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Preface

The field of magnetic nanostructures is now an exciting and central area of modern
condensed matter science, which has recently led to the development of a major new
direction in electronics – so called ‘spintronics’. This is a new approach in which the
electron spin momentum plays an equal role to the electrical charge, and these radical
ideas have galvanised the efforts of previously disparate research communities by
offering the promise of surpassing the limits of conventional semiconductors. Clearly
the world of magnetism has now entered electronics in a very fundamental manner.
This is a very fast growing and exciting field which attracts a steadily increasing
number of researchers, bringing a constant stream of new ideas. Both spintronics
and magnetic nanostructures are already household names in the broad scientific
community and we are now, as a result, at the important stage of beginning to
develop entirely new approaches to electronics and information technology. 50 Giga-
byte/sq inch storage densities in hard drive disks are now a reality. Magnetic Random
Access Memories are being introduced commercially and they will soon change the
operation of PC’s and laptops. Computer logic architectures based on spintronics are
already being widely discussed.

Spintronics spreads beyond the traditional boundaries of physics research, device
applications and electronics. Researchers in biology and the medical sciences find this
approach equally exciting. In this background it is obvious that a deplorable absence
of magnetism teaching within University curricula, which started with the advent of an
enormous growth of semiconductor physics, and electronics in the early sixties, is now
a complete anachronism. There is a pressing need to have books suitable for lecturers
in advanced undergraduate and postgraduate courses. Teaching staff at Universities
need such literature to quickly incorporate the field of magnetic nanostructures and
spintronics into the University teaching program. Scientists working in spintronics
applications come from a very broad science and technology background. They also
need access to literature which addresses fundamentals and which helps to achieve
a broader understanding of this field.

We addressed the basic topics of magnetic multilayers in Volumes I and II which
still underpin many of these developments today. In the early nineties, Giant Mag-
netoresistance and new materials based on the unique properties of interfaces of
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ultrathin films structures were already in place, but applications were only a promise
and the ‘engineering’ of new magnetic materials using nanostructures was still not
well known to the wider community. Since that time the field has moved way ahead
and undergone a complete transformation. This is indeed a true success story of mod-
ern materials science based on nanostructures, which has led to very powerful and
far reaching developments in information storage and device technologies. In view
of these developments we have been encouraged by our fellow scientists to update
the information base started by the earlier volumes and to provide in Vols. III and IV
a new perspective on both nanomagnetism and spintronics, aiming at the reader who
needs a concise coverage of the underlying phenomena. These volumes have been
written keeping in mind that the prime purpose of these books is to educate and help
to eliminate gaps in the understanding of the complex phenomena which magnetic
nanostructures manifest. This is highly multidisciplinary science where the enor-
mous and rapid growth currently occurring is hard to follow without having access
to a treatment which aims to encompass both the present knowledge and direction of
the field, so providing insight into its likely future development.

In preparing these volumes we were fortunate to be able to enlist many of the
leading experts in this field. Not only have authors come from leading scientific
Institutions and made pioneering contributions but they have often played a role as
scientific ambassadors of this fast developing science and technology, often encour-
aging young scientist to bring their talents to this exciting and demanding research
endeavour. We hope that this treatment, based at it is on such wide experience, will
therefore be particularly attractive to readers already working in, or planning a career
in nanoscience.

We would like to express our thanks to all participating authors for their will-
ingness to put aside an appreciable amount of time to write and keep updating their
chapters and to cross-correlate their writing with other contributions. We appreciate
all the authors’ sharing the experience and expertise which has allowed them to con-
tribute so successfully and fundamentally to magnetic nanostructures and spintronics.
Finally we hope that the reader will find these two new volumes a pleasure to read
and that the material presented will enrich the reader’s understanding of this truly
fascinating and revolutionary field of science.

Burnaby and Cambridge B. Heinrich
September 2004 J. A.C. Bland



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Electron Transport in Magnetic Multilayers . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Transport Theory for Inhomogeneous Materials . . . . . . . . . . . . . . . . 6

2.2.1 Quantum Theory of Linear Response . . . . . . . . . . . . . . . . . . 6
2.3 Free Electrons with Random Point Scatterers . . . . . . . . . . . . . . . . . . 7

2.3.1 Semiclassical Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 The Semiclassical Approach to Transport . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Layered Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Semiclassical Non-Local Conductivity for FERPS . . . . . . . 17
2.4.3 Quantum and Semiclassical Conductivities for Multilayers 18

2.5 Electronic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 Two Current Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.3 Velocities of Bloch Electrons at the Fermi Energy . . . . . . . . 23
2.5.4 Electronic Structure Near Interfaces . . . . . . . . . . . . . . . . . . . 24
2.5.5 Corrections to the Two Current Model . . . . . . . . . . . . . . . . . 25

2.6 Transport in Layered Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.2 Boltzmann Equation for CPP . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.3 Effects of Diffuse Interfacial Scattering . . . . . . . . . . . . . . . . . 33

2.7 Giant Magnetoresistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7.1 GMR for Current In the Planes . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7.2 Current Perpendicular to the Planes . . . . . . . . . . . . . . . . . . . . 40

2.8 Landauer Approach to Ballistic Transport . . . . . . . . . . . . . . . . . . . . . 43
2.9 Spin-Dependent Tunnelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



VIII Contents

3 Spin Polarized Electron Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1 Tunneling Between Two Free-Electron Metals . . . . . . . . . . . . . . . . . 52
3.2 Role of the Density of States in Tunneling . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Early Experiments of Giaever . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 Theoretical Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.3 Theoretical Refinements and Interface Sensitivity . . . . . . . . 56

3.3 The Beginnings of Spin Dependent Tunneling . . . . . . . . . . . . . . . . . 57
3.3.1 The Spin Polarized Tunneling Technique . . . . . . . . . . . . . . . 57
3.3.2 What is Tunneling Spin Polarization? . . . . . . . . . . . . . . . . . . 60
3.3.3 Spin Filter Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.4 Early MTJ Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Fabrication and Characterization
of FM-Al2O3-FM Junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.1 A Fabrication Recipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.2 A Few Characterization Techniques . . . . . . . . . . . . . . . . . . . . 66
3.4.3 Sensitivity of MTJs to Barrier Impurities and Annealing . . 67

3.5 Hallmark Features of MTJs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5.1 Basis for the TMR Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5.2 Resistance vs. Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5.3 Conductance vs. Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5.4 TMR vs. Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.5 TMR Temperature Dependence . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Recent Magnetic Tunnel Junction Experiments . . . . . . . . . . . . . . . . . 77
3.6.1 Composite Barriers and the Role of Interface Bonding . . . . 77
3.6.2 Role of Electrode Electronic and Physical Structure . . . . . . 79
3.6.3 Epitaxial Junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.6.4 Interface Dusting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.6.5 Hybrid Spin Filter – MTJ Devices . . . . . . . . . . . . . . . . . . . . . 89

3.7 Outlook and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Interlayer Exchange Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.1 Sample Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2.2 Measurement Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Physical Mechanism for Bilinear Coupling . . . . . . . . . . . . . . . . . . . . 107
4.3.1 Quantum Well States Due to Spin-polarized Reflection . . . . 109
4.3.2 Critical Spanning Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.3 Asymptotic Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.4 Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4 Other Coupling Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4.1 Thickness-fluctuation Biquadratic Coupling . . . . . . . . . . . . . 119
4.4.2 Pin-hole Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.4.3 Magnetostatic Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



Contents IX

4.4.4 Loose Spins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.4.5 Torsion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.5 Specific Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.5.1 Co/Cu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.5.2 Au/Fe and Ag/Fe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.5.3 Cr/Fe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.5.4 Fe/Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 Spin Relaxation in Magnetic Metallic Layers
and Multilayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.2 Magnetic Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.3 FMR Linewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3.1 Gilbert Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.3.2 Landau Lifshitz Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.3.3 Modified Bloch-Bloembergen Relaxation . . . . . . . . . . . . . . . 152

5.4 Intrinsic Damping in Metals, Theory . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.4.1 Eddy Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.4.2 Phonon Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.4.3 Spin-orbit Relaxation in Metallic Ferromagnets . . . . . . . . . . 155
5.4.4 Dynamic Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.4.5 Techniques for Dynamic Studies . . . . . . . . . . . . . . . . . . . . . . 163
5.4.6 Intrinsic Damping, FMR Experiments . . . . . . . . . . . . . . . . . . 164
5.4.7 Relaxation at Large q Wave-numbers,

Dipole-dipole Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.4.8 Magnetic Relaxation at Large Precessional Angles . . . . . . . 169

5.5 Magnetic Relaxations in Multilayers . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.5.1 Current Induced Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.5.2 Spin Dynamics in Small Lateral Geometries,

Computer Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.6 Non-local Damping: Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.6.1 Multilayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.7 Extrinsic Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.7.1 Two Magnon Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.7.2 Dry Magnetic Friction

and Large Length Scale Inhomogeneities . . . . . . . . . . . . . . . 205
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6 Nonequilibrium Spin Dynamics
in Laterally Defined Magnetic Structures . . . . . . . . . . . . . . . . . . . . . . . . 211
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.2.1 Pump-and-Probe Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213



X Contents

6.2.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.2.3 Operation Modes in TR-SKM Experiments . . . . . . . . . . . . . 220

6.3 Experimental Results for Magnetization Reversal Dynamics . . . . . 222
6.3.1 Picosecond Time-Resolved Magnetization

Reversal Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
6.3.2 Dynamic Domain Pattern Formation

in Nonequilibrium Magnetic Systems . . . . . . . . . . . . . . . . . . 226
6.4 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

7 Polarised Neutron Reflection Studies
of Thin Magnetic Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
7.2 Theoretical Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

7.2.1 Theory: Basics of Polarised Neutron Reflection . . . . . . . . . . 236
7.2.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

7.3 Polarised Neutron Reflection Magnetometry . . . . . . . . . . . . . . . . . . . 254
7.3.1 Ultrathin Magnetic Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
7.3.2 Spin-valve Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
7.3.3 Experimental Results on Superlattice Systems . . . . . . . . . . . 272

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

8 X-ray Scattering Studies
of Ultrathin Metallic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
8.2 Reflectivity Measurements of Interfacial Structure . . . . . . . . . . . . . . 287

8.2.1 Interfacial Roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
8.2.2 Reflectivity Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
8.2.3 Scattering Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

8.3 Wide-angle Diffraction Measurements of Layered Structures . . . . . 301
8.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
8.3.2 Wide Angle Diffraction Measurements . . . . . . . . . . . . . . . . . 302
8.3.3 Scattering Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

8.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315



Contributors

J. A. C. Bland
University of Cambridge
Department of Physics
The Cavendish Laboratory
Madingley Road
CB3 0HE Cambridge
UK

W. H. Butler
Center for Materials for Information
Technology University of Alabama
Tuscaloosa, AL 35487-0209
USA

B.-C. Choi
Department of Physics & Astronomy
University of Victoria
Victoria, BC V8W 3P6
Canada

M. R. Freeman
Department of Physics
University of Alberta
Edmonton, AB T6G 2J1
Canada

E. Fullerton
San Jose Research Center, E3
Hitachi Global Storage Technologies
650 Harry Road
San Jose, CA 95120
USA

B. Heinrich
Physics Department
Simon Fraser University
8888 University Drive
Burnaby, BC, V5A 1S6
Canada

P. LeClair
NW14-2126
170 Albany Str.
Cambridge, MA 02139
USA

J.-S. Moodera
Francis Bitter Magnet Laboratory
MIT
Cambridge, MA 02139
USA



XII Contributors

S. K. Sinha
Department of Physics
University of California San Diego
9500 Gilman Drive
La Jolla, CA 92093-0354
USA

M. Stiles
National Institute of Standards
and Technology
100 Bureau Dr. Stop 8412
Gaithersburg, MD 20899-8412
USA

H. J. M. Swagten
Eindhoven University of Technology
Applied Physics
Physics of Nanostructures
PO Box 513, NLe 1.08
5600 MB Eindhoven
The Netherlands

C. A. F. Vaz
University of Cambridge
Department of Physics
Cavendish Laboratory
Madingley Rd
Cambridge CB3 0HE
UK

X.-G. Zhang
Computational Science and Mathematics
Division
Oak Ridge National Laboratory
PO Box 2008
Oak Ridge, TN 37831-6114
USA



Acronyms

2D two-dimensional
AES Auger electron spectroscopy
AFM atomic force microscopy
AP antiparallel state
BCS Bardeen–Cooper–Schrieffer
BEEM ballistic electron emission microscopy
BLS Brillouin light scattering
CA crystal analyser
CIP current in-plane geometry
CLO Ce0.69La0.31O1.845

CPP current perpendicular to plane
DOS density of states
DWBA distorted wave Born approximation
EELS electron energy loss spectroscopy
FERPS electrons with random point-like scatterers
FMAR ferromagnetic antiresonance
FMER ferromagnetic elastic resonance
FMR ferromagnetic resonance
FTIR Fourier-transform infrared spectroscopy
GMR giant magnetoresistance effect
IBZ Brillouin zone
L.L.G. L.L. Gilbert equation of motion
L.L. Landau Lifshitz equation of motion
LCMO La0.7Ca0.3MnO3

LSDA local-spin-density approximation
LSMO La0.67Sr0.33MnO3

M.B.B. modified Bloch–Bloembergen relaxation term
MBE molecular-beam epitaxy
MFM magnetic force microscopy
ML monolayer
MOKE magneto-optic Kerr effect



XIV Acronyms

MRAM magnetic RAM
MRFM resonance force microscopy
MR magnetoresistance
MTJ magnetic tunnel junctions
NEXI non-equilibrium exchange interaction
NMR nuclear magnetic resonance
P2 low resistance parallel state
PIMM pulsed inductive microwave magnetometer
PNR polarised neutron reflection
PSD power spectral density
RBS Rutherford backscattering
RHEED reflection high energy electron diffraction
RKKY Ruderman–Kittel–Kasuya–Yosida
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Introduction

J.A.C. Bland and B. Heinrich

Since the publication of Vols. I and II in this series 10 years ago, there has been an
explosion of interest and activity in the subject of thin film magnetism. Much of this
activity has been stimulated by the use of giant magnetoresistance read heads in hard
disc drives and by the continuing advances in storage densities achievable in thin film
media. Such applications are now almost as familiar as those of the semiconductor
transistor, while 10 years ago, the phenomenon of giant magnetoresistance was largely
unknown outside the research laboratory.

As early as the 1950s, researchers had already recognised the enormous techno-
logical potential of thin magnetic films for use as sensors and information storage
devices. Louis Néel identified the importance of the surface in leading to modified
switching fields, the role of finite thickness in modifying the domain structure of
a thin ferromagnetic film and the role of interface roughness in mediating interlayer
dipole coupling. Many researchers recognised the possibilities of using such modified
magnetic properties to create technologically useful devices. However it was soon
recognised that difficulties in controlling sample quality, often due to the inevitable
chemical contamination resulting from the inadequate vacuum available for thin film
growth, frustrated attempts to control thin film properties and to perform reliable ex-
periments in the search for modified properties. Despite advances in surface science
techniques and the widespread use of molecular beam epitaxy in the 1980s it was
only in the late 1990s that the early dreams of a new technology have begun to be
truly fulfilled.

The very success of the giant magnetoresistance spin valve structure has
led to increased efforts to develop magnetic tunnel junction devices based on
metal/insulator/metal structures. Spintronic devices based on spin polarised electron
injection and detection in all semiconductor or hybrid metal/semiconductor structures
are now being very actively developed. Such devices rely for their operation on the
manipulation of the electron spin rather the electron charge and momentum as in
conventional semiconductor devices. Ultimately it is believed that by controlling the
spin polarised transport channels it may be possible to engineer complete suppres-
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sion of one of the spin conduction channels in the presence of an applied magnetic
or electric field, leading to infinite magnetoresistance ratios in future spintronic de-
vices. Advances in our understanding of spin polarised electron transport in magnetic
multilayers have emphasised the role of the microscopic spin polarised electron scat-
tering processes in magnetotransport and have led to the beginnings of a theoretical
understanding of the reciprocal effect, current induced magnetic reversal, in which
the electron current induces a reversal of the magnetisation in magnetic nanostruc-
tures. This phenomenon would allow magnetic switching in nanoscale devices by all
electrical means without the need to apply external magnetic fields.

In the earlier two volumes, UMS I and II, we described many of the fundamental
properties of thin magnetic films and techniques used to investigate them. These
properties largely underpin the remarkable technological developments of the last
decade. However the last decade has seen considerable progress and refinement in
our understanding of magnetotransport and interlayer coupling but also the blurring
of the boundaries between metals and semiconductors research in the quest for new
spin polarised phenomena: it is largely these developments which form the focus of
the present volumes. Here in Vol. III, the first of the two new volumes, we present
further advances in the fundamental understanding of thin film magnetic properties
and of methods for characterising thin film structure which underpin the present
spintronics revolution.

The success of spintronics depends on our fundamental understanding of spin
polarised electron transport. In Chap. 2, Butler and Zhang describe computational
studies of electron transport in magnetic multilayers using a semiclassical approach
based on solution of the Boltzmann equation with realistic Fermi surface properties.
These results emphasise the link between the spin split band structure and the result-
ing electron transport properties and, in particular emphasise the distinction between
diffusive processes and ballistic processes. The latter mechanism is important not
only for tunnel magnetoresistance but is likely to be the key to understanding po-
larised electron transport on the nanoscale. The spin dependent quantum tunneling
between two ferromagnetic layers first proposed in 1975 but only demonstrated ex-
perimentally in the last few years, provides a larger magnetoresistive effect than giant
magnetoresistance. Consequently it offers great promise in the field of spintronics.
Magnetic tunnel junctions formed from two ferromagnetic films separated by an in-
sulating barrier layer are used in random access memory arrays (see the chapters by
Katti and also by Shi). However the fundamental physics behind these devices is only
beginning to be understood. In Chap. 3, LeClair, Moodera, and Swagten describe de-
velopments in the understanding of the fundamental physics of magnetic tunnelling
based on a wide range of experimental studies in planar structures and finally consider
the wider outlook for spintronic applications based on spin dependent tunneling. The
phenomenon of indirect exchange coupling between ferromagnetic films was first
identified experimentally in 1986. The effect proved to be crucial in the development
of spin valve devices leading to the development of ‘spin engineering’. By the early
90’s several models had been proposed but the fundamental understanding of indirect
coupling effect was still in a state of development and many experimental results could
not be fully explained. In Chap. 4 Stiles describes the early development of these
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models and the subsequent theoretical advances which led to a fuller understanding of
interlayer exchange coupling based on precision experimental measurements on near
defect-free structures in the late 90’s. The subject of the magnetisation dynamics is
intimately linked to the need to switch magnetic nanostructures at ultrahigh rates for
information storage applications. In Chap. 5 Heinrich describes ferromagnetic reso-
nance studies of spin relaxation processes in magnetic metallic layers and multilayers
and in Chap. 6 Choi and Freeman describe experimental studies of nonequilibrium
spin dynamics in laterally defined nanostructures. They present a detailed descrip-
tion of an experimental method for imaging nonequilibrium magnetic phenomena in
the picosecond temporal regime and with sub-micrometer spatial resolution based
on stroboscopic scanning Kerr microscope. They present exemplar data illustrating
dynamic micromagnetic processes during magnetization switching and spontaneous
magnetic domain pattern formation in small magnetic elements. It is now recognised
that ultimately the atomic scale structure of interfaces need to be described to properly
account for the magnetic properties. Fundamental properties of ultrathin structures
such as the magnetic moment and magnetic anisotropy ultimately have an atomic
scale origin and these properties can differ markedly from the corresponding bulk
properties. Probes of buried interface structures are therefore pivotal in characterising
magnetic multilayer structures. While there is an abundance of surface sensitive struc-
tural probes there are few techniques which allow completed multilayer structures to
be probed. In Chap. 7 Bland and Vaz describe the use of polarised neutron reflection
for layer selective magnetometry in thin (nm scale) film structures and show that the
layer dependent magnetisation vector and total layer magnetisation vector can be very
accurately determined. In Chap. 8 Fullerton and Sinha discuss the basic concepts of
X-ray scattering studies from ultrathin metallic structures and show that the average
structure and the atomic scale roughness can be determined with very high precision.

In Vol. IV we deal with the fundamentals of spintronics: magnetoelectronic mate-
rials, spin injection and detection, micromagnetics and the development of magnetic
random access memory based on giant magnetoresistance and tunnel junction de-
vices.

The reader is encouraged to use these volumes not only as an introduction to
recent developments in thin film magnetism and to the new field of spintronics but to
see this work as part of a continuing evolution in a subject which continues to grow
in importance, both technologically and scientifically. By focusing on fundamental
issues we hope that the material we have covered will continue to be of value as
a tutorial guide for some time. Inevitably we have not been able to cover all important
topics in the present volumes, many of which are still in a state of rapid development.
Nevertheless we hope that the present volumes will serve to help interest grow still
further in a fascinating field.
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Electron Transport in Magnetic Multilayers

W.H. Butler and X.-G. Zhang

2.1 Introduction

Almost all electronic devices depend for their operation on the response of the
electron’s charge to applied electric fields. Until very recently, however, no use had
been made of another degree of freedom which electrons possess, their spin. This
situation has changed dramatically, however, during the past 15 years. The giant
magnetoresistance effect was discovered in 1988 [2.1]. This was followed quickly
by the rediscovery of tunneling magnetoresistance [2.2–4]. Today, the combination
of charge and spin transport in heterostructures offers almost unlimited opportunity
for new discoveries and applications.

Giant magnetoresistance (GMR) is a change (usually a significant decrease) in
the electrical resistance of a magnetically inhomogeneous metallic system that occurs
when an applied magnetic field aligns the magnetic moments in different regions of
the system. Because of this moment alignment, one of the two spin currents is able to
traverse the system relatively unimpeded compared to the other. Although GMR may
be observed in many geometries, applications typically employ ultrathin magnetic
multilayers. GMR is now important commercially because it can be used to make
very small and sensitive magnetic field sensors that have numerous applications most
notably as read sensors in magnetic disk drives.

Tunneling magnetoresistance (TMR) may be observed when ferromagnetic elec-
trodes are separated by a thin insulating layer that serves as a tunneling barrier.
A significant change in the tunneling conductance (usually an increase) is often ob-
served when an applied magnetic field aligns the moments in the two ferromagnetic
electrodes. TMR is likely also to soon become commercially important. Two poten-
tial applications are read sensors for disk drives and non-volatile magnetic random
access memory devices.

Future directions of a field changing so rapidly are difficult to predict. There is
much interest presently in spin-polarized current induced switching [2.5, 6]. In this
phenomenon, the roles of current and magnetic moments are reversed compared to
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GMR. In GMR, the relative orientation of the magnetic moments in the ferromagnetic
layers affect the current through the film. Here, the current can change the relative
orientation of the magnetization of the layers. Another area of increasing interest is
magnetic semiconductors and the injection of polarized currents into semiconduc-
tors [2.7]. This would allow us to combine the new ability to manipulate electrons
with their spin as well as their charge with sophisticated semiconductor technology,
and allow rapid and practical development of new devices.

In the following exposition we have shamelessly concentrated on our own work on
transport in magnetic multilayers. We apologize to colleagues whose excellent work
has been slighted. Under no circumstances should this be viewed as a comprehensive
review of the work in this area. A recent review article on GMR [2.8] may be useful
for a broader perspective on some of the topics covered here. We hope that our
approach has, at least, the advantage of a single coherent point of view.

2.2 Transport Theory for Inhomogeneous Materials

Theoretical approaches to the study of electron transport in magnetic multilayers
range from fully quantum mechanical linear response theory based on the Kubo for-
mula, to simpler models based on free-electron bands and semiclassical assumptions.
Simple free-electron models, however, often fail to capture some of the essential
physics in spin-dependent transport. We will first briefly review the free-electron
based models in next section, then in Sect. 2.5, discuss the role of electronic struc-
ture in transport. That will be followed by discussions of transport theory based on
first-principles band structures, with the emphasis on the semiclassical Boltzmann
approach for diffusive transport and the Landauer approach for ballistic transport.

2.2.1 Quantum Theory of Linear Response

Fully quantum mechanical expressions for transport coefficients can be derived from
linear response theory . Consider a system of noninteracting electrons moving in the
presence of a random potential. Kubo [2.9] and Greenwood [2.10] have shown that
the zero temperature dc conductivity may be written as

σµν = π�

V

〈∑
α,α′

〈α| jµ|α′〉〈α′| jν|α〉
〉

δ(EF − Eα)δ(EF − Eα) , (2.1)

where jµ is the current operator,

〈α| jµ|α′〉 = −ie�

2m

∫
dr

[
ψ∗

α(r)∇µψα′(r) −∇µψ∗
α(r)ψα′(r)

]
, (2.2)

and V is the volume. The quantum states |α〉 are the exact eigenfunctions of a par-
ticular configuration of the random potential and the large angle brackets indicate an
average over configurations. We will find it useful to write (2.1) in terms of the Green
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function which is defined as G = [E − H]−1. It is related to the sum over states
in (2.1) through∑

α

|α〉〈α|δ(E − Eα) = −1

2iπ
(G+ − G−) ≡ −G/π . (2.3)

Here G+ = [E + iη − H]−1 and G− = [E − iη − H]−1 with η a positive in-
finitesimal, are the retarded and advanced Green functions, respectively. Using these
definitions, (2.1) can be written in the form

σµν = −e2
�

3

4πVm2

∫
dr

∫
dr ′〈∇µG(r, r ′)∇′

νG(r ′, r) +∇′
νG(r, r ′)∇µG(r ′, r)

−∇µ∇′
νG(r, r ′)G(r ′, r) − G(r, r ′)∇′

ν∇µG(r ′, r)
〉
. (2.4)

This allows the definition of a non-local kernel for the conductivity of the form [2.11],

σµν(r, r ′) = −e2
�

3

4πVm2

〈∇µG(r, r ′)∇′
νG(r ′, r) +∇′

νG(r, r ′)∇µG(r ′, r)

−∇µ∇′
νG(r, r ′)G(r ′, r) − G(r, r ′)∇′

ν∇µG(r ′, r)
〉
. (2.5)

This result emphasizes the fact that the current at a point r depends not just on the
electric field at that point but on the field at points r ′ within the vicinity (approximately
the electronic mean free path) of r,

Jµ(r) =
∫

dr ′ ∑
ν

σµν(r, r ′)E(r′) . (2.6)

Thus σµν(r, r ′) is the current in direction µ at point r induced by an electric field of
unit strength in direction ν that exists at point r ′. The realization that the conductivity
is non-local, i.e. that the current at one point depends on fields applied at other points
is key to understanding giant-magnetoresistance for the technologically important
case in which the current flows parallel to the planes of the multilayer.

2.3 Free Electrons with Random Point Scatterers

In order to get a better understanding of this non-local conductivity let us evaluate it
for the simple case of free electrons with random point-like scatterers (FERPS). The
Green function, G+(r, r ′) is defined by,[

�
2

2m
∇2 + E −

∑
i

v (r − Ri)

]
G+(r, r ′) = δ(r − r ′) . (2.7)

The “+” superscript on the Green function indicates that it is a “retarded” or causal
Green function. For our purposes, this means that the energy, E, has an infinitesimal
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imaginary part. In the FERPS model, the scatterers are assumed to be located at
random positions, Ri .

The FERPS Green function can be expanded as follows,

G+(r, r ′) = G+
0 (r, r ′) +

∫
dr1G+

0 (r, r1)
∑

i

v(r1 − Ri)G
+(r1, r ′) , (2.8)

where G+
0 (r, r ′) is the Green function in the absence of the the random scatterers,

G+
0 (r, r ′) = 2m

�2

eiκ|r−r ′|

4π|r − r ′| , (2.9)

where κ = √
2mE/�. The integral equation for the Green function, (2.8) is known

as the Lippmann-Schwinger equation and can be verified by substituting it into (2.7).
Let us write the Lippmann-Schwinger expression for the Green function including

the random point scatterers using the simplified notation, G = G0 + ∑
i G0vi G in

which integration over “internal” variables is suppressed. Then we can expand by
substituting the entire expression for the G on the right hand side,

G = G0 +
∑

i

G0vi G0 +
∑
i, j

G0vi G0v j G0 +
∑
i, j,k

G0vi G0v j G0vkG0 + · · · .

(2.10)

If we use angle brackets to denote an average over configurations, i.e. over the
possible positions of the scatterers then we can assume that 〈vi〉 = 0, since a shift
in the average potential can be accommodated as a shift in the energy zero; then
∆vi = vi − 〈vi〉 and we can write,

〈G〉 = G0 +
∑

i

G0 〈∆vi G0∆vi〉 G0 +
∑

i

G0 〈∆vi G0∆vi G0∆vi〉 G0

+
∑

ij

G0 〈∆vi G0∆vi〉 G0
〈
∆v j G0∆v j

〉
G0 + · · · .

Then we can write,

〈G〉 = G0 + G0ΣG0 + G0ΣG0ΣG0 + · · · , (2.11)

where

Σ = 〈∆vi G0∆vi〉 + 〈∆vi G0∆vi G0∆vi〉 + · · · . (2.12)

If the potential differences, ∆vi , are very short ranged, relatively weak, and randomly
distributed in space, the electron self-energy, Σ, will be approximately independent
of the electron momentum and position. It will, however, generally be a function of
energy1.

1 If the scatterers are literally delta functions, e.g. if < ∆v(r)∆v(r ′) >= γδ(r − r ′), then
Σ ≈ nγG(0) (where n is the density of scatterers) is formally divergent because the equal
argument free electron Green function is divergent. Fortunately, it is usually the imaginary
part of the self-energy that enters expressions for the conductivity and this is well defined.
The imaginary part of Σ is negative for G+ and positive for G−.
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Finally, we have made enough approximations to be able to write down the
average Green Function in the FERPS approximation,

[ �
2

2m
∇2 + E − Σ] 〈G+(r, r ′)

〉 = δ(r − r ′) , (2.13)

〈
G+(r, r ′)

〉 = 1

(2π)3

∫
d3k

eik·(r−r ′)

E − Σ − �
2k2

2m

= 2m

�2

eiκ|r−r ′|

4π|r − r ′| , (2.14)

where κ = √
2m(E − Σ)/�. In the following we omit the angle brackets to simplify

the notation, but it should be remembered that we are concerned with the average of
the green function over the atomic configurations.

The expression for the conductivity, (2.4), involves the average of two Green func-
tions,

〈
G(r, r ′)G(r ′, r)

〉
. It is very common, however, to average the Green functions

independently. This is called the neglect of “vertex corrections”. It is an approxima-
tion that can be made in both the quantum and in the semi-classical approaches to
transport. In the latter case, this approximation is called “neglect of the scattering-in
terms”. We shall show that whether or not these terms can be neglected for a layered
systems depends on the geometry. For the case in which the current is perpendicular
to the layers (CPP), we shall show in Sect. 2.6.2 that at least an approximate treatment
of the vertex corrections is necessary for a consistent theory. However for the case
in which the current is in the plane of the layers (CIP) or for a homogeneous system
these terms do not contribute to the current if the scattering is isotropic. Since we
will be primarily concerned with the latter case, and since they greatly complicate
the calculations, we will neglect them for the time being.

We can now evaluate the conductivity for a homogeneous system by integrating
over r ′ and averaging over r and directions (µ). Thus J = σ0E where,

σ0 = 1

3V

∑
µ

∫
d3r

∫
d3r ′σµµ(r, r ′)

= −1

3

e2
�

3

πm2V

∫
d3r

∫
d3r ′∇ImG(r, r ′) · ∇′ImG(r ′, r) . (2.15)

Here we have taken advantage of the fact that the Green function for a homogeneous
system is symmetric in r and r ′. This implies that G(r, r ′) = ImG+(r, r ′). It also
allows us to equate the first and second as well as the third and fourth terms in (2.5)
which defines the non-local conductivity. Finally, (2.15) is obtained by equating the
first and third terms of (2.5). This is justified in this case because the system is
homogeneous.

Letting R = r − r ′ and |R| = R in (2.17), we have.

σ0 = e2
�

3

3πm2

∫
d3 R[∇ImG(R)]2 . (2.16)
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This integration can be performed exactly using elementary techniques and yields,

σ0 = e2

12π2�

κ2
R

κI
, (2.17)

where κR = Re[√2m(E − Σ)/�] and κI = Im[√2m(E − Σ)/�]. This is the same as
the usual expression for free electrons if we identify κR = kF and 2κI = 1/λ where λ

is the mean free path. The factor of two arises because the electron probability decays
twice as fast as the electron amplitude. Thus,

σ0 = e2k2
Fλ

6π2�
= k3

F

6π2

e2τ

m
= Ne2τ

m
, (2.18)

where we used λ = vFτ = �kFτ/m. Here λ is the electron mean free path, vF = �kF/m
is the Fermi velocity, τ = λ/vF is the electron lifetime and N = k3

F/(6π2) is the
number of free electrons per unit volume for a single spin channel.

The above exercise shows that the Kubo-Greenwood quantum mechanical linear
response formalism applied to the FERPS model gives familiar results for a ho-
mogeneous system. In preparation for dealing with layered systems, let us treat
a homogeneous system as an artificial layered system by calculating the non-local
conductivity that would arise if we could apply an electric field in a plane of vanishing
thickness. Thus the current density Jµ(z) induced in direction µ in plane z due to an
electric field, Eν(z′) applied in direction ν to plane z′ (see Fig. 2.1) are related through

Jµ(z) =
∫

dz′
∑

ν

σµν(z, z′)Eν(z
′) . (2.19)

Non-local Conductivity

The functions σzz(z − z′) (2.29) and σxx(z − z′) (2.21) defined in this section give
the current induced in the z and x directions respectively for electric fields applied
a distance Z away in the z direction from the point where the current is induced.
The currents are in the same direction as the applied fields. The geometry for σzz and
σxx is indicated in Fig. 2.1. σxx is instructive concerning electron transport for the
current in the plane (CIP) geometry, while σzz is instructive concerning transport in
the current perpendicular to the planes (CPP) geometry.

EJ

Z

σxx

J E

Z

σzz

Fig. 2.1. Geometry for longitudinal non-local conductivity,
σzz , and transverse non-local conductivity, σxx
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Transverse Non-local Conductivity

This non-local conductivity transverse to the layers is given by,

σxx(z, z′) = σyy(z, z′)

= − e2
�

3

πm2 A

∫
dx dy

∫
dx′ dy′∇xImG(r, r ′)∇′

xImG(r ′, r) , (2.20)

which also can be evaluated exactly. The details of the evaluation are given in reference
[2.12]. The results for the current and field parallel to the planes z and z′ can be written
(using Z = |z − z′|) as,

σxx(Z) = e2

16π2�

× [κ2 E1,3(−2iκZ) + κ∗2 E1,3(2iκ∗Z) + 2|κ|2 E1,3(2κI Z)

+ 2iκ

Z
E2,4(−2iκZ) − 2iκ∗

Z
E2,4(2iκ∗Z) + 4κI

Z
E2,4(2κI Z)

− 1

Z2
E3,5(−2iκZ) − 1

Z2
E3,5(2iκ∗Z) + 2

Z2
E3,5(2κI Z)] . (2.21)

Here the functions, En,m(x) are combinations of exponential integrals defined by

En,m(x) =
∞∫

1

e−xt[t−n − t−m]dt = En(x) − Em(x) . (2.22)

Note that the transverse non-local conductivity contains integrals over terms that
oscillate on the scale of one half of the electron wavelength. These terms arise from
the quantum nature of the transport and are absent in the semiclassical approximation.
However, as shown in Fig. 2.2 they give only a relatively small modification to the
monotonic semiclassical result. They do however, remove the logarithmic singularity
at Z = 0 in the semiclassical result for σxx .

Longitudinal Non-local Conductivity

For the case in which the current and fields are perpendicular to the z and z′ planes,
the first and third terms of (2.5) are not equivalent and must be treated separately.
In this case it is convenient to take advantage of the fact that the Green function can
be can be represented either in real space or in reciprocal space. For layered systems
that are homogeneous in two dimensions it is often convenient to represent the Green
function using a hybrid representation; reciprocal space for the variation parallel to
the layers and real space for the variation perpendicular. Thus,
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Fig. 2.2. Quantum and semi-classical non-local layer conductivity as a function of layer separa-
tion, Z, for a homogeneous free electron system. Solid lines are the quantum conductivity. The
dashed line for σxx is the semi-classical approximation. For σzz , the quantum and semiclassical
expressions are the same. In this example the lattice constant is that of copper (0.3615 nm); the
Fermi momentum corresponds to 0.5 electrons per spin channel; and Z is measured in terms
of the thickness of (111) layers of copper (0.209 nm). σ(Z) is measured in units of 1015/sec au
where 1 au = 0.0529 nm. Z is the distance between the plane at which the field is applied and
the plane at which the current is induced

G+(r, r ′) = 1

(2π)2

∫
dkx dky ei(kx (x−x′)+ky(y−y′))

× 1

2π

∫
dkz

eikz(z−z′)

E − Σ − �
2

2m
(k2

x + k2
y + k2

z )

= 1

(2π)2

∫
d2k‖ eik‖·R‖G(k‖, z, z′) (2.23)

where G(k‖, z, z′) = 2m
�2 eikZ/2ik. Here k(k‖) =

√
2m(E − Σ)/�2 − k2‖ is the com-

ponent of the electron momentum perpendicular to the layers.
The Kubo formula for σzz(Z) in terms of G(k‖, z, z′) is

σzz(Z) = e2
�

3

2πm2

1

(2π)2

∫
d2k‖ (2.24)

×
[(

∂

∂Z
ImG(k‖, Z)

)2

− ∂2

∂Z2
ImG(k‖, Z)ImG(k‖, Z)

]
.
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Defining f = �
2

2m ImG+(k‖, Z) = −1
4 ( eikZ

k + eik∗Z

k∗ ), we have ( f ′)2 − f ′′ f = k2
R

|k|2 ,

where k = kR + ikI and k2 = 2m
�2 (E − Σ) − k2‖ = k2

F − k2‖ + i∆.
Thus σzz(Z), where Z = z − z′ is given by

σzz(Z) = e2

2π2�

∞∫
0

k‖ dk‖
k2

R

|k|2 e−2kI Z . (2.25)

Using

2k2
R(k‖) =

√
(k2

F − k2‖)2 + ∆2 + (k2
F − k2

‖) = ∆2

2k2
I (k‖)

(2.26)

and

2k2
I (k‖) =

√
(k2

F − k2‖)2 + ∆2 − (k2
F − k2

‖) , (2.27)

we obtain dkI = kI k‖dk‖
|k|2 and

σzz(Z) = e2∆2

8π2�

∞∫
κI

dkI

k3
I

e−2kI Z , (2.28)

where for consistency with (2.17) and (2.21) we define κI = kI (0) and κR = kR(0).
Substituting tκI = kI (k‖) and using ∆2

κ2
I
= 4κ2

R we obtain our final expression for the

longitudinal non-local conductivity,

σzz(Z) = e2κ2
R(0)

2π2�

∞∫
1

dt

t3
e−2tkI Z . (2.29)

In [2.12] we obtained an incorrect result for the quantum expression for σzz(Z) which
is corrected here.

The non-local conductivities, σxx(Z) and σzz(Z) are shown in Fig. 2.2 for an
electron density approximately equal to that of copper. The CIP and CPP non-local
conductivity both decrease monotonically as a function of the distance between
applied field and induced current.

2.3.1 Semiclassical Limit

The semiclassical limit of the non-local conductivities can be obtained by replacing
the damped oscillatory functions with exponentially decaying functions that have the
same volume integral, thus
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−2iκt dZ e2iκZt → 2κI t dZ e−2kI Zt

dZ

Z
e2iκZt → dZ

Z
e−2κI Zt

dZ

−iκZ2
e2iκZt → dZ

κI Z2
e−2κI Zt . (2.30)

Using this substitution in (2.21) yields

σxx(Z) = e2κ2
R

8π2�
E1,3(2ZκI ) = e2κ2

R

8π2�

∞∫
1

[t−1 − t−3]e−|z−z′|/λ . (2.31)

The semiclassical result for the transverse non-local conductivity is compared to the
quantum result in Fig. 2.2. For σzz(Z) the semiclassical and quantum results for the
non-local conductivity of a homogeneous FERPS system are equivalent,

σzz(Z) = e2κ2
R

4π2�
E3(2ZκI ) = e2κ2

R

4π2�

∞∫
1

t−3e−|z−z′|/λ . (2.32)

These expressions for the non-local conductivity, (2.31 and 2.32) allow a gener-
alization for the case in which the electron mean free path, λ, varies slowly with z,

e−|z−z′|/λ → e−
∫ z>

z<
dz′′/λ(z′′)

. (2.33)

In this section we have obtained the semiclassical expressions for the non-local
conductivity as an average of the quantum expressions. They are usually derived
from a classical approach that is outlined in the next section.

2.4 The Semiclassical Approach to Transport

In the semi-classical approach to transport, the electrons are assumed to behave like
classical particles. The only concessions made to their quantum nature is the use of
Fermi statistics (which implies that it is the Fermi energy electrons that are important
for transport) and the use of quantum mechanics to calculate the relation between
electron energy and momentum and to calculate the transmission and reflection
probabilities at interfaces.

Semiclassical transport theory begins with the concept of the electron distribution
function, f s(k, r, t) which is defined as the number of electrons with given values of
wavevector, k and spin s, at position r at time t. It is a 7 dimensional function (for each
spin) measured in dimensionless units. In the absence of applied fields, the electrons
will be at equilibrium and the distribution function will be the equilibrium distribution
function f0(es

k − µ0) = [
1 + exp(es

k − µ0)/kBT )
]−1

. We now imagine that a field
has been applied but that we have waited long enough that the system is in a steady
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state, i.e. the distribution function is no longer changing so that d f/dt = 0. The Boltz-
mann equation is obtained by balancing the changes in the distribution function caused
by the applied field against processes that act to bring it back towards equilibrium.

Thus at steady state, the time rate of change of the distribution function is given
by,

d f

dt
= 0 = ∂ f

∂t

∣∣∣
drift

+ ∂ f

∂t

∣∣∣
field

+ ∂ f

∂t

∣∣∣
scatt

, (2.34)

where the three contributions to the time derivative of the distribution function are
due to electron drift, i.e. the movement of electrons in space due to their velocity,
acceleration of the electrons due to the applied field, and the scattering of the electrons
by imperfections (i.e. deviations from periodicity) in the lattice.

The drift term can be evaluated from the fact that the electrons entering a volume
near point r at time t were previously at position r − vdt at time t − dt. Thus

∂ f(r, k, t)

∂t

∣∣∣
drift

= −v(k) · ∇r f(r, k, t) . (2.35)

Similarly, the field term can be evaluated as a drift term in momentum space because
the electrons entering a volume of momentum space near point k at time t were
previously located in momentum space at k− (dk/dt) dt at time t − dt. Then, using
Newton’s second law to relate the force from the applied field to the rate of change
of the electron momentum, −eE = �dk/dt we have,

∂ f(r, k, t)

∂t

∣∣∣
field

= −∂ f(r, k, t)

∂k
∂k
∂t

= e

�
∇k f(r, k, t) · E , (2.36)

where the symbol e represents the magnitude of the electronic charge.
The scattering term can be written in terms of the probability, Pkk′ , for an electron

to scatter between momentum states k and k′. It will be the sum of the probabilities for
an electron to scatter into state k from some other momentum state less the probability
for an electron to scatter out of state k,

∂ f(r, k, t)

∂t

∣∣∣
scatt

=
∑

k′
Pkk′

{
f(r, k′, t) [1 − f(r, k, t)]

− f(r, k, t)
[
1 − f(r, k′, t)

]}
=

∑
k′

Pkk′
[

f(r, k′, t) − f(r, k, t)
]

. (2.37)

In principle, the scattering probability should also include processes that scatter elec-
trons from one spin-channel to another, but we neglect those here because we are
concentrating on the two current model.

Assembling the three terms, and assuming steady state, we obtain the Boltzmann
equation,

−v(k) · ∇r f(r, k) + e

�
∇k f(r, k) · E +

∑
k′

Pkk′
[

f(r, k′) − f(r, k)
] = 0 . (2.38)
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We are attempting to calculate a linear response that is proportional to the field
so we write the distribution function as the equilibrium distribution function plus
a correction term called the “deviation” function that describes the deviation from
equilibrium, f(r, k, t) = f0(εk −µ0)+ g(r, k). Substituting this form into the Boltz-
mann equation we obtain,

− v(k) · ∇r g(r, k) + e

�
∇k f0(ek − µ0) · E

+
∑

k′
Pkk′

[
g(r, k′) − g(r, k)

] = 0 , (2.39)

where we have only retained the lowest order contribution to the field term because
the field, E is assumed to be small. The field term can be further simplified using

∇k f0(εk − µ0) = ∂ f0(εk − µ0)

∂εk
∇kεk = ∂ f0(εk − µ0)

∂εk
�v(k) , (2.40)

and the “scattering-out” term can be simplified using∑
k′

Pkk′ = 1/τk ; (2.41)

which defines the lifetime as the inverse of the total scattering rate for electrons to
scatter out of momentum state k. Thus, the Boltzmann equation becomes,

− v(k) · ∇r g(r, k) − g(r, k)
τk

+
∑

k′
Pkk′g(r, k′)

= −e
∂ f0(εk − µ0)

∂εk
v(k) · E , (2.42)

and the current density is given by

J(r) = − e

V

∑
k

v(k)g(r, k) . (2.43)

Often, we do not know very much about the details of the scattering probability
Pkk′ . In these cases it is popular to make the “lifetime approximation” which consists
of dropping the scattering-in term,

∑
k′ Pkk′ f(k′). The k dependence of the lifetime

is also often neglected. If the scattering is isotropic in the sense that Pkk′ does not
depend on the angle between k and k′, then one can often argue that the scattering-in
term vanishes or is small because of symmetry because g(k′) usually vanishes when
summed over k′. In general, however, the scattering is not isotropic and the neglect of
the scattering-in term is an important, non-trivial approximation. This is particularly
true of the case in which the system is inhomogeneous in the direction of the applied
field and current.
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2.4.1 Layered Systems

If we consider a system that is homogeneous in the x and y directions but with
properties that may vary in the z direction, we may write (2.42) as

−vz(z, k)
∂h(z, k)

∂z
− h(z, k)

τk
+

∑
k′

Pkk′h(z, k′) = ev(z, k) · E , (2.44)

where we substituted g(r, k) = h(r, k)δ(εk − εF) because, for metals2 at room
temperature and below, it is the states at the Fermi energy that are involved in
transport. We also assumed that the scattering probability, Pkk′ is energy conserving,
i.e. εk = εk′ . This is valid if the scattering is dominated by electron-impurity scattering
and is not badly wrong for electron-phonon scattering.

We can take advantage of the fact that it is only electrons on the Fermi surface that
participate in transport to explicitly reduce the sums over all momentum states that
occur, for example, in (2.43) to two dimensional sums over the transverse momentum.
Thus for an arbitrary function of momentum, y(z, k),∑

k

y(z, k)g(z, k) =
∑

k

y(z, k)h(z, k)δ(εk − εF)

= V

2πA

∑
k‖

[
y(z, k‖, k+

z )
h+(z, k‖)
�|v+

z (k‖)| + y(z, k‖, k−
z )

h−(z, k‖)
�|v−

z (k‖)|
]

. (2.45)

Here we have used the fact that for a given value of transverse momentum, k‖,
the solutions to ε(k‖, kz) = εF occur in pairs with opposite signs for the z-component
of the Fermi velocity. Thus

δ(εk − εF) → δ
(
kz(k‖) − k+

z

)
�|v+

z (k‖)| + δ(kz(k‖) − k−
z )

�|v−
z (k‖)| . (2.46)

It should be noted that, in general there may be more than one pair of positive and
negative vz states at any value of k‖. It should also be noted that |v+

z | is in general
only equal to |v−

z | if the lattice has mirror symmetry in a plane perpendicular to the
z direction. h+(z, k‖) and h−(z, k‖) are respectively the distribution functions for
+z-going and −z-going electrons respectively.

2.4.2 Semiclassical Non-Local Conductivity for FERPS

In order to make contact with the expressions for the non-local conductivity derived
in the Sect. 2.3.1 let us evaluate these quantities for the FERPS model using the
Boltzmann equation,

2 Note that this approximation would only be valid for a doped semiconductor at low tem-
perature. It might also be questionable if there is a rapid variation in the electronic structure
near EF (on the scale of kBT ).
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v±
z

∂h±(z, k‖)
∂z

+ h±(z, k‖)
τ

= −ev± · Eδ(z − z′) . (2.47)

Here the driving term for the Boltzmann equation is only applied at the plane defined
by z = z′. Note that we have omitted the scattering-in term. This is a sensible
approximation for σxx(Z) (CIP), but not for σzz(Z) (CPP). As explained in Sect. 2.6.2,
however, the formula for σzz(Z) is meaningful if the scattering is isotropic and the
local electric field that is used to calculate the current is the total field including that
arising from charge accumulation.

It is readily verified that the solution to (2.47) is given by

h+(z, k‖) = −θ(z − z′)
v+(k‖) · E

|v+
z (k‖)| e

− |z−z′ |
|v+z |τ

h−(z, k‖) = −θ(z − z′)
v−(k‖) · E

|v−
z (k‖)| e

− |z−z′ |
|v−z |τ . (2.48)

Substituting for the current using (2.43) and (2.45) yields

σzz(Z) = e2

2π2�

kF∫
0

k‖ dk‖ e−
ZkF
λkz

σxx(Z) = e2

4π2�

kF∫
0

k‖ dk‖
k2‖ − k2

z

k2
z

e−
ZkF
λkz (2.49)

where we used Z = |z − z′|, and vzτ = kzλ/kF. Substitution of t = kF/kz(k‖)
yields (2.32 and 2.31) immediately.

2.4.3 Quantum and Semiclassical Conductivities for Multilayers

If we generalize the FERPS model slightly to allow the self-energy to depend on z,
the transverse non-local conductivity will be given by

σxx(z, z′) = − e2
�

3

8π3m2

∫
d2k‖∇xImG(k‖; z, z′)∇′

xImG(k‖; z′, z) , (2.50)

where the partial Green function, G(k‖; z, z′), is defined by[
E + �

2

2m

(
∂2

∂z2
− k2

‖

)
− Σ(z)

]
G(k‖; z, z′) = δ(z − z′) . (2.51)

The solution to the quantum FERPS model can be obtained in a closed form for
a homogeneous thin film [2.12, 13]. For multilayers, however, it can only be obtained
numerically. The partial Green function, G(k‖; z, z′), can be calculated using the
general solution [2.14],
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G(k‖; z, z′) = ψL(z<)ψR(z>)

W
, (2.52)

where ψL(z) and ψR(z) are solutions to the homogeneous part of (2.51) which sat-
isfy boundary conditions on the left and right sides respectively of the multilayer,
and where W is the Wronskian of ψL and ψR. Thus the quantum calculation can
be performed relatively simply by solving a one-dimensional Schroödinger equa-
tion.

Let us compare this result with the generalized semiclassical approach introduced
in (2.31) and (2.33). In this case the non-local transverse conductivity is given by,

σxx(z, z′) = e2

8π2�
k2

F

∞∫
1

dt

(
1

t
− 1

t3

)
e−φ(z,z′)t , (2.53)

where kF is the Fermi wavevector and φ(z, z′) is given by an integral over the inverse
of the local mean free path

φ(z, z′) =
z>∫

z<

dz′′
1

λ(z′′)
. (2.54)

In Fig. 2.3 we display a comparison of the current density defined as σxx(z) =∫
dz′σxx(z, z′) calculated for a multilayer film within the model of free electrons with

random point scatterers. In this calculation it was assumed that the current flowed
parallel to the layers – known as the current in the plane or CIP configuration. This
figure indicates that the semiclassical approach described in Sect. 2.4 becomes a good
approximation to the quantum theory of transport as the thickness of the layers ap-
proaches or exceeds the electronic mean free path. As deposition techniques improve
and magnetic multilayers become more perfect, it will become more important to
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Fig. 2.3. Left panel: Local CIP conductivity for a trilayer consisting of a central clean layer
between 10 and 20 a.u. surrounded by two dirty layers. The mean free path for the clean layer
is λ = 360 a.u. and for the dirty layer λ = 36 a.u. Right Panel: CIP conductivity for a trilayer
consisting of a central clean layer (300 a.u. thick, λ = 36 a.u.) surrounded by dirty layers
(600 a.u. thick, λ = 360 a.u.)
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treat them using the quantum theory. The semiclassical theory, however captures
much of the physics, is computationally much faster and is easier to understand.

At this point, let us note two important “classical” limits which provide limiting
cases for any theory of transport in multilayers. The first limit is the so-called “thin-
layer” limit. This is a limit in which the thickness of each layer is small compared to
the electron mean-free-path. In this limit, the effective scattering rate of the electron
is the average of the scattering rates in all layers. Thus,

1

λthin
=

∑
I

dI

d

1

λI
, (2.55)

where λthin is the effective mean-free-path of the system, dI is the thickness of layer I ,
λI is the mean-free-path in layer I , and d is the total thickness of all the layers. At the
other extreme, when the layer thickness is large compared to the mean-free-path, each
layer can be considered as a separate resistor in a resistor network, and the limits are
different for the current-in-plane (CIP) geometry and for the current-perpendicular-
to-plane (CPP) geometry. For CPP, we have a resistors in series network and,

1

λCPP
=

∑
I

dI

d

1

λI
, (2.56)

which is the same as the thin limit. This is often referred to as the “self-averaging”
character of the CPP resistance. In the case of CIP, we have a resistors in parallel
network and the limit is,

λthick =
∑

I

dI

d
λI . (2.57)

2.5 Electronic Structure

2.5.1 Two Current Model

The theoretical approaches described in the preceding two sections have not included
the possible differences in the two spin states of the conduction electrons. If the
coupling between these two spin states can be ignored then they can be treated as
channels that conduct independently. For non-magnetic metals such as copper, the two
spin channels are equivalent in the sense that they have the same Fermi energy, density
of states, and electron velocities, and therefore carry the same current in response to
an applied electric field. Thus the only effect of spin in a non-magnetic material, is
the doubling of the number of channels available for conduction and consequently
the doubling of the conductance. For the ferromagnetic transition metals and alloys,
however, the two channels are quite different3. It is often a good approximation to

3 The most extreme difference is found in a class of conductors called “half-metals” which
conduct in one spin channel but have no states at the Fermi energy in the other.
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Fig. 2.4. Electronic density of states for fcc-cobalt (left panel), nickel (center) and copper
(right panel). The copper DOS also shows a parabolic “free electron” DOS. The departure of
the DOS from this parabola is largely due to the d-states. The vertical line through E = 0
indicates the Fermi energy. Majority (minority) DOS are shown above (below) the Energy axis

assume that two spin channels conduct independently. This approximation is called
the “two current” model. In this model each spin channel can be considered separately
within transport theory, and the total current is the sum of the currents from each
of the two spin channels. The limitations of the two current model and some of the
phenomena that it omits will be discussed in Sect. 2.5.5.

Within the “two current” model, the electrons states, ψ j,s,k(r), for a periodic
system are labelled by wave-vector k, band index j and spin s. Associated with each
state is an energy, ε j,s(k) called the band energy. Knowledge of the band energy as
a function of wave-vector is sufficient to calculate two very important quantities, the
density of states as shown, for example, in Figs. 2.4 and 2.5 and the electron velocities
(Figs. 2.6 and 2.7).
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here is the (111) direction with respect to the
conventional cubic axes

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

k y

kx

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

k y

kx
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2.5.2 Density of States

The electronic density of states (DOS) is given by,

ns(E) =
∑

j,k

δ
[
E − ε j,s(k)

]
. (2.58)

The DOS of fcc Co, Ni and Cu are presented in Fig. 2.4. Likewise Fig. 2.5 shows
the DOS for bcc Cr and Fe. These DOS curves were calculated using the local spin
density approximation (LSDA) to density functional theory local [2.15]. In these
calculations we have neglected the relativistic coupling between the spin and orbital
motions of the electrons and we have assumed that the magnetic moments of the Co
and Ni atoms are all aligned. The DOS for both spin channels is positive, however, it
has become traditional to plot the majority or “up” spin DOS above the axis and the
minority or “down” spin DOS below the axis.
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The density of states of the 3-d transition metals is often thought of as a free-
electron like parabola (n ∝ √

E). For metals such as Cr, Fe, Co, Ni or Cu this parabola
begins approximately 0.3 Hartrees4 (≈ 8 eV) below the Fermi energy. Because the
electrons forming the “free electron” component of the DOS have an effective mass
of the same order as the electron mass, a Fermi energy of 0.3 Hartree corresponds to
approximately 0.5 electrons per spin channel. The free electron part of the DOS can
be barely discerned in the right hand panel of Fig. 2.4 which shows the DOS for Cu.
Superimposed upon this free electron DOS is the DOS associated with the “d-bands”
that derive from the d-states of the isolated atoms.

In the isolated atom there would be 10 degenerate5 states, five for each spin, but
in the solid they interact with each other and with the “free electron” states to form
a complex of bands containing 5 electrons per spin channel spread over an energy
range of 5−10 eV. Actually, the hybridization between the free electron bands and
the “d-state” derived bands is quite strong so that effects of the “d-states” extend well
above the nominal top of the “d-bands”.

The difference between the number of majority and minority valence electrons
is the spin magnetic moment per atom measured in Bohr magnetons. This number is
zero for Cu as it has identical DOS for both spin states. For Co, the difference is 1.6
(which may be compared to the experimental value of about 1.75 Bohr magnetons
for the total moment, which includes both spin and orbital contributions), and for Ni
it is 0.6. Note that both the majority and minority d-bands are filled for copper. For
Co and Ni the majority d-bands are filled while and the Fermi energy falls within the
minority d-bands which are only partially filled.

Figure 2.5 shows the DOS for non-magnetic chromium and for ferromagnetic
bcc iron. For bcc Fe and Cr, neither element has either majority or minority d-bands
filled. Note the similarity of the DOS curves near the Fermi energy for Co, Ni and Cu
in the majority channel and for Fe and Cr in the minority channel. These similarities
in electronic structure form the basis for the spin-dependent scattering that leads to
the GMR effect.

2.5.3 Velocities of Bloch Electrons at the Fermi Energy

The electron velocities at the Fermi energy will be very important for electron trans-
port. The electron velocity is determined from the gradient of the energy bands with
respect to the crystal momentum [2.17],

v j,s,k(k) ≡ −i�

m

〈
ψ j,s,k|∇|ψ j,s,k

〉 = ∇kε j,s(k)/� . (2.59)

These velocities vary considerably from point to point on the Fermi surface,
both in magnitude and in direction as can be seen in Figs. 2.6 and 2.7. The Fermi
surface, defined by ε j,s(k) = EF, is the iso-energy surface in k-space that separates

4 1 Hartree = 27.2 eV.
5 This assumes that we neglect spin-orbit coupling
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the occupied and unoccupied electronic states. It is the states at the Fermi energy that
participate in electron transport for modest electrical fields and temperatures.

The Fermi surface and electron velocities are two important ingredients needed
for calculating the transport properties of metals in the semiclassical approximation.
In order to treat magnetic multilayered systems, however, we will need to understand
the electronic structure near interfaces as well.

2.5.4 Electronic Structure Near Interfaces

Figure 2.8 shows the number of valence electrons per atom for each spin-channel
and for each atomic layer near the interfaces between permalloy (Ni0.8Fe0.2)and
cobalt and also between cobalt and copper. For these metallic systems of similar
atomic size and electronegativity there are only small perturbations in the number
of electrons per atom and spin channel on the layers near the interface. Even when
the interfacial perturbations on the electronic structure are significantly larger, they
can be incorporated into the the transmission and reflection probabilities because
interfacial charge rearrangements are usually limited to a few layers on either side of
the interface in good metals.

By putting together the fact demonstrated by Fig. 2.8 that perturbations in the
electronic structure at interfaces in magnetic multilayers are confined to a few atomic
layers on either side of the interface and the fact demonstrated by Figs. 2.4–2.7 that
materials can be found that match much better in one spin channel than the other we
can obtain an understanding of the physical origin of giant magnetoresistance. For
Cu, Ni, and fcc Co there is good matching in the majority spin channel. For Fe and
Cr, there is good matching in the minority channel. Giant magnetoresistance arises
from a “short circuit” effect caused by the low resistance in the channel for which
this matching occurs.

If the system is composed of layers of different material stacked in the z direction,
it is often a good approximation to assume that we have two dimensional periodicity
within each layer. If the layers are not too thin, we may also imagine that within
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each layer we can use the dispersion relation appropriate to that material in bulk. We
would, of course, need to be careful to obtain the correct relative placement of the
energy bands because, in general, when two materials are brought together, a dipole
layer forms at the interface to balance the electrochemical potentials and allow the
materials to have their correct Fermi energies far from the interfaces. These interfacial
dipoles can be calculated by modern self-consistent electronic structure codes [2.18]

These approximations lead, then, to a model in which the band energies, εn,s,i(k),
and velocities,vn,s,i(k) within each layer are assumed to be those for a perfect (infinite)
crystal. Here, an additional index, i, has been added to label the layer. The layers
are separated by thin, interfacial regions that can be described by transmission and
reflection probabilities as we shall show in a later section.

2.5.5 Corrections to the Two Current Model

It is important to remember that the two current model is an approximation. It is
valid in a limit in which spin-orbit coupling is neglected and in which it is assumed
that the direction of the magnetic moments of all of the atoms are aligned (parallel
or antiparallel) along the same axis. Spin-orbit coupling is a relativistic effect that
couples the spin and orbital motions of the electrons. It introduces a small additional
term into the non-relativistic Schrödinger equation of the form,

Hso = �
2

2m2c2r

dV

dr
L · S , (2.60)

with L and S the orbital and spin angular momentum operators, respectively, and V(r)
the effective potential (assumed here to depend only on the distance to the nucleus).
Because this term couples the spin and orbital motions of the electrons, their energy
bands can no longer be described as purely up or down spin.

If all of the magnetic moments are not aligned parallel or antiparallel, the two
current model also breaks down. In a ferromagnet (ignoring spin-orbit coupling) the
majority and minority electrons experience different potentials, V↑ and V↓, respec-
tively. If the moments in two nearby magnetic layers are aligned anti-parallel, the
majority electrons in the first layer (where they experience potential V↑) will experi-
ence potential V↓ when they travel to the nearby layer with moments antiparallel to
the first. Nevertheless, the two spin channels can be treated separately. If, on the other
hand, the moments in the second ferromagnetic layer are aligned at some arbitrary
angle relative to the first layer, the two spin channels defined in the first layer will
be coupled in the second layer, and they can no longer be treated separately. In this
case one can consider the moments in the first layer to be aligned in the z-direction.
In the second layer, the atomic potentials may be expressed in the form of a two by
two matrix in spin space,

V(r) = 1

2

[
V↑(r) + V↓(r)

]
1 + 1

2

[
V↑(r) − V↓(r)

]
σ · ê (2.61)

Here σ is a vector constructed from two dimensional Pauli spin 1
2 matrices [2.19],

σ = σx x̂ + σy ŷ + σz ẑ, and ê is a unit vector in the direction of the moments in the
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second layer relative to the first. Because σx and σy are non-diagonal, the two spin
channels can only be be treated separately if ê is in the ±z direction. Of course, if
all moments are collinear, we can choose the z direction to point along the moment
direction and the potential will be either V↑(r) or V↓(r).

2.6 Transport in Layered Systems

In this section, we shall generalize the semiclassical theory discussed in Sect. 2.4
primarily in terms of the FERPS model to more realistic electronic stuctures. The
quantum theory of transport has also been successfully applied to realistic electronic
structures as shown, for example, in references [2.18, 20–31]. The full quantum cal-
culations become rather difficult as the number of atomic layers included in the
calculation becomes large. More importantly, for our present purposes, the physics
of the conduction process is less transparent than for the semiclassical theory. For-
tunately, most of the important physics can be can be retained in a semiclassical
calculation, at least approximately, if one uses realistic electronic structures to de-
scribe the layers. This can be accomplished by solving the Boltzmann transport
equation for the electrons using realistic Fermi surfaces,and group velocities for the
Bloch electrons at the Fermi energy, and using correct multiband transmission and
reflection matrices at the interfaces for boundary conditions.

In this and the following sections we shall assume that the materials are homo-
geneous in the x and y directions but that they vary, (different materials, interfaces,
boundaries, etc.) in the z direction. Because we have boundaries and interfaces, etc.,
the distribution function will vary with z and will satisfy (2.44). The new feature
that we must address when we consider realistic electronic structures is that that they
will vary from layer to layer if the layers consist of different metals or alloys. We
will deal with this complication by solving the Boltzmann equation for each layer
and applying the proper boundary conditions at the interfaces between the layers to
obtain a solution valid for the entire film.

2.6.1 Boundary Conditions

As is well known, the solution to a differential equation is not uniquely determined
until a proper set of boundary conditions is specified. The key to applying the boundary
conditions for layered systems is to realize that electrons travelling in the +z direction
satisfy a different boundary condition from those travelling in the −z direction. This
was first worked out for single layer films by Fuchs [2.32] and the generalization to
multilayers [2.33–36] is relatively straightforward.

The boundary conditions on6 h±, j(z, k‖) are obtained by requiring particle con-
servation at each of the interfaces. Since h+, j

i (z, k‖), and h−, j
i (z, k‖) represent the

distribution functions in layer i for electrons travelling in the +z and −z directions

6 The band index j is needed because in realistic electronic structures as opposed to free
electron models, there may be more than one band for a given value of k‖.
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T++

T- -

T+-

T- +

Layer i Layer i+1

Fig. 2.9. Convention for the transmission and reflection probabilities

respectively, we can express the relationships between the distribution functions in
layers i and i + 1 (with interface at zi) in terms of the transmission (T++

i , T−−
i ) and

reflection (T+−
i , T−+

i ) probabilities of the interfaces. We use a convention illustrated
in Fig. 2.9 in which, for example, T+−

i (k, k′) is the probability for a −z going electron
in Bloch state k′ incident on interface i to leave the interface going in the +z direction
in Bloch state k. Consider the flux of electrons leaving this interface travelling in the
+z direction (in layer i +1),

∑
j,k‖ h+, j

i+1(z, k‖). This flux is the sum of the transmitted
flux of +z going electrons from layer i and the reflected flux from those electrons
originally travelling in the −z direction in layer i + 1. A similar flux conservation
argument relates the −z going electron flux leaving the interface to the incoming
fluxes in the two layers, thus,

h+, j
i+1(z

+
i , k‖) =

NR∑
j′,k′‖

T+−
i ( jk‖, j ′k′

‖)h
−, j′
i+1 (z+i , k′

‖)

+
NL∑

j′,k′‖

T++
i ( jk‖, j ′k′

‖)h
+, j′
i (z−i , k′

‖)

h−, j
i (z−i , k‖) =

NL∑
j′,k′‖

T−+
i ( jk‖, j ′k′

‖)h
+, j′
i (z−i , k′

‖)

+
NR∑

j′,k′‖

T−−
i ( jk‖, j ′k′

‖)h
−, j′
i+1 (z+i , k′

‖) . (2.62)

Here NL and NR denote the number of states on the left or right of the interface
respectively for a given value of k′‖. If we assume that the layers have two dimen-
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Fig. 2.10. The right-going beam in layer i + 1, h+
i+1, is the sum of the reflected part of the left

going beam in that layer, h−
i+1 and the transmitted part of the right going beam in layer i, h+

i

sional periodicity, so that the momentum parallel to the interface is conserved on
transmission or reflection, the boundary conditions become,

h+, j
i+1(z

+
i , k‖) =

NR∑
j′

T+−
i ( j, j ′)h−, j′

i+1 (z+i , k‖) +
NL∑
j′

T++
i ( j, j ′)h+, j′

i (z−i , k‖)

(2.63)

h−, j
i (z−i , k‖) =

NL∑
j′

T−+
i ( j, j ′)h+, j′

i (z−i , k‖) +
NR∑
j′

T−−
i ( j, j ′)h−, j′

i+1 (z+i , k‖) .

The first of these relations is shown pictorially in Figs. 2.10. The transmission and
reflection matrices can be calculated from the underlying electronic structure of the
layers and their interface [2.37]. Figures 2.11 and 2.12 show the transmission and
reflection probabilities for Bloch waves in copper incident on cobalt. The transmission
and reflection probabilities conserve electron flux. Thus, considering incident left and
right-going waves of unit flux respectively, we can derive the following conservation
rules,

NR∑
j

T++( j, j ′) +
NL∑

j

T−+( j, j ′) = 1

NL∑
j

T−−( j, j ′) +
NR∑

j

T+−( j, j ′) = 1 , (2.64)
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which state that the total probability for an electron to be transmitted or reflected is
unity. Considering unit left and right-going fluxes leaving the interface we obtain,

NL∑
j′

T++( j, j ′) +
NR∑
j′

T+−( j, j ′) = 1

NR∑
j′

T−−( j, j ′) +
NL∑
j′

T−+( j, j ′) = 1 , (2.65)

which state that an electron leaving an interface must have been either transmitted or
reflected.

Figures 2.11 and 2.12 show the transmission probabilities for the majority and
minority channels for a Cu-Co interface. In the majority channel, the transmission is
nearly unity except for values of k‖ near the neck where there are states in the cobalt
layer, but not in the copper and for large values of k‖ for which there are states in
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copper, but not in cobalt. Electrons will be totally reflected by a perfect interface if
there are no states across the interface with the same k‖.

In the minority channel, the total transmission probability consists of the sum of
the probabilities of being transmitted from a copper Bloch state into any of the Bloch
states of cobalt with the same value of k‖. Note that there are several values of k‖
for which the transmission drops dramatically. These are generally associated a dip
in vz(k‖) in the receiving band. Flux conservation implies that the transmission must
vanish if the group velocity of the receiving state vanishes.

2.6.2 Boltzmann Equation for CPP

When the system is inhomogeneous in the direction in which the field is applied,
it is necessary to deal with the accumulation of spin and charges. It is useful to
think first about a simple system with a local but spatially varying conductivity.
Let us assume that the system is homogeneous in the x and y directions and has
a local conductivity that depends on z, the direction which sustains a current, J and
a potential difference, ∆V . In this case the current is related to the local electric field
through the conductivity,

J(z) = σ(z)E(z) . (2.66)

The integral of this local field gives the potential difference,∫
dzE(z) = −∆V . (2.67)

In steady state, J(z) must be independent of z if charge is to be conserved. Thus
the local field, E(z), must vary as 1/σ(z). We can think of this local field as arising
from an applied field together with the fields due to the inhomogeneous distribution
of electrons that is set up by the current passing through the sample. We could
ignore these charge accumulation effects in the previous subsections because there
we assumed that the system was homogeneous in the direction of the applied field.

For the more general case in which the spatial inhomogeneities have a scale
comparable to or smaller than the electron mean free path we cannot assume a local
conductivity. We can, however, use the Boltzmann equation, (2.42), specialized to
our geometry,

vz(k)
∂ f(z, k)

∂z
−

∑
k′

Pkk′
[

f(z, k′) − f(z, k)
] = evz(k)δ(εk − µ)

∂V

∂z
, (2.68)

but we must still deal with charge accumulation effects and variable local electric
fields. The analysis is greatly simplified if we assume that the scattering is isotropic.
This assumption implies that

Pkk′ = δ(εk − εk′)

nτ
, (2.69)
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where n is the Fermi energy DOS given by (2.58). For simplicity, we have temporarily
suppressed the band index, j. It can be assumed that k = (k, j).

Taking, f(z, k) = f0(εk − µ) + δ(εk − µ)h(z, k), and taking account of the fact
that the distribution function, f(z, k), may contain spatial charge inhomogeneities,
we can write, ∑

k

f(z, k) = N + nµ(z) , (2.70)

where N is the number of electrons and n is the Fermi energy density of states. Thus
the scattering terms of the Boltzmann equation are given by,∑

k′
Pkk′h(z, k)δ(εk − µ) = h(z, k)δ(εk − µ)/τ (2.71)

and ∑
k′

Pkk′h(z, k′)δ(εk′ − µ) = µ(z)δ(εk − µ)/τ . (2.72)

Note that for CPP the scattering-in term cannot be neglected as it usually is for CIP.
Thus the Boltzmann equation for isotropic scattering can be written as

vz(k)
∂h(z, k)

∂z
+ h(z, k) − µ(z)

τ
= evz(k)

∂V

∂z
. (2.73)

If we define the anisotropic part of the deviation function as, h A(z, k) = h(z, k)−µ(z),
we can write the Boltzmann equation in the form,

vz(k)
∂h A(z, k)

∂z
+ h A(z, k)

τ
= −vz(k)

∂µ̄

∂z
(2.74)

where µ̄ = µ−eV . At first glance this appears to be no more complicated than (2.44)
with scattering-in term omitted which we used for the CIP case, but it is really much
more complicated because h A(z, k) must be anisotropic for all z. In other words, it
must satisfy∑

k

h A(z, k)δ(εk − µ) =
∑

k

[h(z, k) − µ(z)] δ(εk − µ) = 0 . (2.75)

When the electronic structure is different in successive layers, the solutions to the
Boltzmann equation obtained for each layer need to be matched across the interfaces
between the layers. The procedure for performing this matching is given by (2.62)
and is relatively straightforward. However, it involves the full distribution function,
h(z, k), not just the anisotropic part, h A(z, k).

In order to properly match the solutions at the boundaries, it is necessary to
utilize the general solution to the (2.74) and to admit exponentially varying solutions
that could be omitted for the homogeneous case. Thus, it can be verified that the
anisotropic distribution function for spin s in layer i can be written as
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h A
s (z, k) = Js

σsi
evsi

z (k)τsi − Fsi(k)e(−z/vsi
z (k)τsi )

+
〈

Fsi(k′)e(−z/vsi
z (k′)τsi )

vsi
z (k) − vsi

z (k′)
vsi

z (k)〈
vsi

z (k)
vsi

z (k)−vsi
z (k′)

〉
k

〉
k′

, (2.76)

with the generalized chemical potential, µ given by,

µ̄(z) = αis Js − Js

σsi
ez +

〈
Fsi(k′)e(−z/vsi

z (k′)τsi )〈
vsi

z (k)
vsi

z (k)−vsi
z (k′)

〉
k

〉
k′

. (2.77)

Here, Js is the current density for spin-channel s and σsi is the bulk conductivity for
spin s of the material in layer i,

σsi = −e2

V

∑
k

(vsi
z (k))2τsiδ(εk − µ) , (2.78)

and αis and Fsi(k) are parameters determined by the matching conditions at the
boundaries, (2.62). The angular brackets indicate an average over the Fermi surface.
Note that it is µ rather than µ or eV that has physical significance.

If the distribution function, (2.76), is used to calculate the current density, the
first term yields Js and the contributions of the other two terms cancel. The second
term would have been expected from the general solution to the CIP case. The third
term is made necessary by the requirement that h A(z, k) be purely anisotropic. The
constant αis in the solution for µ can vary between layers. Thus discontinuities in µ

can arise at interfaces from both the second and third terms of (2.77). These represent
interfacial resistances caused by partial reflection of the electrons at the interfaces.

In order to avoid dealing with the effects of interfacial reflection and transmission,
an alternative approach is often followed. If there were no interfaces, so that the
electronic structure for both spins in all layers were the same, then, from (2.76) and
(2.77)

h A
s (z, k) = Js

σsi
evsi

z (k)τsi

µ̄(z) = − Js

σsi
ez . (2.79)

This result can be obtained under slightly more general conditions from the re-
quirement that the current be conserved and (2.74). Consider (2.74) but with the
generalization that the lifetime (but not the band structure) is allowed to vary with z.
Then the requirement that ∂J/∂z = 0, together with the fact that (2.76) provides no
mechanism to couple different values of k leads to h A(z, k) = −vz(k)τ(z)(∂µ̄/∂z)
and the requirement that τ(z)(∂µ̄/∂z) be independent of z. Thus

−∂µ̄s

∂z
= eJs

σs(z)
, (2.80)
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which leads immediately to

A Rs =
∫

dzρs(z) , (2.81)

where A is the area and ρs(z) is the local resistivity. Although the application of this
result to magnetic multilayers such as spin valves requires the ridiculous assumption
that the electronic structure does not depend on the material or the spin, the additional
effects of the interfaces consist of discontinuous changes in the chemical potential
plus additional perturbations that extend over the range of a mean free path on
either side of an interface. If these are lumped into ad hoc “interfacial resistances”
then (2.81) can be used in the form

A Rs =
∫

dzρs(z) + A
∑

i

Ri,s (2.82)

where i labels the interfaces. The accuracy of this type of model can be assessed from
calculations presented in Sect. 2.7.2.

2.6.3 Effects of Diffuse Interfacial Scattering

If the interface is disordered, flux will still be conserved, but the conservation rules
must be extended to include the scattering of electrons between different values of
k‖, i.e. we must use (2.62) rather than (2.63). In the past, primarily because of lack of
detailed knowledge of the diffuse scattering transmission and reflection probabilities,
the diffuse scattering by interfaces and surfaces has been treated phenomenologi-
cally [2.38] by continuing to use (2.63), but adding a specularity parameter for each
interface so that it becomes

h+, j
i+1(z, k‖) = Si

⎡⎣ NR∑
j′

T+−
i ( j, j ′)h−, j′

i+1 (z+i , k‖) +
NL∑
j′

T++
i ( j, j ′)h+, j′

i (z−i , k‖)

⎤⎦
h−, j

i (z−i , k‖) = Si

⎡⎣ NL∑
j′

T−+
i ( j, j ′)h+, j′

i (z−i , k‖) +
NR∑
j′

T−−
i ( j, j ′)h−, j′

i+1 (z+i , k′
‖)

⎤⎦ .

(2.83)

Here Si = 1 for purely specular scattering and Si = 0 for purely diffuse scattering.
Equation (2.83) with Si < 1, is very much analgous the lifetime approximation,
in that it neglects the diffusely scattered electrons and simply reduces the specular
scattering probabilities to allow for these missing electrons. It can be shown that it
is the vertex-corrections or the “scattering-in” term that is needed to calculate the
diffuse scattering probabilities. One important drawback of this approach is that it
does not conserve flux. Therefore, it can only be used for CIP when there is no net
current flowing perpendicular to the interface. For CPP the diffuse or scattering-in
flux must be included to maintain constant flux across the interface.

Even within the context of CIP transport, the constant specularity parameter
approach to diffuse scattering is not very accurate. A model system in which there
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are random point scatterers at the interface between two free electron regions can be
solved in closed form in the weak scattering limit [2.39, 40]. The result is a specularity
function that is strongly dependent on k‖ and that is quite different for transmission
and reflection. The specularity function for transmission in this model is,

St(k‖) = 1 − 4π

�

γn0(0; E)

vL
z (k‖) + vR

z (k‖)
, (2.84)

where γ is a measure of the interface roughness7, n0(0; E) is the DOS at the interface
and vL and vR are the electron velocities on the right and left sides of the interface.
Similarly, the specularity function for reflection is

Sr(k‖) = 1 − 8π

�

vL
z (k‖)γn0(0; E)(

vL
z (k‖)

)2 − (
vR

z (k‖)
)2 . (2.85)

Note that within this model, interfacial disorder can only decrease the specular trans-
mission, but it can either decrease or enhance the specular reflection depending on
the velocities on either side of the interface. Specular transmission remains symmet-
ric in the sense that that transmission from left to right remains the same as from
right to left. Specular reflection, however, is no longer symmetric in the presence of
a disordered interface.

The specularity parameters are plotted both as functions of k‖/kF1 and k‖/kF2

in Fig. 2.13. Note that within this model the diffuse scattering vanishes as k‖ →
7 γ is defined by the correlation function of the random interfacial potential,

〈
V(r)V(r ′)

〉 =
γδ(r − r ′)δ(z).
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kF1. Generally, however, the model predicts the effects of diffuse scattering to be
significantly greater for the reflected beam than for the transmitted beam.

A more realistic and quantitative model for the effect of diffuse scattering on the
specular reflection and transmission can be obtained by using the coherent potential
approximation to describe the average Green function in the presence of interfacial
disorder. In this approach, a finite number of atomic layers near the interface are
modeled as a random alloy with defined, layer-dependent concentrations. Figure
2.14 shows the transmission and reflection probabilities for the majority cobalt-
copper interface. In this case the interface is perpendicular to the (100) direction.
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Fig. 2.14. Majority channel specular transmission (subtracted from unity) and specular reflec-
tion probabilities for an interface between fcc-cobalt and copper calculated in the coherent
potential approximation. There are two intermixed atomic layers, one with CuxCo1−x on the
cobalt side of the interface and one with CoxCu1−x on the copper side where x = 0.1, ..., 0.5.
The interface is assumed to be perpendicular to the (100) direction
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Two features are surprising about Fig. 2.14. In the absence of intermixing the
transmission probability is nearly unity (and the reflection probability nearly zero8)
over most of the range of k‖. The increase in reflection for large k‖ is due to the Fermi
surface of copper being larger than that of majority cobalt so that total reflection
occurs when for a given value of k‖ there is no cobalt state for the electron to be
refracted into. The second surprising feature is that substantial intermixing of two
atomic layers has only a small effect on the transmission and reflection probabilities.
The structure in the reflection probability is thought to result from interference within
the disordered layers. Figure 2.15 shows the transmission specularity parameter for
majority cobalt-copper which may be compared with that for the free electrons
with random point interfacial scatterers model shown in Fig. 2.13. One important
difference is the vanishing of the effect of diffuse scattering for electrons incident on
the interface with the highest values of transverse momentum, i.e. grazing incidence.

Figure 2.16 shows the calculated specular transmission and reflection probabilities
for minority electrons at a cobalt-copper interface. The reflection probability can be
viewed as the probability of an electron in copper being reflected off of the interface.
Because the minority spin channel for cobalt has multiple bands for most values of
k‖, the transmission probability can be viewed as the total probability that an electron
in copper will be transmitted into any of the bands with the same value of k‖. It
is interesting that these calculations predict that disorder can actually increase the
specular transmission for a few values of k‖ for which the transmission of the ordered
interface is particularly low and can increase the specular reflection for values of k‖
where it is especially low.

8 In the absence of intermixing, R = 1− T . The small differences between 1− T and R seen
in Fig. 2.14 are due to numerical inaccuracies.
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Fig. 2.16. Transmission and reflection probabilities for minority cobalt-copper interface

One of the important results of Figs. 2.14 and 2.16 is that for most values of k‖ the
transmission probability is much higher in the majority channel than for the minority
channel. In addition the effects of disorder are not nearly so dramatic on the majority
transmission as on the minority. This difference is one of the major contributors to the
GMR effect and is due to the relatively good matching of the electronic structures of
cobalt and copper in the majority channel and the relative poor match in the minority
channel.

2.7 Giant Magnetoresistance

GMR in magnetic multilayers is observed in important geometries that must be treated
quite differently both experimentally and theoretically. GMR was first observed the
“Current In the Plane” or CIP geometry [2.1]. As implied by its name; in this geometry
the current flows in the plane of the layers and the resistance of the multilayer film is
lower if the magnetic layers have their moments aligned rather than anti-aligned. This
was also the first geometry to be exploited commercially. GMR can also be observed
when the current flows perpendicular to the planes [2.41], a geometry referred to as
“CPP”.

2.7.1 GMR for Current In the Planes

GMR for CIP is somewhat more subtle than for CPP. CIP GMR arises from the non-
local nature of electrical conduction. A necessary requirement for CIP GMR is that
the electron mean free path be at least comparable to the thicknesses of the layers.
One contribution to CIP GMR can be thought of as an effect similar to the effect of
a boundary decreasing the conductivity. Consider a three layer system, e.g. a layer
of copper sandwiched between two layers of cobalt. We shall assume that the (outer)
boundaries of the film are sufficiently rough that they produce no specular scattering,
but that the transmission and reflection at the internal interfaces is purely specular.

Suppose that copper and cobalt matched perfectly in the majority channel. Then
the majority electrons, when the moments of the two cobalt layers are aligned, would
effectively see a film thickness equal to the sum of the thicknesses of the three layers
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on the right respectively for the case of antiparallel alignment of the Co moments

while the minority electrons would tend to be confined within the individual layers
because of the changes in electronic structure at the interfaces. When the moments
are anti-aligned, however, both of the spin channels would see effectively two layers.
This situation is shown in Fig. 2.17. It is also assumed in this example that the mean
free path is much longer for the majority cobalt channel than for the minority.

The sum of the “uu” and “dd” currents gives the total current for parallel alignment
and the sum of the “ud” and “du” currents give the total current for anti-parallel
alignment. These are shown in Fig. 2.18 together with the difference which yields
the giant magnetoconcuctance.
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In fact, of course, as indicated in Figs. 2.6, 2.7, and 2.11, there is a difference
between cobalt and copper in the majority channel. The copper majority Fermi
surface is larger than that of cobalt. It holds 0.5 electrons while that of cobalt holds
only 0.3. A cut through the Fermi surfaces of copper and majority cobalt is shown
in Fig. 2.11. The z direction (perpendicular to the layers) is towards the top of the
figure. The directions perpendicular to this direction are in the plane of the layers. If
the interfaces are smooth on an atomic scale then the component of the momentum
parallel to the interface (k‖) does not change on reflection or refraction at an interface.
Thus from Figure 2.11 it is clear that there are values of k‖ for which states exist
in the copper but not in the cobalt (i.e. 0.57 < kx < 0.69). This means that these
states cannot refract into the cobalt, they must reflect back into the copper. This can
lead to a significant contribution to the GMR if the interface is sufficiently smooth
because some of the majority electrons can be “trapped” inside the copper where the
resistance is significantly lower for both spin channels than for cobalt. This “trapping”
of the electrons inside the copper layer is analogous to the trapping of light waves
within a waveguide [2.25]. Note from Figs. 2.13 and 2.14 that interfacial disorder is
relatively ineffective in reducing the specular reflection for values of k‖ where total
reflection occurs.

A calculation for the current density in a cobalt|copper|cobalt spin valve using
realistic electronic structures is shown in Figs. 2.19 and 2.20. Figure 2.19 shows
the majority and minority currents for both parallel (uu,dd) and anti-parallel (ud,du)
alignment. In this example, the scattering rate in the copper is chosen to give the
copper a resistivity of 3 µΩ cm, a typical value for sputter deposited copper films at
room temperature. The scattering rates for cobalt were chosen to give it a resistance of
15 µΩ cm which is also typical of sputtered films. A much higher scattering rate was
chosen for the minority than for the majority cobalt. It can also be seen that the current
density is significantly higher in the copper than in the cobalt. It can be seen from
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Fig. 2.20 that the largest contributions to the giant magnetoconductance arise from the
copper spacer layer indicating the importance of the channeling effect. Comparison
of calculated and measured values of GMR for a series of cobalt-copper spin valves
with different thicknesses of the cobalt layers indicated the existence of important
contributions to GMR from both the channeling effect and from the differences in
bulk scattering rates for the majority and minority channels of cobalt [2.22].

2.7.2 Current Perpendicular to the Planes

Since magnetic multilayer films generally have a huge lateral extent compared to their
thickness, measuring the CPP resistance not to mention GMR can be a challenge.
However, the increasing demand for smaller magnetic sensors coupled with advances
in lithography that allow the fabrication of structures with much smaller lateral extent
make it likely that CPP GMR will become increasingly important.

Although the origin of GMR is easier to conceptualize for the CPP geome-
try, it is actually much harder to treat theoretically except in the limit of uniform
electronic structure. Similarly to the CIP case, the Layer Korringa Kohn Rostoker
Approach [2.37] can be used to calculate the self-consistent electronic structure of
interfaces and to evaluate the transmission (T++, T−−) and reflection probabilities
(T+− and T−+) for Bloch electrons impinging on the interfaces. The Boltzmann
equation, (2.74) and (2.75), including the boundary matching equations, (2.63), can
then be solved using an iterative procedure. For the calculations that we present here,
it will be assumed that the interfaces are epitaxial and that there is no additional
disorder in the vicinity of the interface.

Figures 2.21 and 2.22 show the calculated electrochemical potential, µ̄ for the
majority and minority channels in the vicinity of a copper-cobalt interface. The
scattering rates are similar to those used for the CIP calculations, the bulk resistivity
of the copper is approximately 3 µΩ cm and that of the cobalt is approximately
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15 µΩ cm with a scattering rate about 15 times higher for minority cobalt than for
majority cobalt. The electrochemical potential has been divided by the current density
so that the plots yield

∫
dzρs(z). For the simple theory represented by (2.81), this is

simply a straight line for each layer with the slope of the line for each layer being
its resistivity. The actual solution to the Boltzmann equation differs in two ways: (1)
There is a discontinuity in the chemical potential at the interface which is equivalent
to an interfacial resistance. This interfacial resistance is not due to intermixing or
additional scattering at the interface (although this effect can be included in the model
if desired) but to the mismatch of the bands across the interface which causes some
of the electrons incident on the interface to be reflected. (2) There are exponential
terms in the electrochemical potential in the vicinity of the interface that decay at
a rate comparable to the component of the mean free path perpendicular to the layers.
The effect of these terms can be included as an additional interfacial resistance that
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is added to the discontinuous contribution just described as is indicated in the dotted
lines of Figs. 2.21 and 2.22. If this is done, however, it must be taken into consideration
that this additional contribution depends on the environment of the interface, e.g. the
proximity of other interfaces. The calculated interfacial resistances are comparable
to those observed [2.41] in cobalt-copper multilayers at low temperature.

Figures 2.23 and 2.24 show that both the discontinuous interfacial resistance and
the interfacial resistance arising from the exponential terms can depend on the type
and thicknesses of neighboring layers. If Fig. 2.23, for example, it can be seen that
the discontinuous interfacial resistance on both sides of the Co-Cu-Co (majority)
spin valve increase with the thickness of the copper spacer layer. The exponential
contributions also increase with copper layer thickness. For the case of antiparallel
alignment shown in Figure 2.24, however, the discontinuous contribution increases
slightly with spacer layer thickness on the minority side but decreases with thickness
on the majority side.

GMR in the “additive” approximation described by (2.82) is relatively simple.
The GMR ratio will be given by

∆R

R
= RAP − RP

RP
(2.86)

where the “parallel” resistance is given by the resistance of the majority and minority
channels conducting in parallel,

RP = R↑↑R↓↓
R↑↑ + R↓↓

. (2.87)

Similarly, the “anti-parallel” resistance is given by,

RAP = R↑↓R↓↑
R↑↓ + R↓↑

. (2.88)
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Here R↑↑, R↓↓, R↑↓, R↓↑ represent the series resistance in each particular channel,
e.g. for a spin valve consisting of two ferromagnetic layers separated by a non-
magnetic spacer layer, one has

AR↑↑ = (ρF1↑tF1 + rF1↑,N) + ρN tN + (rN,F2↑ + ρF2↑tF2)

= A(R1↑ + RN + R2↑)
AR↑↓ = (ρF1↑tF1 + rF1↑,N) + ρN tN + (rN,F2↓ + ρF2↓tF2) ,

= A(R1↑ + RN + R2↓) (2.89)

where t is the thickness of a layer and r is an interfacial resistance. Because the
resistances are assumed to be additive, R↑↑ + R↓↓ = R↑↓+ R↓↑ and the GMR ratio
is

∆R

R
= (R1↑ − R1↓)(R2↑ − R2↓)

R↑↑R↓↓
. (2.90)

2.8 Landauer Approach to Ballistic Transport

There is another approach to CPP conduction that can be applied in the limit in which
the transport is ballistic rather than diffusive. Usually transport in metallic systems is
diffusive in nature; between the time that an electron enters the sample from one lead
and an electron leaves the sample through another lead many scattering events occur.
Devices (usually on the nanometer scale) can be constructed however, in which very
few scattering events take place between the two leads. In this limit, sometimes called
the ballistic limit, there is a very simple expression due to Landauer [2.42] which
relates the conductance to the probability of an electron being transmitted through
the sample.
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µ1
µ2

Fig. 2.25. Two electron reservoirs connected by a sample

To understand the Landauer conductance formula it is helpful to consider two
reservoirs of electrons connected by a sample as shown in Fig. 2.25. If we imagine
the left reservoir, with chemical potential µ1, to be an emitter of right going electrons,
we can write the current density of those electrons that leave the reservoir on the left
and enter the reservoir on the right as

J+ = e

(2π)3

∫
d3kv+

z (k) f +0 (µ1)T+(k) (2.91)

where a “+” superscript indicates an electron with vz > 0, z being the direction from
reservoir 1 to reservoir 2 and where

T+(k) ≡
∑

k′
T++(k, k′) . (2.92)

We can perform the integral over kz ,

J+ = e

A

∑
k‖, j

1

2π

∫
dkz

1

�

∂ε

∂kz
f0(µ1)T+(k) , (2.93)

which yields an expression for the current,

I+ = e

h

µ1∫
dε

∑
k‖, j

T+(k‖, j) . (2.94)

A similar line of reasoning leads to an expression for the current of electrons
emitted in the −z direction by the reservoir on the right which enter the reservoir on
the left,

I− = e

h

µ2∫
dε

∑
k‖, j

T−(k‖, j) . (2.95)

Assuming time reversal invariance, we can equate T+ and T−. This allows us to
write the net current as

I = I+ − I− = e2

h

∑
k‖, j

T+(k‖, j)
µ1 − µ2

e
, (2.96)
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which yields the Landauer conductance formula,

G = e2

h

∑
k‖, j

T+(k‖, j) . (2.97)

The original Landauer formula has the ratio of transmission probability divided
by reflection probability (T/R) where we have only the transmission probability
in (2.97). It is argued that this additional factor of 1/R arises from the reflected
electrons changing the chemical potential of the reservoirs. It is now usually accepted
that this additional factor of 1/R is present or not depending on exactly how the
measurement is performed, that is, on whether or not one measures current and voltage
using the same leads, as is assumed in the derivation here, or whether a separate set of
probes is used to determine the voltage across the sample. In the application in the next
section, the difference between the two formulas will usually be negligible because
tunneling transmission probabilities are very small and the reflection probabilities
are near unity.

2.9 Spin-Dependent Tunnelling

One important application of the Landauer conductance formula is to the calculation
of tunneling conductance. It is assumed that the two electrodes act as electron reser-
voirs and that the electrons traverse the barrier region in a single tunneling event.
Recently, it has been observed that the tunneling conductance between two ferro-
magnetic electrodes depends on the relative orientation of the magnetic moments in
the two electrodes [2.3, 4]. Generally, the tunneling rate is higher when the moments
of the two electrodes are parallel.

The first observation of spin-dependent tunneling as well as the first theory was
due to Julliere [2.2]. Julliere’s theory was based on the not unreasonable assumption
that the tunneling rate was proportional to the products of the Fermi energy densities
of states of the two electrodes. Thus the tunneling current for parallel and anti-parallel
alignment of the moments in the ferromagnetic electrodes would be

IP ∝ n↑
Ln↑

R + n↓
Ln↓

R

IA ∝ n↑
Ln↓

R + n↓
Ln↑

R (2.98)

where n↑,↓
L,R are the majority and minority Fermi energy densities of states for the

left and right electrodes respectively. Defining the polarization of the Fermi energy
density of states for the two electrodes as,

PL = n↑
L − n↓

L

n↑
L + n↓

L

PR = n↑
R − n↓

R

n↑
R + n↓

R

, (2.99)
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we can write the magnetoresistance as

IP − IA

IA
= 2PL PR

1 − PL PR
. (2.100)

Unfortunately, the assumption that the tunneling rate is proportional to the density
of states is not supported by experimental observations of tunneling from ferromag-
nets into superconductors [2.43]. These observations indicate that it is almost always
the majority channel conductance which dominates the tunneling from ferromag-
nets, despite the fact that the minority Fermi energy density of states is often many
times larger than the minority, e.g. in cobalt and nickel. Despite this rather serious
problem this approach is still widely used to analyze and rationalize experimental
data. The argument is sometimes made that the densities of states and polarizations
refer to “those electrons that participate in the tunneling” and that these “effective”
polarizations can be obtained from superconducting tunneling experiments.

Recently, the Landauer approach was used to evaluate the the spin-dependent tun-
neling conductance for some epitaxial systems of the form Fe|S|Fe where S represents
an insulator or semiconductor. The same techniques that were used to calculate the
transmission and reflection probabilities in metals can be used to calculate the trans-
mission probabilities for spin-dependent tunneling. The semiconductors Ge, GaAs,
and ZnSe and the insulator MgO, which have lattices that match almost perfectly to Fe
using (100) interfaces for both electrode and barrier materials [2.44–47] were studied
and it was found that these systems show a remarkably large magnetoresistance the
microscopic origins of which can be analyzed in detail.

A number of surprising results have emerged from these studies. Interfacial reso-
nance states can be very effective in enhancing the tunneling conductance for certain
values of k‖, if the barrier is sufficiently thin. These interfacial resonance states seem
to occur primarily in the minority channel for Fe(100). Another unexpected result
was quantum interference between evanescent states in the barrier. This interference
leads to an oscillatory dependence of the transmission probability on k‖ and a damped
oscillatory dependence on the thickness for certain fixed values of k‖.

As the semiconducting or insulating barrier layer is made thicker, it is primarily the
states near k‖ = 0 that contribute to the tunneling conductance, i.e. those electrons
whose momentum in the iron is perpendicular to the interface with the barrier.
Figure 2.26 shows the density of states (DOS) for each of the bands in Fe at the
Fermi energy for k‖ = 0. It also shows how the DOS decays within the barrier which
in this case is MgO. This density of states is calculated for a particular incident
Bloch state on the left, all possible reflected Bloch states on the left and all possible
transmitted Bloch states on the right. It can be seen that the incident Bloch states
differ in how well they are injected into the semiconductor, their rate of decay within
the semiconductor and how well they are extracted from the semiconductor to form
the transmitted wave on the right.

For both majority and minority Fe for k‖ = (0, 0) at EF there are 4 bands. A doubly
degenerate ∆5 band (compatible with p and d DOS), a ∆2′ band (compatible with d
DOS) are found for both majority and minority. In addition, there is a majority ∆1
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Fig. 2.26. Majority (left panel) and minority (right panel) density of states for each of the Fe
Fermi energy Bloch states for k‖ = 0. The magnetic moments on the two Fe layers are aligned
parallel

band (compatible with s, p and d DOS) and a minority ∆2 band (compatible with d
DOS).

Four decay rates can be discerned within the MgO barrier, a relatively slow decay
associated with the ∆1 Bloch state, a somewhat faster decay associated with the
doubly degerate ∆5 state, a still-faster decay associated with the ∆2 state and a very
fast decay associated with the ∆2′ state. The angular momentum composition of the
DOS for each of these symmetries is noted on the figure for each of the bands. For
parallel alignment, it is clear that the conductance is dominated by majority electrons
because of the presence of a ∆1 symmetry Bloch state at the Fermi energy for the
majority that is absent for the minority.

Figure 2.27 shows the DOS for the case in which the Fe moments are aligned
anti-parallel. The left panel shows the case in which the incident Bloch states (on the
left) are majority. The right panel shows the case in which the incident Bloch states
(on the left) are minority. The left panel is similar to the left panel of Fig. 2.26 except
that the ∆1 states continue to decay into the minority Fe electrode on the right hand
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Fig. 2.27. DOS for each of the Fe(100) Fermi energy Bloch states for k‖ = 0. The magnetic
moments on the two Fe layers are aligned anti-parallel. In the left panel, the Fe majority Bloch
states are incident from the left. In the right panel, minority Bloch states are incident
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side. The reason for this is that there is no minority ∆1 state to receive the transmitted
electron. The right panel is similar to the right panel of Fig. 2.26 with the exception
that the ∆2 band decays in the right side electrode because there is no minority ∆2

Bloch state.
These results give insight into a mystery concerning spin-dependent tunneling. In

every instance that it has been possible to determine which of the spin channels has
the highest tunneling rate, it has been the majority channel [2.43]. This is true even
for systems such as nickel for which the minority DOS at EF exceeds the majority
by an order of magnitude. One possible reason for this is that not all electrons tunnel
equally well. For the particular states shown here it is those bands which have some s
character that seem to be most efficient at tunneling. Many of the magnetic systems,
e.g. nickel and cobalt have filled majority d-bands. These “strong” magnets will
clearly have more states with s character in the majority channel than in the minority
channel. Fe does not have a filled majority d-band, but, at least in the 100 direction,
the band with s-character dominates.

It has been emphasized [2.48] that the fundamental difference between the ∆1

state9 and the other states is the absence of lateral oscillations in the wave functions
of the former. Because the wave functions in the electrode must join smoothly to the
wave functions in the barrier layer, they must induce lateral oscillations of the wave
function in the barrier. These oscillations require energy that effectively increases the
barrier height for tunneling.

These considerations should be valid more generally than the class of epitaxial
systems considered in the calculations described here. In systems with disordered
interfaces and barrier layers, however, there is the opportunity for non-∆1 Bloch states
to be scattered into the slowly decaying state within the barrier that does not have the
lateral oscillations. This effect can significantly reduce the magnetoresistance.
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3

Spin Polarized Electron Tunneling

P. LeClair, J.S. Moodera and H.J.M. Swagten

The quantum mechanical tunnel effect is one of the oldest quantum phenomena,
and yet continues to enrich our understanding of many fields of physics, as well
as creating sub-fields of its own. The generality of the tunneling phenomenon is
such that virtually any introductory textbook on quantum mechanics treats tunneling
through a potential barrier, and the possibility of tunneling in solid state structures
was already recognized in the early 1930’s [3.1]. Despite this long history and
much experimental work, electron tunneling continues to be an actively used tool
in many areas of physics. Spin dependent tunneling between two ferromagnets, first
proposed [3.2] and observed [3.3] in 1975, has only in the last few years been reliably
demonstrated [3.4]. Since the first observation of large magnetoresistance at room
temperature, shown in Fig. 3.1, there has been an enormous increase of research in this
field. The large Tunnel Magnetoresistance (TMR) effects possible in ferromagnet-
insulator-ferromagnet tunnel junctions (magnetic tunnel junctions, or MTJs) have
garnered much attention for magnetic tunnel junctions, or MTJs possible application
in non-volatile Magnetic Random Access Memories (MRAMs; see the chapter by
S.S.P. Parkin in this volume) and next-generation magnetic field sensors (e.g., in hard
disks). However, the fundamental physics behind these devices is only beginning to
be understood.

It is the purpose of this review to present a tutorial overview of the fundamental
physics behind spin dependent tunneling in magnetic junctions. Much attention will
be paid in the first sections to the crucial conceptual developments which led to
spin polarized tunneling, and are ultimately necessary for understanding MTJs. Once
the proper background has been introduced, we will discuss the basic features and
behavior of MTJs, followed by a brief presentation of the earliest experiments and
a short discussion of fabrication and characterization. In the main section of this
review, we present recent experiments which are in our view crucial to understanding
the fundamental physics behind MTJs. Finally, we will discuss a few related topics
and the future outlook for this new and growing field of research.
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Fig. 3.1. First observation of large
room temperature magnetoresistance in
a CoFe/Al2O3/Co magnetic tunnel junction.
The arrows indicate the relative magnetiza-
tion orientation of the CoFe and Co layers.
From [3.4]

3.1 Tunneling Between Two Free-Electron Metals

Though a complete historical and conceptual background for electron tunneling and
all its nuances is beyond the scope of this review, and has been discussed thoroughly
in [3.5, 6], we will briefly introduce the tunnel effect in solid state structures as is
relevant to MTJs. Electron tunneling is a quantum phenomena by which an electric
current may flow from one electrode, through an insulating barrier, into another
electrode. A simple way to understand how tunneling is possible is by considering
an electron wave which encounters a potential step, see Fig. 3.2. Though most of
the intensity is reflected at the potential step, a portion decays exponentially through
the barrier. For sufficiently thin barriers (typically a few nm thick), some intensity
remains on the other side of the potential step, and therefore, the electron will have
a finite probability of being found on the other side of the potential barrier. The most
straightforward realization of this structure is in a metal-insulator-metal (M-I-M)
trilayer structure, commonly called a tunnel junction, with the insulator typically
provided by a metal oxide (e.g., Al2O3).

Fig. 3.2. Tunneling in metal-insulator-metal structures. (a) Electron wave function decays
exponentially in the barrier region, and for thin barriers, some intensity remains in the right
side. (b) Potential diagram for a M-I-M structure with applied bias eV. Shaded areas represent
filled states, open areas are empty states, and the hatched area represents the forbidden gap in
the insulator
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In most studies, tunneling phenomenon in M-I-M structures are studied by ob-
serving the current (or its derivative) as a function of applied voltage across the
junction. As an illustration, we consider phenomenologically an idealized M-I-M
structure, with the electrode-tunnel barrier system modeled as a step potential (Fig.
3.2b). Without a voltage across the junction, the two metals will equilibrate, and the
Fermi levels will be at the same energies for the two electrodes. When a bias V is
applied across the junction, one Fermi level will shift by eV with respect to the other,
where e is the electron charge (Fig. 3.2b). The number of electrons tunneling from
one electrode to the other is given by the product of the density of states at a given
energy in the left electrode, �l(E), and the density of states at the same energy in
the right electrode, �r(E), multiplied by the square of a matrix element |M|2, which
is essentially the probability of transmission through the barrier. One must also then
multiply by the probabilities that the states in the left electrode are occupied, f(E),
and that the states in the right electrode are empty, 1− f(E−eV ), where f(E) is the
Fermi-Dirac function. This product is an expression of the requirement that electrons
on one side of the barrier must have empty states to tunnel into on the other side of
the barrier. For the general case [3.7], the tunnel current (I) from the left electrode
(l) to the right electrode (r) is given by:

Il→r(V ) =
+∞∫

−∞
�l(E)· �r(E+ eV ) |M|2 f(E) [1− f(E+ eV )] dE (3.1)

where the subscript l(r) refers to the left (right) electrode. The total tunnel current is
then given by Il→r − Ir→l. Simmons [3.8] used the WKB approximation to obtain the
matrix elements |M|2 for an arbitrary barrier of average height ϕ above the common
Fermi level EF. He then calculated the tunnel current from (3.1), using a free electron
relation for �l(r), and approximating the Fermi-Dirac functions as step functions (i.e.,
T = 0). His well-known result for a trapezoidal barrier (as shown in Fig. 3.2) is

J(V ) = Jo

d2

(
ϕ − eV

2

)
exp

[
−A d

√
ϕ − eV

2

]

− Jo

d2

(
ϕ + eV

2

)
exp

[
−A d

√
ϕ + eV

2

]
(3.2)

where J is the tunnel current density, A = 4π
√

2m∗
e/h and Jo = e/2πh are constants,

m∗
e is the electron effective mass, d is the barrier thickness, ϕ is the average barrier

height above the Fermi level, and V is the applied bias. If we take the barrier
thickness in Ångströms (10−10 m), the barrier height in electron Volts, and the bias
in Volts, then A = 1.025 eV−0.5Å−1 and Jo = 6.2 ×1010 eV−1Å2, with the resulting
current density J in A/cm2. This equation, or its variants [3.9], are often used to fit
experimental J(V ) characteristics to obtain effective barrier heights and thicknesses.
For V�ϕ, it is easily seen that the J(V ) is linear, while for larger voltages it becomes
rapidly nonlinear. At moderate voltages, Simmons showed that J ∼αV+βV 3, which
leads to one of the hallmark characteristics of tunneling: a parabolic dependence
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of conductance (G ≡ dI/dV ) on voltage, which is often observed experimentally
for tunnel junctions with non-magnetic electrodes. Further, the expected exponential
dependence of the tunnel current on barrier thickness and the square root of the barrier
height are correctly recovered. However, any dependence on the electronic density
of states (DOS) in the electrodes is suspiciously absent [3.10], which is a direct
result of the over-simplified model used [3.11, 12]. As we shall see presently, this
over-simplification has far-reaching consequences.

3.2 Role of the Density of States in Tunneling

In this section, we present an overview of the subtle role of the density of states in solid
state tunneling. The early models of tunneling, as well as contemporary experimental
studies, all interpreted tunneling within a single-particle picture [3.5, 10] as discussed
above, in which the tunnel current is independent of the electronic density of states in
the metal electrodes. However, in 1960 Giaever [3.13, 14], and subsequently Shapiro
et al. [3.15], performed tunneling experiments with superconducting electrodes which
appeared to be the measurement of a many-body effect, viz. the superconducting
energy gap of the Pb electrode in a Al/Al2O3/Pb junction, which had no adequate
theoretical explanation at the time. In fact, several of Giaever’s coworkers were
initially skeptical of his “naive” experiment to measure directly the superconducting
energy gap [3.16]. This “naive” experiment later led to a shared Nobel prize for
Giaever in 1973.

3.2.1 Early Experiments of Giaever

In his original experiments, Giaever [3.13] investigated current-voltage and conduct-
ance-voltage characteristics, I(V ) and dI/dV(V ), of Al/Al2O3/Pb normal metal-
insulator-superconductor (N-I-S) tunnel junctions well below the superconducting
transition temperature of the Pb electrode. The Pb electrode could also be driven into
the normal state by the application of a magnetic field larger than the critical field
(HC) to study transport characteristics between the two normal metals. When the Pb
electrode was in the normal state, I(V ) was linear at low voltages (see inset to Fig.
3.3), as expected from the discussion of Sect. 3.1. However, when the Pb was in the
superconducting state, the tunnel current was very much reduced at low voltages,
independent of current polarity, as seen in the inset of Fig. 3.3.

More detailed information on the current transport can be obtained from the
conductance curve, dI/dV(V ), shown in Fig. 3.3. Most interestingly, the conduc-
tance curve in this case very closely resembled the BCS quasiparticle “density of
states” [3.6, 13] :

�s(E) = �n(E)
|E|

(E2 − ∆2)
1
2

(3.3)

where �n is the density of states in the normal state, and ∆ is the energy gap in the
quasiparticle excitation spectrum. Giaever interpreted this result [3.13], correctly as it
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Fig. 3.3. First observation of the su-
perconducting energy gap by tunneling.
Conductance-voltage curve dI/dV(V )

for an Al/Al2O3/Pb junction at T =
1.6 K, µo H = 0, along with a fit to the
BCS theory. Inset: current-voltage char-
acteristics I(V ) at T = 1.6 K, µo H = 0,
Pb superconducting (squares); and T =
4.2 K, µo H =0.27 T, Pb normal (circles).
After Giaever [3.13]

turned out, as an indication that tunneling conductance is proportional to the density
of states in the superconducting electrode. Subsequent measurements of Giaever et
al. [3.17, 18] and Shapiro et al. [3.15] confirmed these results shortly thereafter.

3.2.2 Theoretical Explanation

Tunneling into superconductors is now so ubiquitous that a phenomenological expla-
nation, closely following Giaever’s original treatment, is presented in nearly every
introductory solid state physics text, e.g., Kittel [3.19]; we will not discuss it further
here. However, a proper theoretical justification of Giaever’s ideas is subtle, with im-
portant consequences for MTJs, and we will now discuss one interpretation briefly.
Despite the fact that a simple calculation starting with (3.1) seems to include the
density of states directly, it has been shown that [3.5, 10] in a simple independent
electron model the matrix elements |M|2 are inversely proportional to the density
of states and thus they exactly cancel the density of states factors in (3.1). Within
this model, therefore, the density of states does not directly enter the expression for
the tunnel current [3.5, 10] (see previous section). However, shortly after Giaever’s
experiments, Bardeen [3.11], and later Cohen et al. [3.20] and Schrieffer et al. [3.21],
clarified this apparent controversy.

In fact, the failure of the independent particle models was not in the use of (3.1),
but in the failure to capture the true many-body nature of tunneling in solid state
systems. The presence of many-body interactions in the metal electrodes – e.g., the
interactions responsible for superconductivity or ferromagnets – subtly changes the
content of |M|2 and � in (3.1). Bardeen [3.11], appealing to many-body arguments,
showed that the densities of states are indeed those of the metal electrodes, but that
the matrix elements are a reflection of what is happening within the insulating barrier.
The key difference with this method is in the approach to the tunneling process itself.

Within the many body approach, tunneling occurs when the insulating barrier is
sufficiently thin such that the waves decaying into the barrier from each electrode
overlap within the insulating barrier. The number of electrons tunneling, and hence
the tunnel current, is given by the amount of overlap within the barrier. When evaluat-
ing the matrix elements and densities of states in (3.1), one must consider the different
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character of the wavefunctions in the barrier and electrode regions. The density of
states are indeed those of the metallic electrodes near the interface (see the following
section), �s and �n, respectively for a S-I-N junction. The matrix elements, however,
represent the overlap of the electrode wave functions in the barrier region where
many-body interactions are no longer present. Without the presence of many-body
interactions in the barrier, the wavefunction in the barrier region is not appreciably
different in the superconducting or the normal state – both are decaying functions –,
and the |M|2 are still essentially characteristic of the normal state. This has the conse-
quence, according to Bardeen, that the matrix elements are inversely proportional to
the normal state density of states, and the �’s in (3.1) are no longer canceled, so that
the tunnel conductance is indeed proportional to �s, exactly as observed by Giaever.
The crucial point is that the dependence of the tunnel conductance on the density
of states does not come as simply as one might expect from (3.1), but results only
from carefully considering many body effects when evaluating (3.1). For MTJs, this
means that although an explanation of the TMR effect (Julliere’s model, Sect. 3.5.1)
seems to come quite easily from (3.1), the proper justification of such an explanation
is in fact subtle.

3.2.3 Theoretical Refinements and Interface Sensitivity

Several extensions of this model were subsequently put forward [3.20–23], which
essentially recover the result of Bardeen in the limit of a simple weak-coupling BCS
superconductor. More sophisticated treatments by Appelbaum and Brinkman [3.22,
23] and Zawadowski [3.24], as well as more recent refinements [3.12, 25–30], put the
role of the electrode density of states on firmer ground. They were able to show that
tunneling is specifically sensitive to the local density of states at the electrode-barrier
interface in superconducting as well as normal metal junctions, i.e., only the DOS near
the interface is important for tunneling properties. However, this interfacial sensitivity
has very different consequences for junctions with superconducting electrodes and
those with normal metal electrodes.

The difference arises from the scale over which the density of states is sampled in
the tunneling process – the range of the many body interactions in the superconducting
or normal metal electrodes [3.22, 23]. In a normal metal, this is only on the order of
a few Fermi wavelengths. However, the wavefunction in the normal metal is strongly
perturbed by the presence of the metal-insulator interface in this region near the inter-
face. This leads to the complication that in normal metal tunneling structures, one can
only measure the density of states in the normal metal in this strongly perturbed region
rather than measuring bulk-like behavior. Put slightly differently, although one may
probe non-superconducting many body effects by tunneling (e.g., ferromagnetism),
these effects are probed only within a few Fermi wavelengths of the electrode-barrier
interface, where the density of states may differ greatly from that in the bulk. One
may imagine that because of this interfacial sensitivity, tunneling characteristics will
be a property of both the electrode and barrier together. In fact, junctions with the
same electrodes but different barriers do behave differently, a phenomena which will
be discussed in Sect. 3.6.1. Generally speaking, the interfacial sensitivity of tun-
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neling in non-superconducting junctions has extremely important consequences for
spin-dependent tunneling [3.31, 32], particularly in MTJs [3.32, 33] (see Sects. 3.6.1,
3.6.4).

For superconducting electrodes, however, the range of the many body interactions
– the coherence length – is extremely large. The density of states is still sampled within
a few coherence lengths of the electrode-barrier interface, but now this is a much
larger length scale than the scale on which the electrode-barrier interface modifies
the superconducting wave function [3.23]. This has the consequence that where the
distance that the density of states is sampled, the superconducting wavefunction
is essentially unchanged by the interface. Thus, for superconductor-insulator based
junctions, the density of states as measured by tunneling,, and therefore the tunnel
conductance, are essentially “bulk-like” properties, while for normal metal based
junctions both are a property of the metal-insulator interface.

3.3 The Beginnings of Spin Dependent Tunneling

In order to properly discuss spin polarized transport in magnetic junctions, one
must necessarily discuss the spin-polarized tunneling technique (SPT), developed
by Meservey and Tedrow [3.31] in 1970, which created the field of spin-dependent
tunneling. These pioneering experiments are the fundamental basis for the magne-
toresistance effect in magnetic tunnel junctions, as well as many other spin polarized
tunneling phenomenon. Though the full details of SPT are beyond the scope of this
review (and have been excellently reviewed elsewhere, see [3.31]), we will briefly
describe the concepts behind this powerful technique.

3.3.1 The Spin Polarized Tunneling Technique

Essentially, SPT utilizes a superconducting electrode in a N-I-S tunnel junction to
probe the tunneling spin polarization of electrons tunneling electrons within a few
100’s of µeV of the Fermi level (i.e., on the order of ∆). If the superconductor is
sufficiently thin (∼ 4−5 nm), such that the orbital screening currents in the super-
conductor are largely suppressed, the effects of the electron spin interaction with the
magnetic field may be observed, resulting in Zeeman splitting of the quasiparticle
states in the superconductor. However, not only must the critical field of the super-
conductor be large enough to have observable Zeeman splitting (Zeeman splitting
larger than the thermal smearing, i.e., 3.5 kBT <µB Hext), elements with low atomic
number must be used to avoid significant spin scattering via the spin-orbit effect
(spin-orbit scattering).

If Zeeman splitting is achieved, the density of the states in the superconductor is
then a superposition of spin-up and spin-down densities of states, as in (3.3), each of
which shifted in energy by ∓µB Hext from the zero-field curve, as shown in Fig. 3.4a.
Assuming that spin is conserved in the tunneling process, which will be addressed
shortly, the total conductance is simply the sum over the spin up and spin down
channels. For a normal unpolarized metal, this results in a conductance curve as in
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Fig. 3.4b, exhibiting 4 peaks, relating to the 2 BCS density of states peaks for each
spin channel as indicated by the spin resolved conductances (dashed and dotted lines).
However, when the normal metal has an unequal spin population at the Fermi level,
�↑(EF) �= �↓(EF), each of the separate spin conductances is weighted by the relative
density of states for that spin channel, as shown in Fig. 3.4c for �↑(EF) = 3�↓(EF).
Assuming a simple proportionality between conductance and �l�r, the tunneling spin
polarization may be estimated by the relative heights of the 4 conductance peaks,
σ1−4:

P(EF) ≈ (σ4 − σ2) − (σ1 − σ3)

(σ4 − σ2) + (σ1 − σ3)
. (3.4)

Thus, as defined above, the full curve in Fig. 3.4c has tunneling spin polarization
of P = 50%. The difference in conductance peak heights is only an estimate of P,
and an accurate determination must account for spin-orbit scattering in the supercon-
ductor [3.27, 31, 34] (using (3.4) tends to overestimate P, see the caption to Fig. 3.5).
Further, we have not yet precisely defined what the “tunneling spin polarization” is
– this will be addressed in Sect. 3.3.2. For comparison, Fig. 3.5 shows the first SPT
measurement by Meservey and Tedrow [3.35] using Al/Al2O3/Ni junctions. While the
zero-field curve is symmetric, the curves for µo H =2.26 T and µo H =3.37 T show
an increasing asymmetry, consistent with Fig. 3.4c. Though the spin polarization is
small in this case, PNi = 8.5±0.3% is obtained from fitting to a model incorporating
spin-orbit scattering and orbital depairing in the Al [3.31, 36], the presence of a finite
and positive tunneling spin polarization in Ni is clear. Parenthetically, we note that
the recent value of tunneling spin polarization for (polycrystalline) Ni (see Table 3.1)
is more than a factor of 4 higher, almost certainly due to three decades of improved
deposition techniques resulting in cleaner junctions with better interfaces. Table 3.1
lists recently obtained tunneling spin polarization values obtained for several ferro-
magnetic metals, after correction for spin-orbit scattering. Of particular intersest is
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Table 3.1. Tunneling spin polarization values obtained from FM/Al2O3/Al junctions, after
correction for spin orbit scattering.

Material P (%) Ref. Material P (%) Ref.

Ni 31–33 [3.27, 34] Ni95Fe5 34 [3.34]
Co 42 [3.27] Co40Fe60 51 [3.34]
Fe 44–45 [3.27] Co50Fe50 50–55 [3.27, 37]
Ni40Fe60 55 [3.34] Co60Fe40 50 [3.34]
Ni80Fe20 45–48 [3.27, 37] Co84Fe16 52–55 [3.27, 34]
Ni90Fe10 36 [3.34] La0.67Sr0.33MnO3 78 [3.38]
SrRuO3 –9.5 [3.39]

that the sign of the tunneling spin polarization for the 3d metals and alloys is in all
cases positive. In fact, the only negative polarization measured with SPT to date is
for SrRuO4.

In the preceding analysis, the determination of spin polarization with the SPT
technique relied on spin being conserved during the tunneling process. In fact, the
Zeeman splitting of the quasiparticle density of states in a magnetic field may be also
used directly to prove that spin flipping does not take place during tunneling. In an
elegant experiment [3.40], Meservey and Tedrow studied spin polarized tunneling in
Al/Al2O3/Al (S-I-S) junctions with two Zeeman split superconductors, and showed
that no spin flipping takes place during the tunneling process, a crucial result for the
development of spin polarized tunneling and magnetic tunnel junctions.

In another application of this powerful technique, spin polarization measurements
on ultra-thin ferromagnetic films [3.31, 41] first demonstrated the anticipated inter-
facial sensitivity [3.22–24, 26] (see Sect. 3.2.3) in tunnel junctions with a normal
metal electrode. In this case, ultrathin (0–30 Å) films of Fe or Co were deposited on
a substrate normal metal to form the bottom electrode of the N-F-I-S junctions, on
which the Al2O3 tunnel barrier and superconducting Al electrode were grown (Fig.
3.6). The spin polarization of electrons tunneling from these ultrathin layers was then
measured as a function of average layer thickness, and compared with the polariza-
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Fe (squares) and Co (circles), of average
thickness dFM, on (normal-state) Al. The
nearly full polarization for only 10 Å of
Co or Fe (∼5 monolayers) clearly demon-
strates the interfacial sensitivity of tunnel-
ing in normal state structures. After Tedrow
and Meservey [3.41]

tion values for thick Fe or Co layers. For Fe and Co backed with (normal-state) Al,
Fig. 3.6, the polarization increased rapidly with increasing thickness, showing clear
spin polarization (and hence, ferromagnetism) for even a single monolayer. The most
striking result is that the “bulk” tunneling spin polarization measured on thick layers
is nearly reached for only 7–10 Å approximately 3–5 monolayers. Not only does
this experiment clearly indicate that the onset of ferromagnetism extremely rapid,
it definitively demonstrates that tunneling in normal-state structures is highly inter-
face sensitive, and apparently, the outermost 3–5 monolayers dominate the transport
properties. This is in excellent agreement with theoretical expectations [3.22–24, 26],
and of crucial importance for the development and understanding of magnetic tun-
nel junctions. Further, this result implies that the tunneling characteristics, such as
spin polarization, will be highly susceptible to the interface quality, which has great
ramifications for the growth of high-quality magnetic tunnel junctions.

3.3.2 What is Tunneling Spin Polarization?

The most striking feature of these results initially was the fact that the tunneling spin
polarization of 3d ferrmagnetic metals was positive (i.e., spin up majority) in all cases,
seemingly at odds with the bulk band structures [3.42] of these materials, which show
a dominant minority contribution to the density of states at the Fermi level. Though
the details of exactly what the tunneling spin polarization is are rather complex and
still the subject of controversy, we will attempt here to present a physically transparent
description of what in our interpretation determines the tunneling spin polarization.
For more in-depth discussions, we refer the reader to the references.

Typically, for SPT experiments |M|2 and ρl,r in (3.1) are taken as constants, and
for vanishing external bias this results in the tunneling spin polarization being simply
the (normalized) difference between spin up and spin down densities of states at
the Fermi level [3.31]. However, this is generally not justified, even for a vanishing
bias. In reality, the density of states measured via tunneling is never the “raw”
density of states, but always weighted by |M|2. As we have seen in Sect. 3.2.2,
a proper consideration of the matrix elements |M|2 is crucial in explaining the role
of the density of states in tunneling, and as discussed below, even more crucial in



3 Spin Polarized Electron Tunneling 61

understanding P. A slightly more precise definition of tunneling spin polarization
P (considering transmission independent of k||), may be given for vanishing bias
by [3.43]

P|V=0 = �↑|M↑|2 − �↓|M↓|2
�↑|M↑|2 + �↓|M↓|2 . (3.5)

For non-vanishing bias, the energy dependence of |M|2 and �l,r must be taken
into account as well when integrating over all energies in (3.1), although only the
energy range where there are filled states in one electrode and empty states in the
other (the applied bias) will contribute. For SPT experiments, P is still essentially
evaluated at EF due to the small bias involved (>1 mVolt), but for MTJs the energy
dependence of P is significantly more important. In addition, P gains several rather
subtle dependencies via the matrix elements – such as the crucial dependence of the
tunneling spin polarization on the insulating barrier used – some of which will be
discussed below. From the above definition it is also clear that due to the presence
of the matrix elements, the tunneling spin polarization is not directly related to the
magnetization or even the spin polarization measured by other techniques (e.g., spin
polarized photoemission or Andreev reflection). Here we will briefly discuss a few
approaches which illustrate how considering the � and |M|2 in realistic systems
can resolve the apparent discrepancy between band structure and tunneling spin
polarization.

One early attempt to explain the sign of the spin polarization measured by SPT
was given by Stearns [3.44]. She recognized that within the independent electron
model of tunneling [3.5, 10], the transmission probability depends on the electron
effective mass m∗

e , which is different for different bands. More generally, one may
say that the |M|2 in (3.1) are different for states of different symmetry [3.29, 45–
49]. In the 3d ferromagnets studied by Meservey and Tedrow [3.31], the relatively
localized d electrons carry most of the total magnetic moment, while the mobile
s electrons contribute little. However, the d electrons have a large m∗

e and decay
extremely rapidly into the barrier region, while the mobile s-hybridized electrons
decay slowly into the barrier region. One would expect, then, that for reasonably
thick tunnel barriers (∼ several monolayers or more) that the s-hybridized electrons
would come to dominate the tunnel current, given that decay rate is exponential in√

m∗
e but only proportional to the total DOS. In 3d ferromagnets, the s bands are spin

polarized through hybridization with the d bands, and tend to have a spin polarization
opposite in sign to the 3d bands. In this simplistic model, Stearns could explain the
positive tunneling spin polarization and the negative spin polarization of the total
DOS. In fact, recent calculations based on a tight binding model through a vacuum
barrier [3.27] essentially reproduce this simple analysis (as do different treatments by
Mazin [3.43] and Butler et al. [3.46]). For very thin barriers (e.g., a few monolayers),
the large d DOS dominates, despite the lower probability of d electrons tunneling,
giving a large negative P. For thicker barriers (more than a few monolayers), the
slower decay rate of s electrons compensates their smaller DOS, and the s electrons
with positive spin polarization begin to dominate the tunnel current, with a positive
spin polarization resulting.
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For a simple vacuum barrier, this view is reasonable, but this picture neglects the
role of the insulating barrier and the ferromagnet-insulator bonding. Based on the
previous discussions (Sect. 3.2.3), one expects that the tunnel current is sensitive to
the interfacial DOS at the ferromagnet-insulator barrier, which is strongly modified
by the presence of the barrier and bonding at the ferromagnet-insulator interface.
Tsymbal and Pettifor [3.25] first addressed the influence of the ferromagnet-insulator
bonding, finding that the tunnel conductance strongly depends on the type of co-
valent bonding at the interface. They showed that only ssσ bonding between Co
or Fe and the insulating barrier could explain a positive spin polarization mea-
sured by SPT. In other words, Stearns’ conjecture [3.44] that the positively po-
larized s-hybridized electrons have a lower decay rate into the barrier is valid
for real insulators only in the case of interfacial ssσ bonding. Tsymbal and Pet-
tifor further predicted that if, e.g., sdσ bonding were to dominate, the Co or Fe
d electrons would actually couple through the barrier more effectively, and their
large negative polarization should dominate. For relatively simple insulators of s
and p band elements, such as Al2O3, ssσ bonding is dominant and positive po-
larization is expected, consistent with the observed P > 0. Indeed, an interfacial
sp−d hybridization consistent with this idea has been experimentally observed at
Co/Al2O3 interfaces [3.50]. However, as will be seen in Sect. 3.6.1, if more com-
plex insulators containing transition metals are used, dominant sdσ bonding may
be realized, and a negative polarization may be found [3.51–53]. Thus, in realistic
systems, the tunneling spin polarization is not simply a property of the electrode
alone, but is (at least) a property of the electrode-barrier interface – again a reflec-
tion of the fact that the |M|2 in (3.1,3.5) can generally not be neglected. Further,
this once again essentially eliminates in most cases any relation between P and
M, or tunneling spin polarization and spin polarization measured by other tech-
niques.

For ordered systems, such as fully epitaxial tunnel junctions, where strict k||
conservation must be considered [3.54] the situation is more complex. As recent ab
initio calculations [3.28, 29, 45–49, 55–58] have demonstrated, the idea of a “tun-
neling spin polarization” in terms of e.g. (3.5) then tends to lose meaning, with the
transport characteristics becoming a rather complex function of k, barrier thickness,
and the symmetry of the Bloch states involved. The resulting spin polarization of
the tunnel current depends in detail on the entire quantum system. For systems with
non-epitaxial electrodes and amorphous barriers, as typically studied, k conservation
rules are broken [3.54], and any analysis of tunneling based on strict k conservation
is generally invalid. However, these discussions are beyond the scope of this review.
For most of the experiments discussed here, these considerations play a negligible
role, and are referred to only briefly in Sect. 3.6.3.

3.3.3 Spin Filter Tunneling

Up until now, we have focused on a spin polarized density of states as the source
of tunneling spin polarization. However, as alluded to by (3.5), a spin dependent
tunneling probability, e.g., |M↑|2 > |M↓|2, also results in a spin polarized tunnel
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current, since in this example spin up electrons have a larger tunneling probability
than spin down electrons. Clearly, this is the case even with nonmagnetic electrodes.
The question remains, though, of how to physically realize this potential source of
spin polarization. Given the form of (3.1) and (3.2), the most obvious and physically
realistic way to realize a spin dependent tunneling probability is via a spin dependent
tunnel barrier height.

Indeed, a spin dependent barrier height may be achieved by utilizing a (ferro-)
magnetic tunnel barrier. As an example, consider the ferromagnetic semiconductor,
EuS, a model Heisenberg system with TC = 16.7 K [3.60, 61]. Above TC the barrier is
nonmagnetic, and tunneling electrons see a single spin independent barrier height ϕo

determined by the bottom of the EuS conduction band, Fig. 3.2b. Below TC, however,
the EuS conduction band is exchange split by an amount ∆ϕexch, Fig. 3.7a, and
tunneling electrons now see a spin dependent barrier height of ϕ↑(↓) = ϕo∓∆ϕexch/2.
For EuS, typical tunnel barrier heights are ∼ 1.5−2 eV [3.59, 62], with a conduction
band exchange splitting of ≈ 0.36 eV [3.60, 61]. Given the exponential dependence of
tunnel current on

√
ϕ, it is easy to see that a highly spin polarized current may result.

Further, since most electrons utilize this lower tunnel barrier, the overall junction
resistance decreases below TC [3.59, 62, 63], a signature of spin filtering.

The principle of spin filtering has been experimentally demonstrated in field emis-
sion experiments [3.61, 63], and most dramatically, in SPT experiments [3.62]. In the
latter case, Moodera et al. [3.59, 62] performed SPT experiments using Al/EuS/M
junctions, where M was Ag, Au, or Al. Fig. 3.7b shows a SPT curve for a Al/EuS/Au
junction [3.59], showing a tunneling spin polarization of approximately 80%. Further,

dI
/dV
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alized)

Fig. 3.7. The principle of spin filter tunneling with magnetic barriers. Above the TC of the
barrier, there is no conduction band exchange splitting, and both spin up and spin down electrons
see a single barrier height ϕ0 (see Fig. 3.2). (a) Below TC, the bottom of the conduction band
is exchange split by an amount ∆ϕexch. Since spin up electrons see a significantly lower
barrier height, they tunnel preferentially and large tunneling spin polarizations (approaching
100%) may be achieved. (b) Conductance vs. voltage at µo H = 0 T and µo H = 0.35 T
for a Al/EuS/Au junction at 0.4 K demonstrating the spin filter effect. For 0.35 T almost no
minority spin conductance is observed; a model fit gives a polarization of ≈ 80%. In this case,
the Zeeman splitting in the Al electrode is enhanced via an exchange interaction with the EuS.
From [3.59]
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using a related Eu-chalcogenide EuSe, Moodera et al. were able to demonstrate essen-
tially 100% spin polarization. Given that the largest spin polarization observed with
ferromagnetic electrodes thusfar is 78%, using the low TC material La0.67Sr0.33MnO3,
spin filtering is an attractive route for the generation and manipulation of highly spin
polarized currents, e.g., for spin injection into semiconductors [3.64]. Finally, by
combining both a spin dependent density of states (i.e., ferromagnetic electrodes)
and a spin dependent tunneling probability (i.e., spin filtering), additional hybrid
devices and novel effects may be imagined. One recent demonstration of these ideas
is discussed in Sect. 3.6.5.

3.3.4 Early MTJ Experiments

Given the previous discussions of the role of the density of states in tunnel junctions,
and the conservation of spin during tunneling, it is reasonable to anticipate that spin-
polarized tunneling effects may be observed in non-superconducting junctions. In
1975, Julliere [3.3] and Slonczewski [3.2] had exactly this idea in mind: tunneling
between two ferromagnets. In the SPT technique, a tunnel current is passed between
a spin-dependent density of states in a metallic ferromagnet, and a spin-split BCS
density of states in a superconductor. In tunneling between ferromagnets, the basic
idea is this: rather than use a spin-split superconductor as a spin detector, the spin-
dependent density of states in a second ferromagnetic electrode may also be used.
In this case, the tunnel current is expected to depend on the relative magnetization
orientation of the two ferromagnetic electrodes (this will be discussed in more depth
in Sect. 3.5), giving rise to a magnetoresistance effect – the TMR effect.

Julliere [3.3] first measured the conductance properties of Fe/Ge/Co junctions
in an attempt to realize the TMR effect. Though later spin-polarized tunneling ex-
periments showed very little spin conservation when tunneling through amorphous
Ge or Si barriers [3.31], Julliere nonetheless observed a sizable magnetoresistance
effect in these junctions. By growing the Fe and Co layers with different coercive
fields, he was able to realize both parallel and antiparallel magnetization orienta-
tions. At zero bias, the maximum observed effects were ∼14%, but decreased rapidly
with increasing bias voltage. Though these results were indeed ground-breaking and
stimulated much future research, they were not reproduced by other workers, and
their true interpretation is still the subject of debate. Whatever the interpretation,
Slonczewski [3.2] quickly realized the potential of the TMR effect, and others soon
followed this research.

In a related experiment, Helman and Abeles [3.65] studied transport in thin
films composed of Ni granules in a SiO2 matrix. In this case, the magnetizations
of the Ni grains were presumably aligned randomly in zero field, while in a high
magnetic field the grains were forced to align with parallel magnetizations. Up
to 1.5% magnetoresistance was observed at low temperatures and in high fields.
Though much less ambiguous than the results of Julliere [3.3], the effects were
still disappointingly far from those expected. Maekawa and Gäfvert [3.66] success-
fully and unambiguously reproduced Julliere’s results in 1982, using Ni/NiO/Ni and
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Ni/NiO/Co junctions. For Ni/NiO/Co junctions at 4.2 K, up to ≈ 2% magnetoresis-
tance was observed, which was, for the first time, clearly correlated with measured
hysteresis behavior of the magnetic electrodes. The effects were still small compared
to those anticipated, but this work was the first to establish that the magnetore-
sistance effects were due to the relative magnetization alignment between the two
electrodes.

Over the next decade, several workers (see [3.67–70] for example) attempted
to realize the anticipated large TMR effects, with little success. In most cases,
the observed effects were ∼1% or less, and present only at relatively low tem-
peratures. In retrospect, this lack of success was in most cases probably due to
the magnetic oxide barriers (e.g., NiO, Gd2O3) used, which are likely to intro-
duce significant spin-flip scattering during tunneling [3.71–73], and hence, largely
negate the TMR effect (see Sect. 3.4.3 on barrier doping [3.74, 75] and Sect.
3.6.4 on interface dusting [3.32, 33]). Further, given the interfacial sensitivity of
tunneling in normal state structures, and the extremely short range of ferromag-
netic interactions, extremely clean ferromagnet-insulator interfaces are required,
which would have to wait for improved deposition techniques to become widely
used.

In 1995, nearly 20 years after the original “discovery” of the TMR effect, Moodera
et al. [3.4] and Miyazaki and Tezuka [3.76] solved most of the earlier problems with
MTJs, and independently demonstrated >10% TMR at room temperature (shown
in Fig. 3.1). The latter case, however, was shown to suffer from a measurement
geometry artifact [3.77] which inflated the measured TMR values. Nonetheless,
these first demonstrations quickly garnered a great deal of attention, and catalyzed
many groups to investigate MTJs. The first demonstration by Moodera et al. [3.4]
already established many of the basic features associated with MTJs, most notably,
the bias and temperature dependence of the TMR, which are discussed in Sects. 3.5.4
and 3.5.5.

3.4 Fabrication and Characterization
of FM-Al2O3-FM Junctions

Though the possibility of large magnetoresistance in MTJs had been recognized since
1975 [3.3, 78], the experiments which actually demonstrated large, reproducible mag-
netoresistance at room temperature came only in 1995 [3.4]. To some degree, this
breakthrough can certainly be ascribed to the tremendous advances in thin film growth
technology since 1975. The extreme sensitivity of MTJs to interface contamination,
surface and interface roughness, and barrier quality clearly point to a need for ex-
tremely high quality growth. Further, the growth of ultra-thin oxidic films which are
flat and pinhole-free by itself presents a host of difficulites. Though these topics are
somewhat beyond the scope of this review, we will briefly discuss a few topics related
to fabrication and characterization of MTJs. For a more complete discussion of the
challenges in preparing MTJs, we refer to [3.27].
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3.4.1 A Fabrication Recipe

Given the recent explosion of research focused on MTJs, a wide variety of methods
have been developed for fabricating MTJs. Here, we outline one used in the au-
thors’ laboratories which has proven successful. Ferromagnetic tunnel junctions have
been prepared in our laboratory by UHV dc/rf magnetron sputtering, utilizing metal
contact masks to create a cross-geometry junction structure, with junction areas
of 300 µm × 300 µm to 500 µm × 500 µm and 24 junctions per sample. The base
pressure is typically <5×10−10 mbar. Si(100) or glass substrates are typically used,
which are in-situ cleaned in an O2 plasma to remove remaining carbon and water con-
tamination and also provide an insulating layer to prevent leakage conduction through
the Si substrates. Our standard junction structures consist of Si/SiO2/Ta 3.5 nm/Co
8 nm/FeMn 10 nm/Co 5 nm/Al2O3/Co 15 nm/Ta 2 nm, with the Al2O3 layers formed
by plasma oxidation of 2.2 nm Al in 10−1 mbar O2 for 200 seconds. Post-growth
annealing in magnetic field of ≈ 20 mT for 30 minutes at 200 ◦C is used to promote
a uniform exchange biasing direction (see Sect. 3.5). This routinely provides junc-
tions with magnetoresistance of ∆R/Rp = 25−30% and resistance-area products of
107–108 Ω · µm2 at 295 K.

3.4.2 A Few Characterization Techniques

There are a myriad of possible techniques to characterize MTJs either during the
growth process or after fabrication. We will not go into any detail, but, rather, only
outline several common techniques that have been used successfully and provide
references for further inquiry. Some in situ methods for chemical characterization
are X-ray photoelectron spectroscopy (XPS), Ultraviolet Photoelectron Spectroscopy
(UPS), and Auger electron spectroscopy (AES). UPS can give information on valence
band structure [3.79], while XPS [3.80–84], as well as other ex situ techniques like
Electron Energy Loss Spectroscopy (EELS) [3.50], Fourier-transform infrared spec-
troscopy (FTIR) [3.85], and X-ray absorption edge spectroscopy (XAS) [3.86], may
be used to determine the chemical state of the barrier (e.g., degree of oxidation) and
electrodes. AES also has been used to study the growth modes of ultrathin interfa-
cial layers in MTJs [3.33]. Other possibilities for characterizing oxidation are in situ
differential ellipsometry [3.80, 87] and in situ resistivity measurements [3.88], where
the oxidation of the thin Al layers can be monitored real-time, allowing true process
control. Structural characterization can also be realized with in situ scanning tunnel-
ing microscopy (STM) [3.79, 89, 90] or atomic force microscopy (AFM) [3.91–93].
Surface structure and roughness can be analyzed at each stage of growth using AFM
or STM, and local transport characteristics of Al2O3 barriers have also been recently
reported [3.89, 91–93] using STM and conducting AFM. More complex STM-related
techniques, like Ballistic Electron Emission Microscopy (BEEM) [3.94, 95] may also
be used to study buried interfaces and barrier transmission characteristics. Once fab-
rication is completed, many ex situ techniques are also possible. Rutherford backscat-
tering (RBS) [3.96, 97] and Transmission Electron Microscopy (TEM) [3.50, 98, 99]
can be used to gain structural and chemical information on the sub-nanometer scale.
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Often overlooked techniques for local structural characterization on an atomic scale
are 59Co NMR [3.100–103] and 27Al NMR [3.81], which are also capable of studying
interface structure and buried layers in completed structures. Magnetic characteri-
zation can be performed using the magneto-optical kerr effect (MOKE), supercon-
ducting quantum interference device (SQUID) magnetometry, or vibrating sample
magnetometry (VSM). Most important, perhaps, are transport measurements. Mea-
surements of junction resistance or conductance (dI/dV ) as a function of field,
temperature, and applied bias are at the heart of MTJ characterization, and reveal the
“hallmark” features associated with MTJs, which will be discussed in Sect. 3.5.

3.4.3 Sensitivity of MTJs to Barrier Impurities and Annealing

The extreme sensitivity of MTJs to barrier impurities was demonstrated by Moodera
and Jansen [3.74, 75, 104]. In a series of experiments, an ultrathin “δ” doping layer
was inserted in the middle of the Al layer which was subsequently oxidized to form
the tunnel barrier. As Auger electron spectroscopy (AES) showed [3.104], the result
was an Al2O3 barrier with oxidized metallic impurities at the midpoint of the bar-
rier. The magnetoresistance decreased extremely rapidly as a function of δ dopant
layer thickness for most dopants, shown in Fig. 3.8. Impurities that had no magnetic
moment in the oxidic state, such as Co, showed only a modest decrease for ∼1 mono-
layer of dopant, while those impurities which possessed a moment in the oxidic state,
such as Ni or Cu, nearly quenched the magnetoresistance by ∼1 monolayer. Fur-
ther analysis showed that the slow decrease for non-magnetic impurities was due to
an excess impurity-assisted conductance contribution (hopping conductance through
defect levels within the barrier), which merely dilutes the magnetoresistance, while
the rapid decrease for magnetic impurities was due to spin-dependent scattering of
the tunneling electrons [3.71–73, 105] by the magnetic impurities, which affects the
magnetoresistance much more severely. Curiously, for Fe doping the magnetoresis-
tance actually exhibited a relative increase, a result which has not yet been adequately
explained [3.104], but certainly outlines the complexity of transport in MTJs. These
results clearly highlight the fact that not only ultra-clean interfaces are required,
as anticipated in Sects. 3.2.2 and 3.2.3, but ultra-clean barriers are crucial as well,
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Fig. 3.8. Normalized ∆R/Rap as a func-
tion of barrier δ doping layer thickness at
77 K for Fe, Co, Pd, Cu, and Ni dopants.
Line for Fe is a guide to the eye, the rest
are linear fits. From [3.74, 75, 104]
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since any spin-independent conductance contribution or spin scattering mechanism
will necessarily decrease the magnetoresistance. Spin scattering by magnetic oxides
formed by over-oxidation in the fabrication process has been shown to be particu-
larly effective in this regard [3.86, 106], which as mentioned in Sect. 3.3.4, perhaps
explains the lack of success in earlier work. [3.66–70] Further, a similar sensitivity to
impurities at the ferromagnet-insulator interface has also been demonstrated [3.32].

Along similar lines, one may expect that MTJs are sensitive to structural changes
within the barrier, e.g., induced by annealing. Despite the extreme sensitivity of MTJs
to barrier impurities and non-ideal interfaces, current state-of-the-art MTJs have in
fact proven to be extremely robust. Though it is perhaps surprising that Al2O3 layers
of only 10 Å or less are stable during thermal processing, recent experiments by Sousa
et al. [3.107] have shown that not only are MTJs thermally stable beyond 300 ◦C,
annealing can actually improve the MTJ properties. Crucial to improved thermal
stability of MTJs is the control of the interface oxidation state, again related to the
interface sensitivity of tunneling (see Sect. 3.2.3). Zhang et al. [3.108, 109] further
showed that by using interfacial FeOx layers adjacent to the Al2O3 barriers, the
interface oxidation state could be manipulated at elevated temperatures. In this way,
MTJs with 40% TMR at up to 380 ◦C annealing temperatures could be prepared. The
improvement of MTJ thermal stability is of crucial importance for the application of
MTJs, and this remains an area of intensive research. These results further point to
the tremendous advances in thin film growth technology over the last few decades,
and clearly many more can be expected.

3.5 Hallmark Features of MTJs

Here we will discuss the basis for the TMR effect and the hallmark features of MTJs,
viz., the dependence of the TMR and conductance on applied bias, temperature, and
magnetization orientation. Though some of these features may be simply understood
from the previous sections (for instance, the magnitude of the TMR and the angular
dependence), others are more subtle and their origins have not been unambiguously
determined (for instance, the bias and temperature dependence). Nevertheless, we
will outline the main features of MTJs and the fundamental physics behind them as
they are now understood.

3.5.1 Basis for the TMR Effect

Following directly Meservey and Tedrow’s analysis of SPT, Julliere [3.3] first pro-
posed a model for tunneling between ferromagnets. First, we consider two identical
ferromagnetic electrodes, separated by an insulating barrier, with parallel magneti-
zation orientations. Assuming spin conservation (Sect. 3.3.1), tunneling may only
occur between bands of the same spin orientation in either electrode, i.e., from an
up spin band to an up spin band, and vice versa. One further key assumption in the
Julliere model is that the matrix elements in (3.1) can be considered constant. This
is physically equivalent to saying that the tunneling probability is independent of
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spin or magnetization orientation, the spin reservoirs on either side of the barrier
are coupled in the same way for each spin orientation (recall the discussion of Sect.
3.3.2). Using these two ideas (and further assuming a small bias voltage such that
the ferromagnet DOS is essentially constant), along with a proportionality between
tunnel conductance and the density of states in the electrodes (recall Sect. 3.2.2), we
may determine the conductance for parallel magnetizations in a manner similar to
SPT analysis for the zero temperature case:

Gp = G↑ + G↓ ∝ �2
maj + �2

min, (3.6)

where G↑(↓) is the conductance in the up- (down-) spin channel and �maj(min) is
the majority (minority) spin density of states at EDF (keeping in mind interface
sensitivity and the complex nature of P, see Sects. 3.2.3 and 3.3.2). When changing
the magnetization orientation of one ferromagnetic electrode (relative to that of
the other ferromagnetic electrode), the axis of spin quantization is also changed
in that electrode. Tunneling between like spin orientations now means tunneling
from a majority to a minority band, and vice versa. The conductance for antiparallel
alignments is then simply:

Gap = G↑ + G↓ = �maj �min + �min �maj = 2�maj �min. (3.7)

Thus the conductances are different for parallel or antiparallel magnetizations,
i.e., ferromagnet-ferromagnet tunnel junctions display a magnetoresistance. This
tunnel magnetoresistance (TMR), which we define following the majority of workers
as the difference in conductance between parallel and antiparallel magnetizations,
normalized by the antiparallel conductance, can be calculated from (3.5–3.7):

TMR|V=0 ≡ Gp − Gap

Gap
= Rap − Rp

Rp
= 2Pl Pr

1 − Pl Pr
, (3.8)

where Pl(r) is the tunneling spin polarization in the left (right) ferromagnetic electrode,
keeping in mind that even when the matrix elements in (3.5) are taken as constants, P is
not simply the difference in total density states at the Fermi level, but is still determined
by, e.g., the effective masses of different band electrons, interface bonding, and even
k selection in some cases (see Sects. 3.2.3, 3.3.2). Using the measured tunneling spin
polarization for Co with Al2O3 tunnel barriers (see Table 3.1), we may expect a TMR
effect of more than 40% for Co/Al2O3/Co MTJs, only slightly above the observed (low
temperature) value (see Table 3.2). In general, the most recent spin polarization val-
ues with Al2O3 barriers [3.27, 34] obtained via the SPT technique agree well with the
maximum TMR values reported with Al2O3 barriers [3.34, 110]. Table 3.2 compares
the expected TMR values based on Julliere’s model, using values of P obtained from
SPT experiments, with measured TMR values using the same barriers in both cases.
However, we caution that the Julliere model is only a phenomenological guide to esti-
mate the magnitude of the TMR effect when tunneling spin polarizations are known.

Obviously, one expects the largest TMR values for materials with the largest tun-
neling spin polarization. This explains a great deal of the recent interest in so-called
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Table 3.2. Comparison of TMR expected from Julliere’s model with measured low-temperature
TMR values, for Al2O3 barriers (except where noted).

Junction TMRExpt. (%) TMRJulliere (%) Ref.

LSMO/SrTiO3/LSMO∗ 310 400 [3.38, 111, 112]
Co75Fe25/Al2O3/Co75Fe25 67-74 69 [3.113, 114]
Co/Al2O3/Co 38-40 37 [3.115]
Ni/Al2O3/Ni 25 24 [3.116]

∗La0.67Sr0.33MnO∗
3.

“half-metallic” ferromagnets, materials for which only one spin band is occupied at
the Fermi level, resulting in perfect 100% spin polarization [3.117]. Many compounds
have been predicted to be half metallic, such as the half- and full-Heusler alloys
NiMnSb [3.118] and Co2MnSi [3.119]; the oxides CrO2 [3.120], Fe3O4 [3.121, 122],
and La0.67Sr0.33MnO3 [3.123, 124]; and the sulfide CoxFe1−xS2 [3.125]. However,
only La0.67Sr0.33MnO3 (LSMO) [3.126], NiMnSb [3.127], and CrO2 [3.128] have
any experimental evidence in favor of half metallic behavior, and little progress
has been made in the fabrication of MTJs with half-metallic electrodes. Thusfar,
no material has been shown to be half-metallic by a SPT experiment. Still, there
has been much success with La0.67Sr0.33MnO3 (LSMO) by Lu et al. [3.111] and
Viret et al. [3.112], who observed TMR effects of more than 400% at low tempera-
ture utilizing SrTiO3, PrBaCu2.8Ga0.2O7, or CeO2 barriers. Using (3.8), this implies
a spin polarization of more than 80%, in agreement with SPT experiments [3.38]
(see Table 3.1). Similarly, Jo et al. [3.129, 130] have used another mixed-valence
manganite, La0.7Ca0.3MnO3 (LCMO) and investigated LCMO/NdGaO3/LCMO and
LCMO/NdGaO3/LSMO MTJs, also observing more than 400% TMR. Thus, although
still not truly half metallic, LSMO and LCMO have shown the highest tunneling spin
polarizations yet observed in MTJs, and byfar the largest magnetoresistances. MTJs
with epitaxial NiMnSb electrodes have been successfully studied, but a spin polar-
ization of only 25–28% was deduced from TMR values, in agreement with SPT
experiments [3.131]. Clearly, much work is still needed in this very promising area.

3.5.2 Resistance vs. Field

Julliere’s simple model for the TMR effect was discussed previously in this section,
with the result that the conductance (resistance) of a MTJ with spin polarizations of
the same sign for both electrodes is higher (lower) when the magnetizations of the two
ferromagnets are parallel. Once said, one must realize experimentally both a parallel
and antiparallel magnetization alignment. Perhaps the simplest way to realize this
is to use two ferromagnets with different coercive fields [3.132, 133], for example
by using two different ferromagnets like Co (“hard”) and Ni80Fe20 (“soft”). In this
case, the soft Ni80Fe20 electrode switches at relatively low fields (∼0.5 mT) while
the hard Co electrode switches at higher fields (∼1.5 mT). TMR vs. magnetic field
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behavior for a Ni80Fe20/Al2O3/Co junction (at V = 0) is shown in Fig. 3.9a. When
the field is swept through zero and reaches values between the Ni80Fe20 and Co
coercive fields (sweeping from P1 to AP1 or P2 to AP2 in Fig. 3.9a), an antiparallel
magnetization alignment (AP1 and AP2) is reached. This state is maintained even if
the field is removed, allowing a MTJ to potentially be used as a non-volatile memory
element [3.134, 135] (see also the chapter by S.S.P. Parkin in this volume).

More technologically relevant are exchange biased MTJs. In this case, one of the
magnetic electrodes is in direct contact with an antiferromagnetic (AFM) material
(e.g., FeMn, IrMn, NiO). The presence of an exchange anisotropy at the FM/AFM
interface [3.136, 137] shifts the entire magnetization-field loop of the ferromagnet
away from zero field, such that it is centered at a finite magnetic field, the exchange
bias effect. Typical TMR vs. magnetic field behavior for an exchange biased system
(at V = 0) is shown in Fig. 3.9. As the magnetic field is swept from negative values
through zero, the second magnetic electrode switches as in the previous example,
giving the high resistance antiparallel state (AP). As the field is swept further, the
exchange biased layer switches, returning the system to the low resistance parallel
(P2) state. As the field is reversed, this time the exchange biased layer reverses
first, returning the system to the antiparallel state (AP), again at positive fields. The
antiparallel state is retained until the field is swept through zero and the coercive field
of the second electrode is reached for negative fields. The exchange biased MTJ is the
most commonly studied configuration by far. Technologically, exchange biasing is
advantageous because the resistance transition takes place near zero magnetic field,
and it generally results in greater magnetic stability [3.138], while from a fundamental
point of view, it allows one to study MTJs with nominally identical electrodes, leading
to (hopefully) simplified analysis.
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Fig. 3.9. Magnetoresistance vs. magnetic field for (a) a hard-soft MTJ and (b) an exchange
biased MTJ, both at 10 K. P and AP refer to parallel and antiparallel magnetization orientations,
respectively, and vertical arrows refer to sweep direction. Both curves are taken at V = 0.
From [3.115, 116]
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3.5.3 Conductance vs. Voltage

As we have seen previously in Sect. 3.1, tunneling between two non-magnetic free-
electron metals should give rise to a conductance (dI/dV ) which is quadratic in
applied bias (V ). Indeed, for non-magnetic junctions such as Al/Al2O3/Al, this
behavior is often observed [3.6]. However, in MTJs (or even junctions with one
magnetic electrode), the conductance behavior deviates significantly from the ex-
pected parabolic dependence, as shown in Fig. 3.10a for a Co/Al2O3/Co junction
(with 2 polycrystalline electrodes, see Sect. 3.6.2), most noticeably at low voltages.
Though the conductance is approximately symmetric with respect to voltage, as ex-
pected for (nominally) identical electrodes, there is a pronounced, sharp decrease
below ∼150 mVolts, where the conductance is approximately linear in voltage. This
sharp dip in conductance about zero bias is similar to so-called “zero-bias anoma-
lies” observed by many groups [3.6], which were attributed to (magnetic) impurities
in the tunnel barrier or near the electrode-barrier interfaces. However, in contrast
to those zero-bias anomalies, the conductance dip has no strong temperature de-
pendence or magnetic field dependence, persisting even in the cleanest junctions.
Further, the energy scale of the anomaly is far greater than usually observed. Other
mechanisms, such as the presence of metal particles in the barrier (Giaever-Zeller
anomalies [3.6]) are similarly inconsistent. Further, the characteristic (nearly) linear
conductance contribution near zero bias occurs only when at least one electrode is
magnetic [3.139–141].

Moodera et al. [3.139, 140] first suggested that magnon excitations may be at least
partly responsible for the conductance anomalies as well as the TMR bias depen-
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Fig. 3.10. (a) Conductance vs. applied bias, dI/dV(V ), at 5 K for parallel (solid) and antipar-
allel (dashed) magnetizations of a Co/Al2O3/Co MTJ. Vertical arrow indicates the maximum
magnon energy (Emax) for bulk Co in a mean field approximation. (b) Bias dependence of the
TMR (∆R/Rp, dashed) and differential TMR (∆G/Gap, solid) for a Co/Al2O3/Co junction at
5 K. Note that the normal (∆R/Rp) and “differential” (∆G/Gap) magnetoresistances are only
equivalent at zero bias. From [3.100, 115]
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dence. A theoretical explanation based on this idea was given by Zhang et al. [3.142]
and Bratkovsky [3.143] in terms of magnon excitations localized at the FM-Al2O3

interface. Electrons at the Fermi level of one ferromagnet tunnel across the junction,
reaching the second ferromagnet with an energy equal to the junction bias eV above
the Fermi level in the second electrode (assuming no other inelastic tunneling pro-
cesses). These “hot” electrons may then lose energy by emitting a magnon of energy
�ω≤ eV (a similar process holds for magnon absorption), and as one might expect
(see following section) this leads to a decrease of the TMR. Zhang et al. [3.142]
and Bratkovsky [3.143] found that these processes also influence the conductance
characteristics, giving an additional inelastic conductance contribution Gmagnon ∝V ,
simply reflecting the fact that a larger bias allows more magnons to be excited. The
slope of the linear contribution is larger in the antiparallel case, with the difference
between parallel and antiparallel slopes simply given by (3.6,3.7). The linearity is
preserved up to a maximum voltage determined by the maximum magnon energy in
the ferromagnetic electrode, which, within a mean-field approximation, corresponds
to Emax = 3kBTC/(S+1), where kB is Boltzman’s constant, and TC is the Curie
temperature of the ferromagnet with spin S. Considering two identical Co electrodes
with the bulk TC, Emax ∼ 144 meV. Given that the interface TC is expected to be
significantly lower, this is in agreeement with width of the conductance dip shown
in Fig. 3.10a. For a detailed application of this model, we refer to Han et al. [3.110],
who have performed a careful analysis of the conductance and magnetoresistance as
a function of voltage and temperature for Co75Fe25/Al2O3/Co75Fe25 tunnel junctions
using an extension of the aforementioned model. The primary conclusions of this
study were that by combining different MTJ characteristics (such as dI/dV(V, T ),
∆R/Rp(V, T ), see Sects. 3.5.4, 3.5.5), a consistent set of all model parameters could
be obtained, allowing a much more stringent test of the magnon excitation model.
Excellent agreement between experimental data and model calculations were demon-
strated, suggesting that indeed the additional conductance contribution consistently
observed in MTJs (the zero-bias “dip”) can be largely, if not completely, explained
by interfacial magnons excited by hot tunneling electrons.

One further question with regard to conductance-voltage behavior that frequently
arises is the role of the density of states in the tunnel conductance. Given the form of
(3.1), which explicitly contains the density of states as a function of energy in each
electrode, it is rather surprising that clear observations of density of states and band
structure effects have not been reported until recently. The reasons for this will be
discussed in more detail in Sect. 3.6.2.

3.5.4 TMR vs. Voltage

Experimental Observations

Perhaps the most surprising feature of MTJs initially was the dependence of the
TMR effect on applied dc bias. First observed by Julliere [3.3], and confirmed
by Moodera et al. [3.4], it was at first unclear if this was an intrinsic effect, or
simply due to inelastic tunneling through a non-ideal interface and barrier (e.g.,
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impurity-assisted tunneling). However, subsequent measurements on clean junctions,
as well as the observation of this effect by many other groups in the years that
followed, produced the conclusion that the bias dependence of the TMR is an intrinsic
effect [3.139], although its magnitude may vary considerably. A customary figure-
of-merit is the voltage at which the TMR (∆R/Rp) is reduced by a factor of two.
Moodera et al. in their initial observation [3.4] found a “half voltage” (usually denoted
V1/2) of ∼ 200 mVolts, while recently several groups have improved this figure
to > 500 mVolts. Moodera et al. [3.139] also showed that the bias dependence is
relatively temperature independent.

Figure 3.10b shows a representative TMR (∆R/Rp) vs. bias behavior for
Co/Al2O3/Co junctions at 5 K [3.115], showing both ∆R/Rp and ∆G/Gap. Note
that these two definitions of the TMR are not identical at finite bias, since, as seen
in (3.2) the tunnel current is a non-linear function of voltage [3.144]. To avoid con-
fusion, we will refer to ∆R/Rp as simply TMR, following the majority of workers,
and to ∆G/Gap as the differential TMR. The differential TMR is typically observed
to be approximately linear in bias up to ∼ 0.5 Volts [3.145], becoming negative at
higher biases and then tending to zero. The normal TMR shows a roughly parabolic
voltage dependence at intermediate biases (∼0.5 Volts), and tends smoothly to zero
at higher biases, with a half-voltage of typically ∼ 0.3−0.5 Volts. One insight into
its possible origin is the fact that the differential TMR has exactly the same voltage
dependence as the magnon-assisted conductance contribution [3.142, 143] discussed
in the previous section.

Theoretical Explanations

The aforementioned models of Zhang et al. [3.142] and Bratkovsky [3.143] were in
fact originally proposed to explain the bias dependence of the TMR. We have seen that
the magnon-assisted conductance contribution is linear in voltage, but with a differing
slope for parallel and antiparallel magnetization orientations. Thus, the conductance
change ∆G from parallel to antiparallel orientations will also be approximately linear
in voltage up to eV = Emax, roughly as observed in ∆G/Gap (after further analysis to
remove other conductance contributions). The fact that both the conductance-voltage
and magnetoresistance-voltage agree favorably with model calculations, and further,
yield realistic parameters [3.110], emphasizes that magnon excitations may play
a dominant role in the bias dependence. However, several other possible origins have
also been proposed and must be considered.

Davis and MacLaren [3.146] have proposed that the bias dependence also has an
intrinsic component resulting from the underlying electronic structure. They consid-
ered free electron tunneling through a square potential barrier, using simple parabolic
bands modeled on the itinerant electron bands in Fe determined from ab initio calcu-
lations. Two primary electronic structure effects were considered, viz., shifting of the
Fermi level of one electrode relative to the other, and the altered barrier shape at finite
bias. The shifting of the chemical potential allows new states to be accessed for tun-
neling, which essentially makes the spin polarization a voltage-dependent quantity,
whereas the altered barrier shape allows higher-energy states to tunnel more easily.
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This makes the matrix elements in (3.1) spin and bias dependent. A strong decrease
of the TMR with bias is also found within their model, and also gives good agree-
ment with experimental data with realistic parameter choices. Further, early work
by Moodera et al. [3.4, 134, 139] as well as recent experiments utilizing composite
insulating barriers [3.51–53] and ultra-thin non-magnetic layers at the FM/Al2O3 in-
terface [3.101] have pointed out the importance of a bias-dependent spin polarization,
as will be discussed in Sects. 3.6.1 and 3.6.4. In particular, at large biases (eV > Emax)
one must consider alternative mechanisms to a purely magnon-assisted bias depen-
dence. As one example, the effects of phonon [3.143] and impurity [3.147, 148]
assisted tunneling on the bias dependence of the TMR have also been considered
theoretically. Experimental support exists for both magnon-assisted and intrinsic
band-structure mechanisms of bias dependence as well as for an impurity-assisted
contribution [3.74, 75, 104]. The currently accepted viewpoint is that all of these
mechanisms play a key role to some degree.

3.5.5 TMR Temperature Dependence

It was first noticed by Shang et al. [3.149] that the temperature dependence of the
tunnel resistance for magnetic tunnel junctions greatly exceeds that for non-magnetic
junctions with nominally identical barriers. Typically, standard Al/Al2O3/Al junc-
tions showed only a 5–10% [3.149] change in resistance from 4.2 to 300 K, while
magnetic tunnel junctions always exhibited a 15–25% change in resistance, as shown
in Fig. 3.11 for a Co/Al2O3/Co junction. Further, the TMR (∆R/Rp) can change
as much as 25% or more from 4.2 to 300 K depending on the magnetic electrodes
(also shown in Fig. 3.11). Shang et al. explained these results within a simple phe-
nomenological model, in which it was assumed that the tunneling spin polarization P
decreases with increasing temperature due to spin-wave excitations, as does the sur-
face magnetization. They thus assumed that both the tunneling spin polarization and
the interface magnetization followed the same temperature dependence, the famous
Bloch T 3/2 law [3.19], i.e., M(T )= M(0)(1−αT 3/2) for low T/TC. This temperature
dependence holds for surfaces as well as the bulk, though the former has a larger
decay constant α [3.150, 151]. Given the interfacial sensitivity of tunneling (see Sect.
3.2.3), Shang et al. [3.149] assumed that α was also larger than the bulk value in MTJs,
and thus gave a satisfactory explanation for the temperature dependence of the TMR.
MacDonald et al. [3.152] provided a more rigorous theoretical justification of these
ideas, essentially reproducing the proportionality between M(T ) and P(T ), though
the microscopic origin was slightly different than that considered by Shang et al. The
fact that a microscopic model is able to justify the phenomenological approach of
Shang et al. lends support to the idea that the temperature dependence of the (surface)
magnetization and spin polarization may be intimately connected. However, we again
caution that this does not imply any general relation between M and P [3.153]. That
two quantities have the same temperature dependence is only a reflectaion of the fact
that the same physical process causes both M and P to decrease with temperature,
viz., magnetic disorder due to thermal excitation of spin waves. In our interpretation,
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Fig. 3.11. (a) Temperature dependence of the TMR, ∆R/Rp (circles) for a Co/Al2O3/Co MTJ,
along with a fit to the model of Shang et al. [3.149] (line). (b) Temperature dependence of the
normalized tunnel resistance for parallel (P, squares) and antiparallel (AP, circles) magnetiza-
tion orientations, Rp, for the same junction. All curves taken at V =0. Data from [3.115, 154]

the temperature dependence of the TMR should be regarded as a special coincidence
rather than the signature of any more fundamental relationship.

Davis et al. [3.154] also attempted to put the model of Shang et al. on firmer
theoretical ground, in a slightly different manner, by assuming that the temperature
dependence of the polarization arises from a Stoner-like collapse of the exchange
splitting. As with their model of the bias dependence [3.146], they used free electron-
like bands, modeled after the ab initio band structure of Co. The model itinerant bands
were exchange-split parabolic bands, with a spin dependent effective mass. Recent
photoemission data [3.155, 156] indicate that these itinerant bands are Stoner-like,
i.e., the exchange splitting depends on temperature, and collapses at TC. Further,
citing the fact that the exchange splitting is nearly proportional to M(T ) [3.157], they
used the known M(T ) behavior of Co to obtain the temperature dependent exchange
splitting: ∆Eex = βM(T ). Using the bulk M(T ) behavior of Co and TMR data of
LeClair et al. [3.115, 154], Davis et al. were able to explain only about a third of the
experimental drop in TMR from 0 to 300 K. This is not surprising, given that the
interface TC is expected to be significantly lower [3.150, 151]. Strikingly, however,
they calculated a 18% change in TMR despite the fact that the magnetization changes
by only 1.5% over the same temperature range, once again indicating that in general
P and M are not simply related. The TMR temperature dependence over this range
could be well described by assuming a lower interface ordering temperature for Co,
viz., TC ≈982 K, though this is perhaps unphysically low. As with their work on the
TMR bias dependence, the main message is that purely intrinsic band effects are able
to explain much of the TMR temperature dependence, without resorting to inelastic
processes.

One further attempt to explain the TMR temperature dependence comes again
from the model of Zhang et al. [3.142]. In the case of temperature dependence, it
is the thermal excitation of spin waves which leads to a decrease in TMR. We note
parenthetically that this is not inconsistent with the above model of Davis et al. [3.154],
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as the M(T ) behavior is a result of spin wave excitations. In contrast to the TMR
voltage dependence obtained by Zhang et al., it is no longer the maximum magnon
energy, Emax, which sets the relevant energy scale, but rather the lower wavelength
cutoff in the spectrum, EC. This cutoff results physically either from anisotropy,
always present for the spins near the FM-I interface, or from a finite coherence length,
due to, e.g., a finite grain size. In this model, the zero-bias conductance behaves with
temperature roughly as G(T )≈T ln(kBT/Ec) dependence. For a detailed comparison
between this model and experimental data, we again refer to Han et al. [3.110]. In fact,
all three models presented [3.142, 149, 154] reproduce experimental data reasonably
well and yield physically realistic parameters. One problem with all studies thus far the
Curie temperature of the ferromagnetic electrodes used is well beyond temperatures at
which MTJs can be studied, so that the true critical behavior of the TMR, which may
possibly distinguish between different models, cannot be studied. Careful studies of
low TC materials, such as rare earth materials or transition metal alloys, are required
– only GaMnAs-based junctions (see Sect. 3.6.3) have thusfar been measured close
to TC. Finally, as with the bias dependence, the role of impurity-assisted tunneling
must also be considered [3.74, 75, 104, 147, 148]. The current opinion is generally
that both intrinsic (e.g., band effects) and extrinsic (inelastic processes) contributions
are of importance.

3.6 Recent Magnetic Tunnel Junction Experiments

In the following sections, we will attempt a more detailed description of MTJs by
describing several experiments which have crucially expanded our understanding
of the fundamental physics involved. Section 3.6.1 emphasizes the importance of
interface bonding and the importance of the insulating barrier in determining the
properties of MTJs. Section 3.6.2 illustrates a clear relation between the electronic
and physical structure of MTJ electrodes and the spin-polarized transport properties,
as well as a successful application of a theoretical model. Section 3.6.3 covers recent
developments of semi- or fully-epitaxial MTJs, and the dependence of spin polariza-
tion on crystallographic orientation. Section 3.6.4 covers ultra-thin interfacial layers
in MTJs, highlighting the importance of interfacial sensitivity of MTJs and novel
properties which may be realized by so-called “interface engineering.” Finally, Sect.
3.6.5 discusses one new hybrid magnetoresistive device based on the combination of
spin filtering and spin-dependent tunneling. Though necessarily not complete, these
experiments highlight some of the more subtle concepts touched on previously.

3.6.1 Composite Barriers and the Role of Interface Bonding

As discussed previously in Sect. 3.3.2, the sign and magnitude of the tunneling spin
polarization are expected to depend on not only the ferromagnetic electrode, but the
barrier and the electrode-barrier interface bonding as well. In 1999, two different
groups [3.51–53] independently observed this prediction [3.25]. Later theories con-
firmed this prediction [3.27, 47] and demonstrated the possibility of creating novel
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MTJ properties by not only varying the magnetic electrode, but by varying the insu-
lating barrier as well.

Recently, de Teresa et al. [3.51, 52] also observed that the tunneling spin polar-
ization depends explicitly on the insulating barrier used. In this case, half metallic
La0.7Sr0.3MnO3 (LSMO) was used as one of the electrodes with barriers of Al2O3,
SrTiO3 (STO), Ce0.69La0.31O1.845 (CLO), or a composite Al2O3/SrTiO3 barrier. Since
it is known that LSMO has a only majority states at EF, the tunneling spin polariza-
tion must be positive and close to 100% [3.38, 126] (see Sect. 3.5.1), regardless of
the insulating barrier used. Indeed, SPT experiments have measured a tunneling spin
polarization of P = +78% (see Table 3.1). Thus, LSMO electrodes serve as a spin
analyzer for the polarization of the second electrode, in the spirit of the SPT technique
of Meservey and Tedrow (see Sect. 3.3.1). Moreover, a half metallic analyzer has the
added advantage that to some extent the energy dependence of the polarization may
be studied.

As expected, de Teresa et al. found that Co/Al2O3/LSMO MTJs gave a positive
TMR for all biases, not surprising since both LSMO and the Co/Al2O3 interface
are known to have positive polarizations. On the other hand, Co/SrTiO3/LSMO
junctions showed negative TMR values at zero bias, and further displayed a strong
bias dependence as shown in Fig. 3.12b. In this case the polarization of the Co/SrTiO3

interface must be negative, opposite that of Co/Al2O3 interfaces, in agreement with
the d electron polarization of Co at EF (see Sect. 3.3.2). In order to show this more
conclusively, de Teresa et al. investigated Co/Al2O3/SrTiO3/LSMO junctions, with
the expectation that the positive LSMO and Co/Al2O3 polarizations would yield
a normal positive TMR for all biases. As shown in the inset to Fig. 3.12b, a normal
positive TMR is observed for all biases, with a bias dependence that is essentially
identical to standard Co/Al2O3/Co junctions (see Sect. 3.5.4).

The sign change of the Co tunneling spin polarization can be understood in
terms of interface bonding, as discussed in Sect. 3.3.2. For Co/Al2O3 interfaces,
ssσ bonding across the Co/Al2O3 interface dominates, preferentially selecting the s-
partial density of states in Co which is positively polarized. For Co/SrTiO3 interfaces,
however, the bonding may be predominantly of a d−d nature between Co and Ti
at the interface [3.25, 158], preferentially selecting the d partial density of states
which is negatively polarized. Indeed, this conjecture is borne out by recent ab inito
calculations [3.159] for Co/SrTiO3/Co MTJs. Further experimental proof is evidenced
in the bias dependence of Co/SrTiO3/LSMO junctions, shown in Fig. 3.12, which
correlates with the d spin polarization of Co. At zero bias, the Co d DOS is minority
dominated, as shown in Fig. 3.12a (for the Co(100) surface), and exhibits a large
negative tunneling spin polarization. For negative bias (electrons tunneling from the
LSMO), the LSMO detector predominantly scans the DOS (convoluted with the
energy-dependent tunneling probability) above the Fermi level in the Co electrode.
As the bias is decreased to −0.4 Volts, in the antiparallel state the Fermi level of
LSMO is at the same energy as the peak of the Co minority d DOS, giving a larger
tunneling spin polarization and, hence, a large (negative) TMR. As the bias becomes
more negative, the minority d DOS progressively decreases, and the tunneling spin
polarization decreases.
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Fig. 3.12. (a) Schematic of the spin polarized densities of states of LSMO (as derived from
photoemission) and the Co(100) surface (calculated). (b) TMR ratio vs. applied bias for
a Co/SrTiO3/LSMO junction at 5 K. Inverse TMR is observed for V <0.8 Volts, while normal
TMR is observed for V >0.8 Volts, indicating that the Co/SrTiO3 spin polarization is negative
for V < 0.8 Volts. Inset: TMR ratio vs. applied bias for a Co/Al2O3/SrTiO3/LSMO junction.
In this case, the polarization of Co/Al2O3 and LSMO are both positive, and a normal positive
TMR is seen. From [3.51, 52]

For positive bias (electrons tunneling from Co), the LSMO detector predominantly
scans the DOS below the Fermi level in the Co electrode. As the bias is increased, the
majority d DOS steadily increases, until at approximately 0.8 Volts the majority and
minority densities of states are equal, resulting in a zero crossing of the TMR. For
still higher bias, the majority d DOS of Co continues to increase (while the minority
DOS steadily decreases), resulting in a positive tunneling spin polarization and TMR.
At approximately 1.15 Volts, the Fermi level of the LSMO is at the same energy as
the majority d DOS peak in Co, and the positive TMR is maximal. Thus, all of the
features in the bias dependence of Co/SrTiO3/LSMO junctions can be attributed to
the structure of the spin polarized Co d DOS, in contrast to recent experiments with
Co/Al2O3/Co junctions (see below, Sect. 3.6.2) which revealed structure in the Co s
DOS. More recent results by Sugiyama et al. [3.160] and Sun et al. [3.161] essentially
corroborate these results.

Finally, recent experiments by Sharma et al. [3.53] utilizing composite
Ta2O5/Al2O3 barriers have indicated that the sign of the spin polarization at Ta2O5

interfaces is also negative, and have proposed an explanation similar to that of de
Teresa et al. However, these results have not yet been independently verified. Still,
these results illustrate the rich physics behind spin polarized tunneling in MTJs, as
well as the intriguing possibility of “engineering” MTJs with tailored properties.

3.6.2 Role of Electrode Electronic and Physical Structure

The absence of density of states features in most MTJ experiments is apparently at
odds with (3.1), which indicates a direct proportionality of the tunnel conductance
with the density of states. This discrepancy is in part due to several competing factors.
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One limitation is that one can only hope to see band or DOS features for those bands
that contribute to the tunnel conductance. These bands and the DOS they generate are
(for the Al2O3 barriers typically utilized) believed to be limited to highly dispersive
(i.e., strong E(k) dependence) bands whose states at finite k are s-hybridized [3.6, 12,
25, 27, 31, 44–46, 56, 162], as discussed in Sect. 3.3.2. Since they are highly dispersive
bands, DOS features are necessarily much less pronounced and hence more difficult
to observe as compared to the more localized d electrons (see Sect. 3.6.1). Further, at
higher energies the tunnel conductance increases more and more rapidly (due to the
strong bias dependence of the effective barrier height at high biases [3.8]), making it
more and more difficult to see subtle features on the strong background conductance.
A second complication is the presence of many conductance contributions, such as
normal elastic tunneling, see (3.1,3.2), and inelastic excitations (phonons, magnons;
see Sects. 3.5.3 and 3.5.4), which may obscure electronic structure features, but which
may be essentially eliminated with careful analysis [3.6] as discussed below. A third
complication is the extreme difficulty in theoretical analysis of these structures,
particularly MTJs. A last, and perhaps most fatal complication is the absence of
tunneling electrodes with a known physical and electronic structure which can be
modulated in order to convincingly compare theory and experiment.

In a recent series of experiments, LeClair et al. [3.100] utilized Co/Al2O3/Co
MTJs with a view to observe features of the Co s-hybridized DOS. Using 59Co
NMR combined with X-ray diffraction, it was shown that two different types of
Co bottom electrodes could be grown, viz., highly-textured fcc(111)-Co (denoted
fcc-Co) and polycrystalline, polyphase Co (denoted poly-Co). This enabled both fcc-
Co(111)/Al2O3/poly-Co and poly-Co/Al2O3/poly-Co MTJs to be studied in order to
determine the influence of the fcc-Co structure on MTJ properties. Figure 3.13a shows
the dI/dV(V ) characteristics for fcc(111)-Co 35 Å, 50 Å/Al2O3/poly-Co junctions,
and a poly-Co/Al2O3/poly-Co junction for parallel magnetizations at 5 K (the fcc-
Co electrode is biased positively for V > 0). The poly-Co/Al2O3/poly-Co junctions
show almost perfectly symmetric behavior for both magnetization orientations, with
a parabolic background and a low-voltage linear contribution, consistent with normal
MTJ behavior as discussed in Sect. 3.5.3. The fcc(111)-Co/Al2O3/poly-Co junctions,
however, show an obvious conductance asymmetry, with most notably a local min-
imum at approximately −0.25 Volts and a slight “shoulder” at the same positive
voltage, as also observed by others [3.139, 142, 163, 164]. Similar conductance min-
ima have been observed in Ni/Al2O3/Ni junctions by Jansen et al. [3.165], where in
that case the origin was clearly the electronic structure of the Ni. This suggests that the
band structure and spin-dependent DOS of the fcc-Co structure must be responsible.

If the fcc-Co DOS is responsible for the conductance features, one expects the
TMR to be also affected. Although the TMR is the most commonly used criterion
to gauge MTJs, the TMR magnitude can be very susceptible to slight differences
in preparation conditions [3.27] (see Sect. 3.4), and is not generally well suited to
detailed comparison with theory. The normalized differential TMR vs. voltage charac-
teristics, ∆G/Gap(V ), though generally nearly identical for many junctions [3.145],
suffer from a strong contribution by inelastic excitations [3.142], as discussed below,
which may mask the underlying electronic structure effects. Further, these inelas-
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Fig. 3.13. (a) Conductance-voltage dI/dV(V ) characteristics for fcc(111)-Co/Al2O3/poly-Co
junction (closed circles), and a poly-Co/Al2O3/poly-Co junction (open circles), for parallel
magnetization alignments at 5 K. (b) Odd part of ∆G/Gap (see text) as a function of voltage
for the same junctions as (a), and a theoretical calculation for a fcc-Co/I/hcp-Co junction (line).
From [3.100]

tic excitations depend on extrinsic factors (such as interface quality [3.139, 149])
and are extremely difficult to model quantitatively. However, to a reasonable ap-
proximation most inelastic excitations give a contribution symmetric in applied bias
(particularly for physically symmetric junctions), and thus by plotting the odd part of
the differential TMR-voltage behavior, one is primarily sensitive to only electronic
structure effects [3.6]. On the other hand, by plotting the even part of ∆G/Gap,
one may more selectively view inelastic excitations [3.6]. In this manner, the DOS
features may be more clearly evidenced, and more easily compared with theory,
effectively eliminating those contributions which are difficult to incorporate theoret-
ically.

Figure 3.13b shows the odd portion of the differential magnetoresistance, i.e.,
∆G/Gap(V > 0)−∆G/Gap(V < 0), as a function of voltage for both types of
junctions studied. As noted above, this quantity is a measure of the asymmetry in
the bias dependence of the differential TMR. For poly-Co/Al2O3/poly-Co junctions,
only a small asymmetry is present, as expected for nominally identical electrodes.
However, for fcc(111)-Co/Al2O3/poly-Co junctions, there is a clear strong minimum,
corresponding to the same voltage where the local minimum and shoulder features
were seen in the dI/dV(V ) curves, suggesting again that the fcc-Co DOS and band
structure may play a key role.

Utilizing a ballistic model of tunneling [3.146, 154, 166], LeClair et al. [3.100]
were able to explain these results in terms of the s-hybridized densities of states
of hcp-Co and fcc-Co (see Sect. 3.3.2). Figure 3.13b shows the odd part of the
differential TMR, calculated for a fcc-Co/I/hcp-Co MTJ using the model described
in [3.146, 154]. The hcp-Co DOS was used to model the poly-Co DOS, since both
are essentially featureless. The underlying tendency for dI/dV(V ) to dip in fcc(111)-
Co/Al2O3/poly-Co structures at approximately ±0.25 Volts can be explained by the
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presence of two sharp peaks in the fcc-Co s-DOS at about 0.4 eV above and below
EF [3.25, 166]. DOS peaks imply localized states that have a reduced tunneling
probability [3.12, 27, 31, 44–46, 166], and this results in the conductance dips at both
positive and negative bias, and correspondingly, a deep minimum in the odd part of the
bias dependence at ≈0.25 Volts. For positive bias only, i.e., electrons tunneling from
hcp to fcc bands, an additional effect enters the picture. In the fcc-Co band structure,
there is an unoccupied, but very dispersive, minority band which begins just above
EF [3.166] in the (111) direction. This highly dispersive band contributes spin down
states (for positive bias), thus decreasing the MR, but augmenting dI/dV(V ), since
it leads to an overall increase in available states. The emergence of this band partially
suppresses the tendency of dI/dV(V ) to dip, resulting in a “shoulder” for positive
biases, rather than a fully-developed “dip” obseved for negative biases, and leads to
the small peak at low biases and subsequent decrease in the odd part of the differential
TMR. The calculated bias dependence for hcp-Co/I/hcp-Co junctions is completely
symmetric, as expected, and the odd part of the differential TMR is zero. These results
represent a clear experimental demonstration of density of states effects evidenced
in tunnel conductance and TMR, as well as a convincing theoretical explanation, of
key importance for a fundamental understanding of MTJs.

3.6.3 Epitaxial Junctions

One of the greatest problems in analyzing MTJs is the use of amorphous tunnel
barriers like Al2O3, which are extremely difficult to model theoretically. Much
theoretical work has been devoted to studying fully-epitaxial systems, such as
Fe/ZnSe/Fe [3.47, 48, 58] or Fe/MgO/Fe(100) [3.45, 46, 56]. In addition to the fact
that these systems are theoretically tractable, novel effects are anticipated in all-
epitaxial structures, e.g., much larger TMR values due to resonant transmission in
a single spin channel, quantum confinement effects in thin interfacial layers, and novel
thickness and bias dependencies. On the other hand, fully-epitaxial metal-insulator-
metal systems are not easy to prepare experimentally. MTJs with a single epitaxial
NiMnSb electrode were prepared by Moodera et al. [3.131] (see Sect. 3.5.1), though
the barrier was still amorphous Al2O3. As discussed above, de Teresa et al. [3.51, 52]
prepared LSMO/SrTiO3/Co junctions, with epitaxial LSMO electrodes and an epitax-
ial SrTiO3 barrier, but with polycrystalline Co electrodes (see Sect. 3.6.1). Probably
the first truly epitaxial MTJs used LSMO electrodes, and have been fabricated by sev-
eral groups, as discussed briefly in Sect. 3.5.1. However, as yet no studies have been
performed detailing the dependence on, e.g., crystallographic orientation for these
systems. Further, given the complexity of LSMO itself, there is far less theoretical
work on these structures.

Epitaxial Fe Electrodes

Yuasa et al. [3.167] have recently prepared semi-epitaxial Fe(100,110,211)/Al2O3/
CoFe MTJs (i.e., only the bottom Fe layer is epitaxial), with a view to study the
effect of the Fermi surface anisotropy on transport properties. Since the barrier is still
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Fig. 3.14. TMR at 2 K as a function of Al2O3

thickness for Fe(211), Fe(110), and Fe(100) epi-
taxial electrodes in Fe(hkl)/Al2O3/CoFe junctions.
Lines are only a guide to the eye. From [3.167]

amorphous, however, many of the novel features of fully-epitaxial systems (such as
spin-dependent resonant transmission) are not expected to be observed. They have
observed a strong dependence of the TMR on crystallographic orientation, as shown
in Fig. 3.14, where the TMR is plotted as a function of (amorphous) Al2O3 thickness
for different Fe crystallographic orientations [3.168]. They found the largest TMR for
Fe(211) electrodes, while the TMR for Fe(100) is nearly a factor of 4 lower. Fe(110)
electrodes yield a TMR value between that of the other directions, but with a much
larger dependence on Al2O3 thickness. The reason for this thickness dependence
(for any direction) is not yet well understood, particularly the fact that it is non-
monotonic and distinctly different for each Fe orientation. One possible reason could
be a slightly different growth mode [3.168] of the amorphous Al2O3 on the different
crystalline facets of Fe, giving rise to a slightly different barrier quality for each
electrode orientation and barrier thickness. However, there is no direct evidence for
this mechanism. One other possibility is momentum filtering [3.6], i.e., the fact that
the tunneling probability as a function of the electron incidence angle depends on
barrier thickness. The latter explanation is perhaps unlikely, given that the barriers
are amorphous and strict k|| conservation may no longer apply.

The fact that the TMR varies so strongly with crystallographic orientation clearly
points to the details of the Fe band structure [3.42, 169] and momentum filtering.
Naively looking at the most dispersive s-like bands near EF in Fe [3.169], the trend that
TMR[Fe(211)]>TMR[Fe(110)]>TMR[Fe(100)] can perhaps be justified in some
way, though it is expected that the Fe(100) tunneling spin polarization should be much
larger. Still, a detailed calculation of the spin polarization of the participating bands
for each orientation is needed. A more detailed analysis of the transport properties
(such as conductance and TMR bias dependence, as in Sect. 3.6.2) has not yet been
reported, and should certainly help understand the relation between the transport
properties and Fe crystallographic orientation.

Fully Epitaxial Fe/MgO/CoFe(100)

Bowen et al. [3.170] have prepared fully epitaxial Fe/MgO/FeCo(100) MTJs. In
contrast to the results of Yuasa et al. [3.167], they observe TMR values of ap-
proximately 60 %. Figure 3.15 shows the TMR as a function of applied bias at
30 K. Perhaps surprisingly, the behavior is essentially the same as that observed for
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Fig. 3.15. TMR at 30 K as a function bias for
a Fe/MgO 20Å/Fe50Co50(100) fully epitax-
ial MTJ. Inset: Parallel resistance vs. tem-
perature for the same junction with a bias of
10 mVolts, along with a fit to the model of
Shang et al. [3.149] (Sect. 3.5). From [3.170]

non-epitaxial systems (i.e., polycrystaline electrodes and amorphous barriers, see
Sect. 3.5). The inset to Fig. 3.15 shows the temperature dependence of the TMR
for the same junction, along with a fit to the model of Shang et al. [3.149] (see
Sect. 3.5.5), which is also in line with what is observed in disordered systems. The
most obvious feature is that the observed TMR is positive. Comparing the bias de-
pendence of the TMR to that of Co/SrTiO3/LSMO and Co/Al2O3/SrTiO3/LSMO
junctions [3.51, 52] (see Sect. 3.6.1), the authors conclude that the Fe/MgO and
FeCo/MgO interfaces predominantly select s-hybridized electrons. Indeed, the sign
of the tunneling spin polarization from the Fe/MgO interface was determined to be
positive, using LSMO/SrTiO3/MgO/Fe junctions, in the spirit of the experiments of
de Teresa et al. (see Sect. 3.6.1). The observation of a positive TMR, and hence
positive tunneling spin polarization, are line with previous experimental work and
expected from theory, as discussed in Sect. 3.3.2. These preliminary experiments sug-
gest that the observed TMR effects are consistent with the simplistic Julliere model,
with no band structure or momentum-filtering effects yet observed.

The fact that the observed TMR is nearly a factor of 5 higher than that observed
by Yuasa et al. [3.167] seems to point to the importance of the electronic structure of
the entire electrode-barrier system. In particular, with epitaxial barriers, the role of k
vector selection and exact nature of the interface bonding are of extreme importance
(e.g., an Mg vs an O terminated interface should behave differently). However, the
TMR values are still much lower than those predicted theoretically [3.45, 46, 56], the
reason for which is yet unclear. One possibility recently pointed out by Meyerheim
et al. [3.171] is perhaps that at the Fe/MgO interface an interfacial FeOx layer is
formed, considerably altering the spin dependent tunneling. According to preliminary
calculations by Zhang et al. [3.171, 172], this would limit the TMR to only about
76%, rather than the expected several 1000% for perfect Fe/MgO interfaces. Further,
if a similar oxidation occurs at Fe/Al2O3 interfaces, this could perhaps also help to
explain the results of Yuasa et al. [3.167].

Thus far, only bias and temperature dependence of the TMR have been explored,
and for a single crystallographic orientation, making it perhaps premature to draw de-
tailed conclusions. Still, these experiments show great promise for not only observing
novel transport behavior, but also for making a detailed comparison with state-of-
the-art theoretical predictions [3.45, 46, 56]. Of particular interest is the predicted
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dependence of TMR and conductance on MgO thickness [3.45, 56], which should
give some evidence of momentum filtering by the epitaxial barrier (see following
Sect. 3.3.2). Further, novel effects arising from quantum confinement and quantum
wells in thin interfacial layers may be observable (see Sect. 3.6.4). Clearly, this is an
area of research which is still in its infancy.

Fully Epitaxial GaMnAs/AlAs/GaMnAs(100)

Tanaka and Higo [3.173] have taken a slightly different approach to spin polar-
ized tunneling in epitaxial systems, fabricating Ga1−xMnxAs-AlAs based structures.
Ga1−xMnxAs is a ferromagnetic semiconductor whose TC (and presumably P) may
be tailored by Mn doping. The possible advantages of novel III-V based struc-
tures include not only simple integration with existing semiconductor technology,
but also relatively straightforward fabrication of high-quality epitaxial structures,
easily controlled physical and electronic structure, and the integration of quantum
heterostructures which is easier than in any other materials system. Further, little is
understood about spin polarized tunneling in these systems, creating the opportunity
for interesting new physical effects.

In order to achieve antiparallel alignment of the GaMnAs layers, structures of
Ga1−xMnxAs/GaAs/AlAs/GaAs/Ga1−yMnyAs were fabricated, with two different
Mn concentrations (x = 3.3% and y = 4.0%) yielding two different coercivi-
ties (see Sect. 3.5.2). In this case the GaAs layers were to prevent Mn diffusion
into the AlAs barrier as well as to create smooth interfaces. Using wedge-shaped
AlAs barriers, they were able to show an exponential thickness dependence of the
device resistance, consistent with tunneling (see Sect. 3.1). Up to 75% TMR was ob-
served at low temperatures. However, the magnetizations of the GaMnAs layers were
not fully antiparallel, which anticipates even larger effects for a fullly antiparallel
alignment.

They were able to explain the barrier thickness dependence of the TMR by
considering k conservation and the allowed (imaginary) k vectors within the AlAs
barrier. As discussed (briefly) in Sect. 3.3.2, strict k|| conservation is expected to
hold for a fully epitaxial system, while in systems with amorphous barriers (e.g.,
the experiments of Yuasa et al. described above) it is not. Though they were able
to explain the thickness dependence of the TMR based on k conservation con-
siderations, the fact that a true antiparallel alignment was not reached perhaps
calls this analysis into question. The temperature dependence of the TMR was
also investigated, and was for the first time in MTJs studied through the TC of
the ferromagnetic electrode (see Sect. 3.5.5) showing good agreement with the
model of Shang et al. [3.149] The role of the interfacial GaAs layers (see fol-
lowing Sect. 3.6.4), however, was not addressed, though it may perhaps expected
to be minimal. If these results can be verified with a clear demonstration of an-
tiparallel magnetization alignment, this may indeed represent a near model sys-
tem for investigating not only the temperature and thickness dependence of the
TMR, but also the effect of novel quantum heterostructures which may be rel-
atively easily introduced. Given the recent interest in spin-polarized transport in
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semiconductors, these results are almost certain to be extended in future investiga-
tions.

3.6.4 Interface Dusting

From the discussions in Sect. 3.2.3, it is anticipated that MTJs are extremely interface
sensitive. In fact, the crucial role of interface bonding as discussed in Sect. 3.6.1 is
one way to see this. Another route to exploring interface sensitivity is the insertion
of ultrathin layers (often called “dusting” layers) at the electrode-barrier interface.
As seen in Sect. 3.3.1, using this method Tedrow and Meservey [3.41] showed
with SPT that only a few monolayers of ferromagnetic material are needed for full
tunneling spin polarization. Similarly, one may also utilize non-magnetic interlayers at
a ferromagnet-insulator interface to study the decay of the tunneling spin polarization.
By studing the evolution of MTJ features, particularly, dI/dV(V ) and TMR, as
a function of interlayer thickness, one can gain insight on the interfacial sensitivity
of MTJs.

Widely used in investigations of Giant Magnetoresistance, non-magnetic interface
layers have proven extremely valuable in tunneling experiments as well. Moodera
et al. [3.174] first applied used this method with the SPT technique in Al/Al2O3/Au/Fe
junctions in order to measure the spin polarization as a function of Au interlayer
thickness. They found that polarization decreased exponentially for the first two
monolayers Au but decreased as 1/d at larger thicknesses. In the context of MTJ’s,
Parkin investigated TMR as a function of the thickness of a nonferromagnetic layer
grown on Al2O3 [3.175]. In these experiments, a large tunneling spin polarization was
surprisingly maintained over distances in excess of 10 nm, in striking contrast with the
earlier experiments of Moodera for Au on Al2O3 [3.174], as well as later experiments
of Sun and Freitas for Cu on Al2O3 [3.176]. As a first attempt to clarify these
conflicting results, Zhang and Levy [3.177] have argued that the behavior of TMR in
the presence of an interfacial nonmagnetic layer depends critically on the quality of the
interfacial layer, with the shorter length scale resulting from thickness fluctuations.
Mathon and Umerski [3.178] have recently found that quantum well states in the
metallic interlayer are necessary for nonzero TMR, even in the limit of coherence loss
(i.e., loss of k conservation during transport). In general, most theoretical approaches
predict an oscillitory dependence of TMR on interlayer thickness [3.177–179]. Even
among experimental results, at this stage there was little apparent consistency, and
nearly all of the results were at odds with theory.

The recent work by LeClair et al. [3.33] showed that this apparent discrepancy
is growth related. Most early dusting studies investigated junctions where the non-
magnetic layer was grown on top of the Al2O3 barrier. In this case, however, they
grew Cu interlayers both above and below the Al2O3 barrier, which resulted in two
different TMR decay lengths, as shown in Fig. 3.16a. For Cu above the Al2O3 barrier,
the length scale was roughly three times larger than for Cu below the Al2O3 barrier.
Using in situ scanning Auger spectroscopy, they were able to show that Cu grows on
Al2O3 in a highly three-dimensional manner. This gives rise to an artificially inflated
TMR decay length when Co is grown on top of this Cu, since in some places the Co is



3 Spin Polarized Electron Tunneling 87

2 3

N
or

m
al

iz
ed

T
M

R

Fig. 3.16. (a) Normalized TMR at 10 K as a function of Cu thickness for Co/Cu dCu/Al2O3/Co
and Al2O3/Cu dCu/Co. Also shown for comparison are results with Ag and Pt interlayers. (b)
Normalized TMR at 10 K as a function of Cr thickness for Co/Cr dCr/Al2O3/Co and Co/Cr
dCr/Co dCo/Al2O3/Co tunnel junctions. Adding only a few monolayers of Co on Cr almost
completely restores the TMR, demonstrating the interfacial sensitivity of MTJs. Lines are fits
to an exponential decay. From [3.32, 33, 180]

in direct contact with Al2O3. It was further shown that in Co/Cu/Al2O3/Co junctions,
where Cu was grown on Co rather than Al2O3, near-ideal Cu growth resulted. In this
latter system, it was found that the normalized TMR (i.e., TMR(dCu)/TMR(dCu =0))
decayed approximately exponentially with increasing Cu thickness, exp(−dCu/ξ).
Fitting the TMR decay gave ξ ≈ 2.6 Å, equivalent to just more than one monolayer
Cu. As discussed in Sect. 3.2.3, Appelbaum and Brinkman [3.22, 23] pointed out
that tunneling in non-superconducting junctions should be sensitive to the density of
states within a few Fermi wavelengths (i.e., k−1

F ) of the electrode-barrier interface. In
this case, ξ ≈3.5k−1

F , in good agreement, and suggesting that indeed k−1
F may be the

relevant length scale. This is supported by the results of Moodera et al. [3.180] with
Ag and Au (Fig. 3.17) interlayers, which have almost the same value of k−1

F and give
a length scale similar to Cu interlayers, as do Pt interlayers (Fig. 3.16a). The relative
success of many-body approaches, such as those of Appelbaum, and the failure of
more recent independent electron models [3.177–179, 181] demonstrates again the
true many-body nature of the tunneling process. However, one must also consider that
the independent electron models consider strict k conservation in tunneling, which is
not realistic in junctions with non-epitaxial electrodes and amorphous barriers (see
Sect. 3.2.3), and may also account for the failure of these models [3.33].

A further demonstration of interface sensitivity was subsequently obtained by
LeClair et al. [3.32] using ultrathin Cr layers in Co/Cr/Al2O3/Co MTJs. The TMR
decay was again approximately exponential, and in this case was even more rapid,
(see Fig. 3.16b) with ξ ≈ 1.0 Å, or only ∼0.5 monolayers Cr. In these experiments,
they also added an additional Co layer on top of the Cr dusting layer, i.e., Co/Cr
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Fig. 3.17. TMR vs dNM for NM=Au
(open) at 77 K and for NM=Ru (closed)
at 5 K. In both cases, a negative TMR is
observed for a small range of NM thick-
nesses. Lines are only guides to the eye.
From [3.101, 183]

dCr/Co 6.3, 10 Å/Al2O3/Co, shown in Fig. 3.16b. Strikingly, the TMR was almost
completely restored with only these 3–5 monolayers of Co. This further confirms
that only the few monolayers of the electrode adjacent to the ferromagnet-insulator
interface dominate MTJ properties, in very good agreement with earlier SPT work on
ultrathin magnetic layers (see Sect. 3.3.1). More detailed experiments analyzing the
dI/dV(V ) characteristics in MTJs with multiple dusting layers further conclusively
established the importance of interfacial density of states, using the observed zero-
bias anomalies caused by the interfacial density of states modification as a probe.
In this way, the importance of density of states modifications and band matching
(or s−d scattering [3.182]) at Co/NM interfaces was demonstrated, in agreement
with experiments on bulk dilute transition metal alloys and magnetic multilayers.
However, a discussion of these results is beyond the scope of this review, and we
refer the reader to [3.32].

Two last examples of other interesting effects possible with dusted MTJs are
demonstrated with Au and Ru dusting of Co/Al2O3 interfaces. Moodera et al. [3.183]
studied Co/Au/Al2O3/Ni80Fe20 junctions, and found that the TMR actually became
negative for some values of dAu, Fig. 3.17. This result was explained in terms of
quantum-well states in the Au layer [3.177–179, 181], which correctly predicted the
negative TMR, but incorrectly predicted the observed bias dependence of the TMR.
LeClair et al. [3.101] found similar results in Co/Ru/Al2O3/Co junctions, see Fig.
3.17. In this case, the unusual thickness and voltage dependence of the TMR could be
well explained, at least qualitatively, by considering the band matching and density
of states modification at the Co/Ru interface. 59Co NMR experiments (see Sect.
3.4.2) confirmed the presence of an interfacial Co-Ru alloy, rather than a pure Ru
layer. Furthermore, ab initio calculations of the density of states of Co-Ru alloys
are consistent with a negative sp spin polarization (see Sect. 3.3.2). Quantum well
states in this case could be ruled out, since the “interlayer” was in reality an interface
alloy, and also essentially polycrystalline. Given the similarity of the Au and Ru
dusting results, further work is needed in these systems to fully clarify both results.
In any case, the fact that the sign of the spin polarization can be changed not only by
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interface bonding (Sect. 3.6.1) but by modifying the interfacial electrode density of
states clearly points toward the unique opportunity of engineering MTJ interfaces to
create novel properties.

3.6.5 Hybrid Spin Filter – MTJ Devices

As mentioned in Sect. 3.3.3, the combination of a spin dependent density of states
with a spin filter tunnel barrier may lead to interesting effects. One such effect, viz.,
a new and large magnetoresistance effect, has recently been observed.

From Sect. 3.3.3, we have seen that using a magnetic tunnel barrier, such as EuS,
results in a highly spin polarized tunnel current via the spin filter effect. If we now add
a magnetic electrode to the spin filter structure, we must consider the role of the spin
polarized density of states in the electrode as well. Since the tunnel current depends on
the number of filled states in the first electrode as well as the number of available states
in the second, with one magnetic electrode, see Fig. 3.18a,b, the tunnel current will
depend on the relative orientation of the filtered spins (i.e., the EuS magnetization
direction) and the electrode magnetization. For parallel alignment, see Fig. 3.18a,
spin polarized electrons tunnel from the magnetic electrode through the filter, which
selects only the majority spin component of the DOS, leading to a relatively large
current. For the antiparallel case, Fig. 3.18b, only the minority component of the
ferromagnetic electrode DOS is selected, leading to a relatively small current. One
may consider this device as analogous to a traditional magnetic tunnel junction with
one half-metallic electrode and a nonmagnetic barrier. The magnitude of the expected
TMR-like effect may then be estimated using the Julliere model (see Sect. 3.5.1):
∆R/Rp =2Pm Pf/(1−Pm Pf), where Pm is the spin polarization of the ferromagnetic

∆R
/R

p (%
)

ρ

ρ

Fig. 3.18. Explanation of spin filter magnetoresistance. Below the TC of EuS, the tunnel barrier
is spin-split, resulting in a highly spin polarized tunnel current. With a ferromagnetic (FM)
electrode, the tunnel current depends on the relative magnetization orientation. For parallel
alignment (P), (a), a large current results, while for antiparallel alignment (AP), (b), a small
current results. (c) Magnetoresistance in a Al/EuS/Gd junction as a function of magnetic field
at T = 2 K (closed, below the EuS TC), and T = 30 K (open, above the EuS TC). From [3.184]
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electrode, Pf is the efficiency (polarization) of the spin filter, and ∆R/Rp is defined
as previously.

LeClair et al. [3.184] have fabricated Al/EuS/Gd junctions with a view to observe
this magnetoresistance effect. As a first indication of the presence of spin filtering
in this structure, a sizable decrease in junction resistance below the TC of the EuS
has been observed, which is, as expected, thermally smeared upon the application
of an external magnetic field [3.62, 63]. Fig. 3.18c shows resistance versus magnetic
field, measured at a dc bias of ≈5 mVolts, for a Ta 5 nm/Al 3 nm/EuS 5 nm/Gd 15 nm
structure at 2 K (well below the TC of EuS) and at 30 K (well above TC). At 2 K, a mag-
netoresistance effect of ∼100% (in some cases more than 130%) is observed, clearly
indicating efficient spin filtering. However, at 30 K, almost no magnetoresistance
(<5%) is observed, proving the decisive role of the ferromagnetic spin filter barrier
(the small persisting effect is due only to the field-induced magnetization in the EuS
layer). As expected, for parallel alignment of the EuS and Gd magnetizations, a low
resistance state is observed (at high fields), while for antiparallel alignment a high
resistance is observed (at low fields). However, complete antiparallel alignment was
not reached, where in an even larger effect can be anticipated for truly antiparallel
alignment. Given the observed effects of more than 130%, it can be determined (using
the above model) that for a Gd polarization of 45% [3.185], the filter efficiency is
88%, in line with previous investigations [3.62].

The concept of spin filtering may have potential utility for spin injection into
semiconductors or for other novel hybrid devices. The almost 100% [3.62] filter spin
polarization, as well as the lack of any impedance mismatch problem [3.64] with
semiconductors, makes spin filtering a nearly ideal method for spin injection into
semiconductors, enabling novel spintronic devices [3.135]. These hybrid devices,
besides having application potential, illustrate that rich physics remains in this area.

3.7 Outlook and Conclusions

In the relatively short time since the first demonstration of large room temperature
magnetoresistance in MTJs in 1995, there has been an enormous interest in the com-
mercial potential of MTJ devices. Some of the main proposed applications are large
arrays of magnetic sensors for imaging, ultra-low magnetic field sensors, and most
prominently, read-head sensors and non-volatile Magnetic Random Access memo-
ries. In particular, the possibility of the latter two applications are being aggressively
reasearched by a myriad of commercial interests. This great demand for improved
magnetic devices has certainly played a large role in the “rebirth” of spin-polarized
tunneling.

More striking from a physics point of view, however, is that despite three decades
of research in spin polarized tunneling, it is only in the last few years that the influence
of the insulating barrier and the ferromagnet-insulator interface on tunneling spin
polarization has been recognized. Certainly, many of the experiments presented point
the way toward “engineered” TMR structures which utilize novel electrode/barrier
combinations to achieve large magnetoresistances and tailored bias dependencies.
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The demonstration of novel spin filter-MTJ hybrid devices is also an intruiging
direction for future spin electronic devices, though whether these devices ultimately
have application potential remains to be seen. The development of spin-filter devices
operating at room temperature would pave the way for a great number of new effects
and devices, the possibilities for which are only beginning to be explored. However,
many basic fundamental aspects of MTJs remain incompletely understood, such as
the true origin of the bias and temperature dependence of the TMR, or even an
accurate prediction of the magnitude of the TMR effect in realistic structures.

Many possible future directions for spin polarized tunneling are beyond the scope
of this review and have not been covered here. We attempt now to name only a few.
The development of the spin polarized STM [3.186, 187] has only in the last few years
opened up the entirely new field of spin polarized tunneling with nanometer lateral
resolution in addition to providing a new view of atomic scale magnetism. Certainly
this technique holds many fascinating insights in the future. The development of
three terminal spin-valve [3.188] and tunnel transistor devices also provides a novel
view on spin-polarized tunneling and spin-polarized hot-electron transport, and these
techniques should benefit from the recent advances in more traditional spin polarized
tunneling devices. Perhaps attracting the most attention as of late is spin injection
into semiconductors for novel semiconducting spin electronic devices. The current
viewpoint is that tunneling from a ferromagnet through a Schottky or tunnel barrier
into a semiconductor is perhaps the best approach to this problem, in which case this
field should benefit greatly from the field of spin polarized tunneling.

Theoretical results have mostly not been presented here, except where required.
A great body of theoretical predictions for MTJ and hybrid devices has developed
in the last years, a large number of which await verification, to name only a few,
novel transport properties in epitaxial systems and double junctions, half metallic
electrodes, the interplay of the Coulomb blockade and spin polarized tunneling, and
resonant- or co-tunneling effects. Certainly many promising results lie ahead.
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4

Interlayer Exchange Coupling

M. D. Stiles

4.1 Introduction

Experiments in 1986 [4.1–3] demonstrated coupling between the magnetizations
of two ferromagnetic layers separated by a non-magnetic spacer layer. Subsequent
discoveries in these systems, including giant magnetoresistance [4.4, 5], led to an
explosion in measurements and theories. The greatest interest has been in the simplest
form of the coupling,

E

A
= −Jm̂1 · m̂2 , (4.1)

called bilinear because the energy per area is linear in the directions of both magneti-
zations m̂i . With this form of the interaction, positive values of the coupling constant
J favor parallel alignment of the magnetizations and negative values favor antiparallel
alignment. The discovery [4.6] that the sign of J and hence the preferred alignment of
the magnetizations oscillates as the thickness of the spacer layer is varied accelerated
the interest started by the discovery of giant magnetoresistance. The sign has been
observed to change as many as sixty times [4.7] as the spacer layer thickness is varied
between zero and eighty monolayers (see Fig. 4.3 below).

Chapter 2 of Ultrathin Magnetic Structures II, published in 1994, contains articles
by Hathaway; Fert and Bruno; Pierce, Unguris, and Celotta; and Parkin reviewing
aspects of interlayer exchange coupling [4.8]. These articles were written at a time
of great evolution in our understanding. Shortly thereafter, a consensus developed on
a theoretical model that unified many of the existing models. Simultaneously, high
precision experiments were carried out enabling stringent tests of the theoretical mod-
els. In this chapter, I briefly summarize the situation that existed when these previous
articles were written and then focus on the model that developed and measurements
that were made shortly thereafter. For more details, see the earlier chapters [4.8] or
other review articles [4.9–15].
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By 1993, oscillatory interlayer exchange coupling had been measured in a large
variety of systems. There had been measurements of a number of related effects
including biquadratic coupling and quantum well states. Progress in growing high
quality samples and measuring them accurately was evolving in parallel with the
development of theoretical models. Systematic studies of multilayers grown by sput-
tering, typically with Co as the ferromagnet, had revealed oscillation periods in the
range of 0.9 nm to 1.2 nm for V, Cu, Mo, Ru, Rh, Re, and Ir spacer layers [4.16–
20] and longer periods of 1.5 nm for Os [4.21] and 1.8 nm for Cr [4.16]. Studies
on lattice-matched systems grown by molecular-beam epitaxy (MBE) showed more
complicated behaviors including much shorter periods. Examples include Co/Cu
[4.22–24], Cr/Fe [4.25–27], Ag/Fe [4.28], Au/Fe [4.29].

There had been progress toward addressing two issues complicating the compari-
son between theory and experiment. One complication is the significant disorder that
is present in real systems but absent in theoretical models. For one form of disorder,
namely thickness fluctuations, averaging the interlayer exchange coupling over the
growth front had been proposed [4.30] as a solution. Unfortunately, the growth front
had not been measured and this correction had not been made quantitative. Progress
on treating other types of disorder, like interdiffusion, was still to come. Another
complication is that the thickness of the spacer layer can be both difficult to control
and to measure with the desired accuracy. The use of wedge-shaped spacer layers
[4.23, 25, 31], in which the thickness varies continuously, had been developed as
a practical solution to this problem. Starting around the time the earlier reviews were
written, there were a number of high precision measurements on wedge samples in
which the sample quality was measured. These measurements have allowed stringent
comparisons between theory and experiment.

Some samples had been shown to have a perpendicular alignment of the mag-
netizations [4.31, 32]. Phenomenologically, this alignment can be explained by the
presence of a coupling between the magnetizations of the form

E

A
= −J2(m̂1 · m̂2)

2 , (4.2)

called biquadratic because it is quadratic in both of the magnetization directions.
All measured values of J2 are negative, favoring perpendicular orientation of the two
magnetizations. Biquadratic coupling has a separate origin from the bilinear coupling,
in general coming from the presence of disorder [4.33]. In Sect. 4.4, I discuss this
coupling and several of the models that have been proposed to explain it.

In addition to measurements of the coupling, there had been measurements of
magnetic multilayers using photoemission and inverse photoemission [4.34–37]. For
these measurements, the sample consisted of a nonmagnetic layer on top of a magnetic
layer. Strong peaks in the photoemission intensity were identified as arising from
quantum well states. As the thickness of the top layer was varied, the quantum well
states were observed to shift in energy. The periodicity in thickness at which these
states crossed the Fermi level established a connection between the quantum well
states and the interlayer exchange coupling.
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Fig. 4.1. Critical spanning vectors for Cu in the 100 direction. The right panel shows a repre-
sentation of the Cu Fermi surface and a rectangular slice (solid line) through it. The necks in
the (111) directions are indicated in gray. The dashed lines indicate the bulk Brillouin zone.
In the left panel, the rectangular slice from the right panel is repeated periodically using an
extended zone scheme. There, the heavy curves show the Fermi surface of Cu in that slice.
The white arrow gives a 1-dimensional reciprocal lattice vector in the interface direction. The
gray arrows give the critical spanning vectors. An equivalent pair of vectors is shown for both
the long (l) and short (s) period spanning vectors

By 1993, there were a number of theoretical models for interlayer exchange cou-
pling. All gave the result that the Fermi surface of the spacer layer material [4.38]
determined the coupling periods. In metals, the Fermi surface is a sharp cut-off in
momentum space between filled states and unfilled states. In many contexts, the ex-
istence of this sharp cut-off gives rise to spatial oscillations. Well-known examples
include Friedel oscillations of the charge density due to a localized perturbation and
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between magnetic impuri-
ties [4.39]. The early models for oscillatory interlayer exchange coupling showed it
to be an additional example.

The models showed that the critical spanning vectors of the Fermi surface of
the spacer-layer material determine the oscillation periods. A spanning vector of the
Fermi surface is a vector parallel to the interface normal that connects two points
on the Fermi surface, one point having a positive component of velocity in the
interface direction and the other a negative component. A critical spanning vector
is a spanning vector that connects two sheets of the Fermi surface at a point where
they are parallel to each other, see Fig. 4.1. For noble metal spacer layers, Bruno and
Chappert [4.40] found the critical spanning vectors of Fermi surfaces that had been
previously determined in de Haas-van Alphen measurements. The periods agree with
the oscillations seen experimentally.

Since the spacer layer material is periodic, the Fermi surface is defined in a peri-
odic Brillouin zone. After the discovery of oscillatory coupling, there was some doubt
about whether the coupling was a Fermi surface effect because some early models
ignored the lattice periodicity. The periods expected from free electron Fermi wave
vectors are much smaller than the typically observed periods of 0.9 nm to 1.2 nm.
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Fig. 4.2. Aliasing. For the long period critical spanning vectors, q l⊥ , illustrated in Fig. 4.1, the
solid and dotted curves give the oscillations based on two equivalent choices for this vector.
The squares gives the values of both curves evaluated at the discrete layer thicknesses. At these
points, the two curves are completely equivalent

Several groups [4.41–43] pointed out that aliasing would bring the periods into bet-
ter agreement. Aliasing describes the result of periodically sampling an oscillating
function. Here, the oscillating function is the oscillatory coupling and the periodic
sampling occurs at the discrete layers thicknesses of nD0 where D0 is the individual
layer thickness, and n is an integer. Figure 4.2 shows that the oscillation determined
by the long period spanning vector q l

⊥ in Fig. 4.1 is equivalent to the oscillation
determined by |q l

⊥ − g0| where g0 = 2π/D0 when both oscillations are evaluated
at discrete layers z = nD0. The wave vector g0 gives the appropriate length of the
Brillouin zone in the interface direction. Some confusion can be avoided by always
reducing the spatial frequency to its smallest equivalent magnitude.

If models are based on different descriptions of the electronic structure, the critical
spanning vectors of the Fermi surface are different and the models predict different
periods and different coupling strengths. When two models use the same electronic
structure for the spacer layer and hence predict the same periods, they predict different
coupling strengths if they use different descriptions for the electronic structure of the
ferromagnetic layers.

In 1993, there was no consensus on the appropriate model for the interlayer
exchange coupling because there was no consensus on the appropriate description of
the electronic structure of transition metal multilayers. In the delocalized limit, all
of the electrons are in band states. In the ferromagnet, the energy bands for majority
and minority electrons are split by the exchange interaction. In the localized limit,
the electrons are grouped into two sets, localized electrons that are spin polarized and
delocalized electrons that couple to the localized magnetic electrons. These two limits
emphasize different parts of the physics that are necessary for a correct description of
ferromagnetism. One part is the hybridization between the electron states on different
sites, and the other is the electron-electron interaction which is predominantly local.

The limit of completely localized magnetism was represented by models, related
to the RKKY interaction between impurities, based on perturbative calculations of the
s − d (or s − f ) Hamiltonian. In these models [4.30, 40, 44, 45], there are hybridized
band states that interact with localized d states. The electron-electron interactions
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among the d states give rise to the magnetism. A more sophisticated approach to
this limit is the Anderson model [4.46, 47], where the d levels become partially
delocalized due to the hybridization with the s levels.

In the opposite limit of completely delocalized states, the simplest model is the
free electron model [4.48, 49], which has the virtue of being analytically solvable. In
this approximation, the bands in the ferromagnet are shifted in energy with respect
to each other. The simplest case is to have the majority bands aligned with the bands
of the spacer layer and the minority bands shifted infinitely high in energy. This limit
is frequently called the infinite-U limit. Edwards et al. [4.50] carried out closely
related calculations for simple tight-binding models. Because the Fermi surfaces
in tight-binding models are not spherical, their calculations make it clear that it is
the critical spanning vectors, and not just the Fermi wave vectors that determine the
oscillation periods. After the earlier reviews were written, a consensus developed that
an accurate description of interlayer exchange coupling requires an accurate Fermi
surface for the ferromagnet. This requirement necessitates a delocalized description
(see Sect. 4.3).

The rest of this chapter focuses on developments since the previous volume of
this series was written. Section 4.2 describes growth of the samples and some of the
experimental techniques used to measure the coupling. Section 4.3 presents the model
used to describe the interlayer coupling. Predictions of this model are compared to
experiment. Disorder is discussed from an experimental point of view in Sect. 4.2
and from a theoretical point of view in Sect. 4.3. Disorder can introduce other
types of coupling into these systems, in particular biquadratic coupling. Section 4.4
describes these other forms of coupling. Finally, Sect. 4.5 discusses calculations and
measurements on specific systems including Co/Cu(100), Au/Fe(100), and Cr/Fe in
terms of this model.

4.2 Experiment

4.2.1 Sample Growth

To make measurements that quantitatively test our understanding of interlayer ex-
change coupling, it is important to grow samples that are as close as possible to those
assumed in theoretical treatments. These assumptions are usually quite restrictive.
A typical calculation of interlayer exchange coupling assumes that the ferromagnet
and the spacer layer are coherent, that is, they share a common lattice in the plane of
the interface between them. Further, most (but not all) calculations assume that there
are no defects either at the interface or in the bulk. Growing samples that approach
this ideal is quite challenging. An alternative to eliminating defects is to quantify
them. If the type and distribution of defects is well measured, then the burden is on
the theorists to treat the imperfect system rather than the perfect one. However, it is
also quite difficult to measure the defects in sufficient detail.

The first consideration in choosing an experimental system is to find a spacer
layer that is close to lattice matched with a transition metal ferromagnet, Fe, Co, or
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Ni. When thin enough, a metal layer frequently assumes the in-plane lattice constant
of the substrate on which it is deposited. This is coherent growth. As the thickness of
the deposited layers increases, the strain energy associated with its modified lattice
structure becomes too large and the film relaxes by introducing dislocations at the
interface. To avoid dislocations, it is necessary to start with a pair of materials that
have very similar lattice constants. Unfortunately, there are very few.

The most commonly studied systems are Fe/Cr and Co/Cu. Cr and Fe, which
both take the body-centered cubic crystal structure, have less than one percent lattice
mismatch, so can grow coherently to fairly large thicknesses. Since they have the
same crystal structure they can be studied in several interface orientations, particu-
larly (100), (110), and (211). Co naturally takes the hexagonal-close-packed (hcp)
structure. However, when it grows on Cu, it frequently grows in the face-centered-
cubic (fcc) structure of Cu (pseudomorphic growth) with a lattice mismatch of less
than one percent, and so can also grow coherently to large thicknesses. Here also,
a number of interface orientations have been investigated, particularly (100), (110),
and (111). However, in the (111)-direction the energy difference between fcc growth
and hcp growth comes only from different stacking of hexagonal planes and hence is
very small. Both types of growth tend to occur, leading to extended defects between
different regions and very poor growth. For a review of growth in this system see
[4.51].

Two other systems for which coherent growth can be achieved up to large thick-
nesses are Ag/Fe and Au/Fe. At first glance, these pairs are not only poorly lattice
matched, but they do not have the same crystal structure. However, the (100) inter-
face lattices of the noble metal and of the Fe differ by less than one percent, if the
noble metal lattices are rotated by 45◦ with respect to that of Fe [4.29, 52]. If the
starting substrates are sufficiently flat, very good growth can be achieved. However,
the presence of steps leads to extended defects through the layer because the growth
is not pseudomorphic and the layer thicknesses are quite different.

Other material pairs have been studied. An interesting pair is Fe/Cu. For thin
enough layers, Fe grows in a face-centered-tetragonal structure (almost pseudomor-
phic) on Cu. Alternatively, Cu grows in a distorted body-centered-cubic (bcc) struc-
ture on Fe for thin enough layers. Thus, it is possible to study interlayer exchange
coupling for bcc Cu [4.23, 28]. Transition metal spacer layers such as Fe/Pd [4.53],
Fe/Nb [4.54], and Fe/Mo [4.55] have been grown by MBE. The same quality of
growth has not been achieved in these systems as in the systems with much smaller
lattice mismatch.

Even when the lattice mismatch is close to zero, the multilayers are still not
perfect. The starting substrate is never perfectly flat and the growth is never perfectly
layer by layer, so there are always variations in the thickness of the layers, typically
called thickness fluctuations. If the growth front is measured, it is possible to ac-
count for the variations of the spacer layer thickness when comparing theory and
experiment by averaging over the contributions from different thicknesses. However,
when the interlayer exchange coupling has rapid oscillations, the measured coupling
is significantly modified by the thickness fluctuations. Even for reasonably good
growth, thickness fluctuations can completely obscure the experimental signature of
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short period oscillations in the coupling. For this reason, it is desirable to grow the
sample in a layer-by-layer mode to keep the growth front as narrow as possible. Since
layer-by-layer growth is determined by the competition between nucleation of islands
and diffusion of deposited adatoms, it tends to require higher substrate temperatures
during growth. Unfortunately, higher growth temperatures tend to promote interdiffu-
sion at the interfaces. Such interdiffusion has been observed both for Cr growth on Fe
[4.56–59] and Fe growth on Cu [4.60]. Interdiffusion, which gives rise to scattering
centers, is more difficult to treat theoretically than thickness fluctuations. It also can
be more difficult to measure.

In addition to the lattice matching between materials in the multilayer, the choice
of substrate plays a large role in the quality of the growth. If substrates of one of
the materials in the multilayer are available, they are frequently the best choice. Iron
whiskers, which can be extremely flat [4.61], and copper single crystals are examples.
However, these choices are not appropriate for transport measurements, like giant
magnetoresistance, because the substrate provides a short circuit that prohibits any
measurement of the transport properties of the multilayer. In this case, insulating
substrates like MgO or semiconducting substrates like Si or GaAs can be used. For
these substrates, great care is required to get really high quality growth. See [4.62] and
[4.63] for descriptions of the complexity of growing a Fe/Au multilayer on a GaAs
substrate.

As mentioned in the introduction, the difficulties in growing samples with par-
ticular spacer-layer thicknesses and in measuring those thicknesses are most easily
addressed by growing wedge-shaped samples. To grow such samples, a shutter be-
tween the sample and the evaporator is moved to expose different parts of the sample
to different total fluxes. After the wedge has been grown, Reflection High Energy
Electron Diffraction (RHEED) (see Chapter 5 of Volume I of this series for details)
can be used to determine the thickness of the sample at various positions along the
wedge. RHEED is a commonly used technique for monitoring the quality and amount
of growth. A high energy electron beam is reflected from the surface at glancing an-
gles. The resulting diffraction pattern is sensitive to the details of the surface, in
particular the presence of steps. If the growth is layer by layer, there are fewer steps
when layers are close to complete and more when the layer is half filled. In this case,
the intensity of different spots in the RHEED pattern oscillate with a period of one
layer. In typical use, RHEED is used to monitor the thickness of a film during growth.
However, for wedge samples, it is typically used after growth, when the RHEED beam
is scanned along the wedge and the RHEED oscillations are monitored as a function
of position to give the thickness at that position, see Fig. 4.3.

4.2.2 Measurement Techniques

Interlayer exchange coupling is not measured directly. Rather, some magnetic prop-
erty of a sample, like its hysteresis loop, is measured and the exchange coupling
is inferred by comparing the measured property with a model. Some or all of the
parameters of the model, including the interlayer layer coupling constant, are varied
until the predictions of the model agree with the measurement. The reliability of the
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Fig. 4.3. SEMPA image of coupling in Fe/Au/Fe with geometry and RHEED. A schematic view
of the wedge-shaped sample is shown at the top of the figure. The approximate dimensions
give an indication of the very small slope of the wedge. Immediately below is a SEMPA image
of the magnetization of the Fe overlayer. White and black indicate parallel and antiparallel
alignment to the substrate, and hence ferromagnetic and antiferromagnetic coupling. Below
that is a line scan through the image and then a measurement of the RHEED intensity along
the wedge. The oscillations are used to determine the thickness of the spacer layer along the
wedge. Examination of the oscillations indicate that the slope of the wedge is not constant, but
the wedge is slightly curved. The RHEED and the magnetization curves have been corrected
for this curvature, but the image has not, hence the variation of the lines connecting the image
with the line scan

results depend on the accuracy of the model, in particular whether it includes all of the
physics necessary to describe the experiment. In addition to the interlayer coupling,
the models usually include the magnetic anisotropy of each of the layers. Typically,
models assume coherent rotation, at least within each layer, so that the intralayer
exchange interaction does not play a role. Magnetostatic effects are typically not
included in the models. Hysteretic effects are usually ignored. That is, the “hysteresis
loop” is calculated from a global energy minimum so there is no hysteresis in the
model. At the same time, hysteresis that shows up in the measurement is averaged
over to give a similar “loop” to compare to.
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Measurements of interlayer exchange coupling fall into two broad classes. In
the first class, the hysteresis loop (or some part) is measured. For example, Parkin
et al. first observed oscillatory interlayer exchange coupling [4.6] using the giant
magnetoresistance to determine the relative orientation of the magnetic layers. Here
the resistance of the film in zero field was compared with the resistance in large
field. If the coupling is ferromagnetic, there is no change, and if the coupling is
antiferromagnetic the change can be substantial. The field required to saturate the
resistance is used to estimate the strength of the antiferromagnetic coupling.

One technique commonly used to measure the hysteresis loop is the Magneto-
Optic Kerr Effect (MOKE) (see Chapter 4 of Volume II of this series or [4.64]
for details). MOKE can be used in an imaging mode by scanning the focused spot
of a laser across the surface or by imaging a wide area of illumination. It is not
particularly surface sensitive and has the advantage that it is sensitive to the magnetic
state of both layers. Using the sensitivity to both layers, MOKE images [4.31] have
directly identified perpendicular alignment of two layers.

Another imaging technique that has contributed significantly to understanding
interlayer exchange coupling is Scanning Electron Microscopy with Polarization
Analysis (SEMPA) (see Chapter 2 of Volume II of this series for details). Since this
technique is based on measuring secondary electrons, it is generally not used with
an applied field, limiting it to studies of the remnant state. On the other hand, it
has greater spatial resolution than optical techniques like MOKE, and can be used
on smaller wedges, requiring smaller areas of sample perfection. Since it can only
measure the remnant state, SEMPA has not been used to measure coupling strengths,
but it has been used to determine the sign of the coupling for enough oscillations of
the coupling to allow high precision measurements of the periods.

The other class of measurements is based on determining the curvature of the
energy with respect to small variations in the magnetization direction. Two such tech-
niques are Ferromagnetic Resonance (FMR) and Brillouin Light Scattering (BLS)
(see Chapter 3 of Volume II of this series for details of both). In a multilayer struc-
ture, certain resonances, whether as a function of field at fixed frequency (FMR) or
frequency at fixed field (BLS), depend on on the strength of the interlayer coupling.
The resonance positions can be used to determine the coupling.

4.3 Physical Mechanism for Bilinear Coupling

In 1993, a model for interlayer exchange coupling [4.65–67] based on spin-dependent
reflection at interfaces provided a framework to unify previous models for exchange
coupling. This model is closely related to the model of Mathon et al. [4.68], for-
mulated in terms of normalized spectral densities. Since the electron states in 3d
transition metals are strongly hybridized, a delocalized description is necessary to
accurately compute the interface reflection amplitudes. This fact led to a consensus
that a delocalized description of the electronic structure of the 3d transition metals
is more appropriate for models of interlayer exchange coupling. In this section, I
present the model that led to this consensus.
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First, the necessity of a delocalized description of transition metal ferromagnetism
raises the question that frequently starts many discussions of interlayer exchange
coupling: Is the coupling RKKY? The answer depends on what is meant by RKKY.
If the most general sense is meant, that the oscillations of the coupling are due to
the sharp cut-offs in momentum space due to the Fermi surface of the spacer layer,
then the answer is yes. If the more restrictive sense is meant, that a perturbative
treatment of an s − d Hamiltonian gives an adequate description of transition metal
ferromagnetism, then the answer is no. The model I describe below is an RKKY
model in the first, general sense, but not in the second, more restrictive sense.

From (4.1), the interlayer coupling constant is given by the difference in energy
between the antiparallel alignment of the magnetizations and the parallel alignment

J = 1

2A
(Eanti − Epar) . (4.3)

Computing the interlayer exchange coupling is reduced to computing the energy dif-
ference between two configurations. Some calculations of interlayer exchange cou-
pling evaluate these total energies directly using the local-spin-density approximation
(LSDA) [4.69, 70] or various tight-binding models [4.71, 72]. Because the exchange
coupling is much smaller than the total electronic energy for either alignment, it can
be difficult to converge these calculations numerically.

Calculation of the energy differences in (4.3) can be significantly simplified by
using the “force theorem”. First, let me stress the difficulty of carrying out self-
consistent calculations of the total energies in (4.3) to sufficient accuracy to make the
energy difference meaningful. The difficulty arises from treating the electron-electron
interaction, even though it is only in mean field theory. The force theorem provides
a way to avoid these self-consistent calculations. It states that the energy difference
between two configurations is approximately given by the difference in the single
particle energies in the two configurations. One simply develops approximations for
the potential and then computes the sum of the single particle energies for each
configuration. This approach ignores any explicit calculation of the electron-electron
interactions. The force theorem states that if the approximations for the potential are
good enough, the difference in energy of the single-particle-energy sums is very close
to the difference in the fully self-consistent energies. Fortunately, it is fairly simple
to develop good enough approximations for the potential because of the short range
of the screening in metals. For thick enough layers, the potential in the middle of
each layer can be treated as independent of the rest of the system and the potential
near each interface as independent of the other interfaces. Thus, a good approximate
potential for a multilayer can be constructed piece-wise from much smaller systems.
Alternately, the potential can be found for the case of parallel alignment and then
simply modified to give an approximate potential for antiparallel alignment.

Another feature of the force theorem is its pedagogical value. In the rest of the
section, I develop a model for interlayer exchange coupling based on differences
in the single particle energies. The force theorem allows me to ignore (to a good
approximation) the complications of the electron-electron interactions.
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Fig. 4.4. Quantum wells used to compute interlayer exchange coupling. On the right, the two
panels give typical band structures for free electron models of interlayer exchange coupling. On
the left, the four panels give the quantum wells for spin up and spin down electrons for parallel
and antiparallel alignment of the magnetization. The gray regions designate the occupied states

The calculation is further simplified when spin-orbit coupling is neglected. Then,
since the magnetizations are collinear for both the antiparallel and the parallel align-
ments, the majority and minority spins do not interact, and each can be computed
separately. At this point, the calculation has been reduced to computing the sin-
gle particle energies for the four quantum wells shown schematically in Fig. 4.4.
The appropriate sums and differences of the energies give the interlayer exchange
coupling.

For a simple trilayer, in which both ferromagnetic layers are semi-infinite, all the
sums of single particle energies are infinite. However, the infinite contributions from
the two ends cancel out. It is important to treat this cancellation correctly, which is
most easily done by considering the “cohesive energy” of each quantum well. The
cohesive energy is the energy required to make the quantum well out of its bulk
constituent materials. For a quantum well with total ferromagnetic thickness L and
spacer layer thickness D the cohesive energy is

∆Eqw

A
= Etot

A
− LεFM − DεNM , (4.4)

where ε is the energy density of each bulk material that makes up the layers. When
using the force theorem, the energy densities are just the single particle energy
densities.

4.3.1 Quantum Well States Due to Spin-polarized Reflection

Electrons reflect from interfaces between two materials. For free electron models, the
interface is a simple (spin-dependent) step in the potential and the reflection ampli-
tudes are straightforward to compute. For real material interfaces, such a calculation
is not so straightforward, but it is still feasible [4.73–76].

In trilayers, electrons reflect from both interfaces and the multiply reflected waves
interfere with each other. The amplitude for one round trip in a spacer layer of
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thickness D is eikD RR eikD RL, where eikD is the phase accumulated on one traversal
of the spacer and RR/L are the reflection amplitudes from the right and left interfaces.
The amplitude for two round trips is the same quantity squared. For all possible round
trips the total amplitude is

∞∑
n=1

[ei2kD RR RL]n = ei2kD RR RL

1 − ei2kD RR RL
. (4.5)

The denominator becomes small and there is constructive interference whenever
2kD + φR + φL = 2nπ, where n is an integer and φR/L = Im[ln(RR/L)] is the
change in the phase of a reflected electron. The constructive interference inside the
spacer layer gives rise to resonances, frequently referred to as quantum well states.
Whenever the reflection probability is one, these quantum well states are true bound
states. Otherwise they are like bound states that are broadened by transmission into
the ferromagnetic layers. When the reflection amplitude is close to one, |R| ≈ 1,
the resonances are sharp and when the reflection amplitude is close to zero, they are
broad. For a free electron model, these are shown schematically in Fig. 4.5.

As the thickness D of the spacer layer is varied, the resonances and bound states
shift in energy. If there is a resonance at the Fermi energy at a thickness D, then
resonances cross the Fermi energy whenever the thickness is D+2nπ/2kF, where kF

is the Fermi wave vector of the spacer layer and n is an integer. This periodic crossing
of the Fermi energy by quantum well resonances is the origin of the oscillations in
the interlayer exchange coupling. In this 1-d model, the Fermi surface consists of
two points, k = ±kF. The period is determined by the spanning vector of the Fermi
surface, 2kF.

For closely related samples, these quantum well states have been seen in photoe-
mission and inverse photoemission. For reviews, see [4.77, 78]. In these experiments,
one of the ferromagnetic layers is left off so that the density of states in the spacer
layer could be measured. Since the reflection amplitude from the surface is different
from the interface with the ferromagnet, the resonances are sharper and slightly dis-
placed in energy compared to the quantum well. Nevertheless, the peaks seen in the
photoemission spectra of these samples show the expected behavior as a function of
energy and thickness. In addition, the quantum well resonances seen in photoemission

D + 2π  2kFD + π / 2kFD

E F

 /

Fig. 4.5. Evolution of quantum well resonances with spacer layer thickness. The three panels
illustrate the bound states (lines) and resonances (fuzzy ellipses) for quantum wells of increasing
thickness. The arrows indicate how each resonance evolves as the thickness is increased
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cross the Fermi level with the same periodicity as is found for the interlayer coupling
in related trilayers. Since the reflection at the interface with the ferromagnetic layer
is spin dependent, the quantum well states are spin dependent [4.79].

The quantum well states affect the density of states in trilayer, and hence the
cohesive energy of the quantum well. The change in the density of states of the
quantum well for each spin, defined similarly to the cohesive energy of the quantum
well [4.14], is

∆n(E, D) = − 1

π
Im

[
d

dE
ln

(
1 − ei2kD RR RL

)]
. (4.6)

The derivative of the ln gives a factor that is the multiple scattering amplitude in the
quantum well, (4.5). The cohesive energy of the quantum well is the sum of the single
particle energies or equivalently, the integral over the change in the density of states

∆Eqw = −
EF∫

−∞
dE(E − EF)∆n(E, D) . (4.7)

For the time being, this is a one-dimensional model, so there is no factor of the area.
This expression can be integrated by parts to give

∆Eqw = 1

π
Im

EF∫
−∞

dE ln
(
1 − ei2kD RR RL

)
. (4.8)

This result is valid for the case when there is only one state going in each direction
in the spacer layer. For the more general case, see [4.66, 80].

For fixed thickness, the integrand in (4.8) oscillates rapidly through the energy
dependence of k. All of these oscillations cancel out in the integration, except those
close to the Fermi energy, where there is a sharp cut-off. The only contribution is
from a range of states near EF of width proportional to �vF/D, where vF is the Fermi
velocity. Over this energy range, the energy dependence of RR/L can be ignored and
the wave vector can be assumed to vary linearly with energy, k ≈ kF + E/(�vF), so
that in the limit of a thick spacer layer

lim
D→∞ ∆Eqw = �vF

2πD

∑
n

1

n
Re

[
(RR RL)n ei2kFnD] . (4.9)

Including the full energy dependence gives terms with higher order in D−1, called
preasymptotic corrections [4.81, 82]. When the reflection amplitudes are small only
the first term in the sum over n contributes, giving

lim
D→∞ ∆Eqw ≈ �vF

2πD
|RR RL| cos [2kF D + φR + φL] . (4.10)

The higher powers of the reflection amplitudes give higher harmonics of the oscilla-
tion. They change the shape and weakly change the amplitude without changing the
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period. In the asymptotic limit, the cohesive energy for this one-dimensional model
decays like one over the spacer-layer thickness, and oscillates with a period set by
the (one-dimensional) Fermi spanning vector 2kF with a strength that goes like the
product of the two reflection amplitudes. The cohesive energy decays because the
energy range of states that contribute without cancellation decreases as �vF/D.

The interlayer exchange coupling is then the sum and difference of the cohesive
energies for the four different quantum wells seen in Fig. 4.4. All four quantum wells
have cohesive energies that oscillate with the same period because their oscillation
period is determined by the Fermi surface spanning vector of the spacer layer material.
The oscillations do not cancel because they have different amplitudes and possibly
phases. For this one-dimensional case, in the large D, small R limit, the result is

lim
D→∞ J ≈ �vF

4πD
Re

[
(R↑R↓ + R↓R↑ − R2

↑ − R2
↓)ei2kF D]

≈ − �vF

4πD
Re

[
(R↑ − R↓)2 ei2kF D] . (4.11)

Here, I have assumed that the reflection amplitudes are the same for the left and
right interfaces but they depend on whether the spin is majority (↑) or minority (↓).
The first form above shows the contribution for each of the quantum wells, the two
asymmetric quantum wells for antiparallel alignment of the magnetizations minus
the majority and minority quantum wells for parallel alignment. The second form
shows that the interlayer exchange coupling depends on the spin dependence of the
reflection amplitudes.

4.3.2 Critical Spanning Vectors

Real multilayers are three dimensional, not one dimensional. However, if the interface
is coherent and there are no defects, the multilayer is periodic in the two directions
parallel to the interface. Then, the crystal momentum parallel to the interface, K , is
conserved. In this case, the problem simplifies to a two-dimensional set of independent
one-dimensional quantum wells. This simplification is the reason that all (to my
knowledge) theoretical treatments of interlayer exchange coupling assume coherent
interfaces. For an ideal interface, the cohesive energy (now per area) is just the integral
over the interface Brillouin zone (IBZ) of a series of one-dimensional quantum well
energies.

∆Eqw

A
= 1

π

∫
IBZ

d2 K

(2π)2
Im

EF∫
−∞

dE ln
(
1 − ei2kz(K)D RR(K)RL(K)

)
. (4.12)

In the small R, large D limits, integrating over energy as above gives

lim
D→∞

∆Eqw

A
≈ �vF

2πD

∫
IBZ

d2 K

(2π)2
Re

(
ei2kFz(K)D RR(K)RL(K)

)
. (4.13)
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Fig. 4.6. Selection of critical spanning vectors. The right panel shows a slice through a free
electron Fermi surface and some spanning vectors. The left panel shows the oscillating func-
tions from each of these spanning vectors (light curves) and the integral over all of them
(heavy curve). The peaks in the heavy curve come from constructive interference among some
of the light curves. Fewer and fewer of the light curves interfere constructively as the thickness
increases

Each parallel wave vector has a different one-dimensional Fermi surface given by
kFz(K). For each parallel wave vector, the energy integration gives an oscillation
as a function of thickness with a period set by its Fermi surface spanning vector,
2kFz(K).

For large D, the integrand oscillates rapidly as a function of K , through the K
dependence of 2kFz(K). As is the case above for the energy integration, the oscillations
all tend to cancel out, except where there is a sharp cut-off. For the parallel wave
vector integration, these cut-offs occur where two sheets of the Fermi surface become
parallel in the direction of the interface normal, see Fig. 4.1. The vector connecting
the two parallel points is called a critical spanning vector. The projection into the
interface Brillouin zone of the points where the Fermi surface sheets become parallel
is called the critical point. The regions of the Fermi surface close to the critical
point have oscillations that contribute in phase with each other, see Fig. 4.6. As the
spacer layer thickness increases, the area of the Fermi surface that contributes in
phase decreases as κ/D, where κ is the radius of curvature of the Fermi surface at
the critical point. This behavior gives an additional factor of D−1 to the decay of the
cohesive energy.

For thick spacer layers, the K dependence of the reflection amplitudes is ignored
and the K dependence of kz is expanded to quadratic order. The Fermi surface
spanning vectors, q close to the critical point satisfy

q = 2kF + 1

κu
k2

u + 1

κv

k2
v , (4.14)

where u and v are the principle axes of this paraboloid. For simplicity, I have taken
the critical point to be at the center of the Interface Brillouin zone. In the large D
limit, the parallel wave vector integration in (4.13), reduces to the form

∞∫
−∞

dx

∞∫
−∞

dy e
i

(
x2
a + y2

b +c

)
= π eic

√|ab|eiχ . (4.15)
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The final factor is eiχ = i, 1,−i for local minima (a > 0 and b > 0), saddle points
(ab < 0), and maxima (a < 0 and b < 0) respectively. Equation (4.13) becomes

lim
D→∞

∆Eqw

A
≈ �vFκ

8π2 D2
Re

[
RR RL ei2kF D eiχ] , (4.16)

where κ = √|κuκv| is the average radius of curvature of the Fermi surface difference
at the critical point. For a free electron Fermi surface it is just kF. Including the k
dependence of the reflection amplitudes and higher order terms in the expansion of
q gives terms in the cohesive energy that decay as higher powers of D−1. These are
additional preasymptotic corrections [4.82].

4.3.3 Asymptotic Form

Each critical spanning vector makes a contribution to the cohesive energy as in (4.16).
The contributions from each quantum well in Fig. 4.4 are added and subtracted to
give the interlayer exchange coupling. With the critical spanning vectors indexed by
α, the interlayer exchange coupling takes its asymptotic form

lim
D→∞ J(D) ≈

∑
α

Jα

D2
sin(qα

⊥D + φα)

≈
∑

α

�vα
⊥κα

16π2 D2
Re

[
(Rα

↑ − Rα
↑)

2 eiqα⊥D eiχα
]

, (4.17)

where qα
⊥ is the length of the critical spanning vector, eiχα

is the phase from the type
of critical point (maximum, minimum, saddle point), and φα is a phase determined
by χα and the phases of the reflection amplitudes. The effective Fermi velocity is
defined as

2

vα
⊥

= 1∣∣vr
F⊥

∣∣ + 1∣∣vl
F⊥

∣∣ , (4.18)

where v
r/l
F⊥ are the components of the Fermi velocities in the interface direction for

the right and left going states at the critical point. Equation (4.17) differs by factors of
two from other versions of the same result. These factors depend on the definition of
J , (4.1), and the definitions of vα

⊥ and κα. Here, the latter two have been chosen so that
they reduce to vF and kF for free electron models. Also, in some versions the difference
in the reflection amplitudes is written∆R = (R↑−R↓)/2, which introduces additional
factors of two. The asymptotic form, (4.17) is the main result of this model. In common
with previous models, it shows that the oscillation periods of the interlayer exchange
coupling are determined by the critical spanning vectors of the Fermi surface. This
model shows that the strength of the oscillation for each critical spanning vector is
determined by properties of the spacer layer Fermi surface, vα

⊥, and κα, and by the spin
difference in the reflection amplitudes. In the context of this result, other models can
be interpreted as different approximations for the reflection amplitudes. In RKKY
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models, the reflection amplitudes depend on the spin-dependent scattering by the
localized impurities. In infinite-U models, the reflection amplitudes are either zero or
one. In free electron models, they are determined by scattering from potential steps.

Generally speaking, the reflection amplitudes in (4.17) are the reflection am-
plitudes for all of the material on either side of the the spacer layer. Thus, if the
ferromagnetic layers have a finite thickness, they should be the reflection amplitudes
for a finite thickness of the ferromagnet. If there is a capping layer, it affects the
reflection amplitudes as well. If the outer surfaces of the ferromagnetic layers are flat
enough, there are resonances in the ferromagnet (and capping layer) that cause the
coupling to oscillate. Both have been seen experimentally [4.83–85]. Different ferro-
magnetic layers, e.g. different thicknesses, can lead to differences between theoretical
results and between theoretical and experimental results.

When spacer layers adopt their bulk structure, their critical spanning vectors
can be determined from the Fermi surfaces that have been measured by de Haas-van
Alphen experiments, as shown in Table 4.1. When compared with periods determined
from high precision measurements of wedge-shaped spacer layers with SEMPA, the
agreement is quite remarkable. The comparison of results for the long period of
Cu(001) spacer layers is not as good as other results. Possible reasons for this are
discussed below. For the Cr spacer layer, the entries in the Table are only for the
long period. The periods extracted from the de Haas-van Alphen measurements for
Cr are for the Fermi surface pocket centered at the N-point in the Brillouin zone.
Justification for this choice, in addition to the a posteriori agreement in the Table, is
discussed below.

While the agreement between the measured periods and the experimental Fermi
surface properties is quite good, the agreement between measured and calculated
coupling strengths is not as good. I discuss several examples in Sect. 4.5. There are
several reasons for the lack of agreement. On the experimental side, the oscillation

Table 4.1. Comparison of oscillation periods measured in magnetic multilayers with those
expected from the critical spanning extracted from Fermi surfaces measured in de Haas-van
Alphen measurements (dHvA)

Interface Period (ML) Period (ML) Technique Reference

Ag/Fe(100) 2.38 5.58 dHvA [4.40]
2.37 ± 0.07 5.73 ± 0.05 SEMPA [4.86]

Au/Fe(100) 2.51 8.60 dHvA [4.40]
2.48 ± 0.05 8.6 ± 0.3 SEMPA [4.7]

Cu/Co(100) 2.56 5.88 dHvA [4.40]
2.60 ± 0.05 8.0 ± 0.5 MOKE [4.23]
2.58 to 2.77 6.0 to 6.17 SEMPA [4.87]

Cr/Fe(100) 11.1 dHvA [4.88, 89]
12 ± 1 SEMPA [4.25]
12.5 MOKE [4.90]

Cr/Fe(112) 14.4 dHvA [4.88]
15.4 MOKE [4.90]
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periods are not affected by disorder to lowest order, but the oscillation amplitudes
are. Also, the highest precision measurements of the periodicity were made with
SEMPA on wedge-shaped samples. Since SEMPA is generally not compatible with
applied fields, SEMPA has not been used to measure coupling strengths. On the
theoretical side, the experimentally measured Fermi surfaces are not sufficient to
compute the coupling strengths. There remain two theoretical approaches, both of
which have disadvantages. One approach is to go back to (4.3) and compute the
total energies using the LSDA or a tight-binding approach. The other approach is
to compute the coupling strengths using (4.17) by calculating the spin-dependent
reflection amplitudes for realistic band structures. Such calculations also require the
LSDA or a tight-binding approach.

Formally, the LSDA is justified for computing total energies of different config-
urations, but not for computing band structures or related quantities like reflection
amplitudes. However, to study interlayer exchange coupling it is useful to view LSDA
as a single-particle approximation that treats the electron-electron interaction in mean
field theory. In this approach, LSDA does a good, but imperfect, job of predicting
band structures for transition metals. However, this approach makes it possible to
connect the total energy calculations with the model calculations. Hopefully, the dis-
cussion of the model has made it clear that the properties of the LSDA band structure
(even though it may not be formally justified) determine the results of the total energy
calculations.

The differences between real Fermi surfaces and those calculated using the LSDA
complicate the comparison between theory and experiment. The results from total
energy calculations cannot be compared directly to experiment because the underlying
Fermi surface gives oscillation periods that are at least slightly off. After several
oscillations, theory and experiment become out of phase and impossible to compare.
On the other hand, very few measurements are made for films thick enough that the
asymptotic limit is reached. Comparison with the asymptotic results is difficult when
preasymptotic corrections are important.

4.3.4 Disorder

All measurements are made at finite temperature, T . A number of calculations [4.50,
67] have shown that the effect of a thermal electron distribution in the spacer layer is
to multiply each term in the asymptotic form, (4.17), by the factor

2πkBTD/(�vα
⊥)

sinh
[
2πkBTD/(�vα

⊥)
] . (4.19)

For a typical free electron Fermi velocity (1.5 × 1015 nm/s) and a spacer thickness
of D = 4 nm, (4.19) is approximately 0.998 at room temperature (compared to 1
at zero temperature) and can frequently be ignored. This correction accounts for the
temperature dependence of the electrons in the spacer layer, but not the temperature
dependence of the ferromagnetic layers. The low-lying excitations of a ferromagnet
are spin waves, which correspond to time-dependent local rotations in the direction of
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the magnetization rather than its value. These rotations change the relative orientation
of the magnetizations on either side of the interface and hence change the net coupling
between them [4.91]. However, in most measurements, the measurement temperature
is significantly below the Curie temperature so there is not much spin wave excitation.
Thus, it is often a good approximation to ignore the temperature dependence of the
bilinear coupling.

The simplest type of disorder to treat is the effect of thickness fluctuations. In
many samples the spacing between steps at the interfaces is in an intermediate regime.
The spacing is large enough that the description of the coupling for ideal interfaces
holds for the regions between the steps. At the same time, it is small enough compared
to the intralayer domain wall widths in the ferromagnetic layers that the magnetization
directions do not rotate significantly between steps. The consequence of this slight
rotation – biquadratic coupling – is discussed in Sect. 4.4. In this regime, the effective
bilinear coupling is given by the average of the couplings over the different thicknesses
present in the spacer layer. If the coupling for an ideal thickness of n layers of thickness
D0 is J(n) and the probability of having a thickness nD0 for a nominal deposited
thickness of D is P(n, D), the effective coupling strength is

J(D) =
∑

n

P(n, D)J(n) . (4.20)

If the width of the growth front is measured by scanning tunneling microscopy, x-ray
diffraction or some other technique, theoretical coupling strengths can be averaged
to compare with measured strengths.

Steps are not only associated with thickness fluctuations, they are also scattering
centers that cause diffuse scattering, see Fig. 4.7. Steps are one type of interfacial
defect, other types are dislocations that form to relieve heteroepitaxial stress and
interdiffused atoms. The effect of localized interdiffusion has been studied [4.92–
97], but, to my knowledge, the effect of extended defects, like steps and dislocations

Interdiffusion and stepsBulk defect scatteringThickness Fluctuations

D

D

n=6

0

Fig. 4.7. Schematic types of disorder. The left panel shows a multilayer with thickness fluctua-
tions in the spacer layer. Several thicknesses are indicated, D0 is the thickness of an individual
layer, D = 6.5 D0 is the average thickness of the spacer layer, and n = 6 is the number of
layers at one point. The middle panel shows an electron wave reflecting from both interfaces.
Scattering from a bulk defect reduces the amplitude, reducing the interference and hence the
amplitude of the quantum well state. The right panel shows a similar process for a defect
located at one of the interfaces
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has not. Calculations that treat interfacial disorder typically use either a periodic array
of defects or the coherent potential approximation.

Inspection of the asymptotic formula, (4.17) can give a qualitative understanding
of the effects of interdiffusion and defect scattering. When the interdiffusion is
localized to the interface, the properties of the spacer layer do not change, so only
the reflection amplitudes are changed. If the interdiffused atoms are far apart, they
mainly contribute to the incoherent scattering at the expense of the coherent scattering.
This process reduces the reflection amplitudes. The reduction can depend strongly
on spin [4.98] and even on which part of the Fermi surface is involved [4.96].
As the intermixing becomes greater, the interface starts to behave more like an
averaged material and the incoherent scattering from each defect can decrease. Bulk
defects, on the other hand, affect the properties of the spacer layer, and not the
reflection amplitudes (at least to a first approximation). In the asymptotic formula,
(4.17), the effect of bulk scattering could be modeled by adding an imaginary part
to the critical spanning vector. The imaginary part comes from the reduction of the
coherent part of the wave function due to incoherent scattering. One consequence
of incoherent scattering of either type is to reduce the importance of multiple trips
through the spacer and hence make the higher harmonics neglected in (4.10) less
important.

The only type of bulk defect that has been treated theoretically is alloying in
the spacer layer. The effect of the defect scattering due to the alloying is usually
of secondary interest. The main focus of the these studies is to systematically vary
the electronic structure, and hence critical spanning vectors, of the spacer layer to
develop a better understanding of the coupling. Comparison between measurements
[4.52, 99–103] and calculations [4.101–105] of the variation of the coupling periods
as a function of composition gives evidence as to the origin of the coupling. I discuss
this point more below for the case of Fe/Cr.

4.4 Other Coupling Mechanisms

The behavior of magnetic multilayers can be controlled by other coupling mechanisms
besides the bilinear coupling discussed above. Of these, the most important are
various forms of biquadratic coupling, (4.2). This section focuses on the various
extrinsic sources of biquadratic coupling. It also touches on other extrinsic coupling
mechanisms.

There is an intrinsic source of biquadratic coupling that is directly related to the
bilinear coupling [4.106–108]. Computing the full dependence on m̂1 · m̂2 of the
model discussed in Sect. 4.3 rather than just the endpoints, m̂1 · m̂2 = ±1, reveals
that the coupling depends on higher orders of the angle between the magnetizations.
It turns out however, that the higher order terms are much smaller than the bilinear
term, n = 1, and are generally negligible. Further, the biquadratic contribution that
comes from this expansion oscillates between favoring collinear and perpendicular
alignment of the magnetizations. In experiment, biquadratic coupling appears
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to always favor perpendicular alignment. This discrepancy, and the small size of
the intrinsic biquadratic coupling argue in favor of an extrinsic origin for observed
biquadratic coupling.

4.4.1 Thickness-fluctuation Biquadratic Coupling

Typically, intralayer exchange coupling prevents the magnetization direction in the
ferromagnetic layers from rotating too rapidly in space. Thus, in the presence of
variations in the spacer layer thickness, the bilinear coupling gets averaged over the
growth front as described in (4.20). However, the intralayer exchange is not infinite.
The finite intralayer exchange coupling gives a second consequence of thickness
variations – biquadratic coupling.

In this section, I present a version of the result due originally to Slonczewski
[4.11, 33] demonstrating the generation of biquadratic coupling by thickness varia-
tions. The basic idea is quite simple. The biquadratic coupling is an effective coupling
due to fluctuations in the layer magnetizations around their average directions. There
are regions of the multilayer with different coupling strengths (due to different thick-
nesses). Since the intralayer exchange coupling is strong enough that the layers each
have well-defined average magnetization directions, each average direction is deter-
mined by the coupling, the external field, and whatever anisotropies are present. With
the average directions so determined, regions where the coupling would tend towards
greater alignment between the magnetizations balance the regions where the coupling
would tend towards less alignment. However, the intralayer exchange coupling is not
so strong that the system cannot lower its energy by allowing the magnetization in
each region to rotate slightly away from the average towards its preferred direction.
It turns out that these fluctuations give the greatest energy gain when the magnetiza-
tions are perpendicular and no gain when they are collinear. Thus, these fluctuations
give an effective interaction between the average magnetization directions that favors
perpendicular alignment of the average directions.

In the presence of thickness variations, the interlayer exchange coupling J(R)

depends on the position R in the plane of the interface. The average bilinear coupling
is the average of the local bilinear coupling

J1 = 1

A

∫
d2 RJ(R) , (4.21)

where A is the area. The variations in the coupling give an effective biquadratic
coupling between the average magnetizations with the strength [4.109]

J2 = − 1

4A

∫
d2 K

(2π)2

J(K)J(−K)

Aex K
, (4.22)

where Aex is the intralayer exchange coupling constant, K = |K |, and J(K) is the
Fourier transform of the interlayer exchange coupling constant

J(K) =
∫

d2 R eiK ·R(J(R) − J1) . (4.23)

Equation (4.22) can be more easily understood in simple limits.
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Lower Ferromagnet
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Fig. 4.8. Thickness variations and biquadratic coupling. For a trilayer in which the thickness of
the spacer layer varies periodically between n and n+1 layers, the heavy arrows show the local
variation in the magnetization direction. In the regions with an n-layer thick spacer, in which
the coupling is taken to be antiferromagnetic, the magnetizations rotate a little away from each
other. For the n + 1-layer thick regions, in which the coupling is taken to be ferromagnetic,
they rotate toward each other

Consider the simple model in which the spacer layer consists of parallel strips
of width L with alternating thicknesses and hence coupling strengths Jn and Jn+1,
see Fig. 4.8. For this model, the relative angle of the magnetizations is θ = θ0 +
δθ sin(πx/L), where δθ is the size of the fluctuations. Over the region from 0 to L,
where the coupling is Jn , the energy change due to the fluctuations is proportional to
Jnδθ. Over the region from L to 2L, the sine function changes sign and the energy
change due to the fluctuations is proportional to −Jn+1δθ. The net coupling energy
per area due to the fluctuations is proportional to −∆J δθ, where ∆J = Jn − Jn+1.
Fluctuations in the right direction lower the energy of the system. The energy gain is
balanced by the cost in intralayer exchange energy because the magnetization now
varies spatially. Since the intralayer exchange coupling depends on the square of the
gradient of the magnetization, for this simple model, it is proportional to (Aex/L) δθ2.
Combining the changes due to the fluctuations for the interlayer exchange coupling
and the intralayer exchange and finding the minimum with respect to the amplitude of
the fluctuations gives δθ ∝ −∆J/(Aex/L). For this fluctuation amplitude, the change
in the energy per area due to the fluctuations gives the strength of the biquadratic
coupling

J2 ∼ − (∆J )2L

Aex
. (4.24)

This form is also found from (4.22) by inserting the specific form of J(R).
While (4.24) is quite simple, its qualitative features generalize to more realistic

situations. In real systems, the stripes are replaced by arbitrary-shaped terraces of
different thicknesses, still, there is usually a characteristic length scale L that deter-
mines the biquadratic coupling. The biquadratic coupling strength increases when this
length scale increases because the fluctuations can get larger. However, if the terraces
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get too large, the fluctuations get large enough that the average direction loses its
meaning. Also, more than two thicknesses are generally present in the growth front,
but that just introduces an effective ∆J . The coupling increases as the difference in
the coupling for the different terraces get larger. The differences tend to be largest
when the coupling is oscillating rapidly, that is when there is short period coupling.
The coupling gets weaker as the intralayer exchange interaction increases because
exchange suppresses the fluctuations in magnetization direction that lower the energy.

The form for the biquadratic coupling in (4.22) has been derived for semi-infinite
ferromagnetic layers. In the opposite limit, in which the thicknesses of the upper and
lower ferromagnetic layers, tU/L, are thinner than the length scale of the important
fluctuations, L, an additional factor of K−1(t−1

U + t−1
L )/2 should be included in the

integrand of the coefficient of the biquadratic coupling. The biquadratic coupling
gets stronger as the films become thinner because the exchange-energy penalty gets
smaller, allowing the fluctuations to get larger. In this limit, the result for the simple
model, (4.24) gets an additional factor of (L/tU) + (L/tL).

While short period oscillations in the bilinear coupling favor the generation of
biquadratic coupling, short period coupling is not necessary. In fact, the bilinear
coupling does not even need to change sign to give a biquadratic contribution to the
coupling. This last point may seem surprising, because on first glance it does not
appear that there is any frustration in the system. However, when the applied field is
such that the magnetizations are not collinear, there is still a balance between regions
that would rotate closer to perpendicular and those that would rotate further away.

Finally, to be in the limit that the average magnetization direction is well defined,
the biquadratic coupling must be weaker than the absolute value of the unaveraged
bilinear coupling. However, the biquadratic coupling can be stronger than the aver-
aged bilinear coupling when couplings of different sign are present in the growth
front, because the effective bilinear coupling is averaged over the growth front.

Strong evidence for this mechanism of biquadratic coupling comes from wedged
Cr spacer layers on Fe whiskers [4.110]. Cr has a short period bilinear coupling
that is almost commensurate with the lattice. There is a node in the short period
coupling when the number of layers is n0 ≈ 24 where the coupling strength behaves
roughly like Jn ∼ (n −n0)(−1)n [4.30, 110]. In samples that show these short period
oscillations, regions of parallel alignment are separated from regions of antiparallel
alignment by regions of perpendicular alignment. If we assume perfect layer by
layer growth, the average bilinear coupling varies linearly between complete layers.
Somewhere between the two thicknesses of complete layers the coupling goes through
zero. Near this thickness, the biquadratic coupling dominates the averaged bilinear
coupling. The width of this region is roughly determined by the strength of the
biquadratic coupling at the halfway point divided by the slope of the linearly varying
bilinear coupling. For bilinear coupling that goes to zero near the node, the width
of the biquadratically coupled regions goes to zero linearly around the node in the
coupling, W ∼ |n − n0|.

If the sample is grown at a lower temperature, the thickness fluctuations are
greater and the short period bilinear coupling is obscured. A long period coupling
reveals itself. In the regions where the long period coupling goes through zero, the
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average bilinear coupling also varies linearly, but with a slope that is not related
to the short period coupling. In this case, the width of the transition region goes
to zero quadratically near the node in the otherwise obscured bilinear coupling,
W ∼ (n − n0)

2. Within experimental uncertainty, both the linear and quadratic
variation of the transition widths are observed in the appropriate samples [4.110].

4.4.2 Pin-hole Coupling

The simplest coupling that competes with the interlayer exchange coupling is the
coupling due to the presence of pinholes. A pinhole, in this context, is a break in
the spacer layer giving direct exchange coupling between the two ferromagnetic
layers. Since there is direct contact between the ferromagnetic layers, pin-hole cou-
pling is ferromagnetic. Historically, early attempts to separate ferromagnetic layers
by a non-magnetic layer were frustrated by the presence of pinholes. It was the ob-
servation of antiferromagnetic coupling in 1986 [4.1] that gave convincing evidence
that some coupling besides pin-holes was dominant. Even when pin-hole coupling
does not dominate the bilinear coupling, it can cause biquadratic coupling when the
bilinear coupling is antiferromagnetic [4.111]. This mechanism is closely related to
the thickness-fluctuation-induced biquadratic coupling, but requires an appropriate
distribution of pinholes rather than a distribution of thicknesses with appropriate
couplings.

4.4.3 Magnetostatic Coupling

Magnetostatic interactions make two types of contributions to the properties of mag-
netic multilayers, macroscopic and microscopic. The main macroscopic contribution
is a demagnetizing factor that gives a strong anisotropy to keep the magnetizations
in plane. Since other macroscopic magnetostatic effects are negligible on thin film
samples, all macroscopic magnetostatic effects are typically replaced by an effective
uniaxial anisotropy that pushes the moments in plane. On the other hand, in patterned
thin film samples, with reduced lateral dimensions, the macroscopic magnetostatic
interactions can become quite important.

There are two coupling mechanisms that arise from magnetostatic interactions
on a microscopic scale. Both are related to the roughness of the thin films. A ferro-
magnetic coupling, originally described by Néel [4.112], is frequently called “orange
peel” coupling [4.113–117]. More recently, Demokritov et al. [4.118] demonstrated
that roughness and magnetostatic interactions can give a biquadratic coupling. Both
of these couplings come from the fringing fields that exist outside the surface due to
roughness.

When a surface is rough, there are magnetic poles at the surface because the
intralayer exchange is strong enough to prevent the magnetization from rotating and
following the surface profile. A useful limit, at least from a pedagogical point of
view, is where the roughness of the interfaces is slowly varying and much smaller in
amplitude than the separation of the interfaces. Slowly varying implies that the local
surface normal is always close to the average surface normal. Then, it is possible
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to replace the magnetostatics of the rough interfaces by a distribution of magnetic
“charges” on a flat surface

σ(R) = M · n(R) . (4.25)

Here, the magnetization M is assumed to be uniform, and the local normal to the
interface n varies with local (two-dimensional) position R on the surface. This surface
charge density describes a flat approximation for a rough interface. By analogy
with electrostatics, the interaction between two such interfaces separated by a non-
magnetic spacer layer of thickness D is

E = µ0

∫
d2 R

∫
d2 R′ σU(R)σL(R′)√

D2 + (R − R′)2
, (4.26)

where U(L) denotes the upper (lower) interface. Orange peel coupling arises in
situations where the spacer layer has a uniform thickness. In this case, frequently
described as having conformal or correlated roughness, the interface normals are
locally opposite, nU = −nL = n. When there is no preferred direction to the
roughness, the interaction becomes [4.109]

J1 = µ0 M2
s

4π

∫
d2 K |n⊥(K)|2 e−K D

K
, (4.27)

where n⊥(K) is the Fourier transform of the part of the local normal that is transverse
to the average normal. Since the magnetizations are assumed to be in-plane, only the
transverse component contributes. This bilinear coupling is the orange-peel coupling
described by Néel.

Equation (4.27) can be made more intuitive by considering the case of sinusoidally
varying interfaces, zL = δ cos(2πx/L) and zU = D + δ cos(2πx/L), see Fig. 4.9.
When the magnetization in one layer is perpendicular to the corrugation, i.e. along x̂
in this case, there is ferromagnetic coupling to the other layer with strength

J1 ∼ µ0 M2
s
δ2

L
e−2πD/L . (4.28)

When the magnetization in one layer is along the corrugation, i.e. along ŷ, rather
than perpendicular, there is no coupling to the other layer. The dependence on the
absolute directions of the magnetizations, rather than just the relative orientation
is a consequence of directionality of the roughness in this simple model. Fully
isotropic roughness gives a true ferromagnetic bilinear coupling. Since this coupling
depends exponentially on the thickness of the spacer layer, the dominant roughness
will tend to have periods somewhat greater than the spacer layer thickness. As
the roughness increases, the coupling energy increases quadratically, just as the
electrostatic interaction between two equal charges increases as the square of the
charges. Both the general expression and the model result break down when the
thickness of the spacer layer goes to zero because the roughness is no longer small
compared to the spacer layer thickness.
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Fig. 4.9. Orange peel coupling from correlated roughness. The left panel shows the fringing
field outside a rough surface of a material with a uniform magnetization. The pluses and
minuses are the effective magnetic “charges.” The middle panel shows how the fringing fields
change in the presence of another interface with correlated roughness for the case of parallel
magnetizations. The right panel shows that for antiparallel magnetizations, none of the field
lines cross the center line, raising the field energy

When the roughness is uncorrelated, the orange-peel coupling is zero, but there
is still a microscopic magnetostatic contribution to biquadratic coupling. In the limit
that the magnetizations are uniform, the energy is independent of the relative mag-
netization directions when the roughness is uncorrelated and there is no coupling.
However, when the intralayer exchange coupling is finite so that the magnetization
directions can fluctuate, there will be biquadratic coupling. Above, I argued that when
thickness fluctuations give spatial variations in the bilinear coupling, fluctuations in
the magnetization direction can lower the energy. Here also, fluctuations in the mag-
netization direction can lower the energy. In both cases, the fluctuations lower the
energy the most when the two magnetizations are nominally perpendicular.

Above a rough surface, magnetic charges give rise to a magnetic field which
couples to the magnetization of the upper film. The magnetic field due to roughness
in the lower interface is

B(r) = µ0

∫
d2 K

(2π)2

k
iK

eiK ·R e−Kz
∫

d2 R′ e−iK ·R′
σL(R′) , (4.29)

where K is a two-dimensional wave vector in the plane of the interface and k =
(K , i|K |) is a complex three dimensional wave vector. The interaction between the
rough lower layer and a semi-infinite upper layer is

E = −
∫

d2 R

∞∫
D

dzMU(r) · BL(r) . (4.30)

Note that this interaction is not between the charges on the two interfaces, but between
the charges on one interface and the whole volume of the other layer. Responding
to variations in BL(r), fluctuations in MU(r) lower the magnetostatic energy at the
expense of raising the exchange energy. The net lowering of the energy due to the
fluctuations is greatest when the magnetizations are perpendicular. Assuming that the
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roughness has no preferred direction, the resulting biquadratic coupling has the form
[4.109]

J2 = − µ2
0 M4

s

64Aex A

∫
d2 K

(2π)2

e−2K D

K 3
|n⊥(K)|2 . (4.31)

This energy gives a biquadratic coupling that favors perpendicular alignment of upper
and lower magnetizations. If the upper surface is rough, there will be an equivalent
contribution from the magnetic poles in the upper interface coupling to the lower
layer.

For a simple model with one corrugated interface, zL = δ cos(2πx/L), and one
smooth interface zU = D, see Fig. 4.10, (4.31) gives

J2 ∼ −µ2
0 M4

s Lδ2

Aex
e−4πD/L , (4.32)

provided the lower magnetization is perpendicular to the corrugation. This interaction
favors very long period roughness. When the ferromagnetic films have finite thick-
nesses, this contribution to the biquadratic coupling becomes weaker, the opposite
behavior from that found for the biquadratic coupling in (4.24). In the latter case,
the thinner ferromagnetic films allow the fluctuations to increase because the driving
force for the fluctuations acts only at the interface. On the other hand, in (4.31) the
driving force for the fluctuations acts throughout film, so that making the film thinner
reduces the net effect of the fluctuations.

Evidence for this mechanism of biquadratic coupling comes from measurements
of its thickness dependence [4.119] in Fe/Ag/Fe samples grown on GaAs. The authors
compared the experimental results with a model equivalent to (4.31) and found
good agreement using roughness parameters consistent with the measured roughness.
Additional evidence comes from the observation that for most wedges grown on Fe
whiskers, biquadratic coupling dominates in the thickest parts of the wedge [4.120].
Here, other mechanisms are expected to become weaker as spacer layers become

Fig. 4.10. Biquadratic coupling from uncorrelated roughness. The fringing fields from the
bottom, corrugated surface couple to the perpendicular magnetization in the smooth upper
layer giving small amplitude oscillations in the magnetization direction
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thicker. The magnetostatic coupling is dominated by long wavelength roughness
making the exponential damping less effective at limiting the coupling. For thick
spacer layers, where other interactions have become small, this form of biquadratic
coupling is likely to be the dominant interaction.

A study of an amorphous spacer layer showed evidence for both orange-peel
coupling and magnetostaic biquadratic coupling [4.121]. For thin layers, the mag-
netizations of the two layers are parallel in the ground state, but as the thickness of
the spacer increases, the alignment crosses over to perpendicular. The authors were
able to fit the results to a combination of these two coupling measurements using
a roughness consistent with that measured by scanning tunneling microscopy.

4.4.4 Loose Spins

Many measurements of biquadratic coupling show a very strong temperature de-
pendence. On the other hand, the bilinear coupling and the magnetization generally
vary slowly with temperature, so that inserting their temperature dependence into the
expressions for biquadratic coupling, (4.22) and (4.31), gives only weak dependence.
Slonczewski [4.122] has developed a “loose spin” mechanism that does show a strong
temperature dependence. While the argument that the other types of coupling do not
show a strong temperature dependence may be overly simplistic, the loose spin model
has been established in samples constructed specifically to test for it.

To produce a strong temperature dependence, Slonczewski postulates the exis-
tence of magnetic moments (spins) that are only weakly coupled to the magnetic
layers. There is no direct exchange coupling, only the indirect exchange coupling
mediated by the spacer layer electrons. These weakly coupled spins are paramag-
netic. However, they see a potential that is anisotropic due to their coupling to the
magnetic layers

V(m̂) = JL M̂L · m̂ + JU M̂U · m̂ , (4.33)

where L (U) refers to the lower (upper) layer. Note that the potential depends on
the relative orientation of the magnetizations of the two layers. To see the origin of
biquadratic coupling, consider a zero-temperature, classical treatment of the loose
spin. At zero temperature, a classical spin will be in its minimum energy config-
uration. Since the energy of the minimum depends on the relative orientation of
the layer magnetizations, the loose spin contributes an effective interaction between
magnetizations which can be expanded in powers of the relative orientation

J =
∞∑

n=1

(−1)n Nn
(JL JU)n

(J2
L + J2

U)n−1/2
(M̂L · M̂U)n . (4.34)

The bilinear term, n = 1 favors either parallel or antiparallel alignment of the
magnetizations depending on the relative sign of JL and JU. The biquadratic piece
always favors perpendicular alignment. The numerical factors Nn are such that the
bilinear term always wins. A single loose spin always gives a dominant bilinear
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coupling. However, for a collection of loose spins, the signs of JL and JU can vary. In
this case, the bilinear contributions may cancel out, leaving a dominant biquadratic
coupling.

At finite temperature, the fraction of the time each spin spends close to its mini-
mum energy orientation depends strongly on temperature. Its paramagnetic behavior
gives a strong temperature dependence to the coupling, (4.34). At temperatures high
compared to the potential minimum, the spin will have an isotropic orientation dis-
tribution, and the effective coupling mediated by the loose spin will go to zero.
Since the loose spin is not directly coupled to the magnetic layer, the temperature
scale of the coupling will be much lower than the Curie temperature of the magnetic
layers.

The existence of this coupling mechanism has been tested in experiments in which
magnetic atoms have been intentionally introduced at low densities into the spacer
layer [4.123–125]. Agreement with the loose spin model was found in [4.125]; this
experiment used the lowest density of loose spins. The authors speculate that the
higher densities used in the other publications obscured the behavior expected from
the model.

4.4.5 Torsion Model

If the spacer layer is antiferromagnetic, none of the models discussed above are suffi-
cient to describe the coupling. For ideal multilayers, the coupling is simply the result
of the direct coupling from layer to layer in the antiferromagnet. However, it is impos-
sible to avoid thickness fluctuations so the coupling will be frustrated. Slonczewski
introduced the “torsion model” [4.11] to describe frustrated antiferromagnetic spacer
layers.

The torsion model is based on the following model of the behavior for an ideal
system of two ferromagnetic layers separated by an antiferromagnetic spacer. All
moments are assumed to remain in plane, and can be described by an azimuthal
angle φ j . When the relative directions of the magnetizations in the ferromagnets
are rotated way from their minimum energy configuration, a spiral winds up in the
antiferromagnet. For an n + 1 layer spacer, taking n to be even for the present,
the minimum energy angles for the ferromagnetic layer are φL = φU. When the
magnetization of the top layer is rotated through an angle ∆φ , the magnetizations in
the jth layer in the antiferromagnet are

φ j = j
∆φ

n + 2
+ φAF

j . (4.35)

The first term gives the spiraling of the magnetization, and the second term,
φAF

j = 0, π for j even or odd, gives the antiferromagnetic reversal from layer
to layer. I have assumed that the exchange interaction between the ferromagnetic
layer and the antiferromagnetic layer is the same as the exchange between lay-
ers in the antiferromagnet. The exchange energy due to the spiral structure is
−(n + 2)JAF cos(∆φ/(n + 2)). When n is large enough, a small angle expansion of
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this energy gives a constant term plus

En+1 = JAF

2(n + 2)
(∆φ)2 . (4.36)

For an n layer spacer, the minimum energy configuration has φL = φU + π. If the
magnetization of the upper layer is rotated so that it makes an angle ∆φ with respect
to magnetization of the lower layer, the energy is

En = JAF

2(n + 1)
(π − ∆φ)2 . (4.37)

When n is large enough that this model does not break down, both of these energies
vary quadratically in the rotation angle rather than as the cosine of the rotation angle.

If the growth front has areas of thickness n and n + 1, the coupling will be
frustrated. In terms of the fractional area of thickness n, θn , the net coupling energy
is

J = θn+1
JAF

2(n + 2)
(∆φ)2 + θn

JAF

2(n + 1)
(π − ∆φ)2 . (4.38)

The quadratic dependence leads to different behavior in the presence of thickness fluc-
tuations than was found for the cosine dependence of the usual bilinear coupling. For
the case of bilinear coupling, the net bilinear coupling can dominate the biquadratic
coupling giving parallel or antiparallel alignment. Such collinear alignment will per-
sist up to some finite amount of interfacial roughness. In the torsion model, any
roughness leads to non-collinear coupling, although the degree of non-collinearity
can be small.

The torsion model is based on the assumption that nearest-neighbor direct ex-
change adequately describes the coupling in the antiferromagnet and the coupling
of the antiferromagnet to the ferromagnet. It has been shown [4.126] that it is nec-
essary to include many distant neighbors to describe the spin-wave spectrum of
transition metal ferromagnets. It is also clear that such a description is not adequate
for an incommensurate antiferromagnet like Cr [4.110, 127]. On the other hand, this
model appears to describe Mn spacer layers well [4.128–134] even though a simple
nearest-neighbor-exchange model may not be valid.

4.5 Specific Systems

In this section I discuss selected systems that illustrate many of the important issues
in interlayer exchange coupling. For a more complete comparison between theory
and experiment, see [4.13]. For a comprehensive compilation of experimental and
theoretical results, see [4.15]. Both those reviews emphasize transition metal systems.
For reviews of work on rare earths, see [4.135, 136].
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4.5.1 Co/Cu

One of the most extensively studied system is Co/Cu, particularly the (100) ori-
entation. It exhibits many of the difficulties encountered when comparing theory
and experiment. In spite of these difficulties, a general consensus of the theoreti-
cal behavior has emerged based on total energy calculations as well as asymptotic
(and preasymptotic) analyses [4.67, 69, 73, 74, 81, 82, 137–140]. As is known from
the analysis of the experimental Fermi surface [4.40], there are two different critical
spanning vectors, one associated with the interface zone center that gives a long
period oscillation, and one associated with the necks that gives a short period. In the
asymptotic regime, the long period oscillation is weak and the short period oscillation
is relatively strong. However, for smaller thicknesses, where most experimental mea-
surements are made, preasymptotic corrections become very important and change
the asymptotic results quite dramatically.

At the critical point for the long period coupling, the reflection amplitudes for
both spins are quite small, hence the weak asymptotic coupling. However for parallel
wave vectors close to the critical point, the minority-electron reflection becomes close
to unity, see Fig. 4.11. As mentioned above in the discussion following (4.13), the
parallel wave vectors around the critical point within a region ≈ κ/D contribute to the
coupling. Thus as D becomes smaller, the regions with strong reflection contribute
to the long period oscillation with preasymptotic corrections, which decay as higher
powers of D−1. For thin spacer layers, the long period coupling strength is found to
be substantial. In addition, since the parts of the Fermi surface making the dominant
contribution to the oscillatory coupling have shorter spanning vectors, the apparent
period is changed for thin spacer layers as well. Such variation in the periods are
generally present, but become more important when the asymptotic coupling is weak
and the preasymptotic corrections are significant.
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Fig. 4.11. Spin-dependent reflection from Co/Cu(001). The left and right panels show the
Fermi surface of Cu shaded based on the reflection probability from Co for majority and
minority electrons respectively. The shading scale is given at the top. The Fermi surfaces are
projected into the Interface Brillouin zone. The middle panel shows a slice through the Fermi
surface and indicates the critical spanning vectors. The projection of the critical spanning
vectors are indicated by circles in the left and right panels
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Fig. 4.12. Band structures of Co and Cu. The band structures are shown along the line in the
(100) direction through the critical point for the short period coupling. States along this line
are either even (solid lines) or odd (dotted lines) with respect to a mirror plane. The two do not
couple to each other during reflection and transmission. Thus, electrons at the Fermi energy
in Cu see a symmetry gap if they have minority spin, and completely reflect. The phase of the
reflection amplitude varies by π from the bottom to the top of the gap. Since the gap is less
than 2 eV, the phase variation is substantial

Different preasymptotic corrections are important for the short period oscillation
in the coupling. At the necks, the reflection probability for the minority electrons is
quite strong because there is a symmetry gap for the states in the Co with the symmetry
of those on the Cu Fermi surface. However, the gap is fairly narrow in energy. Since
the phase of the reflection amplitude changes by π as a function of energy when going
from the bottom of a gap to the top, the reflection amplitude (but not the reflection
probability) has a strong energy dependence. Evidence for this rapid variation of the
phase of the reflection amplitude has been seen in photoemission studies of Cu on Co
[4.141]. In carrying out the energy integration in (4.9), I have neglected the energy
dependence of the reflection amplitude. For thin layers, the phase variation of the
reflection amplitude makes a substantial correction to the strength of the coupling,
typically reducing it.

From these theoretical arguments, analyzing experimental data in terms of the
form (4.17) cannot be expected to give meaningful results unless the spacer layer
thicknesses are in the regime in which the asymptotic approximation is valid. Most
measurements [4.22–24, 87, 142, 143] are made in the opposite limit. In addition, the
roughness of the interfaces can apparently vary significantly from measurement to
measurement, hence the sample-to-sample variation found by Weber et al. [4.87].
The varying roughness and the importance of preasymptotic corrections explains
the wide variation in the measured periods for the long period oscillation given in
Table 4.1. Due to the unmeasured effect of interface roughness, it is not surprising
that the measured values of the coupling strength are at least a factor of three smaller
than the equivalent theoretical results.
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4.5.2 Au/Fe and Ag/Fe

As shown in Table 4.1, the periods measured for Au/Fe and Ag/Fe trilayers [4.7, 86]
grown on Fe whiskers are in remarkable agreement with those predicted from the
experimental Fermi surface [4.40]. To measure the coupling strengths, Unguris et
al. [4.144] used MOKE to measure the coupling strength for Au/Fe on similar
samples. The samples were first characterized in zero field by SEMPA, including
a measurement of the RHEED intensity oscillations to determine the width of the
growth front. Using the measured width of the growth front in their analysis, they
were able to correct for the averaging of the coupling due to roughness, (4.20).
Fitting the measured coupling strength to the asymptotic form (4.17), they deter-
mined the coupling strengths [4.145], JS/(1 nm)2 = 1.29 mJ/m2 ± 0.16 mJ/m2 and
JL/(1 nm)2 = 0.18 mJ/m2 ± 0.02 mJ/m2. The coupling strength has been measured
for Ag/Fe [4.146], but has not been analyzed in terms of the asymptotic form.

There have been far fewer calculations of the coupling for Au/Fe than for Co/Cu
[4.74, 96, 147, 148]. Calculations, which predated the experimental results, of the
asymptotic coupling strengths [4.74] gave 2.0 mJ/m2 and 1.1 mJ/m2 for the short
and long periods respectively. The short period coupling strength is within a factor
of two the experimental result, but the long period coupling is about a factor of six
larger. Recent total energy calculations [4.96] have cast doubt even on this agreement
for the short period coupling. These calculations were analyzed, like the experiment,
to extract the effective asymptotic coupling strengths. The extracted values [4.149],
3.4 mJ/m2 and 1.1 mJ/m2 were considerably larger than the experiment for both
periods.

There are several possible reasons for the discrepancy in the calculations of
the short period coupling strength. At the critical point for the short period, the
reflection amplitudes are changing rapidly, which introduces two possible reasons
for disagreement. As there has not been an analysis of the preasymptotic corrections
for this system, it may be the total energy calculations are not in the asymptotic
limit. More likely, the small errors in the Fermi surface as computed in the layer
matching calculation [4.74] may give much larger errors in the coupling due to
the rapid variation in the reflection amplitudes. If this explanation is correct, some
uncertainty remains is both calculations due to the small errors introduced by the local
spin density approximation. Alternatively, the difference may be due to the different
treatment of the ferromagnetic layers, semi-infinite for the asymptotic calculation
and finite for the total energy calculation. However, total energy calculations [4.96]
in which the ferromagnetic thickness is varied at fixed spacer thickness do not show
significant variation.

The common explanation for disagreement between theory and experiment, thick-
ness fluctuations, does not apply to the measurements on this system for two reasons.
First, they have been accounted for in the extraction of the coupling strengths from
experiment. In addition, thickness fluctuations reduce the short period coupling more
than the long period coupling. But to bring the theoretical results into agreement
with the measured results, the long period strength needs to be reduced more than
that of the short period. Optiz et al. [4.96] looked at the effect of interfacial defects



132 M. D. Stiles

on the coupling. They found that Au atoms that are interdiffused into the top Fe
layer suppress the long period coupling much more strongly than the short period
coupling. Such behavior could bring the theoretical results into better agreement with
experiment. Au “floating” on top of Fe during growth has been observed [4.150],
making it plausible that there is interdiffusion at the interface.

Other total energy calculations [4.147, 148] for this system have not been analyzed
in terms of the asymptotic form making it difficult to compare them with experiment
or other calculations. Since the effective periods extracted from [4.148] disagree by
up to 10% from the results of [4.96], it is difficult to compare total energies directly,
because the calculations get out of phase with each other. The authors find that the
calculated peak positions and relative heights agree well (overall heights disagree by
an order of magnitude) with those measured for Au/Fe multilayers grown on GaAs
[4.29]. However, there is substantial disagreement between the results for samples
grown on GaAs and those grown on an Fe whisker.

There has been one calculation of the asymptotic coupling for Ag/Fe [4.74].
Since the experimental results [4.146] have not been analyzed in terms of the asymp-
totic form, a detailed comparison is difficult. Roughly, the measured and calculated
couplings are close in magnitude.

4.5.3 Cr/Fe

The other intensively studied system is Cr/Fe, particularly the (100) orientation. Cr/Fe
was the first transition metal multilayer system to show interlayer exchange coupling
[4.1], one of the first the show oscillatory interlayer exchange coupling [4.6], and the
first to show short period coupling [4.25–27]. Much of the interest In Cr/Fe is due to
the close lattice match between Cr and Fe, better than any other transition metal pair
(excluding the noble metals discussed above). In addition, Cr/Fe exhibits extremely
complicated behavior, much of which arises from the presence of spin-density-wave
antiferromagnetism in the Cr. There have been three review articles [4.110, 151, 152]
devoted at least in part to this issue. It is interesting to read all three to compare the
interpretation of the same symphony by three different conductors.

In Cr, there are a number of competing phases: paramagnetic, commensurate spin-
density wave, incommensurate spin-density wave, and helical spin-density wave. The
incommensurate spin-density wave can be longitudinal or transverse. The order prop-
agation vector can be perpendicular to the interface or in the plane of the interface.
In bulk Cr, the equilibrium phases are (in order of decreasing temperature): param-
agnetic, transverse incommensurate spin-density wave, and longitudinal incommen-
surate spin-density wave. The equilibrium phase is sensitive to alloying and strain as
well as coupling to one or more layers of ferromagnetic Fe. It can be very difficult to
distinguish between the different phases experimentally.

Taken at face value, many measurements of Cr/Fe are contradictory. However,
it has become clear that the differences arise from the sensitivity of the antiferro-
magnetic order in Cr to the presence of disorder, particularly at the interfaces. It is
possible to construct a consistent picture to explain much of the various behaviors,
but it is very difficult to check the picture with detailed theoretical calculations.
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Approaches, like model free energies [4.153], that are capable of describing the tem-
perature dependence of the antiferromagnetism in bulk Cr are not flexible enough
to realistically describe the behavior near defects. Calculations that can microscop-
ically treat the effect of disorder, like tight-binding approximations [4.71, 154, 155]
or LSDA calculations [4.156–159], are either not capable of describing the bulk be-
havior (tight-binding) or far too computationally expensive to treat relevant system
sizes including defects (LSDA).

There are several measurements on this system that make it clear that the model
discussed in Sect. 4.3 for the interlayer exchange coupling is not adequate to describe
the short period coupling in Cr/Fe multilayers. Antiferromagnetism in the Cr has
been seen directly by neutron scattering [4.160, 161]. The temperature and thickness
dependence of the coupling [4.25, 153] has established that the spin-density wave
state plays a role in the coupling for at least some systems. While many of the other
measurements can be qualitatively understood, the lack of quantitative test of the
explanations leaves much of the behavior open to interpretation. I would expect that
experiments that test our understanding of Cr/Fe will give many more surprises.
However, such experiments can be quite difficult.

Thickness fluctuations obscure the short period oscillations when samples are
grown in less than optimal conditions, frequently revealing a long period coupling
[4.25, 26, 162]. The long period coupling is of interest because it is the only well
characterized oscillatory coupling in a lattice-matched system with something besides
a noble metal as a spacer layer. Cr has a complicated Fermi surface with a large number
of critical spanning vectors [4.66, 88, 89, 163]. There have been a number of proposals
for the origin of the long period coupling [4.101, 157, 164]. Based on asymptotic
coupling calculations, analysis of the Fermi surface measured in de Haas-van Alphen
measurements, and studies of alloyed spacer layers, a consensus has formed that
the ellipsoids centered at the N-point of the Cr Brillouin zone (see Fig. 4.13) are
responsible for the coupling. The periods extracted from the de Haas-van Alphen
measurements in Table 4.1 are from the N-centered ellipsoids.

Studies [4.102, 103] of Cr1−xVx alloy spacer layers are based on the fact that this
alloy modifies the electronic structure (and hence the Fermi surface) without intro-
ducing so much bulk scattering that the interlayer exchange coupling is eliminated.
Then, the evolution of the period of the oscillatory coupling can be compared with
the calculated evolution of the Fermi surface. Both of these studies showed that the
period decreased with V concentration and that the only part of the Fermi surface
that grew in an appropriate manner was the N-centered ellipsoid.

Further evidence favoring the N-centered ellipsoids was found in experiments
[4.165] in which a Au layer was inserted at one of the interfaces in an Fe/Cr multi-
layer. The long period coupling was dramatically reduced relative to the short period
coupling. The Au Fermi surface covers most of the Brillouin zone, overlapping most
of the critical spanning vectors of Cr Fermi surface, but it does not overlap the critical
points for the N-centered ellipsoids. The authors attribute the strong suppression of
the long period coupling to the exponential decay of the quantum well states in the
gap.
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Fig. 4.13. Slice through the Cr Fermi surface. The left panel shows a representation of the Cr
Fermi surface in its paramagnetic state. The gray shaded parts are the ellipsoids centered at
the N points. Also indicated is a slice through the Fermi surface, which in turn is shown in
the right panel. The gray shaded arrows are the critical spanning vectors at the N-centered
ellipsoids and the white arrows indicate the nested parts of the Fermi surface that give rise to
the spin density wave antiferromagnetism

The same oscillation period was observed in (112) oriented systems [4.90, 166] as
in (100) oriented systems and (110) textured systems grown by sputtering [4.6]. The
similarity led to speculation that the oscillation did not originate from Fermi surface
properties. However, it turns out that asymptotic coupling calculations, analysis of
the Fermi surface measured in de Haas-van Alphen measurements, and studies of
alloyed spacer layers all suggest that the N-centered ellipsoids are the origin of the
coupling in all three cases.

4.5.4 Fe/Si

While the model presented above has been derived specifically for metallic spacers
layers, it has also been extended to insulating or semiconducting spacer layers [4.67].
The oscillatory coupling is replaced by an exponentially decaying coupling. However,
because the preasymptotic corrections may be important, it is conceivable that the
sign of the coupling may change once or even twice as a function of spacer layer
thickness. The idea of studying coupling through an insulating layer started [4.167]
a large effort in studying coupling through Si and related spacers layers. Here, related
refers to the fact the Fe and Si have a strong propensity [4.168–171] to form silicides.
Much of the effort derives from the fact that many different spacers may develop
when these materials combine. Because different silicides can form, it can be very
difficult to know what spacer layer is being measured.

There have been a large variety of effects measured. Coupling can be induced
by light [4.172] or heat [4.173]. In some structures, biquadratic coupling dominates
[4.174, 175], while in some structures with FeSi spacer layers, an oscillatory bilinear
coupling has been observed [4.176]. In a series of nominally pure Si spacer layers
a very strong, exponentially decaying coupling decaying coupling has been mea-
sured [4.177], consistent with predictions for insulating spacer layers, which was
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the original motivation for studying this system. There is apparently still significant
disagreement between results in different laboratories and more work needs to be
done before these systems are well understood.

4.6 Summary

This review, written from a theorist’s point of view, has focused on the physical mech-
anisms for interlayer coupling in magnetic multilayers. A simple physical picture for
interlayer exchange coupling has evolved over the last decade. Spin dependent reflec-
tion from the interfaces in multilayers sets up spin-dependent quantum well states.
These quantum well states evolve in energy as the thickness of the spacer layer is
varied. As these states pass through the Fermi energy, they fill or empty, changing
the energy of the multilayer. These changes are periodic because the quantum well
states cross the Fermi energy with a period determined by the Fermi surface of the
spacer layer material. At critical points of this Fermi surface, many quantum well
states have the same period giving a net oscillatory contribution to the energy. Since
the reflection is spin dependent, the energy depends on the relative orientation of the
layer magnetizations, i.e., there is an energy difference between parallel and antipar-
allel alignment of the magnetizations. This energy difference is just the interlayer
exchange coupling. It has oscillatory contributions with periods determined by the
critical spanning vectors of the spacer layer Fermi surface and strengths determined
by the spin-dependent reflection at the interfaces.

This picture for the interlayer exchange coupling has been tested to an extent
much greater than the related RKKY coupling between magnetic impurities. For
some systems, the periods have been measured to 3% accuracy. The measured peri-
ods agree with those expected from the critical spanning vectors of the Fermi surfaces
measured in de Haas-van Alphen experiments. The coupling strengths have been in-
vestigated by a number of theoretical techniques and have been measured in carefully
prepared samples. There is no completely satisfactory comparison between theory
and experiment because there is no system in which a complete characterization of
the structure, including all of the defects, has been made. However, enough is under-
stood about the likely defects and their effect on the coupling to give confidence that
the physics is correctly described.

While defects confound our ability to compare theory and experiment for the
bilinear coupling, they are the origin of biquadratic coupling. Biquadratic coupling,
which derives from several mechanisms, appears to be present to some degree in all
magnetic multilayers. Two mechanisms arise from interfacial roughness. In one case
interfacial roughness gives rise to fluctuations in the strength of the bilinear coupling.
In the other it gives rise to an oscillating magnetic field outside the interface. In both
cases, the system can lower its energy by allowing the magnetization of the layers to
fluctuate in response to the roughness induced variations. The system can lower its
energy the most when the two magnetizations are perpendicular to each other, giving
an effective coupling that favors perpendicular alignment of the magnetizations.
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The study of interlayer exchange coupling has flourished for the past decade
and a half. We have developed a clear physical description of the coupling and
have successfully compared its predictions with high quality measurements. While
very successful, the comparison between theory and experiment is not complete
and interesting issues still remain. Successfully addressing these issues requires
measuring the coupling in systems that are as close to perfect as possible and then
quantitatively measuring all the defects that remain. On the theoretical side, it requires
explicitly treating the measured defects. Both aspects of understanding defects are
quite difficult and require substantial effort.
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5

Spin Relaxation in Magnetic Metallic Layers
and Multilayers

B. Heinrich

5.1 Introduction

Spintronics and high density magnetic recording employ fast magnetization reversal
processes. It is currently of considerable interest to acquire a thorough understanding
of the spin dynamics and magnetic relaxation processes in the nano-second time
regime. The purpose of this chapter is to review the basic concepts of magnetic re-
laxation with emphasis on metallic ferromagnets. It is fair to say that even among
people working in magnetic dynamics the concepts and understanding of spin dynam-
ics in ferromagnetic metals are rather fragmented and lead to interpretations which
are often discussed by the parties involved with a flare of passion. There is a good
reason for that. The magnetic damping is sample dependent. It is not an intrinsic
property of materials; it depends on noise in the system. However, we do describe
the magnetic damping in terms of intrinsic and extrinsic properties. The reason is
that some relaxation processes are unavoidable. At finite temperatures the scatter-
ing of spin waves (magnetic excitations) with electrons and phonons is an integral
part of the system. These processes are called intrinsic. The presence of structural
and compositional defects leads also to relaxation processes, and they are labelled
extrinsic contributions. In the finite sized samples one investigates an assembly of
modes and the dynamic response is strongly affected by mode-mode coupling. The
origin of the intrinsic damping in metallic ferromagnets is often misunderstood. The
reason for that is mostly historical. The scientists working in magnetic dynamics
often come with a background in studying ferrites, and they have the tendency to
view dynamics in metals through the eyeglasses of insulators. Magnetic relaxations
in metals were studied extensively from the late fifties to mid seventies. Well, time
goes fast and memory fades away even faster. A lot of things have been forgotten.
The structure of this chapter will follow my personal experience which dates from
the mid sixties until the present time. Hopefully, this chapter will bring some degree
of general understanding of this important and fascinating field. I apologize to those
who feel that their work and contributions were either insufficiently covered or per-
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haps even omitted. This is certainly not intentional. Unfortunately, the presentation
in a relatively short chapter has to be confined to a certain flow of ideas which does
not allow one to cover all diversified aspects and topics.

From the beginning of the eighties magnetic multilayers have become a very
active research field with an unrestrained rate of progress. They provide a special
case where dynamic interactions between the itinerant electrons and the magnetic
moments in ultrathin films keep offering new exciting possibilities. The small lateral
dimensions of spintronics devices and high density memory bits require the use
of magnetic metallic ultrathin film structures where the magnetic moments across
the film are locked together by exchange coupling. This simplifies the description
of magnetic dynamics. One does not have to worry about spatial variations of the
magnetic moment across the film thickness.

The chapter is organized in the following way: Sect. 5.2 describes the phe-
nomenology of magnetic damping including some thermodynamic ideas which sup-
port a certain type of phenomenology. Section 5.3 deals with Ferromagnetic resonance
(FMR) linewidth which is perhaps the simplest way to probe magnetic damping. The
intrinsic damping mechanism in metals is covered in Sect. 5.4. It is shown that the
spin-orbit interaction with the itinerant nature of electrons is the leading mechanism
of intrinsic damping in metals. This section also includes the study of magnetic relax-
ations using neutron scattering, allowing one to measure the relaxation processes at
high q wave vectors and around the critical point Tc where the magnetic fluctuations
play an essential role. The discussion of relaxations for large angle of precession
is also included in this section. In Sect. 5.5 the torque which is generated by the
spin momentum transport using a dc current is reviewed and discussed. This sec-
tion includes some computer simulations showing complexities which can occur in
finite sized samples due to mode-mode coupling. Section 5.6 describes the non-local
damping in magnetic multilayers which arises due to spin pump and spin sink effects.
It is shown that spin pumping allows one to transfer information without using a net
electrical current. This represents potentially a truly different approach to electronics
than that employed in semiconductors. Finally, Sect. 5.7 covers the extrinsic magnetic
damping which includes two magnon scattering processes and dry friction.

5.2 Magnetic Equations of Motion

The spin dynamics in the classical limit can be described by the Landau Lifshitz
(L.L.) equation of motion

1

γ

∂M
∂t

= −[M × Heff] − λ

γM2
s
(M × [M × Heff]) , (5.1)

where γ is the absolute value of the electron gyromagnetic ratio, Ms is the saturation
magnetization (magnetization per unit volume) and λ is the L.L. damping parameter.
The effective field Heff is given by the derivatives of the Gibbs energy density, U ,
with respect to the components (Mx, My, Mz) of the magnetization vector M, see
[5.1–4].
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Heff = − ∂U

∂M
, (5.2)

U includes the Zeeman energy of the dc applied and demagnetizing fields H and
the rf magnetic field h, all magnetic anisotropies, and the inter-layer and intra-layer
exchange interaction energies. Since U includes the Zeeman energy of the external
fields it is more appropriate to call it Gibbs energy instead of Free energy that is
commonly used in (5.2). However, the word of caution is in place. The internal rf
magnetic field has to be evaluated by using Maxwell’s equations in the presence of
externally applied rf magnetic field and taking into account the spatial distribution of
the rf magnetization. This way one can properly account for the long range dipolar
interaction.

The first term on the righthand side of (5.1) represents the precessional torque and
the second term represents the well known L.L. damping torque. For small damping,
α = λ/γMs � 1, the L.L. damping term can be replaced by the Gilbert damping
term, resulting in the L.L. Gilbert (L.L.G.) equation of motion

1

γ

∂M
∂t

= −[M × Heff] + G

γ 2 M2
s

[
M × ∂M

∂t

]
, (5.3)

where G is the Gilbert damping parameter.
It is useful to rewrite (5.3) for an arbitrary magnetic moment M

1

γ

∂M
∂t

= −[M × Heff] + α

γ

[
M × ∂s

∂t

]
, (5.4)

where s is the unit vector along M. Notice that the dimensionless relaxation parame-
ter α is a natural choice to represent the strength of Gilbert damping.

The Gilbert and L.L. equations of motion preserve the absolute magnetization,
M · M = M2

s .
For small precession angles (| m |� Ms) the magnetization vector can be lin-

earized by setting M = m+ Ms, where Ms and m are the longitudinal and transverse
components of M, see Fig. 5.1. In this linearized approximation the L.L. relaxation
term in (5.1) can be rewritten as

−λ

γ

(
m
χ⊥

− heff

)
, (5.5)

where heff is the effective transverse rf field which is given by (5.2). The internal
rf magnetic field has to be evaluated from Maxwell’s equations using appropriate
boundary conditions. For ultrathin films this field is in a very good approximation
equal to the applied rf field and dipolar fields which have to be evaluated from
Maxwell’s equations, e.g. see the Damon Eschbach spin wave modes in [5.7]. The
transverse dc susceptibility χ⊥ is given by

χ⊥ = Ms

Heff
, (5.6)

where Heff is the effective dc field in equilibrium.
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Fig. 5.1. (a) A schematic drawing of precessing magnetization M, and the coordinate axes.
The in-plane crystallographic axes correspond to a (001) oriented ferromagnetic film. For zero
rf field the saturation magnetization Ms is oriented along the dc effective field Heff. The x-axis
is chosen along the effective field Heff. For a small rf field h the precessional motion is small,
|m| � Ms, and the longitudinal component Mx � Ms. (b) In the perpendicular configuration
the saturation magnetization and applied dc field H are perpendicular to the sample plane.
(c) In the parallel configuration the saturation magnetization and applied dc field are parallel
to the sample plane. Note that in the parallel configuration the rf magnetization precesses with
a pronounced elliptical polarization

Equation (5.5) is consistent with the Landau-Ginzburg treatment of the thermo-
dynamics of irreversible processes. In this treatment the rate of approach to ther-
modynamic equilibrium is proportional to the appropriate thermodynamic force. For
a magnetic moment m the thermodynamic force is proportional to the total transverse
effective field. Since the transversal effective field is given by the derivative of the
Gibbs energy with respect the magnetization vector, see (5.2), the Landau-Ginzburg
relaxation corresponds to a steepest descent down the Gibbs energy. This effective
field can be obtained from (5.2) using the partial derivatives with respect to the com-
ponents of m. In fact the first term in (5.5),−m/χ⊥, corresponds to the Zeeman energy
−Mx Heff � −Ms Heff + (Heff/2Ms)(m2

y + m2
z ), see Fig. 5.1. It is worth noticing that

the L.L. damping parameter λ is equivalent to the Onsager damping coefficient for
the transverse magnetization m in neutron scattering studies [5.6]. However, in the
neutron studies it is important to include the contribution from the exchange field,
see (5.23), directly in the transversal susceptibility. Neglecting the anisotropy fields
(elliptical polarization) the transversal susceptibility is given by

χ⊥(q) = Ms

H + 2A
Ms

q2
, (5.7)

where A is strength of the exchange coupling and q is the wavevector of magnetic
excitation studied by neutron scattering.

The magnetic relaxation can be expressed in other forms. One example is the
modified Bloch-Bloembergen (M.B.B.) [5.7] relaxation term

− 1

τγ
(m − χBB

⊥ h) , (5.8)
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where h is the external rf driving field. The modified B.B. relaxation term is commonly
used to describe magnetic insulators [5.8]. The M.B.B. relaxation term assumes that
the amplitude of the rf eigenmodes (magnons) can be described by a single relaxation
rate 1/τ , see further discussion in [5.9]. The dc effective transverse susceptibility
χBB⊥ is defined in such a way that the expressions in brackets of (5.8) and (5.5) lead
to the same quasi static solution (for h slowly varying in time) for the transverse
magnetization m. The difference between (5.5) and (5.8) is that the relaxation param-
eters, λ and 1/τ , multiply different instantaneous deviations from the equilibrium,
and consequently they have a different physical meaning. For the L.L. damping the
total transverse effective field relaxes to zero; note that the Zeeman effective field has
to be expressed in the transverse components. In the modified B.B. damping the rf
magnetization relaxes towards the instantaneous equilibrium magnetization, χBB⊥ h.
Safonov and Bertram showed that one can formally rewrite the L.L. relaxation term
(5.5) to the B.B. term (5.8) by a suitable matrix transformation [5.9]. However, this
is only a formal transformation which does not apply in general. The particular type
of damping has to be obtained from direct calculations involving the microscopic
mechanism of damping, see Sect. 5.4, and experimentally by investigating the de-
pendence of FMR linewidth on the microwave frequency and the configuration of
applied magnetic field, see Sects. 5.3, 5.7.

The relaxation term in linear response theory can be treated more fundamentally
using the theory of irreversible processes. Mori helped to develop the concept of
irreversibility which is based on the correlation-function theory of kinetic coefficients
[5.10]. The Mori theory involves in general a set of independent variables which
represent measurable physical quantities. Using projection operators in Hilbert space
one can separate out slowly varying parts in the equations of motion from fast random
forces. For the further discussion of magnetic relaxation let us assume to have a system
of N spins occupying volume V . In this case the right handed precession of the
transverse spin moment S+ = ∑

f (S f,y + iS f,z) (in units of �, and using eiωt for the
time dependence of precession) can be considered as a slowly variable parameter.
f represents the lattice point, and y and z describe the transverse components of the
local spin. The equation of motion can be written as, see (5.3) in [5.10],

d

dt
S+ = iωresS+ − 1

τ
S+ + 1

�
f(t) , (5.9)

where f(t) is a fast fluctuating random torque and ωres is the eigenfrequency of
a homogeneous precession described by S+. The relaxation rate 1/τ , see (5.3) in
[5.11], is given by

1/τ = 1

2�2(S+, S−)

∞∫
−∞

ϕ(t) exp(−iωt)dt , (5.10)

where ϕ(t) is the scalar product (projection operator) of the fast fluctuating torque,
ϕ(t) = ( f −(t), f +(0)), and the scalar product (S+, S−) represents the transverse dc
magnetic response. (S+, S−) can be expressed, using equations (3.6) and (3.8) in
[5.11], in terms of the transverse susceptibility χ⊥ = Ms/H ,
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(S+, S−) = 2
V

(µBg)2

Ms

H
. (5.11)

Equation (5.10) is usually referred to as the second fluctuation dissipation theorem,
see also [5.12–14].

It is useful to replace ϕ(t) = ( f −(t), f +(0)) with the time correlation function
of fluctuating torque 〈 f(t) f(0)〉 which is a measurable quantity. By applying the
fluctuation dissipation theorem for kT > �ω one obtains

ϕ(t) = ( f(t), f(0)) = 1

kT
〈 f(t) f(0)〉 . (5.12)

Equation (5.10) has a similar form as the L.L. damping term in (5.5), and therefore
(5.10) can be converted into the expression which determines the L.L. damping
coefficient λ from the correlation function of the fluctuating transverse field

α = λ

Msγ
= γMsV

2kT

1

2

∞∫
−∞

〈h(t)h(0)〉 exp(−iωt)dt . (5.13)

The transverse fluctuating torque f(t) was replaced by Msh(t), where the variable
h(t) represents a fast transverse fluctuating field inside the system. The real part (cos
integral) of (5.13) corresponds to damping. The imaginary part (sin integral) of (5.13)
contributes to a frequency shift of the resonant frequency ωres. The time dependence
〈h(t)h(0)〉 can be approximated by a simple exponential decay h2 e−t/τfl , where τfl

represents the correlation time of fluctuations. For ω � 1/τfl the L.L. damping is
independent of frequency. However, that does not have to be always the case, the time
response can be affected by slow fluctuating torques which results in the frequency
dependent damping and susceptiblity, see the dynamics studies on Fe whiskers with
the intersticial carbon [5.12, 15] and around the critical point Tc [5.16, 17].

The second fluctuation dissipation theorem, (5.13), allows one to determine the
amplitude of the fluctuating field in an arbitrary cell ∆V which is a part of the
magnetic sample. The fluctuations in different ∆V are statistically independent. In
computer simulations an estimate for the fluctuating internal field (Langevin random
noise) in dissipative systems is given by

h2 = 2kT

γMs∆V

1

∆t

α

1 + α2
, (5.14)

where ∆t is the time increment in spin dynamics calculations, see [5.18, 19].
The above equations can be generalized for an arbitrary magnon with the wave

number q. Both the resonance frequency and transverse dc susceptibility can be
determined by evaluating the rf transversal susceptibility tensor χ̃ using the L.L. eq.
of motion with a rf harmonic driving field h0 exp{i(ωt − qr)}, where ω is the applied
angular frequency, see further details in [5.3, 4]. The resonance frequency is given by
the minimum value of the denominator of χ̃, and the dc transversal susceptibilities
are given by the (y, y) and (z, z) components of χ̃ for ω = 0.
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Since the relaxation term in (5.10) is inversely proportional to the transverse static
susceptibility it follows that the L.L. damping is a more fundamental description of
relaxation than the M.B.B. relaxation equation. A nice discussion of the fluctuation
dissipation theorem for Gilbert, L.L. and B.B. relaxation terms was carried out by
Smith [5.20]. He has shown that only the Gilbert and L.L. damping provide correct
correlations for the local fluctuating field components 〈hy(t)hy(0)〉 and 〈hz(t)hz(0)〉.
On the other hand the M.B.B can be classified as intrinsically nonlocal damping.

It turns out that the L.L. equation (5.1) can be transformed to the L.L.G equation
(5.4) by using the following substitutions

λ

Ms
= αγ , γ = γG

1

1 + α2
, (5.15)

where γG is the Gilbert gyromagnetic ratio and α is the damping constant.

5.3 FMR Linewidth

FMR and rf susceptibilities were extensively described in Volume II of this book [5.2]
and in [5.3]. For additional reading see [5.21]. Here a brief summary will be presented
with emphasis on the FMR linewidth for parallel and perpendicular configurations.
For a small rf magnetization m the L.L. equation of motion (5.1) can be solved using
a linear expansion in small components of m and h, see [5.3, 22]. Experimentally,
the FMR linewidth is determined as the difference in the dc applied magnetic fields
between the maximum and minimum of the field derivative of the FMR absorption
peak, ∂χ ′′/∂H [5.3, 22].

In ultrathin films the magnetic moments across the film are locked together by
exchange coupling and they can be considered as giant magnetic molecules which
have unique magnetic properties of their own [5.3]. For ultrathin films the role
of the interface perpendicular uniaxial anisotropy and the dipole-dipole energy of
an uniformly magnetized sample can be included in the effective field 4πMeff =
4πMs − 2K s

u/dMs, see [5.3, 22]. The K s
u is the coefficient of the perpendicular

interface uniaxial anisotropy and d is the film thickness. The following calculations
were carried out in the absence of magnetic anisotropies except for the perpendicular
uniaxial anisotropy allowing one to account for the ellipticity of the rf precession.

5.3.1 Gilbert Damping

Parallel Configuration. In the parallel FMR configuration the static magnetization
and the applied field are in the film plane, see Fig. 5.1c; one can write for an ultrathin
film the Gibbs energy density as

Us
u = − K s

u

d

(
mz

Ms

)2

, (5.16)
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where K s
u is the interface uniaxial perpendicular anisotropy in erg/cm2 [5.3],

and d is the film thickness. With the saturation magnetization Ms along the x-
axis and the rf field h applied in plane along the y-axis, see Fig. 5.1, we have
heff = (0, h,−4πDeffmz), where 4πDeff = 4π − 2K s

u/M2
s d is the effective demag-

netizing factor. Solving the Gilbert equation of motion (5.3) results in the Gilbert

Fig. 5.2. Computer simulations of time evolution of the magnetization in an applied field
H = 0.5 kOe. The field is oriented along the magnetic easy axis [100], in the positive x-
direction. The initial orientation of the saturation magnetization (represented by the arrow) is in
plane, 5◦ away from the [1̄00] crystallographic axis (nearly antiparallel orientation with respect
to H). Simulations were carried out for the following Gilbert damping parameters α: (a) 0.01,
(b) 0.0, and (c) 0.2 (the fastest approach to equilibrium). The magnetic parameters were taken
from an Fe film of 2.3 nm (16 ML) in thickness grown onto a GaAs(001) substrate and covered
by a 20 ML thick Au(001) cap layer [5.23]. The magnetic parameters are as follow: 4πMs =
21.4 kG, 4πMeff = 18 kOe, the in-plane four-fold anisotropy K1 = 3.5 ×105 ergs/cm3, the
in-plane uniaxial anisotropy Ku = − 1.0 ×105 erg/cm3, and the g-factor g = 2.09. The
in-plane uniaxial anisotropy is oriented 45◦ with respect to the cubic crystallographic axis
[100]. α = 0.01 corresponds to a realistic Gilbert damping (G = 1.2 ×108 s−1). For α = 0
the precession is not damped, and exhibits a butterfly like pattern. α = 0.2 leads to a critical
damping with no oscillations in the rotation
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FMR linewidth

∆HG = 1.16

(
G

γMs

)(
ω

γ

)
= 1.16 α

ω

γ
. (5.17)

The factor 1.16 comes from using the inflection points of a Lorentzian line. Note, that
the FMR linewidth is strictly linearly dependent on the microwave frequency ω and
inversely proportional to the saturation magnetization Ms. This feature is a hallmark
of the Gilbert damping. The FMR linewidth increases proportionally with the damp-
ing coefficient α. There is no explicit dependence on the applied field H and any
magnetic anisotropies. With an increasing α the Gilbert torque eventually becomes
dominant and ∂M/∂t → 0. For α → ∞ the system behaves like molasse approach-
ing its equilibrium infinitely slowly. For the in-plane oriented magnetization where
the ellipticity of the precession is significant the fastest approach to equilibrium is
achieved for α = 0.2, see Fig. 5.2. The relaxation frequency Γ (the rate of approach
of precessing magnetization to equilibrium) for α � 1 is given by

Γ = αω0 , (5.18)

where ω0 is the precessional frequency in appropriate effective fields. For a simple
applied dc field H for which ω0 = γH (5.18) becomes

Γ = G

χ⊥
. (5.19)

Perpendicular Configuration. In the perpendicular FMR configuration the static
magnetization and the applied field are perpendicular to the film plane, see Fig. 5.1b.
The FMR linewidth is identical to that for the parallel configuration, see (5.17).

5.3.2 Landau Lifshitz Damping

Parallel Configuration. Gilbert and L.L. damping equations of motion are identical
for small damping, α � 1. For small α the FMR linewidth for L.L. damping is
the same as for the Gilbert damping, see (5.15). The Gilbert damping parameter G
is just replaced by the L.L. damping parameter λ. With an increasing λ the L.L.
relaxation torque becomes dominant and M × Heff → 0, see (5.1); i.e. the system
is always in its quasi-equilibrium state. This behavior does not seem to be realistic.
The system should get stuck in thick molasses never reaching equilibrium. With an
increasing Gilbert damping the system slows down (∂M/∂t → 0). Obviously the
Gilbert equation of motion is a more realistic description of damping in media with
big losses, α > 1.

Perpendicular Configuration. In the perpendicular configuration when the film is
fully saturated (H−4πMs+2K s

u/Msd > 0) the rf precession is circular, but the FMR
linewidth is the same as in the parallel configuration. This means that for the Gilbert
and L.L. damping the FMR linewidth does not depend on the elliptical polarization
of the magnetization precession.
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5.3.3 Modified Bloch-Bloembergen Relaxation

Parallel Configuration. The transverse susceptibilities in (5.5) are equal to χy,y =
χz,z = Ms/H , and consequently χMBB⊥ = Ms/H . The transverse rf fields are hx = h
and hz = −4πmz , where h is the internal field from Maxwell’s equations. This results
in the FMR linewidth

∆HMBB
|| = 1.16

(
1

τγ

)(
ω

γ

)(
1

Hres + 2πMeff

)
, (5.20)

where (ω/γ)2 = Hres(Hres + 4πMeff). At high microwave frequencies, Hres → ω/γ ,
the FMR linewidth is frequency independent; at low microwave frequencies (Hres �
4πMeff) the FMR linewidth is proportional to the microwave frequency ω. Clearly,
the ellipticity of precession strongly affects the FMR linewidth.

Perpendicular Configuration. The effective field Heff = (0, 0, H − 4πMeff). In the
perpendicular configuration the rf precession is circularly polarized, and the FMR
linewidth is

∆HBB
⊥ = 1.16

1

γτ
. (5.21)

In the perpendicular configuration the FMR linewidth has a constant value inde-
pendent of the microwave frequency, saturation magnetization, and applied external
field.

The FMR linewidths shown above are valid only for ∆H/Hres � 1. Otherwise
one has to evaluate the full tensor susceptibility using equations of motion (5.3), see
detailed calculations in [5.4, 21].

The L.L, Gilbert, and B.B. damping parameters λ, G, and 1/τeff have to satisfy the
symmetry requirements of the system and, in principle, they can be different along
non-equivalent axes. This could be particularly true for ultrathin films where one
encounters tetragonal lattice distortions and interfaces. However, our FMR studies
indicate that the dependence of damping on the in-plane orientation of the magnetic
moment is a smoking gun indicating the presence of extrinsic damping due to sample
defects, see Sect. 5.7.1.

5.4 Intrinsic Damping in Metals, Theory

First, let us discuss what one means by intrinsic damping. Magnetic damping is
sample dependent, and therefore does not reflect the intrinsic properties of materials.
However some relaxation processes are unavoidable. At finite temperatures one is
not able to avoid phonons and magnons [5.24, 25]. In alloys one cannot avoid an
inhomogeneous electron potential. In ultrathin films the electron scattering at the
interfaces can be partly diffuse. The presence of these perturbations affects even true
intrinsic interactions such as the intra and interlayer exchange coupling, dipole-dipole



5 Spin Relaxation 153

interaction and magnetic anisotropies. The magnetic relaxation processes which in-
volve the electron scattering with phonons and thermally excited magnons can be
called intrinsic because they are an integral part of the system. The contributions from
structural defects and complex geometrical features can in principle be avoided and
should be called extrinsic. The smallest measured damping (FMR linewidth) under
well defined thermodynamic conditions is considered to be intrinsic to the system.
Sadly, this is an imprecise definition and often leads to controversies, but in reality
perhaps, it is the only criterion left to experimentalists.

5.4.1 Eddy Currents

In metallic films the magnetic damping can be affected by eddy currents. The role of
eddy currents in thin films can be estimated by evaluating the effective Gilbert damp-
ing accompanying the magnetization precession in the presence of eddy currents.
For thin films where the rf magnetization fully penetrates the film the contribution of
eddy currents to the L.L.G. equations of motion (5.3) can be evaluated by integrating
Maxwell’s equations across the film thickness d. For a circularly polarized precession
this results in the effective Gilbert damping, Geddy (in Gauss’s units)

Geddy

(Msγ)2
= 1

6

(
4π

c

)
2σd2 , (5.22)

where σ is the electrical conductivity and c is the velocity of light in free space. For Fe
the measured intrinsic Gilbert damping parameter is GFe ∼ 0.5 ×108 s−1 [5.26, 27].
Geddy becomes comparable to the intrinsic damping in Fe for a film thickness of 70 nm.
Notice that Geddy decreases rapidly with decreasing film thickness, Geddy ∼ d2. The
ultrathin film limit in Fe is reasonably satisfied for d < 10 nm [5.28], and therefore
the role of eddy currents is negligible in this case.

For thicker films one has to solve the L.L. and Maxwell’s equations selfconsis-
tently. The role of eddy currents in thin films was fully treated in [5.28–30]. The
results of FMR linewidth as a function of the film thickness is shown in Fig. 5.3. Note
that the role of eddy currents is insignificant below 100 nm for Py. However for Fe
the damping is already affected by eddy currents above 25 nm.

In the thick film limit (d > skin depth∼ 100 nm at FMR) the FMR line broadening
by eddy currents is proportional to

√
σA [5.31–33], where A is the exchange coupling

coefficient defined by the exchange field [5.1, 3, 4]

Hexch = 2A

M2
s
∇2m = 2A

M2
s
(0,∇2my,∇2mz) . (5.23)

∇ is the Nabla operator. Note that the rf exchange field has no contribution along
the dc magnetization component in a linearized system, see Fig. 5.1. Within the
skin depth the rf magnetization is inhomogeneous. The exponential decay of the rf
magnetization can be described by a band of spin waves with an average k wave
vector equal in magnitude to 1/δ and a direction perpendicular to the sample surface.
δ is the skin depth at FMR. The expression

√
σA reflects the fact that the FMR
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Fig. 5.3. The FMR linewidth in the parallel configuration for Fe (red), Py (blue), and Ni
(green) films at RT temperature and at 10 GHz as a function of film thickness. In the limit of
small thicknesses the FMR linewidth is given only by the Gilbert damping coefficient. The
Gilbert damping parameters G were 0.8, 1.0, and 2.4 ×108 s−1 for Fe, Py, and Ni, respectively.
Calculations were carried out for a symmetric rf driving. This means the rf field components
are same on both sides of the film

line-broadening originates from the rf exchange fields (2A/Ms)k2(see (5.23)) inside
the skin depth. The contribution of eddy currents and exchange coupling to the FMR
linewidth was introduced by Ament and Rado [5.34] and it is usually referred to
as the exchange-conductivity mechanism. The exchange-conductivity mechanism
leads to a finite FMR linewidth even in the absence of intrinsic damping. The spatial
distribution of the rf magnetization in the skin depth is altered by the surface magnetic
anisotropy (surface pinning); and consequently the surface anisotropy strongly affects
the FMR linewidth in the thick film limit [5.31–33]. E.g. for an Fe film of 200 nm
thickness with an uniaxial perpendicular interface anisotropy Ks = 0.3 erg/cm2 the
FMR linewidth at RT is wider by 200 Oe at 25 GHz compared to the linewidth arising
only from the intrinsic L.L. damping, see [5.28]. That represents a 7 fold increase in
the FMR linewidth when compared to the intrinsic Gilbert damping contribution.

5.4.2 Phonon Drag

The magnetic relaxation by direct magnon-phonon scattering is another possible
damping mechanism. Suhl recently investigated the role of phonon drag. His explicit
results are limited to small geometries where the magnetization and lattice strain are
homogeneous. The Gilbert phonon damping Gph is [5.35],

Gph

γ 2
= 2η

(
B2(1 + ν)

E

)2

, (5.24)

where η is the phonon viscosity, B2 is the magnetoelastic shear constant, E is Young’s
modulus, and ν is the Poisson ratio. All parameters can be readily obtained except
the parameter for the phonon viscosity η. However, it turns out that the phonon
viscosity parameter η in the microwave range of frequencies was experimentally
determined by our microwave transmission experiments, see [5.36]. In these studies
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at 9.5 GHz a fast transversal elastic shear wave was generated by magnetoelastic
coupling inside the skin depth of a thick Ni(001) X-tal slab 22 µm in thickness. The
transverse elastic shear wave propagated across the slab, and was then re-radiated in
a transmitted microwave power at the other side of the Ni slab. We called this effect
phonon assisted microwave transmission. The experimental data were fitted using
the L.L. and elastic wave equations of motion including magnetoelastic coupling.
The elastic wave relaxation time was found to be τph = 6.6 ×10−10 s−1 at 9.5 GHz.
The phonon viscosity as introduced in [5.35] is given by η = c44/τphω

2, where c44 is
the elastic modulus. For Ni η = 3.4 (in CGS units). Using (5.24) results in a phonon
Gilbert damping Gph ∼ 107 s−1, that is ∼ 30 times smaller than the intrinsic Gilbert
damping parameter of Ni, GNi = 2.4 ×108 s−1. In Fe the intrinsic damping parameter
GFe = 0.7 ×108 −1 is smaller than that in Ni, and consequently the phonon drag in
Fe can be more important. However even in this case the phonon damping is 6 times
smaller than GFe. Clearly, the direct magnon-phonon scattering in small geometries
is not important.

It should be pointed out that Suhl’s theory does not treat the magnon-phonon
interaction selfconsistenly. As in the case of eddy currents one should carry out
selfconsistent calculations using the L.L. and elastic wave equations of motion which
include the magnetoelastic term of interaction. Such calculations were carried out
by Kobayashi et al. [5.37]. They showed that the magnetoelasticity can have only
an appreciable effect on the FMR linewidth if the excited elastic wave establishes
a resonant mode across the film thickness at or near the FMR field. This effect
was called Ferromagnetic Elastic Resonance (FMER). They calculated the frequency
FMR linewidth, ∆ω/γ , as a function of the phonon quality parameter Qph. In our
notation the phonon quality parameter Qph = ωτph. The effect of elastic waves
on the FMR lineshape is most pronounced when Qph � Qmag = 1/α. The quality
parameters for Ni are Qmag = 10 and Qph = 35. In Ni the FMER effect can be strong,
and can even result in a split FMR peak, see details in [5.37]. The thickness range
over which the effect is noticeable is given by ∆d/d = ∆ω/ω. After an extensive and
systematic effort to observe FMER in films and perfect Ni platelets no convincing
results were achieved. That indicates that the phonon resonance is hard to establish
in real samples. The elastic wave wavelengths are ∼ 300 nm at 10 GHz. This means
that for magnetic films thinner than 150 nm at and below 10 GHz the FMER effect is
absent.

The above two sections lead to the following conclusions: Phonon drag is too
small to explain the measured damping in magnetic metals. Eddy currents can be
effective in thicker samples and at high frequencies. Eddy currents play a negligible
role in ultrathin films.

5.4.3 Spin-orbit Relaxation in Metallic Ferromagnets

The literature on intrinsic damping in metals dates back to the late sixties and seven-
ties. The purpose of this section is not to get involved in the details of the calculations
but rather to outline the underlying physics.
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We will start the description of intrinsic damping in metals by using a model
introduced by Heinrich, Fraitová and Kamberský [5.26] which is based on the s-d
exchange interaction. In this model the interaction of itinerant s-p like electrons with
localized d-spins can be obtained by integrating the s-d exchange energy density
functional [5.38]

Hsd =
∑

j

∫
V

J(r j − r)Sj,d · ss(r) dr3 , (5.25)

where J(r − r ′) is the s-d exchange interaction between the spin density ss of s-p
like itinerant electrons and the localized spins of d-electrons Sj,d . j is the lattice
site. One should point out that a strict distinction between s-p and d electrons is
only historical. In fact one should consider two groups of electrons, those that are
mostly localized (here denoted by d-electrons), and those that are itinerant (here
denoted as s electrons). In reality itinerant electrons are hybridized states of s-p and d
electrons. The transverse interaction Hamiltonian involving only the rf components
of the magnetization vectors is described by three particle collision terms

Esd =
(

2S

N

) 1
2 ∑

k

J(q)ak,+a+
k+q,−bq + (h.c.) , (5.26)

where N is the number of atomic sites, a, a+ annihilates and creates electrons with the
appropriate momentum and spin, and b, b+ annihilates and creates magnons with the
wavevector q. The+ and− signs in the subscripts correspond to majority and minority
spin electrons, respectively. Keep in mind that the electron spin momentum is oriented
antiparallel to the magnetic moment. This equation provides a particle representation
of the s-d exchange interaction. Magnons and itinerant electrons are coherently
scattered by the s-d exchange interaction and that results in creation and annihilation
(Hermitian conjugate term in (5.26)) of electron-hole pairs, see Fig. 5.4. The total
angular momentum in the s-d exchange interaction is conserved, and consequently
the itinerant electron spin flips appropriately during the scattering with magnons. The
scattering shown in Fig. 5.4 alone does not lead to magnetic damping for magnons

hωq
εq k+ , 'σ

εk,σ

Fig. 5.4. The spin wave with the energy �ωq collides with an itinerant electron with energy
εk,σ (σ represents the spin state), and creates an itinerant electron with the momentum k + q
and spin orientation σ ′
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with the momentum wave-vector q ∼ 0 (uniform mode observed at FMR). The s-d
exchange interaction on its own only leads to a renormalized spectroscopic splitting
factor γ , see [5.26]. The coherent scattering of magnons with itinerant electrons
has to be disrupted by incoherent scattering with other excitations. The spin flip
hole-electron pairs (ak,+a+

k+q,−) can be incoherently scattered by thermally excited
phonons and magnons. That results in a fast fluctuating torque resulting in magnetic
relaxation, see (5.10). One can account for incoherent scattering by including a finite
life time τeff for the electron-hole pair excitations [5.26]. In this case the spin-flip
electron hole pair energy has an additional imaginary term i�/τeff:

∆εk,k+q = εk+q,− − εk,+ + i
�

τeff
. (5.27)

The effective lifetime, τeff, is in this case given by the spin-flip electron-hole pair,
τsf. τsf is enhanced compared to the momentum relaxation time τm, which enters in
the conductivity. The reason is that one needs to invoke spin orbit interaction to flip
the electron spin during the relaxation process of electron hole pairs by phonons.
Elliot [5.39] showed that for simple normal metals τsf = τm/∆g2, where ∆g is the
deviation of the g-factor from its purely electronic value, g = 2, due to spin orbit
interaction. This is not directly applicable to our case. For normal metal electrons
scattering by 3d impurities, the ratio between the spin flip scattering and non-spin flip
cross section is around 10−2 [5.40]. One can make a better estimate of τsf from the
spin diffusion length lsd. The spin diffusion length is a part of the spin accumulation
process which occurs in Current Perpendicular to Plane Giant Magnetoresistance
(CPP GMR) studies. The spin diffusion length lsd [5.41] is given by

lsd =
(

λm
FMvFτsf

6

)1/2

, (5.28)

where vF is the Fermi velocity of electrons participating in the spin accumulation
process. The effective momentum mean free path in the ferromagnet λm

FM [5.41],
assuming a simple free electron model, is

1

λm
FM

= 1

2

(
1

λ↑
+ 1

λ↓

)
= ne2ρ�

mvF
, (5.29)

where λ↓ and λ↑ are the momentum mean free paths for minority and majority
electrons, and n is the total density of conduction electrons. ρ� = ρFM(1−β2), where
ρFM is the measured resistivity of FM, and β is a bulk spin asymmetry coefficient, see
[5.40]. In Py (permalloy) ρPy = 12.3 µΩ, βPy = .73, and one conduction electron
per atom [5.41]. Assuming vF = 1.5 ×108 cm/s that results in ρ�

Py = 26.3 µΩ and

λm
Py = 2.4 nm [5.41]. In Py lPy

sd = 4.3 nm [5.41]. From (5.28) τ
Py
sf = 3 ×10−14 s.

In Py the corresponding enhancement factor for the spin flip relaxation is only
τ

Py
sf /τm

Py ∼ 20. In Co ρ�
Co = 6.6 µΩ, βCo = 0.36 [5.41], that results in λm

Co = 10 nm.
Piraux et al GMR measurements led to lCo

sd = 59 nm at LN2 temperatures, and their
data analysis resulted in τCo

sf = 3.8 ×10−12 s. In Co the enhancement factor for the
spin scattering time is τCo

sf /τm
Co ∼ 300.
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If one would blindly apply Elliot’s formula then ∆g = 0.06 and 0.22 for Co
and Py respectively. These numbers are not entirely unreasonable, but they should be
treated only as accidental results.

The rf susceptibility can be calculated by using the Kubo Green function formal-
ism in the Random Phase Approximation (RPA) [5.42]. The imaginary part (damping)
of the denominator of the circularly polarized rf susceptibility is usually expressed
as an effective damping field [5.26]

2〈S〉
NgµB

∑
k

|J(q)|2 (nk+q,− − nk,+
)
δ(�ωq + εk,+ − εk+q,−) , (5.30)

where the summation is carried out over all available states around the Fermi surface,
〈S〉 is the reduced spin Ms(T )/Ms(0). The factor gµB = γ� was used to convert
the relaxation energy into an effective relaxation field. The incoherent scattering of
electron-hole pair excitations broadens the delta function into a Lorenzian [5.26]

δ(�ωq + εk,+ − εk+q,−) ⇒ �/τsf

(�ωq + εk,+ − εk+q,−)2 + (�/τsf)2
. (5.31)

A brief explanation of (5.30) and (5.31) is needed. The difference in occupation
numbers is ∆n = nk+q,− − nk,+ = δ(εk − εF)�ωq , where δ is Dirac’s delta function,
and shows that the relaxations processes are limited to electrons at the Fermi level.
This is a crucial equation. It shows that the energy �ωq = �ω of a resonant magnon is
the energy which participates during the scattering process. The Lorentzian function
(5.31) should not be looked upon as a smeared conservation of energy, but rather
as an expression for the probability of achieving a certain scattering event. In fer-
romagnetic metals one usually studies by means of FMR a nearly homogeneous
mode, q ∼ 0. For the spin-flip electron-hole pair excitations the difference in elec-
tron energy is dominated by the exchange energy, εk+q,− − εk,+ = +2〈S〉J(0). Using
N〈S〉gµB = Ms(T ) (assuming a unit volume) one gets a damping field proportional
to the frequency ω and inversely proportional to the saturation magnetization Ms.
This is a typical feature of Gilbert damping, see (5.17). After integration over the
Fermi surface one can extract the Gilbert damping parameter

G = χp
1

τsf
, (5.32)

where χp is Pauli’s susceptibility for itinerant electrons. Pauli’s susceptibility was
obtained from the following expression

χp =
(
�γ

2π

)2 ∫
k2 dkδ(εk − εF) = µ2

B N(εF) , (5.33)

where N(εF) is the density of states at the Fermi level of itinerant electrons. Notice
that the summation in (5.30) was replaced by integration (1/2π)3

∫
dkx dky dkz .

It is interesting to estimate the Gilbert damping using (5.32). The Pauli suscep-
tibility for 3d transition metals can be expected to be in the range of of 3–9×10−6



5 Spin Relaxation 159

[5.43]. The question remains what is the relationship between τsf obtained in GMR
measurements, see (5.28), and in magnetic relaxation, see (5.32). In GMR one stud-
ies the longitudinal spin accumulation, while in FMR one investigates the transverse
motion. The corresponding spin relaxation times are related, but the coefficient of
proportionality can change between 1 to 2. In ESR often the longitudinal relaxation is
assumed to be 2 times slower (1/τsf = 1/T1 = 1/2T2) than the transversal relaxation
time [5.44]. However, some simulations using a random Brownian spin walk results
in the coefficient of one [5.45]. It is not obvious if this relationship holds for itinerant
electrons in ferromagnet. One needs to carry out some discussion to clarify this point.
One should realize that the magnetic moments in ferromagnet are locked together in
FMR (acoustic mode) by the exchange coupling and therefore their moments pre-
cess at low frequency compared to that of the optical mode where the precession
is governed by the exchange coupling. Therefore the spin relaxation rates of itiner-
ant electrons at FMR are similar to those expected in ESR type of measurements.
Both points are summarized by (5.38). In my view this equation applies to both the
transverse and longitudinal relaxations. The only uncertainty is the factor relating the
transverse and longitudinal τsf. This factor is between 1 to 2, see above.

In order to get Gilbert damping by the s-d interaction mechanism, see (5.32),
in the range of 1 ×108 s−1 one needs to have τsf in the range of 5 ×10−14 s. It is
interesting to note that this is satisfied for Py, τsf = 3 ×10−14 s. In fact recently
Ingvarsson et al. [5.46] showed that the Gilbert damping parameter in Py(Ni81Fe19)
films scales proportionally with the sample resistivity. This is in good agreement with
predictions by formula (5.32). The resistivity in Py samples used by Ingarsson et al.
was changed as much as by a factor of four by changing the growth morphology of
Py films. Py is in this respect a special case; in pure materials like Co and Fe the spin
flip relaxation time is too long to contribute to this type of Gilbert damping.

The above calculations were carried out for circularly polarized magnons. It was
shown that the ellipticity of magnons (parallel configuration) [5.47] does not change
the intrinsic Gilbert damping which is based on scattering processes (shown in Fig.
5.4). That is not a surprising result considering that the FMR linewidth ∆H for
circularly polarized magnons showed the explicit features of Gilbert damping. ∆H
is proportional to ω and indirectly proportional to Ms, see (5.17).

Ignoring the presence of collisions with thermally excited magnons the s-d relax-
ation is indirectly proportional to τm

FM, and consequently scales with resistivity.
Kamberský [5.48] showed that the intrinsic damping in metallic ferromagnets

can be treated more generally by using the spin-orbit interaction Hamiltonian. The
spin-orbit Hamiltonian corresponding to the transverse spin and angular momentum
components can be expressed in a three particle interaction Hamiltonian

1

2

(
2S

N

)0.5

ξ
∑

k

∑
α,α′,σ

〈β|L+|α〉c+β,k+q,σ cα,k,σ bq + h.c. , (5.34)

where ξ is the coefficient of spin-orbit interaction, L+ = Lx + iL y is the right handed
component of the atomic site transverse angular momentum La,t. cα,k,σ and c+β,k+q,σ

annihilate and create electrons in the appropriate Bloch states with the spin σ , and
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bq annihilates the spin wave with the wave-vector q. The indices α, β represent the
projected local orbitals of Bloch states, and are used to identify the individual electron
bands. For simplicity no dependence of the matrix elements 〈β|L+|α〉 on the wave-
vectors will be considered. The rf susceptibility can again be calculated by using the
Kubo Green function formalism in the Random Phase Approximation (RPA). The
imaginary part of the denominator of the circularly polarized rf susceptibility for
a spin wave with the wave-vector q and energy �ω can be expressed in a manner
similar to that carried out for the s-d exchange interaction. The effective damping
field is then given by

G

γMs

ω

γ
= 〈S〉2

2Ms
ξ2

(
1

2π

)3 ∫
dk3

∑
α,β,σ

〈β|L+|α〉〈α|L−|β〉 (5.35)

× δ(εα,k,σ − εF)�ω
�/τm

(�ω + εα,k,σ − εβ,k+q,σ )2 + (�/τm)2
.

〈S〉 is the reduced spin Ms(T )/Ms(0). Since no spin flip is present during the scattering
the relaxation time τsf in (5.31) is replaced by the momentum relaxation time τm which
enters the conductivity of FM.

Intraband transitions, α = β: For low frequency spin waves (q � kF) the electron
energy balance �ω+εα,k,σ −εα,k+q,σ = �ω− (�2/2m)(2kq+q2) in the denominator
of (5.31) can be significantly less than �/τm. Even in good crystalline structures
this limit is satisfied above cryogenic temperatures. After integration over the Fermi
surface the Gilbert damping can be approximated by

G � 〈S〉2
(

ξ

�

)2
(∑

α

χα
p 〈α|L+|α〉〈α|L−|α〉

)
τm , (5.36)

where χα
p the the Pauli susceptibility of those states which participate in intraband

electron transitions and satisfy | �ω − �2/2m(2kq + q2) |� �/τm. The Gilbert
damping in this limit is proportional to the relaxation time τm, and consequently
scales with the conductivity.

Interband transitions, α �= β: Interband transitions are associated with energy gaps
∆εβ,α. The electron hole pair energy can be dominated by these gaps. For the gaps
larger than the relaxation frequency �/τm the Gilbert damping can be approximated
by

G � 〈S〉2
∑

α

χα
p (∆gα)

2 1

τm
, (5.37)

where χα
p are appropriate Pauli susceptibilities for Fermi sheets α, and ∆gα is

the deviation of the g-factor from its purely electronic value g = 2. ∆gα =
4ξ

∑
β〈α|Lx |β〉〈β|Lx |α〉/∆εβ,α, see [5.49], determines the contribution of spin orbit

interaction to the spectroscopic splitting factor g. Notice that in this limit the spin-
orbit interaction results in a Gilbert damping coefficient similar to that found for the
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s-d exchange interaction, see (5.32), if one assumes Elliot’s formula for the spin flip
relaxation time τsf. χp only includes those electron states for which the change in
energy during the interband transitions satisfy ∆ε � �/τm. In this approximation
the Gilbert damping is proportional to 1/τm, and consequently scales with resistivity.
In reality a large distribution of energy gaps modifies the overall temperature depen-
dence. The interband damping can be expected to be dependent on resistivity only at
low temperatures. With an increasing temperature the relaxation rate �/τm becomes
comparable to the energy gaps ∆εα,β , which results in a gradual saturation of the
interband Gilbert damping with increasing temperature [5.48].

So far the treatment of intrinsic damping has been mostly formal. At this point it
is useful to outline a simple physical description of intrinsic damping. Kamberský’s
model was originally based on the observation that the Fermi surface changes with
the direction of the magnetization [5.50]. This model corresponds to intraband tran-
sitions. This is a relatively easy mechanism to describe by a classical picture. As
the precession of the magnetization evolves in time and space the Fermi surface
also distorts periodically in time and space. This is often referred to as a breathing
Fermi surface. The effort of the electrons to repopulate the changing Fermi surface
is delayed by a finite relaxation time τm of the electrons and this results in a phase
lag between the Fermi surface distortions and the precessing magnetization. The
interband transitions are connected with dynamic orbital polarization, i.e. changes of
the electron wave functions beside changes of their energies.

The s-d exchange interaction can be viewed as two precessing magnetic moments
corresponding to the d-localized and itinerant electrons which are mutually coupled by
the s-d exchange field. In the absence of damping the low energy excitation (acoustic
mode, FMR) corresponds to a parallel alignment of the magnetic moments precessing
together in phase. However, due to a finite spin mean free path of the itinerant
electrons, the eq. of motion for itinerant electrons has to include spin relaxation
towards the instantaneous effective field,

− 1

τsfγ
(m − χPheff) , (5.38)

where heff includes the exchange field between the localized and itinerant electrons
That results in a phase lag between the two precessing magnetic moments [5.51],
and consequently in magnetic damping. It is interesting to note that the magnetic
damping using this classical approach is equivalent to that using the Kubo formalism.

The phase lag for the breathing Fermi surface and the s-d exchange interaction is
proportional to the microwave frequency ω. Clearly, in both cases one gets a typical
situation for “friction” like damping which is described in magnetism by the Gilbert
relaxation term.

In Ni the Gilbert damping is significantly increased as the temperature approaches
the cryogenic range of temperatures and saturates for temperatures less than 50 K
[5.52]. The Gilbert damping parameter G was found to be 2.5 ×108 s−1 at RT, and
14 ×108 s−1 at Helium temperature. The saturation of G was explained by Korenman
and Prange [5.53] using an equation similar to (5.35). For intraband electron-hole pair
excitations εk − εk+q = (kFq/m + q2/2m)�2. With increasing τm the energy balance
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in the denominator of (5.35) becomes eventually comparable to �/τm. Momentum
and energy conservation now play an important role in the sum over the Fermi surface
in (5.35), and one finds

G ∼ tan−1(qvFτm)

qvF
, (5.39)

where q is the wave number of a resonant magnon. For vFτm � 1/q the expression in
(5.39) saturates and depends inversely on q. This behavior was already well known
in connection with the anomalous skin depth where only electrons moving within the
skin depth contribute to the effective conductivity. This effect is usually referred to
as the concept of ineffective electrons [5.54]. The presence of ineffective electrons
at low temperatures in the measured Gilbert damping shows very explicitly that the
magnetic damping in metallic ferromagnets is caused by itinerant electrons. This
is further supported by Ferromagnetic Antiresonance (FMAR) studies. By using
microwave transmission at FMAR (q → 0) we were able to avoid problems with
ineffective electrons [5.55] and to get precise values of the intrinsic damping. We
found that in high purity single crystal slabs of Ni the Gilbert damping below RT
(keeping the role of thermal magnons low) was well described by the two terms which
were equal in strength and proportional to the conductivity and resistivity [5.55]. This
is in good agreement with the above predictions. At RT these two terms compensated
each other and that resulted in a nearly temperature independent Gilbert damping at
ambient temperatures. The FMAR measurements on Ni showed a nearly temperature
independent L.L. parameter [5.56]. The saturation of the L.L. parameter above RT is
quite well accounted for by the recent quantitative calculations by Kamberský [5.57].
It was explained by the interband contributions which saturate above RT, see above.

The conclusion: High quality crystalline Ni samples convincingly showed that
the intrinsic damping in metals is caused by the itinerant nature of the electrons
and the spin-orbit interaction. The models presented were intended to highlight in
a simple way the underlying physics of magnetic relaxations in metals, and predict
some basic trends of damping in metallic ferromagnets. Detailed calculations can be
often complex and not easy to penetrate. Quantitative calculations [5.26, 48, 58–60]
show that the spin-orbit interaction is indeed the leading mechanism underlying the
intrinsic damping in ferromagnetic metals.

The control of damping allows one to speed up the approach to equilibrium in
magnetization reversal processes. This is particularly important in Magnetic Ran-
dom Access Memory (MRAM) applications. Memory pixels in MRAM should have
a high damping. The shortest time of magnetization reversal is achieved by critical
damping, see e.g. Fig.5.2c, and is given by one period of precession. Silva et al [5.61]
have shown that one can control the damping in Py by adding rare earth elements.
See further details in section Engineering High Frequency Dynamic Properties by
Russek et al. [5.62] and Bailey et al. [5.63]. Rare earth elements have a large orbital
momentum allowing one to significantly enhance the spin orbit contribution to the
magnetic properties in 3d transition metals. It was found that a modest concentration
of 2 percents of Tb in Py resulted in a 10 fold increase of the magnetic damping as
measured by FMR [5.64]. This additional damping was found strongly temperature
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dependent. It increased by a factor of 6 going from RT to 150 K. The temperature
dependence of resistance in Tb doped Py can be expected to be even weaker than in
Py, and therefore this substantial increase in damping with decreasing temperature
cannot be explained by the spin orbit contribution as discussed above. The FMR
linewidth was found independent on the angle of the saturation magnetization with
respect to the film surface suggesting that is caused by an intrinsic contribution.
A precession of the Py magnetic moment is coupled by antiferromagnetic coupling
to the Tb magnetic moments. The spin orbit interaction leads to a simultaneous rf
motion of the Tb orbital momentum. This motion results in local lattice distortions
(short wavelength phonons) which can provide an effective channel for dissipation of
the magnetic energy to the lattice [5.64]. The FMR line broadening by two magnon
scattering, due to magnetic inhomogeneities, can be excluded because it would lead
to a substantial narrowing of the FMR linewidth when approaching the perpendicular
configuration, see Sect. 5.7.1. However one should keep in mind that large scale lat-
eral inhomogeneities (which are not described by two magnon scattering) can result
in a significant FMR linewidth which in perpendicular configuration can even sur-
pass that measured in the parallel configuration. Large scale inhomogeneities would
result in a FMR linewidth independent on the microwave frequency, see Sect. 5.7.1.
Measuring the dependence of the FMR linewidth on the microwave frequency would
help to clarify the origin of magnetic damping in the Tb doped Py films.

5.4.4 Dynamic Studies

Numerous studies of magnetic relaxation in metallic bulk and thick film samples were
already carried out in the sixties and seventies. The advent of MBE in the growth of
magnetic ultrathin metallic films in the eighties brought back an appreciable interest
in dynamics. However, it has been the recent requirement for fast switching MRAM
and memory media bits that brought the study of magnetic relaxation to the forefront
in the study of magnetic nanostructures.

5.4.5 Techniques for Dynamic Studies

The description of standard FMR techniques can be found in Chap. 3, Volume II of
this book [5.2]. The situation has changed dramatically in experimental techniques
during the last 8 years. FMR measurements can be carried out on micrometer sized
samples. These techniques employ a variety of tunable Atomic Force Microscope
(AFM) microcantilevers operating either on torque or calorimetric sensing. Mag-
netic Resonance Force Microscopy (MRFM) achieves high sensitivity by means
of a mechanical resonator that detects the force between a small probe magnet (at-
tached to the cantilever) and the longitudinal magnetization (perpendicular to the
plane of precession) in the sample [5.65, 66]. The Caltech and Los Alamos groups
[5.67] recently used the MRFM technique for imaging rf magnetostatic modes on
micrometer scale samples of yttrium iron garnets. The spatial resolution of this tech-
nique presently is 10 µm. The NIST group in Boulder, Colorado developed FMR
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detection using micrometer sized thin film samples which are deposited onto a mi-
cromechanical cantilever detector [5.68–70]. The cantilever responds to FMR in one
of three ways: (a) Measuring the change in torque on the sample in a uniform field
using the changing longitudinal magnetic moment. (b) Measuring the FMR damping
torque. (c) Measuring the absorbed energy in FMR using a bimaterial cantilever as
a calorimetric sensor. Presently they are able to detect ferromagnetic samples having
an effective magnetic volume of 2 ×10−11 cm3. The spatial resolution is now in the
micrometer range, but it is expected to eventually reach the nanometer scale.

Temporal (picosecond) resolution can be achieved by using a variety of microwave
probe stations using coplanar wavequides. In this case the temporal detection of ro-
tational motion of magnetization, is performed using a pulsed inductive microwave
magnetometer (PIMM), see [5.61]. An excellent presentation of this technique can
be found in [5.71]. The measurements were carried out by using a single coplanar
wavequide. Magnetic field pulses of 50 ps rise time and 10 ns duration are created
by a fast pulse generator on one side of the wavequide. The sample is placed (or
deposited) on the coplanar waveguide. The time dependence of the magnetization ro-
tation is inductively picked up by the coplanar transmission line. The resulting signal
is detected by a 20 GHz bandwidth digital sampling oscilloscope. The pulse gener-
ator and oscilloscope are attached to the coplanar transmission line by impedance
matched picoprobes [5.72]. One is able this way to investigate the free precession of
magnetization. The angle of precession was adjusted by the amplitude of the pulsed
field and was varied from 0.002 to 40 Degrees. For spin-valve samples the rotational
motion of the magnetization can be detected by Giant Magneto-Resistance (GMR).
In this case the measurements are carried out using two microwave strip lines. The
test line creates short field pulses, and the read line is employed to monitor the GMR
signal that depends on the instantaneous angle between the magnetic moments, see
[5.73]. An excellent review of microwave testing probes and techniques for FMR
studies of confined magnetic structures can be found in thesis by M. Bailleul [5.74].

Temporal (picosecond) and spatially (sub µm) resolved techniques are now em-
ployed to investigate the magnetization reversal and large angle precession in a variety
of systems which are attractive for spintronics applications. This area of research is
covered in this book (Volume III) in the chapter on Nonequilibrium spin dynamics in
laterally defined magnetic structures by Byoung-Chul Choi and M. Freeman [5.75].

A significant effort has been carried out in computer simulations of spin dynamics.
They provide a guide for researchers in identifying proper lateral geometries of
memory pixels and show a detailed dynamic picture of magnetization reversal. The
modes of magnetization reversal of small lateral geometries are addressed in this
book (Volume IV) in the chapter on An Introduction to Micromagnetics by A.S. Arrott
[5.76].

5.4.6 Intrinsic Damping, FMR Experiments

The discussion in this subsection will be limited to those experiments whose main
purpose is to identify the intrinsic magnetic damping in metals. A long standing and
persistent question concerns the applicability of L.L. and Gilbert relaxation terms in
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describing the intrinsic damping. This question has not been easy to answer. A simple
proof can be done by measuring the FMR linewidth as a function of the microwave
frequency and the angle of the saturation magnetization with respect to the sample
normal. The L.L. and Gilbert damping models predict that the FMR linewidth in
the parallel and perpendicular configuration have a strictly linear dependence on the
microwave frequency, and the FMR linewidth is expected to be identical for the
parallel and perpendicular configurations provided that the measurements are carried
out along equivalent crystallographic directions, see Sects. 5.2–5.4. This seemingly
simple set of experiments is obscured by a lack of perfect samples. One needs high
quality single crystals with perfect surfaces to make a convincing interpretation of
the measured FMR results.

Fe whiskers and single crystal platelets of Ni, Fe and Fe-Ni and Fe-Co alloys
prepared by chemical vapor transport provided such perfect systems. In these sam-
ples the skin depth is smaller than the sample thickness, and the interpretation of
experimental results requires complete calculations using either the L.L. or Gilbert
equations of motion together with Maxwell’s equations. Quach’s et al. [5.77] FMR
measurements were carried out at 9.5, 24.8, and 35.5 GHz using Ni-Co(100) platelets.
Their results were well described by an angular independent L.L. damping param-
eter λ = 2.25 ×108 s−1. Anderson et al. [5.78] using single crystals of Ni(001)
and Ni(110) showed that the FMR linewidth at 22 GHz as a function angle is again
well described by a constant L.L. damping parameter λ = 2.3 ×108 s−1. Frait and
Fraitová [5.27] in their extensive FMR studies of Fe whiskers over a wide range of
microwave frequencies, 20–100 GHz, clearly showed that the intrinsic damping is
well represented by L.L. damping, λFe = 5.7 ×107 s−1.

FMAR Measurements. Ferromagnetic Antiresonance (FMAR) for measurements
of microwave properties was introduced by Heinrich and Mescheryakov [5.79, 80] in
the late sixties. The measurements of the L.L. damping is significantly simplified at
FMAR. At FMAR the real part of the rf permeability µ is zero, and the role of eddy-
currents is substantially decreased, see [5.80]. In fact the microwave transmission is
limited only by the imaginary part χ ′′ of the rf susceptibility at FMAR [5.80, 81].
FMAR is an anti-resonance effect (ω/γ = Bint), χ ′′ is very small resulting in an
appreciable increase of the skin depth compared to the skin depth at µ =1. The skin
depth at FMAR is δ ∼ (√

4πMs/∆HFMR
)
δ0, where δ0 is the skin depth for µ = 1.

The microwave transmission at FMAR increases by many orders of magnitude over
that for an rf permeability µ = 1, and results in a well defined peak in the microwave
transmission measurements. Fitting of the microwave transmission peak at FMAR
allows one to determine very accurately the magnetic damping [5.79, 80]. In addition,
the FMAR linewidth is unaffected by extrinsic relaxation mechanisms, see Sect. 5.7.1.
The measurements of the microwave transmission at FMAR provide accurate results
of the intrinsic damping in metals. FMAR was extensively used for Py (permalloy)
[5.80, 81], amorphous Fe rich ribbons [5.82, 83], Ni [5.55, 56, 84] and Fe [5.85, 86]
single crystal samples. In these measurements the rf response was well described by
the L.L.G. equation of motion.



166 B. Heinrich

A significant change in the rf permeability at FMR and FMAR results in large
variations of the absorbed microwave power as a function of applied field in thick
samples where the sample thickness exceeds the skin depth. In this limit the mi-
crowave absorption is given by the surface impedance which is proportional to the
inverse value of the skin depth [5.87]. Consequently at FMR and FMAR one gets
maximum and minimum absorption of microwave power, respectively. The difference
in microwave absorption can vary as much as by a factor of a hundred in the mi-
crowave range of frequencies. Large variations in the surface impedance as a function
of applied field is called giant magnetoimpedance (GMI) effect [5.88, 89].

In Conclusion: Careful FMR measurements using high quality crystalline metallic
bulk materials and the FMAR microwave transmission studies strongly support the
conclusion that the intrinsic relaxation term in most ferromagnetic metals can be
described by either L.L. or Gilbert damping terms.

5.4.7 Relaxation at Large q Wave-numbers, Dipole-dipole Damping

The relaxation processes discussed so far were limited to small q wave-numbers
(wave-vectors). Small q-vectors (< 0.01 Å−1) are definitely most important in a wide
range of studies including submicrometer laterally defined structures. However, in
some cases the magnetic excitations having large q-wave vectors can play a decisive
role in spin dynamics. For example a magnetic pixel can be brought above its critical
point Tc, and then it can be cooled down rapidly to a desired ferromagnetic state.
In this case the magnetic response involves thermally excited magnons with a wide
range of q wave-vectors. The purpose of this section is to provide some insight into
relaxation processes which include fluctuating torques in the proximity of the critical
point and magnetic excitations characterized by large q wave-vectors.

The dipole-dipole interaction in metals usually represents a dominant contribution
to the effective field. A typical example is the demagnetizing field perpendicular to the
surface. In Fe 4πMs ∼ 20 kOe at RT. One would expect that temperature fluctuations
of such dipolar fields can also result in a significant contribution to the magnetic
damping. The role of fluctuating dipolar fields in relaxation processes around the
critical point Tc has been investigated in a direct and systematic way by inelastic
neutron scattering studies. A good review of this field can be found in the article by
Frey and Schwabl [5.90]. Recent experimental studies have been concentrated mostly
on classic Heisenberg ferromagnets such as EuS and EuO, see papers by Goerlitz
and Koetzler [5.6] and Boeni et al. [5.91].

Before we discuss the data from neutron diffraction experiments it is useful to
briefly describe the inelastic neutron scattering technique with an emphasis on mag-
netic excitations. The intensity of inelastic neutron scattering is proportional to the
imaginary part of the magnetic susceptibility χ ′′(q, ω). In this respect nothing new
has to be introduced. The susceptibility is determined by solving (5.1) which was
fully described in Sects. 5.1, 5.2. The neutron scattering allows one to investigate
both the spin wave (transversal susceptibility) and longitudinal (longitudinal suscep-
tibility) excitations by using spin-flip and non-spin-flip intensities with the incident
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polarization σ and wave vector Q, see further details in [5.90, 91]. For completeness
let us summarize the expressions for the imaginary parts of transverse and longi-
tudinal susceptibilities. The imaginary part of the transverse susceptibility is given
by

χ ′′
⊥(q, ω) = χ⊥(q)ωΓ⊥(q)

(ω − ω(q))2 + Γ⊥(q)2
+ χ⊥(q)ωΓ⊥(q)

(ω + ω(q))2 + Γ⊥(q)2
, (5.40)

where the relaxation frequency Γ⊥(q) = λ⊥(q)/χ⊥(q). λ⊥(q) and χ⊥(q) are the
transverse L.L. damping parameter and the transverse susceptibility corresponding
to the wave vector q. Note that the first and second term in (5.40) correspond to
the right (resonant) and left handed (non-resonant) precession of rf magnetization,
respectively. The expression in (5.40) assumes a circularly polarized precession. The
wave vector q was replaced by its magnitude q, no directional dependence will be
discussed. The longitudinal susceptibility is described by the same expression as
in (5.40) only the transverse susceptibility and L.L. damping are replaced by their
longitudinal counterparts and the resonant frequency ω(q) = 0. In neutron studies
the L.L. coefficient is usually referred to as the Onsager coefficient of spin dynamics.
The neutron scattering technique is able to measure all 5 parameters, χ⊥(q), χ||(q),
Γ⊥(q), Γ||(q), and ω(q).

Small q Wave-vectors. Mezei in 1982 [5.92] carried out a pioneering work on Fe
for temperatures above Tc using time of flight (TOF) and neutron spin echo (NSE)
techniques. The TOF and NSE techniques allowed him to investigate relaxation rates
for small scattering q-vectors down to 0.006 Å−1 = 6 ×105 cm−1 which for the
first time overlapped with those used in FMR measurements for the bulk metallic
ferromagnets, see Sect. 5.4.6. As expected for small q wave-vectors Mezei observed
a spin diffusion like scattering (ω(q) = 0), with the relaxation frequency, Γ = λ/χ,
independent of q. Its strength was found to be proportional to

√
χ, where χ is the

critical susceptibility around Tc. For Fe χ = (∆T/1.45)−1.33 [5.12], where ∆T =
T−Tc. It is instructive to look at some of Mezei’s quantitative results. The temperature
∆T = T − Tc = 1.4 K was the closest to Tc. The relaxation frequency Γ (energy
width) was found to be of 1.8 ×109 s−1. The Onsager (L.L.) damping parameter is
given by Γ ×χ, see (5.19), and that results in a L.L. parameter of 2 ×109 s−1. For the
highest measured temperature, ∆T = 51 K , the relaxation parameter was found to
be Γ = 2.3 ×1010 s−1. The corresponding susceptibility is χ = 0.0088, and results
in a L.L. damping of 1.9 ×108 sec−11. It is interesting to note that at ∆T = 41 K
the measured L.L. damping is close to that measured by FMR at moderately high
temperatures where the spin-orbit interaction determines the L.L. damping, e.g. at
T ∼ 600 K the L.L. parameter from FMR and FMAR measurements was found to be
equal to 0.9 ×108 s−1 and 0.8 ×108 s−1, respectively. A significant increase of the
L.L. damping close to Tc is caused by the dipole-dipole interaction [5.93]. Mezei’s
measurements were carried out above Tc. It is fair to ask how relevant these results are
for temperatures below Tc. Boeni et al. [5.91] showed that passing through Tc from
above, the dipolar dynamic universality class for the transverse (critical) fluctuations
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is not changed, and it is therefore reasonable to take the L.L. damping from above Tc

as a good measure of the damping below Tc.

Large q wave-vectors. For large q-vectors (q > 0.04 Å−1) the dipolar relaxation
frequency reaches the universal behavior as in Mezei’s measurements. It scales as qz

with z = 5/2 which corresponds to the exchange dynamic universality region where
the magnetic fluctuations are dominated by the exchange interaction [5.92]. In the
exchange region the relaxation frequency Γ for T > Tc was found to be independent
of temperature [5.92]. For q = 0.06 Å−1 the relaxation frequency was found to be of
1.6 ×1011 s−1 [5.92]. The susceptibility for large q-wave vectors can be estimated by
using the Ornstein-Zernike formula χ(q) = q2

d/(κ
2+q2), where κ is the inverse value

of the correlation length and qd is the dipolar wave-number. In Fe qd = 0.045 Å−1

and κ = 0.09 Å−1 at T −Tc = 1.4 K [5.93]. The corresponding χ(∆T = 1.4) = 0.16
and results in a L.L. damping parameter of 3 ×1010 s−1.

Lynn and Mook [5.94, 95] showed that the neutron excitations in Ni and Fe
for large q wave-vectors (∼ 0.3 Å−1) exhibit a well defined resonance peak even
above Tc. In itinerant ferromagnets only the long range order is lost; a significant
degree of the short range order exists even well above Tc. Lynn [5.94] measured
the relaxation parameter Γ in Fe for q = 0.5 Å−1 from 4 to 1200 K. For T > Tc

the relaxation parameter was, as in Mezei’s measurements, temperature independent
Γ(T > Tc) = 2.7 ×1013 s−1, but it rapidly decreased for temperatures less than Tc.
In the ferromagnetic state the transversal susceptibility for large q wave-vectors
is given by χ⊥(q) = Ms/Hq , where Hq = (2A/Ms)q2 is the exchange field. In
RPA the transverse susceptibility χ⊥(q) is independent of temperature below Tc

[5.42]. For q = 0.5 Å−1 the transversal susceptibility is χ⊥ = 3 ×10−4 and the
corresponding Onsager coefficient λ(q = 0.5 Å, T ∼ Tc) = 8 ×109 s−1. Well below
Tc at T ∼ 800 K the relaxation frequency is smaller by a factor of 10 resulting in
a 10 times smaller L.L. damping compared to that at Tc, λ(q = 0.5 Å, T = 800 K) =
8 ×108 s−1.

In itinerant ferromagnets one also has to consider simple Stoner type excitations
where an electronic spin flip excitation across the Fermi surface creates a single
particle electron-hole pair with opposite spins. The spin waves can decay into Stoner
excitations when the energies of the spin wave is comparable to single particle
excitations of an equivalent q wave-vector. This means the spin-wave excitations
are not present across the whole Brillouin zone. The disappearance of spin waves
in Fe and Ni due to heavy damping caused by Stoner type excitations occurs above
∼ 100 meV (q > 0.5 Å−1). First principles numerical calculations of the dynamic
properties of Ni and Fe using fully itinerant electron band calculations were found to
be in excellent agreement with the neutron scattering experiments [5.96].

In conclusion: The neutron studies showed that the L.L. damping parameter is
significantly enhanced around the critical point Tc. Even well below Tc there is
a significant enhancement of the L.L. damping parameter λ at large q wave-vectors
compared to that at q ∼ 0. The enhancement of the L.L. parameter is caused by
dipole-dipole interaction.
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Note, that close to Tc the relaxation rates Γ are around 300 fs. One should point out
that the above neutron studies were obtained on bulk materials. In ultrathin films the
fluctuations and magnon electron interactions are constrained to a two dimensional
space, and therefore the bulk results can be used only as rough estimates. Recently
Vollmer et al. [5.97] were able to study large wave vector spin waves in an 8ML thick
ultrathin film of fcc Co(001) (grown by MBE on Cu(001) at RT) by Spin Polarized
Electron Energy Loss (SPEEL) spectrometry. For ultrathin films the neutron studies
are not possible. The SPEEL spectroscopy allowed them to investigate the spin waves
up to the surface Brilloin zone boundary with qmax ∼ 1.2 Å−1 and the spin wave
energy E ∼ 220 meV. The spin wave energy approached the surface Brilloin zone
with zero slope as expected for the Heissenberg model. This is indeed a remarkable
result. In the neutron studies on the bulk Ni and Co samples the spin waves disappeared
into the single particle excitation already at ∼ 100 meV. This difference between Co
and Ni, Fe is not clear at this point, but is most likely caused by much weaker
itinerant effects in ultrathin Co films. The spin wave peaks in the SPEEL spectra
were significantly broadened. After removing the instrumental resolution the energy
width ranged from 40 to 75 meV. This life time would be only of 10 fs. This is
significantly faster relaxation than that observed by the neutron studies in Ni and Fe
at RT, see above. However one should realize that the neutron studies were only able
to investigate the spin waves up to the energy of ∼ 100 meV and qmax ∼ 0.5 Å−1.
The short life time of spin waves at large q-vectors in the Co ultrathin film is most
likely caused by the enhanced decay of the spin wave into Stoner excitations.

5.4.8 Magnetic Relaxation at Large Precessional Angles

FMR measurements are usually carried out using small precession angle. One can
ask whether the magnetic damping in samples undergoing a large angle of precession
(encountered in magnetization reversal processes) is comparable to that studied by
FMR. In domain wall mobility measurements the magnetization angle changes by
180◦, and therefore these studies allow one to estimate the effective Gilbert (L.L.)
damping for large precessional angles. The domain wall motion in Ni and Py thin films
(less than several 100 nm in thickness) is mostly limited by the magnetic damping.
The L.L. damping creates a viscous force on the domain wall fvisc = βv, where v is
the domain wall velocity. The viscous force opposes the applied magnetic pressure
which is proportional to the applied field. The parameter β is proportional to the
damping parameter α, and is indirectly proportional to the effective domain wall
width ∆Weff = εdw/2A, where εdw is the domain wall energy density and A is the
exchange coupling coefficient [5.99, 100]. The measurements of the domain wall
velocity were usually carried out using a constant applied field. The velocity per unit
magnetic field is called the domain wall mobility. Regrettably the dependence of β

on the effective domain wall width makes the interpretation of domain wall mobility
measurements a non trivial problem.

Patton and Humphrey [5.98] showed that the domain wall mobilities in permalloy
(Py) films are significantly larger than those expected for a Bloch wall with the
Gilbert damping obtained from FMR. Significantly wider domain walls were used
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to explain the measured data. This was in agreement with the results of static wall-
shape measurements by Fuchs [5.101] and Suzuki et al. [5.102] using defocused
mode Lorentz microscopy.

The study of the domain wall ac response by Leaver and Vojdani [5.100] was
carried out using nearly perfect single crystal Ni platelets, 200 nm thick which were
prepared by chemical vapor transport. In their measurements the coefficient of the
viscous force β was found to be in good agreement with predictions using a Neel-like
wall and the intrinsic Gilbert damping obtained from Rodbell’s FMR measurements
on Ni platelets [5.103]. The Leaver-Vojdani studies are unique because they were
carried out on perfect crystalline samples. Their measurements can be used for
a reliable estimate of the Gilbert damping at large angles of precession. In this
respect it is prudent to critically assess their conclusions.

Leaver and Vojdani assumed that the domain wall in Ni platelets has a fully devel-
oped vortex, completely free of magnetic charge, see [5.104, 105]. This is strictly valid
for systems with a negligible crystalline anisotropy. The importance of anisotropy is
gauged by the reduced anisotropy coefficient (reduced quantity) Q which is given
by the ratio of the crystalline and magnetostatic energy [5.99]. In Ni Q = 0.2; this
means that the magnetostatic energy cannot be entirely neglected. In the other ex-
treme limit assuming a simple Bloch wall (no vortex structure around the interfaces)
one can calculate β using the wall energy of Ni, see Fig. 3.67 in [5.99]. The effective
Bloch wall width in Ni is 350 nm, which would result in a Bloch coefficient βBloch

that is by a factor of 2.2 larger than that measured by Leaver and Vojdani. This is
similar to the situation in Patton’s measurements. The Bloch domain wall is too thin
to explain the parameter β with the Gilbert damping parameter obtained from FMR.
The domain wall width calculations by Rave and Hubert [5.106] using Q = 0.1 is
more realistic for the Leaver-Vojdani studies. For a Ni platelet of 200 nm thickness
the calculated wall width around the surface was by a factor of two larger than that
in the interior, see Fig. 7 in [5.106]. This means that the effective domain wall width
in the Ni platelets can be as much as a factor of two bigger than that in a Bloch wall.
Clearly, no appreciable change in the value of the Gilbert damping from that obtained
by Rodbell using FMR is needed to explain Vojdani and Leavers’s results.

In high quality samples, there is no compelling evidence for having the Gilbert
damping at large angles of precession considerably different from that obtained by
standard FMR.

It is an interesting point that the effective angular frequencies in domain wall
mobility measurements are rather low compared to standard FMR measurements.
In Patton’s experiments the domain wall velocity reached 5000 cm/s, in the Leaver-
Vojdani ac experiments the amplitude of the domain wall oscillations reached a maxi-
mum of 10 µm at 1 MHz oscillatory frequency. Assuming that the domain wall width
is approximately 300 nm in Py and 80 nm in Ni one obtains an angular frequency in
the range of ∼ 2π × 108 s−1 in the Py and Ni measurements.

The angular independent damping in Py films (10, 25 and 50 nm in thickness) was
reported in the work by Nibarger, Lopusnik and Silva [5.71]. By measuring the time
resolved precessional motion of the magnetization after applying a variable transverse
pulse field to the applied dc field they found that the damping was independent on
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the angle of precession from 0.002 to 40 Degrees. The frequency of precession was
in the range of 700 MHz to 3 GHz. These Py samples did not exhibit a simple Gilbert
damping. The effective α was increased by decreasing the frequency of precession.
It reached a constant value for f > 1.7 GHz, and therefore some degree of damping
by inhomogeneities can be expected, see Sect. 5.7. The measurements were carried
out on films where the sample edges were not important. This result has shown
clearly that in the absence of edge scattering the rotational motion even at large
angles is not noticeably affected by higher order spin wave scattering which could
be in principle generated by nonlinearities at high angles of precession [5.107]. In
measurements using a high rf power the large angle of precessional motion is strongly
affected by multi-magnon scattering processes. The multi-magnon scattering can
lead to a substantial line broadening of FMR (Suhl-Damon-Bloembergen-Wang four
magnon scattering process) and can even result in subsidiary resonance (three magnon
scattering process) [5.108]. The Suhl-Damon-Bloembergen-Wang main resonance
saturation is important in the performance of microwave devices employing FMR
[5.109]. The results by Nibarger et al. [5.71] have shown that the Suhl instabilities in
films with a large lateral scale do not appear easily during a free rotation even at high
angles of rotation.

The conclusion of this section is that the Gilbert damping from FMR measure-
ments can be also applied for large angles of precession. However a word of caution
is needed. In FMR one usually studies a homogeneous mode of precession. In ex-
periments with a large angle of rotation that does not always have to be the case.
One can start with a nearly homogeneous rotation, but due to scattering by sample
inhomogeneities (particularly for small lateral geometries where the sample edges
play a crucial role) this rotation can evolve into complex spin wave and soliton
patterns. In this case one has to carefully assess the situation and decide what one
means by damping. The intrinsic damping measured by FMR determines the time
scale of dissipation of the magnetic energy into the lattice. It is a common error to
replace the time of de-phasing of homogeneous rotational mode with the damping
parameter. De-phasing leads to the spacial incoherence, but the magnetic energy has
to be removed by the intrinsic damping which in principle can be measured by FMR.
See further detailed discussion in Sect. 5.5.2.

5.5 Magnetic Relaxations in Multilayers

5.5.1 Current Induced Torque

Magnetic multilayers provide a special case where dynamic interactions between the
itinerant electrons and the magnetic moments in ultrathin films offer new exciting
possibilities. The non-local spin dynamics in metallic multilayers is one of the main
research topics of magnetic nanostructures, and has much promise for spintronics
applications. It has been shown in a number of recent experiments using either
pillar shape nanoscopic samples [5.110], or point contact geometries [5.111], that
the magnetization reversal can be driven by a current flowing perpendicularly to



172 B. Heinrich

Fig. 5.5. A five layer structure. F1 is assumed to have a stationary magnetic moment, and F2
is allowed to precess. N1, N, N2 are non-magnetic layers. The coordinate system is identical
to that in Fig. 5.1. The thick arrow represents the current density jc applied along the z-axis
(perpendicular to the film plane)

the magnetic layers. Slonczewski [5.112] showed that the transfer of vector spin
momentum accompanying an electric current flowing through the interfaces of two
magnetic films separated by a non-magnetic metallic spacer (magnetic double layer)
can result in negative Gilbert-like torques. This torque leads, for sufficiently high
current densities, to spontaneous magnetization precession and switching phenomena
[5.113].

Assuming ballistic electron transport and using a five layer system in Fig. 5.5,
Slonczewski [5.112] evaluated the spin transport across the interfaces using Wentzel-
Kramers-Brillouin (WKB) Hartree-Fock spinor wave functions. The torque generated
by a current perpendicular to the interfaces has a L.L. like form

∂S1,2

∂t
= jcg

e
s1,2 × (s1 × s2) , (5.41)

where S1,2 are the total spins per unit area in F1 and F2, s1,2 are the unit vectors along
the total spin vectors, e is the electron charge, and jc is the electron current density.
The scalar function g is given by

g = 4
√

P3

−16
√

P3 + (1 + P)3(3 + s1 · s2)
, (5.42)

where P = (n+−n−)/(n++n−) is the spin polarizing factor. Note that the torques in
(5.41) do not cancel each other. They are perpendicular to their respective magnetic
moments maintaining the same circulatory pattern. Assuming that F1 has a stationary
magnetic moment oriented along the unit vector u the current induced torque can be
described by an effective field acting on F2

�
jcg

ed2 Ms,2
u × s2 , (5.43)

where Ms,2 is the saturation magnetization in F2. Note, that the current induced
effective field is inversely proportional to the film thickness, and therefore the current
induced effective torque has an interface character. Assuming a circularly polarized
magnetization m+ with a small angle of precession around the u direction, and adding
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the effective field in (5.43) to the L.L. eq. of motion, see (5.5) results in the magnetic
relaxation term

−
(

λ

γ

1

χ⊥
− � jcg

edMs

)
m+ . (5.44)

The current induced relaxation depends linearly on the current density and its
sign can be reversed by changing the current direction. For current densities larger
than the critical value

jc,crit = λ

γχ⊥
edMs

�g
. (5.45)

The damping term is negative, and F2 is allowed to precess away from its equilibrium.
With a further increasing current density the negative damping can reach a threshold
value at which the magnetic moment in F2 undergoes a complete magnetization
reversal.

Recently Fert et al. [5.114] derived more accurate expression for the g parameter
in (5.41) for Co/Cu/Co systems. Using the standard diffusive transport equations of
the CPP-GMR theory and assuming the spin momentum transport for small angles
between the magnetic moments they have shown that the torque equation (5.41) has
contributions originating in the Cu spacer and at the Cu/Co interface. These equations
were used to discuss the results of magnetization reversal by the current injection and
transfer of spins in their Co/Cu/Co trilayer pillars.

Berger evaluated the role of non-local spin momentum transport in magnetic
double layers using a somewhat different approach than Slonczewski. F1 was again
assumed to be static, and the direction of its magnetic moment determined the axis of
the static equilibrium. Magnons were introduced by allowing the magnetic moment
of the second (thinner) layer to precess around the equilibrium direction. Itinerant
electrons entering the thin ferromagnetic layer through a sharp interface cannot
immediately accommodate the direction of the precessing magnetization. Berger
showed that this leads to an additional exchange torque which is directed towards the
equilibrium axis, and represents an additional relaxation term. This relaxation torque
is confined to the vicinity of the N/F2 interface. The resulting relaxation torque in
a magnetic double layer structure contributes to an additional magnetic relaxation
torque which can be expressed in an additional FMR linewidth [5.115], ∆Hadd. The
additional FMR linewidth ∆Hadd is proportional to

∆Hadd ∼ (∆µ + �ω) , (5.46)

where ∆µ = ∆µ↑ −∆µ↓ is the difference in the spin up and spin down Fermi level
shifts, and ω is the microwave angular frequency. Berger [5.115] showed that the
spin momentum transfer between F1 and F2 is mostly confined to a very thin region
around the N/F2 interface. Its depth is given by

L0 = π

k↑ − k↓
. (5.47)
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The majority and minority electrons entering F2 from N come with their spins
polarized by F1. The majority and minority electrons entering F2 contribute with
opposite torques. However, the time to reach a given distance d in F2 away from the
N/F2 interface depends on the perpendicular kz component. Keep in mind that the
parallel component of k wave-vector is preserved in ballistic transport. Thus for an
electron coming in at oblique incidence the phase of precession is bigger than that
for an electron entering the interface along the film normal. That results in a fast
de-phasing leading to a rapid decay of the overall torque with distance d from the
N/F2 interface. The effective depth is given by L0, and it is expected in to be less
than 1 nm. Therefore, the additional FMR linewidth in (5.46) represents an interface
effect.

The second term in (5.46) will be discussed in Sect. 5.6. In this section the
discussion will be limited to the spin transport which is induced by an applied
perpendicular current.

The layer F1 acts as a spin polarizer of the current I (assuming that the layer F1 is
thicker than the spin diffusion length). The majority and minority spin channels have
different conductivities and consequently the current densities j↑↓c for majority and
minority spin carriers, are different. In a traditional treatment this results in a shift
of the Fermi levels for the spin up and down electrons. Assuming that the layer N
is much thinner than the spin diffusion length the appropriate shifts in the electron k
space in N are [5.115]

∆k↑↓
z = − 2m

en�
j↑↓c , (5.48)

where n is the total number of conduction electrons per unit volume in N, m and e are
the electron mass and charge, and the z coordinate is perpendicular to the interfaces,
see Fig. 5.5. These shifts produce displacements in the local majority and minority
electron Fermi levels

∆µ↑↓ = �∆k↑↓
z vN

z , (5.49)

where vN
z is the z-component of the electron velocity in N. Using the parameters

β = j↑c / j↓c = σ
↑
F1/σ

↓
F1 and jc = j↑c + j↓c results in

∆µ = ∆µ↑ − ∆µ↓ = −2

(
β − 1

β + 1

)
�kz

en
jc . (5.50)

σ
↑
F1, σ

↓
F1 are spin up spin down conductivities in F1 far from any interface. The

total spin current (current driven torque) across the N/F2 interface is obtained by
integration over the displaced Fermi surfaces. The integration also incorporates the
wave function transmission coefficients t at the N/F2 interface. The current driven
torque is proportional to ∆µ sin(θ), where θ is the angle between the magnetic
moments of F1 and F2. The pre-factor accompanying ∆µ sin(θ) depends on the
coefficient β, transmission coefficients t, the Fermi k wave-vector in N, and the
Fermi k↑,↓ wave-vectors in F2, see details in [5.116].
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This calculation assume purely ballistic transport across the N/F2 interface. One
also has to consider thick layers (compared to spin diffusion lengths). The spin
imbalance in this case is associated with isotropic expansion and contraction of
the Fermi surface. This is commonly used in CPP GMR theory, see [5.40], and
was originally introduced by Aronov [5.117]. Berger [5.116] showed by solving
diffusion equations for thick layers F1 and N2 that the difference in the Fermi levels,
∆µdiff = ∆µ↑ − ∆µ↓, for the contracted and expanded Fermi surface and the
displaced Fermi surfaces ∆µ in (5.50) satisfy

∆µ

∆µdiff
=

(
Λ↓
lsd

)
F1

+
(

Λ↓
lsd

)
N2

, (5.51)

where Λ↓ and lsd are the momentum mean free path for spin down electrons and
the spin diffusion length in F1 and N2, respectively. In most materials the ratio
Λ↓/lsd � 1. It means that the isotropic expansion or contraction of the Fermi surface
is significantly bigger than ∆µ. The pre-factors (accompanying ∆µ and ∆µdiff) for
the current driven torque are nearly the same. It follows that the critical current
requirement is appreciably dropped in thick layers where the electron transport obeys
Aronov’s diffusion equations. However, this advantage is lost rapidly for samples
where the leads N1 and N2 spread out immediately into a cross-sectional area much
wider than that of the F1/N2/F2 multilayer. The current flow in this case is not
anymore one dimensional which results in a significant drop of ∆µdiff [5.116].

Stiles and Zangwill [5.118] carried out excellent model calculations describing the
spin current transport at a non-ferromagnet/ferromagnet interface for a non-collinear
orientation of spins. The paper has a great educational character and for that reason
the main results will be briefly highlighted.

For the spin degree of freedom the spin density is

m(r) = Σiσσ ′ψ∗
iσ sσ,σ ′ψiσ ′(r) , (5.52)

and the spin current density is expressed as

� = Σiσσ ′ Re[ψ∗
iσ (r)sσ,σ ′ ⊗ vψiσ ′(r)] , (5.53)

where s = (�/2)σ , and σ is a vector whose components are the three Pauli matrices.
⊗ represents the matrix product between the Pauli matrix and the electron velocity
operator v = −i(�/m)∇ (which is in the direction of the applied current) of an
appropriate electron state ψiσ . The spin current density � is a tensor with its indices
describing the spin and real space directions. The spin balance in space is given by

∂m
∂t

= −∇� − δm
τsf

+ Text , (5.54)

where the first term on the right hand side accounts for a non local origin of the
spin current density, the second term describes the spin relaxation term of the spin
accumulation density δm = m−meq, and the last term is the Landau-Lifshitz-Gilbert
torque density, see (5.1) and (5.5). Stiles and Zangwill evaluated the spin currents
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in the NM/FM double layer system assuming that the incident current flows from
the NM layer with the spin polarization having the spin moment oriented with an
arbitrary polar and azimuthal angle with respect to the magnetic moment in the FM
layer. For a stationary incident current the total flow of the spin current through a pill
box which just straddles the interface can be used (using the divergence theorem for
(5.54)) to calculate the current induced spin momentum transfer torque at the NM/FM
interface. The current induced spin transfer torque N per unit area is given by

N = −�inc + �t + �r , (5.55)

where indexes inc, t, r stand for incidence, transmission and reflection components
of �, respectively. Calculations were carried out using a semiclassical Boltzmann
transport equation which included interface spin dependent reflection and transmis-
sion coefficients. The reflection R↑, R↓ and transmission T↑, T↓ coefficients were
calculated from the usual quantum mechanical matching conditions. The longitudi-
nal (parallel to the magnetization) incident spin current was found to be equal to the
sum of the reflected and transmitted spin currents. This means no interface torque
parallel to the magnetization is present. The situation is different for the transverse
components. The reflection and transmission coefficients are spin dependent and that
results in the discontinuity of the transmitted and reflected spin density currents. This
effect is usually referred to as spin filtering. In addition the reflection coefficients are
generally complex which leads to an appreciable spin rotation after reflection. The
rotation angles are widely spread with the transverse electron momentum k‖ (parallel
to the interface), which results in an extensive cancellation of the total transverse re-
flected spin current. Finally, the spin precession for the transmitted spin current leads
to a third source of the spin transfer torque. The transmitted component decreases
rapidly to zero away from the interface. In the asymptotic limit the dependence on
the distance x away from the interface is given by

sin[(k↑
F − k↓

F)x]
(k↑

F − k↓
F)x

, (5.56)

where k↑
F and k↓

F are the Fermi kF wavevectors for minority and majority spins in the
ferromagnet. This is in agreement with Berger’s calculations, see (5.47). The electron
transient time in the ferromagnet is different for the majority and minority spins,
k↓ �= k↑, leading to the phase difference (k↑

z − k↓
z )z for the transmitted transversal

spin current. The electrons entering the interface under different angles spread out
the phase difference and that results in a rapid decrease of the oscillatory amplitude
of the total transmitted transversal spin current with an increasing distance from the
interface. The decay length of the transmitted transversal spin current is of a few ML
given by (5.47).

The incident spin current is fully absorbed by the interface, and consequently the
incident transversal spin angular momentum delivers an interface transverse torque.
This is in agreement with Slonczewski’s and Berger’s model of interface torque, see
(5.41).
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Fig. 5.6. Voltage, current polarization, and spin accumulation for a trilayer. (a) A heterostructure
with two Co layers, with a Cu spacer, and two semi-infinite Cu leads. The electron current flows
in the x-direction and the left magnetization is in the z-direction and the right magnetization is
in the y-direction. (b) The voltage drop through the structure. (c) and (d) z and y components of
the current polarization, respectively. (e) and (f) z and y components of the spin accumulation,
respectively. This figure was provided by courtesy of M. Stiles and A. Zangwill

The rapid de-phasing of the transverse spin current on the length scale of a few
ML is a purely quantum mechanical effect which has no real equivalent in classical
equations for spin transport. A similar situation was found by Šimanek [5.119] for
the spin transport through a Bloch wall where the magnetization gradually rotates in
space.

An excellent theoretical extension of non-collinear spin current transfer in
a Cu/Co/Cu/Co/Cu multilayer can be found in the paper by Stiles and Zangwill
[5.120]. The numerical results were carried out for each part of the heterostructure
(leads, ferromagnets, and the spacer Cu layer) and are summarized in Fig. 5.6, which
was provided by courtesy of M. Stiles and A. Zangwill.

The transverse spin currents are discontinuous at the Co/Cu and Cu/Co inter-
faces, which results in transverse interface torques. Figure 5.6e,f shows the spin
accumulation along the corresponding magnetization directions that is required for
the calculated current polarizations. One should point out that the spin transport in
Cu is carried out by diffusion, consequently the spin accumulation δm in Cu reverses
its sign around the adjacent Cu/Co/Cu interfaces. The spacial variation of the spin
accumulation as a function of x is not explicitly visible due to a long spin diffusion
length in Cu (2000 nm). The drop in the voltage at the Cu/Co and Co/Cu interfaces,
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see Fig.5.6a, and discontinuities in spin accumulation across the interfaces are due to
the presence of interface conductances.

Brataas et al. [5.121] formulated a theory of spin transport in hybrid normal
metal-ferromagnetic mesoscopic circuits with a non-collinear orientation of mag-
netic moments. The spin transport is described by resistive elements using interface
conductance parameters. The conductances are expressed in terms of scattering ma-
trices.

Heide et al. [5.122] showed that non-equilibrium exchange interaction (NEXI)
in the presence of perpendicular dc current also induces interlayer like exchange
fields bM from one magnetic layer to another. Berger [5.116] evaluated this field for
ballistic transport. Its contribution was found to be comparable to the spin torque
contribution for the film thickness d < L0, but it decayed rapidly to zero for d > L0.
The interlayer exchange like field bM is unimportant in reasonably thick ultrathin
films; it can be present only for samples which are a few ML thick where d < L0 is
satisfied.

SWASER. Equation (5.44) shows that one can compensate the relaxation term by
the current induced torque. Berger pointed out that there is an analogy between
magnon emission generated by current induced torque and a semiconductor injection
laser. The Fermi level difference ∆µ < 0 pumps electrons up from the majority
to minority states. The spin relaxation back to majority states creates a magnon
in F2 to preserve the total spin in the s-d interaction. The number of magnons is
proportional to the deviation of the longitudinal magnetization component from its
equilibrium ∼ (1 − cos(θ)), for small θ it is ∼ θ2, where θ is the angle between
the instantaneous magnetization direction and the equilibrium direction. The rate of
change of the transversal magnetization component, ∂m⊥/∂t, by the current induced
torque is proportional to sin(θ), see (5.41). For small angles of precession the rate
of change of the longitudinal magnetization component, ∂M||/∂t is proportional to
(m⊥/M||)(∂m⊥/∂t). Since m⊥/M|| and ∂m⊥/∂t are proportional to θ, the longitudi-
nal component ∂M||/∂t ∼ θ2. Therefore the rate in which magnons are generated
(∼ ∂M||/∂t) and the number of magnons have the same dependence on the angle θ.
This means the rate of creation of magnons is proportional to the number of magnons,
and that is called stimulated emission. The energy corresponding to precessing mag-
netization (magnon) plays the role of the laser semiconductor band gap. Berger used
the term spin wave amplification by stimulated emission of radiation (SWASER) to
describe a device which operates on the current induced negative damping term.

Devices based on spin instability can operate either on complete magnetization
reversal, see [5.123], or on the stationary precession of the magnetization [5.124].
One can switch the magnetization of a memory pixel by applying a perpendicular
current above its critical threshold. The reversal of magnetization is achieved simply
by reversing the direction of current. Albert et al. [5.123] studied magnetization re-
versal using a 2.5 nm thick Co thin film nanomagnet in nanopillar (60 × 130 nm2)
devices based on multilayer Cu(80 nm)/Co(40 nm)/Cu(6 nm)/Co(2.5 nm)/Au(10 nm)
structures deposited on an oxidized Si wafer. The saturation magnetization was ori-
ented in the plane of the sample. The switching currents were 2.3 mA and − 3.3 mA
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for the forward and backward switching, respectively. The corresponding critical
current density was ∼ 2.5 ×107 A/cm2. The obvious advantage of this approach is
in having a local field with no effect on surrounding memory pixels. Since Maxwell’s
magnetic field is inversely proportional to 1/r (the radius of the memory pixel) and
the critical current is inversely proportional to 1/r2, the current-induced exchange
torque is more favorable for switching very small memory pixels.

Tsoi et al. [5.124] reported generation and detection of phase coherent magnons
driven by the current in [Co(1.5 nm)/Cu(2–2.2 nm)]N multilayer structures employing
a point contact configuration for the dc electrodes. In their studies they needed rela-
tively high critical currents, 1 ×109 A/cm2. By using an external microwave source
(40–50 GHz) they were able to detect an increase in the dc voltage across the point
contact junction when the applied microwave frequency was either equal to or greater
than the resonance frequency of the uniform precession mode. A possible explanation
lies in a rf non-linear mixing of two microwave signals. One originates in the applied
dc current and other is supplied by an external microwave source. Pufall et al. [5.125]
extensively investigated the current induced magnetic excitations in multilayer sam-
ples grown using a wide range of magnetic materials. The measurements were carried
out by using a mechanical point contact measurements. The tip material was Ag. The
multilayer structure was Fe(5 nm)/Cu(0.9 nm)/FM(1.2 nm)×10/Cu(1. nm) in which
FM=Co,Co90Fe10, Ni80Fe20, Fe and Ni40Fe10Co50 sputtered deposited onto oxidized
Si. They studied the critical current required to induce the step in resistance, dI/dV ,
that is generally believed to be given by the onset of magnetization precessional mo-

Fig. 5.7. Time evolution of the magnetic moment in an external field H = 0.6 kOe which is ap-
plied along the hard magnetic axes [11̄0]. The starting orientation of the magnetic moment was
a few degrees away from the easy axis [100], see the arrow. Computer simulations were carried
out with the following current densities: (a) 3.5 ×107 A/cm2 and (b) 2.5 ×108 A/cm−2. The
magnetic properties of layer F2 are described in Fig. 5.2. Maxwell’s field in this calculation
was neglected. Note, that one is able to establish complex stationary precessions having large
amplitudes. For the low current density in (a) the tip of the magnetization follows the edge of
a bracelet. With an increasing current the bracelet closes and eventually evolves into a lasso
shape orbit, see (b)
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tion. In these measurements the magnetization and the exchange coupling was varied
by a factor of 4 and 30, respectively. They found that their results are consistent
with with Slonczewski’s theory for describing the current induced magnetic effects
[5.113].

Fig. 5.7 shows a stationary precession of the magnetization under very simplifying
assumptions using equation (5.41) and assuming that the ferromagnetic layer F1 is
stationary and the second layer F2 is allowed to process as a single macroscopic spin.
In realistic experiment one would have to use small size magnetic pixels to avoid the
dominant role of Maxwell’s field. In this case one has to include the inhomogeneous
demagnetizing field from the ferromagnetic pixels.

In the recent experiments carried out by Kiselev et al. [5.126] using a sin-
gle pillar (130 nm × 70 nm) of 80 nm Cu/40 nm Co/10 nm Cu/3 nm Co/2 nm
Cu/30 nm Pt on an oxidized Si wafer and Rippard et al. [5.127] using lithograph-
ically defined point contacts of 40 nm diameter circles made on spin-valve mesas
of Cu(50 nm)/Co90Fe10(20 nm)/Cu(5 nm)/Ni80Fe20(5 nm)/Cu(1.5 nm)/Au(2.5 nm) it
has been shown for the first time that a dc current can result in a coherent large angle
microwave precession. Microwave probes attached to the structure allowed them to
detect the microwave signal using a spectrum analyzer. The critical current density
was in the range of 3 ×108 A/cm2. The onset of microwave emission was found to
be strongly correlated with the peak in the dc dV/dI curve. However, significant
microwave signals were observed for the currents somewhat larger than that corre-
sponding to the peak of dV/dI . By applying the in-plane and out of plane magnetic
field the microwave signal was observed in 6 to 36 GHz range of frequencies [5.127].
The maximum microwave power generated by the precessing nanomagnet devices
was 40 times larger than room temperature Johnson noise [5.126].

5.5.2 Spin Dynamics in Small Lateral Geometries, Computer Simulations

The computer simulations in this section were provided courtesy of Professor
M. Scheinfein [5.129], and this section was written together with Prof. Scheinfein.
In Fig. 5.8 micromagnetic simulations for the time reversal in a small Py sample
640 × 320 × 5 nm3 (x, y, z) are shown. The time extent of the field pulse was se-
lected so that the initial magnetization oriented along +x was rotated and oriented
along −x when the field was set back to zero. In other words, the field pulse dura-
tion was ∆t = T/2 where T is the macroscopic uniform rotation precession period.
Note that the total moment along the x axis reached its nearly stationary value after
1 ns. However, a small transverse in-plane y component is still present and keeps
further oscillating. An ongoing precession of the magnetic moment for t > 1 ns is
very pronounced in Fig. 5.8b. In Fig. 5.8b the averaged local magnetic moment in
a 20 × 20 × 5 nm3 patch of the total structure center shows very pronounced os-
cillatory behavior in the y direction. This means that the system is not yet close to
a true static equilibrium. This marked difference between the global (total) and local
behavior is a direct consequence of mode-mode coupling. The long wavelength mode
gets nearly stationary very quickly, but the magnetic energy of the system is not yet
fully dissipated because the intrinsic relaxation parameter α = 0.01 is not sufficient
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Fig. 5.8. The time reversal of the magnetic moment in a submicron Py square sample of
640 × 340 × 5 nm3. The magnetic parameters for Py are A = 1.05 ×10−6 ergs/cm, Ms =
800 G, Ku = 1000 erg/cm3. The time reversal of the magnetic moment was carried out in
the following way. The sample has its initial magnetic state in a s-state (see Arrott [5.76] and
Shi [5.128] in this book) with the magnetic moment along the +x magnetic easy direction.
A magnetic field of 500 Oe was applied along the y hard magnetic axis for a duration of
57 ps. (a) The time dependence of the components of the total magnetic moment. (b) The time
dependence of the components of the magnetic moment in the center of the sample. (c) The
time dependence of the total, demagnetizing and exchange energies

to dissipate energy that quickly. In fact, one can estimate the true relaxation time by
using (5.18). The period of oscillations can be obtained from the red line in Fig. 5.8b,
and that results in a relaxation time of 40 ns. Obviously this is an appreciably longer
period than 1 ns which is required to reach near equilibrium for the total moment
along the −x direction. In Fig. 5.8c one can follow the approach to equilibrium. The
maximum energy occurs right after the field was switched off. Note that almost half
of the energy is left in the system when the total magnetic moment was reversed.
The demagnetizing and exchange energies are out of phase. They drive each other
into equilibrium. The initial low frequency oscillations produce magnetostatic modes
which collide with boundaries and couple to higher frequency waves (spin waves
and solitons). These waves carry more energy (higher exchange internal fields) and
have a large state density which can lead to higher damping rates. The mode-mode
coupling effectively moves the magnetic energy into short wavelength modes where
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it is dissipated. They become completely attenuated on the time scale of 40 ns. Note
that if the relaxation parameter is obtained from the time dependence of the total mo-
ment then one would get an effective damping parameter of α = 0.4. This is clearly
wrong. In small magnetic pixels one needs to follow the local moments in order
to determine the damping parameter α correctly. An excellent review of switching
processes in spin sensors and memory pixels in Magnetic Random Access Memory
(MRAM) is reviewed by S.E. Russek et al. in their chapter on High Speed Switching
and Rotational Dynamics in Small Magnetic Devices [5.62].

The magnetization reversal which is driven by Slonczewski’ spin torque, see
(5.41), are shown in Figs. 5.9–5.12. These figures demonstrate the complexities which
can occur in finite sized samples. The magnetization reversal is simulated gradually
from a simple to more realistic magnetic double layers separated by a nonmagnetic
spacer. In the left frame of Fig. 5.9 one assumes the simplest case. The magnetization
reversal is carried out for a single magnetic moment where no lateral variations are
present. Note that the magnetization time reversal by the spin current follows a simple
precessional mode where the precession amplitude in the perpendicular direction
(blue line) to the film surface is appreciably smaller than that in the in-plane. This is

Fig. 5.9. The time evolution of the average magnetic moment in zero external field using
Slonczewski’s induced spin current torque, see (5.41). The density of current is 6 ×108 A/cm2.
The magnetic double structure consists of two Fe(001) pixels of 60 × 60 nm2 × 2.2 nm (layer
F2) and 60×60 nm2×220 nm (layer F1) which are separated by a 2.2 nm thick NM spacer. The
magnetic properties of the Fe films correspond to those of the Fe bulk. The relaxation parameter
α = 0.01. The thick layer F1 is pinned along its perimetry with Dirichlet boundary conditions.
The thickness of F1 and Dirichlet boundary conditions assures that this layer remains stationary,
and creates no demagnetizing field acting on F2. The left figure is calculated using a single spin
approximation. This means the lateral dimensions of the soft magnetic layer F2 are ignored.
There is no contribution of Maxwell’s field from the passing dc current. The initial direction
of the magnetic moment in F2 is a few degrees away from the negative x-direction (red line)
corresponding to an easy magnetic crystallographic direction [100] in Fe. In the right frame
of the figure one uses the full lateral dimension of F2. This means that the Maxwell’s field
and the dipolar field in F2 are included self consistently. The layer F1 is still fully pinned with
Dirichlet boundary conditions
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Fig. 5.10. The magnetization reversal in the thin film which is described in the right frame of
Fig. 5.9. The magnetization direction cosines (Mz/Ms – top, My/Ms – middle and Mx/Ms

– bottom) are shown at times t = 20 ps (left) and t = 60 ps (right). At t = 0 the magnetic
moment in the layer was oriented everywhere in −x direction (full red color). Evident at
t = 20 ps the magnetization is trying to create a vortex, see the left part of the figure above.
At t = 60 ps the mode mode-coupling results in a full vortex in the left upper corner above,
but the rest of the sample has a complex magnetization pattern which is a consequence of all
competing internal fields, see the right part of the figure above. Eventually, t > 200 ps, the
magnetic moment is fully reversed in the +x direction. The reversal of the magnetic moment
is caused by Slonczewski’s spin current induced torque which is able to overcome Maxwell’s
field created by a passing dc current
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Fig. 5.11. The time dependence of the total (average) magnetic moment. Both Co layers
are allowed to precess, and they are now coupled by the dipolar fields. No constrains are
imposed. The dimensions of the thick F1 and thin F2 layers are 10 × (130 × 130) nm3 and
2.5 × (130 × 130) nm3, respectively. The left and right frames correspond to the F1 and F2
layers, respectively. At t = 0 one assumes that the magnetic moments are oriented antiparallel
(due to mutual dipolar field). For t > 0 one applies a dc current with the current density of
6 × 108 A/cm2 to drive the system into magnetization reversal state

caused by a strong perpendicular demagnetizing field. The time of reversal is 200 ps.
In the right frame of Fig. 5.9 the constraint of a single spin in layer F2 is released. The
magnetic moments inside layer F2 (1000 pixels) are allowed to rotate independently
and Maxwell’s field from the applied dc current is included self consistently. The
time reversal of the total magnetic moment is clearly more complicated. It does not
follow a simple precession, the local magnetic moments create domains and vortices
as shown at t = 60 ps in Fig. 5.10. However, in this case where F1 is pinned the
magnetic moment in F2 still eventually reaches a reversed steady state. Figures 5.11
and 5.12 correspond to the situation. where all constrains are removed, i.e. F1 is no
longer pinned and can be subjected to the torques from F2 due to the spin current and
Maxwell’s fields. With no constrains the magnetic moments in both layers are allowed
to rotate. The simulations are meant to replicate experimental conditions encountered
for spin-torque measurements in pillar-like structures. The polarizing layer, composed
of Co with bulk like properties (except that the anisotropy is small) is 10 nm thick.
The interlayer paramagnet is 6 nm thick, and the free layer, also composed of Co is
2.5 nm thick. When the constrains on the polarizing layer are relaxed, the magnetic
field from the injected current and the spin torque from the free layer destabilize the
magnetization in the polarizing layer. In general, the spin torque is competing with
that produced by Maxwell’s fields from the current, and symmetry is necessarily
broken. The resulting magnetization configuration consists of persistent spin wave
excitations that destabilize the magnetization in both layers. Once the symmetry is
broken, chaotic magnetization states result. The magnetization as a function of time is
shown for the free layer (right) in Fig. 5.11. That the magnetization follows a complex
path in time is evident by the tangled path of the trajectories. One magnetization state
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Fig. 5.12. The magnetization direction cosines (Mz/Ms – top, My/Ms – middle and Mx/Ms

– bottom) are shown at times t = 1 ns for the thin free layer (left) and the thick polarization
layer (right, see details in text). The symmetry breaking through the competition of the spin-
torque and Maxwell’s field introduces persistent spin wave excitations which destabilize the
magnetization in both layers (continuously)

snap-shot is shown in Fig. 5.12 (t = 1 ns). The left panels are the direction cosines
for the free layer and the right panels those for the polarizing layer. When the current
is (suddenly) turned off at t = 1 ns, the magnetization relaxes into ferromagnetically
coupled antisymmetric C-states. However, depending up the chaotic magnetization
state present when the current is removed, the layers may form ferromagnetically
(metastable state) or antiferromagnetically coupled C-state or vortices.

The above simulations have shown that the full reversal of magnetic moment
by current requires a good pinning of the thick FM layer. The results by Myers et
al. and Albert et al. [5.130, 131] have shown that one is able to carry out reliably
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magnetic reversal by using a nano-pillar structure of Cu(80 nm)/Co(40 nm)/Cu(6 nm)/
Co(3 nm)/Au(10 nm) with the cross section ranging from 50 × 50 to 130 × 60 nm2.
Using a laterally extended film for the polarization Co layer (40 nm) resulted in
its effective magnetic pinning. Its coercive field was of ∼ 1 kOe. The computer
simulations in right frame of Fig. 5.9 are relevant to this experiment. Myers et al.
have shown also that magnetic reversal by spin polarized current exhibit statistical
properties of thermal activation near room temperature [5.130].

5.6 Non-local Damping: Experiment

5.6.1 Multilayers

The role of interface damping has been investigated in high quality crystalline
Au/Fe/Au/Fe(001) structures grown on GaAs(001) substrates, see details in [5.23].
The in-plane FMR experiments were carried out using 10, 24, and 36 GHz systems
[5.22]. The in-plane resonance fields and resonance linewidths were measured as
a function of the azimuthal angle ϕ between the external dc magnetic field and the
Fe in-plane cubic axes.

Single Fe ultrathin films with thicknesses of 8, 11, 16, 21, and 31 monolayers
(ML) were grown directly on GaAs(001). They were covered by a 20 ML thick
Au(001) cap layer for protection in ambient conditions. FMR measurements were
used to determine the in-plane four-fold and uniaxial magnetic anisotropies, K1 and
Ku, and the effective demagnetizing field perpendicular to the film surface, 4πMeff,
as a function of the film thickness d [5.23, 24]. The magnetic anisotropies were well
described by a linear dependence on 1/d. The constant and linear terms represent the
bulk and interface magnetic properties, respectively. The ultrathin Fe films grown on
GaAs(001) have their magnetic properties nearly equal to those of bulk Fe, modified
only by sharply defined interface anisotropies, indicating that the Fe layers are of
a high crystalline quality with well defined interfaces. The lineshape of the FMR peaks
is Lorentzian and the FMR linewidths are small (under 100 Oe for our microwave
frequencies) and only weakly dependent on the film thickness. The reproducible
magnetic anisotropies and small FMR linewidths provided an excellent opportunity
for the investigation of non-local relaxation processes in magnetic multilayer films.

The thin Fe films which were studied in the single layer structures were regrown
as a part of magnetic double layer structures. The thin Fe film (F2) was separated
from the second thick layer (F1) of 40 ML thickness by a 40 ML thick Au spacer
(N). The magnetic double layers were covered by a 20 ML Au(001) layer (N1) for
protection under ambient conditions. Note that the layer notation from Fig. 5.5 was
used. In this case N2 corresponds to GaAs(001). The thickness of the Au spacer
layer was much smaller than the electron mean free path (38 nm) [5.132], and hence
ballistic spin transfer between the magnetic layers is allowed.

The interface magnetic anisotropies separated the FMR fields of F1 and F2 by
a big margin (∼ 1 kOe), see [5.23]. That allowed us to carry out FMR measurements
in F2 with F1 possessing a negligible angle of precession compared to that in F2. The
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Fig. 5.13. The FMR linewidth measurements (half width half maximum (HWHM)) in the par-
allel configuration. (a) The dependence of the additional FMR linewidth ∆Hadd = ∆Hd−∆Hs

on 1/d at f = 36 GHz. d is the thickness of F2 (16 ML Fe layer in a GaAs/16Fe/40
Au/40Fe/20Au(001) structure). ∆Hd and ∆Hs represent the FMR linewidths for the Fe
films in the double and single layer magnetic structures, respectively. (b) The frequency
dependence of FMR linewidth in the 16 ML Fe layer: ∆Hd (blue filled circles) in
a GaAs/16Fe/40Au/40Fe/20Au(001) structure; ∆Hs (open blue circles) in a single magnetic
layer GaAs/16 Fe/20Au(001) structure; and the additional FMR linewidth ∆Hadd is shown in
red stars. The magnetic properties of 16 Fe were listed in Fig. 5.2. The solid line in olive green
shows the fit to the data using the non-local damping mechanism which is based on (5.57).
The integers represent the number of ML

FMR linewidths in single and double layer structures were only weakly dependent
on the azimuthal angle ϕ of the saturation magnetization with respect to the in-plane
crystallographic axes.

The thin Fe film in the single and double layer structures had the same FMR
field showing that the interlayer exchange coupling [5.3] through the 40 ML thick
Au spacer was negligible, and the magnetic properties of the Fe films grown by MBE
on well prepared GaAs(001) substrates were fully reproducible.

The FMR linewidth in the thin films always increased in the presence of a thick
layer F1. The additional FMR linewidth, ∆Hadd, followed an inverse dependence on
the thin film thickness d, see Fig. 5.13a. ∆Hadd deviates from the straight line mainly
for the thinnest Fe layer, d = 8 ML indicating that the thinnest film approaches the
length L0 = π/(k↑−k↓), see (5.47). The non-local damping originates at the film in-
terface (F2/N). The linear dependence of ∆Hadd on the microwave frequency for both
the parallel and perpendicular configuration with negligible zero-frequency offset, see
Fig. 5.13b is equally important. This means that the additional contribution to the FMR
linewidth can be described by an interface Gilbert damping. The additional Gilbert
damping for the 16 ML thick film was found to be weakly dependent on the crystal-
lographic direction, Gadd = 1.2 ×108 s−1 along the cubic axis. Note that its strength
is comparable to the intrinsic Gilbert damping in the single Fe film, 1.45 ×108 s−1.

Discussion of the Interface Torque. Berger showed that in magnetic multilayers one
can expect non-local interface damping, see the second term in (5.46). The additional
relaxation term is proportional to �ω and does not require the presence of a dc current.
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It is based solely on the conservation of the total angular momentum; this means that
the electrons in the non-magnetic spacer have to flip from spin down to up as a magnon
is annihilated in the thin magnetic layer, and vice versa. The relaxation equations for
spin up and spin down electrons in the spacer layer N were obtained using Fermi’s
golden rule which includes the change in energy of an electron when emitting or
absorbing a magnon, and the spin up and spin down Fermi level shifts. The spin flip
transitions in the N spacer lead to the displacement of the chemical potentials ∆µ

for majority and minority spins from their common thermal equilibrium value (in
absence of magnetization precession). ∆µ reaches its stationary value when the rate
of the spin transitions due to spin-orbit interaction (see Sect. 5.3.3) is equal to the
rate of spin flip transitions caused by the precessing magnetization. The system then
reaches its dynamic equilibrium. This means that the additional interface damping is
always accompanied by a non-zero ∆µ even in the absence of an applied current. The
sign of this shift is always negative and its amplitude is dependent on the precessional
angle (number of magnons). Berger showed that ∆µ is negligible for small angles
of precession, but it approaches asymptotically −�ω for large angles of precession
[5.133]. It follows, that the interface damping is dependent on the angle of precession
and gradually disappears at large precessional angles. Numerical estimates showed
that a precessional angle of 15◦ is sufficient to remove the interface damping.

Berger’s expression for the FMR linewidth, (5.46), was derived for a circularly
polarized precession. One has to ask, what can be expected for the parallel FMR
configuration where the demagnetizing effect leads to a strong ellipticity in the
precession. Equation (5.46) suggests that the interface damping and the transport
of the angular momentum by an applied dc current should be included in the same
torque. A tempting possibility is to include these contributions in (5.41). In this case
the effective field for F2 can be written as

coef(∆µ + �ω)c × M
Ms

, (5.57)

where c is the direction of the magnetization in the stationary layer F1, and coef is
a common pre-factor for the contributions by the interface damping, �ω, and spin
transport by perpendicular current, ∆µ. Equation (5.57) results in Gilbert damping
for the perpendicular configuration, but it leads to B.B. like damping for the parallel
configuration which scales with the microwave frequency ω. For the parallel con-
figuration the FMR linewidth would be given by ∆Hadd ∼ (ω/γ)2/(B + H). The
frequency dependence of the FMR linewidth using the damping effective field in
(5.57) is shown by the solid curve in olive color, see Fig. 5.13b. It clearly does not fit
the measured data at low microwave frequencies. The non-local FMR linewidth was
found to be strictly linearly dependent on the microwave frequency as expected for
Gilbert damping [5.25, 134]. Clearly, the mechanism of non-local damping has to be
formulated differently.

Tserkovnyak, Brataas and Bauer [5.135] showed that the interface damping can
be generated by a spin current from a ferromagnet into adjacent normal metallic
layers. The spin current is generated by a precessing magnetic moment in F2. The
spin current was calculated by using Brouwer’s scattering matrix [5.136] which
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evolves under a time dependent parameter (phase angle of precession). N metal
layers surrounding a magnetic layer were viewed as reservoirs in common thermal
equilibrium in contact with an infinite thermal bath. The calculations were carried
out by assuming that the reservoirs acted as ideal spin sinks. This approximation
is valid when the injected spin momentum into a normal metal decays or leave the
interface sufficiently fast to avoid the flow of spin current back into the ferromagnet.
The resulting spin current is

jspin = �

4π
Arn × ∂n

∂t
, (5.58)

where n is the unit vector along the magnetic moment M, and Ar is the scattering
parameter

Ar =
∑
m,n

(|r↑
m,n − r↓

m,n|2 + |t↑m,n − t↓m,n|2
)

, (5.59)

where r↑↓
m,n are the reflection parameters for spin up and spin down electrons in the

N reservoirs, and t↑↓m,n are the transmission parameters into the reservoirs. The index
m and n in (5.59) labels the modes (channels) of k‖,⊥ wave-vectors (parallel and
perpendicular to the interface) at the Fermi energy. Note that, in contrast to Berger’s
theory, the contribution to damping disappears in the absence of s-d exchange split-
ting. The spin pump effect is not present in the absence of a long range ferromagnetic
state. the coefficient. Ar can be rewritten as

Ar =
∑
m,n

(δm,n − 2r↑
m,nr↓

m,n − 2t↑m,nt↓m,n) . (5.60)

It can be shown that the coefficient Ar is proportional to the interface mixing conduc-
tance, Ar = h

e2 g↑↓, see [5.121, 137]. For ferromagnetic layers which are thicker than
the lateral coherence length L0, see (5.47), and the electron scattering at interfaces is
partly diffuse the coefficient Ar is close to the number of transverse channels in the
normal metal N,

∑
m,n δm,n , see [5.121, 137, 138]. In simple metals this sum is given

by

Ar

S
= k2

F

4π
= 0.85n2/3 , (5.61)

where S is the area of the interface, kF is the Fermi wavevector and n is the density
of electrons per spin in the normal metal N. The spin current has the form of Gilbert
damping. The Gilbert damping is given by conservation of the total spin momentum

jspin − 1

γ

∂Mtot

∂t
= 0 , (5.62)

where Mtot is the total magnetic moment of F1. After simple algebraic steps one
obtains the expression for the dimensionless damping parameter
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Fig. 5.14. A cartoon representing the dynamic coupling between two magnetic layers which
are separated by a non-magnetic spacer. (a) represents two magnetic layers with different
FMR fields. F1 is at resonance,and F2 is nearly stationary. A bow like arrow in the normal
spacer describes the direction of the spin current. The dashed line represents the instantaneous
direction of the spin momentum. F1 acts as a spin pump, F2 acts as a spin sink, and consequently
F1 acquires an additional Gilbert damping. (b) represents a situation when F1 and F2 resonate
at the same field. Both layers act as spin pumps and spin sinks. In this case the net spin
momentum transfer across each interface is zero. No additional damping is present as the
precession is in phase

α = G

γ

1

Ms
= gµB

Ar

4πMs

1

d1
, (5.63)

where d1 is the thickness of the ferromagnetic layer F1, and Ar is now evaluated for
a unit interfacial area. The inverse dependence of the Gilbert damping on the film
thickness clearly testifies to its interfacial origin. The layer F2 acts as a spin pump.
Now another important point has to be answered: How is the generated spin current
dissipated? This answer can be found in the recent article by Stiles and Zangwill
on Anatomy of spin transfer torque [5.118], see Sect. 5.5.1. They showed that the
transverse component of the spin current in a normal layer N is entirely absorbed
at the N/F interface. For small precessional angles the spin current jspin is almost
entirely transverse. It means that the N/F2 interface acts as an ideal spin sink, and
provides an effective spin brake for F1, see Fig. 5.14a.

The layers F1 and F2 act as mutual spin pumps and spin sinks. The equation of
motion for F2 can be written as

1

γ

∂M2

∂t
= − [M2 × Heff,2] + G2

γ 2 M2
s

[
M2 × ∂M2

∂t

]
+ �

4πd2
g↑↓,2n2 × ∂n2

∂t
− �

4πd2
g↑↓,1n1 × ∂n1

∂t
, (5.64)

where M2 is the magnetization vector of F2, n1,2 are the unit vectors along M1,2,
and d1, d2 are the thicknesses of layers F1 and F2. The exchange of spin currents
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is a symmetric concept and the eq.uation of motion for the layer F1 is obtained by
interchanging the indices 2 ⇔ 1.

Equation (5.64) can be tested by investigating the FMR linewidth around an
accidental crossover of the resonance fields for F1 and F2 [5.139]. In this case the
resonant field of F2 approaches the resonant field of F1. When they reach the same
resonant field the rf magnetization components of F1 and F2 are parallel to each other.
Each precessing magnetization creates its own spin current which is pumped across
the N spacer. The electron mean free path in Au thick films is 38 nm [5.132], and
consequently the spin transport even in a 80 ML thick Au spacer is purely ballistic. At
the same time both interfaces F1/N and N/F2 act as spin sinks. It follows that the net
flow of the spin current through each interface can be zero, and the additional FMR
linewidth can disappear, see Fig. 5.14b. A word of caution is needed. The spin currents
compensate each other if the bulk relaxation rates in F1 and F2 are close to each other.
The compensation of the spin currents is well demonstrated in our measurements. We
observed an accidental crossover in the measured FMR fields due to a large in-plane
uniaxial anisotropy in the 16ML thick Fe layer. The bulk Gilbert damping in F1
and F2 were very close to each other which resulted in the marked disappearance of
the additional FMR linewidth at the crossover of the resonance fields, see Fig. 5.15.
The good agreement between theory and experiment clearly shows the validity of
the spin pumping theory based on (5.64). The magnetic layers even in the absence
of static interlayer exchange coupling, are coupled by dynamic interlayer exchange.
The increase in the additional FMR linewidth for 16Fe in Fig. 5.15 which appears
close to the accidental crossover in the resonance fields shows that the spin pumping
effect can be enhanced with the rf magnetic moments partly out of phase. This is

Fig. 5.15. The FMR linewidth at 24 GHz as a function of the angle ϕ around the crossover of the
FMR fields for 20Au/40Fe/14Au/16Fe/GaAs(001). The measured and calculated FMR signals
were analyzed using two Lorenzian lineshapes. The Lorenzian peaks were characterized by
their amplitudes, resonance fields and linewidths. The solid lines were obtained from calcu-
lations using (5.64). Orange filled circles correspond to F1 (16Fe) and green stars correspond
to F2(40ML). Note that the FMR linewidth for the thinner sample, F1, first increases before it
reaches its minimum value corresponding to its single 20Au/16Fe/GaAs(001) layer structure.
Note also that the additional line broadening scales with the film thickness
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particularly present in ferromagnetic films which are exchange coupled. In this case
the optical mode exhibits a larger linewidth than that expected from a simple spin
pumping in which spin sink has negligible precessional amplitude, see [5.140].

The quantitative comparison with spin pumping theory is very good [5.140]. First
principles electron band calculations [5.138] resulted in g↑↓ ≈ 1.4 ×1015 cm−2

for Cu/Co(111) interface. By scaling this value to Au using (5.61) one obtains
Gsp,cal = 1.4 ×10

8
s−1 for a 16 ML thick Fe film which is very close to the ex-

perimental value Gsp,exp = 1.2 ×108 s−1 measured by FMR at RT. This is amazing
agreement considering the fact that calculations of the intrinsic damping in bulk
metals have been carried out over the last three decades and have not been able to
produce a comparable agreement with experiment, see Sect. 5.4.3.

Spin pumping allows a new look at spintronics. One can in principle move in-
formation by spin current in the GHz range of frequencies which does not involve
directly the net transport of electron charge. This represents potentially a truly differ-
ent approach to electronics than that employed in semiconductors.

The spin pump model is a rather exotic theory to those who are used to magnetic
studies. One would expect that there is a direct connection to a more common con-
cept which is applicable to magnetic multilayers. The obvious choice is interlayer
exchange coupling. One would expect that its dynamic part could create magnetic
damping. A ferromagnetic sheet surrounded by a normal metal can be investigated by
using a contact exchange interaction between the ferromagnetic spins and the elec-
trons in the normal metal. A similar model was used by Yafet [5.141] for calculating
the static interlayer coupling. One can expand Kubo’s linear response theory [5.142]
for slow precessional motion using a linear approximation for a retarded magnetic
moment,

S(t − τ) ∼= S(t) − τ
∂S(t)

∂t
, (5.65)

where S(t) is the spin moment of the magnetic sheet at the instantaneous time t and τ

is the time delay of the retarded response. The induced moment in the N metal at
the F/N interface results in an effective damping field which is proportional to the
imaginary part of the rf transverse susceptibility of N and the time derivative of the
magnetic moment

Hsd
damp ∼

⎡⎣ ∂

∂ω

∞∫
−∞

dq

2π
Im χ(q, ω)

⎤⎦
ω→0

dM(t)

dt
. (5.66)

This damping term again satisfies the Gilbert phenomenology. By using the same
interaction potential it was shown [5.143] that the Gilbert damping in dynamic
interlayer exchange coupling, Gs−d , is similar to that using the spin-pumping theory
[5.135] combined with a perfect spin sink. This leads to an important conclusion:
The spin pumping theory is directly related to the dynamic response of the interlayer
exchange coupling.

The spin pump effect can be also observed in single layer F films surrounded by
N metal layers provided that the spin pump current diffuses away from the FM/N
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interface. Interface damping was observed for N/Py/N sandwiches [5.144], where
N=Pt, Pd and Ta were 5 nm thick non-magnetic layers surrounding a permalloy
(PY) magnetic layer. However, no interface damping was observed with Cu layers.
Tserkovnyak et al. explained the lack of interface damping in Cu/Py/Cu structures by
a long spin relaxation time in Cu compared to those in Pt, Pd, and Ta. The 5 nm thick
Cu does not provide an effective spin sink. A non-equilibrium spin accumulation in
the 5 nm thick Cu layer opposes the pumped spin current. A detailed semiclassical
theory of spin transport in magnetic multilayer films which are based on the L.L.G.
equation of motion for ferromagnets and spin diffusive equations for paramagnets is
presented in paper by Urban et al. [5.145].

5.7 Extrinsic Damping

In realistic samples structural inhomogeneities and defects can play a major role in
the magnetic relaxation processes.

5.7.1 Two Magnon Scattering

Inhomogeneous magnetic properties can result in scattering of magnons. The uniform
mode (k ∼ 0) can get scattered to nonuniform modes (k �= 0 magnons). This
scattering process is usually referred to as two magnon scattering. The two magnon
scattering process has been used extensively to describe extrinsic damping in ferrites
[5.8, 146–149]. A more general treatment which also includes the scattering among
non-uniform modes was carried out by Schloemann [5.150]. Patton and co-workers
pioneered the use of two magnon scattering in metallic films [5.151].

In ultrathin film structures the k-vectors of magnons are held within the film plane
[5.3], which constrains two magnon scattering to the two-dimensional (2D) spin-wave
manifold. Let us briefly outline the main features of two magnon scattering. A simple
example can be demonstrated by assuming an ultrathin film with an inhomogeneous
interface perpendicular uniaxial anisotropy Ku. For simplicity, let us assume that Ku

is inhomogeneous along the in-plane x-direction. In the parallel configuration the
inhomogeneous part of the energy density is equal to (∆Ku(x)/d)m2

z (x)/M2
s , where

∆Ku(x) describes deviations of the uniaxial interface anisotropy from its average
value, mz(x) is the perpendicular component of the magnetization M, and d is the
film thickness, see the coordinate system in Fig. 5.1. The 1/d term in the energy
density Ku(x)/d is a consequence of averaging of the interface energy Ku over the
film thickness, see [5.3]. The perpendicular component mz can be expressed using
magnon creation and annihilation operator notation, see e.g. [5.152]

m− =
(

2Msγ�

V

)1/2 ∑
k

eik·rbk

m+ =
(

2Msγ�

V

)1/2 ∑
k

e−ik·rb+
k , (5.67)
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where m+ = my + imz and m− = my − imz are the transverse right and left handed
magnetization density operators, b+

k and bk are magnon creation and annihilation
operators, and V is the system volume. The contribution of the inhomogeneous
interface anisotropy to the total magnetic energy is

Einh = γ�

MsVd

∫
V

d3r∆Ku(x)
∑
k,k′

(b+
k e−ik·r + bk′ e

ik′·r)2 , (5.68)

where the integration is carried out over the sample volume V = dS, where S the
surface area of the film. The summation is over all k, k′ wave vectors of the magnons.
Equation (5.68) provides one with a simple physical picture of the two-magnon scat-
tering process. The scattering of magnons is given by the cross-product of the bracket
in (5.68). In FMR the uniform precession (magnon) k = 0 is scattered into magnons
having non-zero k with a scattering matrix proportional to (1/Vd)

∫
dr∆Ku(x)e−ik·r .

Note that a scattering matrix element is proportional to the Fourier transform of
the sample inhomogeneities. In ultrathin films the magnon k vectors are confined
to the film plane, see below. The integration in (5.68) can be then replaced by two
dimensional integration along the film surface. The integration perpendicular to the
surface results in factor d. Consequently, the strength of this two magnon scattering
is proportional to the scattering matrix (1/V )

∫
dr∆Ku(x)e−ik·r per unit surface area

of the film, and inversely proportional to the film thickness d. The corresponding
relaxation term can be calculated by evaluating the effective rf susceptibility using
the Kubo formalism [5.42, 153].

One should emphasize that this type of relaxation is just a mode conversion. In
FMR a homogeneous mode (magnon with k � 0) relaxes by scattering into magnons
with k �= 0. The magnetic excitations do not disappear by two magnon scattering.
Two magnon scattering pumps the magnetic energy into other modes which leads
to de-phasing of the transversal rf magnetization of the resonant mode. In fact even
the longitudinal component of the magnetic moment is not changed by two magnon
scattering. In order to reach equilibrium the magnetic energy has to be damped to the
lattice by intrinsic damping. In this respect the two magnon scattering mechanism is
similar to the mode-mode coupling in small lateral geometries described in Sect. 5.5.2.

Recently Arias and Mills [5.5] addressed the role of two magnon scattering
in ultrathin film structures in the parallel configuration. They showed that lateral
variations in the perpendicular uniaxial interface anisotropy field (due to the interface
roughness) are a leading source of the two magnon scattering in ultrathin films. The
imaginary part of the rf susceptibility denominator is given by [5.5](

1

d

)2 1

ω

∑
k

| A(k, ω) |2 δ(ω − ωk) , (5.69)

where A(k) is the effective interaction matrix (includes the ellipticity of precession)
and δ(ω − ωk) is the delta function expressing the conservation of energy in the
two magnon scattering. The dependence on the ellipticity of precession is different
from that for the Gilbert damping (2H + 4πMeff), and has to be evaluated for
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a particular type of defects. Note, that the magnon momentum is not conserved in two
magnon scattering due to sample inhomogeneities (loss of translational invariance),
but the energy is conserved. The number of degenerate magnons is proportional to
ω2 when ω → 0, and consequently the two magnon scattering eventually decreases
linearly to zero with decreasing microwave frequency. This treatment is based on
perturbation theory. The two magnon scattering is relatively simple mechanism. It
couples magnons together (mode-mode coupling) by the scattering matrix which
is given by components of the Fourier transform of magnetic defects, see above.
This results in coupled linear equations which can be solved exactly by evaluating
eigenmodes of the system. The resonant mode is then given by superposition of the
eigenmodes, and the FMR linewidth is due to the spread of the eigenfrequencies
(dispersion relationship). The details of this approach can be found in [5.154]. An
example of this treatment is shown in Fig. 5.23.

In order to evaluate (5.69) one has to calculate the magnon energy spectrum. In
ultrathin films (no dependence on the direction perpendicular to the film surface) the
k wave vectors are confined to the film plane. For a simple film which is described
by the effective magnetization 4πMeff the magnon energies are given by simplified
Damon Eshbach modes (including the exchange coupling effective field) which are
described for an arbitrary angle of the saturation magnetization with respect to the
film surface in [5.5, 155],(

ωk

γ

)2

=
[

Hi + 2A

Ms
k2 + 4πMs(1 − Nk) sin2(ψk)

][
Hi + 2A

Ms
k2

− 2K s
u

Msd
+ 4πMs Nk cos2(ϕ) + 4πMs(1 − Nk) sin2(ϕ) cos2(ψk)

]
− [

4πMs(1 − Nk) cos(ψk) sin(ψk) sin2(ϕ)
]2

, (5.70)

where Nk = (1 − exp(−kd))/kd, Hi is the internal effective field, ϕ is the angle of
the saturation magnetization Ms with respect to the film surface, and ψk is the angle
between k and the projection of the saturation magnetization Ms into the sample
plane. Note, that for the in-plane orientation the magnon energy with k parallel to
the saturation magnetization decreases its energy with increasing k, and eventually
at k = k0 crosses the frequency of the homogeneous mode f , see Fig. 5.16a. This
means that the magnon with k0 is degenerate with the homogeneous mode and can
be involved in the two magnon scattering relaxation process. The value of k = k0

decreases with increasing angle ψ, see Fig. 5.16. No degenerate modes are available
above ψmax; sin2(ψmax) = Hi/(2Hi + 4πMeff), no in-plane anisotropies are included
in this expression. The number of degenerate modes further decreases with increasing
angle ϕ between the magnetization Ms and the film surface. k0 as a function of the
angle ψk and θ is shown in Fig. 5.16b. θ is the angle of the dc field with respect to
the sample surface.
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Fig. 5.16. The solid red line in (a) shows the magnon energy (in units of frequency) as a function
of k wave-number for ψk = 0 and θ = φ = 0. The angle ψk is the in plane angle between
k and the in-plane component of the saturation magnetization Ms, and θ is the angle between
the applied magnetic field H and the sample plane. The intersect between the dashed line (the
frequency of uniform mode) and the solid line determines the wave-number k0 of a degenerate
magnon. (b) shows the dependence of k0 on the angle ψk and θ. Calculations were carried out
for f = 24 GHz and 4πMeff = 16 kG. All other anisotropies were set to zero. Notice that ψmax

as a function of θ is nearly constant except in vicinity of ϕ ∼ π/4 (corresponding to θ ∼ 70◦)
where the contribution of two magnon scattering to FMR linewidth rapidly decreases to zero

Expression (5.69) can be rewritten as

2

ψmax∫
−ψmax

I(k0, ψ)
k0dψ

∂ω
∂k (k0, ψ)

, (5.71)

where I(k0, ψ) represents the effective two magnon scattering matrix. Notice that
∂ω
∂k (k0, ψ) is the magnon group velocity. It depends on the strength of the dipolar
and exchange interaction, and leads to effective narrowing of ∆H . The expression

k0
(∂ω/∂k)(k0,ψ)

in (5.71) accompanying I(k0, ψ) describes a weighting factor of magnon
scattering. The line given by the expression k0(ψ) follows a lobe in the reciprocal k
space of magnons, see Fig. 5.17. It is interesting to note that for a given microwave
frequency the weighting factor is only weakly dependent on ψ. It is even weakly
dependent on the angle ϕ up to vicinity of ϕ ∼ π/4 where the contribution of
two magnon scattering disappears. Consequenly the contributions to two magnon
scattering in (5.71) along the lobe have to be included with an equal weight. However,
this is not true for long wavelength magnons (close to the origin of the reciprocal
space) where the two magnon scattering model is not applicable, see below.

For both the 2D and 3D spin-wave manifold there are no magnons degenerate
with the FMR mode in the perpendicular configuration, hence the FMR linewidth,
∆H⊥, should be smaller than that in the parallel configuration, ∆H‖.

One expects that variations sample in magnetic properties which are far apart
have to lead to a simple superposition of the local FMR lines. The FMR linewidth in
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Fig. 5.17. The two magnon scattering lobes at 24 and 73 GHz in the q-space of the magnetic
scattering matrix intensity I(q) ∼ cos4(2ϕq), where ϕq is the angle of the q vector with respect
to the [100] axis. This Figure represents the two magnon scattering in Au/Pd/Fe/GaAs(001)
systems which are affected by misfit dislocation network, see below. The dashed lines are
contour lines of I(q). Note that the orientation of lobes (magnetization) affects the angular
dependence of FMR linewidth caused by the misfit dislocation network. When the lobes are
oriented close to 〈110〉Fe they have a weaker contribution than those oriented close to 〈100〉Fe

this case merely reflects large length scale sample inhomogeneities and has nothing
to do with the two magnon treatment of damping. McMichael et al. [5.154] recently
addressed this point. They found that the FMR linewidth is given by superposition of
local resonances when characteristic inhomogeneity field is larger than interaction
field [5.156]. In the range of long wavelength defects the important part of the inter-
action field is magnetostatic contribution 2πMskd in (5.70). The FMR measurement
is given by a simple superposition of local FMR peaks when

Hp D ≥ 3πMsd , (5.72)

where Hp is the root mean square value of random variations of local anisotropy field
satisfying a Gaussian distribution, and D is the corresponding average grain size, see
Fig. 5.4 in [5.154]. The local inhomogeneous fields simply add to the applied field and
one can get indeed a genuine zero frequency offset ∆H(0), see [5.154]. This offset
∆H(0) ought to increase in the perpendicular configuration where inhomogeneous
magnetic anisotropy fields contribute more effectively to the FMR field due to the
absence of a strong elliptical polarization accompanying the parallel configuration.
This is perhaps the case of the FMR measurements on Py films by Patton et al.
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[5.157, 158] where the FMR linewidth even at very low microwave frequencies did
not approach zero. There is also a possibility to get line broadening using certain
equipment. In experiments using small coplanar wavequides (especially for µm scale
systems) the samples are exposed to an inhomogeneous rf field and that can result
in the generation of magnetostatic modes separated by dipolar rf fields resulting
in a broadening of the FMR peak [5.159]. This contribution becomes particularly
important at low GHz range of frequencies.

One should be aware that the extrinsic FMR linebroadening does not have to
be necessarily due to two magnon scattering. The validity of two magnon scatter-
ing contribution has to be tested by using FMR measurements with the magnetic
moment in perpendicular configuration where ∆H as a function of microwave fre-
quency should be described by Gilbert damping. The presence of non zero H(0) in
the perpendicular configuration does not have to exclude two magnon scattering in
interpretation of extrinsic damping. The long wavelength variations are not a part
of two magnon scattering and can be present in the perpendicular configuration, see
above. The problem is that under this circumstance the interpretation is not as simple
and requires a careful evaluation.

In amorphous ribbons [5.153] ∆H(0) was explained by a two magnon scatter-
ing process where the 3D Fourier transform, I(k), of the sample inhomogeneities
were represented by a step function in the k-wave vector with an upper cutoff less
than the maximum wave vector kmax allowed by the spin-wave manifold. In these
calculations the two magnon scattering did not have to affect the slope of (5.75) in
the measured microwave frequency range. In fact, in this case the Gilbert damping
from the FMR measurements (obtained from the slope of (5.75)) was found to be
equal to that obtained from the microwave transmission peaks at Ferromagnetic An-
tiresonance (FMAR) [5.83]. At FMAR (ω/γ = H + 4πMeff) the spin manifold is
shifted downwards compared to that at FMR by several kOe (5–10 kOe). In this case
the intersection with the spin manifold starts at large k wave-numbers. The Fourier
components of the sample inhomogeneities at these large k wave-vectors were found
negligible, and consequently the FMAR measurements allowed one to determine the
intrinsic Gilbert damping in thick metallic samples, see Sect. 5.4.6.

The structural defects in ultrathin film multilayers are often caused by the lat-
tice misfit between individual layers. A typical case are crystalline Au/Pd/Fe and
Au/Fe/Pd/Fe epitaxial layers grown on GaAs(001) templates. Pd has a lattice mis-
match of 4.4% with respect to Fe and 4.9% with respect to Au, and therefore samples
with a sufficient thickness of Pd are affected by the relaxation of lattice strain [5.160].
In the structures with a sufficiently thick Pd layer a self-assembled network of misfit
dislocation half loops was observed by plan view Transmission Electron Microscopy
(TEM) [5.160]. The network of misfit dislocations was found to be oriented along
the 〈100〉 crystallographic axes of Fe. The onset of a rectangular network of misfit
dislocations was accompanied by the presence of a strong extrinsic damping. This
system provides also a nice example where all basic features of two magnon scat-
tering are well represented. In the Pd/Fe/GaAs(001) structures with the number of
Pd atomic layers n ≥ 130 the FMR linewidth was strongly dependent on the angle
ϕM between the magnetization and the crystallographic 〈100〉Fe axes, showing a dis-
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Fig. 5.18. The ferromagnetic resonance linewidth for the 200Pd/30Fe/GaAs(001) film (the
integers represent the number of atomic layers) at 36 GHz as a function of the in-plane angle
ϕM between the magnetization and the [100]Fe axis

tinct four fold symmetry, see Fig. 5.18. This angular dependence reflects the overall
in-plane symmetry of the defects. The minima and maxima in ∆H are along the
〈110〉Fe and 〈100〉Fe crystallographic directions, respectively. The FMR linewidth as
a function of microwave frequency also changed in a very pronounced way.

The frequency dependence of the FMR linewidth, ∆H( f ), along the 〈100〉Fe

(in-plane easy magnetic axes) and 〈110〉Fe (in-plane hard magnetic axes) directions
is shown in Fig. 5.19. Along 〈110〉Fe the FMR linewidth between 10 and 73 GHz
is nearly linearly dependent on the microwave frequency, but is accompanied by
a small zero frequency offset ∆H(0) = 50 Oe. However, the slope is close to that
corresponding to the intrinsic Gilbert damping obtained in samples without extrinsic
damping. Several observations for the 〈100〉Fe orientations can be made. Firstly,
∆H has clearly non linear dependence on the microwave frequency contrary to
expectations for Gilbert damping. Secondly, the slope of the FMR linewidth is close
to that expected for the intrinsic damping only between 36 and 73 GHz, but ∆H(0) =
160 Oe is significantly increased compared to the 〈110〉Fe orientations. Thirdly, below
36 GHz the frequency dependence of ∆H shows a clear downturn indicating that ∆H
approaches zero at low microwave frequencies. In fact the frequency dependence for
the 〈100〉Fe orientations resembles the calculations of two magnon scattering in
ultrathin films by Arias and Mills [5.161]. A similar frequency dependence of ∆H
was found also by Lindner et al. [5.162] in Fe/V superlattices.

Notice, that the extrapolated slope of ∆H( f ) at low microwave frequencies in
Fig. 5.19 is noticeably larger than that corresponding to the intrinsic damping. The
rotational magnetization motion during the magnetization reversal of memory pixels
is usually in the range of a few GHz. In this case the measured effective damping
parameter α can be strongly affected by the slope of two magnon contribution.
However it is worthwhile of pointing out that in many systems the slope of the FMR
linewidth as a function of microwave frequency is close to that expected from the
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Fig. 5.19. The frequency dependence of the FMR linewidth for the 200Pd/30Fe/GaAs(001)
structure (the integers are in number of atomic layers) along the 〈110〉Fe (◦) and 〈100〉Fe (•)
directions, respectively. The purpose of the solid line spline fit is to guide the reader’s eye. The
dashed line shows the frequency dependence of the intrinsic FMR linewidth (Gilbert damping)
obtained by using the 100Pd/30Fe/GaAs(001) sample with no magnetic defects in Fe. Note
that (♦) points are right on the dashed line indicating that in the perpendicular configuration the
FMR linewidth ∆H is only given by the Gilbert damping (α = 0.006) with no zero frequency
offset (∆H(0)⊥ = 0). The dotted lines indicate the range of microwave frequencies where the
slope of ∆H( f ) is close to that expected from the Gilbert damping. Note that the dotted lines
have zero frequency offsets

intrinsic Gilbert damping if the microwave frequency is held in a certain range (often
between 10 to 36 GHz but not always).

In order to give convincing evidence for two magnon scattering mechanism
one has to investigate the FMR linewidth as a function of the angle θM between
the magnetization M and the sample surface by applying the dc field away from
the surface. The dependence of the FMR linewidth on the angle θH between the
dc magnetic field and the sample plane is shown in Fig. 5.20. These results have
shown that the damping decreases significantly when the magnetization is inclined
significantly from the film surface. In fact, the measured ∆H in the perpendicular
configuration at 10 and 24 GHz was given exactly by the intrinsic damping. The
appreciable FMR peak narrowing shown in Fig. 5.20, and the absence of ∆H(0)

in the perpendicular configuration provide a strong support for the presence of two
magnon scattering in the Pd/Fe/GaAs(001) structures.

This is further supported by some additional features of the out of plane FMR
measurements. Fig. 5.20 shows (dashed line) the calculated dependence of the FMR
linewidth as a function of θH taking the intrinsic value of the Gilbert damping
G int = 1.4 ×108 s−1. The calculated increase for the intermediate angles is caused by
dragging of the magnetic moment behind the external applied field H. The difference
between the measured FMR linewidth and that expected for the intrinsic damping
∆Hext is caused by two magnon scattering. The two magnon scattering physics as
a function of the angle θH is better represented by the adjusted frequency linewidth,
∆ω, see Hurben and Patton [5.163],
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Fig. 5.20. Measured ferromagnetic resonance linewidth ∆H for the sample
200Pd/30Fe/GaAs(001) as a function of θH at 24 GHz. The dots represent the measured
data and the dashed line represents the FMR linewidth ∆HG(θ) that was calculated using the
Gilbert damping from the perpendicular configuration. The peak in the FMR linewidth for
θ = 78◦ is caused by dragging the magnetization behind the applied field. The dotted vertical
line identifies the perpendicular configuration

∆ω(θ) =
(

dω

dH

)
at FMR

∆Hext , (5.73)

where dω/dH = [ω(H + ∆H, θ + ∆θ) − ω(H, θ)]/∆H using the FMR condition
for the resonance frequency which includes the in plane and out of plane magnetic
anisotropies. It is easier to calculate dω/dH by picking ∆ω and evaluating appro-
priate change in ∆H and ∆θ satisfying the resonance condition for the out of plane
configuration.

The values of ∆ω/γ calculated from the measured FMR linewidth data are shown
in Fig. 5.21. Remarkably, the extrinsic contribution to the frequency linewidth ∆ω/γ

is nearly independent of θH but decreases abruptly when the magnetization angle
θM ∼ π/4, see the small vertical dotted line. ∆ω/γ and ψmax follow well each other
as a function of θH , see the dashed line in Fig. 5.21. The proportionality between
∆ω/γ and ψmax(θH) suggests that this extrensic damping is caused by two magnon
scattering and the effective scattering matrix I(q, θM) is weakly dependent on θM, see
(5.71).

It is interesting to address the origin of a strong in-plane angular dependence of the
two magnon scattering in self assembled network of misfit dislocations, see Fig. 5.18.
The lattice defects decrease the local symmetry and create inhomogeneous magnetic
anisotropies. Their angular dependence is given by the symmetry of defects. This
means that the intensity of two magnon scattering can have an explicit dependence
on the direction of the magnetization with respect to the axes of magnetic defects.
This case was addressed by Lindner et al. [5.162]. They observed an anisotropic
extrinsic damping (measured along the 〈100〉 and 〈110〉 axes) for FeV superlattices.
It was assumed that defects were caused by surface steps. Their argument is based on
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Fig. 5.21. (�) represent the adjusted frequency FMR linewidth ∆ω/γ from the extrinsic
contribution as a function θH at 24 GHz. The solid line shows the angle of magnetization θM

as function of θH . The dashed line shows the critical angle ψmax as a function θH . Notice
that ψmax describes the angular dependence of ∆ω/γ quite well. ψmax was scaled in order to
compare it with ∆ω/γ

the behavior of uniaxial anisotropy. The line defects are the source of local uniaxial
anisotropy. However the uniaxial internal effective field disappears for the magneti-
zation oriented close to 45 Degrees away from the uniaxial axis. In this direction the
uniaxial anisotropy does not affect the internal field and two magnon scattering is
switched off. In systems with a rectangular network of defects the contribution of two
magnon scattering is explicitly dependent on the angle ϕM (with respect to the defect
lines) as cos2(2ϕM). This argument can be applied to Pd/Fe(001) systems where the
rectangular network of misfit dislocations creates local uniaxial anisotropies with
the magnetic axis aligned along the dislocation lines. Since the defect lines of the
network of misfit dislocations are oriented along the crystallographic axis 〈100〉 of
Fe the observed anisotropy in ∆H could be misinterpreted as a genuine anisotropic
intrinsic damping. The Fourier components of the scattering intensity have to include
two parts. One is explicitly dependent on the angle ϕM and the other on the wave
vector q,

I(q, ϕM) = Q(q) cos2(2ϕM) . (5.74)

The term Q(q) has to satisfy the symmetry of defects. It is needed to explain the
frequency and angular dependence of ∆H . Further discussion can be found in [5.164].

The zero frequency offset ∆H(0) in Fig. 5.19 for the measurement along the
〈110〉 orientation is often observed in many systems affected by extrinsic damping.
In a wide range of metallic amorphous ribbons [5.83], films [5.157], and metallic
ultrathin film multilayers [5.3, 165, 166] the FMR linewidth, ∆H , between 10 to
36 GHz is described by a linear dependence on microwave frequency with a zero
frequency offset ∆H(0),

∆H(ω) = ∆H(0) + 1.16
ω

γ

Geff

γMs
. (5.75)
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∆H(0) originates in the extrinsic contribution to the FMR linewidth. The subscript
eff in the Gilbert damping parameter Geff was used to express the fact that the slope
of the FMR linewidth in (5.75) can in general include both the intrinsic, G int, and
extrinsic, Gext, contributions. One should point out that (5.75) does not imply that
the contribution of two magnon scattering approaches ∆H(0) when the microwave
frequency approaches zero. Two magnon scattering eventually has to approach zero
with decreasing microwave frequency. This point was well established in [5.153]. In
our view the zero frequency offset represents a simple test for identifying the presence
of extrinsic FMR linebroadening.

A typical example of a linear dependence of the FMR linewidth on the microwave
frequency with a zero frequency offset can be seen on Au/Cr/Fe/GaAs(001) systems
[5.167], see Fig. 5.22. It is appealing to find out whether the extrapolated ∆H(0) from
limited range of microwave frequencies can be caused by two magnon scattering.
The main test was done by investigating the FMR linewidth as a function of the
angle θM with respect to the film surface using out of plane FMR measurements. The
FMR linewidth ∆H for a 20Cr/15Fe sample as a function of the angle θH (between
the applied external field and the sample plane) behaved in a very similar manner to
that of Pd/Fe/GaAs(001) structures, see Figs. 5.20 and 5.21. The perpendicular FMR
measurements at 9.5 and 24 GHz, see Fig. 5.22, showed no measurable ∆H(0), and the
measured slope led to the intrinsic Gilbert damping parameter G int = 1.4 ×108 s−1.
The appreciable FMR peak narrowing and the absence of ∆H(0) in the perpendicular
configuration provide strong support for the presence of two magnon scattering in
the Cr/Fe/GaAs(001) structures. Clearly, the zero frequency offset ∆H(0) for the
Cr/Fe/GaAs(001) films is compatible with two magnon scattering. This means that
the contribution of two magnon scattering can be constant across this frequency
range. In crystalline Fe films the lowest microwave frequency is limited to 10 GHz
due to the presence of crystalline in-plane anisotropies, and therefore we were not

Fig. 5.22. The FMR linewidth for the parallel configuration for 20Cr/15Fe/GaAs(001) as
a function of the microwave frequency along the cubic axes (red), hard in-plane uniaxial axis
[11̄0] (blue), and the direction [110] (green). The black line represents the perpendicular FMR
linewidth. Note that ∆H(0) = 0 for the perpendicular FMR measurements. The slope of the
black solid line determines the intrinsic Gilbert damping Gint = 1.5 ×108 s−1
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Fig. 5.23. FMR linewidth as a function of microwave frequency. The measurements were
carried out on Py films grown by sputtering on a NiO template (× points) and a Ta seed layer
(crosses). The two magnon scattering is present only on the Py films grown on a NiO template.
Calculations of the inhomogeneous FMR line broadening was carried out by subdividing the
sample into 1000 × 1000 grains. Each grain is 20 × 20 nm2 and 100 nm in thickness. The
grains have internal fluctuating fields. The FMR linewidths are calculated using a simple two
magnon scattering theory (filled triangles) and a full two magnon scattering process which
involves the scattering between the magnons with all non zero k wave-vectors (filled circles)
corresponding to a full mode-mode coupling, see (5.68). The upper cut-off for the magnon
k wave-vectors is given by the grain size. Both calculations trace each other and fit well the
FMR linewidth for the Py films grown on NiO templates. Note, that the two magnon scattering
decreases appreciably when the microwave frequency is smaller than 10 GHz. See further
details in [5.168]. This Figure was obtained by courtesy of R. McMichael

able at this point to comment on what happens at very low frequencies where the
damping should approach zero. The FMR measurements can be easily carried out
below 10 GHz on Py. Two magnon scattering contribution to ∆H in the Py films
grown by sputtering on NiO templates decreased gradually to zero below 10 GHz,
see Fig. 5.23 and [5.168].

One should realize that the two magnon scattering is a dynamic effect affecting not
only damping but also the frequency of spin waves. This means that the anisotropy
in the angular dependence of the FMR linewidth is dependent on the microwave
frequency, see further details in [5.164].

The angular dependent extrinsic damping created by a rectangular network of
defects appears to be a common phenomenon. It was observed in our previous studies
using the metastable bcc Ni/Fe(001) bilayers grown on Ag(001) substrates [5.169],
and Fe(001) films grown on bcc Cu(001) [5.170]. In the Ni/Fe bilayers after depositing
three ML of Ni the structure went through a major structural change going towards
the stable fcc phase of Ni(001). That resulted in a network of rectangular lattice
defects perhaps similar to those observed by Wulfhekel et al. [5.171]. In this case not
only the magnetic damping developed a large anisotropy, but even the in-plane four



5 Spin Relaxation 205

fold anisotropy field was enhanced to several kOe which is significantly above that
corresponding to cubic bulk Fe (0.5 kOe). Coercive fields of several hundred Oe were
reached due to the presence of the enhanced anisotropy and lattice defects [5.172].
The enhancement was dependent on the Ni film thickness. The angular dependence of
the FMR linewidth indicated that the defect lines were oriented along the 〈100〉 axes
of Fe(001). Bcc Cu(001) layers grown on Ag(001) substrates are another example of
such behavior. In this case the bcc Cu(001) layer went through a lattice transformation
after the thickness of the Cu layer was larger than 10 ML. Again a strong anisotropy
in ∆H was observed for the Fe(001) films grown on the lattice transformed Cu(001)
substrates. The angular dependence indicated that the defect lines in the Cu(001)
layers and the symmetry axes of magnetic defects in Fe(001) are along the 〈100〉
crystallographic directions of Fe(001). However, in these samples no significant
enhancement of the in-plane four fold anisotropy was found. We recently observed
this type of two magnon scattering in Heusler alloy NiMnSb(001) semi-metal films
grown on InP(001) by the Molenkamp group [5.173]. In plan view TEM studies
two sets of rectangular defects were observed along the 〈100〉 and 〈110〉 directions
[5.174], and consequently the two magnon scattering showed a strong two magnon
scattering along all principle crystallographic axes.

The above examples have shown clearly that the two magnon scattering mecha-
nism is useful concept for the description of extrinsic damping in ultrathin films which
have lattice defects. The in-plane symmetry of two magnon scaterring is given by
the symmetry of lattice defects. Our extensive experience in FMR measurements has
shown that the angular dependent FMR linewidth (even with perfectly Lorenzian FMR
peaks) is most likely caused by extrinsic damping which originates in a network of lat-
tice defects. In fact, the interpretation of the anisotropic FMR linewidth by the Stoner
enhancement factor in spin pumping in Au/30Fe/40Au/4Pd/[Pd/Fe]5/16Fe(001) and
Au/30Fe/40Au/9Pd/16Fe(001) structures [5.25, 134, 140] was incorrect. In both
structures the anisotropic part of the FMR linewidth was caused by the two magnon
scattering described above.

5.7.2 Dry Magnetic Friction and Large Length Scale Inhomogeneities

Baltensberger and Helman have shown [5.175] that the presence of ∆H(0) can arise
from a hysteretic rf loss which results from the more general concept of a dry
friction [5.176]. The rf hysteretic loss can be created by magnetic anisotropies having
irregular directions. During collective motion of the spin ensemble, a part of the
magnetic system can depart from the path of uniform motion and may spiral down
towards to a local potential minimum from which it is subsequently dragged out
by exchange coupling with the surrounding magnetic moments. This represents an
energy loss to the uniform motion even when the uniform motion is arbitrarily slow.
The resulting hysteresis leads to zero frequency loss. Numerical simulations have
shown that the onset of dry friction requires a large anisotropy energy which is an
appreciable fraction of the exchange energy [5.175]. This is perhaps satisfied for
rare-earth magnetic ions. It is not likely that dry friction plays an important role in
soft magnetic 3d transition metals.
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Nonequilibrium Spin Dynamics
in Laterally Defined Magnetic Structures

B.C. Choi and M.R. Freeman

Understanding the magnetism in low-dimensional magnetic materials, in which a va-
riety of novel phenomena involving both the static and the dynamic aspects occur,
has become a major challenge in fundamental physics. From the technological point
of view, material engineering, including artificially fabricating of magnetic materials
on a nanometer scale, has made significant progress in recent years, and the contin-
ued development of high-performance magnetic information technologies requires
detailed understanding of the magnetization dynamics in lithographically structured
magnetic elements. The investigation of such small magnetic structures relies in-
creasingly on magnetic imaging techniques, since the relevant properties can vary
over length scales from micrometers to nanometers. This chapter is intended to pro-
vide a detailed description of an experimental method for imaging nonequilibrium
magnetic phenomena in the picosecond temporal regime and with sub-micrometer
spatial resolution. The method employs a stroboscopic scanning Kerr microscope,
and is capable of measuring simultaneously all three components of the magneti-
zation vector. Therefore, this experimental approach allows direct insight into the
spatiotemporal evolution of magnetization dynamic processes. A few experimental
examples are presented, illustrating dynamic micromagnetic processes during mag-
netization switching and spontaneous magnetic domain pattern formation in small
magnetic elements.

6.1 Introduction

The study of confined magnetic structures, where both the thickness and lateral
dimensions may be on the nanometer scale, has become fertile ground for novel
magnetic phenomena in low dimensions [6.1–4]. The goal in this research field is to
understand how magnetic properties change as the dimensions of magnetic systems
approach the ultimate limits of miniaturization. Recently attention has focused on
the dynamic behavior of such small magnetic elements [6.5–8]. This is because
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magnetization dynamics in thin continuous films on short time scales is different
in many aspects from the static case [6.3, 9]. Moreover, magnetization dynamics
in small patterned elements differs substantially from that in continuous films, as
experienced in the magnetostatics of edges which modify the equilibrium states of
the element in terms of the magnetic moment distribution [6.10, 11] (the coupling
between the geometric shape of the element and its magnetic properties as represented
by ‘shape anisotropy’ or ‘configurational anisotropy’ [6.12]). From a practical point of
view, understanding magnetization dynamics on nano- and pico-second time scales
in small elements with dimensions in the micrometer size regime and below has
become crucial, owing to the increasing demands for higher speeds and densities from
conventional data storage technologies, and for newer approaches such as magnetic
random access memories (MRAM) [6.13, 14] or exploiting phenomena such as giant
magnetoresistance [6.15]. The broader potential of novel magnetic phenomena for
technological applications is apparent from considering that most of the information
we deal with is stored magnetically at some stage.

Motivated by these accumulated interests, dynamic behavior in micro- and nano-
sized magnets is being actively studied by a number of groups [6.16–20]. In order
to elucidate magnetization dynamics in small elements, it has long been recognized
that direct observations of magnetization processes with simultaneous spatial and
temporal resolutions are most desirable. Imaging of micromagnetic configurations,
however, has been carried out mostly by magnetic force microscopy (MFM) [6.21],
Lorentz transmission electron microscopy [6.22] and ballistic electron magnetic mi-
croscopy [6.23, 24] in addition to magneto-optic microscopy [6.25]. These techniques
provide good spatial resolution, but are generally focused on static magnetic imaging.
For the study of dynamic phenomena, it has been demonstrated that very high spatial
and temporal resolution can be achieved by employing stroboscopic scanning Kerr
microscope with pulse excitation [6.26–28]. This technique has been proved to be
a powerful tool for dynamic micromagnetic imaging in small structures, and will be
described in this chapter.

The first high bandwidth spatially resolved optical experiments date back to the
sixties, when J.F. Dillon and coworkers “saw” ferromagnetic resonance in a sample
of 45 µm thick CrBr3 using microwave optical technique [6.29]. In the late 1960s
Kryder et al. presented first spatially and temporally resolved dynamic magnetiza-
tion configuration in magnetic thin films with “A Nanosecond Kerr Magneto-Optic
Camera” [6.30]. This Kerr photo-apparatus enabled to capture magnetization rever-
sal process in Ni83Fe17 films with a 10 µm spatial resolution and a 10 ns temporal
resolution. This spatiotemporal resolution was an enormous achievement even by
today’s standard. The most recent achievements along this specific avenue of attack
were reviewed in [6.31].

The time-resolved imaging technique, however, has not been extensively used at
higher speeds due to the complex instrumental requirements. Revival of interest in
fast imaging techniques began to take place in the mid-1980s. Kasiraj et al. reported
magnetic domain imaging with a scanning Kerr effect microscope [6.32], in which
a digital imaging technique was used with a spatial resolution of less than 0.5 µm.
This allowed the observation of the nucleation and growth of magnetic domains in the
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pole tip region of a recording head. In this implementation, a time resolution of 50 ns
was achieved. Subsequently, an ultrafast magneto-optical technique was developed
[6.33] which exploited advances that had been made in the field of electro-optic sam-
pling. In this work ps-scale magnetic field pulses were launched by photoconductive
switches, and applied to samples which were subsequently probed by time-delayed
optical pulses, yielding temporal information in a conventional stroboscopic man-
ner. This work extended the so-called “pump-probe” technique to a broad range of
magnetic materials, providing an experimental tool for the study of ps time-resolved
magnetization reversal dynamics. Since then, a number of spatiotemporally resolved
experiments to directly measure the dynamical evolution of magnetization configura-
tion have been reported, in particular in microstructured elements [6.5–8, 28, 34–36].

6.2 Experimental Methods

A simple way to probe the magnetization at magnetic surfaces or magnetic thin films
is by means of interactions of light with magnetic medium. When a linearly polarized
light is reflected from a magnetic surface, the incident light is transformed into
elliptically polarized light. Thus, the final state of polarization can be characterized
by both a rotation of the major axis θ and an ellipticity δ defined as the ratio between
minor and major axis. Both θ and δ are proportional to the magnetization of the
material. This effect is known as the magneto-optical effect [6.37], and has provided
an important tool to visualize a detailed picture of the magnetization configuration
of a broad range of magnetic materials. S.D. Bader and J.L. Erskine have covered
details of the magneto-optical effect in Chap. 4 of this series [6.3].

Magneto-optical effects can be further used for exploring time-resolved studies
of the ultrafast magnetic phenomena by employing short light pulses as a light
source. This section outlines the experimental details of time-resolved scanning
Kerr microscopy for the study of nonequilibrium dynamics in magnetic materials
on picosecond time scales. Such experiments involve many techniques, such as
generation of fast magnetic pulses, precise control of time intervals between the pump
and probe beam, and modulation of magnetic signals by means of high frequency
methods.

6.2.1 Pump-and-Probe Methods

Time-resolved experiments are to directly measure the dynamic evolution of systems,
away from or towards equilibrium, in response to sudden perturbations. One of
the ways to observe such a fast process, which is out of the limitations of our
five senses, is to use a very short flashing light to freeze action and make photos.
H. Edgerton perfected the stroboscopic photograph in the 1920s and 30s, allowing
direct observation of quickly moving objects in a series of as-if frozen images.
The related approach to time-resolved magnetic measurements was first seen in the
inspired studies of dilute magnetic semiconductors by Awschalom et al. [6.38].



214 B.C. Choi and M.R. Freeman

t = t0 + ∆tSystem

Probing

System

Pumping

t = t0

t0 + ∆tt0

ϕ

Equil. 1

Equil. 2

t

Nonequilibrium
Response profile•

·

Fig. 6.1. Schematic illustration of the
“pump-and-probe” technique. At time t =
t0, the system is excited out of its equilib-
rium with the ump pulse. After a short time
interval ∆t, the system is probed with the
probe pulse. The time delay between the
probe and pump beam is then changed to
give a new ∆t temporal position and the
signal built-up again. This procedure is re-
peated until the entire nonequilibrium pro-
file is measured

The method is schematically illustrated in Fig. 6.1. The experimental implemen-
tation of time-resolved methods relies, for example, on ultrashort laser pulses. One
part of the pulses is used to excite a nonequilibrium state in the system, ϕ, at the
time t = t0 (“pumping”), while the delayed part of light pulses is used to detect the
corresponding change in the system at t = t0 + ∆t (“probing”). The time interval
∆t can be created, for example, just by making the optical path of the probe beam
longer than that of the pump beam. After setting a time point t, the perturbation of
the system, ϕ(t), is detected. The probe beam path is then changed to give a new
∆t temporal position, and the probe beam detects the corresponding change in the
system again. This procedure is repeated until the entire nonequilibrium response
profile of the system is measured. The nonequilibrium state ϕ(t), for example, cor-
responds to the magnetization switching process excited by magnetic pulses in the
case of magnetization reversal dynamics. In such studies, a synchronously triggered
transient magnetic pulse is propagated past the sample under study, perturbing the
magnetization system, and the subsequent evolution of the magnetization config-
uration is monitored through its interaction with a time-delayed probe beam. The
experimental details of the time-resolved magneto-optical Kerr effect technique are
described in the next section.

6.2.2 Experimental Setup

Figure 6.2 illustrates the schematic diagram for the entire system, including the
optical and electronic layouts. The experimental arrangements include an ultrafast
solid-state laser plus associated optics, a piezo-driven flexure stage for scanning the
sample, and electronics controlling the time-delay of probe beam and magnetic pulse
generation.
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Fig. 6.2. A block diagram of the layout of the time-resolved scanning Kerr microscope (TR-
SKM). A linear polarized laser beam is split into a pump and a probe beam with a 50/50 beam
splitter (BS). The probe beam is focused on to the sample using a microscope objective (OBJ),
and then reflected from the sample. The change of the polarization of the reflected light is
analyzed using Thomson polarizing beam splitter (TP BS), combined with the signal detection
using quadrant photodiodes (QPD). A small polarization rotation of the reflected light induced
by the magnetization in the sample is turned into intensity shift by the Thomson polarizing
beam splitter (TP BS), in which the intensity is measured. The pump beam is directed for
triggering magnetic pulses. After electrical pulses are generated by a photodiode (PD), the
output signals are synchronized by a computer controlled variable delay generator (VDG).
Magnetic pulses are generated by an electronic pulser, which provides fast electrical pulses
of 45–50 V, 0.25–0.5 ns rise times, and pulse widths of 10 ns. These pulses are delivered
to micro stripe lines, which create magnetic field pulses. (cf. inset in Fig. 6.5 showing such
stripe lines). Samples are mounted on a computer controlled piezo-driven flexure stage, which
enables a raster scanning of the sample surface to build a spatial image

Optical Setup and Signal Detection

The pulsed light source usually used is a mode-locked Ti:Sapphire laser, which
provides 70 fs long pulses of near-infrared light (λ = 800 nm) with a repetition rate
of 82 MHz. During measurements, laser beam is split into two beams (i.e., a pump
and a probe beam) with a 50/50 beam splitter (BS), which lets through equal amounts
of s- and p-polarized light. The probe beam passes through a linear polarizer (POL)
and is deflected toward the sample and is focused on to the sample using an infinity-
corrected microscope objective (OBJ), while the pump beam is directed for triggering
magnetic pulses (as will be described more in detail below). The optical power of
the probe beam is reduced before being brought to a sharp focus on a sample in
order to avoid permanent damage to the sample surface. Typically, an average power
of 30 µW is focused onto the sample through a microscope objective. The spatial
resolution (d) is determined by the numerical aperture (N.A.) of the objective lens
and wavelength (λ) of the laser beam, given by the diffraction limited Rayleigh
criterion, d = 0.82λ/N.A. In our experimental setup, a spatial resolution down to
0.9 µm is yielded using the 0.75 N.A. microscope objective and near-infrared light
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Fig. 6.3. Schematic illustration describing differen-
tial detection of polarization rotations induced by the
magneto-optical Kerr effect. Both outputs of a polar-
izing beam splitter (at 45o from incident polariza-
tion) are used in subtraction. The intensity in each
arm rises or falls, respectively with rotations of the
plane of polarization. The subtracted signal (A-B) is
only non-zero when a polarization rotation occurs

source. A detailed discussion of resolution in scanning optical microscopy has been
presented by Mansuripur [6.39].

After the probe beam is reflected from the sample, magnetization measurements
are accomplished through the polarization analysis of the reflected light in an optical
bridge. A particular detection method using quadrant photodiodes (QPD) has been
recently developed to allow for simultaneous detection of all three magnetization
components (i.e., vector magnetometry) [6.28]. This approach is adopted from static
Kerr imaging [6.40, 41], and works equally well in time-resolved measurements. The
principle of the differential detection method is schematically depicted in Fig. 6.3.
The probe beam reflected from the sample surface is split into two orthogonal po-
larization states by the Thomson polarizing beam splitter (TP BS), which is set at
45o to the incident polarization plane. Consequently, equal intensities are sent to the
photodiodes. If there is no polarization rotation in the incident beam, each portion of
the split beam will be of equal intensity and differential subtraction of the outputs
coming from the two photodiodes will result in a zero signal. A small polarization
rotation induced by the magnetization in the sample, however, will be turned into
intensity shift by the Thomson analyzer, in which the intensity in one PD increases
while decreasing in the other. This differential detection technique, where each PD
signal is used as a reference to the other, has the advantage of common mode rejection
of laser noise while doubling the signal [6.42].

An important issue in the signal detection is the signal-to-noise ratio, which has
always been a problem in Kerr imaging due to the weak magneto-optic Kerr effect. In
static Kerr measurements, wide-field imaging with digital enhancement is generally
used, in which the image with magnetization pattern is digitally subtracted from an
image of magnetization saturation [6.43]. This technique removes edge defect and
optical system polarization artifacts. In our experimental setup, signal enhancement is
achieved at each pixel of a raster scan using synchronous modulation of the magnetic
excitation and lock-in signal detection technique. The modulated magnetic excitation
is accomplished by modulating the trigger electronics, which generates magnetic
pulses, at a low frequency (1∼4 kHz). The modulation on the magnetization in the
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sample itself isolates the signal from other artifacts, such as depolarizing effects, in
the system.

Another important issue relating to the noise is the question whether the entire
dynamics measured is perfectly repeatable, since the stroboscopic scanning tech-
nique by its nature captures only the repetitive part of the process being imaged.
Nonrepetitive instabilities, such as thermal fluctuation of the individual spins, will
lead to the averaging the temporal response. In addition to varying scan rate, number
of averages, etc., the most sensitive test for underlying stochastic behavior so far
comes from spectrum analysis of the noise on the magneto-optic signal. An example
of noise imaging has been reported in which details of random magnetic switching
are exposed in stroboscopically averaged time-resolved experiments [6.44].

Synchronization and Magnetic Field Pulse Generation

In stroboscopic method the temporal excitation (“pumping”) of the system must
be repetitive and triggered synchronously with the probe pulses. This is because
interactions of many probe pulses and repetitive excitation events are averaged and
represented as a single event. In our case, such synchronization is achieved as a portion
of laser pulse itself triggers magnetic field pulses, which are used to excite the sample
out of equilibrium state, while another portion of pulse probes (Fig. 6.2).

In the experimental setup, schematically described in Fig. 6.2, pump pulses are
directed to a fast photodiode (e.g. ThorLabs DET210), which creates and sends
clock signals to the variable electronic delay generator (Stanford Research Systems
DG535). At this stage, the repetition rate of the pulsed beam is reduced from 82 MHz
to 0.8 MHz via pulse picking of the mode-locked laser pulse train. This is required
since the maximum trigger rate of the typical delay generator electronics is limited
to 1 MHz. On the other hand, the delay electronics creates the propagation delay
of the order of 100 ns. Therefore, an additional time delay between the pump and
probe beam is required to achieve temporal synchronization. This can be achieved by
delaying clock signals by an equivalent amount by propagation, for example, through
a length of coaxial cable, until current pulse is actually synchronized with the laser
pulse immediately following the one it was triggered by. After setting a time delay
∆t, the delay generator sends the clock pulses on to the pulse generator.

The electronic delay method is very convenient, particularly when delay ranges of
10 ns or more are needed, but adds undesirable electronic jitter of about 50 ps rms. This
trigger jitter is the main limiter of temporal resolution in this case. Alternatively, an
optical delay line can be used for the synchronization of the probe beam and magnetic
pulse, in which the travel path of probe beam with respect to pump beam is computer-
controlled using mirrors mounted on a slider. Figure 6.4 shows the full experimental
set-up, in which details of the alignment of optical components and optical delay line
are illustrated by a photo realistic rendering. In this set-up, the optical configuration
remains identical except for that electrical pulses generating magnetic field pulses
are made by a fast photodiode (ThorLab Model # SV2-FC), which is launched by
pump pulse itself. Details are provided in the captions of Fig. 6.2 and Fig. 6.4. This
technique is inherently jitter-free and is generally beneficial to measurements for
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Fig. 6.4. Photo realistic rendering of experimental setup, in which an optical delay line is
used for the synchronization of the probe beam and magnetic pulse. The travel path of probe
beam with respect to pump beam is computer-controlled using mirrors mounted on a slider (3).
Magnetic field pulses are generated by a fast photodiode (6), which is launched by pump pulse
itself. Other components include pulsed laser (1), 50/50 beam splitter (2), linear polarizer
(4), infinity-corrected microscope objective (5), Thomson polarizing beam splitter (7), and
quadrant photodiodes (8)

faster (low ps regime) processes. However, in practice the time delay range usually
spans only a few nanoseconds due to the limited length of delay line.

The magnetic pulse generation has been usually made using a photoconductive
switch [6.45], in which the switch is closed by photons above the bandgap energy,

freeing up carriers between two biased, metallized regions in a semiconductor sub-
strate. This method generates fast and jitter free pulses, but it is generally known
that the electric pulse shape is hard to control. In most cases in our experiments,
the generation of magnetic pulses relies on the current driver, which is based on the
avalanche transistor pulser (Model 2000D Pulse Generator, Picosecond Pulse Labs®)
using the technique of discharging a transmission line. Pulses from this source have
0.25–0.5ns rise times, 1.0–1.5ns fall time, and pulse widths of 10 ns with the am-
plitude of 45–50V. The current pulses are synchronously triggered by Ti-sapphire
fs laser pulses (λ = 800 nm, 0.8 MHz repetition rate) and are delivered to micro
stripe lines, which create magnetic field pulses. The inset in Fig. 6.5 shows an im-
age for such stripe lines, on or near which magnetic elements are placed. To excite
the sample with an out-of-plane magnetic field pulse, samples are situated between
lines and for an in-plane pulse, on top of a line. Stripe lines are fabricated using
lithographic technique, and have the width of 20 µm and thickness of 300 nm in this
case. The stripe lines create magnetic pulses as high as 24 kA/m. The temporal shape
of field pulses can be measured by a commercially available 2 GHz inductive probe
(Tektronix CT-6) or by measuring Faraday rotation in a garnet indicator film [6.20].
A garnet film allows optical measurement of the current waveforms in a very high
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Fig. 6.5. Schematic measurement configuration of a 180o dynamic magnetization reversal ex-
periment for microstructure excitation. Hs, Hl, and Ht indicate the switching field, longitudinal
(easy-axis) biasing field, and transverse (hard-axis) biasing field, respectively. In the inset an
image using an optical microscope is given, showing magnetic elements on top or near of the
gold transmission lines

bandwidth (over 50 GHz), in addition to providing an absolute time reference for the
time-resolved magnetic measurements [6.28].

Sample Preparation and Magnetic Field Configuration

The samples investigated in our experiments are polycrystalline permalloy (Ni80Fe20)

thin film elements with various dimensions and shapes and typical thicknesses of
15 nm. The permalloy is a soft magnetic alloy used, for example, throughout in-
formation storage industry. The Ni80Fe20 film was deposited using DC magnetron
sputtering onto 300 nm thick Au on sapphire substrate, at a growth rate of 0.1 µm/s
in a high-vacuum system with a base pressure of 5×10−8 Torr. Magnetic microstruc-
tures were fabricated by electron beam lithography and lift-off techniques. The right
hand side of Fig. 6.5 shows an optical micrograph of the magnetic structures and
transmission lines. The patterned elements are made on (or close to) a transmission
line that carries a fast current pulse. In most cases the element shapes are nicely
defined, demonstrating an excellent lithographic resolution, which is currently about
currently 50 nm. Atomic Force Microscope (AFM) and Scanning Electron Micro-
scope (SEM) are also employed to inspect the completed structures. In most cases
the lithographic structures reveal a very smooth surface with minor burrs at the sam-
ple edge [6.46]. During deposition an external magnetic field with the strength of
12 kA/m was applied in the plane of the substrate in order to induce the uniaxial
magnetic anisotropy.

The geometric configuration of biasing and switching magnetic fields used is
schematically illustrated on the left hand side of Fig. 6.5, where the stripe line
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carries a current pulse launched by a pulse generator in order to create an in-plane
switching field pulse (Hs) of, typically, 24 kA/m along the long axis of the sample.
In experiments, 180◦ magnetic field configuration is used, in which the sample is
first magnetically saturated in the easy axis direction, parallel to the long sides of
the elements, by an in-plane static biasing field (Hl = 0−32 kA/m). An in-plane
switching field pulse, Hs, is then applied in the opposite direction to Hl in order to
flip the magnetization direction. The element is optically interrogated while switching
is taking place. Additionally, an in-plane static transverse biasing field, Ht, can be
applied in order to manipulate the magnetization reversal process.

6.2.3 Operation Modes in TR-SKM Experiments

Two operation modes are usually employed in TR-SKM experiments. One of these is
temporal-resolving mode, where one obtains a majority of the information very effi-
ciently by measuring the dynamic response of the ‘local’ magnetization of a sample
as a function of time. In this mode the probe beam is focused on a particular place
(usually at the center) of the sample surface, and then the time delay ∆t is changed.
This mode is suitable for quick local characterization of the magnetic dynamics, but
ignores spatial information. Temporal resolution is ultimately limited by the laser
pulse width, but practically limited by the trigger jitter from the delay electronics,
as described above. The Kerr signal is detected after each time step, building up the
time-dependent profile for selected magnetization components. One example is given
in Fig. 6.6, in which time traces for the magnetic responses, i.e., Mx , My, and Mz

measured for three orthogonal in-plane magnetization components, are shown. The
data have been measured at the center of a 15 nm thick square (10×10 µm2) Ni80Fe20

element, and have been offset for clarity. This example clearly demonstrates that the
magnetization is thrown out of its initial saturation state and into magnetization os-
cillation about the effective magnetic field upon application of the switching pulse.
The magnetization oscillations result from magnetic precession about the effective
switching field axis, which occurs generally when the magnetization vector experi-
ences the torque due to the abruptly changed applied magnetic field [6.16]. A closer
inspection of the dataset reveals that the oscillations are not in phase, supporting the
precessional oscillation of the magnetization vector about a new equilibrium direc-
tion (cf. ferromagnetic resonance in Chap. 3, volume II in this series [6.3]). In the
present case the magnetization vector undergoes a large angle motion, as schemati-
cally shown in the inset of Fig. 6.6. Experiments of this kind provide guidelines for
understanding the local vectorial response from nonequilibrium magnetic systems.

More detailed information on the magnetization dynamics can be obtained from
the spatiotemporal-resolving operation mode. After the time-dependent profile of the
magnetization is measured, the sample surface can be scanned at a particular fixed
time delay in order to obtain two-dimensional images mapping the magnetization
configuration. This is required, since the dynamic response of the most magnetic
systems studied can be spatially nonuniform [6.5, 6]. Figure 6.7 displays an example
of such nonuniformity, in which spatial-time scanned domain images are captured
during magnetization reversal in a thin rectangular (10 × 2 µm2) permalloy film
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Fig. 6.6. Example of time-resolved magnetization components from a permalloy (Ni80Fe20)
rectangular element. Data are from the magnetization response at the center of the sample
versus time, and show phase shifted oscillations in x, y, and z magnetization components.
These phase shifts indicate precessional motion. Inset shows a schematic cartoon of idealized
precessional switching induced by the application of an abrupt magnetic pulse

element. The images are on a color scale to render the change in magnetization
components with red corresponding to the maximum reversal. The evolution of spatial
profiles with increasing time, associated with the magnetic domain nucleation, reveals
that the magnetic response occurs highly local at different times spatially across the
sample. (Details about this experiment will be discussed in Sect. 6.3.1.) During
this measurement mode, the sample is placed on computer-controlled piezo-driven
flexure stage providing scanning motion at a typical scan rate of 8 pixels/s (which
typically corresponds to about 0.3 µm/s). A time record of few hundred separate
sample measurements of the average magnetization was collected for each pixel in
the image. Critical in this operation mode is the stability of the piezostage over long
time intervals, since the quality of this stage also contributes to the effective spatial
resolution of the system. The ThorLabs flexure stage used for the data-acquisition
presented in Sect. 6.3 is relatively stable, but can drift at rates on the order of
0.1 µm/hour in response to the ambient temperature fluctuations in our laboratory.
Auto-centering and auto-focusing have been implemented in the control software to
compensate for this difficulty.

1.3 ns

2.1 ns

+1

–1
Fig. 6.7. Spatial-time scanned data captured
during magnetization reversal. Spatial profiles
demonstrate that the magnetic response oc-
curs highly local at different times spatially
across the sample. Movies showing complete
sequences of reversal processes are found on
http://nanoscale.phys.ualberta.ca
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6.3 Experimental Results for Magnetization Reversal Dynamics

In this section, representative experimental results for dynamic magnetization reversal
obtained through TR-SKM will be discussed. A prototypical question is what happens
during the nonequilibrium interval in the case where a mesoscopic magnetic element
is magnetically saturated in one direction, and has an ultrashort rise time magnetic
field pulse applied in such a manner as to reverse the magnetization direction. Such
experiments are also directly relevant to magnetic recording, where information is
written on a magnetic medium by reversing the magnetization using a recording head.
With bits now written and read in less than 1 ns, better understanding of the temporal
dynamics in small magnetic elements becomes more crucial for the development of
high-performance information storage systems.

6.3.1 Picosecond Time-Resolved Magnetization Reversal Dynamics

Figure 6.8 shows the local magnetic response of a 15 nm thick Ni80Fe20 rectangular
element with a dimension of 10 × 2 µm2. Measurements were made with the 0.9 µm
focus spot positioned at the center of the structure. The data represents the time
traces of easy axis magnetization components Mx , compared for different transverse
biasing fields Ht, while Hl is kept at 4.8 kA/m. Note the biasing and switching field
configuration as depicted in Fig. 6.5. Applying no transverse field, i.e., Ht = 0 kA/m
as indicated by the thick line, a definite delay in the magnetic response after the
beginning of the pulse is observed, and the subsequent dynamics are relatively slow
with the magnetization fully reversed after 3.5 ns. When a transverse biasing field Ht

is applied perpendicular to the easy axis, a striking change in the magnetic response
is observed. The first point to note is that the magnetic response becomes much faster
with respect to the case without applying Ht. In such cases the magnetization switches
within 1 ns after the pulse is given, and a transverse biasing field strength as low as
1.4 kA/m is found to be sufficient to cause such an abrupt switching. The qualitative
explanation for this effect is that when a transverse field Ht is applied, the equilibrium
position of the magnetization vector M is away from the initial easy axis, hence the
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Fig. 6.8. Time-resolved magne-
tization components (Mx ) along
the easy axis, measured in the
center of the element for different
transverse biasing field (Ht). The
longitudinal biasing field Hl is
being held fixed at 4.8 kA/m.
The thick line indicates the
Mx component measured at
Ht = 0 kA/m. The switching
pulse begins at 0 ns
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reversing field exerts torque on the magnetization vector immediately. In addition,
the magnetization is away from the minimum anisotropy energy state along the easy
axis, so the effective coercive field is lower than for Ht = 0 kA/m. Consequently,
lower longitudinal Zeeman energy or smaller switching field strength is required to
overcome the energy barrier. We note that this is well known from quasistatic studies
and modeling [6.25], and our study is extending to the fast dynamic regime.

Further insight into the temporal evolution of the magnetization reversal is
obtained by direct time-domain imaging. Figure 6.9 shows a sequence of time-
resolved images representing the easy axis magnetization components (Mx) for
Hl = 4.8 kA/m at selected time points, demarcated in nanoseconds relative to the
initial application of the switching pulse. For Ht = 0 kA/m (the left column), the
reversal is mainly governed by a domain nucleation process. In the very beginning
(0.5 ns) a stripelike instability is observed inside the sample, from nucleation oc-
curring in the same regions. The main dynamical reversal, however, is first initiated
from the demagnetized edges (0.9 ns), is followed by expansion of the nucleated
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Fig. 6.9. Spatial magnetization profiles of the Mx component as a function of time after the
magnetic pulse was applied. Each panel corresponds to 12×4 mm field of view, and contains
the entire 10 × 2 µm sample. The numbers by the frames indicate the time in nanoseconds at
which the measurement was made, relative to the initial application of the switching pulse.
The comparison of time domain images clearly reveals a sensitive transition between two
distinct magnetization reversal mechanisms, i.e., domain nucleation and domain wall motion,
depending on the effective biasing field configuration
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domains (1.3 and 2.1 ns), and finally leads to a uniform distribution of fully reversed
magnetization, excluding the left and right edge regions (5 ns). These edge regions
correspond to free magnetic poles related to the demagnetized areas in a ferromagnet
of finite size. On the back reversal, the stripe instability is also pronounced (12.2 ns).
From the spatiotemporally resolved magnetic images, it becomes clear how the mag-
netization switching in small elements occurs: The finite domain nucleation limits
switching time to about 3.5 ns.

This nucleation-dominant reversal process can be drastically manipulated through
an application of an additional transverse biasing field. This is demonstrated by time
domain images, shown in the right column of Fig. 6.9. Applying a transverse biasing
field Ht =5.2 kA/m, the 180o domains at the short edges are formed (0.6 ns), but there
appears no stripelike distribution inside. The edge domains expand quickly in the easy
axis direction to form a long, narrow domain parallel to the easy axis (0.77 ns). In
the next stage, this elongated domain expands by parallel shifts in the hard direction
towards the long edge (0.8 and 0.9 ns) until saturation is reached (1.20 ns). This type
of reversal, which is characteristic of domain wall motion, is considerably faster as
revealed in the time dependence of magnetization in Fig. 6.8.

The differences in the time domain sequences demonstrate that the formation of
nuclei inside the sample can be easily avoided by the presence of Ht and that the
nucleation process is replaced by domain wall motion. This result clearly reveals
a sensitive transition between two distinct magnetization reversal mechanisms in
a very “same” magnetic element, in which switching occurs over longer times when
the stripe domains are involved in the reversal process than if pure domain wall
motion occurs.

For comparison of experimental results with a model, we resort to a numerical
approximation of the Landau-Liftshitz-Gilbert (LLG) equation [6.47]

dM/Dt = γ [M × Heff] − αγ [M × (M × Heff)] , (6.1)

where γ is the gyromagnetic ratio and α is the dimensionless damping parameter. The
simulation is a time domain finite element integration of the LLG equation, under the
assumption that the effective field Heff is produced by the exchange, magnetostatic,
crystalline anisotropy, and Zeeman (external field) energies of the magnetization.
The sample is broken into a two dimensional array of 512 by 128 blocks making
cells 19.5×15.6×15 nm3 each. Micromagnetic calculations have been carried out at
0 K. We note that the Curie temperature of the element is much higher than room
temperature, allowing a low-temperature approximation in the statistical mechanical
sense [6.29].

The temporal evolution of the easy axis magnetization component simulated
for the biasing field conditions of Ht = 5.2 kA/m and Hl = 4.8 kA/m is com-
pared to the experiment in Fig. 6.10. The simulated time trace is averaged over
an area with the diameter of 0.9 µm at the center in the element, reflecting the
experimental condition. The simulation agrees remarkably well with the experi-
ment even in the absolute time scale, as represented by expanded views for the
rising and falling ends of the switching shown in Fig. 6.10 (a) and (b). From
the comparison, the experimental traces are found to be slightly lagging behind,
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Fig. 6.10. Comparison of the temporal evolution ((a) and (b)) and spatial magnetization
profiles of the easy axis magnetization component simulated for biasing field conditions
of Ht = 5.2 kA/m and Hl = 4.8 kA/m to the experimental results. The good agreement
between simulation and experiment demonstrates that the micromagnetic modeling based
upon the LLG equation is capable of describing the magnetization reversal dynamics in small
magnetic elements. The small oscillations seen in the rising (a) and falling (b) ends are due to
magnetization precession [6.5]

with the initial and final slopes steeper in the simulation. Noticeable in the sim-
ulation are small oscillations found both in the rising and falling ends. These are
on account of the precessional motion of the magnetization vector as discussed
previously, and are less pronounced in the experiment due to the experimental tem-
poral resolution limited by the ∼50 ps RMS jitter of the electronic delay genera-
tor.

The right column of Fig. 6.10 compares the experimentally obtained time domain
images to those obtained by the simulation. Frames show a sequence of time-resolved
images representing the easy axis magnetization components measured and simulated
for Ht = 5.2 kA/m and Hl = 4.8 kA/m at selected time points.

The images are on a linear gray scale to render the change in magnetization
components with black corresponding to no change and white corresponding to
the saturation level or maximum possible reversal. In remarkable agreement with
the experiment, simulation reveals that short edges of the sample initiate reversal
(t = 0.2 ns) and then propagate toward the center until the saturation reaches (t =
0.3−2.1 ns). Quite similar to the experimental case, the long edges are found to
remain pinned along the initial magnetization direction (t = 11.1−11.2 ns) and are
reversed last (t = 12.0 ns).
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The overall agreement of the micromagnetic simulations to the experimental result
demonstrates the micromagnetic modeling based upon the LLG equation is capable
of describing the magnetization reversal dynamics in small magnetic elements within
the switching time scale of few hundreds picoseconds.

6.3.2 Dynamic Domain Pattern Formation
in Nonequilibrium Magnetic Systems

Another interesting aspect associated with fast magnetization reversal process is the
general question of what governs the spontaneous development of dynamic domain
patterns. This concerns the time scale and mechanism for removal of the initial
excess Zeeman energy from the nonequilibrium magnetic system. In order to shed
light on the complex spatiotemporal structures which arise, we can map out the
crossover from quasi-static to dynamic behavior. In this section, the observation of the
spontaneous domain pattern configuration in a 15 nm thick polycrystalline Ni80Fe20

square (10 × 10 µm2) element is discussed. The magnetic field configuration used in
this experiment is as described in the previous section (cf. Fig. 6.5), except that the
rise time of the switching pulse is varied between 0.24 and 8.6 ns.

Figure 6.11 shows the spatio-temporal evolution of the magnetization component
in response to short magnetic pulses with the rise time of 240 ps. The magnetic
domain images are measured along the magnetic easy axis at selected time points
after applying a switching pulse. The contrast in the images reflects the local degree of
magnetization reversal, with dark red areas corresponding to fully reversed regions.
The domain configurations show a complex spatial appearance, which for purposes
of compact description we characterize as a labyrinth pattern. A particularly well-
developed labyrinth pattern appears for the frame measured at 400 ps. We note that the
qualitatively same behavior is observed in other samples. Emergence of the labyrinth
formation is seen already at the very beginning of the reversal process. Near the
initial state (100 ps), the magnetization switch has started at the element ends and is
accompanied by the nucleation of branch-like fine structures visible in the interior
regions. Labyrinth domain patterns evolve out of these fine nucleation sites, and once
a pattern forms, it is quasi-stable and the completion of reversal is mainly governed
by a gradual expansion of the reversed domains.

It is remarkable that this level of detail is observed in a stroboscopic (i.e., repet-
itively averaged) measurement. It remains to be understood how the nonequilibrium
dynamics, presumably acting in concert with sample imperfections or pinning sites,
select out a pattern that largely recurs from reversal to reversal. Note that the spatial
contrast one observes in this experiment represents only the lower limit of what one
might find in a “single shot” temporal observation, or with finer spatial resolution in
the stroboscopically-averaged case.

The evolution of the domain configuration has been measured as a function of
the rise time of the magnetic switching pulse, as shown in Fig. 6.12. The upper
panel shows the temporal evolution of the magnetization at the center of the same
10 ×10 µm2 element, excited by magnetic pulses with different rise time (i.e. trise =
8.6 ns, 5.1 ns, 2.8 ns, and 0.24 ns). All traces show a change of magnetization from
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Fig. 6.11. Spatio-temporally resolved domain images representing the easy axis magnetization
component at selected time points after the onset of a magnetic switching field of 0.24 ns rise
time (0–90%). The 3D topography and color map both render the magnitude of the magnetic
signal from unchanged (blue) to fully reversed (red). A complex labyrinth-like domain pattern
evolves during the reversal, unlike anything observed at slower switching speeds

one saturated state to another, and magnetic responses show additional delay with
increasing rise time, with oscillations following the primary switch.

The bottom panel of Fig. 6.12 shows characteristic domain patterns imaged at time
points at which the reversal reaches about 50 % of the full Mx-intensity change. The
situations for slower switching are very different from the fast case (trise = 0.24 ns),
for example, for trise = 5.1 ns the labyrinth domain pattern is no longer observed
and instead the domain configuration has a more regular character in which stripe
domains predominate. Thus, accelerating the switching process is required to cause
the more intricate structure to form, as seen in the domain pattern evolution from
trise = 8.6 to 0.24 ns. This observation clearly illustrates that the speed at which the
magnetization reversal is driven plays an essential role in determining the domain
patterns.

The appearance of labyrinth-like patterns in these in-plane Ni80Fe20 thin film
elements is also notable because the occurrence of this kind of domain structure
is a characteristic feature of the domain configurations of ferromagnetic films for
which the magnetization is normal to the plane of the surface [6.48, 49]. Labyrinth
pattern formation contrasts greatly to the quasi-static cases for in-plane magnetized
thin film elements [6.8]. For example, Gomez et al. have shown that the remanent
and switching domain configurations in Ni80Fe20 thin film elements display a variety
of domain patterns [6.21], none of which resemble the dynamic patterns we observe.



228 B.C. Choi and M.R. Freeman

Time (ns)
0 2 4 6 8 10 12

M
x-

In
te

ns
ity

 (
a.

u.
)

0.0

0.2

0.4

0.6

8.60 ns (a)
5.10 ns (b)
2.80 ns (c)
0.24 ns (d)

b

0.6

0

a

c d

5 µm

Fig. 6.12. (Top panel) Time traces
of the magnetization at the center of
the element, when excited by mag-
netic field pulses of different rise time
(8.6 ns (a), 5.1 ns (b), 2.8 ns (c), and
0.24 ns (d)). Traces show the change of
magnetization from one saturated state
to another, and magnetic responses
show additional delay with increas-
ing rise time, with oscillations follow-
ing the primary switch. (Bottom panel)
Dynamic domain patterns revealed as
a function of the magnetic pulse rise
time. The spontaneous domain con-
figuration is sensitively dependent on
the switching speed. A transition from
stripe- to labyrinth-like domains oc-
curs with increasing speed

The sensitive dependence of the spatial pattern on switching speed can be dis-
cussed in analogy with other pattern forming systems. The Landau-Lifshitz-Gilbert
phenomenology [6.50], which has been very successful in describing essentially all
micromagnetic cases to which it has been applied in detail, is closely related to the
complex Landau-Ginzburg equation, a known generator of spatiotemporal complex-
ity [6.51]. Finite-element simulations to model the present experiment also show
dramatic changes in the domain patterns as the switching speed of the field increases
towards (0.24 ns)−1 [6.52]. The spatial structures in the model for the fast rise time
regime do not closely resemble those of the experiment, however. The character-
istic pattern length scale changes as the system is driven further from equilibrium,
reminiscent of other nonequilibrium pattern forming systems [6.53]. Ultimately the
emergence of patterns in the magnetic system derives from the competition between
the strong, short-range exchange interaction favoring parallel spin alignment and the
weak, long-range dipolar interaction preferring antiparallel alignment. The additional
energy gives rise to additional line length of domain wall within the sample in the
nonequilibrium state.

Another remarkable phenomenon arising in the stroboscopic observation of these
patterns is demonstrated in Fig. 6.13, where time domain images captured during
magnetization oscillation are presented. Some of the fine spatial structure has vanished
before even the first cycle of precession is complete, but an alternating change of
domain pattern contrast is observed clearly during the magnetization precession, and
without significant changes of the pattern shape. This becomes immediately apparent
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Fig. 6.13. Comparing spatio-temporally resolved domain images measured at the peaks (a and
c) and dip (b) during magnetization oscillation. A striking feature is the alternation of contrast
during the magnetization precession without the spatial pattern changing significantly. Through
a cycle of oscillations, the already fully reversed regions at the oscillation peak (a) simply turn
into not-fully-reversed regions at the dip (b). In the next oscillation peak (c), one observes the
same pattern with progressing reversal. (inset) Horizontal cross-sectional views of the domain
images

by comparing domain images measured at the peak and dip of the magnetization
oscillations (compare to the time traces in the inset). During oscillations, the already
fully reversed regions, measured at the oscillation peak (a), simply turn into not-
fully-reversed regions at the dip (b). In the next oscillation peak (c), one observes
a same domain pattern with progressing reversal. The alternating magnetic contrast
during precession implies that the selected domain pattern is maintained while the
remaining excess Zeeman energy introduced by the applied switching field is damped
from the precessional magnetization motion. The micromagnetic simulations share
this qualitative characteristic of strong temporal oscillations at the highest switching
speeds.

6.4 Conclusion and Outlook

In summary, the current state of TR-SKM technique is reviewed, showing its signif-
icance for metrology in fundamental studies and industrial applications today. The
unique combination of temporal and spatial resolution puts it foremost in elucidating
the ultrafast magnetization reversal mechanism.

Future prospects include the improvement of the spatial resolution. In order to
obtain a higher spatial resolution, an oil immersion objective can be employed. With
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a 1.3 N.A. oil immersion objective and a light source (λ = 800 nm), for example,
the Airy disk diameter of 0.65 µm can be obtained. This can be again improved
by a factor two by upconverting the near-infrared femtosecond pulses into the blue
(λ = 400 nm), recognizing that differently optimized detectors have to be used and
that the average incident power in scanning optical microscopy has to be reduced
in order to remain well below sample damage thresholds. Further improvement of
spatial resolution requires the incorporation of a solid immersion lens (SIL) [6.54]
into the stroboscopic technique. An SIL made from a very high index materials such
as GaP (n = 3.4) could refine spatial resolution to 100 nm.

The continuing development of new experimental tools for imaging fast magneti-
zation dynamics is itself fast-paced. Spatiotemporal magneto-optic imaging with the
second-harmonic magneto-optic Kerr effect (SHMOKE) is an exciting complement
to linear magneto-optics, since SHMOKE offers extreme sensitivity to the magne-
tization at surfaces and interfaces [6.55]. Even stronger prospects in the field of
experimental micromagnetic dynamics are the time-resolved techniques based on x-
ray magnetic microspectroscopy and spectromicroscopy [6.56]. In addition to spatial
resolution already in the low-10 s of nm range, these techniques provide elemental
selectivity obtained as the x-ray energy is tuned to the adsorption edge of the de-
sired element, very useful for resolving individual layers within multilayer structures
composed of different materials [6.57, 58].
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6.56. G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, and G. Materlik.

Phys. Rev. Lett., 58:737, 1987.
6.57. C.T. Chen, Y.U. Idzerda, H.-J. Lin, G. Meigs, A. Chaiken, G.A. Prinz, and G. H. Ho.

Phys. Rev. B, 48:642, 1993.
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7

Polarised Neutron Reflection Studies
of Thin Magnetic Films

J. A. C. Bland and C. A. F. Vaz

7.1 Introduction

The magnetic moment is the most fundamental quantity in magnetism and yet the most
experimentally challenging quantity to measure in the case of thin films. Magnetic
order corresponds to the microscopic ordering of the electron angular momentum, be
it the localised atomic orbital and spin moment and/or the spin moment of itinerant
band electrons. Such ordered states correspond to states of lower energy compared
with higher energy thermally excited states. The magnitude of the magnetic moment
depends, on the one hand, on the magnitude of the angular moment (in particular
for localised systems) and on the other on the spin imbalance between majority and
minority electron bands. For the 3d transition metals the orbital moment is quenched
by the strong crystal field and the magnetic moment is mostly due to the electron
spin. For the 4f series, the orbital moment is not quenched, and the main contribution
to the magnetic moment comes from the atomic angular moment. Additionally, the
mechanisms responsible for the magnetic order are different in these two situations.

Due to changes in electronic structure with reduced dimensions, the magnetic
moment ariadoes not necessarily scale with the volume of the system. In fact, it
is expected that as the physical dimensions of the system are reduced, the break
in symmetry induces a localisation of the wavefunction of those atoms close to
the interface. While the effect of this symmetry break on the magnetic anisotropy
is very pronounced, the effect on the magnetic moment is in general smaller and
more difficult to observe. Also, metastable crystal structures can be stabilised in thin
epitaxial films or small particles, which often exhibit magnetic moments which are
different from those corresponding to the bulk equilibrium phase. Furthermore, it
is now increasingly recognized that the interface moment is crucial in determining
the behaviour of magnetic devices, e.g., magnetic tunnel junctions and in particular
‘buried interfaces’ are critical to the successful performance of such devices. While
the magnetic moment of materials have been measured routinely in the bulk, the
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equivalent studies for systems of reduced dimensions are more challenging and
require the use of more sensitive techniques.

Among the magnetometry techniques employed for the measurement of the mag-
netic moment in thin films, polarised neutron reflection (PNR), x-ray magnetic circu-
lar dichroism (XMCD) and SQUID (superconducting quantum interference device)
magnetometry are often employed due to their sensitivity and their specific capabili-
ties. XMCD is an element specific technique (it measures the magnetic-dependence of
light absorption at the absorption edges) and allows the separate determination of both
the spin and orbital components of the magnetic moment. However, XMCD does not
independently yield an absolute determination of the magnetic moment as it requires
knowledge of the exact number of holes, nh, which may vary with film thickness
[7.1], and also relies on an atomic model for its selection rules. The power of XMCD
lies in its chemical selectivity and high sensitivity and its relative insensitivity to
structural quality [7.2, 3]. PNR on the other hand is a layer selective, self-calibrating
technique that relies on the reflectivity response of a magnetic step-like potential
(a consequence of the magnetic dipole interaction between the neutron spin and the
magnetisation of the medium), giving the magnetisation profile of the film and also
the structural parameters of the film (layer thickness and interface roughness). The
surface sensitivity of this method is a consequence of the phenomenon of total re-
flection; this results from the fact that the real part of the refractive index is slightly
smaller than unity for neutrons (and x-rays) [7.4–6]. However, PNR is based on the
‘optical’ interference of cold neutrons reflected at the different interfaces and so is
critically dependent on the sample structural quality. Nevertheless, PNR is unique
in allowing a quantitative determination of the sample moment to be obtained in
the monolayer range. This is the combined result of significant developments in the
PNR technique over the last 10 years ranging from (i) improved sample flatness and
reduced interface roughness, (ii) introduction of step wedge samples (same growth
conditions) which allow high precision comparative measurements, (iii) vector mag-
netometry, (iv) polarisation analysis and (v) also an increase in the number of neutron
reflectometers available. SQUID magnetometry, although very accessible and simple
to use, has the disadvantage of providing the average magnetic moment of the whole
structure, which in many cases of interest involves a thick substrate with a very large
dia- or paramagnetic contribution superimposed on the small magnetic signal from
the film. However, for some systems, in situ SQUID techniques have been success-
fully employed to measure the absolute magnetic moment of ultrathin magnetic films
with very high accuracy [7.7].

Furthermore, the measurement of the magnetic moment in thin films has been
stimulated by the results of many ab initio numerical studies. These studies allow for
a detailed understanding of the microscopic origin of the distinct properties of ultra-
thin film systems and often provide clues for which systems may exhibit the largest
deviations from bulk properties. This may shed additional light on the understanding
of the electronic mechanisms underlying the magnetism of such systems, as well as
a check on the numerical calculations and structural plus chemical contamination.
Although these numerical studies usually involve approximations that are difficult to
implement in practice (e.g., flat surfaces/interfaces, defect free films) and are calcu-
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lated for the ground state of the system, ab initio calculations constitute an invaluable
guide to a correct understanding of the experimental results.

In this article a review of the basic theory of PNR and some of the experimental
aspects of this technique are presented in Sect. 7.2, followed by an overview of PNR
results for thin magnetic films (Sect. 7.3.1), spin-valve systems (Sect. 7.3.2) and
multilayers (Sect. 7.3.3). PNR results on superconductors, rare-earth systems as well
as studies relating to diffuse scattering and the phase problem are excluded from this
review. Shorter introductions to PNR can be found in [7.5, 8–15].

7.2 Theoretical Basis

Polarised neutron reflection (PNR) magnetometry is based on the magnetic interac-
tion between the neutron magnetic moment and the medium magnetisation, allowing
therefore the measurement of the magnetic moments per atom while giving simul-
taneously structural information such as film thickness and interface roughness. The
geometry of the measurement limits this technique to smooth and flat samples, such
as thin films and multilayers supported by a thick substrate. For a typical sample area
of 1 cm2, the magnetic moment from a 1 ML of Fe is ≈ 1.4× 10−8 emu. This is well
within the reach of the PNR sensitivity, which can be compared with the sensitivity
of commercial SQUID (superconducting interference device) magnetometers, of the
order of 10−7 emu. However, for ultrathin films supported by a thick substrate, the
dia/paramagnetic contribution from the substrate and overlayers usually overwhelm
the signal from the magnetic layer; and an exact knowledge of the sample area and
the film thickness is required in order to obtain the value of the magnetisation of the
film. If two or more magnetic layers are present, it can only provide the average value
of the magnetisation. MOKE (magneto-optic Kerr effect) magnetometry, on the other
hand, can easily reach such sensitivities, but unlike the other two techniques, cannot
provide a quantitative measure of the magnetisation and is limited to surface layers. In
contrast, PNR is a self-calibrating technique, providing independently values of both
the magnetic moment and film thickness; it is layer selective and can probe buried
layers in a multilayer system. In the simplest arrangement, the magnetisation of the
sample is saturated along the direction of the neutron spin, and the reflectivity for the
two neutron spin states is measured. Due to the sensitivity of the neutron reflection
amplitude to the surface roughness, an estimate of the interface roughness of the film
structure can be obtained (within the range 0–50 Å); in addition, the fringe spectra
produced by multiple interference of the neutron beam within the sample layers en-
ables the thickness of each layer to be determined with high accuracy (better than
1–10% for layer thicknesses in the range 100–0.1 nm, respectively). Furthermore, the
theory of neutron reflection is relatively simple allowing quite straightforward data
modelling. Contrary to x-ray scattering, the nuclear scattering length varies consider-
ably from element to element with the consequence that neutron reflectometry offers
a larger layer contrast than the equivalent x-ray reflectometry technique [7.16, 17].
For these reasons, polarised neutron reflection is a technique particularly suited when
both structural (thickness and interface roughness) and magnetic (saturation mag-
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netic moments) information is needed in magnetic films and multilayers (magnetic
moments can be obtained with an accuracy better than 5–8% for films in the few
monolayers range, which can be improved by combination with other techniques,
such as SQUID and/or x-ray reflectometry). In addition, for non-collinear magnetisa-
tion configurations, spin-flip processes occur changing the spin up and down reflected
intensities and allowing this technique to provide vectorial information even in the
absence of polarisation analysis of the reflected beam [7.18–21].

7.2.1 Theory: Basics of Polarised Neutron Reflection

The neutron has several properties that makes it unique when used for probing the
condensed state of matter. It is almost devoid of any electrical properties, having no
electric charge, no electric dipole moment and no electric polarisability (at least for
the range of energies where the internal structure of the neutron can be disregarded).
It has mass and a magnetic moment. Its interaction with matter is dominated by the
interaction with the nucleus of the atoms (due to nuclear forces) [7.22]. A neutron
plane wave, when scattered by a single fixed nucleus, appears at a distance r from the
scatterer with a relative amplitude f(θ, k)/r in the direction given by θ. The point-like
pseudo-potential for a nucleus in a position R can be described by a delta function of
the form [7.23–25],

V(r) = 2π�2µ−1aδ(r − R),

where µ is the reduced mass of the system and a is the scattering length. Although this
does not correspond to the real neutron-nuclei interaction, it is a way of expressing
the effective nuclear interaction as a small perturbation to the Hamiltonian of the
non-interacting system (a rigorous treatment of this problem is given in [7.26]). The
solution in the Born approximation gives, for slow neutrons, f(θ) = −a, indepen-
dently of the angle θ, as the scattering occurs only for small values of the angular
momentum, l = 0 (this results from the small range of the strong interaction with
respect to the neutron wavelength [7.25]). The relation between the total scattering
cross section σ and the scattering length is given by σ = 4πa2 [7.27].

In the case of a solid and for neutrons with wavelengths large in comparison with
the distance between scatterers, the neutrons ‘feel’ the mean potential

V = 2π�2m−1
n Nb (7.1)

where N is the number of scatterers per unit volume and b the effective scattering
length (mn = 1838.6me is the neutron mass). Following [7.22], the notation for the
scattering length was changed from a for the free atom to b, for the bound atom, with
b = (1 + mn/A)a, where A is the atomic mass of the atom. Interference between
incoming and scattered neutron waves and between the scattered waves from a set of
nuclei is possible if the scattering by each individual nucleus is elastic and coherent.
Fluctuations of the individual phase shift of the scattered waves produce an incoherent
component of scattering (which can be caused by resonant scattering with different
spin states and by scattering on an ensemble of various isotopes of a chemical element
or of various chemical elements); consequently, the scattering length a is separated
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into a coherent and an incoherent part, ac = 〈a〉 and ai = (〈a2〉−〈a〉2)1/2 respectively,
where the brackets represent averaging over the individual scattering lengths. The
incoherent scattering length gives rise to isotropic neutron scattering, and does not
produce interference fringes since the phase information is lost; in studying the elastic
scattering of neutrons, only the coherent scattering length has to be considered in
(7.1) [7.28, 29].

In the case of magnetic materials, the magnetic dipole moment of the neutron
interacts with the effective magnetic induction of the medium, Vmag = −µn · B.
Unlike the nuclear scattering, the magnetic scattering is not isotropic, due to the axial
symmetry of the dipole field. In fact, the scattering amplitude due to this interaction
in the Born approximation is given by [7.26, 30]

bm ≡ − f(Q) = mn

2π�2

∫
Vmag e−iQ·r ′ dv′ (7.2)

where Q = k − k′ is the momentum transfer, or:

bm = mn

2π�2
[−µn · B(Q)] (7.3)

where B(Q) is the Fourier transform of B(r). Further, it can be shown that [7.26,
p. 157]

B(Q) = Q̂ × (M × Q̂) = M − Q̂(M · Q̂) = M⊥(Q) (7.4)

where M⊥(Q) is the component of M perpendicular to Q. We see therefore that the
magnetic interaction is only effective in scattering neutrons when there is a component
of the magnetisation perpendicular to the momentum transfer. This can also be seen
by recalling that the divergenceless of B can be written in the momentum space as
Q · B(Q) = 0 [7.27, 29, 31, 32].

Therefore, as with MOKE [7.33, 34], we can distinguish three scattering geome-
tries according to the orientation of the magnetisation with respect to the momentum
transfer direction and to the quantisation axis (Fig. 7.1):

1. the polar geometry, where there is no magnetic interaction and therefore the
scattering is due only to the nuclear potential of the magnetic material;

2. the transverse geometry, where the magnetisation is perpendicular to the mo-
mentum transfer wavevector and parallel to the quantisation axis and for which
geometry the Hamiltonian commutes with the spin operator, and

3. the longitudinal geometry, where the magnetisation is perpendicular to the neu-
tron spin (µn · M = 0) and the Hamiltonian of the system does not commute
with the spin operator (spin-flipping scattering processes occur, thus making this
situation different from the polar geometry) [7.35].

It is also worth mentioning that the neutron mass interaction with the gravitational
field of the Earth can be comparable in magnitude with the nuclear and magnetic
interactions for very slow neutrons; in fact a neutron at a height z from a reference
plane has a potential energy given by mngz, or 100 neV/m [7.29] (values for the
nuclear and magnetic interactions for selected materials are given in Table 7.1).
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Fig. 7.1. Scattering geometries for polarised neutron reflection: (a) polar geometry, (b) trans-
verse geometry and (c) longitudinal geometry

Table 7.1. Values for the nuclear and magnetic potential of neutron elastic scattering (selected
materials). Relevant parameters are also shown, where 〈b〉 is the coherent nuclear scattering
length (from [7.36]), � the atomic density, N the atomic density (at room temperature),
Is = 4πMs the saturation magnetisation, VN and Vmag the nuclear and magnetic terms of the
nuclear potential, respectively, and qc the critical wavevector for total reflection

Element 〈b〉 � N Is VN Vmag qc + /−
(fm) (g/cm3) (1028 at./m3) (kG) (neV) (neV) (10−3 Å−1)

Si 4.149 2.329 4.97 — 53.77 — 5.09
Cr 3.635 7.194 8.30 — 78.68 — 6.16
Mn –3.73 7.43 8.144 — –79.22 — —
Fe 9.54 7.873 8.46 21.580 210.47 129.8 12.81/6.24
Co 2.50 8.800 8.99 17.970 55.81 107.9 8.89
Ni 10.3 8.907 9.10 6.556 244.42 39.43 11.70/9.95
Ni80Fe20 10.148 8.700 8.972 9.183 237.43 55.2 11.88/9.38
Cu 7.718 8.933 8.46 — 170.27 — 9.06
Ge 8.193 5.323 4.42 — 94.43 — 6.75
Pd 5.91 11.995 6.785 — 104.57 — 7.10
Ag 5.992 10.500 5.84 — 91.25 — 6.64
Pt 9.63 21.450 6.62 — 166.25 — 8.96
Au 7.63 19.281 5.87 — 116.80 — 7.51
GaAs 6.934 5.316 4.43 — 79.92 — 6.21
InAs 5.223 5.66 3.593 — 48.94 — 4.86

7.2.1.1 Kinematical Theory of Neutron Reflection (Elastic Scattering)

The theory of neutron reflection can be studied within the framework of neutron optics
[7.37, 38]. Its basic assumption is that for long wavelength neutrons the interaction
potential can be considered to vary slowly from point to point in space. This is not
strictly true with the nuclear interaction of neutrons with the nuclei, as mentioned
above. However, the wavelength of slow neutrons is typically four orders of magnitude
larger than the range of the (attractive) nuclear interaction and therefore the scattered
waves are spherical and isotropic. These waves, emanating from each nuclear site
combine coherently and add up to a single resultant wave characterised by the average
interaction potential [7.37]. (A more refined justification, which relies on the validity
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of the Fermi potential to represent the nuclear potential, is given in [7.25], chapter 2.)
Thus, neutrons can be seen as interacting with a uniform nuclear and magnetic
potential when scattering with matter. In quantum mechanics this corresponds to the
simple and soluble case of a potential barrier, which we consider next [7.19, 30, 39–
41].

The Schrödinger equation for the wavefunction of a neutron in a medium is given
by [

− �
2

2mn
∇2 + V(r)

]
ψ(r) = Eψ(r) (7.5)

where mn is the neutron mass and V(r) the potential energy. Let us consider an
interface between two different media and translational symmetry in the plane xy of
the interface, which defines the zero of the z-direction, see Fig. 7.2 (the y-direction
is defined as the axis of quantisation). Then the neutron wavefunction ψ(r) can be
written in terms of the parallel (to the interface) component of k:

ψ(r) = ψ(z)eik‖·r (7.6)

by defining k‖ ≡ k‖ex , and including k⊥ in ψ(z). The Schrödinger equation becomes:{
d2

dz2
+

[
2mn

�2
(E − V ) − k2

‖

]}
ψ(z) = 0 (7.7)

which can be written as1(
d2

dz2
+ q2

)
ψ(z) = 0 , q ≡

√
2mn

�2
(E − V ) − k2‖ , (7.8)

where q is the component of the wavevector parallel to the z direction. Equation (7.8)
corresponds to the “equation of motion” of the neutron along the z-direction, with
the general solution

ψ(z) = A eiqz + B e−iqz , (7.9)

where the coefficients A and B are determined by imposing the boundary conditions
for ψ and continuity of dψ/dz. We have then (using the subscripts 1 and 2 for regions
z < 0 and z > 0), with A1 = 1 and B2 = 0:{

1 + B1 = B2

q1(1 − B1) = q2 A2
⇒

{
B1 = (q1 − q2)/(q1 + q2)

A2 = (2q1)/(q1 + q2)
. (7.10)

1 For ease of notation, q corresponds to the wavevector component perpendicular to the
interface (i.e., q = k⊥). Some authors use q to represent the momentum transfer, which
here is denoted by Q.
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Fig. 7.2. (a) Neutron reflection geometry and (b) the correspondent step potential for the
interface between the media 1 and 2. The momentum transfer Q = ki − ko is parallel to the
z-direction and is equal to 2k⊥ = 2ki sin θ, where θ is the angle between ki and the plane of
the interface

The wavefunction is of the form:

ψ =
{

eiq1z + r e−iq1z , z < 0

t eiq2z , z > 0
(7.11)

where r ≡ B1 is the amplitude of the reflected wave and t ≡ A2 is the amplitude of the
transmitted wave. The transmission and reflection coefficients are defined as [7.42]
T = Jt/Ji and R = Jr/Ji, respectively, where Ji, Jr, Jt are the incident, reflected and
transmitted flux density, which is given by [7.43]:

J(r, t) = Re

[
ψ∗ �

im
∇ψ

]
. (7.12)

We have, from (7.11),

Ji = �
2

mn
|q1| , Jr = |r|2 �

2

mn
|q1|, Jt = |t|2 �

2

mn
|q2| , (7.13)

and therefore,

R = |r|2 =
∣∣∣∣q1 − q2

q1 + q2

∣∣∣∣2 ; T = |q2|
|q1| |t|

2 =
∣∣∣∣ 2q2

q1 + q2

∣∣∣∣2 . (7.14)

This is the equivalent of Fresnel’s law in optics.
Considering the case when V1 = 0 and making q2

1 = 2mn E/�2 − k2‖, we have for
the reflection coefficient (where v2 = 2mnV2/�

2):

R =
∣∣∣∣∣∣
q1 −

√
q2

1 − v2

q1 +
√

q2
1 − v2

∣∣∣∣∣∣
2

. (7.15)
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As is easily seen, for q2
1 − v2 < 0, R = 1, which defines the critical wavevector

qc for total reflection (Fig. 7.3). The lengthscale defined by this critical wavevector,
λe = 2π/qc (of the order of 50–100 nm for the materials listed in Table 7.1) is the
penetration depth, the distance probed by the incident neutron wave: if the layer is
thinner than this value, the probability of transmission is non-zero and total reflection
no longer occurs. The phenomenon of total reflection of neutrons was first observed
by Fermi and co-workers [7.44, 45].

The problem can be easily generalised for a multilayer system, corresponding to
the problem of successive barrier potentials. Denoting the vacuum and the substrate
with the subscripts 1 and n respectively (see Fig. 7.1), the generalisation of (7.11) for
the n-layer case is

ψα(z) = aα eiqαz + bα e−iqαz (zα < z < zα+1 , 1 < α < n) , (7.16)

where a1 = 1, br = 1, bn = 0 and an = t, qα is given by (7.8) with V = Vα

corresponding to the nuclear potential for layer α (qα =
√

q2
1 − vα). Continuity of

the wavefunction and of its derivative at each interface imposes conditions on the aα

and bα that are given by the set of equations, in matrix notation:[
eiqαzα e−iqαzα

qα eiqαzα −qα e−iqαzα

] [
aα

bα

]
=

[
eiqα+1zα e−iqα+1zα

qα+1 eiqα+1zα −qα+1 e−iqα+1zα

][
aα+1

bα+1

]
(7.17)

The 2 × 2 matrix in the right hand side of (7.17) can be written as a product of
two matrices with the form K(α)D(α), where

D(α) =
[

eiqαzα e−iqαzα

qα eiqαzα −qα e−iqαzα

]
, (7.18)

K(α) =
[

(e−iqαdα + eiqαdα)/2 (e−iqαdα − eiqαdα)/2qα

qα(e−iqαdα − eiqαdα)/2 (e−iqαdα + eiqαdα)/2

]
, (7.19)
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with dα = zα+1 − zα such that[
aα

bα

]
= D−1(α)K(α + 1)D(α + 1)

[
aα+1

bα+1

]
(7.20)

with the proviso that zn ≡ zn−1, in which case K(n) = 1. The relation between the
coefficients of the wavelength in region 1 (vacuum) and the substrate, region n, is
then: [

a1

b1

]
= D−1(1)K(2)D(2)D−1(2)...K(n)D(n)

[
an

bn

]
= M

[
an

bn

]
, (7.21)

with

M = D−1(1)

n−1∏
i=2

K(i)D−1(n) (7.22)

since K(n) ≡ 1 as mentioned above; K(i) is the characteristic matrix of the medium
i and M is called the transfer matrix. In terms of the transfer matrix elements, and
recalling that bn = 0, we have {

a1 = M11an

b1 = M21an
. (7.23)

The reflection and transmission coefficients are obtained in a similar way as
before, taking into account that the incident, reflected and transmitted waves are
given by:

ψi =a1 eiq1(z−z1) (z < z1) (7.24)

ψr =b1 e−iq1(z−z1) (z < z1) (7.25)

ψt =an eiqn z (z > zn) . (7.26)

Therefore,

T = Jt

Ji
= |an|2

|a1|2
q2

n

q2
1

= 1

|M11|2
∣∣∣∣qn

q1

∣∣∣∣ , (7.27)

R = Jr

Ji
= |b1|2

|a1|2 = |M21|2
|M11|2 . (7.28)

In general, the potential energy in the α-th region Vα in (7.8) is given as a sum of
a nuclear and a magnetic term,

Vα = 2π�2

mn
Nαbα − 4πµn · M⊥α (7.29)

where Nα, bα, µn and M⊥α are, respectively, the atomic density, the nuclear scattering
length, the neutron magnetic moment and the α-layer component of the magnetisation



7 Polarised Neutron Reflection Studies of Thin Magnetic Films 243

qi

(b)

qi

(c)

qi

(a)

V1

V2

V3

Fig. 7.4. Different regimes for neutron reflection: (a) total reflection; (b) quantum tunnelling
and (c) partial reflection. (The two levels in the medium 1 and 3 represent those situations
where the nuclear potential is either bigger or smaller than the nuclear potential in medium 2)

normal to the momentum transfer. Here we are interested in the case where the
neutrons are spin polarised along the y-direction, with the magnetisation of the sample
either parallel or anti-parallel to the direction of the neutron spin (this situation is often
implemented in practice, although not the most general case). With these conditions,
spin-flip scattering does not occur, since the Hamiltonian (7.5) is diagonal in the
neutron spin basis, and we can then consider separately the case when the spin is
parallel to the magnetisation (spin up ↑, neutron moment anti-parallel to M⊥α), and
the opposite case when the spin is anti-parallel to the magnetisation, spin down ↓
(neutron moment parallel to M⊥α). The potential Vα assumes the values, respectively
for the spin up and down neutron states:

V↑
α = 2π�2

mn
Nαbα + 4π|µn|Mα (7.30)

V↓
α = 2π�2

mn
Nαbα − 4π|µn|Mα (7.31)

for the α region. Table 7.1 shows the values for the nuclear and magnetic potential
for some elements, as well as other parameters that enter in its calculation.

Consider, in particular, the case n = 3. Inspection of the energy barrier diagram,
Fig. 7.4, shows that three different situations may occur, regarding the relative height
of each barrier and the energy of the incident neutrons. When qi is smaller than the
critical wavevector we have total reflection and when the potential of the intermediate
medium exceeds the other two, quantum tunnelling may occur for a certain range
of the incident neutron energies. Finally, when the neutron energy is high enough,
transmission occurs. The expressions for the reflectivity in this case are given by

R =1, for V1 < V2 or V3 (7.32)

R = (1 − q3/q1)
2 cos2 θ2 + (q3/q2 − q2/q1)

2 sin2 θ2

(1 + q3/q1)2 cos2 θ2 + (q3/q2 + q2/q1)2 sin2 θ2
, for V1 > V2, V3 (7.33)

R = (1 − q3/q1)
2 cosh2 θ2 + (q3/q2 − q2/q1)

2 sinh2 θ2

(1 + q3/q1)2 cosh2 θ2 + (q3/q2 + q2/q1)2 sinh2 θ2
, for V3 < V1 < V2, (7.34)
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Fig. 7.5. Calculated reflectivity curves for a Fe layer on a Cu substrate, for spin up and
down neutron states and three values of the Fe layer thickness (10, 100 and 300 Å). For
qCu

c < q1 < qFe↑
c quantum tunnelling occurs, while for q1 < qCu

c there is total reflection of
the neutron beam. The reflectivity curve for the Cu substrate is also shown (dot-dash curve).
The effect of increasing the layer thickness results in the appearance of an increasing number
of interference fringes for the same q range. For the 300 Å Fe↑ case, the critical wavevector
for total reflection gets closer to that of Fe, qFe

c (quantum tunnelling becomes less significant
across this thicker Fe layer). For this simple case, the period of the oscillations is directly
related to the thickness of the Fe layer, as is clear from the figure. The inset shows the energy
potential profile across the structure for the different film thicknesses and for the two neutron
spin states

where Vi are the potentials for each region, qi =
√

q2
1 − vi and θ2 = d2q2. For

a magnetic layer deposited onto a non-magnetic substrate, with V1 = 0 (vacuum),
only V2 is spin dependent, as in (7.30)–(7.31). From (7.32)–(7.34) we can infer that
the critical wavevector is given by q2

1 = V3, but when quantum tunnelling occurs, the
transition from total reflection can be smooth (see Fig. 7.5). The sines and cosines in
expression (7.33) show that the reflectivity spectrum consists of oscillations which
vary, in the general case, in a complex fashion with the incident wavevector but
with a frequency given by the layer thickness. It corresponds to the interference
between the scattered neutrons at the various interfaces and will appear as fringes
in the measured reflectivity, as first observed by Hayter et al. [7.46]. In fact, for
q1 � q2, q3, (7.33) reduces to

R ≈ 1

16q4
1

[v2
3 + 4v2(v2 − v3) sin2 d2q1] (7.35)

(in particular, for v2 = v3 the fringes disappear, as expected). This expressions shows
that the oscillating term gives the thickness of the layer while the amplitude of the



7 Polarised Neutron Reflection Studies of Thin Magnetic Films 245

oscillations depend on the scattering potential contrast between the two media. The
experimental problem is the rapid 1/q4

1 decay of the reflectivity. To measure the
thickness of a thin layer requires that the maximum value of q1 is large enough
for there to be a measurable interference effect, preferably enough for a complete
fringe to be measured, i.e., q1max ∼ 2π/d2. For a thick layer, the angular resolu-
tion must be less than the fringe separation, i.e., ∆q1 < 2π/d2. The amplitude of
the fringes must also be sufficient for them to stand out against the rest of the sig-
nal; this is best achieved when the nuclear potential contrast is as large as possible
(this can be enhanced by using isotopic substitution) [7.47]. Expression (7.35) also
shows that the reflectivity profile may be obtained by different combinations of the
ordering of the same nuclear potentials (e.g., for −v2 and −v3); this is known as
the phase problem [7.48] and is a result of the loss of phase information in the
measured reflectivities. (This is only a limitation when no details of the sample
structure are known, but interest in this problem remains [7.48–50].) Examples of
reflectivity spectra are presented in Fig. 7.5 for Fe films of different layer thick-
ness.

For polarised neutron reflection studies, it is customary to define the spin-
asymmetry as

SA = R↑ − R↓
R↑ + R↓

(7.36)

where R↑(↓) are the spin up (down) reflectivities; it gives a direct measure of the
difference in the reflectivity due to the spin dependent magnetic interaction. (It
also cancels out spurious effects, such as instrumental and normalisation factors
and is also less sensitive to the interface roughness, although it still needs to be
corrected for the degree of polarisation of the neutron beam and spin-flipper efficiency
[7.51, 52].)

7.2.1.2 The Diffraction Limit

If the incident kinetic energy associated with the perpendicular wavevector is large
compared with the potential barriers of each layer in a multilayer system then we
approach the conditions for kinematical diffraction to occur [7.19, 40]. We can expect
that in this limit multiple reflections become less important and we may consider the
approximation where only one wave is reflected at each successive interface. Then,
for a given layer α,

qα = q1 − vα/(2q1) + o(v/q2
1) (7.37)

where q1 and vα were defined in (7.15) and at the α, α + 1 interface the reflection
coefficient r is (cf. (7.14))

rα,α+1 = qα − qα+1

qα + qα+1
= 1

4q2
1

(vα+1 − vα) + o(v/q2
1) (7.38)
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Fig. 7.6. Spin dependent reflectivities of a (30 Å Fe/10 Å Cr)30 multilayer annealed at 350 ◦C,
at different fields. Full and open circles correspond to spin up and down reflectivities. Note
the disappearance of the antiferromagnetic diffraction peak as the antiferromagnetic order is
suppressed by the applied field. (After [7.53])

and, in first order of approximation (assuming single reflection at each interface), we
have for a multilayer:

r = 1

4q2
1

n−1∑
α=1

e2iq1dα(vα+1 − vα) , (7.39)

where the phase factor is introduced by the travelling of the wave across the layer.
This expression is formally identical to the expression for the scattering amplitude
for x-ray or electron diffraction in the first Born approximation (kinematical theory).

For a superlattice where the magnetisation of all layers is aligned along the
quantisation axis, the nuclear potential is represented by a periodic rectangular wave,
and the above expression gives rise to diffraction peaks with a basic period defined
by the period of the rectangular wave (the first peak occurring at q1 = π/T , where T
is the period of the potential). For the antiparallel state, a new periodicity appears in
the potential, which gives rise to new half-order diffraction peaks, the first at roughly
half the wavevector value where the first-order diffraction peak appears. This is the
principle behind the use of PNR to probe the magnetic configuration in magnetic
multilayers, and is exemplified in Fig. 7.6 for the case of a superlattice exhibiting an
antiferromagnetic alignment at remanence, and which is forced to a ferromagnetic
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state by the applied magnetic field. As the field amplitude is increased, the half order
diffraction peak disappears while the ferromagnetic peak (which coincides with the
structural peak) remains unchanged.

7.2.1.3 General Case: Spin-flip Analysis

So far we have considered the case where the Hamiltonian of the system commutes
with the spin operator (in which case the | ↑〉 and | ↓〉 states are eigenstates of the
Hamiltonian). In the general case where the magnetisation of the medium is not
collinear with the neutron spin the wave function is, in general, a linear combination
of these eigenstates. This is to say that the probability of spin-flip processes is non-
zero, unlike the case when the quantisation axis coincides with the direction of the
neutron spin. The Hamiltonian in the general case is:

H = −i�

2mn
∇2 + Vn − µnσ · M‖ (7.40)

where σ has components given by the Pauli spin matrices, Vn is the nuclear potential
and M‖ is the component of the magnetisation not collinear with the momentum
transfer (in-plane component of the magnetisation).2 The σx component of the spin
operator (which can be expressed in terms of spin creation and annihilation operators)
makes the probability of spin flipping non-zero. The wavefunction space is given by
the direct product of the spin and momentum space. The calculations follow along
a similar line as that for the simpler case of the Hamiltonian diagonal in the spin
operator, by taking account of the rotation in the quantisation axis, and changing
the transfer and the characteristic matrices to properly describe this more general
situation. These calculations are detailed in [7.19, 41, 59, 60]. Here, we consider
instead the simple case of a single magnetic layer [7.35]; in this case, the incident
spin wave function can be written in terms of the components parallel and antiparallel
with respect to the quantisation axis defined by the direction of the magnetisation (at
an angle φ relative to the direction of the up neutron spin):

|↑i〉 = cos(φ/2)|↑〉 − sin(φ/2)|↓〉 (7.41)

|↓i〉 = sin(φ/2)|↑〉 + cos(φ/2)|↓〉 . (7.42)

The two components parallel and antiparallel to this axis then interact independently
with the magnetisation in the system and hence the intensities are given by the
weighted sums of the spin conserving reflectivities:

R↑(q) = cos2(φ/2)|r+|2 + sin2(φ/2)|r−|2 (7.43)

R↓(q) = sin2(φ/2)|r+|2 + cos2(φ/2)|r−|2 . (7.44)

2 It has been noted, however, that the Zeeman splitting induced by the component perpen-
dicular to the film surface produces a deflection of the spin-flipped reflected neutron beam,
which is dependent on the magnitude of the applied magnetic field and on the neutron
wavelength [7.54–58]. The scattering angle of the non-spin-flipped beam is not affected.
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Fig. 7.7. Left: measured and calculated intensities as a function of the reduced wavevector
from a 80 Å Co/GaAs(001) film for the conventional (‘transverse’) geometry. Open and
full circles correspond respectively to spin up and down reflectivities and the lines are the
calculated reflectivities. Right: Measured and calculated reflectivities for the same film, with
the magnetisation aligned perpendicular to the incident neutron spin (circles and full line,
respectively). The dashed line correspond to the reflected intensity expected from the nuclear
potential only. (After [7.35])

In conventional PNR experiments (φ = 0) only one incident spin polarisation
contributes to the reflected intensity. In the other special geometry, when the spin
polarisation is perpendicular to the sample magnetisation (φ = π/2, ‘longitudinal
geometry’) the measured intensity (without spin polarisation analysis) is identical to
that obtained for an unpolarised incident neutron beam in the conventional geometry:

R↑(q) = R↓(q) = 1

2
(|r+|2 + |r−|2) = 1

2
(R↑

conv + R↓
conv) = Runpol , (7.45)

but is different from the situation where the magnetic potential is absent (which would
be the case if the magnetisation is aligned along the momentum transfer direction,
perpendicular to the film plane). This mechanism, entirely quantum mechanical in
nature, has been observed experimentally, as shown in Fig. 7.7.

7.2.1.4 Interface Roughness

We assumed so far that the interfaces of the system have a perfect 2D symmetry; this
approximation is not a good one in practice, as the interface between any two systems
is very seldom perfect. Defects, roughness, interdiffusion or grading [7.61] introduce
a break in the 2D symmetry of the interface that can lead to diffuse scattering of the
incoming beam. In optics, for multiple beam interference to occur in a multilayer
stack the surfaces must be optically smooth such that the variation in the phase is
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small, ∆(2qαtα) � 2π. This condition is met if the interface (thickness) fluctuations
∆tα satisfy

∆tα � λ/(2θ) (7.46)

at large wavevectors for which q � qcα (θ is the angle of incidence, measured from
the film surface). For light, this implies that the surfaces be smooth on a length-
scale corresponding to a fraction of a wavelength. For neutrons the situation is
different since θc (and therefore θ) is small and we require that the fluctuations are
small on the scale of the perpendicular wavevector, i.e., ∆tα � 0.02 µm for cold
neutrons (λ ∼ 10 Å). This is fortunate since PNR studies of real ultrathin metal
films would be impossible if the refractive index was as large as in the optical
case.

Another important consideration concerns the neutron wave coherence lengths,
both transversal and longitudinal to the sample plane, which determine respectively
the thickness over which multiple interference can occur across the multilayer stack
and the length over which any two points can be considered as illuminated by
a single plane wave. The uncertainty in the perpendicular wavevector in terms of the
wavelength and angular spread of the incident beam, ∆λ and ∆θ, assuming that they
are uncorrelated, is given by (k⊥ = k sin θ):

(∆k⊥)2 = k2 sin2 θ[(∆k/k)2 + (cos θ∆θ/ sin θ)2] (7.47)

and for θ � 1,

(∆k⊥)2 = (k⊥)2[(∆k/k)2 + (∆θ/θ)2] . (7.48)

We can write ∆k⊥lt
c = 2π, where lt

c is the transverse coherence length. With
∆k/k,∆θ/θ ∼ 0.1 and kθ ∼ 0.01 Å−1, we have lt

c ∼ 0.5 µm. For the longitudi-
nal coherence length we have similarly (k‖ = k cos θ):

(∆k‖)2 = (∆k cos θ)2 + (k∆θ sin θ)2 ≈ k2[(∆k/k)2 + θ2(∆θ/θ)2] (7.49)

for θ � 1, and with ∆k‖l‖c = 2π, l‖c ∼ lt
c/θ (θ � 1) or l‖c ∼ 100 µm using the

previous values and θ = 5 ×10−3 rad.
It is difficult to account rigourously for the effect of interface roughness in the

reflectivity; in general, a heuristic approach is followed by modifying the reflected and
transmitted coefficients at the interface to account for the decrease in the intensity due
to these defects. Several expressions have been suggested [7.62–65] and workable
expressions can be obtained in the limit of either large or very small correlation
lengths3 [7.67].

3 Compared with the extinction length, Le = V/λb, which is the length after which a mea-
surable phase shift of the radiation is achieved (λ in the neutron wavelength, V the nuclear
potential and b the scattering length); for thermal neutrons it is of the order of Le ≈ 105λ

[7.66].
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For the case of a slowly varying interface height (assuming a gaussian distribu-
tion), the wave function is still locally given by (7.11), and the reflection coefficient
is given by the average over the surface [7.67]:

rrough =
〈
r

eiq1z(x)

e−iq1z(x)

〉
x

= r〈e2iq1z(x)〉x ≈ r e−2q2
1〈z2〉 , (7.50)

where 〈z2〉 = σ2 is the roughness; this is the Debye-Waller factor [7.64, 68], and
results from the fact that the correlation length is large enough so that the incident
and reflected beams still have a precise phase relationship. For the opposite case,
when the correlation length is much smaller than the extinction length, there are no
short-scale correlations between the beams but only an overall perturbation of the
wavefunction, which can be written as the combination of upwards and downwards
propagating plane waves, whose amplitude depends on the roughness:

ψ(x, z) = aα,eff eiqαz + bα,eff e−iqαz (7.51)

where the aα,eff and bα,eff are the (unknown) effective amplitudes for the rough
interface. The reflection coefficient is defined as

rrough = b1,eff/a1,eff . (7.52)

Assuming that the phase relationships between the waves across the interface are
only valid on average, we obtain, from the continuity condition at the interface:{

a1,eff eiq1z + b1,eff e−iq1z = a2,eff eiq2z

q1a1,eff eiq1z − q1b1,eff e−iq1z = q2a2,eff eiq2z (7.53)

or {
2q1a1,eff = (q1 + q2)a2,eff〈ei(q2−q1)z〉x

2q1b1,eff = (q1 − q2)a2,eff〈ei(q2+q1)z〉x
(7.54)

and therefore,

rrough = rflat e−2q1q2〈z2〉 (7.55)

which corresponds to the Croce-Névot factor [7.62, 64]. The roughness for each
interface can be accounted for by multiplying the corresponding transfer matrix with
this Croce-Névot factor. This is the factor implemented in the fitting program used
in our data analysis. The Croce-Névot result is valid in PNR when the gaussian
roughness amplitude is small as defined above, uncorrelated (i.e., the fluctuations are
random with respect to each other) in-plane and the average interface fluctuation is
zero. This does not often correspond to the experimental situation for single crystals
metal substrates, although for structures supported by optically flat semiconductor
substrates the Croce-Névot expression is appropriate. A more complete discussion of
the effects of roughness on the reflectivity spectra can be found in [7.4, 40, 41, 65, 69].
For small roughness amplitudes, the effect on the reflected intensity can be accounted
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Fig. 7.8. Left: dependence of PNR spectra on the interface roughness. Although the effect of
roughness is very marked in the reflectivities, the spin asymmetry is not very much affected,
except for low q values. Right: example of a PNR spectrum for a magnetic structure with
nominal composition of the form Cu(180 Å)/Ni(40 Å)/Cu(900 Å)/Si(001) (full lines correspond
to the fit to the data)

by the Croce-Névot model and the effect on the values of the magnetic moment is
small. For larger roughness values, diffuse scattering processes cannot be neglected
and this has the effect of reducing the spin asymmetry in practice. This is because
the diffuse cross section in the specular direction has a weaker dependence than
the specular reflectivity; besides, it dominates the specular reflectivity for sufficiently
large wavevector values [7.40, 69]. One way of avoiding the complications introduced
by diffuse scattering is by using optically flat substrates.

Simply speaking, roughness has the effect of decreasing the reflected intensity
(see Fig. 7.8, left panel) without affecting the critical wavevector value for total
reflection and for uncorrelated roughnesses not to affect the spin asymmetry (this
is the case for roughness amplitudes smaller than 10 Å rms). The sensitivity of the
reflected spectrum to the film roughness makes neutron reflection measurements
a powerful tool for the structural characterisation of thin films and multilayers [7.70].

Figure 7.8 (right panel) shows the evolution of the PNR spectrum at different
stages of the sample structure, and the comparison with experimental data (in fact,
the data was fitted first, and from these parameters the other curves were obtained).
For these measurements the magnetisation of the Ni film was either saturated parallel
and anti-parallel to the neutron spin, giving the spin-down and spin-up reflectivities,
respectively. The sample has the nominal composition Cu(180 Å)/Ni(40 Å)/Cu(900
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Å)/Si(001); for the Si substrate, a simple q−4 decay in intensity is expected, corre-
sponding to the case of a single interface. When the thick Cu buffer layer is added,
oscillations appear, whose period correspond to the Cu layer thickness and where
the amplitude is related to the relative height of the nuclear potential (according to
(7.35)). Because of the large value of the Cu thickness, the critical wavevector for
total reflection has been shifted from that corresponding to Si (2qc = 0.010 Å−1))
to that of Cu (2qc = 0.018 Å−1). The Ni magnetic layer induces a splitting in the
spin down and up reflectivities, also shown in the spin-asymmetry plot. To the short
period oscillations (from the Cu underlayer), a larger period oscillation due to the Ni
thickness can be identified. Finally, the addition of a Cu capping layer introduces an
additional oscillation period, modulating the oscillations from the Ni layer. This has
the advantage of introducing a large variation in the reflected intensities, allowing for
a more accurate fit to the data.

7.2.2 Experimental Setup

Several neutron reflectometers have been equipped with polarised beams, that al-
low for polarised neutron reflection studies. Table 7.2 lists (perhaps not exten-
sively) several neutron reflectometers where PNR studies were conducted (see also
Felcher [7.71]). Two techniques are usually used for the monochromatisation of the
neutron beam, namely by crystal diffraction and by time-of-flight (TOF) methods,
which define two basic geometries of measurements: for the TOF methods the sample
is set at a fixed angle and neutrons with the right wavevector are selected by the TOF
choppers; in the other case, only a monochromatic neutron beam is available, and
the neutron (perpendicular) momentum transfer amplitude is changed by varying the
angle of incidence.

Here, we describe briefly the CRISP neutron reflectometer at the Rutherford-
Appleton Laboratory (U.K.), where a pulsed spallation neutron source is installed
[7.88, 89]. A schematic of the setup is presented in Fig. 7.9 [7.16, 70]. The neutron
beam wavelength is determined by a time-of-flight (TOF) method, and ranges from
0.5 to 6.5 Å. The neutron beam passes first through a 3He detector (D1) that monitors
the incident beam intensity, and is collimated by the set of slits S1. Neutrons of very
long wavelength that pass through the choppers of the TOF system are deflected
by a Ni mirror (inclined at ∼ 1.3◦) and the transmitted neutrons are polarised by
reflection at a Fe-Co-V:TiNx supermirror (inclination angle of ∼ 0.4◦) [7.90]. A two
coil non-adiabatic Drabkin spin flipper is used to reverse the spin direction of the
polarised neutron beam, which is then guided to the sample, after being collimated by
S2. Detector D2 monitors the neutron flux before arriving at the sample. The reflected
beam is then collimated and detected by another 3He detector, D3. Slits S1 and S2

define the wavelength resolution of the measurements [7.91].
In our studies, a Bitter type electromagnet is used to align the magnetisation of the

sample in the direction parallel to the sample film and perpendicular to the neutron
momentum transfer so that the neutron spin is either parallel or anti-parallel to the
sample magnetisation. The sample is placed at an angle such that the momentum
transfer [given by Q = 2ki sin θ = (4π/λ) sin θ] includes the critical wavelength
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Table 7.2. List of neutron reflectometers with polarised neutron beams. The type of reflectome-
ter tells whether the beam is monochromatised by a crystal analyser (CA) or by a time-of-flight
(TOF) method (in which case the neutron wavelength range is given)

Reflectometer Type Wavelength (Å) Reference

CRISP, RAL, U.K. TOF 0.5–6.5 [7.72]
ADAM, ILL, Grenoble, France CA 4.4; 2.2 [7.73–75]
D17, ILL, Grenoble, France CA 5 [7.75]
EVA, ILL, Grenoble, France CA 5.5;2.75 [7.75–77]
PADA, LLB, Saclay, France CA 4 [7.78]
AMOR, PSI, Switzerland TOF 1.3–13 [7.79]
ROG, TU Delft, Netherlands TOF 0.7–15 [7.80, 81]
V6, BENSC, Berlin, Germany CA 4.66 [7.82]
V14, BENSC, Berlin, Germany CA 4.7
TOREMA-2, GKSS, Geethacht, Germany CA 4.3 [7.83]
HADAS, FRJ-2, Jülich, Germany CA 4.8 [7.84]
ASTERIX, LANSCE, Los Alamos, USA TOF 1–12 [7.85]
NG1REFL, NIST, Gaithersburg, USA CA 4.75
NG7REFL, NIST, Gaithersburg, USA CA 0.235, 0.407, 0.47, 0.55
POSY I, IPNS, Argonne, USA TOF 3–15 [7.18]
C5, NPMR, Chalk River, Canada CA 2.37
PORE2, KENS, Tsukuba, Japan TOF 3–16
REFLEX-P, JINR, Dubna, Russia TOF 0.7–10
SPN, IBR-2, Dubna, Russia TOF 0.7–10
DHRUVA (Trombay), India CA 4.06 [7.86, 87]
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Fig. 7.9. Schematic diagram of the CRISP reflectometer (drawing not to scale). The neutron
beam N flows from left to right; D1 to D3 are 3He detectors, OM1 is an optical mirror (Si
wafer), ND is a neutron deflector for long wavelength neutrons, SP is the supermirror, SF the
spin flipper, NG a neutron guide and S1 to S4 are adjustable Cd slits. Detector D2 and ND
are moved away for sample alignment, which is performed with the aid of the laser beam.
A magnetic field is present at the sample position applied in the direction normal to the plane
of the page (the circular shadow corresponds to the pole pieces of the electromagnet)
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value qc (typically around 0.35◦). The reflected beam intensity decays strongly away
from the critical value (with q−4) which means that long acquisition times are required
in order to get good statistics for high q-values. One way of achieving this is to
increase θ, shifting the momentum transfer to a higher region. An overlap between
the previous q-range allows the data sets to be combined.

7.3 Polarised Neutron Reflection Magnetometry

In this section, an overview of selected experimental results on thin magnetic films,
multilayers (in particular, spin-valve systems) and superlattices is presented, with
an emphasis on the technical evolution of the neutron reflectometers and the cor-
responding improvement in the data quality. A comparison with results from other
experimental techniques is made, wherever possible.

7.3.1 Ultrathin Magnetic Films

Most of research work involving PNR has either focused on the measurement of the
magnetic moment of ultrathin films or on the study of the magnetic configuration
of the magnetic layers in superlattices; these two cases are usually studied in two
different scattering regimes, the first operating close to the extinction edge (total
reflection), with wavelengths of the order of the total film thickness, and the latter
case operating in the diffraction regime, using wavelengths that are much shorter,
and that probe the long-range magnetic order defined by the successive magnetic
layers. We shall deal with the second type of systems later and focus here on the PNR
magnetometry of thin magnetic films.

The main incentive in probing the magnetic moment of thin films stems, on the
one hand, from the prediction of enhanced magnetic moments in systems with broken
symmetry (such as interfaces) suggested by ab initio calculations, and on the other by
the requirement for a high sensitivity technique for the measurement of the magnetic

a) b)

Fig. 7.10. Slater-Pauling curves for (a) monolayers of 3d transition metals on Ag(001) (after
[7.92]) and (b) for the average interface moments for different magnetic interfaces (dashed
lines correspond to experimental moments for FeV, FeCo, CoNi and NiCr alloys; after [7.93])
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moments of ultrathin films, in the monolayer thickness regime. As mentioned before,
PNR is a technique that neatly fulfils this requirement due to its sensitivity and with
the added advantage of being a self-calibrated technique. Most of the pioneering
work with PNR was done in the late 1980’s, early 1990’s, and was concentrated
on magnetic transition metals, for which results from ab initio calculations were
then made available for comparison (e.g., Fig. 7.10). These systems have since long
attracted much interest due to their relative magnetic instability and their intermix of
localised and itinerant magnetism.

7.3.1.1 Magnetic Moment of Thin Fe Films

Fe shows a remarkable variety of magnetic phases and magnetic moment configura-
tions depending on ultrathin film thickness, lattice parameter, crystal structure and
temperature [7.94–97].

The magnetic moment of ultrathin Fe films have been studied for a range of
interface materials and for different crystallographic phases and orientations. These
structures are often fabricated by atom deposition from the vapour phase onto the
substrate in ultrahigh vacuum conditions by heteroepitaxy. This is possible for a range
of materials that exhibit a close crystallographic match to the Fe lattice, such as the
(100) surface of Ag, where the Fe layer grows in the bcc phase, with the (001) plane
rotated by 45o relative to the Ag(001) (lattice mismatch of 0.8%). When deposited
on Cu(001), the Fe adopts a distorted fcc phase for the first few monolayers. These
films are single crystalline, as opposed to the polycrystalline films that result from
evaporation onto an amorphous or polycrystalline surface. Epitaxial films have a much
larger crystallite size and a preferential crystal orientation, although some degree of
texture (deviation from the ideal crystallographic structure) is always present in
macroscopic films. They exhibit therefore less structural defects than polycrystalline
films and have an effective magnetic anisotropy which is usually averaged out (and
therefore absent) in polycrystalline films. Needless to say, the magnetic properties
depend sensitively on the preparation conditions, since contaminants can change the
magnetic and/or structural properties of thin films, and can therefore mask the intrinsic
properties of the system under study. In particular it is important to rule out chemical
reaction or interdiffusion between the magnetic film and the substrate. In fact, one
of the motivations behind the study of the Fe system on Ag and Cu substrates using
PNR was the possibility of growing high quality, optically flat films (with interface
roughness of ∼15 Å and correlation lengths of the order of 200 Å for continuous
Fe films [7.98, 99]) with limited interdiffusion at the interface [7.100–102] (although
with quite complex structural changes for the case of Fe/Cu [7.100, 101, 103–109]
and in both cases complete coverage of the substrate is achieved only for films thicker
than ∼5 ML, as deduced from the appearance of RHEED oscillations at this stage of
growth [7.101, 102, 104, 108, 110]).

Table 7.3 gives a compilation of the values of the magnetic moment of Fe for
different contact interfaces and also different crystallographic phases measured by
polarised neutron reflection. The very early studies [7.111–115] consist chiefly of
preliminary demonstrations of the capabilities of the PNR technique for measuring
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Table 7.3. Values for the magnetic moment of Fe thin films for different interface materials
(thickness in ML unless specified otherwise)

Sample phase µFe (µB) T (K) Ref.

15 Å Au/12 Å Fe/55 Å Au/glass a bcc, poly. 1.4
+1.2
−0.6

300 [7.112]

50 Å Cu/5 Fe/ Rh(001) fcc < 0.1 300 [7.111]
30 Å Au/8 Fe/Cu(001) fcc 0.15 300 [7.111]
Cu/3 Fe/Cu(001) fcc 1-1.5 4 [7.113]
150 Å Ag/1 Fe/Ag(001) bcc 0 b 4 [7.115]
90 Å Ag/8 Fe/Ag(001) bcc 1.0 4 [7.114, 115]
20 Au/7 Ag/5.5 Fe/Ag(001) bcc 2.58 ± 0.09 4 [7.99, 116–119]
20 Au/7 Ag/10.9 Fe/Ag(001) bcc 2.33 ± 0.05 4 "
52 Au/ 5.7 Fe/Ag(001) bcc 2.5 ± 0.1 4 "
20 Au/9 Fe/Ag(001) bcc 2.3 ± 0.2 4 "
20 Au/7 Cu/ 5.8 Fe/Ag(001) bcc 2.48 ± 0.08 4 "
42 Au/8 Cu/ 5.7 Fe/Ag(001) bcc 2.5 ± 0.1 4 "
20 Au/7 Pd/ 5.6 Fe/Ag(001) bcc 2.66 ± 0.05 4 "
42 Au/7 Pd/ 5.7 Fe/Ag(001) bcc 2.6 ± 0.2 4 "
24 Au/3 Ni/ 5 Fe/Ag(001) bcc 2.6 ± 0.1 c 4 "
200 Å Au/4 Å Fe/MgO(001) bct 0 (2.2 ± 0.2) RT (40) [7.132]
200 Å Au/6 Å Fe/MgO(001) bct < 0.5 (2.2 ± 0.2) RT (40) "
200 Å Au/8 Å Fe/MgO(001) bct 2.0 (2.2 ± 0.2) RT (40) "
100 Å W/6 Å Fe/W(110) d bcc 1.80 ± 0.05 RT [7.129]
70 Å Au/Fe/140 Å Ni/SiO2

e fcc ∼0.2 RT [7.128]
70 Å Au/Fe/140 Å Ni/SiO2

f bcc ∼2.1 RT "
6 Å Fe(110)/V(110) g bcc 0 80 [7.133, 134]
10 Å Fe/V(110) bcc 1.3 80 "
19.5 Å Fe/V(110) bcc 1.8 110, 300 "
30 Å Au/315 Å Cr /5.6 Å Fe/ V(110) bcc 1.1 2 [7.135]
300 Å Cr/8.5 Å Fe / V(110) bcc 1.5 2 [7.135]
300 Å Cr/12 Å Fe / V(110) bcc 2.0 2 [7.135]

a Pgrowth ∼ 10−7 Torr.
b PMA.
c µNi = 0.6 ± 0.1 µB.
d 100 Å W/6 Å Fe(110)/550 Å W/Al2O3(112̄0); µFe = 2.1± 0.1 µB at 0 K, extrapolated from
SQUID data.
e tFe = 7, 13, 17, 24, 26 Å; µNi ≈ 0.5 µB.
f tFe = 49, 53, 84, 87 Å; µNi ≈ 0.5 µB.
g In situ PNR.

the magnetic moments of ultrathin films. Due to limitations of the beam intensity and
instrumental efficiency, the data statistics were often limited, and the data analysis
was further complicated by roughness effects (namely diffuse scattering). For severe
roughness (i.e., large amplitude, short parallel correlation length) the spin asymmetry
is strongly perturbed and cannot be fitted by the Névot-Croce formalism, as in the
early studies of Ag/Fe/Ag(001) [7.114, 115].
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Fig. 7.11. Total spin densities for the
Fe(001) and the Ag/Fe(001) surfaces.
Solid (dotted) lines mark the zero and posi-
tive (negative) 2n (n = 0, 1, 2...) contours
in units of 10−4 electrons/a.u. While the
spin density for the layers below the in-
terface are identical for both surfaces, at
the interface it is significantly modified
by the presence of the Ag overlayer (after
[7.120])

More reliable results were possible after some of these limitations were overcome,
by improvements in both the instrument efficiency and sample quality. This was
the case with the systematic study of the magnetic moment of bcc Fe/Ag(001) in
contact with different materials, Ag, Au, Cu, Pd and Ni [7.99, 116–119]; in all
cases the magnetic moment per atom of Fe is found to be significantly enhanced
with respect to the bulk value, in agreement with ferromagnetic resonance (FMR)
measurements performed on the same samples [7.99, 118, 119]. Figure 7.12 shows

Fig. 7.12. Spin asymmetry obtained from reflectiv-
ity measurements at low temperature (4 K) for (top
panel) 20 ML Au/7 ML Ag/10.9 ML Fe/Ag(001),
(middle panel) 20 ML Au/7 ML Ag/5.5 ML
Fe/Ag(001), and (bottom panel) 52 ML Au/ 5.7
ML Fe/Ag(001). The dashed and solid lines cor-
respond to model fits assuming a bulk and en-
hanced moment for the Fe films, respectively. (Af-
ter [7.99])
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Fig. 7.13. Normalised temperature dependence of
the saturation magnetisation determined from PNR
for (a) the Ag/5.5 ML Fe, (b) Au/5.7 ML Fe samples
(after [7.99])

the spin-asymmetry data for three of the samples studied, where the best fit to the data
is compared with that expected from the bulk moment values. For the Ag/5.5 ML
Fe/Ag(001) sandwich, Ohnishi et al. [7.120] predicted a moment of 0.08 µB for the
interface Ag layer and a layer averaged moment per Fe atom of 2.4 µB (Fig. 7.11 shows
the effect of the Ag overlayer on the spin density of the Fe surface as obtained from ab
initio calculations [7.120]); while the Ag polarisation was too small to be measured,
the value for Fe is close to that observed experimentally, µFe = 2.58 ± 0.09 µB. The
interface moment of Fe in contact with Au is not significantly different from that of
the Ag/Fe/Ag structure. In Fig. 7.13 the temperature dependence of the magnetisation
for these two samples is shown, as determined from the PNR measurements.

The Pd/Fe sample exhibits the largest net moment, although an interface moment
for the Pd layer could not be excluded from the PNR data (polarisation of the Pd
atoms at the Pd/Fe interface has been reported before using other techniques, such
as VSM (vibrating sample magnetometry) [7.121], BLS (Brillouin light scattering)
and FMR (ferromagnetic resonance) [7.122], SQUID [7.123] and XMCD [7.124]).
For the Cu/Fe system, the moment of Fe is still enhanced, in contrast with theoretical
predictions of a reduction in the moment of Fe [7.125]. A summary of the results is
presented in Fig. 7.14, where the magnetic moment per atom of Fe is plotted against
the Fe thickness. It is seen that the experimental values are in general higher than the
predicted values for the 5–6 ML thick films, but that a good agreement is obtained
for the ∼ 10 ML films [7.99]. This is attributed to the effect of interface roughness in
reducing the effective local coordination of Fe atoms at the interface which further
enhances the magnetic moment in ultrathin films.

For Fe grown on fcc substrates such as Cu(001), Rh(001) and Ni(001) the initial
studies were complicated by the complex structural transformation in Fe which occurs
with increasing thickness. For very thin Fe films (below approximately 5 ML) the
Fe adopts the fct structure of the underlying substrate (which has a small lattice
mismatch to the lattice parameter of the bulk fcc phase of Fe, as inferred from
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Fig. 7.14. Values for the layer averaged moment
per bcc Fe atom deduced from PNR measurements
reported in [7.99], compared with the predictions
by [7.120] for the layer averaged moment of a
1 ML Fe/Ag(001) and 5 ML Fe/Ag shown as solid
diamonds. The Fe/Ag data are shown as full cir-
cles, the Cu/Fe as solid triangles and the Pd/Fe as
open triangles. The dashed line is a guide to the
eye only (after [7.99])

the lattice constant value extrapolated from high temperatures, afcc Fe = 3.59 Å
[7.105, 126, 127]) and before reverting to the equilibrium bcc phase (above 11 ML),
it is believed to pass through a non-magnetic, non-strained fcc phase [7.108, 127]
(see however [7.109]. This behaviour was only later understood, and the early works
already reported the strongly reduced magnetism of thin fcc Fe films [7.111, 113].
The study by Li et al. [7.128] on thin Fe films on Ni using PNR focused on the
evolution of the Fe moment with increasing thickness. The polycrystalline 140 Å
thick Ni films were deposited on SiO2 in ultrahigh vacuum, and Fe films from 7 to
83 Å were subsequently deposited and capped with a thick Au layer. It is observed
that the magnetic moment of Fe increases abruptly at ∼ 32 Å from 0.2 µB to the
bulk value (see Fig. 7.15). These authors used x-ray reflectivity measurements to

(a) (b)

Fig. 7.15. (a) Spin polarised neutron reflectivities for Fe films sandwiched between a Au
overlayer and the Ni substrate, for different values of the Fe film thickness. The full and open
symbols correspond to spin up and down reflectivities respectively, and the lines are fit to the
data. (b) Variation of the Fe magnetic moment with thickness. Circles correspond to PNR data
while triangles and squares are from SQUID magnetometry, at 300 K and 5 K, respectively.
(After [7.128])
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Fig. 7.16. Polarised neutron
reflection of a 100 Å thick
epitaxial bcc Fe(100) film
deposited on InAs(001) and
capped with a 30 Å Au film.
Continuous lines are fit to
the data and give a magnetic
moment close to the bulk

determine the layer thickness of the films, and compared the x-ray results with the
PNR results, with an overall good agreement between the two techniques.

Pasyuk et al. [7.129] have studied the magnetic moment of a 6 Å epitaxial bcc
Fe(110) film buried between W(110) layers using PNR at room temperature and
measured the temperature dependence of the magnetisation using SQUID magne-
tometry to determine the absolute ground state magnetic moment of the Fe film. The
value obtained, 2.1 µB, slightly reduced compared to the bulk value (2.2 µB), agrees
with theoretical calculations predicting slightly reduced moments for a monolayer
of Fe(110) on W(110) due to hybridisation effects [7.130] but not with previous
experimental results obtained by conversion-electron Mössbauer spectroscopy on
a Fe/W(110) monolayer capped with Ag, where an enhancement of the magnetic
moment was observed [7.131] (and where a slight reduction was also expected from
the same theoretical study [7.130]).

Other substrates have been used for the epitaxial growth of thin Fe films. In
particular, MgO(100) (where a bulk magnetic moment was found, irrespective of
film thickness [7.132]), V(110) (where a reduction of the magnetic moment is ob-
served, with the Fe film being uncapped and the measurements performed using an
in situ PNR set-up [7.133, 134]), and InAs(001) (giving bulk like values for thick
Fe films, see Fig. 7.16). Due to the importance that epitaxial growth of magnetic
films on semiconductors may have in future magnetoelectronic devices, the magnetic
characterisation of such films specially at the interface level is specially important
and PNR is expected to contribute to the magnetic and structural characterisation
of these structures. In all cases, PNR is showed to be an ideal technique when the
measurement of the absolute value of magnetic moment of ultrathin magnetic films
is required.

7.3.1.2 Magnetic Moment of Thin Co Films

The magnetic moment of thin Co films has also been extensively studied using PNR
over the last decade. Co also exhibits several metastable crystalline phases, which
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can be experimentally stabilised by epitaxy. One system of great interest is the fcc
phase of Co, which is obtained when Co is grown on fcc substrates with lattice
constant close to the fcc equilibrium lattice value (as obtained from extrapolation
from the high temperature fcc phase of Co down to low temperatures [7.136]).
This stems from the fact that the moment of fcc Co (1.739 µB) is expected to
be different from the equilibrium hcp value (1.708 µB) [7.137] and also ab initio
calculations predict enhanced moments for some interfacial systems, such as Cu/Co
[7.138–140] and Pd/Co [7.119, 141]. PNR results for the Cu/Co/Cu system have
shown that the magnetic moment of Co is essentially bulk like [7.111, 113, 142–147],
although a slight enhancement of the moment is not incompatible with the PNR
data (enhanced Co/Cu(001) moments have been obtained from other experiments
[7.148–150]). In situ SQUID magnetometry has been successfully used to measure
the absolute moment of ultrathin fcc Co/Cu(001) films by Ney et al. [7.151–153]
where they found an enhancement in the Co magnetic moment of 1.87(3) µB/atom

Table 7.4. Values for the magnetic moment of Co thin films for different interface materials
(thickness in ML unless specified otherwise)

Sample phase µCo (µB) T (K) Ref.

42 Å Cu/10 Co/Cu(001) fcc 1.8 ± 0.5 4 [7.111, 142]
40 Å Cu/18 Å Co/Cu(001) fcc 1.8 ± 0.3 4 [7.113]
40 Å Cu/2 Co/Cu(001) fcc 2.1 ± 0.3 4 "
80 Å Au/100 Å Co/GaAs(001) bcc 1.40 ± 0.05 a 300 [7.167]
30 Å CoO/150 Å Co/GaAs(001) b bcc c 1.6 d 300 [7.168, 169]
222 Å Ag/2 Co/222 Å Ag/GaAs(001) fcc 2.10 ± 0.15 5 [7.114, 165, 166]
222 Å Ag/1 Co/222 Å Ag/GaAs(001) fcc 2.15 ± 0.2 5 [7.165, 166]
125 Å Ag/2 Co/Ag(001) fcc 2.05 ± 0.15 5 "
230 Å Ag/3 Co/230 Å Ag/GaAs(001) fcc 1.65 ± 0.15 5 "
160 Å Ag/5 Co/Ag(001) fcc 0.45 ± 0.1 5 "
70 Å Pd/21 Å Co/345 Å Pd/ ? 1.84 [7.51, 170]

215 Å Au/Si(001)-H e

1450 Å Co81Cr19/quartz hcp 0.6 f [7.173]
45 Å Cu/9 Å Co /50 Å Ni/Cu/Si(001) fcc 1.70 ± 0.20 RT [7.144, 145]
40 Å Cu/23 Å Co/10 Å Cu/ fcc 1.57 ± 0.08 RT [7.146]

53 Å Ni/Cu/Si(001)
300 Å Ni80Fe20/80 Å Co/ hcp 1.5 ± 0.2 [7.174]

180 Å Mo/Al2O3(1100)
93 Å Cu/9 Å Co/830Å Cu/Si(001) fcc 1.78 ± 0.14 RT [7.147]
93 Å Cu/9 Å Co/62 Å Ni/830 Å Cu/Si(001) fcc 1.71 ± 0.23 RT [7.147]

a µCo = 1.7 µB (centre), µCo = 1.0 µB (interface).
b Pgrowth ∼ 10−8 Torr.
c Early growth stages.
d µCo = 1.7 µB (centre); µCo = 0.8 µB (interface).
e Also with Si(110)-H and SiO2 substrates.
f µbulk = 0.5 µB.
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from the bulk value of 1.69(1) µB/atom for a 2 ML Co/Cu(001) film [7.151]. The
effect of adding a Cu overlayer is to reduce the total magnetic moment [7.152].

Another system that has been studied extensively is the Co/Ni system, for which
a strong perpendicular magnetic interface anisotropy has been predicted [7.154] for
the (111) orientation, while for the (100) orientation this is overwhelmed by a strain
and magnetostatic contribution from the Co layer [7.155–158]. In particular, the
determination of the magnetic anisotropy constants requires the knowledge of the
value of the saturation magnetisation. Lauhoff et al. [7.144] have performed PNR
measurements on a Cu/9 Å Co/50 Å Ni/Cu/Si(001) structure to find that the magnetic
moment of the Co layer, µCo = 1.70 ± 0.20 µB, was essentially bulk like. The PNR
spectra for this structure are shown in Fig. 7.17. These data are representative of
the data quality that can be achieved nowadays routinely at the CRISP reflectometer
(U.K), where the measurements were performed. Typically such spectra require
8–10 h counting time and measurements are performed at 2–3 different angles of
incidence (most of the counting time being spent at the larger q-values, for which
the reflected intensities fall to very small values). For this particular system, the
magnetic moment is predicted not to change significantly across the Co/Ni interface
[7.93, 159], as the PNR results seem to confirm [7.143–147].

Body centred tetragonal (bct) Co has also been grown by epitaxy on Ag(001)
[7.114, 160], GaAs(110) [7.161, 162] and GaAs(001) [7.163, 164] substrates. The
magnetic moment of bct Co/Ag(001) using neutron reflection showed that for a 1 and

Fig. 7.17. Polarised neutron reflectivity and spin asymmetry data (symbols) and their best fits
to data (continuous lines) for (a) a 45 Å Cu/50 Å Ni/686 Å Cu/Si(001) and (b) a 45 Å Cu/9Å
Co/ 50 Å Ni/686 Å Cu/Si(001) structure (after [7.144])
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2 ML Co film the magnetic moment is enhanced relative to the bulk value, but that
the moment decreases rapidly as the thickness increases, an effect that was attributed
to strain-induced disorder in the Co films [7.165, 166]. For the Co films grown on
GaAs, strong interdiffusion at the interface decreases the average magnetic moment,
which is found to be bulk like in the centre of the film [7.35, 167–169].

Studies of the magnetic moment of Co films sandwiched between Pd layers,
using PNR magnetometry, have been reported by Pasyuk et al. [7.51, 170], where
an enhanced moment of 1.84 µB is obtained, compared with the bulk value of 1.73
µB. Unfortunately, no information about the crystalline structure of the Co film
is given nor is the temperature of measurement mentioned. The results seems to
agree with numerical calculations that predict an enhanced moment for this system
[7.141, 171, 172].

7.3.1.3 Magnetic Moment of Thin Ni Films

The study of the magnetic moment of thin Ni films, particularly for the Cu/Ni
interface, has been studied also in some detail. The interest here resides in the unusual
magnetic properties of the Ni/Cu(001) system, exhibiting dominant perpendicular
magnetic anisotropy over a thickness range from 15 to 120 Å, which manifests
itself in a state of perpendicular magnetisation at remanence. Reduced magnetic
moments at the Cu/Ni interface have been predicted by numerical calculations (due
to hybridisation effects) [7.140, 175–178], but experimentally a larger reduction in
the moment of Ni has been observed for Cu/Si(001) substrates [7.149, 179–182],
larger than that predicted by interface hybridisation effects and also not explainable
by interdiffusion at the Ni/Cu interface. In particular, it is observed that the magnetic
moment of Ni increases with thickness but in a thickness range where the interface

Table 7.5. Values for the magnetic moment of Ni thin films for different interface materials
(thickness in ML unless specified otherwise)

Sample phase µNi (µB) T (K) Ref.

Cu/Ni/Cu/Si(001)-H fcc c RT [7.179]
20 Å Cu/51 Å Ni/500 Å Cu/Si(001) fcc 0.50 ± 0.02 a RT [7.188]
20 Å Cu/51 Å Ni/770 Å Cu/Si(001) fcc 0.53 ± 0.02 b RT [7.188]
50 Å Cu/40 Å Ni/Cu/Si(001) fcc 0.54 ± 0.03 RT [7.183]
180 Å Cu/40 Å Ni/Cu/Si(001) fcc 0.45 ± 0.03 RT "
45 Å Cu/50 Å Ni/Cu/Si(001) fcc 0.53 ± 0.03 RT [7.144–146]
45 Å Cu/9 Å Co/50 Å Ni/Cu/Si(001) fcc 0.57 ± 0.03 RT "
45 Å Cu/23 Å Co/10 Å Cu/50 Å Ni/Cu/Si(001) fcc 0.50 ± 0.04 RT "
93 Å Cu/62 Å Ni/Cu/Si(001) fcc 0.54 ± 0.03 RT [7.147]
93 Å Cu/9 Å Co/62 Å Ni/Cu/Si(001) fcc 0.50 ± 0.05 RT "

a 0.55 ± 0.03 (XMCD).
b 0.58 ± 0.03 (XMCD).
c A variation in the Ni moment per atom with thickness is reported.
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Fig. 7.18. (a) Variation of the Ni magnetic moment per atom as a function of the film thickness
in Cu/Ni/Cu/Si(001) samples. (b) Variation of the Ni magnetic moment (from PNR) and of the
strain in the Ni layer (from grazing incidence x-ray diffraction) for different values of the Cu
overlayer thickness (measurements at room temperature). (After [7.183])

effects were expected not to contribute much to a moment variation [7.179–181]. This
effect has been attributed to strain in the Ni layer, which has the effect of decreasing
the magnetic moment per atom of Ni. This is also suggested by experiments where
the Cu overlayer in a Cu/Ni/Cu(001) structure is varied, where the sample with the
thicker Cu overlayer exhibits a smaller magnetic moment; this is concomitant with
an increase of the Ni strain (observed in identical structures), see Fig. 7.18 [7.183].

A variation in the magnetic moment of Ni with strain has been predicted theoret-
ically but is too small to account for the experimental results [7.175, 184]. Although
Wu et al. [7.185] present a variation in the magnetic moment per Ni atom that is
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Fig. 7.19. Polarised neutron reflectivity and spin asymmetry data (symbols) and their best fits
to data (continuous lines) for a 45 Å Cu/9Å Co/ 50 Å Ni/686 Å Cu/Si(001) structure. The
value of the magnetic moment per Ni atom obtained from the fit to the data is 0.54 ± 0.03 µB
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consistent with the variation reported in [7.183], the calculations refer to uniform
expansions of the fct primitive cell along the c-axis, while in practice it is the in-plane
lattice constant of Ni that is changed while the out of plane lattice parameter is free
to adjust to the value that minimises the free energy of the system (usually, tending
to keep constant the volume of the primitive cell). In Fig. 7.19a we show a recent
PNR measurement on a Cu/60 Å Ni/Cu/Si(001) structure, where the structural pa-
rameters were compared to those obtained from x-ray reflectometry (Fig. 7.19b). An
identical reduction in the magnetic moment of Ni films grown on Cu/Si(001) sub-
strates has been recently reported independently by Gubbiotti et al. [7.186]. However,
magnetometry studies on Ni/Cu(001) thin films using an in situ SQUID technique
and XMCD has not corroborated this large decrease in the magnetic moment of Ni
[7.187] with thickness, except for the decrease from the moment reduction at the
Ni/Cu interface. In this case however, strain is reduced as a single crystal of Cu is
used [7.187].

7.3.1.4 PNR on Other Magnetic Films

The previous three systems mentioned above account for most of the neutron reflec-
tivity studies as far as the accurate determination of the magnetic moment of thin films
is concerned, but other systems have also been studied with this technique, often with
a view to determining the magnetisation profile across a relatively thick magnetic
layer (e.g., Fe3O4 and γ -Fe2O3 thick films [7.189], strained thick Ni films [7.190],
and NiFe films [7.191]). In these studies, the reflectivity data of the magnetic layer is
fitted with a depth-dependent magnetic nuclear potential, which may be non-uniform
due to interdiffusion between the substrate and the magnetic film, oxidation of the
top surface or variations in stoichiometry due to the fabrication process [7.192, 193].
Hoffmann et al. [7.194] have investigated magnetic proximity effects in NiO/Pd with
PNR with negative results. In this study, the nuclear scattering length density of the
NiO layer was matched to that of Pd by a suitable mixture of Ni isotopes in order to
enhance the PNR magnetic contrast.

Another example concerns the study of the magnetic moment of Cr in a Ag/Cr/
Ag(001) sandwich in the submonolayer coverage regime, by Johnson et al. [7.195]. In
this study, PNR measurements on a 0.33 ML Cr film yielded a magnetic moment per
atom that was enhanced relative to the bulk Cr magnetic moment per atom (0.59 µB),
while a thicker 3.3 ML film yielded no net magnetic moment (consistent with the
antiferromagnetic phase of Cr).

Other systems have been successfully studied using PNR (or other neutron po-
larised techniques) namely systems with artificially depth dependent helicoidal mag-
netisation profiles, such as those obtained in exchange-spring magnets [7.189, 196]
or growth induced initial magnetic configurations [7.192, 193].

A system which could prove to be of particular interest is the Fe/Co interface
system. Fe and Co alloy to give an increased average magnetic moment up to 2.30 µB

at 30% Co concentration, an effect caused by the progressive filling of the majority
3d spin band of the Fe [7.198]. Recent ab initio calculations have predicted for bcc
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Fe/Co interface an enhancement of the magnetic moment of Fe from 2.23 µB (bulk)
to 2.60 µB [7.93], an increase of ∼18%.

7.3.2 Spin-valve Systems

The relevance of spin-valve systems hardly needs to be emphasised, so conspicuous
have been their use in technological applications. There is therefore a strong incentive
for understanding the physical mechanisms that govern the performance of a given
spin-valve system. Due to the large number of parameters that determine the structure
of such systems, a large amount of work remains to be done in terms of performance
optimisation, involving systematic studies of the many material and physical param-
eters that define these structures. This is discussed in detail by Gurney et al. [7.197]
and we consider here only the contribution PNR has made in the understanding of
these systems. In fact, although much work has been devoted to the study of spin-
valve systems (namely by magnetoresistance and conventional magnetometry), few
techniques are able to determine the depth profile magnetisation of the magnetic layer
stack, or whether they are in a state of uniform magnetisation. It is in addressing these
questions that PNR has been employed.

For convenience, we discuss separately two classes of systems, multilayers, cor-
responding to the simplest spin-valve structures (2 to 5 magnetic layers) and super-
lattices, which consist of a periodic repetition of a basic magnetic/spacer bilayer. The
former, due to their simpler structure, allow a study of the magnetic behaviour of
each individual magnetic layer (as far as PNR is concerned). The latter are more dif-
ficult to study and uniform magnetic and structural properties of the different layers
are often assumed, a simplification necessary for the interpretation of the data, but
not always the case in reality. Another reason why this division is convenient is be-
cause these structures are studied in different scattering regimes, the low wavevector
range close to the critical edge for the multilayer systems, and the high wavevector
range (the diffraction limit) for the superlattice systems (this also has repercussions
in the kind of information that can be obtained in these different systems/scattering
regimes: structural/magnetic information for each individual layer in the first case,
and structural/magnetic information for the superlattice as a whole in the second
case).

The simplest spin-valve systems consist of two magnetic layers separated by
a non-magnetic (metallic) spacer. Spin-valve systems derive their designation from
their electric properties, which exhibit a high and low resistance states according to
the relative orientation of the adjacent magnetic layers, thus acting as a spin-operated
valve for the electric current (giant magnetoresistance effect, GMR [7.199, 200]). The
magnetic layers may be of different materials and different thicknesses; it may be
such that the coupling between the magnetic layers is antiferromagnetic at remanence
(the coupling between two magnetic layer oscillates with the thickness of the non-
magnetic spacer [7.201], an effect that has been described in terms of the RKKY
model [7.202] or more generally, in terms of quantum interference due to confinement
in ultrathin layers [7.203, 204]). The GMR effect varies roughly with the cosine
of the relative angle of the magnetisation between adjacent magnetic layers for
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Fig. 7.20. PNR spectra for the Si(001)/Cu/FeNi/Cu/Co/Cu epitaxial trilayer structure held at
100 K with the layer magnetisations aligned parallel by an applied field of 3 kG. The lines
correspond to fits to the data. The inset shows the magnetic hysteresis loop for the spin-valve
structure obtained by SQUID magnetometry. (After [7.216])

the current in-plane geometry (CIP) [7.205–208] (but deviates from this behaviour
for the current perpendicular to plane (CPP) geometry [7.209, 210] and in general
a more complex behaviour is expected from theory [7.211–215]). The minimum
in resistance is attained for the parallel configuration, and the maximum for the
antiparallel configuration. We see therefore that in order to maximise the GMR
effect, it is important to know what is the relative orientation of the magnetisation
(which is determined by a competition between the intrinsic magnetocrystalline
anisotropy axes, the exchange coupling between the adjacent layers, domain splitting
at remanence and also pinning defects that can trap magnetic domains in local energy
minima).

Polarised neutron reflection studies have been performed on some spin-valve
systems in order to study some of these mechanisms. Bland et al. [7.216–218] have
studied a single FeNi/Cu/Co trilayer spin-valve using PNR (in combination with other
techniques) in order to obtain the magnetic moment profile across the interfaces of
the trilayer, and also the orientation of the magnetisation for various values of the
applied magnetic field. The spin-valve experiment is important since in general
domain formation can occur, complicating the data analysis [7.12, 219]. In contrast
to the case of multilayers, where it is assumed that equivalent layers have identical
spin configurations, the magnetic moment of each individual layer can be controlled
accurately in the single domain limit. The reflectivity data for the saturated state is
shown in Fig. 7.20 while Fig. 7.21 shows the spin asymmetry spectra as a function
of the relative orientation of each layer magnetisation. The soft NiFe layer acts as
the free layer, and can be rotated towards the direction of the applied magnetic field
for fields not strong enough to change the direction of the magnetisation of the Co
layer from its easy axis. These data clearly illustrates the sensitivity of PNR to the
magnetisation orientation of the magnetisation, even when polarisation analysis is not
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Fig. 7.21. The spin asymmetry spectra as a function of the relative layer magnetization ori-
entation at room temperature for (a) parallel alignment and after the sample is rotated with
respect to the applied field by approximately (b) 90o and (c) 180o causing the FeNi layer to
rotate as shown in the schematic (right insets). The lines correspond to fits to the data. (After
[7.216])

employed (the cost is that of knowing the angle of the magnetisation only within 180o

relative to the direction of the quantisation axis but this is compensated by improved
data statistics).

A number of systematic studies of the vector configuration in two double spin-
valve systems has been reported by Samad et al. [7.220, 221] for a NiFe/Cu/Co/Cu/
NiFe structure and by Choi et al. [7.222] for a Co/Cu/NiFe/Cu/Co structure. Both sys-
tems were grown epitaxially on Cu(001)/Si(001) buffer layers, and the orientation of
the magnetisation in each layer as a function of the magnetic field in a M-H loop cycle
was studied using PNR. Figure 7.22 (left) shows the data for the Co/Cu/NiFe/Cu/Co
spin-valve in the saturated state, exemplifying the data quality that is possible to
achieve in these kind of systems. The magnetic moments thus deduced for the Co and
NiFe layers were similar to the bulk values, within experimental error. In Fig. 7.22
(right) the PNR spectra for a non-collinear configuration of the layer magnetisations
is shown, for the same structure. In this case, after saturation along one field di-
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Fig. 7.22. PNR spectra for the Co/Cu/NiFe/Cu/Co double spin-valve for two magnetic states.
Left: (a) Spin dependent reflectivity (R) and (b) spin asymmetry as a function of perpendicular
momentum transfer for the saturated state (magnetisation aligned along the fcc Co [110] axis).
Right: The field strength is set to +100 Oe after saturation in the negative direction, so that
only the bottom Co layer flips toward the applied field. The magnetisation vectors are shown
schematically in the inset. In all plots, the solid lines correspond to fits to the experimental
data; the broken lines in the right panel are the simulated PNR spectrum corresponding to
a multidomain configuration: magnetisation aligned along the negative field direction but with
a reduced effective Co moment (After [7.222])

rection, the magnetic field is reversed until the magnetisation of the NiFe and that
of the bottom Co layer (which exhibits a smaller switching field) flip towards the
field direction. The magnetisation of the two bottom magnetic layers is aligned with
the magnetic field, while the top Co layer makes an angle of 36◦ with respect to
the negative direction of the applied field, as schematised in the figure inset. It is
to be noticed that without spin polarisation analysis the mirror image configuration
(i.e., that forming an angle of −36◦) cannot be distinguished, but that a domain-split
structure giving the same value of the magnetic moment Ms × cos(36◦) would give
a different PNR spectrum, as shown by the simulated spectra in the figure (dashed
line).

PNR data for the NiFe/Cu/Co/Cu/NiFe spin-valve is shown in Fig. 7.23 for
different magnetic configurations, namely for the saturated ferromagnetic state and
after successive rotation of 90◦ at an applied field of 50 Oe (sufficient to move the soft
NiFe layers only). The PNR data shows that collinear configurations are not obtained
in these cases, a result that is in agreement with the angular dependent CIP-GMR
measurements and that was attributed to domain formation [7.220, 221].
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(a)

(b)

Fig. 7.23. PNR spectra for the NiFe/Cu/Co/Cu/NiFe double spin-valve for two magnetic states.
Left: (a) Spin dependent reflectivity (R) and (b) spin asymmetry as a function of perpendicular
momentum transfer for the saturated state (magnetisation aligned along the fcc Co [110] axis).
Right: After saturation along the [1̄1̄0] direction, a reversed applied field of 50 Oe is applied
along the [110] direction. The magnetisation vectors are shown schematically in the inset. In
all plots, the solid lines correspond to fits to the experimental data (after [7.220])

The study of exchange bias (the unidirectional anisotropy induced in a ferromag-
net in contact with an antiferromagnet) has also been studied with PNR. Parkin et
al. [7.191] studied the magnetisation profile of an exchange biased NiFe/FeMn film
using PNR to show that there is no evidence of a deviation from a uniform distribu-
tion of the magnetisation across the NiFe film, which has a sharp interface with the
antiferromagnetic layer, therefore suggesting that non-uniform magnetisation states
(such as planar magnetic domains and domain walls in the ferromagnet) and interface
defects (such as intrusions of the FM into the AF or vice versa), are not responsible
for the observed low exchange field values (compared with the values expected from
a purely exchange coupling mechanism for the exchange anisotropy). The absence
of magnetic domains in NiFe in a similar structure was also reported by Ball et al.
[7.223] using PNR. However, for an exchange biased Fe3O4/NiO multilayer, PNR
measurements for the two oppositely saturated magnetic states reveal different mag-
netic states which could be ascribed to the presence of a interfacial domain wall
in the ferromagnetic layer. Felcher et al. [7.224] have considered the problem of
determining the magnetic state of a NiFe exchange biased interface layer in contact
with a NiCoO AF layer, in order to determine whether the coupling mechanism is
through exchange coupling. For this purpose PNR spectra were taken at two points
of the hysteresis curve corresponding to the two oppositely saturated states (at the
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same applied field value). The sum of the spin asymmetry for these two magnetic
states should be non-zero in the case where an interface NiFe layer remains exchange
coupled to the AF. The experimental results seem to suggest that this is the case,
but the errors associated with the data do not allow a definitive conclusion. In fact,
the magnetic configuration at the AF-FM interface is thought to be more complex,
with local variations of the AF interface crystal plane (due to a distribution of grain
orientations and grain boundaries across the film and due to film roughness) and
possibly also the presence of domain walls in the AF film. As a consequence, only
a relatively small number of uncompensated AF spins contributes to the exchange
coupling with the FM spins, but other energy contributions may introduce other types
of interactions between the AF and the FM layer, namely the “spin-flop” coupling
[7.225, 226]. Velthuis et al. [7.227] have studied the effect of training (cycling of
the M-H loop) in Co/CoO exchange biased structures using PNR, to show that af-
ter the first training cycle a spin-dependent diffuse scattering of the Yoneda type
sets in, which appears due to the presence of magnetic domains oriented differently
from the main magnetisation. In the same study the rotation of the magnetisation
with an external magnetic field applied perpendicular to the unidirectional anisotropy
axis was studied, to confirm that the magnetisation rotates coherently and uniformly
throughout the Co layer thickness for small values of the magnetic field (it has been
shown that an alternative method of measuring the exchange anisotropy is through
small deviations of the magnetisation from the unidirectional anisotropy axis, with-
out breaking the FM/AF exchange bias; this method yields values for the exchange
anisotropy that is larger by a factor of 2 in Co/CoO bilayers than the conventional
method of measuring the exchange bias field from the shift in the hysteresis loop
[7.228, 229]).

Fitzsimmons et al. have used PNR in combination with SQUID and MR (mag-
netoresistance) to study the switching mechanisms in exchange biased Fe/MnF2 and
Fe/FeF2 systems [7.230–234]. They found that Fe films grown on epitaxial Fe/FeF2

and Fe/MnF2(110) antiferromagnets (AF) with in-plane twin domains exhibit dif-
ferent switching behaviour for the two sides of the M-H characteristic (by coherent
rotation in one case and domain wall motion in the other) when the samples are
cooled with the applied field along the direction that bisects the anisotropy axis of
the AF twin domains, and in this case the exchange bias fields are greatly enhanced
[7.230, 231, 234]. This behaviour is not observed when the AF is polycrystalline or
single crystal (all with the same out of plane (110) texture) [7.234]. This effect was
attributed to an additional anisotropy axis in the ferromagnetic film introduced by the
F-AF interface.

Graaf et al. [7.235] have studied the orientation of the layer magnetic moment
in a NiFe/Cu/NiFe/FeMn exchange biased spin-valve (consisting of several repeats)
as a function of the applied magnetic field to compare with a theoretical model
developed by Rijks et al. [7.236] that estimates the magnetisation angle of the free
NiFe layer as a function of several parameters, such as interlayer exchange coupling,
exchange bias and Cu interlayer thickness. The experimental results (consisting of
data for two values of the Cu spacer layer, and therefore for the interlayer coupling
interaction) seem to agree with that model.
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Velthuis et al. [7.237–239] have approached the exchange bias problem by fab-
ricating an exchange biased system consisting of an exchange coupled Fe/Cr double
superlattice, one with a AF interlayer coupling and the other with a FM interlayer
coupling (this is achieved by suitably choosing the Cr spacing thickness). This sys-
tem closely resembles an idealised exchange biased system with collinear spins and
where the AF/FM interface problems are avoided (such as roughness and the effect
of the AF material). The collinear configuration of the magnetic layers is confirmed
by PNR, and the magnetic properties of this system compare well with the classical
Meiklejohn-Bean model [7.240].

7.3.3 Experimental Results on Superlattice Systems

Superlattice systems have been extensively studied with PNR, mainly in the diffrac-
tion limit. For wavelengths comparable to those of the superlattice repetition period,
a diffraction scattering process occurs, which leads to an enhanced peak in the scat-
tered intensity. Since the magnetic potential is comparable to the nuclear potential,
the magnetic superstructure also gives rise to peaks in the scattered intensity, namely
for the antiferromagnetic configuration, where a half-order peak is observed (double
the period of the superlattice, and therefore, half the wavevector value, compared to
the position of the first order peak).

The Fe/Cr multilayer system has received much attention, due to the important
role it played in the discovery of the GMR effect [7.199, 200] and of the antifer-
romagnetic exchange coupling between transition metal layers [7.241] (it is worth
noting that this effect was first observed in Gd/Y multilayers using polarised neutron
diffraction [7.242]). The complexities associated with this system (e.g., the influence
of the structural parameters, such as interface roughness [7.243, 244]) also have the
consequence that this system has been more investigated than others. The role played
by the Cr layer, an antiferromagnet below TN = 311 K (bulk Néel temperature) has
also been investigated using polarised neutron scattering [7.245].

PNR offers a very direct method of confirming the parallel or antiparallel align-
ment of the magnetisation in a multilayer system, and the order of alignment of
the magnetic layers can be easily monitored as a function of the magnetic field.
Barthélémy et al. [7.247] have confirmed the existence of antiferromagnetic cou-
pling in a Fe/Cr superlattice for Cr thicknesses thinner than 30 Å, by measuring the
spin-flip intensity variation with the applied magnetic field at the antiferromagnetic
scattering peak. While these structures were single-crystal grown by MBE, Parkin
et al. [7.248] have studied polycrystalline sputtered superlattices of similar nominal
structures, to show that they exhibit identical properties as the MBE samples, us-
ing PNR to identify the antiferromagnetic coupling and saturation fields. Bland et
al. [7.21, 219] studied a Fe/Cr/Fe sandwich with antiferromagnetic coupling by PNR
with polarisation analysis and determined the degree to which the magnetic align-
ment is fully antiparallel, to conclude that a multidomain structure may be present
in the structure (see also [7.249]). The effect of annealing on the spin configuration
of Fe/Cr superlattices has been studied by Hahn et al. [7.53, 250] using PNR, and
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Fig. 7.24. Left: x-ray reflectivity of a [20 Å NiFe/40 Å Ag]4 multilayer annealed at 335 ◦C.
Circles correspond to the data and the solid line correspond to the fit. Right: corresponding
polarised neutron reflectivity spectra, prepared in a field of −4 kOe after saturation in a 150 Oe
field, in order to produce the demagnetising field. The circles and squares correspond to the
non-spin-flip cross sections, and the triangles correspond to the spin-flip cross sections (shifted
by a factor of 100 for clarity). The solid line corresponds to the fit to the data, and the dashed
line represents the scattering expected for antiferromagnetically aligned NiFe layers with large
in-plane domains assuming that the moments align perpendicular to the applied field (after
[7.246])

related this effect with the magnetoresistance data to show that the GMR is propor-
tional to the degree of antiferromagnetism, while Pechan et al. [7.251] have studied
the magnetic profile as a function of structural disorder (by deposition at increasing
Ar pressure) to find that the magnetic superlattice peak does not degrade apprecia-
bly (and therefore to conclude that the magnetic coherence length is significantly
greater than that of the chemical superlattice structure). Schreyer et al. [7.252, 253]
have reported an extensive study on the magnetic and structural properties of MBE
grown Fe/Cr superlattices grown at different growth temperatures. They found that
for samples grown at 250 ◦C a coupling angle of 50o is obtained from the PNR data
(using polarisation analysis). This non-collinear coupling has been reported by later
studies [7.254, 255] and while Adenwalla et al. [7.254] attribute it to the biquadratic
interlayer coupling term, Schreyer et al. [7.245, 252, 253, 255] have explained this
behaviour in terms of the proximity magnetism model [7.256] based on the antifer-
romagnetism of the Cr layer induced by the adjacent ferromagnetic layers. Temst
et al. [7.257] report a low-field (∼230 Oe) spin-flop transition in Fe/Cr superlattices
where, from an antiferromagnetic configuration, the moments antiparallel to the field
align, at this critical field, to a direction perpendicular to the field direction, and are
then progressively oriented towards the field direction as this is increased. This is
seen as a sudden change in the spin-flip intensity at low fields and a gradual decrease
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as the field is increased further (unpolarised neutrons are used in this experiment; in
fact, the first magnetic layer can be seen as a spin polariser). PNR has also been used
to study exchange bias effects in Fe/Cr(211) superlattices by Jiang et al. [7.239, 258],
as a means of confirming the alignment of the magnetic layers. Superlattices of Fe
interspaced with other materials other than Cr have also been investigated by PNR,
namely Fe/V [7.259], Fe/Ir [7.260], Fe/Si [7.261], Fe/Gd [7.250], Fe/Tb [7.262]
(which exhibits perpendicular anisotropy, and shows a canted spin configuration at
low temperatures), Fe/Nb [7.263] and Fe/La [7.193], where PNR is used to determine
the spin orientation of the magnetic layers.

NiFe/Cu superlattices have also been extensively studied. These systems have
the advantage over the Fe/Cr structures of exhibiting much smaller saturation fields
making these kind of structures more amenable for practical applications. PNR mea-
surements have been performed to determine the magnetic configuration, as well as
structural information in studies on the biquadratic magnetic coupling [7.264], on the
effect of annealing [7.246, 265, 266], on exchange coupled structures [7.235] (where
the magnetic alignment is studied as a function of the applied field). Similar PNR
studies have been reported for Co/Cu [7.17, 267–273], Co/Re [7.274, 275], Co/Pd
[7.276], Co/Ru [7.277] and NiCo/Cu [7.278] multilayers.

7.4 Conclusions

We have illustrated the capabilities of polarised neutron reflection magnetometry for
the accurate determination of the magnetic moment of ultrathin magnetic films (in
the dynamical regime) and in determining the relative orientation of magnetic mo-
ment of buried layers in multilayer systems (in the diffraction regime). In particular,
quantitative studies of the magnetic moment in single transition metal layers using
PNR are demonstrated, with emphasis on the effect of the interface material on the
magnetic moment. Such studies are the result of improvements both in the quality
of the samples and in improvements in the neutron reflectometers (increased neutron
flux and improved instrumentation) which has enabled on the one hand avoiding
problems related with diffuse scattering (e.g., by using optically flat substrates) and
on the other, improved data statistics. For the case of spin-valve structures we have
shown how PNR can make vectorial magnetometry possible, even when polarisation
analysis is not employed. It is shown that these systems can exhibit non-collinear
magnetic configurations at low applied fields. Interface moments are key to devices,
e.g., magnetic tunnel junctions, and therefore PNR may prove an important tech-
nique in future on account of its sensitivity to both magnetic and structural interface
details. We also show that most of the studies have been limited to a small number of
magnetic systems, suggesting that PNR has been under-used. It is our hope that the
present review will increase the interest in this technique specifically when accurate
determination of the magnetic moment and structure characterisation are required
simultaneously.
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Magn. Mater., 177-181:1253, 1998.
7.144. G. Lauhoff, J. A. C. Bland, J. Lee, S. Langridge, and J. Penfold. Phys. Rev. B, 60:4087,

1999.
7.145. G. Lauhoff, J. Lee, J. A. C. Bland, S. Langridge, and J. Penfold. J. Magn. Magn.

Mater., 198-199:331, 1999.
7.146. G. Lauhoff, A. Hirohata, J. Lee, J. A. C. Bland, S. Langridge, and J. Penfold. J. Phys.

Condens. Matter, page 6707, 1999.
7.147. C. A. F. Vaz, G. Lauhoff, J. A. C. Bland, S. Langridge, D. Bucknall, J. Penfold,

J. Clarke, S. K. Halder, and B. K. Tanner. Interface dependent magnetic moments in
Cu/Co,Ni/Cu/Si(001) epitaxial structures. Unpublished.

7.148. M. Tischer, O. Hjortstam, D. Arvanitis, J.H. Dunn, F. May, K. Baberschke, J. Trygg,
J.M. Willis, B. Johansson, and O. Eriksson. Phys. Rev. Lett., 75:1602, 1995.

7.149. P. Srivastava, F. Wilhelm, A. Ney, M. Farle, H. Wende, N. Haack, G. Ceballos, and
K. Baberschke. Phys. Rev. B, 58:5701, 1998.

7.150. D. Schmitz, C. Charton, A. Scroll, C. Carbone, and W. Eberhardt. Phys. Rev. B,
59:4327, 1999.

7.151. A. Ney, P. Poulopoulos, M. Farle, and K. Baberschke. Phys. Rev. B, 62:11336, 2000.
7.152. A. Ney, P. Poulopoulos, and K. Baberschke. Europhys. Lett., 54:820, 2001.
7.153. A. Ney, P. Poulopoulos, F. Wilhelm, A. Scherz, M. Farle, and K. Baberschke. J.

Magn. Magn. Mat., 226-230:1570, 2001.
7.154. G. H. O. Daalderop, P. J. Kelly, and F. J. A. den Broeder. Phys. Rev. Lett., 68:682,

1992.



280 J. A. C. Bland and C. A. F. Vaz

7.155. M. T. Johnson, J. J. de Vries, N. W. E. McGee, J. aan de Stegge, and F. J. den Broeder.
Phys. Rev. Lett., 69:3575, 1992.

7.156. M. T. Johnson, F. J. A. der Broeder, J. J. de Vries, N. W. E. McGee, R. Jungblut, and
J. aan de Stegge. J. Magn. Magn. Mater., 121:494, 1993.

7.157. J. Lee, G. Lauhoff, and J. A. C. Bland. Phys. Rev. B, 56:R5728, 1997.
7.158. C. A. F. Vaz and J. A. C. Bland. Phys. Rev. B, 61:3098, 2000.
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and H. Zabel. Phys. Rev. B, 47:15334, 1993.
7.268. W. Schwarzecher, W. Allison, J. Penfold, C. Shackleton, C. D. England, W. R. Bennett,

J. R. Dutcher, and C. M. Falco. J. Appl. Phys., 69:4040, 1991.



284 J. A. C. Bland and C. A. F. Vaz

7.269. D. E. Joyce, S. I. Campbell, P. R. T. Pugh, and P. J. Grundy. Physica B, 248:152,
1998.

7.270. N. D. Telling, S. Langridge, and C. C. Tang. J. Magn. Magn. Mat., 198-199:692,
1999.

7.271. J. A. Borchers, J. A. Dura, J. Unguris, D. Tulchinsky ans M. H. Kelly, C. F. Majkrzak,
S. Y. Hsu, R. Loloee, W. P. Pratt, Jr., and J. Bass. Phys. Rev. Lett., 82:2796, 1999.

7.272. J. A. Borchers, J. A. Dura, C. F. Majkrzak, S. Y. Hsu, R. Lolee, W. P. Pratt, and J. Bass.
Physica B, 283:162, 2000.

7.273. J. Unguris, D. Tulchinsky ans M. H. Kelly, J. A. Borchers, J. A. Dura, C. F. Majkrzak,
S. Y. Hsu, R. Loloee, W. P. Pratt, Jr., and J. Bass. J. Appl. Phys., 87:6639, 2000.

7.274. Z. Tun, W. J. L. Buyers, I. P. Swainson, M. Sutton, and R. W. Cochrane. J. Appl.
Phys., 76:7075, 1994.

7.275. T. Charlton, D. Lederman, S. M. Yusuf, and G. P. Felcher. J. Appl. Phys., 85:4436,
1999.

7.276. J. A. Borchers, J. F. Ankner, C. F. Majkrzak, B. N. Engel, M. H. Wiedmann, R. A. Van
Leeuwen, and C. M. Falco. J. Appl. Phys., 75:6498, 1994.

7.277. Y. Y. Huang, G. P. Felcher, and S. S. P. Parkin. J. Magn. Magn. Mat., 899:L31, 1991.
7.278. M. Mao, S. H. Nguyen, B. D. Gaulin, Z. Tun, X. Bian, Z. Altounian, and J. O.

Ström-Olsen. J. Appl. Phys., 79:4769, 1996.
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X-ray Scattering Studies
of Ultrathin Metallic Structures

E.E. Fullerton and S.K. Sinha

8.1 Introduction

The study of magnetic thin films and multilayers has been driven by the variety of
novel physics and phenomena that can be studied in such structures as outlined in
these volumes. In general, much of the new physics comes from combining materials
(e.g. ferromagnetic, antiferromagnetic, paramagnetic, nonmagnetic) on nanometer
length scales. With reduced layer thicknesses, the interfaces increasingly dominate
the magnetic response of the system. The interfaces can perturb the system in a va-
riety of important ways including interfacial strains that alter the atomic structure
within the layer, reduced coordination of the atoms at the interface producing unique
properties of the interfacial atoms compared to the bulk and coupling of the layers
either directly across the interface or indirectly via an interlayer. In general, these
properties coexist and depend sensitively on the structural integrity of the thin films
or multilayers. Since these structures are typically made by vapor deposition and
are not in thermodynamic equilibrium, structural characterization of the atomic and
interfacial structure is a prerequisite for a complete understanding of the magnetic
properties.

The use of neutron and x-ray scattering as a tool to study the structure and mag-
netization of the films and multilayers is by now well established. Such scattering
techniques are non-destructive and provide quantitative statistically-averaged struc-
tural information ranging in scale from the atomic spacing up to the coherence length
of the x-ray source (∼ microns). This allows x-ray scattering to address several is-
sues, such as the crystalline structure within the films and the morphology of the
interfaces. One of the most important aspects of the latter is the issue of roughness,
both structural and magnetic. Ordinary charge scattering (observable even in in-house
x-ray facilities such as x-ray tube or rotating anode sources) can be used to study
crystalline structure and structural roughness at interfaces, using techniques such as
x-ray specular reflectivity and wide-angle x-ray diffraction [8.1–4]. Some applica-
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tions of such techniques to magnetic multilayer films have been reviewed in an earlier
volume of this series [8.5].

Over the last decade or so it has been realized that x-rays can also be used to
study magnetism in solids by utilizing the magnetic cross section for x-rays, which
is nevertheless small compared to the ordinary charge or Thompson scattering cross
section. The discovery of a large resonant enhancement of the magnetic cross section
for x-rays scattering at the L-edges of transition metal and rare earth atoms and at
the M-edges of actinide atoms has made x-ray studies of magnetism in thin films and
multilayers readily feasible at synchrotron sources, where intense x-ray beams which
can be tuned to the resonant energies are available [8.6, 7].

Much of the initial magnetic x-ray studies have been carried out on bulk antifer-
romagnetic crystals, where peaks distinct from the much larger Bragg peaks due to
ordinary charge scattering may be studied relatively easily [8.8, 9]. In cases where the
two types of scattering are superimposed, distinguishing magnetic scattering from
charge scattering requires polarization techniques, such as polarization analysis of
the scattered beam (to pick out scattering in the σ → σ vs. σ → π polarization chan-
nels). Alternatively, one may make use of circularly polarized x-ray beams where the
charge scattering may, in principle, be subtracted out by changing the sense of cir-
cular polarization of the incident beam (or equivalently, the magnetization direction
in the sample). The use of these techniques to study magnetism in films and surface
magnetism is a growing but still relatively unexplored field.

In this chapter we will discuss the basic concepts of x-ray scattering from thin
films and multilayers with a focus on determining both the average structure as well
as the deviations from the average (i.e. interfacial roughness and disorder). This is
generally achieved by measuring both the specular and diffuse scattering and fitting
the scattered intensities to models that have been generalized to include disorder. We
will show how this approach can be extended to study magnetic order and roughness.
The scattering from thin films and multilayers is generally separated into reflectivity
and wide-angle measurements. Reflectivity scans refer to scattering regimes where
the magnitude of the scattering wavevector transfer q � 2πa where a is the lattice
constant of the constituent material. In this regime one can neglect short length scale
fluctuations due to the discreteness of the atoms or atomic scale-disorder and consider
both the total electron density and the magnetization as uniform inside the medium
contained within the “structural” and “magnetic” surfaces/interfaces respectively.
Wide-angle diffraction occurs for q � 2πa where the scattering becomes sensitive
to the atomic order (both structural and magnetic) which needs to be included in any
modeling. Since these two techniques probe different length scales they often provide
complementary information about the structure. We will first describe reflectivity
measurements focusing on determining both the structural and magnetic roughness.
We will then discuss methods for determining the atomic structure and disorder from
the wide-angle diffraction measurements.
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8.2 Reflectivity Measurements of Interfacial Structure

8.2.1 Interfacial Roughness

The effect of roughness at interfaces has been recognized as playing an important
role in affecting important magnetic and magneto-transport properties of thin films,
including magnetic anisotropy, magnetic proximity effects, giant magnetoresistance
(GMR), exchange bias, dipolar interactions in magnetic devices, etc. but the relation-
ship between these properties and the interface structure is still poorly understood
[8.7]. Such interfaces are never chemically abrupt or completely smooth or flat as
shown schematically in Fig. 8.1. Both the magnitude and the spatial frequency of the
interface roughness play an extremely important role in affecting the way in which
magnetic anisotropy and exchange can determine the ordering of magnetic moment
near an interface. Since x-ray scattering provides a statistically averaged measure of
the surface roughness, it proves useful to have general statistical descriptions of the
surfaces. The morphology of a surface (or interface) may be characterized by the
statistical height-height correlation function C(r)

C(r) = 〈δz(0)δz(r)〉 (8.1)

where r represents an in-plane separation vector and δz(0) and δz(r) represent height
fluctuation from the average interface at the origin and r, respectively (Fig. 8.1). This
correlation function is the Fourier transform of the two-dimensional power spectral
density (PSD) of the surface given by

PSD( f ) = 1

A

∣∣∣∣∣∣
∫
A

z(r) exp (i2π f · r) dr

∣∣∣∣∣∣
2

[A = surface area] (8.2)

where f is a vector of the spatial frequency of the roughness. Thus most surfaces can
be characterized by the corresponding C(r) in real space (or PSD( f ) in frequency
space) [10, 11]. A rather general and convenient way of representing such a correlation
function is in the modified self-affine form:

C(r) = σ2 exp
[
(−r/ξ)2h] (8.3)

where r = |r|, σ2 represents a mean-square roughness for the interface, ξ is the
correlation length for the roughness and h (0 < h < 1) is the roughness expo-
nent [8.10, 11]. Although not appropriate to describe surfaces with lateral periodicity
such a form is able to describe a wide variety of interfacial structures. Low values of
h give a jagged morphology while large h results in a smoothly varying morphology.
For small values of r, the roughness can be mapped onto a fractal surface with the
fractal dimension D = 3 − h.

If one extends such a description to a multilayer structure where there are multiple
interfaces (Fig. 8.1), then a description of this structure needs a description that include
how the roughness of ith interface is correlated with roughness in jth interface. This
can also be characterized by a correlation function
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Fig. 8.1. Schematic representation of a multilayer structure on a substrate with a periodicity of
Λ. An expanded view of the ith and jth interfaces where the average interface position (dashed
line) is given by z̄i and z̄ j and the local deviation from the average position at a point r ′ given
by δzi(r ′) and δz j(r ′), respectively

Cij(r) = 〈δzi(0)δz j(r)〉 (8.4)

where δzi(0) corresponds to a height fluctuation at the origin in the ith layer and δz j(r)
is a height fluctuation in the jth layer at position r. If fluctuations in the ith or jth
interface are independent then Cij(r) = 0. However, if the fluctuations in the ith and
jth layers are conformal, that is perfectly replicated in adjacent layers during growth
then Cij(r) = C(r), the correlation function of the individual layers as given in (8.3).
In most multilayer thin film structures there is partial correlation of the roughness in
adjacent interfaces (as shown schematically in Fig. 8.1) with the correlation being
stronger for longer length scale fluctuations (for examples see [8.12–17]). It is often
observed that the correlation function between interfaces decays as a function of the
separation of these interfaces [8.13–16] and can be described with a perpendicular
correlation length ξ⊥, having a similar in-plane form as (8.3). In addition to being
correlated the roughness can also be cumulative. That is the roughness of each
interface adds to the roughness of subsequent layers and the value of σ increases
from interface to interface as the multilayer grows.

Up to this point we have only considered the nature of the chemical (or struc-
tural) interface. One needs to similarly describe the magnetic interface. An interface
between a ferromagnetic and non-magnetic layer can sometime produce a magnetic
“dead layer” at the interface, as in the case of surface magnetism where the order
parameter often decreases faster with increasing temperature than the bulk order pa-
rameter. This also can result from hybridization of the electron states or interdiffusion
of the interfacial atoms that suppresses the moments. A conceptually simple way to
model such effects is to visualize a “magnetic interface” between the two layers that
may be distinct from the actual chemical interface, but may also be highly correlated
with the latter (Fig. 8.2). The relevant lateral length scale being considered here may
be from 5-nm to microns, which is the range amenable to study with reflectivity.
(Magnetic moments, which are disordered on shorter length scales, will simply ap-
pear as a loss of magnetization). In addition there may be domain formation within
the ferromagnetic layers, which can also be studied as described below. The concept
of the magnetic interface leads naturally to the concept of “magnetic roughness”,
which is distinct from the “chemical roughness” [8.18–22] and may be specified
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Fig. 8.2. Schematic representation of a possible magnetic interface or surface with a ‘dead’
layer. The structural interface is shown by the solid line while the magnetic interface (the
boundary between the magnetic and nonmagnetic region) is shown by the dashed lines. The
magnetic interface has both a different average position as well as a different lateral height-
height correlation function

in terms of a similar type of magnetic correlation function Cmm(r), which can be
characterized by a root-mean-square value for the height fluctuations about the aver-
age magnetization σm, a magnetic roughness correlation length ξm and a roughness
exponent hm. Work on thin films of cobalt indicates that it is the magnetic roughness
parameters (in particular the correlation length ξm) rather than the chemical rough-
ness that determine the coercive field in these films [8.19]. The behavior of electron
transport across magnetic layers and in particular, spin-dependent transport is clearly
sensitive to both the chemical and magnetic roughness at the interfaces. Attempts
to correlate the GMR effect in Fe/Cr multilayers with the chemical roughness often
show contradictory results [8.23–26] which may resolved from an understanding of
the correlation between the magnetic and chemical roughness.

8.2.2 Reflectivity Measurements

As is now well established both the specular reflectivity and the off-specular or
diffuse scattering from the interface are excellent non-destructive ways of probing
these roughness parameters. The general scattering geometry is shown in Fig. 8.3
where the incoming x-ray beam is at grazing angle of incidence θi. For a specular
reflectivity experiment the scattered beam will reflect off the interfaces in the structure
at an angle θf = θi. For such measurements, the scattering vector q = −→k f − −→k i is
normal to the surface with magnitude q = 4π sin θ/λ where λ is the x-ray wavelength.
The scattered intensity is monitored as a function of q by scanning θ and keeping
the total angle of scattering = 2θ, so that θf always equals θi. Such a scan is often
referred to as a “θ − 2θ” scan. Since qx = qy = 0 the scattering intensity is only
sensitive to variations of the laterally averaged structure normal to the surface and
provides information on the layer thicknesses and the root-mean-square interfacial
width σ . For a multilayer with period Λ (Fig. 8.1 and 8.3a) the scattering from the
different interfaces will interfere, resulting in Bragg peaks expected at qz = 2πn/Λ

where n is an integer as shown schematically in Fig. 8.3b. The measured positions of
the Bragg peaks are shifted slightly from the expected position when the refractive
index of the material is taken into account [8.27].
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Fig. 8.3. Scattering geometry for a reflectivity or diffraction measurement from a multilayer
structure (top) with the corresponding scattering geometry in reciprocal space (bottom). The
incoming x-ray have either linear or circular polarization with an incoming angle θi and
wavevector

−→k i. The specularly scattered x-rays scatter at θf = θi such that the scattering
wavevector q is normal to surface. The multilayer periodicity results in Bragg peaks separated
by 2π/Λ along qz as shown by circles. For rough interfaces the diffuse scattering occurs at
θf �= θi.and φf �= 0 such that the scattered wavevector has a finite in-plane component. Offset
and rocking curve scans (described in text) that probe the diffuse scattering are shown

For a rough interface there is diffuse intensity that is scattered into a cone about
the specular beam such that θf �= θi. and φf �= 0. However, some diffuse scattering
occurs along the specular scattering direction and needs to be subtracted from the
measured intensity to obtain the true specular scattering. If qx or qy is non-zero,
the scattered intensity becomes sensitive to the lateral morphology of the interface
where full details of the interface roughness are manifest in the diffuse intensity. The
most convenient approach to obtain the diffuse scattering is by using an area detector
that collects both the specular and diffuse scattering. In absence of an area detector,
typical diffuse intensity scans are ‘rocking curve’ scans where the incoming beam and
detector are fixed and the sample is rocked. For such a scan the magnitude of the wave
vector is fixed while the in-plane component qx (qy = 0) of the wavevector increases
as the sample is rocked out of the specular condition. Often, the experimental set-up
utilizes detector slits which are quite wide open in the direction normal to the plane of
scattering and thus what is measured is the integral of the diffuse scattering over qy.

A related scan known as a grazing incidence scattering maintains θi and θf fixed
and scans the detector along φf (In general θi and θf are both kept small) [8.28].
For such a scan the qz component of the wavevector remain fixed and the in-plane
component increases with increasing φ and the diffuse scattering at a given qz is
mapped out. Although a more difficult scan than the rocking-curve scan this approach
allows a larger in-plane wavevector to be obtained. Another common scan is the ‘offset
scan’ which is equivalent to a specular reflectivity scan but with the normal of the
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Fig. 8.4. Schematic representation of a synchrotron beamline for structural and magnetic
scattering measurements as described in [8.20]. The components included a monochromator
to select the energy and a phase retarder to select the polarization

film surface offset by a small angle δ so that the intensity is probed in reciprocal space
along a line making a small angle to the qz axis (Fig. 8.3). This scan probes the qz

dependence of the diffuse scattering and is often used to estimate the diffuse scattering
under the specular scattering since the diffuse scattering usually has a much weaker
dependence on qx near the specular condition. This intensity can then be subtracted
from the specular reflectivity scans to obtain the true specular scattering. From such
scans a rather general description of the specular and diffuse scattering is obtained.

To probe magnetic scattering one also needs to control the polarization of the
incoming x-ray beam and the magnetic state of the sample. The polarization of the
x-ray beam from a synchrotron is in general linear and horizontal. It may be converted
to circular polarized radiation of either sense by suitable use of an x-ray quarter wave
plate. Alternatively, on can study scattering from the linearly polarized incident beam
by looking for a rotated plane of polarization of the scattered beam using a polarization
analyzer crystal or optic (e.g. to study σ → π scattering processes). For soft x-rays
this has required the development of specialized optical elements [8.29]. A schematic
diagram of a typical synchrotron set up for magnetic scattering is shown in Fig. 8.4.

8.2.3 Scattering Formalism

8.2.3.1 Atomic Scattering Amplitudes

The x-ray scattering amplitude from a magnetic atom in the dipole approximation
has been derived by Hannon et al. [8.6] and is given by:

f = f0 (ef · ei) + 3λ

8π
[F11 + F1−1]

(
e∗f · ei

)− i [F11 − F1−1]
(
e∗f × ei

) · m̂

+ [2F10 − F11 − F1−1]
(
e∗f · m̂

) (
ei · m̂

)
(8.5)
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where f0 is the usual non-magnetic charge form factor or the Thomson scattering
amplitude (including anomalous terms from x-ray edges other than the one under con-
sideration), λ is the x-ray wavelength, ei, ef and m̂ are the unit vectors representing
the polarizations of the incident and scattered photons and the magnetization direc-
tion respectively, and the FL M are the resonant scattering amplitudes (with L = 1
for electric dipolar transitions) which contain resonant denominators and thus can
become quite large. The third term is linear in m̂ resulting from the anisotropy in spin
and orbital moments and gives rise to the familiar magnetic circular birefringence
and dichroism of ferromagnetic materials. Here we are primarily concerned with
the real (or scattering) part. Because the d states on transition and rare earth metal
atoms show significant polarization when magnetized, dipolar transitions, which oc-
cur mainly from core p-states, corresponding to the photons with energies at the
L edges will be sensitive to magnetism [for a detailed measure of the scattering
cross sections of Fe see [8.30]]. Working at core levels has the additional advantage
that the magnetic scattering becomes element specific since the core levels for dif-
ferent elements are well separated in energy [8.7]. The final term is second order
in m̂ resulting from an anisotropy in charge related to the magnetization and gives
a linear birefringence and linear dichroism. Since this final term probes the axis of
magnetization, it provides sensitivity to antiferromagnetic as well as ferromagnetic
order [8.31].

The expression for the differential cross-section in the Born Approximation may
be obtained by summing (8.5) over all atoms in the system with the appropriate
phase factors and taking the square of the modulus. In this expression cross terms
involving products of the charge-scattering-like terms (first two terms in (8.5)) with
the third term will occur, provided both are finite at that particular point in recip-
rocal space (the last term is usually small and may often be neglected). We can
define a scattering amplitude density for charge (involving the first two terms in
(8.5) times the number density of the corresponding atoms) and similarly the mag-
netic scattering amplitude density involving the last two terms in (8.5). It may be
noted that the symmetry of the third term is such that it predominantly scatters in
the σ → π or π → σ channels, causing a rotation of the plane of polarization
of the scattering photons. If we now consider circular polarization incident x-rays,
where ei = √

1/2
(
ex ± ey

)
, ex and ey being two mutually orthogonal unit vec-

tors transverse to the incident direction of propagation, and denote by I+ and I−
the scattered intensities obtained with each sense of circular polarization (corre-
sponding to the +/− signs in the expression for ei above), it can be easily shown
that neglecting the last term in (8.2), (I+ − I−) depends only on the cross-terms
involving charge and magnetic scattering, i.e. on the interference between them.
Thus the much larger purely charge scattering (and also the purely magnetic scatter-
ing) disappears from the expression for I+ − I− [8.32]. Inspection of (8.5) shows
the same result occurs by reversing the direction of magnetization of the sample
(again neglecting the final term quadratic in m), a method which is sometimes more
convenient to use than reversing the circular polarization of the beam. Conversely,
scattering with linear polarization which is a linear superposition of right and left
circular polarization I+ + I− is sensitive to the sum of the charge and magnetic
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scattering where the magnetic-charge cross term is suppressed [8.33]. The charge
and magnetic terms can further be separated by polarization analysis as discussed
above.

8.2.3.2 Interfacial scattering

The cross section for scattering can, in general, be written as:

dσ

dΩ
= 1

16π2

∣∣〈kiµ

∣∣ T |kfν〉
∣∣2 (8.6)

where we assume that the scattering is elastic, from photon state kiµ (with incident
photon wavevector ki and polarization state µ) to photon state kfν (similarly defined)
and the T-matrix element can be written down in various approximations. The simplest
is the so-called kinematic or Born approximation where

〈
kiµ

∣∣ T |kfν〉 is given by the
matrix element of the scattering amplitude ( f in (8.5)) times the density) evaluated
between plane wave photon states. If we are interested in the scattering at small q we
can assume a uniform scattering amplitude density (which includes both the charge
and magnetic scattering terms given in (8.5)) except at an interface between materials
of different scattering amplitude densities. Therefore, scattering only occurs at the
surface or interface between layers. Then it may be shown that the above matrix
element may be written as a sum over all interfaces in system in the form

〈kiµ |T | kfν〉 = i
∑

j

(∆ f )
j
µν

qz
exp

[−iqz z̄ j
]

×
∫∫

dx dy exp
[−iqzδz j (x, y)

]
exp

[−i(qx x + qy y
]

(8.7)

where the z-axis is normal to the average interfaces which are all assumed to be
parallel as in a thin film or multilayer (Fig. 8.3), j denotes the interface number, the
average position of the jth interface is denoted as z̄ j , the fluctuation δz j(x, y) is the
height fluctuation of the jth interface from its average value at a lateral position (x, y),
(∆ f )

j
µν is the change in scattering amplitude density (evaluated between polarization

states µν) across the jth interface.
In (8.7) the sum over j includes all interfaces (structural as well as magnetic,

although their average heights often coincide except when magnetic dead layers are
present). It is often convenient to write the cross section in terms of the scattering
function Sµν(q) from polarization state µ to ν at wavevector q. Inserting (8.7) into
(8.6) and taking the appropriate statistical averages, it may be shown that

Sµν(q) = A

q2
z

∑
i, j

[
(∆ f )∗i

µν(∆ f ) j
µν

]
exp

[
−1

2
q2

z

(
σ2

i + σ2
j

)]
exp

[−iqz
(
z̄i − z̄ j

)]
×

∫∫
dx dy exp

[
q2

z Cij(x, y)
]

exp
[−i

(
qx x + qy y

)]
(8.8)
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where σ2
i is the appropriate mean square roughness (structure or magnetic) for in-

terface denoted by i, and Cij (x, y) denotes the statistical height-height correlation
function from the appropriate interfaces depending on the subscript i, j. In making
this derivation, one generally makes the assumption of a Gaussian statistical distri-
bution of height fluctuations. However other profiles can be calculated [8.34, 35]. In
general, Cij(r) (where r ≡ (x, y), the lateral separation) will tend to zero as r → ∞,
and hence the exponential in the integral in (8.8) will tend to unity. We can explic-
itly separate out this contribution, as it will yield a delta function in (qx , qy), which
corresponds to the specular reflection. We thus get for the specular contribution:

Sspecular
µν (q) = 16π2 A

q2
z

∑
i, j

[
(∆ f )∗i

µν(∆ f ) j
µν

]
× exp

[−iqz
(
z̄i − z̄ j

)]
exp

[
−1

2
q2

z

(
σ2

i + σ2
j

)]
δ(qx)δ(qy) (8.9)

and for the off-specular or diffuse contribution

Sdiffuse
µν (q) = A

q2
z

∑
i, j

[
(∆ f )∗i

µν(∆ f ) j
µν

]
exp

[−iqz
(
z̄i − z̄ j

)]
exp

[
−1

2
q2

z

(
σ2

i + σ2
j

)]
×

∫∫
dr exp

[−iq// · r
] (

exp
∣∣q2

z Cij(r)
∣∣− 1

)
(8.10)

where q// is the in-plane component of q. From (8.9) and the delta-function form
of Sspecular

µν (q), we may, using standard methods, convert it to an expression for the
specular reflectivity R:

Rµν(q) =16π2

q4
z

∑
i, j

[
(∆ f )∗i

µν(∆ f ) j
µν

]
exp

[
−1

2
q2

z

(
σ2

i + σ2
j

)]
× exp

[−iqz
(
z̄i − z̄ j

)]
. (8.11)

Let us now consider some special cases of (8.10) and (8.11). In the absence of the
magnetic terms in (8.5), the second term, which has the same form as the Thom-
son scattering, can be combined with the first to give the total effective scattering
amplitude f̃0. For structural interfaces only therefore we obtain:

Rµν(q) =16π2

q4
z

∑
i, j

∣∣e∗µ · eν

∣∣2 (∆ f̃0
)∗

i

(
∆ f̃0

)
j exp

[
−1

2
q2

z

(
σ2

S,i + σ2
S, j

)]
(8.12)

× exp
[−iqz

(
z̄i − z̄ j

)]
Sdiffuse

µν = A

q2
z

∑
i, j

∣∣e∗µ · eν

∣∣2 (∆ f̃0
)∗

i

(
∆ f̃0

)
j exp

[
−1

2
q2

z

(
σ2

S,i + σ2
S, j

)]
(8.13)

× exp
[−iqz

(
z̄i − z̄ j

)] ∫∫
dr exp

[−iq// · r
] (

exp
∣∣q2

z CS
ij(r)

∣∣− 1
)
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where (∆ f̃0) j is the discontinuity of the scattering amplitude density across the ith
interface, σ2

S,i is the corresponding mean square structural roughness and CS
ij is the

structural roughness height-height correlation function between interfaces i and j,
often expressible in the form given in (8.3) [8.35]. In the case of charge scattering,
equations of the form (8.12) and (8.13) have been used successfully to describe the
scattering from rough surfaces, thin films and multilayers, allowing modeling of the
structural roughness of each interface in terms of the parameters σ , h and in-plane and
out-of-plane correlation lengths ξ and ξ⊥, respectively. Equations (8.12) and (8.13)
can be readily extended to have more specific function for CS

ij [8.36] such as obtain
for self-assembled structures in multilayers [8.37].

From the above equations it may be noted that (a) charge scattering cannot yield
intensity in channels where the photon polarization is flipped by 90◦, e.g. σ → π,
or π → σ ; (b) the roughness of each interface enters into the specular reflectivity
only through σ the root-mean-square roughness whereas the expression for diffuse
scattering involves all the roughness parameters including the correlation lengths and
(c) peaks in the specular reflectivity appear due to the periodicity of bilayers in the
multilayer arising from the sum over the phase factor exp�−iqz

(
z̄i − z̄ j

) , which are
known as the multilayer Bragg peaks. These multilayer Bragg peaks are mirrored in
peaks (or rather ridges) in the diffuse scattering at the same qz values, provided the
correlation function Cij(r) is non-zero for significant separations of the interfaces
i and j along the z-axis, i.e. provided that the out-of-plane roughness correlation
length is not too small. Because of this, there are examples of multilayers with large
conformal roughness where ‘Bragg’ peaks are observed in the diffuse scattering but
not readily observed in the specular scan [8.17].

The above models, applied to x-ray scattering from surfaces [8.38], thin
films [8.39] or multilayers where the magnetic scattering can be ignored, have been
widely used to extract details of the roughness at the interfaces [8.13–16, 35, 40–48].
As may be seen from (8.12) and (8.13), the specular reflectivity may be used to yield
the values of the mean-square structural roughness of the ith interface σ2

s,i , while the
off-specular or diffuse scattering may be used to obtain the correlation function Cij(r)
which depend on the roughness exponent, the in-plane roughness correlation length ξ ,
and the correlation between interfaces which depends on the out-of-plane correlation
length ξ⊥. With these parameters determined, then one can then make a quantitative
comparison to various growth models. The evolution and correlations of the interfa-
cial roughness with film thickness can be calculated and compared with the measured
values and provide insight into the underlying growth mechanisms [8.13, 41–47].

Figure 8.5 shows an example of the specular reflectivity and diffuse (rocking
curve) scans for a GaAs/AlAs multilayer that have been analyzed in terms of this
kind of model [8.48]. The specular scan shows the expected multilayer Bragg peaks
that are separated by ∆q = 2π/Λ. For the transverse or diffuse scan, the specular
scattering is seen as the sharp peak at qx = 0 with the diffuse scattering seen as broad
scattering at finite qx (the peaks in the diffuse scattering arise from dynamical effects
as discussed below). For single surfaces, in cases where detailed profiles has been
also studied by scanning tunneling microscopy (STM) or atomic force microscopy
(AFM) and the height-height correlation function reconstructed, the values for the
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Fig. 8.5. Specular (left) and transverse (right) scans for a GaAl/AlAs superlattice from [8.48].
The peaks in the specular scan arise from the multilayer periodicity. The transverse scans are
scans of qx where the qz values correspond to the 3rd and 4th Bragg peak of the specular scan

structural roughness parameters σ , ξ , and h are generally in good agreement with
values obtained from scattering studies [8.37, 38, 42, 43, 46]. It is to be noted that the
scanning microscopy techniques cannot be used to study multiple or buried interfaces
which however pose no problem for scattering methods. Limited comparisons with
transmission electron microscopy (TEM) have which can access buried interfaces
has also shown quantitative agreement with x-ray scattering [8.16, 26, 49].

As mentioned above, for many experiments with slits wide in the direction nor-
mal to the plane of scattering, one measures Sdiffuse

µν (q) integrated over the in-plane
component of q, i.e. qy. In this case it is easy to see from (8.13), that instead of the
2-D Fourier transform of

(
exp�q2

z Cij(r) − 1
)
, one measures only its 1-D Fourier

transform (with respect to x). An interesting variation to the above discussion arises
when there is appreciable interdiffusion across an interface yielding a ‘graded’ rather
than ‘abrupt’ interface. In such a case, σ2

s,i measured from specular reflectivity is
really the sum:

σ2
s,i = σ2

i (ID) + σ2
i (R) (8.14)

where σ2
i (ID) represents the smearing of the interface due to interdiffusion and σ2

i (R)
represents that due to roughness. However, the diffuse scattering still represents scat-
tering from roughness only, except that (8.13) has to be multiplied by “form factors”
for each interface representing the Fourier-transform of the graded density across the
interface in the z direction. Thus a combined measurement of the integrated diffuse
scattering and specular reflectivity can be used to separate the two components [8.14].

At this point we should stress that the kinematic approximation is only valid
when the scattering is weak and breaks down in the vicinity of total reflection or
strong Bragg reflections. In such a case, for specular reflectivity one can develop
a full dynamical theory by using well-known iterative or matrix methods as are used
for discussing the optical properties of compound films. Such methods are usually
formulated without including roughness at the interfaces, which can then be included
as an extra Debye-Waller-like factor multiplying the reflectivity of each interface or
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by fine slicing of the graded (x, y)-averaged scattering amplitude density representing
the rough interface . To extend this approach to achieve a more accurate calculation of
the diffuse scattering, one may use the so-called Distorted Wave Born Approximation
(DWBA) [8.11].

In this approximation, the matrix element
〈
kiµ

∣∣ T |kfν〉 is the scattering matrix
element between the appropriate states for a smooth surface plus the matrix element
of the difference between the scattering amplitude density of the rough surface and that
of the smooth surface evaluated between the actual eigenstates of the smooth surface
problem (i.e. incident plus reflected and transmitted beams). Details of this method
for a single interface are given in [8.11] and the multiple interfaces in [8.35, 48, 50].
The main results of the DWBA for the diffuse scattering from a single interface with
no magnetic component is given by:

Sdiffuse
µν (q) = A

16π2

∣∣e∗µ · eν

∣∣2 ∣∣k2
0(1 − n2)

∣∣2 ∣∣∣T(
−→ki

)
|2
∣∣∣T(

−→kf )

∣∣∣2 S(qt) (8.15)

where k0 is the magnitude of the incident wave vector, n is the refractive index
of the medium, A is the illuminated surface area, T(

−→
ki ) is the Fresnel transmission

coefficient for a smooth interface for incident wavevector
−→ki and similarly for T(

−→kf ),
qt is the wavevector transfer in the medium as opposed to free space, i.e. allowing
for for refractive effects. Note that qt may be complex or even purely imaginary (as
is the case when the wave in the medium is purely evanescent). S(qt) is given by:

S(qt) = exp�− 1
2σ2

S (q2
z,t + q∗2

z,t) ∣∣qz,t

∣∣2
∫∫

d2r exp
[−iq// · r

]
× (

exp[|qz,t |2CS
j (r)] − 1

)
. (8.16)

For multiple interfaces we need to know the transmission and reflection coef-
ficients for specular reflection at each interface (obtained from the corresponding
specular calculations) and one obtains:

Sdiffuse
µν (q) = A

16π2

∣∣e∗µ · eν

∣∣2 N∑
i, j=1

[
k2

0(n
2
i − n2

i+1)
] [

k2
0(n

2
j − n2

j+1)
]

×
3∑

m,n=0

1

(qi+1
z,m )(q j+1

z,m )∗
exp

[
−1

2
σ2

j (q
i+1
z,m )2

]
exp

[
−1

2
σ2

k (q j+1
z,n )∗2

]
×

∫∫
d2r exp[−iq// · r]( exp[(qi+1

z,m )(q j+1
z,n )∗CS

ij(r)] − 1
)

(8.17)

where i, j denote the layers in the multilayer running from 1 to N (N defining the
substrate), ni is the refractive index for the ith layer and qi

z,m (m = 0−3) are the z
components in layer i defined as follows

−→q i
0 = −→k i

2 −−→k i
1; −→q i

1 = −→
k′ i

2
−→
k′ i

1; −→q i
2 = −→k i

2
−→k i

1; −→q i
3 = −→

k′ i
2
−→
k′ i

1; (8.18)
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In (8.13),
−→k i

1,
−→k i

2 are the wavevectors of the transmitted and reflected waves in

layer i, while
−→
k′ i

1,
−→k ′i

2 represent the wavevectors of the corresponding time-inverted
states.

In general, the DWBA provides a good description of the diffuse scattering and
explains additional structure in the diffuse scattering not accounted for in the Born
Approximation. This additional scattering appears as peaks or dips in transverse
scans i.e. rocking curves or scans through the specular peaks with only the in-plane
component of q being varied (see Fig. 8.5 for example). These features occur when
either of the angles which the incident or outgoing beams makes with the surface (θi

or θf respectively in Fig. 8.3) is at the critical angle for the total reflection (in which
case the peaks are know as “Yoneda wings” [8.51]) or is at an angle for multilayer
Bragg reflection [8.52]. The physical explanation of the Yoneda wing peaks is that
the incident and reflected beams at the surface are in phase at the critical angle for
total reflection, resulting in a 2-fold increase in the magnitude of the electric field
at the surface and thus a fourfold increase in the diffusely scattered intensity. At
angles where θi or θf are set for multilayer Bragg reflections, the X-ray wavefield in
the multilayer has the form of standing waves with the nodes or antinodes moving
rapidly through the interfaces as a function of θi or θf, thus giving rise to sharp
structure in the diffuse intensity (see Fig. 8.5).

8.2.3.3 Magnetic Scattering

Let us go back to the Born approximation expressions and now include the resonant
magnetic scattering. This means that the sum over i, j in (8.10) and (8.11) sum over
both the chemical and magnetic scattering. The polarization states of the photon are
taken into account in the factors (∆ f )i

µν. In evaluating the latter, it is often convenient
to neglect the term in (8.5) which is much smaller than the others and rewrite (8.5)
in the form

fµν = A[−→e ∗(ν) · −→e (µ)] − iB[−→e ∗(ν) ×−→e (µ)] · m̂ (8.19)

where

A = f0 + 3λ

8π
[F11 + F1−1] and B = 3λ

8π
[F11 − F1−1] . (8.20)

We can then write the explicit expressions for the scattering for important special
cases. For σ → π scattering process (where the incident photon polarization −→e (µ)

is parallel to the surface and the scattering photon polarization is rotated by 90◦),
there will obviously be no contribution from the first term (i.e. no charge scattering)
and we obtain:

Sdiffuse
µν (q) = A

q2
z

∑
i, j=m

[
(∆g1)

∗i(∆g1)
j] exp

[−iqz(z̄i − z̄ j)
]

exp

[
−1

2
q2

z (σ
2
m,i + σ2

m, j)

]
×

∫∫
d2r exp

[−iq// · r
] (

exp
[
q2

z − CM
ij (r)

]− 1
)

(8.21)
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and

Rσπ(q) = 16π2

q4
z

∑
i, j

[
(∆g1)

∗i(∆g1)
j] exp

[−iqz(z̄i − z̄ j)
]

× exp

[
−1

2
q2

z (σ
2
m,i + σ2

m, j)

]
(8.22)

where i, j = m in the sum defines a sum over magnetic interfaces only. (∆g1)
i is

the discontinuity in the quantity [nm B(k̂f · m̂)] going across the ith interface in the
positive z direction, where nm is the number density of resonant magnetic atoms, B
is defined in (8.20), k̂f and m̂ are unit vectors in the direction of

−→kf and the average
magnetization in the layer, respectively. σ2

m,i is the mean square magnetic roughness
of the ith interface and Cij(r) is the correlation function defined in (8.4) for deviations
from the magnetic interface i, j. From the definition of (∆g1)

i , it can be seen that
components of the magnetization perpendicular to the plane of scattering will not
contribute to (8.21) and (8.22) and that for grazing angles of incidence and scattering,
the biggest contribution comes from the components of the magnetization in the plane
of the surface and also in the plane of the scattering, i.e. along the x-axis (Fig. 8.3).
Similar expressions can be written down for Sdiffuse

πσ (q) and Rπσ (q) except the (∆g1)
i

now stands for the discontinuity in the quantity [nm B(k̂f · m̂)] across the ith interface.
For circularly polarized incident photons without using any polarization analy-

sis of the scattered radiation, we obtain for the difference in the cross-sections or
reflectivities for (+) and (−) circular polarization, the expression

∆Sdiffuse(q) = A

q2
z

∑
i=s, j=m

[
(∆g2)

∗i(∆g3)
j] exp

[−iqz(z̄i − z̄ j)
]

× exp

[
−1

2
q2

z (σ
2
s,i + σ2

m, j)

] ∫∫
d2r exp

[−iq// · r
]

×
(

exp
[
q2

z − CS,M
ij (r)

]
− 1

)
+ complex conjugate (8.23)

and

∆R(q) = 16π2

q4
z

∑
i=s, j=m

[
(∆g2)

∗i(∆g3)
j] exp

[−iqz(z̄i − z̄ j)
]

× exp

[
−1

2
q2

z (σ
2
s,i + σ2

m, j)

]
+ complex conjugate (8.24)

where the sum over i = s, j = m denotes i is to be summed over only structural
interfaces and j is to be summed over only magnetic interfaces. (∆g2)

i is the dis-
continuity in the quantity [Nnr + nm A] across the ith interface going in the positive
z direction where Nnr is the number density of non-resonant atoms times their scat-
tering factors and A in defined in (8.20). (∆g3)

i is the discontinuity in the quantity
[nm B{(k̂f · m̂) + cos(θi + θf)(k̂i · m̂)}] across the jth interface. From the above ex-
pressions, we see that pure charge scattering is again absent from ∆Sdiffuse(q) and
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Fig. 8.6. Resonant diffuse scattering from a [Gd(53.2 Å)/Fe(36.4 Å)]15 multilayer with the
photon energy to the Gd L3 edge at 7245 eV [8.54]. Measured sum [(I+ + I−), (a)] and
difference [(I+ − I−), (b)] of opposite photon helicity rocking curve data (circles) at the

second (qz = 0.147 Å
−1

) and the third (qz = 0.215 Å
−1

) multilayer Bragg peaks. The lines
represent the dynamical calculations in the DWBA and explain well the anomalous scattering
features indicated by the arrows. The fit allows one to extract the interfacial roughness and the
correlation between the charge and magnetic roughness

∆R(q), and that ∆Sdiffuse(q) depends only on the cross-correlation function CS,M
ij (r)

between the structure and magnetic roughness fluctuations, i.e. if there was no corre-
lation between the magnetic and structural interfaces this term would vanish [8.32].
The approach can be extended to include magnetic scattering with the DWBA (the
magnetic analog to (8.13)) as described in [8.53] and [8.54] and is applied to quantify
the diffuse magnetic scattering from a Gd/Fe multilayer in Fig. 8.6.

From the above discussion it is clear that magnetic x-ray scattering provides
considerable opportunity to directly characterize the magnetism in thin films and at
surfaces and interfaces [8.20, 21, 30–33]. In addition to characterizing the magnetic
roughness, it can also characterize domain structures that can be viewed as a type of
magnetic roughness and incorporated into the definition of the magnetic correlation
function [8.31–33, 55]. However, it also points out the need to control the polarization
of both the incoming and scattered radiation. Techniques for doing this are increas-
ingly common at synchrotron facilities and open the opportunities for applying these
techniques to a variety of thin film and nanostructured systems. The above discussion
also points to the need to understand the source of the scattering (magnetic, charge,
or interference of the two). This can, in part be achieved by analysis of the polar-
ization as well as the energy dependence of the scattering. The energy dependence
of the charge and magnetic scattering factors in (8.2) typically has different spectral
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features [8.30, 33]. Understanding the energy dependence of the scattering is partic-
ularly important since the measurements are performed at resonant edges to enhance
the magnetic scattering where there are other magneto-optical and absorption effects
that are also quite strong and can also affect the measured scattering curves [8.30].

8.3 Wide-angle Diffraction Measurements of Layered Structures

8.3.1 Introduction

Wide-angle diffraction measurements are performed in similar scattering geometries
but at higher q values (q � 2π/a) than for reflectivity measurements and the scat-
tering is sensitive to the atomic order (both structural and magnetic). This sensitivity
providing complementary information on the structure often at very different length
scales when compared to reflectivity measurements which results in important differ-
ences in interpreting wide-angle diffraction scans. At higher q values the scattering
arises from all the atoms in the structure and not just the interfaces as encountered in
reflectivity measurements. The atomic structure within the layers and how the atomic
structure propagates across the interface are both important to the scattered intensity
(in contrast to the reflectivity which is insensitive to the structure within the layer).
A trivial example that highlights this difference is comparing a multilayers made
up of amorphous layers compared to one consisting of crystalline layers. Assuming
similar interface morphologies, the two multilayers would have indistinguishable
reflectivity scans whereas the amorphous multilayer would not contribute any wide-
angle diffraction since it only has long-range chemical order from the layering but
no long-range crystalline order. A similar effect occurs in multilayers where one of
the layers is amorphous [8.12] or an amorphous interfacial compound forms at the
interface [8.56]. Again, the long-range crystalline order is disrupted and the wide-
angle diffraction is only sensitive to order within the layers but not to the multilayer
structure.

For a multilayer consisting of crystalline layers as shown schematically in Fig. 8.7
the scattering will become sensitive to the multilayer structure [8.57] where the
scattering averages coherently only over regions set by the crystalline coherence
length of the sample. This length is often less than the coherence of the x-ray
beam where the coherence is limited by grain boundaries for a polycrystalline films,
defects within the layers, disorder introduced at the interfaces or fluctuation at the
interfaces. In general this coherence length is significantly less than that that probed in
reflectivity measurements or imaging techniques such as atomic force or transmission
electron microscopy [8.58, 59]. For a polycrystalline multilayer with lateral grain
sizes of ∼ 10−20 nm, this sets the lateral coherence lengths whereas reflectivity
measurements are not sensitive to the granular structures and can measure grain-to-
grain variations in the interface position. This latter measurement of the interfacial
roughness may differ from that determined from wide-angle diffraction.

Another difference in comparing wide-angle and reflectivity measurements is that
most thin film and multilayer samples are characterized by a distribution in the angle
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dA

dB

Λ

Fig. 8.7. Schematic representation of a multilayer structure on a substrate with a periodicity
of Λ. An expanded view of a single bilyer (one period) assuming crystalline layers with no
disorder. (below) Schematic representation of a two multilayer periods with random thickness
fluctuations

the atomic planes make with the surface and described as a mosaic crystal [8.60]. This
coupled with the limited lateral coherence of the atomic structure results, in general,
that the scattering cannot be separated into a specular and diffuse components and
the scattering is treated as the integrated intensity (specular+ diffuse). As such,
the in-plane length scale of the interfacial roughness is not accessible through q//

resolved diffuse scans as done in reflectivity measurement. Therefore most wide-
angle diffraction models are one-dimensional and ensemble average lateral variation
in the interfaces and layer structures. Thus, in most cases an equivalent measure
to the height-height correlation function determined in diffuse reflectivity scans is
not obtainable from a wide-angle diffraction measurement [see [8.61] and [8.62] for
examples where this is not the case].

8.3.2 Wide Angle Diffraction Measurements

The scattering geometries used for wide-angle diffraction are the same as those
described in Fig. 8.3 but the scattering is not nicely separated into specular and diffuse
components. The scattering geometries are chosen such the scattering wavevector q
is commensurate with a crystallographic direction of the lattice. The most common
scan has the q normal to surface and probes the crystalline and multilayer order
normal to the layers (again resulting in multilayer Bragg peaks). A rocking curve
scan about this direction gives the mosaic spread of the crystallites that make up the
sample. The other common scan is the grazing incident x-ray scan (GIXS) where θi
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and θf are ∼ few degrees and are just above the angle for total external reflection.
φf and the sample are rotated (with θi and θf fixed) such that scattering wavevector
is nearly in plane and thus probes different in-plane directions of the samples. In
this geometry the scattering measures the in-plane lattice spacing of the two layers
independently avoiding any interference between the layers. From the positions of
the diffraction peaks, the in-plane strain of the layers and the epitaxial relations of
the sample can be directly determined.

8.3.3 Scattering Formalism

We will focus on the scattering normal to surface of a multilayer although the results
are easily extended to thin films. In addition, we will describe the scattering in the
Born Approximations since most magnetic thin films and multilayers do not have
sufficient crystalline perfection that multiple scattering needs be considered. This
assumption holds as long as one avoids regions of large reflectivity such as critical
angles or substrate reflections. We will first discuss the expected scattering intensity
without disorder and then extend this formalism to discuss this inclusion of disorder.

8.3.3.1 Without Disorder

As was discussed earlier the differential cross-section in the Born Approximation
is obtained by summing (8.1) over all atoms in the system with the appropriate
phase factors and taking the square of the modulus. For scattering normal to surface
(qx = qy = 0) this sum reduces to a sum over the atomic planes normal to the
surface [8.57]:

S(qz) =
∣∣∣∣∣∣
∑

j

f j exp
(
iqzz j

)∣∣∣∣∣∣
2

(8.25)

where z j is now the position of the jth atomic layer (compared to the jth interface
in the reflectivity modeling) and f j is the atomic scattering factors (8.5) averaged
laterally over the layers [8.57]. If one includes the model for a multilayer assuming
that each bilayer (layer A and B of the multilayer) repeats with the periodicity of Λ

(shown schematically in the top of Fig. 8.7) then (8.25) reduces to

S(qz) =
∣∣∣∣∣

M∑
n

Fn exp (iqznΛ)

∣∣∣∣∣
2

(8.26)

where M is the number of bilayer repeats and Fn is the scattering amplitude of a single
bilayer given by

Fn =
∑

i

fi exp (iqzzi) (8.27)
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where the summation is over a single bilayer period. If one assumes that each bilayer
repeats exactly then (8.26) reduces to the simple equation:

S(qz) = |F|2 1 − exp (iqz MΛ)

1 − exp (iqzΛ)
(8.28)

where |F|2 is the square of the scattering amplitude of a single bilayer and the second
term is the interference term that for large M results in Bragg peaks at qz = 2πn/Λ

just as observed in reflectivity measurements. If we define the average lattice spacing
d̄ = Λ/N where N is the average number of atomic planes in a unit cell (single
multilayer bilayer) then the Bragg peaks can be indexed to [8.63]

qz = 2π

d̄
± 2πn

Λ
. (8.29)

An example is shown in Fig. 8.8 for a textured Mo/Ni multilayer that displays
a series of equally-spaced diffraction peaks whose separation is determined by ∆q =
2π/Λ. Thus for a multilayer the peak positions are determined solely by d̄ and
the period Λ (the peak position do not depend on the lattice constant of either
material but on the average lattice constant). The atomic structure within the bilayer
determines the peak intensity through |F|2. The out-of-plane coherence length can
be estimated from the line width. By fitting the measured peaks intensities to model
bilayer structures one can extract the average bilayer structure. This type of structural
characterization is commonly used for determining the structure of bulk crystals using
the Rietveld refinement procedure [8.64]. The structure of a single unit cell is modeled
and the relative intensities of the diffraction peaks are determined from the structure
factor of the unit cell and the line shapes are fit to a model-independent line shape.

Fig. 8.8. Wide-angle diffraction scan from a textured Mo/Ni multilayer (circles) [8.63]. The
thin solid line is a calculation assuming no disorder and the bulk structure, the thick solid line
shows the refined structure
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This approach can also be used to estimate the average structural properties of the
multilayer where the peak positions are determined from (8.29) and peak intensity
by (8.28). If one assumes that the bilayer consists of layers A and B which are
composed of NA and NB atomic layers with lattice spacing dA and dB and scattering
amplitudes f A and fB, respectively then F is given by:

F =
NA−1∑
n=0

f A exp (iqzndA) + exp (iqztA)

NB−1∑
m=0

fB exp (iqz (mdB)) (8.30)

where tA is the thickness of layer A. One can easily include the effects of strain
by varying the lattice spacing within the unit cell (assumed constant in (8.30))
or include interdiffusion by taking a weighted average of fA and fB as well
as dA and dB for the atomic planes near the interface to mimic the composi-
tional gradient across the interface [8.65–67]. Where this approach is lacking is
that it does not include the effects of disorder which requires not only deter-
mining the average structure but the statistical deviation about the average struc-
ture.

8.3.3.2 With Disorder

Including the role of disorder in modeling the wide-angle scattering has a long history
where a variety of approaches have been employed [8.63, 68–75]. The difficulty is that
there are many types of disorder that are cumulative that lead to a loss of long-range
order such as deviations from layer-by-layer growth, misfit dislocations, or interface
fluctuations from lattice mismatches. To incorporate these effects most modeling has
been based on the approach of Hendricks and Teller [8.76] that treats disorder as
a random sequencing of layers where either the scattering power of the layers or
the relative phase between layers varies randomly as one moves vertically through
the structure. For instance if there are variations of the layer thickness (either from
variations in the growth rates or roughness of the layers), then the number of atomic
planes that characterize a layer will vary (at least locally) from one layer to the next.
This is shown schematically in Fig. 8.7 where there are random steps in the layers
that result in local variations in the layer thicknesses and the local periodicity Λ. To
include these effects the integrated scattering intensity Sint(q) (specular plus diffuse)
needs to calculated as pointed out in [8.68] and is given by ensemble averaging the
intensity of all the possible sequences of different layer thicknesses:

Sint(qz) =
〈∣∣∣∣∣

M∑
n

Fn exp

(
iqz

n−1∑
Λn

)∣∣∣∣∣
2〉

(8.31)

where Fn and Λn are the structure factor and bilayer period of the nth bilayer,
respectively. Equation (8.31) calculates the scattering intensity from each possible
sequence and then averages these intensities. The specular intensity alone would be
given by averaging the scattering amplitudes of each sequence and then squaring the
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average amplitude to calculate the scattered intensity:

Sspecular(qz) =
∣∣∣∣∣
〈

M∑
n

Fn exp

(
iqz

n−1∑
Λn

)〉∣∣∣∣∣
2

. (8.32)

In (8.31) and (8.32) both the scattering amplitude Fn and period Λn is allowed to
vary from layer to layer and the brackets 〈 〉 represent the ensemble average over all
possible sequences. The diffuse scattering alone is given by Sint − Sspecular. In general,
the average can be done numerically where various structures are generated randomly
and the ensemble averaged intensity calculated. However, for most data analysis an
analytical expression proves invaluable. This can be achieved under the assumption
that fluctuations from the average layer structure are cumulative (i.e. a phase error
in one layer perturbs all subsequent layers) but are statistically independent for each
layer. That is, the probability of a given Fn or Λn does not depend on Fn−1 or Λn−1.
Although this may seem rather constraining it has proven applicable to a wide variety
of multilayers systems (there are examples where these assumptions clearly don’t
hold [8.77]). Under these assumptions it can be shown that (8.31) and (8.32) reduces
to [8.63, 73, 78]:

Sint(qz) = M
〈
F∗F

〉+ 2Re [〈F〉ΦΨ/T ] (8.33)

Sspecular(qz) =
∣∣∣∣1 − T M

1 − T
〈F〉

∣∣∣∣2 (8.34)

where Re refers to the real component within the brackets and 〈F〉 and 〈F∗F〉 are
the ensemble average over all possible bilayer scattering amplitudes and intensities,
respectively. The remaining terms are given by:

T = 〈exp (iqzΛ)〉
Φ = 〈

exp (iqzΛ) F∗〉 (8.35)

Ψ = M − (M + 1)T + T M+1

(1 − T)2
− M

where the brackets in T and Φ ensemble average over all possible bilayers. Thus, the
ensemble averages of all possible multilayer sequences can be calculated from the
ensemble averaged bilayer properties (〈F〉, 〈F∗F〉, T , and Φ) and (8.33) and (8.34).

This approach describes averaging different regions of the sample that scatter
incoherently to achieve the intensity. One can extend this approach and assume that
some fluctuations occur within the lateral coherence of the system where the scattering
amplitude is averaged. The final intensity average (8.31) averages the square of these
locally averaged scattering amplitudes. Again assuming statistically-independent
fluctuations it can be shown that the scattered intensity reduces to a weighted sum
of (8.31) and (8.32) where the relative weight depends on the number of fluctuations
within the coherent region and includes the roughness of the substrate [8.75, 79].
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These expressions can be made explicit for a multilayer where the unit cell has
layers A and B that can be described by a scattering factors FA and FB and thicknesses
tA and tB, respectively. The ensemble averaged parameters become:

〈F〉 = 〈FA〉 + TA 〈FB〉〈
F∗F

〉 = 〈
FA

∗FA
〉+ 〈

FB
∗FB

〉+ 2Re [ΦA 〈FB〉] (8.36)

Φ = TBΦA + ΦB

T = TA TB (8.37)

where the fluctuation are averaged over the individual layers A and B where ΦA =〈
exp (iqztA) F∗

A

〉
and TA = 〈exp (iqztA)〉 with similar terms for layer B.

The type of roughness will depend on the multilayer structure but can be generally
separated into continuous and discrete contributions. Discrete roughness is associ-
ated with variations in the layer thickness by an integer number of atomic layers
resulting from steps or non-uniform growth modes (Fig. 8.7). For this case the layer
thickness varies by discrete values set by the lattice spacing. To ensemble average
these fluctuations require calculating the parameters FA, FA

∗FA, exp(iqztA)FA
∗, and

exp(iqztA) for each possible number of atomic planes NA j and add them weighted
by there probability of occurrence (and similarly for layer B):

〈FA〉 =
∑

j

P(NA j)FA(NA j)

〈
FA

∗FA
〉 = ∑

j

P(NA j)FA(NA j)F∗
A(NA j) (8.38)

ΦA =
∑

j

P(NA j) exp(iqtA j)F∗
A(NA j)

TA =
∑

j

P(NA j) exp(iqtA j) (8.39)

where P(NA j) is the normalized probability of a layer A with NA j number of atomic
planes and tA j is the corresponding layer thickness, and the sum is over all possible
values of NA j . FA(NA j) is the scattering amplitude calculated for layer A for NA j

number of atomic planes (first term in (8.30)) which can include the effects of strain
(varying lattice spacing) or interdiffusion (varying scattering amplitude and lattice
spacing). There are similar terms for layer B.

Continuous roughness describes atomic level roughness that can vary continu-
ously and can arise from dislocation, and incommensurate lattice mismatch interface,
and is also used to describe thickness variation of an amorphous layer where the
thickness is not determined by the lattice spacing [8.68]. A simple way to include
continuous roughness is to assume that the layer thickness of the jth layer tA j (or
equivalently the interfacial lattice spacing between layers) fluctuates about the aver-
age thickness by δtA j . Assuming δtA j is characterized by a Gaussian distribution of
width c and averaging the appropriate parameters by integrating over all possible δtA j



308 E.E. Fullerton and S.K. Sinha

one arrives at an additional term exp(−q2c2/2) that is multiplied to TA and ΦA. This
term limits the phase coherence in the multilayer structure and tends to broaden all the
diffraction peaks. It can be easily shown that for c values which approach the lattice
spacing of the material (since q ∼ 2π/a), long-range coherence is lost. This has been
used to explain why long-range coherence is not observed in crystalline/amorphous
multilayers or multilayers that form amorphous interfacial layers [8.68]. In contrast
the role of discrete roughness is depends on the properties of the constituent materials
and can broaden some diffraction peak will other are relatively narrow as was first
pointed out by Hendricks and Teller [8.76].

These different roughness signatures allow them to be independently determined
from the diffraction scans. Fitting the scattering profile (both peak heights and line
widths) to general multilayer models refines both the average structure (lattice spac-
ings, layer thicknesses, interdiffusion) and well as the fluctuations about the average
structure (i.e. roughness). Such an approach is described in [8.63] for multilayers
and [8.74] for thin films. Examples are shown in Figs. 8.8 and 8.9 for textured
Mo/Ni multilayers. The calculated intensities in Fig. 8.8 were calculated using (8.28)
and (8.30) assuming the bulk lattice constant and fit to (8.33) allowing both discrete
and continuous disorder and lattice strains. The refined structure is able to repro-
duce the both the measured intensities as well as the peak profiles. The results of
the fitting determines the average lattice spacings and the fluctuations in the thick-
nesses (however, without any in-plane length scale of the fluctuations). Comparisons
to independent determinations of the structure have shown that this approach pro-
vides a quantitative measure of the structure [8.63, 80–82]. This same formalism has
been also been used for analysis of magnetic neutron scattering [8.83] using neutron
cross-sections instead of the atomic x-ray cross sections given in (8.2).

Shown in Fig. 8.9 are wide angle x-ray diffraction data and fits of a multilayer
similar to that shown in Fig. 8.8 (measured both about the Mo(110)/Ni(111) and
Mo(220)/Ni(222) reflections). In the (a) panels the multilayer was grown in the con-
ventional manner. In the (b) and (c) panels the thickness of the Ni and Mo layer,
respectively, was allowed to fluctuate during the growth process. As described origi-
nally by Hendricks and Teller, this type of disorder broadens some peaks more than
other [8.70]. In particular, the variation in the Ni layer thickness ((b) panels) cause
increased broadening of the peak that are more weighted to the Mo lattice position
while fluctuations in the Mo layer thicknesses ((c) panels) results in broadening of
the peaks more associated with the Ni layer. This rather counter intuitive finding
results from the fact that variations in the Ni layer thickness has the effect of altering
the interference between adjacent Mo layers and tends to broaden these peaks. This
example also points out the importance of including disorder when modeling diffrac-
tion data. The multilayer in panels (a)–(c) have the same average structure (lattice
constants, average thicknesses etc) but have varying peak intensities resulting from
the disorder. The solid lines are fitted curves that reproduce the amount of fluctuations
in the layer thickness and confirm that they have the same average structure.
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Fig. 8.9. Wide-angle diffraction scans from textured Mo/Ni multilayers (circles) and fits
(line) [8.63]. The arrows indicate the expected position of the Mo and Ni peaks. The sample
in (a) is the nominal structure. The sample in (b) and (c) were deposited with fluctuations in
the Ni and Mo layer thicknesses, respectively

8.4 Outlook

Both reflectivity and off-specular diffuse scattering at small angles and diffraction at
wide angles are becoming standard techniques for characterizing thin film and multi-
layer structures with there applications being helped by the availability of programs
for fitting of the scattering profiles [8.63, 84, 85]. It appears that extending these ap-
proaches to magnetic scattering, coupled with other more direct imaging methods,
such as x-ray absorption microscopes and photoemission electron microscope [8.7]
should gives additional information on the magnetic order and the correlations of
magnetic and structural interfacial roughness. Resonant scattering in addition to pro-
viding magnetic contrast also give additional structural information by changing (or
enhancing) the contrast between layers. This ability to alter the contrast allows the
study of films that typically have low contrast for x-rays [8.86], provide element
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specificity and a unique determination of the structure [8.87], and allow for a Fourier
reconstruction of the electron density [8.88].

The previous discussion focused on the statistically averaged properties. However
there are techniques being developed that provide direct structural and magnetic
information via scattering with coherent x-rays also known as speckle [8.31, 89–97].
Such experiments are common in the visible because lasers provide a remarkable
coherent source of photons. Although the best current third-generation undulator
x-ray sources are much less coherent than visible lasers, they are still sufficient for
many experiments [e.g. [8.89–92] for charge scattering and [8.93–97] for magnetic
scattering]. The coherence is achieved by placing a pinhole in the incident beam to
limit the spatial extent of the beam to be within the lateral coherence of the x-ray
beam (∼ tens of microns). For an undulator synchrotron source one obtains typically
a coherent flux of ∼1012 photons/sec through the pinhole. The coherence of the
x-ray source provides the opportunity to reconstruct the real space image from the
speckle pattern [8.91], study the return point memory of magnetic domains with field
history [8.93, 96] and to observe fluctuations of magnetic domains [8.94].

This type of information should prove crucial to our understanding of many
magnetic properties of thin film systems, such as giant magnetoresistance, exchange
bias, magnetic anisotropy and coercive fields. Such measurements are still relatively
in their infancy at the time of writing, but we can expect a big increase in the number
of magnetic films studied at synchrotron sources over the next decade.
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