(2)=wall(1)/a
(2): the number flux normalized by n*vm, wall(1)/t*A
OP(3)=wall(3)/(vm_ini*a)
OP(4)=wall(6)/(vm_ini*a)
(3),(4): the incident and reflected normal momentum flux normalized

n*vm**2
OP(5)=2.0*dsqrt(pi)*wall(2)/(u_wall*a)
OP(6)=2.0*dsqrt(pi)*wall(5)/(u_wall*a)

(5),(6): the incident and reflected tangential momentum fluxes normal-
ized by TAUfm=m*n*U*vm/2*pi**0.5 (see Eq. (4-55)). Notice that
wall(2) and wall(5) have been the sums of the incident and reflected IP
velocities in the IP method, see subc3, cf. Eq. (8.7)

OP(7)=wall(4)/(vm_ini**2*a)
OP(8)=wall(7)/(vim_ini**2%a)
(7),(8): the incident and reflected energy fluxes normalized by n*vm**3

write(26,21)OP
format(1x,e13.5,7¢13.5)

drag=rmass*wall(2)/({nloop-jnis)*dtm*AREA)
write(26,%)

write(26,9875)drag

format(1x,! drag="e10.4)

In the following output the data of the lower surface
write(26,*)
write(26,81)
format(1x,"properties on lower suface'/)
write(26,19)

OP(1)=up_wall(1)
a=(nloop-jnis)*dtm*(FND*AREA*vm_ini)
OP(2)=up_wall(1)/a
OP(3)=up_wall(3)/(vim_ini*a)
OP(4)=up_wall(6)/(vm_ini*a)
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C

123

1234

270

O O o0

OP(5)=2.0*dsqrt(pi)*up_wall(2)/(u_wall*a)
OP(6)=2.0*dsqrt(pi)*up_wall(5)/(u_wall*a)
OP(7)=up_wall(4)/(vim_ini**2*a)
OP(8)=up_wall(7)/(vm_ini**2%a)

write(26,21)0OP
drag=rmass*up_wall(2)/((nloop-jnis)*dtm*AREA)

write(26,%)
write(26,9875)drag

open(3,file="u_coue.dat")
In the following output the data of the flow field

write(3,123)
format(ix,” N y sample size  rho u v
Tx Ty Tz TY

do 270 n=1,no_cell

OP(1)=field(1,n)
(1): the number of the molecules being counted in the cell, sample size

OP(2)=0P(1)/({(nloop-jnis)*no_molecule_each_cell)

(2) : the normalized number density
OP(3)=field(2,n)/OP(1)

OP(4)=field(3,n)/OP(1)

(3),(4): the average tangential, normal velocity, * the average of
the tangential, normal IP velocity,
OP(5)=RMASS*(field(4,n)/OP(1)-OP(3)**2)/BOLTZ/t_ini
OP(6)=RMASS*(field(5,n)/OP(1)-OP(4)**2)/BOLTZ/t_ini
OP(7)=RMASS*field(6,n)/OP(1)/BOLTZ/t_ini

(5),(6),(7): the temperature in X,Y,Z directions, respectively
OP(8)=(0OP(5)+0OP(6)+0OP(7))/3

write(3,1234)n,yc(n)/y_length,op
format(1x,14,F9.4,F12.1,2F9.4,F10.4,4F9.4)

continue
return
end

FUNCTION RF(IDUM)

This section is to generate a uniformly distributed random fraction
between 0 and 1. Commonly IDUM is 0, however, negative values can
be used to restart.
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implicit double precision (a-h,0-~z)
SAVE MA,INEXT,INEXTP
PARAMETER (MBIG=1000000000,MSEED=161803398 MZ=0,
1 FAC=1.E-9)
DIMENSION MA(55)
DATA IFF/0/
IF (IDUM.LT.0.OR.IFF.EQ.0) THEN
[FF=1
MJ=MSEED-IABS(IDUM)
MI=MOD(MJ,MBIG)
MA(55)=MJ
MK=1
DO 50 I=1,54
[I=MOD(21*1,55)
MAID)=MK
MK=MJ-MK
IF (MK.LT.MZ) MK=MK-+MBIG
MIJ=MA(I)
50 CONTINUE
DO 100 K=1,4
DO 60 I=1,55
MA(IH=MA()-MA(1+MOD(I+30,55))
IF MA(D.LT.MZ) MA(I)=MA(I)+MBIG

60 CONTINUE
100 CONTINUE
INEXT=0
INEXTP=31
END [IF

200 INEXT=INEXT+1
IF (INEXT.EQ.56) INEXT=1
INEXTP=INEXTP+1
IF (INEXTP.EQ.56) INEXTP=1
MJ=MA(INEXT)-MA(INEXTP)
IF (MJ.LT.MZ) MJ=MJ+MBIG
MA(INEXT)=MJ
RF=MJ*FAC
IF (RF.GT.1.E-8.AND.RF.LT.0.99999999) RETURN
GO TO 200
END
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acceptance-rejection method, 378
generalized, 294, 378
accommodation coefficient, 138
activation energy, 300
adiabatic surface temperature, 173
aerodynamic force in free
molecular flow
cylinder, 166
in hypersonic flow, 168
plane plate, 165
sphere, 167
angular momentum, 26
apse line, 66
Arrhenius formula, 300
Arrhenius-Kooil formula, 300
asymptotic theory at small Knudsen
numbers, 203
average collision time, 8
average molecular weight, 125
average thermal speed, 113
averaging
ensemble, 18
time, 18

Avogadro’s number, 59

basic equations of slip regime, 192

bearing number, 350
beta function, 373
BGK equation, 247
test of, 251
binary collision modeling law, 16
binary elastic collision, 61
binary scaling law, 16
binomial distribution function, 241
BKW equation, 248
Bohr's hypothesis, 22
Boltzmann constant, 7, 10
Boltzmann distribution, 41
Boltzmann equation, 92, 96
asymptotic analysis, 203
Chapman-Enskog expansion, 193
collision term, 96
collisionless, 182
discrete, 91, 257, 261
for gas mixture, 126
Boltzmann’s H theorem, 108
Boltzmann's relation, 32
Boley-Yip model equatiion, 251
Bose-Einstein statistics, 35
boson, 35
Bumnett equations, 196
augmented, 199

experimental verification, 201
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calculation of complicated flow field,
310
Cercignani-Lampis-Lord (CLL) model,
142
Chapman-Enskog expansion, 193
characteristic temperature, 367
of dissociation, 12, 367
of ionization, 12, 367
of rotation, 10, 367
of vibration, 10, 367
chemical reaction
simulation of, 299
chemical reaction rate coefficient, 300
CLL model, 142
cold wall paradox of free molecular
flow, 8
collision cross section
differential, 70
diffusion, 71
in the IP method, 332
reaction, 301
total,71
viscosity, 71
collision frequency, 2, 4
for VHS, VSS models, 118
in gas mixture, 127
of a molecule A with molecules B,
128
collision integral, 98
evaluation of , 100
combined cumulative distribution
acceptance-rejection method, 294,

378

complementary error function, 370
computation of complicated flow fields,
310
concentration jump, 212
conductance, 346
conductivity coefficient, 195
in the BGK model, 249
conservation  equations of  mass,
momentun and enenrgy, 192
conservative form of the continuity
equation, 338
contmuum model, 191
Couette flow
by discrete velocity method, 257
by DSMC method, 281
by IP method, 333
in free molecular flow, 177
with slip, 213
cosine formula for the sides in the
spherical trigonometry, 67
cumulative distribution function,
376

deflection angle, 64, 66
degeneracy, 27
degenerated Reynolds equation, 355
degrees of freedom, 47
relative  translational  energy in
collision, 295
rotational, 47
translational, 47
vibrational, 47
density, 53

depletion of molecules, 89, 95
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diagram of the CLL model, 149
diatomic molecule, 21
differential collision cross-section, 70
differential effusion, 177
diffuse elastic reflection, 170
diffuse reflection, 132
implementation in DSMC, 135
with incomplete energy
accommodation, 153
diffusion cross-section, 75
dilute gas, 62
direct simulation method, 264
direct simulation Monte Carlo
method, 267, 275
discrete Boltzmann equation, 91, 257,
261
discrete energy Larsen-Borgnakke
method, 295
discrete energy exchange, 151
discrete ordinate method, 257
discrete velocity method, 257
distance of closest approach, 62
distribution function
equilibrium,106
for u component, 114
internal energy, 49
N particle, 51
of discrete vibrational energy, 296
of post collision energy, 292
of the value of velocity, 113
relative translational energy,291
rotational energy, 48
single particle, 51

translational energy, 48

vibrational energy, 49
velocity, 51
division of flow regimes, 5

DSMCmethod, 293

effusion, 175

effective temperature in the collision,
294

eigenvalues, 22
of harmonic oscillator, 25
of rigid rotator, 26

eight velocity gas model, 88

electron energy, 28

electro-kinetics, 318

entropy, 32

ergodic principle, 42

error function, 369

equilibrium distribution function,
106

Euler equations, 194

exchange of internal energy with
surface, 150

exchange probability, 297

exchange reactions, 309

excitation and relaxation of the internal
energy, 288

exponential factor of reaction rate

constant, 308

FCT method, 326
feasibility of LBM, 324
Fermi-Dirac statistics, 35
fermion, 35

finite difference method, 255
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flow conductance, 346

flux vector, 56

flux-corrected transport (FCT) method,
326

free expansion, 184

free molecular flow, 159

free molecular effusion, 175

gamma function, 369

gas kinetic unified algorithm, 255

gas kinetic scheme, 252

gas surface interaction, 131

generalized acceptance-rejection
method, 294, 378

generalized hard sphere (GHS) model,
85

generalized Reynolds equation, 352

generalized soft sphere (GSS) model, 87

generalized theorem of mean value, 307

GHS model, 85

Grad 13 moment equation, 201

GSS model, 87

H theorem, 108
hard sphere (HS) model, 72
harmonic oscillator, 24
heat flux vector, 58, 125
heat conductivity, 195
in the BGK model, 249
heat transfer
between plane plates, 178
to surface, 172
Heisenberg uncertainty principle, 11

HS model, 72

hybrid continuum/particle approach, 361

impact parameters, 62
incomplete beta function, 373
incomplete gamma function, 369
information preservation (IP) method,
326
information (IP) velocity, 326
integral method, 263
internal degrees of freedom, 171
internal energy flux, 172
mverse collisions, 64
inverse power law model, 74
inversion of cumulative distribution
function, 375
IP collision rule, 327
validation of, 330
I[P method, 327
IP reflection rule, 326
validation of, 329
IP simulation of
case of temperature variation, 360
microchannel flow, 338
thin film air bearing, 353
unidirectional flows, 333

IP velocity, 326

Kac method, 279

kinetic scheme, 252
Knudsen layer, 206
Knudsen minimum, 322, 335
Knudsen number, 2, 14
Knudsen paradox, 335

Kooij formula, 300
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Larsen-Borgnakke model, 289

for discrete energy levels, 295
Lattice Boltzmann method (LBM), 323
lattice gas method, 323
LBM, 323
Leibnitz formula, 25
linearized Boltzmann equation, 234, 238
Loschmidt number, 1

Low speed non isothermal flows, 199

Mach number, 14
mass velocity, 54, 125
Maxwell distribution, 106
Maxwell molecule, 76
Maxwell slip velocity, 208
Maxwell-Smoluchovski expression of
the temperature jump, 211
Maxwell transport equation, 104
Maxwell type boundary condition, 137
MD method, 265
mean collision frequency, 116
in gas mixture, 127
mean collision time, 8
mean free path, 2, 4
for VHS, VSS models, 118
in gas mixture, 127
mean molecular spacing, 11, 62
mean molecular velocity, 54
mean squire root thermal speed, 114
mean thermal speed, 113
mean value of collision quantities, 120

mean value of relative velocity, 118

mean translational kinetic energy in
collision, 120
MEMS, 318
microchannel flow problem, 338
micro electro mechanical systems
(MEMS), 318
micromachined channel, 319
micromachining, 320
microscale slow gas flows, 317
microscopic state, 31
miss distance, 62
model equation, 247
for multicomponent gas, 251
modeling of chemical reactions, 299
modified Bessel functions, 372
molecular chaos, 92, 96
molecular diameters
hard sphere, 72
reference values of, 123
VHS, 80
VSS, 82
molecular dynamics (MD) method, 265
molecular effusion, 175
molecular model of gases, 3
molecular speed ratio, 161
molecule surface interaction, 131
moment equation, 104
moment method, 239
moment of inercia, 25
momentum flux, 162
most probable molecular thermal speed,
113
Mott-Smith solution, 241
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Navier-Stokes equations, 194

normal momentum  accommodation

coefficient, 138
normalization condition of the scatter
kiernel, 133
no time counter (NTC) method, 279
NTC method, 279
number density, 52
component, 124
number flux, 161

number of microstates, 31, 34

partition function, 41
Pauli exclusion principle, 35
phenomenological chemical reaction
model, , 300
Planck constant, 10, 21
Poiseuille flow
by DSMC, 287
by IP, 336
in slip flow regime, 215
positioin element methpod, 311
post-collision velocity, 69
potential curve of the molecule, 23
Prandtl number, 250
pressure, 58, 125
pressure tensor, 59, 125
program demonstrating the DSMC, IP
method, 282, 332, 383

projected distance, 62

quantum mechanics, 21

quantum number

rotation, 10, 26
second, 26

vibration, 10, 25

randomly sampled frequency (RSF)

method, 281
Rankine-Hugonio relations, 242
Rayleigh problem, 8

by DSMC, 287

by IP, 336

in free molecular flow, 186

in slip flow, 218
reaction cross section, 300
reaction probability, 300
reciprocity principle, 140
reduced mass, 24
reference diameters

of VHS (VSS) models, 123, 367

relative velocity after collision, 292
relaxation collision number, 297
relaxation time, 12, 298
Reynolds equation, 348

derivation of, 349

degenerated, 355

generalized, 352

slip corrected, 351
Reynolds number, 14
rigid rotator, 25

root mean thermal speed, 114

rotational relaxation collision number,

295
rotational energy, 26, 28, 47
RSF method, 281
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sampling of inversion of the cumulative

distribution, 136, 375

sampling from the singular distributions,

294

sampling of collisions, 278

sampling of components of thermal

velocity, 136
scatter kernel, 132
diffuse reflection, 134
normal component in CLL, 145
specular reflection, 133
tangential component in CLL, 143
scale length of the gradient, 1
Schrodinger equation, 21
for harmonic oscillator, 24
for rigid rotator, 26
shear stress, 163
slip boundary conditions, 204
concentration jump, 212
in liquid, 318
multicomponent nonequilibrium
flow, 212
second order, 227
with injection, 212
slip coefficient, 214
slip corrected Reynolds equation, 351
slip velocity, 204
derivation of, 207
in the spherical coordinates, 224
S- model equation, 255
smoothing technique, 342
space quantization, 27

specific average kinetic energy 47

specific rotational energy, 47

specific vibratioinal energy, 47

specular reflection, 132

speed ratio, 161

stagnation temperature, 9, 173

static pressure, 58

statistical mechanics, 30

steepest descend method, 305

steric factor, 300

sterically ndependent chemical reaction
mpodel, 302

Stirling formula, 38

Stokes equation, 223

stream velocity, 54

stress tensor, 58

summational invariants, 101, 109

super relaxation factor, 340

super relaxation technique, 340

superthermal flow, 169

tangential momemtum accommodatioin
coefficient, 138
TC method, see time counter method,
278
temperature
adiabatic surface, 173
characteristic
of dissociation, 12, 367
of ionization, 12, 367
of rotation, 10, 367
of vibration, 10, 367
effective in collision, 294
internal, 60

kinetic, 59
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stagnation, 9, 173

translational, 59
temperature jump, 209
temperature jump coefficient, 211
temperature stress convection, 200
ternary collision, 61

test molecule Monte-Carlo method, 268

thermal accommodation coefficient, 138

thermal creep, 220

thermal creep coefficient, 209

thermal stress slip flow, 201

thermal transpiration, 176

thermal velocity, 55

thermophoresis, 221

thermophoretic deposition, 227

thermophoretic force, 226

thin film air bearing problem, 319, 348

time counter (TC) method, 278

total collision cross section, 71

transitiona probability, 261

transitioanl regime, 231

translational kinetic temperature, 59,
126

translational enenrgy, 47

transpiration, 176

uncertainty principle (Heisenberg
principle), 11

unidirectional flows, 333

unified algorithm, 255

unsteady free molecular flow, 182

unstructured body fitted grid, 310

validation of the IP method, 329
variable hard sphere (VHS) model, 78
variable soft sphere (VSS) model, 80
variance reduction technique, 376
velocity slip coefficient, 209, 228
VHS model, 77
vibrational energy, 25, 28, 46
vibrational exchange probability, 298
viscosity coefficient, 195

in the BGK model, 249
viscosity cross-section, 71
viscous stress tensor, 58, 125

VSS model, 80

wave function, 21
Winchester hard disc drive, 319, 348
write/read head, 319





