

Lecture Notes in Computer Science 3544
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Teruo Higashino (Ed.)

Principles of
Distributed Systems

8th International Conference, OPODIS 2004
Grenoble, France, December 15-17, 2004
Revised Selected Papers

13

Volume Editor

Teruo Higashino
Osaka University
Graduate School of Information Science and Technology
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
E-mail: opodis@ist.osaka-u.ac.jp

Library of Congress Control Number: 2005928959

CR Subject Classification (1998): C.2.4, D.1.3, D.2.7, D.2.12, D.4.7, C.3

ISSN 0302-9743
ISBN-10 3-540-27324-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-27324-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11516798 06/3142 5 4 3 2 1 0

Preface

The 8th International Conference on Principles of Distributed Systems
(OPODIS 2004) was held during December 15–17, 2004 at Grenoble, France.
It continued a tradition of successful conferences with friendly and pleasant at-
mospheres. The earlier organizations of OPODIS were held in Luzarches (1997),
Amiens (1998), Hanoi (1999), Paris (2000), Mexico (2001), Reims (2002) and
La Martinique (2003).

OPODIS is an open forum for exchange of state-of-the-art knowledge on
distributed computing and systems among researchers from around the world.
Following the tradition of the previous organizations, the 2004 program was com-
posed of high-quality contributed and invited papers by experts of international
caliber in this scientific area. The topics of interest were the theory, specification,
design and implementation of distributed systems, which include:

- peer-to-peer systems, cluster and grid-based computing
- fault tolerance and self-stabilizing systems
- real-time and embedded systems
- coordination and consistency protocols
- distributed and multiprocessor algorithms
- communication and synchronization protocols
- self-stabilization, reliability and fault tolerance
- performance analysis of distributed algorithms and systems
- specification and verification of distributed systems
- security issues in distributed computing and systems
- distributed collaborative environments
- location- and context-aware systems
- overlay network architectures

In response to the call for papers for OPODIS 2004, in total 102 papers in
the above areas were submitted from 28 countries from over the world. Each
paper was reviewed by three reviewers, and judged according to scientific and
presentation quality, originality and relevance to the conference topics. Then the
Program Committee selected 30 papers. The acceptance ratio was less than 30%.

Besides the technical contributed papers, the program included two exciting
invited talks: Prof. David Lee (Ohio State University, USA) and Dr. Joseph
Sifakis (Verimag, France). We really appreciate that these two distinguished
experts accepted our invitation to share with us their views of various aspects
of the field.

It is impossible to organize a successful program without the help of many
individuals. We would like to express our appreciation to the authors of the
submitted papers, Program Committee members and external referees. Fur-
thermore, we would also like to thank the OPODIS Steering Committee mem-

VI Preface

bers, who supervise and support the continuation of the event. We owe special
thanks to the Organizing Committee chair, Prof. Van-Dat Cung (ENSGI-INP
Grenoble), the publicity chair, Prof. Yi Zhang (Univ. of Birmingham, UK),
and Mr. Akira Uchiyama (Osaka Univ., Japan) for his assistance with the elec-
tronic submission and reviewing system. We also thank Prof. Marc Bui (Univ.
Paris 8/EPHE, France) for his support in the preparation of the conference
proceedings. Finally, we express one more special thanks to all the other Orga-
nizing Committee members for their precious efforts that contributed to making
OPODIS 2004 a successful conference.

December 2004 Teruo Higashino

With the support of

Laboratory of ENS Génie Industriel and INPGrenoble,
France

Laboratory of CNRS, IMAG, INPGrenoble, INRIA and
UJF, France

University of Osaka, Japan

Sponsors

Organization

Table of Contents

Invited Session I

Protocol System Integration, Interface and Interoperability
David Lee, Christine Liu, Mihalis Yannakakis . 1

Session I (Design of Distributed Systems I)

DART: Distributed Automated Regression Testing for Large-Scale
Network Applications

Brent N. Chun . 20

Testing Mobile and Distributed Systems: Method and Experimentation
Patrice Laurençot, Sébastien Salva . 37

A UNITY-Based Framework Towards Component Based Systems
I.S.W.B. Prasetya, T.E.J. Vos, A. Azurat, S.D. Swierstra 52

Session II (Ad-Hoc Networks and Mobile Agents)

Searching for a Black Hole in Tree Networks
Jurek Czyzowicz, Dariusz Kowalski, Euripides Markou,
Andrzej Pelc . 67

Fast Localized Delaunay Triangulation
Filipe Araújo, Lúıs Rodrigues . 81

Robust Topology Control Protocols
Sukumar Ghosh, Kevin Lillis, Saurav Pandit,
Sriram Pemmaraju . 94

A Scheme Encouraging Mobile Nodes to Forward Packets via Multiple
Wireless Links Aggregating System Between the Internet and Mobile
Ad Hoc Networks

Yosuke Ito, Hiroshi Mineno, Susumu Ishihara . 110

Session III (Grid and Networks)

A Protocol for Recording Provenance in Service-Oriented Grids
Paul Groth, Michael Luck, Luc Moreau . 124

X Table of Contents

Self-optimizing DHTs Using Request Profiling
Alina Bejan, Sukumar Ghosh . 140

Computing All the Best Swap Edges Distributively
Paola Flocchini, Linda Pagli, Giuseppe Prencipe, Nicola Santoro,
Peter Widmayer, Tranos Zuva . 154

SRF TCP: A TCP-Friendly and Fair Congestion Control Method for
High-Speed Networks

Masahiko Fukuhara, Fumiaki Hirose, Tomoya Hatano,
Hiroshi Shigeno, Ken-ichi Okada . 169

Invited Session II

Embedded Systems - Challenges and Work Directions
Joseph Sifakis . 184

Session IV (Security)

Comparison of Failures and Attacks on Random and Scale-Free
Networks

Jean-Loup Guillaume, Matthieu Latapy, Clémence Magnien 186

Firewall Queries
Alex X. Liu, Mohamed G. Gouda, Huibo H. Ma, Anne HH. Ngu 197

Session V (Distributed Algorithms)

Self-tuning Reactive Distributed Trees for Counting and Balancing
Phuong Hoai Ha, Marina Papatriantafilou, Philippas Tsigas 213

Optimal Resilience Asynchronous Approximate Agreement
Ittai Abraham, Yonatan Amit, Danny Dolev . 229

Lock-Free and Practical Doubly Linked List-Based Deques Using
Single-Word Compare-and-Swap

H̊akan Sundell, Philippas Tsigas . 240

Session VI (Self-stabilization)

A Dynamic Reconfiguration Tolerant Self-stabilizing Token Circulation
Algorithm in Ad-Hoc Networks

Hirotsugu Kakugawa, Masafumi Yamashita . 256

Table of Contents XI

Snap-Stabilizing Depth-First Search on Arbitrary Networks
Alain Cournier, Stéphane Devismes, Franck Petit, Vincent Villain . . . 267

A Self-stabilizing Link-Coloring Protocol Resilient to Byzantine Faults
in Tree Networks

Yusuke Sakurai, Fukuhito Ooshita, Toshimitsu Masuzawa 283

A Hierarchy-Based Fault-Local Stabilizing Algorithm for Tracking in
Sensor Networks

Murat Demirbas, Anish Arora, Tina Nolte, Nancy Lynch 299

Session VII (Design of Distributed Systems II)

The Quorum Deployment Problem
Seth Gilbert, Grzegorz Malewicz . 316

A Constraint-Based Formalism for Consistency in Replicated Systems
Marc Shapiro, Karthikeyan Bhargavan,
Nishith Krishna . 331

Analyzing Convergence in Consistency Models for Distributed Objects
Francisco J. Torres-Rojas, Esteban Meneses . 346

Session VIII (Sensor Networks)

Directional Versus Omnidirectional Antennas for Energy Consumption
and k-Connectivity of Networks of Sensors

Evangelos Kranakis, Danny Krizanc, Eric Williams 357

Secure Location Verification Using Radio Broadcast
Adnan Vora, Mikhail Nesterenko . 369

Sentries and Sleepers in Sensor Networks
Mohamed G. Gouda, Young-ri Choi, Anish Arora 384

Clock Synchronization for Wireless Networks
Rui Fan, Indraneel Chakraborty, Nancy Lynch . 400

Session IX (Task/Resource Allocation)

Task Assignment Based on Prioritising Traffic Flows
James Broberg, Zahir Tari, Panlop Zeephongsekul 415

XII Table of Contents

A Novel Distributed Scheduling Algorithm for Resource Sharing Under
Near-Heavy Load

Diego Carvalho, Fábio Protti, Massimo De Gregorio,
Felipe M.G. França . 431

Internet Computing of Tasks with Dependencies Using Unreliable
Workers

Li Gao, Grzegorz Malewicz . 443

Author Index . 459

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 1–19, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Protocol System Integration, Interface
and Interoperability

David Lee1, Christine Liu2, and Mihalis Yannakakis3

1 Department of Computer Sciences and Engineering, Ohio State University
2 Bell Labs Research China, Lucent Technologies

3 Department of Computer Science, Columbia University

Abstract. Heterogeneous network protocol systems are integrated together to
fulfill complex tasks and their interoperability is a major hurdle for the network
reliability and quality of services. We identify a new equivalence relation of
states that preserves the integrated system interface behaviors. Based on this
state equivalence we study the minimization of the system components with
respect to their interfaces and design an efficient polynomial time minimization
algorithm. We apply our technique to GMPLS protocols and obtain a
significant state space reduction. We discuss integrated protocol system
verification and interoperability testing with the minimized state system without
resorting to the global state space information.

1 Introduction

With the rapid growth of Internet, new protocols are being developed and integrated
into the existing network systems, such as GMPLS (Generalized Multi-Protocol Label
Switching, an IETF Standards for all optical network management and interface with
Internet, ATM network, and other user networks), OUNI (an OIF Standard for Optical
User Network Interface), and VoIP (Voice over IP). Heterogeneity is a prominent
feature of integrated network systems, and interoperability is ubiquitous and has
become a major hurdle for system reliability and quality of services. When two or
more system components are integrated to interface with each other to perform a
required task the capability to operate as desired is called interoperability, which is an
essential aspect of the correctness of integrated protocol systems. Interoperability
testing is to check the interfaces and interoperations among integrated system
implementations, and verification is to analyze the system design for integration and
interfaces. The focus of both analyses is the interface among the integrated system
components.

However, the number of states of integrated systems is often too large for a formal
analysis due to the well-known state explosion problem. For our application, we want
to reduce the state space by hiding the internal behaviors of the components as much
as possible, while preserving completely the system interfaces. More formally, given
a component or a subsystem, some of whose transitions are interface transitions while
the rest are internal transitions, we want to obtain a reduced system that: (1) Has the

2 D. Lee, C. Liu, and M. Yannakakis

same interface transitions, and (2) Has the same sequences of interface transitions, as
the original system. Although this may appear to call for minimization of a
nondeterministic system (because of the internal transitions, the interface behavior of
the system may be in general nondeterministic), a problem that is known to be
computationally hard, we show that this is not the case here. After an elimination of
internal states of the system without affecting its interface behaviors, we define an
appropriate state equivalence relation and present an efficient algorithm to compute it.
Based on this state equivalence we can reduce the overall state space while preserving
exactly the integrated system interfaces. This state space reduction facilitates formal
verification and interoperability testing of integrated systems. We design and
implement a polynomial time algorithm for the state space reduction, discuss its
applications to integrated system verification and interoperability testing, and report
the experimental results on GMPLS protocols.

In Section 2 we give some background on the model for integrated protocol
systems, define interface graphs and state formally the problem. In Section 3 we
study interface graphs, define state interface equivalence, and analyze its properties.
In Section 4 we present a polynomial time algorithm for state equivalence and
minimization of interface graphs, and its extension to minimization of integrated
systems. The algorithm is applied to LMP of GMPLS for state space reduction and
the experimental results are reported in Section 5. The properties of the minimized
interface graphs are further studied in Section 6 for the applications to the verification
and interoperability testing of integrated systems.

2 A Formal Model

A protocol system consists of a set of communicating components. Each component
is represented by a finite state transition system or a finite state machine, i.e., it
consists of a set of states, one of which is designated as the initial state, and a set of
transitions labeled by actions, or by inputs and outputs. Some of the transitions
involve interaction with other components (eg. sending or receiving messages) and
are called interface transitions, while others represent internal local actions of the
components and are called internal transitions. For the purposes of the problems
studied in this paper, it does not matter whether transition systems or finite state
systems are used as the underlying model; the issues and the algorithms are the same
in both cases.

Example 1. The Link Connectivity Verification (LCVA) module of the active node of
the Link Management Protocol (LMP) of GMPLS is shown in Fig. 1. It contains 5
states; the initial state is Down. Each transition is labeled by a pair a/b where a is the
event (input) and conditions that cause the transition to occur, and b is the effect of
the transition (output or actions that take place as a result of the transition). For
example, the transition from state Test1 to state Test2 causes the sending of a message
Testmsg, as indicated by the label !Testmsg. The label on the arrow from Test2 to
Down is a shorthand for two transitions: one transition takes place if a message
TestStatusFailure is received, and the other transition takes place if the Timerexpiry

 Protocol System Integration, Interface and Interoperability 3

event occurs, a local internal event of the component. This component has 3 interface
transitions: the abovementioned two transitions and the transition from Test2 to
Up/Free. The other transitions are all internal transitions.

Down

Test2

Up/
Free

Up/
Alloc

-;Trigger to send Test msg/-; -

?TestStatusSuccess; -/-; -

-; -/!Test msg ; -

linkDeAlloc;-/- ; -

?TestStatusFailure msg | Timer expiry; -/-; -

LinkOK; -/-; -

Fault localized/;-/-; -

linkAlloc; -/- ; -

LinkFailure; -/- ; -
LinkSummary; not match/-; -

Trigger to send Test msg; -/-;-

Test1

DCRetranTimer; -/- ; -

Fig. 1. A module from LMP of GMPLS

The components of a protocol system are integrated together to fulfill required
tasks. The joint behaviors of the system are represented by the composition of the
different components formed by taking their Cartesian product in the usual way [6,7].
The set of states is the Cartesian product of the components’ state sets; the initial state
is the tuple of the initial states. A transition of the composed system corresponds
either to a local (internal) transition of a component (i.e. all local states remain the
same in this case except for that of the component that makes the local transition), or
to the simultaneous execution of matching interface transitions of different
components, eg corresponding to the sending and receiving of a message. (A model
may include separate components for the channels or other communication media, to
separate the occurrence of the sending of a message with the reception at the other
end.) We are interested only in the portion of the system that is reachable from the
initial state.

The Cartesian product often leads to the familiar state explosion problem; the
number of states of the product is too large. To cope with this problem various
techniques have been developed in the areas of system verification, validation and
testing. One can use heuristics to prune search state space and random walks for
efficient exploration yet without recording the searched states. Symbolic
representation of the state transition graphs and efficient algorithms for their
manipulation avoid explicit construction of the state graph of the concurrent system.
Concurrent software tends to be less structured and asynchronous, and partial order
reduction reduces the number of interleaving sequences for analysis. Compositional
reasoning exploits the modular structure of complex systems and conducts analysis
on the components separately of a decomposed system with an assume-guarantee
reasoning. Abstraction deals with data portion of systems to reduce the complexity of
model checking. On-line minimization reduces transition system state space on-the-fly
without constructing the whole state space [1,12] and compositional minimization

4 D. Lee, C. Liu, and M. Yannakakis

performs stepwise bisimulation reduction steps [4]. Protocol systems often contain
replicated components, and this system symmetry is exploited to reduce the state
explosion. Induction analyzes families of parameterized protocol systems by
providing an invariant process that represents a large number of systems with
different parameter values. Detailed references can be found in [2,7]. For program
testing, [11] uses an incremental reachability graph for test sequence generation for
concurrent programs. Then a graph reduction is applied with path preservation (for
test generation), which includes: collapse, τ-state elimination, and prune.

For the verification and interoperability testing of integrated systems, the focus is
on the interface transition sequences, which characterize the system interfaces.
Observing that often many of the transitions are internal transitions, we investigate
state space minimization such that: (1) The interface transition sequences remain
unchanged; (2) State and path information can be either preserved or retrieved (yet
without blowing up the search space) for verification of integrated system properties
and for constructing executable interoperability testing sequences. We can perform
such minimization to the individual components at the outset before composing them,
and then continue minimizing partial products iteratively as they are being computed.

2.1 System Integration and Interface Graphs

Consider a graph G of a transition system that may be an individual component or a
product of several components. A subset of the transitions is specified as interface
transitions while the rest as internal transitions. Let Σ be the set of interface
transitions. The behaviors of the system can be represented by all the possible
executable sequences (scenarios) t from the initial state initv of the system graph G.

Practical experiences show that integrated system interoperability problems manifest
themselves when components are interfacing with each other, that is, while interface
transitions are executed. Change internal transitions to τ-moves (“silent” or
“invisible” transitions). Such a graph is called an interface graph. In terms of
revealing interoperability problems, two scenarios with an identical interface
transition sequence (with different τ-moves in between) provide the same information
and, therefore, we do not care about τ-moves in a scenario. Specifically, let

rtttt ,...,, 21= be a scenario of G . Its projection)(tπ is obtained by removing all the

τ-moves, and is a sequence of interface transitions only, i.e. a string over Σ. Two
scenarios r and t are equivalent if and only if π(r) =)(tπ . Therefore, all the integrated
system behaviors are represented by the set of distinct sequences of interface
transitions: S(G)={)(tπ : t∈t} where t is the set of all the scenarios from G and can be

infinite. Thus, S(G) is a language over the alphabet Σ consisting of all the interface
transitions of G. To reduce the system complexity while maintaining the system

interface behaviors, we want to obtain a reduced interface graph *G that has the same
set of interface transitions and is interface equivalent to the original interface graph G,

i.e., S(*G)=S(G). This is the trace equivalence [14] or language equivalence [8] with
respect to the alphabet Σ of interface transitions.

 Protocol System Integration, Interface and Interoperability 5

Note that different interface transitions of the system may have the same action (or
Input/Output) label. However, we treat them as distinct because they represent
execution of the action in distinct contexts, and these may have quite different
implications for the integrated system interoperability testing and verification. For
example, in testing of a component, we may want to generate tests that exercise all the
interface transitions of the component. If we were to reduce the component while
preserving only equivalence with respect to action (or I/O) labels of the transitions,
then we would lose useful paths and may even eliminate some of the interface
transitions, hence the reduced graph would not be sufficient for the task.
Consequently, in our minimization we want to preserve the set S(G) of all interface
transition sequences.

In summary, we have an interface graph with τ -edges and distinct interface
transitions, and we want to minimize it with respect to trace (language) equivalence.
G can be viewed as an automaton whose transitions are labeled by elements of the
alphabet Σ or τ, and all states are regarded as accepting. It is a nondeterministic
automaton because of the τ transitions. Recall that nondeterministic automata do not
have a unique minimum automaton in general, and moreover, minimization is
PSPACE-complete [8]. We will show however that in this case we can do this
efficiently.

3 Minimization of Interface Graphs

We propose a reduction by merging states while preserving the interface transition
sequences and also the needed state and path information. We present a polynomial
time algorithm for the reduction.

We use the standard procedure of merging two nodes: they are merged into one
node that inherits all the incoming and outgoing edges of the two merged nodes.

We first derive necessary and sufficient conditions for a pair of nodes u and v to be
merged while preserving interface equivalence. Recall that all the nodes in an interface
graph are reachable from the initial node initv . A node v is τ-reachable from node u if
there is a path of τ-move edges from u to v. Given a node u, its successor nodes, denoted
by succ(u), are all the τ-reachable nodes from u, and its predecessor nodes, denoted by
pred(u), are all the nodes from which u is τ-reachable. Let S be the set of all the start
nodes of interface transitions and let E be the set of all the end nodes of interface
transitions and also the initial state initv ; in effect, we regard initv as the end state of an
artificial interface transition that starts the system. Define Ssucc(u)=succ(u) S, and
Epred(u)=pred(u) E. Ssucc(u) is the set of all the successors of u, which are the start
nodes of an interface transition. Epred(u) is the set of all the predecessors of u, which are
either the initial node or an end node of an interface transition.

Proposition 1. (Node Merging Condition) Given an interface graph G , merging two
nodes u and v yields an interface equivalent graph if and only if: every node in
Ssucc(u) is τ-reachable from every node in Epred(v) and every node in Ssucc(v) is τ-
reachable from every node in Epred(u).

6 D. Lee, C. Liu, and M. Yannakakis

Sketch of Proof. Obviously node merging can only produce additional interface
transition sequences. Thus, we only need to verify that a merging of nodes does not
introduce any new interface transition sequences. It does introduce a new interface
transition sequence if and only if the merging connects two disconnected interface
transition subsequences: one from the initial node to v (u) and the other starting from
u (v). This is the case if and only if there is y∈Epred(v) (or Epred(u)) and x∈Ssucc(u)
(or Ssucc(v)) but x is not τ-reachable from y.

Corollary 1. For a strongly connected component (SCC) of τ-moves in an interface
graph, all the nodes in the SCC can be merged into one node to obtain an interface
equivalent graph.

The condition of Proposition 1 is symmetric but not transitive: it may be the case
that pairs (u,v) and (v,w) satisfy the condition, but the pair (u,w) does not.
Furthermore, node merging is not independent, i.e., merging a pair of nodes may
affect the validity of merging other pairs of nodes. Specifically, suppose that two pairs
of nodes, u and v, u’ and v’, satisfy the Node Merging Condition in Proposition 1.
However, merging u and v may change the topology of the graph G so that u’ and v’
do not satisfy the same condition anymore.

Example 2. In Fig 2, one can easily check that merging nodes w and u (u and v) is
valid. However, merging both pairs is invalid; it would introduce a new interface
transition sequence ab. Obviously, merging w and u would disable the Node Merging
Condition of u and v.

Fig. 2. An Example

Consequently, we cannot first identify all the pairs of nodes, which satisfy the Node
Merging Condition, and then merge all of them. Instead, after merging a pair of
nodes, we would have to find another pair of nodes that can be merged, and repeat the
process iteratively.

The following is obvious from Proposition 1:

Corollary 2. Suppose that node pair u and v is invalid for merging, i.e., it does not
satisfy the Node Merging Condition in Proposition 1. Then it remains invalid for
merging after merging other valid node pairs.

However, from Example 2, a pair of nodes may lose its validity for merging after
merging other valid pairs. We will show that a simple preprocessing procedure that
eliminates internal nodes allows valid pairs to be merged independently.

 Protocol System Integration, Interface and Interoperability 7

3.1 Ubiquitous Interface Graph and Church-Rosser Property of Node Merging

Consider a node u, which is only incident to τ-moves. If all the incident τ-moves are
incoming edges, then u is a sink node of τ-moves. We can remove u along with all the
incident τ-moves, resulting in an interface equivalent graph. Similarly, we can remove
source nodes (except for the initial node), which are only incident to outgoing τ-
moves. The resulting graph contains two types of nodes: (1) Incident to at least one
interface transition; or (2) incident to only τ-moves yet neither sink nor source node.
We can remove type (2) node u as follows. For each pair of incoming τ-move p→u
and outgoing τ-move u→q, add a τ-move p→q if it is not there, and remove u along
with all its incident τ-moves. Obviously, the resulting graph is interface equivalent to
the original one. Since each operation reduces the number of nodes, we can repeat the
process until all the nodes are incident to at least one interface transition. Note that the
number of τ-moves may increase in the worst case. Yet our main concern in dealing
with state explosion is the number of nodes.

In summary, given an interface graph, we can conduct a simple preprocessing to
reduce it to an interface equivalent graph where each node is incident to at least one
interface transition. We call such an interface graph ubiquitous (interface occurs with
every node – everywhere). From now on we assume that all the interface graphs are
ubiquitous.

Lemma 1. In a ubiquitous interface graph, the Node Merging Condition is: (1)
Invariant with respect to merging of valid node pairs, and (2) Transitive.

Proof. We show (1); claim (2) follows from (1) and Corollary 3. Let the given
interface graph be G and the resulting interface graph be 'G after merging a valid
node pair u and v. From Corollary 2, a pair of nodes u’ and v’ remains invalid for
merging in 'G if it was not in G. We now show that if they were valid for merging in
G, then they remain valid in 'G . Assume on the contrary that u’ and v’ become invalid
for merging in 'G . Then from Proposition 1 there exist y∈Epred('v) and x∈Ssucc('u)
in 'G such that x is not τ-reachable from y (the symmetric condition can be handled
by the same argument). Since u’ and v’ were valid for merging in G, from Proposition
1, either y∉Epred('v) or x∉Ssucc('u) in G; otherwise, since x was τ-reachable from y,
it also is in 'G , a contradiction. There are three cases.

Case 1. y∉Epred('v) and x∈Ssucc('u) in G. Since y∉Epred('v) in G and
y∈Epred('v) in 'G there is a path of τ-moves from y to v, and a path of τ-moves from
u to 'v , and merging nodes u and v makes 'v τ-reachable from y. Since G and 'G are
ubiquitous, there is an interface transition incident to 'v , and there are two cases: (A)

'v ∈ E; and (B) 'v ∈ S. Case (A) Since 'v ∈Epred('v), x∈Ssucc('u), and node pair u’
and v’ was valid to be merged in G, x is τ-reachable from v’ in G and hence in 'G .
Since 'v is also τ-reachable from y in 'G , x is τ-reachable from y in G’, a
contradiction. Case (B) Since y∈Epred(v), 'v ∈Ssucc(u) and node pair u and v was
valid to be merged in G, 'v was τ-reachable from y in G, a contradiction.

Case 2. y∈Epred('v) and x∉Ssucc('u) in G. Since x∉Ssucc('u) in G and
x∈Ssucc('u) in 'G , there is a path of τ-moves from 'u to v and a path of τ-moves

8 D. Lee, C. Liu, and M. Yannakakis

from u to x, and merging of u and v makes x τ-reachable from 'u . Since G is
ubiquitous, there is an interface transition incident to 'u . There are two cases: (A)

'u ∈ S; and (B) 'u ∈ E. Case (A) Since 'u ∈Ssucc('u), y∈Epred(v’), and node pair u’
and v’ could be merged in G, 'u was τ-reachable from y in G and hence is also in 'G .
Since x is τ-reachable from 'u in 'G , x is τ-reachable from y in 'G , a contradiction.
Case (B) Since 'u ∈Epred(v), x∈Ssucc(u), and node pair u and v could be merged in
G, x was τ-reachable from 'u in G, a contradiction.

Case 3. y∉Epred('v) and x∉Ssucc('u) in G. Since merging node pair u and v
makes x∈Ssucc('u) and y∈Epred('v) in 'G , in graph G there were paths of τ-moves:
from y to v, from u to 'v , from 'u to v, and from u to x. See Fig 3. Therefore,
y∈Epred(v) and x∈Ssucc(u) in G. Since node pair u and v could be merged in G, x
was τ-reachable from y in G and hence also in 'G , a contradiction.

v

u

*τ

*τ

*τ

*τ

c

'c

x

y

'u 'v

Fig. 3

Corollary 3. On a ubiquitous interface graph, the operation of merging node pairs,
which satisfy the Node Merging Condition, has the Church-Rosser property, i.e., they
can be merged in an arbitrary order.

Definition 1. In a ubiquitous interface graph G two nodes u and v are interface
equivalent, denoted by u ≡ v, if they satisfy the Node Merging Condition;
equivalently, u ≡ v if merging them yields an interface-equivalent graph.

Remarks (State Equivalence Relations)

(1) By Lemma 1, node interface equivalence is indeed an equivalence relation. On
the other hand, from Example 2, this is not the case if there are internal nodes, and
that is why we defined it only for ubiquitous interface graphs. (2) Two interface
equivalent nodes u and v may well not be trace- (or observationally) equivalent: there
may be a path starting at u whose projection is a sequence of interface transitions that
does not have a corresponding path from v. Thus, although reduction by trace or
observational equivalence also preserves the interface language, it is a weaker
reduction than that from interface equivalence and may not merge some states.

(3) There is a variety of equivalence relations defined in the literature (see [3] for a
comprehensive list). As far as we know, state interface equivalence is different. One

 Protocol System Integration, Interface and Interoperability 9

observation is that it is common in the literature to identify states with processes;
namely, a state u is identified with the process P(u) that has u as its initial state, and
equivalence of two states u and v (with respect to some equivalence notion) is
defined as equivalence of the two processes P(u) and P(v). However, as we noted,
even though the processes P(u) and P(v) may not be trace-equivalent, still we may be
able to merge states u and v while preserving trace equivalence for the whole graph
(starting from the initial state).

By the Church-Rosser property of node merging according to interface
equivalence, we can merge all nodes in each equivalence class. The resulting graph
G* has obviously the same interface transitions and is interface equivalent to G. The
graph is unique up to the names of the nodes and the addition or deletion of
transitive τ edges. We show furthermore, that G* is the minimum graph with these
properties.

Theorem 1. For a ubiquitous interface graph G, let G* be the interface-equivalent
graph obtained by merging interface-equivalent nodes. Let G’ be any interface graph
that has the same set Σ of interface edges (i.e. its interface edges are in 1-1
correspondence with those of G) and that is interface-equivalent to G. Then G’ has at
least as many nodes as G*.

Sketch of Proof. Let u,v be two distinct nodes of G*. We distinguish cases depending
on whether u,v are in E or S. We will show here only the case ,u E v S∈ ∈ ; the other
cases can be argued similarly. Let a be an interface edge into u and b an interface
edge out of v. Let u’,v’ respectively be the tail and head of the corresponding edges
a,b in G’. We now argue that ' 'u v≠ .

Suppose that u’=v’. Since G’ contains an interface sequence that contains the
subsequence ab, the graph G* must have a τ path from u to v. Since u,v are not
interface equivalent (otherwise they would have been merged), there exist x in
Epred(v), and y in Ssucc(u) such that there is no τ path from x to y. Let c be an
interface edge into x and d an interface edge out of y, and let x’,y’ be the tail and
head of the corresponding edges in G’. Since G* has an interface sequence that
contains the subsequence cb, the same must be true for G’, hence x’∈Epred(v’).
Similarly since G* has an interface sequence that contains the subsequence ad, we
must have y’∈ Ssucc(u’). Since u’=v’, there is a τ path from x’ to y’, and therefore
G’ has an interface sequence that contains the subsequence cd, whereas G* (and
hence G) does not.

We remark that it may be possible in some cases to duplicate some of the interface
edges and construct thereby an equivalent graph with fewer nodes. For example, if all
the incoming edges of an S node v are τ edges, then we can eliminate v and add
appropriate edges from its predecessors to its successors. This however will introduce
multiple copies of an interface edge, which may impact the use of the graph for
testing and verification: Consider for example the problem of generating tests to cover
all interface edges – now we would have to cover more edges. We defer further
discussion to the full paper.

10 D. Lee, C. Liu, and M. Yannakakis

4 Minimization Algorithm

Given an interface graph, we first conduct a preprocessing to remove all the nodes,
which are incident to τ-moves only, obtaining an interface equivalent ubiquitous
graph. We then shrink SCCs of τ-moves, obtaining a Directed Acyclic Graph (DAG)
with respect to τ-moves. We can then check interface equivalence of every pair of

nodes and merge the equivalent ones. This naïve algorithm costs 4()O n where n is the

number of nodes of the interface graph. We now present an efficient algorithm with a
cost of O(mn) where m is the number of edges of the interface graph. Recall that S is
the set of start nodes of interface transitions and E consists of the set of end nodes of
interface transition and the initial node; since the graph is ubiquitous, every node
belongs to S or E or both.

Lemma 2. Two nodes u and v are interface equivalent, i.e., u ≡ v, if and only if:

Case 1. u,v ∈ S: Epred(u)=Epred(v);
Case 2, u,v ∈ E: Ssucc(u) = Ssucc(v);
Case 3, u ∈E, v∈ S: v is τ-reachable from u, and
every node in Ssucc(u) is τ-reachable from every node in Epred(v).

Sketch of Proof.
Case 1. If Epred(u)=Epred(v), then each node in Ssucc(u) is τ-reachable from those

in Epred(u) and hence in Epred(v), and the Node Merging Condition is satisfied.
Conversely, assume that Epred(u) ≠ Epred(v) and, without loss of generality, assume
that there is a node y∈ Epred(v) but y∉ Epred(u). Since u∈S, u∈Ssucc(u), and it is
not reachable from y∈ Epred(v). From Proposition 1, u and v are not interface
equivalent.

Case 2 can be proved similarly.
Case 3. From Proposition 1, the conditions are obviously sufficient. Conversely, if

v is not τ-reachable from u, then merging u and v will introduce a new interface
transition sequence that contains an interface transition going to u (u in E) and an
interface transition out of v (v in S).

A direct checking of conditions in Case 3 for each pair of nodes is costly. For a
node u, let

PS(u)= h)()(uEpredy ySsucc∈ and

SP(u)= h)()(uSsuccx xEpred∈ .

Proposition 2. Two nodes u ∈E, v∈ S satisfy the Node Merging Condition if and
only if Ssucc(u) = PS(v) if and only if Epred(v)=SP(u).

From Proposition 2, Case 3 conditions in Lemma 2 can be checked with PS(·)
instead (or equivalently with SP(·)) and if done properly, this reduces the overall cost
to O(mn) as follows. Denote the interface equivalent minimization of a graph G by
MIN(G):

 Protocol System Integration, Interface and Interoperability 11

Algorithm 1. (Interface Graph Minimization)
Input: An interface graph G, which is a τ-move DAG
Output: A minimized interface equivalent graph MIN(G)
1. compute topological order of nodes: vv n,...,1

2. for i=n down to 1
3. if Svi ∈ then Ssucc(vi):= { vi }

4. else Ssucc(vi):=φ ;
5. for each τ-edge (vi , v j), out of vi

6. Ssucc(vi):= Ssucc(vi)∪Ssucc(v j);

7. for i=1 up to n
8. if Evi ∈ then

9. Epred(vi):= { vi }, PS(vi):=Ssucc(vi);

10. else Epred(vi):=φ , PS(vi):=V;

11. for each τ-edge (v j , vi), into vi

12. Epred(vi):= Epred(vi)∪Epred(v j);

13. PS(vi): = PS(vi)∩ PS(v j);

14. radix sort and order the set Ssucc(u) for u in E,
 and order the sets Epred(v) and PS(v) for v in
S;
15. for each pair of nodes u and v
16. if (u,v ∈ S ∧ Epred(u)=Epred(v)) ∨
17. (u,v ∈ E ∧ Ssucc(u) = Ssucc(v)) ∨
18. ((u ∈ E ∧ v ∈ S) ∧ (Ssucc(u) = PS(v)))
19. merge nodes u and v;
20. return minimized interface graph MIN(G)

Fig. 4. Algorithm 1: Interface Graph Minimization

Line 2-6 and 7-13 compute Ssucc(·) (Epred(·) and PS(·)) in a reverse (normal)
topological order in time O(mn). We can represent each set as a list of nodes or as a
characteristic vector, and use radix sorting to sort all the sets and order them
lexicographically in time 2()O n ; at the end we can assign each set an integer

(between 1 and 3n) so that equal sets receive the same integer. Checking identical sets
for the three Cases of Lemma 2 in Line 16-19 takes a constant time for each pair of
nodes. Since there are on the order of 2n pairs of nodes to be checked, the total cost

is 2()O n .

An alternative (and generally more efficient) method for computing the equivalent
nodes is the following. Scan the sorted list of the sets Ssucc(·), Epred(·) and PS(·),
and partition the list into segments of equal sets (note that all equal sets are
consecutive). For each segment, merge all E nodes u whose set Ssucc(u) is in the
segment, merge with them any nodes v in S whose PS(v) set is in the segment; merge
together all S nodes v whose Epred(v) set is in the segment. We have:

12 D. Lee, C. Liu, and M. Yannakakis

Theorem 2. Given an interface graph G, Algorithm 1 takes time O(mn) to construct a
minimal interface equivalent graph where m and n are the number of edges and nodes
in G, respectively.

4.1 Minimal Interface Graph of Integrated Systems

For an analysis of integrated systems we want to construct a minimal interface
graph MIN(G) of the Cartesian product G of all the components. Often we cannot
afford to construct G due to state explosion. Indeed, there is no need to obtain G
first. We can minimize each component first, take the Cartesian product of two
components, minimize it and continue in this manner to obtain the minimal
interface graph. Note that before minimization of an interface graph we first make
it an interface equivalent ubiquitous graph using the procedure in Section 3.1.
However, we need to justify first that if two nodes u ≡ v in a component then they
(all their duplicates) remain equivalent in the Cartesian product:

Theorem 3. If u ≡ v in a component A (or B) then all their duplicates remain interface
equivalent in the Cartesian product BA ⊗ .

We need the following lemma, whose proof we omit:

Lemma 3. For a --path from node P to Q in BA ⊗ , there is a -path of -moves in
A (or B) only, from P to some node W, and a -path of -moves in B (or A) only,
from W to Q .

We are ready to prove the theorem.

Sketch of Proof. Assume u ≡ v in A. In BA ⊗ node u (v) is duplicated to
nisu i ,...,1),,(= (nisv i ,...,1),,(=) where n is the number of nodes in B.To

prove nisvsu ii ,...,1),,(),(=≡ , we only need to show that any node),(jsx ∈Ssucc(isu,)
is τ -reachable from any node),(ksy ∈Epred(isv,) and that any node

),(jsx ∈Ssucc(isv,) isτ -reachable from any node),(ksy ∈Epred(isu,).

From lemma 3, there exist a node),(ksv so that there is a path of τ -moves (only
in A) from),(ksy to),(ksv and a path of τ -moves (only in B) from),(ksv to),(isv .
Hence y∈Epred(v) in A and is is τ -reachable from ks in B.

Similarly, there exist a node),(isx so that there is a path of τ -moves (only in A)
from),(isu to),(isx and a path of τ -moves (only in B) from),(isx to),(jsx . Hence
x∈Ssucc(u) in A, and js is τ -reachable from is in B.

Since y∈Epred(v), x∈Ssucc(u), and u ≡ v in A, from Proposition 1, x is τ -reachable
from y in A and, hence, there is a path of τ -moves from),(ksy to),(ksx . Since is is
τ -reachable from ks and js is τ -reachable from is in B, js is τ -reachable from

ks in B and, therefore, there is a path of τ moves from),(ksx to),(jsx . Hence,
 there is a path of τ moves from),(ksy to),(ksx and then to),(jsx , and),(jsx is τ-
reachable from),(ksy .

Similarly, we can show that any node),(jsx ∈Ssucc(isv,) isτ -reachable from any

node),(ksy ∈Epred(isu,).

 Protocol System Integration, Interface and Interoperability 13

From Theorem 3, we can do the interface equivalence minimization either
before or after taking the Cartesian product. Denote this operation by MIN, we
have:

Proposition 3. For the interface equivalent minimization, we have:

(1) MIN[MIN(A)⊗MIN(B)]≡MIN[A⊗MIN(B)]≡ MIN[(MIN(A)⊗B]≡MIN(A⊗B);
(2))()(ABMINBAMIN ⊗≡⊗ ; and

(3) MIN[A⊗(B⊗ C)]≡MIN[(A⊗B)⊗C].

From the above proposition, we have:

Corollary 4. Given an interface graph of an integrated system, which is a Cartesian
product of more than one component, the interface minimization can be performed on
individual components or Cartesian products of all or a subset of the components, and
the resulting graphs are interface equivalent.

5 Experiments on LMP of GMPLS

We report experimental results of the minimization algorithm on the Link
Management Protocol (LMP) of GMPLS.

The IETF Standard GMPLS is a protocol suite that uses advanced network
signaling and routing mechanisms to automatically set up end-to-end connections for
all types of network traffic and provides a unified control plane and the necessary
linkage between the IP and optical layers, allowing interoperable and scalable
networks in both IP and optical domains. GMPLS protocol stack is composed of
several protocols, including LMP, CR-LDP extension, RSVP-TE extension, and
OSPF-TE extension. LMP is a protocol running between neighboring nodes and is
used to manage TE links and verify reachability of the control channel. LMP consists
of four major features: control plane management (CPM), link property correlation
(LPC), link connectivity verification (LCV), and fault management (FM).
Correspondingly, there are four main modules in each of the two communicating
nodes. See Fig. 5.

CPMA LPCA

LCVAFMA

CPMP LPCP

LCVPFMP

Active node Passive node

Fig. 5. LMP Modules

14 D. Lee, C. Liu, and M. Yannakakis

Down

Passive
Test

Up/
Free Up/

Alloc

trigger to listen to Test msg;-/-; -

-; -/!TestStatusSuccess; DCUP=True

linkDeAlloc;-/- ; -

VerifyDeadInterval | Timer expiry,
no Test msg; -/-; -

linkOK; -/-; DCUP=True

 Fault localized/-; DCUP=False

 linkAlloc;-/- ; -

trigger to listen to Test msg;-/-; -

LinkFailure; -/-; DCUP =False
LinkSummary; not match/-; -

Test
Ack

?Test msg; -/-; -

-;-/! TestStatusFailure;-

Fig. 6. LCV Passive EFSM

!?Test msg ;

Tao Move;
!?TestStatusSuccess msg;
!?TestStatusFailure msg

S0 S1

Fig. 7. MIN(MIN(LCVActive) ⊗ MIN(LCVPassive))

Each module is represented by an Extended Finite State Machine (EFSM), as is
often done in protocols. An EFSM is an FSM extended with variables; transitions
have besides input and output an associated predicate on the values of the variables,
which is a condition (guard) on the occurrence of the transition, and has an action
which is a transformation on the values of the variables. If all the variables have finite
domains (eg. Boolean, finite counters) then an EFSM is simply a succinct
representation of an ordinary FSM (see [7,13] for more details). As a first step we
obtain from each EFSM the part of the corresponding FSM that is reachable from the
initial state; this is called the reachability graph.

In Fig. 1 we showed the LCV module for the active node; the following figure shows
the passive LCV module. In each transition label, the first two components show the
input and the predicate and the latter two components show output and action.

There are 5 states and 11 transitions in each module and among them 3 are

interface transitions in Active node and Passive node, respectively:

 Active: -; -/!Test msg ; -
?TestStatusSuccess; -/-; -
?TestStatusFailure msg; -/-; -

 Passive: ?Testmsg;-/-;-
-;-/! TestStatusSuccess;DCUP=True
-;-/! TestStatusFailure;-

 Protocol System Integration, Interface and Interoperability 15

The Cartesian product of the two reachability graphs contains 25 states and 103
transitions. Applying our minimization algorithm, we obtain
MIN(MIN(LCVActive) ⊗ MIN(LCVPassive)), which contains 2 states and 4
transitions. See Fig. 7.

We now consider the integration of the 6 modules (excluding FMA and FMP) of
the two communicating LMP nodes. The Cartesian product of the reachability graphs
of all the modules contains 177,000 states and 2,595,900 transitions; it is hard to
handle for any available formal verification and testing techniques. Applying our
minimization algorithm and taking advantage of the interface equivalence invariance
of the order of minimizations on the components and products, we obtain an interface
equivalent graph of 2,912 states and 24,987 transitions, which are manageable.

6 Applications

We discuss applications of our interface graph minimization technique to integrated
system verification and testing. We are concerned with integrated system
interoperability and want to analyze system behaviors, which are involved with
interfaces among system components and ignore component local behaviors by
changing them to τ-moves. We want to show that the minimized interface graph
contains sufficient information for verification analysis and for constructing
executable interoperability testing. We omit all the proofs.

6.1 Interface Livelock

As a simple case study, we discuss livelocks. More sophisticated properties, such as
temporal properties, can be analyzed similarly.

Certain system states are specified as progress-states where system operation
makes progress such as messages sent or received. For our study we only consider
interface transitions, which are incident to progress states, i.e., integrated system
makes progress before or after a system interface. We call such interface transition as
progress interface transition. We are not concerned with system progress from
components’ internal behaviors. A non-progress interface cycle is a reachable cycle in
the graph that contains at least one interface transition and yet does not contain any
progress interface transitions. A non-progress interface cycle is called an interface
livelock. When a communication system contains an interface livelock it can go
through the cycle infinitely many times with infinitely many system interactions
among the system components yet without making any progress.

We now show that to detect interface livelocks we only have to search a minimized
interface graph and hence the search space is significantly reduced:

Theorem 4. Interface livelock is invariant with respect to interface equivalence
minimization.

Corollary 5. An integrated protocol system is interface livelock free if and only if its
minimal interface equivalent graph is interface livelock free.

16 D. Lee, C. Liu, and M. Yannakakis

From Corollary 5, the problem is reduced to checking interface livelocks of the

minimal interface graph *G of the integrated system. There is a variety of
algorithms published on checking livelocks [2,7]. Yet they do not have interface
transitions involved. We describe an algorithm that is applicable for interface
livelock detection. It is a variant of algorithms for non-progress and accepting cycle
detection [7].

Algorithm 2. Given an interface graph G with an initial node initv , we construct an

interface graph G’ that is identical to G except that all the progress interface
transitions are removed. Initially, all the nodes are not visited. We conduct a DFS in

G from initv . Whenever we visit a node v in G that is not visited we mark it visited

and “jump” to G’ to continue search from there. If we identify an SCC in G’ with at
least one interface transition, then we have found an interface livelock, since in the
SCC we can construct a cycle with an interface transition yet there are no progress
interface transitions in G’. Otherwise, we mark all the searched nodes in G’ as visited
along with the corresponding nodes in G, and return to node v in G to continue to
search from there. The algorithm terminates either if it finds an interface livelock or
all the nodes in G (and G’) are visited without identifying any interface livelock. In
the latter case, G is interface livelock free.

Obviously, the algorithm has a cost of DFS:

Proposition 4. Given an interface graph G, Algorithm 2 either finds an interface
livelock or concludes that G is interface livelock free in time O(m) where m is the
number of edges in G.

Algorithm 2 determines whether an interface graph is interface livelock free.
However, it does not identify all the possible livelocks if there are any. (Note that
there may an exponential number of them.) This can be achieved by the following
algorithm that is a modification of an algorithm in [5]:

Algorithm 3. Given an interface graph G, we have a tree walk from the initial
node initv . We continue from a current leaf node so long as no node is repeated along
the tree path from initv . We modify the algorithm by adding two indices at each node
v, I(v) and P(v) where I(v) records the number of interface transitions and P(v) records
the number of progress interface transitions from initv to v along the tree path. Upon
detecting a simple cycle while visiting a node v, i.e., there is an outgoing edge from v
to u, which is a node on the tree path from initv to v, we check whether the simple
cycle from u along the tree path to v and then from v back to u is an interface livelock.
It is an interface livelock if and only if there are no progress interface transitions and
at least one interface transition, and this is the case if and only if: (1) P(u)=P(v) and
v→ u is not a progress interface transition; and (2) I (u) < I (v) or I (u) = I(v) but v→ u
is a non-progress interface transition. When we complete the tree walk we have
checked all the simple cycles and identified all the simple interface livelocks if there
are any.

 Protocol System Integration, Interface and Interoperability 17

Proposition 5. Given an interface graph, all the simple interface livelocks can
be obtained in time proportional to the size of a simple path (cycle) tree rooted

at initv .

6.2 Interoperability Testing

Interoperability testing is to check the interoperations among integrated system
implementations. Ideally, one might want to test on all possible interface transition
sequences to reveal interoperation errors. However, the number of executable
interface transition sequences could be infinite. This problem has been studied in
[5,10] with different coverage criteria.

Suppose that we use a procedure for interoperability testing sequence generation
and that we want to apply it to the minimized interface graph instead of the original
graph, which is often impossible. In this case, the tests generated from minimized
interface graph consist of interface transitions and τ-moves. We need to further
process so that: (1) Each test is executable, i.e., it consists of a consecutive sequence
of internal and interface transitions in the whole integrated system (the Cartesian
product of all the original system components); (2) It contains the same interface
transition sequence, i.e., they have the same projection to interface transition
sequences; and (3) Without constructing the whole Cartesian product of all the
original system components, i.e., we only need the minimized interface graph and the
involved individual component information.

Suppose that we have a test sequence (path) p from a minimized interface

graph *G ; it consists of interleaving interface transitions and τ-move sequences.
We now discuss how to construct an executable test sequence according to
the above three requirements. The basic idea is: we replace τ-move sequences
between a pair of interface transitions by consecutive internal transitions, which
can be obtained by examining the involved individual components only. From
Lemma 3,

Proposition 6. Suppose that a τ-move sequence τ= 1 2 rτ τ τh in a reachability graph

of a Cartesian product is from state),...,(1 kss to),...,(1 ktt where is and it are states

in component kiGi ,...,1, = . Then state it is reachable from is in iG , i.e., there is a

path of τ-moves iω and hence internal transition sequence iz in iG from is to it ,

i=1,…,k. Consequently, there is an internal transition sequence 1 2 kz z zh in the

Cartesian product from state),...,(1 kss to),...,(1 ktt .

Note that there is no need to construct the Cartesian product graph; we only need a
minimized interface graph and a graph of each involved component. Furthermore,
there is no need to construct the connecting τ-move sequences iω ; we only need to

find an internal transition sequence iz in iG from is to it , which can be easily

constructed by a BFS in iG , i=1,…,k. We summarize:

18 D. Lee, C. Liu, and M. Yannakakis

Algorithm 4. (Interoperability Test Sequence Generation)
input: Integrated system 1

k
i iG G== ⊗ with initial node initv .

output: A set Γ of executable test sequences in G with a
desired fault coverage

1. construct a minimized interface graph *G from G;

2. construct a set P of paths in *G from initv

 with a desired fault coverage;
3. Γ=φ;
4. for each path p in P
5. construct an executable test sequence
 z from initv in G;

6. Γ=Γ∪z;
7. return Γ

As an experiment, we use the interoperability test sequence generation software
tool, called ITIS, in [5] with Basic coverage and apply it to LMP/GMPLS: (1)

Construct minimized interface graph *G ; (2) Generate Basic Coverage tests using
ITIS; (3) Convert each test to an executable one in LMP/GMPLS.

A simple example is the communicating LCV modules, see Fig. 7. There are only
two nodes and each node represents a module, LCVA (Active) and LCVP (Passive),
respectively. From this minimized interface graph, 3 test sequences are generated with
Basic Coverage: (1) !Test message, τ-move; (2) !Test message, !TestStatusFailure;
(3) !Test message, !TestStatusSuccess. Using Algorithm 4, the 3 corresponding
executable interoperability testing sequences are generated, involving both LCVA and
LCVP:

(1) LCVA: I/O: Trigger to send Test msg /, I/O: /!Test message
LCVP: I/O: linkOK/, I/O: Trigger to listen to Test msg /, I/O: ?Test
message /

(2) LCVA: I/O: Trigger to send Test msg /, I/O: /!Test message, I/O:
?TestStatusFailure/
LCVP: I/O: linkOK/, I/O: Trigger to listen to Test msg /, I/O: ?Test
message /, I/O: /!TestStatusFailure

(3) LCVA: I/O: Trigger to send Test msg /, I/O: /!Test message, I/O:
?TestStatusSuccess/
LCVP: I/O: linkOK/, I/O: Trigger to listen to Test msg /, I/O: ?Test
message /, I/O: /!TestStatusSuccess

7 Conclusion

For a study of integrated protocol system interface and interoperability, we investigate
interface graphs and their minimization, identify a new state equivalence relation
suitable for this purpose, and develop and implement an efficient algorithm for it. The
technique is applied to the GMPLS protocol and we also discuss how it can be used

 Protocol System Integration, Interface and Interoperability 19

for verification and interoperability testing. A similar method can be used more
generally if we want to focus on a part of the system or on a particular feature that
involves a selected subset of transitions (not necessarily for interfaces); a minimum
equivalent system can be computed efficiently, which contains these transitions and
preserves exactly all the involved traces.

Acknowledgements

We thank Xiao-tian Yin and Hui Jian for the comments and help with part of the
experiments.

References

[1] A. Bouajjani, J.-C. Fernandez, N. Halbwachs, Minimal model generation, Proc. CAV,
197-203, 1990.

[2] E. M. Clarke, O. Grumberg and D. A. Peled, Model Checking, MIT Press, 1999.
[3] R.J. van Glabbeek, The Linear Time – Branching Time Spectrum I, in Handbook of

Process Algebra, Begstra, Ponse, Smolka eds., Elsevier, 3-99, 2001.
[4] S. Graf, B. Steffen, G. Luttgen, Compositional minimization of finite state systems using

interface specifications, Formal Aspects of Computing, 1996.
[5] R. Hao, D. Lee, R. Sinha and N. Griffeth ,Integrated System Interoperability Testing with

Applications to VoIP, IEEE/ACM Trans. on Networking, Oct. 2004. An early version
appeared in FORTE/PSTV 2000.

[6] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
[7] G. J. Holzmann, Design and Validation of Computer Protocols, Prntice Hall, 1991.
[8] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and

Computation, Reading, MA: Addison-Wesley, 1979.
[9] P. Kanellakis and S. Smolka, CCS Expressions, Finite State Processes and Three

Problems of Equivalence, Information and Computation, Vol. 86, 1983, pp. 43-68.
[10] S. Kang and M. Kim, Test Sequence Generation for Adaptive Interoperability Testing, in

Proc. Protocol Testing Systems VIII, 1995, 187-200.
[11] P. V. Koppol, R. H. Carver, and K.-C. Tai, Incremental Integration Testing of Concurrent

Programs, IEEE Trans. on Software Eng., 28(6), 607-623, 2002.
[12] D. Lee and M. Yannakakis, Online minimization of transitions systems, Proc. ACM

STOC, 264-274, 1992.
[13] D. Lee and M. Yannakakis, Principles and Methods of Testing Finite State Machines - A

Survey, Proceedings of IEEE, Vol. 84, No. 8, 1090-1123, 1996.
[14] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

DART: Distributed Automated Regression Testing
for Large-Scale Network Applications

Brent N. Chun

Intel Research Berkeley, Berkeley, CA, USA

Abstract. This paper presents DART, a framework for distributed automated re-
gression testing of large-scale network applications. DART provides program-
mers writing distributed applications with a set of primitives for writing dis-
tributed tests and a runtime that executes distributed tests in a fast and effi-
cient manner over a network of nodes. It provides a programming environment,
scripted execution of multi-node commands, fault injection, and performance
anomaly injection. We have implemented a prototype implementation of DART
that implements a useful subset of the DART architecture and is targeted at the
Emulab network emulation environment. Our prototype is functional, fast, and is
currently being used to test the correctness, robustness, and performance of PIER,
a distributed relational query processor.

1 Introduction

Recently, we have seen the emergence of a number of novel wide-area applications and
network services. Examples include distributed hash tables (DHTs) [24, 19, 21, 18, 31],
wide-area storage and archive systems [11, 12, 5], distributed query processors [10, 29],
content distribution networks [14, 8], robust name services [17], and routing overlays [1,
25]. These distributed applications provide diverse functionality to end users, but never-
theless have one common goal: to deliver correct behavior and high performance in the
presence of high concurrency, node and network failures, and transient and persistent
performance anomalies. Designing and implementing applications with these charac-
teristics presents significant technical challenges.

With sequential (i.e., single-node) applications, unit testing [4] is an effective and
widely used mechanism for building correct, robust, and maintainable software. In unit
testing, users write tests that exercise and verify the functionality of specific parts of
an application. Over time, users build up a collection of such tests, each covering an
increasing fraction of the application’s overall functionality. A testing framework auto-
mates the execution of unit tests and is applied whenever the application is modified.
The end result is that code changes can be automatically verified to have not broken
existing functionality (as covered by the unit tests), thereby leading to increased con-
fidence when performing significant modifications to existing code. Building on these
ideas, the motivation of this work is to develop an analogous set of automated testing
mechanisms with associated benefits for large-scale network applications.

Designing appropriate mechanisms for automated testing of distributed applications
presents several challenges. First, such mechanisms need to be fast and scalable to

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 20–36, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

DART: Distributed Automated Regression Testing 21

enable large-scale testing and performance analysis. This, in turn, will enable program-
mers developing distributed applications to obtain rapid feedback on the implications
of incremental design and implementation choices. Second, such mechanisms should
be flexible to allow applications to be tested along multiple dimensions including cor-
rectness, robustness (e.g., in the presence of faults), and performance. Finally, these
mechanisms should enable testing under a wide range of operating conditions in terms
of network delays, bandwidth, and packet loss in addition to node and network faults
and performance anomalies.

To address these challenges, we have designed DART, a framework for distributed
automated regression testing. DART provides users with a programming environment
and a set of primitives which can be used to construct a wide variety of distributed tests.
Building on a set of scalable cluster tools, DART also provides a runtime that enables
efficient execution of such distributed tests at scale. DART targets cluster-based network
emulation environments such as Emulab [30] and ModelNet [26] to enable testing under
a wide range of network operating conditions. Such environments typically provide two
networks: an emulated network to emulate wide-area network delays, bandwidth, and
packet loss and a separate, non-emulated control network (e.g., 100 Mbps or Gigabit
Ethernet). It is the latter network that DART uses to efficiently and reliably control the
execution of distributed tests.

We have implemented a prototype of DART that is targeted to the Emulab [30] net-
work emulation environment. The system implements a core subset of our design which
provides enough functionality that we have found it to be useful in practice. In particu-
lar, we have and continue to use DART to test and benchmark PIER [10], a distributed
relational query processor that runs over a DHT. This paper describes the motivation,
design, implementation, and performance analysis of DART and is organized as fol-
lows. In Sect. 2, we motivate the need for automated large-scale testing for distributed
applications. In Sect. 3, we present DART’s system architecture. In Sect. 4, we describe
a prototype implementation of DART targeted for Emulab. In Sect. 5, we measure the
performance of our DART implementation for core primitives, a baseline distributed
application, and PIER. In Sect. 6, we present related work and in Sect. 7, we conclude
the paper.

2 Large-Scale Distributed Testing

With single-node applications, unit testing frameworks provide two key components to
the programmer: a set of commonly used mechanisms for writing tests and a runtime
that automates test execution. Common mechanisms in unit testing frameworks include
templates for setting up and tearing down unit tests, functions for verifying that actual
outputs match expected outputs, and functions for communicating test outcomes back to
the user. Using these mechanisms, programmers write tests that verify the functionality
of specific parts of their application. Depending on the test, verification might include
verifying that actual outputs match expected outputs, that bad / corner case inputs are
handled correctly, that an application meets expected target performance metrics, and
so forth.

22 B.N. Chun

A key benefit of these unit testing frameworks is that they lower the barrier to
verifying correctness, robustness, and performance in an application’s implementation.
By providing a common set of mechanisms to write tests and a runtime to execute
tests, unit testing frameworks make developing, maintaining, and applying unit tests
less cumbersome and less error prone by factoring out a common set of machinery
and by automating the test execution process. When the barrier to running tests is low,
programmers employ them more often and subsequently reap the benefits of verifying
that what worked before continues to work even after significant code changes.

While unit testing is pervasive in the world of single-node applications, there has
been little work on providing an analogous set of mechanisms for large-scale distributed
applications. We believe that providing such mechanisms will be a key enabler towards
rapidly building distributed applications that are correct, robust, and deliver high per-
formance under a wide range of operational environments. Providing such mechanisms
requires factoring out and implementing commonly used mechanisms for distributed
testing and implementing a runtime layer that executes these mechanisms in a fast and
efficient manner. Ensuring that the testing infrastructure is itself fast and robust is key
since rapid, correct feedback to the programmer usually implies that the programmer
will use the system more often when developing.

3 Architecture

This section describes the DART system architecture. As mentioned, the goal of a
DART system is to support automated testing of large-scale distributed applications.
For a given distributed application, a user may wish to perform a variety of tests that
test the application’s correctness, robustness, and performance under a range of oper-
ating environments. DART supports automated execution of a suite of such distributed
tests, where each test involves: (i) setting up (or reusing) a network of nodes to test the
application on, (ii) setting up the test by distributing code and data to all nodes, (iii)

DTest 1 DTest 2 DTest n

Distributed Test Suite

Postprocessing
Preprocessing & Perf Anomaly

InjectionFault InjectionTest Execution

Programming
Environment

File Transfer
Execution
RemoteNetwork

Topology

DART

Fig. 1. DART architecture. Each distributed application has a suite of distributed tests. Each test
is instantiated and executed using DART

DART: Distributed Automated Regression Testing 23

executing and controlling the distributed test, and finally (iv) collecting the results of
the test from all nodes and evaluating them. To support this automation, DART relies
on a number of components (Fig. 1) which are described further in this section.

3.1 Network Topology

The first step in executing a DART test is setting up a network of nodes to test the
application on. In emulated network environments, such networks are constructed us-
ing a set of cluster machines with emulated inter-node network delays, bandwidth, and
packet loss. In Emulab [30], for example, users set up experiments consisting of net-
work topologies which specify end hosts, routers, and network links with varying delay,
bandwidth, and loss characteristics. Each experiment is then physically instantiated us-
ing a set of cluster nodes, a per-experiment VLAN, and wide-area network emulation
using DummyNet [20]. ModelNet [26], another emulation environment, provides sim-
ilar functionality. In addition, its adds per-hop delay, bandwidth, and loss emulation
as well as distillation of large network topologies which enables trade-offs between
scalability and emulation accuracy to be made (e.g., when using large network topolo-
gies [7]).

Given a target environment, a DART implementation provides two ways for a user
to specify network topologies. First, DART provides a set of parameterizable network
topologies (routers and end hosts), each of which maps down to a description in an
underlying network topology language (e.g., Emulab ns-2 files). Second, DART sup-
ports raw network topologies as expressed in the target platform’s network topology
language. In DART, parameterizable topologies are provided mainly as a convenience.
Such topologies might include topologies representative of real networks, topologies
which might be easy or hard for different classes of applications, and/or topologies that
reflect realistic end host heterogeneity in terms of last-hop bandwidth, latency, and host
availability [22]. In many cases, we anticipate parameterizable topologies will provide
a sufficiently broad range of environments to test and characterize the behavior of a dis-
tributed application before moving towards real wide-area network environments (e.g.,
PlanetLab [15], RON [2], etc.) where additional noise can make it difficult to ascertain
whether observed problems are due to the application or due to the infrastructure and
the real world.

3.2 Remote Execution and File Transfer

The second step in executing a DART test is setting up the test by distributing code
and data to all nodes. Efficiently setting up and subsequently (Sect. 3.4) executing dis-
tributed tests in DART relies heavily on two key components of the DART runtime:
multi-node remote execution and multi-node file transfer. In DART, there are a num-
ber of cases where multi-node remote execution is needed. For example, in testing a
peer-to-peer application, multi-node remote execution might be used to start the appli-
cation up on all nodes in the system and, some time later, to start a set of clients who
issue requests. Before such a test can even run, code and data will also need to be dis-
tributed to all nodes, and this further requires having the ability to perform multi-node
file transfers. Remote execution needs to be efficient because nodes might be controlled

24 B.N. Chun

in various ways throughout a test (e.g., starting up servers, starting up clients, creating
and controlling adversaries, etc.). File transfer needs to be efficient because code and
data may be large and distributing such data to multiple nodes in a large scale test will
be costly if it is read from, say, a centralized NFS file server. Consequently, a DART
implementation needs to provide fast remote execution and file transfer primitives if the
system aims to scale up to large system sizes.

3.3 Scripting and Programming Environment

To facilitate writing distributed tests, DART provides scripting to specify high-level
details of test execution and a minimal programming environment which provides low-
level details for writing actual distributed test code that runs on the system. Each test
in DART has both an XML test script and test code and data. The test script speci-
fies a unique test name, a unique topology name (to enable topology reuse), a network
topology (e.g., an Emulab ns-2 file), test code and data, a test duration, a preprocessing
script, a set of scripted commands, a set of scripted faults, a set of scripted perfor-
mance anomalies, and a postprocessing script. Test scripts are interpreted by DART
and associated actions are executed using the DART runtime. For example, a script for
a distributed storage system might specify code and data for the storage system, start a
set of storage servers on all nodes, start a client that writes and reads specific data, and
verify consistency of the results in a postprocessing script.

DART provides a minimal programming environment to facilitate the writing of dis-
tributed test code. When executing DART tests, one node is designated as the master
while all remaining nodes are designated as slaves. The DART runtime uses the master
as the point of control for executing and coordinating the entire test. Similar to GLU-
nix [16], any scripted command executed on any node through DART is provided with
the following environment variables:

– DART TEST: unique test name.
– DART NODES: space-delimited list of node IP addresses on the emulated network.
– DART NUM NODES: number of nodes in the DART test.
– DART MY VNN: node number from 0 to DART NUM NODES - 1.
– DART MASTER: master’s emulated IP address.
– DART GEXEC MASTER: master’s control IP address.
– DART MY IP: this node’s emulated IP address.
– DART GPID: globally unique identifier for this particular test instance.
– DART COMMON DIR: directory for code and data common to all nodes.
– DART MY INPUT DIR: input directory for per-node code and data.
– DART MY OUTPUT DIR: output directory for per-node code and data (e.g., for

writing test output, logfiles, etc).
– DART ALL OUTPUT DIR: aggregated output directory of all DART MY OUTPUT

DIR directories. This directory is populated during a collect phase at the end of a
test.

Using these environment variables facilitates writing distributed tests using DART.
For example, consider testing the correctness of query evaluation in PIER. Such a test

DART: Distributed Automated Regression Testing 25

needs to instantiate a PIER process on every node and it needs to instantiate clients on
a subset of nodes, each of which will issue queries to the system and save the results
for verification. Starting PIER up on a node minimally requires at least one piece of
information: the IP address of a landmark node to bootstrap all nodes into the DHT.
Using the above environment, one obvious possibility for this is to simply use the
DART master (DART MASTER). Each PIER process will also want to save relevant
output for potential debugging (e.g., stderr in case an exception occurs) and PIER
clients will need to save query results for postprocessing to verify query evaluation
correctness. Using the above environment, capturing program output would be done
by simply writing files to DART MY OUTPUT DIR. When the test completes, DART
collects output from all DART MY OUTPUT DIR directories on all nodes and places
them in DART ALL OUTPUT DIR on the master where the results of the test are then
computed (e.g., checking actual output against known, correct output).

3.4 Preprocessing, Execution, and Postprocessing

The third and fourth steps of executing a DART test are executing and controlling the
distributed test and, lastly, collecting the results of the test from all nodes and evaluating
them. Each distributed test in DART goes through preprocessing, execution, and post-
processing phases to compute the results of the test. Each of these phases is scripted
by the user using the primitives provided by DART. Given a network of nodes (e.g.,
an experiment on Emulab) and code and data that has been distributed to those nodes,
preprocessing is the first stage and entails executing whatever commands that are nec-
essary before actually running the test. For example, if software packages (e.g., RPMs
or tarfiles) were distributed as part of the code and data distribution phase, then pre-
processing would be the place where one-time installations of this software would take
place. We separate preprocessing from the actual execution of the test since, for a given
application, we expect it will be frequently be the case that an application performs the
same preprocessing in each of a series of tests (e.g., installing the same set of RPMs,
such as the Java JDK in PIER’s case).

Once preprocessing is complete, DART then proceeds to the execution phase where
execution and control of the distributed test is performed to completion. This phase pri-
marily entails scheduling and executing user-specified, scripted commands on specific
subsets of nodes at specific points in time (e.g., starting a set of servers up, starting a set
of clients, etc.). Further, depending on the test, it might also involve injecting faults and
performance anomalies in certain parts of the system at certain points in time. A churn
test for a peer-to-peer application, for example, might involve first starting the appli-
cation on all nodes in the system, letting the system stabilize for several minutes, then
injecting a sequence of node join (scheduled command) and leave (scheduled process
or node fault) events into the system and measuring the system’s behavior over time
(e.g., the success or failure of routing requests in the case of structured peer-to-peer
overlays).

Finally, once the distributed test has finished executing, a postprocessing stage is
performed to collect all the output from all the nodes and to apply a user-specified post-
processing test to process the test’s output and verify its goodness. The definition of
goodness will be specific to the application and the type of test being performed. For

26 B.N. Chun

example, a correctness test might verify that actual replies to client requests match the
correct, expected values (which would be computed offline a priori). A robustness test
might verify that after killing some subset of nodes that the system continues to func-
tion as expected (e.g., suppose it was designed to be k-fault tolerant). Finally, a perfor-
mance test might compute the overall performance numbers from all nodes and verify
that these performance numbers lie within some expected bounds. Each test produces
output, which may optionally be sent back to the user’s machine (e.g., performance
numbers) and returns a 1 or a 0 depending on whether the test succeeded or failed (as
defined by the user).

3.5 Fault Injection

To understand how a distributed application behaves in the presence of node and net-
work faults, DART also provides fault injection primitives which may be specified by
the programmer when scripting a distributed test. Which primitives are supported in a
particular implementation will depend on the capabilities of the underlying platform. In
the best case, node, process, and network failures are all supported and can be scripted
to execute at specific times on specific parts of the system (e.g., a specific subset of
nodes):

– Node failures: specifies hard failures of specific subsets of nodes over specific
periods in time. In Emulab, such failures can be scripted using underlying support
from Emulab’s event system.

– Process failures: specifies the hard failure of specific processes (e.g., by name,
by uid, etc.) on a given node. In contrast to node failures, the node continues to
operate properly.

– Network failures: specifies the failure of specific parts of the network at specific
points in time. As with node failures, network failures can also be scripted through
support from Emulab’s event system (e.g., to turn a network link off at a specific
time).

3.6 Performance Anomaly Injection

In addition to hard node and network faults, another important class of failures of in-
terest are performance failures [3]. For example, consider the case where a 1.5 Mbps
network link does not fail completely but its effective bandwidth drops to 0.001 Mbps.
While technically the link has not failed in the sense that it fails to route packets, the
performance impact of such a performance degradation is likely to have significant im-
plications for application performance. Understanding how applications behave in the
presence of such performance faults is an important step towards building robust dis-
tributed applications. Towards this end, DART provides a set of primitives to introduce
performance anomalies into the system. Similar to hard failures, the types of scripted
performance anomalies supported by DART include:

– Node and process performance anomalies: decreased or varying CPU, memory,
network, and I/O performance. Such anomalies might be introduced by using suf-
ficient powerful schedulers [28, 9, 6, 23] in combination with support from the un-
derlying emulation environment.

DART: Distributed Automated Regression Testing 27

– Link performance anomalies: increased delay, decreased bandwidth, and in-
creased packet loss in specific parts in the network. Such anomalies might be
introduced using support provided by the underlying target platform (e.g., using
Emulab’s event system to dynamically change link delays, bandwidth, and packet
loss).

4 Implementation

We have implemented a DART prototype targeted to the Emulab network emulation
environment. Our prototype is implemented using a combination of C and Python and
supports a subset of the architecture described in Sect. 3. Parameterizable network
topologies, efficient multi-node remote execution and file transfer, a scripting and pro-
gramming environment, and preprocessing, execution, and postprocessing of arbitrary
scripted commands at specific times on subsets of nodes are all supported. Our proto-
type is functional, efficient, and is currently being used on a routine basis for testing,
debugging, and benchmarking PIER.

4.1 GEXEC and PCP

As mentioned, multi-node remote execution and file transfer are key primitives that are
used heavily throughout DART and hence need to be fast and efficient. To address this
need, we have designed and implemented GEXEC, a fast multi-node remote execution
system, and PCP, a fast, multi-node file transfer utility. Both systems rely on a hierar-
chical design based on a k-ary tree of TCP sockets over a specific set of nodes (e.g,
nodes specified using the GEXEC SVRS environment variable for GEXEC). Such trees
are built on every invocation of either the gexec or pcp command using a O(logk(n))
tree building step which involves routing tree create messages down to leaf nodes and
routing tree create acknowledgments back to the root. We use a tree-based approach
primarily for parallelism and to utilize aggregate resources across all nodes.

GEXEC provides multi-node remote execution of arbitrary commands by routing
commands down the tree to all nodes. For all commands, GEXEC supports transparent
forwarding of Unix signals, stdin, stdout, and stderr to allow control of remote
processes and also obtain remote output. Control and data are all transferred over the
tree, down in the case of signals and stdin and up in case of stdout and stderr.
Two remote execution models are supported: default and detached. In default mode, the
failure model is that if any node fails during the execution, GEXEC aborts on all nodes.
In contrast, in detached mode, GEXEC simply builds the tree, starts the command on all
nodes, and exits. Both modes are used in DART (e.g., default mode for executing boot-
strapping commands, detached mode for running the application being tested, which
might crash).

PCP provides fast multi-node file transfer by routing files down the tree in an incre-
mental fashion in 32 KB chunks. Starting with the root, chunks are sent to each node’s
children. As each chunk is received, each node writes the chunk to local disk, then for-
wards the chunk off to each of its children. Because files are transferred using a k-ary
tree and transferred in chunks (which incur small store-and-forward delays as compared

28 B.N. Chun

to sending the entire file at once), PCP provides both parallelism and pipelined execu-
tion that leads to very high aggregate bandwidth usage. Generally, the optimal choices
for tree fanout and message size will depend on node network bandwidth, the network’s
configuration, and disk write bandwidth. As we show in the next section, using a fanout
of 1 and 32 KB messages delivers high performance on Emulab and thereby makes
multi-node file transfer a highly efficient primitive in our DART prototype.

4.2 Master and Slaves

Our DART prototype targets the Emulab network emulation environment and uses
GEXEC and PCP as the basis for fast distributed test execution (Fig. 2). In our
implementation, tests are remotely instantiated and controlled using two machines:
users.emulab.net and a master node arbitrarily chosen from the set of nodes in
the test’s network topology. We use users.emulab.net to manage network topolo-
gies for DART (e.g., creating and destroying experiments). Each node in an Emulab ex-
periment is assigned one or more emulated IP addresses and one control IP address. We
use users.emulab.net to obtain information about the network configuration of
each Emulab experiment. This information is subsequently used to control distributed
test execution by running GEXEC and PCP over the fast, control network.

Each Emulab experiment created using DART is bootstrapped with a few common
features that are required for DART to operate properly. First, each node is bootstrapped
with a small set of core software including GEXEC, PCP, and authd, an authentica-
tion service used by both GEXEC and PCP. Second, each node is configured to boot
the RedHat 7.3 Linux distribution which uses the Linux 2.4.18 kernel. The common
software set is required since this software forms of the basis of the DART runtime.
The use of Linux on the nodes is needed primarily because the versions of GEXEC and
PCP currently used in DART do not run on FreeBSD, the other node operating system
available on Emulab.

users.emulab.net

Slave

Slave

Master

User’s Machine

SlaveSlave

Emulab Topology

DART cmds

DART cmds

Slave

start/end

Fig. 2. DART implementation on Emulab

DART: Distributed Automated Regression Testing 29

Once an Emulab topology is instantiated, all subsequent control is done through
the master which essentially serves as a proxy for executing distributed tests in DART.
Among the master’s tasks are: distributing code and data to all nodes, providing the
programming environment for distributed tests, and performing preprocessing, execu-
tion, and postprocessing of tests across all nodes. In our current implementation, we
use ssh to securely execute commands on the master and use GEXEC to execute com-
mands and PCP to transfer code and data to other nodes in the system. For example, to
reset an experiment such that it can be reused, we use ssh to send a reset command to
the master and use GEXEC, invoked from the master, to quickly reset all nodes in the
network by remotely removing old files and killing old processes from the previous test.

5 Evaluation

In this section, we analyze the performance of our DART implementation. We begin
by measuring the performance of two key primitives: multi-node remote execution and
multi-node file transfer. As described in Sect. 4, these primitives are implemented by
GEXEC and PCP, respectively, and are used extensively in our DART prototype. Next,
we analyze the overall performance of performing DART tests for both a baseline dis-
tributed application and PIER, a distributed relational query processor. All experiments
were performed on Emulab. The first set of experiments were performed on 64 Pentium
III nodes: 18 of which were 600 MHz nodes with 256 MB of memory, 46 of which
were 850 MHz nodes with 512 MB of memory. The second set of experiments were
performed on 32 Pentium III nodes: 10 of which were 600 MHz nodes and 22 of which
were of the 850 MHz variety. All nodes in both cases ran the Linux 2.4.18 kernel and
were connected via 100 Mbps Ethernet.

5.1 Performance of DART Primitives

The first set of measurements characterizes the performance of multi-node remote ex-
ecution and multi-node file transfer using GEXEC and PCP. Figure 3 depicts remote
execution performance on multiple nodes using GEXEC. Each curve corresponds to
GEXEC’s performance using a different tree fanout. Recall that GEXEC performs
multi-node remote execution by first building a k-ary tree where k is the fanout at
each non-leaf node and using this tree to control remote execution. Each point on each
curve represents the remote execution time (milliseconds) to execute a simple com-
mand (/bin/date) on n nodes (n = 1, 2, 4, . . . , 64). Each point on each curve is
the average of 30 different runs on a subset of Emulab nodes. Overall, we observe that
remote execution using GEXEC is fast (typically about 100 ms) and that remote execu-
tion times do not appreciate much as we scale the system size up. This, in turn, implies
fast and efficient control of distributed tests in DART using GEXEC.

Next, we perform a similar experiment to measure the performance of multi-node
file transfer using PCP. Similar to GEXEC, PCP also builds a k-ary tree and uses this
tree to perform parallelized, pipelined file transfer. Figure 4 shows the aggregate band-
width delivered when distributing a 34.7 MB file (the Java 1.4.2 03 JDK RPM) to n
nodes (n = 1, 2, 4, . . . , 64) using PCP and using 32 KB messages. Each curve cor-

30 B.N. Chun

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32 64

GE
XE

C T
ime

 (m
illis

eco
nds

)

Number of Nodes

fanout=2
fanout=4
fanout=8
fanout=16

Fig. 3. GEXEC performance on Emulab. Each curve corresponds to a different tree fanout, while
each point represents the remote execution time (milliseconds) to execute a simple command
(/bin/date) on n nodes (n = 1, 2, 4, . . . , 64)

0

100

200

300

400

500

600

1 2 4 8 16 32 64

PC
P A

ggr
ega

te B
and

wid
th (

MB
/s)

Number of Nodes

fanout=1
fanout=2
fanout=4

Fig. 4. PCP performance on Emulab. Each curve corresponds to a different tree fanout, while
each point represents the aggregate bandwidth delivered when distributing a 34.7 MB file (the
Java 1.4.2 03 JDK RPM) to n nodes (n = 1, 2, 4, . . . , 64) using PCP

responds to a different tree fanout and each point on each curve is the average of 20
different runs. Using a tree fanout of 1 (i.e., a chain), we observe that PCP is able to
deliver an average of 548 MB/s of aggregate bandwidth when distributing a 34.7 MB
file to 64 nodes. Larger tree fanouts do not help in the case of Emulab since each node
is connected by 100 Mbps Ethernet (i.e., 12.5 MB/s of peak bandwidth) and each node
can write to disk at least that fast. Hence, our DART prototype uses PCP’s default fanout
of 1 which, as shown, delivers high performance and enables data to be moved around
efficiently when conducting large-scale DART tests.

DART: Distributed Automated Regression Testing 31

5.2 Overall DART Performance

The second set of measurements quantify the overall performance of performing DART
tests for both a baseline distributed application and a real distributed application (PIER).
The baseline distributed application is the null distributed application. It’s an application
that runs on 32 nodes but does not perform any computation. The test returns immedi-
ately and thus the times associated with this test are, in the current implementation,
a lower bound on the total time to execute a distributed test in DART. PIER, as men-
tioned, is a distributed relational query processor that runs over a DHT. We use DART to
routinely perform a number of tests on PIER. In this instance, we present performance
results when testing the correctness of a distributed selection query on 32 nodes using
different query plans (e.g., different packet sizes). (The test queries static per-node data
and hence we know what the correct query result ought to be.) The time to perform
this particular test once the test has been set up on all nodes is 700 seconds. The goal
of these measurements is to show that the overhead of performing DART tests is small
relative to distributed test times, which we anticipate will involve running a test for at
least several minutes (e.g., as in the PIER selection query test) in most cases.

Each test involves four potential components. First, there is the time to set up the
network topology for the test (esetup). This involves the time to securely transfer an
Emulab network topology file to users.emulab.net and to instantiate the Emulab
experiment. Second, there is the time to set up a particular distributed test (dsetup). The
main cost here is transferring code and data to the master node in the Emulab exper-
iment and distributing code and data to the slaves. Third, there is the time to perform
preprocessing, execute and control the distributed test, collect the results on the master,
and perform postprocessing (drun). Fourth, there is the cost of reseting the test envi-
ronment on all nodes (dreset)). This involves clearing out results from the previous test
and killing all processes associated with the previous test. Note that a test may reuse a
network topology from a previous experiment if that test uses the same topology (e.g.,
the same 32-node topology in our measurements). When running a test for the first time
on a network topology, no dreset cost is incurred since the system is clean, whereas
when reusing a topology for a different test, the dreset cost must be paid.

Table 1 shows the overall times (seconds) to run distributed tests on 32 Emulab
nodes using DART for a baseline null application and a 700 second correctness test in
PIER for a distributed selection query. For both the baseline and for PIER, we present

Table 1. Breakdown of overall times (seconds) to run distributed tests on 32 Emulab nodes using
DART for a baseline null application and a 700 second correctness test in PIER for a distributed
selection query

Base Base reuse PIER PIER reuse
esetup 202.3 − 206.3 −
dsetup 16.2 16.0 52.6 46.2
drun 28.8 29.2 758.7 735.7
dreset − 4.2 − 4.0
Total 247.3 49.4 1017.6 785.9

32 B.N. Chun

results when a new Emulab experiment is instantiated and when an existing Emulab
experiment is reused (the reuse columns), the latter case requiring an additional reset
component to prepare for a new test.

We observe the largest baseline cost to be esetup, the time to instantiate a new 32-
node Emulab experiment. Measurements on Emulab revealed this time to be, on aver-
age, 204.3 seconds which is consistent with previous measurements [30]. The relatively
high cost of creating a new Emulab experiment suggests reusing existing Emulab ex-
periments when conducting tests on the same network topology. As mentioned, reusing
a topology requires an additional reset phase to clear old files and kill old processes.
Our measurements indicate that these costs are, on average, 4.1 seconds which is rela-
tively low. Still, this number is relatively high compared to GEXEC remote execution
times. (We use GEXEC to clear old files and kill old processes from the master.) This is
largely due to our use of a new ssh connection each time we communicate with either
users.emulab.net or the master. This overhead is also a significant component in
the other baseline costs as well, namely dsetup and drun which on average were 16.1
seconds and 29.0 seconds respectively. When reusing the network topology, the total
baseline cost to execute a null distributed test on 32 nodes was 49.4 seconds.

Turning to PIER, the key numbers of interest are the dsetup and drun times. We
measured the average dsetup time for PIER to be 49.4 seconds, while for the baseline,
the average dsetup cost was 16.1 seconds. The main difference between the two is the
additional cost associated with transferring code and data to the master and from the
master to all slaves. In the PIER case, code and data transferred from the user’s desk-
top to the master was 3.32 MB in size (four different directories), while code and data
transferred from Emulab’s NFS fileserver to the master totaled 37.0 MB, the size of
the Java 1.4.2 03 JDK and the static data being queried. As shown in Fig. 4, trans-
ferring data from the master to all slaves using PCP is efficient. However, as with the
baseline, liberal use of new ssh connections again incur significant overhead. In the
current implementation, each directory being transferred causes a new ssh connection
to be created to the master, each of which usually takes approximately 2-3 seconds. We
intend to optimize this by establishing a single secure connection with the master and
reusing it in the future. This should reduce the gap between the baseline and PIER by
approximately 12-18 seconds.

Despite the overhead of multiple ssh connections to the master, we see that the
overhead of using DART to perform distributed tests of PIER is still quite reasonable
relative to the typical time to perform a meaningful test. In this case, the selection
query correctness test needs to run for 700 seconds. This includes a 120 second delay
to allow the DHT to stabilize and for PIER to build up a multicast tree to perform query
dissemination to all nodes. It also includes the time to perform a selection query in
four different ways, in each case allowing the query to run for 120 seconds and leaving
10 seconds in between each query to avoid query interference. Finally, a minute is
alloted before finally shutting down the test, which leads to a test time of 700 seconds.
Relative to the total time, the DART overhead in this case is 11.3% (i.e., 85.9 seconds
out of 785.9 seconds) which we believe is quite reasonable given the ssh performance
improvements we intend to make and the fact that distributed testing using DART is
entirely automated and does not require any human intervention.

DART: Distributed Automated Regression Testing 33

6 Related Work

There have been relatively few efforts aimed at building frameworks for large-scale test-
ing of distributed applications. In this relatively small space, the closest related project
is TestZilla [27]. Like DART, TestZilla provides a framework for testing distributed
applications and leverages a set of scalable cluster-based tools in its implementation.
In TestZilla, distributed tests are executed through a centralized coordinator and the
system provides mechanisms for network topology specification (in a non-emulated
cluster setting), file system and process operations, barrier synchronization, and log-
ging and collection of output files. Architecturally, DART and TestZilla share many
of the same characteristics although both aim to provide slightly differing feature sets.
Unlike DART, which focuses on wide-area distributed applications in an emulated net-
work environment, TestZilla is focused primarily on cluster-based applications in a
Windows environment. As a consequence of this, TestZilla relies heavily on Windows-
specific features in its implementation. In terms of scalability, both systems rely on
scalable cluster-based tools for test control. Unfortunately, given that no published num-
bers on TestZilla’s performance were available, a direct performance comparison could
not be made.

ACME [13] provides a framework for automatically applying workloads, injecting
perturbations, and measuring the performance and robustness of distributed services
based on user specifications written in XML. It targets both emulated network environ-
ments such as Emulab and ModelNet as well as real wide-area testbeds such as Plan-
etLab. In ACME, control, measurement, and injection of perturbations is done through
per-node sensors and actuators which, in turn, are controlled through a distributed query
processor. Like DART and TestZilla, control in an ACME experiment is done using
a centralized experiment control node. Using the query processor, measurements are
taken by issuing queries which read desired sensors on multiple nodes in the system.
Similarly, actions (e.g., rebooting a node, modifying a link’s bandwidth) are invoked
by issuing queries that invoke appropriate actuators. Early experience using ACME to
evaluate the robustness of three key-based routing routing layers (Chord, Tapestry, and
FreePastry) showed that ACME was able to uncover a number of interesting proper-
ties and bugs under various workloads and perturbations. Compared to DART, ACME
shares many of the same goals. Architecturally, however, ACME differs quite a bit ow-
ing to its use of a distributed query processor and the sensor/actuator abstraction as the
basis of its implementation.

7 Conclusion

We have developed DART, a framework for distributed automated regression testing
of large-scale network applications. We presented the DART system architecture and
described the mechanisms DART provides, including scripted execution of multi-node
commands, fault and performance anomaly injection, and the runtime layer that sup-
ports these mechanisms. We have implemented a DART prototype that implements a
useful subset of the architecture and are using this prototype in ongoing testing and
benchmarking of PIER, a distributed relational query processor. Our prototype is built

34 B.N. Chun

on fast and efficient multi-node remote execution and file transfer primitives and incurs
reasonable overheads (e.g., 11.3% overhead for a PIER selection query correctness test)
for typical distributed tests of interest. Future work on DART includes implementation
of additional test mechanisms (e.g., fault injection using Emulab’s event system), addi-
tional performance optimizations, and further work on gaining experience using DART
to test PIER and other wide-area distributed applications. We believe that distributed
testing frameworks will be a key enabler towards rapidly building distributed applica-
tions that are fast, robust, and deliver high performance across the wide-area.

Acknowledgements

We would like to thank the Emulab team for providing access to the Utah Emulab clus-
ter and for being highly responsive to numerous questions and various feature requests.

References

1. ANDERSEN, D., BALAKRISHNAN, H., KAASHOEK, F., AND MORRIS, R. Resilient Over-
lay Networks. In Proceedings of the 18th ACM Symposium on Operating Systems Principles
(October 2001).

2. ANDERSEN, D. G., BALAKRISHNAN, H., KAASHOEK, M. F., AND MORRIS, R. Experi-
ence with an Evolving Overlay Network Testbed. ACM Computer Communications Review
33, 3 (2003), 13–19.

3. ARPACI-DUSSEAU, R. H. Performance Availability for Networks of Workstations. PhD the-
sis, University of California, Berkeley, 1999.

4. BECK, K. Extreme Programming Explained: Embrace Change. Addison-Wesley Profes-
sional, October 1999.

5. DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND STOICA, I. Wide-area
cooperative storage with CFS. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles (October 2001).

6. DEMERS, A., KESHAV, S., AND SHENKER, S. Anaylsis and Simulation of a Fair Queueing
Algorithm. In Proceedings of the 35th IEEE Computer Society International Conference
(COMPCON) (March 1990), pp. 380–386.

7. ELLEN W. ZEGURA, K. C., AND BHATTACHARJEE, S. How to Model an Internetwork. In
Proceedings of IEEE Infocom ’96 (March 1996).

8. FREEDMAN, M., FREUDENTHAL, E., AND MAZIÈRES, D. Democratizing Content Publi-
cation with Coral. In Proceedings of the 1st Symposium on Networked Systems Design and
Implementation (March 2004).

9. HAND, S. Self-Paging in the Nemesis Operating System. In Proceedings of the 3rd USENIX
Symposium on Operating Systems Design and Implementation (February 1999).

10. HUEBSCH, R., HELLERSTEIN, J. M., LANHAM, N., LOO, B. T., SHENKER, S., AND STO-
ICA, I. Querying the Internet with PIER. In Proceedings of the 29th International Conference
on Very Large Data Bases (September 2003).

11. KUBIATOWICZ, J., BINDEL, D., CHEN, Y., CZERWINSKI, S., EATON, P., GEELS, D.,
GUMMADI, R., RHEA, S., WEATHERSPOON, H., WEIMER, W., WELLS, C., AND ZHAO,
B. OceanStore: An Architecture for Global-Scale Persistent Storage. In Proceedings of the
Ninth international Conference on Architectural Support for Programming Languages and
Operating Systems (November 2002).

DART: Distributed Automated Regression Testing 35

12. MUTHITACHAROEN, A., MORRIS, R., GIL, T., AND CHEN, B. Ivy: A Read/Write Peer-
to-peer File System. In Proceedings of the 5th USENIX Symposium on Operating Systems
Design and Implementation (December 2002).

13. OPPENHEIMER, D., VATKOVSKIY, V., AND PATTERSON, D. A. Towards a Framework for
Automated Robustness Evaluation of Distributed Services. In Proceedings of the 2nd Berti-
noro Workshop on Future Directions in Distributed Computing (FuDiCo II): Survivability:
Obstacles and Solutions (June 2004).

14. PAI, V. S., WANG, L., PARK, K., PANG, R., AND PETERSON, L. The Dark Side of the
Web: An Open Proxy’s View. In Proceedings of the 2nd Workshop on Hot Topics in Networks
(November 2003).

15. PETERSON, L., CULLER, D., ANDERSON, T., AND ROSCOE, T. A Blueprint for Introduc-
ing Disruptive Technology into the Internet. In Proceedings of HotNets-I (October 2002).

16. PETROU, D., RODRIGUES, S. H., VAHDAT, A., AND ANDERSON, T. E. GLUnix: A Global
Layer Unix for a Network of Workstations. Software - Practice and Experience 28 (1998),
929–961.

17. RAMASUBRAMANIAN, V., AND SIRER, E. G. The Design and Implementation of a Next
Generation Name Service for the Internet. In Proceedings of the ACM SIGCOMM ’04 Con-
ference on Communications Architectures and Protocols (August 2004).

18. RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S. A Scalable
Content-Addressable Network. In Proceedings of the ACM SIGCOMM ’01 Conference on
Communications Architectures and Protocols (August 2001).

19. RHEA, S., GEELS, D., ROSCOE, T., AND KUBIATOWICZ, J. Handling Churn in a DHT. In
Proceedings of the USENIX 2004 Annual Technical Conference (June 2004).

20. RIZZO, L. Dummynet and Forward Error Correction. In Proceedings of the USENIX 1998
Annual Technical Conference (FREENIX Track) (June 1998).

21. ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, Distributed Object Location and
Routing for Large-scale Peer-to-peer Systems. In Proceedings of the 18th IFIP/ACM Inter-
national Conference on Distributed Systems Platforms (November 2001).

22. SAROIU, S., GUMMADI, K. P., AND GRIBBLE, S. D. Measuring and Analyzing the Char-
acteristics of Napster and Gnutella Hosts. Multimedia Systems 9 (2003), 170–184.

23. SHENOY, P., AND VIN, H. M. Cello: A Disk Scheduling Framework for Next Generation
Operating Systems. In Proceedings of the 1998 ACM SIGMETRICS Conference (June 1998),
pp. 44–55.

24. STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN, H.
Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings of the
ACM SIGCOMM ’01 Conference on Communications Architectures and Protocols (Septem-
ber 2001).

25. SUBRAMANIAN, L., STOICA, I., BALAKRISHNAN, H., AND KATZ, R. OverQoS: An Over-
lay Based Architecture for Enhancing Internet QoS. In Proceedings of the 1st Symposium on
Networked Systems Design and Implementation (March 2004).

26. VAHDAT, A., YOCUM, K., WALSH, K., MAHADEVAN, P., KOSTIC, D., CHASE, J., AND

BECKER, D. Scalability and Accuracy in a Large-Scale Network Emulator. In Proceedings
of the 5th USENIX Symposium on Operating Systems Design and Implementation (December
2002).

27. VOGELS, W. TestZilla: a Framework for the Testing of Large-Scale Distributed
Systems. Available from: http://www.cs.cornell.edu/vogels/TestZilla/
default.htm.

28. WALDSPURGER, C. A., AND WEIHL, W. E. Lottery Scheduling: Flexible Proportional-
Share Resource Management. In Proceedings of the 1st USENIX Symposium on Operating
Systems Design and Implementation (1994), pp. 1–11.

36 B.N. Chun

29. WAWRZONIAK, M., PETERSON, L., AND ROSCOE, T. Sophia: An Information Plane
for Networked Systems. In Proceedings of the 2nd Workshop on Hot Topics in Networks
(November 2003).

30. WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GURUPRASAD, S., NEWBOLD, M.,
HIBLER, M., BARB, C., AND JOGLEKAR, A. An Integrated Experimental Environment
for Distributed Systems and Networks. In Proceedings of the 5th USENIX Symposium on
Operating Systems Design and Implementation (December 2002).

31. ZHAO, B. Y., KUBIATOWICZ, J. D., AND JOSEPH, A. D. Tapestry: An Infrastructure for
Fault-tolerant Wide-area Location and Routing. Tech. Rep. CSD-01-1141, University of Cal-
ifornia, Berkeley, Computer Science Division, 2001.

Testing Mobile and Distributed Systems:
Method and Experimentation

Patrice Laurençot and Sébastien Salva

LIMOS, Université de Clermont-Ferrand,
Campus des Cézeaux, BP 10125 Aubière, France

laurenco@isima.fr, sebastien.salva@iut.u-clermont1.fr

Abstract. Mobile and distributed systems are generally composed of
components which interact together with input/output events by using
a least a mobile network (GSM, wireless lan), and eventually others het-
erogeneous ones. Such systems are generally complex so they need to be
tested in order to check their reliability. However, no distributed testing
tool is proposed. In this paper, we propose a complete method to test
such systems and an experimentation which aims to test a WAP applica-
tion. From a formal specification, the testing method generates test cases
and deploys them on a test architecture. This one is composed of several
testers which must be synchronized for testing. For the experimentation,
we have implemented: a distributed test architecture composed of several
testers, a WAP architecture and a WAP application. The experimenta-
tion results show that the testing method can be used in practice.

1 Introduction

Since recent years, major progresses have been completed in the mobile net-
work area, particularly concerning Internet and mobile networks. Nowadays, it
is possible to access to various services with a mobile phone and to send, re-
ceive or search information located on different servers. All these functionalities
are obtained with the development of new protocols and applications for mobile
telecommunications. Such systems are becoming more and more complex to be
implemented and the risk of malfunctioning is more and more important on ac-
count of the distributed algorithms used and of the deployment of components
on several heterogeneous networks. Validation technics, inherited from the pro-
tocol engineering area, are solutions to ensure that a final system has no error
by testing it. Different categories of tests can be found in literature. These ones
are grouped into two categories:

– the verification technics, which handle a specification and try to prove its
correctness (in this case the system can be seen as a white box),

– the testing technics [3, 6, 8, 18], which check various aspects: performance
testing, robustness testing, and conformance testing which will be dealed
with in this paper. A formal specification is generally needed as well to
extract or automatically generate a set of scenario sequences (called ’test

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 37–51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

38 P. Laurençot and S. Salva

cases’). By executing these test cases on the implementation under test with
a tester, these methods can detect incorrectness and compare the specifica-
tion behavior to the implementation one. Such methods have been widely
developed in the communication protocol area.

In conformance testing, implementations are generally seen as “black boxes”,
where internal structures are unknown and which are accessible only through one
or several interfaces. This is the case for a lot of protocols (for example, ABR
for ATM, WAP,...). Therefore, test cases are executed on the implementation by
using a test architecture which can access to the implementation interfaces. With
systems composed of several mobile components, the classical test architecture
cannot be used [17] since these interoperable components must be tested in the
same time with a distributed architecture of testers. Some test architectures of
distributed systems have been proposed [4, 19, 20, 14] but none of them have
been experimented and no tool is proposed.

This paper presents a practical testing method of mobile systems composed of
components distributed on heterogeneous networks. This method has been com-
pletely implemented and used to test a WAP (Wireless Application Protocol) ap-
plication. The main goal of this paper is to detail the method implementation and
this experimentation. In a first part, we present two test architectures composed
of several testers : the first one is composed of two networks, one for the mobile
components and one dedicated to the testers for testing. With specific systems,
it may be difficult to deploy it, so we describe a second architecture, composed
of an unique mobile network on which are connected the testers and the mobile
components together. In a second part, we show how we generate, from a formal
specification, test cases which check only functional properties of the specification
and which can be used with the previous test architectures. The main problem
is to split a test case into several ones which can be deployed on a distributed
test architecture. Then, we use the second one, which has been implemented in
our laboratory, to test a WAP (Wireless Application Protocol [9]) application.
This well-known protocol allows to access to Internet sites and data bases for
embedded systems like PDA (Personal Digital Equipment) or mobile phone.
We detail the components used to test the WAP protocol (servers, PDA), their
accessible interfaces and the tools developed to perform the experimentation.

The paper is structured as follows. Section 2 provides an overview of the
testing process. Section 3 introduces the different test architectures which can
be used for testing mobile and distributed applications. Section 4 presents the
method developed to generate test cases which can be executed with distributed
test architectures. The implementation of the second test architecture and the
experimentation on a WAP application are described in Section 5. Finally, we
conclude in Section 6.

2 Protocol Conformance Testing

Testing consists in checking whether the implementation is consistent with the
specification by stimulating the implementation and observing its behavior.

Testing Mobile and Distributed Systems: Method and Experimentation 39

Sequences of events, called test cases, are constructed by hands or generated
automatically by testing methods from formal specifications, modelled by au-
tomata, petri nets or by specific languages such as LOTOS or LDS. Usually, test
cases are composed of two kinds of interactions:

– the outputs, which model the observation and the sending of a message
from the system

– the inputs, which model the sending of a message to the system.

In literature, testing methods can be gathered together in two categories:

a) the exhaustive testing methods, which involve generation of test cases on
the complete specification, execution of the test cases on the implementation
and analysis of the test results. To describe the confidence degree between the
specification and the implementation, a conformance relation is first defined,
then test cases are given or generated from the specification to check if the
relation is satisfied or not. Two categories of exhaustive methods can be
found :

– Canonical tester based methods: in this approach, the conformance re-
lations, called implementation relation, are defined with some algebraic
properties. Some conformance relations can be found in [16]. An automa-
ton called tester is computed on the global specification so that it can
detect any violation of the implementation relation.

– FSM based approaches: historically, finite state machine (FSM) have
been widely used in the networks and telecommunications area to specify
communicating softwares such as telecommunication protocols. An FSM
transition is fired, in a deterministic way, when an input event is received
from the environment. The execution of the transition may produce a
possible output event toward the environment. The major work on test
generation from this model consists of:
• the specification of a system by an FSM SPEC
• the assumption that the implementation of the system can also be

described as an FSM IMP
• the identification of the structure of SPEC on the structure of the

IMP.
b) the non exhaustive testing methods, which test local parts of imple-

mentations [2, 5, 10]. This concept, formalized in [12], aims to check if a set
of properties, called a test purpose, is satisfied on an implementation during
the testing process. Checking the satisfaction of test purposes on implemen-
tation describes a conformance relation. Test purpose based approaches are
oriented methods: designers or experts who have a good knowledge of the
system, describe the requirements to test, which are generally the important
or critical parts of the system. Sometimes protocol standards give guidelines
for test selection based on test criteria. In [5], the authors propose an au-
tomatic test purpose construction. Then, either test cases are constructed
manually or are generated on these requirements and on specification parts,
reducing the specification exploration in comparison with exhaustive meth-
ods (reducing in the same time the test costs).

40 P. Laurençot and S. Salva

Afterwards, test cases are executed on the implementation by mean of a test
architecture. This one describes the configuration in which the implementation
will be experimented which includes at least the interfaces of the implementation
(called PCO, point of control and observation) and the tester which applies the
test cases on the implementation. Test architectures can be found in [12, 17] for
untimed system testing. The execution of such test cases leads the tester to emit
requests to the implementation (inputs) and then to wait for answers (outputs).
Depending on the observed results, the tester can deduce a final verdict for
the test: pass which means that the implementation conforms the specification,
inconclusive which means that we cannot conclude or fail.

3 Test Architectures of Distributed Systems

Test architectures, suggested by the standard[12], cannot be used since different
entities cooperate in the network to provide a desired service. To test such sys-
tems, we need to observe and to analyze the transit of input and output events,
received or transmitted from each component. So it’s necessary to introduce dif-
ferent Points of Control and Observation (PCO), generally at least one for each
component. These PCO are designed to access to the component interface: that
is they can send events to the component (by the point of control) and observe
the results (by the point of observation).

Several test architectures of distributed systems have been proposed [4, 19,
20, 14]: these ones can be centralized systems where a single tester is connected
to some PCO and sends or receives events from all the component interfaces.
An example of centralized architecture is given in Figure 1. Such architectures
are generally easier to implement since only one tester is needed. However, the
PCO involves a high traffic of data which requires a specific network and which
may overload the system.

So, a second category of distributed test architectures has been proposed.
These ones are composed of local testers, each of them checks one component
and communicates with the others ones. These communications are necessary to
synchronize the testers between them and to synchronize the execution of the
system components.

The local testers also produce and send local verdicts which must be analyzed
by a coordinator tester to obtain a final one. To communicate, these testers can
be connected to:

– a dedicated network. In this way, each local verdict can be got back as soon as
this one is produced, without interfering with the system. If one local verdict
is FAIL, the coordinator tester can directly stop the test after receiving it.

– the network of the system. Local verdicts cannot be sent to the coordinator
tester once they are created since the network may be used by the system
components. Consequently, the local verdicts are sent to the coordinator
tester once the test is terminated.

These two solutions are detailed below.

Testing Mobile and Distributed Systems: Method and Experimentation 41

Fig. 1. A centralized test architecture

3.1 Test Architecture with a Dedicated Network

Such test architectures use a dedicated network connecting each tester with.
These architectures require additional equipments, since each entity has at least
two connections: one with the other components for the regular traffic, and the
other connection used for the data exchanged for testing. The architecture is
depicted in Figure 2.

The main advantage of this architecture is the complete independence be-
tween the regular traffic and the data exchanged between the testers. As there
is no interference, we are sure that the verdict which is obtained reflects the
reality. Even more, if an error occurs, the PCO which detects it, can alert the
coordinator tester so the test can be stopped immediately with a FAIL verdict.
However, mobile applications cannot be always tested with such architectures:
a mobile terminal must have access to the two different networks simultane-
ously. In practice, this is not always possible or difficult to set up. For exam-
ple, a mobile phone has generally only one network interface (GSM interface).
A wireless equipment should have two interfaces, each one linked to a differ-
ent access point. As the mobile terminal can move, we should check that the
two cards stay on different networks. Therefore, this architecture is hard to im-
plement (because of hardware constraint), but the verdict of the test can be
given rapidly.

42 P. Laurençot and S. Salva

Fig. 2. Test architecture with a dedicated network

3.2 Test Architecture Using the System Network

In this case, the local testers and the coordinator one are connected directly
on the system networks, as the system components. So, the regular data of the
system and the specific data of the test take the same medium. To avoid collision,
the local testers wait the end of the test before sending to the coordinator tester
the local verdicts. This solution does not perturb the test since the results are
sent after it is completed.

This architecture has the advantage to be used with most of the mobile
applications, since it’s the same medium which is used to transmit regular or
test data. However, the test must be completely executed before obtaining a
verdict even it’s a FAIL one, whereas the test could be stopped immediately
with the first architecture. Moreover, we must suppose that the local testers
have sufficient memory to store the local verdicts.

In the next section, we introduce the method which is used to create a test
case and to distribute it to the different local testers.

4 Test Methodology

Many testing methods have been proposed to generate automatically test cases
from untimed specifications [7, 6, 5, 11]. To use them, specifications must be mod-
elled with a formal language. Among the various existing ones (LOTOS, LDS,

Testing Mobile and Distributed Systems: Method and Experimentation 43

Petri Nets, automata...), we propose to use the IOSM [1, 16] (Input Output
State Machine).

Definition 1 (Input Output State Machine).
An IOSM A is defined as a tuple < ΣA, SA, s0

A, EA >, where:

– ΣA is a finite non-empty alphabet, SA is a finite set of states, s0
A is the

initial state,
– EA ⊆ SA × ({?, !} ×ΣA)× SA is the finite set of transitions.

An input symbol begins with ”?” and an output one begins with ”!”.
A tuple < s, a, s′ > represents a transition from state s to state s′, labelled
with the symbol a.

Furthermore, we consider that for a distributed system A, the language ΣA

is the union of languages used by every components. And, for two components
x and y, the two languages are disjoined, ΣX ∩ΣY = ∅. This property guaran-
tees that each entity, and consequently each tester, takes into account only the
messages concerning it. An example of IOSM is given in Figure 6.

We propose to use a test purpose based method [5, 8] (Section 2) which gen-
erates test cases from requirements given by designers. From these requirements,
called a test purpose, this method generates the test cases which aims to check
whether the test purpose is satisfied or not on the implementation. However, this
generation is not sufficient: in the previous test architectures, we have consid-
ered that each component of a distributed system is connected to a local tester.
This implies that the test cases must be distributed on the local testers. So, a
test case will consist of several “dedicated-tests”, allocated to each tester. Each
one will perform its dedicated-test and will communicate with the other ones to
synchronize the tests of every components.

4.1 Generation of the Dedicated Test Cases for Local Testers

The algorithm, introduced below, aims to extract from a test case ω, each local
test case ωt, intended for each local tester t. Furthermore, it adds to the local
test cases, some synchronization data needed to synchronize the testers between
them. Synchronizations are obtained by one or several locks, modelled by data
exchanged between testers and designed by (-syncp

j , +syncp
j):

– +syncp
j locks the current tester until a message of synchronization is received

from the tester j.
– -syncp

j represents the sending of synchronization to the tester “j” with the
number p. This one unlocks the tester “j” which can continue to execute its
test case on the component until another lock or until the end of the test
case.

To sum up the algorithm, it consists of dividing a test case into several ded-
icated ones by analyzing its symbols and by determining which tester must use
them. When two successive interactions (symbols) are not destined to the same

44 P. Laurençot and S. Salva

local tester, a synchronization is used: +syncp
j is added to lock the tester which

must execute the second interaction. −syncp
j is added in the test case devoted

of the tester which must execute the first interaction. An example of test case
generation is given in the following Section.

Algorithm

Hypothesis: The number of testers is known and is equal to N.
Input: A test case ω = γ1γ2γ3...γx, with x the number of requests.
Output: N dedicated-test sequences, ω1, ω2...
BEGIN:
for k from 1 to N do

ωk ← 0
end for
p ← 1
for k from 1 to x-1 do

Read γk in ω, search for the tester ti which has this alphabet
Read γk+1 in ω, search for the tester tj which has this alphabet
If (ti �= tj)
/* installing coordination */

If (γk is an emission) then
ωti ← ωti + “−syncp

tj
” + γk

else ωti ← ωti + γk + “−syncp
tj

”
end if
ωtj ← ωtj + “+syncp

ti
”

p ← p + 1
else ωti ← ωti + γk

end if
end for
Read γx in ω, search for the tester ti which has this alphabet
ωti ← ωti + γx

END

Each local tester produces a local verdict: PASS if all the traces correspond
to the test case, INCONCLUSIVE if the tester cannot execute the test case, or
FAIL otherwise. The global test verdict, given by the coordinator tester is given
by this definition:

Definition 2 (Test verdict).
Let l1,...,ln be the local verdicts of the testers t1,...,tn. The final verdict of the

test T is given by:

T =

⎧⎨
⎩

PASS iff ∀1 ≤ i ≤ n , li = PASS
INCONCLUSIVE iff ∃1 ≤ i ≤ n | li = INCONCLUSIV E
FAIL otherwise

Testing Mobile and Distributed Systems: Method and Experimentation 45

5 Experimentation and Results

In this section, we present our experimentation and results of a WAP system
test. This system is composed of a WAP architecture (WAP protocol, gateways,
HTTP server, database,...) and of an application which aims to update or search
information in a database, specialized in cattle diseases.

Before describing the test architecture and our implementations, we briefly
expose the WAP and its requirements.

5.1 The WAP (Wireless Application Protocol) and Our WAP
System

The WAP is a result of continuous work to promote industrywide specifications
for technology useful in developing applications and services that operate over
wireless communication networks. The aim of the WAP is to access to Inter-
net with devices which have less powerful CPU, less memory, restricted power
consumption and different input devices.

On the one hand, the WAP gathers several protocol layers which allow the
access of HTTP servers and databases: the Wireless Application Environment
(WAE) includes a micro-browser which permits to view the environment infor-
mation. The Wireless Session Protocol (WSP) provides the application layer
of the WAP with a consistent interface for two session services. The first one
is connected-oriented and operates above the Wireless Transaction Protocol
(WTP). The second one is connectionless and operates above a datagram service
(UDP). All these layers are involved in the communication and their interactions
have been described using formal methods by the Platonis project [15].

On the other hand, the WAP represents a programming model, similar to
the WWW one. It defines a set of standard components that enable communica-
tion between mobile terminals and network servers, including standard naming
model, content typing and standard content formats (wml language). This wml
language, close to the html one can be used to construct pages accessible via a
wml browser. To have a full working WAP service, a gateway is used to trans-
form the data coming from wireless communication with a WAP encapsulation
to data understandable by an HTTP server. For this article and our experi-
mentation, we use the open source Kannel[13] gateway since its implementation
respects the standard established by the WAP Forum.

Fig. 3. WML user agent logical architecture

46 P. Laurençot and S. Salva

The WAP architecture, that we have deployed, is composed of a PDA con-
nected to a GSM phone by an IrDA port. The PDA runs a WAP navigator,
written with Embedded C++, which implements the WSP and WTP layers.
With the WAP protocol, this one can access to an HTTP server via a Kan-
nel Gateway. The HTTP server and the Kannel gateway are connected by an
Ethernet network. To access to the HTTP server, the PDA must obtain an IP
address, so we implement a PPP (Point to Point Protocol) server. This one is
set on the same computer running the Kannel gateway in order to simplify the
WAP system.

The WAP application is a ”classical” Internet one: the WAP navigator pro-
poses different wml pages which allow to request information on a database or to
update it. The HTTP server contains several CGI programs which return wml
pages to response at the previous requests.

5.2 Test Architecture and Testers Implementations

Since we use a GSM phone which has only one network interface, we use the sec-
ond test architecture. The test architecture, devoted to our system, is illustrated
in Figure 4 and described bellow.

Three testers have been implemented : two of them have the mission to
detect wrong messages in the Kannel gateway and in the local network connected
to the HTTP server. The third tester is a coordinator, located on the PDA.
Each tester is composed of two programs: PO trace for traffic inspection and
PO analysis for giving the local verdict. The “dedicated test cases” are loaded on
each PO analysis. During the test execution, each PO analysis compares its local
test case with the frames that are stocked by PO trace. If no error is detected,
PO analysis sends a PASS verdict at the end, if PO trace does not respond for
any reason it sends INCONCLUSIVE, otherwise it sends a FAIL one.

The tester number 1 observes the traffic received and emitted by the WAP
gateway. The open source Kannel gateway was modified for installing the trace
tools. The Kannel software is structured as different layers, each one implemented
by a thread which communicates with the other ones by exchanging messages.
Different point of observation are inserted between each layer, and a thread is

Fig. 4. Test architecture for the experimentation

Testing Mobile and Distributed Systems: Method and Experimentation 47

added to analyze the traffic of the gateway. In fact, the modifications to install
the trace tools are very small. Each time, a thread wants to send a message
to another thread, the message is duplicated in a file before being emitted.
The analyse thread contains a PO trace in which retrieves incoming traffic, a
PO trace out which retrieves outgoing traffic and a PO analysis which inspects
the different traces and gives out the local verdict.

Since the WAP gateways are in general connected to Internet via a local
network, the tester number 2 corresponds to a network analyzer, that will not
perturb the network while the frame capture. For portability reasons, this an-
alyzer was implemented in Java using Jpcap. Once all the test case is executed
and inspected by PO trace, the thread PO analysis produces the local verdict
and sends it to the coordinator tester.

The coordinator tester, located on the mobile system, must be able to send
and receive different frames as well as the different local verdicts. A PDA run-
ning Windows CE is used, making it easier to program and establish a connec-
tion to GSM through a mobile phone equipped with an IrDA port. The WAP
navigator, which implements the WSP and WTP layers with threads, provides
also a graphical user interface that enables the load of the test cases. Figure
5 shows the graphical user interface of the PDA with the beginning of a test
case. The thread PO trace listens for all the messages received or sent by the
WTP layer, while PO analysis gives indications on the evolution of the test
on the user interface, and produces the final verdict as well. if all the received
local verdicts are PASS, the final verdict is PASS, otherwise it can be FAIL
or INCONCLUSIVE. These softwares have been programmed with Embedded
Visual C++.

Fig. 5. The user interface of the PDA

48 P. Laurençot and S. Salva

5.3 Test Case Generation and Experimentation Results

For the experimentation, we propose to test the “get” function of the WAP which
requests and receives wml pages from http servers. This function is transcribed
by the service S MethodeInvoke.req of the WSP layer. As we want a connected
mode (which will use the WTP layer), we will have to add the S connect.req
primitive in the test purpose.

To generate test cases, we use the formal specification of the WSP layer whose
a partial view is given with the IOSM of the figure 6.

Fig. 6. Some WSP Layer Primitives

legend :

1 : ! Connect.req 5 : ! Suspend.req 9 : ? MethodAbort.ind
2 : ! Disconnect.req 6 : ? Connect.cnf 10 : ! Resume.req
3 : ! MethodeInvoke.req 7 : ? Disconnect.ind 11 : ? Resume.cnf
4 : ! MethodAbord.req 8 : ? MethodeInvoke.ind

First, we construct the test purpose
S connect.req−−−−−−−−−→ S MethodeInvoke.req−−−−−−−−−−−−−−→ which

allows to instantiate the connected mode and to ask for a wml page. With this
test purpose and our description of the WSP layer, we generate a first test case
by using the test purpose method TGV ([8]). This test case is composed of 19
transitions. Then, we use the algorithm described in Section 4 to create the three
“dedicated-tests”. These ones are given bellow:

Coordinator Tester:
? S connect.req + -sync1

PO1 + ! TR invoke.req + +sync2
PO1 + ? TR result.ind

+ ! S connect.cnf + -sync3
PO1 + ! TR result.res + ? S MethodInvoke.req

+ -sync4
PO1 + ! TR invoke.req + +sync10

PO1 + ? TR result.ind
+ ! S MethodResult.ind -sync11

PO1 + ! TR result.res

Testing Mobile and Distributed Systems: Method and Experimentation 49

Tester 1:
+sync1

PCO + ? TR invoke.ind + ? TR invoke.res + -sync2
PCO + ! TR result.req

+sync3
PCO + ? TR result.cnf +sync4

PCO + ? TR invoke.ind + ? TR invoke.res +
-sync5

PO2 + ! TCP connexion.req +sync6
PO2 + ? TCP connexion.ind + -sync7

PO2
+ ! TCP ack.req + -sync8

PO2 + ! TCP data.req +sync9
PO2 + ? TCP data.cnf +

-sync1
PCO0 + ! TR result.req +sync11

PCO + ? TR result.cnf

Tester 2:
+sync5

PO1 + ? TCP connexion.ind -sync6
PO1 + ! TCP connexion.res +sync7

PO1
+ ? TCP ack .req +sync8

PO1 + ? TCP data.ind + -sync9
PO1 + ! TCP data.res

During the first experimentations, we always obtained a FAIL verdict from
the coordinator tester, located in the PDA. We searched in the PO trace for
some errors and we found that instead of receiving a TR result.ind, the PDA
received an Ack frame for a confirmation of the TID (Transaction IDentifica-
tion). The TID, which is increased for each frame, is used to number all the
frames of the WAP to easily detect a loss. At the beginning of a communica-
tion, if a client sends a frame with an unexpected TID to the server, this one
asks for a confirmation (with an ACK) to update its TID. Consequently, the
WAP navigator, executed by the PDA, sent frames with bad TID. This error
was confirmed by the PO traces of the tester located on the Kannel server.
So, we correct this error on the WAP navigator. Afterwards, we have exper-
imented once again and we have obtained a PASS verdict, which means that
the mobile application can ask for an information and receive a response in
the connected mode of the WAP protocol. Other tests have been completed
to check different functionalities of the WAP application. All the tests have
been created with the aim of testing a functionnality of the application, and
so the test purposes were created by hand and their lengths were less than six
primitives.

6 Conclusion

We have introduced in this paper different test architectures and a testing
method which can test mobile and distributed applications. One test archi-
tecture has been completely implemented and used to test a WAP applica-
tion. The experimentations show that the method and the test architecture
can be used in practice to detect errors on components distributed in differ-
ent heterogeneous networks. We have used the GSM network as a mobile one,
but other trace tools (PO trace) have been implemented to use wireless net-
works (802.11). The networks, we have considered for the test architecture,
are LAN, however a perspective could be the use of Internet to connect the
components of the application: in such as case, the deployment of the test
architecture could not be done manually. An automatic deployment of test

50 P. Laurençot and S. Salva

architectures could be planned and proposed, that is at least an automatic down-
load and installation of the testers on the components (or stations connected to
theses ones).

References

1. R. Alur and D. Dill. The theory of timed automata. In J.W. de Bakker, C. Huiz-
ing, W.P. de Roever, and G. Rozenberg, editors, Proceedings REX Workshop on
Real-Time: Theory in Practice, Mook, The Netherlands, June 1991, volume 600 of
LNCS, pages 45–73. Springer-Verlag, 1992.

2. I. Berrada, R. Castanet, and P. Felix. A formal approach for real-time test gener-
ation. WRTES, satellite workshop of FME symposium, pages 5–16, 2003.

3. G.v. Bochmann, G. Das, R. Dssouli, and M. Dubuc. Fault Models in Testing. In
Proceedings of the International Workshop on Testing of Communicating Systems
IWTCS’91, 1991.

4. L. Cacciari and O. Rafiq. Controllability and observability in distributed testing.
Information and Software Technology, 1999.

5. R. Castanet, C. Chevrier, O. Kon, and B. Le Saec. An Adaptive Test Sequence
Generation Method for the User Needs. In Proceedings of IWPTS’95, Evry, France,
1995.

6. A. Cavalli. Different approach to protocol ans service testing. Proceedings of
the Twelfth IFIP Workshop on Testing of Communicating Systems (IWTCS’99),
September 1999.

7. T.S. Chow. Testing software design modeled by finite-state machines. IEEE Trans-
actions on Software Engineering, SE-4(3):178–187, 1978.

8. J. Cl. Fernandez, C. Jard, T. Jron, and C. Viho. Using on-the-fly verification tech-
niques for the generation of test suites. In CAV’96. LNCS 1102 Springer Verlag,
1996.

9. WAP forum. Wap specification. http://www.wapforum.org.
10. H. Fouchal, E. Petitjean, and S. Salva. Testing Timed Systems with Timed Pur-

poses. In Proceedings of the 7th International Conference on Real-Time Computing
Systems and Applications, RTCSA’00 (Cheju Island, South Korea),IEEE Com-
puter Society, pages 166–171, December 2000.

11. S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test
selection based on finite-state models. IEEE Transactions on Software Engineering,
17(6):591–603, June 1991.

12. ISO. Conformance Testing Methodology and Framework. International Standard
9646, International Organization for Standardization — Information Technology
— Open Systems Interconnection, Genève, 1991.

13. kannel group. Kannel, open source wap and sms gateway. http://www.kannel.org.
14. G. Luo, R. Dssouli, G. Bochman, P. Venkatraam, and A. Ghedsami. Test genera-

tion with respect to distributed interfaces. In Computer Standards and Interfaces,
volume 16, pages 119–132, 1994.

15. A. Mederreg, F. Zaidi, P. Combes, W. Monin, R. Castanet, M. Mackaya, and
P. Laurenot. Une plate-forme de validation multi-protocoles et multi-services - rsul-
tats d’exprimentation. Colloque Francophone de l’ingénierie des Protocoles, CFIP,
October 2003.

16. M. Phalippou. Relation d’implantation et hypothses de test sur des automates entres
et sorties. PhD thesis, Univ. of Bordeaux, September 1994.

Testing Mobile and Distributed Systems: Method and Experimentation 51

17. O. Rafiq, R. Castanet, and C. Chraibi. Towards an environment for testing osi
protocols. Proc of the International Workshop on Protocol Specification, testing
and Verification, 1985.

18. S. Salva and P. Laurençot. Génération de tests temporisés orientée caractérisation
d’états. Colloque Francophone de l’ingénierie des Protocoles, CFIP, October
2003.

19. A. Ulrich and H. Knig. Architecture for testing distributed systems. In Proc of
Inter. Workshop on testing of Communicating Systems, IWTCS’99, 1999.

20. T. Walter, I. Schieferdecker, and J. Grabowski. Test architectures for distributed
systems - state of the art and beyond. In Testing of Communicating Systems,
1998.

A UNITY-Based Framework Towards
Component Based Systems

I.S.W.B. Prasetya1, T.E.J. Vos2, A. Azurat1, and S.D. Swierstra1

1 Informatica Instituut, Universiteit Utrecht
wishnu@cs.uu.nl

http://www.cs.uu.nl/staff/wishnu.html
2 Instituto Tecnológico de Informática, Universidad Politécnica de Valencia

tanja@iti.upv.es

http://www.iti.upv.es/~tanja

Abstract. Compositionality provides the foundation of software modu-
larity, re-usability and separate verification of software components. One
of the known difficulties, when separately verifying components, is pro-
ducing compositional proofs for progress properties of distributed sys-
tems. This paper offers a UNITY-based framework to model distributed
applications which are built with a component based approach. The
framework enables components to be abstractly specified in terms of
contracts. Temporal properties are expressed and proven in the UNITY
style. Compositional reasoning about components’ properties, including
progress, is supported. The semantical model is simple and intuitive.

Keywords: component based applications, compositionality, verifica-
tion.

1 Introduction

Component based models, like COM, CORBA, and JavaBeans, result in applica-
tions built from components that interact by calling each other’s operations. The
different components can be owned and controlled by other applications, which
may run on yet different machines and locations. Consequently, component based
applications are essentially distributed systems whose temporal properties have
to be verified to guarantee their correctness.

Verifying a global property of a component based system is complicated be-
cause we may not have access to the source code of all its components. Instead,
we have to rely on their specifications or contracts. However, verifying the preser-
vation of progress properties’ specifications while composing distributed compo-
nents is known to be difficult [7, 5, 1, 2, 8, 9]. In order to be able to infer global
temporal properties, the components will have to offer a stronger kind of con-
tracts. Merely specifying the pre- and post-conditions of an object’s operations,
like for example as in OCL, is usually not sufficient.

This paper offers a UNITY-based framework to specify the components of an
application and to infer temporal properties of the application from the contracts
of its components.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 52–66, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A UNITY-Based Framework Towards Component Based Systems 53

2 Overview on the Model

We will take the same basic model as in CORBA: an application consists of clients
and objects. Both are computing entities, and to keep it simple, we assume that
they run continuously. These computing entities interact by performing opera-
tions (methods) provided by the objects12. Objects are available as components.
Components are objects that, for various reasons, only reveal a limited amount
of information about themselves. The information they reveal is laid down in a
contract, and a component is committed to behave as indicated in its contract3.
An object that is bound by a contract is also called a contractor.

The framework, described in this paper, offers formal notions of objects,
contracts, and applications, and a set of laws that allow us to infer global prop-
erties, including progress, of an application in a compositional way from the
specifications of its components. Refinement is used as a part of the component-
contract relation. The refinement relation is defined in a way such that checking
component-contract consistency is cheap and that a component’s author gets
more flexibility in hiding aspects of his component from its contract (while still
offering a consistent contract).

3 Preliminaries

Predicate Confinement. Predicates specify a set of program states. A pred-
icate p is confined by a set of variables V (written p conf V) if p does not
constrain the value of any variable outside V . As a rule of thumb, if V is the set
of free variables of an expression e, then e is confined by V . We write p, q conf V
to abbreviate p conf V and q conf V .

Actions. An action is an atomic, terminating, and non-deterministic state tran-
sition. An action can be modelled by a function from the universe of states,
denoted by State, to P(State).

Actions can be (multiple) assignments or guarded actions. If V is a set of
variables, skip V is an action that does not change the variables in V . Guarded

1 This is consistent with Szyperski’s definition of object (essentially: an object is some-
thing that has state, behavior, and encapsulation) [20], which is quite commonly
accepted.

2 We will not venture into complex features, such as inheritance and the ability to pass
object reference, or to pass an entire object, through an operation call. Furthermore,
our model is an abstract model: details of implementational nature, such as param-
eters marshaling, object deployment, and optimization of resources’ utilization will
not be visible in the model.

3 This is also consistent with Szyperski’s definition of component [20], essentially: com-
ponent is a unit of composition with contractually specified interfaces and subject to
composition by third parties. Our definition is stricter by saying the only knowledge
we can rely on, placing ourselves as a third party, about a component is its contracts.

54 I.S.W.B. Prasetya et al.

actions are denoted by g --> a, meaning that a will be executed if g is true,
otherwise the action behaves as a skip.

If a and b are actions, a � b is an action that either behaves as a or as b.
So, (a � b) s = a s ∪ b s. If Σ is a set of actions then �Σ is a shorthand for
(�a : a ∈ Σ : a).

We write {var x; a} to introduce a local variable x. The meaning is expressed
in terms of Hoare triple as follows:

{p} {var x; a} {q} d= {p} a[x′/x] {q}
where a[x′/x] means the action obtained by replacing x in a with a fresh vari-
able x′.

Action Refinement. We define the following notion of refinement over actions
—it is a variant of the standard one, e.g. as in [3]. Let V be a set of variables,
and let i be a predicate (i is intended to be an invariant). Action b weakly refines
action a (or a is an abstraction of b) with respect to V and i, if b can either
simulate whatever a can do on the variables in V , assuming i holds initially, or
it skips. Formally:

V, i � a � b
d=
(∀p, q : p, q conf V : {i ∧ p} a � skip V {q} ⇒ {i ∧ p} b {q})

Notation. We will use tuples to represent composite structures, and selectors
to select the various parts. For example, Object = (prg :: Program, ops ::
{Operation}) defines a type Object consisting of two-elements tuples. If x(P,M)
is a value of this type, then x.prg = P and x.ops = M .

4 UNITY

We will use the original UNITY operators from [6] as a base for our extension.
We could have used those of new-UNITY [14] since both set of operators are in
principle of equal strength. Our choice, however, is a subjective one, we find the
”old” operators simply more intuitive.

4.1 Programs

We will represent a UNITY program P by a tuple of this type:

ProgUNITY
d= (acts :: {Action}, init :: Pred, pub :: {V ar}, pri :: {V ar})

P.init is a predicate specifying P ’s possible initial states, P.pub is the set of P ’s
public (shared) variables, and P.pri is the set of P ’s private (local) variables. We
write P.var to refer to P.pub∪P.pri. Implicitly, P.init has to be confined by P.var;
P.pub and P.pri are disjoint; and for every action a ∈ P.acts, it holds that for
every state s, a s is non-empty.

A UNITY-Based Framework Towards Component Based Systems 55

An execution of a UNITY program is infinite, in each step an action is selected
nondeterministically. Selection is weakly fair, every action is selected infinitely
often.

We do not expect real programs to be written entirely in UNITY. Each
UNITY action serves as an abstraction of a sequential program, which may
be several times larger and written in another language. In Misra’s words [14]:
a UNITY program merely orchestrates executions of its constituent sequential
programs, by specifying the conditions under which each sequential program is
to be executed.

When composing different programs, we assume that each component is given
a unique name space to name its private variables. So, when composing P and
Q, we know that the names in P.pri and Q.pri do not clash with the names in,
respectively, Q.var and P.var. Unique name spaces can, for example, be achieved
by prefixing the names of all private variables of a program with the program’s
name. We will not concern ourselves here with these issues.

Composing two programs means running them in parallel. The behavior of
the parallel composition of P and Q is modelled by the P []Q which is defined as
follows:

Definition 4.1: Parallel Composition

P []Q d= (P.acts ∪ Q.acts, P.init ∧ Q.init, P.pub ∪ Q.pub, P.pri ∪ Q.pri)

4.2 Properties

A predicate i is a strong invariant4 of P , denoted by P � sinv i, if it holds
initially, and it is maintained by every action of P . A predicate j is an invariant
if there exists a strong invariant i implying j.

Definition 4.2: Strong Invariant

P � sinv i
d= P.init ⇒ i ∧ (∀a : a ∈ P.acts : {i} a {i})

To specify safety and one-step progress properties we use extended UNITY
operators from [15]. We repeat them below for convenience.

Definition 4.3: UNITY operators

1. P, i |−− p unless q
d=
P � sinv i ∧ p, q conf P.var ∧ (∀a : a ∈ P.acts : {i ∧ p ∧ ¬q} a {p ∨ q})

2. P, i |−− p ensures q
d=
P, i |−− p unless q ∧ (∃a : a ∈ P.acts : {i ∧ p ∧ ¬q} a {q})

4 We are going to use invariants to parameterize UNITY properties, in the style of
Sanders [18]. Strong invariants are however used here instead of just invariants (pred-
icates that hold through out any execution of a given program) as in [18], because
the later cause a certain technical problem [16].

56 I.S.W.B. Prasetya et al.

4.3 Refinement

We will use the following simple notion of refinement on UNITY programs.

Definition 4.4: Program Refinement and Abstraction

For a set of variables V , and a predicate i that is intended to be a strong
invariant of P , we define that Q is a refinement of P (or P is an abstraction of
Q) as follows:

1. V, i |−− P � Q
d= P.pub ⊆ Q.pub ∧ P.pri ⊆ Q.pri ∧ Q.init ⇒ P.init
∧
∀b : b ∈ Q.acts : V, i � � P.acts � b

2. i � P � Q
d= P.var, i |−− P � Q

So, under the invariance of i, V, i � P � Q means that every action of Q behaves,
with respect to the variables in V , no worse than some action of P , or it just
skips V (note the use of weak refinement at the action level).

5 Specification of Objects and Components

In order to be able to reason about the preservation of progress properties, we
need contracts that specify those progress properties that can be preserved if
a component P is composed with some environment B. Consider the property
P []B, i � p �→ q. Suppose we know that this progress is driven solely by compo-
nent P . If B is an abstraction of a concrete environment Q, then we can expect
that the same property will be preserved in P []Q. To express this kind of rea-
soning, we need a new set of extended UNITY operators, with which the notion
of ”progress is driven solely by P” can be specified.

Definition 5.1: Extended UNITY operators

Let P and B be UNITY programs. We define:

1. P�[]B, i � p ensures q
d=
P []B, i � p unless q ∧ (∃a : a ∈ P.acts : {i ∧ p ∧ ¬q} a {q})

2. P�[]Q, i � p �→ q is defined such that (λp, q. P�[]Q, i � p �→ q) is the smallest
transitive and disjunctive closure of (λp, q. P�[]Q, i � p ensures q).

Now we can state the theorem that makes it possible to specify progress prop-
erties in a contract such that their preservation can be inferred regardless of
the environment its contractor is composed with. More specifically, the theorem
states that every progress property from p to q made by P , when specified in
terms of P�[]B, will be preserved when P is composed with any program Q that
refines B.

A UNITY-Based Framework Towards Component Based Systems 57

Theorem 5.2: Preservation of �→
P�[]B, i � p �→ q ∧ j � B � Q ∧ i ⇒ j

P []Q, i � p �→ q

The rule’s premise assumes that i is a strong invariant of P . However, P may not
reveal i in its contract, for example because it exposes too much of its internal
state. However it is sufficient if the contract exposes a weaker invariant j, since we
can infer the conclusion above by showing the refinement based on the weaker j.

6 Objects and Their Operations

In our model, an object is a UNITY program that exposes some of its variables to
its environment. This program is called the internal program of the object. The
exposed variables are called public or shared variables. Access to these variables
is restricted: the environment can only inspect or update them via a set of
operations provided by the object. Any program can be deployed as an object by
encapsulating it with the necessary interface implementing the above restriction
for accessing public variables.

6.1 Semantical Model

We will semantically model an object x with a tuple of this type:

Object = (prg :: ProgUNITY, ops :: {Operation})
where x.prg models the object’s internal program, x.ops is the set of operations
offered by the object, and Operation denotes the universe of operations that
objects can offer.

The selectors used on programs are overloaded so that they work on objects,
e.g. if x is an object, x.pub is equal to x.prg.pub. We also overload [] and �[], e.g.,
x[]Q means x.prg[]Q.

Two objects have an identical interface if they offer the same set of public vari-
ables and operations. An operation has the following structure: mname(y, r) =
do b, where y is a parameter used to pass input data to mname, r is a pa-

rameter used to hold the return value of mname, and b is an action describing
the operation’s body. The names of the parameters are assumed not to collide
with the names of any variable of x. Parameters are passed either by value or by
reference, passing aliases by reference is not allowed. An operation has no access
to global information, other than the public variables of the object it belongs to.

If x is an object to which mname belongs to, then a call to mname is de-
noted by x.mname(e, z). If b is the body of mname, the effect of such a call is
equivalent to:

atomic{var y, return; y := e; b; z := return}
The execution of an operation is assumed to be atomic. This may not be

efficient, if it, for example, works on a large data structure. However, there are

58 I.S.W.B. Prasetya et al.

ways to infer which operations can be safely executed in parallel. We will abstract
away this issue, and leave it up to the implementator to optimize the utilization
of the objects.

Object Properties. Since the environment of an object x can only interact
with it through its operations, the worst possible environment of x can be char-
acterized by the following UNITY program:

x.env
d= (Σ, x.init, x.pub, ∅)

where Σ is a set of actions modelling all possible calls to the operations in x.ops:

Σ = {var y, z; x.m1(y, z)} [] . . . [] {var y, z; x.mk(y, z)}
for all operations m1, . . . ,mk ∈ x.ops. So, any real or proper environment Q of
x is a refinement of x.env. Formally:

Q is a proper environment of x
d= (∀i :: x.pub, i � x.env � Q)

Any unless and �→ properties proven with respect to x[]x.env and x�[]x.env re-
spectively, will be preserved when x is composed with any proper environment.

7 Contract

A component is an object that does not release full information about itself to its
environment. Instead, is offers a contract that specifies what the object does. A
contract is binding, as the object is obliged to realize anything it commits in the
contract. A simple form of contract can just list the headers of the operations
offered by the object. Such a contract can be strengthened by putting more
information in it, thus enabling the users to infer more properties about the
object. Of course, strengthening a contract makes an object less reusable, and
its verification more expensive.

We will use the abstraction relation from Section 4.3 as the base of a contract.
We use an abstract object a as a contract of a concrete object x. The definition
of � tells us how to check if x will fulfil a. This powerful abstraction relation
gives us the advantage that we obtain a considerable level of freedom in deciding
how detailed a is (how much aspects of x we want to expose in a).

7.1 Semantical Model

Formally, we will represent a contract c with a tuple of this type:

Contract = (smodel :: Object, inv :: Pred, progress :: {ProgressSpec})
where c.inv is a predicate specifying an invariant, and c.progress is a set of spec-
ifications in form p �→ q specifying progress made by c’s contractor. We impose
that a.smodel is a so-called abstract object, which is an object that has no private

A UNITY-Based Framework Towards Component Based Systems 59

variables5 (so a.smodel.pri = ∅). Moreover, c.inv specifies a strong invariant of
c.smodel, and of any proper environment of c.smodel. Furthermore, c.inv has to
be confined by c.pub. Formally:

c.inv conf c.pub ∧ c.smodel[]c.env � sinv c.inv

We will again overload the meaning of the selectors used on objects so that
they also work on contracts. For example, if c is a contract, c.pub denotes the
set of all c’s public variables, which is just equal to c.smodel.pub.

If x is an object, its contract is denoted by x.contract. The relation between
an object and its contract is defined below:

Definition 7.1: Object-Contract Relation

Let x be an object and c = x.contract. The relation between x and c is as
follows:

1. x and c.smodel have the same interface. So x.pub = c.pub and x.ops = c.ops.
2. There exists a predicate i such that:

(a) i is a strong invariant of x[]x.env and it implies c.inv.
(b) c.smodel is a consistent abstraction of x. More precisely: i � c.smodel �

x
(c) For every specification p �→ q in c.progress: x�[]x.env, i � p �→ q

The invariant i mentioned above is called the concrete invariant of x, and will be
denoted by x.concreteInv. Note that since x and c have the same set of operations,
then x.env = c.env. So, any proper environment of c.smodel is also a proper
environment of x. Also note that c.inv is an invariant of x[]x.env because the
object-contract relation implies the existence of a invariant i of x[]x.env implying
c.inv. However, c.inv is not a strong invariant of x[]x.env.

7.2 Inferring Object’s Properties

From the object-contract relation and from Theorem 5.2, it follows that the
composition of x with any proper environment Q will maintain all progress
properties specified in R:

Corollary 7.2: Progress Commitment

Let x be an object and c = x.contract. Let Q be a proper environment of x.

p �→ q ∈ c.progress
x�[]Q, x.concreteInv � p �→ q

Any unless property proven with respect to the safety model in the contract is
also a property of the actual object. More precisely:

5 This is not a restriction, but more a matter of choice in defining how expressive a
contract should be.

60 I.S.W.B. Prasetya et al.

Theorem 7.3: Safety Commitment

Let x be an object and c = x.contract. Let Q be a proper environment of x.
Then:

c.smodel[]c.env, c.inv � p unless q
x[]Q, x.concreteInv � p unless q

Contract Refinement. One could define a notion of contract refinement. This
can be useful when an object broker cannot find an object offering a contract c.
In that case it may try to find another object whose contract refines c. We will
not work out this idea further here.

8 Application

An application consists of a set of objects and a set clients. An object can be
either private (it cannot be accessed by the application’s environment) or public6.

8.1 Semantical Model

We will semantically model an application A with a tuple of this type:

App
d= (pubobjs :: {ObjDecl} ,

priobjs :: {ObjDecl} ,
clients :: {ProgUNITY}
clientsinv :: Pred)

where ObjDecl represents object declarations. We will use the notation A.objs
to refer to the set of all (public as well as private) objects of A. The predicate
A.clientsinv is intended to augment the invariants of A’s objects with information
about the clients’ (private) variables. In addition, there are several constraints,
for example concerning the well-formedness of the model; we will show them
later, since we need to introduce some concepts first.

The set of all public variables of A, denoted by A.pub, consists of the public
variables of its public objects. A’s private variables, denoted by A.pri, consists
of the union of the set of private variables of its public objects, and the sets
of variables of its private objects and clients. The set of all A’s variables is
denoted by A.var. The concrete program induced by an application A is the
following:

A.prg
d= ([]x : x ∈ A.objs : x) [] ([]Q : Q ∈ A.clients : Q)

6 In CORBA a public object may be located outside the application itself. It may
belong to and be controlled by another application, which may even be owned by a
foreign organization. In such a setting a so-called object broker is used for searching
the objects needed by an application and to facilitate the communication between
the application and those foreign objects. This paper will however not concern itself
with brokers.

A UNITY-Based Framework Towards Component Based Systems 61

The abstract model, or contract, of the whole application, denoted by A.smodel,
is the union of the contracts of the objects, composed with the clients:

Definition 8.1: Abstract Model of Application

A.model
d= ([]x : x ∈ A.objs : x.contract.smodel) [] ([]Q : Q ∈ A.clients : Q)

The worst environment of an application can be modelled by a program that
tries all possible calls to the operations of the public objects:

Definition 8.2: Application’s Abstract Environment

A.env
d= ([]x,X : x :: X ∈ A.pubobjs : x.env)

The notation A.inv refers to the conjunction of the invariants specified by the
contracts in A, strengthened by A.clientsinv. Similarly, we define A.concreteInv:

Definition 8.3: Application’s Invariants

A.inv
d= (

∧
x : x ∈ A.objs : x.contract.inv) ∧ A.clientsinv

A.concreteInv
d= (

∧
x : x ∈ A.objs : x.concreteInv) ∧ A.clientsinv

8.2 Constraints

In order to prove the laws that enable us to infer the properties of an applica-
tion, we need to impose some constraints on its semantical model. Let A be an
application:

1. [CA1] Each object in A has its own unique name space. So, for any two
distinct objects x and y in A, x.var ∩ y.var = ∅.

2. [CA2] A client can only interact with an object through its operations. Fur-
thermore, a client can only do a single operation in one atomic step. In other
words, with respect to every object x in A, each client should be a proper
environment of x.

3. [CA3] The only public information a client has access to is the set of all
public variables of the objects in A.

4. [CA4] A.clientsinv is maintained by A’s abstract model. Note that this con-
straint implies that A.clientsinv can only specify the variables known to the
clients.

8.3 Inferring an Application’s Properties

A safety property proven with respect to the abstract model of an application
will extend to the application itself, under any proper environment.

Theorem 8.4: Safety by Abstract Model

A.model[]A.env, A.inv � p unless q
A.prg[]A.env, A.concreteInv � p unless q

62 I.S.W.B. Prasetya et al.

Any progress property committed in the contract of any object in an application,
will be preserved by the application, and by its environment.

Theorem 8.5: Progress by Contract

Let x be an object in A and c = x.contract.

p �→ q ∈ c.progress
A.prg�[]A.env, A.concreteInv � p �→ q

The next theorem states which progress made by the clients that can be be
preserved by the application and its environment.

Theorem 8.6: Client Progress

A.model[]A.env, A.inv � p �→ q
A.prg�[]A.env,A.concreteInv � p �→ q

Note that theorems 8.4 and 8.6 reflect what was mentioned at the beginning
of section 7. The stronger we make an object’s contract, i.e. the more information
we put in the model of the object, the more expensive its verification gets.

9 Example

Consider the VotingService application in Figure 1, it has one client
superviseVoting, an object SimpleVotingSystem that allows users to send

application votingService

public v :: SimpleVotingSystem ;

d :: SimpleCalendar

client superviseVoting

private closingDate :: Date = 01/01/2005 ;

today :: Date = 00/00/0000

action d.getDate(today) [] today>=closingDate --> v.count()

contract SimpleCalendar

smodel

public current :: Date

init true

action current := current + unittime

operation getDate(&today::Date) = do today:=current

inv current>=0

progress !D. true |--> current>=D

Fig. 1. An example of a simple application to do electronic voting and a contract of a
simple calendar object

A UNITY-Based Framework Towards Component Based Systems 63

votes, and a SimpleCalendar object to keep track of the current date. The
figure also shows the contract of SimpleCalendar.

Although the contract of SimpleVotingSystem is not shown, imagine that
it has two operations: vote and count. The first is used to send a vote to the
object. Incoming votes are collected in the variable votes. The second will close
the voting and count the votes. A variable isOpen is used to indicate whether or
not the voting is still open. If this variable has been flipped to false, then vote
will not add any new vote. Given this description, one can expect the following
property. For any value v:

v[]x.env, true � ¬v.isOpen ∧ v �∈ v.votes unless false (1)

In other words, once the voting process is closed, no new vote will be accepted.
Note that the property is an unless property over v[]x.env: it will be preserved
in the composition of v with any proper environment of v. Suppose we need to
infer this property for the whole application, i.e. we want to verify:

app.prg[]app.env, i � ¬v.isOpen ∧ v �∈ v.votes unless false (2)

where app = VotingService and iapp.concreteInv. By Theorem 8.4 it is suffi-
cient to show the following:

app.model[]app.env, j � ¬v.isOpen ∧ v �∈ v.votes unless false (3)

where j = app.inv. The only action in app.model[]app.env that can violate this
property is the operation vote, because it can insert to votes. However, it can
only do so if isOpen is true, which is not the case in the unless property above.
Hence (2) is valid.

Now, suppose not all incoming votes are valid votes. The object v will in-
ternally filter the valid votes and put them in a list validvotes. Consider the
following progress specification: if there are already more than 100 valid, then
eventually the value of a variable accept will be set to true. This indicates that
the voting results positively.

app.prg�[]app.env, i � length v.validvotes > 100 �→ v.accept (4)

To show (4) it is sufficient (by transitivity of �→) to show the following properties
with respect to app.prg �[] app.env and invariant i:

true �→ d.current ≥ closingdate (5)

d.current ≥ closingdate �→ afterClosingDate (6)

length v.validvotes > 100 unless false (7)

length v.validvotes > 100 ∧ afterClosingDate �→ v.accept (8)

where:
afterClosingDate
=
d.current ≥ closingdate ∧ today ≥ closingdate

64 I.S.W.B. Prasetya et al.

Consider (5). Since this progress is realized by the SimpleCalendar object
of app, we use Theorem 8.5 to reduce the application level property to an object
level one. By the theorem it suffices to show that the same property is specified
in the progress-part of the object d, which is indeed the case (see the contract
in Figure 1).

Consider (6). We expect this progress to be realized by the client. Us-
ing Theorem 8.6, we need to show the same progress, but with respect to
app.model�[]app.env and invariant j. This can be proven easily, since this progress
is realized by the action d.getDate(today) of the client. Consequently, it is easy
to prove the following ensures property, which implies �→:

app.model�[]app.env, j
�
d.current ≥ closingdate ensures afterClosingDate

(9)

The approach to prove (7) is similar to that of (2), and that of (8) similar to
that of (6).

10 Deploying an Application as an Object

Since an application A is essentially just a program, it can be deployed as an
object by wrapping it. For this we need to define an interface, because an object
has public and private variables, initial condition, and operations. Evidently, a
wrapper can only expose all or some public objects of A. Therefore, the actual
environment of a wrapped A will not behave worse that A.env. Consequently,
properties infered using the theorems from Subsection 8.3, which assume A.env,
will be preserved by the wrapping.

11 Related Work

Various other frameworks exist. The one in [13] is based on Z and focuses on
formalizing static relations between components, specified in terms of UML class
diagrams. In [12] a framework is described that relies on Hoare triple specifica-
tions to infer behavioral properties. It is suitable to deal with components that
have no internal programs of their owns, and hence cannot, on their own, en-
force temporal properties. If internal programs are added, specifying temporal
properties would require the use of auxiliary variables to record the objects’ his-
tory. Broy’s framework [4] has built in history variables as part of its logic. The
framework is especially tailored for dealing with components that synchronize
with channels. It may however be too detailed if the components exchange infor-
mation through operation calls instead. Our framework is more suitable in the
latter context.

An important part of our framework is the use of an abstract program to
specify (a certain aspect of) the behavior of a concrete program or environment.

A UNITY-Based Framework Towards Component Based Systems 65

It turns out to be quite convenient. Refinement has been used by many other
researches, e.g. [3, 10, 11, 21, 19, 12].

We favor the use of UNITY as the underlying theory, because of its simplicity
and its axiomatic style. It yields a semantical model which is simple and intuitive.
The use of UNITY as the underlying theory to support component based design
has been proposed by other researchers in [10, 11, 21]. However, as far as we
know, our work is the first UNITY framework offering formal notions of objects,
contracts, and application. We also want to mention Seuss due to Misra [14]. It
is an excellent object oriented language and logic layer on top of UNITY. Our
work can be seen as a component oriented extension to Seuss.

12 Conclusion

We have offered a formal framework to support a component based approach to
build distributed applications. The framework offers formal notions of objects,
contracts, and applications, and a set of laws to compositionally infer temporal
properties of an application.

The underlying theory is in UNITY style, which compared to for example
LTL is less expressive. However, because of UNITY’s axiomatic style, it yields a
semantical model which is simple and intuitive.

A small experiment with a simple voting system [17] seems to show that
contracts in our framework can adequately and abstractly capture the system’s
components’ temporal properties. Using the laws provided by the framework we
were able to compositionally infer interesting properties of the system.

We have chosen for a weak notion of refinement, which gives more freedom to
developers to hide components’ details in the contracts. It is possible to take a
stronger notion of refinement, for example as in [22, 23], but in exchange checking
if a component satisfies its contract will be more expensive. Our framework is
suitable for dealing with systems in which components synchronize by operations
calls. It is less suitable to deal with message passing systems, or with systems
where components require tight synchronization as in protocols.

We believe that our framework is worth further research. Future activities
include its application to real-world examples in order to check out its scalability.

References

1. M. Abadi and L. Lamport. Composing specifications. ACM Transactions on
Programming Languages and Systems, 15(1):73–132, January 1993.

2. M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems, 17(3):507–534, May 1995.

3. R.J.R. Back and J. Von Wright. Refinement calculus, part I: Sequential non-
deterministic programs. Lecture Notes of Computer Science, 430:42–66, 1989.

4. M. Broy. Multi-view modelling of software sytems. In Hung Dang Van and Zhim-
ing Liu, editors, Proceedings of the Workshop on Formal Aspects of Component
Software (FACS), 2003. Also as UNU/IIST Report no. 284, available on-line at
www.iist.unu.edu/newrh/III/1/page.html.

66 I.S.W.B. Prasetya et al.

5. K. Chandy and M. Charpentier. An experiment in program composition and proof.
Formal Methods in System Design, 20(1):7–21, 2002.

6. K.M. Chandy and J. Misra. Parallel Program Design – A Foundation. Addison-
Wesley Publishing Company, Inc., 1988.

7. K.M. Chandy and B.A. Sanders. Reasoning about program composition. Technical
Report 96-035, University of Florida, 1996.

8. K.M. Chandy and B.A. Sanders. Reasoning about program composition. Draft.
Presently available via: www.cise.ufl.edu/∼sanders/pubs, 2000.

9. M. Charpentier and K. Chandy. Theorems about composition. Lecture Notes of
Computer Science, 1837:167–186, 2000.

10. P. Collette. Composition of assumption-commitment specifications in a UNITY
style. Science of Computer Programming, 23:107–125, December 1994.

11. P. Collette and E. Knapp. Logical foundations for compositional verification and
development of concurrent programs in UNITY. Lecture Notes of Computer Sci-
ence, 936:353 – 367, 1995.

12. He Jifeng, Lui Zhiming, and Li Xiaoshan. A contract-oriented approach to CBP. In
Hung Dang Van and Zhiming Liu, editors, Proceedings of the Workshop on Formal
Aspects of Component Software (FACS), 2003. Also as UNU/IIST Report no. 284,
available on-line at www.iist.unu.edu/newrh/III/1/page.html.

13. Soon-Kyeong Kim and David Carrington. A formal mapping between UML models
and Object-Z specifications. Lecture Notes in Computer Science, 1878:2–??, 2000.

14. J. Misra. A Discipline of Multiprogramming. Springer-Verlag, 2001.
15. I. S. W. B. Prasetya. Mechanically Supported Design of Self-stabilizing Algorithms.

PhD thesis, Inst. of Information and Comp. Science, Utrecht Univ., 1995. Down-
load: www.cs.uu.nl/library/docs/theses.html.

16. I.S.W.B. Prasetya. Error in the UNITY substitution rule for subscripted operators.
Formal Aspects of Computing, 6:466–470, 1994.

17. I.S.W.B. Prasetya, T.E.J. Vos, A. Azurat, and S.D.. Swierstra. A unity-based
framework towards component based systems. Technical Report UU-CS-2003-
043, Inst. of Information and Comp. Science, Utrecht Univ., 2003. Download:
www.cs.uu.nl/staff/wishnu.html.

18. B.A. Sanders. Eliminating the substitution axiom from UNITY logic. Formal
Aspects of Computing, 3(2):189–205, 1991.

19. N. Shankar. Lazy compositional verification. Lecture Notes of Computer Science,
1536:541–564, 1999.

20. C. Szyperski. Component Software, Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

21. R.T. Udink. Program Refinement in UNITY-like Environments. PhD thesis, Inst.
of Information and Computer Sci., Utrecht University, 1995. Downloadable from
www.cs.uu.nl.

22. T.E.J. Vos. UNITY in Diversity: A Stratified Approach to the Verification of Dis-
tributed Algorithms. PhD thesis, Inst. of Information and Computer Sci., Utrecht
University, 2000. Download: www.cs.uu.nl.

23. T.E.J. Vos, S.D. Swierstra, and I.S.W.B Prasetya. Yet another program refinement
relation. In International Workshop on Refinement of Critical Systems: Methods,
Tools and Experience, 2002.

Searching for a Black Hole in Tree Networks

Jurek Czyzowicz1,�, Dariusz Kowalski2,3,��,
Euripides Markou1,� � �, and Andrzej Pelc1,†

1 Département d’informatique, Université du Québec en Outaouais,
Hull, Québec J8X 3X7, Canada

{jurek, evripidi, pelc}@uqo.ca
2 Max-Planck-Institut für Informatik,

Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany
darek@mpi-sb.mpg.de

3 Instytut Informatyki, Uniwersytet Warszawski,
Banacha 2, 02-097 Warszawa, Poland

Abstract. A black hole is a highly harmful stationary process residing
in a node of a network and destroying all mobile agents visiting the node,
without leaving any trace. We consider the task of locating a black hole
in a (partially) synchronous tree network, assuming an upper bound on
the time of any edge traversal by an agent. The minimum number of
agents capable to identify a black hole is two. For a given tree and given
starting node we are interested in the fastest possible black hole search
by two agents. For arbitrary trees we give a 5/3-approximation algorithm
for this problem. We give optimal black hole search algorithms for two
“extreme” classes of trees: the class of lines and the class of trees in which
any internal node (including the root which is the starting node) has at
least 2 children.

Keywords: algorithm, black hole, mobile agent, tree.

1 Introduction

1.1 The Background and the Problem

Security of mobile agents working in a network environment is an important
issue which receives recently growing attention. Protecting agents from “host
attacks”, i.e., harmful items stored in nodes of the network, has become almost
as urgent as protecting a host, i.e., a node of the network, from an agent’s attack
[8, 9]. Various methods of protecting mobile agents against malicious hosts have
been discussed, e.g., in [5, 6, 7, 8, 9, 10].

� Research supported in part by NSERC grant.
�� Research supported in part by grants from KBN (4T11C04425) and UE DELIS.

� � � This work was done during this author’s stay at the Research Chair in Distributed
Computing of the Université du Québec en Outaouais, as a postdoctoral fellow.

† Research supported in part by NSERC grant and by the Research Chair in Dis-
tributed Computing of the Université du Québec en Outaouais.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 67–80, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

68 J. Czyzowicz et al.

In this paper we consider hostile hosts of a particularly harmful nature, called
black holes [1, 2, 3, 4]. A black hole is a stationary process residing in a node of a
network and destroying all mobile agents visiting the node, without leaving any
trace. Since agents cannot prevent being annihilated once they visit a black hole,
the only way of protection against such processes is identifying the hostile node
and avoiding further visiting it. Hence we are dealing with the issue of locating a
black hole: assuming that there is at most one black hole in the network, at least
one surviving agent must find the location of the black hole if it exists, or answer
that there is no black hole, otherwise. The only way to locate the black hole is
to visit it by at least one agent, hence, as observed in [2], at least two agents are
necessary for one of them to locate the black hole and survive. Throughout the
paper we assume that the number of agents is minimum possible for our task,
i.e., 2, and that they start from the same node, known to be safe.

In [1, 2, 3, 4] the issue of efficient black hole search was extensively studied in
many types of networks. The underlying assumption in these papers was that
the network is totally asynchronous, i.e., while every edge traversal by a mobile
agent takes finite time, there is no upper bound on this time. In this setting
it was observed that, in order to solve the problem, the network must be 2-
connected, in particular black hole search is infeasible in trees. This is because,
in asynchronous networks it is impossible to distinguish a black hole from a
“slow”link incident to it. Hence the only way to locate a black hole is to visit
all other nodes and learn that they are safe. (In particular, it is impossible to
answer the question of whether a black hole actually exists in the network, hence
[1, 2, 3, 4] worked under the assumption that there is exactly one black hole and
the task was to locate it.)

Totally asynchronous networks rarely occur in practice. Often a (possibly
large) upper bound on the time of traversing any edge by an agent can be
established. Hence it is interesting to study black hole search in such partially
synchronous networks. Without loss of generality, this upper bound on edge
traversal time can be normalized to 1 which yields the following definition of
the time of a black hole search scheme: this is the maximum time taken by the
scheme, i.e. the time under the worst-case location of the black hole (or when it
does not exist in the network), assuming that all edge traversals take time 1.

Our partially synchronous scenario makes a dramatic change to the problem
of searching for a black hole. Now it is possible to use the time-out mechanism
to locate the black hole in any graph, with only two agents, as follows: agents
proceed along edges of a spanning tree. If they are at a safe node v, one agent
goes to the adjacent node and returns, while the other agent waits at v. If after
time 2 the first agent has not returned, the other one survives and knows the
location of the black hole. Otherwise, the adjacent node is known to be safe and
both agents can move to it. This is in fact a variant of the cautious walk described
in [2] but combining it with the time-out mechanism makes black hole search
feasible in any graph. Hence the issue is now not the feasibility but the time
efficiency of black hole search, and the present paper is devoted to this problem.

Searching for a Black Hole in Tree Networks 69

Since for any network, black hole search can be done using only the edges of
its spanning tree, solving the problem of fast black hole search on trees seems a
natural first step. Hence in this paper we restrict attention to black hole search
in tree networks using two agents, and our goal is to accomplish this task in
minimum time. Clearly, in many graphs, there are more efficient black hole
search schemes than those operating in a spanning tree of the graph, and the
generalization of our problem to arbitrary networks remains an important and
interesting open issue.

The time of a black hole search scheme should be distinguished from the
time complexity of the algorithm producing such a scheme. While the first was
defined above for a given input consisting of a network and a starting node, and
is in fact the larger of the numbers of time units spent by the two agents, the
second is the time of producing such a scheme by the algorithm. In other words,
the time of the scheme is the time of walking and the time complexity of the
algorithm is the time of thinking.

Constructing a fastest black hole search scheme for arbitrary trees turns out
to be far from trivial. In particular, the following problem remains open. Does
there exist a polynomial time algorithm which, given a tree and a starting node
as input, produces a black hole search scheme working in shortest possible time
for this input? Nevertheless, we show fastest schemes for some classes of trees
and give a 5/3-approximation algorithm for the general case.

1.2 Our Results

For arbitrary trees we give a 5/3-approximation algorithm for the black hole
search problem. More precisely, given a tree and a starting node as input, our
algorithm produces a black hole search scheme whose time is at most 5/3 of the
shortest possible time for this input.

We give optimal black hole search algorithms for two “extreme” classes of
trees: the class of lines and the class of trees in which any internal node (including
the root which is the starting node) has at least 2 children. More precisely, for
every input in the respective classes these algorithms produce a black hole search
scheme whose time is the shortest possible for this input.

All our algorithms work in time linear in the size of the input.

2 Model and Terminology

We consider a tree T rooted at node s which is the starting node of both agents,
and is assumed to be safe (s is not a black hole). Notions of child, parent,
descendant and ancestor, are meant with respect to this rooted tree. Agents
have distinct labels. They can communicate only when they meet (and not, e.g.,
by leaving messages at nodes). We assume that there is at most one black hole
in the network. This is a node which destroys any agents visiting it. A black hole
search scheme (BHS-scheme) for the input (T, s) is a pair of sequences of edge
traversals (moves) of each of the two agents, with the following properties.

70 J. Czyzowicz et al.

– Each move takes one time unit.
– Upon completion of the scheme there is at least one surviving agent, i.e., an

agent that has not visited the black hole, and this agent either knows the
location of the black hole or knows that there is no black hole in the tree.
The surviving agents must return to s.

The time of a black hole search scheme is the number of time units until the
completion of the scheme, assuming the worst-case location of the black hole (or
its absence, whichever is worse). It is easy to see that the worst case for a given
scheme occurs when there is no black hole in the network or when the black hole
is the last unvisited node, both cases yielding the same time. A scheme is called
fastest for a given input if its time is the shortest possible for this input.

For any edge of a tree we define the following states:

– unknown, if no agent has moved yet along this edge (initial state of every
edge),

– explored, if either the remaining agents know that there is no black hole
incident to this edge, or they know which end of the edge is a black hole.

Note that in between meetings, an edge may be neither unknown nor ex-
plored. This is the case when an unknown edge has been just traversed by an
agent.

Any BHS-scheme must have the following property: after a finite number of
steps, at least one agent stays alive and all edges are explored (there is at most
one black hole, so once the black hole has been found, all edges are explored).

The explored territory at step t of a BHS-scheme is the set of explored edges.
At the beginning of a BHS-scheme the explored territory is empty. We say that a
meeting occurs in node v at step t when the agents meet at node v and exchange
information which strictly increases the explored territory. Node v is called a
meeting point.

In any step of a BHS-scheme, an agent can traverse an edge or wait in a node.
Also the two agents can meet. If at step t a meeting occurs, then the explored
territory at step t is defined as the explored territory after the meeting. The
sequence of steps of a BHS-scheme between two consecutive meetings is called a
phase.

3 Preliminary Results

Lemma 1. In a BHS-scheme, an unexplored edge cannot be traversed by both
agents.

Hence in a BHS-scheme, an edge can be explored only in the following way:
an agent traverses this edge and then a meeting is scheduled. Whether it occurs
or not (in the latter case the agent vanished in the black hole) the edge becomes
explored.

Lemma 2. During a phase of a BHS-scheme an agent can traverse at most one
unexplored edge.

Searching for a Black Hole in Tree Networks 71

Therefore an unknown edge could be explored in the next phase only if it
is adjacent to the explored territory. The explored territory increases only at
scheduled meeting points.

Lemma 3. At the end of each phase, the explored territory is increased by one
or two edges.

We define a 1-phase to be a phase in which exactly one edge is explored.
Similarly, we define a 2-phase to be a phase in which exactly two edges are
explored. In view of Lemma 3, every phase is either a 1-phase or a 2-phase.

Lemma 4. Let v be a meeting point at step t in a BHS-scheme. Then at least
one of the following holds: v = s or v is an endpoint of an edge which was already
explored at step t − 1.

Hence an agent which traversed an unexplored edge must return to the ex-
plored territory in order to go to the meeting point. A corollary of Lemmas 1, 2
and 4 is that at any step of a BHS-scheme the explored territory is connected.

A node p is called a limit of the explored territory at step t if it is incident
both to an explored and to an unexplored edge.

A way of exploring exactly one edge in a phase is the following: one of the
agents walks through the explored territory to its limit p, while the other agent
walks through the explored territory to p, traverses an unknown edge and returns
to p. If we assume that both agents are at a limit p of the explored territory at
step t and (p, u) is an unknown edge towards node v, we define the following
procedure:
probe(v): one agent traverses edge (p, u) (which is towards node v) and returns
to node p to meet the other agent who waits. If they do not meet at step t + 2
then the black hole has been found.

We also define a procedure that the two agents could follow to explore two
new edges in a phase. Suppose that the two agents reside at node m at step t. Let
p1, ..., pi be the limits of the explored territory at that step. Each of the unknown
edges which could be explored in the following phase has to be incident to a node
from the set {p1, ..., pi}. Let the two selected unknown edges for exploration be
(k, pk) and (l, pl), pk, pl ∈ {p1, ..., pi} (possibly pk = pl). We assume that node
m belongs to the path < k, l >. The definition of the procedure is the following:
split(k, l): One of the agents traverses the path from node m to node k and
returns towards node pl. The other traverses the path from node m to node l
and returns towards node pk. Let dist(l, k) denote the number of edges in the
path from node k to node l. If they do not meet at step t + dist(l, k) then the
black hole has been found.

4 Black Hole Search in a Line

In this section we construct an optimal black hole search algorithm for lines,
with linear time complexity. A line is a graph L = (V,E), where V = {0, ..., n}

72 J. Czyzowicz et al.

and E = {[i, i + 1] : i = 0, 1, ..., n − 1}. 0 and n are called endpoints of the line.
The starting node is denoted by s, while a and b denote the distances between
s and the endpoints of the line, with a ≤ b, hence a + b = n. We assume b > 0,
otherwise the line consists of a single node. We call right the direction from s
towards the closer endpoint and left the other direction.

Theorem 1. The time of any BHS-scheme on the line is at least:

– 4n − 2, when a = 0
–

∑a
i=1 2i, when 1 ≤ a = b ≤ 5

– 4n − 6, when a = 1 < b
– 4n − 10, when a = 2 < b or a = 3 < b
– 4n − 8, when a = 4 < b or a = 5 < b or a ≥ 6

We will now give an optimal algorithm to solve the black hole search problem
for the line (i.e. an algorithm which produces a fastest BHS-scheme for any
line). Suppose that both agents reside at the same node m. The algorithm uses
procedures probe, split and the following ones:

– walk(k): both agents go 1 step towards node k.
– walk-and-probe(v):

while the position of the agents is not adjacent to node v do
walk(v);
probe(v)

– return(s):
repeat walk(s) until all remaining agents are at s

The high-level description of Algorithm Line is the following:

– case a = 0: the two agents explore the line by probing left of s and return
– case 1 ≤ a = b ≤ 5: the two agents explore the line by repeated splits
– case a = 1 < b: the two agents first do a split and then explore the rest of

the line by probing left and return
– case a = 2 < b: the two agents first do a split, then explore all edges left of

s except one by probing, and finally explore the last two edges by a split
– case 3 ≤ a < b or a ≥ 5: the two agents first do two splits, then explore all

edges left of s except one by probing. They explore the last left edge together
with an edge right of s by a split and finally explore the remaining edges (if
any) which are right of s by probing and return

The precise formulation of the algorithm is given as Algorithm 1. The time
complexity of the algorithm is linear.

Theorem 2. Algorithm Line produces a fastest BHS-scheme for any line.

The proofs of the results of this section are omitted due to lack of space and
will appear in the full version of the paper.

Searching for a Black Hole in Tree Networks 73

Algorithm 1. Algorithm Line
case a = 0

probe(0);
walk-and-probe(0);

case 1 ≤ a = b ≤ 5
for i := 1 to a

split(s − i, s + i);
case a = 1 < b

split(s − 1, s + 1);
walk-and-probe(0);

case a = 2 < b
split(s − 1, s + 1);
walk-and-probe(1);
split(0, s + 2);

case a = 3 < b
split(s − 1, s + 1);
split(s − 2, s + 2);
walk(s − 1);
walk-and-probe(1);
split(0, s + 3);

case 4 ≤ a < b OR a ≥ 6
split(s − 1, s + 1);
split(s − 2, s + 2);
walk(s − 1);
walk-and-probe(1);
split(0, s + 3);
walk(s + 2);
walk-and-probe(n);

return(s)

5 Black Hole Search in a Tree

In this section we study the problem of black hole search in trees.
Consider a tree T rooted at the starting node s. If e is an edge, e = (u, v)

means that v is the child of u. Let e = (u, v) be an edge of the tree. Consider
the following coloring which creates a partition of the edges of the tree. This
partition will be used in the analysis of our algorithms.

– assign red color to edge e if node v has at least two descendants,
– assign green color to edge e if v is a leaf and exactly one of the following

holds: u = s or the edge (t, u) is a red edge (where t is the parent of u),
– assign blue color to edge e if it has none of the above properties

Let e = (u, v) and e′ = (v, z) be two blue edges such that v is the unique
child of u and z is a leaf and the unique child of v. We call the set of these two
edges a branch. The set of all branches of blue edges with upper node u is called
a block.

74 J. Czyzowicz et al.

Lemma 5. In any BHS-scheme, the following holds: a green edge has to be
traversed by the agents at least 2 times, a red edge has to be traversed at least 6
times and a branch of blue edges requires a total of at least 6 traversals.

Proof. By Lemma 1 any edge has to be traversed 2 times by one agent to become
explored. In particular a green edge needs 2 traversals.

Consider a red edge e = (u, v). Let l be the number of descendants of node
v. In view of Lemmas 1 and 2, if during any phase after exploration edge e is
traversed always by only one agent then at least 2l ≥ 4 additional traversals are
required (an agent has to traverse e two times for every descendant of v). If there
is at least one phase after exploration of e where the edge is traversed by both
agents then at least 4 additional traversals of e are required for the exploration
of the edges with upper node v (both agents traverse e and return). Thus the
total minimum number of traversals is 6.

A branch of 2 blue edges can be traversed in the following ways. 2 traversals
are required for the exploration of the upper edge of the branch. If during any
phase after exploration of the upper edge, this edge is traversed always by only
one agent then at least 4 additional edge traversals on this branch are required.
If there is at least one phase after exploration of the upper edge when this edge is
traversed by both agents then at least 6 additional edge traversals on this branch
are required (both agents traverse the upper edge, then one of them explores the
lower edge and finally they return). Therefore the total minimum number of
traversals on each branch is 6.

Lemma 6. Any BHS-scheme requires at least 3, 1 and 3b time units for the
traversals of a red edge, a green edge and a block of b branches of blue edges,
respectively.

5.1 An Optimal Algorithm for a Family of Trees

Consider the family T of rooted trees with the following property: any internal
node of a tree in T (including the root) has at least 2 children. Trees in T will
be called bushy trees.

Let T be a bushy tree with root s and let u be an internal node of T . The
heaviest child v = H(u) of u is defined as a child v of u such that the subtree
T (v) rooted at v (which is also a bushy tree) has a maximum height among all
subtrees rooted at children of u. The lightest child v′ = L(u) of u is defined as
a child v′ of u such that the subtree T (v′) rooted at v′ has a minimum height
among all subtrees rooted in a child of u. Ties are broken arbitrarily. Notice that
H(u) and L(u) can be computed for all nodes u in linear time.

The high-level description of Algorithm Bushy-Tree is the following. Let m
be the meeting point of the two agents after a phase (initially m = s).

– Explore any pair of unknown edges (m,x), (m, y) with upper node m by
executing procedure split(x, y), leaving edge (m,L(m)) last.

– If there is one unknown edge with upper node m (which must be (m,L(m)))
explore this edge together with another unknown edge (if any) again using

Searching for a Black Hole in Tree Networks 75

procedure split. If edge (m,L(m)) is the last unknown edge in the tree,
explore it by executing procedure probe(L(m)).

– If all edges with upper node m are explored, explore similarly as before any
unknown edges incident to the children of m and to ancestors of m.
Below we give the precise formulation of the algorithm.

Algorithm. Bushy-Tree

special-explore(s)

Procedure special-explore(v)

for every pair of unknown edges (v, x), (v, y) with upper node v do
split(x, y), so that edge (v, L(v)) is explored last

end for
if every edge is explored then

repeat walk(s) until (all remaining agents are at s)
else

case 1: every edge incident to v has been explored
next := relocate(v);
special-explore(next);

case 2: there is an unknown edge (v, z) incident to v
(* must be z = L(v) *)

explore-only-child(v, next);
special-explore(next);

end if

Function relocate(v) takes as input the current node v where both agents
reside and returns the new location of the two agents. If there is an unknown
edge incident to a child of v then the agents go to that child. Otherwise the two
agents go to the parent of v.

Function relocate(v)

case 1.1: ∃ an unknown edge incident to w ∈ children(v)
walk(w);
relocate := w

case 1.2: every edge incident to any child of v is explored
let t be the parent of v;
walk(t);
relocate := t

Procedure explore-only-child(v, next) takes as input the current node v where
both agents reside and returns the new meeting point after the exploration of
edge (v, L(v)). The description of the procedure is the following:

76 J. Czyzowicz et al.

– If there is an unknown edge incident to a child w of v, w �= L(v), then the
agents explore edge (w,H(w)) together with edge (v, L(v)) by split(H(w),
L(v)). The new meeting point is w.

– If every edge incident to any child w of v, different from L(v), is explored and
edge (v, L(v)) is not the last unknown edge in the tree, then find the deepest
ancestor a of v with unknown edges whose upper node is a descendant of
a; the agents explore edge (D(a),H(D(a))) (where D(a) is the closest de-
scendant of a with incident unknown edges), together with edge (v, L(v)),
by split(H(D(a)), L(v)); the new meeting point is D(a).

– If edge (v, L(v)) is the last unknown edge in the tree then explore it by
calling probe(L(v)); the new meeting point is v.

Procedure explore-only-child(v, next)

case 2.1: there is an unknown edge incident to w ∈ children(v), w �= L(v)
split(L(v),H(w));
next := w

case 2.2: every edge incident to any w ∈ children(v), w �= L(v) is explored
(* L(v) must be a leaf *)

case 2.2.1: there are at least 2 unknown edges left
let a be the deepest ancestor of v such that:
D(a) := the closest descendant of a with incident unknown edges;
split(H(D(a)), L(v));
next := D(a)

case 2.2.2: there is only 1 unknown edge left
probe(L(v));
next := v

Notice that all edges of the tree (except possibly the last one if the number
of edges is odd) are explored by calling procedure split. Observe that in any
bushy tree, there are only red and green edges. By definition, in every red edge
er = (ur, vr), node vr has at least two children and every leaf of the tree is an
endpoint of a green edge eg = (ug, vg). Also ug has at least two children.

Since all values H(u) and L(u) can be computed in linear time it is easy to
see that time complexity of Algorithm Bushy-Tree is linear.

Theorem 3. Algorithm Bushy-Tree produces a fastest BHS-scheme for any bushy
tree.

Sketch of the proof: The scheme produced by Algorithm Bushy-Tree traverses
any red edge 6 times and any green edge 2 times. Moreover every phase is a 2-
phase (i.e. the two agents traverse edges in parallel), except possibly the last
phase (in the case when the number of edges is odd), and no agent waits in any
2-phase.

Searching for a Black Hole in Tree Networks 77

5.2 An Approximation Algorithm for Trees

In this section we give an approximation algorithm with ratio 5
3 for the black hole

search problem, working for arbitrary trees (i.e. an algorithm which produces a
BHS-scheme whose time is at most 5/3 of the shortest possible time, for every
input).

The high-level description of Algorithm Tree is the following. Let v be the
meeting point of the two agents after a phase (initially v = s); the edges with
upper node v are explored by calling procedure split until either all such edges
are explored or there is at most one remaining unknown edge incident to v,
which is explored by calling procedure probe; this is repeated for any child of v.
The precise formulation of the algorithm is given below. Apart from procedures
split and probe it uses function relocate defined in the previous section. The
time-complexity of Algorithm Tree is linear.

Algorithm. Tree

explore(s)

Procedure explore(v)

for every pair of unknown edges (v, x), (v, y) incident to v do
split(x, y);

end for
if there is only one remaining unknown edge (v, z) incident to v then

probe(z);
end if
if every edge is explored then

repeat walk(s) until both agents are at s
else

next := relocate(v);
explore(next)

end if

Lemma 7. Let u be a node which is neither a leaf nor a middle of a branch of
blue edges. Let d be the down degree of u. Let β be the number of branches of
blue edges with upper node u, ρ the number of red edges with upper node u and
γ the number of green edges with upper node u. Algorithm Tree spends at most
d + 4β + 2ρ time units if d is even, and d + 1 + 4β + 2ρ time units if d is odd
for the traversals of all the above edges.

Theorem 4. Algorithm Tree achieves 5
3 approximation ratio.

Proof. If the tree consists of a single edge, then the ratio is one. Otherwise,
suppose that the tree has k nodes u1, u2, ..., uk such that ∀ui∃vj (eij = (ui, vj))
is a red edge, a green edge or an upper blue edge in a branch of blue edges. In

78 J. Czyzowicz et al.

any case, ∀ui �= s ui has at least two descendants, hence (u′
i, ui) is a red edge.

Thus there are at least k − 1 red edges in the tree. Let di: i = 1, ..., k be the
down degree of ui. Suppose that di: i = 1, ..., l is odd and di: i = l + 1, ..., k is
even. Let βi be the number of branches of blue edges with upper node ui, ρi the
number of red edges with upper node ui and γi the number of green edges with
upper node ui. We have di = βi + ρi + γi.

According to Lemma 6, any BHS-scheme must spend at least 3βi + 3ρi + γi

time units on the traversals of all red edges, green edges and branches of blue
edges with upper node ui. Hence in view of Lemma 7 the ratio between the time
of our scheme and the fastest possible scheme is at most:

∑l
i=1(di + 1 + 4βi + 2ρi) +

∑k
i=l+1(di + 4βi + 2ρi)∑k

i=1(3βi + 3ρi + γi)
=

∑k
i=1(5βi + 3ρi + γi) + l∑k

i=1(3βi + 3ρi + γi)

The above ratio is ≤ 5
3 when 3l ≤ 6

∑k
i=1 ρi + 2

∑k
i=1 γi. Since

∑k
i=1 ρi ≥ k − 1,

this ratio is lower or equal to 5
3 when

6(k − 1) + 2
k∑

i=1

γi ≥ 3l (1)

If k−1 ≥ l (i.e. there is at least one node of even down degree) then inequality
(1) is true.

If k − 1 < l it means that l = k. This is the situation when every vertex ui

has an odd lower degree. If k ≥ 2, inequality (1) still holds. If k = 1 then there
is no red edge (u1 = s). As long as there are at least two green edges, inequality
(1) is true. Otherwise one of the following holds:

– The tree consists of a block of β1 branches of blue edges where β1 is even,
and one green edge. In this case the total number of edges in the tree is odd.
Hence, in any BHS-scheme at least one edge must be explored in a 1-phase.
We prove that any BHS-scheme has to spend at least 3β1 + 2 time units
for all the traversals. According to Lemma 5 the total number of traversals
needed is at least 6β1 + 2. At least 2 of the traversals are done during a
1-phase and require at least 2 time units. Therefore the time needed in this
case is at least 6β1

2 + 2 = 3β1 + 2.
According to Lemma 7, the scheme produced by Algorithm Tree uses d1 +
1 + 4β1 = 5β1 + 2 time units. Thus the ratio is at most 5β1+2

3β1+2 ≤ 5
3 .

– The tree consists of a block of β1 branches of blue edges where β1 is odd. If
β1 = 1 then the ratio is one. Otherwise we prove that any BHS-scheme has
to spend in this case at least 3β1 + 1 time units for all traversals.
• If there is an edge in a branch which has been traversed by both agents

during a phase then the total number of edge traversals in that branch
is 8. Therefore in view of Lemma 5, the total number of traversals is at
least 6(β1 − 1) + 8 and the time needed is at least 6β1+2

2 = 3β1 + 1.

Searching for a Black Hole in Tree Networks 79

• Otherwise, if there is at least one edge that has been explored during
a 1-phase then the total number of traversals done during 2-phases is
at most 6β1 − 2 by Lemma 5, while there are 2 traversals done in a 1-
phase which requires 2 time units. Therefore the time needed is at least
6β1−2

2 + 2 = 3β1 + 1.
• The remaining case is that every edge is explored during a 2-phase and

there is no edge which has been traversed by both agents during a phase.
Since the number of upper edges in branches is odd, there must be a 2-
phase φ during which an upper edge of a branch is explored together
with a lower edge of another branch. The time needed for this phase is
at least 4 time units since both agents cannot traverse the same edge. In
view of Lemma 5 the total number of traversals in every phase except φ
is at least 6(β1 − 2) + 2 + 4 (there is a branch on which only 2 traversals
are done and a branch on which only 4 traversals are done). Hence the
time needed in this case is at least 6β1−6

2 + 4 = 3β1 + 1.
According to Lemma 7, the time of the scheme produced by Algorithm Tree
is d1 + 1 + 4β1 = 5β1 + 1 time units. Thus in all three cases the ratio is at
most 5β1+1

3β1+1 ≤ 5
3 .

Notice that there exists a family of trees in which the approximation ratio
achieved by Algorithm Tree is exactly 5/3. This family includes all trees which
consist of an even number β of branches of blue edges. According to Lemma 7,
the time of the scheme produced by Algorithm Tree is β + 4β = 5β for such a
tree, while the fastest BHS-scheme for this tree requires exactly 3β time units
(for example, all upper edges are explored two by two by calling procedure split
and then all lower edges are explored in the same way).

6 Conclusion

We presented algorithms for the black hole search problem on trees. For arbitrary
trees we gave a 5/3-approximation algorithm, and for two classes of trees (lines
and trees all of whose internal nodes have at least 2 children) we gave optimal
algorithms, i.e., methods of constructing a shortest possible black hole search
scheme for any input in the class. The time complexity of all our algorithms is
linear in the size of the input.

It remains open if there exists a polynomial time algorithm to construct a
fastest black hole search scheme for an arbitrary tree. More generally, we do not
know if the problem is polynomial for arbitrary graphs. We conjecture that the
answer to the latter question is negative. Hence it seems interesting to find good
approximation algorithms for the black hole search problem on arbitrary graphs.
It should be noted that a trivial scheme, proceeding along any spanning tree of
the graph using walk-and-probe and returning to the starting node, provides a
4-approximation algorithm for this problem.

80 J. Czyzowicz et al.

References

1. S. Dobrev, P. Flocchini, R. Kralovic, G. Prencipe, P. Ruzicka, N. Santoro, Black
hole search by mobile agents in hypercubes and related networks, Proc. of Sympo-
sium on Principles of Distributed Systems (OPODIS 2002), 171-182.

2. S. Dobrev, P. Flocchini, G. Prencipe, N. Santoro, Mobile agents searching for
a black hole in an anonymous ring, Proc. of 15th International Symposium on
Distributed Computing, (DISC 2001), 166-179.

3. S. Dobrev, P. Flocchini, G. Prencipe, N. Santoro, Searching for a black hole in
arbitrary networks: Optimal Mobile Agents Protocols, Proc. 21st ACM Symposium
on Principles of Distributed Computing (PODC 2002), 153-161.

4. S. Dobrev, P. Flocchini, G. Prencipe, N. Santoro, Multiple agents rendezvous on a
ring in spite of a black hole, Proc. Symposium on Principles of Distributed Systems
(OPODIS 2003).

5. F. Hohl, Time limited black box security: Protecting mobile agents from malicious
hosts, Proc. Conf. on Mobile Agent Security (1998), LNCS 1419, 92-113.

6. F. Hohl, A framework to protect mobile agents by using reference states, Proc.
20th Int. Conf. on Distributed Computing Systems (ICDCS 2000), 410-417.

7. S. Ng, K. Cheung, Protecting mobile agents against malicious hosts by intention of
spreading, Proc. Int. Conf. on Parallel and Distributed Processing and Applications
(PDPTA’99), 725-729.

8. T. Sander, C.F. Tschudin, Protecting mobile agents against malicious hosts, Proc.
Conf. on Mobile Agent Security (1998), LNCS 1419, 44-60.

9. K. Schelderup, J. Ines, Mobile agent security – issues and directions, Proc. 6th Int.
Conf. on Intelligence and Services in Networks, LNCS 1597 (1999), 155-167.

10. J. Vitek, G. Castagna, Mobile computations and hostile hosts, in: Mobile Objects,
D. Tsichritzis, Ed., University of Geneva, 1999, 241-261.

Fast Localized Delaunay Triangulation�

Filipe Araújo and Lúıs Rodrigues

Universidade de Lisboa, Departamento de Informática,
Faculdade de Ciências, Campo Grande,
Edif́ıcio C6, 1749-016 Lisboa, Portugal

{filipius, ler}@di.fc.ul.pt

Abstract. A localized Delaunay triangulation owns the following inter-
esting properties in a wireless ad hoc setting: it can be built with localized
information, the communication cost imposed by control information is
limited and it supports geographical routing algorithms that offer guar-
anteed convergence. This paper presents a localized algorithm that builds
a graph called planar localized Delaunay triangulation, PLDel, known
to be a good spanner of the unit disk graph, UDG. Unlike previous work,
our algorithm builds PLDel in a single communication step, maintain-
ing a communication cost of O(n log n), which is within a constant of
the optimum. This represents a significant practical improvement over
previous algorithms with similar theoretical bounds. Furthermore, the
small cost of our algorithm makes feasible to use PLDel in real systems,
instead of the Gabriel or the Relative Neighborhood graphs, which are
not good spanners of UDG.

Keywords: Wireless ad hoc networks, Location-based routing schemes,
Delaunay triangulation.

1 Introduction

Wireless ad hoc networks are networks where nodes communicate with neighbors
within some range using a wireless link. Nodes of a wireless network typically
operate on batteries and thus have relatively few memory and energy resources.
It is therefore utterly important to rely on routing schemes with small state and
communication overhead. This requirement can be met by a localized routing
scheme, where nodes only maintain information about other nodes within a
limited neighborhood. On the other hand, for the sake of efficiency, a routing
scheme should be competitive, i.e., any path found by the scheme should be at
most c times longer than the shortest path. However, Kuhn et al. proved that no
localized scheme can be c-competitive [9]. Still, a localized routing scheme can
guarantee convergence, while achieving competitive path lengths in most cases.

� This work was partially supported by LaSIGE and by the FCT project INDIQoS
POSI/CHS/41473/2001 via POSI and FEDER funds.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 81–93, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

82 F. Araújo and L. Rodrigues

One way of achieving competitive routing is to build a global Delaunay Tri-
angulation [2]. Unfortunately, building such a graph is not a viable solution to
the routing problem in ad hoc wireless networks, because: i) edges may be longer
than communication range; ii) it cannot be built locally and therefore, commu-
nication cost is too high. Hence, our approach is to build a planar graph (i.e.,
without intersection of edges) as dense as possible (O(n) edges), using Delaunay
triangulations, but in a localized fashion. The point of having a dense graph
is to use routing algorithms that achieve good hop count performance, while
planarity is necessary to ensure convergence.

In literature, there are several algorithms that build Delaunay triangula-
tions for routing purposes, e.g., [12, 13, 6, 10]. The algorithm in [13] builds a sub-
graph of the global Delaunay triangulation that only includes some of the edges
within communication range of nodes; [12], [6] and [10] build a denser graph,
with global communication cost of O(n log n), O(n2) and O(n2), respectively.
While [6] and [10] are not optimal, [12] involves 4 communication steps to build
the final subgraph, which may be prohibitive in practical systems. Hence, in
this paper, we improve on the work of Li et. al [12], by presenting an algorithm
that is considerably simpler and yet builds the same Planar Localized Delaunay
Triangulation graph (PLDel), with the same asymptotic communication cost,
but with just a single communication step (we define a communication step as
the period required for sending and then receiving one or more messages which
are not causally related).

Therefore, our algorithm is well suited to wireless environments for the fol-
lowing reasons: i) it is very efficient as it requires just one communication step;
ii) it is applicable to dynamic and asynchronous settings (see Section 6); iii)
it is localized, only requiring nodes to receive information broadcast by direct
neighbors, thus requiring a communication cost within a small constant of the
optimum (assuming that a beacon message of O(log n) bits in an n-node network
is necessary per node); iv) it requires nodes to keep track of only a constant num-
ber of neighbors in the average; v) under the constraint of preserving planarity,
it builds a graph with good density (see Section 5).

The rest of the paper is structured as follows. For self-containment we provide
a short overview of necessary concepts in Section 2. In Section 3 we provide a
survey on related work on wireless networks and Delaunay triangulations. In
Section 4 we describe our algorithm and prove its correctness. In Section 5,
we experimentally evaluate our algorithm. The appplication of the algorithm in
dynamic settings is discussed in Section 6. Finally, Section 7 concludes the paper.

2 Preliminaries

We assume that nodes can determine their own position and the position of
their neighbors. Given a set of nodes V in a two dimensional space, we model a
wireless ad hoc network as a unit disk graph, UDG(V), which is comprised of all
nodes V and all edges connecting pairs of nodes of V whose distance is at most 1,
i.e., in this model, two nodes A and B are direct neighbors (or simply neighbors)

Fast Localized Delaunay Triangulation 83

if and only if ||AB|| ≤ 1. Nodes A and B are k-hop neighbors if they can reach
each other in k or fewer hops. Throughout this paper, we will use the following
notation: a triangle defined by nodes A, B and C is represented as �ABC;
an angle (< π) between edges AB and AC defined at A is interchangeably
represented as ∠BAC or ∠CAB; the circle whose diameter is defined by two
nodes A and B is represented as d(A,B); the circumcircle defined by node A, B
and C is represented as ©ABC.

The Gabriel graph (GG) is comprised of all edges AB such that d(A,B) does
not contain any other node of V . The edges of a GG are called Gabriel edges.
The Relative neighborhood graph (RNG) is comprised of all edges AB such that
there is no node C for which ||AC|| < ||AB|| and ||BC|| < ||AB|| (i.e., node C,
cannot be simultaneously closer to A and B than A and B are from each other).
It should be noted that RNG is a subgraph of GG. The Delaunay triangulation
(DT) of a node set V , represented as Del(V), is the set of edges satisfying the
“empty circle” property: edge AB belongs to the triangulation if and only if there
is a circle containing A and B, but not containing any other node. An important
property of Del(V) that will be of use to us, states that the circumcircle of a
triangle does not contain any node of V . Under the UDG model, a complete
Delaunay triangulation may not exist, because some edges may be longer than
1 and therefore, we refer to UDel(V) = Del(V) ∩ UDG(V) instead.

In this paper we will use the definition proposed in [12] of k-localized Delaunay
graph over a node set V , LDel (k)(V). LDel (k)(V) is comprised of two types of
edges (not longer than 1): i) all edges from the GG; and ii) edges of all triangles
ABC for which there are no nodes inside ©ABC reachable by A, B or C in k or
fewer hops. Li et al. [12] proved that LDel (k)(V) is planar for k ≥ 2, but edges
may intersect for k = 1. PLDel(V) [12, 10] is defined as a planar graph comprised
of all triangles of LDel (1)(V), except intersecting triangles that do not belong
to LDel (2)(V). Moreover, Li et al. [12] proved that UDel(V) is a (4

√
3π)/9-

spanner of UDG(V) and that LDel (k)(V) ⊇ UDel(V). Hence PLDel(V) and
LDel (k)(V), for all k, are also (4

√
3π)/9-spanners of UDG(V).

3 Related Work

In literature, we can find several algorithms that build Delaunay triangulations,
e.g. [11, 4, 16]. Of particular interest to us are the algorithms that allow Delaunay
triangulations to be computed in an incremental way [1, 17], as new nodes that
arrive later do not force a recomputation of the entire triangulation.

In [14], Liebeherr et al. proposed an algorithm to build a complete non-
localized Delaunay triangulation that serves as an overlay network on top of
IP. However, direct application of this algorithm to the more complex setting of
a wireless environment is not possible since Delaunay neighbors may not be able
to communicate if their distance is greater than 1. In the context of wireless net-
works, geographic routing algorithms like greedy and compass have received wide
attention in literature [8, 18]: these algorithms are memoryless and may achieve
excellent performance in dense graphs or even in graphs with O(n) edges, based

84 F. Araújo and L. Rodrigues

on Delaunay triangulations, as shown by experimental results of [12, 10]. Un-
fortunately, these algorithms are not guaranteed to converge. When they fail,
one has to use alternative routing algorithms, such as algorithms based on the
right-hand rule which are guaranteed to converge as long as the graph is pla-
nar. This commutation from greedy to perimeter routing was first proposed
in [3] and later explored in a protocol called Greedy-Perimeter Stateless Routing
(GPSR) [7]. To extract planar subgraphs from non-planar graphs, RNG, GG or
variations of the Delaunay triangulation [19, 5, 2, 13], may be used. As density is
important to achieve good routing performance, many authors have focused on
increasing it, to create good spanners of UDG(V) [6, 20, 10, 12]. Some of these
approaches [6, 10, 12] are based on Delaunay triangulations, because efficient al-
gorithms can be used to build graphs that are good spanners of UDG(V).

Gao et al. [6] use a triangulation algorithm that builds a planar graph called
restricted Delaunay graph (RDG). RDG is a graph that contains UDel(V).
Communication cost of their algorithm is O(n2) In [12], Li et al. presented an
algorithm that builds PLDel(V) (also a supergraph of UDel(V)), with com-
munication cost of O (n log n). Lan and Wen-Jing [10] also build PLDel(V) but
with higher communication cost (O(n2)). In [13], Li et al. presented algorithms
that build subgraphs of UDel(V) based on 1 and 2-hop neighbor information.
Although their algorithms are simple, their graphs are less dense than any of the
previous graphs and it is unclear whether they are good spanners of UDG(V).

Our algorithm improves the results of Li et al. [12]. Although the asymptotic
communication cost of both algorithms is the same, namely O(n log n), our al-
gorithm requires one communication step, while [12] requires 4 communication
steps. Thus, our algorithm converges much faster. Furthermore, the total sig-
naling cost of our algorithm is much smaller, as we will show in the evaluation
section, because in FLDT nodes send only a subset of the Delaunay triangulation
in their single communication step (if the subset is empty no message is sent).

4 Triangulation Algorithm

In this section we present a new Fast Localized Delaunay Triangulation (FLDT)
algorithm that builds a PLDel(V) graph.

4.1 Description

The FLDT algorithm is decentralized, as it does not rely on any centralized com-
ponent, and localized, since nodes are only required to gather knowledge about
some nodes in their 2-hop neighborhood. The algorithm builds a triangulation
that ensures routing between any pair of nodes as long as UDG(V) is connected.
The algorithm consists of the following logical steps:

1. The neighbor discovery step. The purpose of this step is to allow nodes
to discover their neighbors. For sake of clarity, we first describe and analyze the
algorithm in the context of a fixed setting, where all nodes know their neighbors
a priori. The discussion of the use of our algorithm in the context of dynamic

Fast Localized Delaunay Triangulation 85

settings (that may require the exchange of beacon messages) is postponed to
Section 6.

2. The triangulation step. The purpose of this step is to let each node com-
pute and advertise to its neighbors the relevant Delaunay triangulations. Based
on the information collected during the neighbor discovery step, each node P
locally computes a Delaunay triangulation. For convenience of exposition, we
introduce the predicate Delaunay�P (Q,R) that holds true at P if, according
to the triangulation computed by node P , triangle �PQR should exist. Delau-
nay�PQR will also be used when referring to the predicate at no particular
node. When Delaunay�P (Q,R) holds at P , if ∠QPR ≥ π/3, then P broadcasts
a triangulate �PQR message to all nodes within range.

The purpose of the π/3 condition is to ensure that no node will issue more
than 6 triangulate messages by its own initiative (as in [12]). Since no ad-
ditional messages are sent in the following steps, total communication cost of
FLDT is O (n log n). In practice, the constant involved in this bound is small,
because, as we show in Section 5, each node announces less than 6 other nodes
in average.

3. The sanity step. The purpose of this step is to let neighbor nodes
eliminate inconsistent Delaunay triangulations. They do so by comparing trian-
gulations computed locally with the triangulations computed by their neighbors
in Step 2, as advertised by triangulate messages. Note that by processing
triangulate messages, nodes may learn about new nodes that are not their
direct neighbors. This addititional information will never create new Delaunay
triangulations, as triangulations must be formed with direct neighbors. However,
triangulate messages may invalidate some of the triangulations computed in
Step 2. This may happen at P if: i) Q or R broadcast a triangulate message
with some node T that invalidates �PQR, i.e., T ∈ ©PQR, or ii) some node W
sends a triangulate message with an intersecting triangle WXZ, where either
X or Z invalidate �PQR, i.e., X ∈ ©PQR or Z ∈ ©PQR. Case i) ensures
that a node only maintains a predicate if its neighbors are not aware of some
node that invalidates it, while case ii) avoids the existence of intersections1.

4. The Gabriel edges step. The purpose of this step is to add to the graph
all missing Gabriel edges. Otherwise, despite always being correct, a Gabriel edge
PQ for which no predicate Delaunay�P (Q,R) holds at P (e.g., after switching
to false in Step 3) would not be included by P . This will increase the density of
the graph, while keeping O(n) edges (note that a Gabriel edge always belongs
to the Delaunay triangulation and can be determined locally without additional
exchange of information).

Optimization. To simplify our algorithm, all triangulate messages should
be sent in a single control message. �

When comparing FLDT with previous solutions [12, 10] one must notice that
the simplicity of our algorithm comes from two insights, that we later prove cor-

1 Note that case i) can also prevent some intersections.

86 F. Araújo and L. Rodrigues

rect in Section 4.2. First, proposals sent in triangulate messages, alone, suffice
to confirm or reject triangulations proposed by neighbors in their own triangu-

late messages (and vice-versa), i.e., there is no need to dedicated replies. This
insight builds on the observation that two Delaunay neighbors do not need to
agree on some predicate Delaunay�PQR. It can hold at P but not at Q and R
if these two latter nodes are out of range of each other. The fundamental issue
is, in fact, to ensure that two nodes P and Q always agree on whether edge PQ
should exist (Lemma 4). Second, if three nodes P , Q and R wrongly assume
the existence of �PQR, intersected by �WXZ, such that one of the nodes of
�WXZ is inside ©PQR, then P , Q and R will listen to the same triangu-

late message on �WXZ, thus commuting the predicate Delaunay�PQR to
false simultaneously at P , Q, and R (Lemma 5).

4.2 FLDT Builds PLDel(V) in a Single Communication Step

In this Section we show that, after a single communication step, our algorithm
builds PLDel(V). To see this, we reason as follows and present the necessary
proofs afterward. The triangulation computed at step 2 of the algorithm is a
super-graph of LDel (1)(V). Only step 3 of the algorithm removes edges from
the graph: either edges from triangles that did not belong to LDel (1)(V) in
the first place, and edges from all intersecting triangles that did not belong to
LDel (2)(V). Therefore, the graph built by FLDT is a subgraph of LDel (1)(V)
(Lemma 3), which is planar (Lemma 5). In fact, this graph is PLDel(V) (The-
orem 1).

In the proofs we assume that the network is static and that links are per-
fect (i.e., no messages are lost). This assumption is made for sake of clarity.
In Section 6 we discuss how lossy links can be addressed by the algorithm in
practical dynamic settings (where nodes can join or leave). Note also that in
the proofs we assume that no four nodes are co-circular (this scenario can be
trivially addressed using simple tie-breaking rules).

Lemma 1. In the UDG(V) model, if two edges AB and CD of a given node
set V intersect, then at least one of the nodes is within communication range of
the other three.

Proof. We first note that if AB intersects CD and if d(A,B) includes C, C knows
of A, B and D. Since AB intersects CD, d(A,B) and d(C,D) have overlapping
areas (one may even contain the other) and hence it follows that at least one of
the nodes (e.g., C) is inside the circle defined by the other pair of nodes (e.g.
d(A,B)), thus proving the Lemma. �

Lemma 2. If after the Delaunay triangulation computed at step 2 of the FLDT
algorithm, Delaunay �A(B,C) holds, but edge AB cannot exist at B, B will
send a triangulate message with at least one node D ∈ ©ABC.

Proof. Refer to Figure 1. Since non-Gabriel edge AB exists at A, C must be
inside d(A,B) (e.g. see [10]). In this case, AB cannot exist at B if Delau-

Fast Localized Delaunay Triangulation 87

A B

C

D

X

D’

Fig. 1. A and B do not agree on
�ABC

A B C
E

F

G

H

Fig. 2. A, B and C wrongly agree on
�ABC

nay�B(X,D) holds at B for some nodes X and D and XD intersects AB (as-
sume w.l.o.g. that X and C are on the same side of AB, possibly with X = C).
D ∈ ©ABC, because otherwise ©BXD, would contain A which would be a con-
tradiction (D′ in the figure must be outside d(A,B) and closer to B than to A:
©D′BC intersects ©ABC at B and C, thus for X = C it contains A; if X 	= C,
©D′BX intersects ©D′BC at B and D′, thus containing the part of ©D′BC
that contains A). Since, ∠XBD > ∠ABD > π/3, B will send information of D
in its triangulate messages. �

Corollary 1. At the end of the FLDT algorithm, any node N , simultaneously
neighbor of A and B in the conditions of Lemma 2, will know about some node
D ∈ ©ABC.

Lemma 3. At the end of the FLDT algorithm, Delaunay�A(B,C) holds at A
only if there is no direct neighbor D of A, B or C such that D ∈ ©ABC.

Proof. If edge AB cannot exist at B, the proof follows from Lemma 2. Hence,
we will focus on the case where AB exists at A and B. The case where there
is a common neighbor C ∈ d(A,B) for which Delaunay�ABC holds at A and
B, does not contradict the Lemma. Assume now that Delaunay�A(B,C) holds,
while Delaunay�B(A,C) does not (Delaunay�B(A,D) holds instead, with C
and D lying on the same side of edge AB). Since C,D /∈ d(A,B) [10] we can use
circumcircles to argue that either D ∈ ©ABC with ||DA|| > 1 or ||BC|| > 1
(both cases can occur simultaneously). The latter case alone does not contra-
dict the Lemma and, in the former case, since ||AD|| > 1, ∠ABD > π/3 and
hence, B will send a triangulate message on �ABD, thus making A switch
Delaunay�A(B,C) to false. The Lemma follows. �

Lemma 4. At the end of the FLDT algorithm, if edge AB exists at A, it must
exist at B, either because it is a Gabriel edge or because there is one predicate
Delaunay�ACB holding at A and B for some common neighbor C ∈ d(A,B).

88 F. Araújo and L. Rodrigues

Proof. Given Lemma 2, the only not so trivial thing to prove is that non-Gabriel
edge AB cannot be deleted by A and maintained by B or vice-versa at step 3
of the algorithm. Hence, assume that node A deletes edge AB, because Delau-
nay�A(B,C) does not hold anymore due to some intersecting edge with node
D ∈ ©ABC, which is not a direct neighbor of A, B or C. In this case, by Lem-
mas 1 and 3, A must have received information of D through a common neihbor
of A, B and C and Delaunay�ABC will not hold at any of the three nodes A,
B or C. �

As a consequence of the Lemma 3, the final graph is a subgraph of LDel(1)(V)
(which may not be planar). The following Lemma serves to ensure that no in-
tersection is possible.

Lemma 5. Graph built by FLDT is planar.

Proof. Refer to Figure 2 [12, 10]. Assume that Delaunay�ABC holds at A, B
and C and that �ABC intersects EF (at AB and AC). If E has more than
one intersecting edge with AB, assume w.l.o.g. that EF defines the minimum
angle ∠FEA, with F ∈ ©ABC (E cannot define an intersecting edge EF ′ if
F ′ /∈ ©ABC, because, in that case, any circle containing E and F ′ would have to
include at lest one of the nodes A, B or C known by E). By Lemma 4, edge EF
exists at E only if EF is a Gabriel edge or if some predicate Delaunay�EFG
holds at E and F at the end of the algorithm (assume w.l.o.g. that G is at the
left of EF). In the latter case, either EG or GF would also intersect AB and
AC. Since by hypothesis F defines the smallest angle ∠FEA it must be GF . By
Lemma 1, in this case, G must be within communication range of A, B and C.
∠AFB < π/3 ⇒ ∠EFG < π/3, which means that A (the same goes for B and
C) will always listen to some triangulate message with edge EF (from E or
G) and will eliminate wrong edge AB (AC).

Now, consider the case where EF is a Gabriel edge. Then, there must be some
node G, possibly G = A for which Delaunay�E(F,G) holds. By hypothesis AB
and GE do not intersect. If ∠FEG > π/3 E sends a triangulate message
and the Lemma follows. Otherwise, a new subdivision in cases is needed: GE
exists at G and GE does not exist at G. In the first case, Delaunay�G(E,H)
holds and H may be, in fact, node F . For reasons similar to the ones given
before, H ∈ ©ABC. ∠AHB < π/3 ⇒ ∠GHE < π/3. Since G knows of F ,
H 	= F ⇒ ||HE|| > 1 ⇒ ∠HGE > π/3. This means that either G or E or both
will send a triangulate message with information of F or H ∈ ©ABC. In the
second case, if the triangulation computed by G does not include non-Gabriel
edge GE then, by Lemma 2, for some X ∈ d(E,G), G will send information of
H ∈ ©EXG ⇒ H ∈ ©ABC above AB. Whether GE exists or not in G, by
Lemma 1 and Corollary 1 A, B and C will hear about some intersecting edge
with node H ∈ ©ABC, thus switching Delaunay�ABC to false. �

We know that since nodes can send their triangulate messages indepen-
dently of each other in a single communication step, by Lemmas 3 and 5 and
for the reasons explained before, it follows that FLDT builds a subgraph of

Fast Localized Delaunay Triangulation 89

PLDel(V). However, we still need to prove that it is not possible for some edge
AB ∈ LDel(1)(V) to be incorrectly deleted due to the announcement of some
other intersecting edge EF /∈ LDel(1)(V).

Theorem 1. After a single step of communication, FLDT builds the graph
PLDel(V).

Proof. Refer to Figure 2. If AB ∈ LDel(1)(V) is deleted by existence of edge
EF /∈ LDel(1)(V) it cannot be a Gabriel edge, because a Gabriel edge is always
correct. Hence, ∃C ∈ d(A,B)| Delaunay�ABC holds at A and B. However,
w.l.o.g. F ∈ ©ABC. Since EF /∈ LDel(1)(V), it is not a Gabriel edge and
∃K1 ∈ d(E,F) (not shown), such that K1E or K1F intersects AB (note that
||K1E|| < ||EF || and ||K1F || < ||EF ||). Given that A,B /∈ d(E,F) and A,B /∈
d(K1, E) if intersection is with K1E (d(K1, F) if intersection is with K1F), it
follows that even if the intersecting edge /∈ LDel(1)(V), we can inductively repeat
the reasoning until we find one intersecting edge ∈ LDel(1)(V). Hence, even if
AB is deleted due to some edge EF /∈ LDel(1)(V), there is some other edge
∈ LDel(1)(V) that would legitimately delete AB. Theorem follows. �

5 Evaluation

In this section, we compare i) routing performance in each of the following
graphs: RNG, GG, PLDel, UDG and DT and ii) signaling cost of FLDT versus
the algorithm of [12]. Figure 3 illustrates the graphs in a network of 100 nodes.
We have used the GPSR routing algorithm [7] in all graphs, except UDG, which
is not planar. In UDG we have used the greedy routing algorithm. Results for
DT are depicted only to serve as a reference, because, as we have discussed
before, such triangulation is not possible in a wireless environment. Since node
density has a crucial impact on the performance of routing algorithms, in our
experiments, we have distributed a variable number of nodes (between 140 and
600) inside a square of fixed side (7.5 times the communication range). The reader
should notice that density cannot be arbitrarily reduced, because disconnected
topologies would result with high probability. On the other hand, increasing node
density will benefit UDG, because greedy routing will converge with increasingly
higher probability and, unlike the remaining graphs, paths will become shorter.

(a) RNG (b) GG (c) PLDel (d) UDG (e) DT

Fig. 3. Example of graphs

90 F. Araújo and L. Rodrigues

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Average number of neighbors

UDG
DT

PLDel
GG

RNG

Fig. 4. Average number of hops

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35

F
ai

lu
re

 r
at

e

Average number of neighbors

UDG failure rate

Fig. 5. Failure rate in the UDG

Figure 4 shows the average path length in number of hops (for paths where
greedy did not failed), while Figure 5 depicts the percentage of failures for the
greedy routing algorithm in the UDG graph. Both curves are functions of the
average number of neighbors of a node2. From the figures, it is quite evident
that when node density is high, no subgraph can do better than UDG, unless
memory usage is an issue and a node does not want to maintain all its neighbors.
In this case, PLDel may be a good option, because nodes need to maintain
only a constant number of neighbors in average. On the other hand, when node
density decreases, PLDel is definitely the preferable choice, because it achieves
the best performance among the algorithms that ensure routing convergence.
Since the possibility of a greedy routing failure always exists, no matter how
large node density is, it may also be a good idea to maintain two graphs in
memory: UDG and PLDel. The point is to use greedy in UDG whenever possible
for performance reasons and switch back to a right-hand rule algorithm and to
PLDel in case greedy fails. Such solution has the advantage of being oblivious to
node density. It is also interesting to observe that the number of hops obtained
in PLDel is typically quite close to that number in a DT , for high densities,
where all edges are short, but the same is not true when node densities are small,
because in these cases, DT uses long edges, thus saving many hops.

To complete our evaluation, we depict in Figure 6 the average number of
neighbors announced by each node, in the algorithm of Li et al. and in our own
algorithm. Note that whenever a triangle is announced, two nodes are counted
(the sending node is not counted). The algorithm of Li et al. also needs to an-
nounce Gabriel edges, which are counted as only one node (again, sending node
is not counted). We can see that the number of nodes announced stabilizes in
both algorithms as the density increases, and that our algorithm announces ap-
proximately between 5.2 and 7 times fewer nodes for the densities of interest.
Furthermore, while our algorithm needs a single communication step, the algo-
rithm of Li et al. needs 4 steps. Therefore, we believe that these results show
that our algorithm builds PLDel very efficiently.

2 For a node whose communication (unit) disk is entirely inside the simulation square.

Fast Localized Delaunay Triangulation 91

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 35

A
ve

ra
ge

 n
um

be
r

of
 n

ei
gh

bo
rs

 a
nn

ou
nc

ed

Average number of neighbors

FLDT
Li et al.

Fig. 6. Average number of neighbors announced by each node

6 Application in Dynamic Settings

So far, we have described the execution of our algorithm in a static setting, where
a node knows a priori all its neighbors. We now discuss the application of our
algorithm in dynamic settings.

The application of any graph building algorithm in a dynamic setting re-
quires a complementary mechanism to discover new nodes and to detect the
departure/failure of existing nodes. In an optimized implementation, the con-
crete mechanisms to be used may depend on the physical and data link layer
technology. However, in the literature (for instance, [12, 10]) it is usually as-
sumed that nodes periodically exchange beacon messages. We would like to
emphasize that our algorithm is particularly well suited for such setting, as tri-

angulate messages can be easily piggybacked to (or even replace) beacon

messages. Therefore, when beacon messages are required, our algorithm can
be implemented with no additional messages, becoming extremely competitive
with regard to the Gabriel or the Relative Neighborhood graphs, which are not
good spanners of UDG.

Also, for sake of simplicity, we have assumed perfect channels in our exposi-
tion (i.e., no message losses). However, in a dynamic setting, beacon messages
have to be exchanged periodically. This means that, at no additional cost in
terms of number of messages exchanged, our algorithm may retransmit periodi-
cally triangulate and recalculate PLDel at the end of each period. Therefore,
even if links are lossy, it can be shown that, as long as links are fair (i.e., if a
message is sent infinitely often by a process p then it can be received infinitely
often by its receiver [15]), any new node will eventually participate in the trian-
gulation.

7 Conclusions

Routing protocols for wireless ad hoc networks may benefit from using a pla-
nar and localized Delaunay triangulation to achieve good routing performance,

92 F. Araújo and L. Rodrigues

while, at the same time, guaranteeing convergence. Therefore, in this paper we
presented a new algorithm, FLDT, to build a well-known graph called PLDel.
Our experimental results show that PLDel can be used either to substitute the
UDG, when node density is small, or as a complementary graph that ensures
routing convergence for all node densities.

FLDT has a communication cost of O(n log n), which is within a constant
of the optimal and requires a single communication step (unlike previous work,
that requires 4 communication steps). We have also shown that the signaling
cost of FLDT is much smaller than that of previous approaches, due to the small
number of control messages. Furthermore, in dynamic settings that require the
exchange of beacon messages, our algorithm requires no more messages than the
algorithms used to build the very simple but inefficient GG or RNG. Therefore,
due to its efficiency, our algorithm is of practical relevance in location-based
wireless ad hoc networks.

Acknowledgments

The authors are thankful to Antónia Lopes for her helpful comments on earlier
versions of this paper.

References

1. Jean-Daniel Boissonnat and Monique Teillaud. On the randomized construction
of the Delaunay tree. Theoretical Computer Science, 112(2):339–354, 1993.

2. Prosenjit Bose and Pat Morin. Online routing in triangulations. In 10th Annual
Internation Symposium on Algorithms and Computation (ISAAC), 1999.

3. Prosenjit Bose, Pat Morin, Ivan Stojmenović, and Jorge Urrutia. Routing with
guaranteed delivery in ad hoc wireless networks. In International Workshop on
Discrete Algorithms and Methods for Mobile Computing and Communications
(DIALM), pages 48–55, 1999.

4. S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, (2):153–
174, 1987.

5. K. Gabriel and R. Sokal. A new statistichal approach to geographic variation
analysis. Systematic Zoology, 18:259–278, 1969.

6. Jie Gao, Leonidas J. Guibas, John Hershberger, Li Zhang, and An Zhu. Geometric
spanners for routing in mobile networks. In 2nd ACM Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc 01), 2001.

7. Brad Karp and H. T. Kung. GPRS: Greedy perimeter stateless routing for wire-
less networks. In ACM/IEEE International Conference on Mobile Computing and
Networking, 2000.

8. E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks.
In 11th Canadian Conference on Computation Geometry (CCCG 99), 1999.

9. Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Asymptotically optimal
geometric mobile ad-hoc routing. In 6th International Workshop on Discrete Al-
gorithms and Methods for Mobile Computing and Communications (DIALM’02),
2002.

Fast Localized Delaunay Triangulation 93

10. Luan Lan and Hsu Wen-Jing. Localized Delaunay triangulation for topological
construction and routing on manets. In 2nd ACM Workshop on Principles of
Mobile Computing (POMC’02), 2002.

11. Der-Tsai Lee and Bruce J. Schachter. Two algorithms for constructing a Delau-
nay triangulation. International Journal of Computer and Information Sciences,
9(3):219–242, 1980.

12. Xiang-Yang Li, Gruia Calinescu, and Peng-Jun Wan. Distributed construction of a
planar spanner and routing for ad hoc wireless networks. In The 21st Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM),
2002.

13. Xiang-Yang Li, Ivan Stojmenovic, and Yu Wang. Partial delaunay triangulation
and degree limited localized bluetooth scatternet formation. IEEE Transactions
on Parallel and Distributed Systems, 15(4):350–361, April 2004.

14. J. Liebeherr, M. Nahas, and W. Si. Application-layer multicasting with Delau-
nay triangulation overlays. Technical Report CS-2001-26, University of Virginia,
Department of Computer Science, Charlottesville, VA 22904, 5 2001.

15. N. Lynch. Distributed algorithms. In Data Link Protocols, chapter 16, pages 691–
732. Morgan-Kaufmann, 1996.

16. F. P. Preparata and M. I. Shamos. Computational geometry: An introduction.
Springer-Verlag, New York, 1985.

17. R. Sibson. Locally equiangular triangulations. The Computer Journal, 21(3):243–
245, 1977.

18. Ivan Stojmenovic. Position-based routing in ad hoc networks. IEEE Communica-
tions Magazine, July 2002.

19. G. Toussaint. The relative neighborhood graph of a finite planar set. Pattern
Recognition, 4(12):261–268, 1980.

20. Yu Wang and Xiang-Yang Li. Geometric spanners for wireless ad hoc networks.
In The 22nd IEEE International Conference on Distributed Computing Systems,
2002.

Robust Topology Control Protocols

Sukumar Ghosh, Kevin Lillis, Saurav Pandit,
and Sriram Pemmaraju

The University of Iowa, Iowa City, IA 52242-1419, USA
{ghosh, lillis, spandit, sriram}@cs.uiowa.edu

Abstract. Topology control protocols attempt to reduce the energy
consumption of nodes in an ad-hoc wireless network while maintaining
sufficient network connectivity. Topology control protocols with various
features have been proposed, but they all lack robustness and are ex-
tremely sensitive to faulty information from neighbors. For example, the
XTC protocol (R. Wattenhofer and A. Zollinger, XTC: A practical topol-
ogy control algorithm for ad-hoc networks, WMAN 2004) can be forced
to construct a disconnected network even if two nodes in the network
receive slightly faulty distance information from one neighbor each. A
key step in most localized topology control protocols is one in which
each node establishes a total ordering on its set of neighbors based on
information received from them. In this paper, we propose a metric for
robustness of localized topology control protocols and define an r-robust
topology control protocol as one that returns a correct output network
even when its neighborhood orderings have been modified by up to r− 1
adjacent swaps by a malicious adversary. We then modify XTC in a
simple manner to derive a family of r-robust protocols for any r > 1.
The price we pay for increased robustness is in terms of decreased net-
work sparsity; however we can bound this decrease and we show that in
transforming XTC from a 1-robust protocol (which it trivially is) into
an r-robust protocol, the maximum vertex degree of the output network
increases by a factor of O(

√
r). An extremely pleasant side-effect of our

design is that the output network is both Ω(
√

r)-edge connected and
Ω(

√
r)-vertex connected provided the input network is. Thus ensuring

robustness of the protocol seems to give fault-tolerance of the output for
free. Our r-robust version of XTC is almost as simple and practical as
XTC and like XTC it only involves 2 rounds of communication between
a node and its neighbors.

Keywords: Ad-hoc wireless networks, fault-tolerance, k-connectivity,
robustness, topology control protocols.

1 Introduction

Ad-hoc wireless networks consist of autonomous devices or nodes communicating
with each other by radio. Typically, each of these nodes has access to a tiny power
source and this imposes stringent constraints on the amount of energy that a node

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 94–109, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Robust Topology Control Protocols 95

can use for communicating with other nodes. Topology control protocols attempt
to reduce the power consumption of nodes in order to increase the life of the net-
work. Typically, the energy required by a node s to transmit a message to a node
t increases at least quadratically with the distance between s and t. As a conse-
quence, power consumption is significantly reduced if messages from s to t were
routed through a sequence of intermediate nodes, such that the distance between
consecutive nodes in the path is small. Topology control protocols choose a trans-
mission power level for each node so that a node communicates with just a few
nearby nodes. Reducing transmission power level also reduces collisions and there-
fore saves energy by reducing the number of retransmissions. However, the local
choice of transmission power level for each node has to be such that the induced
network topology satisfies certain global properties such as connectivity and the
presence of multiple short paths between pairs of nodes. The two primary goals of
topology control: (i) reducing transmissionpower level to save energy and (ii)main-
taining connectivity and redundancy of short paths to increase routing efficiency,
are clearly in conflict with each other. Any satisfactory solution to the topology
control problem needs to address this key difficulty.

Let G = (V,E) denote the ad-hoc network with vertex set V denoting the set
of nodes and edge set E denoting the set of communication links. Let c : E → R+

be a cost function that associates a non-negative real cost to each edge e ∈ E.
For each vertex u ∈ V , let N(u) denote the neighbors of u in G. During the
course of a topology control protocol P , each vertex u ∈ V chooses a subset
NP (u) ⊆ N(u) of vertices to transmit to. Letting EP denote the set of directed
edges {(u, v) | u ∈ V, v ∈ NP (u)}, we can view the output of P as the directed
spanning subgraph GP = (V,EP) of G. Typically, it is desired that GP satisfy
the following properties.

Symmetry. If v ∈ NP (u) then u ∈ NP (v). As pointed out by [9, 11], without
symmetry even the simple task of providing an ACK in response to a mes-
sage received can become quite cumbersome. Symmetry implies that GP can
be viewed as an undirected graph. There is of course some cost to requiring
symmetry, but this is not a property that is very difficult to impose. In de-
scribing the rest of the desired properties, we assume that GP is undirected.

Sparseness. This property is typically quantified as |EP | = O(|V |). Often, a
stronger property, that of bounded degree is desired. This property requires
that for all vertices u, |N(u)| ≤ c for some constant c. Burkhart et. al. [2]
point out that sparseness is often assumed to guarantee low interference, and
while this may be true in an “average case” sense, it is not true in general.
[2] also presents a reasonable definition of a metric for interference and one
may, in addition to (or as an alternative to) sparseness, require that GP

minimize this interference metric.
Connectivity. GP is required to be connected, provided G that is connected.

Often, stronger versions of connectivity such as k-edge connectivity or k-
vertex connectivity (for k > 1) are desired. These stronger versions of con-
nectivity imply that GP has multiple paths for routing between pairs of
vertices and is more fault-tolerant to link or vertex failures.

96 S. Ghosh et al.

Spanner Property. For any pair of vertices u and v, let C(u, v) (respectively,
CP (u, v)) denote the cost of the cheapest path between u and v in G (respec-
tively, GP). Then, the spanner property requires the existence of a constant
t such that CP (u, v) ≤ t · C(u, v) for all pairs of vertices u, v ∈ V . If such a
constant t exists, then GP is called a t-spanner of G.

Less typically, certain other properties such as planarity of GP are also de-
sired. If GP is planar, then geometric routing algorithms such as GOAFR+

provide efficient routing in the network [3].

Definitions and Notation. In addition to costs, the edges of the input graph G
may have associated non-negative real lengths. The cost of an edge is usually
distinct from, but related to its length. Often it is assumed that the vertices of
the input graph G are embedded in some metric space. In this case, the length
of an edge {u, v}, denoted |uv| is equal to the distance between u and v in that
space. If the vertices of G are embedded in a Euclidean space, then G is called
a Euclidean graph. A special case of a Euclidean graph is a unit disk graph. G
is a unit disk graph if its vertices are embedded in the Euclidean plane and for
any pair of vertices u and v, {u, v} is an edge of G iff |uv| ≤ 1. As mentioned in
[11], unit disk graphs are usually used to model an ad-hoc network where all the
network nodes are placed in an unobstructed plane and have equal (normalized)
transmission power and isotropic antennas, that is, antennas transmitting with
identical power in every direction of the plane. The cost of an edge {u, v}, c(u, v),
is typically used to denote the amount of energy that one endpoint of the edge
has to expend in order to communicate with the other endpoint. For a Euclidean
graph, it is reasonable to assume that c(u, v) = |uv|α for some α ≥ 2. If GP , the
output of a topology control protocol satisfies the spanner property with respect
to edge costs, then it is called an energy spanner. It GP satisfies the spanner
property with respect to edge lengths, then GP is called a distance spanner.

Related Work. Various topology control protocols have been proposed, each
guaranteeing some subset of the above mentioned properties. Here we mention
the two protocols that seem to provide strongest guarantees. Wang and Li [10]
have proposed a local protocol for construction of symmetric, bounded degree,
planar spanners for networks modeled by unit disk graphs. We will call this the
WL protocol. Wattenhofer and Zollinger [11] have proposed a much simpler pro-
tocol called XTC that constructs symmetric, bounded degree, planar networks
for networks modeled by unit disk graphs. In addition, XTC returns a symmet-
ric, connected network even for input networks that have arbitrary edge lengths.
In favor of the WL protocol is the fact that this protocol is guaranteed to re-
turn a spanner, whereas XTC provides no such guarantees. [11] does present
experiments to suggest that the output of XTC may be a good spanner in the
“average case.” In favor of the XTC protocol is its extreme simplicity and the
fact that the output graph is connected even when the input graph is not a unit
disk graph. This implies that it may be appropriate to use XTC even when the
terrain on which the nodes are distributed is not the 2-dimensional plane and
even when there are obstacles in the terrain.

Robust Topology Control Protocols 97

Our Results. In this paper, we start by pointing out that existing protocols
for the topology control problem, including the WL protocol and XTC, lack
robustness and are extremely sensitive to faulty information from neighbors. For
example, as we show in Section 2, the network constructed by XTC may end up
becoming disconnected even when two nodes receive faulty distance information
from one neighbor each. In a key step in the WL protocol, XTC, and other
protocols such as the cone based protocol described in [5], each node u computes
a total ordering ≺u on its neighborhood N(u). In the WL protocol ≺u is based
on degrees of vertices in N(u), in XTC ≺u is based on the “quality” of the
link between u and each vertex in N(u), and in the cone based protocol ≺u

is based on angles. In each case, correct information from neighbors is critical
to the correctness of the neighborhood ordering and therefore critical to the
correctness of the protocol itself.

Faulty or just incomplete information from neighbors is a common feature in
ad-hoc wireless networks. An example of a protocol that works correctly in the
presence of noisy distance information is the network localization protocol in [7].
Faulty information from neighbors could be due to signal interference, due to
feeble power supply at the sender node, due to the receiver having an incorrect
estimate of the transmission range at the sender, etc. Even if information from
neighbors is not faulty, it could simply be out-of-date, because nodes may be
mobile. Furthermore, it is also possible that nodes may only have approximate
position awareness and as a result can only supply approximate distance infor-
mation (see for example, the work in [8] on computing virtual coordinates). For
all of these reasons, the total ordering

∼≺u computed by a node u on its neigh-
borhood N(u) may be different from that actual ordering ≺u that u might have
computed, had it been given accurate or complete information. Our goal is to
devise a topology control protocols that work correctly even when each node u

computes
∼≺u (rather than ≺u), provided each

∼≺u is not too “far away” from
≺u. A natural measure of distance between orderings (or permutations) of a set
is the fewest number of swaps of adjacent elements it takes to get from one or-
dering to the other. We define (informally, for now) as r-robust protocol as one
that can withstand a total of up to r − 1 adjacent swaps performed on all the
neighborhood ordering. We make this notion precise in Section 4. We point out
that XTC is not even 2-robust. We then present a simple modification to XTC
that can turn it into an r-robust protocol for any integer r > 0. The price we pay
for the increase in robustness is in terms of a decrease in the sparsity of the net-
work. However, we bound this decrease. More specifically, in transforming XTC
from a 1-robust protocol (which it is, trivially) to a r-robust protocol, for any
integer r > 1, we increase the maximum vertex degree of the output graph by a
factor of O(

√
r). Even with these modifications, XTC continues to be extremely

simple and practical. An extremely pleasant side-effect of our design is that the
output network is both Ω(

√
r)-edge connected and Ω(

√
r)-vertex connected. In

other words, ensuring robustness of the protocol seems to provide fault-tolerance
of the output for free.

98 S. Ghosh et al.

2 XTC is ot Robust

We start this section by reproducing the XTC protocol from [11].

1. Establish order ≺u over u’s neighbors in G
2. Broadcast ≺u to each neighbor in G; receive orders from all neighbors
3. Select topology control neighbors:
4. Nu := { }; Ñu := { }
5. while (≺u contains unprocessed neighbors){
6. v := least unprocessed neighbor in ≺u

7. if(∃w ∈ Nu ∪ Ñu : w ≺v u)
8. Ñu := Ñu ∪ {v}
9. else
10. Nu := Nu ∪ {v}
11. }

As mentioned in [11], the protocol consists of three main steps: (i) neighbor
ordering (Line 1), (ii) neighbor order exchange (Line 2), and (iii) edge selection
(Lines 3-11). In the edge selection step a vertex u decides to drop v from its set
of neighbors if there is a vertex w that u and v both agree is mutually better.
More precisely, u drops v from its neighborhood if there exists w such that
w ≺u v and w ≺v u. In the protocol, the variable Nu is the set of neighbors that
u has chosen to retain and the variable Ñu is the set of neighbors that u has
chosen to drop. Let EXTC = {(u, v) | v ∈ Nu} and GXTC = (V,EXTC). Also,
let ≺= {≺u| u ∈ V (G)} denote the collection of neighborhood orderings. Note
that the protocol leaves ≺ unspecified. Thus GXTC is a function, not only of the
input network G, but also of the neighborhood orderings ≺. This dependency
will be important later and to emphasize this we use the notation GXTC(≺) to
denote the network constructed by the above protocol. In general, for a topology
control protocol P , we use the notation GP (≺) to denote the output of P . It is
easily verified that u ∈ Nv iff v ∈ Nu and hence GXTC(≺) can be thought of as
undirected graph.

As mentioned in the introduction, XTC is extremely sensitive to small per-
turbations in the neighborhood orderings. In [11], it is shown that if G is a
Euclidean graph and ≺= {≺u| u ∈ V (G)}, where ≺u is defined as

v ≺u w ⇔ (|uv|, min{idu, idv}, max{idu, idv}) < (|uw|, min{idu, idw}, max{idu, idw}),

then GXTC(≺) is symmetric and connected. We will call the above neighborhood
ordering, a distance-based ordering. Note that in the distance-based ordering, ids
are only used to break ties. We now present a simple example of a 4-vertex unit
disk graph that illustrates the lack of robustness of XTC. We start with the
neighborhood orderings ≺ as defined above, by Euclidean distance. We then
make one swap each in the neighborhood orderings of two vertices to obtain
new neighborhood orderings

∼≺. We point out that GXTC(
∼≺) is not connected.

Consider the unit disk graph shown in Figure 1. For the sake of being concrete,
let the lengths of the edges be |ab| = |dc| =

√
3/2, |ad| = |bc| = 1/2, and

|ac| = |bd| = 1. Then

N

Robust Topology Control Protocols 99

a b

cd

Fig. 1. A unit disk graph for showing the sensitivity of XTC to small perturbations

d ≺a b ≺a c
c ≺b a ≺b d
b ≺c d ≺c a
a ≺d c ≺d b

Now suppose that
∼≺a=≺a,

∼≺d=≺d, but

c
∼≺b d

∼≺b a

b
∼≺c a

∼≺c d

Note that
∼≺b and

∼≺c are obtained by swapping one pair of elements each
in ≺b and ≺c. If XTC is run on the unit disk graph shown below with

∼≺=
{∼≺a,

∼≺b,
∼≺c,

∼≺d}, then GXTC(
∼≺) contains just the two edges {a, d} and {b, c}

and is therefore disconnected. Thus a total of two adjacent swaps were sufficient
to break connectivity. Later in the paper we modify XTC in a simple manner
into an r-robust protocol, one that can tolerate a total of up to r − 1 adjacent
swaps on its neighborhood orderings.

3 Characterizing Good Neighborhood Orderings

XTC’s correctness and performance critically depends on ≺. Specifically, if ≺ is
appropriately defined then the following two properties hold:

(i) For every triangle abc, ≺a, ≺b, and ≺c help vertices a, b, and c negotiate the
dropping of one of the edges {a, b}, {b, c}, and {c, a}.

(ii) For every cut (S, S) of G, ≺ prevents the dropping of some edge that crosses
the cut (S, S).

Property (i) implies that GXTC(≺) is triangle-free, while (ii) implies that
GXTC(≺) is connected. Various properties of GXTC(≺) proved separately in
[11] immediately follow. Here we prove a general characterization of neighbor-
hood orderings ≺ that guarantee properties (i) and (ii). It will be clear that the
“distance-ordering” used in [11] satisfies this characterization. But more impor-
tantly, there are many other natural neighborhood orderings that also satisfy our
characterization. For example, neighborhood orderings by increasing ids or by

100 S. Ghosh et al.

a b

cd

ab

bc

cd

ad

ac

bd

ab

bc

cd

ad

ac

bd

(A) (B) (C)

Fig. 2. On the left is the unit disk graph from Figure 1. In the middle is L(G,≺), where
≺ is the distance-based ordering. It is easily verified that this is acyclic. Vertices ad and
bc are minimal vertices in L(G,≺). On the right is L(G,

∼≺), where
∼≺ is obtained from

≺ by swapping a and d in ≺b and ≺c. Notice the cycle (ab, ac, cd, bd, ab) in L(G,
∼≺).

This cycle is responsible for GXTC(
∼≺) being disconnected

increasing angle also satisfy our characterization and therefore guarantee prop-
erties (i) and (ii).

The collection of neighborhood orderings ≺ induces a binary relation � on
the set of edges of G. For any two edges e, e′ ∈ E(G), e � e′ if e and e′

share a common endpoint and if e = {u, v} and e′ = {u,w}, then v ≺u w.
Using this binary relation � we can define a new (directed) graph L(G,≺)
whose vertex set is the set of edges of G and whose set of (directed) edges is
{(e, e′) | e, e′ ∈ E(G), e � e′}. We call ≺ acyclic if L(G,≺) is an acyclic graph.
Note that if L(G,≺) is acyclic, then so is any subgraph of L(G,≺). Also note
that any acyclic graph is guaranteed to contain at least one vertex with in-degree
(respectively, out-degree) 0 and we call such a vertex, a minimal (respectively,
maximal) vertex. Figure 2 illustrates the definitions of �, and L(G,≺).

Theorem 1. Let G be an arbitrary connected graph and ≺ be a collection of
neighborhood orderings of G. GXTC(≺) is triangle-free and connected if ≺ is
acyclic.

Proof. To show that GXTC(≺) is triangle-free, we consider an arbitrary triangle
abc in G. Since L(G,≺) is acyclic there is a triangle edge, say {a, b}, such that
{b, c} � {a, b} and {c, a} � {a, b}. This implies that c ≺b a and c ≺a b. As a
result XTC will drop edge {a, b} and therefore the triangle abc is not part of
GXTC(≺). Since the choice of abc was arbitrary, GXTC(≺) is triangle-free.

To show that GXTC(≺) is connected, we consider a cut (S, S) of G. Let
LS(G) be the subgraph of L(G,≺) induced by the edges of G crossing the cut.
Since L(G,≺) is acyclic, so is LS(G). Let e be a minimal vertex of LS(G). We
now show that e is retained in GXTC(≺). Let e = {u, v} and suppose that e is
not retained in GXTC(≺). Then there is a vertex w ∈ V (G) that is a common
neighbor of u and v such that w ≺u v and w ≺v u. Since {u, v} crosses the cut
(S, S), at least one of eu = {u,w} or ev = {v, w} also crosses the cut. Without

Robust Topology Control Protocols 101

loss of generality suppose that eu crosses (S, S). Therefore, eu is a vertex in
LS(G). Then, by the definition of �, eu � e and therefore e is not minimal in
L(G,≺). This contradicts our choice of e as a minimal vertex in LS(G).

Thus we have shown that for every cut (S, S) of G, there an edge in GXTC(≺)
crossing the cut. This shows that GXTC(≺) is connected.

It is easy to see that the distance-based ordering is acyclic. Let G be a
Euclidean graph and let e = {u, v} be the edge in G such that the triple
(|uv|,min{idu, idv},max{idu, idv}) is first in the increasing lexicographic order-
ing of all such triples. From the definition of the distance-based ordering, it
follows that e is minimal in L(G,≺). If we assume that L(G − e,≺) is acyclic,
then by induction it follows that so is L(G,≺). Similar arguments show that the
following alternate orderings are also acyclic.

1. The id-based ordering ≺id. Let v and w be two neighbors of u. Then v ≺id
u w

iff idv < idw. As before, ≺id= {≺id
u | u ∈ V (G)}.

2. The angle-based ordering ≺a. For any pair of vertices u and v in G, let α(u, v)
denote the angle made by the line segment uv with the horizontal ray with
origin u towards +∞. For two neighbors v and w of u, v ≺a

u w iff

(α(u, v), min{idu, idv}, max{idu, idv}) < (α(u, w), min{idu, idw}, max{idu, idw}).

Of course, the id-based ordering is only well-defined when all vertices have (not
necessarily distinct) ids and the angle-based ordering is only well defined when
the vertices of G are embedded in Euclidean space and the vertices have ids. The
latter is needed to break ties when angle comparison is not enough to distinguish
neighbors.

The implication of the above characterization theorem is that XTC could
have as well been run with the id-based ordering or the angle-based ordering
instead of the distance-based ordering and the output graph would still have the
properties: (i) symmetry, (ii) connectivity, and (iii) being triangle-free. However,
it should be noted that ignoring distances completely and using the id-based or-
dering or angle-based ordering is not, in general, a good idea. Though symmetry

Fig. 3. The graph on the left is a unit disk graph obtained by dropping 40 points
uniformly at random on a 3 × 3 grid. It contains 197 edges. The second graph from
the left is the output of XTC using a distance-based ordering and it contains 47 edges.
The third graph from the left is the output of XTC using an id-based ordering and it
contains 55 edges. The rightmost graph is the output of k-XTC using a distance-based
ordering, for k = 2. It contains 88 edges

102 S. Ghosh et al.

and connectivity are preserved, the output graph may have other undesirable
features. Some of these are apparent in the graph in Figure 3 (third from left)
that is constructed by XTC using the id-based ordering. For example, the de-
grees of certain vertices are quite high and moreover these high degree vertices
have several pendant edges incident on them. These nodes are therefore prone
to high congestion and the network is vulnerable to the failure of such nodes.
While we are not suggesting the use of id-based ordering as an alternative to
distance-based ordering, the result in Theorem 1 does suggest the possibility of
using id-based ordering when distances to neighbors are similar (not necessarily
the same). This may be another way to increase robustness of the protocol.

4 k-XTC: A Robust Version of XTC

In this section, we propose a small modification to XTC that will turn it into a
robust protocol. The protocol, which we will call k-XTC is obtained from XTC
by changing Line 7 to the following.

if (∃W ⊆ Nu∪
∼

Nu: |W | = k and ∀w ∈ W : w ≺v u).

This modification simply means that the decision for u to drop v from its neigh-
borhood needs the support of not one, but k other vertices that both u and v
agree are mutually better. Let GkXTC(≺) denote the output of k-XTC. Note
that XTC is simply a special case of k-XTC with k = 1. A simple but important
observation about the output of k-XTC is the following.

Proposition 1. For any k > 1, for any j, 1 ≤ j < k, GjXTC(≺) is a subgraph
of GkXTC(≺).

The rightmost graph in Figure 3 shows the output of k-XTC for k = 2. This
graph has the same rough “shape” as the output of XTC (the graph that is
second from left) but is more dense and non-planar. As we will show later, this
graph is k-edge connected as well as k-vertex connected. Therefore, every vertex
in this graph has degree at least k.

We now quantify the notion of robustness as follows.

Definition: Let π and π′ be two permutations of a finite, non-empty set S.
We denote the fewest number of adjacent swaps needed to transform π to π′ by
dist(π, π′).

Definition: Let ≺= {≺u| u ∈ V (G)} and
∼≺= {∼≺u| u ∈ V (G)} be two

collections of neighborhood orderings. Then we use dist(≺,
∼≺) to denote∑

u dist(≺u,
∼≺u).

Definition: A topology-control protocol P is said to be r-robust for ≺ if GP (
∼≺)

is connected for any collection of neighborhood orderings
∼≺, where

dist(≺,
∼≺) < r.

Robust Topology Control Protocols 103

In other words, if P is r-robust for ≺, then P returns a connected subgraph
even when executed with a collection of neighborhood orderings that is obtained
from ≺ using at most r − 1 adjacent swaps. Measuring the “distance” between
orderings by the number of adjacent swaps provides a clean abstraction for
quantifying a variety of situations that might cause vertices to believe a “false”
ordering on neighbors. For example, if a vertex u underestimates the distance to
a neighbor v then v might appear earlier than it should in ≺u. If the (incorrectly)
estimated distance to v is much smaller than the actual distance, then v’s place
in ≺u may be many adjacent swaps away from its correct place in ≺u. We
now prove the main result of this paper. Note that the result is proved for any
collection of acyclic neighborhood orderings and not just for the distance-based
ordering. Showing that k-XTC is k-robust is not hard, but showing a quadratic
robustness needs the more intricate argument presented below. The following
theorem shows that to obtain an r-robust version of XTC, it is sufficient to use
k-XTC for k ≥ √

2r.

Theorem 2. k-XTC is k(k+1)
2 -robust for any collection ≺ of acyclic neighbor-

hood orderings.

Proof. Let G be the input graph to k-XTC. Let ≺ be an arbitrary collec-
tion of acyclic neighborhood orderings and let

∼≺ be an arbitrary collection
of neighborhood orderings. From Theorem 1 and Proposition 1, we know that
GkXTC(≺) is connected. We will show that if GkXTC(

∼≺) is disconnected then
dist(≺,

∼≺) ≥ k(k + 1)/2. This will imply that k-XTC is k(k+1)
2 -robust.

We start by supposing that GkXTC(
∼≺) is disconnected and assuming for

notational convenience, that
∼
H= GkXTC(

∼≺). Since
∼
H is disconnected there is

a cut C = (S, S) such that there is no edge of
∼
H crossing (S, S). On the other

hand there is at least one edge in G crossing C. Let E(C) be subset of edges
in G crossing C. Since L(G,≺) is acyclic, the subgraph of L(G,≺) induced by
edges in E(C) is also acyclic. In the rest of the proof we use L(C) to denote the
subgraph of L(G,≺) induced by E(C).

Our proof is constructive and what we now describe is the first iteration of
the construction procedure. Let e = {u, v} be a minimal edge in L(C). Without
loss of generality, suppose that u ∈ S and v ∈ S. The edge e does not appear
in

∼
H and this can only happen because there is a set W of k vertices such that

for all w ∈ W , w is a common neighbor of u and v, w
∼≺u v, and w

∼≺v u. Let
(Wu,Wv) be a partition of W such that Wu ⊆ S and Wv ⊆ S. Let ku = |Wu|
and kv = |Wv|. Note that ku + kv = k. Also note that for each w ∈ Wv, edge
{u,w} crosses C and similarly for each w ∈ Wu, edge {v, w} crosses C. Also
note that since {u, v} is a minimal edge in L(C), v ≺u w for all w ∈ Wv and
u ≺v w for all w ∈ Wu. Thus, we have (i) for all w ∈ Wv, w

∼≺u v and v ≺u w

and (ii) for all w ∈ Wu, w
∼≺v u and u ≺v w. See Figure 4 for an example. Item

(i) implies that dist(≺u,
∼≺u) ≥ kv and item (ii) implies that dist(≺v,

∼≺v) ≥ ku.
These inequalities together imply that dist(≺,

∼≺) ≥ k.

104 S. Ghosh et al.

S

W
u Wv

S
u v

w1w
2

Fig. 4. The edges {u, w1} and {v, w2} cross the cut (S, S). Furthermore, v ≺u w1 and
w1

∼≺u v. Also, u ≺v w2 and w2

∼≺ u

Remark: Actually, something stronger can be claimed. Even if we wanted to
transform ≺u into an ordering ≺′

u such that w ≺′
u v for all w ∈ Wv, but ≺u and

≺′
u match in the pairwise ordering of all others pairs of elements, it would take

at least kv adjacent swaps. In other words, ≺′
u is along the way between ≺u and

∼≺u and just getting to ≺′
u from ≺u takes at least kv adjacent swaps. Getting

to
∼≺u from ≺′

u may take additional adjacent swaps and we account for these
separately in future iterations of the construction procedure. Similar remarks
can be made about the “distance” between ≺v and

∼≺v.
The choice of edge e = {u, v} described above, ends the first iteration of

our construction procedure. Let B1 = {e} and let V1 = {u, v}. The set V1

represents the endpoints of the edge in B1. To state our induction hypothesis
we need additional notation. For any set X of vertices, let distX(≺u,

∼≺u) be
the minimum number of adjacent swaps we need to make on ≺u so that every
element v ∈ X ∩ N(u) is in the same relative position in ≺u as in

∼≺u. More
precisely, distX(≺u,

∼≺u) = min≺′
u

dist(≺u,≺′
u), where the min operation is over

all ≺′
u such that for any v ∈ X∩N(u) and for any w ∈ N(u), v ≺u w ⇔ v ≺′

u w.
Here is a small example to illustrate this definition.

Example. Define the permutations π = (54321) and π′ = (12345). It is easy to
see that dist(π, π′) = 10. Now let X = {1, 4}. What is distX(π, π′)? It is again
easy to verify that distX(π, π′) = dist(π, π′′) = 9, where π′′ = (13245). This is
because distX(π, π′) is the number of adjacent swaps needed to transform π into
a permutation in which 1 appears before all other elements and 4 appears after
all other elements except 5. Thus the positions of elements 1, 4, and 5 are fixed.

For any collection ≺ of neighborhood orderings, let distX(≺,
∼≺) =∑

u∈X distX(≺u,
∼≺u). We also need the following two elementary facts about

transforming one permutation into another via adjacent swaps.

Fact 1. For any X ⊆ Y ⊆ N(u), distX(≺u,
∼≺u) ≤ distY (≺u,

∼≺u).

Fact 2. Let X ⊆ Y ⊆ N(u) and x ∈ Y − X. Suppose there is a set W ⊆ N(u)
such that for all w ∈ W , x ≺u w and w

∼≺u x then distX(≺u,
∼≺u) + |W | ≤

distY (≺u,
∼≺u).

Robust Topology Control Protocols 105

Our induction hypothesis is the following.

Induction hypothesis: For any i ≥ 1, after i iterations of this procedure, we
have a set Bi of i edges from E(C) such that there are no edges from E(C)−Bi

into Bi, though there may be edges from Bi into E(C) − Bi. Let Vi be the set
of endpoints of edges in Bi. Then distVi

(≺,
∼≺) ≥ k + (k − 1) + · · ·+ (k − i + 1).

We have shown that at the end of the first iteration of the construction
procedure, |B1| = 1, there are no edges from E(C) − B1 into B1, and
distV1(≺,

∼≺) ≥ k. This is the base case of our proof.
We now make the following claim about the (i + 1)th iteration of our con-

struction procedure. We will prove this claim later; for now we will assume that
it holds and complete the proof of the induction step.

Claim: In the (i + 1)th iteration it is possible to pick an edge e′ ∈ E(C) − Bi

such that (i) e′ has at least one endpoint not in Vi, and (ii) in-degree of e′ in
L(C) is at most i.

Assuming this claim, we proceed in a manner that is similar to the argument
for the first iteration. Let e′ = {u′, v′}, u′ ∈ S, v′ ∈ S, and without loss of
generality, v′ �∈ Vi. The fact that e′ is not in

∼
H implies that there is a set W of

k vertices such that for all w ∈ W , w is a common neighbor of u and v, w
∼≺u′ v′

and w
∼≺v′ u′. Using the fact (derived from the above claim) that the in-degree

of e′ in L(C) is at most i, we conclude, using an argument similar to the one for
the first iteration, that there exist subsets Wu′ ⊆ W ∩S and Wv′ ⊆ W ∩S, such
that |Wu′ | + |Wv′ | = (k − i) and

(i) for all w ∈ Wv′ , w
∼≺u′ v′ and v′ ≺u′ w and

(ii) for all w ∈ Wu′ , w
∼≺v′ u′ and u′ ≺v′ w′.

Let ku′ = |Wu′ | and kv′ = |Wv′ |, Bi+1 = Bi ∪ {e′}, and Vi+1 be the endpoints
of vertices in Bi+1. Item (i) along with Fact 2 implies that distVi+1(≺u′ ,

∼≺u′) ≥
distVi

(≺u′ ,
∼≺u′) + kv′ . Item (ii) implies that distVi+1(≺v′ ,

∼≺v′) ≥ ku′ . These in-

equalities together along with Fact 1 imply that distVi+1(≺,
∼≺) ≥ distVi

(≺,
∼≺)+(k− i). This completes the induction step. If we repeat the induction step

until i = k, then we have a set Vk of vertices such that distVk
(≺,

∼≺) ≥ k(k + 1)/1.
Since Vk ⊆ V , by Fact 1 we have that dist(≺,

∼≺) = distV (≺,
∼≺) ≥ distVk

(≺,
∼≺) ≥

k(k + 1)/1.
We now prove the above claim that guarantees the existence of e′.

Proof of Claim: Let Ti be the set of edges not in Bi, that have both endpoints
in Vi. Consider the subgraph of L(C) obtained by deleting Bi ∪ Ti. Call this Li.
Since L(C) is acyclic, Li is also acyclic and let e′ be a minimal vertex in Li. If
e′ is not incident on any vertex in Vi, then e′ is also minimal in L(C) and we
are done. So we assume that e′ is incident on at least on vertex in Vi. Since, e′

was picked from L(C) − Bi − Ti, e′ cannot be incident on two vertices in Vi,
because otherwise e′ will be in Ti. Therefore, we are left with the case in which

106 S. Ghosh et al.

S

b

g

B

a d

c

e
3

S

Fig. 5. This figure illustrates the proof of the Claim in the proof of Theorem 2. Here
B3 = {{a, c}, {a, d}, {b, e}}, T3 = {{b, d}, {b, c}, {a, e}}, and e′ = {b, g}. The set V3 =
{a, b, c, d, e}

e′ is incident on one vertex in Vi. Now let e′ = {b, g} and suppose that b ∈ Vi

and g �∈ Vi. Figure 5 illustrates the situation for i = 3. Suppose that there are x
edges in Bi incident on b and y edges in Ti incident on b. In Figure 5, x = 1 and
y = 2. The in-degree of e′ in L(C) is therefore bounded above by x+y and since
x ≤ |Bi| = i, we get the upper bound i + y. Now note that for every edge {b, b′}
in Ti, there is an edge in Bi incident on b′ that does not share any endpoints
with edge {a, b}. In other words, for every edge e′′ of Ti such that e′′ � e′ there
is a unique edge f in Bi such that f �� e′. This gives the upper bound of i on
the in-degree of e′.

An extremely pleasant side-effect of our design of k-XTC is the fault-tolerance
of GkXTC . We prove in the following two theorems that if G is k-edge connected
(respectively, k-vertex connected) then GkXTC is also k-edge connected (re-
spectively, k-vertex connected). Localized protocols for constructing such fault-
tolerant spanning subgraphs appear in [1, 6], but k-XTC is far simpler than these.
Furthermore, k-XTC provides robustness, bounded degree in case the input is
a unit disk graph, and also preserves k-connectivity for arbitrarily input graphs
with arbitrary edge lengths. Also note that the following two theorems are proved
for any acyclic collection of neighborhood orderings, not just for distance-based
orderings.

Theorem 3. For any collection of acyclic neighborhood orderings ≺, GkXTC(≺)
is k-edge connected provided G is k-edge connected.

Proof. Suppose G is k-edge connected, but GkXTC is not. For any cut C =
(S, S) of V , let E(C) denote the edges in G crossing the cut and similarly, let
EkXTC(C) denote the edges of GkXTC crossing the cut C. Since G is k-edge
connected, but GkXTC is not, there there is a cut C = (S, S) of V such that
|E(C)| ≥ k and |EkXTC(C)| < k. Let L be the subgraph of L(G,≺) induced
by E(C) − EkXTC(C). Note that L is non-empty and since L(G,≺) is acyclic,
so is L. Let e = {u, v} be a minimal vertex in L. Since {u, v} ∈ E − EkXTC ,
there exists a vertex set W , |W | = k, such that for all w ∈ W , w is a common
neighbor of u and v and

w ≺u v and w ≺v u. (1)

Robust Topology Control Protocols 107

Let W1 = W ∩ S and W2 = W ∩ S. Then, χ = {{u, x} | x ∈ W2} ∪ {{y, v} | y ∈
W1} is a subset of E(G) of edges that cross the cut (S, S). Note that |χ| = k and
therefore not all edges in χ can belong to EkXTC(C). Let {a, b} ∈ χ−EkXTC(C).
Thus {a, b} ∈ E(C)−EkXTC(C) and is therefore a vertex in L. Note that {a, b}
is either incident on u or incident on v. Without loss of generality, assume that
a = u. Then, from (1) it follows that b ≺u v. This means that {a, b} � {u, v},
contradicting that fact that e = {u, v} is minimal in L.

Theorem 4. For any collection of acyclic neighborhood orderings ≺, GkXTC(≺)
is k-vertex connected provided G is k-vertex connected.

Proof. Suppose that G is k-vertex connected and GkXTC is not. Since GkXTC

is not k-vertex connected, there exists V ′ ⊆ V such that |V ′| = k − 1 and
G′

kXTC = GkXTC − V ′ is disconnected. Since G is k-vertex connected, G′ =
G−V ′ is connected. Since G′

kXTC is disconnected, there exists cut C = (S, S) of
V −V ′ such that no edges in G′

kXTC cross cut C. However, since G′ is connected,
there exists a non-empty set of edges EC in G′ that cross cut C. Let L be the
subgraph of L(G,≺) induced by EC . Let e = {u, v} be a minimal vertex in EC .
Without loss of generality suppose that u ∈ S and v ∈ S. Since there are no
edges in G′

kXTC that cross the cut C, e is not in GkXTC . Hence, there exists
W ⊆ V , |W | = k, such that for all w ∈ W , w is a common neighbor of both u
and v, and w ≺u v and w ≺v u. Since |W | = k and |V ′| = k − 1, there exists a
vertex w ∈ W − V ′. Therefore, w is a vertex in G′ and in G′

kXTC . Without loss
of generality assume that w ∈ S. Therefore, edge {u,w} crosses the cut C and
belongs to EC . Furthermore, since w ≺u v, {u,w} � {u, v} contradicting the
fact that {u, v} is minimal in L.

We use ∆(G) to denote the maximum degree of a vertex in G. We now
show that the argument for the upper bound 6 [11] on ∆(GXTC) if G is a unit
disk graph carries over cleanly to the k-XTC, giving an upper bound of 6k on
∆(GkXTC). Note that the argument is specific to distance-based orderings, and
does not carry over to an arbitrary acyclic ordering. In fact, as mentioned before
for the case of the id-based ordering, not all acyclic orderings will satisfy this
upper bound result.

Theorem 5. If G is unit disk graph and ≺ is the collection of distance-based
neighborhood orderings, then ∆(GkXTC(≺)) ≤ 6k.

Proof. To prove this theorem, we show that k + 1 adjacent edges in GkXTC

cannot enclose an angle less than π
3 . More precisely, assume that a vertex u has

k + 1 neighbors v0, v1, . . . , vk in GkXTC , listed in counterclockwise order start-
ing at some arbitrary neighbor v0. Further assume that ∠v0uvk < π

3 . Figure 6
illustrates the situation.

Suppose that among the neighbors v0, v1, . . . , vk, the neighbor vi for some
i, 0 ≤ i ≤ k, is considered last by k-XTC. Since vi is considered last we have

108 S. Ghosh et al.

u

v
k

v
k−1

v
1

v
0

Fig. 6. The neighbors v0, v1, . . . , vk of u. For the proof we suppose that ∠v0uvk < π/3

vj ≺u vi for all j �= i, 0 ≤ j ≤ k. Since ≺ is the distance-based ordering, this
implies that |uvj | ≤ |uvi|, for all j �= i, 0 ≤ j ≤ k.

Now consider a triangle uvivj , j �= i, 0 ≤ j ≤ k. Since |uvj | ≤ |uvi|,
uvj is not the longest edge of the triangle. Also since ∠vjuvi < π

3 , the line
segment vivj is strictly shorter than at least one of the other two line seg-
ments in the triangle, namely uvi and uvj . Combining this with the fact that
|uvj | ≤ |uvi|, we have |vivj | < |uvi|, implying that vj ≺vi

u. Thus, we have
vj ≺u vi and vj ≺vi

u for all j �= i, 0 ≤ j ≤ k. This means that edge {u, vi}
will not be included in GkXTC , contradicting the fact that vi is a neighbor of u
in GkXTC .

5 Future Directions

The spanner properties of GkXTC remain unexplored and there are several in-
teresting questions one could ask. For example, as k increases GkXTC becomes
more dense and we expect it to become a better spanner for G. One could ask
if given any t ≥ 1 and a unit disk graph G, whether there is a k = k(t) such
that GkXTC is a t-spanner for G. In addition, one could focus on random unit
disk graphs (those obtained by distributing points uniformly at random in a
bounded planar region) and investigate spanner properties of GkXTC in this
setting. This would also be an attempt at analytically proving the conclusion,
experimentally derived in [11], that GXTC is a good spanner for random unit
disk graphs.

Another direction we are interested in pursuing is relaxing the assumption
that G is a unit disk graph and investigating k-XTC for for a more general
class of graphs. For example, [4] defines a quasi unit disk graph a model that
they claim is “close enough to reality as to represent existing networks.” We are
interested in investigating the performance of k-XTC for quasi unit disk graphs
and for other realistic generalizations of unit disk graphs.

Acknowledgment. We thank Ted Herman for illuminating discussions on real
world sensor and ad-hoc wireless networks.

Robust Topology Control Protocols 109

References

1. M. Bahramgiri, M. Hajiaghayi, and V. S. Mirrokni. Fault-tolerant and 3-
dimensional distributed topology control algorithms in wireless multi-hop net-
works. In Proceedings of the 11th IEEE International Conference on Computer
Communications and Networks (IC3N), pages 392–398, 2002.

2. M. Burkhart, P. von Rickenbach, R. Wattenhofer, and A. Zollinger. Does topology
control reduce interference? In Proceedings of the 4th ACM International Sympo-
sium on Mobile Ad-Hoc Networking and Computing (MOBIHOC), 2003.

3. F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc rout-
ing: Of theory and practice. In Proceedings of the 22nd ACM Symposium on the
Principles of Distributed Computing (PODC), 2003.

4. F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad-hoc networks beyond unit disk
graphs. In DIAL-POMC 2003, 2003.

5. L. Li, J. Halpern, P. Bahl, Y. Wang, and R. Wattenhofer. Analysis of a cone-based
distributed topology control algorithm for wireless multi-hop networks. In Pro-
ceedings of the ACM Symposium on Principles of Distributed Computing (PODC),
pages 264–273, 2001.

6. N. Li and J.C. Hou. FLSS: A fault-tolerant topology control algorithm for wireless
networks. In Proceedings of MOBICOM, 2004.

7. D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed network localiza-
tion with noisy range measurements. In SenSys 2004, 2004.

8. T. Moscibroda, R. O’Dell amd M. Wattenhofer, and R. Wattenhofer. Virtual
coordinates for ad hoc and sensor networks. In DIAL-POMC 2004, 2004.

9. R. Prakash. Unidirectional links prove costly in wireless ad-hoc networks. In
Proceedings of the 3rd International Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communication (DIAL-M), 1999.

10. Y. Wang and X. Y. Li. Localized construction of bounded degree planar span-
ner for wireless ad hoc networks. In Proceedings of the 2003 Joint Workshop on
Foundations of Mobile Computing, pages 59–68, 2003.

11. R. Wattenhofer and A. Zollinger. XTC: A practical topology control algorithm for
ad-hoc networks. In Proceedings of the 4th International Workshop on Algorithms
for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN 04), 2004.

A Scheme Encouraging Mobile Nodes to Forward
Packets via Multiple Wireless Links Aggregating System

Between the Internet and Mobile Ad Hoc Networks

Yosuke Ito1, Hiroshi Mineno2, and Susumu Ishihara3

1 Graduate School of Science and Technology, Shizuoka University,
3-5-1, Johoku, Hamamatsu, Shizuoka, 432-8561, Japan

Phone/Fax:+81-53-478-1265,
ito@ishilab.net

2 Faculty of Information, Shizuoka University
mineno@cs.inf.shizuoka.ac.jp

3 Faculty of Engineering, Shizuoka University
ishihara@ishilab.net

Abstract. We have proposed a system that achieves high-speed and high-quality
communication between mobile nodes and the Internet by using multiple net-
work interfaces of multiple mobile nodes. In this system, adjacent mobile nodes
connect to each other with short-range high-speed links and establish temporary
networks. A mobile node in a temporary network simultaneously uses multiple
links owned by the nodes in the network when it communicates with nodes out-
side the network. In this system, a part of data packets for one node have to be
relayed by the other nodes in the temporary network. However, other nodes might
not relay data packets unless they receive some profit from their contribution. In
this report, we introduce credits as an incentive to network nodes to relay packets.
We propose a method that provides secure credit exchanges between nodes relay-
ing packets and a node requesting the relays, and the method provides a trusted
third party that assists those nodes exchanging credits.

Keywords: mobile computing, multiple paths, mobile IP, cooperation, incentive
of forwarding, accounting, fairness, SHAKE, ad hoc network.

1 Introduction

In wireless communication environment, users demand to connect to the Internet com-
fortably at any time and place. In a previous report [1], we proposed SHAKE (a pro-
cedure for SHAring multiple paths to create a cluster networK Environment) to enable
high-speed, reliable communication with multiple network interfaces for a temporal
group of mobile devices. In SHAKE, mobile devices gathering in particular location
establish a temporary network (we call this network an alliance) by establishing a
short-range high-speed wireless link (e.g., wireless LAN). When a mobile device in
an alliance accesses the Internet under a situation where the node has to use a slow link
(e.g., 2G, 3G cellular), it uses not only its link to the Internet but also the links between

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 110–123, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

A Scheme Encouraging Mobile Nodes to Forward Packets 111

the other mobile devices in that location and the Internet. This improves the data trans-
mission speed, reliability and connectivity of the communication between the mobile
devices and the Internet.

In SHAKE, nodes must assist other nodes by using their own external link to relay
traffic. If nodes refuse a relay connection because they have to use their own CPU
power, memory, and battery to relay traffic for other nodes, communicating by using
the SHAKE will be impossible. To solve this problem, we propose a scheme that uses
credits as an incentive to encourage nodes to relay traffic for other nodes.

The rest of the paper is organized as follows. In Section 2, we review the SHAKE
architecture, the issues, and the related work. In Section 3, we present architecture for
motivating mobile nodes to perform relays. In Section 4, we discuss robustness and
overhead of the proposed scheme. Section 5 summarizes this paper.

2 SHAKE

In this section, we provide an overview of SHAKE. In SHAKE, mobile nodes establish
an alliance to enhance communication speed between them and the Internet. A node
relaying data packets for another node in an alliance is described an Alliance Member
(AM), and a node requesting the relay of data packets to AMs is described an Alliance
Leader (AL). When an AL communicates outside of the alliance, it distributes traffic
not only to its own external link but also to those of the AMs.

2.1 Mobile IP SHAKE

Mobile IP SHAKE [1] is an implementation of SHAKE on the IP layer. We assume
the use of Mobile IP SHAKE in this paper. To establish SHAKE on the IP layer, a
node that distributes traffic on the path between the correspondent node (CN) of an
AL and the alliance including that AL is necessary. If no node distributes packets sent
from the CN to the destination node (AL), the CN has to know all the addresses of the
nodes in the alliance (AM). This is not ideal because it is not functionally practical for

Internet

long-range wireless link

(2G, 3G, etc.)

alliance
short-range high-speed link

(802.11, etc.)

move

move

CN

HA

AL

MN

MN

MN
MN

AM

AM

Internet

Payload

Src : CN

Dst : AL Home Addr

Payload

Src : CN

Dst : AL Home Addr

Src : HA

Dst : AL CoA

Payload

Src : CN

Dst :AL Home Addr

Src : HA

Dst : AM CoA

Payload

Src : CN

Dst : AL Home Addr
CN HA

AMAL

short-range high-speed link

(b) mechanism

CN: Correspondent Node

HA: Home Agent

MN: Mobile Node

AL: Alliance Leader

AM: Alliance Member

(a) use case

Fig. 1. Mobile IP SHAKE

112 Y. Ito, H. Mineno, and S. Ishihara

ordinary hosts on the Internet to know the addresses of all AMs for a short time session.
Mobile IP SHAKE exploits a feature that assures that the packets from the CN to a
Mobile Node (MN) always go through the Home Agent (HA) of an MN on the Mobile
IPv4 mechanism unless route optimization is used, and introduces a traffic-dispersion
mechanisms into the HA. For this reason, Mobile IP SHAKE does not require any
special mechanism for CNs.

Figure 1 provides an overview of Mobile IP SHAKE. An AL registers an AM’s care-
of address (CoA) as well as the AL’s own CoA to the HA of the AL in advance. When
the HA forwards packets sent from the CN, it encapsulates the packets and distributes
them not only to the AL but also to the AMs. The AMs decapsulate the transmitted
packets and forward them to the AL through the links in the alliance. When packets
are transmitted from the inside of an alliance to the external link, the AL encapsulates
and distributes packets to each AM. Then, each AM forwards the packets to the des-
tination node or the AL’s HA as in the reverse tunneling technology used in Mobile
IPv4.

In the following section, we describe transmission from a node in an alliance to out-
side the cluster as ‘uplink’, and transmission from outside the alliance into the alliance
as ‘downlink’.

2.2 Issues in Using SHAKE

In SHAKE, AMs have to offer CPU resources, battery power, and link bandwidth to
the AL. For this reason, AMs may refuse to relay packets for the AL unless mutual
trust exists between the AL and the AMs or unless some reward is promised. There-
fore, we introduce a mechanism for motivating AMs to relay packets for the AL by
granting rewards to the AMs. We deal with this issue in this paper. Adding to this, the
management of heterogeneous mobile nodes in the alliance and traffic distribution are
important issues. These issues have been discussed in [2].

2.3 Related Work

The issues of cooperation of mobile nodes for packet forwarding have been investigated
in ad hoc networks and multi-hop cellular networks. In [5, 7], reputation mechanisms
for ad hoc networks were proposed. In [10], Eidenbenz et al. proposed game theory
approach in ad hoc networks. Golle et al. analyzed the incentives in peer-to-peer net-
works [9].

Our approach for our special architecture SHAKE is credit-based mechanism. Credit-
based mechanism is used in ad hoc networks [3, 6, 4], and in multi-hop cellular networks
[11, 8]. In [3], Buttyan and Hubaux proposed virtual currency called nuglets. The sender
of a packet loads nuglets on the packet, and the intermediate nodes acquire some nu-
glets from that packet by forwarding it. In [6], they proposed an improved mechanism.
In [3, 6], to ensure the payment of the correct amount of nuglets to each node, tamper-
proof hardware is used. Our system does not need any tamper-proof hardware at any
node. Zhong et al. proposed a method relying on a central authority that collects re-
ceipts from the forwarding nodes [4]. In this method, intermediate nodes send receipts
after forwarding data messages. Then, the central authority charges the source nodes
and rewards the forwarding nodes based on the receipts.

A Scheme Encouraging Mobile Nodes to Forward Packets 113

The following are differences between these credit-based methods and our method.
First, in [4, 11], authors use cryptographic functions based on public key cryptography,
whereas our solution is based on symmetric key cryptography requiring less computa-
tion load. Secondly, some of above credit-based approaches do not solve a case in which
the destination of a packet pays the reward. When SHAKE is used, an AL has to grant
AMs the rewards in both cases when the AL is the transmission source and the destina-
tion, because the AL relies on AMs in both cases. So we designed a mechanism adapted
to the both cases. Thirdly, these approaches assume only a rational malicious node that
attempts to cheat if the expected benefit of doing so is greater than the expected benefit
of acting honestly. In other words, they do not take care of the offenders for pleasure.
We suppose that the existence of such offenders is one of serious problems. In addition
to the cases that malicious nodes attack the system intentionally, cracked computers
might attack other hosts unintentionally. This leads to collapse the systems and to loss
service provider’s confidence. The fourth difference is that above credit-based methods
can not distinguish unintentional packet losses from packet drop of malicious node, and
can not solve contradiction of charging arisen from packet losses. We also address this
problem.

3 A Scheme Encouraging Mobile Nodes to Forward Packets on
SHAKE

To encourage Alliance Members (AMs) to relay packets for an Alliance Leader (AL)
in SHAKE, we introduce an incentive for AMs. We propose a method of using credit
as the incentive. Each AM receives credit in compensation for the relay. Therefore, if
an AL wants to send packets via an AM, the AL needs to pay credit for the AM. The
amount of credit is proportional to the size of the packet. We assume that the credit can
be converted into real money or can grant privilege to users in provider services. If a
node wants to get more credit, the node can get by paying its debit or buy them using
real money, or be remunerated by forwarding others’ data traffic.

We introduce a trusted third party to maintain users’ credit account, and we call
this party a Credit Server (CS). We assume that the CS and the Home Agent (HA) are
completely reliable and do not coalesce with other hosts. From a practical standpoint,
HAs will be managed by ISP or carrier if Mobile IP is used for mobile phone. Because
of this, it is considered to be reasonable that the HAs are completely reliable. The CS
is the authority for managing credit, and the CS rewards AMs that have forwarded
packets reliably and charges the ALs. The CS charges and rewards for the relay of
packets forwarded successfully. We use Forward Reports (FRs) from an AM and a HA
for judging whether packets have been successfully forwarded. Between the HA and
the CS, and between the AM and the CS, the FRs are assumed not to be modified by a
third party by using secure session like IPsec.

In the following discussion, we deal with the following malicious attacks.

– Forgery of credit:
Individual nodes may illegitimately try to increase their own credit.

114 Y. Ito, H. Mineno, and S. Ishihara

– Free riding (AL’s refusal to pay to CS):
An AL may claim that it did not initiate some communication despite being helped
by AMs. The CS has to refuse these kinds of claims.

– AM’s false charge for rewards:
An AM may charge credit by sending a false FR to the CS. The CS has to refuse
such kinds of charges.

3.1 Forwarding Uplink Packets

Overview. Figure 2 illustrates the flow of data packets and control messages for cred-
iting procedures in uplink. In Section 2.1, in uplink on Mobile IP SHAKE, we pointed
out that both the transitions of passing through HA and of not passing through HA
could be used. However in this paper, we assume that packets from an AL to a CN are
forwarded by the HA. The purpose of this is that we intend to enable the HA to confirm
that AMs forward packets with certainty.

In uplink, the packets from an AL are delivered to the CN via an AM and an HA
except packets sent directly from that AL’s own external link. When the HA forwards a
certain amount of packets via the AM, it generates a FR and sends it to the CS. We sup-
pose that the HA sends the FRs to the CS via TCP for reliable transmission. When the
CS receives the FRs from the HA, it judges whether each packet has been successfully
forwarded. After this operation, the CS pays the reward to the AM and charges it to the
AL for the successfully forwarded packets. This CS’s payment is supposed to be levied
as ISP or other service charges. When no FR is received from the HA, the CS judges
that forwarding has failed, and does not charge or reward credit.

Protocol in Detail. In this section, we present details of the uplink protocol. The pack-
ets from an AL to a CN are distributed to a communication path via an AM (AL → AM
→ HA → CN) and another communication path using the AL’s own external link (AL

Internet

CN

HA

AL AM

CS

CN: Correspondent Node

HA: Home Agent

CS: Credit Server

AL: Alliance Leader

AM: Alliance Member

),,,(MAClengthseqpayload
ALHAK

),,,(lengthseqpayload

)(payload

(1)

(2)

(3) (FR)

(1)

(2)

(3)

Data flow

relay list

relay list

Control message flow

-
seID

seID

,

,

relay list

30

seID

1500222

1500221AMAL

lengthseqrewardcharge

(=Forward Report (FR))

MAC
AMHAK -

),,(lengthseqpayload seID ,

MAC
ALHAK -), ,(lengthseqseID ,

AL AM 30

Fig. 2. Uplink procedure

A Scheme Encouraging Mobile Nodes to Forward Packets 115

→ HA → CN). Charging or rewarding credits is not processed for packets delivered di-
rectly from an AL to the HA rather than via an AM. Hereafter, we explain the protocol
relating to the crediting procedure on the communication path via the AM.

To authenticate the sending node and the forwarding node of a packet, we use a
message authentication code (MAC). In our proposal, an AL sends a packet with a
session ID (seID), sequence number (seq), length (length) and its MAC. After an AM
receives the packet, it forwards the packet to the HA with a new MAC computed with
the MAC included in the received packet. The HA verifies the MAC in the received
packet. The seq is used to resist replay attacks. The length is used for charging at
the CS.

Symmetric session keys (KHA−AM , KHA−AL) must be established in advance through
a suitable key exchange protocol between an HA and an AM via an AL, and be-
tween the HA and an AL, respectively. Hereafter, MACKHA−AM , MACKHA−AL denote
MACs, which are the keyed cryptographic hash values computed with the session key
between the HA of the AL and an AM, and between the HA and the AL, respec-
tively. Moreover, we assume that HAs have a relay list including a list of packets
relayed for the AL. This relay list is used for generating FR for multiple relayed
packets.

We explain the crediting procedure on Mobile IP SHAKE as described in Figure 2.

1. An AL generates the seID of the session, and distributes the packets to the AMs
with their seID, seq, length, MACKHA−AL . MACKHA−AL is the keyed cryptographic
hash value of the content of the packet (i.e. seID, seq, length, payload) (Figure 2(1)).
The session key KHA−AL is used for computing MACKHA−AL .

2. An AM receives the packet from the AL. It checks that the sequence number has
not already been used. If the packet is not duplicated, the AM computes a new
MAC with the received MAC and KHA−AM , and forwards the packet to the HA
adding the MACKHA−AM (seID,seq, length,MACKHA−AL) instead of the received MAC
(Figure 2(2)).

3. The HA verifies whether the value of MAC added to the packet is correct by com-
paring it with the keyed cryptographic hash value using KHA−AL and KHA−AM stored
in the HA. If it is not correct, the packet is dropped. Otherwise, the HA checks that
the sequence number has not already been used. If the packet is not duplicated, the
HA forwards the data packet to the CN (Figure 2(3)). After forwarding the packet,
the HA adds the entry including the seID, seq and length of each packet to its relay
list.

4. The HA sends a FR based on each relay list to the CS periodically or when the
number of unsent entries of relay list reaches the upper limit (Figure 2).

5. The CS charges and rewards credit according to the amount of the packet reported
from the HA.

3.2 Forwarding Downlink Packets

Overview. Figure 3 shows the flow of the data packets and the control messages in
the crediting procedures in downlink. A data packet is delivered from the CN to an AL
via the HA of the AL and an AM. When an AL receives a certain amount of packets

116 Y. Ito, H. Mineno, and S. Ishihara

Internet

CN

HA

AL AM

CS

CN: Correspondent Node

HA: Home Agent

CS: Credit Server

AL: Alliance Leader

AM: Alliance Member

)(payload

),,,(MAClengthseqpayload

HA

K1

),,,(MAClengthseqpayload
AL

K1

(1)

(2)

(3)

(FR)

(FR)

(RR)

(RR)

(3)

(2)

(1) Data flow

Control message flow

relay list

relay list

-

-

seID

seID

,

,

50

seID

eew3w…5er1500122

sdfiou3…ew1500121AL

lengthseqrewardcharge MAC
AMHAK -

relay list

50

seID

eew3w…5er1500122

sdfiou3…ew1500121AMAL

lengthseqrewardcharge

50

seID

dsafasf23…5d

sd3asfsaf…dsf

eew3w…5er1500122

sdfiou3…ew1500121AMAL

lengthseqrewardcharge

MAC
ALHAK2

MAC
ALHAK2MAC

AMHAK

Receive Report (RR)

 Forward Report (FR)

-

--

AL

HA

), ,(lengthseq payloadseID ,

AL

AL

AL

AM

AM

AM 50

50

50

AM

(X)

(X)

X = ()

(X)

(X)

(X) (X)

Fig. 3. Downlink procedure

forwarded by the AM, the AL sends a Receive Report (RR) of the forwarded packets to
the HA and the AM. The RR is a list that contains the seID, seq, length, and MACKHA−AL

of each packet. This RR is essential for confirming the success of forwarding. The RRs,
as well as the FRs, are supposed to be sent through TCP connections. We assume that
an AM and a HA require a MACKHA−AL contained in the RR to generate a FR. The AM
and the HA generate their FR based on both the RR and their relay list, and send it to
the CS. The CS compares the FRs from both the AM and the HA, and confirms that the
packets were actually forwarded by the AM and the HA. If the FR is correctly collated,
the charging and rewarding procedure is performed.

Protocol in Detail. In this section, we explain the details of the protocol in downlink
according to Fig. 3. Symmetric session keys (KHA−AM , KHA−AL) are established in ad-
vance through a suitable key exchange protocol between the HA of the AL and an AM
via the AL, and between the HA and the AL, respectively. Between the HA and the
AL, two symmetric session keys are established. We name them K1HA−AL, K2HA−AL,
respectively. One is used for authentication in communication, and the other is used
for RRs.

1. The CN transmits the data packets destined for an AL (Figure 3(1)).
2. When the HA of the AL forwards the data packets to the AM, the HA generates

the seID of the session, and attaches the seID, seq, length and MACK1HA−AL of the
received packet (Figure 3(2)). After forwarding the packet, the HA adds an entry
that consists of the seID, seq, length and the calculation result of
MACKHA−AM (seID,seq, length, payload) to its relay list.

3. The AM receives the packet and then checks whether the sequence number has not
already been used. The AM forwards the packet to the AL. After forwarding the
packet, the AM adds an entry that consists of the seID, seq, length, and MACKHA−AM

of the forwarded packet to its relay list.
4. When the AL receives the packet forwarded by the AM, the AL verifies whether the

value of MACK1HA−AL added to the packet is correct. If the verification is successful,
the AL adds an entry including the seID, seq, length, and the calculation result
of MACK2HA−AL(seID,seq, length, payload) of the packet to its RR. When the AL

A Scheme Encouraging Mobile Nodes to Forward Packets 117

receives a certain amount of packets, the AL sends a RR to the HA and the AM.
The HA and the AM generate FRs based on the RR and the relay list maintained by
themselves, and send them to the CS. The content of the FRs is a list including the
entries of the set of seID, seq, length, MACKHA−AM and MACK2HA−AL of forwarded
packets as in Fig. 3.

5. The CS compares the entries in the FRs of the AM and the HA, and judges whether
the packets were successfully forwarded. The CS charges and rewards credits ac-
cording to the amount of correctly forwarded packets.

3.3 Mechanisms for the CS/HA to Resist Dishonest Claims

In order to resist dishonest claims by ALs and AMs, the CS and the HA perform the
following procedures.

CS Operation. We assume that some CSs exist in the Internet. The CSs maintain a list
of malicious nodes by mutually exchanging information or using a centralized informa-
tion server. Specifically, the CSs record the nodes that refused to pay credits or falsely
charged for rewards, and this information is shared by CSs. We assume that this infor-
mation can be referred to all nodes when an alliance is established, and thus can be used
to evaluate whether nodes are suitable to be included in an alliance. In addition, when
the wrong MACs are submitted to the CS, the CS sends error messages containing the
wrong MACs to the AL and the AM, which announces to the AL and the AM that the
wrong MACs are sent. The error messages are assumed not to be modified by a third
party by using secure session like IPsec.

HA Operation. In downlink, ALs are supposed to sent the RR to the HA and the AM
if in fact they have received a packet from the CN via the HA and the AM. However
the RR may not be sent from the AL in the following two cases. One is when the AL
does not send the RR intentionally. The other is when some accidents occur on the link
between the HA and AL via the AM, and the data packets from the CN do not reach the
AL via the HA and the AM. In either case, we assume that the HA stops distributing
packets to the route from which an RR was not delivered for a certain amount of time,
and the HA distributes packets to other AMs’ routes. Moreover, in the same way as
CS, the HA sends error messages to the AL and the AM if wrong MACs are sent in
uplink.

4 Analysis

In this section, we analyze the robustness and overhead of our proposed method.

4.1 Robustness Against Attacks of Malicious ALs

Here we consider the robustness against malicious attacks by Alliance Leaders (ALs).

Refusal of Payment by AL
Dishonset Act.An AL may refuse a payment claim from the Credit Server (CS) although
it was actually supported by Alliance Members (AMs).

118 Y. Ito, H. Mineno, and S. Ishihara

Solution.If the AL refuses payment, the CS records that the AL refused the payment.
Because this recorded information is publicly open to the other nodes, the AL cannot
maintain the confidence of other nodes using SHAKE afterwards. The payment refusal
of the AL is prevented because payment refusal becomes disadvantageous when using
SHAKE.

Transmission of Incorrect MAC by AL
Dishonest Act. In uplink, in order to escape charges, an AL might transmit a false MAC
to the AM and the HA.

Solution. In uplink, the AL transmits MACKHA−AL with each packet. The MAC can be
verified in the HA although it cannot be verified in the AM, because the MAC is made
from the session key between the AL and the HA. If the HA’s verification of the MAC is
unsuccessful, the HA will drop the packet. Transmission of an incorrect MAC results in
the packet undelivered to the CN. Therefore, the ALs will not transmit incorrect MACs.

Undelivered RR
Dishonest Act. In downlink transmission, an AL may not submit a Receive Report (RR)
although it received packets via the AM accurately.

Solution. The HA will stop distributing packets to any route from which an RR is not
submitted as described in Section 3.3. If an AL maliciously refuses to submit RRs, the
HA will stop delivering packets to routes from which RRs are not submitted, and so the
route will not be used. Therefore, all ALs will submit the RR faithfully if they want to
use the route effectively.

Incorrect RR Submission
Dishonest Act. In two cases, incorrect RR may be submitted from an AL to refuse
charging. One is that the AL submits incorrect RRs both to the HA and the AMs. The
other is that the AL submits an incorrect RR either to the HA or the AM. The RRs can
be verified in the HA though they cannot be verified in the AM, because the MACs
contained in each entry of the RRs are made from the session key between the AL and
the HA. Therefore, a problem exists when the AL submits a correct RR to the HA and
an incorrect RR to the AM.

Solution. The Forward Report (FR) is supposed to contain the MAC generated by AL
in the RR. If the CS cannot collate the FRs from the HA and the AM correctly, the
CS sends error messages to the AL and the AM as described in Section 3.3. If the AM
receives the error message, it stops forwarding of packets for the AL.

4.2 Robustness Against Malicious Attacks by AMs

In this section, we consider the ability of the proposal method to resist the malicious
attacks of AMs.

Dishonest Rewards
Dishonest Act. An AM may charge for a reward for packets that it did not forward.

Solution. In uplink, if an AM wants to be rewarded, it must actually forward packets to
the HA. The HA sends a FR to the CS for the only packets that arrived at the HA. Thus
the AM cannot receive a reward for packets that it has not forwarded.

A Scheme Encouraging Mobile Nodes to Forward Packets 119

In downlink, the AM must send a FR to the CS to be rewarded for the forwarding of
packets. When the AM generates the FR, the AM cannot generate the required MAC for
the FR by itself because it needs the MAC computed for the forwarded packet with the
session key between the HA and the AL owned by HA and AL. The MAC is included
in a RR from the AL. Therefore, in downlink, an AM can generate a FR only when it
has actually forwarded packets for the AL to the CN and received the corresponding
RR from the AL.

Packet Drop in Forwarding
Dishonest Act. AM may intentionally drop packets for AL. Solution. An AM can easily
drop packets intentionally. However, if a packet does not reach its forwarding desti-
nation node, the AM cannot be remunerated. If an AM drops only a few packets, the
influence on the communication performance is a little, and this is common in mobile
environment. Thus, any special operation is not performed. If the packet loss continues,
the HA and the AL stop distributing packets to the route that is dropping packets as
described in Section 3.3. Therefore, this dishonest act is insignificant.

Modification of MAC Generated by AL
Dishonest Act. In uplink, an AM forwards packets including MAC generated by the AL.
In downlink, an AM receives a RR from the AL, then the AM sends a FR containing
MAC generated by the AL and included in the RR. The AM can modify the AL’s MACs,
which intentionally damages the reputation of the AL.

Solution. If the CS and the HA receive wrong MACs, they send error messages to the
AM and the AL as described in Section 3.3. If the AL receives the error message, it
stops the distribution of packets to the AM and breaks the alliance with the AM.

4.3 Robustness Against Malicious Attacks by a Third Party

We assume that a HA is completely trustworthy. All dishonest behavior resulting from
a conspiracy can be prevented by the tact that all packets must pass through the HA. For
instance, if the HA cannot identify a third party that colludes with an AM or an AL, the
HA does not forward packets and does not send a FR to the CS. Therefore, problems
do not occur.

4.4 Robustness Against Malfunction Caused by Lost Packets on Links

In transmission on wireless links, packet loss may occur unexpectedly. We point out
losses of data packets, and do not discuss losses of the RR and FR that are supposed to
via TCP flow. We consider instances of both the uplink and downlink, and discuss the
charging and rewarding rather than the influence on communication performance.

Uplink (AL → AM → HA → CN)

– Packet loss between AL and AM
If the packet destined for the CN does not arrive at the AM, crediting procedure is
not performed, and therefore problems do not occur.

– Packet loss between AM and HA
In this case, the packet destined for the CN does not reach the HA even if the AM

120 Y. Ito, H. Mineno, and S. Ishihara

actually forwards the packet to the HA. If the packet does not reach the HA, the
AM cannot be remunerated though it was actually willing to forward the packet.
We assume that the AM can be remunerated only when packet forwarding has
succeeded. Contradictions related to rewards do not occur.

– Packet loss between HA and CN
In this case, a packet from an AL to the CN does not reach the CN. However, an
AM has in fact successfully forwarded the packet to the HA, and therefore the AL
should send a reward to the AM. We assume that the AL sends the reward to the
AM that has forwarded the packet successfully, and that the CS can confirm the
AM’s forwarding via the HA’s FR. Therefore, contradictions related to rewards do
not happen.

Downlink (CN → HA → AM → AL)

– Packet loss between CN and HA, Packet loss between HA and AM
The charging and rewarding of credit will not occur if a packet does not reach the
AM. Neither kind of packet losses causes problems.

– Packet loss between AM and AL
In this case, even if an AM certainly forwarded the packet to the AL, whether the
packet is dropped by the AM intentionally or not cannot be distinguished. In our
proposed method, if an AM’s successful forwarding cannot be confirmed, the re-
warding procedure is not performed. Therefore, the contradictions to the rewarding
procedure do not occur.

4.5 Overhead

SHAKE is a mechanism aiming at the improvement of the communication performance
by using two or more links simultaneously. To maintain the very small overhead for the
crediting procedure compared with the communication performance improvement is
essential.

Computation Overhead. For each packet, MAC computations and MAC verifications
have to be performed at the HA, AM, and AL. Cryptographic operations need energy
and time to be performed. Regarding energy consumption, the energy required to per-
form the computation is negligible compared with the energy required to perform the
transmission [12]. Moreover, the time required to compute the cryptographic hash func-
tion is also efficient. [13] shows numerical examples of speed benchmarks for some of
the most commonly used cryptographic algorithms. For example, when being run on
a Pentium 4 2.1 GHz processor under Windows XP SP 1.386, a MAC computation
with HMAC/MD5 algorithm can be performed at 1.6 Gbps. According to this value,
the MAC computation time for 1500 bytes packet would be approximately 7 microsec-
onds. In the measurements of the Mobile IP SHAKE that we previously implemented,
the time required to perform the forwarding at the HA was approximately 250 mi-
croseconds, the time required to perform the forwarding at the AM was approximately
24 microseconds. The MAC computation time (7 microseconds) is negligible compared
with the forwarding time. Therefore, the overhead of MAC computations and MAC ver-
ifications at the HA, AM, and AL is acceptable.

A Scheme Encouraging Mobile Nodes to Forward Packets 121

Communication Overhead. In order to measure the communication overhead of each
data packet, we have implemented a prototype of our scheme by adding an authentica-
tion header per packet on our Mobile IP SHAKE ([1]). We implemented this prototype
on Linux, and realized the authentication header as a part of IP options. As mentioned
in Section 3, we need seID, seq, length, and MAC for each packet. In this implemen-
tation, the MAC is computed by HMAC-MD5. In IP options format, option fields (1
byte) and option length field (1 byte) are prepared. We added seID(1 byte long), length
(that is packet length, 1 byte long), seq (4 bytes long) and MAC (16 bytes long) to the
IP options format. Additionally, we attached a 2-bytes long SPI (Security Parameter
Index) field for the authentication algorithm and a 2-bytes long padding field. Thus, the
total length of the authentication header is 28 bytes long.

AL
FTP Server

Router

(NISTNet)

Link 1

100BASE-TX

100BASE-TX

1
0
0
B

A
S

E
-T

X

Link 2

HA=Home Agent, AL=Alliance Leader, AM=Alliance Member

HAAM

Fig. 4. Experimental network for emulating wireless network

61.3 61.061.161.1

124.0 122.7 122.1 121.9 116.6119.3119.5120.7

0

50

100

150

200K 500K 1M 5M

1path (64kbps)

2paths (64+64kbps)

2paths (64+64kbps with auth)

123.1 122.3 122.0 121.9

241.0 243.8243.1239.0 237.9239.5239.5238.8

0
50

100
150
200
250
300

200K 500K 1M 5M

1path (128kbps)

2paths(128+128 kbps)

2paths (128+128kbps with auth)

362.5364.1363.6362.8

721.4714.8704.2664.5 644.6 690.5 650.2 694.6

0

200

400

600

800

200K 500K 1M 5M

1path (384kbps)

2paths (384+384kbps)
2paths (384+384kbps with auth)

(a) each path bandwidth was 64kbps

(c) each path bandwidth was 384kbps

(b) each path bandwidth was 128kbps

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Transferred file size (bytes)

Transferred file size (bytes)

Transferred file size (bytes)

Fig. 5. Performance on an emulated network. Average of five trials

122 Y. Ito, H. Mineno, and S. Ishihara

We measured the effect of the additional header to the throughput of the commu-
nication on the Mobile IP SHAKE. Figure 4 shows the network topology of the ex-
perimental network. An AL and an AM that have two fast Ethernet interfaces were
connected, and they were also connected to a router with multiple network interfaces
and runs NISTNET [14] network emulator. The HA of the AL and an FTP server were
connected to the different network interfaces of the router. We measured the throughput
when 200KB, 500KB, 1MB and 5MB files were transferred from the FTP server to the
AL. The bandwidth and delay of the link between the AL and the router, and the AM
and the router were set to 64, 128, 384 [kbps] and 100 [msec], respectively. The distri-
bution ratio of AL to AM in the HA was 1:1. A case where only one AL was connected
to the router was also tested for comparison.

Figure 5 shows the result of the experiments. We can see the influence to the through-
put by addition of the authentication header is negligible. For example, in Fig. 5 (b),
when 5MB file was transferred by normal Mobile IP SHAKE and the Mobile IP SHAKE
with authentication header, the throughputs were 243.8 kbps and 237.9 kbps respec-
tively. The ratio of 243.8 kbps to 237.9 kbps is 97.6 %. The communication overhead
seems to be acceptable.

Other Overhead. In our system, the additional messages are required to establish sym-
metric keys between the HA and AL, and between the HA and AM. This is performed
only once in a session.

The HA and AM need to send forward reports, and the AL needs to send receive
reports. We assume that the reports are not sent for each packet, but sent only when the
entry reaches the some degree. Thus, we consider that the influence to the communica-
tion performance will be negligible.

4.6 Use in Heterogeneous Environments

Until this point, we did not take into consideration the situations that the costs of for-
warding packets are different among the nodes in the alliance, e.g., a case that an AM is
a PC and the other AMs are PDA or mobile phones. The ratio of CPU power, memory
and battery consumption for forwarding packets may be different among AMs. Besides,
each AM may connect to different mobile carriers. The delay and bandwidth of each
link and fee structure depend on the mobile carrier. Thus, in such heterogeneous envi-
ronments, we have to take into account the differences and reflect them in the account-
ing rule of CS, and we should make the dispersion rule for HA and AL in consideration
of the accounting rule and the link status of each AM.

5 Conclusion

In this paper, we addressed a problem of motivating mobile nodes to forward packets
on SHAKE. To solve this problem, we proposed a method to provide rewards for nodes
that forward packets. We introduced a trusted third party that functions as a credit server
and manages members’ credit accounts. We presented a charging/rewarding method
based on Receive Reports (RRs) and Forward Reports (FRs). By using RRs and FRs,
the charging/rewarding procedure works only for successfully forwarded packets, and

A Scheme Encouraging Mobile Nodes to Forward Packets 123

our method can resist several kinds of dishonest attacks. Moreover, we showed that our
system works even if unexpected packet losses occur on the link. We implemented the
prototype of our system that deals with extension header per packet, and evaluated the
communication overhead of the extension header. The result showed the overhead is
acceptable for the use of SHAKE.

References

1. K. Koyama, Y. Ito, S. Ishihara, H. Mineno, “Performance evaluation of TCP on Mobile IP
SHAKE,” IPSJ journal, Vol. 45, No. 10, pp. 2270–2278, 2004.

2. H. Mineno, Y. Konishi, S. Ishihara, and T. Mizuno, “Implementation of cluster control man-
ager for multiple wireless links sharing system,” in proc. of PACRIM, 2003.

3. L. Buttyan and J.-P. Hubaux, “Enforcing Service availability in mobile ad-hoc WANs,” in
proc. of MobiHoc, 2000.

4. S. Zhong, Y. R. Yang, and J. Chen, “Sprite: A Simple, Cheat-Proof, Credit-Based System for
Mobile Ad Hoc Netoworks,” in proc. of INFOCOM. IEEE, 2003.

5. S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating routing misbehavior in mobile ad hoc
networks,” in proc. of MobiCom, 2000.

6. Levente Buttyan, Jean-Pierre Hubaux, “Stimulating cooperation in self-organizing mobile ad
hoc networks,” Mobile Networks and Applications, v.8 n.5, p.579-592, 2003

7. Sonja Buchegger, Jean-Yves Le Boudec, “Performance analysis of the CONFIDANT proto-
col,” in proc. of MobiHoc, 2002.

8. N. Ben Salem, L. Buttyan, J. P. Hubaux, and M. Jakobsson, “A Charging and Rewarding
Scheme for Packet Forwarding in Multi-hop Cellular Networks,” in proc. of MobiHoc, 2003.

9. P. Golle, K. Leyton-Brown, and I. Mironov, “Incentives in peer-topeer file sharing,” in proc.
of the ACM Symposium on Electronic Commerce (EC’ 01) 2001, 2001.

10. Luzi Anderegg and Stephan Eidenbenz, “Ad hoc-VCG: a truthful and cost-efficient routing
protocol for mobile ad hoc networks with selfish agents,” in proc. of MobiCom, 2003.

11. B. Lamparter, K. Paul, and D. Westhoff, “Charging Support for Ad Hoc Stub Networks. Jour-
nal of Computer Communication,” Technology and Applications, Elsevier Science, 2003.

12. G. J. Pottie and W. J. Kaiser. Wireless Integrated Network Sensors. Communications of the
ACM, May, 2000.

13. Speed Comparison of Popular Crypto Algorithms, http://www.eskimo.com/˜weidai/
benchmarks.html

14. NIST Net, http://snad.ncsl.nist.gov/itg/nistnet

A Protocol for Recording Provenance in
Service-Oriented Grids

Paul Groth, Michael Luck, and Luc Moreau

School of Electronics and Computer Science,
University of Southampton, Highfield,

Southampton SO17 1BJ, United Kingdom
{pg03r, mml, l.moreau}@ecs.soton.ac.uk

Abstract. Both the scientific and business communities, which are be-
ginning to rely on Grids as problem-solving mechanisms, have require-
ments in terms of provenance. The provenance of some data is the doc-
umentation of process that led to the data; its necessity is apparent in
fields ranging from medicine to aerospace. To support provenance capture
in Grids, we have developed an implementation-independent protocol for
the recording of provenance. We describe the protocol in the context of a
service-oriented architecture and formalise the entities involved using an
abstract state machine or a three-dimensional state transition diagram.
Using these techniques we sketch a liveness property for the system.

Keywords: recording provenance, provenance, grids, web services,
lineage.

1 Introduction

A Grid is a system that coordinates computational resources not subject to cen-
tralized control using standard, open, general-purpose protocols and interfaces
to deliver non-trivial qualities of service [4]. By coordinating diverse, distributed
computational resources, Grids can be used to address large-scale problems that
might otherwise be beyond the scope of local, homogenous systems. Grids are
being developed to run a wide variety of applications for both the business and
science communities. Scientific applications include the analysis of data from the
Large Hadron Collider (lcg.web.cern.ch/LCG/), experiments in surface chem-
istry [3] and next generation climate research. Grids are used in the business
community to support aircraft simulation, seismic studies in the petroleum in-
dustry, and to provide faster portfolio recommendations in financial services
(www.ibm.com/grid).

These communities also have requirements in terms of provenance. We define
the provenance of some data as the documentation of the process that led to
the data. The necessity for provenance is apparent in a wide range of fields.
For example, the American Food and Drug Administration requires that the
provenance of a drug’s discovery be kept as long as the drug is in use (up to 50

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 124–139, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Protocol for Recording Provenance in Service-Oriented Grids 125

years sometimes). In chemistry, provenance is used to detail the procedure by
which a material is generated, allowing the material to be patented. In aerospace,
simulation records as well as other provenance data are required to be kept up
to 99 years after the design of an aircraft. In financial auditing, the American
Sarbanes-Oxley Act requires public accounting firms to maintain the provenance
of an audit report for at least seven years after the issue of that report (United
States Public Law No. 107-204). In medicine, the provenance of an organ is vital
for its effective and safe transplantation. These are just some examples of the
requirements for provenance in science and business. Provenance is particularly
important when there is no physical record as in the case of a purely in silico
scientific process.

Given the need for provenance information and the emergence of Grids as
infrastructure for running major applications, a problem arises that has yet to
be fully addressed by the Grid community, namely, how to record provenance
in Grids? Some bespoke and ad-hoc solutions have been developed to address
the lack of provenance recording capability within the context of specific Grid
applications. Unfortunately, this means that such provenance systems cannot in-
teroperate. Therefore, incompatibility of components prevents provenance from
being shared. Furthermore, the absence of components for recording provenance
makes the development of applications requiring provenance recording more com-
plicated and onerous.

Another drawback to current bespoke solutions is the inability for prove-
nance to be shared by different parties. Even with the availability of provenance-
related software components, the goal of sharing provenance information will not
be achieved. To address this problem, standards should be developed for how
provenance information is recorded, represented, and accessed. Such standards
would allow provenance to be shared across applications, provenance compo-
nents, and Grids, making provenance information more accessible and valu-
able. In summary, the paucity of standards, components, and techniques for
recording provenance is a problem that needs to be addressed by the Grid
community. The focus of this work, the development of a general architecture
and protocol for recording provenance, is a first step towards addressing these
problems.

The rest of the paper is organised as follows: Section 2 presents a set of re-
quirements that a provenance system should address. Then, Section 3 outlines a
design for a provenance recording system in the context of service-oriented archi-
tectures. The key element of our system is the Provenance Recording Protocol
described in Section 4. In Section 5, the actors in the system are formalised,
and the formalisations are then used, in Section 6, to derive some important
properties of the system. Finally, Section 7 discusses related work, followed by
a conclusion. Given the length of this paper, we assume the reader is famil-
iar with Grids, Virtual Organisations (VO), Web Services, and service-oriented
architectures (SOA).

126 P. Groth, M. Luck, and L. Moreau

2 Requirements

We have identified a number of requirements that a provenance system should
support through an initial requirements gathering process. The following seven
requirements have been of particular importance in motivating the development
of our architecture and protocol.

1. Verifiability. A provenance system should have the ability to verify a process
in terms of the actors involved, their actions and their relationship with one
another.
2. Accountability. Closely related to verifiability is accountability. An actor
should be accountable for its actions in a process. Therefore, a provenance system
should record in a non-repudiable manner any provenance generated by an actor.
3. Reproducibility. A provenance system should, at a minimum, be able to
repeat a process and possibly reproduce a process from the provenance that it
has stored.
4. Preservation. A provenance system should have the ability to maintain
provenance information for an extended period of time. This is vital for applica-
tions run in the VO context because even after a VO disbands, provenance will
typically need to be maintained.
5. Scalability. Given the large amounts of data that Grid applications handle,
such as in the processing of data from the Large Hadron Collider, it is necessary
that a provenance system be scalable. Another reason for scalability is that
provenance information may be larger than the output data of an application.
6. Generality. Grids are designed to support a wide variety of applications,
therefore, a provenance system should be general enough to record provenance
from these varying applications.
7. Customisability. To allow for more application specific use of provenance
information, a provenance system should allow for customisation. Aspects of cus-
tomisability could include constraints on the type of provenance recorded, time
constraints on when recording can take place, and the granularity of provenance
to be recorded.

With these requirements in mind, we now detail our conceptual architecture
for recording provenance in a SOA.

3 Conceptual Architecture

Figure 1(a) shows a typical workflow based service-oriented architecture. A client
initiator invokes a workflow enactment engine which, in turn, invokes various ser-
vices based on the workflow specified by the initiator, finally, a result is returned
to the initiator. In essence, the architecture can be broken down into two types
of actors: clients who invoke services and services that receive invocations and
return results.

Given these types of actors and their method of communication, we have
identified two kinds of provenance that exist in a service-oriented architecture.

A Protocol for Recording Provenance in Service-Oriented Grids 127

Workflow

Enactment

Engine

Service 3

Service 2

Service 1

Client

Initiator

(a) Typical workflow based architec-
ture

Client Service

Provenance
Store

Result

Invoke

Record
 Provenance

Record
Provenance

(b) The interaction between a client
service and provenance store

Workflow
Enactment

Engine

Service 3

Service 2

Service 1

Client
Initiator

Provenance
Store 1

Provenance
Store 2

(c) Workflow based architecture with
provenance recording

Workflow
Enactment

Engine
Service 1Client

Initiator

Provenance
Store 1

Provenance
Store 2

Service 2

Service 3

Service 4

(d) Architecture with provenance
recording and services invoking other
services

Fig. 1. Architecture diagrams

The first kind of provenance is interaction provenance. For some data, interac-
tion provenance is the documentation of interactions between actors that led
to the data. In a SOA, interactions are, fundamentally, a client invoking a ser-
vice. Therefore, interaction provenance can be obtained by recording the inputs
and outputs of the various services involved in generating a result. The second
type of provenance we have identified is actor provenance. For some data, actor
provenance is documentation that can only be provided by a particular actor
pertaining to the process that led to the data.

Within the context of these kinds of provenance, our architecture introduces
a third type of actor, the provenance store.

Third Party Provenance Stores. We see third party provenance stores as key
to fulfilling the requirements outlined above. In terms of preservation, placing
the burden of maintaining provenance on third party stores means that neither
clients nor services must maintain provenance information beyond the scope of
any given application run. An additional benefit of third party provenance stores
is that they provide a method for legacy applications to maintain provenance.

128 P. Groth, M. Luck, and L. Moreau

In order to better understand how provenance stores help to address the other
requirements, we now explain the recording process for interaction provenance.

A Triangle of Interaction. Our architecture records interaction provenance
in the following manner. For each interaction between a client and service, con-
sisting of an invocation and a result, each party is required to submit their view
of the interaction to a common provenance store. Even though our architecture
considers multiple actors, the interaction between all these actors can be reduced
down to a common ‘triangular’ pattern of interaction described above and shown
in Figure 1(b). This reduction is possible because our system contains only three
types of actors, the client, service and provenance store, where the store exists in
order to record a copy of the simple one-to-one interaction of the client and ser-
vice. The interaction of these three actors is governed by Provenance Recording
Protocol, which we will detail later in the paper.

Uses of Interaction Provenance. The client-service interactions that our
architecture records make up the interaction provenance for some data. This
interaction provenance can be used to repeat or even reproduce the process
that led to the data. For example, if the services involved in a process have
not changed, the inputs to these services, stored in the provenance, can be used
to reinvoke the corresponding services reproducing the process. Other uses of
interaction provenance include holding actors to account for their inputs and
outputs and for the verification of processes.

The case for Recording Two Views. However, if interaction provenance is to
be used for reproduction, accountability or verification purposes, the interactions
recorded must be agreed upon by the actors involved. Each actor has its own view
of an interaction, which, at its most basic, is the input and output of the actor
in an interaction. Therefore, in our architecture a client and service must submit
their view of an interaction to a common provenance store, which can then check
that the actors agree on their interaction. Without verification by the provenance
store, several problems could arise, particularly in open environments.

For example, should the client be the only party recording the interaction
in the provenance store, the service would be reliant on the client to submit
provenance. In fact, without the submission of provenance from the service,
there would be no evidence that the client invoked the service should the client
not record the interaction. Given that a service can be held accountable for its
actions recorded in the provenance store, this is unacceptable. In our system,
the provenance store would know that a service was invoked because the service
submits that information. The same problem would also exist in the case where
the service was the only party submitting to the provenance store. We note that
the requirement that both parties submit their views does not prevent collusion
between parties, but it does allow the provenance store to detect when the two
parties disagree about the record of an interaction.

Multiple provenance stores. Although a client and service are required to
share a common provenance store for an interaction, different provenance stores
can be used for different interactions even between the same client and service.

A Protocol for Recording Provenance in Service-Oriented Grids 129

Figure 1(c) shows a typical workflow based architecture with multiple provenance
stores. This architecture is assembled from the ‘triangle’ pattern pictured in
Figure 1(b). One benefit of multiple provenance stores is the elimination of a
central point of failure. Another benefit is that demand is spread across multiple
services increasing the architecture’s robustness. These benefits help to address
the scalability requirement.

Advanced Architecture Support. As well as supporting typical workflow
enactment based architectures, our system supports more advanced architec-
tures like the one shown in Figure 1(d). In this architecture, services invoke
other services to produce a result, in contrast to the previous architecture where
the workflow enactment engine was the only actor invoking services. In order
to maintain provenance across provenance stores, a client needs to inform the
original provenance store when it uses a new provenance store. For example, in
Figure 1(d), Service 1 must inform Provenance Store 1 that it has used Prove-
nance Store 2 when invoking Service 3. This creates a link between provenance
records stored in different stores that can be followed in order to provide the
entire provenance trace for an application started by a client initiator.

Actor Provenance. We have mainly discussed how our system supports the
recording of information about the interaction between actors in a service-
oriented architecture. Our system also supports actor provenance, which could
include anything from the workflow that an enactment engine runs to the disk
and processing power a service used in a computation. This information can
only be provided by the actor itself, so it cannot be verified like interaction
provenance. We use a simple mechanism to store actor provenance by tying it
to interaction provenance. The basis for our provenance recording system is the
interaction between one client, one service and one provenance store. This in-
teraction is specified by the Provenance Recording Protocol, which is presented
next.

4 Recording Protocol

PReP is a four phase protocol consisting of negotiation, invocation, provenance
recording and termination phases. The negotiation phase allows a client and
service to agree on a provenance store to store a trace of their interaction. After
this phase, the protocol enters the invocation phase, during which a client invokes
a service and receives a result. Asynchronously, in the provenance recording
phase, both the client and service submit their input and output data to the
provenance store. When all data has been received by the provenance store, the
termination phase occurs.

First, we discuss the messages and their parameters used by PReP, then we
consider the four phases in detail. We model the protocol as an asynchronous
message-passing system, in which all communication is expressed by an outbound
message followed by a return message. The return message is either a result
of the service invocation, a reply from the service during negotiation, or an

130 P. Groth, M. Luck, and L. Moreau

Name Notation Fields
propose pro ActivityId,

PSAllowedList, Extra
reply reply ActivityId, PSAccepted, Extra
invoke inv ActivityId, Data, Extra
result res ActivityId, Data, Extra
record negotiation rec neg ActivityId, PSAllowedList,

PSAccepted, Extra
record negotiation acknowledgement rec neg ack ActivityId
record invocation rec inv ActivityId, Extra, Data
record invocation acknowledgement rec inv ack ActivityId
record result rec res ActivityId, Data
record result acknowledgement rec res ack ActivityId
submission finished sf ActivityId, NumOfMessages
submission finished acknowledgement sf ack ActivityId
additional provenance ap ActivityId, Extra
additional provenance acknowledgement ap ack ActivityId

Fig. 2. Protocol messages, their formal notation and message parameters

acknowledgement that the provenance store has received a particular message.
Figure 2 lists the fourteen messages in our protocol. The usage of each message
is described in more detail when we present the phases of the protocol. The
message parameters shown in Figure 2 are detailed below.

The ActivityId parameter identifies one exchange between a client and
server. It contains: NonceId, an identifier generated by the client to distinguish
between other exchanges with the called service; SessionId, comprising all invo-
cations that pertain to one result (the client originator of Figure 1(c) generates
this identifier, which must be unique); ThreadId, which allows clients to parse
multiple interactions with the same service; Client, which identifies the client;
and Service, which identifies the service.

Other parameters are: Data, which contains data exchanged between a client
and service; Extra, which is an envelope that can contain other messages re-
lated or not to the protocol allowing it to be extended; NumOfMessages, which
indicates the total number of messages an entity sends to the provenance store;
PSAllowedList, which is a list of approved provenance stores; and PSAc-
cepted, which contains a reference to a provenance store that an entity accepts,
or a rejection token.

PReP is divided into four phases: negotiation, invocation, provenance record-
ing, and termination, which we now discuss in detail.

Negotiation. is the process by which a client and service agree on a provenance
store to use. Typically, a client presents a list of provenance stores to the service
via a propose message. The service then extracts the PSAllowedList from
the propose message and selects a provenance store from the list. The service
then replies with a response message containing the selected provenance store or
a rejection in the PSAccepted parameter. Although the negotiation modelled

A Protocol for Recording Provenance in Service-Oriented Grids 131

here is simple, with only one request-response, the protocol is extensible through
the use of the Extra parameter. Entities can encode more complicated messages
into this envelope, providing a means for complex negotiations to take place. A
client and service that have already negotiated and agreed on a provenance store
might like to skip the negotiation phase of the protocol. Therefore, a message
informing the service of the use of a previously agreed provenance store can be
enclosed in the Extra envelope of the invoke message. However, the provenance
store still needs to be informed of the agreement between the service and client
via the record negotiation message.

Invocation. If a client has successfully negotiated with a service, it can then
invoke the service and receive a result via the invoke message and result mes-
sage. We have tried to limit the impact of PReP on normal invocation, the only
extra parameters required to be sent are the ActivityId and the Extra enve-
lope. The ActivityId is necessary to identify the exchange in relation to the
provenance stored in the service, while the Extra envelope allows the protocol
to be used without a negotiation phase and for later protocol extension.

Provenance Recording. is the key phase of the protocol. As discussed pre-
viously, the client and service are required to submit copies of all their sent
and received messages to the provenance store. Submission is done through the
various record messages with both the client and service sending record negoti-
ation, record invocation and record result messages. Acknowledgement messages
then inform the sender that each message has been received by the provenance
store. The record negotiation message contains the list of provenance stores
(PSAllowedList), the client proposed, and the provenance store accepted
(PSAccepted) by the service. The record invocation and record result messages
together contain the entire data transmitted between the client and service from
the perspective of both entities. The requirement that all data be submitted
allows the provenance store to have a complete view of the exchange. In order
not to delay service invocation, the submission process can be done in a totally
asynchronous fashion; for example, the client could send a record invocation mes-
sage to the provenance store before or after receiving a result message from the
service.

We cater for actor provenance instead of interaction provenance by the addi-
tional provenance message. With this message, an actor can record provenance
about itself or other actors in the architecture by enclosing in the Extra enve-
lope whatever information is pertinent. An important use of this capability is the
linking of provenance records across provenance stores as described in Section
3. We note that there are no constraints on the data that can be submitted to
the provenance store, allowing a wide variety of applications to be supported.

Termination. The final phase of the protocol is termination. The protocol ter-
minates when the provenance store has received all expected messages from
both the client and the service. The client and service are notified of termina-
tion through the acknowledgement to the submission finished message, which is
returned after all expected messages are received from the client and service.

132 P. Groth, M. Luck, and L. Moreau

The number of expected messages is determined by the NumOfMessages pa-
rameter in the submission finished message. Because of the asynchronous nature
of the protocol, the submission finished message can be sent any time after the
negotiation phase.

5 Actors

We now consider how the provenance store, service and client act in response to
the messages they send and receive. To understand the actions of these actors,
we use complementary formalisation techniques, chosen because of the nature of
the actors involved. First, we represent the provenance store as an abstract state
machine (ASM). Second, we use a 3D state diagram to show the possible re-
sponses of the client and service. Both techniques assume asynchronous message
passing. The importance of the internal functionality of the provenance store
lends itself to an ASM formalisation whereas, given the importance of the exter-
nal interactions of the client and service, a state transition diagram formalisation
is more appropriate. We begin with the provenance store.

The Provenance Store. plays the central role in PReP. As far as recording is
concerned, its interaction with the outside world is simple: it receives messages
and sends acknowledgements. It does not initiate any communication and its
purpose is to simply store messages. By formalising the provenance store, we
can explain how the accumulation of messages dictates its actions.

To detail these actions, we model the provenance store as an ASM whose be-
haviour is governed by a set of transitions it is allowed to perform. The notation
allows for any form of transition with no limits on complexity or granularity and
has been used previously to describe a distributed reference counting algorithm
[6].

The ASM State Space. The state space of the provenance store’s ASM is
shown in Figures 3 and 4. The System State Space models the space of messages
and message channels that actors in the system use to communicate, whereas
the Provenance Store State Space models the internal state space of provenance
stores. We first describe the System State Space.

The System State Space considers a finite number of actors, A, which ex-
change messages. The set of messages is defined as the union of the sets RN,RI,
RR, SF, and AP . All of these sets, excluding AP , are in turn defined by induc-
tive types, whose constructors are named according to the messages in Figure 2.
Communication between actors is modelled as a set of communication channels
represented as bags of messages between pairs of actors.

An instance of a provenance store actor, p, is a tuple that consists of an
element from the Client Message Store, CS, an element from the Service Message
Store, SS, and an element from the set of communication channels, K. The two
tables are defined as functions whose argument is of type ActivityId and consist
of sets of messages that are from either the client or the service. On the other
hand, AP is a set that contains all of the additional provenance messages. Note

A Protocol for Recording Provenance in Service-Oriented Grids 133

A = {a1, a2, . . . , an} (Set of Actors)
Client ⊂ A (Set of Clients is a subset of Actors)
Service ⊂ A (Set of Services is a subset of Actors)
ActivityId = SessionId× NonceId× ThreadId× Client× Service (Activity Identification)

rec neg:ActivityId× PSAllowedList× PSAccepted× Extra → RN (Negotiation Messages)

rec inv:ActivityId× Extra× Data → RI (Invocation Messages)
rec res:ActivityId× Extra× Data → RR (Result Messages)

sf:ActivityId× NumOfMessages → SF (Submission Finished Messages)
ap:ActivityId× Extra → AP (Additional Provenance Messages)

M = RN ∪ RI ∪ RR ∪ SF ∪ AP (Messages)
Each message has a corresponding acknowledgement message, which is also a part of M.

K = A× A → Bag(M) (Set of Message Bags)

Charateristic Variables:
a ∈ A, k ∈ K, ai ∈ ActivityId, rec neg ∈ RN, rec inv ∈ RI, rec res ∈ RR, sf ∈ SF, ap ∈ AP ,
e ∈ Extra, psal ∈ PSAllowedList, psa ∈ PSAccepted, d ∈ Data, nid ∈ NonceId, tid ∈ ThreadId,
client ∈ Client, service ∈ Service, nm ∈ NumOfMessages

If ai = 〈sid, nid, tid, ts, client, service〉 then
ai.sid = sid, ai.nid = nid, ai.tid = tid, ai.ts = ts, ai.client = client, ai.service = service

If sf = 〈ai, nm〉 then sf.ai = ai, sf.nm = nm

Fig. 3. System State Space

APL = P(AP) (Set of Sets of Additional Provenance Messages)

CN = RN (Client Negotiation Messages)
CI = RI (Client Invocation Messages)
CR = RR (Client Result Messages)
CSF = SF (Client Submission Finished Messages)
SN = RN (Service Negotiation Messages)
SI = RI (Service Invocation Messages)
SR = RR (Service Result Messages)
SSF = SF (Service Submission Finished Messages)
CS = ActivityId → CN × CI × CR× CSF × APL (Client Records, a Client Message Store)
SS = ActivityId → SN × SI × SR× SSF × APL (Service Records, Service Message Store)
PS = CS × SS (Set of Provenance Stores)

Characteristic variables:
p = 〈client T, service T, k〉, p ∈ A, apl ∈ APL, client T ∈ CS, service T ∈ SS, ps ∈ PS
If service T [ai] = 〈rec neg, rec inv, rec res, sf, apl〉 then

service T [ai].rec neg = rec neg, service T [ai].rec inv = rec inv,
service T [ai].rec res = rec res, service T [ai].sf = sf, service T [ai].apl = apl

The same notation applies for client T [ai].
Initial State:
pi = 〈client Ti, service Ti, ki〉, client Ti = ai → ∅, service Ti = ai → ∅, ki = ∅

Fig. 4. Provenance Store State Space

that SS and CS are not defined using AP but with APL, the power set of AP .
Informally, this shows that any number of additional provenance messages can
be stored per ActivityId.

Given the state space, the ASM is described by an initial state and a set of
transitions. Figure 4 contains the initial state space, which can be summarised
as empty client stores, empty service message stores, and empty communication
channels. We use an arrow notation for a function taking an argument and
returning a result. Therefore, client Ti and service Ti take an ActivityId as
an argument and return an empty state.

134 P. Groth, M. Luck, and L. Moreau

The ASM Rules. The transitions of the ASM are described through rules,
which follow the format presented in Figure 5. Rules are identified by their
name and a number of parameters that the rule operates over. Any number
of conditions must be met in order for a rule to be fireable. A new state is
achieved after applying all the pseudo-statements and functions to the state
that met the conditions of the rule. The execution of a rule is atomic, so that no
other rule may interrupt or interleave with an executing rule. This maintains the
consistency of the ASM. A rule may contain send, receive or table update pseudo-
statements. Informally, send(a1, a2,m) inserts a message m into the channel from
actor a1 to actor a2, and receive(a1, a2,m) removes the message. A rule may also
contain the complete function, which checks that none of the fields accessed by
an ActivityId are null. Formally, the pseudo-statements are defined as follows.

– If k is the set of message channels of a state 〈. . . , k〉, then the expression
send(a1, a2,m) denotes the state 〈. . . , k′〉, where 1 k′(a1, a2) = k(a1, a2) ⊕
{m}, and k′(ai, aj) = k(ai, aj),∀(ai, aj) 6= (a1, a2).

– If k is the set of message channels of a state 〈. . . , k〉, then the expression
receive(a1, a2,m) denotes the state 〈. . . , k′〉, where k′(a1, a2) = k(a1, a2) 	
{m}, and k′(ai, aj) = k(ai, aj),∀(ai, aj) 6= (a1, a2).

– If table T is a component of state 〈. . . , table T, . . .〉, then the expression
table T [ai].y := V denotes the state 〈. . . , table T ′, . . .〉, where table T [ai].x =
table T ′[ai].x if x 6= y, and table T ′[ai].y = V .

rule name(v1, v2, · · ·) :
condition1(v1, v2, · · ·)
∧condition2(v1, v2, · · ·) ∧ · · ·

→ {
pseudo statement1;
· · ·
pseudo statementn;

}

Fig. 5. Rule format

receive neg(p, a, ai, psal, psa, e) :
rec neg(ai, psal, psa, e) ∈ K(ps, a)

→ {
receive(p, a, rec neg(ai, psal, psa, e));
if (a = ai.client), then

client T [ai].rec neg :=
rec neg(ai, psal, psa, e);

elif (a = ai.service), then
service T [ai].rec neg :=

rec neg(ai, psal, psa, e);
send(p, a, rec neg ack(ai));
if complete[ai], then

send(p, a, sf ack(ai));
}

Fig. 6. Receive negotiation rule

Likewise, the function complete is defined as follows:

– If client T and service T are components of a state 〈client T, service T, . . .〉,
then the expression complete[ai] evaluates to true if client T [ai].rec neg 6=

1 We use the operators ⊕ and 	 to denote union and difference on bags.

A Protocol for Recording Provenance in Service-Oriented Grids 135

⊥, client T [ai].rec inv 6= ⊥, client T [ai].rec res 6= ⊥, client T [ai].sf 6= ⊥,
client T [ai].sf.nm− 4 = |client T [ai].apl| and service T [ai].rec neg 6= ⊥,
service T [ai].rec inv 6= ⊥, service T [ai].rec res 6= ⊥, service T [ai].sf 6= ⊥,
service T [ai].sf.nm− 4 = |service T [ai].apl|.

Figure 6 shows one of the ASM’s transition rules. receive neg is the transition
rule for the receipt of a record negotiation message. It specifies the behaviour
of a provenance store actor when receiving, from actor a, a rec neg message
containing: an ActivityId, a PSAllowedList, a PSAccepted parameter
and an Extra envelope.

The condition placed on the rule states that for the rule to fire there must
be a rec neg message, which is part of the communication channel (K) be-
tween a provenance store actor, p, and a. If this condition is satisfied, the
message is consumed using the receive pseudo-statement. The rule then de-
termines whether a is a client or service and puts the rec neg message in the
correct field of the appropriate table. After this table update, an rec neg ack
is sent using the send pseudo-statement, which places the given message onto
the communication channel between the specified entities. Finally, the complete
functions tests to see if all messages have been received from both the client
and the service. If all messages have been received, the submission finished ac-
knowledgement message can be sent. The other four transitions follow the same
pattern as the receive neg rule, consuming a message and placing it into the
the correct field of the appropriate table. The entire set of rules can be found at
http://www.pasoa.org/protocol/rules.htm.

The Client and Service. We now formalise the actions of the client and the
service. In this case, we have chosen not to use the ASM formalism because we
have no knowledge of the decision algorithm a service would use when selecting
a provenance store from the list proposed by the client. Furthermore, we want
developers to be free to experiment with any sort of algorithm they deem best.
However, we still want to formally investigate the actions of the client and service
in response to PReP, so we represent the two entities with a 3D state transition
diagram, which offers an intuitive yet rigorous means to describe the actions of
the client and service based on sent and received messages.

Figure 7 shows the state transition diagram for both the client and service.
It contains all the possible states of a client or service with regard to the PReP.
Transitions between states are only permitted when messages are sent or re-
ceived by the actor. These transitions are identified by the transition keys in
the diagram. For example, transition (4) is the receipt of a result message and
transition (5) is the sending of an invoke message in the case of the client. The
diagram shows all possible ways that a client or service could send and receive
messages.

We believe that these formalisations provide a firm basis for developers to
implement the protocol. The ASM and 3D state transition diagram allow devel-
opers to understand the interaction of the client, service, and provenance store
without prescribing a particular implementation technique. This gives developers
the opportunity to choose the implementation mechanisms that fit their needs.

136 P. Groth, M. Luck, and L. Moreau

6 Properties

Given the above formal representations of the client, service and provenance
store, we now can show an important property of PReP, namely, liveness. In
distributed systems, it is common to refer to safety and liveness properties, to
denote, respectively, that nothing bad will happen and that something good
will eventually happen. In the case of PReP, liveness is that, ultimately, the
submission finished acknowledgement message will be sent to both the client
and the service.

To show that the protocol is indeed live, we first make some assumptions
about the system implementing PReP. We assume that the client and service
are live i.e. that they will eventually send and receive all the messages designated
in the protocol. This entails that for any given invocation a service will always
respond. Finally, we assume that all communication channels are live. Therefore,
all sent messages will be delivered to the addressed party.

Given these assumptions, we now show that both the client and service will
eventually end their interaction with the provenance store for one invocation of
the service.
Lemma 1 (Termination). Given a finite number of exchanged messages, the
actions of the client and service in relation to PReP will terminate for one in-
vocation of a service. Proof Figure 7 shows, by definition, the actions of the

Client Transition Key
1. send pro
2. receive positive reply
3. receive negative reply
4. send inv
5. receive res
6. send rec_neg
7. receive rec_neg_ack
8. send rec_inv
9. receive rec_inv_ack
10. send rec_res
11. receive rec_res_ack
12. send sf
13. receive sf_ack
14. send ap & receive ap_ack

Service Transition Key
1. receive pro
2. send positive reply
3. send negative reply
4. receive inv
5. send res
6. send rec_neg
7. receive rec_neg_ack
8. send rec_inv
9. receive rec_inv_ack
10. send rec_res
11. receive rec_res_ack
12. send sf
13. receive sf_ack
14. send ap & receive ap_ack

start state

end state

(1) (2)

(3)

(4) (5)

(6)

(7)

(4)

(10) (11)

(8)

(9)

(12)

(13)

Fig. 7. State transition diagram for both the client and service

A Protocol for Recording Provenance in Service-Oriented Grids 137

client and service in relation to PReP for one invocation of a service. We then
derive the assumption that there are a finite number of additional provenance
messages, because the submission finished message requires that a finite num-
ber of messages be specified. Next, we can determine a bound on the number
of messages a client or service will exchange. Excluding additional provenance
messages, we calculate this bound by enumerating all paths from the start state
to the end state in the graph and selecting the longest, which is twelve transi-
tions. This means that a client or service will exchange a maximum of twelve
messages. Given this fixed bound and a finite number of additional provenance
messages, the client and service will reach the end state shown in the graph and
terminate.
Lemma 2 (Completeness). A provenance store can determine when it has a
complete record of a service invocation. Proof We define a complete record
as the function complete evaluating to true. An invocation is identified by an
ActivityId. Therefore, by definition, the provenance store can determine when
it has a complete record for a service invocation.
Lemma 3 (PReP satisfies the liveness property). The submission finished ac-
knowledgement message will be sent to both the client and the service. Proof
Given that both the client and service will terminate (Lemma 1), both actors
will send all their messages to the provenance store, which, as represented by
the state machine, will fire the appropriate rule corresponding to the receipt of
each message. These rules in turn update the state of the record referenced by
an ActivityId, ai and check for a complete record (Lemma 2) and, if it exists
for ai, the submission finished acknowledgement is sent.

7 Related Work

Provenance recording also been investigated in the myGrid (www.mygrid.org.uk)
project, whose goal is to provide a personalised “workbench” for bioinformati-
cians to perform in-silico experiments [7]. Although myGrid allows users to
capture provenance data [10], it does not not address general architectures or
protocols for recording provenance.

Ruth et al. present a system for recording provenance in the context of data
sharing by scientists [8]. Each scientist has an e-notebook which records and dig-
itally signs any input data or manipulations of data. When the data is shared via
peer-to-peer communication, a scientist cannot refute the provenance of the data
because of the digital signature process. The goal of the system is to generate
a virtual community where scientists are accountable for their data. [8] focuses
mainly on the trust aspect of the e-notebook system, rather than the protocols
for distributing and storing provenance data.

Some work has focused on data provenance in databases. Buneman et al.
[2] make the distinction between why (which tuples in a database contribute
to a result) provenance and where (the location(s) of the source database that
contributed to a result) provenance. In [1], a precise definition of provenance is
given for both XML hierarchy and relational databases.

138 P. Groth, M. Luck, and L. Moreau

Szomszor and Moreau [9] argued for infrastructure support for recording
provenance in Grids and presented a trial implementation of an architecture
that was used to demonstrate several mechanisms for handling provenance data
after it had been recorded. Our work extends [9] in several important ways.
First, we consider an architecture that allows for provenance stores as well as
composite services. Secondly, we model an implementation -independent proto-
col for recording provenance within the context of a service-oriented architec-
ture, whereas, Szomszor and Moreau present an implementation specific service-
oriented architecture.

The Chimera Virtual Data System [5] provides a data catalog along with a
representation of derivation procedures in order to document data provenance.
Chimera focuses on representing and querying data derivation information. We
imagine that PReP could be used as the underlying protocol to store provenance
information in a Chimera like system.

8 Conclusion

There are several avenues of future work we intend to pursue in the development
of a provenance system. These avenues include, the further specification of PReP
in terms of security, the implementation of PReP using Web Services and the
integration of PReP into real world scenarios.

The necessity for storing, maintaining and tracking provenance is evident in
fields ranging from biology to aerospace. As science and business embrace Grids
as a mechanism to achieve their goals, recording provenance will become an ever
more important factor in the construction of Grids. The development of com-
mon components, protocols, and standards will make this construction process
faster, easier, and more interoperable. In this paper, we presented a stepping
stone to the development of a common provenance recording system, namely, an
implementation-independent protocol for recording provenance, PReP.

Acknowledgements

This research is funded in part by EPSRC PASOA project GR/S67623/01.

References

1. P. Buneman, S. Khanna, and W.-C. Tan. Data provenance: Some basic issues. In
Foundations of Software Technology and Theoretical Computer Science, 2000.

2. P. Buneman, S. Khanna, and W.-C. Tan. Why and where: A characterization of
data provenance. In Int. Conf. on Databases Theory (ICDT), 2001.

3. M. Ford, D. Livingstone, J. Dearden, and H. V. der Waterbeemd, editors. Comb-
e-Chem: an e-science research project. Blackwell, March 2002.

4. I. Foster. What is the grid? a three point checklist., July 2002.
5. I. Foster, J. Voeckler, M. Wilde, and Y.Zhao. Chimera: A virtual data system for

representing, querying and automating data derivation. In Proc. of the 14th Conf.
on Scientific and Statistical Database Management, July 2002.

A Protocol for Recording Provenance in Service-Oriented Grids 139

6. L. Moreau and J. Duprat. A construction of distributed reference counting. Acta
Informatica, 37:563–595, 2001.

7. L. Moreau and et. al. On the use of agents in a bioinformatics grid. In S. Lee,
S. Sekguchi, S. Matsuoka, and M. Sato, editors, Proc. of the 3rd IEEE/ACM CC-
GRID’2003 Workshop on Agent Based Cluster and Grid Computing, pages 653–
661, Tokyo, Japan, 2003.

8. P. Ruth, D. Xu, B. K. Bhargava, and F. Regnier. E-notebook middleware for ac-
ccountability and reputation based trust in distributed data sharing communities.
In Proc. 2nd Int. Conf. on Trust Management, Oxford, UK, volume 2995 of LNCS.
Springer, 2004.

9. M. Szomszor and L. Moreau. Recording and reasoning over data provenance in
web and grid services. In Int. Conf. on Ontologies, Databases and Applications of
Semantics, volume 2888 of LNCS, 2003.

10. J. Zhao, C. Goble, M. Greenwood, C. Wroe, and R. Stevens. Annotating, linking
and browsing provenance logs for e-science. In Proc. of the Workshop on Semantic
Web Technologies for Searching and Retrieving Scientific Data, October 2003.

Self-optimizing DHTs Using Request Profiling

Alina Bejan and Sukumar Ghosh�

Department of Computer Science,
University of Iowa, Iowa City, IA 52242, USA

{abejan, ghosh}@cs.uiowa.edu

Abstract. Various studies on request patterns in P2P networks have
confirmed the existence of the interest-based clusters [11] and [12]. Some
P2P networks that exhibit the small-world phenomenon contain clus-
ters of peers that frequently communicate with one another [17]. The
existence of interest-based clusters opens up the possibility of more effi-
cient routing. In this paper we consider the problem of designing a self-
optimizing overlay network and routing mechanisms to permit efficient
location of resources by the periodic profiling of request patterns. Our
self-optimization protocol uses selective replication of resources for re-
stricting the sizes of the clusters, and proposes the deployment of inactive
nodes for further reduction of the routing latency. The self-optimization
protocol is demonstrated on the Chord network [22]. It leads to a routing
latency that scales with the size of the clusters.

Keywords and Phrases: P2P network, overlay network, distributed
hash tables, self-optimization, stabilization, clustering, routing latency.

1 Introduction

Motivation. A P2P network is an Internet-based distributed system for the
efficient and scalable location of remote objects without any central authority.
A large number of P2P networks uses distributed hash tables (DHT) – differ-
ent parts of the hash table are managed by different servers spread around the
Internet. Two metrics of the performance of DHT-based P2P networks are the
space complexity for the individual nodes, and the routing distance for searching
remote objects - both should be as small as possible. These two requirements
conflict with one another - a sparse interconnection network like a ring has a
constant size routing table, but the routing distance for queries may be as large
as O(n), whereas for a completely connected topology all queries are resolved in
a single hop, but at the expense of a routing table of size O(n). Existing P2P
like CAN [19], Chord [22], Pastry [20], Tapestry [24] use interconnection topolo-
gies and routing mechanisms that strike a balance between these two extremes.
These are the first set of deterministic models for DHTs. Except CAN, all the

� This research was supported in part by the National Science Foundation under grant
CCR-9901391.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 140–153, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Self-optimizing DHTs Using Request Profiling 141

others provide log N routing latency with log N links per node. CAN adapts
a d-dimensional torus to construct a DHT with a routing latency of O(d.N

1
d)

using O(d) links per node. Recently Naor and Wieder [18] showed how to use a
De Bruijn network to construct a DHT with O(log N) routing latency and O(1)
links per node. De Bruijn graphs have also been used in the design of Koorde
[13] and D2B [7]. Koorde introduces a new DHT based on Chord that provides
O(log N) hops per lookup request, while nodes have only two neighbors. We
do not take into account DHT organizations like Viceroy [14] that uses some
randomization in the protocols for query routing.

Despite providing good solutions for meeting the conflicting goals of fast
lookup and small number of states per process, these P2P networks provide
a performance that is immune to variations in request patterns. However, in
real life, such variations do exist. Many networks that exhibit the small-world
phenomenon [17] also reveal the existence of interest-based clusters [11] and [12]
(also see Stanford’s Club Nexus project [2]). Numerous studies over the past few
years have reinforced the existence of clusters [4], [11] and [12] in both grids and
unstructured P2P environments, where user queries are confined to members of
groups (not necessarily disjoint) whose sizes are much smaller than the network
size. The goal of our paper is to design an adaptive P2P network that takes
into consideration biases in the request patterns, and periods of inactivity of a
fraction of the peers to self-optimize DHT routing tables, so that the routing
latency and the space complexity scale as a logarithmic function of the size of
the clusters, and is independent of the network size.

The task of adapting the overlay network to request patterns amounts to
embedding a low diameter graph induced by the active source and the target
nodes in the metric space. Let us start with the Chord ring [22] as a test case.
Without loss of generality, assume that there are N = 2k nodes in the ring,
with their keys ranging from 0 through 2k − 1. Each node i has k = log N
fingers pointing to nodes with keys (i+1), (i+2), · · · (i+2k−1), and the routing
distance between any pair of nodes is equal to the Hamming distance between
their keys. However, if a pair of nodes with keys i and j frequently communicate
with each other, and the Hamming distance between i and j is log N , then there
is no reason why they have to use O(log N) hops to communicate - each can
set up a finger directly pointing to the other node and communicate in a single
hop. Such optimizations are the cornerstones of our proposal. This improvement
could come possibly at the expense of an increase in the routing distance between
some other pair of nodes which do not frequently communicate with one another.
Nevertheless, we consider our mission to be accomplished when (1) the routing
distance between nodes within a cluster scales with the size of the cluster, and
(2) the average routing distance between any pair of nodes is lower than that
in the unoptimized Chord ring. Ideally cluster sizes should be small. Our work
is different from [8] and [16], since small worlds do not necessarily lead to the
existence of clusters.

The task of designing a self-optimizing overlay network reduces to periodically
profiling the request patterns and adjusting the routing table fingers, so that

142 A. Bejan and S. Ghosh

the routing distance among nodes frequently communicating with one another
goes down at the expense of the longer routes among nodes that communicate
infrequently. A further scope of optimization stems from the existence of inactive
nodes - nodes that are neither the source nor the destination of any query in
a significant way. We demonstrate how active nodes in the clusters can acquire
some of the inactive nodes and utilize a fraction of their links as surrogates to
further reduce the routing latency within their own cluster.

Related Work. All DHT-based overlay networks like Chord, CAN, Pastry,
Tapestry, Viceroy provide static guarantees about routing distances. Aspnes and
Shah [3] introduced skip graphs, an alternative approach to designing P2P net-
works, by designing a tree structure that constantly balances itself to provide
logarithmic routing distance among nodes, and some resilience against crash fail-
ures. Our approach is different from theirs, and based on DHTs. In [15], Manku
presented an optimal routing scheme for Chord, where he expressed the routing
distance as the difference of two binary integers with certain properties. His op-
timization method is static, and does not take into account user request profiles.
Casanova [4], pointed out the crucial issue raised in [12] (but not answered) con-
cerning potential protocols that would lead to a self-organizing overlay network
by harnessing the clustering properties of a virtual network. This question was
addressed in [21] for the unstructured Gnutella network. Ours is a different ap-
proach targeted to structured, DHT-based networks. In [6], Gnutella has been
mapped on a structured overlay network - the resulting system reduces flooding
as well as maintenance overhead. The idea of clustering used in conjunction with
DHTs appears in more recent papers such as [9] and [10] – both solutions adopt
a hierarchical organization of the DHT. Coral [9] employs proximity-based self-
organizing clusters and sloppy hashing in order to enable nodes to locate and
download files among peers without creating hot spots and without querying dis-
tant nodes. But the mechanisms of nodes joining clusters, and of merging and
splitting clusters are based on criteria different from ours. Canon [10] is based
on hierarchical DHTs that can be imposed on different P2P systems to improve
caching and bandwidth usage for multicast, provide fault isolation, hierarchi-
cal storage of content and hierarchical storage control, while providing standard
ratio of space complexity to routing latency. The clustering concept presented
here is based on domains: each domain is organized as a DHT. The actual merge
operation of domains and the lookup procedure are different from our approach.

Contributions. Our contributions in this paper are threefold. First, we demon-
strate the feasibility of designing an adaptive P2P network that can self-optimize
its performance. Second, we show that our adaptive P2P system indeed attains
the optimal routing distance of O(log |W |) (W is the set of nodes in a cluster)
when the nodes belong to disjoint clusters of size |W | (|W | < N), and there are
at most log N fingers per node. Even when a small fraction ε of all queries is
directed towards nodes outside the cluster, the average routing distance between
any pair of nodes is bounded from above by (1−ε). log |W |+ε.|W |. log N

|W | . Third,
when the nodes in a cluster W discover B inactive nodes each with r fingers to

Self-optimizing DHTs Using Request Profiling 143

spare for their cause, then the self-optimization algorithm can further reduce the
average routing distance between nodes in the cluster to (1− B.r

|W |). log |W |+ 2.B.r
|W | ,

which approaches a constant (namely two) as B.r approaches |W |.
Organization. The paper is organized as follows. Section 2 introduces some
preliminary definitions about DHT-based P2P networks and clarifies the goals
of optimization. Section 3 presents the various pieces of the self-optimization
algorithm, and explains how to put these pieces together. Section 4 discusses
the complexities, and section 5 contains some concluding remarks and open
questions.

2 The System Model

2.1 Preliminaries

The topology of a distributed hash table (DHT) based routing network is a
directed graph G = (V,E), where V = {0, 1, 2, . . . , N−1} denotes a set of nodes,
and each edge (i, j) ∈ E represents a link (also called a finger) from i to j. Each
node contains a fraction of the keys. Both objects and node id’s are hashed into
the range [0 . . . N − 1] using the same hashing function, the outcome of which
determines the distribution of keys among the different nodes. Each object is
associated with at least two different nodes: one of these is the owner of that
object, and the other is a host node (storing the object) chosen by the hashing
function. Each object stored in a host node knows the identity of the owner. The
set {j : (i, j) ∈ E} defines the routing table of node i which is used to direct
queries to the right destination node hosting an object. Space efficiency requires
that the cardinality of the set {j : (i, j) ∈ E} be small, whereas the routing
efficiency requires the routing of each query from the source to the destination
be completed in the fewest number of hops.

For the Chord network [22], without loss of generality, let N = 2k. Each
node i has a routing table with k fingers fi[0] through fi[k − 1] pointing to
nodes (i + 1), (i + 2), . . . (i + 2k−1) respectively1. Thus the space complexity per
node is O(log N), and the routing distance between any pair of nodes is also
O(log N). These results are “flat guarantees” that hold regardless of variations
in the request patterns of the individual nodes.

To optimize the routing tables for shortest routing distance, we take into
consideration the request pattern R(i) of each process i. Define the request
pattern R(i) of node i as a set {r(i, j), j : i �= j} where r(i, j) denotes the
frequency of requests from i to objects owned by node j, and is measured by
the number of times node i sent requests to such objects during a predefined
interval of time. On the basis of these frequencies, we classify the nodes in R(i)
into two categories: preferred, and non-preferred.

1 When no real node exists in a target, the finger points to the next real node with a
higher id.

144 A. Bejan and S. Ghosh

Definition 1. A node j is a preferred node for node i, if r(i, j) ≥ t, where t is a
constant defined by the users.

For each node i, its preferred nodes form a set Pi. Clearly, the set Pi will vary
over time. Our goal is to optimize the routing tables, so that every node can
send queries to other nodes in its preferred list using the fewest number of hops.
This may come at the expense of longer routes to some non-preferred nodes.
However, this is acceptable as long as the average routing distance is smaller
than the guaranteed routing distance in the unoptimized system.

2.2 Classification of Optimal Routing

There are two aspects of optimization: local and global. In local optimization,
the average routing distance of a single node to the members in its preferred list
is a minimum, whereas, in global optimization, the average routing distance of
all nodes to the members in their preferred lists is a minimum. Note that local
optimality of the individual nodes can conflict with one another, particularly
when the space per node is small. Accordingly, various tradeoffs are possible.
Two example situations are presented below.

Disjoint Clusters. Acluster is a subsetW of nodes that satisfies the closure prop-
erty ∀i ∈ W : Pi ⊆ W . The notation Wi will designate the cluster to which node
i belongs. All nodes within a cluster share common interest in keeping the routing
distance small among themselves. There can be several distinct clusters. When the
clusters are disjoint, there is no conflict between local and global optimality.

Overlapped Clusters. Here the structure of the clusters can be identified
on the basis of interest, and there are nodes that have multiple interests. The
optimization of routing with respect to one interest group may conflict with that
in the other interest group. Besides that, even if there is a tendency for nodes to
cluster while serving their own interests – an outlier node in some cluster may
frequently communicate with outliers in other clusters.

Apart from these, unusual request profiles are possible too, though quite
rare. As an example, there may be several subsets S0, S1, S2, . . . , Sm−1 of nodes,
∪m−1

i=0 Si = V and ∀i ∈ Sl, Pi ⊆ S(l+1)modm. Some espionage networks are said
to exhibit such behaviors2. When the improvement in routing for some interest
group comes at the expense of a deterioration of routing distance for another
interest group, the overall performance depends on the degree of overlap. In
absence of any satisfactory optimization that benefits all interest groups, one
can of course fall back to the unoptimized system and accept flat guarantees
regardless of their request patterns.

3 The Self-optimization Algorithm

Our base case is the unoptimized Chord ring, where ∀i : Pi = V . Let fi[j] be the
the jth entry in i’s finger table. For the optimized system, by definition, fi[0] :=

2 It is mostly a folklore.

Self-optimizing DHTs Using Request Profiling 145

i+1 mod N . This is chosen to guarantee connectivity between any pair of nodes
in the ring. The goal of the optimization is to redefine the fingers fi[1] through
fi[log N − 1] for each node i, and specify a routing algorithm, such that the
routing distance from i to the elements of Pi is as small as possible. In doing so,
each node will dedicate a subset of fingers to provide fast routes to the members
in the preferred list, and use the remaining fingers to communicate with nodes
outside the preferred list.

Following established studies, assume that the request patterns reveal the
existence of clusters involving the owners of the objects. Since every object
is tagged with its owner’s id, and every object also knows the identity of the
originator of each request, clusters of owners frequently accessing objects owned
by them can be easily identified. Let Wi designate a cluster to which node
i belongs –it contains the preferred list of all nodes in Wi. For each node i,
designate the set of non-preferred nodes V \Wi as Qi. For each node i, arrange
the nodes of Wi in the ascending order of keys. Also arrange the nodes of Qi in
the ascending order of keys. Let Wi[k] be the kth element of Wi, and Qi[k] be
the kth element of Qi. If w(i) = �log |Wi|� and q(i) = �log |Qi|�, then, central
to our routing algorithm are the following two rules for configuring the routing
table of every process i:

Rule 1. for j = 1 to w(i), fi[j] := Wi[l] : l = (i + 2j) mod w(i)

Rule 2. for j = w(i) + 1 to log N − 1, fi[j] := Qi[l] : l = (i + 2j−w(i)) mod q(i)

The guiding principle is to organize the nodes in Wi (respectively Qi) as a mini-
Chord ring to be accessed by the fingers 1 through w(i) (respectively fingers
w(i) + 1 through log N − 1). Once the fingers are defined, the routing algorithm
for node i will be as follows: Each node i will route queries to members of its
cluster Wi using fingers 1 through w(i), but use any finger to route queries to
nodes that are not in its preferred list. Furthermore, in each step, only that
finger will be chosen which leads to the query closest to the target node.

Routing rule for i (destination is j)

if j ∈ Wi → use fi[l]: 0 < l ≤ w(i)
∧ fi[l] ≤ j < fi[(l + 1) mod w(i)]

� j ∈ Qi → use fi[l]: fi[l] ≤ j < fi[(l + 1) mod k]
fi

Note that the routing rule is a refinement of the routing rule of Chord, where
each node forwards requests to other nodes in the preferred list via a designated
subset of its fingers only, and use the remaining ones to route to the non-preferred
nodes. However, for routing to non-preferred nodes, our algorithm modifies the
second part and takes the liberty to choose any finger that helps reach a node
closest to the destination.

146 A. Bejan and S. Ghosh

In the unoptimized Chord ring, if there are l fingers, and l < log N , then the
farthest node that a given node i can reach in a single hop is (i + 2l−1). This
leads to the following lemma:

Lemma 1. In a Chord ring, let there be N nodes, each with l fingers (l ≤ log N).
There exists a routing mechanism such that the maximum routing distance is
�N.l

2l � hops.

Proof. For every node i arrange its l fingers to point to nodes i+1, i+2, i+4 . . .
i+2l−1. This guarantees that each node i can reach any other node in the range
i to i + 2l − 1 in at most l hops (based on Chord routing). Divide the ring into
zones of size 2l, so that there are �N

2l � zones (possibly including one truncated
zone of smaller size). Within each zone, use the standard routing mechanism of
Chord. Now any node should be reachable in at most �N.l

2l � hops. �

Lemma 2. Let ε denote the fraction of times a request is directed to a node
outside its cluster W . Then the average routing distance between any pair of
nodes will not exceed (1 − ε). log |W | + ε.|W |. log N

|W | .

Proof. Of the log N fingers, log |W | are dedicated to routing to nodes within
the cluster of size |W |, which will take log |W | hops. This happens 1 − ε times.
In the remaining ε times, one uses the remaining (log N - log |W |) fingers to
route requests to nodes outside W . Using the results of Lemma 1, each such
routing can take at most N. log N

|W |/2log N
|W | hops which can be simplified to |W |.

log N
|W | . �

Identification of the clusters. Before the routing rules are applied, the clus-
ters need to be identified, which means that each node should discover the mem-
bership of the cluster that it belongs to. The set of all nodes trivially satisfies
the closure property ∀i ∈ V : Pi ⊆ V , but it is not “interesting”. Also, the union
of two clusters also satisfies the closure property and is a cluster. Our goal is to
look for the smallest subsets of processes for which the closure property holds.

When a node accesses an object, the host node storing that object records
the originating node’s id. This happens during normal operation, which is also
the profiling phase. At the end of the profiling phase, each node sends the ids of
the requestors of all the objects stored in them to their respective owners. This
sending operation becomes mandatory if the frequency of access of an object is
above the chosen threshold t. No centralized sorting algorithm is required.

To formulate a mechanism by which each process discovers the members of
its own cluster, we use a request graph GR = (V,ER). Each node of the request
graph represents a node of the network, and each directed edge (i, j) ∈ ER

represents the fact that j ∈ Pi. Assuming that disjoint clusters exist, the task
of finding the cluster amounts to finding the connected component to which a
process belongs. Also note that every query from i to j will be followed by a
response from j to i, so even if the request graph is not strongly connected,
inclusion of the response path will provide a directed link from the destination
to the source node. Therefore, we will replace each directed edge of the request
graph by an undirected edge.

Self-optimizing DHTs Using Request Profiling 147

Let Wi denote the smallest size cluster that node i belongs to. The algorithm
will initialize Wi to Pi – subsequently it will grow to the smallest cluster to
which i belongs. In addition to Wi, each process i will maintain k sets Ui,0

through Ui,k−1 one per each link, which are initially empty. Whenever a node
i receives a message (query or response) from another node and it contains the
identity of members that node i has not yet seen, it appends them to Wi. The
identity of these new members in the cluster are passed on to other members
while sending out messages. The role of the sets Ui,j is to memorize the identity
of the current members that have already been passed on to others via link j.
To update Ui,j whenever a message (query or response) is sent out via finger j,
the sender appends the set Wi\Ui,j (call it newj) to the message. The program
is as follows:

Identification of the clusters: program for node i

{Initially Wi = Pi, ∀j : Ui,j = φ}
do msg received from k with a set newi of ids → Wi := Wi ∪ newi

� message to be sent via j ∧ Wi �= Ui,j →
append newj = Wi\Ui,j ; Ui,j := Wi

od

At the end, both Wi and Ui,j will contain the ids of all the nodes in the
cluster to which node i belongs.

Theorem 1. The cluster identification algorithm converges to a fixed point
where Wi contains the ids of all nodes of the smallest cluster to which node i
belongs.

Proof. Initially ∀i, j ∈ ER: Ui,j ⊆ Wj holds. Also the condition holds every
time the first action is completed, meaning this is an invariant. Since every W is
bounded from above by the size max of the connected component, each W can
grow at most max times, after which no new member in the cluster is discovered.
After each node i sends out its last message while the condition Ui,j ⊂ Wi

holds, ∀j : Ui,j = Wi. Therefore ∀i, j ∈ ER: Wi ⊆ Wj . Furthermore, due to the
propagation of the responses from j to i, Wj ⊆ Wi. Therefore ∀i : |Wi| = max. �

What if no disjoint clusters exist? Apparently, for each node i, Wi eventually
grows to V , and there is no scope of optimization. Of interest is the case of weakly
linked clusters, where a cluster of larger size can be divided into two or more
clusters of smaller size by removing a small number of edges in the request graph.
Define a c-connected cluster as one that can be split into disjoint clusters by
removing a minimum of c edges from the request graph. In reality, such removal
of edges signals the need of caching the object into the local storage. An example
is shown in Fig. 1a. The application of the cluster identification algorithm will
cause each W to grow to V that will include all 12 nodes. However, the cluster
is 2-connected (by removing the edges (8,9) and (12,1) one can split it into two

148 A. Bejan and S. Ghosh

Fig. 1. Creating smaller clusters via replication and pruning

clusters). In fact, by replicating the objects in 1 into 12, the objects in 5 into 4,
and the objects in 9 into 8, every node can satisfy its requests from a cluster of
size 4, that is much smaller than V (Fig 1b). No node is required to cache all
the objects from the other node, but only those that satisfy its own requests.
Furthermore, this information should be made available to all members of the
cluster, otherwise it can lead to unnecessary replication of the same objects
within a small world. Such replication is useful if the number of objects to
be copied is small. We will use an arbitrary metric O(log |Pi|) to quantify the
smallness, but users can apply other standards too. The bottom line is that it
leads to a reduction of the cluster size, and connsequently of the routing latency,
at the expense of a minor increase in the space complexity.

Our goal is to let the self-optimization algorithm take care of this by itself,
without external intervention, so that each process figures out how to leverage
the available space for faster routing. This leads to our replica management
protocol.

Replica management. Let Ti = {j : (j, i) ∈ ER}. Assume that |Pi\Ti| ≤ c,
where c = log |Pi ∩ Ti|. Then we propose that

(1) node i replicate the required objects from Pi\Ti into its own address space,
and
(2) shrink Pi to (Pi ∩ Ti).

Eventually when the clusters are formed, the availability of the replicas must
be known to other members belonging to the cluster. To deal with this, we will
use a modification of the original hashing function.

We make the following claim regarding the replica management protocol:

Lemma 3. For some node i, let |Pi\Ti| ≤ c hold. Then the replica management
protocol will converge to a state in which Pi ⊆ Ti holds at the expense of a space
complexity of size c.

Proof. The action by node i reduces Pi to (Pi ∩ Ti), so the condition Pi ⊆ Ti

holds after i copies c objects from Pi\Ti into its own address space. Also, for

Self-optimizing DHTs Using Request Profiling 149

each node j ∈ Ti\Pi, i ∈ Pj . For such a node, if the precondition of the theorem
holds, a similar action by node j will remove j from Ti (as well as from Ti\Pi),
further reducing the size of Ti\Pi. This step will not invalidate the condition
Pi ⊆ Ti. �

Notice that we are using the parameter c to strike a balance between two
conflicting acts here. While the cluster identification algorithm expands Wi from
Pi to the size of the cluster, the replica management protocol shrinks each Pi

to a smaller value through limited replication of objects. In the interest of fast
routing, we prefer to keep the size of the clusters as small as possible, if necessary
at the expense of a minor increase in the space complexity. Since each node
can independently initiate such replications, the average increase in the space
complexity per node will be bounded from above by the value of c. After the
replication is over, the system should start expanding their preferred lists for
the identification of clusters. This is why we will allow the replica management
protocol to take precedence over the cluster identification protocol.

One can make interesting observations in the dynamics of cluster identifica-
tion. Even if an edge (i, j) is removed from the request graph via replication,
the two nodes may end up in the same cluster due to a path existing between
them via some node k. However the removal of enough number of edges (if they
exist) is likely to divide the systems into smaller clusters, and expedite routing.

Once clusters are identified, at least one copy of the objects frequently ac-
cessed by its members should be available at some host node in that cluster.
Per the routing algorithm, nodes should first try to locate the object within the
cluster by treating the cluster as a miniature Chord ring. If it is not available
inside the cluster, then searching continues outside the cluster, which is a slower
process.

Utilizing inactive nodes. An interesting issue here is to explore whether the
resources of inactive nodes (i.e. nodes for which both Pi and Ti are empty sets)
can be utilized to enhance the routing performance of clustered networks. Such
resources can be routing fingers that will serve as bypasses and shorten the rout-
ing distances, or these can consist of space donated by the inactive nodes to
cache remote objects. We will explore the first possibility here. Assume that
after the first phase, every inactive node sends out advertisements to the en-
tire network about its inactivity, prompting one or more active nodes to grab
the fingers of the inactive nodes for expediting its own routing. We will call
it finger stealing. Let there be B such inactive nodes, each with log N fin-
gers, and let these nodes spare r-out-of-log N fingers to expedite the routing
within a cluster W . The issue is: How to orient these r fingers to reduce the
worst-case (or the average) routing distances between a pair of nodes in the
cluster?

Each node that grabs an inactive node as a router of its queries can reduce
the routing distance to a node log |W | hops away to only two hops using one of

150 A. Bejan and S. Ghosh

the inactive node’s fingers3. If there are B inactive nodes, then the B.r fingers
can shorten the average routing distance of all the nodes in the cluster to log |W |
- B.r.(log |W |−2)

|W | , which simplifies to (1− B.r
|W |).(log |W |) + 2.B.r

|W | . This leads to the
following theorem:

Theorem 2. If there are B inactive nodes, and each inactive node contributes r
fingers to expedite the routing about the nodes in a cluster of size |W |, then the
average routing distance between the members will be (1− B.r

|W |).(log |W |)+ 2.B.r
|W | .

Putting the pieces together. Assume that the nodes have their clocks ap-
proximately synchronized. Initially ∀i : Pi = V , and all fingers are oriented as
in the traditional Chord ring. Divide the time into an infinite sequence of the
three phases 0, 1, and 2. Each node i does the following schedule:

Phase 0. Profile the requests.
Phase 1. Determine Pi and Ti. Apply the replica management protocol to prune
Pi whenever possible.
Phase 2. Use the cluster identification protocol to discover the clusters that each
node possibly belongs to. Then configure the routing tables.

The duration of Phase 0 will depend on the system dynamics [23]. The duration
of Phase 1 will be much shorter, and will be determined by the complexity of the
replica management protocol. In each cycle, Phase 0 will use the routing table
generated from Phase 2 of the previous cycle.

4 Performance

The routing distance (1 − ε) log |W | + ε.|W |. log N
|W | is a definite improvement

in performance when ε is much smaller than 1 (so that the second term of the
expression is smaller than the first term). For example, when N = 1,000,000 and
W = 100, ε has to be of the order of 0.001 or lower. In this case, the average
routing distance will be 7+1 = 8, as opposed to a routing distance of 20 in
the unoptimized case. The scenario can be compared with page fault in virtual
memory systems – each request to a node outside the cluster is an access fault
that is comparable to a page fault, and is expected to occur infrequently.

The results of optimization shown here are specific to the Chord protocol,
but similar techniques can be applied to other DHT architectures too. In [15],
Manku proposed an optimization for the Chord ring using bidirectional routing,
where he showed how the number of routing hops can be reduced by expressing
the Hamming distance between pairs of nodes as the difference of two binary
patterns. (For example, node i could communicate with node i + 2h − 1 in only
two hops, instead of the usual h hops, by first routing forward to i + 2h than
backward to i + 2h − 1.) Such route discovery methods are applicable to our
method too, where this optimization can be used to further reduce the routing

3 In that process, many routes to nodes outside the cluster are also shortened.

Self-optimizing DHTs Using Request Profiling 151

distance between preferred nodes to 1
2 .log |W |. Moreover, these techniques of

improvisation can also be used for routing outside the cluster.
As illustrated in the previous section, the inactive nodes offer new opportu-

nities for performance enhancement. The maximum number Bmax of inactive
nodes that can be acquired by the active nodes is equal to |W |/k, in which case
the routing distance between any pair of nodes will be reduced to a constant
(namely two), and it will be unproductive to acquire any more inactive nodes.
As another possibility, inactive nodes can allocate storage space to store a frac-
tion of the objects required by the active nodes. With enough inactive nodes
being available, the normal routing mechanism can be abandoned, and all rout-
ing can be done only through the inactive nodes, reducing the routing distance
to one. Our self-optimization protocol does not yet have a mechanism to spon-
taneously deploy the inactive nodes for performance enhancement, but it is a
topic for future investigation.

5 Conclusion

Each cluster is a league of owners. The DHT has been used as a tool to identify
the clusters. The DHT also provides efficient routing within a cluster with a
guaranteed routing latency of log |W |. However, compared to Coral, the inter-
cluster routing latency is higher. However, the clustering mechanism in Coral is
messier, since clusters overlap, and each node is present in all the clusters.

Objects replicated by a node must be available to every node in its cluster.
One approach will be to use an alternative hashing function to map objects to
nodes within W . We however avoid the use of a second hashing function, and
simply fold the key into a ring [0..|W | − 1]. This means that the replica of an
object mapped originally into a node s will now be mapped into the node s
mod |W | in the cluster. In case such a node does not exist in the cluster, the
replica will be placed in the next node in that cluster. Of course this requires
each process to estimate the size of the cluster that it belongs to. However, only
a crude estimate will suffice, since load balancing within the cluster is not an
issue for now. One solution is to use |Pi ∪ Ti| as the size of Wi in the first cycle,
and in the subsequent cycles, use the estimate of |Wi| from the previous cycle.
To locate an object, a node must first look for a replica of it in its own cluster,
before locating it elsewhere.

To handle node join operations, we will allow the new node to join any clus-
ter, modify the membership of that cluster, and update its preferred list ac-
cordingly. The profiling will begin from the next cycle, followed by optimization
as explained earlier. To leave the network, a node must transfer its objects to
the next node with a higher key in the same cluster. The periodic stabilization
protocol will need an extra step - in addition to running the conventional sta-
bilization protocol where each node verifies the correctness of its successor and
predecessor pointers, it will also run a version of it within its own cluster.

The proposed protocol involves a few parameters whose choice is left to users,
and need to be decided via experiments. In deciding the membership of the

152 A. Bejan and S. Ghosh

preferred list, one has to choose a value of t. However, if indeed clusters are
present, then the choice of t will be natural, and it could be different for different
nodes. In the case of weakly linked clusters, the choice of the parameter c will
depend on how much cache each node is ready to spare.

An interesting variation in optimization takes a market-based approach, where
nodes are allowed to bid for faster routes by making some payoffs. Nodes that
receive these payoffs are ready to trade their resources for temporary degradation
of their performance. Such market-oriented optimization algorithms are topics of
future investigation.

References

1. Abraham, I., Awerbuch, B., Azar, Y., et al. A generic scheme for building overlay
networks in adversarial scenarios. IPDPS 2003.

2. Adamic, L.A., Buyukkokten, O., and Adar, E. A social network caught in the Web.
First Monday, volume 8, number 6 (June 2003),

3. Aspnes, J. and Shah, G. Skip graphs. Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, January 2003, p. 384-393.

4. Casanova, H. Distributed Computing Research Issues in Grid Computing. ACM
SIGACT News, Volume 33, Issue 3 (September 2002), p. 50-70.

5. Dabek, F., Li, J., et al. Designing a DHT for low latency and high throughput.
NSDI 2004.

6. Castro, M., Costa, M., and Rowstron, A. Should we build Gnutella on a structured
overlay?. HotNets 2003.

7. Fraigniaud, P. and Gauron, P. An Overview of the Content-Addressable Network
D2B. PODC 2003.

8. Fraigniaud, P., Gavoille, C., and Paul, C. Eclecticism shrinks even small worlds.
PODC 2004.

9. Freedman, M.J., and Mazieres, D. Sloppy hashing and self-organizing clusters.
IPTPS 2003.

10. Ganesan, P., Gummadi, K., and Garcia-Molina, H. Canon in G Major: Designing
DHTs with Hierarchical Structure. ICDCS 2004.

11. Iamnitchi, A., Ripeanu, M., Foster, I. Small-World File-Sharing Communities.
IEEE InfoCom 2004, March 2004.

12. Iamnitchi, A., Ripeanu, M., Foster, I. Locating Data in Peer-to-Peer Scientific
Collaborations. IPTPS 2002, March 2002.

13. Kaashoek, M.F. and Karger, D.R. Koorde: a simple degree-optimal distributed hash
table. IPTPS 2003.

14. Malkhi, D., Naor, M., and Ratajczak, D. Viceroy: A scalable and dynamic emula-
tion of the butterfly. ACM PODC 2002.

15. Manku, G.S. Routing Networks for Distributed Hash Tables. ACM PODC 2003.
16. Martel, C. and Nguyen, V. Analyzing Kleinberg’s (and other) small-world Models.

PODC 2004.
17. Milgram, S. The small world problem. In Psychology Today 1, 61 (1967).
18. Naor,M. and Weider, U. Novel Architectures for P2P Applications: the Continuous-

Discrete Approach. SPAA 2003.
19. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker,S. A Scalable Content

Addressable Network. ACM SIGCOMM 2001.

Self-optimizing DHTs Using Request Profiling 153

20. Rowstron, A. and Druschel, P. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware) 2001, p. 329-350.

21. Sripanidkulchai, K., Maggs, B., and Zhang, H. Efficient Content Location Using
Internet-based Locality in Peer-to-Peer Systems. Infocom 2003.

22. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F. and Balakrishnan, H. Chord:
A Scalable Peer-to-Peer Lookup Protocol for Internet Applications. IEEE Transac-
tions on Networking 11 (1) 2003.

23. Watts, D.J., Strogatz, S.H. Collective dynamics of ’small-world’ networks. Nature,
vol. 393, 1998.

24. Zhao, B.Y., Kubiatowicz, J.D., and Joseph, A.D. Tapestry: An Infrastructure for
Fault-tolerant Wide-area Location and Routing. Technical Report UCB/CSD-01-
1141, Computer Science Division, U. C. Berkeley, April 2001.

Computing All the Best Swap Edges
Distributively�

P. Flocchini1, L. Pagli2, G. Prencipe2, N. Santoro3,
P. Widmayer4, and T. Zuva5

1 University of Ottawa, Canada
flocchin@site.uottawa.ca
2 Università di Pisa, Italy

{pagli, prencipe}@di.unipi.it
3 Carleton University, Canada
santoro@scs.carleton.ca
4 ETH, Zurich Switzerland
widmayer@inf.ethz.ch

5 University of Botswana, Gaborone
zuvat@mopipi.ub.bw

1 Introduction

In systems using shortest-path routing tables, a single link failure is enough
to interrupt the message transmission by disconnecting one or more shortest-
path spanning trees. The on-line recomputation of an alternative path or of the
entire new shortest path trees, rebuilding the routing tables accordingly, is rather
expensive and causes long delays in the message’s transmission [5, 10]. Hopefully,
some of these costs will be reduced if the serial algorithms for dynamic graphs
(e.g., those of [1]) could be somehow employed; to date, the difficulties of finding
an efficient distributed implementation have not been overcome (e.g., see [9]).

An alternative approach is to precompute additional information and use it
to augment the shortest-path routing tables so to make them operate when a
failure occurs. Examples of this approach are techniques (e.g., see [4]) of pre-
computing several edge-disjoint spanning trees for each destination. However,
the alternative routes do not satisfy any optimization criterion (such as shortest
path) even in the case when, at any time, only one link (not necessarily the same
at all times) might be down.

A new strategy has been recently proposed [2, 5, 7, 8, 11]. It starts from the
idea of precomputing, for each link in the tree, a single non-tree link (the swap
edge) able to reconnect the network should the first fail. The strategy, called
point-of-failure swap rerouting is simple: normal routing information will be used
to route a message to its destination. If, however, the next hop is down, the

� Research partially supported by “Progetto ALINWEB”, MIUR, Programmi di
Ricerca Scientifica di Rilevante Interesse Nazionale, NSERC Canada, and the Swiss
BBW 03.0378-1 for EC contract 001907 (DELIS).

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 154–168, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Computing All the Best Swap Edges Distributively 155

message is first rerouted towards the swap edge; once this is crossed, normal
routing will resume. Experimental results [11] show that the tree obtained from
the swap edge is very close to the new shortest-path spanning tree computed
from scratch.

Clearly, some swap edges are preferable to others. In [8], four main objective
functions were defined, giving rise to four different problems. These functions
have the goal to find a new tree that minimizes, respectively, the distance be-
tween the point of failure to the root (Fdist); the sum of distances (Fsum), the
largest increment in the distance (Fincr), and the largest distance (Fmax) of all
nodes below the point of failure to the root.

In [8] they showed that these problems can be solved sequentially with dif-
ferent complexities: Fdist and Fincr in O(m ·α(m,n)), Fsum in O(n2), and Fmax

in O(n
√

m), where α(m,n) is the functional inverse of Ackermann’s function.
These bounds are achieved using Tarjan’s sophisticated technique of transmuters
[12]. Unfortunately, there is currently no efficient distributed implementation of
this sequential technique. From a distributed point of view, only the first of those
problems, Fdist, has been investigated and solved. A simple but non-optimal so-
lution has been developed in [5]. An efficient optimal solution has been recently
proposed [3]. No efficient distributed solution exists to date for the problems
Fsum, Fincr, and Fmax. These problems appear to be rather important, since
they minimize the average, the additional and the maximum delivery time of a
message issued at any node. In this paper, we will be able to solve efficiently all
three problems.

We propose two general distributed strategies, each solving the three prob-
lems with simple modifications. The first scheme uses O(n∗

r) short messages,
where n∗

r is the size of the transitive closure of Tr \ {r}; note that 0 ≤ n∗
r ≤

(n − 1)(n − 2)/2. In the second scheme the number of messages decreases to
O(n) if long (i.e., O(n) bits) messages are allowed. Both schemes use an overall
complexity of O(n∗

r).

2 Terminology and Problems

Let G = (V,E) be a 2-connected undirected graph, with n = |V | vertices and
m = |E| edges. A label of length l ≤ log n is associated to each vertex of G. A non
negative real length w(e) is associated to each edge e. We say that the length of a
path is the sum of the lengths of its edges, and the distance d(x, y) between two
vertices x and y is the length of a shortest path between them. Let T = (V,E(T))
be a spanning tree of graph G rooted in r. Let Tq = (V (Tq), E(Tq)) denote the
subtree of T rooted in q.

Consider an edge e = (x, y) ∈ E(T) with y closer to r; if such an edge is
removed, the tree is disconnected in two subtrees: Tx and T \ Tx. A swap edge
for e = (x, y) is any edge e′ = (u, v) ∈ E \ {e} that connects the two subtrees
and forms a new tree Te/e′ , called swap tree.

Let Se be the set of all possible swap trees with respect to e. Depending on
the goal of the swapping algorithm, some swap edges are preferable to others.

156 P. Flocchini et al.

Given an objective function F over Se, an optimal or best swap edge for a link e
is a swap edge e′ such that F (Te/e′) is minimum.

Let dT (u, v) (shortly d(u, v)) denote the distance between nodes u and v in
T , and let dTe/e′ (u, v) (shortly de/e′(u, v)) denote their distance in Te/e′ . Given
a subtree Tw of T , we denote by W (Tw) =

∑
t∈V (Tw) d(t, w) the weight of Tw,

and by n(Tw) the number of nodes in Tw.
Given a rooted tree S, let C(x, S) denote the set of children of node x in tree

S, let p(x, S) be the parent of node x in S, and A(x, S) denote the ancestors of
x in S. When S = T we will simply write C(x), p(x) and A(x). We consider the
main problems studied in [8]:
1) Fsum-problem: minTe/e′∈Se

{Fsum(Te/e′)}, where Fsum(Te/e′) =∑
t∈V (Tx) de/e′(t, r). Choose one of the swap edges e′ that minimizes the sum of

the distances Fsum(Te/e′) from all nodes in Tx to r.
2) Fincr-problem: minTe/e′∈Se

{Fincr(Te/e′)} where Fincr(Te/e′) =
maxt∈V (Tx)(de/e′(t, r)− d(t, r)). Choose the swap edge that minimizes the max-
imum increment of the distance from r to any node in Tx.
3) Fmax-problem: minTe/e′∈Se

{Fmax(Te/e′)} where Fmax(Te/e′) =
maxt∈V (Tx) de/e′(t, r). Choose the swap edge that minimizes the maximum dis-
tance from the nodes in Tx to r.

3 Algorithmic Shell and Computational Tools

3.1 A Generic Algorithm

Consider the problem of computing the best swap edge for link e = (x, p(x)) ∈
E(T), where p(x) denotes the parent of x in T . We now present a generic dis-
tributed algorithm to perform this computation; the details of its modules de-
pend on the objective function F and will be described later.

The algorithm is started by x; during its execution each node z ∈ V (Tx) will
determine the best, according to the objective function, local swap edge (z, z′)
for (x, p(x)). Among the local swap edges of all nodes, the swap edge yielding
the global minimum cost will be then selected. More precisely, we define:

Procedure BSE(F, (x, p(x))

− Node x determines, among its local swap edges for (x, p(x)), the one that
minimizes F . As we will see, x is the only node that can do so without any
additional information.

− After this, x sends to each child the enabling information it needs to compute
the best among its local swap edges for (x, p(x)).

− Upon receiving the enabling information from its parent, a node computes the
best among its local swap edge for (x, p(x)); it then sends enabling information
to its children. This process terminates once the leaves of Tx are reached.

− The leaves then start a minimum finding process to determine, among the
swap edges chosen by the nodes in Tx, the one that minimizes the objective
function F .

− The optimal swap edge for (x, p(x)) is thus determined at node x.

Computing All the Best Swap Edges Distributively 157

This procedure finds the best swap edge for link (x, p(x)) (according to F).
Thus, the generic algorithm to find all the best swap edges is

Algorithm Best F -Swap

1. Pre-processing(F)
2. ∀x �= r: BSE (F, (x, p(x)))

where Pre-processing(F) is a preliminary process to be executed only if the
nodes do not have the required initial information.

3.2 Identifying Swap Edges

Before proceeding with the instantiation of the generic algorithm for each of the
objective functions, we describe a tool that allows a node to distinguish, among
its incident edges, the ones that are swap edges for a given edge (x, p(x)).

Consider the following labeling of the nodes λ : V → {1, . . . , n}2. Given
T , for x ∈ V let λ(x) = (a, b), where a is the numbering of x in the preorder
traversal of T ; and b is the numbering of x in the inverted preorder traversal
of T , i.e., when the order of the visit of the children is inverted. The pairs
given by the labeling form a partial order (λ,≥) of dimension 2 (let λ(z) =
(z1, z2) and λ(w) = (w1, w2), then λ(z) ≥ λ(w) if z1 ≥ w1 and z2 ≥ w2).
The “dominance” relationship between these pairs completely characterizes the
relationship “descendant” in the tree:

Property 1. A node z is descendant of a node w in T if and only if λ(z) ≥ λ(w).

In our algorithms, we assume that each node z knows its own pair λ(z) as
well the pairs of its neighbors. If not available, this information can be easily
acquired by having each node exchange the information with its neighbors. Such
a labeling will be given to the tree in a preprocessing phase. Based on Property 1,
we can now see how the labeling can be used by a node u to recognize its incident
swap edges for a given link (x, p(x)).

Property 2. An edge (u, v) ∈ E \ E(T) is a swap for (x, p(x)) ∈ E(T) if and
only if only one of u and v is a descendant of x in T .

Thus, node u ∈ Tx will be able to tell whether its incident edge (u, v) is a swap
edge for (x, p(x)) simply by comparing λ(v) with λ(x); if λ(v) ≥ λ(x), then (u, v)
is not a swap edge for (x, p(x)).

4 The Fsum-problem

In Problem Fsum, the optimal swap edge for link e = (x, p(x)) is one which
minimizes the sum of the distances from all nodes in Tx to the root r, in the new
spanning tree T ′ = Te/e′ . A swap edge (u, v) solving Fsum will also minimize the
average distance of all the nodes belonging to Tx from the root r, since the size
of Tx is the same for all the swap edges for x.

158 P. Flocchini et al.

For solving the Fsum-problem (known also as average stretch factor [2]), we
require each node z to possess the following a-priori information: its distance
d(z, r) from the root; the sum of the distances of all nodes in Tq to z for each of
the children q of z; and the number of nodes n(Tq) in Tq for each of its children
q. If this information is not initially available, it can be easily acquired by the
nodes in a pre-processing phase, composed by the following simple convergecast
in T , executed only once at the beginning of the algorithm.

Given a subtree Tw and an edge (a, b), with a ∈ V (Tw) and b ∈ V \ V (Tw),
let sum(Tw, (a, b)) denote the sum of distances in Tw ∪ (a, b) from all nodes of
Tw to b.

Pre-processing(Fsum)

1. The root r sends down a message to each child q containing a request-for-sum

and a value k = w(r, q).
2. The message is propagated down to the leaves (adding to k the weight of each

traversed edge so that each node z knows its distance d(z, r) to the root).
3. When a leaf l receives the message it starts a convergecast up to the root to

propagate the requested information.
4. A leaf l with parent p(l) sends up sum(Tl, (l, p(l))) = w(l, p(l)) and n(Tl) = 1
5. An internal node z receiving from each of its children q, the values W (Tq) and

n(Tq), will compute:

n(Tz) =
∑

q∈C(z)

n(Tq) + 1, and sum(Tz, (z, p(z))) = W (Tz) + n(Tz) · w(z, p(z)),

and will send up the information [sum(Tz, (z, p(z))), n(Tz)].

The correctness of the pre-processing is proven by the following:

Lemma 1. Let z be a node in T .

1. The total number of nodes in Tz is: n(Tz) =
∑

q∈C(z) n(Tq) + 1.
2. The sum of the distances from all nodes in Tz to p(z) is:

sum(Tz, (z, p(z))) = W (Tz) + n(Tz) · w(z, p(z)).

Proof. Part 1. is obvious. Let us consider Part 2. By definition,
sum(Tz, (z, p(z))) =

∑
u∈V (Tz) d(u, p(z)). Thus,

sum(Tz, (z, p(z))) =
∑

u∈V (Tz)

d(u, z) +
∑

u∈V (Tz)

w(z, p(z))

= W (Tz) + n(Tz) · w(z, p(z)).

Once all the information is available to the nodes, each node will exchange its
local information with the neighbors in G. The number of messages exchanged
during the preprocessing phase is then: O(|E|).

Let z be a node in Tx that needs to compute the cost of a candidate swap
edge e′ = (z, z′) for e. Let T ′ = Te/e′ .

Computing All the Best Swap Edges Distributively 159

Lemma 2. The sum of the distances in T ′ from all nodes in Tx to r is:

Fsum(T ′) = W (T ′
z) + n(T ′

z) · w(z, z′) + n(Tx) · d(z′, r).

Proof. By definition we know that Fsum(T ′) =
∑

t∈V (Tx) de/e′(t, r)
=

∑
t∈Tx

[de/e′(t, z′)+d(z′, r)] =
∑

t∈Tx
de/e′(t, z′)+

∑
t∈Tx

d(z′, r), which is equal
to sum(T ′

z, (z, z′)) + n(Tx) · d(z′, r). Noticing that sum(T ′
z, (z, z′)) = W (T ′

z) +
n(T ′

z) · w(z, z′), the lemma follows.

Notice that W (T ′
z) = W (Tz) + sum(Tx \ Tz, (p(z), z)) and n(T ′

z) = n(Tz) +
n(Tx \ Tz) (see Figure 1). Thus, of the information required to compute the
cost of the candidate swap edge (z, z′), there are two components that a node z
(z �= x) does not have locally available: sum(Tx \ Tz, (p(z), z)) and n(Tx \ Tz).
Only x has all the information immediately available and can locally compute the
cost of its candidate swap edges; any other node z in Tx requires this additional
information.

To instantiate algorithm BSE for Fsum we have to specify what is the enabling
information to be propagated. On the basis of the above reasoning, the enabling
information that any node z has to send down to its child q is composed of:
the sum sum(Tx \ Tq, (z, q)) of the distances from q to the nodes in the subtree
Tx \ Tq; and the number n(Tx \ Tq) of nodes in this subtree.

The algorithm for finding the best swap edge for (x, p(x)) according to Fsum

is as follows:

BSE(Fsum, (x, p(x)))

(* Algorithm for node z *)
1. If z = x

− Compute cost of each local candidate swap edge:
(for each e′ = (x, x′), Fsum(Te/e′) = sum(Tx, (x, x′)) + n(Tx) · d(x′, r))

− select best candidate
− for each child q: compute the enabling information sum(Tx \ Tq, (x, q)) and
n(Tx \ Tq) and send it to q. It will be shown that this information can be
computed locally.

− wait for the result of minimum finding; determine the best swap edge for
(x, p(x))

2. Else {z �= x} – Receiving enabling info (s, n) for (x, p(x))
− Compute cost of each local candidate swap edge:
(for each e′ = (z, z′), Fsum(Te/e′) = s+ sum(Tz, (z, z′))+(n+n(Tz)) ·d(z′, r)+
n · w(z, z′). It will be shown that this information can be computed locally.

− select best candidate
− if I am a leaf: start minimum finding
− if I am not a leaf

− for each child q: compute the enabling information sum(Tx \Tq, (z, q)), and
n(Tx \ Tq) and send it to q.

− participate in minimum finding (wait for info from all children, select the
best and send to parent)

160 P. Flocchini et al.

Tx \ Tz

z

z′

q

p(z)

x

Fig. 1. Structure of the subtree Tx with respect to the swap edge (z, z′)

Lemma 3. Let e = (x, p(x)). Each node z ∈ Tx can correctly compute: 1) the
best local swap edge for e, 2) the value sum(Tx \ Tq, (z, q)) for each q ∈ C(z), 3)
the value n(Tv \ Tq) for each q ∈ C(z).

Proof. First observe that, by Lemma 1, after the preprocessing phase, a node z
has available: the labeling λ(y) of each of its neighbors y; the distance d(y, r)
to r from each of its neighbors y; the sum of the distances sum(Tq, (q, z)) of all
nodes in Tq to itself and the number of nodes n(Tq) in Tq for each of its children
q. The proof is by induction on the number of nodes in the path from z to
of x.

Basis. z = x; i.e., the link to be swapped is (z, p(z)). By Lemma 2 we know that,
for each swap edge (x, x′),

∑
t∈V (Tx) de/e′(t, r) = sum(Tx, (x, x′))+n(Tx)·d(x′, r).

Since x is the root of Tx, all the needed information is available at x after
the preprocessing phase. Thus, x can locally compute all the swap edges and
choose the minimum. Moreover x can compute, by using local information only,
sum(Tx \ Tq, (x, q)) and n(Tx \ Tq) for each q ∈ C(x).

Induction step. Let it be true for a node and consider its child z in T . By
Lemma 2 we know that, for each swap edge (z, z′),∑

t∈V (Tx) de/e′(t, r) = sum(T ′
z, (z, z′)) + n(Tx) · d(z′, r). Moreover,

sum(T ′
z, (z, z′)) =

∑
q∈C(z,T ′) sum(T ′

q, (q, z))
+(

∑
q∈C(z,T ′) n(Tq) + 1) · w(z, z′).

Notice that the children of z in T ′ consists of all the children of z in T
plus the parent of z in T (i.e., C(z, T ′) = C(z) ∪ {(z, p(z))}. The values of
sum(T ′

q, (q, z)), and n(T ′
q) for q ∈ C(z) have been computed in the preprocess-

ing phase and are locally available. Since, by induction hypothesis, p(z) has
computed the locally best swap edge and the values of s(Tx \ Tz, (p(z), z)) and
n(Tx \ Tz), and since it has sent to z these information, z can now correctly
compute the cost of all its local swap edge and choose the minimum. Moreover,
it can now compute s(Tx \ Tq, (z, q)) and n(Tx \ Tq) for each of its children
q ∈ C(z).

Computing All the Best Swap Edges Distributively 161

5 The Fmax and Fincr Problems

In Problem Fmax, the optimal swap edge e′ for link e = (z, p(z)) is any swap
edge such that the longest distance of all the nodes in Tz from the root r is
minimized in the new spanning tree Te/e′ ; in Fincr, it is any swap edge such that
the maximum increment in the distance from the nodes in Tz to the root r is
minimized in the new spanning tree Te/e′ .

The algorithm for computing the best swap edges with respect to Fmax and
Fincr have the same structure as the one for Fsum. What differs is: (i) the
information propagated in the preprocessing phase, and (ii) the “enabling infor-
mation” to be sent to the children during the algorithm.

For solving the Fmax and the Fincr problems we require each node z to possess
the following information: its distance d(z, r) from the root, and the maximum
distance mD(Tq, z) to z from a node in Tq for each q ∈ C(z). This will be
accomplished with a basic convergecast like in the previous section. In this case,
Lines 4. and 5. of protocol Pre-processing change as follows:

In the Pre-processing

4. a leaf l with parent p(l) sends up max(Tl, p(l)) = w(l, p(l))
5. an internal node z receiving from each of its children q, the values max(Tq, z)

will compute

max(Tz, p(z)) = max{max(Tq, z)} + w(z, p(z))

and will send up the information max(Tz, p(z)).

Let z be a node in Tx that needs to compute the cost of a candidate swap
edge e′ = (z, z′) for e = (x, p(x)). Let T ′ = Te/e′ .

Lemma 4. The maximum distance Fmax(T ′) and the maximum distance incre-
ment Fincr(T ′) in T ′ from a node z in Tx to r are:

Fmax(T ′) = max
q∈C(z,T ′)

{mD(Tq, z) + w(z, z′) + d(z′, r)}

Fincr(T ′) = max
q∈C(z,T ′)

{mD(Tq, z) + w(z, z′) + d(z′, r)} − d(z, r)

To instantiate the generic algorithm of Section 3 for the Fmax and the Fincr

objective functions we have now to specify what is the enabling information that
needs to be propagated so that all the nodes can make their local choice. As it
will be shown, in both cases the enabling information that a node z has to send
down to its child q is composed of the maximum distance mD(Tx \ Tq, q) of the
nodes in the subtree Tx \ Tq to q. The algorithm for node z is then the same as
the one for Fsum, where the computation of the cost of the local candidate swap
edges and the enabling information change as follows:

162 P. Flocchini et al.

Changes: MAX Algorithm

1. If z = x, the cost of each local candidate swap edge is computed as follows: for
each e′ = (z, z′),
Fmax(Te/e′) = maxq∈C(x){mD(Tq, x) + w(x, x′) + d(x′, r)}
Fincr(Te/e′) = maxq∈C(x){mD(Tq, x) + w(x, x′) + d(x′, r)} − d(x, r).

2. Else {z �= x} – Receiving enabling info m for (x, p(x)), the cost of each local
candidate swap edge is computed as follows:
Fmax(T ′) = max{m, maxq∈C(z){mD(Tq, z)}} + {w(z, z′) + d(z′, r)}
Fincr(T ′) = max{m, maxq∈C(z){mD(Tq, z)}} + {w(z, z′) + d(z′, r) − d(z, r)}.

3. The enabling information to be sent is mD(Tx \ Tq, q).

Lemma 5. Given e = (x, p(x)) , each node z ∈ Tx correctly computes: 1) the
local best swap edges for e, 2) the value mD(Tq, z) for each q ∈ C(z).

Proof. The values w(z, z′) and d(z′, r)) are locally available because they have
been computed in the preprocessing phase. We know that C(z, T ′) = C(z) ∪
{(z, p(z))}). If q ∈ C(z), then max(Tq, z) is locally available because it has also
been computed in the preprocessing phase. On the other hand, if q = p(z),
max(Tq, z) has to be computed during the algorithm. By definition, this is the
enabling information sent to z by p(z).

6 Correctness and Complexity

Lemma 6. Algorithms BSE(Fsum),BSE(Fmax), and BSE(Fincr), find the best
swap edge for e = (x, p(x)) according to the corresponding objective function.

Proof. By Lemmas 3, and 5 respectively, every node correctly computes its local
best swap edge for e. By the correctness of the minimum finding, the global best
swap edge will be communicated to x.

Theorem 1. Independently executing Algorithms BSE(Fsum),BSE(Fmax), and
BSE(Fincr) for each edge, the problems {r,∑}, {r, δ}, and {r,max} are solved.

Let us now examine the complexity of the proposed algorithm. Let n∗ be the
number of edges of the transitive closure of Tr \ {r}.

Theorem 2. The message complexity of the Algorithms is at most 3n∗.

Proof. The preprocessing phase is executed only once and its complexity is
O(|E|). During the swap algorithm for (x, p(x)) the number of messages ex-
changed is 2|V (Tx)|, thus, in total we have:

∑
x 2|V (Tx)| = 2n∗.

Since each message contains only a constant number of units of information
(i.e., node, edge, label, weight, distance), the overall information complexity is
of the same order of magnitude, i.e., O(n∗).

Computing All the Best Swap Edges Distributively 163

7 An O(n) Messages Algorithm

7.1 Algorithmic Shell

The idea is that each node x simultaneously computes the “best” swap edges,
not only for (x, p(x)), but also for each (a, p(a)), where a is an ancestor of x in
T . At an high level, the algorithm consists simply of a broadcast phase started by
the children of the root, followed by a convergecast phase started by the leaves.

Best F -Swap-Long (BSL)

[Broadcast.]

1. Each child x of the root starts the broadcast by sending to its children a list
containing its name and its distance from the root.

2. Each node y, receiving a list of names and distances from its parent, appends
its name and dT (y, r) to the received list and sends it to its children.

[Convergecast.]

1. Each leaf z first computes the best local swap for (z, p(z)); then, for each a in
the received list, it computes the best candidate swap for (a, p(a)); finally, sends
the list of those edges to its parent (if different from r).

2. An internal node y waits until it receives the list of best swap edges from each
of its children. Based on the received information and on its local swap edges,
it computes its best swap edge for (y, p(y)); it then computes for each ancestor
a the best candidate for (a, p(a)); finally, it sends the list of those edges to its
parent (if different from r).

To show how this generic algorithmic structure can be used to solve the
three studied problems, we need to specify how the convergecast part is done.
The differences in three solutions are: (i) the computation of the best swap edge
in the convergecast phase, and (ii) the additional information, of constant size,
to be communicated to the ancestors together with the swap edge.

In the following, we will denote by SL(x) the Swap List associated to node
x; it is defined as a list of records (edge, value, attributes), where edge indicates
a swap edge for (x, p(x)); value the value of the objective function computed in
the tree where (x, p(x)) has been substituted with edge; and attributes a list of
parameters to be specified for the particular problem being solved. Moreover, let
ASL(x) be the swap list associated to the ancestors of x; it is a list of records
(edge, value, attributes, node) indicating for each node a ∈ A(x) (stored in the
field node) the best candidate for (a, p(a)) (stored in edge), and the value of the
objective function (value); attributes is as in SL(x).

Let us describe in details the operations executed by node x. First of all x
computes the best swap edge for (x, p(x)) by considering the set InS(x) of all
local swap edges for (x, p(x)) and the set of swap edges transmitted to it from its
children (Algorithm MyBSE). Then for each ancestor a it computes, among the
swap edges in Tx, the best candidate for (a, p(a)) (Algorithm MyABSE). Note

164 P. Flocchini et al.

that the swap edges x computes for its ancestors can be worse than the final
swap edges computed by its ancestors when they execute Algorithm MyBSE.

MyBSE

(* Algorithm for node x, where e = (x, p(x)) is the link to be swapped *)

1. Determine which of x’s incident edges are swap edges for (x, p(x)); i.e., x con-
structs the set InS(x).

2. For each swap edge ei = (x, yi) ∈ InS(x), compute the value of the objective
function via ei, and the value of the other attributes and insert them together
with ei in SL(x).

3. If x is not a leaf, from each ASL(xj) received from xj ∈ C(x), ex-
tract (ej , value, attributes, x) (or NIL, if no such record exists), and insert
(ej , value, attributes) in SL(x) (or NIL).

4. Sort SL(x) in non decreasing order of value. The minimal element of SL(x) gives
one of the best swap edges for x and the value which minimizes the objective
function.

MyABSE

(* Algorithm for node x *) For each ancestor node a ∈ A(x):

1. Select the swap edge ei ∈ SL(x) which is also a swap edge for (a, p(a)), if any,
with the minimal value of value, and consider its record (ei, vi, attributes, a).

2. For xj ∈ C(x),1 ≤ j ≤ h, let (ej , vj , attributes, a) be the record from ASL(xj).
Update the values of vj and of the attributes in relation to node x. Consider
the set of the updated records {(ej , vj , attributes, a) ∪ (ei, vi, attributes, a)},
1 ≤ j ≤ h, where (ei, vi, attributes, a) is the record computed in Step 1. Select
from this set the record (e, v, attributes, a) with minimal value, if any, and insert
it, in ASL(x) (to be sent to x’s parent); if no record can be selected, insert NIL
in ASL(x).

7.2 Identifying a Swap Edge

In order for a node to decide if one of its incident edge is a swap edge it is
sufficient to check, during the convergecast phase, the information collected in
the broadcast phase.

Property 3. The fact that an edge (u, v) ∈ E\E(T) with u ∈ Tu and v ∈ T \Tu

is a swap edge for (x, p(x)), with x ∈ A(u), can be checked at node u, and no
communication is needed.

Property 3 derives from the fact that, after the broadcast phase, u knows all
its ancestors. Observe that if an edge is not a swap edge for e = (x, p(x)), it is
not feasible for none of a ∈ A(x).

Computing All the Best Swap Edges Distributively 165

8 The Fsum Problem with O(n) Messages

Problem Fsum is solved with minor modifications of the Convergecast Phase of
Algorithm BSL.

To compute, each node z need some additional information: the distance
dT ′(z, r) in Te/e′ for each considered swap edge e′ for (z, p(z)); the weight W (Tz)
of the subtree Tz; the number of nodes n(Tz) in such a subtree. The records of
the list SL(z) will thus have the form: (edge, Fsum(Tz),
{dT ′(z, r),W (Tz), n(Tz)}); the same three items (plus the field node indicating
the ancestor) are stored in the records of ASL(z).

The parameters n(Tz) and W (Tz) are easily computed inductively from the
values sent to z by its children zj , and from the weight of the edge (zj , z). Namely:
n(Tz) =

∑
zi∈C(z) n(Tzi

) + 1; and W (Tz) =
∑

zi∈C(z) W (Tzi
) +

∑
zi∈C(z) n(Tzi

)
w(z, zi). If z is a leaf n(Tz) = 1 and W (Tz) = 0.

Let us now show how to compute the new values of Fsum(Tz), and of dT ′(z, r)
(Step 2 of MyBSE and of MyABSE).

Lemma 7. Let (z, y) ∈ InS(z). Then

(i) Fsum = W (Tz) + n(Tz) · (w(z, y) + dT ′(y, r).
(ii) For each record (ei �= NIL,Fsum(Tzi

), {dT ′(zi, r),W (Tzi
), n(Tzi

)}, z) re-
ceived from child zi, dT ′(z, r) = w(z, zi) + dT ′(zi, r), and
Fsum(Tz) = Fsum(Tzi

) + dT ′(z, r) +
∑h

j=1,j �=i(W (Tzj
) + n(Tzj

)(w(z, zj) +
w(z, zi) + dT ′(zi, r))).

Proof. Assume that the children of z have already terminated their computation
and transmitted their lists to z. Case (i) follows by Lemma 2.

The scenario of Case (ii) is better understood looking at Figure 2. If a swap
edge ei belonging to Tzi

is considered, all the nodes in Tzi
maintain their distance

z1 zi zh

r

z

ei

Fig. 2. Case (ii) in Lemma 7: the computation of Fsum(Tz) via the swap edge ei. The
thick line represents the path to the root via ei

166 P. Flocchini et al.

from the root, hence they contribute to Fsum(Tz) only for Fsum(Tzi
). Node z

contributes for dT ′(z, r). All the other nodes in Tzj
, 1 ≤ j ≤ h, j �= i, to get the

root, follow a path through edges (zj , z), (z, zi) and finally through the swap
edges ei.

The messages used in the convergecast phase are now longer with respect to
the messages used in the approach of Section 4, but still of constant size. We
finally have:

Theorem 3. Each node z �= r:
(i) correctly computes its best swap edge:
(ii) determines for each ancestor a �= r the best swap edge for a in Tz.

Proof. First observe that, as result of the broadcast, every node receives the label
of its ancestors (except r) and it can determine which edges are swap edges for
itself and its ancestors (Property 2 and 3). The proof is by induction on the
height h(z) of the subtree Tz.

Basis. h(z) = 0; i.e., z is a leaf. In this case, one component contains only z,
while the other contains all the other nodes. In other words, the only possible
swap edges are incident on z. Thus, z can correctly compute its best swap edge
by computing the value of the distance as stated in point (i) of Lemma 7, thus
proving (i). It can also immediately determine the swap edges with respect to
all of its ancestors and compute for them the value of the parameters as stated
in point (ii) of Lemma 7, and select, for each ancestor, the best candidate.

Induction step. Let the theorem hold for all nodes z with 0 ≤ h(z) ≤ k − 1;
we will now show that it holds for z with h(z) = k. By inductive hypothesis,
it receives from each child y the best candidate for each ancestor of y ∈ C(z),
including z itself. Hence, based on these lists and on the locally available set
InS(z), z can correctly determine its optimal swap edge, as well as its best
feasible swap edge for each of its ancestors.

Theorem 4. Fsum can be solved with the O(n) message complexity and O(n∗
r)

data complexity.

Proof. The theorem follows immediately from Properties 2 and 3, and from the
fact that, by Lemma 7, the messages still have constant size.

9 The Fmax and Fincr Problems with O(n) Messages

We will show how Fmax is solved by BSL. The value to be minimized is the
maximal distance from the nodes in Tz to the root via a swap edge ei. Similarly
to Fsum, we need to compute inductively two values; namely, the distance from
z to the root via ei, dT ′(z, r), and the maximal distance from the nodes in Tz to
z, that is mD(Tq, z), with q ∈ C(z). The list SL(z) is now composed of records of

Computing All the Best Swap Edges Distributively 167

four elements; namely: (edge, Fmax(Tz), {dT ′(z, r),mD(Tq, z)}); ASL(z) contains
the same information, plus the field node.

Let us now show how to compute the new values of the parameters along
a new swap edge ei (Step 2 of MyBSE) and how to compute the same values
when a swap edge transmitted from a child is considered. The same operations
are performed also in Step 2 of MyABSE. We have:

Lemma 8. Let Tzk
be the subtree of Tz containing the node at the maximal

distance from r. Moreover, let mD2(z) = maxq �=k(mD(Tq, z) be the maximal
distance of the nodes in Tzj

to z, with zj ∈ {C(z) \ zk}. For (z, l) ∈ InS(z), we
have

(i) Fmax(Tz) = maxq∈C(z,T)(mD(Tq, z) + w(z, l) + dT ′(l, r)).
(ii) For each record (es �= NIL,Fmax(Tzs

), {dT ′(zs, r),mD(zs)}, z) received from
child zs, dT ′(z, r) = (w(z, zs) + dT ′(zs, r)). Moreover, if s = k, then
Fmax(Tz) = max(Fmax(Tzs

),mD2s(z) + dT ′(z, r)); otherwise, Fmax(Tz) =
max(Fmax(Tzs

),mD(z) + dT ′(z, r)).

Proof. Assume that the children of z have already terminated their computation
and transmitted their lists to z. From these values z can compute the maximum
distance of a node in Tz, and Case (i) follows immediately. For Case (ii), if the
swap edge es does not belongs to Txk

, the maximal distance is given by the
maximal value among Fmax(Tzs

) and (mD(z) + dT ′(z, r)). Otherwise, all the
nodes in Txk

maintain their distance from the root; for all the other nodes (in
Tj , 1 ≤ j ≤ h, j �= k), called far nodes, to get to the root the path goes through
edges (zj , z), (z, zk), and finally through the swap edge zs. Hence, in this case,
to compute the distance of the far nodes we have to consider the node at the
maximal distance not belonging to Txk

, whose distance is mD2(z).

Thus, it follows that:

Theorem 5. Each node x �= r:

(i) correctly computes the best swap edge for (x, p(x)) according to Fmax;
(ii) determines for each ancestor a �= r the best swap edge for v in Tu.

Fincr can be solved with a simple extension of the solution of Fmax.

Theorem 6. Problems Fmax and Fincr can be solved with O(n) messages and
an overall O(n∗

r) information complexity.

Proof. It follows immediately from Properties 2 and 3, and from Lemma 8.

References

1. D. Eppstein, Z. Galil, and G.F. Italiano. Dynamic graph algorithms. CRC Hand-
book of Algorithms and Theory, CRC Press, 1997.

2. A. Di Salvo and G. Proietti. Swapping a failing edge of a shortest paths tree
by minimizing the average stretch factor. Proc. of 10th Colloquium on Structural
Information and Communication Complexity (SIROCCO 2004) 2004.

168 P. Flocchini et al.

3. P. Flocchini, T. Mesa, L. Pagli, G. Prencipe, and N. Santoro. Efficient protocols
for computing optimal swap edges. In Proc. of 3rd IFIP International Conference
on Theoretical Computer Science (TCS 2004), 2004, to appear.

4. A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed net-
works. Information and Computation, 79:43-59, 1988.

5. H. Ito, K. Iwama, Y. Okabe, and T. Yoshihiro. Polynomial-time computable backup
tables for shortest-path routing. Proc. of 10th Colloquium on Structural Informa-
tion and Communication Complexity (SIROCCO 2003), 163–177, 2003.

6. H. Mohanty and G.P.Bhattacharjee. A distributed algorithm for edge-disjoint
path problemProc. of 6th Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), 44-361, 1986.

7. E. Nardelli, G. Proietti, and P. Widmayer. Finding all the best swaps of a minimum
diameter spanning tree under transient edge failures. Journal of Graph Algorithms
and Applications, 2(1):1–23, 1997.

8. E. Nardelli, G. Proietti, and P. Widmayer. Swapping a failing edge of a single
source shortest paths tree is good and fast. Algoritmica, 35:56–74, 2003.

9. P. Narvaez, K.Y. Siu, and H.Y. Teng. New dynamic algorithms for shortest path
tree computation IEEE Transactions on Networking, 8:735–746, 2000.

10. L. L. Peterson and B. S. Davie. Computer Networks: A Systems Approach, 3rd
Edition. Morgan Kaufmann, 2003.

11. G. Proietti. Dynamic maintenance versus swapping: An experimental study on
shortest paths trees. Proc. 3rd Workshop on Algorithm Engineering (WAE 2000),
207–217 2000

12. R. E.Tarjan. Application of path compression on balanced trees. Journal of ACM,
26:690–715, 1979.

SRF TCP: A TCP-Friendly and Fair Congestion
Control Method for High-Speed Networks

Masahiko Fukuhara1, Fumiaki Hirose1, Tomoya Hatano2,
Hiroshi Shigeno1, and Ken-ichi Okada1

1 Faculty of Science and Technology, Keio University,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan

{fukuhara, hirose, shigeno, okada}@mos.ics.keio.ac.jp
2 NTT Access Network Service Systems Laboratories,

1-6 Nakase, Mihama-ku, Chiba-shi, Chiba, Japan
hatano.tomoya@ansl.ntt.co.jp

Abstract. TCP Reno congestion control carries two issues. First, its
performance is poor in high-speed networks. To solve this TCP Reno
drawback, HighSpeed TCP and Scalable TCP were proposed. However,
the fairness between these proposed TCP and TCP Reno is not con-
sidered, when both connections coexist. Second, TCP Reno connections
share bandwidth unfairly, when TCP flows with different RTTs use the
same link. Many approaches have been proposed to solve this issue. How-
ever, no single method has been proposed to solve both issues. In this
paper, we propose Square Root Fair TCP (SRF TCP). SRF TCP con-
gestion control (1) sends packets efficiently in high-speed networks, (2)
is TCP-friendly with TCP Reno and (3) shares fair bandwidth between
flows with different RTTs. We evaluate the capabilities of SRF TCP
through computer simulations and compare it with TCP Reno, High-
Speed TCP and Scalable TCP.

1 Introduction

Recently, an infrastructure which enables high-speed transmission has been made
by the evolution of the optical network. And the cost of the service using such
an infrastructure is falling year by year. Many services which realize various
demands will appear from now on and high-speed transmission is spreading
widely. Moreover, satellite and wireless links with high latency are becoming
more general. TCP congestion control is needed to be efficient even if bandwidth-
delay product increases.

When current TCP, TCP Reno, is used in high-speed networks, it cannot
use the link bandwidth effectively. In order to solve this problem at end hosts,
HighSpeed TCP[1] and Scalable TCP[2] were proposed. These proposals have the
problem of fairness with TCP Reno. When TCP Reno connections and proposed
TCP connections coexist in the same link, the proposed TCP connections obtain
the bandwidth aggressively.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 169–183, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

170 M. Fukuhara et al.

In TCP Reno, the difference in flow’s RTT causes unfair bandwidth allocation
to each flow. Many mechanisms which improve fairness at end hosts have been
developed. However, these mechanisms disregard fairness with TCP Reno and
adaptation to high-speed transmission.

As the solution of these problems, a lot of research focusing on AQM[3, 4] are
proposed. CSFQ[5], which is a queuing system at a network, is also proposed.
Another approach for high-speed networks, taken by XCP[6], uses explicit feed-
back from routers for congestion control. However, these proposals need to make
changes of both end hosts and networks. We have the idea that the problem by
TCP congestion control should be improved in TCP, that is at only end hosts.

TFRC[7], Binomial congestion control[8] and many AIMD mechanisms[9,
10] are researched for TCP-friendly congestion control method. However, these
mechanisms cannot transmit efficiently in high-speed networks.

In this paper, we propose Square Root Fair TCP (SRF TCP), which solves
the problems of TCP Reno. In SRF TCP, when an ACK is received, the window
increases proportional to the flow’s RTT and inversely proportional to the square
root of its congestion window. When a packet is lost, the window decreases
proportional to the square root of its congestion window. SRF TCP is desirable
for high-speed transmission, improves fairness with TCP Reno and improves
unfair bandwidth allocation by the difference in flow’s RTT.

The paper is organized as follows. In section 2, we describe TCP Reno conges-
tion control and its problems. We describe the related works on TCP congestion
control mechanism for high-speed transmission in section 3, and on unfairness
by the difference in flow’s RTT in section 4. Section 5 proposes SRF TCP. In
section 6, we present simulation results of SRF TCP. Section 7 concludes the
paper.

2 TCP Reno

2.1 Congestion Control

TCP Reno increases the congestion window (W) by 1/W for each received ACK
and decreases it in half for each loss event. TCP Reno controls the congestion
window as follows:

Increase: W = W +
1
W

, (1)

Decrease: W = W − 1
2
W. (2)

Based on received ACK and packet loss, TCP congestion control mechanism
controls the congestion window to transmit packets effectively. As a result, a
packet loss event arises periodically. The congestion window and throughput (T)
are related to packet loss rate (p) and TCP Reno response function is computed
as follows[11]:

Wreno =
1.22
p0.5

, (3)

SRF TCP: A TCP-Friendly and Fair Congestion Control Method 171

Treno =
Sizepac

RTT

1.22
p0.5

, (4)

where packet size is Sizepac.

2.2 Problem in High-Speed Networks

From equation (3), TCP Reno places a serious constraint on the congestion
window that can be achieved by TCP in realistic environments. For example, for
a TCP Reno connection with 1500-byte packets and a 100 ms RTT, achieving a
steady-state throughput of 10 Gbps would require an average congestion window
of 83000 segments, and an average packet drop rate of 2×10−10 at most[1]. This is
an unrealistic requirement for current networks. It takes more than 40000 RTTs
to recover the congestion window after the loss event to make efficient use of the
link bandwidth. The reason why TCP Reno cannot achieve high throughput is
that its congestion window is increased by a significantly small size of 1 packet
per RTT at most, while it is decreased by half the size of it at a packet loss.

2.3 Fairness Between Flows with Different RTTs

For TCP Reno, the window increase is inversely proportional to RTT. A TCP
Reno connection with longer RTT increases the congestion window slowly. A
connection with slow increasing window cannot adapt the sending rate to the
network condition promptly, while a connection with faster increasing window
takes more available bandwidth. As a result, TCP Reno congestion control mech-
anism lacks the mechanism to share fair bandwidth. In addition, from equation
(4), the fact that the throughput is inversely proportional to its RTT proves that
this issue arises.

3 TCP Congestion Control Mechanism for High-Speed
Networks

3.1 HighSpeed TCP

HighSpeed TCP is proposed to transmit data efficiently in high-speed networks.
It uses three parameters, WL, WH , and PH . To ensure TCP compatibility, it uses
the same response function as TCP Reno when the current congestion window
is at the maximum WL, and uses the HighSpeed response function when the
current congestion window is greater than WL. HighSpeed TCP keeps average
congestion window WH , when packet loss rate is PH . To simplify, it sets the
property that the response function gives a straight line on a log-log scale. This
results in the following response function, for values of the average congestion
window greater than WL:

logW =
logWH − logWL

logPH − logPL
(logp − logPL) + logWL. (5)

172 M. Fukuhara et al.

HighSpeed TCP can be translated into increase and decrease functions. They
use a(W) as the window increase per RTT and b(W)W as the window decrease
for each loss event. Given decrease parameters of b(W) = bH for W = WH , the
value of b(W) for other values of W > WL can be specified. HighSpeed TCP lets
b(W) vary linearly as the log of W , and a(W) can be computed as follows:

b(W) =
logW − logWL

logWH − logWL
(bH − 0.5) + 0.5. (6)

a(W) = 2W 2p(W)
b(W)

2 − b(W)
. (7)

In this proposal, WL = 38, WH = 83000, PH = 10−7 and bH = 0.1 are rec-
ommended. On these occasions, HighSpeed TCP response function is computed
as follows:

Whs =
0.119
p0.835

, (8)

Ths =
Sizepac

RTT

0.119
p0.835

. (9)

This is how HighSpeed TCP realizes efficient transmission in high-speed net-
works. However, inverse proportion to RTT in equation (9) proves that High-
Speed TCP has unfairness by the difference in flow’s RTT. Moreover, it is in-
dicated that HighSpeed TCP is more aggressive than TCP Reno and it arises
unfair bandwidth allocation with TCP Reno. From equation (4) and (9), the
proportion of throughput between TCP Reno and HighSpeed TCP is computed
as follows:

Ths

Treno
=

0.0971
p0.335

. (10)

For example, for packet drop rates of 10−6, the proportion of throughput is
10.0, which is unfair.

3.2 Scalable TCP

Scalable TCP also improves the TCP performance in high-speed wide area net-
works. Scalable TCP controls the congestion window as follows:

Increase: W = W + 0.01, (11)
Decrease: W = W − 0.125W. (12)

For Scalable TCP, the congestion window is increased by 0.01W proportional
to its congestion window per RTT. According to [2], the recovery time after a
packet loss is 13.42RTT, which is proportional to the RTT and independent
of the congestion window. On the other hand, for TCP Reno, the congestion
window is increased by 1 segment per RTT and the recovery time after a packet
loss is proportional to both the RTT and the congestion window. A Scalable
TCP connection recovers its congestion window in a short time even when it has
a large congestion window. Therefore, Scalable TCP makes efficient use of the

SRF TCP: A TCP-Friendly and Fair Congestion Control Method 173

bandwidth in high-speed networks. Scalable TCP response function is computed
as follows:

Wsca =
0.0745

p
(13)

Tsca =
Sizepac

RTT

0.0745
p

(14)

Scalable TCP also has unfairness by the difference in flow’s RTT accord-
ing to equation (14). Moreover, from equation (4) and (14), the proportion of
throughput between TCP Reno and Scalable TCP is computed as follows:

Tsca

Treno
=

0.0608
p0.5

. (15)

For example, for packet drop rates of 10−6, the proportion of throughput is
60.9. The unfairness with TCP Reno is more serious than that of HighSpeed
TCP and it is fatal to spread in the world.

3.3 The Relationship Between the Congestion Window and p

Figure 1 shows the relation between p and W of TCP Reno, HighSpeed TCP
and Scalable TCP. At the same p, the window difference between TCP Reno
and HighSpeed TCP is smaller than that of TCP Reno and Scalable TCP. It
shows that HighSpeed TCP is more TCP-friendly than Scalable TCP. However,
when p gets smaller, HighSpeed TCP causes unfair bandwidth allocation. To
improve fairness with TCP Reno compared to HighSpeed TCP, the congestion
window of new TCP method in Figure 1 should be kept less than HighSpeed
TCP congestion window.

4 Unfairness by the Difference in Flow’s RTT

4.1 Needs for Improvement

Satellite links are becoming more general and gigabit transmission with these
links will also be required extremely. However, satellite links have longer round
trip propagation delay. For TCP Reno, it takes too much time for a connection
with longer RTT to recover the halved congestion window, especially in gigabit
networks. HighSpeed TCP also needs 123 seconds for a connection with 1 second
RTT to recover the decreased congestion window in 10 Gbps networks. On this
occasion, recovery time is too long to make efficient use of link bandwidth. In
order for a connection with longer RTT to recover the decreased congestion
window and make efficient use of high-speed networks, the window increase and
decrease algorithm independent of RTT is needed.

4.2 Related Works

Many methods have been proposed to solve unfairness by the difference in flow’s
RTT. Fang et al. [12] set TCP window increase at a constant rate and removed

174 M. Fukuhara et al.

1

10

100

1000

10000

100000

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

C
on

ge
st

io
n

W
in

do
w

 [p
ac

ke
ts

]

Loss rate (p)

TCP Reno
HighSpeed TCP

Scalable TCP

Fig. 1. The relation between p and W of TCP Reno, HighSpeed TCP and Scalable
TCP

the influence of RTT differences. In this proposal, the unfair problem with TCP
Reno remains.

Hamann et al. [13] proposed a congestion control method which increases the
congestion window for each received ACK as follows:

W = W +
1
W

Swnd, (16)

Swnd = Swnd + βRTT 2. (17)

The window increase is proportional to RTT 2 to share fair bandwidth be-
tween flows with different RTTs. Although the proposed congestion control keeps
fairness with TCP Reno, no improvement is made to realize efficient transmission
in high-speed networks.

5 Proposed Congestion Control Method

We propose Square Root Fair TCP (SRF TCP) which can transmit data with
efficient use of the link bandwidth in high-speed networks, resolves unfairness
by the difference in flow’s RTT and improves fairness with TCP Reno.

In this paper, for a new congestion control method, let the congestion window
increase and decrease as follows:

Increase: W = W + aWα, (18)
Decrease: W = W − bW β . (19)

SRF TCP: A TCP-Friendly and Fair Congestion Control Method 175

5.1 Resolution of α and β

To transmit data efficiently in high-speed networks, values of α and β are spec-
ified at first. TCP Reno, which is the Additive Increase Multiplicative Decrease
(AIMD) congestion control, adopts β−α = 2. And TFRC and Binomial conges-
tion control also adopts β−α = 2. In high-speed networks, the AIMD congestion
control decreases its congestion window significantly while the window increase
is small. According to [14], β − α = 1 is recommended for ideal response func-
tion. When β − α = 1, the packet loss rate is independent of the congestion
window and is dependent on only RTT, which is desirable for high-speed data
transmission.

The choices of α and β to be considered are (α, β) = (−1, 0), (0, 1), (−1/2, 1/2).
When (α, β) = (−1, 0), the window decrease is constant. For large congestion
window, the window decrease gets relatively too small, while the window decrease
gets relatively too large for small congestion window. Thus, (−1, 0) is not desirable
to use the link bandwidth efficiently in both normal and high-speed networks.

When (α, β) = (0, 1), which is adopted by Scalable TCP, the window increase
per RTT gets relatively too large at large congestion window. When the coef-
ficient of increase is changed to a smaller value, the window increase per RTT
gets relatively too small at small congestion window.

For (α, β) = (−1/2, 1/2), the window increase grows steadily and the window
decrease drops steadily. The window increase and decrease can be adjusted to the
desirable value for every congestion window. This system can be used efficiently
for transmission in both normal and high-speed networks. Therefore, we adopt
(α, β) = (−1/2, 1/2) for the new congestion control method. On these occasions,
the response function is computed as follows:

W =
a

bp
, (20)

T =
Sizepac

RTT

a

bp
. (21)

5.2 Resolution of a and b

The congestion control of (α, β) = (−1/2, 1/2) increases the congestion window
by aw

1
2 per RTT and decreases it by bw

1
2 for each loss event. From equation (21),

the average throughput is inversely proportional to RTT. In order for throughput
to be independent of RTT, b/a ∝ RTT is required.

When the window increase is set proportional to RTT, the window increase
and decrease become same value, independent of flow’s RTT. Thus a = a′RTT
seems to be desirable.

The values of a′ and b are specified from the following factors. (1) b = 15 is
needed for window decrease to be more than 0.05W for 10 Gbps data transfer. (2)
In order to control at the same performance as HighSpeed TCP at 10 Gbps link,
p = 10−7 is desirable when W = 83000. From equation (20), we set b/a′ = 12.
Then the recovery time will be 12[sec] and a′ = 1.25 is specified. When a′ = 1.25,

176 M. Fukuhara et al.

the window increase per 1 RTT is 36 packets for 10 Gbps data transfer, which
is not a too large window increase. Thus, the window increase and decrease in
SRF TCP is set as follows:

Increase: W = W + 1.25RTTW − 1
2 , (22)

Decrease: W = W − 15W
1
2 . (23)

And SRF TCP response function is computed as follows:

Wsrf =
0.0833RTT

p
, (24)

Tsrf =
0.0833Sizepac

p
. (25)

In equation (25), Tsrf is independent of RTT and SRF TCP shares fair
bandwidth between flows with different RTTs.

From equation (4) and (25), the proportion of throughput between TCP Reno
and SRF TCP is computed as follows:

Tsrf

Treno
=

0.00694
p0.5

, (26)

where RTT = 100ms is set. For packet drop rates of 10−6, the proportion of
throughput is 7.0. The fairness of SRF TCP with TCP Reno is improved in
comparison to that of HighSpeedTCP or Scalable TCP.

5.3 Comparison to TCP Reno

SRF TCP is set to perform better than TCP Reno. When W ≤ 0.64
RTT 2 , the

window increase of SRF TCP (1.25RTTW− 1
2) is less than 1/W , which is the

window increase of TCP Reno. When W ≤ 900, the window decrease of SRF
TCP (15W

1
2) is more than 0.5W , which is the window decrease of TCP Reno.

On these occasions, SRF TCP performs worse than TCP Reno. Therefore, the
window increase and decrease of SRF TCP are set to the same value as TCP
Reno.

When 0.64
RTT 2 ≤ W ≤ 900, SRF TCP increases the congestion window by

1.25RTTW− 1
2 for every received ACK and decreases it by 0.5W for each loss

event. SRF TCP response function is computed as follows:

Wsrf =
1.67RTT 0.667

p0.667
, (27)

Tsrf =
Sizepac

RTT 0.333

1.67
p0.667

. (28)

When 0.64
RTT 2 ≤ W ≤ 900, the proportion of throughput between TCP Reno

and SRF TCP is computed as follows:

SRF TCP: A TCP-Friendly and Fair Congestion Control Method 177

1

10

100

1000

10000

100000

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

C
on

ge
st

io
n

W
in

do
w

 [p
ac

ke
ts

]

Loss rate (p)

SRF TCP
TCP Reno

HighSpeed TCP
Scalable TCP

Fig. 2. The relation between p and W of SRF TCP

Tsrf

Treno
=

0.438
p0.166

, (29)

where RTT = 100ms is set.
We name the congestion control method in equation (30) and (31) as SRF

TCP.

Increase: W = W + max(1.25RTTW − 1
2 ,

1
W

), (30)

Decease: W = W − min(15W
1
2 ,

1
2
W). (31)

5.4 Comparison to HighSpeed TCP and Scalable TCP

Figure 2 shows the relation between p and the congestion window of SRF TCP.
From the figure, at every p, the window difference between TCP Reno and SRF
TCP is smaller than the window difference between TCP Reno and the other
TCPs. Therefore, SRF TCP is considered to improve fairness with TCP Reno.

Additionally, the congestion window of SRF TCP is close to that of High-
Speed TCP to make efficient use of link bandwidth at smaller p.

6 Evaluation

We evaluate the proposed SRF TCP through computer simulations in compari-
son to TCP Reno, HighSpeed TCP and Scalable TCP with Network Simulator

178 M. Fukuhara et al.

version 2 (ns-2) [15]. The simulation topology is shown in Figure 3. In this model,
the link bottleneck bandwidth, the round trip propagation delay and the number
of TCP connections are changed. All simulations were run long enough to ensure
the system has reached a consistent behavior.

6.1 Link Utilization

Figures 4 and 5 show the link utilization when a varying number of flows are
transmitted in 100 Mbps and 1 Gbps bottleneck link, respectively. The round
trip propagation delay is 100 ms. From figure 4, SRF TCP utilizes the link
bandwidth more efficiently than TCP Reno and less efficiently than HighSpeed
TCP and Scalable TCP in 100 Mbps when only one flow is transmitted. As the
number of flows increases, the difference between SRF TCP and HighSpeed TCP
gets small, while Scalable TCP utilizes bandwidth efficiently.

As shown in figure 5, SRF TCP utilizes the link bandwidth as efficiently as
HighSpeed TCP and more than TCP Reno, regardless of the number of flows.
On the other hand, Scalable TCP cannot utilize link bandwidth at the smaller
number of flows, because Scalable TCP increases much congestion window at a
time and leads much packet loss and longer recovery time.

Figure 6 shows the link utilization when one flow is transmitted as the bot-
tleneck bandwidth increases. Shown in figure 6, SRF TCP makes efficient use
of the link bandwidth at wider bandwidth. In figure 2, SRF TCP gets close to
HighSpeed with larger congestion window, and at this simulation, the perfor-
mance of SRF TCP is almost the same as that of HighSpeed TCP. At narrower

Sender Receiver

Router Router

Bottleneck link

data

Fig. 3. Simulation model

SRF TCP: A TCP-Friendly and Fair Congestion Control Method 179

bandwidth, SRF TCP utilizes as much bandwidth as TCP Reno in order to
retain TCP compatibility.

Therefore, SRF TCP utilizes the link bandwidth at wider bandwidth and
retains TCP compatibility at narrower bandwidth. The high performance is
observed notably at the smaller number of flows.

6.2 Fairness with TCP Reno

Figure 7 shows fairness when one TCP Reno flow and one SRF TCP, HighSpeed
TCP or Scalable TCP flow are transmitted together as the bottleneck bandwidth

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8

U
til

iz
at

io
n

[M
bp

s]

Number of Flows

SRF TCP
TCP Reno

HighSpeed TCP
Scalable TCP

Fig. 4. Link utilization of 100 Mbps bottleneck link

500

550

600

650

700

750

800

850

900

950

1000

1 2 3 4 5 6 7 8

U
til

iz
at

io
n

[M
bp

s]

Number of Flows

SRF TCP
TCP Reno

HighSpeed TCP
Scalable TCP

Fig. 5. Link utilization of 1 Gbps bottleneck link

180 M. Fukuhara et al.

50

55

60

65

70

75

80

85

90

95

100

10 20 50 100 200 500 1000

U
til

iz
at

io
n

[%
]

Bottleneck Bandwidth [Mbps]

SRF TCP
TCP Reno

HighSpeed TCP
Scalable TCP

Fig. 6. Link utilization when one flow is transmitted

increases. Fairness is defined as the proportion of the throughput and computed
as T/Treno, where T is the throughput of TCP sharing link with TCP Reno.
When the fairness is equal to 1, two connections share the same bandwidth and
it is a fair situation.

As shown in figure 7, the values of all the TCP are close to 1 and they keep
fairness with TCP Reno at narrower bandwidth. At wider bandwidth, while
HighSpeed TCP and Scalable TCP are aggressive congestion control and share

0

5

10

15

20

25

30

10 20 50 100 200 500 1000

F
ai

rn
es

s

Bottleneck Bandwidth [Mbps]

SRF TCP
HighSpeed TCP

Scalable TCP

Fig. 7. Fairness with TCP Reno

SRF TCP: A TCP-Friendly and Fair Congestion Control Method 181

0

5

10

15

20

25

30

35

40

40 70 100 130 160 190 220 250

T
hr

ou
gh

pu
t [

M
bp

s]

RTT (ms)

SRF TCP
TCP Reno

HighSpeed TCP
Scalable TCP

Fig. 8. Each throughput of flows with different RTTs in 100 Mbps

0

50

100

150

200

250

300

350

400

450

500

40 70 100 130 160 190 220 250

T
hr

ou
gh

pu
t [

M
bp

s]

RTT (ms)

SRF TCP
TCP Reno

HighSpeed TCP
Scalable TCP

Fig. 9. Each throughput of flows with different RTTs in 1 Gbps

unfair bandwidth with TCP Reno, SRF TCP improves fairness with TCP Reno.
From these results, SRF TCP proves to ensure compatibility with TCP Reno.

6.3 Fairness Between Flows with Different RTTs

Figures 8 and 9 show the throughput of 8 flows with different RTTs in 100 Mbps
and 1 Gbps bottleneck bandwidth, respectively. RTTs of the flow #1 to #8 are
40, 70, 100, 130, 160, 190, 220 and 250 ms, respectively.

From these figures, the throughput of TCP Reno, HighSpeed TCP and Scal-
able TCP are dispersed; a flow with shorter RTT gets more bandwidth than

182 M. Fukuhara et al.

a flow with longer RTT. On the other hand, for SRF TCP, the throughput of
each flow is almost same value independent of its RTT. This is because the
throughput of SRF TCP is independent of its RTT in equation (25), while the
throughput of TCP Reno, HighSpeed TCP and Scalable TCP are inversely pro-
portional to RTT in equation (4), (9) and (14). Therefore, SRF TCP proves to
ensure fairness between flows with different RTTs.

7 Conclusion

In this paper, we proposed Square Root Fair TCP (SRF TCP) to realize efficient
data transmission in high-speed networks, fairness with TCP Reno and fairness
between flows with different RTTs. SRF TCP congestion control method in-
creases the congestion window inversely proportional to the square root of the
congestion window and proportional to its RTT for each received ACK, and de-
creases the congestion window proportional to the square root of the congestion
window for each loss event.

From the evaluation of SRF TCP through computer simulation, the following
three points are proved. First, SRF TCP makes efficient use of the link band-
width at wider bandwidth. It is obviously observed when the link is used by
smaller connections. Second, SRF TCP improves fairness with TCP Reno in
comparison to HighSpeed TCP and Scalable TCP when the connection is trans-
mitted with a TCP Reno connection. Effectiveness of improvement gets larger
at wide bandwidth. Finally, SRF TCP shares fair bandwidth between flows with
different RTTs independent of their RTTs.

Although bandwidth utilization, fairness with TCP Reno and fairness be-
tween flows with different RTTs are improved, all the issues are not solved per-
fectly. More improvements are needed to these issues.

Acknowledgement

This work was supported by a special grant from COE.

References

1. S. Floyd, “HighSpeed TCP for Large Congestion Windows”, Internet Draft draft-
floyd-tcp-highspeed-02.txt, February 2003.

2. Tom Kelly, “Scalable TCP: Improving Performance in HighSpeed Wide Area Net-
works”, December 2002. http://www-lce.eng.cam.ac.uk/ ctk21/scalable/.

3. T. J. Ott, T. V. Lakshman, and L. H. Wong, “SRED: Stabilized RED,” in Pro-
ceedings of the IEEE INFOCOM ’99, March 1999.

4. M. Christiansen, K. Jeffay, D. Ott, and F. D. Smith, “Tuning RED for web traffic,”
in Proceedings of the ACM SIGCOMM 2000, August 2000.

5. I. Stoica, S. Shenker, and H. Zhang. “Core-stateless fair queuing: A scalable ar-
chitecture to approximate fair bandwidth allocations in high speed networks,” In
Proc. of ACM SIGCOMM ’98, August 1998.

SRF TCP: A TCP-Friendly and Fair Congestion Control Method 183

6. D. Katabi, M. Handley and C. Rohrs. “Congestion Control for High Bandwidth-
Delay Product Networks,” ACM SIGCOMM 2002, August 2002.

7. Mark Handley, Jitendra Padhye, Sally Floyd, and Joerg Widmer, “TCP Friendly
Rate Control (TFRC): Protocol Specification,” RFC 3448, January 2003.

8. D. Bansal and H. Balakrishnan, “Binomial Congestion Control Algorithms,” In
Proceedings of IEEE INFOCOM 2001, April 2001.

9. Y. Richard Yang and Simon S. Lam, “General AIMD congestion control,” in Pro-
ceedings of ICNP, November 2000.

10. S. Floyd, M. Handley, J. Padhye, and J. Widmer. “Equation-based congestion
control for unicast applications,” in Proceedings of the ACM SIGCOMM 2000,
August 2000.

11. J. Padhye, V. Firoiu, D. Towsley and J. Krusoe, “Modeling TCP Throughput:
A Simple Model and its Empirical Validation,” ACM SIGCOMM ’98, P303–314,
1998.

12. Fang, W. and Peterson, L.: TCP mechanisms for Diff-Serv Architecture, Princeton
University, CS Dept., Technical Report TR-605-99 (1999).

13. T. Hamann, J. Walrand, “A New Fair Window for ECN Capable TCP (New-
ECN),” in Proceedings of lEEE INFOCOM 2000, March 2000.

14. T. J. Ott, “ECN protocols and the TCP paradigm,” in Proceedings’ of lEEE
INFOCOM 2000, March 2000.

15. The network simulator ver.2 - ns-2. http://www.isi.edu/nsnam/ns/

Embedded Systems
- Challenges and Work Directions

Joseph Sifakis

Verimag and ARTIST2 European Network of Excellence

Abstract. Embedded Systems are components integrating software and
hardware jointly and specifically designed to provide given functionali-
ties. These components may be used in many different types of applica-
tions, including transport (avionics, space, automotive, trains), electri-
cal and electronic appliances (cameras, toys, television, washers, dryers,
audio systems, cellular phones), power distribution, factory automation
systems, etc.

Their extensive use and integration in everyday products marks a
significant evolution in information science and technology. A main trend
is the proliferation of embedded systems, that should work in seamless
interaction while respecting real-world constraints.

Embedded systems have a number of specific characteristics, which
play a role in structuring the technical domain including criticality, re-
activity and autonomy.

The coming generations of embedded systems - primarily used in
mass-market products - need development methods and tools allowing
to jointly consider functionality, quality, physical implementation, and
market constraints: The need to jointly consider functional and extra-
functional constraints leads to a system-centric approach to development.
Here, the main focus is the end result: a system as the combination of
hardware and software, in interaction with its physical environment.

Current methods and tools do not allow system-centric approaches.
These approaches raise difficult, fundamental research problems, which
are the basis of an emerging theory that should bring together informa-
tion and physical sciences. Information sciences consider models of com-
putation based on abstract notions of machines (e.g., automata, com-
plexity and computability theory, algorithms, etc.), that do not take
into account physical properties of computation (e.g., execution times,
delays, latency, etc.). There is no unified theory allowing to predict
the behavior of an application software on a given execution platform
which determines execution speed and other dynamic properties of the
application.

System-centric approaches raise two grand challenges common to all
the activities of system development. The first is theory and tools for
rigorous component-based engineering. This determines our ability to
build complex systems from simpler ones by mastering their complex-
ity. The second is intelligence, a long term vision for systems that are
able to analyze and adapt their behavior according to changes of their
environment.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 184–185, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Embedded Systems - Challenges and Work Directions 185

We discuss specific work directions in system development activ-
ities to meet these challenges, including modeling, programming and
compilation, operating systems design, controller synthesis, testing and
verification.

Reference

1. ARTIST: ”Selected Topics in Embedded Systems Design: Roadmaps for Research”,
http://www.artist-embedded.org/Roadmaps/

Comparison of Failures and Attacks on Random
and Scale-Free Networks

Jean-Loup Guillaume1, Matthieu Latapy1, and Clémence Magnien2

1 LIAFA – CNRS – Université Paris 7 – 2 place Jussieu,
75251 Paris Cedex 05, France

Fax : 33 (0)1 44 27 68 49
{guillaume, latapy}@liafa.jussieu.fr

2 CREA – CNRS – École Polytechnique – 1, rue Descartes,
75005 Paris, France

Fax : 33 (0)1 55 55 90 40
magnien@shs.polytechnique.fr

Abstract. It appeared recently that some statistical properties of com-
plex networks like the Internet, the World Wide Web or Peer-to-Peer
systems have an important influence on their resilience to failures and
attacks. In particular, scale-free networks (i.e. networks with power-law
degree distribution) seem much more robust than random networks in
case of failures, while they are more sensitive to attacks.

In this paper we deepen the study of the differences in the behavior of
these two kinds of networks when facing failures or attacks. We moderate
the general affirmation that scale-free networks are much more sensitive
than random networks to attacks by showing that the number of links to
remove in both cases is similar, and by showing that a slightly modified
scenario for failures gives results similar to the ones for attacks. We also
propose and analyze an efficient attack strategy against links.

Keywords: Internet, Complex Networks, Random Graphs, Scale-Free
Graphs, Resilience, Fault tolerence, Reliability, Network Topology.

Introduction

In a random network [1, 2] with n nodes, each of the n·(n−1)
2 possible links exists

with a given probability p. In other words, a random network is constructed from
n nodes by choosing m = p · n·(n−1)

2 links at random. In such a network, the
degree distribution pk follows a Poisson law: pk = e−z zk

k! where z is the average
degree. Intuitively, such a distribution means that most nodes have a degree
close to the average, and that the number of nodes with a given degree decays
exponentially fast away from the mean degree.

However, it has been shown recently that most real-world complex networks
[3, 4, 5, 6, 7, 8, 9], in particular the Internet [10], the World Wide Web [7, 11] and
Peer-to-Peer systems [12], have a power-law degree distribution: pk ∼ k−α. In

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 186–196, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Comparison of Failures and Attacks on Random and Scale-Free Networks 187

the cases we have cited, α is close to 2.5. Intuitively, such a distribution means
that, despite most nodes have a low degree, the number of nodes with (very)
high degree is not negligible.

Since this difference between random networks and real-world complex net-
works has been discovered, a strong effort has been put on the understanding
of its consequences. One of the most famous is that it significantly influences
the robustness of networks [7, 13, 14, 15, 16, 17], which can be observed as fol-
lows. Given a network, one can model a series of failures by a random removal
of nodes (or links), whereas an attack is modeled by the targeted removal of a
series of chosen nodes (or links). The way the nodes (or links) are chosen dur-
ing an attack is called an attack strategy. The quality of the service provided
by the network under consideration can be roughly evaluated by the size of its
largest connected component (i.e. the number of machines which can commu-
nicate in the Internet, for instance). The resilience of the network to failures or
attacks can then be analyzed by studying how the size of the largest connected
component varies as a function of the number of removed nodes (or links). In
particular, the network is said to have a giant connected component if it has a
component of size linear with respect to the size of the network. In other words,
a constant proportion (with respect to the network size) of the whole network is
connected. Other criteria for measuring network efficiency have been proposed,
see for instance [16, 17, 18, 19].

The most widely studied attack strategy has been introduced independently
in [7] and [13]. It consists in removing nodes by decreasing order of their degree.
We will refer to this attack as the classical attack strategy. The effects of this
attack strategy are plotted in Figure 1, together with the effect of failures.

Fraction of deleted nodes

Si
ze

 o
f

co
m

po
ne

nt

Random, k=2.6, node failure

Random, k=1.6, node failure
Random, k=2.6, node attack

Random, k=1.6, node attack

 0
 0.2 0.4 0.6 0.8 1

 1

 0.8

 0.6

 0.4

 0.2

 0

Fraction of deleted nodes

Scale−free, k=2.6, node attack

Scale−free, k=1.6, node attack
Scale−free, k=1.6, node failure

Si
ze

 o
f

co
m

po
ne

nt

Scale−free, k=2.6, node failure

 1

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8
 0

Fig. 1. Effects of random failures and attacks on random networks (left) and scale-free
networks (right). The plots represent the size of the largest connected component as
a function of the fraction of removed nodes. Different values of the mean degree k are
considered

From these experiments the following observations can be derived [7, 13].
First, there is a qualitative difference in the behavior of random and scale-free
networks in case of failures: for random networks, the size of the largest connected
component drops to zero when a finite fraction of the nodes are removed (this

188 J.-L. Guillaume, M. Latapy, and C. Magnien

fraction represents a threshod value), whereas for scale-free networks, it decreases
very slowly, and reaches 0 only when most nodes have been removed. Thus scale-
free networks appear to be much more resilient to failures than random networks.
However, the opposite seems true for attacks: scale-free networks collapse much
more quickly than random networks. The power-law distribution of degrees in the
Internet, which might therefore make it very resilient to failures but extremely
sensitive to attacks, has even been called the Achilles’s heel of the Internet [20].

Although attacks remove a very large fraction of the links, we show in Sec-
tion 1 that this is not sufficient to explain the qualitative difference between
failures and attacks for scale-free networks. We then investigate further this dif-
ference (Section 2) by proposing two new attack strategies, one against nodes
and the other against links, and comparing their effects with those of the classical
attacks and failures.

Before entering in the core of the paper, let us say a word on our plots. The
plots for experimental results obtained by simulation are the average of simu-
lations over a large number of samples. This is in general representative of the
mean behavior, but it must be noted that the actual simulation result obtained
on one instance may be significantly different in some cases (in particular in
what concerns threshold values for scale-free networks).

Concerning the thresholds values, we considered that the threshold was
reached whenever the size of the largest connected component of the network
becomes smaller than 5% of the whole. The plots representing the thresholds
are in function of the mean degree for random networks, and the degree expo-
nent for scale-free networks, which are the main parameters in these contexts.
A scale-free network is connected if α ≤ 3.48, therefore we will not be interested
in the case where α is greater than this value.

For plots comparing the effect of different failures and attacks for random
and scale-free networks, we have chosen to compare networks with the same
average degree. The values we have chosen are 1.6 and 2.6, which corresponds to
scale-free networks with exponents 3 and 2.5 respectively, representative of the
values met in practice.

In several cases, we plot numerical evaluations for approximation formulæ.
These formulæ have often been obtained under the continuous degree assump-
tion. Because in our experimentations the degree is by essence discrete, empiric
values may be quite different from the approximation values, which should there-
fore be taken as indicative.

All scale-free networks have been generated using the algorithm for obtaining
networks with a prescribed degree distribution described in [21]. We have gen-
erated scale-free networks with N nodes and exponent α by drawing N degrees
between 1 and N , following a power-law with exponent α. Then pairs of stubs
are randomly connected. Some proofs in the following use the fact that links are
pairs of randomly chosen stubs.

We also need to introduce a few notations: ζ(α) is the Riemann ζ function,
defined by ζ(α) =

∑∞
k=1 k−α. the K-th harmonic number, denoted by H

(α)
K , is

equal to H
(α)
K =

∑K
k=0 k−α. Finally, given a degree distribution pk, we denote

Comparison of Failures and Attacks on Random and Scale-Free Networks 189

by 〈k〉 and 〈k2〉 the mean of the degree and the square degree respectively:
〈k〉 =

∑∞
k=0 kpk and 〈k2〉 =

∑∞
k=0 k2pk.

1 The Links Point of View

The classical attack strategy removes high-degree nodes first. Since in a scale-
free network there is a high heterogeneity between nodes, highest degree nodes
have a very large number of links attached to them. Therefore, one may wonder
if the efficiency of attacks on these networks is a consequence of the fact that the
number of links removed is much larger than in the case of failures. Likewise, one
may wonder if the fact that the attack results in the removal of much more links
in a scale-free network than in a random one is the cause of the difference between
the two. These explanations actually have been proposed by some authors to give
an intuitive explanation of the results presented above.

The aim of this section is to evaluate these ideas by the study of classical
attacks under the links point of view. Indeed, the classical attack strategy can
be viewed as a strategy targeting links, where links adjacent to high degree
nodes are removed first. Then, the size of the giant component can be plotted
as a function of the number of removed links, see Figure 2. In this figure, the
behavior of these networks under random link removal, i.e. link failure, is also
plotted as a comparison.

Si
ze

 o
f

co
m

po
ne

nt

Fraction of deleted nodes

Random, k=2.6, link failure

Random, k=1.6, node attack
Random, k=2.6, node attack
Random, k=1.6, link failure

 1

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8
 0

Si
ze

 o
f

co
m

po
ne

nt

Fraction of deleted nodes

Scale−free, k=1.6, node attack
Scale−free, k=2.6, node attack
Scale−free, k=1.6, link failure
Scale−free, k=2.6, link failure

 1

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8
 0

Fig. 2. The effects of the classical node attack when considering links, and of link
failure, for random networks (left) and scale-free networks (right)

At first glance, this link attack strategy seems much more efficient than ran-
dom removal. This can be confirmed formally with the same kind of arguments
that have been developed in [14, 15]. From this, one obtains that the threshold
mc of links that have to be randomly removed to break the network is:

mc = 1 − 〈k〉
〈k2〉 − 〈k〉

This result can be obtained by the following reasoning: when links are removed,
this changes the degree distribution of the network. The new degree distribution

190 J.-L. Guillaume, M. Latapy, and C. Magnien

can be explicitely computed. Since links are removed at random, the network is
a random network with the new degree distribution. There exists a criterion [21]
for deciding if such a network has a giant component or not, and the above
formula is obtained from the application of this criterion to the new degree
distribution of the network.

It turns out that this quantity is the same as the threshold pc for nodes
failure [14, 22]. This means in particular that link failures do not make scale-free
networks collapse. Therefore, the fact that a scale-free network collapses using
the classical attack means that the efficiency of this attack strategy is not due
to the fact that it removes many links. If the same number of links are removed
randomly, then the network does not collapse.

Let us now try to evaluate precisely the efficiency of this link attack. The
fraction mc of links that must be removed to break the network can be computed
in the same manner as what has been done in [14, 22] for the number of nodes.
For any network, the fraction m(pc) of links removed in an attack is equal to
s(pc)2+2s(pc)(1−s(pc)), where s(pc) represents the number of stubs (links’ end-
points) attached to the removed nodes. s(pc) can be evaluated by the following
equations [15, 14].

For scale-free networks:

s(pc) − 2 =
2 − α

3 − α

(
s(pc)(3−α)/(2−α) − 1

)
, (1)

or

s(pc) = 1 − H
(α−1)
Kc−1

ζ(α − 1)
, with Kc satisfying H

(α−2)
Kc

− H
(α−1)
Kc

= ζ(α − 1). (2)

For random networks:

s(pc) =
∞∑

k=Kc+1

k · pk

z
, with Kc satisfying

Kc∑
k=0

k2 · pk −
Kc∑
k=0

k · pk = z (3)

These values are plotted in Figure 3, as well as some experimental values for the
thresholds. We enter here in the details of the computation of the theoretical
value of the threshold for random networks, obtained by solving Equation 3.
Solving this equation gives the value of K(p), the maximal degree in the network
after the attack, in function of the mean degree z of the network. By definition,
K(p) can only take integer values. But since, in random networks, the degrees
of the nodes are all gathered in a small set of values around n, it is not always
possible to obtain values of K(p) that statisfy exactly the equation. We have
chosen the points obtained at the values of z that yield the least error, the other
values of z forbidding any accurate computation of the theoretical threshold. It is
nonetheless interesting to observe that the experimental values for the threshold
follow the curve that is suggested by these few theoretical dots.

We can now conclude precisely on the efficiency of the classical attack strat-
egy. First, althoug the number of links removed during such an attack on scale-
free networks is huge, it is not sufficient to explain the collapse of the network:

Comparison of Failures and Attacks on Random and Scale-Free Networks 191

10000

theoretical

1000

100000

8

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7
 0

1000
10000

100000

4

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
 0

Fig. 3. Experimental values of the critical fraction m(pc) of links that must be removed
in a classical node attack to disconnect random networks as a function of the mean
degree (left), and scale-free networks as a function of the degree exponent (right).
We have represented theoretical and experimental values. For scale-free networks, the
values obtained from Equation 1 (dotted line) and from Equation 2 (dashed line) are
plotted

if the same number of links is randomly removed, then the network does not
collapse. However, the number of removed links during a classical attack of a
random network and of a scale-free network are very similar, for the values of
the mean degree we are interested in. This moderates the conclusion that scale-
free networks are particularly sensitive to classical attacks: in terms of links,
they are as robust as random networks.

2 New Attack Strategies

In [21] a criterion for a network to almost surely have a giant component is given:

〈k2〉 − 2〈k〉 > 0 ⇐⇒ p1 <

∞∑
k=3

k(k − 2)pk

The key point is therefore the proportion of nodes of degree 1 in the network.
Therefore, it seems that any strategy aiming at increasing this proportion should
quickly break the network. Using this remark, we propose two new attack strate-
gies (one against nodes and the other against links) which give more insight on
the actual efficiency of classical attacks.

2.1 Almost-Failures Attack

Our first attack strategy simply consists in randomly removing nodes of degree
at least 2. This decreases the number of nodes of degree higher than 1 and
increases the number of nodes of degree 0 or 1. The effect of this attack is shown
in Figure 4.

Notice that this attack is barely different from node failure, and yet it is much
more efficient. It actually is qualitatively different from failures, since it displays
a threshold.

192 J.-L. Guillaume, M. Latapy, and C. Magnien

Si
ze

 o
f

co
m

po
ne

nt

Fraction of deleted nodes

Random, k=2.6

Random, k=1.6

 0.2

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.4

Fraction of deleted nodes

Scale−free, k=1.6
Scale−free, k=2.6

Si
ze

 o
f

co
m

po
ne

nt

 1

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8
 0

Fig. 4. The effect of the new node attack strategy on random networks (left) and
scale-free networks (right)

We can easily prove this by providing an upper bound for this threshold:
when all nodes that had initially a degree higher that one have been removed,
then the network surely does not have a giant component anymore, since all
nodes have degree at most 1. Therefore the giant component is destroyed when
a fraction 1 − p1 − p0 of the nodes has been removed.

For scale-free networks with exponent α, this quantity is equal to 1−1/ζ(α).
For random networks with mean degree z, it is equal to 1−e−z(z+1). The plots
for these quantities are shown in Figure 5, together with experimental values.

100000

1000
10000

8

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7
 0

100000

1000
10000

4

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

2 2.5 3 3.5
 0

Fig. 5. The plots for the upper bound for the new node attack strategy (lines), and for
experimental values of the threshold for networks of size 103, 104 and 105, for random
networks (left) and scale-free networks (right). The lines represent the theoretical upper
bound

Notice that the values of the threshold are quite large (one has to remove
a large fraction of the nodes do destroy the network). Our aim here, though,
is not to obtain an efficient attack strategy, but to show that the qualitative
difference between the classical attack strategy and node failures on scale-free
networks relies on the fact that, in an attack, no nodes of degree 1 are removed: if
nodes of degree higher than 1 are randomly removed, then the same qualitative
behavior is recovered.

Comparison of Failures and Attacks on Random and Scale-Free Networks 193

2.2 Efficient Link Attack

We have seen in Section 1 that, although the classical attack displays a threshold
when considered from the links point of view, it is not efficient in this regard. Still
based on the fact that increasing the proportion of nodes of degree 1 collapses
the network, we now propose the following attack strategy on links: we remove
at random links between nodes of degree at least 2. The effect of this attack is
shown in Figure 6.

As expected, this attack strategy displays a threshold mc. Again, we can
show this by providing an upper bound as follows.

Fraction of deleted nodes

Si
ze

 o
f

co
m

po
ne

nt Random, k=2.6, link attack

Random, k=1.6, link attack

 0

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0.2

 0.4

Fraction of deleted nodes

Si
ze

 o
f

co
m

po
ne

nt

Scale−free, k=2.6, link attack

Scale−free, k=1.6, link attack

 0

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0.2

 0.4

Fig. 6. The effect of the new link attack strategy on random networks (left) and scale-
free networks (right)

When all the links between nodes of degree at least 2 have been removed, the
network is decomposed in a set of disjoint stars (each central node is connected to
nodes of degree 1). Since the maximal degree of a node in a finite scale-free network
with N nodes can be evaluated as N

1
α−1 [22], the size of the largest connected

component (i.e. the largest star) is sublinear with respect to N whenever α > 2.
An upper bound for mc is therefore given by the fraction of links between

nodes of degree at least 2. This quantity is 1 minus the fraction of links incident
to at least one node of degree 1. The number of such links is given by the number
of nodes of degree 1, minus the number of links between two nodes of degree 1.

This last number can be computed as follows. There are Np1 nodes of degree
1, each of them having a probability Np1/2|E| of being connected to another
node of degree 11 (|E| = N〈k〉/2 denotes the number of links in the network).
Therefore the number of nodes of degree 1 adjacent to another node of degree 1
is N2p2

1/2|E| = Np2
1/〈k〉 on average. Finally, the number of links between two

such nodes is therefore Np2
1/2〈k〉.

From this we have that the number of links adjacent to at least one node of
degree 1 is: Np1 −Np2

1/2〈k〉, and the number of links not adjacent to any node
of degree 1 is: |E| − Np1 + Np2

1/2〈k〉. The fraction of such links therefore is:

1 − 2p1

〈k〉 +
p2
1

〈k〉2 .

1 This is accurate in the limit of large N .

194 J.-L. Guillaume, M. Latapy, and C. Magnien

100000

1000
10000

8

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7
 0

1000
10000

100000

4

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

2 2.5 3 3.5
 0

Fig. 7. Experimental values for the threshold for the new link attack strategy, for
networks of size 103, 104 and 105, for random networks (left) and scale-free networks
(right). The lines represent the upper bounds

For scale-free networks, this quantity is equal to:

1 − 2
ζ(α − 1)

+
1

ζ2(α − 1)
= 1 − 2ζ(α − 1) − 1

ζ2(α − 1)
.

For random networks, it is equal to:

1 − 2e−z + e−2z.

This upper bound can be evaluated numerically. The result of this evaluation is
shown in Figure 7, together with experimental values.

If we compare these results to the ones obtained in Section 1, then we can
observe that our attack strategy is more efficient than the classical one, viewed
from the links point of view. This is not surprising since in the classical attack
strategy one may remove many links attached to nodes of degree 1, which does
not help in destroying the network. Our strategy, on the opposite, focuses on
those links which really disconnect the network.

3 Conclusion and Discussion

In this contribution, we provided a detailed comparison of the impact of failures
and classical attacks on random and scale-free networks. Our aim was to give a
more precise insight on the actual efficiency of attacks on scale-free compared to
random networks, and compared to failures.

To achieve this, we investigated the often claimed affirmation that the effi-
ciency of attacks on scale-free networks is due to the large number of links they
remove. We show that removing the same number of links at random has much
less impact, contradicting this affirmation. However, when the number of re-
moved links is considered, scale-free networks are not more fragile than random
ones. Finally, we used a classical criterion for network connectivity to design two
new attack strategies. The first one is very close to a series of failures but behaves
qualitatively like classical attacks (there is a threshold for scale-free networks).
This tends to show that the presence of a threshold for classical attacks is not

Comparison of Failures and Attacks on Random and Scale-Free Networks 195

due to a high efficiency, but rather to the fact that they do not remove nodes
of degree 1. The second strategy we propose, based on links removal, shows
that one can design attack strategies more efficient than the classical one, with
respect to the fraction of removed links.

These results lead us to the conclusion that, despite failures and classical at-
tacks clearly behave differently and although the random or scale-free nature of
the network strongly influences this, one should be careful in driving conclusions
from this. The sensitivity of scale-free networks to attacks relies on the fact that
they have many low-degree nodes. Their robustness relies on the fact that when
we choose a node at random, we choose such a node with high probability. More-
over, the fact that a classical attack on a scale-free network removes many links
may be considered as partly but not fully responsible for its rapid breakdown.

This work may be pursued in many directions. First, the accuracy of the
evaluation of the various thresholds should be improved. Likewise, the impact of
the finite size of real-world network is in general not understood and should be
studied. Moreover, other properties of real-world complex networks, like cluster-
ing or degree correlations, should be taken into account. From a more general
point of view, the impact of failures and attacks on the actual networks of inter-
est, like the Internet, the World Wide Web and Peer-to-Peer systems, but also
biological or social networks, should be deepened. It is likely that these networks
have some hidden properties which render them very resilient to failures, and
maybe sensitive to certain attack strategies.

Acknowledgments.This work was partly funded by the Metrosec : Metrology for
Security andQuality of Service project. (http://www.laas.fr/~owe/METROSEC/)
We warmly thank Alessandro Vespignani for useful comments and discussions.

References

1. B. Bollobás. Random Graphs. Academic Press, 1985.
2. P. Erdös and A. Rényi. On random graphs I. Publ. Math. Debrecen, 6:290–297,

1959.
3. M.E.J. Newman. The structure and function of complex networks. SIAM Review,

45(2):167–256, 2003.
4. A.-L. Barabási, Z. Deszo, E. Ravasz, S.H. Yook, and Z. Oltvai. Scale-free and

hierarchical structures in complex networks. In Sitges Proceedings on Complex
Networks, 2004.

5. S.N. Dorogovtsev and J.F.F. Mendes. Evolution of networks. Adv. Phys. 51,
1079-1187, 2002.

6. S.N. Dorogovtsev and J.F.F. Mendes. Evolution of Networks: From Biological Nets
tou the Internet and WWW. Oxford University Press, 2000.

7. A.Z. Broder, S.R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J.L. Wiener. Graph structure in the web. WWW9 / Computer
Networks, 33(1-6):309–320, 2000.

8. A.Z. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J.L. Wiener. Graph structure in the web. In Proceedings of

196 J.-L. Guillaume, M. Latapy, and C. Magnien

the 9th international World Wide Web conference on Computer networks : the
international journal of computer and telecommunications netowrking, pages 309–
320. North-Holland Publishing Co., 2000.

9. M.E.J. Newman. Random graphs as models of networks. In Stefan Bornholdt
and Heinz Georg Schuster, editors, Hankbook of Graphs and Networks: From the
Genome to the Internet. Wiley-vch, 2003.

10. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the
internet topology. In SIGCOMM, pages 251–262, 1999.

11. L. Adamic and B. Huberman. Power-law distribution of the world wide web.
Science, 287, 2000.

12. M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the gnutella network: Proper-
ties of large-scale peer-to-peer systems and implications for system design. IEEE
Internet Computing Journal special issue on peer-to-peer networking, 6(1), 2002.

13. R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance in complex
networks. Nature, 406:378–382, 2000.

14. D.S. Callaway, M.E.J. Newman, S.H. Strogatz, and D.J. Watts. Network robustness
and fragility: Percolation on random graphs. Phys. Rev. Lett., 85:5468–5471, 2000.

15. R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Breakdown of the internet
under intentional attack. Phys. Rev. Lett., 86:3682–3685, 2001.

16. S.-T. Park, A. Khrabrov, D.M. Pennock, S. Lawrence, C. Lee Giles, and L.H.
Ungar. Static and dynamic analysis of the internet’s susceptibility to faults and
attacks. In IEEE Infocom 2003, San Francisco, CA, April 1–3 2003.

17. A. Broido and K. Claffy. Topological resilience in ip and as graphs. 2002.
http://www.caida.org/analysis/topology/resilience/

18. V. Latora and M. Marchiori. Efficient behavior of small-world networks. Phys.
Rev. Lett., 87, 2001.

19. P. Crucitti, V. Latora, M. Marchiori, and A. Rapisarda. Efficiency or scale-free
networks: error and attack tolerance. Physica A, 320:622–642, 2003.

20. R. Pastor-Satorras and A. Vespignani. Evolution and Structure of the Internet: A
Statistical Physics Approach. Cambridge University Press, 2003. To appear.

21. M. Molloy and B. Reed. A critical point for random graphs with a given degree
sequence. Random Structures and Algorithms, 6:161, 1995.

22. R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Resilience of the internet to
random breakdown. Phys. Rev. Lett., 85:4626, 2000.

Firewall Queries

Alex X. Liu1, Mohamed G. Gouda1, Huibo H. Ma2, and Anne HH. Ngu2

1 Department of Computer Sciences, The University of Texas at Austin,
Austin, Texas 78712-0233, U.S.A.
{alex, gouda}@cs.utexas.edu

2 Department of Computer Science, Texas State University,
San Marcos, Texas 78666-4616, U.S.A.

{hm1034, angu}@txstate.edu

Abstract. Firewalls are crucial elements in network security, and have
been widely deployed in most businesses and institutions for securing
private networks. The function of a firewall is to examine each incom-
ing and outgoing packet and decide whether to accept or to discard the
packet based on a sequence of rules. Because a firewall may have a large
number of rules and the rules often conflict, understanding and analyzing
the function of a firewall have been known to be notoriously difficult. An
effective way to assist humans in understanding and analyzing the func-
tion of a firewall is by issuing firewall queries. An example of a firewall
query is “Which computers in the private network can receive packets
from a known malicious host in the outside Internet?”. Two problems
need to be solved in order to make firewall queries practically useful: how
to describe a firewall query and how to process a firewall query. In this
paper, we first introduce a simple and effective SQL-like query language,
called the Structured Firewall Query Language (SFQL), for describing
firewall queries. Second, we present a theorem, called the Firewall Query
Theorem, as a foundation for developing firewall query processing algo-
rithms. Third, we present an efficient firewall query processing algorithm,
which uses firewall decision trees as its core data structure. Experimental
results show that our firewall query processing algorithm is very efficient:
it takes less than 10 milliseconds to process a query over a firewall that
has up to 10,000 rules.

Keywords: Network Security, Firewall Queries, Firewalls.

1 Introduction

Serving as the first line of defense against malicious attacks and unauthorized
traffic, firewalls are crucial elements in securing the private networks of most
businesses, institutions, and even home networks. A firewall is placed at the point
of entry between a private network and the outside Internet so that all incoming
and outgoing packets have to pass through it. A packet can be viewed as a tuple
with a finite number of fields; examples of these fields are source/destination
IP address, source/destination port number, and protocol type. A firewall maps

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 197–212, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

198 A.X. Liu et al.

each incoming and outgoing packet to a decision according to its configuration.
A firewall configuration defines which packets are legitimate and which are il-
legitimate by a sequence of rules. Each rule in a firewall configuration is of the
form

〈predicate〉 → 〈decision〉

The 〈predicate〉 in a rule is a boolean expression over some packet fields and the
physical network interface on which a packet arrives. For the sake of brevity,
we assume that each packet has a field that contains the identification of the
network interface on which a packet arrives. The 〈decision〉 of a rule can be
accept, or discard, or a combination of these decisions with other options such
as the logging option. For simplicity, we assume that the 〈decision〉 in a rule is
either accept or discard.

A packet matches a rule if and only if (iff) the packet satisfies the predicate
of the rule. The predicate of the last rule in a firewall is usually a tautology to
ensure that every packet has at least one matching rule in the firewall. The rules
in a firewall often conflict. Two rules in a firewall conflict iff they have different
decisions and there is at least one packet that can match both rules. Due to
conflicts among rules, a packet may match more than one rule in a firewall, and
the rules that a packet matches may have different decisions. To resolve conflicts
among rules, for each incoming or outgoing packet, a firewall maps it to the
decision of the first (i.e., highest priority) rule that the packet matches.

The function (i.e., behavior) of a firewall is specified in its configuration,
which consists of a sequence of rules. The configuration of a firewall is the
most important component in achieving the security and functionality of the
firewall [24]. However, most firewalls on the Internet are poorly configured, as
witnessed by the success of recent worms and viruses like Blaster [6] and Sap-
phire [7], which could easily be blocked by a well-configured firewall [26]. It has
been observed that most firewall security breaches are caused by configuration
errors [5]. An error in a firewall configuration means that some illegitimate pack-
ets are identified as being legitimate, or some legitimate packets are identified
as being illegitimate. This will either allow unauthorized access from the out-
side Internet to the private network, or disable some legitimate communication
between the private network and the outside Internet. Neither case is desirable.
Clearly, a firewall configuration should be well understood and analyzed before
being deployed.

However, due to the large number of rules in a firewall and the large number
of conflicts among rules, understanding and analyzing the function of a firewall
have been known to be notoriously difficult [21]. The implication of any rule in a
firewall cannot be understood without examining all the rules listed above that
rule. There are other factors that contribute to the difficulties in understand-
ing and analyzing firewalls. For example, a corporate firewall often consists of
rules that are written by different administrators at different times and for dif-
ferent reasons. It is difficult for a new firewall administrator to understand the
implication of each rule that is not written by herself.

Firewall Queries 199

An effective way to assist humans in understanding and analyzing firewalls is
by issuing firewall queries. Firewall queries are questions concerning the function
of a firewall. Examples of firewall queries are “Which computers in the outside
Internet cannot send emails to the mail server in a private network?” and “Which
computers in the private network can receive BOOTP1 packets from the out-
side Internet?”. Figuring out answers to these firewall queries is of tremendous
help for a firewall administrator to understand and analyze the function of the
firewall. For example, assuming the specification of a firewall requires that all
computers in the outside Internet, except a known malicious host, are able to
send emails to the mail server in the private network, a firewall administrator
can test whether the firewall satisfies this requirement by issuing a firewall query
“Which computers in the outside Internet cannot send emails to the mail server
in the private network?”. If the answer to this query contains exactly the known
malicious host, then the firewall administrator is assured that the firewall does
satisfy this requirement. Otherwise the firewall administrator knows that the
firewall fails to satisfy this requirement, and she needs to reconfigure the fire-
wall. As another example, suppose that the specification of a firewall requires
that any BOOTP packet from the outside Internet is to be blocked from enter-
ing the private network. To test whether the firewall satisfies this requirement, a
firewall administrator can issue a firewall query “Which computers in the private
network can receive BOOTP packets from the outside Internet?”. If the answer
to this query is an empty set, then the firewall administrator is assured that the
firewall does satisfy this requirement. Otherwise the firewall administrator knows
that the firewall fails to satisfy this requirement, and she needs to reconfigure
the firewall.

Firewall queries are also useful in a variety of other scenarios, such as fire-
wall maintenance and firewall debugging. For a firewall administrator, checking
whether a firewall satisfies certain conditions is part of daily maintenance ac-
tivity. For example, if the administrator detects that a computer in the private
network is under attack, the firewall administrator can issue queries to check
which other computers in the private network are also vulnerable to the same
type of attacks. In the process of designing a firewall, the designer can issue some
firewall queries to detect design errors by checking whether the answers to the
queries are consistent with the firewall specification.

To make firewall queries practically useful, two problems need to be solved:
how to describe a firewall query and how to process a firewall query. The second
problem is technically difficult. Recall that the rules in a firewall are sensitive
to the rule order and the rules often conflict. The naive solution is to enumerate
every packet specified by a query and check the decision for each packet. Clearly,

1 The Bootp protocol is used by workstations and other devices to obtain IP addresses
and other information about the network configuration of a private network. Since
there is no need to offer the service outside a private network, and it may offer useful
information to hackers, usually Bootp packets are blocked from entering a private
network.

200 A.X. Liu et al.

this solution is infeasible. For example, to process the query “Which computers
in the outside Internet cannot send any packet to the private network?”, this
naive solution needs to enumerate 288 possible packet and check the decision of
the firewall for each packet, which is infeasible.

In this paper, we present solutions to both problems. First, we introduce a
simple and effective SQL-like query language, called the Structured Firewall
Query Language (SFQL), for describing firewall queries. This language uses
queries of the form “select...from...where...”. Second, we present a theorem,
called the Firewall Query Theorem, as the foundation for developing firewall
query processing algorithms. Third, we present an efficient query processing al-
gorithm that uses firewall decision trees as its core data structure. For a given
firewall of a sequence of rules, we first construct an equivalent firewall decision
tree by a construction algorithm. Then the firewall decision tree is used as the
core data structure of this query processing algorithm for answering each firewall
query. Experimental results show that our firewall query processing algorithm is
very efficient: it takes less than 10 milliseconds to process a query over a firewall
that has up to 10,000 rules. Clearly, our firewall query processing algorithm is
fast enough in interacting with firewall administrators.

Note that firewalls that we consider in this paper are static firewalls, not
stateful firewalls in which the function of a firewall changes dynamically as pack-
ets pass by. Also note that the queries of a firewall are intended primarily for
the administrator of the firewall to use. For a firewall that protects a private
network, neither normal users in the private network nor the outsiders of the
private network are able to query the firewall. Since the focus of this paper is fire-
wall configurations, in the rest of this paper, we use “firewall” to mean “firewall
configuration” if not otherwise specified.

2 Related Work

There is little work that has been done on firewall queries. In [21,25], a firewall
analysis system that uses some specific firewall queries was presented. In [21,25],
a firewall query is described by a triple (a set of source addresses, a set of
destination addresses, a set of services), where each service is a tuple (protocol
type, destination port number). The semantics of such a query are “which IP
addresses in the set of source addresses can send which services in the set of
services to which IP addresses in the set of destination addresses?”. We go beyond
[21,25] in the following two major aspects.

1. No algorithm for processing a firewall query over a sequence of rules was
presented in [21] or [25]. Consequently, how fast and scalable that a firewall
query can be processed remains unknown, while the efficiency of a firewall
query processing algorithm is crucial in order to interact with a human user.
In contrast, we present an efficient algorithm for processing a firewall query
over a sequence of rules. Our firewall query algorithm takes less than 10
milliseconds to process a query over a firewall that has up to 10,000 rules.

Firewall Queries 201

2. The query language described in [21] and [25] is too specific: it is only ap-
plicable to IP packets and it only concerns the four fields of source address,
destination address, protocol type and destination port number. This makes
the expressive power of the query language in [21, 25] limited. For example,
even only considering IP packets, it cannot express a firewall query concern-
ing source port numbers or application fields. In contrast, our Structured
Firewall Query Language is capable of expressing firewall queries with arbi-
trary fields.

In [18], some ad-hoc “what if” questions that are similar to firewall queries
were discussed. However, no algorithm was presented for processing the proposed
“what if” questions.

In [9], expert systems were proposed to analyze firewall rules. Clearly, building
an expert system just for analyzing a firewall is overwrought and impractical.

Detecting potential firewall configuration errors by conflict detection was dis-
cussed in [3,8,17,22]. Similar to conflict detection, six types of so-called “anoma-
lies” were defined in [1]. Examining each conflict or anomaly is helpful in reduc-
ing potential firewall configuration errors; however, the number of conflicts or
anomalies in a firewall is typically large, and the manual checking of each con-
flict or anomaly is unreliable because the meaning of each rule depends on the
current order of the rules in the firewall, which may be incorrect.

Some firewall design methods have been proposed in [4, 16, 20, 13]. These
works aim at creating firewall rules, while we aim at analyzing firewall rules.

Firewall vulnerabilities are discussed and classified in [19, 11]. However, the
focus of [19, 11] are the vulnerabilities of the packet filtering software and the
supporting hardware part of a firewall, not the configuration of a firewall.

There are some tools currently available for network vulnerability testing,
such as Satan [10, 12] and Nessus [23]. These vulnerability testing tools scan a
private network based on the current publicly known attacks, rather than the
requirement specification of a firewall. Although these tools can possibly catch
errors that allow illegitimate access to the private network, it cannot find the
errors that disable legitimate communication between the private network and
the outside Internet.

3 Structured Firewall Query Language

3.1 Firewalls

In this section, we present the actual syntax of the firewall query language and
show how to use this language to describe firewall queries.

We first define a packet over the fields F1, · · · , Fd as a d-tuple (p1, · · · , pd)
where each pi is in the domain D(Fi) of field Fi, and each D(Fi) is an interval
of nonnegative integers. For example, the domain of the source address in an IP
packet is [0, 232). For the brevity of presentation, we assume that all packets are
over the d fields F1, · · · , Fd, if not otherwise specified. We use Σ to denote the set
of all packets. It follows that Σ is a finite set and |Σ| = |D(F1)| × · · · × |D(Fn)|.

202 A.X. Liu et al.

Given a firewall f , each packet p in Σ is mapped by f to a decision, denoted
f.p, in the set {accept , discard}. Two firewalls f and f ′ are equivalent, denoted
f ≡ f ′, iff for any packet p in Σ, f.p = f ′.p holds. This equivalence relation is
symmetric, self-reflective, and transitive.

A firewall consists of a sequence of rules. Each rule is of the following format:

(F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉
where each Si is a nonempty subset of D(Fi), and the 〈decision〉 is either accept
or discard . If Si = D(Fi), we can replace (Fi ∈ Si) by (Fi ∈ all), or remove
the conjunct (Fi ∈ D(Fi)) altogether. Some existing firewall products, such
as Linux’s ipchain, require that Si be represented in a prefix format such as
192.168.0.0/16, where 16 means that the prefix is the first 16 bits of 192.168.0.0
in a binary format. In this paper, we choose to represent Si as a nonempty set
of nonnegative integers because of two reasons. First, any set of nonnegative
integers can be automatically converted to a set of prefixes (see [15]). Second,
set representations are more convenient in mathematical manipulations.

A packet (p1, · · · , pd) matches a rule (F1 ∈ S1)∧ · · ·∧ (Fd ∈ Sd) → 〈decision〉
iff the condition (p1 ∈ S1) ∧ · · · ∧ (pd ∈ Sd) holds. Since a packet may match
more than one rule in a firewall, each packet is mapped to the decision of the
first rule that the packet matches. The predicate of the last rule in a firewall is
usually a tautology to ensure that every packet has at least one matching rule
in the firewall.

Here we give an example of a simple firewall. In this example, we assume
that each packet only has two fields: S (source address) and D (destination
address), and both fields have the same domain [1, 10]. This firewall consists of
the sequence of rules in Figure 1. Let f1 be the name of this firewall.

r1 : S ∈ [4, 7] ∧ D ∈ [6, 8] → accept
r2 : S ∈ [3, 8] ∧ D ∈ [2, 9] → discard
r3 : S ∈ [1, 10] ∧ D ∈ [1, 10]→ accept

Fig. 1. Firewall f1

3.2 Query Language

A query, denoted Q, in our Structured Firewall Query Language (SFQL) is of
the following format:

select Fi

from f
where (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉)

where Fi is one of the fields F1, · · · , Fd, f is a firewall, each Sj is a nonempty
subset of the domain D(Fj) of field Fj , and 〈dec〉 is either accept or discard.

The result of query Q, denoted Q.result, is the following set:

Firewall Queries 203

{pi|(p1, · · · , pd) is a packet in Σ, and
(p1 ∈ S1) ∧ · · · ∧ (pd ∈ Sd) ∧ (f.(p1, · · · , pd) = 〈dec〉)}

Recall that Σ denotes the set of all packets, and f.(p1, · · · , pd) denotes the deci-
sion to which firewall f maps the packet (p1, · · · , pd).

We can get the above set by first finding all the packets (p1, · · · , pd) in Σ
such that the following condition

(p1 ∈ S1) ∧ · · · ∧ (pd ∈ Sd) ∧ (f((p1, · · · , pd)) = 〈dec〉)

holds, then projecting all these packets to the field Fi.
For example, a question to the firewall in Figure 1, “Which computers whose

addresses are in the set [4, 8] can send packets to the machine whose address is
6?”, can be formulated as the following query using SFQL:

select S
from f1

where (S ∈ {[4, 8]}) ∧ (D ∈ {6}) ∧ (decision = accept)

The result of this query is {4, 5, 6, 7}.
As another example, a question to the firewall in Figure 1, “Which computer

cannot send packets to the computer whose address is 6?”, can be formulated
as the following query using SFQL:

select S
from f1

where (S ∈ {all}) ∧ (D ∈ {6}) ∧ (decision = discard)

The result of this query is {3, 8}.
Next we give more examples on how to use SFQL to describe firewall queries.

4 Firewall Query Examples

In this section, we describe some example firewall queries using SFQL. Let f
be the name of the firewall that resides on the gateway router in Figure 2. This
gateway router has two interfaces: interface 0, which connects the gateway router
to the outside Internet, and interface 1, which connects the gateway router to the

C ISC O SY ST EM S

 0 1
Internet

Mail Server Host 1 Host 2

Firewall
(Gateway Router)

Fig. 2. Firewall f

204 A.X. Liu et al.

inside local network. In these examples, we assume each packet has the following
five fields: I (Interface), S (Source IP), D (Destination IP), N (Destination Port),
P (Protocol Type).

Question 1:
Which computers in the private network protected by the firewall f can
receive BOOTP2 packets from the outside Internet?

Query Q1:
select D
from f
where (I ∈ {0}) ∧ (S ∈ {all}) ∧ (D ∈ {all}) ∧ (N ∈ {67, 68})

∧(P ∈ {udp}) ∧ (decision = accept)
Answer to question 1 is Q1.result.

Question 2:
Which ports on the mail server protected by the firewall f are open?

Query Q2:
select N
from f
where (I ∈ {0, 1}) ∧ (S ∈ {all}) ∧ (D ∈ {Mail Server} ∧ (N ∈ {all})

∧(P ∈ {all}) ∧ (decision = accept)
Answer to question 2 is Q2.result.

Question 3:
Which computers in the outside Internet cannot send SMTP3 packets
to the mail server protected by the firewall f?

Query Q3:
select S
from f
where (I ∈ {0}) ∧ (S ∈ {all}) ∧ (D ∈ {Mail Server}) ∧ (N ∈ {25})

∧(P ∈ {tcp}) ∧ (decision = discard)
Answer to question 3 is Q3.result.

Question 4:
Which computers in the outside Internet cannot send any packet to
the private network protected by the firewall f?

Query Q4:
select S
from f
where (I ∈ {0}) ∧ (S ∈ {all}) ∧ (D ∈ {all}) ∧ (N ∈ {all}) ∧ (P ∈ {all})

∧(decision = accept)
Answer to question 4 is T − Q4.result, where T is the set of all IP addresses
outside of the private network

2 Bootp packets are UDP packets and use port number 67 or 68.

Firewall Queries 205

Question 5:
Which computers in the outside Internet can send SMTP packets to both
host 1 and host 2 in the private network protected by the firewall f?

Query Q5a:
select S
from f
where (I ∈ {0}) ∧ (S ∈ {all}) ∧ (D ∈ {Host 1}) ∧ (N ∈ {25})

∧(P ∈ {tcp}) ∧ (decision = accept)
Query Q5b:

select S
from f
where (I ∈ {0}) ∧ (S ∈ {all}) ∧ (D ∈ {Host 2}) ∧ (N ∈ {25})

∧(P ∈ {tcp}) ∧ (decision = accept)
Answer to question 5 is Q5a.result ∩ Q5b.result.

5 Firewall Query Processing

In this section, we discuss how to process a firewall query for consistent firewalls.
Consistent firewalls and inconsistent firewalls are defined as follows:

Definition 1 (Consistent Firewalls). A firewall is called a consistent firewall
iff any two rules in the firewall do not conflict.

Definition 2 (Inconsistent Firewalls) . A firewall is called an inconsistent
firewall iff there are at least two rules in the firewall that conflict.

Recall that two rules in a firewall conflict iff they have different decisions and
there is at least one packet that can match both rules. For example, the first
two rules in the firewall in Figure 1, namely r1 and r2, conflict. Note that for
any two rules in a consistent firewall, if they overlap, i.e., there is at least one
packet can match both rules, they have the same decision. So, given a packet
and a consistent firewall, all the rules in the firewall that the packet matches
have the same decision. Figure 1 shows an example of an inconsistent firewall,
and Figure 3 shows an example of a consistent firewall. In these two firewall
examples, we assume that each packet only has two fields: S (source address)
and D (destination address), and both fields have the same domain [1, 10].

Our interest in consistent firewalls is twofold. First, each inconsistent firewall
can be converted to an equivalent consistent firewall, as described in Section 6.
Second, as shown in the following theorem, it is easier to process queries for
consistent firewalls than for inconsistent firewalls.

Theorem 1 (Firewall Query Theorem). Let Q be a query of the following
form:

3 SMTP stands for Simple Mail Transfer Protocol. SMTP packets are TCP packets
and use port number 25.

206 A.X. Liu et al.

r′1 : S ∈ [4, 7] ∧ D ∈ [6, 8] → a
r′2 : S ∈ [4, 7] ∧ D ∈ [2, 5] ∪ [9, 9] → d
r′3 : S ∈ [4, 7] ∧ D ∈ [1, 1] ∪ [10, 10] → a
r′4 : S ∈ [3, 3] ∪ [8, 8] ∧ D ∈ [2, 9] → d
r′5 : S ∈ [3, 3] ∪ [8, 8] ∧ D ∈ [1, 1] ∪ [10, 10] → a
r′6 : S ∈ [1, 2] ∪ [9, 10] ∧ D ∈ [1, 10] → a

Fig. 3. Consistent firewall f2

select Fi

from f
where (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉)
If f is a consistent firewall that consists of n rules r1, · · · , rn, then we have

Q.result =
n⋃

j=1

Q.rj

where each rule rj is of the form

(F1 ∈ S′
1) ∧ · · · ∧ (Fd ∈ S′

d) → 〈dec′〉
and the quantity of Q.rj is defined as follows:

Q.rj =

⎧⎨
⎩

Si ∩ S′
i if (S1 ∩ S′

1 �= ∅) ∧ · · · ∧ (Sd ∩ S′
d �= ∅) ∧ (〈dec〉 = 〈dec′〉),

∅ otherwise

�

The Firewall Query Theorem implies a simple query processing algorithm:
given a consistent firewall f that consists of n rules r1, · · · , rn and a query Q,

Rule − based Firewall Query Processing Algorithm
Input : (1) A consistent firewall f that consists of n rules: r1, · · · , rn,

(2) A query Q:
select Fi

from f
where (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉)

Output: Result of query Q
Steps:
1. Q.result := ∅;
2. for j := 1 to n do /*Let rj = (F1 ∈ S′

1) ∧ · · · ∧ (Fd ∈ S′
d) → 〈dec′〉*/

if (S1 ∩ S′
1 	= ∅) ∧ · · · ∧ (Sd ∩ S′

d 	= ∅) ∧ (〈dec〉 = 〈dec′〉)
then Q.result := Q.result ∪ (Si ∩ S′

i);
3. return Q.result;

Fig. 4. Rule-based Firewall Query Processing Algorithm

Firewall Queries 207

compute Q.rj for each j, then
⋃n

j=1 Q.rj is the result of query Q. We call this
algorithm the rule-based firewall query processing algorithm. Figure 4 shows the
pseudocode of this algorithm.

6 FDT-Based Firewall Query Processing Algorithm

Observe that multiple rules in a consistent firewall may share the same prefix.
For example, in the consistent firewall in Figure 3, the first three rules, namely
r′
1, r

′
2, r

′
3, share the same prefix S ∈ [4, 7]. Thus, if we apply the above query

processing algorithm in Figure 4 to answer a query, for instance, whose “where
clause” contains the conjunct S ∈ {3}, over the firewall in Figure 3, then the
algorithm will repeat three times the calculation of {3}∩ [4, 7]. Clearly, repeated
calculations are not desirable for efficiency purposes.

In this section, we present a firewall query processing method that has no
repeated calculations and can be applied to both consistent and inconsistent
firewalls. This method consists of two steps. First, convert the firewall (whether
consistent or inconsistent) to an equivalent firewall decision tree (short for FDT).
Second, use this FDT as the core data structure for processing queries. We call
the algorithm that uses an FDT to process queries the FDT-based firewall query
processing algorithm. Firewall decision trees are defined as follows. Note that
firewall decision trees are a special type of firewall decision diagrams, which are
introduced in [13] as a useful notation for specifying firewalls.

Definition 3 (Firewall Decision Tree). A Firewall Decision Tree t over fields
F1, · · · , Fd is a directed tree that has the following four properties:

1. Each node v in t has a label, denoted F (v), such that

F (v) ∈
{{F1, · · · , Fd} if v is nonterminal,
{accept , discard} if v is terminal.

2. Each edge e in t has a label, denoted I(e), such that if e is an outgoing edge
of node v, then I(e) is a nonempty subset of D(F (v)).

3. A directed path in t from the root to a terminal node is called a decision path
of t. Each decision path contains d nonterminal nodes, and the i-th node is
labelled Fi for each i that 1 ≤ i ≤ d.

DD

S

D

[4, 7]

[6, 8]
[2, 5]
[9, 9]

[1, 1]
[1, 1]

[10, 10]
[10, 10]

[3, 3] [8, 8]

[2, 9]

[1, 2]
[9, 10]

[1, 10]

a a aa dd

Fig. 5. Firewall Decision Tree t3

208 A.X. Liu et al.

4. The set of all outgoing edges of a node v in t, denoted E(v), satisfies the
following two conditions:
(a) Consistency : I(e)∩ I(e′) = ∅ for any two distinct edges e and e′ in E(v),
(b) Completeness:

⋃
e∈E(v) I(e) = D(F (v)) �

Figure 5 shows an example of an FDT named t3. In this example, we assume
that each packet only has two fields: S (source address) and D (destination
address), and both fields have the same domain [1, 10]. In the rest of this paper,
including this example, we use “a” as a shorthand for accept and “d” as a
shorthand for discard.

A decision path in an FDT t is represented by (v1e1 · · · vkekvk+1) where v1 is
the root, vk+1 is a terminal node, and each ei is a directed edge from node vi to
node vi+1. A decision path (v1e1 · · · vkekvk+1) in an FDT defines the following
rule:

F1 ∈ S1 ∧ · · · ∧ Fn ∈ Sn → F (vk+1)

where

Si =

⎧⎨
⎩

I(ej) if the decision path has a node vj that is labelled with field Fi,

D(Fi) if the decision path has no node that is labelled with field Fi.

For an FDT t, we use Γ (t) to denote the set of all the rules defined by all the
decision paths of t. For any packet p, there is one and only one rule in Γt that
p matches because of the consistency and completeness properties; therefore, t
maps p to the decision of the only rule that p matches in Γt. Considering the
FDT t3 in Figure 5, Figure 3 shows all the six rules in Γt3 .

Given an FDT t, any sequence of rules that consists of all the rules in Γt is
equivalent to t. The order of the rules in such a firewall is immaterial because
the rules in Γt are non-overlapping. Given a sequence of rules, an equivalent
FDT can be constructed using the construction algorithm described in [20].
Therefore, an inconsistent firewall can be converted to an equivalent consistent
firewall using the following two steps: first, construct an equivalent FDT from the
original inconsistent firewall; second, generate one rule for each decision path of
the FDT. Then any sequence that consists of all the rules defined by the decision
paths of the FDT is the resulting equivalent consistent firewall.

The pseudocode of the FDT-based firewall query processing algorithm is
shown in Figure 6. Here we use e.t to denote the (target) node that the edge e
points to, and we use t.root to denote the root of FDT t.

The above FDT-based firewall query processing algorithm has two inputs,
an FDT t and an SFQL query Q. The algorithm starts by traversing the FDT
from its root. Let Fj be the label of the root. For each outgoing edge e of the
root, we compute I(e)∩ Sj . If I(e)∩ Sj = ∅, we skip edge e and do not traverse
the subgraph that e points to. If I(e) ∩ Sj �= ∅, then we continue to traverse
the subgraph that e points to in a similar fashion. Whenever a terminal node is
encountered, we compare the label of the terminal node and 〈dec〉. If they are
the same, assuming the rule defined by the decision path containing the terminal
node is (F1 ∈ S′

1) ∧ · · · ∧ (Fd ∈ S′
d) → 〈dec′〉, then we add Si ∩ S′

i to Q.result.

Firewall Queries 209

FDT − based Firewall Query Processing Algorithm
Input : (1)An FDT t,

(2)A query Q: select Fi

from t
where (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉)

Output : Result of query Q
Steps:
1. Q.result := ∅;
2. CHECK(t.root , (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉)
3. return Q.result;

CHECK(v, (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉))
1. if (v is a terminal node) and (F (v) = 〈dec〉) then

(1) Let (F1 ∈ S′
1) ∧ · · · ∧ (Fd ∈ S′

d) → 〈dec′〉 be the rule
defined by the decision path containing node v;

(2) Q.result := Q.result ∪ (Si ∩ S′
i);

2. if (v is a nonterminal node) then /*Let Fj be the label of v*/
for each edge e in E(v) do

if I(e) ∩ Sj 	= ∅ then
CHECK(e.t, (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉))

Fig. 6. FDT-based Firewall Query Processing Algorithm

7 Experimental Results

So far we have presented two firewall query processing algorithms, the rule-based
algorithm in Section 5 and the FDT-based algorithm in Section 6. In this sec-
tion, we evaluate the efficiency of both algorithms. In the absence of publicly
available firewalls, we create synthetic firewalls according to the characteristics
of real-life packet classifiers discussed in [2, 14]. Note that a firewall is also a
packet classifier. Each rule has the following five fields: interface, source IP ad-
dress, destination IP address, destination port number and protocol type. The
programs are implemented in SUN Java JDK 1.4. The experiments were carried
out on a SunBlade 2000 machine running Solaris 9 with 1Ghz CPU and 1 GB
of memory.

Figure 7 shows the average execution time of both algorithms versus the total
number of rules in the original (maybe inconsistent) firewalls. The horizontal axis
indicates the total number of rules in the original firewalls, and the vertical axis
indicates the average execution time (in milliseconds) for processing a firewall
query. Note that in Figure 7, the execution time of the FDT-based firewall query
processing algorithm does not include the FDT construction time because the
conversion from a firewall to an equivalent FDT is performed only once for
each firewall, not for each query. Similarly, the execution time of the rule-based
firewall query processing algorithm does not include the time for converting an
inconsistent firewall to an equivalent consistent firewall because this conversion
is performed only once for each firewall, not for each query.

210 A.X. Liu et al.

From Figure 7, we can see that the FDT-based firewall query processing
algorithm is much more efficient than the rule-based firewall query processing
algorithm. For example, for processing a query over an inconsistent firewall that
has 10,000 rules, the FDT-based query processing algorithm uses about 10 mil-
liseconds, while the rule-based query processing algorithm uses about 100 mil-
liseconds. The experimental results in Figure 7 confirm our analysis that the
FDT-based query processing algorithm saves execution time by reducing re-
peated calculations.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100

Number of rules in an inconsistent firewall

A
ve

ra
ge

 Q
ue

ry
 P

ro
ce

ss
in

g
T

im
e

(m
se

c)

Rule−based Query Processing Algorithm
FDD−based Query Processing Algorithm

Fig. 7. Query Processing Time vs. Number of rules

8 Concluding Remarks

Our contributions in this paper are three-fold. First, we introduce a simple and
effective SQL-like query language, the Structured Firewall Query Language, for
describing firewall queries. Second, we present a theorem, the Firewall Query
Theorem, as the foundation for developing firewall query processing algorithms.
Third, we present an efficient algorithm that uses firewall decision trees as its
core data structure for processing firewall queries. Given a firewall of a sequence
of rules, we first construct an equivalent firewall decision tree. Then the firewall
decision tree is used as the core data structure of this query processing algorithm
to answer each firewall query. Our experimental results show that this query
processing algorithm is very efficient.

To keep our presentation simple, we have described a somewhat watered-
down version of the firewall query language where the “select” clause in a query
has only one field. In fact, the “select” clause in a query can be extended to
have more than one field. The results in this paper, e.g., the Firewall Query
Theorem and the two firewall query processing algorithms, can all be extended
accordingly to accommodate the extended “select” clauses.

Firewall Queries 211

References

1. E. Al-Shaer and H. Hamed. Discovery of policy anomalies in distributed firewalls.
In IEEE INFOCOM’04, March 2004.

2. F. Baboescu, S. Singh, and G. Varghese. Packet classification for core routers: Is
there an alternative to cams? In Proc. of IEEE INFOCOM, 2003.

3. F. Baboescu and G. Varghese. Fast and scalable conflict detection for packet clas-
sifiers. In Proc. of the 10th IEEE International Conference on Network Protocols,
2002.

4. Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato: A novel firewall man-
agement toolkit. Technical Report EES2003-1, Dept. of Electrical Engineering
Systems, Tel Aviv University, 2003.

5. CERT. Test the firewall system. http://www.cert.org/security-improvement/
practices/p060.html.

6. CERT Coordination Center. http://www.cert.org/advisories/ca-2003-20.html.
7. D. Moore et al. http://www.caida.org/outreach/papers/2003/sapphire/

sapphire.html.
8. D. Eppstein and S. Muthukrishnan. Internet packet filter management and rect-

angle geometry. In Symp. on Discrete Algorithms, pages 827–835, 2001.
9. P. Eronen and J. Zitting. An expert system for analyzing firewall rules. In Proc.

of the 6th Nordic Workshop on Secure IT Systems (NordSec 2001), pages 100–107,
2001.

10. D. Farmer and W. Venema. Improving the security of your site by breaking into it.
http://www.alw.nih.gov/Security/Docs/admin-guide-to-cracking.101.html, 1993.

11. M. Frantzen, F. Kerschbaum, E. Schultz, and S. Fahmy. A framework for under-
standing vulnerabilities in firewalls using a dataflow model of firewall internals.
Computers and Security, 20(3):263–270, 2001.

12. M. Freiss. Protecting Networks with SATAN. O’Reilly & Associates, Inc., 1998.
13. M. G. Gouda and A. X. Liu. Firewall design: consistency, completeness and com-

pactness. In Proc. of the 24th IEEE International Conference on Distributed Com-
puting Systems (ICDCS’04), pages 320–327.

14. P. Gupta. Algorithms for Routing Lookups and Packet Classification. PhD thesis,
Stanford University, 2000.

15. P. Gupta and N. McKeown. Algorithms for packet classification. IEEE Network,
15(2):24–32, 2001.

16. J. D. Guttman. Filtering postures: Local enforcement for global policies. In Proc.
of IEEE Symp. on Security and Privacy, pages 120–129, 1997.

17. A. Hari, S. Suri, and G. M. Parulkar. Detecting and resolving packet filter conflicts.
In Proc. of IEEE INFOCOM, pages 1203–1212, 2000.

18. S. Hazelhurst, A. Attar, and R. Sinnappan. Algorithms for improving the depend-
ability of firewall and filter rule lists. In Proc. of the International Conference on
Dependable Systems and Networks (DSN’00), pages 576–585, 2000.

19. S. Kamara, S. Fahmy, E. Schultz, F. Kerschbaum, and M. Frantzen. Analysis of
vulnerabilities in internet firewalls. Computers and Security, 22(3):214–232, 2003.

20. A. X. Liu and M. G. Gouda. Diverse firewall design. In Proc. of the International
Conference on Dependable Systems and Networks (DSN’04), pages 595–604, June
2004.

21. A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis engine. In Proc. of
IEEE Symp. on Security and Privacy, pages 177–187, 2000.

22. J. D. Moffett and M. S. Sloman. Policy conflict analysis in distributed system
management. Journal of Organizational Computing, 4(1):1–22, 1994.

212 A.X. Liu et al.

23. Nessus. http://www.nessus.org/. March 2004.
24. A. D. Rubin, D. Geer, and M. J. Ranum. Web Security Sourcebook. Wiley Com-

puter Publishing, 1th edition, 1997.
25. A. Wool. Architecting the lumeta firewall analyzer. In Proc. of the 10th USENIX

Security Symposium, pages 85–97, August 2001.
26. A. Wool. A quantitative study of firewall configuration errors. IEEE Computer,

37(6):62–67, 2004.

Self-tuning Reactive Distributed Trees
for Counting and Balancing

Phuong Hoai Ha, Marina Papatriantafilou, and Philippas Tsigas

Department of Comp. Science, Chalmers University of Technology,
SE-412 96 Göteborg, Sweden

{phuong, ptrianta, tsigas}@cs.chalmers.se

Abstract. The main contribution of this paper is that it shows that it is possible
to have reactive distributed trees for counting and balancing with no need for the
user to fix manually any parameters. We present a data structure that in an on-line
manner balances the trade-off between the tree traversal latency and the latency
due to contention at the tree nodes. Moreover, the fact that our method can expand
or shrink a subtree several levels in any adjustment step, has a positive effect in the
efficiency: this feature helps the self-tuning reactive tree minimize the adjustment
time, which affects not only the execution time of the process adjusting the size
of the tree but also the latency of all other processes traversing the tree at the
same time with no extra memory requirements. Our experimental study compared
the new trees with the reactive diffracting ones on the SGI Origin2000, a well-
known commercial ccNUMA multiprocessor. This study showed that the self-
tuning reactive trees i) select the same tree depth as the reactive diffracting trees
do; ii) perform better and iii) react faster.

1 Introduction

Distributed data structures suitable for synchronization that perform efficiently across a
wide range of contention conditions are hard to design. Typically, “small”, “centralized”
such data structures fit better low contention levels, while “bigger”, “distributed” such
data structures can help in distributing concurrent processor accesses to memory banks
and in alleviating memory contention.

Diffracting trees [1] are distributed data structures. Their most significant advantage
is the ability to distribute a set of concurrent process accesses to many small groups
locally accessing shared data, in a coordinated manner. Each process(or) accessing the
tree can be considered as leading a token that follows a path from the root to the leaves.
Each node is a computing element receiving tokens from its single input (coming from
its parent node) and sending out tokens to its outputs; it is called balancer and acts as a
toggle mechanism which, given a stream of input tokens, alternately forwards them to its
outputs, from left to right (sending them to the left and right child nodes, respectively).
The result is an even distribution of tokens at the leaf nodes. Diffracting trees have
been introduced for counting-problems, and hence the leaf nodes are counters, assigning
numbers to each token that exits from them. Moreover, the number of tokens that are
output at the leaves, satisfy the step property, which states that: when there are no tokens
present inside the tree and if outi denotes the number of tokens that have been output
at leaf i, 0 ≤ outi − outj ≤ 1 for any pair i and j of leaf-nodes such that i < j (i.e.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 213–228, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

214 P.H. Ha, M. Papatriantafilou, and P. Tsigas

if one makes a drawing of the tokens that have exited from each counter as a stack of
boxes, the combined outcome will have the shape of a single step).

The fixed-size diffracting tree is optimal only for a small range of contention lev-
els. To solve this problem, Della-Libera and Shavit proposed the reactive diffracting
trees, where each node can shrink (to a counter) or grow (to a subtree with counters as
leaves) according to the current load, in order to attain optimal performance [2]. The al-
gorithm in [2] uses a set of parameters to make its decisions, namely folding/unfolding
thresholds and the time-intervals for consecutive reaction checks. The parameter values
depend on the multiprocessor system in use, the applications using the data structure
and, in a multiprogramming environment, on the system utilization by the other pro-
grams that run concurrently. The programmer has to fix these parameters manually,
using experimentation and information that is commonly not easily available (future
load characteristics). A second characteristic of this scheme is that the reactive part
is allowed to shrink or expand the tree only one level at a time, making the cost of a
multi-adjustment phase on a reactive tree become high.

In this work we show that reactiveness and these two characteristics are not tied to-
gether: in particular, we present a tree-type distributed data structure that has the same
semantics as the reactive trees that can expand or shrink many levels at a time, without
need for manual tuning. To circumvent the need for manually setting parameters, we
have analyzed the problem of balancing the trade-off between the two key measures,
namely the contention level and the depth of the tree, in a way that enabled the use of
efficient on-line methods for its solution. The new data structure is also considerably
faster than the reactive diffracting trees, because of the low-overhead, multilevel reac-
tion part: the new reactive trees can shrink and expand many levels at a time without
using clock readings. The self-tuning reactive trees1, like the reactive diffracting trees,
are aimed in general for applications where such distributed data structures are needed.
Since the latter were introduced in the context of counting problems, we use similar
terms in our description, for reasons of consistency.

The rest of this paper is organized as follows. Section 2 presents the key idea and
the algorithm of the self-tuning reactive tree. Section 3 describes the implementation of
the tree. Section 4 presents an experimental evaluation of the self-tuning reactive trees,
compared with the reactive diffracting trees, on the Origin2000 platform, and elaborate
on a number of properties of our algorithm. Section 5 concludes this paper. Due to the
space constraint, the correctness proof of our algorithm is presented in [3].

2 Self-tuning Reactive Trees

2.1 Problem Description

The problem we are interested in is to construct a tree that satisfies the following re-
quirements:

1 We do not use term diffracting in the title of this paper since our algorithmic implementation
does not use the prism construct, which is in the core of the algorithmic design of the (reactive)
diffracting trees.

Self-tuning Reactive Distributed Trees for Counting and Balancing 215

1. It must evenly distribute a set of concurrent process accesses to many small groups
locally accessing shared data (counters at leaves), in a coordinated manner like the
(reactive) diffracting trees. The step-property must be guaranteed.

2. Moreover, it must automatically and efficiently adjust its size according to its load
in order to gain performance. It must not require any manually tuning parameters.

In order to satisfy these requirements, we have to tackle the following algorithmic
problems:

1. Design a dynamic mechanism that would allow the tree to predict when and how
much it should resize in order to obtain good performance whereas the load on it
changes unpredictably. Moreover, the overhead that this mechanism will introduce
should not exceed the performance benefits that the dynamic behavior itself will
bring.

2. This dynamic mechanism should not only adjust the size of the tree in order to
improve performance, but, more significantly, adjust it in a way that the tree still
guarantees the fundamental properties of the structure, such as the step property.

2.2 Key Idea

The ideal reactive tree is the one in which each leaf is accessed by only one process(or)
–holding a token 2 – at a time and the cost to traverse it from the root to the leaves is
kept minimal. However, these two latency-related factors are opposite to each other, i.e.
if we want to decrease the contention at the leaves, we need to expand the tree and so
the cost to traverse from the root to the leaves increases.

What we are looking for is a tree where the overall overhead, including the latency
due to contention at the leaves and the latency due to traversal from the root to the
leaves, is minimal and with no manual tuning. In addition to this, an algorithm that can
achieve the above, must also be able to cope with the following difficulties: If the tree
expands immediately when the contention level increases, then it will pay the expensive
cost for travel and this cost is going to be unnecessary if after that the contention level
suddenly decreases. On the other hand, if the tree does not expand in time when the
contention-level increases, it has to pay the large cost of contention. If the algorithm
knew in advance about the changes of contention-levels at the leaves in the whole time-
period that the tree operates, it could adjust the tree-size at each time-point in a way such
that the overall overhead is minimized. As the contention-levels change unpredictably,
there is no way for the algorithm to know this kind of information, i.e. the information
about the future.

To overcome this problem, we have designed a reactive algorithm based on the
online techniques that are used to solve the online currency trading problem [4].

Definition 1. Let surplus denote the number of processors that exceeds the number of
leaves of the self-tuning reactive tree, i.e. the subtraction of the number of the leaves
from the maximal number of processors in the system that potentially want to access

2 For reasons of brevity, throughout the paper, instead of using the phrase “process(or) holding
a token” we use simply the term process or processor.

216 P.H. Ha, M. Papatriantafilou, and P. Tsigas

the tree. The surplus represents the contention level on the tree because the surplus
processors cause contention on the leaves.

Definition 2. Let latency denote the latency due to traversal from the root to the leaves.

Our challenge is to balance the trade-off between surplus and latency. Our solution
for the problem is based on an optimal competitive algorithm called threat-based al-
gorithm [4]. The algorithm is an optimal solution for the one-way trading problem,
where the player has to decide whether to accept the current exchange rate as well as
how many of his/her dollars should be exchanged to yens at the current exchange rate
without knowledge on how the exchange rate will vary in the future.

2.3 The New Algorithm

In the self-tuning reactive trees, to adapt to the changes of the contention efficiently,
a leaf should be free to shrink or grow to any level suggested by the reactive scheme
in one adjustment step. With this in mind, we designed a data structure for the trees
such that the time used for the adjustment and the time in which other processors are
blocked by the adjustment are kept minimal. Figure 1 illustrates the self-tuning reactive
tree data structure. Each balancer has a matching leaf with corresponding identity. Sym-
metrically, each leaf that is not at the lowest level of the tree has a matching balancer
with corresponding identity. The squares in the figure are balancers and the circles are
leaves. The numbers in the squares and circles are their identities. Each balancer has two
outputs, left and right, each of them being a pointer that can point to either a leaf or a
balancer. A shrink or expand operation is essentially a switch of such a pointer (from the
balancer to the matching leaf or from the leaf to the matching balancer, respectively).
The solid arrows in the figure represent the present pointer contents.

Assume the tree has the shape as in Figure 1, where the solid arrows are the pointers’
current contents. A processor pi first visits the tree at its root IN , then following the root
pointer visits balancer 1. When visiting a balancer, pi switches the balancer’s toggle-bit

level

0

1

2

3

right left

1 1

2 2 3

4 4 5 5 6 6 7 7

8 9 10 11 12 13 14 15

3

leaf

balancer IN

A

Fig. 1. A self-tuning reactive tree

Self-tuning Reactive Distributed Trees for Counting and Balancing 217

to the other position (i.e. from left to right and vise-versa) and then continues visiting
the next node according to the toggle-bit. When visiting a leaf L, pi before taking an
appropriate counter value and exiting, checks the reaction condition according to the
current load at L. The reaction condition estimates which tree level is the best for the
current load.

The reaction procedure. In order to balance the trade-off between surplus and la-
tency, the procedure can be described as a game, which evolves in load-rising and
load-dropping transaction phases.

Definition 3. A load-rising (resp. load-dropping) transaction phase is a maximal se-
quence of subsequent visits at a leaf-node with monotonic non-decreasing (resp. non-
increasing) estimated contention-level over the entire tree. A load-rising phase ends
when a decrease in contention is observed; at that point a load-dropping phase begins.

During a load-rising phase, a processor traversing that leaf may decide to expand
the leaf to a subtree of depth that depends on the amount of the rising contention-
level. That value is computed using the threat-based on-line method of [4], following
the principle: “expand just enough to guarantee a bounded competitive ratio, even in
the case that contention may drop to minimum at the next measurement”. Symmetric
is the case during a load-dropping phase, where the reaction is to shrink a subtree to
the appropriate level, depending on the measurement. The computation of the level to
shrink to or to expand to uses the number of processors in the system as an upper bound
of contention. The reaction procedure is described in detail in Section 3.2.

Depending on the result of checking the reaction condition, the processor acts as
follows:

Recommended reaction: Grow to level llower, i.e. the current load is too high for the
leaf L and L should expand to level llower. The processor, before exiting the tree
through L, must help in carrying out the expansion task. To do so, the correspond-
ing subtree must be constructed (if it was not already existent), the subtree’s counters’
(leaves’) values must be set, and the pointer pointing to L must switch to point to its
corresponding balancer, which is the root of the subtree resulting from the expansion.

Recommended reaction: Shrink to level lhigher, the current load at the leaf L is too
low and thus L would like to cause a shrink operation to a higher level lhigher, in
order to reduce the latency of traversing from the root to the present level. This means
that the pointer to the corresponding balancer (i.e. ancestor of L) at level lhigher must
switch to point to the matching counter (leaf) and the value of that counter must be
set appropriately. Let B denote that balancer. The sub-tree with B as a root contains
more leaves than just L, which might not have decided to shrink to lhigher, and thus the
processor must take this into account. To enable processors do this check, the algorithm
uses an asynchronous vote-collecting scheme: when a leaf L decides to shrink to level
lhigher, it adds its weighted vote for that shrinkage to a corresponding vote-array at
balancer B.

Definition 4. The weight of the vote of leaf L is the number of lowest-level leaves in
the subtree rooted at the balancer matching L.

218 P.H. Ha, M. Papatriantafilou, and P. Tsigas

As an example in Figure 1 the weight of the vote of leaf 4 is 2. Note that when voting for
balancer B, the leaf L is not concerned about whether B has shrunk into its matching
leaf or not. The processor that helps L write its vote to B’s vote-array, will then check
whether there are enough votes collected at B’s vote-array. If there are enough votes
collected at B’ vote-array, i.e. if the sum of their weights is more than half of the total
possible weight of the sub-tree rooted at B (i.e. if more than half of that subtree wants
to shrink to the leaf matching B), the shrinkage will happen. After completing the
shrinkage task, the processor increases and returns the counter value of L, thus exiting
the tree. In the checking process, the processor will abort if the balancer B has shrunk
already by a concurrent operation.

In the shrinkage procedure, the leaf matching B and the leaves of the sub-tree rooted
at B must be locked in order to (i) collect their counters’ values, (ii) compute the next
counter value for the leaf matching B and (iii) switch the pointer from B to its matching
leaf. Note that all the leaves of subtree B need to be locked only if the load on the
subtree is so small that it should be shrunk to a leaf. Therefore, locking the subtree in
this case effectively behaves as if locking a leaf (i.e. as it is done in the classical reactive
diffracting trees) from the performance point of view.

Example of executing grow: Consider a processor pi visiting leaf 3 in Figure 1, and let
the result of the check be that the leaf should grow to sub-tree A with leaves 12, 13, 14
and 15: The processor first constructs the sub-tree, whereas at the same time other
processors may continue to access leaf 3 to get the counter values and then exit the
tree without any disturbance. After that, it locks leaf 3 in order to (i) switch the pointer
to balancer 3 and (ii) assign the proper values to counters 12, 13, 14 and 15, then it
releases leaf 3. At this point, the new processors following the left pointer of balancer 1
will traverse through the new sub-tree, whereas the old processors that were directed to
leaf 3 before, will continue to access leaf 3’s counter and exit the tree. After completing
the expansion task, pi continues its normal task to access leaf 3’s counter and exits the
tree.

Example of executing shrink: Consider a processor pi visiting leaf 10 in Figure 1 and
let the result of the reaction condition be that the subtree should shrink to leaf 2. Because
the sub-tree rooted at balancer 2 contains more leaves besides 10, which might not have
decided to shrink to 2, processor pi will check the votes collected at 2 for shrinking
to that level. Assume that leaf 4 has voted for balancer 2, too. The weight of leaf 4’s
vote is two because the vote represents leaves 8 and 9 at the lowest level. Leaf 10’s vote
has weight 1. Therefore, the sum of the weights of the votes collected at balancer 2 is
3. In this case, processor pi will help balancer 2 to perform the shrinkage task because
the weight of votes, 3, is more than half of the total possible weight of the sub-tree (i.e.
more than half of 4, which is the number of the leaves at the lowest level of the subtree –
8, 9, 10 and 11). Then pi locks leaf 2 and all the leaves of the sub-tree rooted at balancer
2, collects the counter values at them, computes the next counter value for leaf 2 and
switches the pointer from balancer 2 to leaf 2. After that, all the leaves of the sub-tree
are released immediately so that other processors can continue to access their counters.
As soon as the counter at leaf 2 is assigned the new value, the new processors going
along the right pointer of balancer 1 can access the counter and exit the tree whereas
the old processors are traversing in the old sub-tree. After completing the shrinkage
task, the processor exits the tree, returning the value from counter 10.

Self-tuning Reactive Distributed Trees for Counting and Balancing 219

Space needs of the algorithm. In a system with n processors, the algorithm needs
n − 1 balancer nodes and 2n − 1 leaf nodes. Note that it may seem that the data struc-
ture for the self-tuning reactive trees uses more memory space than the data structure
for the reactive diffracting trees, since it introduces an auxiliary node (matching leaf)
for each balancer of the tree. However, this is actually splitting the functionality of a
node in the reactive diffracting trees into two components, one that is enabled when the
node plays the role of a balancer and another that is enabled when the node plays the
role of a leaf (cf. also Section 3.3 and Section 3.4). In other words, the corresponding
memory requirements are similar. From the structure point of view, splitting the node
functionality is a fundamental difference between the self-tuning trees and the reactive
diffracting trees. The voting arrays’ space needs at each balancer are O(k), which are
similar to the space needs for the prism at each balancer of the reactive diffracting trees,
where k is the number of leaves of the subtree rooted at the balancer.

3 Implementation

3.1 Preliminaries

Data structure and shared variables: Figure 3 describes the tree data structure and the
shared variables used in the implementation.

The synchronization primitives used for the implementation are test-and-set (TAS),
fetch-and-xor (FAX) and compare-and-swap (CAS). Their semantics are described in [3].
Moreover, in order to simplify the presentation and implementation of our algorithm, we
define, implement and use advanced synchronization operations: read-and-follow-link
and conditionally-acquire-lock. The read-and-follow-link operations and the
conditionally-acquire-lock operation are outlined in pseudo-code in Fig. 2. The way

NodeType ASSIGN(NodeType ∗ tracei, NodeType ∗ child)
A0 ∗tracei := child;/*mark tracei under update,clearing mask-bit*/
A1 temp := ∗child; /*get the expected value*/
A2 temp.mask := 1; /*set the mask-bit*/
A3 if (local := CAS(tracei, child, temp)) = child then return temp;
A4 else return local;

NodeType READ(NodeType ∗ tracei)
R0 do
R1 local := ∗tracei;
R2 if local.mask = 0 then /*tracei is marked*/
R3 temp := ∗local; /*help corresponding Assign() ...*/
R4 temp.mask := 1;
R5 CAS(tracei, local, temp);
R6 while(local.mask = 0); /*... until the Assign() completes*/
R7 return local;

boolean ACQUIRELOCK COND(int lock, int Nid)
AL0 while ((CurOccId := CAS(lock, 0, Nid)) �= 0) do
AL1 if IsParent(CurOccId, Nid) then return Fail;
AL2 Delay using exponential backoff;
AL3 return Success;

Fig. 2. The read-and-follow-link operations (Assign/Read) and conditionally-acquire-lock opera-
tion (AcquireLock cond)

220 P.H. Ha, M. Papatriantafilou, and P. Tsigas

type NodeType = record Nid : [1..MaxNodeId]; kind : {BALANCER, LEAF}; mask: bit; end;
BalancerType = record state : {ACTIV E, OLD}; level : int; toggleBit : boolean;

parent : [1..MaxNodeId]; leftChild, rightChild : NodeType;
votes : array[1..SizeOfMySubtree] of int; end;

LeafType = record state : {ACTIV E, OLD}; level, count, init : int;
parent : [1..MaxNodeId]; lock : {0..MaxNodeId}; contention,totLoadEst : int;
transPhase : {RISING, DROPPING};
latency, baseLatency, surplus, baseSurplus, oldSugLevel, sugLevel : int; end;

shared variables
Balancers : array[0..MaxNodeId] of BalancerType;
Leaves : array[1..MaxNodeId] of LeafType;
TokenToReact : array[1..MaxNodeId] of boolean;
Tracing : array[1..MaxProcs] of [1..MaxNodeId];

private variables
MyPath : array[1..MaxLevel] of NodeType; /*one for each processor*/

int CHECKCONDITION(LeafType L)

C0 TotLoadEst := MIN(MaxProcs, L.contention ∗ 2L.level);
C1 FirstInPhase := False;
C2 if (L.transPhase = RISING) and (TotLoadEst < L.totLoadEst) then

L.transPhase := DROPPING; L.baseLatency := L.latency; FirstInPhase := True;
C3 else if (L.transPhase = DROPPING) and (TotLoadEst > L.totLoadEst) then

L.transPhase := RISING; L.baseSurplus := L.surplus; FirstInPhase := True;
C4 if L.transPhase = RISING then Surplus2Latency(L, TotLoadEst, F irstInPhase);
C5 else Latency2Surplus(L, 1

T otLoadEst , F irstInPhase);
L.totLoadEst := TotLoadEst; L.oldSugLevel := L.sugLevel;

C6 L.sugLevel := log2(MaxProcs − L.surplus);
if L.sugLevel < L.level then return SHRINK;
else if L.sugLevel > L.level then return GROW ;
else return NONE;

SURPLUS2LATENCY(L, TotLoadEst, F irstInPhase)
SL0 X := L.surplus; baseX := L.baseSurplus; Y := L.latency;
SL1 rXY := TotLoadEst; LrXY := L.totLoadEst;
SL2 if FirstInPhase then

if rXY > mXY ∗ C then deltaX := baseX ∗ 1
C ∗ rXY −mXY ∗C

rXY −mXY ; /*C: comp. ratio*/

SL3 else deltaX := baseX ∗ 1
C ∗ rXY −LrXY

rXY −mXY ;
SL4 L.surplus := L.surplus − deltaX; L.latency := L.latency + deltaX ∗ rXY ;

LATENCY2SURPLUS(L, 1
T otLoadEst , F irstInPhase)

/* symmetric to the above with: X := L.latency; baseX := L.baseLatency; Y := L.surplus;
rXY := 1

T otLoadEst ; LrXY := 1
L.totLoadEst ;*/

Fig. 3. The tree data structure and CheckCondition, Surplus2Latency and Latency2Surplus pro-
cedures

these locking mechanisms interact and ensure safety and liveness in our data struc-
ture accesses is explained in the descriptions of the implementations of the Grow and
Shrink procedures and is proven in [3].

3.2 Reaction Conditions

As mentioned in section 2.3, each leaf L of the self-tuning reactive tree estimates which
level is the best for the current load. The leaf estimates the total load of tree by using
the following formula:

TotLoadEst = L.contention ∗ 2L.level

line C0 in CheckCondition() in Figure 3, where MaxProcs is the maximum number
of processors potentially wanting to access the tree and L.contention, the contention

Self-tuning Reactive Distributed Trees for Counting and Balancing 221

of a leaf, is the number of processors that currently visit the leaf. L.contention is
increased by one every-time a processor visits the leaf L and is decreased by one when
a processor leaves the leaf. Because the number of processors accessing the tree cannot
be greater than MaxProcs we have an upper bound for the load: TotLoadEst ≤
MaxProcs.

At the beginning, the initial tree is just a leaf, so the the initial surplus, base
Surplus, is MaxProcs − 1 and the initial latency, baseLatency, is 0. Then, based
on the contention variation on each leaf, the values of surplus and latency are updated
according to the online trading algorithm. Procedure Surplus2Latency() (respectively
Latency2Surplus()) is invoked (lines C4, C5) to adjust the number of surplus proces-
sors that the tree should have at that time. The surplus value will be used to compute
the number of leaves the tree should have and consequently the level the leaf L should
shrink/grow to. .

Procedure Surplus2Latency(L, TotLoadEst, F irstInPhase) in Figure 3 ex-
changes L.surplus to L.latency according to the threat-based algorithm [4] using
TotLoadEst as exchange rate. For self-containment, the computation implied by this
algorithm is explained below. In a load-rising transaction phase, the following rules
must be followed:

1. The tree is expanded only when the estimated current total load is the highest so far
in the present transaction phase.

2. When expanding, expand just enough to keep the competitive ratio c = ϕ −
ϕ−1

ϕ1/(ϕ−1) , where ϕ = MaxProcs
2 , even if the total load drops to the minimum possi-

ble in the next measurement.

Following these, the number of leaves the tree should have more is:

deltaSurplus = baseSurplus ∗ 1
C

∗ TotLoadEst − TotLoadEst−

TotLoadEst − 2

where TotLoadEst− is the highest observed total load before the present measure-
ment and baseSurplus is the number of surplus processors at the beginning of the
present transaction phase (line SL3, where mXY is the lower bound of the estimated
total load). Everytime a new transaction phase starts, the value baseSurplus is set to
the last value of surplus in the previous transaction phase (line C3). The parameter
FirstInPhase is used to identify whether this is the first exchange of the transaction
phase. At the beginning,

surplus = baseSurplus = MaxProcs − 1

i.e. the tree degenerates to a node. Both variables TotLoadEst− and baseSurplus are
stored in fields TotLoadEst and baseSurplus of the leaf data structure, respectively.

Symmetrically, when the tree should shrink to reduce the traversal latency, the ex-
change rate is the inverse of the total load, rXY = 1

TotLoadEst , which is increasing. In
this case, the value of surplus increases and that of latency decreases.

3.3 Expanding a Leaf to a Sub-tree

A grow operation of a leaf L to a subtree T , whose root is L’s matching balancer B and
whose depth is L.SugLevel−L.level, essentially needs to (i) set the counters at the new

222 P.H. Ha, M. Papatriantafilou, and P. Tsigas

leaves in T to proper values to ensure the step property; (ii) switch the corresponding
child pointer of L’s parent from L to B; and (iii) activate the nodes in T . (Figure 5
illustrates the steps taken in procedure grow, which is given in pseudocode in Figure 4.)
Towards (i), it needs to:

GROW(int Nid) /*Leaves[Nid] becomes OLD;Balancers[Nid] and its subtree become ACTIVE*/
G0 L := Leaves[Nid]; B := Balancers[Nid];
G1 forall i, Read(Tracing[i]) /* Can’t miss any processors sincethe current ones go to Leaves[Nid]*/

if ∃ pending processors in the subtree rooted at B then return; /*abort*/
G2 for each balancer B′ in the subtree rooted at B,up to level L.sugLevel − 1

forall entries i : B′.votes[i] := 0; B′.toggleBit = 0;
G3 for each leaf L′ at level L.sugLevel of the subtree rooted at B,in decreasing order of nodeId do

if not AcquireLock cond(L′.lock, Nid) then Release all acquired locks; return; /*abort*/
G4 if (not AcquireLock cond(L.lock, Nid)) or (L.state = OLD) then

/*1st: an ancestor activated an overlapping Shrink; 2nd:someone already made the expansion*/
Release all acquired locks; return; /*abort*/

G5 Switch parent’s pointer from L to B;
G6 forall i, Read(Tracing[i]) /*Can’t miss any since the new ones go to B*/

ppL := #(pending processors at L);
G7 CurCount := L.count; L.state := OLD;
G8 Release(L.lock);
G9 for each balancer B′ as described in step G2 do B′.state := ACTIV E;
G10 for each leaf L′ as described in step G3 do

update L′.count using ppL and CurCount; L′.state := ACTIV E; Release(L′.lock);
return;/*Success*/

ELECT2SHRINK(int Nid, NodeType MyPath[])
E0 L := Leaves[Nid];/*the leaf asks to shrink*/

if L.oldSugLevel < L.sugLevel then /*new suggested level islower than older suggestion*/
E1 for(i:=L.oldSugLevel; i<L.sugLevel; i + +) do Balancers[MyPath[i].Nid].votes[Nid] :=0;

else for (i := L.sugLevel; i < L.oldSugLevel; i + +) do
E2 B := Balancers[MyPath[i].Nid];
E3 B.votes[Nid] :=2MaxLevel−L.level; bWeight :=2MaxLevel−B.level; /*weight of B’s subtree*/

E4 if
∑

i B.votes[i]
bW eight > 0.5 then Shrink(i); break;

SHRINK (int Nid)/*Leaves[Nid] becomes ACTIVE; Balancers[Nid] and its subtree become OLD*/
S0 B := Balancers[Nid]; L := Leaves[Nid];
S1 if (TAS(TokenToReact[Nid]) = 1) then return; /*abort, someone is doing the shrinkage*/
S2 forall i : Read(Tracing[i]) /*can’t miss any since the currentones go to B*/

if ∃ pending processor at L then return;/*abort*/
S3 if (not AcquiredLock cond(L.lock, Nid)) or (B.state = OLD) then

/*1st: some ancestor is performing Shrink; 2nd: someone already made the shrinkage*/
Release possibly acquired lock; return; /*abort*/

S4 L.state := OLD; /*avoid reactive adjustment at L*/
S5 forall leaf L′ in B’s subtree, in increasing order of nodeId do

AcquireLock cond(L′.lock, Nid); /*No fails expected since Grow operations by ancestors
will abort at G1*/

S6 Switch the parent’s pointer from B to L
S7 forall i : Read(Tracing[i]); eppB := #(effective pending processors in B’s subtree;

/*can’t miss any since the new ones go to L*/
S8 for each balancer B′ in the subtree rooted at B do B′.state := OLD;

SL := ∅; SLCount := ∅;
S9 for each leaf L′ in the subtree rooted at B do

if (L.state = ACTIV E) then SL := ∪L′; SLCount := ∪L′.count; L′.state := OLD;
Release(L′.lock);

S10 L.count := f(eppB, SL, SLCount);
S11 L.state := ACTIV E;
S12 Release(L.lock);
S13 Reset(TokenToReact[Nid]);

Fig. 4. The Grow, Elect2Shrink and Shrink procedures

Self-tuning Reactive Distributed Trees for Counting and Balancing 223

parent

after growbefore grow

Nid Nid

...

L B
G1: proceed only if no pending
processors in B’s subtree

L.sugLevel

L.level

G4−G8: lock L, switch parent ptr from L to B,
=> guarantee non−interfered set of proc’s at L

all balancers here
G2,G9: update & activate

G3,G10: lock, update
& activate leaves here

"not effective"
token here is

magnified view of (*)

=> get consistent leaf data at S9
NOTE: no performance bottleneck

S5: lock all leaves in B’s subtree
after shrink before shrink

BL

...

NidNid

parent

S8: all balancers here are old

include token T

T
in my counter

(*)

S10−13: update L’s data,
release L’s lock &
TokenToReact

S1: get TockenToReact
S2: proceed only if no pending proc’s at L

=> correctly count effective pending processors
S3,S6,S7: lock L, switch parent ptr from B to L,

leaves in B’s subtree
S9: collect data from

=> prevent unnecessary reactions

Fig. 5. Illustration for Grow and Shrink procedures

• make sure there are no pending tokens in T . If there are any, Grow aborts (step
G1 in Grow), since it should not cause “old” tokens get “new” values (that would
cause “holes” in the sequence of numbers received by all tokens in the end). A new
grow operation will be activated anyway by subsequent tokens visiting L, since L
has high contention.

• acquire the locks for the new leaves, to be able to assign proper counter values to
them (step G3 in Grow) to ensure the step property.

• make a consistent measurement of the number of pending processors in L and
L.count to use in the computation of the aforementioned values for the counters.
Consistency is ensured by acquiring L’s lock (step G4) and by switching L’s par-
ent’s pointer from L to B (i.e. performing action (ii) described above; step G5 in
Grow), since the latter leaves a “non-interfered” set of processors in L.

Each of these locks’ acquisition is conditional, i.e. if some ancestor of L holds it,
the attempt to lock will return fail. In such a case the grow procedure aborts, since the
failure to get the lock means that there is an overlapping shrink operation by an ancestor
of L. (Note that overlapping grow operations by an ancestor of L would have aborted,
due to the existence of the token (processor) at L (step G1 in Grow).) Furthermore, the
new leaves’ locks are requested in decreasing order of node-id, followed by the request
of L.lock, to avoid deadlocks.

Towards action (iii) from above, the grow procedure needs to reset the tree’s T bal-
ancers’ toggle bits and vote arrays (before switching L’s parent’s pointer from L to
B; step G2) and set the state values of all balancers and bottom-level leaves in T to
ACTIVE (after having made sure that the growing will not abort; step G9-G10).

224 P.H. Ha, M. Papatriantafilou, and P. Tsigas

3.4 Shrinking a Sub-tree to a Leaf

Towards a decision of whether and where to shrink to, the token at a leaf L0 with recom-
mended reaction to shrink to level L0.SugLevel must add L0’s vote in the vote arrays
of the balancers of its path from the root, starting from level L0.SugLevel, up to level
L0.level − 1 (it must also take care to remove potentially existing older votes at layers
above that; step E1 in Elect2Shrink in Figure 4). When a balancer with enough votes
is reached, the shrink operation will start (steps E3-E4 in Elect2Shrink). Figure 5 and
Figure 4 illustrate and give the pseudocode of the steps taken towards shrinking.

Symmetrically to a grow operation, a shrink from a subtree T rooted at balancer B
(with enough votes) to B’s matching leaf L, essentially needs to (i) set the counter at L to
the proper value to ensure the step property; (ii) switch the corresponding child pointer
of B’s parent from B to L; and (iii) de-activate the nodes in T . Towards (i), it needs to:

• make sure there are no pending tokens in L. If there are any, shrink aborts (step S2 in
Shrink), since it should not cause “old” tokens get “new” values. Subsequent tokens’
checking of the reaction condition may reinitiate the shrinking later on anyway.

• acquire L’s lock (step S3), to be able to assign an appropriate counter value to it, to
ensure the step property.

• make a consistent measurement of (1) the number of pending processors in T and
(2) the values of counters of each leaf L′ in T . Consistency is ensured by acquiring
L′.lock for all L′ in T (step S5) and by switching B’s parent’s pointer from B to
L (i.e. performing action (ii) described above; step S6 in Shrink), since the latter
leaves a “non-interfered” set of processors in T .

Similarly to procedure grow, these locks’ acquisition is conditional. Symmetrically
with grow, the requests are made first to L.lock and then to the locks of the leaves in
T , in increasing order of node-id, to avoid deadlocks. Failure to get L.lock implies an
overlapping shrink operation by an ancestor of L. Note that overlapping grow opera-
tions by an ancestor of L would have aborted, due to the existence of the token at B
(step G1 in Grow). Note also that an overlapping shrink by some of L’s ancestors can-
not cause any of the attempts to get some L′.lock to fail, since that shrink operation
would have to first acquire the lock for L (and if it had succeeded in getting that, it
would have caused the shrink from B to L to abort earlier, at step S3 of Shrink()).

Towards action (iii) from above, the shrink procedure sets the balancers’ and leaves’
states in T to OLD (steps S8-S9 in Shrink), after having made sure that the shrink will
not abort.

4 Evaluation

In this section, we evaluate the performance of the self-tuning reactive trees proposed
here. We used the reactive diffracting trees of [2] as a basis of comparison since they
are the most efficient reactive counting constructions in the literature.

The source code of [2] is not publicly available and we implemented it following
exactly the algorithm as it is presented in the paper. We used the full-contention bench-
mark, the index distribution benchmark [2] and the surge load benchmark [2] on the
SGI Origin2000, a popular commercial ccNUMA multiprocessor.

Self-tuning Reactive Distributed Trees for Counting and Balancing 225

In [2], besides running the benchmarks on a non-commercially availiable machine
with 32 processors (Alewife), the authors also ran them on the simulator simulating a
multiprocessor system similar to Alewife with up to 256 processors.

The most difficult issue in implementing the reactive diffracting tree is to find the
best folding and unfolding thresholds as well as the number of consecutive timings
called UNFOLDING LIMIT, FOLDING LIMIT and MINIMUM HITS in [2]. However,
subsection Load Surge Benchmark in [2] described that the reactive diffracting tree
sized to a depth 3 tree when they ran index-distribution benchmark [1] with 32 proces-
sors in the highest possible load (work = 0) and the number of consecutive timings
was set at 10. According to the description, we run our implementation of the reactive
diffracting tree on the ccNUMA Origin 2000 with 32 MIPS R10000 processors and the
result is that folding and unfolding thresholds are 4 and 14 microseconds, respectively.
This selection of parameters did not only keep our experiments consistent with the ones
presented in [1] but also gave the best performance for the diffracting trees in our sys-
tem. Regarding the prism size (prism is an algorithmic construct used in diffracting
process in the reactive diffracting trees), each node has c2(d−l) prism locations, where
c = 0.5, d is the average value of the reactive diffracting tree depths estimated by
processors passing the tree and l is the level of the node [2, 5]. The upper bound for
adaptive spin MAXSPIN is 128 as mentioned in [1].

In order to make the properties and the performance of the self-tuning reactive tree
algorithm presented here accessible to other researchers and to help reproducibility of
our results, C code for the tested algorithms is available at http://
www.cs.chalmers.se/∼phuong/sat jul04.tar.gz.

4.1 Full-Contention and Index Distribution Benchmarks

The system used for our experiments was a ccNUMA SGI Origin2000 with sixty four
195MHz MIPS R10000 CPUs with 4MB L2 cache each. The system ran IRIX 6.5. We ran
the reactive diffracting tree RD-tree and the self-tuning reactive tree ST-tree in the full-
contention benchmark, in which each thread continuously executed only the function
to traverse the respective tree, and in the index distribution benchmark with work =
500µs [2][1]. Each experiment ran for one minute and we counted the average number
of operations per second.

Results: The results are shown in Figure 6 and Figure 7. The right charts in both the
figures show the average depth of the ST-tree compared to the RD-tree. The left charts
show the proportion of the ST-tree throughput to that of the RD-tree.

The most interesting result is that when the contention on the leaves increases, the
ST-tree automatically adjusts its size close to that of the RD-tree that requires three
experimental parameters for each specific system.

Regarding throughput and scalability, we observed that the ST-tree performs better
than the RD-tree. This is because the ST-tree has a faster and more efficient reactive
scheme. The surge load benchmark in the next subsection shows that the reactive trees
continuously adjust their current size slightly around the average size corresponding to
a certain load (cf. Figure 8). Therefore, an efficient adjustment procedure will signifi-
cantly improve the performance of the trees.

226 P.H. Ha, M. Papatriantafilou, and P. Tsigas

Throughput_SGI_fullcontention

0

2

4

6

8

10

12

14

16

4 8 12 16 20 24 28 32
#processors

Pr
op

or
tio

n
of

 S
T-

tre
e

to
 R

D-
tre

e RD-tree ST-tree

Average_depth_SGI_fullcontention

0

0.5

1

1.5

2

2.5

3

3.5

4 8 12 16 20 24 28 32
#processors

Av
er

ag
e

de
pt

h

RD-tree ST-tree

Fig. 6. Throughput and average depth of trees in the full-contention benchmark on SGI Ori-
gin2000

Throughput_SGI_indexbenchmark_work=500

0

5

10

15

20

25

30

35

40

45

4 8 12 16 20 24 28 32
#processors

Pr
op

or
tio

n
of

 S
T-

tre
e

to
 R

D-
tre

e RD-tree ST-tree

Average_depth_SGI_indexbenchmark_work=500

0

0.5

1

1.5

2

2.5

3

3.5

4 8 12 16 20 24 28 32
#processors

Av
er

ag
e

de
pt

h

RD-tree ST-tree

Fig. 7. Throughput and average depth of trees in the index distribution benchmark with work =
500µs on SGI Origin2000

Average_depth_SGI_surgeload_The_Best

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

40
00

46
27

52
54

58
81

65
08

71
35

77
62

83
89

90
16

96
43

10
27

0

10
89

7

11
52

4

12
15

1

12
77

8

13
40

5

14
03

2

14
65

9

#intervals

Av
er

ag
e d

ep
th

ST-tree RD-tree

Average_depth_SGI_surgeload_The_Worst

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

40
00

46
23

52
46

58
69

64
92

71
15

77
38

83
61

89
84

96
07

10
23

0

10
85

3

11
47

6

12
09

9

12
72

2

13
34

5

13
96

8

14
59

1

#intervals

Av
er

ag
e d

ep
th

ST-tree RD-tree

Fig. 8. Average depths of trees in the surge benchmark on SGI Origin2000, best and worst mea-
surements. In a black-and-white printout, the darker line is the ST-tree

Studing the figures closer, in the full-contention benchmark (Figure 6), we can ob-
serve the scalability properties of the ST-tree, which shows increased throughput with
increasing number of processors (as expected using the aforementioned arguments) in
the left chart. The right chart shows that the average depth of the ST-trees is nearly the
same as that of the RD-tree, i.e. the reaction decisions are pretty close.

In the index distribution benchmark with work = 500µs, which provides a lower-
load environment, the ST-tree can be observed to show very desirable scalability behav-
ior as well, as shown in Figure 7. The charts of the average depths of both trees have
approximately the same shapes again, but the ST-tree expands from half to one depth
unit more than RD-tree. This is because the throughput of the former was larger, hence
the contention on the ST-tree leaves was higher than that on RD-tree leaves, and this
made the ST-tree expand more.

Self-tuning Reactive Distributed Trees for Counting and Balancing 227

4.2 Surge Load Benchmark

The benchmark shows how fast the trees react to contention variations. The benchmark
is run on a smaller but faster machine3, ccNUMA SGI2000 with thirty 250MHz MIPS
R10000 CPUs with 4MB L2 cache each. On the machine the optimal folding and un-
folding thresholds, which keep our experiments consistent with the ones presented in
[1], are 3 and 10 microseconds, respectively. All other parameters are kept the same as
the benchmarks discussed in the previous subsection.

In this benchmark we measured the average depth of each tree in each interval
of 400 microseconds. The measurement was done by a monitor thread. At interval
5000, the number of threads was changed from four to twenty eight. The average
depth of the trees at the interval 5001 was measured after synchronizing the moni-
tor threads with all the new threads, i.e. the period between the end of interval 5000
and the beginning of interval 5001 was not 400 microseconds. Figure 8 shows the av-
erage depth of both trees from interval 4000 to interval 15000. The left chart shows
the best reaction time figures for the RD-tree and the ST-tree; the right one shows
the worst reaction time figures for the RD-tree and the ST-tree. In the benchmark,
the ST-tree reached the suitable depth 3 for the case of 28 threads at interval 5004
in the best case and 5008 in the worst case, i.e. only after 5 to 8 intervals since the
time all 28 threads started to run. The RD-tree reached level 3 at interval 7447 in
the best case and at interval 9657 in the worst case. That means the reactive scheme
introduced in this paper and used by the ST-tree makes the same decisions as the
RD-tree, and, moreover, it reacts to contention variations much faster than the
latter.

5 Conclusion

The self-tuning reactive trees presented in this work distribute the set of processors
that are accessing them, to many smaller groups accessing disjoint critical sections
in a coordinated manner. They collect information about the contention at the leaves
(critical sections) and then they adjust themselves to attain adaptive performance. The
self-tuning reactive trees extend a successful result in the area of reactive concurrent
data structures, the reactive diffracting trees, in the following way:

• The reactive adjustment policy does not use parameters which have to be set man-
ually and which depend on experimentation.

• The reactive adjustment policy is based on an efficient adaptive algorithmic scheme.
• They can expand or shrink many levels at a time with small overhead.
• Processors pass through the tree in only one direction, from the root to the leaves

and are never forced to go back.

Moreover, the self-tuning reactive trees:

• have space needs comparable with that of the classical reactive diffracting trees

3 This is because the first machine was replaced with that one at our computer center while this
experimental evaluation was still in progress.

228 P.H. Ha, M. Papatriantafilou, and P. Tsigas

• exploit low contention cases on subtrees to make their locking process as efficient
as in the classical reactive diffracting trees although the locking process locks more
nodes at the same time.

Therefore, the self-tuning reactive trees can react quickly to changes of the con-
tention levels, and at the same time offer a good latency to the processes traversing
them and good scalability behavior. We have also presented an experimental evaluation
of the new trees, on the SGI Origin2000, a well-known commercial ccNUMA multi-
processor. We think that it is of big interest to do a performance evaluation on modern
multiprocessor systems that are widely used in practice.

Last, we would like to emphasize an important point. Although the new trees have
better performance than the classical ones in the experimental evaluation conducted and
presented here, this is not the main contribution of this paper. What we consider as main
contribution is the ability of the new trees to self-tune their size efficiently without any
need of manual tuning.

References

1. Shavit, N., Zemach, A.: Diffracting trees. ACM Trans. Comput. Syst. 14 (1996) 385–428
2. Della-Libera, G., Shavit, N.: Reactive diffracting trees. J. Parallel Distrib. Comput. 60 (2000)

853–890
3. Ha, P.H., Papatriantafilou, M., Tsigas, P.: Self-adjusting trees. Technical

Report 2003-09, Computing Science, Chalmers University of Technology (2003)
http://www.cs.chalmers.se/∼phuong/ SAT TR.ps.gz.

4. El-Yaniv, R., Fiat, A., Karp, R.M., Turpin, G.: Optimal search and one-way trading online
algorithms. Algorithmica 30 (2001) 101–139

5. Shavit, N., Upfal, E., Zemach, A.: A steady state analysis of diffracting trees. Theory of
Computing Systems 31 (1998) 403–423

Optimal Resilience Asynchronous Approximate
Agreement

Ittai Abraham, Yonatan Amit, and Danny Dolev

School of Computer Science and Engineering,
The Hebrew University of Jerusalem, Israel
{ittaia, mitmit, dolev}@cs.huji.ac.il

Abstract. Consider an asynchronous system where each process begins
with an arbitrary real value. Given some fixed ε > 0, an approximate
agreement algorithm must have all non-faulty processes decide on values
that are at most ε from each other and are in the range of the initial
values of the non-faulty processes.

Previous constructions solved asynchronous approximate agreement
only when there were at least 5t+1 processes, t of which may be Byzan-
tine. In this paper we close an open problem raised by Dolev et al. in
1983. We present a deterministic optimal resilience approximate agree-
ment algorithm that can tolerate any t Byzantine faults while requiring
only 3t + 1 processes.

The algorithm’s rate of convergence and total message complexity
are efficiently bounded as a function of the range of the initial values of
the non-faulty processes. All previous asynchronous algorithms that are
resilient to Byzantine failures may require arbitrarily many messages to
be sent.

Keywords: approximate agreement, Byzantine agreement, asynchronous
systems.

1 Introduction

In the classical Byzantine Generals problem a set of processes begin with some
initial value and must reach agreement on one of the initial values is spite of
having some faulty processes. In the approximate version it is required that the
values of all non-faulty processes eventually converge to a range that is bounded
by some predefined ε > 0.

It is well know that in asynchronous communication models reaching agree-
ment is impossible under the possibility of having even one faulty process [8]. In
sharp contrast, Dolev et al. [3, 4], show that approximate agreement is possible
in asynchronous systems that have 5t+1 processes, t of which may be Byzantine.

In this paper we solve the open question raised by [3, 4]. We show that Ap-
proximate Agreement can be reached with 3t + 1 processes, t of which may be
Byzantine. Fischer et al. [7] show that there is no approximate agreement pro-
tocol with 3t or less processes that can tolerate t Byzantine failure. Hence our
algorithm has optimal resilience.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 229–239, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

230 I. Abraham, Y. Amit, and D. Dolev

The results are further strengthened by bounding the total number of rounds
and the total number of messages sent. We bound the number of rounds until
termination as a function of the range of initial values of the non-faulty processes.
Our round and message efficiency is in contrast to all previous asynchronous
solutions [4] in which the faulty processes can cause the protocol to run for an
arbitrarily high (yet final) number of rounds.

The results presented in this paper are obtained using two building blocks.
One is an asynchronous version of the Reliable-Broadcast protocol of Srikanth
and Toueg [11]. The other building block is a novel witness technique. The wit-
ness technique limits the ability of faulty processes to lie about the range of
values they were able to collect. This building block seems to be very powerful
and it enables the non-faulty processes to rapidly converge their values.

There is a large body of work on stronger assumptions or weaker properties
of the Approximate Agreement problem. In the synchronous version of approx-
imate agreement, Mahaney and Schneider [10] improve the time complexity by
using the Crusader Agreement protocol of Dolev [2] as a building block. Fekete
[5] gives algorithms with asymptotically optimal convergence rates for the syn-
chronous version of the problem. Fekete [6] also gives efficient algorithms for the
asynchronous approximate agrement problem that is resilient against weaker ad-
versaries of failure by omission and crash-failures. Kieckhafer and Azadmanesh
[9] give a hybrid synchronous algorithm that can withstand both Byzantine and
benign failures.

Another alternative for weakening the properties of Agreement is to require
a probabilistic termination property that only guarantees a finite expectancy
of termination (but there may exist infinite executions). Bracha [1] presents a
randomized 3t + 1 resilient Byzantine Agreement protocol with probabilistic
termination. In contrast, our protocol is deterministic and always guarantees
termination.

1.1 Model and Problem Definition

Consider a set of n processes. Processes communicate by a fully connected asyn-
chronous network with reliable FIFO channels. Messages sent will eventually
arrive after a finite unbounded amount of time. The channels between any two
processes maintain FIFO property, if p sends to q message m and later sends
message m′ then q will first receive m and only later receive m′.

We assume that t of the processes may be Byzantine. All other processes
follow the algorithm and are denoted as non-faulty.

Assume each non-faulty process begins with an arbitrary real input value
and fix some (arbitrarily small) pre-agreed ε > 0. An Approximate Agreement
Algorithm must satisfy the following two conditions:
Agreement. All non-faulty processes eventually halt with output values that

are within ε of each other;
Validity. The value output by each non-faulty process must be within the range

of the initial values of non-faulty processes.

Optimal Resilience Asynchronous Approximate Agreement 231

1.2 Notations

Let V denote the set of processes, and G the set of non-faulty processes. Hence
n = |V | and |G| ≥ n − t.

Let S denote a finite multiset of reals. Intuitively S can be thought of as a
set of real numbers in which repetitions are considered. For example {1, 1, 3}
equals {1, 3, 1} but differs from {1, 3}. Formally let R denote the set of reals
and N the set of natural numbers then S is a function S : R �→ N such that
{r ∈ R | S(r) �= 0} is finite. Define |S| =

∑
r∈R

S(r), min S = minS(r)�=0{r ∈ R},
max S = maxS(r)�=0{r ∈ R}, and the range of S as δ(S) = max S − min S.

Given a multiset S denote s1, s2, . . . , s|S| the values of S ordered in a non
decreasing order. For any t < |S|/2, define trim(S, t) as the multiset containing
the values st+1, st+2, . . . , s|S|−t−1 (removing the t largest and t smallest values
from S). Define

reduce(S, t) =
max(trim(S, t)) + min(trim(S, t))

2
.

Given a set of processes V , let P be a set of (process,value) pairs. Formally,
P ⊂ (V × R). Define P|2 as the multiset of values of the second coordinate in
P . To shorten notations, we extend the multiset operators to P , for example
max P = max P|2, reduce(P, t) = reduce(P|2, t).

We use the following conventions for defining the value of a variable during the
execution of a protocol. All our protocols have explicit round numbers starting
with 1 and incrementing by one each iteration. Given a variable x we denote xh

p

as the value of the variable x on process p when p completes its h-th round.

2 Reliable Broadcast and a 4t + 1 Resiliency

The basic idea of [4] is to gather at least n − t values, trim the t largest and t
smallest of the gathered values, and then compute some averaging function of
the remaining values as the next approximation. We begin by noting why the
algorithm of Dolev et al. [4] fails for 4t + 1 processes of which at most t may
be Byzantine. Suppose t + 1 non faulty processes begin with 0 and another 2t
non faulty processes begin with 1. The problem is that the remaining t Byzan-
tine processes may send conflicting values to different processes. Specifically, all
processes that begin with value i ∈ {0, 1} may gather at least 2t + 1 values that
equal i so the trimming will cause them to see the same value i and never to
converge. We overcome this difficulty by using Reliable-Broadcast.

Instead of gathering directly n− t values, the simple 4t+1 algorithm gathers
n − t values that have been sent by Reliable-Broadcast.

The properties of the Reliable-Broadcast above are a variation of the asyn-
chronous Reliable-Broadcast of [11]:

Correctness. If a non-faulty process p with a message m on round h per-
forms Reliable-Broadcast(m,h) then all non-faulty processes will eventually
Reliable-Accept(p,m, h).

232 I. Abraham, Y. Amit, and D. Dolev

Reliable-Broadcast code for process p with message m on round h:
send (p, m, h) to all processes;

Echo() method for process q:
upon receiving (p, m, h) from p

if q never sent a message of the form (p, ·, h) then
send (p, m, h) to all processes;

upon receiving (p, m, h) from at least t + 1 unique processes;
if q never sent a message of the form (p, ·, h) then

send (p, m, h) to all processes;

Condition for Reliable-Accept(p, m, h) at process q:
Received (p, m, h) from at least n − t unique processes;

Fig. 1. Code for Reliable-Broadcast(m) and Reliable-Accept(p, m)

Non-forgeability. If a non-faulty process p does not perform at round h the
task Reliable-Broadcast(m,h) then no non-faulty process will ever perform
Reliable-Accept(p,m, h).

Uniqueness. If a non-faulty process performs Reliable-Accept(p,m, h) and an-
other non-faulty process performs Reliable-Accept(p,m′, h) then m = m′;

Lemma 1. The algorithm in Figure 1 realizes Correctness, Non-forgeability,
and Uniqueness.

Proof. Non-forgeability holds since non-faulty processes will never receive the
non existent message directly and hence may receive at most t indirect messages.
Therefore a non-faulty process will never echo a nonexisting messages and clearly
will never accept such a message.

Correctness holds since eventually every non-faulty process will receive either
a direct message from p or t + 1 indirect messages and due to non-forgeability
these are the only two options.

For uniqueness, suppose that the condition Reliable-Accept(p,m, h) holds for
a non-faulty process q then at least t+1 non-faulty processes have sent (p,m, h)
hence any other non-faulty process can gather at most n − (t + 1) messages of
the form (p,m′, h) with m′ �= m, hence such m′ will never be accepted. ��

Given the Reliable-Broadcast primitive we present a simple 4t + 1 resilient
Approximate Agreement protocol. In each round, each process waits until it
performs Reliable-Accept on n − t different values.

Theorem 1. Let U denote the multiset of initial values of non-faulty processes.
If all non-faulty processes run the algorithm in Figure 2 for at least log2(δ(U)/ε)
rounds then their values are at most ε for each other and in the range of the initial
values.

Optimal Resilience Asynchronous Approximate Agreement 233

Code for process p:

Local variables:
values ⊂ (V × R) initially values = ⊥;
init ∈ R; // the initial value;
val ∈ R initially val = init;
round ∈ N initially round = 1;

repeat:
Reliable-Broadcast(‘value’, p, val, round);
values := ⊥;
repeat

upon Reliable-Accept(‘value’, q, u, h) and h = round // the first time
values := values ∪ (q, u);

until |values| ≥ n − t;
val := reduce(values, t);
round := round + 1;

Fig. 2. The simple 4t + 1 algorithm

The proof of this theorem can be derived as a simple exercise from the lemmata
given for the 3t + 1 algorithm and the fact that due to the Reliable-Broadcast
mechanism, every two non-faulty processes accept at least n−2t ≥ 2t+1 common
values in each round.

3 The 3t + 1 Algorithm

We note that for 3t+1 resilience, simply using Reliable-Broadcast and trimming
is not enough. In the worst case, two processes may accept a multiset of values
that intersect only at one value, and after trimming the resulting multisets will
not intersect. For example, suppose n = 4, t = 1 and let the values be 0, 0, 1, 1;
the faulty process can arrange that all processes with value i ∈ {0, 1} will receive
3 values and after trimming the median will equal i and no progress will be made.

Hence, for the 3t + 1 resilient algorithm we use an additional mechanism of
gathering witnesses. A witness for process p is a process whose first n−t accepted
values were also accepted by p. Process p waits to gather n − t witnesses. Since
each process gathers n − t witnesses, every two processes have at least t + 1
common witnesses, and thus at least one non-faulty witness. Having a common
non-faulty witness implies that every pair of non-faulty processes have at least
n − t commonly accepted values.

Each message is associated with a specific round. Given a message with a
higher round number than the current round, the receiving process saves it and
will treat it as a new message when the process will reach the relevant round.

We also need a mechanism that allows processes to know when to decide
on their value and halt. Let U denote the multiset of initial values of non-faulty

234 I. Abraham, Y. Amit, and D. Dolev

processes, ideally we aim to bound the number of rounds (and hence the number
of messages sent) as a function of δ(U), the range of the initial values of the non-
faulty processes (non-faulty range).

We note that in the asynchronous algorithm of [4] the Byzantine process can
induce arbitrarily high and low values that will cause the protocol to run for an
arbitrarily large (but finite) number of rounds.

In order to achieve round and message efficiency we employ a special ini-
tial round protocol that estimates the non-faulty range. The idea is to force
all processes (even Byzantine ones) to Reliable-Broadcast the vector of values
they gathered. This enforces a process to send values that are all inside the
range of the initial values U . We show that the estimation of δ(U) by any non-
faulty process is adequate to ensure that the resulting values are within ε of each
other.

Different processes may have different estimations on the number of rounds
required. Hence, care should be taken so that processes do not halt too early
and cause others never to terminate. Specifically, a process waits until it
Reliable-Accepts at least t + 1 ‘halt’ messages and it reaches a round larger

Local variables:
values ⊂ (V × R) initially values = ⊥;
init ∈ R; // the initial value;
val ∈ R initially val = init;
(∀x ∈ V) : report[x], proof [x] ⊂ (V × R) initially proof [x] := ⊥;
witnesses, proven ⊂ V ;
round, enough ∈ N initially round = 1;
L ⊂ N initially L = ⊥;

Code for process p:
init();
repeat

Reliable-Broadcast(‘value’, p, val, round);
values := ⊥;
(∀x ∈ V) : report[x] := ⊥;
repeat

// delay high round messages, discard low round messages
upon Reliable-Accept(‘value’, q, u, h) and h = round

FIFO-Broadcast(‘report’, q, u, h) to all;
values := values ∪ (q, u);

upon FIFO-Accept(‘report’, q, u, h) from process r and h = round
report[r] := report[r] ∪ (q, u);

witnesses := {x ∈ V | report[x] ⊆ values and |report[x]| ≥ n − t} ;
check/decide();

until |witnesses| ≥ n − t;
val := reduce(values, t);
round := round + 1;

Fig. 3. The 3t + 1 algorithm

Optimal Resilience Asynchronous Approximate Agreement 235

Code for init()
Reliable-Broadcast(‘init’, p, val);
repeat

upon Reliable-Accept(‘init’, q, u) (The first value from q)
then values := values ∪ (q, u);

until |values| ≥ n − t;
Reliable-Broadcast(‘proof’, p, values);
repeat

upon Reliable-Accept(‘init’, q, u) (The first value from q)
then values := values ∪ (q, u);

upon Reliable-Accept(‘proof’, q, vals) (The first proof from q)
then proof [q] := vals;

proven := {v ∈ V | proof [v] �= ⊥ and proof [v] ⊆ values};
until |proven| ≥ n − t;
values := {(q, reduce(proof [q], t)) | q ∈ proven};
val := reduce(values, t);
enough := 	log2(δ(values)/ε)
 + 1;

Code for check/decide()
if (round = enough) then Reliable-Broadcast(‘halt’, p, round) to all;
upon Reliable-Accept(‘halt’, q, h) (the first halt from q) then L := L ∪ {h};
if |L| ≥ t + 1 and round > min(trim(L, t)) then decide val and halt;

Fig. 4. The init() and check/decide() methods for process p

than the estimation of at least one non-faulty process whose ‘halt’ message it
accepted.

The code for the 3t + 1 algorithm appears in Figure 3 and Figure 4.

4 Analysis

4.1 Informal Properties of Witness:

In order to advance in a round a process p requires at least n − t witnesses.
Process x is a witness for process p if the first n − t values that x claimed to
accept were accepted by p.

Since ‘report’ messages are sent via FIFO-Broadcast then if x is a non-faulty
witness for both p, q then both p and q must have accepted the first n− t values
that x has accepted.

4.2 Liveness

Lemma 2. If no non-faulty process halts before or during round h and all of
them reach round h, then all non-faulty processes eventually advance to round
h + 1.

Proof. Seeking a contradiction, let S ⊆ G be the set of non-faulty processes that
never advance to round h + 1.

236 I. Abraham, Y. Amit, and D. Dolev

Eventually every p ∈ G will Reliable-Broadcast its value. Hence eventually
every p ∈ G will Reliable-Accept at least n − t values. Therefore every p ∈
G will send at least n − t ‘report’ messages. Hence eventually all p ∈ S will
Reliable-Accept each value in these ‘report’ messages. Hence all p ∈ G will
eventually have at least n − t witnesses, and must advance. ��

Lemma 3. All non-faulty processes eventually decide and halt.

Proof. Seeking a contradiction, suppose some set of non-faulty processes S ⊆ G
never decides.

We begin by showing that at least one process must halt. Eventually by
Lemma 2 the round number will be higher than the enough values of t + 1 non-
faulty processes and so at least t + 1 ‘halt’ messages will be sent. Recall that
a process p halts when its round number is larger than min(trim(Lp, t)) and
|Lp| ≥ t + 1 (see the last line of the check/decide method). Hence eventually
some non-faulty process will halt.

Let h be the minimum round that some process p ∈ G halts at, hence by
Lemma 2 all non-faulty processes will eventually reach round h. Since ‘halt’
messages are sent via Reliable-Broadcast, all other non-faulty processes will
eventually receive the same set of ‘halt’ messages (with the same round val-
ues) that caused p to halt. Hence all non-faulty processes will eventually have
min(trim(Lp, t)) ≤ h and so must eventually halt. ��

4.3 Safety

Lemma 4 (Validity). For all p ∈ G and round h,

min U ≤ valhp ≤ max U .

Proof. The proof is by induction on round numbers. Clearly the initial values
are in U by definition. Assuming that all the values of the previous round (or
the initial values for h = 1) for all p ∈ G are in the range, then the next
value valh is a product of reduce(valuesh−1, t) for some set of values that were
sent by Reliable-Broadcast (or in the init method, their proofs were sent via
Reliable-Broadcast). Since there are at most t Byzantine processes, and reduce
trims the t largest and t smallest accepted values, the maximal and minimal
remaining values will always be inside the range of the maximal and minimal
values of set of values of the non-faulty processes at the previous round. Hence
the averaging in reduce(values, t) will be on values that are in the range of U
by the induction hypothesis. ��

The witness property is stated as follows:

Lemma 5. Every pair of non-faulty processes p, q that complete round h, main-
tain that ∣∣valuesh

p ∩ valuesh
q

∣∣ ≥ n − t .

Optimal Resilience Asynchronous Approximate Agreement 237

Proof. If non-faulty processes p, q finish round h, they have at least t+1 common
witnesses. This follows from the fact that each has at least n − t witnesses, and
every n− t quorum has a t + 1 intersection with every other quorum. Hence p, q
have at least one common non-faulty witness r.

By the definition of witnesses and the FIFO properties of the ‘report’ mes-
sages, the first n − t values accepted by r will appear both in valuesp and in
valuesq. ��

Define Ui =
⋃

p∈G valip be the multiset containing the val values of all the non-
faulty processes after they all completed round i. We now show an exponential
decrease in the range.

Lemma 6. The range of non-faulty processes is cut by at least a half

δ(Ui) ≤ δ(Ui−1)
2

.

Proof. By Lemma 5 we know that every two processes have in common at
least n − t accepted values. Let p, q be two arbitrary non-faulty processes, with
valuesi

p, valuesi
q as their multiset of values. Without loss of generality we assume

that valip ≥ valiq. Denote m = min(Ui−1) and M = max(Ui−1). It is sufficient to
prove the following:

Claim: valip − valiq ≤ M−m
2

Proof: Denote R = valuesi
p ∩ valuesi

q, thus |R| ≥ n − t and denote Vp =
trim(valuesi

p, t), Vq = trim(valuesi
q, t).

Let x be the median of R, then x ∈ Vq because R has at least n− t elements
and we only trim t from each side. Hence max(Vq) ≥ x. In addition, min(Vq) ≥ m
because trim removes the t smallest elements in valuesi

q. Therefore valq ≥ m+x
2 .

In a similar fashion, x ∈ Vp, which implies min(Vp) ≤ x and max(Vp) ≤ M
and thus valp ≤ M+x

2 . Combining with the above we get valp − valq ≤ M−m
2 .

��

4.4 Termination Detection

We now show that the algorithm runs for sufficiently many rounds to ensure
non-faulty values are at most ε of each other.

Lemma 7. Let k denote the minimal round estimation k = min{enoughr | r ∈
G}. Then if all p ∈ G complete round k then

(∀p, q ∈ G) |valkp − valkq | ≤ ε .

Proof. Let p be a process such that enoughp = k. Examine the n − t values in
valuesp at the end of the init method. Consider a non-faulty process q, it also
gathers valuesq by the end of its init method. Due to the fact that the values
and proofs are sent via Reliable-Broadcast, process q can receive and accept at
most t values that are not in valuesp, all other values that q accepts must agree

238 I. Abraham, Y. Amit, and D. Dolev

with valuesp. Hence if we trim the t largest and t smallest values in valuesq the
range of the remaining values is inside the range of valuesp. Formally, we have

min valuesp ≤ reduce(valuesq, t) ≤ max valuesp .

Then by iteratively applying Lemma 6, after all non-faulty processes run for
log2(δ(valuesp)/ε) rounds, their values will be close enough. ��

Let U be the set of initial values of non-faulty processes and A be the set
of all the initial values that are eventually accepted by Reliable-Accept by the
end of the initial round (so U ⊆ A). Let C = trim(A, t). Clearly δ(C) ≤ δ(U)
because removing the t largest and t smallest elements from A results in a range
that is at most the range of U .

Lemma 8. The number of rounds that any non-faulty process completes is at
most

log2

(
δ(U)

ε

)
.

Proof. For any process q, and prover r ∈ provenq we have

min C ≤ reduce(proof [r]q, t) ≤ max C

Notice that r may be faulty. This is true since proof [r] is a set of n − t val-
ues that were sent by Reliable-Broadcast, hence proof [r] ⊆ A and trimming
proof [r] results in a range that is smaller than δ(C). Hence min U ≤ min valuesq

and max valuesq ≤ max U, because valuesq is set in init to be the set of

reduce(proof [r], t), for all r ∈ provenq. Therefore enoughp ≤ log2

(
δ(U)

ε

)
for

all p ∈ G.
Let E =

⋃
p∈G enoughp then all p ∈ G halt after at most min(trim(E, t))

rounds. This is true because they will eventually receive t + 1 ‘halt’ messages
and decide. However after round min(trim(E, t)) no process can gather n − t
replies and hence cannot advance further. ��

Theorem 2. All non-faulty processes terminate after at most log2(δ(U))/ε)
rounds, with values that are at most ε of each other, in the range of the ini-
tial values.

Proof. All non-faulty processes halt by Lemma 3. Termination is in at most
log2(δ(U)/ε) rounds, deduced from Lemma 8. Since termination requires t + 1
halt messages, it occurs at a round that is larger than enoughp for some p ∈ G,
hence from Lemma 6 and Lemma 7 the decision values are ε from each other.
Finally, Lemma 4 proves that the decision values are inside the initial values of
the non-faulty processes. ��

Optimal Resilience Asynchronous Approximate Agreement 239

5 Conclusions

In this paper we solve the open question left from the original paper solving the
Approximate Agreement problem. The protocol presented limits the ability of
the faulty processes to influence the convergence of the non-faulty processes.

The novel witness technique used in the paper seems to be very powerful.
We wonder how useful it is in solving other problems. For example, what impact
can it have for solving clock synchronization problems?

An interesting topic is the bounds on the rate of convergence. Now that it
is only depends on the range of values of the non-faulty processes, one can look
for an optimal convergence rate.

References

1. G. Bracha. An asynchronous �(n − 1)/3�-resilient consensus protocol. In Proceed-
ings of the third annual ACM symposium on Principles of distributed computing,
pages 154–162. ACM Press, 1984.

2. D. Dolev. The byzantine generals strike again. J. Algorithms, 3(1), 1982.
3. D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl. Reaching ap-

proximate agreement in the presence of faults. In Proceedings of the 3rd Symposium
on Reliability in Distributed Systems, 1983.

4. D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl. Reaching
approximate agreement in the presence of faults. J. ACM, 33(3):499–516, 1986.

5. A. D. Fekete. Asymptotically optimal algorithms for approximate agreement. In
Proceedings of the fifth annual ACM symposium on Principles of distributed com-
puting, pages 73–87. ACM Press, 1986.

6. A. D. Fekete. Asynchronous approximate agreement. In Proceedings of the sixth
annual ACM Symposium on Principles of distributed computing, pages 64–76. ACM
Press, 1987.

7. M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for dis-
tributed consensus problems. In Proceedings of the fourth annual ACM symposium
on Principles of distributed computing, pages 59–70. ACM Press, 1985.

8. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

9. R. M. Kieckhafer and M. H. Azadmanesh. Reaching approximate agreement with
mixed-mode faults. IEEE Trans. Parallel Distrib. Syst., 5(1):53–63, 1994.

10. S. R. Mahaney and F. B. Schneider. Inexact agreement: accuracy, precision, and
graceful degradation. In Proceedings of the fourth annual ACM symposium on
Principles of distributed computing, pages 237–249. ACM Press, 1985.

11. T. K. Srikanth and S. Toueg. Simulating authenticated broadcasts to derive simple
fault-tolerant algorithms. Distributed Computing, 2(2):80–94, 1987.

Lock-Free and Practical Doubly Linked
List-Based Deques Using Single-Word

Compare-and-Swap

H̊akan Sundell and Philippas Tsigas

Department of Computing Science,
Chalmers University of Technology and Göteborg University,

412 96 Göteborg, Sweden
{phs, tsigas}@cs.chalmers.se

http://www.cs.chalmers.se/~{phs, tsigas}

Abstract. We present an efficient and practical lock-free implementa-
tion of a concurrent deque that supports parallelism for disjoint accesses
and uses atomic primitives which are available in modern computer sys-
tems. Previously known lock-free algorithms of deques are either based
on non-available atomic synchronization primitives, only implement a
subset of the functionality, or are not designed for disjoint accesses. Our
algorithm is based on a general lock-free doubly linked list, and only
requires single-word compare-and-swap atomic primitives. It also allows
pointers with full precision, and thus supports dynamic deque sizes. We
have performed an empirical study using full implementations of the
most efficient known algorithms of lock-free deques. For systems with
low concurrency, the algorithm by Michael shows the best performance.
However, as our algorithm is designed for disjoint accesses, it performs
significantly better on systems with high concurrency and non-uniform
memory architecture. In addition, the proposed solution also implements
a general doubly linked list, the first lock-free implementation that only
needs the single-word compare-and-swap atomic primitive.

1 Introduction

A deque (i.e. double-ended queue) is a fundamental data structure. For example,
deques are often used for implementing the ready queue used for scheduling of
tasks in operating systems. A deque supports four operations, the PushRight,
the PopRight, the PushLeft, and the PopLeft operation. The abstract definition
of a deque is a list of values, where the PushRight/PushLeft operation adds a
new value to the right/left edge of the list. The PopRight/PopLeft operation
correspondingly removes and returns the value on the right/left edge of the
list.

To ensure consistency of a shared data object in a concurrent environment,
the most common method is mutual exclusion, i.e. some form of locking. Mutual
exclusion degrades the system’s overall performance [1] as it causes blocking,

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 240–255, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Lock-Free and Practical Doubly Linked List-Based Deques 241

i.e. other concurrent operations can not make any progress while the access to
the shared resource is blocked by the lock. Mutual exclusion can also cause
deadlocks, priority inversion and even starvation.

In order to address these problems, researchers have proposed non-blocking
algorithms for shared data objects. Non-blocking algorithms do not involve mu-
tual exclusion, and therefore do not suffer from the problems that blocking could
generate. Lock-free implementations are non-blocking and guarantee that regard-
less of the contention caused by concurrent operations and the interleaving of
their sub-operations, always at least one operation will progress. However, there
is a risk for starvation as the progress of some operations could cause some other
operations to never finish. Wait-free [2] algorithms are lock-free and moreover
they avoid starvation as well, as all operations are then guaranteed to finish
in a limited number of their own steps. Recently, some researchers also include
obstruction-free [3] implementations to the non-blocking set of implementations.
These kinds of implementations are weaker than the lock-free ones and do not
guarantee progress of any concurrent operation.

The implementation of a lock-based concurrent deque is a trivial task, and
can preferably be constructed using either a doubly linked list or a cyclic array,
protected by either a single lock or by multiple locks where each lock protects
a part of the shared data structure. To the best of our knowledge, there exists
no implementations of wait-free deques, but several lock-free implementations
have been proposed. However, all previous lock-free deques lack in several im-
portant aspects, as they either only implement a subset of the operations that
are normally associated with a deque and have concurrency restrictions1 like
Arora et al. [4], or are based on atomic hardware primitives like Double-Word
Compare-And-Swap (CAS2)2 which is not available in modern computer sys-
tems. Greenwald [5] presented a CAS2-based deque implementation as well as
a general doubly linked list implementation [6], and there is also a publication
series of a CAS2-based deque implementation [7],[8] with the latest version by
Martin et al. [9]. Valois [10] sketched out an implementation of a lock-free dou-
bly linked list structure using Compare-And-Swap (CAS)3, though without any
support for deletions and is therefore not suitable for implementing a deque.
Michael [11] has developed a deque implementation based on CAS. However, it
is not designed to allow parallelism for disjoint accesses as all operations have
to synchronize, even though they operate on different ends of the deque. Sec-
ondly, in order to support dynamic maximum deque sizes it requires an extended

1 The algorithm by Arora et al. does not support push operations on both ends, and
does not allow concurrent invocations of the push operation and a pop operation on
the opposite end.

2 A CAS2 operations can atomically read-and-possibly-update the contents of two
non-adjacent memory words. This operation is also sometimes called DCAS in the
literature.

3 The standard CAS operation can atomically read-and-possibly-update the contents
of a single memory word.

242 H. Sundell and P. Tsigas

CAS operation that can atomically operate on two adjacent words, which is not
available4 on all modern platforms.

In this paper we present a lock-free algorithm for implementing a concurrent
deque that supports parallelism for disjoint accesses (in the sense that operations
on different ends of the deque do not necessarily interfere with each other). An
earlier description of this algorithm appeared as a technical report [12] in March
2004. The algorithm is implemented using common synchronization primitives
that are available in modern systems. It allows pointers with full precision, and
thus supports dynamic maximum deque sizes (in the presence of a lock-free dy-
namic memory handler with sufficient garbage collection support), still using
normal CAS-operations. The algorithm is described in detail later in this paper,
together with the aspects concerning the underlying lock-free memory manage-
ment. In the algorithm description the precise semantics of the operations are
defined and a proof that our implementation is lock-free and linearizable [13] is
also given.

We have performed experiments that compare the performance of our algo-
rithm with two of the most efficient algorithms of lock-free deques known; [11]
and [9], the latter implemented using results from [14] and [15]. Experiments
were performed on three different multiprocessor systems equipped with 2,4 or
29 processors respectively. All three systems used were running different operat-
ing systems and were based on different architectures. Our results show that the
CAS-based algorithms outperforms the CAS2-based implementations5 for any
number of threads and any system. In non-uniform memory architectures with
high contention our algorithm, because of its disjoint access property, performs
significantly better than the algorithm in [11].

The rest of the paper is organized as follows. In Section 2 we describe the
type of targeted systems. The actual algorithm is described in Section 3. The
experimental evaluation is presented in Section 4. We conclude the paper with
Section 5.

2 System Description

Each node of the shared memory multi-processor system contains a processor
together with its local memory. All nodes are connected to the shared memory
via an interconnection network. A set of co-operating tasks is running on the
system performing their respective operations. Each task is sequentially executed
on one of the processors, while each processor can serve (run) many tasks at a
time. The co-operating tasks, possibly running on different processors, use shared

4 It is available on the Intel IA-32, but not on the Sparc or MIPS microprocessor
architectures. It is neither available on any currently known and common 64-bit
architecture.

5 The CAS2 operation was implemented in software, using either mutual exclusion or
the results from [15], which presented an software CASn (CAS for n non-adjacent
words) implementation.

Lock-Free and Practical Doubly Linked List-Based Deques 243

data objects built in the shared memory to co-ordinate and communicate. Tasks
synchronize their operations on the shared data objects through sub-operations
on top of a cache-coherent shared memory. The shared memory may not though
be uniformly accessible for all nodes in the system; processors can have different
access times on different parts of the memory.

3 The New Lock-Free Algorithm

The algorithm is based on a doubly linked list data structure, see Figure 1. To
use the data structure as a deque, every node contains a value. The fields of each
node item are described in Figure 5 as it is used in this implementation. Note
that the doubly linked list data structure always contains the static head and
tail dummy nodes.

In order to make the doubly linked list construction concurrent and non-
blocking, we are using two of the standard atomic synchronization primitives,
Fetch-And-Add (FAA) and Compare-And-Swap (CAS). Figure 2 describes the
specification of these primitives which are available in most modern platforms.

To insert or delete a node from the list we have to change the respective
set of prev and next pointers. These have to be changed consistently, but not
necessarily all at once. Our solution is to treat the doubly linked list as being a
singly linked list with auxiliary information in the prev pointers, with the next
pointers being updated before the prev pointers. Thus, the next pointers always
form a consistent singly linked list, but the prev pointers only give hints for
where to find the previous node. This is possible because of the observation that
a “late” non-updated prev pointer will always point to a node that is directly or
some steps before the current node, and from that “hint” position it is always

v1 vi vj vn. . .

. . .

. . .

Head Tail

prev

next

Fig. 1. The doubly linked list data structure

procedure FAA(address:pointer to word, number:integer)
atomic do

*address := *address + number;

function CAS(address:pointer to word, oldvalue:word, newvalue:word):boolean
atomic do

if *address = oldvalue then *address := newvalue; return true;
else return false;

Fig. 2. The Fetch-And-Add (FAA) and Compare-And-Swap (CAS) atomic primitives

244 H. Sundell and P. Tsigas

1 2 4

3

Inserted node

Deleted node

I

II

I

II

Fig. 3. Concurrent insert and delete operations can delete both nodes

possible to traverse6 through the next pointers to reach the directly previous
node.

One problem, that is general for non-blocking implementations that are based
on the singly linked list data structure, arises when inserting a new node into
the list. Because of the linked list structure one has to make sure that the
previous node is not about to be deleted. If we are changing the next pointer
of this previous node atomically with a CAS operation, to point to the new
node, and then immediately afterwards the previous node is deleted - then the
new node will be deleted as well, as illustrated in Figure 3. There are several
solutions to this problem. One solution is to use the CAS2 operation as it can
change two pointers atomically, but this operation is not available in any modern
multiprocessor system. A second solution is to insert auxiliary nodes [10] between
every two normal nodes, and the latest method introduced by Harris [16] is to
use a deletion mark. This deletion mark is updated atomically together with the
next pointer. Any concurrent insert operation will then be notified about the
possibly set deletion mark, when its CAS operation will fail on updating the
next pointer of the to-be-previous node. For our doubly linked list we need to
be informed also when inserting using the prev pointer.

In order to allow usage of a system-wide dynamic memory handler (which
should be lock-free and have garbage collection capabilities), all significant bits
of an arbitrary pointer value must be possible to be represented in both the next
and prev pointers. In order to atomically update both the next and prev pointer
together with the deletion mark as done by Michael [11], the CAS-operation
would need the capability of atomically updating at least 30 + 30 + 1 = 61 bits
on a 32-bit system (and 62+62+1 = 125 bits on a 64-bit system as the pointers
are then 64 bit). In practice though, most current 32 and 64-bit systems only
support CAS operations of single word-size.

However, in our doubly linked list implementation, we never need to change
both the prev and next pointers in one atomic update, and the pre-condition
associated with each atomic pointer update only involves the pointer that is
changed. Therefore it is possible to keep the prev and next pointers in separate

6 As will be shown later, we have defined the deque data structure in a way that makes
it possible to traverse even through deleted nodes, as long as they are referenced in
some way.

Lock-Free and Practical Doubly Linked List-Based Deques 245

words, duplicating the deletion mark in each of the words. In order to preserve
the correctness of the algorithm, the deletion mark of the next pointer should
always be set first, and the deletion mark of the prev pointer should be assured to
be set by any operation that has observed the deletion mark on the next pointer,
before any other updating steps are performed. Thus, full pointer values can be
used, still by only using standard CAS operations.

3.1 The Basic Steps of the Algorithm

The main algorithm steps, see Figure 4, for inserting a new node at an arbitrary
position in our doubly linked list will thus be as follows: I) Atomically update the
next pointer of the to-be-previous node, II) Atomically update the prev pointer
of the to-be-next node. The main steps of the algorithm for deleting a node at an
arbitrary position are the following: I) Set the deletion mark on the next pointer
of the to-be-deleted node, II) Set the deletion mark on the prev pointer of the
to-be-deleted node, III) Atomically update the next pointer of the previous node
of the to-be-deleted node, IV) Atomically update the prev pointer of the next
node of the to-be-deleted node. As will be shown later in the detailed description

vi vj

vx

. . .

. . .

. . .

. . .

. . .

. . .

vi vj

vx

. . .

. . .

. . .

. . .

. . .

. . .

vi vjvx
. . .
. . .
. . .

. . .

. . .

. . .

I

II

vi vjvx

vi vj

vx IV

vi vj

vx

III I

II

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Insert(vx)

Delete(vx)

Fig. 4. Illustration of the basic steps of the algorithms for insertion and deletion of
nodes at arbitrary positions in the doubly linked list, as described in Section 3.1

246 H. Sundell and P. Tsigas

of the algorithm, helping techniques need to be applied in order to achieve the
lock-free property, following the same steps as the main algorithm for inserting
and deleting.

3.2 Memory Management

As we are concurrently (with possible preemptions) traversing nodes that will
be continuously allocated and reclaimed, we have to consider several aspects of
memory management. No node should be reclaimed and then later re-allocated
while some other process is (or will be) traversing that node. For efficiency
reasons we also need to be able to trust the prev and the next pointers of
deleted nodes, as we would otherwise be forced to re-start the traversing from
the head or tail dummy nodes whenever reaching a deleted node while travers-
ing and possibly incur severe performance penalties. This need is especially
important for operations that try to help other delete operations in progress.
Our demands on the memory management therefore rule out the SMR or ROP
methods by Michael [17] and Herlihy et al. [18] respectively, as they can only
guarantee a limited number of nodes to be safe, and these guarantees are also re-
lated to individual threads and never to an individual node structure. However,
stronger memory management schemes as for example reference counting would
be sufficient for our needs. There exists a general lock-free reference counting
scheme by Detlefs et al. [14], though based on the non-available CAS2 atomic
primitive.

For our implementation, we selected the lock-free memory management
scheme invented by Valois [10] and corrected by Michael and Scott [19], which
makes use of the FAA and CAS atomic synchronization primitives. Using this
scheme we can assure that a node can only be reclaimed when there is no prev or
next pointer in the list that points to it. One problem though with this scheme, a
general problem with reference counting, is that it can not handle cyclic garbage
(i.e. 2 or more nodes that should be recycled but reference each other, and there-
fore each node keeps a positive reference count, although they are not referenced
by the main structure). Our solution is to make sure to break potential cyclic
references directly before a node is possibly recycled. This is done by changing
the next and prev pointers of a deleted node to point to active nodes, in a way
that is consistent with the semantics of other operations.

The memory management scheme should also support means to de-reference
pointers safely. If we simply de-reference a next or prev pointer using the means
of the programming language, it might be that the corresponding node has been
reclaimed before we could access it. It can also be that the deletion mark that
is connected to the prev or next pointer was set, thus marking that the node
is deleted. The scheme by Valois et al. supports lock-free pointer de-referencing
and can easily be adopted to handle deletion marks.

The following functions are defined for safe handling of the memory manage-
ment:

function MALLOC NODE() :pointer to Node
function DEREF(address:pointer to Link) :pointer to Node
function DEREF D(address:pointer to Link) :pointer to Node

Lock-Free and Practical Doubly Linked List-Based Deques 247

function COPY(node:pointer to Node) :pointer to Node
procedure REL(node:pointer to Node)

The functions DEREF and DEREF D atomically de-references the given link
and increases the reference counter for the corresponding node. In case the dele-
tion mark of the link is set, the DEREF function then returns NULL. The func-
tion MALLOC NODE allocates a new node from the memory pool. The function
REL decrements the reference counter on the corresponding given node. If the
reference counter reaches zero, the function then calls the TerminateNode func-
tion that will recursively call REL on the nodes that this node has owned pointers
to, and then it reclaims the node. The COPY function increases the reference
counter for the corresponding given node.

As the details of how to efficiently apply the memory management scheme to
our basic algorithm are not always trivial, we will provide a detailed description
of them together with the detailed algorithm description in this section.

3.3 Pushing and Popping Nodes

The PushLeft operation, see Figure 5, inserts a new node at the leftmost po-
sition in the deque. The algorithm first repeatedly tries in lines L4-L14 to
insert the new node (node) between the head node (prev) and the leftmost
node (next), by atomically changing the next pointer of the head node. Be-
fore trying to update the next pointer, it assures in line L5 that the next node
is still the very next node of head, otherwise next is updated in L6-L7. After
the new node has been successfully inserted, it tries in lines P1-P13 to up-
date the prev pointer of the next node. It retries until either i) it succeeds
with the update, ii) it detects that either the next or new node is deleted, or
iii) the next node is no longer directly next of the new node. In any of the
two latter, the changes are due to concurrent Pop or Push operations, and the
responsibility to update the prev pointer is then left to those. If the update
succeeds, there is though the possibility that the new node was deleted (and
thus the prev pointer of the next node was possibly already updated by the
concurrent Pop operation) directly before the CAS in line P5, and then the
prev pointer is updated by calling the HelpInsert function in line P10. The lin-
earizability point of the PushLeft operation is the successful CAS operation in
line L11.

The PushRight operation, see Figure 5, inserts a new node at the rightmost
position in the deque. The algorithm first repeatedly tries in lines R4-R13 to
insert the new node (node) between the rightmost node (prev) and the tail node
(next), by atomically changing the next pointer of the prev node. Before trying to
update the next pointer, it assures in line R5 that the next node is still the very
next node of prev, otherwise prev is updated by calling the HelpInsert function
in R6, which updates the prev pointer of the next node. After the new node has
been successfully inserted, it tries in lines P1-P13 to update the prev pointer
of the next node, following the same scheme as in the PushLeft operation. The
linearizability point of the PushRight operation is the successful CAS operation
in line R10.

248 H. Sundell and P. Tsigas

union Link
: word

〈p, d〉: 〈pointer to Node, boolean〉

structure Node
value: pointer to word
prev: union Link
next: union Link

// Global variables
head, tail: pointer to Node
// Local variables
node,prev,prev2,next,next2: pointer to Node
last,link1: union Link

function CreateNode(value: pointer to word)
:pointer to Node

C1 node:=MALLOC NODE();
C2 node.value:=value;
C3 return node;

procedure TerminateNode(node: pointer to
Node)

RR1 REL(node.prev.p);
RR2 REL(node.next.p);

procedure PushLeft(value: pointer to word)
L1 node:=CreateNode(value);
L2 prev:=COPY(head);
L3 next:=DEREF(&prev.next);
L4 while T do
L5 if prev.next �= 〈next,F〉 then
L6 REL(next);
L7 next:=DEREF(&prev.next);
L8 continue;
L9 node.prev:=〈prev,F〉;
L10 node.next:=〈next,F〉;
L11 if CAS(&prev.next,〈next,F〉
,〈node,F〉) then

L12 COPY(node);
L13 break;
L14 Back-Off
L15 PushCommon(node,next);

procedure PushRight(value: pointer to word)
R1 node:=CreateNode(value);
R2 next:=COPY(tail);
R3 prev:=DEREF(&next.prev);
R4 while T do
R5 if prev.next �= 〈next,F〉 then
R6 prev:=HelpInsert(prev,next);
R7 continue;
R8 node.prev:=〈prev,F〉;
R9 node.next:=〈next,F〉;
R10 if CAS(&prev.next,〈next,F〉
,〈node,F〉) then

R11 COPY(node);
R12 break;
R13 Back-Off
R14 PushCommon(node,next);

procedure MarkPrev(node: pointer to Node)
MP1 while T do
MP2 link1:=node.prev;
MP3 if link1.d = T or CAS(&node.prev
,link1,〈link1.p,T〉) then break;

procedure PushCommon(node, next: pointer
to Node)

P1 while T do
P2 link1:=next.prev;
P3 if link1.d = T or node.next �=
〈next,F〉 then

P4 break;
P5 if CAS(&next.prev,link1
,〈node,F〉) then

P6 COPY(node);
P7 REL(link1.p);
P8 if node.prev.d = T then
P9 prev2:=COPY(node);
P10 prev2:=HelpInsert(prev2,next);
P11 REL(prev2);
P12 break;
P13 Back-Off
P14 REL(next);
P15 REL(node);

function PopLeft(): pointer to word
PL1 prev:=COPY(head);
PL2 while T do
PL3 node:=DEREF(&prev.next);
PL4 if node = tail then
PL5 REL(node);
PL6 REL(prev);
PL7 return ⊥;
PL8 link1:=node.next;
PL9 if link1.d = T then
PL10 HelpDelete(node);
PL11 REL(node);
PL12 continue;
PL13 if CAS(&node.next,link1
,〈link1.p,T〉) then

PL14 HelpDelete(node);
PL15 next:=DEREF D(&node.next);
PL16 prev:=HelpInsert(prev,next);
PL17 REL(prev);
PL18 REL(next);
PL19 value:=node.value;
PL20 break;
PL21 REL(node);
PL22 Back-Off
PL23 RemoveCrossReference(node);
PL24 REL(node);
PL25 return value;

function PopRight(): pointer to word
PR1 next:=COPY(tail);
PR2 node:=DEREF(&next.prev);
PR3 while T do
PR4 if node.next �= 〈next,F〉 then
PR5 node:=HelpInsert(node,next);
PR6 continue;
PR7 if node = head then
PR8 REL(node);
PR9 REL(next);
PR10 return ⊥;
PR11 if CAS(&node.next,〈next,F〉
,〈next,T〉) then

PR12 HelpDelete(node);
PR13 prev:=DEREF D(&node.prev);
PR14 prev:=HelpInsert(prev,next);
PR15 REL(prev);
PR16 REL(next);

Fig. 5. The algorithm, part 1(2)

Lock-Free and Practical Doubly Linked List-Based Deques 249

The PopLeft operation, see Figure 5, tries to delete and return the value of
the leftmost node in the deque. The algorithm first repeatedly tries in lines PL2-
PL22 to mark the leftmost node (node) as deleted. Before trying to update the
next pointer, it first assures in line PL4 that the deque is not empty, and sec-
ondly in line PL9 that the node is not already marked for deletion. If the deque
was detected to be empty, the function returns. If node was marked for deletion,
it tries to update the next pointer of the prev node by calling the HelpDelete
function, and then node is updated to be the leftmost node. If the prev pointer
of node was incorrect, it tries to update it by calling the HelpInsert function.
After the node has been successfully marked by the successful CAS operation in
line PL13, it tries in line PL14 to update the next pointer of the prev node by
calling the HelpDelete function, and in line PL16 to update the prev pointer of
the next node by calling the HelpInsert function. After this, it tries in line PL23
to break possible cyclic references that includes node by calling the RemoveCross-
Reference function. The linearizability point of a PopLeft operation that fails, is
the read operation of the next pointer in line PL3. The linearizability point of
a PopLeft operation that succeeds, is the read operation of the next pointer in
line PL3.

The PopRight operation, see Figure 5, tries to delete and return the value
of the rightmost node in the deque. The algorithm first repeatedly tries in lines
PR2-PR19 to mark the rightmost node (node) as deleted. Before trying to update
the next pointer, it assures i) in line PR4 that the node is not already marked
for deletion, ii) in the same line that the prev pointer of the tail (next) node
is correct, and iii) in line PR7 that the deque is not empty. If the deque was
detected to be empty, the function returns. If node was marked for deletion
or the prev pointer of the next node was incorrect, it tries to update the prev
pointer of the next node by calling the HelpInsert function, and then node is
updated to be the rightmost node. After the node has been successfully marked
it follows the same scheme as the PopLeft operation. The linearizability point
of a PopRight operation that fails, is the read operation of the next pointer in
line PR4. The linearizability point of a PopRight operation that succeeds, is the
CAS sub-operation in line PR11.

3.4 Helping and Back-Off

The HelpDelete sub-procedure, see Figure 6, tries to set the deletion mark of
the prev pointer and then atomically update the next pointer of the previous
node of the to-be-deleted node, thus fulfilling step 2 and 3 of the overall node
deletion scheme. The algorithm first ensures in line HD1 that the deletion mark
on the prev pointer of the given node is set. It then repeatedly tries in lines
HD6-HD38 to delete (in the sense of a chain of next pointers starting from the
head node) the given marked node (node) by changing the next pointer from the
previous non-marked node. First, we can safely assume that the next pointer of
the marked node is always referring to a node (next) to the right and the prev
pointer is always referring to a node (prev) to the left (not necessarily the first).
Before trying to update the next pointer with the CAS operation in line HD34,

250 H. Sundell and P. Tsigas

it assures in line HD6 that node is not already deleted, in line HD7 that the next
node is not marked, in line HD14 that the prev node is not marked, and in HD28
that prev is the previous node of node. If next is marked, it is updated to be the
next node. If prev is marked we might need to delete it before we can update

PR17 value:=node.value;
PR18 break;
PR19 Back-Off
PR20 RemoveCrossReference(node);
PR21 REL(node);
PR22 return value;

procedure HelpDelete(node: pointer to Node)
HD1 MarkPrev(node);
HD2 last:=⊥;
HD3 prev:=DEREF D(&node.prev);
HD4 next:=DEREF D(&node.next);
HD5 while T do
HD6 if prev = next then break;
HD7 if next.next.d = T then
HD8 MarkPrev(next);
HD9 next2:=DEREF D(&next.next);
HD10 REL(next);
HD11 next:=next2;
HD12 continue;
HD13 prev2:=DEREF(&prev.next);
HD14 if prev2 = ⊥ then
HD15 if last �= ⊥ then
HD16 MarkPrev(prev);
HD17 next2:=DEREF D(&prev.next);
HD18 if CAS(&last.next,〈prev,F〉
,〈next2,F〉) then REL(prev);

HD19 else REL(next2);
HD20 REL(prev);
HD21 prev:=last;
HD22 last:=⊥;
HD23 else
HD24 prev2:=DEREF D(&prev.prev);
HD25 REL(prev);
HD26 prev:=prev2;
HD27 continue;
HD28 if prev2 �= node then
HD29 if last �= ⊥ then REL(last);
HD30 last:=prev;
HD31 prev:=prev2;
HD32 continue;
HD33 REL(prev2);
HD34 if CAS(&prev.next,〈node,F〉
,〈next,F〉) then

HD35 COPY(next);
HD36 REL(node);
HD37 break;
HD38 Back-Off
HD39 if last �= ⊥ then REL(last);
HD40 REL(prev);
HD41 REL(next);

function HelpInsert(prev, node: pointer to
Node): pointer to Node

HI1 last:=⊥;
HI2 while T do
HI3 prev2:=DEREF(&prev.next);
HI4 if prev2 = ⊥ then
HI5 if last �= ⊥ then
HI6 MarkPrev(prev);
HI7 next2:=DEREF D(&prev.next);
HI8 if CAS(&last.next,〈prev,F〉
,〈next2,F〉) then REL(prev);

HI9 else REL(next2);
HI10 REL(prev);
HI11 prev:=last;
HI12 last:=⊥;
HI13 else
HI14 prev2:=DEREF D(&prev.prev);
HI15 REL(prev);
HI16 prev:=prev2;
HI17 continue;
HI18 link1:=node.prev;
HI19 if link1.d = T then
HI20 REL(prev2);
HI21 break;
HI22 if prev2 �= node then
HI23 if last �= ⊥ then REL(last);
HI24 last:=prev;
HI25 prev:=prev2;
HI26 continue;
HI27 REL(prev2);
HI28 if link1.p = prev then break;
HI29 if prev.next = node and CAS(
&node.prev,link1,〈prev,F〉) then

HI30 COPY(prev);
HI31 REL(link1.p);
HI32 if prev.prev.d �= T then break;
HI33 Back-Off
HI34 if last �= ⊥ then REL(last);
HI35 return prev;

procedure RemoveCrossReference(
node: pointer to Node)

RC1 while T do
RC2 prev:=node.prev.p;
RC3 if prev.prev.d = T then
RC4 prev2:=DEREF D(&prev.prev);
RC5 node.prev:=〈prev2,T〉;
RC6 REL(prev);
RC7 continue;
RC8 next:=node.next.p;
RC9 if next.prev.d = T then
RC10 next2:=DEREF D(&next.next);
RC11 node.next:=〈next2,T〉;
RC12 REL(next);
RC13 continue;
RC14 break;

Fig. 6. The algorithm, part 2(2)

Lock-Free and Practical Doubly Linked List-Based Deques 251

prev to one of its previous nodes and proceed with the current deletion. This
extra deletion is only attempted if a next pointer from a non-marked node to
prev has been observed (i.e. last is valid). Otherwise if prev is not the previous
node of node it is updated to be the next node.

The HelpInsert sub-function, see Figure 6, tries to update the prev pointer of a
node and then return a reference to a possibly direct previous node, thus fulfilling
step 2 of the overall insertion scheme or step 4 of the overall deletion scheme. The
algorithm repeatedly tries in lines HI2-HI33 to correct the prev pointer of the
given node (node), given a suggestion of a previous (not necessarily the directly
previous) node (prev). Before trying to update the prev pointer with the CAS
operation in line HI29, it assures in line HI4 that the prev node is not marked,
in line HI19 that node is not marked, and in line HI22 that prev is the previous
node of node. If prev is marked we might need to delete it before we can update
prev to one of its previous nodes and proceed with the current deletion. This
extra deletion is only attempted if a next pointer from a non-marked node to prev
has been observed (i.e. last is valid). If node is marked, the procedure is aborted.
Otherwise if prev is not the previous node of node it is updated to be the next
node. If the update in line HI29 succeeds, there is though the possibility that the
prev node was deleted (and thus the prev pointer of node was possibly already
updated by the concurrent Pop operation) directly before the CAS operation.
This is detected in line HI32 and then the update is possibly retried with a new
prev node.

Because the HelpDelete and HelpInsert are often used in the algorithm for
“helping” late operations that might otherwise stop progress of other concurrent
operations, the algorithm is suitable for pre-emptive as well as fully concurrent
systems. In fully concurrent systems though, the helping strategy as well as heavy
contention on atomic primitives, can downgrade the performance significantly.
Therefore the algorithm, after a number of consecutive failed CAS operations
(i.e. failed attempts to help concurrent operations) puts the current operation
into back-off mode. When in back-off mode, the thread does nothing for a while,
and in this way avoids disturbing the concurrent operations that might other-
wise progress slower. The duration of the back-off is initialized to some value
(e.g. proportional to the number of threads) at the start of an operation, and
for each consecutive entering of the back-off mode during one operation invoca-
tion, the duration of the back-off is changed using some scheme, e.g. increased
exponentially.

3.5 Avoiding Cyclic Garbage

The RemoveCrossReference sub-procedure, see Figure 6, tries to break cross-
references between the given node (node) and any of the nodes that it references,
by repeatedly updating the prev and next pointer as long as they reference a
fully marked node. First, we can safely assume that the prev or next field of
node is not concurrently updated by any other operation, as this procedure is
only called by the main operation that deleted the node and both the next and
prev pointers are marked and thus any concurrent update using CAS will fail.

252 H. Sundell and P. Tsigas

Before the procedure is finished, it assures in line RC3 that the previous node
(prev) is not fully marked, and in line RC9 that the next node (next) is not fully
marked. As long as prev is marked it is traversed to the left, and as long as next
is marked it is traversed to the right, while continuously updating the prev or
next field of node in lines RC5 or RC11.

3.6 General Operations of Doubly Linked Lists and Correctness
Proofs

Due to page restrictions, the detailed description of the general operations of
a doubly linked list (i.e. traversals and arbitrary inserts and deletes) as well
as detailed proofs of correctness of the lock-free and linearizability criteria are
described in an extended version of this paper [20].

4 Experimental Evaluation

In our experiments, each concurrent thread performed 1000 randomly chosen
sequential operations on a shared deque, with a distribution of 1/4 PushRight,
1/4 PushLeft, 1/4 PopRight and 1/4 PopLeft operations. Each experiment was
repeated 50 times, and an average execution time for each experiment was esti-
mated. Exactly the same sequence of operations were performed for all different
implementations compared. Besides our implementation, we also performed the
same experiment with the lock-free implementation by Michael [11] and the im-
plementation by Martin et al. [9], two of the most efficient lock-free deques that
have been proposed. The algorithm by Martin et al. was implemented together
with the corresponding memory management scheme by Detlefs et al. [14]. How-
ever, as both [9] and [14] use the atomic operation CAS2 which is not available
in any modern system, the CAS2 operation was implemented in software us-
ing two different approaches. The first approach was to implement CAS2 using
mutual exclusion (as proposed in [9]). The other approach was to implement
CAS2 using one of the most efficient software implementations of CASN known
that could meet the needs of [9] and [14], i.e. the implementation by Harris
et al. [15].

A clean-cache operation was performed just before each sub-experiment using
a different implementation. All implementations are written in C and compiled
with the highest optimization level. The atomic primitives are written in assem-
bly language.

The experiments were performed using different number of threads, varying
from 1 to 28 with increasing steps. Three different platforms were used, with
varying number of processors and level of shared memory distribution. To get
a highly pre-emptive environment, we performed our experiments on a Compaq
dual-processor Pentium II PC running Linux, and a Sun Ultra 80 system run-
ning Solaris 2.7 with 4 processors. In order to evaluate our algorithm with full
concurrency we also used a SGI Origin 2000 system running Irix 6.5 with 29 250
MHz MIPS R10000 processors. The results from the experiments are shown in

Lock-Free and Practical Doubly Linked List-Based Deques 253

Figure 7. The average execution time is drawn as a function of the number of
threads.

Our results show that both the CAS-based algorithms outperform the CAS2-
based implementations for any number of threads. For the systems with low
or medium concurrency and uniform memory architecture, [11] has the best
performance. However, for the system with full concurrency and non-uniform
memory architecture our algorithm performs significantly better than [11] from
2 threads and more, as a direct consequence of the nature of our algorithm to
support parallelism for disjoint accesses.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - SGI Mips, 29 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - SGI Mips, 29 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - SUN Solaris, 4 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

 1

 10

 100

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - SUN Solaris, 4 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - Linux, 2 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

 1

 10

 100

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - Linux, 2 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

Fig. 7. Experiment with deques and high contention. Logarithmic scales in the right
column

254 H. Sundell and P. Tsigas

5 Conclusions

We have presented the first lock-free algorithmic implementation of a concurrent
deque that has all the following features: i) it supports parallelism for disjoint
accesses, ii) uses a fully described lock-free memory management scheme, iii)
uses atomic primitives which are available in modern computer systems, and iv)
allows pointers with full precision to be used, and thus supports dynamic deque
sizes. In addition, the proposed solution also implements all the fundamental
operations of a general doubly linked list data structure in a lock-free manner.
The doubly linked list operations also support deterministic and well defined
traversals through even deleted nodes, and are therefore suitable for concurrent
applications of linked lists in practice.

We have performed experiments that compare the performance of our algo-
rithm with two of the most efficient algorithms of lock-free deques known, using
full implementations of those algorithms. The experiments show that our imple-
mentation performs significantly better on systems with high concurrency and
non-uniform memory architecture.

We believe that our implementation is of highly practical interest for multi-
processor applications. We are currently incorporating it into the NOBLE [21]
library.

References

1. Silberschatz, A., Galvin, P.: Operating System Concepts. Addison Wesley (1994)
2. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-

guages and Systems 11 (1991) 124–149
3. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-

ended queues as an example. In: Proceedings of the 23rd International Conference
on Distributed Computing Systems. (2003)

4. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multipro-
grammed multiprocessors. In: ACM Symposium on Parallel Algorithms and Ar-
chitectures. (1998) 119–129

5. Greenwald, M.: Non-Blocking Synchronization and System Design. PhD thesis,
Stanford University, Palo Alto, CA (1999)

6. Greenwald, M.: Two-handed emulation: how to build non-blocking implementa-
tions of complex data-structures using DCAS. In: Proceedings of the twenty-first
annual symposium on Principles of distributed computing, ACM Press (2002) 260–
269

7. Agesen, O., Detlefs, D., Flood, C.H., Garthwaite, A., Martin, P., Shavit, N., Steele
Jr., G.L.: DCAS-based concurrent deques. In: ACM Symposium on Parallel Algo-
rithms and Architectures. (2000) 137–146

8. Detlefs, D., Flood, C.H., Garthwaite, A., Martin, P., Shavit, N., Steele Jr., G.L.:
Even better DCAS-based concurrent deques. In: International Symposium on Dis-
tributed Computing. (2000) 59–73

9. Martin, P., Moir, M., Steele, G.: DCAS-based concurrent deques supporting bulk
allocation. Technical Report TR-2002-111, Sun Microsystems (2002)

10. Valois, J.D.: Lock-Free Data Structures. PhD thesis, Rensselaer Polytechnic In-
stitute, Troy, New York (1995)

Lock-Free and Practical Doubly Linked List-Based Deques 255

11. Michael, M.M.: CAS-based lock-free algorithm for shared deques. In: Proceedings
of the 9th International Euro-Par Conference. Lecture Notes in Computer Science,
Springer Verlag (2003)

12. Sundell, H., Tsigas, P.: Lock-free and practical deques using single-word compare-
and-swap. Technical Report 2004-02, Computing Science, Chalmers University of
Technology (2004)

13. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent ob-
jects. ACM Transactions on Programming Languages and Systems 12 (1990)
463–492

14. Detlefs, D., Martin, P., Moir, M., Steele Jr, G.: Lock-free reference counting. In:
Proceedings of the 20th Annual ACM Symposium on Principles of Distributed
Computing. (2001)

15. Harris, T., Fraser, K., Pratt, I.: A practical multi-word compare-and-swap opera-
tion. In: Proceedings of the 16th International Symposium on Distributed Com-
puting. (2002)

16. Harris, T.L.: A pragmatic implementation of non-blocking linked lists. In: Pro-
ceedings of the 15th International Symposium of Distributed Computing. (2001)
300–314

17. Michael, M.M.: Safe memory reclamation for dynamic lock-free objects using
atomic reads and writes. In: Proceedings of the 21st ACM Symposium on Princi-
ples of Distributed Computing. (2002) 21–30

18. Herlihy, M., Luchangco, V., Moir, M.: The repeat offender problem: A mechanism
for supporting dynamic-sized, lock-free data structure. In: Proceedings of 16th
International Symposium on Distributed Computing. (2002)

19. Michael, M.M., Scott, M.L.: Correction of a memory management method for lock-
free data structures. Technical report, Computer Science Department, University
of Rochester (1995)

20. Sundell, H.: Efficient and Practical Non-Blocking Data Structures. PhD thesis,
Department of Computing Science, Chalmers University of Technology (2004)

21. Sundell, H., Tsigas, P.: NOBLE: A non-blocking inter-process communication
library. In: Proceedings of the 6th Workshop on Languages, Compilers and Run-
time Systems for Scalable Computers. (2002)

A Dynamic Reconfiguration Tolerant
Self-stabilizing Token Circulation Algorithm

in Ad-Hoc Networks

Hirotsugu Kakugawa1,� and Masafumi Yamashita2,��

1 Faculty of Engineering, Hiroshima University,
1-4-1 Kagamiyama, Higashi Hiroshima, Hiroshima, Japan

h.kakugawa@computer.org
2 Graduate School of Information Science and Electrical Engineering,

Kyushu University, 6-10-1 Hakozaki, Fukuoka, Japan
mak@csce.kyushu-u.ac.jp

Abstract. Ad-hoc networks do not provide an infrastructure for commu-
nication such as routers and are characterized by 1) quick changes of com-
munication topology and 2) unstable system behaviors. Self-stabilizing al-
gorithms have been studied well to design stable distributed algorithms on
unstable systems, but they are not requested to be adaptive to dynamic
topology changes. We in this paper propose a new concept of dynamic
reconfiguration tolerant (DRT for short) self-stabilizing algorithm, which
is a self-stabilizing algorithm that is also robust against dynamic changes
of topology. We next propose a DRT self-stabilizing token circulation al-
gorithm. It deterministically circulates a token through a spanning tree
edges in an asymptotically optimal time O(n), once the system is stabi-
lized. The spanning tree will converge to the minimum spanning tree, if
the network remains static.

Keywords: token circulation, self-stabilization, ad-hoc network, span-
ning tree.

1 Introduction

Ad-hoc networks consist of mobile terminals with wireless communication de-
vices. There is no pre-existing infrastructure for communication, and a terminal
is connectable to an ad-hoc network without configuring it. This is a fascinating
feature for end-users, but is a seed of the following technical difficulties, when to
implement applications in ad-hoc networks; (a) since there are no access points
that route messages among mobile terminals, the mobile terminals must route

� This work is partially supported by the Ministry of Education, Culture, Sports, and
Technology, Grant-in-Aid 15700017.

�� This work is partially supported by the Ministry of Education, Culture, Sports, and
Technology, Grants-in-Aid 14085204 and 14380145.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 256–266, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A DRT Self-stabilizing Token Circulation Algorithm 257

messages by themselves, (b) since the network topology rapidly changes as “mo-
bile” terminals migrate, communication protocols must be adaptive to dynamic
changes of topology, and (c) since a terminal may join or even leave the ad-
hoc network while participating in an application job, communication protocols
must be robust against communication faults such as a network partition. Algo-
rithms on ad-hoc networks are hence requested to be adaptive to communication
topology changes, in addition to the fault tolerant ability expected for general
distributed algorithms.

Self-stabilizing systems, which tolerate any finite number of transient faults,
have been discussed as an ideal model of fault tolerance [1, 2]. However, they
are not necessarily robust against dynamic changes of topology and thus may
not correctly work on ad-hoc networks. We hence introduce a new concept of
fault tolerance: For a given constraint C on dynamic changes of the network
topology, we say that a system is dynamic reconfiguration tolerant (DRT for
short) self-stabilizing under C, if the system works as a correct self-stabilizing
system as long as network changes do not violate C. When C claims that no
topological changes happen, a DRT self-stabilizing algorithm for C is just a
self-stabilizing algorithm, and the concept of DRT self-stabilization is an ex-
tension of self-stabilization. Note that the introduction of condition C to make
the limitation of the adaptiveness explicit is the heart of our proposal, since
many algorithms would be able to adapt to slight topological changes, but non-
trivial algorithms would be unable to adapt to extremely quick changes. We then
propose a DRT self-stabilizing token circulation algorithm for ad-hoc networks,
under some moderate network reconfiguration constraint C.

Self-stabilizing token circulation algorithms have been extensively studied
[3, 4, 5, 6]. Among them is the work by Chen and Welch [7] the closest from our
work. They proposed a deterministic distributed mutual exclusion algorithm for
ad-hoc networks, which is in essence a self-stabilizing token circulation algorithm.
Their algorithm however requires a system to remain static while the system is
converging to a legitimate configuration; it is not a DRT self-stabilizing algorithm
for a non-trivial C.1 This is a fundamental difference between theirs and ours;
our algorithm converges to a legitimate configuration, even if the system is not
static (as long as the system satisfies a moderate condition C).

Our algorithm has some other advantages; one of them arises from the fact
that it is stateless in the sense that non-initiators do not need to maintain the
status of the protocol. Let ∆ and D be the maximum degree and the diameter
of the network, respectively. Then in Chen and Welch’s algorithm, every process
maintains a local variable of O(log(n∆D)) bits, while in our algorithm, non-
initiators do not need to maintain local variables. One might consider that our
token would need to carry more information than theirs. As a matter of fact,
our token carries information of O(n log n) bits, while theirs n timestamps of
O(log(n2∆D)) bits each, or O(n2 log n) bits altogether in the worst case. Another

1 Note that mutual exclusion is guaranteed in the presence of arbitrary mobility, once
the system is stabilized.

258 H. Kakugawa and M. Yamashita

advantage comes from the fact that a token is circulated along the set of spanning
tree edges. Their algorithm requires O(log(n∆D)) time per round of circulation,
which is O(n log n) in the worst case, while ours is O(n).

Finally our algorithm guarantees that the convergence time is deterministically
bounded by O(n), and the spanning tree along which the token is circulated con-
verges to the minimum spanning tree in O(n2)-time, if the network remains static.

2 The Model

We consider a system consisting of n mobile terminals with wireless communi-
cation devices. We model such a system by a set of processes V = {p1, p2, ..., pn}
(n ≥ 2) with unique identifiers. For each process pi, let Ni be the set of neighbor
processes that pi can directly communicate with. We assume that every commu-
nication channel is bidirectional; pj ∈ Ni iff pi ∈ Nj . Ni’s for all pi ∈ V define
a network G = (V,E), where (pi, pj) ∈ E if and only if pj ∈ Ni. For each edge
(pi, pj) ∈ E, we assign a positive weight (or cost) denoted by wi,j(= wj,i). We
say that pj is smaller than pk (or pj has priority over pk) if wi,j < wi,k. The
weight of an edge can be defined based on bandwidth, distance, or reliability, for
example.

Since processes (i.e., terminals) may change their locations, Ni may dynam-
ically change and so may G accordingly. The weight wi,j may also dynamically
change. We can however assume that the weights wi,j are unique without loss
of generality, since otherwise, we can use triples (wi,j , p, q) as unique weights in-
stead, where p = min{pi, pj} and q = max{pi, pj}. The minimum spanning tree
is thus uniquely determined. We assume that each pi knows up-to-date values
of Ni and wi,j for all pj ∈ Ni. We assume that Ni never changes while a token
is visiting pi.

Suppose that the system is partitioned into several sub-networks and this
situation continues forever. Then all what a process in a sub-network can hope
is to circulate a token among the processes in the sub-network. A change of
network topology may be viewed from the process as a join or a leave of another
process to or from the (sub-)network. We thus consider V as the set of all
processes that have chances to participate in the system, and assume that upper
bound of the network size |V | = n is also known to the processes.

Our network is synchronous in the sense that 1) the local clock of each process
shows the same speed, 2) there is an upper bound δ on the communication
delay between two neighboring processes, 3) δ is known to the processes, and
4) processing time at each process is negligible. Without loss of generality, we
assume that δ = 1 (unit time).

A system is a dynamic reconfiguration tolerant (DRT for short) self-stabilizing
system with respect to a specification P under a dynamic network reconfigura-
tion constraint C if the following conditions are satisfied.

(1) Convergence: For any initial configuration and for any computation start-
ing from it, the system eventually satisfies P , as long as network configuration
changes follow C.

A DRT Self-stabilizing Token Circulation Algorithm 259

(2) Safety: For any initial configuration that satisfies P and for any com-
putation starting from it, the system remains to satisfy P , as long as network
configuration changes follow C. If we take a constraint “neither transient error
nor network reconfiguration occurs” for C, a DRT self-stabilizing system with
respect to P under C is a conventional self-stabilizing system with respect to P .

3 The Algorithm

This section presents a stateless and DRT self-stabilizing algorithm for circulat-
ing a token along the minimum spanning tree edges in an ad-hoc network. The
algorithm has three parameters M,α and τ , which affect the correctness and the
performance. Section 4 shows some values are sufficient for the algorithm to be
correct, and then we analyze the performance.

A process that is interested in token circulation becomes an initiator. Hence
more than one process may become an initiator. The algorithm consists of two
threads, “initiator thread” for an initiator (Figure 1) and “token thread” for all
processes who receives a token (Figure 3). Hence these two threads are executed
in a single process of the initiator.

When a process becomes an initiator, the initiator thread generates a token
and sends it in a depth-first graph search manner to one of its neighbors. As
part of its information, the token carries a tree that spans the processes it has
visited in terms of the set of tree edges. Hence it carries an empty edge set,
i.e., empty tree, at the initiation time. If a process pj receives the token from a
process pi, the token thread updates the tree edge set in the token by adding an
edge (pi, pj) and forwards it to a neighbor p� of pj . Note that p� is selected so
that the addition of edge (pj , p�) does not create a cycle in the tree (carried by
the token). After a while, the token will carry a spanning tree edge set T , which
however may not be the minimum spanning tree. The cost of a spanning tree is
gradually improved, and we eventually obtain the minimum spanning tree.

Since our algorithm is stateless, a token t needs to carry all of the following
data for circulation, some of which may be temporarily inconsistent because of
failures and/or topology changes.

– t.type ∈ {probe, echo}: The direction of traversal. If t is being sent toward a
leaf (resp. the root), t.type = probe (resp. echo).

– t.tree: A set of ordered edges that represents a rooted tree, along which t is
circulated. The root of t.tree is the initiator of t (= t.ini).

– t.wgt : The weights of edges in t.tree.
– t.age: The age of t, whose value is initially 0 and is incremented by one

whenever t makes a move.
– t.id : The identifier of t assigned by the initiator selected from an integer set

{0, 1, . . . ,M − 1}.2

2 Ideally, M should be selected so that more than M tokens never exist in the network
at a time. However, this assumption is removable and M can be set any value ≥ 2,
at the expense of the convergence time.

260 H. Kakugawa and M. Yamashita

Variables of an initiator pi :
m : integer initially 0; — Token identifier.

Code for an initiator pi :
1: while { — Initiate new circulation by generating a new token.
2: try {
3: wait; — Wait for a token to arrive (with timeout). Token is handled by the token thread.
4: } catch (Signal) { — A token visits this process. This event is notified by the token thread.
5: ; — Do nothing. Wait for next arrival of a token.
6: } catch (TimeoutException) {
7: m := (m +1) mod M; — Assign new token identifier.
8: t := 〈probe, /0, /0,0,m, pi,⊥,∞〉
9: Let pk be a process in Ni such that wi,k is the smallest;

10: send t to pk;
11: }
12: }

Fig. 1. Initiator thread: the code for an initiator

1: macro UpdateToken ≡
2: {
3: // IMPROVE THE SPANNING TREE.
4: if (t.alte �= ⊥) { — There is an edge to improve the spanning tree.
5: t.tree := t.tree∪{t.alte}; — Temporarily t.tree has a cycle.
6: Find an edge e in t.tree such that
7: t.tree−{e} is a spanning tree and its weight is the smallest;
8: t.tree := t.tree−{e};
9: Delete from t.wgt the weight of edge e;

10: Add into t.wgt edge t.alte with weight t.altw;
11: }
12: // REFRESH THE TOKEN FOR THE NEXT ROUND OF TOKEN CIRCULATION.
13: if (pi = t.ini) {
14: m := (m +1) mod M;
15: t.id := m; — Assign new token identifier.
16: t.age := 0; — Reset token age.
17: } — If pi (= the root of t.tree) is not the initiator of t, t.age and t.id are unchanged.
18: t := 〈probe,t.tree,t.wgt,t.age,t.id,t.ini,⊥,∞〉;
19: — Assign new token identifier and reset the token age.
20: }

21: macro FindCandidate ≡
22: {
23: if (t.alte = ⊥)
24: Let T be t.tree;
25: else
26: Let T be the spanning tree with the smallest weight among subgraphs of t.tree∪ t.alte;
27: Let T ′ be the spanning tree with the smallest weight among subgraphs of
28: T ∪{(pi, p�) : p� ∈ Ni −TreeNeighbors(t)};
29: if (weight of T ′ < weight of T){
30: Let p� be a process that yields T ′;
31: return p�;
32: }
33: return ⊥;
34: }

Fig. 2. Macro definitions for token thread

– t.ini : The identifier of initiator.
– t.alte: The current candidate edge e for improving the weight of t.tree.
– t.altw : The weight of t.alte.

A DRT Self-stabilizing Token Circulation Algorithm 261

When a token t arrives at pi from p j :
1: t := receive;
2: t.age := t.age+1; — Increment the age by one.
3: if (pi is an initiator)∧ ((t.ini > pi)∨ ((t.ini = pi)∧ (t.id �= m))) {
4: Discard t; — Discard the token based on priority.
5: } else if (¬Alive(t)) — The token is too old to alive.
6: Discard t.
7: } else {
8: if (pi is an initiator)
9: notify; — Restart timeout timer of the initiator thread.

10: // EXTEND THE SPANING TREE IF pi IS NOT YET INCLUDED.
11: if (t.type = probe)∧ ((p j, pi) �∈ t.tree){ — This is the first visit to pi.
12: t.tree := t.tree∪{(p j, pi)}; t.wgt := t.wgt∪{(p j, pi,wi(p j))}; — Extend the tree.
13: t.alte = ⊥; t.altw = ∞; — Reset the candidate for improving the spanning tree.
14: if (t.ini = pi) — The token visits initiator pi which was disconnected from t.tree.
15: t := 〈probe, /0,0,m, pi,⊥,⊥,⊥,∞〉 — Reset t and start a new round.
16: }
17: // CHECK IF NETWORK TOPOLOGY AND EDGE WEIGHTS ARE CHANGED.
18: for each pk ∈ (Children(t, pi)−Ni) — A child pk is disconnected from pi.
19: Delete a subtree rooted at pk from t.tree, and update t.wgt accordingly;
20: if (Parent(t, pi) �∈ Ni) — Parent process is disconnected from pi.
21: t.tree := a subtree of t.tree rooted at pk, and update t.wgt accordingly;
22: for each pk ∈ TreeNeighbors(t, pi) {
23: if (the weight of (pk, pi) in t.wgt is different from wi(pk))
24: Update the weight of (pk, pi) in t.wgt to be wi(pk);
25: }
26: // FIND A CANDIDATE EDGE TO IMPROVE THE SPANNING TREE.
27: if (Ni −Procs(t) = /0) {
28: p� := FindCandidate; — p� is in Ni −TreeNeighbors(t) or equals ⊥.
29: if (p� �= ⊥) { — Better candidate is found.
30: t.alte = (pi, p�); t.altw = wi(p�);
31: }
32: }
33: // FIND A DESTINATION OF THE TOKEN.
34: if (Ni −Procs(t) �= /0) { — There is a neighbor process not in the spanning tree.
35: t.type := probe; pk := a process such that wi(pk) is the smallest among pk ∈ Ni −Procs(t);
36: } else if (pi is a leaf process of t.tree){
37: t.type := echo; pk := Parent(t, pi); — t will be sent back to the parent (pk = p j).
38: } else {
39: if (t.type = probe) { — t was received from the parent.
40: pk := FirstChild(t, pi); — t will be sent to the first child.
41: } else { — t was received from a child (t.type = echo).
42: pk := NextChild(t, pi, p j); — t will be sent to the next child.
43: }
44: if (pk �= ⊥) { — There is a child to forward.
45: t.type := probe; — t will be sent as a probe token to the child.
46: } else { — No more child to forward t (pk = ⊥).
47: if (pi = Root(t)) { — The end of a round. pi may not be t.ini. (See lines 20–21.)
48: UpdateToken; — Improve the spanning tree, and prepare for the next round.
49: pk := FirstChild(t, pi); — t will be sent to the first child.
50: } else {
51: pk := Parent(t, pi); — t will be sent back to the parent.
52: }
53: }
54: }
55: // FORWARD THE TOKEN.
56: send t to pk;
57: }

Fig. 3. Token thread: the code for a process who receives a token

The algorithm makes use of the following functions:

– Procs(t): The process set of t.tree.
– Root(t): The root of t.tree.

262 H. Kakugawa and M. Yamashita

– Parent(t, pi) : The parent of pi in t.tree. If pi is the root then Parent
(t, pi) = ⊥.

– Children(t, pi): The set of children of pi in t.tree.
– FirstChild(t, pi): The smallest child of pi in t.tree. If pi has no children in

t.tree, then FirstChild(t, pi) = ⊥.
– NextChild(t, pi, pj): The smallest child among those of pi in t.tree larger than

pj .
– TreeNeighbors(t, pi): The set of neighbors of pi in t.tree.
– Alive(t): The predicate that returns true if and only if t.age ≤ α.

3.1 Initiator Thread

The roles of initiator thread are to create a new token and to recreate it when
it does not return within τ ticks and is suspected to be lost. We will show in
Section 4 that the timeout value τ = 6(n − 1) is sufficient to guarantee that
timeout implies no tokens being circulated. The initiator thread maintains a
local integer variable m ∈ {0, . . . , M − 1} for token identifier. When a timeout
occurs, the initiator increments m by one (modulo M), and creates a new token
carrying the initial data. Initiator then sends it to the smallest neighbor to start
its circulation. The initiator thread does nothing, as long as a timeout does
not occur. Note that an arrival of the token is captured by the token thread
concurrently executed in the initiator, and is notified to the initiator thread by
using communication primitives notify and wait.

3.2 Token Thread

The token thread is responsible for the following four functions (A)-(D):

(A) Token Elimination: A token t continues to travel among nodes in a depth-
first fashion, unless it is eliminated with suspicion of its being redundant, since
1) its age t.age has exceeded a constant α, or 2) t arrives at an initiator p who has
priority. As for 1), parameter α should be selected so that a correct circulation
always finishes less than α edge traversals (when the network is static). We
particularly take α = 2(n−1) in Section 4. As for 2), the priority of t defined by
(t.int , t.id) is alphabetically compared with that of p defined by (p,m), where
m is the current version number.

(B) Token Circulation: A token t is circulated in a depth-first graph search
manner. Initially t.tree is empty, and it grows as it visits a new process. As long
as the network is static, an implementation of circulation is straightforward,
although it consists of 2 phases. In the first phase, a standard depth-first graph
search algorithm is executed, and t will be returned back to its initiator with a
spanning tree t.tree.

In the second phase, t repeatedly makes a preorder traversal of the spanning
tree t.tree, where the children are traversed in the order of their weights. During
the traversal, t gathers information to improve t.tree, but we leave this issue in
Items (C) and (D).

A DRT Self-stabilizing Token Circulation Algorithm 263

Recall however that the network may not be static. When the token reaches
a node pi, the data of token may be inconsistent with its current neighbors Ni

and/or the weights wi,j . We recover consistency simply by keeping data consis-
tent with Ni and wi,j and by discarding the rest. For example, if we discover
pk �∈ Ni for some (pi, pk) ∈ t.tree, then update t.tree by removing edge (pi, pk),
and then remove all connected components in t.tree that does not contain pi.
We then update t.wgt accordingly.

Note that the root of t.tree changes if the parent of pi leaves the network.
Even so, the token continues to travel, as long as its age is less than α. If t
happens to return its initiator t.ini , then the initiator initiates a new round,
otherwise, t is eliminated by age.

(C) Searching for Candidate Edge: The spanning tree t.tree of t is not
always minimum when the first phase ends. In further rounds of traversals, we
try to improve t.tree by replacing an edge e′ in t.tree with another edge t.alte
that encounters during the last traversal, to eventually attain the minimum
spanning tree. Here e′ is the node with the largest weight in the unique cycle in
t.tree ∪ {t.alte}. Note that it is easy to maintain t.alte, since it is obvious for a
node pi to check if there is such an e′ for a particular e incident on it.

(D) Initiating Next Traversal: When token t returns to the initiator, the
initiator improves the spanning tree t.tree by replacing the edge e′ in t.tree with
t.alte, and initializes t by incrementing the version number t.id and resetting the
age t.age to 0.

4 Correctness and Performance

Consider an arbitrary initial configuration such that there are some initiators in
the network. Suppose that there will be no transient failures and that no other
process will not become an initiator. We show that eventually an exactly one
token is circulated among the processes along a spaning tree, as long as network
topology changes satisfy some condition given below. Because of the page limit,
we only describe a scenario for the proofs. Recall that α is the lifetime of a token,
and τ is the timeout interval for token recreation.

Since t.tree dominates the amount of information carried by a token t, we
obviously have:

Theorem 1. The amount of information that a token needs to carry is O
(n log n) bits. �

Regardless of how the network topology changes (as long as the conditions
described in Section 2 hold), we can show the followings:

Lemma 1. If there are no tokens initially, a token will be generated. �

Let p∗ be the smallest initiator. Recall Token Elimination policy of the token
thread. Since p∗ always eliminates tokens generated by other initiators, p∗ even-
tually initiates a token. If there are more than one token initiated by p∗, all but

264 H. Kakugawa and M. Yamashita

the one with p∗.m = t.id are eliminated. Hence we can assume without loss of
generality that there is a single token t in the network initiated by p∗ such that
p∗.m = t.id , and t is never eliminated, unless its age reaches α or the timeout
timer of p∗ expires at τ .

Suppose first that the network is static. Since there remains an exactly
one token with p∗.m = t.id by the above observations and (n−1) improvements
of t.tree always make t.tree minimum, we obviously have:

Theorem 2. A token t such that t.id = p∗.m will eventually return to p∗ with the
minimum spanning tree in t.tree, and will continue to traverse t.tree since then.
The cover time is hence 2(n− 1). Furthermore, the convergence time to the mini-
mum spanning tree is at most 2(n − 1)2, after t constructing a spanning tree. �

Next suppose that the network topology may change only by edge
augmentations. Since the network will not be partitioned, we have:

Theorem 3. Let α = 2(n−1) and τ = 4(n−1). Then the algorithm is DRT self-
stabilizing token circulation algorithm, if no edges are removed from the network.

�

By combining it with Theorem 2, we can conclude that t eventually carries
the minimum spanning tree in 2(n − 1)2 time.

Finally, we consider general network topology changes. Let us emphasize
that we cannot even require the token to carry a spanning tree or to circulate
all the processes in general, since the network may be partitioned, and what the
algorithm can guarantee vary, depending on the condition on possible topology
changes.

The first constraint C1 on the network change we consider is the following:
1) no two edge disconnections occur within 6(n− 1) time, and 2) the network is
not partitioned.

Theorem 4. Let α = 6(n−1) and τ = 12(n−1). Then the algorithm is a DRT
self-stabilizing token circulation algorithm under a dynamic network reconfigu-
ration constraint C1. The token can visit all processes in each traversal, but the
cover time is 6(n − 1).

Proof (Sketch). Consider the following worst case scenario: Suppose that
immediately after its initiation by an initiator p∗, a token t leaves p∗ to a child
q, and that the edge e between p∗ and q disconnects immediately after this
move. The token circulation then continues until t finds e disconnection at the
last moment of this circulation when it is about to be sent back to p∗ from q.

Then q starts the second circulation of t as a temporally root. Note that this
circulation starts by time 2(n − 1). Since the network is not partitioned and no
edges (except e) disconnect by 6(n − 1) time, t always returns to p∗ by time
4(n − 1). It is worth noting that there may be a process such that t has not
visited yet. It is however clear that the third circulation will visit all processes
since no edges except e still will not disconnect next 2(n− 1) time, and 2(n− 1)
additional steps are sufficient to complete the circulation.

A DRT Self-stabilizing Token Circulation Algorithm 265

Hence the cover time is 6(n − 1), and τ = 12(n − 1) is sufficient for other
initiators not to issue new tokens by timeouts. �

Let C2 be a condition that is the same as C1 except that the minimum time
interval between two edge disconnections is reduced to 4(n − 1).

Theorem 5. Let α = 6(n − 1) and τ = 12(n − 1). Under a dynamic network
reconfiguration constraint C2, the algorithm is a DRT self-stabilizing token cir-
culation algorithm in a weak sense; a token of the highest priority is circulated
and remains to be circulated forever, but it may not visit all processes in each
circulation and initiators with lower priorities (if any) may issue tokens. �

Readers might be interested in network partition. Suppose that a network
is partitioned into two sub-networks, each of which contains an initiator. Then
a token will be circulated forever in each of the sub-networks, our algorithm
cannot stabilize this situation. This shows that Condition (2) of C1 and C2 are
inevitable.

5 Conclusion

In this paper, we proposed the concept of dynamic reconfiguration tolerant
(DRT) self-stabilization as a theoretical framework of distributed algorithm for
dynamic ad-hoc networks. We then proposed a deterministic and stateless DRT
self-stabilizing token circulation algorithm under some network topology change
constraint. What the algorithm can guarantee depends on what we can assume
to network topology changes. If the network is stable, an exactly one token is cir-
culated along the minimum spanning tree in O(n) time. Obviously it guarantees
nothing if the network topology quickly changes. But it can guarantee a single
token circulation even if edge disconnections occur (as long as their occurrences
are not so frequent).

In this paper, we have assumed that each pi knows up-to-date values of Ni and
wi,j for all pj ∈ Ni. This assumption however is not so realistic; in real systems,
the message sent to a neighbor simply fails if the neighbor is no longer within the
transmission range. We however believe that we can modify our algorithm so that
it works under the above more realistic assumption by repeatedly recomputing
destination of a token until token passing succeeds.

A challenging problem we leave as a future work is to extend the definition
of token circulation so that there can be a correct token circulation algorithm,
even if the network is partitioned, and to propose a DRT self-stabilizing token
circulation algorithm based on the new definition.

References

1. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17 (1974) 643–644

2. Dolev, S.: Self-stabilization. The MIT Press (2000)

266 H. Kakugawa and M. Yamashita

3. Datta, A.K., Johnen, C., Petit, F., Villan, V.: Self-stabilizing depth first token
circulation in arbitrary rooted networks. In: Proceedings of the 5th International
Colloquium on Structual Information and Communication Complexity (SIRROCO).
(1998) 119–131

4. Malpani, N., Vaidya, N.H., Welch, J.L.: Distributed token circulation on mobile
ad hoc networks. In: Proceedings of the 9th International Conference on Network
Protocols (ICNP). (2001)

5. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self sta-
bilizing mutual exclusion. In: Proceedings of the 9th ACM Symposium on Principles
of Distributed Computing, ACM (1990) 119–131

6. Dolev, S., Schiller, E., Welch, J.: Random walk for self-stabilizing group communi-
cation in ad-hoc networks. In: the 21st IEEE Symposium on Reliable Distributed
Systems (SRDS). (2002) 70–79

7. Chen, Y., Welch, J.L.: Self-stabilizing mutual exclusion using tokens in mobile ad
hoc networks. In: Proceedings of the Sixth International Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications (DIALM).
(2002)

Snap-Stabilizing Depth-First Search on
Arbitrary Networks�

Alain Cournier, Stéphane Devismes, Franck Petit, and Vincent Villain

LaRIA, CNRS FRE 2733,
Université de Picardie Jules Verne, Amiens (France)

Abstract. A snap-stabilizing protocol, starting from any arbitrary ini-
tial configuration, always behaves according to its specification. In this
paper, we present a snap-stabilizing depth-first search wave protocol for
arbitrary rooted networks. In this protocol, a wave of computation is
initiated by the root. In this wave, all the processors are sequentially
visited in depth-first search order. After the end of the visit, the root
eventually detects the termination of the process. Furthermore, our pro-
tocol is proven assuming an unfair daemon, i.e., assuming the weakest
scheduling assumption.

keywords: Distributed systems, fault-tolerance, stabilization, depth-
first search.

1 Introduction

A distributed system is a network where processors execute local computations
according to their state and the messages from their neighbors. In such systems,
a wave protocol [1] is a protocol where at least one processor (called initiator)
initiates cycles of computations (also called wave). At the ending of each cycle,
each initiator is abled to determine a result depending on both the terminal
configuration and the history of the cycle’s computation.

In an arbitrary rooted network, a Depth-First Search (DFS) wave is initiated
by the root. In this wave, all the processors are sequentially visited in depth-first
search order. This scheme has many applications in distributed systems. For exam-
ple, the solution of this problem can be used to solve mutual exclusion, spanning
tree computation, constraint programming, routing, or synchronization.

The concept of self -stabilization [2] is the most general technique to design
a system to tolerate arbitrary transient faults. A self-stabilizing system, regarless
of the initial states of the processors and messages initialy in the links, is guaran-
teed to converge to the intented behavior in finite time. Snap-stabilization was
introduced in [3]. A snap-stabilizing protocol guaranteed that it always behaves
according to its specification. In other words, a snap-stabilizing protocol is also a

� The full version is available at www.laria.u-picardie.fr/∼devismes/tr2004-9.ps

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 267–282, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

268 A. Cournier et al.

self-stabilizing protocol which stabilizes in 0 step. Obviously, a snap-stabilizing
protocol is optimal in stabilization time.

Related Works. There exists several (non self-stabilizing) distributed algorithms
solving this problem, e.g., [4, 5]. In the area of self-stabilizing systems, a silent
algorithm (i.e., using this algorithm, the system converges to a fix point) which
computes a DFS spanning tree for arbitrary rooted networks is given in [6].
Several self-stabilizing (but not snap-stabilizing) wave algorithms based on the
depth-first token circulation (DFTC) have been proposed for arbitrary rooted
networks. The first one was proposed in [7]. It requires O(log(N) + log(∆)) bits
per processors where N is the number of processors and ∆ the degree of the
network. Subsequently, several other self-stabilizing protocols were proposed,
e.g., [8, 9, 10]. All these papers attempted to reduce the memory requirement
to O(log(∆)) bits per processor. The algorithm proposed in [8] offers the best
space complexity. All these above solutions [8, 7, 9, 10] have a stabilization time in
O(N×D) rounds where D is the diameter of the network. The solution proposed
in [11] stabilizes in O(N) rounds using O(log(N) + log(∆)) bits per processor.
Until now, this is the best solution (for arbitrary networks) in term of trade-off
between time and space complexities. The correctness of the above algorithms
is proven assuming a (weakly) fair daemon. Roughly speaking, a daemon is
considered as an adversary which tries to prevent the protocol to behave as
expected, and fairness means that the daemon cannot prevent forever a processor
to execute an enabled action. The first snap-stabilizing DFTC has been proposed
in [12] for tree networks. In arbitrary networks, a universal transformer providing
a snap-stabilizing version of any (neither self- nor snap-) protocol is given in
[13]. Obviously, combining this protocol with any DFTC algorithm, we obtain a
snap-stabilizing DFTC algorithm for arbitrary networks. However, the resulting
protocol works assuming a weakly fair daemon only. Indeed, it generates an
infinite number of snapshots, independently of the token progress. Therefore,
the number of steps per wave cannot be bounded.

Contributions. In this paper, we present the first snap-stabilizing depth-first
search wave protocol for arbitrary rooted networks assuming an unfair daemon,
i.e., assuming the weakest scheduling assumption. Indeed, using our protocol,
the execution of a DFS wave is bounded by O(N2) steps. The protocol does not
use any pre-computed spanning tree but requires identities on processors. The
snap-stabilizing property guarantees that as soon as the protocol is initiated by
the root, every processor of the network will be visited in DFS order. After the
end of the visit, the root eventually detects the termination of the process.

Outline of the paper. The rest of the paper is organized as follows: in Section
2, we describe the distributed systems and the model in which our protocol
is written. Moreover, in the same section, we give a formal statement of the
Depth-First Search Wave Protocol solved in this paper. In Section 3, we present
the Depth-First Search Wave Protocol. In the following section (Section 4), we
give the proof of snap-stabilization of the protocol and some complexity results.
Finally, we make concluding remarks in Section 5.

Snap-Stabilizing Depth-First Search on Arbitrary Networks 269

2 Preliminaries

Distributed System. We consider a distributed system as an undirected connected
graph G = (V , E) where V is a set of processors (|V | = N) and E is the set of
bidirectional communication links. We consider networks which are asynchronous
and rooted, i.e., among the processors, we distinguish a particular processor called
root. We denote the root processor by r. A communication link (p, q) exists if
and only if p and q are neighbors. Every processor p can distinguish all its links.
To simplify the presentation, we refer to a link (p, q) of a processor p by the label
q. We assume that the labels of p, stored in the set Neigp

1, are locally ordered
by ≺p. We assume that Neigp is a constant, Neigp is shown as an input from the
system. Moreover, we assume that the network is identified, i.e., every processor
has exactly one identity which is unique in the network. We denote the identity
of a processor p by Idp. We assume that Idp is a constant. Idp is also shown as
an input from the system.

Computational Model. In the computation model that we use, each processor
executes the same program except r. We consider the local shared memory model
of communication. The program of every processor consists of a set of shared
variables (henceforth, referred to as variables) and a finite set of actions. A
processor can only write to its own variables, and read its own variables and
variables owned by the neighboring processors. Each action is constituted as
follows:

< label > :: < guard > → < statement > .

The guard of an action in the program of p is a boolean expression involving the
variables of p and its neighbors. The statement of an action of p updates one
or more variables of p. An action can be executed only if its guard is satisfied.
We assume that the actions are atomically executed, meaning, the evaluation
of a guard and the execution of the corresponding statement of an action, if
executed, are done in one atomic step.

The state of a processor is defined by the value of its variables. The state of
a system is the product of the states of all processors (∈ V). We will refer to
the state of a processor and system as a (local) state and (global) configuration,
respectively. Let C, the set of all possible configurations of the system. An action
A is said to be enabled in γ ∈ C at p if the guard of A is true at p in γ. A
processor p is said to be enabled in γ (γ ∈ C) if there exists an enabled action A
in the program of p in γ.

Let a distributed protocol P be a collection of binary transition relations
denoted by �→, on C. A computation of a protocol P is a maximal sequence of
configurations e = (γ0,γ1,...,γi,γi+1,...), such that for i ≥ 0, γi �→ γi+1 (called a
step) if γi+1 exists, else γi is a terminal configuration. Maximality means that
the sequence is either finite (and no action of P is enabled in the terminal
configuration) or infinite. All computations considered in this paper are assumed
to be maximal. The set of all possible computations of P is denoted as E .

1 Every variable or constant X of a processor p will be noted Xp.

270 A. Cournier et al.

We consider that any processor p executed a disabling action in the compu-
tation step γi �→ γi+1 if p was enabled in γi and not enabled in γi+1, but did
not execute any action between these two configurations. (The disabling action
represents the following situation: at least one neighbor of p changes its state
between γi and γi+1, and this change effectively made the guard of all actions
of p false.)

In a step of computation, first, all processors check the guards of their actions.
Then, some enabled processors are chosen by a daemon. Finally, the “elected”
processors execute one or more of theirs enabled actions. There exists several
kinds of daemon. Here, we assume a distributed daemon, i.e., during a computa-
tion step, if one or more processors are enabled, the daemon chooses at least one
(possibly more) of these enabled processors to execute an action. Furthermore, a
daemon can be weakly fair, i.e., if a processor p is continuously enabled, p will be
eventually chosen by the daemon to execute an action. If the daemon is unfair,
it can forever prevent a processor to execute an action except if it is the only
enabled processor.

In order to compute the time complexity, we use the definition of round
[14]. This definition captures the execution rate of the slowest processor in any
computation. Given a computation e (e ∈ E), the first round of e (let us call it
e′) is the minimal prefix of e containing the execution of one action (an action
of the protocol or the disabling action) of every enabled processor from the first
configuration. Let e′′ be the suffix of e such that e = e′e′′. The second round of e
is the first round of e′′, and so on. We say that a round is finite if it is constituted
of a finite number of steps.

Snap-stabilizing Systems. The concept of snap-stabilization was introduced in
[3]. In this paper, we restrict this concept to the wave protocols only.

Definition 1 (Snap-stabilization for Wave Protocols). Let T be a task,
and SPT a specification of T . A wave protocol P is snap-stabilizing for the
specification SPT if and only if:

1. At least one processor (called initiator) eventually executes a particular ac-
tion of P (called initialization action).

2. The result obtained with P from this initialization action always satisfies
SPT .

Theorem 1. Let T be a task and SPT be a specification of T . Let P be a
protocol such that, assuming a weakly fair daemon, P is self-stabilizing for SPT .
If, for every execution of P assuming an unfair daemon, each round is finite,
then P is also self-stabilizing for SPT assuming an unfair daemon.

Proof. Let e be an execution of P assuming an unfair daemon. By assumption,
every round of e is finite. Then, as every round of e is finite, each enabled
processor (in e) executes an action (either a disabling action or an action of P)
in a finite number of steps. In particular, every continuously enabled processor
executes an action of P in a finite number of steps. So, e is also an execution of

Snap-Stabilizing Depth-First Search on Arbitrary Networks 271

P assuming a weakly fair daemon. Since P is self-stabilizing for SPT assuming
a weakly fair daemon, e stabilizes to SPT . Hence, P is self-stabilizing for SPT
even if the daemon is unfair. �

Specification of the Depth-First Search Wave Protocol. Before giving the speci-
fication of the Depth-First Search Wave Protocol, we propose some definitions.

Definition 2 (Path). The sequence of processors p1, ..., pk (∀i ∈ [1... k], pi ∈
V) is a path of G = (V , E) if ∀i ∈ [1...k − 1], (pi, pi+1) ∈ E. The path p1, ...,
pk is referred to as an elementary path if ∀i, j such that 1 ≤ i < j ≤ k, pi �= pj.
The processors p1 and pk are termed as initial and final extremities, respectively.

Definition 3 (First Path). For each elementary path of G from the root, P
= (p1=r), ..., pi, ...,pk, we associate a word l1, ..., li, lk−1 (noted word(P))
where, ∀i ∈ [1...k − 1], pi is linked to pi+1 by the edge labelled li on pi. Let ≺lex

be a lexicographical order over these words. For each processor p, we define the
set of all elementary paths from r to p. The path of this set with the minimal
associated word by ≺lex is called the first path of p (noted fp(p)).

Using this notion, we can define the first DFS order:

Definition 4 (First DFS Order). Let p, q ∈ V such that p �= q. We can
define the first DFS order ≺dfs as follows: p ≺dfs q if and only if word(fp(p))
≺lex word(fp(q)).

Specification 1 (fDFS Wave). Let V isited be a predicate. A finite computa-
tion e ∈ E is called a fDFS wave (i.e., first DFS wave) if and only if the following
tree conditions are true:

1. r initiates the fDFS wave by initializing the set of processors satisfying Vis-
ited with r.

2. During a fDFS wave, the other processors are sequentially included in the
set of processors satisfying Visited following the first DFS order.

3. r eventually detects the ending of a fDFS wave and if r detects the ending of
a fDFS wave then ∀p ∈ V , p satisfies Visited.

Remark 1. In order to prove that our protocol is snap-stabilizing for Specifica-
tion 1, we must show that every execution of the protocol satisfies these both
conditions:

1. r eventually initiates a fDFS wave.
2. From any configuration where r has initiated a fDFS wave, the system always

satisfies Specification 1.

3 Algorithm

In this section, we present a DFS wave protocol referred to as Algorithm
snapDFS (see Algorithms 1. and 2.). We first present the normal behavior.
We then explain the method of error correction.

272 A. Cournier et al.

Algorithm 1. Algorithm snapDFS for p = r
Input: Neigp: set of neighbors (locally ordered); Idp: identity of p;
Constant: Parp = ⊥;
Variables: Sp ∈ Neigp ∪ {idle, done}; V isitedp: set of identities;
Macros:
Nextp = (q = min≺p{q′ ∈ Neigp :: (Idq′ /∈ V isitedp)}) if q exists,

done otherwise;
ChildV isitedp = V isitedSp if (Sp /∈ {idle, done}), ∅ otherwise;
Predicates:
Forward(p) ≡ (Sp = idle)
Backward(p) ≡ (∃q ∈ Neigp :: (Sp = q) ∧ (Parq = p) ∧ (Sq = done))
Clean(p) ≡ (Sp = done)
SetError(p) ≡ (Sp 	= idle) ∧ [(Idp /∈ V isitedp)

∨ (∃q ∈ Neigp :: (Sp = q) ∧ (Idq ∈ V isitedp))]
Error(p) ≡ SetError(p)
ChildError(p) ≡ (∃q ∈ Neigp :: (Sp = q) ∧ (Parq = p) ∧ (Sq 	= idle)

∧ ¬(V isitedp � V isitedq))
LockedF (p) ≡ (∃q ∈ Neigp :: (Sq 	= idle))
LockedB(p) ≡ [∃q ∈ Neigp :: (Idq /∈ ChildV isitedp) ∧ (Sq 	= idle)] ∨ Error(p)

∨ ChildError(p)
Actions:
F :: Forward(p) ∧ ¬LockedF (p) → V isitedp := {Idp}; Sp := Nextp;
B :: Backward(p) ∧ ¬LockedB(p) → V isitedp := ChildV isitedp; Sp := Nextp;
C :: Clean(p) ∨ Error(p) → Sp := idle;

Normal Behavior. From a normal configuration, we distinguish two phases in
our protocol: the visiting phase where the protocol visits all the processors in
the first DFS order and the cleaning phase which cleans the trace of the visiting
phase so that the root is eventually ready to initiate a new visiting phase. These
both phases work in parallel. In its normal behavior, Algorithm snapDFS uses
three variables for each processor p:

1. Sp designates the successor of p in the visiting phase, i.e., if there exists q ∈
Neigp such that Sp = q, then q (resp. p) is said to be a successor of p (resp.
a predecessor of q),

2. V isitedp is the set of processors which have been visited during the visiting
phase,

3. Parp designates the processor which has pointed out p as one of its successors
during the visiting phase (as r has no predecessor, Parr is the constant ⊥).

Consider the configurations where [(Sr = idle) ∧ (∀p ∈ Neigr , Sp = idle)
∧ (∀q ∈ V \ (Neigr ∪ {r}), Sq ∈ {idle, done})]. We refer to these configurations
as normal initial configurations. In these configurations, every processor q �= r
such that Sq = done is enabled to perform its cleaning phase (see Predicate
Clean(p)). Processor q performs its cleaning phase by executing Action C, i.e.,
it assigns idle to Sq. Moreover, in this configuration, the root (r) is enabled to
initiate a visiting phase (Action F). Processor r can initiate a visiting phase
by initializing V isitedr with its identity (Idr) and pointing out (with Sr) its

Snap-Stabilizing Depth-First Search on Arbitrary Networks 273

minimal neighbor in the local order ≺r (see Macro Nextr). In the worst case,
every processor q, such that Sq = done, executes its cleaning phase, after, r is
the only enabled processor and initiates a visiting phase. From this point on, r
is the only visited processor.

When a processor p �= r such that Sp = idle is pointed out with Sq by
a neighboring processor q, then p waits until all its neighbors p′, such that
Sp′ = done and Idp′ /∈ PredV isitedp (here, V isitedq), execute their cleaning
phase. After, p can execute Action F . Then, p also designates q with Parp and
assigns PredV isitedp ∪ {Idp} (here, V isitedq ∪ {Idp}) to V isitedp. Informally,
the V isited set of the last visited processor contains the identities of all the
visited processors. Finally, p chooses a new successor, if any. For this earlier
task, two cases are possible (see Macro Nextp):

1. ∀ p′ ∈ Neigp, Idp′ ∈ V isitedp, i.e., all neighbors of p have been visited; the
visiting phase from p is now terminated, so, Sp is set to done,

2. otherwise, p chooses as a successor the minimal processor by ≺p in {p′ :: p′ ∈
Neigp ∧ Idp′ /∈ V isitedp} and p is now in the visiting phase.

In both cases, p is now considered as visited.
When q is the successor of p and Sq = done, p knows that the visiting phase

from q is terminated. Thus, p must continue the visiting phase using another
neighboring processor which is still not visited, if any: p executes Action B and
it assigns ChildV isitedp to V isitedp. Hence, it knows exactly which processors
have been visited and it can designate another successor, if any, as in Action F
(see Macro Nextp). Processor q is, now, enabled to execute its cleaning phase
(Action C).

Finally, Sr = done means that the visiting phase is terminated for all the
processors and so, r can execute its cleaning phase. Thus, the system eventually
reaches a normal initial configuration again.

Error Correction. First, from the normal behavior, we can remark that, if p �= r
is in the visiting phase and the visiting phase from p is still not terminated,
then p must have a predecessor and must designate it with its variable Parp,
i.e., each processor p �= r must satisfy: (Sp /∈ {idle, done}) ⇒ (∃q ∈ Neigp ::
Sq = p ∧ Parp = q). The predicate NoRealParent(p) allows to determine if
this condition is not satisfied by p. Then, during the normal behavior, each
processor maintains properties based on the value of its V isited set and that of
its predecessors, if any. Thus, in any configuration, p must respect the following
conditions (see Action F):

1. (Sp �= idle) ⇒ (Idp ∈ V isitedp) because when p is visited, it includes its
identity in its V isited set.

2. (Sp ∈ Neigp) ⇒ (IdSp
/∈ V isitedp), i.e., p must not point out a previously

visited processor.
3. ((p �= r) ∧ (Sp �= idle) ∧ (∃q ∈ Neigp :: (Sq = p) ∧ (Parp = q))) ⇒

(V isitedq � V isitedp) because while p �= r is in the visiting phase, V isitedp

must strictly include the V isited set of its parent.

274 A. Cournier et al.

Algorithm 2. Algorithm snapDFS for p �= r

Input: Neigp: set of neighbors (locally ordered); Idp: identity of p;
Variables: Sp ∈ Neigp ∪ {idle, done}; V isitedp: set of identities; Parp ∈ Neigp;
Macros:
Nextp = (q = min≺p{q′ ∈ Neigp :: (Idq′ /∈ V isitedp)}) if q exists,

done otherwise;
Predp = {q ∈ Neigp :: (Sq = p)};
PredV isitedp = V isitedq if (∃! q ∈ Neigp :: (Sq = p)), ∅ otherwise;
ChildV isitedp = V isitedSp if (Sp /∈ {idle, done}), ∅ otherwise;
Predicates:
Forward(p) ≡ (Sp = idle) ∧ (∃q ∈ Neigp :: (Sq = p))
Backward(p) ≡ (∃q ∈ Neigp :: (Sp = q) ∧ (Parq = p) ∧ (Sq = done))
Clean(p) ≡ (Sp = done) ∧ (SParp 	= p)
NoRealParent(p) ≡ (Sp /∈ {idle, done}) ∧ ¬(∃q ∈ Neigp :: (Sq = p) ∧ (Parp = q))
SetError(p) ≡ (Sp 	= idle) ∧ [(Idp /∈V isitedp)

∨ (∃q∈Neigp :: (Sp=q) ∧ (Idq∈V isitedp))
∨ (∃q∈Neigp :: (Sq=p) ∧ (Parp=q) ∧ ¬(V isitedq�V isitedp))]

Error(p) ≡ NoRealParent(p) ∨ SetError(p)
ChildError(p) ≡ (∃q ∈ Neigp :: (Sp = q) ∧ (Parq = p) ∧ (Sq 	= idle)

∧ ¬(V isitedp � V isitedq))
LockedF (p) ≡ (|Predp|	=1) ∨ (∃q∈Neigp :: (Idq /∈PredV isitedp) ∧ (Sq 	=idle))

∨ (Idp ∈ PredV isitedp)
LockedB(p) ≡ (|Predp|	=1) ∨ (∃q∈Neigp::(Idq /∈ChildV isitedp)∧(Sq 	=idle))

∨ Error(p) ∨ ChildError(p)
Actions:
F :: Forward(p) ∧ ¬LockedF (p) → V isitedp := PredV isitedp∪{Idp};

Sp := Nextp; Parp := (q∈Predp);
B :: Backward(p) ∧ ¬LockedB(p) → V isitedp := ChildV isitedp; Sp := Nextp;
C :: Clean(p) ∨ Error(p) → Sp := idle;

If one of these conditions is not satisfied by p, p satisfies SetError(p). So,
Algorithm snapDFS detects if p is in an abnormal state, i.e., (((p �= r) ∧
NoRealParent(p)) ∨ SetError(p)) with the predicate Error(p). In the rest of
the paper, we call abnormal processor a processor p satisfying Error(p). If p is an
abnormal processor, then we must correct p and all the processors visited from
p. We simply correct p by setting Sp to idle (Action C). So, if, before p executes
Action C, there exists a processor q such that (Sp = q ∧ Parq = p ∧ Sq /∈ {idle,
done} ∧ ¬Error(q)), then after p executes Action C, q becomes an abnormal
processor too (replacing p). These corrections are propagated until the visiting
phase from p is completely corrected. However, during these corrections, the vis-
iting phase from p can progress by the execution of Actions F and B. But, we
can remark that the V isited set of the last processor of a visiting phase grows
by the execution of Actions F and B and the last processor of a visiting phase
can only extend the propagation using processors which are not in its V isited
set. Thus, the visiting phase from an abnormal processor cannot run indefinitely.
Hence, we will see later that the visiting phase from an abnormal processor will
be eventually corrected.

Snap-Stabilizing Depth-First Search on Arbitrary Networks 275

Finally, we focus on the different ways to stop (or slow down) the propagation
of the erroneous behaviors. Actions F and B allow a processor p to execute its
visiting phase. However, by observing its state and that of its neighbors, p can
detect some fuzzy behaviors and stop them: that is the goal of the predicates
LockedF (p) and LockedB(p) in Actions F and B, respectively. A processor p
is locked (i.e., p cannot execute Action B or Action F) when it satisfies at least
one of the five following conditions:

1. p has several predecessors.
2. p is an abnormal processor.
3. p has a successor q such that ((Sq �=idle)∧(Parq=p)∧¬(V isitedp�V isitedq)),

i.e., q is abnormal.
4. p (Sp = idle) is designated as a successor by q but Idp is in V isitedq, i.e., q

is abnormal.
5. some non-visited neighbors q of p are not cleaned, i.e., Sq �= idle (also used

in a normal behavior).

4 Correctness and Complexity Analysis

4.1 Basic Definitions and Properties

Let p ∈ V . p is pre-clean if and only if (Clean(p) ∨ (Sp = done ∧ Error(p))).
We recall that p is abnormal if and only if it satisfies Error(p). A processor p is
linked to a processor q if and only if (Sp = q) ∧ (Parq = p) ∧ ¬SetError(q) ∧
(Sq �= idle). In this case p is called the parent of q and q the child of p. We can
also remark that Sp (resp. Parq) guarantees that q (resp. p) is the only child
(resp. parent) of p (resp. q). As Parr =⊥, obviously, r never has any parent.

A linked path of G is a path P = p1, ..., pk such that Sp1 /∈ {idle, done} and
∀ i, 1 ≤ i ≤ k−1, pi is linked to pi+1. We will note IE(P) the initial extremity of
P (i.e., p1) and FE(P) the final extremity of P (i.e., pk). Moreover, the length of
P (noted length(P)) is equal to k. Obviously, in any configuration, every linked
path of G is elementary. So, from now on and until the end of the paper, we only
consider maximal non-empty linked paths. The next lemma gives an important
property of such linked paths.

Lemma 1. Every linked path P satisfies V isitedFE(P) ⊇ {Idp :: p ∈ P ∧ p �=
IE(P)}.
We call abnormal linked path, a linked path P satisfying Error(IE(P)). Re-
spectively, we call normal linked path, every linked path which is not abnormal.
Obviously, a normal linked path P satisfies IE(P) = r.

Lemma 2. A normal linked path P satisfies V isitedFE(P) ⊇ {Idp :: p ∈ P}.
Now, we introduce the notion of future of a linked path. We call future of a linked
path P the evolution of P during a computation. In particular, the immediate
future of P is the transformation supported by P after a step. Note that, after a

276 A. Cournier et al.

step, P may disappear. Thus, by convention, we denote by DeadP the fact that
P has disappeared after a step.

Definition 5 (Immediate Future of a Linked Path). Let γi �→ γi+1 be a
step. Let P be a linked path in γi. We call F (P) the immediate future of P in
γi+1 and we define it as follows.

1. If there exists a linked path P ′ in γi+1 which satisfies one of the following
conditions: (a) P ∩ P ′ �= ∅, or (b) in γi, SFE(P) = IE(P ′) and IE(P ′)
executes Action F in γi �→ γi+1 then F (P) = P ′,

2. else, F (P) = DeadP .

By convention, we state F (DeadP) = DeadP .

Figure 1 depicts two types of immediate future. Consider first Configurations i
and ii. Configuration i contains one linked path only: P = r, 1, 2. Moreover,
Processor 3 has Action F enabled in i and executes it in i �→ ii (i.e., 3 hooks
on to P). Thus, the step i �→ ii illustrates the case 1.(a) of Definition 5: in this
execution, F (P) = r, 1, 2, 3. Configuration iii also contains one linked path
only: P ′ = 1. Then, in iii, Processor 1 has Action C enabled and Processor 2
has Action F enabled. These two processors execute C and F respectively in
iii �→ iv (1 unhooks from P ′ and 2 hooks on to P ′). So, we obtain Configuration
iv which illustrates the case 1.(b) of Definition 5: in this execution, F (P ′) = 2.
Note that if only Processor 1 executes Action C from iii, P ′ disappears, i.e.,
F (P ′) = DeadP .

idle

Visited

1

{1,2}

Id

Par

S

r {r}

1 {r,1} 2 {r,3}

3 {3,4}

{3,4}4

1

r {r}

{r,1} 2 {r,1,2}

3 {3,4}

{3,4}4

{r}r

{r,1}1 2 {r,1,2}

3{r,1,2,3}

{3,4}4

r {r}

1{r,1} 2 {r,1,2}

3 {3,4}

{3,4}4

ii

iii iv

i

Fig. 1. Instances of Immediate Futures

Definition 6 (Future of a Linked Path). Let e ∈ E. Let γi ∈ e. We define
F k(P) (k ∈ �), the future of P in e after k steps of computation from γi, as
follows:

Snap-Stabilizing Depth-First Search on Arbitrary Networks 277

1. F 0(P) = P ,
2. F 1(P) = F (P) (immediate future of P),
3. F k(P) = F k−1(F (P)) (future of P after k steps of computation), if k > 1.

The following remarks and lemmas give some properties of linked paths and
their futures.

Remark 2. Let γi �→ γi+1 be a step. Let P be a linked path in γi. ∀p ∈ V , p
hooks on to P in γi �→ γi+1 if and only if p executes Action F in γi �→ γi+1 and
p = FE(F (P)) in γi+1. As Parr is a constant equal to ⊥, r cannot hook on to
any linked path.

Remark 3. Let γi �→ γi+1 be a step such that there exists a linked path P in γi.
A processor p unhooks from P in γi �→ γi+1 in the three following cases only:

1. P is an abnormal linked path, IE(P) = p and p executes Action C,
2. Sp = done and its parent in P executes Action B (p �= r),
3. p = r, its child q satisfies Sq = done, and r sets Sr to done by executing

Action B. In this case, q is also unhooked from P (Case 2.); moreover, since
r never has any parent, IE(P) = r and setting Sr to done involves that P
disappears, i.e., F (P) = DeadP .

The following lemma allows us to claim that, during a computation, the identities
of processors which hook on to a linked path P and its future are included into
the V isited set of the final extremity of the future of P . By checking Actions B
and F of Algorithms 1. and 2., this lemma is easy to verify:

Lemma 3. Let P be a linked path. While F k(P) �= DeadP (with k ∈ �),
V isitedFE(F k(P)) contains exactly V isitedFE(P) union the identities of every
processor which hooks on to P and its future until F k(P).

By checking Action F of Algorithms 1. and 2., follows:

Lemma 4. For all linked path P , ∀ p ∈ V such that Idp ∈ V isitedFE(P), p
cannot hook on to P .

By Lemmas 3 and 4, we deduce the next lemma.

Lemma 5. For all linked path P , if p ∈ V hooks on to P , then p cannot hook
on to F k(P), ∀k ∈ �+.

In the rest of the paper, we study the evolution of the paths. So, a lot of results
concern P and F k(P) with k ∈ �. From now on, when there is no ambiguity,
we replace “P and F k(P), ∀k ∈ �” by P only.

4.2 Proof Assuming a Weakly Fair Daemon

Now, we assume a weakly fair daemon. Under this assumption, the number of
steps of any round is finite. So, as we have defined the future of a linked path

278 A. Cournier et al.

in terms of steps, we can also evaluate the future of a linked path in terms of
rounds. Let e ∈ E . Let P be a linked path in γi (∈ e). We note FK

R (P) the future
of P , in e, after K rounds from γi.

We now show that the network contains no abnormal linked path in at most N
rounds, i.e., every abnormal path P of the initial configuration satisfies FN

R (P)
= DeadP .

Theorem 2. The system contains no abnormal linked path in at most N rounds.

Sketch of Proof. It is easy to see that the number of abnormal linked paths
cannot increase. Moreover, if Action C is enabled at p, then it remains enabled
until p executes it. So, let P be an abnormal linked path. As the daemon is
weakly fair, after each round, at least one processor unhooks from P (while P
exists). By Lemmas 1, 4 and 5 and Remark 2, the number of processors which
can hook on to P is at most N − length(P). So, in the worst case, N rounds are
necessary to unhook the processors of P and those which will hook on. Thus,
FN

R (P) = DeadP . �

The following lemmas and theorems allow to prove that r eventually executes
Action F .

Lemma 6. For every normal linked path P , the future of P is DeadP after at
most 2N − 2 actions on it.

Proof. Let e ∈ E . Let γi ∈ e. Assume that there exists a normal linked path P
in γi. First, we can remark that the future of P is either a normal linked path
or DeadP . Moreover, obviously, each action on P is either Action F or Action
B. By Lemmas 4 and 5, only processors p such that Idp /∈ V isitedFE(P) (in
γi) can hook on to P at most one during the execution. By Lemma 2, in the
worst case, the number of processors which hook on to P during the execution is
N − length(P). Then, after N − 2 processors unhooked from P (i.e., length(P)
+ (N − length(P)) − 2 actions B on P), P satisfies length(P) = 2. In this
case, only one action can be executed on P : the parent of FE(P) (i.e., IE(P))
can execute Action B. Now, by Lemma 3, V isitedFE(P) = {Idq :: q ∈ V }.
So, by executing Action B, IE(P) sets SIE(P) to done (NextIE(P)). Thus, as
explained in Remark 3, P disappears. Hence, in the worst case, the future of
P is DeadP after N − length(P) + (N − 2) + 1 actions which is maximal if
initialy length(P) = 1, i.e., 2N − 2 actions. �

If there exists no abnormal linked path, we can remark that, after at most one
round, there always exists at least one continuously enabled action on the normal
linked path. Thus, by Lemma 6 follows:

Lemma 7. Let P be a normal linked path. If there exists no abnormal linked
path, F 2N−1

R (P) = DeadP .

Theorem 2 and Lemma 7 prove the following theorem.

Snap-Stabilizing Depth-First Search on Arbitrary Networks 279

Theorem 3. For all normal linked path P , F 3N−1
R (P) = DeadP .

Theorem 4. From any initial configuration, r executes Action F after at most
3N rounds.

Proof. By Theorems 2 and 3, from any initial configuration, the system needs
at most 3N − 1 rounds to reach a configuration γi satisfying ∀p ∈ V , Sp ∈ {idle,
done}. In γi, ∀p ∈ V such that Sp = done, we have, SParp

�= p. So, every p has
Action C continuously enabled. As the daemon is weakly fair, after one round,
∀p ∈ V , Sp = idle. Thus, r is the only enabled processor and Action F is the
only enabled action of r. Hence, from any initial configuration, the root executes
Action F after at most 3N rounds. �

From the explanation provided in Section 3, it is easy to verify that when the
system starts from a configuration where ∀p ∈ V , Sp = idle (let us call it the idle
configuration) it performs a traversal of the network according to Specification
1. Now, if the system starts from an arbitrary configuration, then it can contain
some pre-clean processors and abnormal linked paths. We can remark that the
pre-clean processors and the abnormal linked paths can only slow down the
progression of the normal linked path. But the system keeps even so a normal
behavior because the normal linked path progresses in the same way than if it
starts from a idle configuration. So, the normal linked path eventually visits
all the processors in the first DFS order and, after, r eventually detects the
termination of the wave when r sets Sr to done (because ∀p ∈ V , Idp ∈ V isitedr).
Hence:

Theorem 5. From any configuration where r executes Action F , the execution
satisfies Specification 1.

From Remark 1, Theorems 4 and 5, follows:

Theorem 6. Algorithm snapDFS is snap-stabilizing for Specification 1 with a
weakly fair daemon.

4.3 Proof Assuming an Unfair Daemon

From now on, we do not make any fairness assumption. The two next lemmas
allow to prove that, in any execution of Algorithm snapDFS, each round is
finite.

Lemma 8. The future of an abnormal linked path P is DeadP after at most
2N − 1 actions on it.

Proof. The reasonning is similar to the proof of Lemma 6. �

Lemma 9. Every round of Algorithm snapDFS has a finite number of steps.

Proof. Let e ∈ E . Assume that a round R of e has an infinite number of steps.
Let γR be the first configuration of R.

280 A. Cournier et al.

First, assume that some abnormal linked paths of γR never disappear. So,
the system eventually reaches a configuration γi ∈ R in which there exists only
abnormal linked paths which never disappear. Now, as every abnormal linked
path disappears after a finite number of actions on it (see Lemma 8), there
exists a configuration γj (j ≥ i) from which no action will be executed on
these abnormal linked paths. Then, every pre-clean processor is clean after one
Action C and a normal linked path can only generate a finite number of pre-
clean processors. Indeed, the pre-clean processors generated by the normal linked
path has belong to it before and, until the normal linked path disappears, only a
finite number of processors can hook on to it (see Lemma 5). Then, the pre-clean
processors cannot prevent forever actions to be executed on a normal linked
path. Now, by Lemma 6, every normal linked path disappears after a finite
number of steps. So, the root processor executes Action F infinitively often to
create normal linked paths. But, if r executes Action F , then, by Theorem 5, r
creates a new normal linked path P and every processor (�= r) eventually hooks
on to P during the execution (in particular, the processors of abnormal linked
paths). Now, a processor p can hook on to P if Sp = idle (see Remark 2 and
Predicate Forward(p)). Thus, P is eventually locked because the processors of
the abnormal linked paths never hook on to it. So, r cannot execute Action F
infinitively often, a contradiction. Thus, there exists a step γj′ �→ γj′+1 with
j′ ≥ j in which at least one action is executed on an abnormal linked path, a
contradiction. Hence, the abnormal linked paths eventually disappear.

So, there exists a configuration γk in which there exists no abnormal linked
path. From this configuration, there always exists at most one linked path, the
normal linked path. Assume that there exists no normal linked path in γk. Then,
after a finite number of steps, r executes Action F and creates a normal linked
path P (in the worst case, after O(N) Actions C, every pre-clean processor
becomes idle and r is the only enabled processor). As explained above, the pre-
clean processors cannot prevent forever actions to be executed on P . By Lemma
6, the future of P is DeadP after a finite number of actions on it. Now, by
Theorem 5, before disappearing, every processor hooks on to it by executing
Action F . So, Round R is eventually done, a contradiction. Finally, if there
exists a normal linked path P ′ in γk, by a similar reasonning, after a finite
number of steps, the future of P ′ is DeadP ′ and we retrieve the previous case, a
contradiction.

Hence, after a finite number of steps, every enabled processor of γR has
executed one action. �

By Theorems 1 and 6, and Lemma 9, the following theorem holds.

Theorem 7. Algorithm snapDFS is snap-stabilizing for Specification 1 even if
the daemon is unfair.

4.4 Complexity Analysis

Space Complexity. By checking Algorithms 1. and 2., follows:

Snap-Stabilizing Depth-First Search on Arbitrary Networks 281

Lemma 10. The space requirement of Algorithm snapDFS is O(N × log(N)
+ log(∆)) bits per processor.

Time Complexity.

Lemma 11. From any initial configuration, r executes Action F in O(N2)
steps.

Proof. In the initial configuration, the system can contain O(N) pre-clean pro-
cessors and O(N) linked paths. Then, every linked path can generate O(N) pre-
clean processors. Indeed, the pre-clean processors generated by a linked path has
belong to it before and, until a linked path disappears, every processor can hook
on to it at most once (see Lemma 5). Finally, every pre-clean processor cleans
it by executing Action C. And, every linked path disappears after O(N) actions
on it (see Lemmas 6 and 8). Hence, in the worst case, after O(N2) steps, r is
the only enabled processor and executes Action F in the next step. �
The following lemma can be deduced from Lemma 11.

Lemma 12. From any initial configuration, a complete fDFS wave is executed
in O(N2) steps.

By Lemma 7, and Theorems 2 and 4, we can deduce the following result.

Lemma 13. From any initial configuration, a complete fDFS wave is executed
in at most 5N − 1 rounds.

5 Conclusion

We presented a snap-stabilizing depth-first search wave protocol for arbitrary
rooted networks. The protocol does not use any pre-computed spanning tree but
requires identities on processors. The snap-stabilizing property guarantees that
as soon as the root initiates the protocol, every processor of the network will
be visited in DFS order. After the end of the visit, the root eventually detects
the termination of the process. Furthermore, as our protocol is snap-stabilizing,
by definition, it is also a self-stabilizing protocol which stabilizes in 0 round
(resp. 0 step). Obviously, our protocol is optimal in stabilization time. We also
showed that the proposed protocol works correctly assuming an unfair daemon,
i.e., assuming the weakest scheduling assumption. Finally, note that our protocol
executes a complete traversal of the network in O(N) rounds and O(N2) steps,
respectively. The memory requirement of our solution is O(N×log(N) + log(∆))
bits per processor. In a future work, we would like to design a snap-stabilizing
DFS wave protocol (for arbitrary rooted networks) with a memory requirement
independent of N .

Acknowledgements. We would like to thank the anonymous referees for their
suggestions and contructives comments on the earlier version of the paper. Their
suggestions have greatly enhanced the readability of the paper.

282 A. Cournier et al.

References

1. Tel, G.: Introduction to distributed algorithms. Cambridge University Press (Sec-
ond edition 2001)

2. Dijkstra, E.: Self stabilizing systems in spite of distributed control. Communica-
tions of the Association of the Computing Machinery 17 (1974) 643–644

3. Bui, A., Datta, A., Petit, F., Villain, V.: State-optimal snap-stabilizing PIF in
tree networks. In: Proceedings of the Forth Workshop on Self-Stabilizing Systems,
IEEE Computer Society Press (1999) 78–85

4. Awerbuch, B.: A new distributed depth-first-search algorithm. Information Pro-
cessing Letters 20 (1985) 147–150

5. Cheung, T.: Graph traversal techniques and maximum flow problem in distributed
computation. IEEE Transactions on Software Engineering SE-9(4) (1983) 504–
512

6. Collin, Z., Dolev, S.: Self-stabilizing depth-first search. Information Processing
Letters 49(6) (1994) 297–301

7. Huang, S., Chen, N.: Self-stabilizing depth-first token circulation on networks.
Distributed Computing 7 (1993) 61–66

8. Datta, A., Johnen, C., Petit, F., Villain, V.: Self-stabilizing depth-first token
circulation in arbitrary rooted networks. Distributed Computing 13(4) (2000)
207–218

9. Johnen, C., Beauquier, J.: Space-efficient distributed self-stabilizing depth-first
token circulation. In: Proceedings of the Second Workshop on Self-Stabilizing
Systems. (1995) 4.1–4.15

10. Petit, F., Villain, V.: Color optimal self-stabilizing depth-first token circulation. In:
I-SPAN’97, Third International Symposium on Parallel Architectures, Algorithms
and Networks Proceedings, IEEE Computer Society Press (1997) 317–323

11. Petit, F.: Fast self-stabilizing depth-first token circulation. In: Proceedings of
the Fifth Workshop on Self-Stabilizing Systems, Lisbonne (Portugal), LNCS 2194
(October 2001) 200–215

12. Petit, F., Villain, V.: Time and space optimality of distributed depth-first token
circulation algorithms. In: Proceedings of DIMACS Workshop on Distributed Data
and Structures, Carleton University Press (1999) 91–106

13. Cournier, A., Datta, A., Petit, F., Villain, V.: Enabling snap-stabilization. In:
23th International Conference on Distributed Computing Systems (ICDCS 2003).
(2003) 12–19

14. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.
IEEE Transactions on Parallel and Distributed Systems 8 (1997) 424–440

A Self-stabilizing Link-Coloring Protocol
Resilient to Byzantine Faults

in Tree Networks

Yusuke Sakurai1, Fukuhito Ooshita2, and Toshimitsu Masuzawa2

1 Information and Communication Systems Group,
Sharp Corporation Yamatokoriyama-shi, 639-1186 Japan

sakurai.yuhsuke@sharp.co.jp
2 Graduate School of Information Science and Technology,

Osaka University, Toyonaka-shi, 560-8531 Japan
{f-oosita, masuzawa}@ist.osaka-u.ac.jp

Abstract. Self-stabilizing protocols can tolerate any type and any num-
ber of transient faults. But self-stabilizing protocols have no guarantee of
their behavior against permanent faults. Thus, investigation concerning
self-stabilizing protocols resilient to permanent faults is important.

This paper proposes a self-stabilizing link-coloring protocol resilient
to (permanent) Byzantine faults in tree networks. The protocol assumes
the central daemon, and uses ∆ + 1 colors where ∆ is the maximum
degree in the network. This protocol guarantees that, for any nonfaulty
process v, if the distance from v to any Byzantine ancestor of v is greater
than two, v reaches its desired states within three rounds and never
changes its states after that. Thus, it achieves fault containment with
radius of two. Moreover, we prove that the containment radius becomes
Ω(log n) when we use only ∆ colors, and prove that the containment
radius becomes Ω(n) under the distributed daemon. These lower bound
results prove necessity of ∆+1 colors and the central daemon to achieve
fault containment with a constant radius.

1 Introduction

Self-stabilization[5] is one of the most effective and promising paradigms for
fault-tolerant distributed computing[6]. A self-stabilizing protocol is guaranteed
to achieve its desired behavior eventually regardless of the initial network con-
figuration (i.e., global state). This implies a self-stabilizing protocol is resilient
to any number and any type of transient faults since it can converge to its de-
sired behavior from any configuration resulted by transient faults. However the
convergence to the desired behavior is guaranteed only on the assumption that
no further fault occurs during the convergence. Thus, a self-stabilizing protocol
is not guaranteed to achieve its desired behavior in the presence of a permanent
fault. Thus, it is strongly desired to design self-stabilizing protocols resilient to
permanent faults.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 283–298, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

284 Y. Sakurai, F. Ooshita, and T. Masuzawa

There are some researches about self-stabilizing protocols resilient to per-
manent faults [1, 4, 10, 16, 3, 15, 17, 19]. Most of these researches treat only crash
faults, and these self-stabilizing protocols guarantee that each nonfaulty pro-
cess achieves its desired behavior regardless of the initial network configuration.
Nesterenko et al.[17] treat Byzantine faults as permanent faults. The main diffi-
culty in tolerating Byzantine faults is caused by arbitrary and unbounded state
changes of the Byzantine process: processes around the Byzantine processes may
change their states in response to the state changes of the Byzantine processes,
and processes next to the processes changing their states may also changes their
states. This implies that the influence of the Byzantine processes expands to the
whole system, and then no process can achieve its desired behavior. Nesterenko
et al.[17] give a novel definition of a self-stabilizing protocol resilient to Byzantine
faults. The protocol guarantees, by containing the influence of Byzantine pro-
cesses to only processes near them, the other processes can achieve their desired
behaviors eventually. They introduce the containment radius as the distance be-
tween a Byzantine process and processors affected by the Byzantine process.
They also propose self-stabilizing protocols resilient to Byzantine faults for the
vertex coloring problem and the dining philosophers problem. The containment
radius is one for the vertex coloring problem and two for the dining philosophers
problem.

The concept of fault containment is very popular in the field of self-stabilizing
protocol[7, 8, 9, 13, 12, 2]. However, these papers aim to contain the influence of
a transient fault, and they do not consider Byzantine faults.

In this paper, we consider a self-stabilizing link-coloring protocol resilient to
Byzantine faults in tree networks. Link-coloring of the distributed system is an
assignment of colors to the communication links such that no two communication
links with the same color share a process in common. Link-coloring has many
applications in distributed systems, e.g., scheduling data transfer and assigning
frequency band in wireless networks. Thus, many distributed protocols for link-
coloring are proposed[11, 14, 18]. However, the fault tolerance is not considered
in these protocols.

In this paper, we propose a self-stabilizing link-coloring protocol resilient to
Byzantine faults. The protocol assumes the central daemon, i.e., exactly one pro-
cess can execute an operation at each time, and uses ∆+1 colors, where ∆ is the
maximum degree of the network. The protocol guarantees that any nonfaulty
process v reaches its desired states within three rounds and never changes its
state after that if v has no Byzantine ancestor with the distance of two or less.
Moreover, we show that, for any self-stabilizing link-coloring protocol resilient
to Byzantine faults, when it uses only ∆ colors, the containment radius becomes
Ω(log n) if ∆ ≥ 3, and Ω(n) if ∆ = 2, where n is the number of processes.
Thus, our proposed protocol attains the minimality in the number of colors for
achieving fault containment of Byzantine processes with a constant containment
radius. Next, for any self-stabilizing link-coloring protocol that assumes the dis-
tributed daemon, i.e., an arbitrary number of processes can execute operations
at each time, even when it can use arbitrary number of colors, we show that

A Self-stabilizing Link-Coloring Protocol Reslilient to Byzantine Faults 285

the containment radius becomes Ω(n). This lower bound result implies that the
assumption of the central daemon is reasonable to attain the fault containment
against Byzantine faults with a constant containment radius.

2 Preliminaries

2.1 Distributed System

A distributed system S = (P,L) consists of a set P = {v1, v2, . . . , vn} of processes
and a set L of communication links (simply called links). A link is an unordered
pair of distinct processes and processes v and w are called neighbors if (v, w) ∈ L.
A distributed system S can be regarded as a graph with a vertex set P and a
link set L, and thus, we use some graph terminologies to a distributed system
S.

We consider rooted tree networks in this paper. For each process v ∈ P , Nv

denotes the set of neighbors of v, prtv denotes the parent of v, and Chv denotes
the set of children of v. We do not assume existence of a unique identifier of
each process. Instead we assume each process can identify its parent from them,
and distinguish each of its children by local ordering on its children. The x-th
child of process v is denoted by chv(x) (1 ≤ x ≤ |Chv|). The distance from the
root process to process v is called the depth of v. The maximum degree of a tree
network is denoted by ∆, i.e., the root process has at most ∆ children and any
other process has at most ∆ − 1 children.

Each process is modeled by a state machine that can communicate with its
neighbors through link registers. For each pair of neighboring processes, u and
v, there are two link registers ru,v and rv,u. Message transmission from u to v is
realized as follows: u writes a message to link register ru,v and then v reads it
from ru,v.

For each process v, let Inv = {ru,v|u ∈ Nv} be the input register set of v
and Outv = {rv,u|u ∈ Nv} be the output register set of v. For convenience,
we use variables to denote the states of a process and a link register, and use
guarded actions (simply called actions) to denote the state transition function
of a process. Each action is of the following form:

< guard >→< statement >

The guard of an action of a process v is a boolean expression consisting of the
variables of v and all input registers r (r ∈ Inv). The statement of an action of
v updates one or more variables of v and all output registers r (r ∈ Outv). The
values assigned to the variables of v and r (r ∈ Outv) depend only on the values
of variables of v and r (r ∈ Inv). The statement of an action can be executed only
if its guard is evaluated to true. When guards of multiple actions are evaluated to
true, one of these actions is deterministically selected and executed. We assume
that each action is atomically executed: the evaluation of the guard and the
execution of the corresponding statement of the action, if executed, are done in
one atomic step. The execution of an action of v is called a step of v.

286 Y. Sakurai, F. Ooshita, and T. Masuzawa

A global state of a distributed system is called a configuration and is denoted
by a product of states of all processes and all link registers. We define C as the set
of all possible configurations of a distributed system S. For each configuration ρ ∈
C, ρ|v and ρ|r denote the states of process v and link register r in configuration
ρ respectively.

When a process v has a guarded action whose guard is true at configuration ρ,
we say v is enabled at ρ. Let En(ρ, v) be a predicate such that En(ρ, v) = true
iff v is enabled at ρ. Letting Q be any set of processes, when configuration ρ
changes to configuration ρ′ by executing actions of every enabled process in Q,
we denote ρ

Q�→ ρ′.
A schedule of a distributed system is an infinite sequence of sets of processes.

Let Q = Q1, Q2, . . . be a schedule. An infinite sequence of configurations e =
ρ0, ρ1, . . . is called an execution from an initial configuration ρ0 by a schedule Q,

if e satisfies ρi
Qi+1�→ ρi+1 for each i (i ≥ 0). Notice that the execution e is uniquely

determined from its initial configuration and a schedule Q since the executed
action of each process is deterministically selected (even when a process has two
or more actions with true guards). The set of possible schedules in a distributed
system is sometimes modeled by a scheduler called a daemon. In this paper, we
consider two kinds of daemons, the distributed daemon and the central daemon.
Under the distributed daemon, each Qi can be an arbitrary set of processes.
That is, the distributed daemon allows two or more processes execute their
actions simultaneously. By contrast, the central daemon is a special case of the
distributed daemon. Under the central daemon, |Qi| = 1 holds for each i, i.e., no
two processes execute their actions simultaneously. Under the central daemon,
when Qi = {qi} for each i, we simply describe a schedule as Q = q1, q2, . . . and

describe a configuration transition as ρi
qi+1�→ ρi+1 instead of ρi

Qi+1�→ ρi+1. The set
of all possible executions from an initial configuration ρ0 ∈ C is denoted by Eρ0 .
The set of all possible executions is denoted by E, that is, E =

⋃
ρ0∈C Eρ0 .

We consider asynchronous distributed systems where we can make no as-
sumption on schedules except that any schedule is weakly fair: every process
appears in the schedule infinitely often.

In this paper, we consider two kinds of permanent faults: crash faults and
Byzantine faults.

– crash faults: A crash process (i.e., a process with the crash fault) prematurely
stops execution of its actions. If v is a crash process, v does not change states
of v and r (r ∈ Outv) after certain time even when there is an action with
true guard. Before that time, v acts as a nonfaulty process and correctly
executes its actions.

– Byzantine faults: A Byzantine process (i.e., a process with the Byzantine
fault) can arbitrarily behave independently from its actions. If v is a Byzan-
tine process, v can repeatedly change states of v and r (r ∈ Outv) arbitrarily.

We define BF and CF as the sets of Byzantine processes and crash processes
respectively. Since a crash fault can be regarded as a special case of the Byzantine
fault, BF ⊇ CF holds. However, in what follows, we assume without loss of

A Self-stabilizing Link-Coloring Protocol Reslilient to Byzantine Faults 287

generality that BF ∩ CF = ∅ holds by excluding crash processes from the set
BF .

Let CF = {f1, f2, . . . , fc}. In distributed systems where faults can occur,
an infinite sequence of configurations e = ρ0, ρ1, . . . is called an execution by
a schedule Q = Q1, Q2, . . ., if there exists t1, t2, . . . , tc such that the following
conditions hold for any i (i ≥ 0):

– For any v ∈ Qi+1− (BF ∪CF), execution of an action of v changes v’s state
from ρi|v to ρi+1|v (possibly ρi|v = ρi+1|v) and changes the state of every
r ∈ Outv from ρi|r to ρi+1|r (possibly ρi|r = ρi+1|r).

– For any fj ∈ Qi+1 ∩ CF , if i ≥ tj , the states of fj and each output register
r ∈ Outfj

remain unchanged from ρi to ρi+1: ρi|fj = ρi+1|fj and ∀r ∈
Outfj

: ρi|r = ρi+1|r hold. If i < tj , execution of an action of fj changes its
state from ρi|fj to ρi+1|fj (possibly ρi|fj = ρi+1|fj) and changes the state
of every r ∈ Outfj

from ρi|r to ρi+1|r (possibly ρi|r = ρi+1|r). Notice that
tj implies that process fj becomes crashed between ρtj−1 and ρtj

.
– For any v /∈ Qi+1, ρi|v = ρi+1|v and ∀r ∈ Outv : ρi|r = ρi+1|r hold.

Notice that, for any process v ∈ Qi+1 ∩ BF , ρi+1|v and ρi+1|r (r ∈ Outv) can
be arbitrary states.

In asynchronous distributed systems, time is usually measured by asyn-
chronous rounds (simply called rounds). Let e = ρ0, ρ1, . . . be an execution from
configuration ρ0 by a schedule Q = Q1, Q2, The first round of e is defined to
be the minimum prefix of e, e′ = ρ0, ρ1, . . . , ρk, such that

⋃k
i=1 Qi = P . Round t

(t ≥ 2) is defined recursively, by applying the above definition of the first round
to e′′ = ρk, ρk+1, Intuitively, every process has a chance to update its state
in every round.

2.2 Self-stabilizing Protocol Resilient to Byzantine Faults

In this paper, we treat only static problems, i.e., once the system reaches a de-
sired configuration, the configuration remains unchanged forever. For example,
the spanning-tree construction problem is a static problem, and the mutual ex-
clusion problem is not a static problem[6]. A static problem can be defined by
a specification predicate, spec(v), for each process v, which specifies the condi-
tion that v should satisfy at the desired configuration. A specification predicate
spec(v) is a boolean expression consisting of the variables of Pv ⊆ P and link
registers Rv ⊆ R, where R is the set of all link registers.

A self-stabilizing protocol is a protocol that guarantees each process v satis-
fies spec(v) eventually regardless of the initial configuration. By this property, a
self-stabilizing protocol can tolerate any number and any type of transient faults.
However, since we consider permanent faults such as Byzantine faults and crash
faults, faulty processes cannot satisfy spec(v). In addition, nonfaulty processes
near the faulty processes can be influenced by the faulty processes and cannot
satisfy spec(v). Thus, Nesterenko et al.[17] define a self-stabilizing protocol re-
silient to these faults. Informally, the protocol requires each nonfaulty process v
far from any faulty process to satisfy spec(v) eventually. They also propose con-
cepts of strict tolerance and strict stabilization to define some classes of protocols

288 Y. Sakurai, F. Ooshita, and T. Masuzawa

resilient to Byzantine faults. We combine the above two concepts, and propose
(B, C)-self-stabilization with radius (τ, µ), where B and C represent Byzantine
faults and crash faults respectively. In the following definition, let Γ (v, l) be the
set of processes whose distance to v is at most l.

Definition 1. A configuration ρ0 is a (B, C)-stable configuration with radius
(τ, µ) if and only if, for any execution e = ρ0, ρ1, . . . and any process v, the
following condition holds:

If the distance from v to any Byzantine process is more than τ (∀w ∈
Γ (v, τ) : w /∈ BF) and the distance from v to any crash process is more
than µ (∀u ∈ Γ (v, µ) : u /∈ CF), for any i, i) v satisfies spec(v) in ρi,
ii) ρi|v = ρi+1|v holds, iii) ρi|r = ρi+1|r (r ∈ Outv) holds.

Definition 1 states, once the system reaches a stable configuration, a process
v sufficiently far from any faulty process satisfies spec(v) and never changes the
states of v and r (r ∈ Outv) forever.

Definition 2. A protocol A is a (B, C)-self-stabilizing protocol with radius (τ, µ)
if and only if, for any execution e = ρ0, ρ1, . . . of A starting from any configu-
ration ρ0, there exists ρi that is a (B, C)-stable configuration with radius (τ, µ).
We say that the stabilizing time of A is k for the minimum k such that the last
configuration of the k-th round is a stable configuration in any execution of a
protocol A.

Definition 2 states a (B, C)-self-stabilizing protocol guarantees that the sys-
tem eventually reaches a (B, C)-stable configuration from any initial configura-
tion. If a protocol A is a (B, C)-self-stabilizing protocol with radius (τ, µ), where
τ and µ are constant, A is strictly C-tolerant[17] and strictly stabilizing[17].

2.3 Link-Coloring Problem

A link-coloring problem is to find an assignment of colors to links such that no
two links with the same color share a process in common. In the following, let
CSET be a given set of colors, and let Color((u, v)) ∈ CSET be a color of link
(u, v). We define the distributed link-coloring problem as follows.

Definition 3. In the distributed link-coloring problem, the specification predi-
cate spec(v) for a process v is given as follows:

∀x, y ∈ Nv : x �= y =⇒ Color((v, x)) �= Color((v, y))

In the following, we define a b-link-coloring protocol as a link-coloring protocol
using b colors.

3 Link-Coloring Protocol Under the Central Daemon

In this section, we propose a (B, C)-self-stabilizing (∆+1)-link-coloring protocol
with radius (2, 1). Our protocol uses at most ∆ + 1 colors for link-coloring, and
thus, we assume CSET = {1, 2, . . . ,∆ + 1}.

A Self-stabilizing Link-Coloring Protocol Reslilient to Byzantine Faults 289

Fig. 1. Variables of v, link registers in Inv, and link registers in Outv, where u = prtv

and cx = chv(x) (1 ≤ x ≤ |Chv|)

Let v be any process, u = prtv, and xv be an integer satisfying v = chu(xv).
First, we explain variables on a process and a link register (See Fig. 1).

– Process v has variables Colv(x) (1 ≤ x ≤ |Chv|). Variable Colv(x) denotes
a color of link (v, chv(x)). Notice that v does not have the variable to store
the color of link (u, v) for its parent u. The color of the link is stored in
Colu(xv) of u.

– Link register ru,v has variables Numu,v and PCu,v. Process u assigns xv to
Numu,v, and assigns Colu(xv) to PCu,v. Process v can learn the color of link
(u, v) by reading PCu,v. The value of Numu,v is used to determine Colv(x)
(1 ≤ x ≤ |Chv|).

– Link register rv,u has a variable USETv,u. Process v assigns{
Colv(x)

∣∣∣1 ≤ x ≤ |Chv|
}

to USETv,u. Process u can learn the colors assigned
to links (v, chv(x)) (1 ≤ x ≤ |Chv|) by reading USETv,u.

For simplicity, we assume that Colv(x) ∈ CSET (1 ≤ x ≤ |Chv|), 1 ≤ Numu,v ≤
∆, PCu,v ∈ CSET , and USETv,u ⊆ CSET are always satisfied at any configura-
tion even when there exist some Byzantine processes.

Process v executes the following step atomically:

1. Process v reads variables on all link registers in Inv.
2. Process v locally determines colors Colv(x) for all x (1 ≤ x ≤ |Chv|).
3. For each x (1 ≤ x ≤ |Chv|), letting w = chv(x), process v writes x and

Colv(x) to Numv,w and PCv,w on link register rv,w respectively.
4. Letting u = prtv, process v writes

{
Colv(x)

∣∣∣1 ≤ x ≤ |Chv|
}

to USETv,u on
link register rv,u.

We show the protocol LinkColoring in Fig. 2. For simplicity, we show the
protocol by giving the pseudo-code. The function LinkColoring is executed in
one atomic step.

c l ck

(a) Variables of v.

ck

(b) Va ria bles of registers in
In ., .

C2 Ck

(c) Variables of registers in
Out., .

290 Y. Sakurai, F. Ooshita, and T. Masuzawa

1: function LinkColoring {
2: // v is the root process
3: if v = root then
4: for k := 1 to |Chv| {
5: Colv(k) := k
6: }
7:
8: // v is not the root process
9: else
10: // assign colors to Colv(k) (k < Numu,v)
11: u := prtv

12: c := 1
13: for k := 1 to min({Numu,v − 1, |Chv|}) {
14: if PCu,v = c then
15: c + +
16: endif
17: Colv(k) := c
18: c + +
19: }
20:
21: // assign colors to Colv(k) (k > Numu,v)
22: c := |Chv|
23: for k := |Chv| downto Numu,v + 1 {
24: if PCu,v = c then
25: c − −
26: endif
27: Colv(k) := c
28: c − −
29: }
30:
31: // assign colors to Colv(k) (k = Numu,v)
32: if |Chv| ≥ Numu,v then
33: k := Numu,v

34: if Colv(k) �∈ {k, k + 1, k + 2} or
35: PCu,v = Colv(k) or
36: Colv(k − 1) = Colv(k) or
37: Colv(k + 1) = Colv(k) then
38: C := {k, k + 1, k + 2} − {PCu,v} − USETchv(k),v

39: if C �= ∅ then
40: Colv(k) := min(C)
41: else
42: Colv(k) := min({k, k + 1, k + 2} − {PCu,v})
43: endif
44: endif
45: endif
46: endif
47:
48: // write colors to link registers
49: for k := 1 to |Chv| {
50: Numv,chv(k) := k
51: PCv,chv(k) := Colv(k)
52: }
53: if v �= root then

54: USETv,u :=

{
Colv(k)

∣∣∣1 ≤ k ≤ |Chv|
}

55: endif
56: }

Fig. 2. The protocol LinkColoring: the action of v

To explain how each process v determines Colv(x), we define candidate color
sets and preference colors. For each process v and each x (1 ≤ x ≤ |Chv|), we
define the candidate color set CColv(x) as follows:

A Self-stabilizing Link-Coloring Protocol Reslilient to Byzantine Faults 291

CColv(x) = {x, x + 1, x + 2}
For each process v (v is not the root) and each x (1 ≤ x ≤ |Chv|, x �= Numprtv,v),
we define the preference color PColv(x) as follows:

PColv(x) =
{

x (x < Numprtv,v)
x + 2 (x > Numprtv,v)

In the protocol LinkColoring, nonfaulty process v assigns colors to links
with the following policies: 1) v always assigns colors to links so that no two
links with the same color share v, 2) v always assigns color c ∈ CColv(x) to
Colv(x), and 3) if possible, v assigns color PColv(x) to Colv(x). According to
these policies, v assigns a color to Colv(x) as follows:

– Case where v is the root process. Process v assigns x to Colv(x) (1 ≤ x ≤
|Chv|) (See line 4 to 6).

– Case where v is not the root process. Let u = prtv and w = chv(Numu,v).
1. Case where PCu,v ∈ CColv(Numu,v) = {Numu,v, Numu,v + 1, Numu,v + 2}

• For each x (x < Numu,v), v assigns x to Colv(x) (See line 10 to 19).
• Let C = CColv(Numu,v) − {PCu,v}. If there exists c such that c ∈

C − USETw,v, v assigns c to Colv(Numu,v). Otherwise, v assigns any
color c ∈ C to Colv(Numu,v) (See line 30 to 44).

• For each x (x > Numu,v), v assigns x + 2 to Colv(x) (See line 21 to
29).

2. Case where PCu,v < Numu,v.
• For each x (x < PCu,v), v assigns x to Colv(x) (See line 10 to 19).
• For each x (PCu,v ≤ x < Numu,v), v assigns x + 1 to Colv(x)(See line

10 to 19).
• Let C = CColv(Numu,v) − {Numu,v}. If there exists c such that c ∈

C − USETw,v, v assigns c to Colv(Numu,v). Otherwise, v assigns any
color c ∈ C to Colv(Numu,v) (See line 31 to 45).

• For each x (x > Numu,v), v assigns x + 2 to Colv(x) (See line 21 to
29).

3. Case where PCu,v > Numu,v + 2.
• For each x (x < Numu,v), v assigns x to Colv(x) (See line 10 to 19).
• Let C = CColv(Numu,v) − {Numu,v + 2}. If there exists c such that

c ∈ C − USETw,v, v assigns c to Colv(Numu,v). Otherwise, v assigns
any color c ∈ C to Colv(Numu,v) (See line 31 to 45).

• For each x (Numu,v < x ≤ PCu,v − 2), v assigns x + 1 to Colv(x) (See
line 21 to 29).

• For each x (PCu,v − 2 < x), v assigns x + 2 to Colv(x) (See line 21
to 29).

After v executes an action, the guards of actions of v become false and spec(v)
becomes true. Notice that the guards of actions of v and spec(v) do not include
variables USETw,v (w ∈ Chv). Thus, once v executes an action, even when w ∈
Chv is a Byzantine process and changes USETw,v arbitrarily, the guards of actions
of v remain false and spec(v) remains true unless prtv changes PCprtv,v.

292 Y. Sakurai, F. Ooshita, and T. Masuzawa

Assume v and u = prtv are nonfaulty processes, and prtu is a Byzantine
process. In what follows, we explain how the influence of a Byzantine process
prtu is contained in the candidate color sets and the preference colors.

Since u is a nonfaulty process, by the protocol, u assigns a color in CColu(x)
to Colu(x) in the first round. Thus, process u reduces the influence of Byzantine
process prtu in the sense that the change of Colu(x) is constrained in CColu(x)
although the change of PCprtu,u is completely unconstrained.

As described above, u always assigns a color in CColu(x) to Colu(x) (1 ≤
x ≤ |Chu|). Consequently, letting C = {Numu,v, Numu,v + 1, Numu,v + 2}, PCu,v =
Colu(Numu,v) ∈ CColu(Numu,v) = C holds at any configuration after the first
round. Then, when v executes a step after the first round, v assigns PColv(x)
to Colv(x) for each x (x �= Numu,v), and assigns a color in CColv(Numu,v) to
Colv(Numu,v). This implies v never changes Colv(x) (x �= Numu,v) even when u
changes PCu,v. However, v may have to change Colv(Numu,v) in response to change
of PCu,v. Letting w = chv(Numu,v), since w also assigns PColw(x) to Colw(x) for
each x (x �= Numv,w) after the second round, links that can be assigned colors in
C to and connects to either v or w are only (u, v), (v, w), and (w, chw(Numu,v)).
Thus, v can assign a color in C to Colv(Numu,v) so that no two links with the
same color share either v or w. Therefore, w, a process apart from the Byzantine
ancestor by distance of three, is not affected by the Byzantine process, and we
attain the fault containment against the Byzantine faults. About the protocol
LinkColoring, we have the following theorem.

Theorem 1. The protocol LinkColoring is a (∆ + 1)-link-coloring protocol
satisfying the following property:

– Let e = ρ0, ρ1, . . . be any execution, v ∈ P be any nonfaulty process, and ρs be
the last configuration of the third round. When v has no Byzantine ancestor
with the distance of two or less and has no crash parent, for any t (t ≥ s), i)
v satisfies spec(v) in ρt, ii) both ρt|v = ρt+1|v and ∀r ∈ Outv : ρt|r = ρt+1|r
hold.

Corollary 1. The protocol LinkColoring ia a (B, C)-self-stabilizing (∆ + 1)-
link-coloring protocol with radius (2, 1). The stabilization time of LinkColoring

is three.

In addition, we define that a process v is in a consistent state if PCv,chv(x) =
Colv(x) holds for any x (1 ≤ x ≤ |Chv|). Notice that, for any process v /∈ BF ,
once v executes an action, v is in a consistent state forever. For nonfaulty process
v apart from any Byzantine ancestor by distance of three, when prtv is a crash
process, we cannot guarantee that v satisfies spec(v). However, if prtv crashes
in a consistent state, we can guarantee that.

Theorem 2. The protocol LinkColoring is a (∆ + 1)-link-coloring protocol
satisfying the following property:

– Let e = ρ0, ρ1, . . . be any execution, v ∈ P be any nonfaulty process v, and
ρs be the last configuration of the third round. When v has no Byzantine

A Self-stabilizing Link-Coloring Protocol Reslilient to Byzantine Faults 293

ancestor with the distance of two or less and has the crash parent that crashes
in a consisten state, for any t (t ≥ s), i) v satisfies spec(v) in ρt, ii) both
ρt|v = ρt+1|v and ∀r ∈ Outv : ρt|r = ρt+1|r holds.

4 Impossibility of Link-Coloring Using ∆ Colors Under
the Central Daemon

In this section, we consider a self-stabilizing ∆-link-coloring protocol. We can
link-color tree networks with ∆ colors. However, we show that, for any self-
stabilizing ∆-link-coloring protocol, the containment radius is Ω(log n) if ∆ ≥ 3,
and Ω(n) if ∆ = 2, where n is the number of processes. Thus, the protocol
LinkColoring attains the minimality in the number of colors for achieving
fault containment of Byzantine processes with a constant containment radius.
To show the lower bounds, we define the view of v as the states of v and all link
registers in Inv, and view(ρ, v) denotes the view of process v in configuration ρ.

Theorem 3. Assume ∆ ≥ 3. For any (B, C)-self-stabilizing ∆-link-coloring pro-
tocol with radius (τ(n), µ(n)), τ(n) = Ω(log n) holds, where n is the number of
processes.

Proof. We assume that the color of a link (u, v) is determined (or coded) by the
states of u, v, ru,v, and rv,u. Assume that A is a (B, C)-self-stabilizing ∆-link-
coloring protocol with radius (τ(n), µ(n)).

Let a system S = (P,L) be a complete (∆ − 1)-ary tree such that each non-
leaf process has ∆ − 1 children and all leaf processes have the same depth, say
h. Then, n =

∑h
k=0(∆ − 1)k holds. Let P = {v1, v2, . . . , vn}, and let chS

vi
(x) be

the x-th child of vi in S. Let vl be a process with depth of �h/2�, vm = prtvl
,

and c be an integer satisfying vl = chS
vm

(c).
We assume the set of Byzantine processes BF = {vl} and the set of crash

processes CF = ∅. First, we assume that there exists a (B, C)-stable configuration
ρ satisfying the following Condition A. (We show existence of ρ in the latter part
of this proof.)

Condition A: 1) For any vi ∈ P − {vm, vl}, all links incident to vi have
different colors, 2) letting El and Em be the sets of all links incident to vl

and vm respectively,
{

Color(e)
∣∣∣e ∈ (El ∪ Em) − {(vl, vm)}

}
= CSET .

Notice that, in ρ, whatever color is assigned to link (vl, vm), a link incident to
vl or vm has the same color as link (vl, vm).

We consider the execution from ρ such that a Byzantine process vl behaves as
a nonfaulty process, that is, all processes behave correctly. The execution is the
same as the execution from ρ in the case all processes are nonfaulty. Thus, the
system reaches a configuration ρ′ where any process v satisfies spec(v). Remind
that, in ρ, whatever color is assigned to link (vl, vm), a link incident to vl or
vm has the same color as link (vl, vm). Thus, there exists va1 ∈ {vl, vm} and
va2 ∈ Nva1

− {vl, vm} such that the color of link (va1 , va2) in ρ′ is difffernt from

294 Y. Sakurai, F. Ooshita, and T. Masuzawa

that in ρ. Since all links incident to va2 have different colors in ρ, if the degree of
va2 is ∆, there exists neighbor va3 of va2 such that the color of link (va2 , va3) in
ρ′ is different from that in ρ. In the similar way, we can construct a sequence of
links, (va1 , va2), (va2 , va3), . . . , (vaf−1 , vaf

), whose colors in ρ′ are different from
those in ρ. Notice that the degree of vaf

is not ∆. Consequently, the state of
either vaf−1 , vaf

, raf−1,af
, or raf ,af−1 in ρ is different from that in ρ′. Since the

degree of vaf
is not ∆ and the system S is a complete (∆ − 1)-ary tree, vaf

is
the root process or a leaf process. Thus, the distance from vaf−1 (or vaf

) to a
Byzantine process vl is Ω(h) = Ω(log n). Since ρ is a (B, C)-stable configuration
with radius (τ(n), µ(n)), processes whose distance to vl is more than τ(n) do
not change any state. Therefore, τ(n) = Ω(log n).

In the following, we prove existence of a (B, C)-stable configuration satisfying
Condition A. To prove it, we construct a system T = (P ′, L′) as follows. Let
P ′ = P ∪ {u1, u2, . . . , u∆−1}, where ui /∈ P (1 ≤ i ≤ ∆− 1), and L′ is defined as
follows (See Fig. 3):

1. chT
vi

(x) = chS
vi

(x) (i �= m)

2. chT
vm

(x) =
{

u1 (x = c)
chS

vm
(x) (x �= c)

3. chT
u1

(x) =

⎧⎨
⎩

ux+1 (x < c)
vl (x = c)
ux (x > c)

For the system T , let QT = p1, p2, . . . be a schedule, and let eT = σ0, σ1, . . .
be an execution by schedule QT in the case that BF = ∅ and CF = ∅. Then, in

Fig. 3. Two systems

s

A Self-stabilizing Link-Coloring Protocol Reslilient to Byzantine Faults 295

Fig. 4. Byzantine process vl in S behaves as u1 for P1 and as vl for P2

eT , there exists a configuration σs such that any process v satisfies spec(v) and
never changes any state after σs.

Next, for the system S, we construct a schedule QS = q1, q2, . . . and an
execution eS = ρ0, ρ1, . . . in the case that BF = {vl} and CF = ∅. We define
the initial configuration ρ0 so that view(ρ0, vi) = view(σ0, vi) holds for any vi.
We construct the schedule QS in which vi (i �= l) executes a step in the same
order as in QT , and vl executes a step immediately before each step of neighbors
of vl. In eS , the Byzantine process vl simulates the behavior of u1 and vl in eT

(See Fig. 4). That is, if qα = vl, qα+1 = vm, and qα+1 is the k-th step of vm in
eS , vl changes the states of itself and link register rvl,vm

so that ρα|vl = σβ |vl

and view(ρα, vm) = view(σβ , vm), where σβ is the configuration such that pβ+1

is the k-th step of vm in eT . And, if qα = vl, qα+1 = chS
vl

(x), and qα+1 is the
k-th step of chS

vl
(x) in eS , vl changes the states of itself and its output registers

so that ρα|vl = σβ |vl and view(ρα, chS
vl

(x)) = view(σβ , chT
vl

(x)), where σβ is the
configuration such that pβ+1 is the k-th step of chT

vl
(x) in eT . Then, any vi (i �= l)

changes the states of itself and its output registers in the same way in eT . By the
definition of eT , there exists a configuration ρt such that, any process vi (i �= l)
never changes its state after ρt. Since A is a (B, C)-self-stabilizing protocol with
radius (τ(n), µ(n)), the system eventually reaches a (B, C)-stable configuration
ρt′ with radius (τ(n), µ(n)). Let t′′ be the integer such that t′′ ≥ max{t, t′} and
qt′′+1 ∈ Chvl

. By the definition of t′′, ρt′′ is a (B, C)-stable configuration with
radius (τ(t), µ(t)).

Since colors of links except for (vm, vl) in ρt′′ are the same as those in σs, ρt′′

satisfies the first condition of A.
In the following, we show that ρt′′ also satisfies the second condition of A. Let

ES(v) and ET (v) be the sets of all links incident to v in S and in T respectively.

s

......................................

296 Y. Sakurai, F. Ooshita, and T. Masuzawa

Let COL(ρ,E) be the set of colors that links in E have in configuration ρ.
Let U = COL(ρt′′ , (ES(vl) ∪ ES(vm)) − {(vl, vm)}), V = COL(σs, ET (vl) −
{(vl, u1)}), and W = COL(σs, ET (vm) − {(vm, u1)}). By the definition of ρt′′ ,
U = V ∪ W holds. Then, since degrees of vl and vm in T are ∆, letting χ1 and
χ2 be the colors of (vl, u1) and (vm, u1) in configuration σs, V = CSET − {χ1}
and W = CSET − {χ2} hold. Since χ1 �= χ2, V ∪ W = CSET holds, and thus,
U = CSET holds. Therefore, ρt′′ satisfies the second condition of A. ��

Similarly, we can get the following theorem.

Theorem 4. Assume ∆ = 2. For any (B, C)-self-stabilizing ∆-link-coloring pro-
tocol with radius (τ(n), µ(n)), τ(n) = Ω(n) holds, where n is the number of
processes.

5 Impossibility of Link-Coloring Under the Distributed
Daemon

In this section, we consider a self-stabilizing link-coloring protocol under the
distributed daemon. The distributed daemon allows two or more processes to
execute their actions simultaneously, while the central daemon does not. Thus,
the distributed daemon is usually regarded as a more practical model. However
in this section, we show that, for any self-stabilizing link-coloring protocol, the
influence of a Byzantine process expands to a process whose distance to the
Byzantine process is Ω(n) even when it can use arbitrarily large number of
colors. This lower bound result implies that the assumption of the central daemon
is reasonable to attain the fault containment against Byzantine faults with a
constant containment radius.

Theorem 5. Let n be the number of processes, and A be a link-coloring protocol
under the distributed daemon. If A is a (B, C)-self-stabilizing protocol with radius
(τ(n), µ(n)), τ(n) = Ω(n) holds.

Proof. We assume that the color of a link (u, v) is determined by the states of u,
v, ru,v, and rv,u. Assume that A is a (B, C)-self-stabilizing protocol with radius
(τ(n), µ(n)).

We consider a distributed system S = (P,L) in the form of a line graph: Let
P = {v1, v2, . . . , vn} and L = {(vi, vi+1)|1 ≤ i ≤ n − 1}, where v1 is the root
process. Let BF = {v1, vn} and CF = ∅.

We consider an execution e = ρ0, ρ1, . . . by a schedule Q = Q1, Q2, . . .,
where Qi = P for any i. We assume that view(ρ0, v2) = view(ρ0, v3) = · · · =
view(ρ0, vn−1) = s0. Since processes v2, v3, . . . , vn−1 execute the same step,
view(ρ1, v3) = view(ρ1, v4) = · · · = view(ρ1, vn−2) = s1. Then, we assume
that Byzantine processes v1 and vn change the states so that view(ρ1, v2) =
view(ρ1, vn−1) = s1 can hold. This implies view(ρ1, v2) = view(ρ1, v3) = · · · =
view(ρ1, vn−1) = s1. When Byzantine processes execute a step similarly, we have
view(ρi, v2) = view(ρi, v3) = · · · = view(ρi, vn−1) = si for any i. It shows that,

A Self-stabilizing Link-Coloring Protocol Reslilient to Byzantine Faults 297

for any ρi, Color((v2, v3)) = Color((v3, v4)) = · · · = Color((vn−2, vn−1)) holds.
Thus, letting h = �n

2 �, a process vh cannot satisfy spec(vh). Since the distance
from vh to any Byzantine process is Ω(n), τ(n) = Ω(n). ��

6 Conclusion

In this paper, we considered a self-stabilizing link-coloring protocol resilient to
Byzantine faults in rooted tree networks. First, under the central daemon, we
proposed a self-stabilizing link-coloring protocol resilient to Byzantine faults.
The protocol uses ∆+1 colors, where ∆ is the maximum degree of the network,
and guarantees that any nonfaulty process v reaches its desired states within
three rounds and never changes its state after that if v has no Byzantine an-
cestor with the distance of two or less. Furthermore, we showed that, for any
self-stabilizing link-coloring protocol using ∆ colors, the containment radius be-
comes Ω(log n) if ∆ ≥ 3, and Ω(n) if ∆ = 2, where n is the number of processes.
Thus, our proposed protocol attains the minimality in the number of colors for
achieving fault containment of Byzantine processes with a constant containment
radius. Next, under the distributed daemon, we show that, for any self-stabilizing
link-coloring protocol, the containment radius becomes Ω(n) even when it can
use arbitrary number of colors. This lower bound result implies that the assump-
tion of the central daemon is reasonable to attain the fault containment against
Byzantine faults with a constant containment radius.

Acknowledgement

This work is supported in part by a JSPS, Grant-in-Aid for Scientific Research
((B)(2)15300017), and “The 21st Century Center of Excellence Program” of the
Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

1. E. Anagnostou and V. Hadzilacos. Tolerating transient and permanent failures.
Lectures Notes in Computer Science, Vol 725 (Springer-Verlag), pages 174–188,
1993.

2. A. Arora and H. Zhang. Lsrp: Local stabilization in shortest path routing. In
Proceedings of the 2003 International Conference on Dependable Systems and Net-
works, pages 139–148, 2003.

3. J. Beauquier and S. Kekkonen-Moneta. Fault-tolerance and self-stabilization: im-
possibility results and solutions using self-stabiling failure detectors. International
Journal of Systems Science, 28(11):1177–1187, 1997.

4. J. Beauquier and S. Kekkonen-Moneta. On ftss-solvable distributed problems.
In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed
Computing, page 290, 1997.

5. E. W. Dijkstra. Self stabilizing systems in spite of distributed control. Communi-
cations of the Association of the Computing Machinery, 17:643–644, 1974.

298 Y. Sakurai, F. Ooshita, and T. Masuzawa

6. S. Dolev. Self-Stabilization. MIT Press, 2000.
7. S. Ghosh and A. Gupta. An exercise in fault-containment: self-stabilizing leader

election. Information Processing Letters, 59(5):281–288, 1996.
8. S. Ghosh, A. Gupta, T. Herman, and S. V. Pemmaraju. Fault-containing self-

stabilizing algorithms. In Proceedings of the 15th Annual ACM Symposium on
Principles of Distributed Computing, pages 45–54, 1996.

9. S. Ghosh and S. V. Pemmaraju. Tradeoffs in fault-containing self-stabilization. In
Proceedings of the 3rd Workshop on Self-Stabilizing Systems, pages 157–169, 1997.

10. A. S. Gopal and K. J. Perry. Unifying self-stabilization and fault-tolerance. In Pro-
ceedings of the 12th Annual ACM Symposium on Principles of Distributed Com-
puting, pages 195–206, 1993.

11. D. A. Grable and A. Panconesi. Nearly optimal distributed edge colouring in
o(log log n) rounds. In Proceedings of the 8th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 278–285, 1997.

12. Y. Katayama and T. Masuzawa. A fault-containing self-stabilizing protocol for
constructing a minimum spanning tree. IEICE Transactions, J84-D-I(9):1307–
1317, 2001.

13. S. Kutten and B. Patt-Shamir. Stabilizing time-adaptive protocols. Theoretical
Computer Science, 220(1):93–111, 1999.

14. M. V. Marathe, A. Panconesi, and L. D. Risinger. An experimental study of a
simple, distributed edge coloring algorithm. In Proceedings of the 12th Annual
ACM Symposium on Parallel Algorithms and Architectures, pages 166–175, 2000.

15. T. Masuzawa. A fault-tolerant and self-stabilizing protocol for the topology prob-
lem. In Proceedings of the 2nd Workshop on Self-Stabilizing Systems, pages 1.1–
1.15, 1995.

16. H. Matsui, M. Inoue, T. Masuzawa, and H. Fujiwara. Fault-tolerant and self-
stabilizing protocols using an unreliable failure detector. IEICE Transactions on
Information and Systems, E83-D(10):1831–1840, 2000.

17. M. Nesterenko and A. Arora. Tolerance to unbounded byzantine faults. In Pro-
ceedings of 21st IEEE Symposium on Reliable Distributed Systems, pages 22–29,
2002.

18. A. Panconesi and A. Srinivasan. Fast randomized algorithms for distributed edge
coloring. In Proceedings of the 11th Annual ACM Symposium on Principles of
Distributed Computing, pages 251–262, 1992.

19. S. Ukena, Y. Katayama, T. Masuzawa, and H. Fujiwara. A self-stabilizing spanning
tree protocol that tolerates non-quiescent permanent faults. IEICE Transaction,
J85-D-I(11):1007–1014, 2002.

A Hierarchy-Based Fault-Local Stabilizing
Algorithm for Tracking in Sensor Networks

Murat Demirbas1, Anish Arora1, Tina Nolte2, and Nancy Lynch2

1 Computer Science & Engineering, The Ohio State University,
Columbus, OH 43210, USA

2 MIT Computer Science & Artificial Intelligence Laboratory,
Cambridge, MA 02139, USA

Abstract. In this paper, we introduce the concept of hierarchy-based
fault-local stabilization and a novel self-healing/fault-containment tech-
nique and apply them in Stalk. Stalk is an algorithm for tracking in
sensor networks that maintains a data structure on top of an underly-
ing hierarchical partitioning of the network. Starting from an arbitrarily
corrupted state, Stalk satisfies its specification within time and com-
munication cost proportional to the size of the faulty region, defined
in terms of levels of the hierarchy where faults have occurred. This lo-
cal stabilization is achieved by slowing propagation of information as
the levels of the hierarchy underlying Stalk increase, enabling more
recent information propagated by lower levels to override misinforma-
tion at higher levels before the misinformation is propagated more than
a constant number of levels. In addition, this stabilization is achieved
without reducing the efficiency or availability of the data structure when
faults don’t occur: 1) Operations to find the mobile object distance d
away take O(d) time and communication to complete, 2) Updates to the
tracking structure after the object has moved a total of d distance take
O(d∗ log network diameter) amortized time and communication to com-
plete, 3) The tracked object may relocate without waiting for Stalk to
complete updates resulting from prior moves, and 4) The mobile object
can move while a find is in progress.

Keywords: Sensor networks, self-stabilization, fault-containment, track-
ing, distributed data structures.

“Everything is related to everything else, but near things are more related than
distant things”.

Waldo Tobler’s First Law of Geography

1 Introduction

In a distributed system, faults can occur that might be propagated throughout
the system. In some systems, this propagation of errors might be unacceptable.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 299–315, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

300 M. Demirbas et al.

Fault-containment or error confinement is concerned with preventing this prop-
agation of faults beyond a small region. Exactly what is meant by “small” is
defined as a polynomial of the perturbation size, an error severity measure. Pre-
viously, the perturbation size of a failure was defined in terms of the number of
errors that occurred. This measure is convenient for expressing the seriousness
of a processor fault in the execution of an algorithm as long as the algorithm
does not incorporate use of processor hierarchies.

Hierarchies have long been imposed on networks of processors to facilitate
design of efficient and scalable protocols. For example, Awerbuch and Peleg’s
tracking paper [6] described distributed directory servers to store location infor-
mation for mobile objects. The directory servers were composed of a hierarchy
of geographically defined regional directories where directories at higher levels
of the hierarchy were responsible for maintaining information for larger regions
of a network.

Another example of geographically defined hierarchies used in distributed
systems are clusterings based on hierarchical partitionings. In such a system, all
processes are divided into level zero clusters. Each of these clusters contain mem-
bers that are close to one another geographically and have a defined clusterhead.
These level zero clusterheads are then partitioned into level one clusters, again
containing members that are close to one another, and so on.

Using traditional definitions of perturbation size, a fault that occurs at a
single level zero process during execution of a hierarchy-based algorithm has
the same size as that of a fault of a single level ten process. As a result, a
fault-containing algorithm would have to prevent propagation of information
beyond an area whose size is a polynomial based on perturbation size one. This
kind of level-blind fault-containment is not always possible. Instead, it can be
useful to define perturbation size and fault-containment in terms of the hierarchy.
Perturbation size would be defined in terms of levels where errors occurred, and
a fault-containing algorithm would be required to not propagate faults more
than a small number of levels in the hierarchy. In this paper, we define such a
notion and use it to evaluate an algorithm for tracking a mobile object.

Because of the recent growth of applications in mobile computing, cellular
telephony, and military contexts, tracking of mobile objects has recently re-
ceived significant attention [6, 20, 22, 8, 12]. The DARPA Network Embedded
Software Technology (NEST) program posed tracking as a challenge problem
in wireless sensor networks, and several groups have delivered small-scale (100
node networks) tracking demonstrations: pursuer-evader tracking with one hu-
man controlled evader and three autonomous pursuers is showcased in [21], and
detection, classification, and tracking of various intruders, such as persons and
cars, are demonstrated in [3].

In addition to the opportunities they provide for tracking of objects, wire-
less sensor networks also impose additional challenges. Sensor nodes are energy-
constrained, and algorithms that require excessive communication are unaccept-
able since they drain battery power quickly. Sensor networks are fault-prone,
message losses and corruptions and node failures are frequent, nodes can lose

A Hierarchy-Based Fault-Local Stabilizing Algorithm 301

synchrony and programs can reach arbitrary states [17]. On-site maintenance is
infeasible and hence sensor networks should be self-healing. Moreover self-healing
should achieve fault-containment to prevent a fault in one region of the network
from contaminating the entire network and requiring a global correction, wasting
the energy of the nodes and reducing the availability of the tracking service.

Contributions. Our novel contribution is to present a hierarchy-based self-
healing/fault-containment technique and then demonstrate the concept with
an algorithm for tracking in sensor networks, which we call Stalk (Stabilizing
Tracking viA Layered linKs). To achieve scalability, Stalk employs a hierarchi-
cal tracking structure. The tracking structure is a path imposed on an underlying
hierarchical partitioning of the sensor network into clusters, such as those pro-
vided by the self-stabilizing algorithm described in [18]. We implement updates
to the tracking structure by means of two local actions, grow and shrink. The
grow action enables a path to grow from the new location of the mobile object to
increasingly higher levels of the hierarchy and connect to the original path. The
shrink action cleans branches deserted by the object. Shrinking also starts at the
lowest level and climbs to increasingly higher levels. Despite the fact that grow
and shrink occur concurrently, we complete the move operation successfully by
using suitably-chosen timers to determine when these actions are performed.

Stalk is hierarchy-based fault-containing, preventing propagation of faults in
the tracking structure beyond a small number of levels in the hierarchy. Starting
from an arbitrarily corrupted state, it satisfies its specification in time and work
proportional to perturbation size, defined in terms of levels (as defined by the
underlying hierarchy) where faults have occurred. We achieve fault-containment
by slowing propagation of information as the levels of the hierarchy underlying
Stalk increase, enabling the more recent information propagated by lower levels
to override misinformation at higher levels.

Stalk provides good locality guarantees; a move of the object being tracked
to distance d away requires O(d ∗ logD) time and communication (work) to
update the tracking structure, where D is the network diameter. In the full
version of our paper [11] we also describe a find operation using the tracking
structure. A find operation invoked at a process queries neighboring processes at
increasingly higher levels of the clustering hierarchy until it encounters a process
on the tracking path. Once the path is found, the find operation follows it to its
leaf to reach the mobile object. In the full version we also show that a find invoked
within distance d of the mobile object requires O(d) work to reach the object
and that when no faults occur, our scheme for achieving fault-containment does
not increase the complexity of tracking or finding. Furthermore, we show that
Stalk achieves seamless tracking of a continuously moving object by allowing
concurrent tracking and finding operations. For space reasons, we refer the reader
to the full version [11] for these results and instead concentrate here on the
tracking program actions of Stalk and fault-containment.

Related work. The idea of employing a hierarchical structure for achiev-
ing scalability of tracking has been extensively researched. The idea of using a

302 M. Demirbas et al.

partial information strategy to optimize both finds and moves in a relatively
static point-to-point network was investigated in [6]. In [6], a hierarchy of re-
gional directories is constructed so that each level l directory enables a node to
find a mobile object within 2l distance from itself. The communication cost
of a find for an object d away is O(d ∗ log2N) and that of a move of dis-
tance d is O(d ∗ logD ∗ logN + log2D/logN) (where N is the number of nodes
and D is network diameter). However, a topology change, such as a node fail-
ure, necessitates a global reset of the system since the regional directories de-
pend on a non-local clustering program [5] that constructs a sparse cover of a
graph.

In [9], the tracking problem is considered for a geometric network model
similar to ours, and cost complexity similar to ours is achieved. However, the
tracking structure maintained is not available during moves of mobile objects
and the program for finding a mobile object is only implicitly defined. This
algorithm is also not fault-tolerant. Papers such as [2, 23] are concerned with
non-stabilizing solutions for personal communication systems and the mobile
Internet Protocol, not sensor networks. A location service for ad hoc networks
is described in [1] and provides attractive worst case and average case costs and
provides some fault-tolerance, though it is not fault-containing.

There has been work on self-stabilizing, though not fault-containing, tracking
algorithms [15, 12, 10]. The distributed arrow protocol [15] is one such algorithm
but suffers from the dithering problem —where an object moving back and forth
across a multi-level hierarchy boundary may lead to nonlocal updates. The pro-
tocols in [10] do not exploit the hierarchy idea and are not scalable for large
networks. In [12], using a hierarchy of location servers, a stabilizing location
management protocol is presented. However, the protocol in [12] does not en-
sure locality of finds. In [14] another self-stabilizing algorithm using hierarchies
to solve a problem close to tracking is presented, though it too is not fault-
containing.

Fault-containment of self-stabilizing algorithms in general has received grow-
ing interest [13, 19, 7, 4], though none of these algorithms use a hierarchy-based
concept of fault-containment. The notion of fault containment within the con-
text of stabilization was first formalized in [13]; algorithms were proposed to
contain state-corruption of a single node in a stabilizing spanning tree protocol.
In [19] fault-containment of Byzantine nodes was studied in dining philosophers
and graph coloring algorithms; this work required the range of contamination
to be constant and is too limiting for problems such as tracking and routing
where locality is not constant. In [7], a broadcast protocol was proposed to con-
tain observable variables in the presence of state corruptions, but the protocol
allowed for global propagation of internal protocol variables. Another protocol
that achieved fault-local stabilization in shortest path routing was presented
in [4]. To achieve fault-containment the protocol used privileged containment
actions that were a constant time faster than the fault-intolerant program ac-
tions.

A Hierarchy-Based Fault-Local Stabilizing Algorithm 303

Organization of the paper. After presenting the model in the next section,
we present the specifications of Stalk and a definition for hierarchy-based fault-
localization in Section 3. In Section 4, we present the move operation. Fault local
stabilization actions for the tracking path are discussed in Section 5. Finally we
conclude our paper in Section 6. For space reasons, we relegate detailed proofs
to the Technical Report [11].

2 Model

We consider a sensor network consisting of multiple sensor locations. Each sensor
location plays host to (possibly) multiple processes with identifiers from a set P .
In this paper, as a convention, i and j refer to process identifiers, and i.x refers
to the value of variable x at i.

We denote the location of a process i with loc(i) (and for convenience the
set of locations of process setI with loc(I)). The Euclidean distance between the
locations of i and j is denoted by dist(i, j).
Hierarchical partitioning. Assume a hierarchical partitioning of processes
over locations. Consider a tree with levels 0 through MAX of all processes P .
For each process i we define:

1. lvl(i), the level of process i in the tree,
2. h(i), i’s parent in the tree (for convenience, we define h(i) to be i if lvl(i) =

MAX),
3. hn(i), the iterated parent, defined as h(i) if n = 1 and h(hn−1(i)) otherwise,
4. children(i), i’s children in the tree. We assume a one-to-one correspondence

between the level 0 processes in the tree and sensor locations. For a location v
we denote the level 0 process residing at v as proc0(v). We also assume that
for any i such that lvl(i) > 0, i’s location loc(i) is equal to loc(j) of one of its
children j.

This partitioning yields clusters. For i such that lvl(i) = k+1, 0 ≤ k < MAX,
children(i) together form a cluster C at level k whose clusterhead, head(C), is
i. Radius(C) is the maximum distance from head(C) to any process in C.

Next we introduce the symmetric neighbor relation. For level 0 processes i, j,
i �= j, j ∈ nbr(i) ⇐⇒ dist(i, j) ≤ 1. For level k > 0 processes i, j, that are
clusterheads of level k− 1 clusters Ci and Cj , i and j are neighbors if Ci and Cj

contain two processes that are neighbors.
Geometry assumptions. We fix the following assumptions about the hierar-
chical partitioning:

1. We define a real constant r ≥ 3 to denote the cluster dilation factor; the
radius of a level l cluster is at least rl,

2. We define a real maximum cluster radius constant m ≥ 2/
√

3 to bound
the radius of a level l cluster to be at most mrl,

304 M. Demirbas et al.

3. We define a real minimum cluster breadth constant q satisfying 2m+r−1
r−1 ≤

q ≤ 2m to restricts the locations in non-neighboring level l clusters to be greater
than qrl apart.

The constraints imply a bound, ω, on the number of neighbors at any level
l > 0. They also imply that, for l > 0, the distance between two neighboring
level l processes is within 2rl−1-to-2mrl−1, and the distance between a level l
process and its children in the hierarchy is at most mrl−1. This clustering does
not necessarily imply a uniform tiling of the network, as radii of clusters at the
same level are not required to be the same. The network diameter, D, is the
maximum distance between any two locations in the network. Each node in the
network is deployed with O(MAX) storage where MAX ≤ logrD.

An example of the clustering geometry with r = 3 can be found in Section 4.
Our hierarchical partitioning constraints can be realized by using a distributed
and fault-local stabilizing clustering protocol, Loci [18].

3 System Specification

Here we describe the specification for the system.
Mobile object. The mobile object Evader resides at exactly one sensor loca-
tion. We model the Evader using object and no object inputs at processes:
An objecti occurs at all processes residing at the object’s current location and
no objectj occurs for all other locations. When moving, the object nondeter-
ministically moves to a neighboring location.
STALK. Stalk consists of two parts, Tracker and Finder, as seen in Figure 1.
Tracker maintains a tracking structure by propagating mobile object informa-
tion obtained through object and no object inputs. Finder answers client
finds by outputting found at the mobile object’s current location. Finder would
query Tracker for location information through cpq requests and Tracker
would answer with cpointer responses.

i

i

i
cpq

cp
oi

nt
er

(k
) i

Finder

Tracker

Channel
i,j

j,i
Channel

receive(m)
i,j

receive(m)
j,i

send(m) i,j

find
i

found
i

ob
je

ct j

no_object
i

Fig. 1. Stalk architecture at process i

A Hierarchy-Based Fault-Local Stabilizing Algorithm 305

Stalk is implemented distributively by individual processes communicat-
ing through channels. Each process is assumed to have access to its own local
timer, that advances at the same rate at all processes. We do not assume time
synchronization across processes.

Channels. We use a communication abstraction of a (possibly) multi-hop chan-
nel Channeli,j between any two processes i and j. Such channels are accessed
using send(m)i,j to send from i and receive(m)i,j to receive at j. The cost of
sending a message through Channeli,j is dist(i, j), and in the absence of faults
a message is removed from the channel by at most δ ∗ dist(i, j) time where δ is
a known message delay factor.

Fault model and tolerance specification. Processes can suffer from arbi-
trary state corruption. These faults may occur at any time and in any finite
number and order. Channels may suffer faults that corrupt, manufacture, dupli-
cate, or lose messages.

We say a system is self-stabilizing iff starting from an arbitrary state the sys-
tem eventually recovers to a consistent state, a state from where its specification
is satisfied. In Section 4 we characterize consistent states for our implementation.

A perturbation count for a given system state is the minimum number of
processes whose state must change to achieve a consistent state of the system.
For work and time calculations the level of “perturbed” processes are important;
a fault hitting a level l process affects the entire level l cluster and hence its size
is rl. We define the perturbation size of a system to be a weighted sum of the sizes
of perturbed processes. A stabilizing system is fault local stabilizing if the time
and work required for stabilization are bounded by functions of perturbation
size rather than system size.

Complete system. The complete system is the composition of all channels,
Evader and STALK.We require the system be fault-local stabilizing to a con-
sistent state. Starting from a consistent state we then require that if the object
moves d distance, the amortized time and work to update the tracking struc-
ture is O(d ∗ log(D)). (Other guarantees and requirements relating to finds and
concurrent tracking and finding are discussed in the Tech Report [11].)

4 Tracker

Here we describe how Tracker updates the tracking path after a move, assuming
that the mobile object does not relocate until the updates are completed. In
[11], we relax this restriction and allow the object to relocate while effects of its
previous moves are still rippling through the path.

Updates to the tracking path are implemented by two local actions, grow and
shrink. The grow action enables a new path to grow to increasingly higher levels
of the clustering hierarchy and connect to the original path at some level. The
shrink action cleans old branches deserted by the mobile object starting from
the lowest levels.

306 M. Demirbas et al.

A hierarchical partitioning of a network inevitably results in multi-level clus-
ter boundaries: even though two processes are neighbors they might be contained
in different clusters at all levels (except the top) of the hierarchy. If a process
were to always propagate grows and shrinks to its clusterhead, a small movement
of the object back and forth across a multi-level cluster boundary could result
in work proportional to the size of the network rather than the distance of the
move. To resolve this “dithering” problem, we allow one lateral link per level
in our tracking path. A process occasionally connects to the original path with
a lateral link to a neighboring process rather than by propagating a link to its
parent in the hierarchy.

To implement Tracker, each process i maintains a child pointer c, a parent
pointer p, a grow timer gtime, and a shrink timer stime. In the initial states,
i.c = i.p = ⊥ and i.gtime = i.stime = ∞ for all i. We assume the use of grow
and shrink constants g and s that satisfy:

s ≥ 10.5δm (1)
s + δm

r
< g ≤ s − δm (2)

A grow or shrink timer is set at i for g ∗ rlvl(i) or s∗ rlvl(i) time respectively. The
values for the timers are chosen to satisfy the requirements on both the work
calculations in Section 4.4 and the fault-containment proofs in Section 5.

Signature: State:
Input: objecti c ∈ P ∪ {⊥}, initially ⊥

no objecti p ∈ P ∪ {⊥}, initially ⊥
cpqi gqack ∈ P ∪ {⊥}, initially ⊥
receive(msg∗)j,i, j ∈ P gnbrquery ⊆ P , initially ∅

update, a Boolean, initially false
Output: send(msg∗)i,j , j ∈ P, gtime ∈ �, a timer, initially ∞

cpointer(j)i, j ∈ P ∪ {⊥} stime ∈ �, a timer, initially ∞
∗msg ∈ {gquery, ack gquery, grow, shrink} now ∈ �, a timer indicating current time

Fig. 2. Signature and state of Trackeri

Trackeri answers a cpqi input (an information request from Finderi) with
a cpointer(i.c)i output, providing the value of its child pointer. The sends and
receives propagate grows and shrinks as explained in detail below for process i.

4.1 Grow Action

A grow updates a path to point to the new location of the object.
If i is at level 0, the object is at the same location as i, and i’s child pointer c

does not point to itself, then i becomes the leaf of the tracking path by setting c
to i and setting its grow timer, gtime, scheduling a grow to be sent when gtime
expires.

A Hierarchy-Based Fault-Local Stabilizing Algorithm 307

Input: objecti Input: receive (ack gquery)j,i

eff: if c 	= i ∧ lvl(i) = 0 then eff: if c 	= ⊥ ∧ p = ⊥ then
c := i p := j
gtime := now + g

Output: send (grow)i,j

Output: send (gquery)i,j pre: now = gtime ∧ c 	= ⊥ ∧
pre: j ∈ gnbrquery ((j = p ∧ p ∈ nbr(i)) ∨
eff: gnbrquery := gnbrquery − {j} (j = h(i) ∧ p = ⊥))

if gnbrquery = ∅ then eff: if p = ⊥ then
gtime := now + g ∗ rlvl(i) p := h(i)

gtime := ∞
Input: receive (gquery)j,i

eff: if p = h(i) then Input: receive (grow)j,i

gqack := j eff: c := j
if lvl(i) = MAX then

Output: send (ack gquery)i,j p := i
pre: gqack = j if p = ⊥ then
eff: gqack := ⊥ gnbrquery := nbr(i)

Fig. 3. Grow actions at process i

If i is above level 0 and receives a grow message, it sets its c pointer to
the sender, sets gtime scheduling a grow to be sent to its prospective parent.
i also sends a gquery message to its neighbors to check if the tracking path is
reachable through a neighbor. The tracking path allows the use of one lateral
link per level. A neighbor j that receives the gquery sends an ack gquery back
if j is on the tracking path and there isn’t already a lateral link pointing to j,
i.e., if j.p points to its own clusterhead, h(j). If i receives such an ack gquery
from j then it sets p to point to j, in preparation for adding a lateral link at j.

When gtime expires, if c is still non-⊥, meaning that the path has not shrunk
while i’s grow timer was counting down, then a send (grow) is performed to
extend the tracking path. If i.p points to a neighbor j then the grow message
is sent to j, inserting a lateral link. Otherwise, if p = ⊥, i sets p to point to its
own clusterhead h(i) and sends a grow message to h(i), propagating the grow
one level up in the hierarchy. In either case gtime is set to ∞, and i’s role in
updating the tracking path is complete.

If a grow message is received at i but i already has a parent in the tracking
path or is the MAX level process, then i does not propagate the grow (it is
already on the tracking path).

4.2 Shrink Action

A shrink cleans old, deserted branches of the tracking path.
If i is at level 0 and has a non-⊥ child pointer, but the mobile object is not

at i’s location, then i removes itself from the leaf of the tracking path. It sets its
child pointer c to ⊥ and sets the shrink timer stime, scheduling a shrink to be
sent upon expiration of stime.

308 M. Demirbas et al.

Input: no objecti Input: receive(shrink)j,i

eff: if lvl(i) = 0 ∧ c 	= ⊥ then eff: if c = j then
c := ⊥ c := ⊥
stime := now + s stime := now + s ∗ rlvl(i)

Output: send (shrink)i,j

pre: now = stime ∧ c = ⊥ ∧ j = p
eff: p := ⊥

stime := ∞

Fig. 4. Shrink actions at process i

If i receives a shrink message from another process j, i checks to see whether
its child pointer c points to j (c might not point to j; it may have been updated
to point to a process on a newer path). If c = j then i removes itself from
the path by setting c to ⊥ and then sets its shrink timer, scheduling a shrink
message to be sent to its parent p. Otherwise, if c �= j, i ignores the message,
ensuring that shrink actions clean only deadwood and not the entire tracking
path.

When stime expires, if c is still ⊥, meaning no newer path has connected at
i while stime was counting down, i sends a shrink message to its parent p in
the path and then sets p to ⊥.

Example. Figure 5 depicts a sample tracking path. The path is seen pointing
to a level 2 clusterhead, which points to one of its hierarchy children, a level 1
clusterhead. That clusterhead has a lateral link to another level 1 clusterhead
that points to a level 0 cluster where the object e is located. Deadwood is denoted
by the dotted path.

e

Fig. 5. Tracking path example

A Hierarchy-Based Fault-Local Stabilizing Algorithm 309

4.3 Correctness

Here we present system invariants and define consistent states of the system.
In the absence of faults, every process i satisfies I, the following five condi-

tions, at all times:
I0. If lvl(i) = 0 and objecti occurs then i.c = i,
I1. If i.c �= ⊥ then one of the following holds:

(a) i.c = i and the object is at i,
(b) i.c points to one of its children in the clustering hierarchy, or
(c) i.c points to a neighbor and i.p points to
its parent in the clustering hierarchy,

I2. If i.p �= ⊥ then either i.c �= ⊥ or i is executing a shrink action and will
send a shrink to i.p,

I3. The dual: if i.c �= ⊥ then i.p �= ⊥ or i is executing a grow action and will
send a grow to its prospective parent,

I4. If i.c �= i and i.c �= ⊥ then (i.c).p is either i or ⊥. In the latter case a
shrink from i.c is in transit to i. ��
A tracking path is a sequence {ix, . . . , i1} where

1. i1 is a leaf and contains the object,
2. Every process but i1 points to the next

process as its child, and
3. I is satisfied at all processes in the sequence.

A complete tracking path is a tracking path {ix, . . . , i1} where lvl(ix) = MAX
and ix.p = ix.

A consistent state is a state where a complete tracking path exists and i.c =
i.p = ⊥ for every process i not in the tracking path.

Using invariant I it follows from the program actions that an execution start-
ing from an initial state eventually reaches a consistent state and that consistent
states are closed under moves of the object.

In the case where the evader can relocate before updates have been completed
it is necessary to relax the definition of a tracking path and instead define a
more general tracking structure describing path segments that satisfy certain
reachability conditions. Details can be found in the Technical Report.

4.4 Work

In order to prove our work claims, we must show that the timing of changes to
the new and old tracking paths satisfy certain relationships to ensure that the
old path is reused (via insertion of a lateral link) to the extent possible. More
specifically, it follows from the assumptions on timer constants s and g that an
old path being cleaned bottom-up from level 0 will not clean one of its level l
pointers before a grow starting at level 0 in the new path reaches level l and
has an opportunity to query one of those pointers, allowing for the addition of
a lateral link.

This allows us to reason that the new path (which grows by propagating
pointers straight up the hierarchy until it connects to the old path) connects

310 M. Demirbas et al.

to the pre-shrink old path at the lowest level process that is either an iterated
clusterhead of the new object location or a neighbor of such a clusterhead that
is not itself connected to the tracking path via a lateral link. In the latter case,
the new path would connect via a lateral link.

We then prove the following theorem.

Theorem 1. Starting from a consistent state, move operations of the mobile
object to a total of distance d away require at most O(d∗ωmr∗MAX) amortized
work and O(d ∗ gr2 ∗ MAX) amortized time to update the tracking path.

Proof sketch. The above reasoning implies a level l pointer in the path is
updated as often as every

∑l−2
j=1 qrj distance because of the required use of

lateral links at all levels below l (note that qrl is the minimum distance between
two non-neighboring level l clusters). An O(mrl−1) work and O(grl) time cost is
incurred each time a level l pointer is updated. The costs, multiplied by frequency
of updates, are summed for each level for the result. ��

5 Fault-Containment

After state corruption of a region of (potentially all) processes, our tracking path
heals itself in a fault-local manner within work proportional to perturbation size.
Here we discuss correction actions enabling fault-local stabilization of the path.

Through faults a shrink action can be mistakenly initiated. For example,
when a portion of a tracking path is hit by faults, higher level processes of the
path, unaware a healthy lower path exists, start a shrink action. If “growth” at
lower levels lags behind “shrinking” of upper levels, faults can propagate through
the entire upper path. For fault-containment, grow actions started at lower levels
must contain shrink actions.

Similarly, grow actions can be mistakenly initiated. Consider a garbage path
with no object at its leaf. The topmost process of this path, unaware that the
path does not lead to the object, starts a grow action. If “shrinking” from lower
levels lags behind “growing” of upper levels, faults can contaminate the entire
network. Thus shrinks started at lower levels must contain grows.

The above requirements are both satisfied by giving priority to actions with
more recent information regarding the path; actions from lower levels are priv-
ileged over ones at higher levels. We achieve this by delaying shrink/grow for
longer periods as the level of the process executing the action increases. This
way, propagation actions coming from below are subject to lesser delays and
can arrest mistakenly initiated propagation actions; hierarchy-based fault-local
stabilization is achieved. We note that the latency imposed by delaying is a con-
stant factor of the communication delay to higher levels and does not affect the
quality of tracking.

Stabilization. Here we present correction actions for re-establishing the track-
ing path invariant I starting from an arbitrarily corrupted state.

A Hierarchy-Based Fault-Local Stabilizing Algorithm 311

Internal: start-growi Internal: start-shrinki

pre: (c 	= ⊥ ∧ p = ⊥ ∧ pre: (c = ⊥ ∧ p 	= ⊥ ∧
gtime /∈ [now, now + g ∗ rlvl(i)]) stime /∈ [now, now + s ∗ rlvl(i)])

eff: if lvl(i) = MAX then ∨ [p ∈ nbr(i) ∧ c ∈ nbr(i)]
p = i eff: c := ⊥

if p = ⊥ then stime := now + s ∗ rlvl(i)

gnbrquery := nbr(i)

Fig. 6. Starting grow/shrink at process i

Output: send (heartbeat)i,j Internal: heartbeat seti

pre: now = next ∧ j = p pre: p 	= ⊥ ∧ next /∈ [now, now + b ∗ rlvl(i)]
eff: next := now + b ∗ rlvl(i) eff: next := now + b ∗ rlvl(i)

Input: receive (heartbeat)j,i Internal: timeout seti

eff: if c = ⊥ then c := j pre: (c 	= ⊥ ∧ c 	= i ∧ timeout /∈
if c = j then timeout := [now, now + (b + 2δm/r) ∗ rlvl(i)])

now + (b + 2δm/r) ∗ rlvl(i) eff: timeout := now + (b + 2δm) ∗ rlvl(i)

Internal: timeout expirei

pre: now = timeout ∧ c 	= ⊥ ∧ c 	= i
eff: c := ⊥

Fig. 7. Heartbeat actions at process i

Correction actions for I0 and I1. I0 is established trivially by object and
no object inputs. The correction of I1 follows from the domain assumptions
we make on non-⊥ c, p and gnbrquery variables for i ∈ P . We require that
i.c �= ⊥ ⇒ i.c ∈ {nbr(i) ∪ children(i)} : i.c points to either a neighbor of
i or to a child of i. Similarly, we restrict the domain of non-⊥ i.p variables
to {nbr(i) ∪ {h(i)}} and i.gnbrquery to subsets of nbr(i). These assumptions
are reasonable since the clustering provides a process with the identifiers of its
neighbors, children, and clusterhead; a process can locally check and set these
variables to ⊥ if their values are outside their respective domains.

Correction action for I2. If i has a valid parent but no valid child, then I2 is
corrected at i by setting i.c = ⊥ and scheduling a shrink message to be sent to
i.p.

Correction action for I3. If i has a valid child but no parent, then a gquery
message is sent to i’s neighbors and a grow message is scheduled to be sent to
the future parent of i.

Correction actions for I4. To correct I4 we use heartbeat messages and two
timers: next for periodically sending heartbeats to the parent and a timeout
for dissociating a child if no heartbeat is heard. The correction actions use a

312 M. Demirbas et al.

constant b for calculating the frequency of heartbeat messages, whose periodicity
are tunable to achieve less communication or faster detection. We require that
b is more than twice s, the shrink timer constant:

b ≥ 2s (3)
Intuitively, this condition serves to prevent a scenario where aggressively sched-
uled heartbeats shrink the original path before a new growing path can reconnect
to the original.

Every i with a non-⊥ valued parent sends a heartbeat message to its parent
every b∗rlvl(i) time by setting next. Every time i receives a heartbeat or grow
message from its child, i.c, i resets its timeout variable to (b+2δm/r)∗rlvl(i) (it
is also reset upon receipt of a grow to prevent the scenario where the heartbeat
timeout of i expires scheduling a shrink just after i receives a grow message
from a process in a newly growing path). If i receives a heartbeat from j but
i.c = ⊥ then i sets i.c := j. Otherwise, a heartbeat message received from a
process other than i.c is ignored.

If i has a non-⊥ valued child, is not a leaf, and has not received a heartbeat
message in a (b + 2δm/r) ∗ rlvl(i) time interval, then i.c is set to ⊥.

Stabilization of the next and timeout variables of the corrector is ensured by
keeping their values within their respective domains.

Using the correction actions described above, we prove in Theorem 2, that
Stalk is self-stabilizing to a consistent state, where a complete tracking path
exists.1

Theorem 2. Stalk is self-stabilizing. ��
Fault-local stabilization. To prove hierarchy-based fault-local stabilization
we first give a bound on arresting distance of grow/shrink actions in Lemmas
1 and 2. In these lemmas, l1 + 1 and l2 are respectively the lowest and highest
perturbed levels: faults occur only from level l1 + 1 through level l2. We prove
fault containment by showing that due to our timing assumptions, a correction
propagated from l1 catches propagation of bad information at a level l > l2,
leaving levels above l untouched by faults. The proofs for both lemmas are done
by comparing the maximum time the propagation of a lower wave takes to reach
level l versus the minimum time the higher wave takes to pass it.

Lemma 1. Propagation of a shrink action started at level l1+1 catches propa-
gation of a grow action started at level l2 by level l where

l = l2 + �logr
br−b+sr+gr−2s+3δm

gr−s−δm �. ��
Lemma 2. Propagation of a grow action started at level l1 catches propagation
of a shrink action started at level l2 by level l where

l = l2 + �logr
br−b+sr2−gr−δm

sr−gr−3δm �. ��

1 In the case where the evader can relocate before updates are completed, the algorithm
self-stabilizes to a state where a more general tracking structure exists, as mentioned
in Section 4.3.

A Hierarchy-Based Fault-Local Stabilizing Algorithm 313

The size, l − l2, of contamination due to fault propagation is independent
of the network size and is tunable via grow and shrink timer settings. In [11]
we provide values that satisfy these requirements, as well as a number of others
(g = 5δm, s = 11δm, b = 11δmr).

Finally, the above two lemmas allow us to prove the following theorem:

Theorem 3 (Fault-local stabilization). For a perturbation size S and a high-
est level L of corruption, our program self-stabilizes in O(S) work and O(rL)
time. ��
Proof sketch. Even though there may be many different scenarios for corrup-
tion, since they all lead to either mispropagation of a shrink or a grow, they
all can be cast to the below two cases for a perturbed process i: 1) i can be
corrupted to think it has a child and i grows up, 2) i can be corrupted to think
it has no child and i shrinks up.

In either case i learns the correct information within at most O(rlvl(i)) time
and from the containment arguments in Lemmas 1 and 2 this correction wave
contains previous misinformed waves within a constant number of levels in the
hierarchy, or O(rlvl(i)) time and work.

The work for fault-containment is additive: summation of the work for all per-
turbed processes gives the work for the system. However, since fault-containment
takes place concurrently for all perturbed processes, the fault-containment time
O(rL) for the highest level perturbed process (at level L) dominates, giving at
most O(rL) time. ��

6 Concluding Remarks

We presented Stalk, a hierarchy-based fault-local stabilizing tracking service for
sensor networks. We use two concepts to achieve hierarchy-based fault locality:
hierarchical partitioning and level-based timeouts for execution of actions. The
key idea is to wait longer before updating a wider region’s view by employing
larger timeouts when propagating an update to higher levels of the hierarchy.
This way, more recent updates from lower levels can catch-up to and override
the misinformed updates at higher levels within a constant number of levels
above the fault. While achieving fault-local stabilization Stalk also adheres to
the locality of tracking operations. Moreover, by enabling concurrent move and
concurrent find operations Stalk achieves seamless and continuous tracking
of the mobile object. This last point is described more fully in our Technical
Report [11].

Stalk has applications in message routing to mobile units and in pur-
suer/evader games. As part of our efforts to develop sensor network services

314 M. Demirbas et al.

in the DARPA/NEST program, we are implementing Stalk on the Mica mote
platform [16]. For future work, we are examining other problems that could
benefit from our hierarchy-based local stabilization technique.

References

1. I. Abraham, D. Dolev, and D. Malkhi. LLS: a locality aware location service for
mobile ad hoc networks. Manuscript, 2004.

2. I.F. Akyildiz, J. McNair, J.S.M. Ho, H. Uzunalioglu, and W. Wang. Mobility man-
agement in next-generation wireless systems. Proceedings of the IEEE, 87:1347–
1384, 1999.

3. A. Arora and et. al. Line in the sand: A wireless sensor network for target detection,
classification, and tracking. To appear in Computer Networks (Elsevier), 2004.

4. A. Arora and H. Zhang. LSRP: Local stabilization in shortest path routing. In
IEEE-IFIP DSN, pages 139–148, June 2003.

5. B. Awerbuch and D. Peleg. Sparse partitions (extended abstract). In IEEE Sym-
posium on Foundations of Computer Science, pages 503–513, 1990.

6. B. Awerbuch and D. Peleg. Online tracking of mobile users. Journal of the Asso-
ciation for Computing Machinery, 42:1021–1058, 1995.

7. Y. Azar, S. Kutten, and B. Patt-Shamir. Distributed error confinement. In ACM
PODC, pages 33–42, 2003.

8. A. Bar-Noy and I. Kessler. Tracking mobile users in wireless communication net-
works. In INFOCOM, pages 1232–1239, 1993.

9. Y. Bejerano and I. Cidon. An efficient mobility management strategy for personal
communication systems. MOBICOM, pages 215–222, 1998.

10. M. Demirbas, A. Arora, and M. Gouda. A pursuer-evader game for sensor networks.
Sixth Symposium on Self-Stabilizing Systems(SSS’03), 2003.

11. M. Demirbas, A. Arora, T. Nolte, and N. Lynch. Stalk: A self-stabilizing hierarchi-
cal tracking service for sensor networks. Technical Report OSU-CISRC-4/03-TR19,
The Ohio State University, April 2003.

12. S. Dolev, D. Pradhan, and J. Welch. Modified tree structure for location manage-
ment in mobile environments. In INFOCOM (2), pages 530–537, 1995.

13. S. Ghosh, A. Gupta, T. Herman, and S.V. Pemmaraju. Fault-containing self-
stabilizing algorithms. ACM PODC, pages 45–54, 1996.

14. M. Herlihy and Y. Sun. A location-aware concurrent mobile object directory for
ad-hoc networks. Manuscript, 2004.

15. M.P. Herlihy and S. Tirthapura. Self-stabilizing distributed queueing. In Proceed-
ings of 15th International Symposium on Distributed Computing, pages 209–219,
oct 2001.

16. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System archi-
tecture directions for network sensors. ASPLOS, pages 93–104, 2000.

17. M. Jayaram and G. Varghese. Crash failures can drive protocols to arbitrary states.
ACM Symposium on Principles of Distributed Computing, 1996.

18. V. Mittal, M. Demirbas, and A. Arora. Loci: Local clustering in large scale wireless
networks. Technical Report OSU-CISRC-2/03-TR07, The Ohio State University,
February 2003.

A Hierarchy-Based Fault-Local Stabilizing Algorithm 315

19. M. Nesterenko and A. Arora. Local tolerance to unbounded byzantine faults. In
IEEE SRDS, pages 22–31, 2002.

20. E. Pitoura and G. Samaras. Locating objects in mobile computing. Knowledge
and Data Engineering, 13(4):571–592, 2001.

21. B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert, and S. Sastry. Distributed control
applications within sensor networks. Proceeding of the IEEE, Special Issue on
Sensor Networks and Applications, August 2003.

22. A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying
moving objects. In ICDE, pages 422–432, 1997.

23. J. Xie and I.F. Akyildiz. A distributed dynamic regional location management
scheme for mobile ip. IEEE INFOCOM, pages 1069–1078, 2002.

The Quorum Deployment Problem
(Extended Abstract)

Seth Gilbert1 and Grzegorz Malewicz2

1 Massachusetts Institute of Technology,
Computer Science and Artificial Intelligence Laboratory, Cambridge, MA

sethg@mit.edu
2 University of Alabama, Computer Science Department, Tuscaloosa, AL

greg@cs.ua.edu

Abstract. Quorum systems are commonly used to maintain the con-
sistency of replicated data in a distributed system. Much research has
been devoted to developing quorum systems with good theoretical prop-
erties, such as fault tolerance and high availability. However, even given
a theoretically good quorum system, it is not obvious how to efficiently
deploy such a system in a real network. This paper introduces a new
combinatorial optimization problem, the Quorum Deployment Problem,
and studies its complexity. We demonstrate that it is NP-hard to approx-
imate the Quorum Deployment Problem within any factor of nδ, where
n is the number of nodes in the distributed network and δ > 0. The
problem is NP-hard in even the simplest possible distributed network: a
one-dimensional line with metric cost. We begin to study algorithms for
variants of the problem. Some variants can be solved optimally in poly-
nomial time and some NP-hard variants can be approximated to within
a constant factor.

Keywords: quorum systems, combinatorial optimization, fault-tolerance.

1 Introduction

The most common technique for ensuring fault-tolerance in a distributed system
is replication: the data or code is replicated at a large number of nodes in the
network, thus ensuring that no small number of failures can derail the compu-
tation. The primary difficulty with this approach is ensuring the consistency of
replicas, without increasing the cost of accessing the data too much. There is
a fundamental trade-off between the fault-tolerance of the data and the cost of
maintaining consistency.

Quorum systems have long been used (e.g., [1, 2, 3, 4]) to solve the problem
of replica consistency. A quorum, q, is a set of nodes in the network, and a

� This work is supported by MURI–AFOSR SA2796PO 1-0000243658, USAF–AFRL
#FA9550-04-1-0121, NSF Grant CCR-0121277, NSF-Texas Engineering Experiment
Station Grant 64961-CS, and DARPA F33615-01-C-1896.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 316–330, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Quorum Deployment Problem 317

quorum system is a set of quorums, Q, such that every two quorums in Q share
at least one node. That is, given two quorums, q, q′ ∈ Q, there exists some node
i ∈ q ∩ q′; the intersection of these two quorums is non-empty.

In order to ensure the consistency of the data, when a node chooses to modify
the data, it notifies some quorum, say, q ∈ Q, of the modification; when a node
wants to access the data, it contacts some quorum, say, q′ ∈ Q. Since the two
quorums, q and q′, intersect at some node, we can be sure that the read operation
that accesses the data learns about the earlier modification. Variations on this
technique are frequently used to implement data replication (e.g., [5, 6, 7, 8]).
For example, Attiya et al. use this technique to construct a read/write shared
memory ([9]), and this is later extended to construct a reconfigurable read/write
shared memory ([10, 11]). A similar technique has been used for mutual exclusion
protocols (e.g., [3, 12]) and secure access protocols (e.g., [13]).

Much of the original work on quorum systems assumes that each quorum
consists of a majority of the nodes in the network. In this way, the intersection
property is immediately guaranteed, and optimal fault-tolerance is achieved.
(See, for example, [14, 1, 15].) More recently, however, there has been much re-
search developing more complicated quorum systems with a variety of interesting
properties, such as improved availability, faster responses, and more flexibility
to respond to dynamic systems. (See, for example, [16, 17, 18, 19, 20].)

Typically, an algorithm designer first constructs quorums with these types
of good properties, and only then decides which network node will use which
quorum so as to achieve low cost of network communication. Tsuchiya et al. [21]
and Fu [22], on the other hand, have taken a different approach; their algorithms
begin with a network, and determine a quorum system that is optimized under
certain performance metrics. Unfortunately, the resulting quorum systems do
not necessarily guarantee good fault tolerance, availability, etc. By first design-
ing the quorum system, and then determining a good deployment, it seems pos-
sible to obtain both good network performance as well as good quorum system
properties.

Let us illustrate this process in an example. Consider the quorum system in
Figure 1(a) (originally described in [16]). The nodes in the network are arranged
in a grid with

√
n nodes in each row and column. Each quorum consists of one

row and one column. Any two quorums, then, intersect at two nodes; for example,
in Figure 1(a) quorums q and q′ intersect at node i. Figure 1(b) represents an
arbitrary network embedded in a two-dimensional plane in which the cost of
communication between any two nodes is proportional to the distance between
the nodes. In order to use the quorum system, each node in the real network
must be mapped to a node in the grid, as in Figure 1(c). Then, each node chooses
one of the quorums to use. For example, node i might choose to use quorum q,
while node j might choose to use quorum q′. In an optimal world, each node is
close to all the nodes in the quorum that is chooses.

If the quorum system is badly deployed, the cost of maintaining consistent
replicas may be prohibitively expensive. It turns out that for completely natural
quorum systems – and real world networks – the difference between an optimal

318 S. Gilbert and G. Malewicz

iq

q’

(a) Grid quorum system (b) Network of
real nodes

(1, 1)

(1, 2)

(1, 4)

(2, 2) (2, 3) (2, 4)

(2, 1)

(3, 1)

(4, 3)
(4, 2)

(1, 3)

(3, 3)

q

i

q’

j

(4, 4)
(4, 1)

(3, 4)

(3, 2)

(c) Mapping of real
nodes to quorum system

Fig. 1. Figure 1(a) represents an abstract quorum system of 16 nodes, where q and
q′ are two possible quorums, and i is a node in the intersection. Figure 1(b) is an
example of a network of nodes, embedded in a two-dimensional plane; communication
time between two nodes is proportional to their distance. Figure 1(c) is a mapping of
the real nodes in the network onto the abstract nodes in the quorum system

deployment and a sub-optimal deployment can be quite large. In fact, we can
show that for every non-trivial quorum system, there is some network in which
an optimal deployment is much better than a bad deployment. If there are two
nodes connected by an expensive communication link (for example, the network
is occasionally partitioned), a sub-optimal deployment may require the nodes to
communicate while an optimal deployment may not.

In this paper, we introduce the Quorum Deployment Problem, the problem of
using a quorum system optimally. We assume that the set of quorums is fixed,
and that the cost of sending a message between any two nodes is known in
advance. The cost for some node, i, of using a quorum system is defined to be
the cost of sending a message to every node in some quorum. Our goal is to
determine the mapping from the real nodes in the network to the abstract nodes
in the quorum specification, and the choice of which quorum each node should
use during an operation. We present the problem more formally in Section 2.

Summary of Results

Our goal in this paper is to determine when the Quorum Deployment Problem
can and cannot be efficiently solved. We first notice that a more constrained ver-
sion of the problem, the Partial Deployment Problem, is solvable in polynomial
time (see Section 3). The general version of the Quorum Deployment Problem,
though, is quite hard. Even in the simplest possible distributed network – where
the nodes are arranged in a line – the problem is NP-hard.

The natural question, then, is whether it is possible to determine an ap-
proximately optimal deployment. We show in Section 4 that it is NP-hard to
approximate an optimal deployment within any constant factor. In fact, it is

The Quorum Deployment Problem 319

hard to approximate an optimal deployment within any factor of nδ for any
δ > 0, where n is the number of nodes in the network.

Finally, in Section 5, we explore special cases (that are still NP-hard) in
which the problem can be approximately solved, and in Section 6, we conclude
and discuss future work.

2 The Quorum Deployment Problem

In this section, we formally define the Quorum Deployment Problem. The goal of
the Quorum Deployment Problem is to determine, given a quorum system and
a distributed network, how best to make use of that quorum system.

More formally, assume we are given a distributed network consisting of n
nodes, connected by a message-passing network. We are given an n by n matrix,
C, that specifies the cost of sending a message from node i to node j: Ci,j is
assumed to be the latency of the network connecting i and j. In this paper, we
assume that the communication network is fixed. Anytime the network changes,
the deployment must be recalculated, resulting in a quorum reconfiguration.

We are also given a quorum system, Q. For concreteness, we assume that Q
consists of exactly n quorums, one for each node in the network. While quorum
systems with more – and fewer – quorums may be interesting, we discover that
the problem is quite hard even with this restriction. We assume that the quorum
system is specified as an n by n matrix, where the columns represent the nodes
in the quorums and the rows represent the quorums. Each entry in the matrix
is either a 0 or a 1. Quorum p contains node j if (and only if) Qp,j = 1. (See
Figure 3(b) for an example of a quorum system in matrix form.)

Recall that the original notion of a quorum system assumes that every pair
of quorums intersect. Occasionally in this paper, we relax this restriction, and
allow the matrix Q to contain quorums that do not share a node. It turns out
that the relaxed version of the problem is polynomially equivalent to the strict
version of the problem.

A quorum deployment, then consists of two components. First, recall that
each column in the quorum matrix represents a node; therefore each column in
the quorum matrix must be assigned to a node in the network. This determines
which real nodes are in each quorum. If node i is assigned to column j, then Qp,j

determines whether node i is in quorum p. (Recall that each row of Q represents
a quorum.)

Second, each node is assigned a quorum to use. Typically when using a quo-
rum system, a node performing an operation must send a message to every node
in some quorum, or receive a message from every node in some quorum. If, for
example, node i is assigned quorum p, then whenever an operation occurs at
node i, it first attempts to contact quorum p. If this fails (due to the failure of
nodes in quorum p, for example), then node i may contact other quorums. (It is
a separate – and harder – problem to determine a sequence of quorums to con-
tact.) In this paper, we attempt to optimize for the common case, where quorum
p has not failed. For each node i, the cost of the deployment is determined by

320 S. Gilbert and G. Malewicz

the cost of accessing each node in its assigned quorum. For example, if node i is
assigned quorum p, then the cost of the quorum deployment for i is:

∑
j∈p

Ci,j

We express each of the two components of quorum deployment as a permu-
tation on [1, n]. We refer to the first component, the assignment of a node to a
column in the quorum matrix, as the permutation β. That is, node i is assigned
to column j if β(i) = j. Therefore, if node i is assigned quorum p, then the cost
of the quorum deployment for i is:

n∑
j=1

Ci,j · Qp,β(j)

The first term determines the cost of accessing node j, and the second term
determines whether node j is in quorum p: the term Qp,β(j) is 1 if the column
assigned to j is part of quorum p.

We refer to the second component of the quorum deployment, the assignment
of a quorum to each node, as the permutation α. Node i is assigned quorum p if
α(i) = p. Therefore, the cost of quorum deployment for node i is:

n∑
j=1

Ci,j · Qα(i),β(j)

The total cost of a quorum deployment is the total cost of deployment for all
the nodes in the network. Therefore, the total cost of deployment, D(C,Q, α, β)
is:

D(C,Q, α, β) =
n∑

i=1

n∑
j=1

Ci,j · Qα(i),β(j)

Our goal is to minimize this cost: given matrices C and Q, find two permu-
tations α and β on {1, . . . , n} that minimize D(C,Q, α, β) across all possible
choices for α and β. We call this optimization problem the Quorum Deployment
Problem.

Throughout the paper, we occasionally consider variants and restricted ver-
sions of the Quorum Deployment Problem. We describe these in more detail as
they arise. The following is a brief preview of the variants:

– Relaxed Quorum Deployment : In this variant, the “quorums” are not re-
quired to intersect1. We may at times refer to the original problem as the
strict deployment problem.

1 In this case, referring to the sets as “quorums” is a misuse of terminology, since the
defining features of a set of quorums is that they intersect. For simplicity, however,
we continue to use this term.

The Quorum Deployment Problem 321

– Partial Quorum Deployment : In this variant, one of the two permutations,
α or β, is given in advance as part of the problem instance.

– Linear Quorum Deployment : In this variant, the communication network is
restricted to be a linear network. That is, all the nodes in the distributed
network are embedded on a line.

– Metric Cost Quorum Deployment : In this variant, the cost matrix defines a
metric. In particular, the distances between the nodes satisfies the triangle
inequality.

3 Partial Quorum Deployment

We first consider the restricted problem of Partial Quorum Deployment. In the
general Quorum Deployment Problem, we are given a quorum, Q, and a dis-
tributed network, C, and our goal is to determine a deployment, 〈α, β〉, that
has optimal cost. In the Partial Quorum Deployment problem, we assume that
one of the two permutations in the deployment is fixed. That is, we assume that
either α or β is given.

In one case, the permutation α may be fixed in advance. For example, α may
be fixed as the identity: node 1 uses quorum 1, node 2 uses quorum 2, etc. The
goal is to determine the permutation β, the assignment of nodes to the columns
of the quorum matrix.

In the second case, the permutation β is fixed in advance. The goal, then,
is to determine the permutation α, the assignment of which quorum each node
should use.

Both cases of the Partial Deployment Problem can be reduced to the As-
signment Problem, which has been well studied and can be solved in polynomial
time (see, for example, [23]).

In the Assignment Problem, we are given a weighted bipartite graph, consist-
ing of 2n nodes – n left nodes, L, and n right nodes, R – and a weight function
wi,j ≥ 0 for all i ∈ L and j ∈ R. The goal is to choose a matching consisting of
n edges with minimum weight.

Theorem 1. Given an instance of the Partial Deployment Problem, consisting
of C, Q, and α, we can determine an instance of the Assignment Problem (in
O(n2) time) where the solution to the Assignment Problem is the permutation β
that minimizes the cost of the deployment. The same holds if the Partial Deploy-
ment Problem is specified to include β; the solution to the resulting Assignment
Problem is the permutation α that minimizes the cost of the deployment.

Proof. Assume that the permutation α is given. We construct a bipartite graph
for the Assignment Problem where the left nodes, L, represent the nodes and
the right nodes, R, repesent the columns in the quorum matrix, Q. The weight
of an edge connecting i ∈ L and j ∈ R is the cost of assigning i to column j in
Q. That is:

wi,j =
n∑

�=1

C�,i · Qα(�),j .

322 S. Gilbert and G. Malewicz

The Assignment Problem results in a permutation that minimizes the cost of
the weights. The resulting permutation minimizes the cost of the quorum de-
ployment.

Equivalently, if the permutation β is given, the left nodes in the bipartite
graph represent the nodes and the right nodes represent the quorums; the weight
of an edge represents the cost of a node using a given quorum. In this case:

wi,j =
n∑

�=1

Ci,� · Qj,β(�) .

Again, the Assignment Problem minimizes the weights, resulting in a permuta-
tion that minimizes the cost of the quorum deployment. ��

4 Hardness of the Quorum Deployment Problem

While the Partial Deployment Problem is readily solvable, the general Quorum
Deployment Problem is quite hard. In this section, we first show in Section 4
that it is NP-hard to approximate the general Quorum Deployment Problem
within any constant factor. In fact, for any δ > 0, it is hard to approximate
within a factor of nδ, where n is the number of nodes in the network. We then
show that another variant, the Metric Cost Deployment problem, is NP-hard,
and that the relaxed version (where the quorums are not required to intersect)
is also NP-hard to approximate.

Hardness of Approximation

Our main hardness result is derived from a gap-creating reduction from the Bal-
anced Complete Bipartite Subgraph (BCBS) Problem (see [24] for a statement
of the problem, and [25] for recent results). In this problem, we are given a bi-
partite graph, G = (V,E), consisting of left nodes, L, and right nodes, R. We
are also given a constant, k. The goal is to find a balanced complete bipartite
subgraph of size 2k, with k left nodes and k right nodes.

Throughout this section, we use the bipartite graph in Figure 2 as an example.
Notice that this graph has a balanced, complete subgraph of size two, consisting
of nodes 2 and 3 on the left (in L) and nodes 5 and 8 on the right (in R).
However, there is no such subgraph of size three.

In our reduction, we produce an instance of the Quorum Deployment Problem
that has an efficient deployment if and only if the graph G contains a balanced
complete bipartite subgraph of size k.

First, we define the reduction, Cost(G, k) = C and Quorums(G, k) = Q, that
transforms an instance of the BCBS problem into an instance of the Quorum
Deployment Problem. We choose n = |V |+1. The first n−1 columns encode the
original BCBS problem; the last column ensures that all the quorums intersect.

The cost matrix, C, is related to the “complement” of the incidence matrix
for the graph, G: each edge in the matrix G results in a cheap link in the matrix
C, while two disconnected nodes in G are connected by an expensive link in the

The Quorum Deployment Problem 323

1

2

3

4

L

5

6

7

8

R

Fig. 2. Example instance of the Balanced Complete Bipartite Subgraph problem, where
k = 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nx nx nx nx nx 1 1 nx 1
nx nx nx nx 1 nx nx 1 1
nx nx nx nx 1 nx 1 1 1
nx nx nx nx nx 1 nx 1 1
nx 1 1 nx nx nx nx nx 1
1 nx nx 1 nx nx nx nx 1
1 nx 1 nx nx nx nx nx 1
nx 1 1 1 nx nx nx nx 1
1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(a) Cost Matrix, Cost(G, k)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(b) Quorum Matrix,
Quorums(G, k)

Fig. 3. An example of a reduction from the Balanced Complete Bipartite Subgraph
problem in Figure 2 to the Quorum Deployment Problem

matrix C. For the purposes of the reduction, we fix x so that nx is sufficiently
large. The size of x depends on the desired value of δ. (That is, x = O(δ).)
Formally:

Cost(G, k)i,j =

⎧⎨
⎩

1 if (i, j) ∈ E and i, j < n
nx if (i, j) /∈ E and i, j < n
1 if i = n or j = n

Consider the example in Figure 3(a). The submatrix delimited by the first four
rows and first four columns represents the edges between nodes in L. Notice
that because there are no edges between nodes in L, all the entries are nx. The
submatrix delimited by rows five through eight and columns five through eight
represents edges between nodes in R, and therefore consists only of entries nx.
The last row and the last column contain the value 1. The remaining entries

324 S. Gilbert and G. Malewicz

represent the edges between nodes in L and nodes in R. For example, the entry
at (3, 5) represents the edge between node 3 and node 5. Observe that the cost
matrix is symmetric.

Notice that the existence of high-cost links is important in the reduction. If
the ratio of the maximum communication cost to the minimum cost is bounded
by a constant, then any deployment approximates optimal to within a constant
factor. Therefore, any inapproximability result must allow the ratio to grow as
n grows.

The quorum matrix, Q, consists of k quorums containing the first k nodes,
and the extra node, n. It also contains a single quorum that contains all the
nodes. The rest of the quorums contain only node n. Formally:

Quorums(G, k)i,j =

⎧⎪⎪⎨
⎪⎪⎩

1 if i, j ≤ k
1 if i = n
1 if j = n
0 otherwise

Consider again the example in Figure 3(b). The first two rows and two columns
contains the value 1, representing the complete bipartite graph of size two. The
last row and the last column contain the value 1, as well.

We show that if the original bipartite graph contains a balanced, complete
bipartite subgraph of size k, then the derived Quorum Deployment Problem has
a small cost. Alternatively, if the original bipartite graph does not contain such a
subgraph, then the derived Quorum Deployment Problem results in a high cost
deployment. A full proof is contained in the full version [26].

Lemma 1. Fix any x > 1. Let G = (V,E) be a bipartite graph, and let 1 ≤ k ≤
|V |. Let C = Cost(G, k) and Q = Quorums(Q, k). Then the following holds:

(G, k) ∈ BCBS ⇒ ∃α,∃β, D(C,Q, α, β) ≤ n2

(G, k) /∈ BCBS ⇒ ∀α,∀β, D(C,Q, α, β) > nx

That is, if there is a size k balanced, complete, bipartite subgraph in G, then the
minimum cost of the resulting deployment is less then or equal to n2. If there is
not a size k balanced, complete, bipartite subgraph in G, then the minimum cost
of the resulting deployment is greater than nx.

Proof (sketch). The proof consists of two parts. In the first, we assume that
(G, k) ∈ BCBS. In the second, we assume that (G, k) /∈ BCBS.

Case 1 – (G, k) ∈ BCBS: First, suppose that there is a balanced complete
bipartite subgraph on 2k nodes in G. We determine a deployment, (α, β) that
has a small cost. Let L′ ⊆ L be the left partition of the subgraph and R′ ⊆ R
the right partition of the subgraph. Choose α to map the nodes in L′ to the first
k rows, and choose β to map the nodes in R′ to the first k columns. Node n is
mapped to row n and column n. Then each of the quorum entries in the first
k rows and k columns is mapped to one of the edges in the complete bipartite

The Quorum Deployment Problem 325

subgraph, and as a result, has cost 1. Each of the quorum entries in row n and
column n is mapped to an entry in the cost matrix of cost 1. Therefore, the total
cost of the deployment is k2 + 2n − 1 ≤ n2, as desired.

Case 2 – (G, k) �∈ BCBS: On the other hand, suppose that there is no complete
bipartite subgraph on 2k nodes in G. We shall see that any deployment has
cost larger than nx. In particular, every deployment must include at least one
expensive edge. It is clear that node n can, without loss of generality, be mapped
to row n and column n: given an optimal assignment where this is not the case, it
is possible to permute the assignment so that this is the case, without increasing
the cost. Then notice that if there is a deployment that does not include any
entry of nx, then this implies that there exists a complete bipartite subgraph of
size k, which we assumed was not the case. ��
We conclude that the Quorum Deployment Problem is hard to approximate:

Theorem 2. For any δ > 0, it is NP-hard to approximate the Quorum Deploy-
ment problem with factor nδ.

Hardness of Metric Cost Quorum Deployment

In the Metric Cost Quorum Deployment Problem, the cost matrix is restricted
to be symmetric and satisfy the triangle inequality. In this case, the cost of i
sending a message to j is the same as the cost of j sending a message to i, and
the cost of sending a message from i to j is no larger than the cost of sending a
message from i to k and from k to j. It is clear from the reduction in Lemma 1
that this version of the problem is NP-hard:

Theorem 3. The Metric Cost Quorum Deployment Problem is NP-hard.

Proof. We use the same reduction as in Lemma 1, except instead of constructing
the matrix Cost(G, k) by setting non-edge costs to nx, we set non-edge costs to 2.
The matrix immediately satisfies the requirements of a metric. The correctness
follows by the same argument as in Lemma 1, where if (G, k) ∈ BCBS then the
optimal cost of deployment is k2 + 2n − 1; otherwise, if (G, k) /∈ BCBS, then
cost of any deployment is at least k2 + 2n. ��

Hardness of Relaxed Metric Quorum Deployment

If we do not require that the “quorums” intersect, then we can show that such
relaxed deployment problem is inapproximable even when the cost matrix is
symmetric and satisfies the triangle inequality. The proof is inspired by the re-
duction from a strongly NP-complete 3-Partition Problem (see [24], SP15) to the
Quadratic Assignment Problem (QAP) (see [24], ND43) given by Queyranne [27].
Our reduction extends the result of Queyranne. Since the deployment algorithm
allows two degrees of freedom, α and β, as compared to QAP that has only one
degree of freedom (α = β in QAP), we construct an instance of the deployment
problem that reduces this flexibility, ensuring that when there is no 3-partition
the cost of deployment is high. The proof is presented in the full version [26].

326 S. Gilbert and G. Malewicz

Theorem 4. The Relaxed Metric Quorum Deployment Problem (with symmet-
ric cost matrix that satisfies the triangle inequality and quorums that do not have
to intersect) is NP-hard to approximate to within any constant factor.

We note that the proof of this theorem implies that when the quorum matrix
is a block diagonal matrix (ones inside blocks and zeros everywhere else) and
the number of blocks can be as large as a polynomial fraction of n, then the
deployment problem is inapproximable to within any constant factor. We also
note that if the quorum matrix contains just one block, then it is NP-hard to
optimally solve the problem. This follows from the proof of Theorem 3, where
the bottom row and right column are trimmed from the matrices.

5 Approximation Algorithms for Metric Costs and
Restricted Quorums

We have seen that if we allow arbitrary relaxed quorum matrix, then there is no
constant factor approximation algorithm for the deployment problem even if we
assume that the cost matrix is symmetric and satisfies the triangle inequality.
It seems that the intricacy of the quorum matrix plays an important role in
the ability to approximate the problem. Therefore, in this section, we establish
a family of somewhat contrived quorum matrices that admit constant factor
approximation for metric cost networks. Solving deployment optimally for this
family, however, is still NP-hard.

We give a constant factor approximation algorithm for the Quorum Deploy-
ment Problem with a block diagonal hyperbolic quorum matrix and a symmetric
cost matrix that satisfies the triangle inequality. The quorum matrix is com-
posed of a constant number p of hyperbolas placed on the diagonal. Each hyper-
bola i is contained inside a constant number ki of nested squares (see Figure 4,
and a formal definition in the full version [26]). The approximation factor is
c = 4 · max1≤r≤p kr. The algorithm runs in O(nk1+...+kp+3p) time.

Fig. 4. Left: example of a hyperbola contained in k = 3 nested squares. Middle: exam-
ple of a block diagonal hyperbolic quorum matrix with p = 3 hyperbolas with k1 = 1,
k2 = 3 and k3 = 2 nested squares respectively. Right: a quorum matrix composed
of a part, called vertical telescope, of a single hyperbola. Note that any two quorums
intersect in this matrix

The Quorum Deployment Problem 327

Theorem 5. There is a c-approximation algorithm for the Quorum Deployment
Problem with a block diagonal hyperbolic quorum matrix and symmetric cost
matrix that satisfies the triangle inequality, where c = 4 · max1≤r≤p kr. The
algorithm runs in O(nk1+...+kp+3p) time.

The proof sketch that follows presents an overview of the approximation al-
gorithm and our key observations. A detailed proof of the theorem is given in
the full version [26]. For convenience of the presentation, we specify the permu-
tations α and β to rearrange rows and columns of the cost matrix rather than
the quorum matrix. This of course yields an equivalent optimization problem.

Proof (sketch). Suppose for a moment that the quorum matrix has ones inside
a submatrix U ×U , and zeros everywhere else. Let m = |U |. An optimal deploy-
ment will place some rows Ũ ′ and some columns Ṽ ′ of the cost matrix inside
U ×U . When we pick a row i and m columns V , that minimize the sum of costs
at the intersection of the row and the columns, then by the triangle inequality
and symmetricity of the cost matrix, we can conclude that the sum of costs
inside the submatrix V ×V is at most twice the cost of the optimal deployment.
We notice that the conclusion is true even though the optimal deployment may
have Ũ ′ �= Ṽ ′, i.e., may indeed take advantage of two degrees of freedom to lower
the cost. This observation extends the technique of Krumke et al. [28] developed
for the Quadratic Assignment Problem where we would have Ũ ′ = Ṽ ′ (in QAP
rows and columns are permuted in the same way).

Now suppose that the quorum matrix has the richer structure of a single
hyperbola. Then an optimal deployment has extra ability to avoid high costs
due to “holes” in the quorum matrix, as compared to the U × U case just
discussed. We can show, however, how to effectively deal with these holes by
appropriately rearranging rows and columns to “push” low costs to the areas
occupied by the hyperbola, and leave high costs behind. The hyperbola is con-
tained in k nested squares. The square h has size mh by mh and the hyperbola
has thickness ah at the edge of the square (cf. Figure 4). For each h, we can
find a row ih and mh columns Vh that minimize the sum of costs at the inter-
section of this row and the columns. Since we have selected a row and columns
that minimize the sum, clearly, the cost of any optimal deployment is at least
1/k

∑
1≤h≤k ah

∑
j∈Vh

Cih,j . This simplistic bound leaves too big a freedom in
the choice of subsets Vh, and so the submatrices Vh × Vh would not be useful
for approximation because the submatrices would not have to be nested. Re-
call that the k squares are nested in the optimal deployment, so we can still
bound from below the cost of the deployment if we introduce a constraint that
V1 ⊂ V2 ⊂ . . . ⊂ Vk. With this constraint though, there are dependencies be-
tween Vh’s. Hence we cannot perform the minimization of the sum

∑
j∈Vh

Cih,j

across the choices of ih and Vh independent from the minimization of the cor-
responding sums across other rows and other subsets of columns because we
could get stuck in a local minimum. What we need to do instead, is to min-
imize the value of the entire bound across all possible choices under the con-
straint. We can find the nested subsets Vh and rows ih that minimize the bound

328 S. Gilbert and G. Malewicz

∑
1≤h≤k ah

∑
j∈Vh

Cih,j using an appropriately adjusted polynomial time algo-
rithm of Tokuyama and Nakano [29], in a fashion resembling the method used
by Guttmann-Beck and Hassin [30]. After Vh’s and ih’s have been found, we re-
arrange rows and columns. Using the triangle inequality and symmetricity of the
cost matrix, we conclude that the costs inside submatrix Vh×Vh can be bounded
from above by 2mh times the costs at the intersection of row ih and columns Vh.
If we move the ah lowest cost rows to the top part of the submatrix, then the
sum of costs accumulated there is proportionally reduced, and so it is at most
a ah/mh fraction of the sum of costs inside the entire submatrix. We rearrange
rows of the submatrix V1×V1, then rows of V2×V2 and so on, and then columns.
When rearrangements are done carefully, we can ensure that one rearrangement
does not destroy the upper bounds on costs created by the prior rearrangements.
After the rearrangements, the sum of costs inside the parabola will be at most
4

∑
1≤h≤k ah

∑
j∈Vh

Cih,j . This completes approximation argument for a single
parabola.

Finally, assume that the quorum matrix is a block diagonal hyperbolic quo-
rum matrix composed of p hyperbolas. We modify the algorithm for finding
nested subsets of columns, so that now the algorithm minimizes across p collec-
tions of nested subsets of columns. After we have found the collections, we apply,
to each of the p collections of nested submatrices, the algorithm for rearranging
rows and columns. This yields the desired approximation result and completes
the proof. ��

We contrast our approximation results with the inapproximability results
from the previous section. When the number of hyperbolas can be as big as
a polynomial fraction of n, then the deployment problem is inapproximable to
within any constant factor, even when each hyperbola i is just a single square
completely filled in with ones. However, we can approximate the problem to
within a constant factor when the number of hyperbolas is constant, and even
if each hyperbola is contained in more than one square.

6 Conclusions and Future Work

In this paper, we have introduced the Quorum Deployment problem, a natural
problem that arises when attempting to efficiently replicate data. We have ex-
amined the complexity of a number of variants of the problem, showing that the
Partial Deployment Problem can be solved in polynomial time, while the general
Quorum Deployment Problem and the Relaxed Metric Deployment problem are
inapproximable. Finally, we presented some special NP-hard cases in which the
problem can be approximated and other cases that admit optimal polynomial
time solution.

While many of the results presented in this paper are negative, we believe it
is important to continue examining cases for which quorums may be efficiently
deployed, as the problem has significant practical import. Most previous research
has focused on developing quorum systems that have good robustness to var-
ious failure modes; future research should also take into account the difficulty

The Quorum Deployment Problem 329

of deploying the quorums. While we conjecture that most currently developed
quorum systems (such as the grid quorum system) cannot be deployed efficiently,
we would like to develop families of quorum systems that are both robust and
can be deployed efficiently.

References

1. Gifford, D.K.: Weighted voting for replicated data. In: Proceedings of the seventh
symposium on operating systems principles. (1979) 150–162

2. Thomas, R.H.: A majority consensus approach to concurrency control for multiple
copy databases. Transactions on Database Systems 4 (1979) 180–209

3. Garcia-Molina, H., Barbara, D.: How to assign votes in a distributed system.
Journal of the ACM 32 (1985) 841–860

4. Herlihy, M.: A quorum-consensus replication method for abstract data types. ACM
Transactions on Computer Systems 4 (1986) 32–53

5. Agrawal, D., Abbadi, A.E.: Resilient logical structures for efficient management of
replicated data. Technical report, University of California Santa Barbara (1992)

6. Bearden, M., Jr., R.P.B.: A fault-tolerant algorithm for decentralized on-line quo-
rum adaptation. In: Proceedings of the 28th International Symposium on Fault-
Tolerant Computing Systems, Munich, Germany (1998)

7. El Abbadi, A., Toueg, S.: Maintaining availability in partitioned replicated
databases. Transactions on Database Systems 14 (1989) 264–290

8. El Abbadi, A., Skeen, D., Cristian, F.: An efficient fault-tolerant protocol for
replicated data management. In: Proc. of the 4th Symp. on Principles of Databases,
ACM Press (1985) 215–228

9. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. Journal of the ACM 42 (1995) 124–142

10. Lynch, N., Shvartsman., A.: RAMBO: A reconfigurable atomic memory service for
dynamic networks. In: Proc. of the 16th Intl. Symp. on Distributed Computing.
(2002) 173–190

11. Gilbert, S., Lynch, N., Shvartsman, A.: RAMBO II:: Rapidly reconfigurable atomic
memory for dynamic networks. In: Proc. of the Intl. Conference on Dependable
Systems and Networks. (2003) 259–269

12. Maekawa, M.: A
√

N algorithm for mutual exclusion in decentralized systems.
ACM Tranactions on Computer Systems 3 (1985) 145–159

13. Naor, M., Wieder, U.: Access control and signatures via quorum secret sharing.
IEEE Transactions on Parallel and Distributed Systems 9 (1998) 909–922

14. Upfal, E., Wigderson, A.: How to share memory in a distributed system. Journal
of the ACM 34 (1987) 116–127

15. Vitányi, P.M.B., Awerbuch, B.: Atomic shared register access by asynchronous
hardware. In: Proceedings 27th Annual IEEE Symposium on Foundations of Com-
puter Science, New York, IEEE (1986) 233–243

16. Cheung, S.Y., Ammar, M.H., Ahamad, M.: The grid protocol: A high performance
scheme for maintaining replicated data. Knowledge and Data Engineering 4 (1992)
582–592

17. Peleg, D., Wool, A.: Crumbling walls: a class of high availability quorum sys-
tems. In: Proceedings of the 14th ACM Symposium on Principles of Distributed
Computing. (1995) 120–129

330 S. Gilbert and G. Malewicz

18. Malkhi, D., Reiter, M.: Byzantine quorum systems. In: Proceedings of the 29th
Symposium on Theory of Computing. (1997) 569–578

19. Naor, M., Wool, A.: The load, capacity, and availability of quorums systems. SIAM
Journal on Computing 27 (1998) 423–447

20. Naor, M., Wieder, U.: Scalable and dynamic quorum systems. In: Twenty-Second
ACM Symposium on Principles of Distributed Computing. (2003)

21. Tsuchiya, T., Yamaguchi, M., Kikun, T.: Minimizing the maximum delay for
reaching consensus in quorum-based mutual exclusion schemes. IEEE Transactions
on Parallel and Distributed Systems 10 (1999) 337–345

22. Fu, A.W.: Delay-optimal quorum consensus for distributed systems. IEEE Trans-
actions on Parallel and Distributed Systems 8 (1997) 59–69

23. Schrijver, A.: 17. In: Combinatorial Optimization. Volume A. Springer (2003)
24. Gary, M.R., Johnson, D.S.: Computers and Intractability. Freeman (1979)
25. Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Applied

Mathematics 131 (2003) 651–654
26. Gilbert, S., Malewicz, G.: The quorum deployment problem. Technical Report

CSAIL-TR-972, MIT (2004)
27. Queyranne, M.: Performance ratio of polynomial heuristics for triangle inequality

quadratic assignment problems. Operations Research Letters 4 (1986) 231–234
28. Krumke, S.O., Marathe, M.V., Noltemeier, H., Radhakrishnan, V., Ravi, S.S.,

Rosenkrantz, D.J.: Compact location problems. Theoretical Computer Science
181 (1997) 379–404

29. Tokuyama, T., Nakano, J.: Geometric algorithms for the minimum cost assignment
problem. Random Structures and Algorithms 6 (1995) 393–406

30. Guttmann-Beck, N., Hassin, R.: Approximation algorithms for min-sum p-
clustering. Discrete Applied Mathematics 89 (1998) 125–142

A Constraint-Based Formalism for Consistency
in Replicated Systems

Marc Shapiro1, Karthikeyan Bhargavan1, and Nishith Krishna2

1 Microsoft Research, Cambridge, United Kingdom
2 Compter Science Department, Courant Institute,

New York University, USA

Abstract. We present a formalism for modeling replication in a dis-
tributed system with concurrent users sharing information. It is based
on actions, which represent operations requested by independent users,
and constraints, representing scheduling relations between actions. The
formalism encompasses semantics of shared data, such as commutativity
or conflict between actions, and user intents such as causal dependence
or atomicity. It enables us to reason about the consistency properties of
a replication protocol or of classes of protocols. It supports weak consis-
tency (optimistic protocols) as well as the stronger pessimistic protocols.
Our approach clarifies the requirements and assumptions common to all
replication systems. We are able to prove a number of common prop-
erties. For instance consistency properties that appear different opera-
tionally are proved equivalent under suitable liveness assumptions. The
formalism enables us to design a new, generalised peer-to-peer consis-
tency protocol.

1 Introduction

Replicating data in a distributed system improves availability at the cost of
maintaining consistency, since each site’s view may be partial or stale. It is well
accepted that replication can be made more efficient by taking semantics into
account, but it is difficult to reason about the correctness of such weaker pro-
tocols. Partial replication constitutes an further complication. Despite a large
body of previous work [1], we lack a formal framework for understanding, rea-
soning about, and comparing replication protocols. This paper presents such a
framework.

We model a distributed system as a replicated database and a replication
protocol. Users independently submit queries and updates to the database, ab-
stracted as actions. End users, applications and data types (together abstracted
as clients in this framework) also submit scheduling constraints to express im-
portant intents or semantic properties.

Each site has a local view (called multilog) of known actions and constraints.
The site executes a schedule, which completely determines the state of the
replica. Sites converge if they execute the same actions in the same order, which
a replication protocol ensures, if necessary, by adding more constraints.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 331–345, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

332 M. Shapiro, K. Bhargavan, and N. Krishna

Our contributions are the following. We propose a novel framework for rea-
soning about replicated systems. It is the first that unifies: data semantics such
as commutativity and conflicts, application semantics such as causal dependence,
user intents such as atomicity, and protocol decisions about which operations to
execute and in which order. Our framework is simple, and gives a semantics of
replication in terms of constrained sets.

Our results clarify the requirements and assumptions of a replication system.
As an example, we will model different systems in our framework, e.g., Bayou
and ESDS, and prove them consistent.

We are able to prove interesting properties for classes of replication protocols.
For instance, we identify four different notions of consistency, which seem to differ
in their operational requirements. We are able to prove that, under sufficiently
strong liveness assumptions, they are equivalent.

The framework can guide the design of new replication protocols. We pro-
pose a new distributed replication algorithm generalising Bayou, whose design
is directly guided by the framework. It shows that constraints can be used as an
implementation mechanism as well as specification framework.

The paper proceeds as follows. Section 2 overviews the basic formalism. Sec-
tion 3 defines and compares consistency properties. We examine some decision
algorithms from the literature and rules for local decision in Section 4. We derive
a novel decentralised replication algorithm in Section 5. Section 6 compares with
related work, and we conclude in Section 7 with a summary of contributions and
future work.

A separate technical report [2] provides a complete formal treatment. Here
we focus on presenting the intuitions and keep the formalism to a minimum.

2 Formal Framework

Each site in a replicated system maintains a local view called multilog.1 The
current state results from executing a sound (i.e., valid) schedule computed from
the multilog. Over time the multilog grows (and conceptually never shrinks) by
addition of actions and constraints, either submitted by local clients or received
from remote sites. The set of sound schedules grows with the number of actions
and shrinks as the number of constraints increases.

2.1 Actions and Schedules

Slightly more formally, A is the set of unique actions init, α, β, Actions are
assumed deterministic2 but are otherwise uninterpreted. The non-action α is a
placeholder with no effect (non-actions will be useful when discussing liveness).
Action init represents the initial state and has no effect.

1 We call it a multilog and not a log, because it contains actions submitted at several
sites and the actions are not ordered.

2 Executing the same action from two equivalent input states yields equivalent output
states.

A Constraint-Based Formalism for Consistency in Replicated Systems 333

A schedule is a non-empty sequence of actions and non-actions, for instance
S = init.α.β.γ. In this example, α is executed (noted α ∈ S), and β is non-
executed (noted β ∈ S); all four actions are said scheduled (noted sched(α, S)).
A given action may appear only once in a schedule, either as executed or as non-
executed. The ordering is noted <S . Every schedule starts with init. Intuitively,
a non-action in a schedule indicates that the scheduler is aware of the action but
does not execute it, e.g., because of a constraint.

Actions commute unless specified otherwise by the notation α � β (read
“non-commuting”). A non-action commutes with every action and non-action.
Two schedules are equivalent (S1 ≡ S2) if they execute the same actions, and
non-commuting pairs of actions execute in the same order.

Commutativity allows us to model a number of real-world cases of schedule
equivalence:

– Classically, actions commute if both are reads, or if they access independent
variables.

– Overwriting: in some systems an out-of-order write has no effect; then writes
effectively commute. For instance in timestamped replication (Last Writer
Wins) [1], writing a file tests whether the write timestamp is greater than
the file’s; if so the write takes effect, otherwise it is a no-op [2].

– Reconciliation: An example of a reconciliation algorithm is Operational Trans-
formation [3]. Two actions submitted concurrently execute in arbitrary order.
The second one to execute is transformed to ignore the effect of the first, in
effect rendering them commutative.

– Failure or aborts: An action that fails or aborts becomes dead, i.e., appears
as a non-action in all schedules, which commutes with all actions.

2.2 Multilogs and Sound Schedules

Multilog M = (K,→,�) represents a site’s view. K is the set of known actions
(K ⊆ A); → and � are the set of known constraints. The relation →⊆ A ×
A (pronounced Before) is not necessarily acyclic, nor reflexive, nor transitive.
Relation � ⊆ A × A (pronounced MustHave) is transitive and reflexive. By
convention, for any α ∈ A, init → α and α� init; this is left implicit in the rest
of the paper.

Figure 1 gives some examples of constraints and of common combinations.
Intuitively, α → β indicates that a scheduler must maintain an ordering between
the two actions: no schedule may execute β before α. A schedule that executes
neither α nor β, or only α, or only β, or both α and β in that order (but not
necessarily adjacent) is correct with respect to this constraint. Relation α � β
is an implication: if α executes in a schedule, then β must also execute some-
where in the same schedule, although not necessarily in that order. A schedule
that executes only β, or that executes neither α nor β, is correct with respect
to this constraint. Conversely, if the schedule non-executes β, then α may not
execute.

The set of sound schedules of M is noted Σ(M); M is said sound if Σ(M) �=
Ø. Schedule S ∈ Σ(M) iff:

Fig. 1. Example constraints. α, β and γ
form a parcel, an atomic (i.e., all-or-nothing)
execution. γ executes only if δ also executes.
δ is causally dependent on ε. ε and ζ conflict
with (i.e., mutually exclude) each other. Only
two actions out of the three γ, θ and κ can
execute. If both χ and κ execute, χ comes
first

alent if they generate the same set of
sound schedules: M1 ≡ M2 iff Σ(M1) =
Σ(M2). Note that Σ(M) is closed with
respect to schedule equivalence. Here-
after, we identify a multilog with its
equivalence class.

This limited constraint language is
surprisingly expressive. We have used
it to express the semantics of appli-
cations as diverse as a shared calen-
dar, a travel reservation system and
a replicated file system [4, 5]. For in-
stance if α creates a directory and β
a file in that same directory, the file
system submits β �α∧α → β (causal
dependence) along with β.

A set of actions c is said to con-
flict if the actions in c form a → cycle.
Intuitively, this means that no sound
schedule can execute all the actions in
c. For example, if α → β and β → α,

then α and β conflict, i.e., there can be no sound schedule that executes both of
them.

2.3 Significant Subsets and Events of a Replication Protocol

Execution strategies vary widely between replication protocols: in some, actions
execute immediately, in others they are deferred; execution order may be pre-
established or computed; actions might roll back. However a protocol would be
useless if it did not reach some final decision for every action. We represent
decisions as constraints; the following significant subsets capture the possible
stages of irrevocable decision:

A Constraint-Based Formalism for Consistency in Replicated Systems 335

– Guaranteed actions execute in every schedule. Guar(M) is the smallest set
satisfying: (1) init ∈ Guar(M). (2) ∀β ∈ A : If α ∈ Guar(M) and α � β
then β ∈ Guar(M).

– Dead actions non-execute in every schedule. Dead(M) is the smallest set
satisfying: (1) ∀α ∈ A : If β1, . . . , βm ∈ Guar(M), where m is any natural
integer, and α → β1 → . . . → βm → α, then α ∈ Dead(M). (2) ∀α ∈ A : If
β ∈ Dead(M) and α � β, then α ∈ Dead(M).

– A serialised action is one that is ordered with respect to all non-commuting
actions that execute. Serialised(M) def= {α ∈ A|∀β ∈ A,α � β ⇒ α → β∨β →
α ∨ β ∈ Dead(M)}

– An action is decided once it is either dead, or both guaranteed and seri-
alised.
Decided(M) def= Dead(M) ∪ (Guar(M) ∩ Serialised(M))

– An action is stable when its effects cannot change, i.e., it is either dead, or it
is guaranteed and serialised and all preceding actions are themselves stable.
(In practice, stable actions can be pruned from multilogs.) Stable(M) is the
smallest set satisfying: (1) init ∈ Stable(M), (2) Dead(M) ⊆ Stable(M), (3)
If (α ∈ Guar(M) ∩ Serialised(M)) ∧ (∀β ∈ A : β → α ⇒ β ∈ Stable(M))
then α ∈ Stable(M).

Note that if M is sound, every guaranteed action must be known: Guar(M) ⊆
K. Also note that α → α ⇒ α ∈ Dead(M) and that init � α ⇒ α ∈ Guar(M).
M is sound iff the guaranteed and dead sets are disjoint.

3 Replication and Consistency

In this section, we describe liveness and safety properties that we require of
replication systems, stated in terms of our action-constraint framework.

3.1 Site Schedules and Transition Rules

Different replication systems (such as ESDS and Bayou) differ by the actions
and constraints they accept, and by the decisions they make. We summarise a
replication protocol by rules describing how the system changes from time t to
t + 1.

The current state of site i is the result of running a site schedule Si(t) ∈
Σ(Mi(t)). In our framework, if |Σ(Mi(t))| > 1, then the choice between sound
schedules is irrelevant for consistency, although individual replication systems
may carefully pick a schedule for optimality.

Each site i has its own view Mi(t) = (Ki,→i,�i)(t), evolving over time t,
called its site multilog.3 Multilogs are monotonically non-shrinking, which implies
that the significant subsets of Section 2.3 are non-shrinking, and that an unsound
multilog remains unsound forever.

3 For simplicity we assume discrete time and use a global time notation. The theory
does not assume that a site can observe the global time.

336 M. Shapiro, K. Bhargavan, and N. Krishna

All protocols obey a Universal Transition Rule, which says simply that a site
may receive actions and constraints from a local client or from a remote multilog.

A specific protocol may have additional transition rules. As an example, let
us encode a linearisable protocol, i.e., one in which an action takes effect at some
instant in time, and actions execute in taking-effect order. We translate this to
the following transition rule: “Only one action may be submitted per unit of
time; if α is submitted at time t, then for any action β �= α: if β ∈ ⋃

j Kj(t− 1)
then β → α, otherwise α → β.”

A replicated system based on pessimistic concurrency control, or pessimistic
system, has transition rules that ensure that at every site and every time Si(t)
is a prefix of Si(t + 1). Otherwise the system is said optimistic.

3.2 Liveness Conditions

While different replication algorithms maintain different consistency invariants,
all of them must satisfy some liveness conditions for convergence. We identify
two liveness conditions, one for the propagation protocol that distributes actions
and constraints, the other for the decision algorithm that stabilises actions and
multilogs.

The propagation protocol must ensure that all actions and constraints sub-
mitted to the system eventually reach all nodes.

Property 1 (Eventual Propagation). A replicated system has the Eventual
Propagation (EP) property iff every submitted action and constraint is eventually
known everywhere:

– α ∈ Ki(t) ⇒ ∀j : ∃t′ : α ∈ Kj(t′)
– α �i,(t) β ⇒ ∀j : ∃t′ : α �j,(t′) β
– α →i,(t) β ⇒ ∀j : ∃t′ : α →j,(t′) β

The decision algorithm must ensure that all locally known actions are even-
tually decided:

Property 2 (Eventual Decision). A replicated system has the Eventual Deci-
sion (ED) property iff every submitted action is eventually decided: α ∈ Ki(t) ⇒
∃t′ : α ∈ Decided(Mi(t′)).

ED implies that every action eventually becomes stable [2]. ED does not
preclude the trivial implementation that makes every action dead; our framework
does not rule this out, since it is a valid strategy if actions fail.

3.3 Mergeability and Uniform Local Soundness

We now discuss different definitions of consistency in our framework. The first
one, Mergeability, captures the intuition that sites must not make conflicting
decisions: a hypothetical omniscient observer would not see anything wrong.
Mergeability generalises the classical serialisability property.

Property 3. A system has the Mergeability property if, given any arbitrary
collection of sites i, i′, i′′ . . . and any arbitrary collection of times t, t′, t′′ . . . :
Mi(t) ∪ Mi′(t′) ∪ Mi′′(t′′) . . . is sound.

A Constraint-Based Formalism for Consistency in Replicated Systems 337

Mergeability is not easy to ensure in a distributed setting. For instance, consider
Site 1 has multilog ({α},Ø, {init � α}) and Site 2 has multilog ({α}, {α →
α},Ø). They are both sound but not mergeable, as their union ({α}, {α →
α}, {init � α}) is not sound.

Mergeability suggests that for safety, it is enough if all sites agree upon a
deterministic decision strategy. For instance, a simple timestamp-based protocol
can guarantee mergeability by ensuring that all sites order actions uniformly,
using a global timestamp.

Under the EP liveness assumption, every submitted action and constraint
is eventually received everywhere, so in effect every site becomes an omniscient
observer. Then Mergeability reduces to the simpler Uniform Local Soundness
(ULS) invariant that site multilogs are sound at all times: ∀i, t : Σ(Mi(t)) �= Ø.

3.4 Eventual Consistency

A classical consistency property for optimistic replication systems is Eventual
Consistency. It has been used to argue informally about the correctness of
Grapevine [6] or Bayou [7].

Property 4. A system is Eventually Consistent if, if every client stops submit-
ting, and submitted actions are decided, then eventually every site will execute
the same schedule, up to equivalence, and hence have the same final value:

∃T : ∀i, t > T ⇒ No actions are submitted at i

=⇒
∃T ′,∀t′, t′′, i, j : t′ > T ′ ∧ t′′ > T ′

∧ Si(t′) ∈ Σ(Mi(t′)) ∧ Sj(t′′) ∈ Σ(Mj(t′′))
⇒ Si(t′) ≡ Sj(t′′)

Although eventual consistency simply captures the notion of replica convergence,
it says little about the safety invariants satisfied by the algorithm before the
system stabilises; these properties are captured by mergeability.

3.5 Common Monotonic Strong Prefix (CMSP)

Lamport’s replicated state machine approach [8] mandates that all site execute
exactly the same schedule. Clearly such a system is consistent, but this does not
work for optimistic protocols where Si(t) is not necessarily a prefix of Si(t + 1).
However, even in an optimistic system, over time some actions will stabilise and
form a prefix of all schedules. Such a system is consistent if the stable prefixes
of different sites are equivalent. The system makes progress if the prefix grows.

Formally, a schedule P is a prefix of schedule S, written PS, if S ≡ S′

where S′ is a schedule of the form P.Q for some sequence of actions Q.

Property 5. A replicated system Mi(t) (i varying over sites, t over time) sat-
isfies the Common Monotonic Strong Prefix (CMSP) Property if there exists a
function π(i, t) such that:

338 M. Shapiro, K. Bhargavan, and N. Krishna

1. π(i, t) is a prefix of all sound schedules: ∀S ∈ Σ(Mi(t)) ⇒ π(i, t)S.
2. The prefix is equivalent at all sites: π(i, t) ≡ π(j, t)
3. Theprefix ismonotonically non-shrinkingover time: t < t′ =⇒ π(i, t)π(i, t′)
4. Every known action eventually reaches the prefix: ∀α ∈ Ki(t) =⇒ ∃t′ :

sched(α, π(i, t′))

We show that the actions in a CMSP are stable, and that the set of stable actions
forms a CMSP [2].

3.6 Summary

We have presented four definitions of consistency, along with two liveness condi-
tions. An interesting result is that under uniform assumptions, these definitions
of consistency are equivalent. This may come as a surprise, since the opera-
tional definitions appear so different. In particular, under the eventual propa-
gation and eventual decision liveness conditions, uniform local soundness (and
hence mergeability) guarantees eventual consistency and the common monotonic
strong prefix property. We provide a formal proof in our technical report [2].

4 Replication Systems and Decision Strategies

Consistency requires an agreement between all sites, which in the general case
entails a consensus. For instance, mergeability forbids different sites from mak-
ing conflicting decisions, thus requiring a consensus between deciding sites. Yet
some practical protocols manage without this complexity, primarily by making
assumptions about the distribution of constraints across actions. Here, we survey
a few replication algorithms and their decision strategies.

Timestamped Replication. In timestamped replication, all actions are assumed to
have a unique timestamp. This timestamp induces a total → order on all actions
even before they are submitted to the system. No decisions need to be made since
all actions are guaranteed and ordered, hence stable, when submitted. Hence
mergeability is guaranteed by default. The replication algorithm thus reduces to
a simple propagation protocol that must satisfy the EP property.

A variation on the timestamped replication algorithm is one that uses the
“last-writer wins” decision strategy. It assumes that each action modifies a single
variable and when two actions modify the same variable, the action with the later
timestamp should be effectively executed last. So, when two actions are received
out of order, either they commute, or the one received later is converted to a no-
op (identity action). As we argued in Section 2.1, this strategy makes all actions
effectively commute, and trivially guarantees mergeability, while allowing sites
to execute actions without delay.

ESDS. The ESDS protocol [9] assumes that actions only have acyclic causal
constraints between them, of the form α�β, β → α. All actions are guaranteed at
submission, the only requirement is that their causal predecessors must execute
first. ESDS again reduces to a propagation algorithm that must satisfy the EP

A Constraint-Based Formalism for Consistency in Replicated Systems 339

property, while maintaining the invariant that whenever α is propagated to a
site, all β such that α � β have already been propagated. This enables each site
to easily keep track of the actions it can safely execute. Since actions do not
commute, ESDS requires a distributed agreement for serialisation. All the sites
participate in computing a total order for actions that is consistent with the
causal order.

Bayou. Many systems centralise consensus at a primary site. Bayou [7] assumes
that the shared data can be partitioned into independent databases, each with
its own primary site. Actions on different partitions commute and are assumed to
have no constraints between each other. Primaries make decisions for their own
actions and order them. Hence, the replication system consists of a propagation
protocol satisfying EP that ensures that all actions reach their primaries, a
primary decision strategy that ensures ED, and a propagation protocol that
distributes the primary decisions to all sites. By centralizing the decision-making
for each partition, mergeability for actions and constraints on a single partition
are ensured, and by disallowing constraints between partitions, all site multilogs
are mergeable.

Sufficient Conditions for Local Decision. If the constraint graph has some well-
behaved properties, some decisions can be safely decentralised; in Section 5 we
will derive an efficient decision protocol from the following observations. Consider
for instance an action α that is involved in a single constraint α � β: then it is
always safe to make α dead, regardless of the decision for β. Conversely, if α is
only involved in γ � α, it is always safe to make α guaranteed, regardless of γ.
This can be generalised to any acyclic � graph. Taking the example of a chain
α1 � . . . � αn it is safe to either: make α1 dead, then move on to α2, left to
right; or make αn guaranteed, then move on to αn−1, right to left. Since users
don’t like to see their actions aborted, guaranteeing in the right-left direction is
preferable.

The decision regarding each αi must consider → constraints. If αi is not
part of a → cycle, the decision may be either guarantee or make dead (although
guaranteeing is preferable). If it is part of a → cycle, and all other actions in
the cycle are guaranteed, the only sound decision is to make αi dead; otherwise
either decision is allowed.

Such local decisions may be sub-optimal. To ensure optimality, viz., that the
smallest possible number of actions is made dead, it is necessary to consider the
whole graph as in IceCube [4].

5 A Decentralised Replication Algorithm

Consider a travel booking system, where airlines and hotels each manage their
own primaries, but a user wants his hotel and flight bookings to happen atom-
ically (all-or-nothing). Previous systems do not support this scenario: for in-
stance Bayou imposes that all actions in a transaction have the same primary.

340 M. Shapiro, K. Bhargavan, and N. Krishna

We present a new algorithm, derived from the safe decision conditions from Sec-
tion 4, that works for arbitrary constraint graphs, hence does not suffer this
restriction.

5.1 Input Assumptions

We assume the invariant that when α is in Ki, all constraints such that α�β and
β → α (for any β) are known at i. Each action in A is eventually submitted at
some site. In addition, each action α is assigned a unique primary site, P (α). We
assume that two actions commute if and only if they have different primaries.
Conflicting (mutually-excluding) actions are represented by → cycles. We assume
the existence of a function victim(c) that deterministically chooses one action
from a subset of actions C.

Note that Bayou relies on the independence of primaries to enable distributed
decision making. Each primary waits for actions and makes them guaranteed or
dead without coordinating with other primaries. In contrast, our algorithm must
consider � and → constraints between actions on different primaries.

5.2 Propagation Module

We re-use the standard Bayou anti-entropy algorithm for propagating actions
and constraints to all sites. The algorithm satisfies the eventual propagation
property: every action and constraint submitted at some site eventually reaches
all other sites. In addition, it maintains the invariant from the previous section.

5.3 The Decision Algorithm

Every primary must know for every action whether it is guaranteed or dead, and
its execution order with respect to other non-commuting actions. To represent
these decisions, each site maintains a set Gi of guaranteed actions, a set Di of
dead actions, and a relation Oi ⊆ Gi ×Gi that totally orders all actions belong-
ing to the same primary. The normal propagation module reliably distributes
decisions among all sites.

Given these sets, the schedule executed at a site is any schedule that contains
all guaranteed actions, no dead actions, and obeys the MustHave constraints in
�i and the ordering constraints in →i and Oi. For uniform local soundness, such
a schedule must always exist. For eventual decision to hold, all actions in Ki

must eventually be included in Gi or Di.
The decision algorithm runs concurrently with the propagation module. An

action is first submitted to the system, then it becomes ready for a decision,
it may become guaranteeable, and finally it becomes guaranteed or dead. We
present the decision algorithm in terms of these states.

Ready Actions. An action α is said to be ready at its primary P (α) if

– All β such that α � β are known at P (α)
– All β such that β → . . . → α are known at P (α).

A Constraint-Based Formalism for Consistency in Replicated Systems 341

Each of these conditions imposes a wait before any decision on α can be taken.
A primary has a set of ready actions from which it chooses the next action to
make a decision on.

Guaranteeable Actions. Once all the constraints on an action α are collected,
the primary begins the process of discovering whether α can be guaranteed. In
particular, since it knows the closure of Before and MustHave relations, it can
detect all the decision cycles between actions. For an action to be guaranteeable,
all the actions it MustHave should be guaranteeable and at least one member of
each → cycle it belongs to should be dead. This stage comprises the following
steps:

– Compute the set M of all actions in a � cycle with α. Let the set of remaining
actions it MustHave be designated M ′.

– Compute the set C of action sets representing cycles of → involving α.
– Wait for all the actions in M ′ to become guaranteed. If any of these actions

becomes dead, α is now known to be dead; exit.
– For each cycle c in C, designate victim(c) to be dead. If this action is α, exit.
– Designate α as guaranteeable.4

– Send messages to all primaries with actions in M saying that α is guaran-
teeable.

We again rely on the propagation module to distribute the guaranteeable actions
to related primaries.

Guaranteed Actions. In the case of � cycles, all members of the cycle must agree
to either be guaranteed or be dead. The final steps before guaranteeing are as
follows:

– Wait until either some action in M is dead, or all actions in M are guaran-
teeable. If the former, α is now known to be dead; exit.

– Wait until all β such that β → . . . → α and P (β) = P (α) have been decided.
– Guarantee α and order it after all guaranteed β with P (β) = P (α)

Dead Actions. In the process of computing guaranteeable and guaranteed ac-
tions, we identify two conditions in which an action becomes dead: either when
one of the actions it MustHave is dead (either down a � chain, or in a � cycle),
or when it is designated as the victim in a → cycle.

The choice of action to make dead in a → cycle can be arbitrary. In general
it is safe to make one or more actions in such a cycle dead, as long as this is
propagated up any � chain. However, making too many actions dead, or choosing
the wrong action to make dead, can have a negative impact on performance.

Summary of Decision Algorithm. We now summarize the steps for deciding ac-
tion α. Assume α was submitted at site j.

4 Some systems may elect to make α dead at this point according to their own
strategies. For instance, Bayou checks a predicate, called the “dependency check,”
attached to each action.

342 M. Shapiro, K. Bhargavan, and N. Krishna

1. Through epidemic (or other) communication, α is eventually known at its
primary site i, P (α) = i.

2. The propagation module at site i communicates with other sites, discovering
all β such that: α � . . . � β ∨ β → . . . → α. The action becomes ready.

3. For each cycle c of → involving α, if victim(c) = α, then decide α is dead
(e.g., add constraint α → α) and exit.

4. Partition all β such that α � β, into subsets M and M ′, according to the
following property: actions in M are such that β � α, those in M ′ are not.

5. Wait until: either some action in M ′ is known to be dead; or all actions in
M ′ are known to be guaranteed. In the former case, α is now known to be
dead; exit. In the latter, α is now guaranteeable.

6. To all actions in M , send a message saying that is α is guaranteeable.
7. Wait for either some action in M to be known to be dead, or for all actions

in M to be guaranteeable. In the former case, α is now known to be dead;
exit. In the latter, decide α is guaranteed (e.g., add init � α).

8. The final execution order of α is given by its → relations. Wait for all β such
that β → . . . → α ∧ P (α) = P (β). Execute α after all such actions that are
guaranteed.

5.4 Correctness

To prove the consistency and convergence of the algorithm, we rely on eventual
propagation, on eventual decision, and on uniform local soundness.

The propagation module is fashioned on standard anti-entropy protocols and
reliably delivers all actions, constraints, and decisions. To prove that the decision
algorithm eventually decides every action, we show that all the wait conditions in
the algorithm are eventually satisfied, i.e., there are no wait-for cycles. For uniform
local soundness, we argue that every decision extends the set of constraints in a
sound manner by performing a step-by-step case analysis on the algorithm.

5.5 Extensions for Partial Replication

Up to now we assumed that all data is replicated at every site. Let us now
consider partial replication: shared data is partitioned into n disjoint databases
D1, . . . , Dn, and we allow a site to replicate an arbitrary subset of the databases
(as long as every database is present on at least one site). Actions are cor-
respondingly partitioned into subsets A1, . . . , An. A site replicating Di should
receive submitted actions that are in Ai, and the constraints that involve such
actions. It does not need to receive actions or constraints for databases it does
not replicate.

Both our correctness conditions and our distributed algorithm extend natu-
rally to partial replication with constraints across partitioned data. The analysis
and presentation of this modified algorithm is left to a future paper; here we
sketch some details.

The � constraint is not adequate for partial replication, because if α � β,
then a site that executes α must also know β. Therefore we define a version
that is “remotable” across partitions, Split MustHave, noted �� ⊆ A × A. The

A Constraint-Based Formalism for Consistency in Replicated Systems 343

definitions of mergeability and eventual consistency can then be extended in
terms of this new � operator.

The distributed algorithm stated above uses full replication only in computing
the closure (and cycles) of � and →. Under partial replication, this computation
must be done in a distributed manner. We adopt Manivannan and Singhal’s
distributed knot detection algorithm [10] for this purpose.

6 Related Work

IceCube is a general-purpose system supporting optimistic replication and co-
operative work [4], based on actions and constraints. Experience with IceCube
shows that relatively complex applications can be readily encoded in this frame-
work. Its decision algorithm is centralised and computes an optimal schedule
given an arbitrary graph of actions and constraints. Although the problem is
NP-hard, IceCube uses efficient heuristics and manages to execute in almost
linear time in the common case.

Our survey of optimistic replication [1] motivated us to understand the com-
monalities and differences between protocols.

Chong and Hamadi [11] proposed a decentralised decision algorithm based
on constraint satisfaction principles, which inspired our algorithm in Section 5.

The relations between consistency and ordering have been well studied in the
context the causal dependence relation [12]. Our simpler and modular primitives
clarify and generalise this analysis. The primitives are common to all protocols, as
are the significant events of actions becoming guaranteed, dead, serialised, decided
and stable.

Lamport’s state-machine replication [8] broadcasts actions to all sites and
ensures consistency because each site executes exactly the same schedule. Our
CMSP property generalises this definition. Sousa et al. [13] generalise Lamport’s
state-machine approach to the commitment of partially replicated databases.

Much formal work on consistency focuses on serialisability. Mergeability con-
stitutes a generalisation of serialisability.

The X-Ability theory [14] allows an action to appear several times in the
same schedule if it is idempotent; for instance, retrying a failed action is allowed.
Schedules are tested for equivalence after filtering out such duplicates. It would
be interesting to encode their approach in our formalism, and analyse their
assumptions, which are quite strong. This is left for future work.

Our approach has many similarities with the Acta framework [15]. Acta pro-
vides a set of logical primitives over execution histories, including presence of
an event, implication, and causal dependence and ordering between events. Acta
makes assumptions specific to databases, such as the existence of transaction
commit and abort primitives. The Acta description language is more powerful
and is used to analyse protocols at a finer granularity. On the other hand, the
action-constraint language is simpler; it is straightforward to translate most of
the Acta dependencies into our language. Acta takes serialisability as the defi-
nition of consistency, and does not deal with partial replication.

344 M. Shapiro, K. Bhargavan, and N. Krishna

7 Conclusions and Future Work

We presented a formalism for describing replication protocols and consistency.
Our significant subsets are common to the many replication protocols that can
be described in our language. We generalise a number of classical formulations of
the consistency property and prove them equivalent. This underscores the deep
commonalities between protocols that appear quite different on the surface. Al-
though consistency entails global consensus in the general case, we exhibited
sufficient conditions for making local decisions. We derived a new distributed
decision algorithm, which supports multiple primaries, constraints across pri-
maries, and can be extended to handle partial replication. Our results apply to
a broad range of protocols, both pessimistic and optimistic.

This paper only presented the intuitions; the interested reader will find a fully
formal treatment in our technical report [2]. That report also contains a detailed
description for a variety of diverse classical replication protocols, including con-
sistency proofs.

The formalism rests upon only two binary constraints. This makes it easy to
prove properties, and is powerful enough to incorporate all the classical replica-
tion protocols. However the semantics of some applications (e.g., a shared bank
account) demand more powerful primitives. A possible direction is to generalise
constraints to be n-ary and our significant subsets to patterns. Then the crucial
safety property would be that the guaranteed and dead subsets are disjoint.

Acknowledgments

We thank Fabrice le Fessant for his participation to early stages of this work,
Yek Chong and Youssef Hamadi for their contributions on a decentralised deci-
sion algorithm, and Tony Hoare, Miguel Castro and Patrick Valduriez for their
encouragement and suggestions.

References

1. Saito, Y., Shapiro, M.: Optimistic replication. Computing Surveys (2005).
2. Shapiro, M., Bhargavan, K.: The Actions-Constraints approach to replication:

Definitions and proofs. Technical Report MSR-TR-2004-14, Microsoft Research
(2004).

3. Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D.: Achieving convergence, causality
preservation, and intention preservation in real-time cooperative editing systems.
Trans. on Comp.-Human Interaction 5 (1998) 63–108.

4. Preguiça, N., Shapiro, M., Matheson, C.: Semantics-based reconciliation for col-
laborative and mobile environments. In: Proc. Tenth Int. Conf. on Coop. Info. Sys.
(CoopIS), Catania, Sicily, Italy (2003)

5. Shapiro, M., Preguiça, N., O’Brien, J.: Rufis: mobile data sharing using a generic
constraint-oriented reconciler. In: Conf. on Mobile Data Management, Berkeley,
CA, USA (2004).

6. Birell, A.D., Levin, R., Needham, R.M., Schroeder, M.D.: Grapevine: An exercise
in distributed computing. Communications of the ACM 25 (1982) 260–274

A Constraint-Based Formalism for Consistency in Replicated Systems 345

7. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser,
C.H.: Managing update conflicts in Bayou, a weakly connected replicated storage
system. In: Proc. 15th ACM Symposium on Operating Systems Principles, Copper
Mountain CO (USA), ACM SIGOPS (1995).

8. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21 (1978) 558–565

9. Fekete, A., Gupta, D., Luchangco, V., Lynch, N., Shvartsman, A.: Eventually-
serializable data services. Theoretical Computer Science 220 (1999) 113–156

10. Manivannan, D., Singhal, M.: An efficient distributed algorithm for detection
of knots and cycles in a distributed graph. IEEE Transactions on Parallel and
Distributed Systems 14 (2003) 961–972

11. Chong, Y., Hamadi, Y.: Distributed IceCube. Private communication (2004)
12. Ramamritham, K., Chrysanthis, P.K.: A taxonomy of correctness criteria in

database applications. VLDB Journal 5 (1996) 85–97
13. Sousa, A., Oliveira, R., Moura, F., Pedone, F.: Partial replication in the database

state machine. In: Int. Symp. on Network Comp. and App. (NCA’01), Cambridge
MA, USA, IEEE (2001) 298–309

14. Frølund, S., Guerraoui, R.: X-Ability: A theory of replication. In: Symp. on
Principles of Dist. Comp. (PODC 2000), Portland, Oregon, USA, ACM SIGACT-
SIGOPS (2000)

15. Chrysanthis, P.K., Ramamritham, K.: ACTA: The SAGA continues. In Elma-
garmid, A.K., ed.: Database Transaction Models for Advanced Applications. Mor-
gan Kaufmann (1992) 349–397

Analyzing Convergence in Consistency Models
for Distributed Objects

Francisco J. Torres-Rojas1 and Esteban Meneses2

1 Costa Rica Institute of Technology (I.T.C.R.) and
University of Costa Rica (U.C.R.)

torres@ic-itcr.ac.cr
2 Costa Rica Institute of Technology and PrediSoft,

Costa Rica
emeneses@ic-itcr.ac.cr

Abstract. At instant t, two or more sites could perceive different values
for the same distributed object X. However, depending on the consistency
protocol used, it might be expected that, after a while, every site in
the system should see the same value for this object. In this paper, we
present a formalization of the concept of convergence and analyze its
relationships with several consistency models. Among other things, we
claim that, by itself, sequential consistency is not a convergent protocol.

1 Introduction

In order to deal with several, possibly different, copies or replicas of the same
objects in diverse sites of a distributed systems, it is necessary to define a con-
sistency protocol. One would expect that the consistency protocol should offer
some kind of guarantees about the convergence, at the end of the day, of the
shared objects. Thus, convergence is almost understood as a requirement for the
correctness of a distributed computation. However, a consistency model such
as sequential consistency [15], which is usually referred as “strong consistency”,
does not contain nor imply, by itself, convergence of the shared objects. It is
our feeling that many excellent implementations of this consistency model are
actually aiming at accomplishing convergence of the shared information, and not
to just satisfying the strict (and minimal) mathematical requirements of sequen-
tial consistency, which might have blurred out the line between convergence and
consistency. In this paper, we establish precise definitions of what we understand
by convergence and analyze several well-known consistency models to the light
of these definitions.

Convergence is an idea found in multiple areas of science. It is often related to
some kind of stability. Although operations made in the past could have created
certain disorganization in the arrangement of the analyzed system, there is com-
fort in knowing that our object of study achieves a stable behavior after a given
instant. Mathematically, the definition of convergence is usually associated to a
sequence of terms. For example, in real numbers, the sequence {xn} converges

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 346–356, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Analyzing Convergence in Consistency Models for Distributed Objects 347

to x if, for every ε > 0 there exist some natural number m such that for n ≥ m
it happens that |xn − x| < ε. As it can be observed, the number m imposes the
limit after which, everything seems to be “stable”. In this case, the stability of
the sequence is characterized by being sufficiently close to number x.

In the context of groupware systems, some authors [9, 18] define convergence
by looking at the final result of a work session. Operations made by users could
arrive at different times to the other sites, executing possibly in different orders.
However, it is required that the final result be exactly the same for every user.
It is also important offering convergence in mobile computing applications [10],
specially when disconnection periods are considered. In this case, after operations
(possibly conflicting) are made over different replicas of the same object, it is
required that all replicas converge to the same state after all the processes have
been reconnected for sufficiently long. This is one of the key ideas that we explore
in this paper: convergence in the values of the shared objects in a distributed
system for a lapse of time. Moreover, we consider subsets of shared objects and
also unbounded time ranges.

Our approach to understanding convergence in distributed systems is intro-
duced in Section 2. We study the convergence properties of some consistency
models in Section 3. Finally, the conclusions of this paper are presented in
Section 4.

2 Convergence Model

Consider the distributed history shown in Figure 1. After X is updated by one
of the sites, the new value is communicated, with some delay, to the other site.
Site 1 updates X at time t1 giving it the value 3 (which was 0 initially). It is not
until time t2 that Site 2 discovers that X has been updated. However, at time t3
Site 2 makes a new change to X, giving it the value of 7. Let’s say that news of
this change arrive too late to Site 1, and by time t4, Site 1 has updated again X
to value 4. Similarly, Site 2 does not perceive this last change and updates X at
time t5 to value 6. At time t6 Site 1 realizes that X has a new value and from
here on, both sites agree on the value of X. Thus, finally, convergence has been
reached.

Site 1

ttttt

W (X)6
2

W (X)4

W (X)7
2

11
W (X)3

65432

Time

1

Site 2

t

Fig. 1. Two sites in a convergent execution

348 F.J. Torres-Rojas and E. Meneses

Site 1

6

5

4

3

2

1

4t 1 t t t t32 5 t 6

Time

V
al

ue

Site 2
7

Fig. 2. Convergence of two sites

Figure 2 plots the values that X takes at every instant, as perceived by each
site, and it shows that there is convergence after time t6. Nevertheless, it could
be claimed that the time intervals [0,t1],[t2,t3] and [t6,+∞] form a set of ranges
where convergence was achieved, we refer to these time ranges as convergence
frames (see Section 2.3). Our formal definition for convergence will capture these
two kinds of stability ranges: the one obtained after the last update to some
distributed object, and the time frames where two or more sites agree on the
same value for a particular object.

2.1 Trivial Convergence

Definition 1. An execution in a distributed system is trivially convergent
over object X if all sites have agreed to assign a particular value for X after
time t. If the execution is trivially convergent over every possible object, we say
that the execution is trivially convergent.

This is the less interesting case for convergence, since a situation like this
hardly represents the general case, and even though the system is reaching con-
vergence in the value of X, this does not imply correctness in the execution.

2.2 Absolute Convergence

Figure 3 shows a simple distributed computation, with 2 sites and one shared
object X. There are a series of writes and reads executed by both sites, and,
at several times during execution, sites see different values for object X. But, at
some time t after event w1(X)4, which happens to be the last actualization to X
in the whole execution, all reads to object X executed by any site should return
the value 4. Thus, after time t, this system has converged regarding the value
of object X. The intuition behind absolute convergence is that, at the end of the
day, after the writes stop, every site involved in a distributed computation will
agree on the same values for the same objects. Notice that this is similar to
the concept of eventual consistency, but it is our purpose to distinguish between
convergence and consistency.

Analyzing Convergence in Consistency Models for Distributed Objects 349

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

t

2
R (X) 0R (X) 0R (X) 0R (X) 0

1
W (X) 3

C (X)

C (X)W (X) 4
1

2
R (X) 3

1
R (X) 3

W (X) 2
22

R (X) 0

W (X) 1
1

W (X) 3
1

Site 1

Site 2

Time

Fig. 3. Convergent cut

Following the lines of consistent cuts [16], we define a convergent cut this
way:

Definition 2. We say that a convergent cut over object X is a set of phan-
tom events C={C1,C2,...,CN}, where every Ci is inserted in local history Hi,
all at the same time t. All the Ci are read operations over X that would return
exactly the value written by the latest write into object X that occurred before t.

Definition 3. An execution in a distributed system is absolutely convergent
over object X if at any arbitrary time after t, which itself occurs after the
last write to object X, a convergent cut over object X can be inserted. If the
execution is absolutely convergent over every possible distributed object, we say
that the execution is absolutely convergent.

If an execution is absolutely convergent over object X at time t, i.e., we can
insert a convergent cut C at time t, it must be true that the same cut C can
be inserted, with identical results, at any time u > t. Now, if there are M
shared objects Xj , 1 ≤ j ≤ M , and the execution is absolutely convergent for
all the M objects, then for every object we associate a minimum time tj where
its corresponding convergence cut can be inserted. Therefore, the distributed
system is absolutely convergent at any time after t = max(t1, t2, ..., tM).

2.3 δ-Convergence

It is typically desirable that the lapse before an update is communicated to
everybody else in a distributed system be as short as possible. However, in a
very active system with frequent writes to the same shared objects, it is normal
that the values of these objects diverge during execution. Even under these
circumstances, we could expect that after the “last” write, as mentioned in
the previous section, the system reaches absolute convergence. Besides, if the
system, after considering factors such as overhead, communication delays, and
consistency protocols, can guarantee that an update is known to the complete
system (either by updating or by invalidations) in at most δ units of time, the
execution might manifest intervals where the system is evidently convergent in
relation to some objects.

Now, we claim that if the lapses between multiple consecutive writes to the
same object are shorter than the parameter δ, there was not enough time for

350 F.J. Torres-Rojas and E. Meneses

propagating the values set by all the writes, but the system can still be classified
as convergent. Conversely, if two consecutive writes to the same object X occur
more than δ units apart and we are not able to insert a convergent cut for this
object at least δ units of times after the first write, the system is not convergent.
This is the intuition of what we called δ-convergence:

Definition 4. An execution satisfies δ-convergence if it can be guaranteed
that, at any time when the lapse between two consecutive writes to the same
object X is greater than δ units of time, a convergent cut over X can be inserted
δ units of time after the first write.

Thus, in a δ-convergent execution, if X is updated at time t and the next
update to this object, anywhere in the system, occurs at time u, with t + δ < u,
there is an interval [t + δ,u] where all sites in the system would perceive, if they
read it, the very same value for object X. We call this interval a convergence
frame for object X. On the other hand, if t + δ > u, we might not define such a
convergence frame, but we still claim that the system is δ-convergent. In other
words, the system is allowed to be “unstable” for at most δ units of time after
a write, without being considered non-convergent.

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

Time

Site 2

Site 1
1

W (X) 3
1

W (X) 1

R (X) 0
2 2

W (X) 2

R (X) 3
1

R (X) 3
2

1
W (X) 4C (X)

C (X)

W (X) 3
1

R (X) 0R (X) 0R (X) 0R (X) 0
2

t

convergence frame

δ

Fig. 4. Convergence frame

Figure 4 shows some of the previous concepts. If δ units of time after operation
w1(X)3 occurred, we are able to insert a convergent cut associated to object X
(which means that if every site in the system would read X all they would find
the same value), this establishes a convergence frame for object X. Of course,
another update to object X can be made thereafter, but until that new update
the system has converged on the value of X. Extending this concept to several
objects is straightforward.

3 Convergence and Consistency Models

Consider a distributed system with N sites sharing objects. The global history H
of this system is the partially ordered set of all operations occurring at all sites.
Hi is the total ordered set or sequence of operations that are executed on site

Analyzing Convergence in Consistency Models for Distributed Objects 351

i. In order to simplify, we assume that all operations are either read or write,
that each value written is unique, and that all the objects have an initial value
of zero.

If D is a set of operations, then a serialization of D is a linear sequence S
containing exactly all the operations of D such that each read operation to a
particular object returns the value written by the most recent (in the order of
S) write operation to the same object. If ≺ is an arbitrary partial order relation
over D, we say that serialization S respects ≺ if ∀ a, b ∈ D such that a ≺ b
then a precedes b in S .

3.1 Convergence and Linearizability

The read and write operations ∈ H take a finite, non-zero time to execute,
so there is a time elapsed from the instant when a read or write “starts” to
the moment when such operation “finishes”. Nevertheless, for the purposes of
this paper, we associate to each operation an instant (at some point between
the start and the end), called the effective time of the operation. If a has an
effective time previous to the effective time of b we denote this as a <E-T b.

Definition 5. History H satisfies Linearizability (LIN) if there is a serializa-
tion S of H that respects the order <E-T [11].

If serialization S respects the order <E-T, this means that any read to a
shared object X returns a value corresponding to the most recent write on X.
Therefore, LIN is an inherently convergent protocol. It is easy to see that, under
LIN, a convergent cut associated to each object can always be inserted right
after the last write into that object, which proves that the execution is absolutely
convergent (see Definition 3). Similarly, no matter how close two writes to the
same object are, convergent cuts can always be inserted immediately after every
write, which proves that the execution satisfies δ-convergence for any value
of δ.

3.2 Convergence and Sequential Consistency

If a occurs before b in Hi we say that a precedes b in program order, and denote
this as a <PROG b.

Definition 6. History H satisfies Sequential Consistency (SC) if there is a seri-
alization S of H that respects the order <PROG for every site in the system [15].

Thus, SC does not require that a read operation returns the most recent
value with respect to real-time, but just that the result of any execution is the
same as if the operations of all sites can be arranged in a serialization S that
respects the partial order <PROG.

We claim that SC does not imply convergence. Given the nonexistence of
real-time requirements in this consistency model, sites are not actually forced
to update or invalidate its local objects unless that this is required to build S
correctly. However, there is the very common misconception of assuming that

352 F.J. Torres-Rojas and E. Meneses

2
2

Q

1
Q...

...
22

R (X) 1R (X) 1

R (X)2 R (X)2 R (X)2
1 11

R (X)2

2
R (X) 1

1

W (X) 1

W (X) 2

Site 1

Site 2

Time

1

Fig. 5. A sequentially consistent history that does not converge

SC guarantees convergence. Normally, we use the terms “sequential consistency”
and “strong consistency” interchangeably, but this probably is because many of
the protocols used to induce SC on the execution are actually imposing more
requirements (with additional overhead) than what really are needed to satisfy
the definition of SC in [15].

Figure 5 presents a simple example of a distributed execution that satis-
fies SC, but whose shared objects never converge. Site 2 writes value 1 into
object X, and, some time later, Site 1 writes value 2 into object X. The follow-
ing read on Site 1 returns 2, while the next read operation on Site 2 returns
the old value 1. Notice that, considering only these four events, the history, so
far, satisfies SC: just take S = w1(X)2, r1(X)2,w2(X)1, r2(X)1. This serializa-
tion does not respect real-time, but fulfills the requirements for SC [15]. Now,
nothing forces Site 1 and Site 2 to agree, at any point in the future, on the
value of X. Consider operation sets Q1 and Q2, both containing just reads over
object X, one executing on Site 1 and the other executing on Site 2, respec-
tively. The value retrieved by operations in Q1 is 2, while the value retrieved
by operations in Q2 is 1. It can be proved by induction over |Q1| and |Q2|
that this distributed history is sequentially consistent. A possible serialization is
S = w1(X)2, r1(X)2, {Q1},w2(X)1, r2(X)1, {Q2}. Thus, Sites 1 and 2 can exe-
cute an infinite number of reads over object X, satisfy SC, and never converge
to the same value. In this example, absolute convergence is not guaranteed by
SC, and, if we choose w1(X)2 and w2(X)1 as occurring more than δ units of time
apart, neither δ-convergence is satisfied. It is easy to build an example more com-
plex than Figure 5, involving multiple sites, shared objects and values written,
where SC is respected, and where absolute convergence and δ-convergence are
never met.

3.3 Convergence and Causal Consistency

Let Hi+w be the set of all the operations in Hi plus all the write operations in
H. The partially ordered happens-before relationship “→” for message passing
systems as defined in [14] can be modified to order the operations of H. Let a,b
and c ∈ H, we say that a → b, i.e., a happens-before (or causally precedes) b,
if one of the following holds:

Analyzing Convergence in Consistency Models for Distributed Objects 353

1. a and b are executed on the same site and a is executed before b.
2. b reads an object value written by a.
3. a → c and c → b.

Definition 7. History H satisfies Causal Consistency (CC) if for each site i
there is a serialization Si of the set Hi+w that respects causal order “→” [3].

CC is a consistency model weaker than SC, i.e., every sequentially consis-
tent execution is also causally consistent, but the reverse is not true. It can be
implemented efficiently [3, 19]. CC requires that all causally related operations
be seen in the same order by all sites, while different sites could perceive con-
current operations in different orders [3]. CC has been shown to be sufficient
for applications that support asynchronous sharing among distributed users. It
has been explored both in message passing systems [8] and in shared memory
and object systems [2, 4, 5, 12, 13, 19]. Relations between SC and CC have been
studied in [3, 17]. Given the existence of concurrent writes in an execution, CC
can not guarantee absolute convergence nor δ-convergence.

3.4 Convergence and Timed Consistency

Timed Consistency (TC), as proposed in [20], requires that if the effective time
of a write is t, the value written by this operation must be visible to all sites in
the distributed system by time t + ∆, where ∆ is a parameter of the execution.

Definition 8. Let a, b ∈ D ⊆ H with effective times t1 and t2, respectively, be
two operations over the same object X. We say that a <∆ b if:

1. Both a and b are write operations and t1 < t2, or
2. a is a write operation, b is a read operation and t1 < (t2 − ∆).

Definition 9. History H satisfies Timed Consistency (TC) if there is a serial-
ization S of H that respects the partial order <∆ [20].

Under TC, a read does not return stale values if there are more recent values
that have been available for more than ∆ units of time. It can be seen that when
∆ = 0, TC becomes LIN. So, TC can be considered as a generalization or
weakening of LIN. Ordering and time are two different aspects of consistency.
One avoids conflicts between operations, the other addresses how quickly the
effects of an operation are perceived by the rest of the system [6, 20].

The execution showed in Figure 6 satisfies SC and CC. Up to the second
operation of Site 1, the execution satisfies TC for the value of ∆ presented in
this figure, but, by that same instant, LIN is no longer satisfied. After this point,
the execution neither satisfies TC because there are read operations in Site 1
that start more than ∆ units of real-time after Site 0 writes the value 7 into
object X and these read operations do not return this value.

Definition 10. History H satisfies Timed Sequential Consistency (TSC) if
there is a serialization S of H that simultaneously respects the partial order
<PROG and the partial order <∆ [20].

354 F.J. Torres-Rojas and E. Meneses

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

Site 0

Site 1

Time

r(X)1r(X)1r(X)1r(X)1w(X)1

w(X)7

∆

Fig. 6. Distributed History does not satisfy TC

Definition 11. History H satisfies Timed Causal Consistency (TCC) if for
each site i there is a timed serialization Si of Hi+w that simultaneously respects
causal order → and the partial order <∆ [20].

We claim that TC, TSC and TCC do guarantee convergence. Figure 7
shows the same execution presented previously in Figure 5, but including the
requirements of TC. As it can be appreciated, after operation w1(X)2 there is
an interval of ∆ units of time units before Site 2 must, necessarily, be aware
of this change. However, after this point both sites know the actual value of X,
and, therefore, all the reads in Q1 and Q2 will report the value 2.

Theorem 1. TC satisfies absolute convergence and δ-convergence.

Proof. At most ∆ units of time after the last write for every shared object,
TC guarantees that the updated value is known to every site in the distributed
system, therefore, we can insert a convergent cut over each shared object ∆
units of time after the corresponding last write operation, which according
to Definition 3 proves that the execution satisfies absolute convergence. Now,
it should be easy to see that δ-convergence is guaranteed for the value
δ = ∆.

2

convergence cut

∆

R (X) 2R (X) 2
2

1

Time

Site 2

Site 1
W (X) 2

W (X) 1

1

R (X) 1
2

R (X)2
1 11

R (X)2R (X)2R (X)2

2 2
...

... Q
1

Q

Fig. 7. A timed consistent history

Analyzing Convergence in Consistency Models for Distributed Objects 355

4 Conclusions and Future Work

Convergence is a very useful and important notion in distributed systems. In
this paper, we present a formalization of the concept and use our definitions
to analyze the behavior of several well-known consistency protocols. We found
that Linearizability and the variants of Timed Consistency, due to real-time
considerations included in the definition of these models, guarantee absolute
convergence and δ-convergence as defined in this paper. On the other hand,
Causal Consistency and Sequential Consistency can not make such a claim.

Given the popularity of SC, the last affirmation can be surprising. This can
be handled in a pessimistic way (i.e., worrying because a protocol that induces
SC, not necessarily implies convergence unless that it explicitly includes such
considerations), or in an optimistic way (i.e., taking advantage of the lack of
mandatory convergence of SC to obtain more efficient consistency protocols
that guarantee the correctness of applications that only require the minimal
version of SC).

For future work we want to explore efficient implementations of TC. We must
also study the implications of our notions of convergence in several applications
such as distributed shared memories, collaborative systems, mobile computing
and distributed databases. Besides, we still need to fully understand the behavior
of a protocol such as TCC, because, obviously there is a performance impact
when we move from CC to TCC.

References

1. Adve, S. and Gharachorloo, K., Shared Memory Consistency Models: A Tutorial.
Western Research Laboratory, Research Report 95/7, 1995.

2. Ahamad, M., Torres-Rojas, F., Kordale, R., Singh, J. and Smith, S.,Detecting
Mutual Consistency of Shared Objects, Proc. of International Workshop on Mobile
Systems and Applications, 1994.

3. Ahamad, M., Neiger, G., Burns, J., Kohli., P. and Hutto, P. Causal memory:
definitions, implementation and programming. Distributed Computing. September,
1995.

4. Ahamad, M., Bhola, S., Kordale, R. and Torres-Rojas, F., Scalable Information
Sharing in Large Scale Distributed Systems, Proceedings of the Seventh SIGOPS
Workshop, August 1996.

5. Ahamad, M., Raynal,M. and Thiakime, G., An adaptive architecture for causally
consistent services, Proc. ICDCS98, Amsterdam. 1998.

6. Ahamad, M. and Raynal, M., Ordering and Timeliness: Two Facets of Consis-
tency?, Future Directions in Distributed Computing, 2003.

7. Attiya, H and J. Welch, J., Sequential Consistency vs. Linearizability, ACM Trans-
actions on Computer Systems. Vol 12, Number 12. May 1994.

8. Birman,K., Schiper, A. and Stephenson, P.,Lightweight Causal and Atomic Group
Multicast, ACM Transactions on Computer Systems, Vol 9, No. 3, pp. 272-314,
Aug. 1991.

9. Ellis, C.A. and Gibbs, S.J. Concurrency Control in Groupware Systems. In ACM
SIGMOD’89 proceedings,pages 399-407, 1989.

356 F.J. Torres-Rojas and E. Meneses

10. Guerraoui, R. and Hari, C. On the Consistency Problem in Mobile Distributed
Computing. ACM POMC, 2002.

11. Herlihy, M. and Wing, J. Linearizability: A Correctness Condition for Concurrent
Objects. ACM Transactions on Programming Languages and Systems. Vol 12(3),
July 1990.

12. Kordale, R. and Ahamad, M. A Scalable Technique for Implementing Multiple
Consistency Levels for Distributed Objects, Proceedings of the 16th. International
Conference in Distributed Computing Systems. May 1996.

13. Kordale, R. System Support for Scalable Services, Ph.D. dissertation, College of
Computing, Georgia Institute of Technology. January 1997.

14. Lamport, L. Time, Clocks and the Ordering of Events is a Distributed System.
Communications of the

15. Lamport, L. How to make a Multiprocessor Computer that correctly executes Mul-
tiprocess Programs. IEEE Transactions on Computer Systems, C-28(9), 1979.

16. Mattern, F. Virtual Time and Global States of Distributed Systems. Proceedings
of the International Workshop on Parallel and Distributed Algorithms, 215-226,
1989.

17. Raynal, M. and Schiper, A., From Causal Consistency to Sequential Consistency in
Shared Memory Systems, Proceedings 15th Int. Conference FST & TCS (Founda-
tions of Software Technology and Theoretical Computer Science), Springer-Verlag
LNCS 1026, pp. 180-194. Bangalore, India, Dec. 1995.

18. Sun, C. et al. Achieving convergence, causality-preservation, and intention-
preservation in real-time cooperative editing systems. ACM Transactions in
Computer-Human Interaction, 5(1):63-108, 1998.

19. Torres-Rojas, F. J., Ahamad, M. and Raynal, M. Lifetime Based Consistency Pro-
tocols for Distributed Objects. Proc. 12th International Symposium on Distributed
Computing, DISC’98, Andros, Greece, September 1998.

20. Torres-Rojas, F. J., Ahamad, M. and Raynal, M. Timed Consistency for Shared
Distributed Objects. Annual ACM Symposium on Principles of Distributed Com-
puting PODC’99, Atlanta, Georgia, 1999.

Directional Versus Omnidirectional Antennas
for Energy Consumption and k-Connectivity

of Networks of Sensors�

Evangelos Kranakis1, Danny Krizanc2, and Eric Williams2

1 School of Computer Science, Carleton University,
Ottawa, Ontario, K1S 5B6, Canada

2 Department of Mathematics and Computer Science,
Wesleyan University, Middletown CT 06459, USA

Abstract. A network is k-connected if it remains connected after the
removal of any k − 1 of its nodes. Assume that n sensors, modeled here
as (omni)directional antennas, are dropped randomly and independently
with the uniform distribution on the interior of a unit length segment
or a unit square. We derive sufficient conditions on the beam width of
directional antennas so that the energy consumption required to main-
tain k-connectivity of the resulting network of sensors is lower when
using directional than when using omnidirectional antennas. Our the-
oretical bounds are shown by experiment to be accurate under most
circumstances. For the case of directional antennae, we provide simple
algorithms for setting up a k-connected network requiring low energy.

1 Introduction

Communications networks are eliminating the barriers of distance and time
by providing rapid access to information. New sensor systems currently un-
der development add to these characteristics by providing the ability to func-
tion, autonomously, in unusually extreme and complex environments. They also
have numerous applications in tele-medicine, transportation, tracking endan-
gered species, detecting toxic agents, as well as monitoring the security of civil
and engineering infrastructures.

Sensors are low power communication and sensing devices that can be embed-
ded in the physical world (see Kahn et al [8], Sohrabi et al [21], Estrin et al [5]).
Large scale sensor networks are formed by sensors that can be automatically
configured after being dropped over a given region. It is expected that the cost
of such devices will drop significantly in the near future (see [14], Agre et al [1],
and Warneke et al [24]). Sensor nodes enable autonomy, self-configurability, and

� Research of the first author supported in part by NSERC (Natural Sciences and En-
gineering Research Council of Canada) and MITACS (Mathematics of Information
Technology and Complex Systems) grants.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 357–368, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

358 E. Kranakis, D. Krizanc, and E. Williams

self-awareness, in the sense that they can assemble themselves automatically,
adapt dynamically to failures, manage movement, and react to changes in net-
work requirements. However, malfunctioning of individual sensors may well lead
to operational failures resulting either in a disconnected network or failing to
monitor a certain subregion.

Our paper addresses the problem of comparing the energy consumption be-
tween networks of omnidirectional and directional sensors under the assumption
of maintaining network connectivity. Assume n sensors are dropped randomly
and independently with the uniform distribution over a region (which here we
consider either a unit length segment or a unit square). A network is k-connected
if it remains connected after the removal of any k−1 of its nodes. We investigate
the impact of the size of the reachability radius of the sensors (given as a function
of the total number n of sensors and the number k of faults) on the k-connectivity
of the sensor system. We use this analysis to compare the energy consumption
required for the k-connectivity of the resulting sensor network when using omni-
directional versus directional sensors. Our results show that significant savings
are possible when directional antennae are used over omni-directional antennae,
assuming the beam width of the directional antennae is sufficiently small. We
compute theoretical bounds on the maximum beam width allowable in order
to save energy and compare our theoretical results to experimentally derived
bounds. As part of the derivation of our upper bound for directional antennae,
we present simple algorithms for achieving k-connectivity in sensor networks.

1.1 Model of Sensors

We consider two types of antennas: omnidirectional and directional. The former
transmit their signal over a 360 degree angle and, for the purposes of this paper,
any sensor within the reachability radius of this sensor will receive the signal.
The latter are directional antennas that can be aimed and have a given beam
width α. They can be thought of as either being on a “swivel” that can be
oriented towards a target or equivalently that each such sensor has multiple
antennas each occupying a sector with beam width α so as to cover a 360 degree
angle (in fact �2π/α� of these antennas would suffice). However, the sensor does
not necessarily have to activate all these antennas at the same time. Instead, it
will aim at a neighboring “target region or node” by activating the appropriate
antenna so as to cover a region in a given direction.

1.2 Energy Consumption

In any wireless network signals must be transmitted and received with sufficient
strength in order to be properly detected and interpreted. For any kind of un-
guided, wireless media the signal disperses and falls off with distance over the
transmission medium. Although attenuation is in general a complex function of
the distance and the makeup of the atmosphere, a significant cause of signal
degradation is simply free space loss which is due to the fact that the signal
spreads over an ever larger area. For an ideal isotropic antenna free space loss is
measured as the ratio of the transmitted to received power and is equal to (4πd)2

λ2 ,

Directional Versus Omnidirectional Antennas 359

where λ is the carrier wavelength, and d is the propagation distance between an-
tennas. In particular, the energy required by an antenna to reach all hosts within
its radius is proportional to the area covered. Thus, with a reachability radius r
an omnidirectional antenna will consume power proportional to πr2 (the area of
a circle with radius r) while a directional antenna with beam width α radians
will consume power proportional to α

2 r2, whereby we assume that the signal
is transmitted over the primary lobe and the power consumed by the remain-
ing lobes is negligible. For additional information on antenna performance see
Ramanathan [18] and on antenna theory see Balanis [2].

1.3 Results of the Paper

The core of the paper is divided into two sections. First, in Section 2 we consider
the case where the sensors are dropped on a unit length line segment. In Section 3
we consider the case where the sensors are dropped on a unit square. In both
cases first we provide a sensor orientation algorithm and subsequently we study
the energy consumption of the resulting sensor network. We also give a sufficient
condition on the beam width of the antenna so that directional sensors consume
less energy to achieve the same connectivity of the resulting sensor network.
Table 1 summarizes our theoretical results. In Section 4 we provide experimental
analysis.

Table 1. For the threshold value of the beam width indicated in the right column the
energy consumption of a sensor network of n directional sensors is below the energy
consumption of a sensor network of n omnidirectional sensors so as to achieve (k + 1)-
connectivity with probability at least e−e−c − e−ec

Threshold beam width

Unit Segment π
2
·
(

ln n+k ln ln n+ln(k!)−c
ln n+(2k+1) ln ln n+c

)2

Unit Square 2
5(k+1)

·
(

ln n+k ln ln n+ln(k!)−c
ln n+k ln ln n+c

)

1.4 Related Work and Preliminaries

Directional antennas have not been explored widely in the context of ad-hoc
networks. Some recent papers exploring multiple beam antennas in order to in-
crease throughput, and reduce delay and routing overhead include [9, 13, 18, 22].
To date, however, we are not aware of any work that has considered a com-
parison of the energy efficiency of omnidirectional versus directional antennas
with respect to connectivity properties of the network. Related to our work is
the paper of Shakkottai et al [20] which addresses coverage and connectivity for
a restricted model of omnidirectional sensors occupying the vertices of a unit
square grid and to the paper of Kranakis et al [10] which investigates the more
general model of directional sensors with given beam width occupying arbitrary
positions (as opposed to grid points) in the interior of the unit square.

Useful for our analysis is the coupon collector’s problem and its extensions. In
particular, an extension of the coupon collectors problem is that of determining

360 E. Kranakis, D. Krizanc, and E. Williams

the threshold for the number (denoted by X(k)) of selections (coupons) required
in order to collect at least k + 1 copies of each coupon type. It is well-known
(see Motwani et al. [12][Exercise 3.11]) that the sharp threshold is centered at
n(ln n + k ln lnn), i.e., for any integer k ≥ 0 and constant c,

lim
n→∞ Pr[X(k) > n(ln n + k ln lnn + c)] = e−e−c

. (1)

It is useful to note for c > 0 large enough the term e−e−c

in the righthand side
of Equation 1 is arbitrarily close to 1 and for c < 0 large enough it is arbitrarily
close to 0.

Valuable for our theoretical analysis are also the studies on thresholds for
the connectivity and minimum node degree, as well as general thresholds for
monotone properties in geometric disk graphs that can be found in the work of
Penrose [15, 16, 17]. Related bounds can be found in [6, 7, 19, 23]

2 Sensors on a Unit Length Line Segment

In this section we limit our region to the unit length segment. We consider
(k + 1)-connectivity and contrast the energy consumption of omnidirectional
versus directional antennas. For clarity of exposition, we separate the connectiv-
ity analysis for omnidirectional and directional antennas.

2.1 Omnidirectional Sensors

Assume that n omnidirectional sensors are dropped randomly and independently
with the uniform distribution on the interior of a unit segment. For any integer
k ≥ 1 and real number constant c let the sensors have identical radius r, given
by the formula

r =
ln n + k ln lnn + ln(k!) − c

n
. (2)

The main result of Penrose [15][Theorems 1.1 and 1.2] states that for the toroidal
distance metric on a unit segment and the radius given by Identity 2

limn→∞ Pr[network is (k + 1)-connected] = e−ec

. (3)

The toroidal distance metric differs from the usual distance metric on a unit
segment only in the wraparound boundary effects. Therefore Formula 3 gives
an upper bound on the probability of achieving (k + 1)-connectivity on a unit
segment with the usual distance metric. Therefore we have the following theorem.

Theorem 1. Consider omnidirectional antennas, with reachability radius r given
by Formula 2, and suppose that k ≥ 0 is an integer and c > 0 is a real. Assume
n omnidirectional antennas are dropped randomly and independently with the
uniform distribution on the interior of a unit segment. Then

limn→∞ Pr[network is (k + 1)-connected] ≤ e−ec

. (4)

Directional Versus Omnidirectional Antennas 361

Thus, for the radius chosen by Formula 2 the network is (k + 1)-connected with
probability as indicated by Equation 4.

2.2 Directional Sensors

Consider the case of directional sensors each with a single antennae of beam
width α that may be oriented in any direction. (We note that in the case of
multiple antennae, an energy saving is trivially possible for any beam width by
using two opposing antennae that cover the segment using the same radius as
required by the omnidirectional case.) It is fairly easy to show that by aiming
alternately k + 1 antennae to the right along the segment followed by k + 1
antennae to the left and insuring that each sensor reaches at least 2k + 2 other
sensors, the resulting network is k-connected. For each sensor, we choose the
radius to be

r = 2 · ln n + (2k + 1) ln lnn + c

n
(5)

and partition the unit interval into 2
r subintervals each of length r

2 . We must aim
their beam in such a way that k-connectivity of the resulting network is guar-
anteed. Using Equation 1, it is easy to establish that each subinterval contains
2k+2 sensors with probability at least e−e−c

. Next we divide the sensors in each
subinterval into two (approximately) equal size parts: the leftmost half and the
rightmost half (see Figure 1). For each subinterval we direct the leftmost half

Subinterval

rightleft

Fig. 1. Alternating the beam direction of the sensors from one subinterval to the next

of the sensors (at least k + 1) to the right and the rightmost half of the sensors
(also at least k + 1) to the left. We can prove the following theorem.
Theorem 2. Consider directional antennas with given beam width α, reachabil-
ity radius r given by Formula 5, and suppose that k ≥ 0 is an integer and c > 0 is
a real. Assume n directional antennas are dropped randomly and independently
with the uniform distribution on the interior of a unit length segment. Then

lim
n→∞ Pr[network is (k + 1)-connected] ≥ e−e−c

. (6)

2.3 Comparison of Energy Consumption

Omnidirectional sensors transmit the signal over an angle 2π. In order to achieve
(k+1)-connectivity the resulting energy consumption E(k)

omni of the network satisfies

E(k)
omni ≥ n · π ·

(
ln n + k ln lnn + ln(k!) − c

n

)2

,

362 E. Kranakis, D. Krizanc, and E. Williams

asymptotically in n with probability at least 1 − e−ec

. This can be contrasted
with the energy consumption E(k)

dire required to achieve k + 1-connectivity of a
network of directional sensors with beam width α (measured in radians). In
particular, E(k)

dire satisfies

E(k)
dire ≤ n · α

2
·
(

2 · lnn + (2k + 1) ln lnn + c

n

)2

,

asymptotically in n with probability at least e−e−c

. A simple calculation yields
that asymptotically in n if

n · α

2
·
(

2 · ln n + (2k + 1) ln lnn + c

n

)2

≤ n · π ·
(

ln n + k ln lnn + ln(k!) − c

n

)2

then E(k)
dire ≤ E(k)

omni. We get the following result.

Theorem 3. Consider an experiment in which n sensors are dropped randomly
and independently in the interior of a unit length segment. Suppose that k ≥ 0
is an integer and c > 0 is a real. Then

α ≤ 2π ·
(

ln n + k ln lnn + ln(k!) − c

ln n + (2k + 1) ln lnn + c

)2

(7)

is a sufficient condition so that E(k)
dire ≤ E(k)

omni asymptotically in n with probability
at least e−e−c − e−ec

.

3 Sensors on a Unit Square

In this section we limit our region to the unit square. We consider (k + 1)-
connectivity and contrast the energy consumption of omnidirectional versus di-
rectional antennas. We consider connectivity separately for omnidirectional and
directional antennas.

3.1 Omnidirectional Sensors

Assume that n omnidirectional sensors are dropped randomly and independently
with the uniform distribution on the interior of a unit square. For any integer
k ≥ 0 and real number constant c let the sensors have identical radius r, given
by the formula

r =

√
ln n + k ln lnn + ln(k!) − c

nπ
. (8)

The main result of Penrose [15][Theorems 1.1 and 1.2] states that for the toroidal
distance metric on a unit square and the radius given by Identity 8

limn→∞ Pr[network is (k + 1)-connected] = e−ec

. (9)

Directional Versus Omnidirectional Antennas 363

The toroidal distance metric differs from the usual distance metric on a unit
square only in the wraparound boundary effects. Therefore Formula 9 gives an
upper bound on the probability of achieving (k+1)-connectivity on a unit square
with the usual distance metric. Therefore we have the following theorem.

Theorem 4. Consider omnidirectional antennas, with reachability radius r given
by Formula 8, and suppose that k ≥ 0 is an integer and c > 0 is a real. Assume
n omnidirectional antennas are dropped randomly and independently with the
uniform distribution on the interior of a unit square. Then

limn→∞ Pr[network is (k + 1)-connected] ≤ e−ec

. (10)

Thus, for the radius chosen by Formula 8 the network is (k + 1)-connected with
probability as indicated by Equation 10.

3.2 Directional Sensors

Consider the case of directional sensors with k + 1 beams, where k ≥ 0 is an
integer. Fix k and a constant c > 0. Partition the unit square into 1

r2 subsquares
or blocks each of side r, where

r =

√
ln n + k ln lnn + c

n
. (11)

Let the reachability radius r′ of the directional sensors be equal to the length of
the diagonal of a rectangle with dimensions r × (2r) (see Figure 2), i.e.,

r′ =

√
5(ln n + k ln lnn + c)

n
= r

√
5. (12)

Let N (k) be the random variable that counts the number of sensors to be dropped
so that each subsquare contains k + 1 sensors. In view of Identity 1,

lim
n→∞ Pr

[
N (k) >

1
r2

(
ln

(
1
r2

)
+ k ln ln

(
1
r2

)
+ c

)]
= e−e−c

. (13)

Now assume that n sensors each of radius r (given in Equation 11) are dropped
on the interior of the unit square. Since n > 1/r2, we have that

n =
n(ln n + k ln lnn + c)

ln n + k ln lnn + c
>

1
r2

(
ln

(
1
r2

)
+ k ln ln

(
1
r2

)
+ c

)
.

By Equation 1 we have that each subsquare will have k + 1 sensors with proba-
bility at least e−e−c

. Now we must provide an “antenna orientation” algorithm
to direct the sensor beams in such a way that connectivity in the unit square is
guaranteed.

Number the sensors in a given square 1, . . . , t+1. (Assume sensors have unique
identities and so they can order themselves. This set up phase can be done using
broadcast in all directions.) For i = 1, . . . , t + 1 the sensors numbered i in each

364 E. Kranakis, D. Krizanc, and E. Williams

square form themselves into a hamiltonian cycle that visits every square using
one of their k + 1 antennae. Sensor i in each square then uses its k remaining
antennae to point at sensor j �= i in its square. We claim the result is k + 1-
connected. Say sensor i in block B wants to talk to sensor j in block C. If k
sensors fail, there is still a hamiltonian cycle (say nodes numbered m) that is
completely alive. Node i sends its message to node m in block B, node m in
block B sends the message to node m in block C, which in turn sends it to node
j in block C. Therefore the network is (k + 1)-connected. Two important points
are the following

1. Some blocks have more than k sensors. These sensors can be distributed
arbitrarily among the cycles.

2. The longest any antennae has to reach is r
√

5, where r is the side length
required to have k+1 nodes per square. (Note: in the worst case an antennae
must reach across the diagonal of a 2r by r rectangle.)

r r

r

r’

α

Fig. 2. The radius r′ of the directional sensors is determined by the geometry of two
adjacent subsquares. in particular it must be chosen so that r′ ≥ r

√
5

In particular, regardless of the beam width, the resulting system of directional
antennas must be k + 1-connected with high probability. We can prove the fol-
lowing theorem.

Theorem 5. Consider directional antennas with given beam width α, reachabil-
ity radius r given by Formula 12, and suppose that k ≥ 0 is an integer and c > 0
is a real. Assume n directional antennas are dropped randomly and independently
with the uniform distribution on the interior of a unit square. Then

lim
n→∞ Pr[network is (k + 1)-connected] ≥ e−e−c

. (14)

We note that if we assume that the nodes have unique identities (e.g., if
they can compute their geographic location through a GPS system) then the
algorithm in Theorem 5 can be implemented fairly easily in a distributed manner.
We further note that by using a small number of extra antennae aimed at sensors
in the other adjacent subsquares can lead to an improvement in the diameter of
the resulting sensor system from approximately n/k to

√
n/k.

Directional Versus Omnidirectional Antennas 365

3.3 Comparison of Energy Efficiency

In this section we compare the energy consumption of a sensor network of n
omnidirectional versus n directional sensors to attain (k + 1)-connectivity. Let
E(k)

omni and E(k)
dire be the energy consumption in the omnidirectional and directional

case respectively, to attain (k + 1)-connectivity.
Omnidirectional sensors transmit the signal over an angle 2π. In order to

achieve (k + 1)-connectivity n omnidirectional sensors are necessary and the
resulting energy consumption of the network satisfies

E(k)
omni ≥ n · π · ln n + k ln lnn + ln(k!) − c

nπ
,

asymptotically in n with probability at least 1 − e−ec

. This can be contrasted
with the energy consumption E(k)

dire of a network of directional sensors with beam
width α (measured in radians) which may transmit the signal over an angle α.
In this case, E(k)

dire satisfies

E(k)
dire ≤ n(k + 1) · α

2
· 5(ln n + k ln lnn + c)

n
,

asymptotically in n with probability at least e−e−c

. It is clear that, with high
probability asymptotically in n if

5(k + 1)α
2

· (ln n + k ln lnn + c) ≤ ln n + k ln lnn + ln(k!) − c

then E(k)
dire ≤ E(k)

omni. A simple calculation yields the following theorem compar-
ing the energy consumption of a sensor network of n omnidirectional versus n
directional sensors to attain (k + 1)-connectivity.

Theorem 6. Consider an experiment in which n sensors are dropped randomly
and independently in the interior of a unit square. Assume k ≥ 0 is an integer
and c > 0 is a real. Then

α ≤ 2
5(k + 1)

·
(

ln n + k ln lnn + ln(k!) − c

ln n + k ln lnn + c

)
(15)

is a sufficient condition so that E(k)
dire ≤ E(k)

omni asymptotically in n with probability
at least e−e−c − e−ec

.

4 Experimental Results

The theoretical results presented above, while providing a true bound on α, are
based in part upon approximations and hold only asymptotically in n. In order
to get an idea of how accurate our estimates are we provide the results of some
simulations we performed on our simple model.

366 E. Kranakis, D. Krizanc, and E. Williams

Fig. 3. Simulation results for unit segment

Fig. 4. Simulation results for unit square

For both the one dimensional and two dimensional cases we considered val-
ues of k ranging from 1 to 10 and values of n ranging from 100 to 1000 by 100.
Figure 3 depicts simulation results for unit segments. Figure 4 depicts simula-
tion results for unit squares. Each experiment consisted of dropping n sensors
at random on either the unit segment or the unit square. For a given k, a lower
bound on the radius required to achieve k-connectivity for omnidirectional an-
tennae was obtained by finding the distance to the k-th nearest neighbor and an
upper bound on the radius required to achieve k-connectivity using directional
antennae was obtained using the algorithms described above. Each experiment
was repeated 10,000 times and the average of all 10,000 runs along with error
estimates were reported. The energy requirements in each case were computed
using the model above and the ratios of the energy were plotted and compared to
the theoretical result. We present the results of plotting α (the maximum beam
width allowable to achieve energy savings) versus n for k = 5 as well as plotting
α versus k for n = 1000. Plots for the other values of k and n are similar.

We observe that the theoretical bounds predict the shape of the curves quite
well although for small values of n and k they significantly underestimate the
value of α sufficient to ensure lower energy for the directional case. For the two
dimensional case, we see that the theoretical curve approximates the experimen-
tal results quite well as k increases. While the theoretical predictions should
improve in accuracy as n increases, it seems clear that a gap will always exist.

Directional Versus Omnidirectional Antennas 367

We suspect that this is due to approximations made in our upper bounds for the
directional case that may be improved using a better analysis.

References

1. J. Agre and L. Clare, An integrated architecture for cooperative sensing networks,
IEEE Computer, vol. 33, no. 5, May 2000, 106-108.

2. C. A. Balanis, Antenna Theory: Analysis and Design, 2nd ed. New York: Wiley,
1997.

3. D. Braginsky and D. Estrin, Rumor routing algorithm for sensor networks, 2001.
Available at http://lecs.cs.ucla.edu/ estrin/.

4. L. Doherty, L. E. Ghaoui, and K. S. J. Pister, Convex position estimation in wireless
sensor networks, in Proceedings of IEEE Infocom, (Anchorage, AK), April 2001.

5. D. Estrin, R. Govindan, J. Heidemann and S. Kumar: Next Century Challenges:
Scalable Coordination in Sensor Networks. In Proc. 5th ACM/IEEE International
Conference on Mobile Computing, MOBICOM’1999.

6. A. Goel, S. Rai, B. Krishnamachari, Sharp Thresholds for Monotone Properties in
Random Geometric Graphs. Stanford University, Manuscript, 2003.

7. P. Gupta and P. R. Kumar, Critical Power for Asymptotic Connectivity in
Wireless Networks. Stochastic Analysis, Control, Optimization, and Applications,
Birkhauser, 1998.

8. J. M. Kahn, R. H. Katz, and K. S. J. Pister, Mobile networking for smart dust, in
Proceedings of MobiCom 99, (Seattle, WA), August 1999.

9. Y. B. Ko, V. Shankarkumar, and N. H. Vaidya, Medium access control protocols
using directional antennas in ad-hoc networks, Proc. IEEE INFOCOM’2000, March
2000.

10. E. Kranakis, D. Krizanc, J. Urrutia, Coverage and Connectivity in Networks with
Directional Sensors. In proceedings Euro-Par Conference, Pisa, Italy, August 31-
September 3, 2004, Danelutto M., Vanneschi M., Laforenza D. (Eds.), Vol. 3149,
Springer Verlag, LNCS.

11. S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. Srivastava, Coverage
problems in wireless ad-hoc sensor networks, in Proceedings of IEEE Infocom,
(Anchorage, AK), 2001.

12. R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press,
1995.

13. A. Nasipuri, S. Ye, J. You, and R. E. Hiromoto, A MAC protocol for mobile ad
hoc networks using directional antennas, Proc. IEEE Wireless Communications
and Networking Conference (WCNC’2000), 2000.

14. National Research Council, Embedded, Everywhere: A Research Agenda for Sys-
tems of Embedded Computers, Committee on Networked Systems of Embedded
Computers, for the Computer Science and Telecommunications Board, Division on
Engineering and Physical Sciences, Washington, DC, 2001.

15. M. D. Penrose, On k-Connectivity for a Geometric Random Graph, Random Struc-
tures and Algorithms, 15, 145-164, 1999.

16. M. D. Penrose, The Longest Edge of the Random Minimal Spanning Tree, The
Annals of Applied Probability, 7(2) 1997, 340-361.

17. M. D. Penrose, Random Geometric Graphs, Oxford University Press, 2003.
18. R. Ramanathan, On the Performance of Ad Hoc Networks with Beamforming

Antennas, In the Proceedings of ACM Symposium on Mobile Ad hoc Networking
and Computing (MobiHoc’2001), 2001.

368 E. Kranakis, D. Krizanc, and E. Williams

19. P. Santi and D. Blough, The Critical Transmitting Range for Connectivity in
Sparse Wireless Ad Hoc Networks, IEEE Transactions on Mobile Computing, to
appear.

20. S. Shakkottai, R. Srikant, N. Shroff, Unreliable Sensor Grids: Coverage, Connectiv-
ity and Diameter, In proceedings of IEEE INFOCOM, 2003, held in San Francisco,
March 30 to April 2, 2003.

21. K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie, Protocols for self- organization
of a wireless sensor network, IEEE Personal Communications, vol. 7, pp. 16-27,
October 2000.

22. A. Spyropoulos, and C.S. Raghavendra, Energy Efficient Communications in Ad
Hoc Networks Using Directional Antennas, in proceedings of INFOCOM 2002,
New York, June 23-27, 2002.

23. P.-J. Wan and C.-W. Yi, Asymptotic Critical Transmission Radius and Critical
Neighbor Number for k-connectivity in Wireless Ad Hoc Networks, Mobihoc, 2004,
to appear.

24. B. Warneke, M. Last, B. Leibowitz, and K. Pister, SmartDust: communicating
with a cubic-millimeter computer, IEEE Computer, vol. 34, no. 1, January 2001,
44-51.

25. W. Ye, J. Heidemann, and D. Estrin, An energy-efficient MAC protocol for wireless
sensor networks, in Proceedings of IEEE Infocom, (New York, NY), June 2002.

Secure Location Verification
Using Radio Broadcast

Adnan Vora and Mikhail Nesterenko�

Computer Science Department,
Kent State University, Kent, OH, 44242

avora@cs.kent.edu, mikhail@cs.kent.edu

Abstract. Secure location verification is a recently stated problem that
has a number of practical applications. The problem requires a wireless
sensor network to confirm that a potentially malicious prover is located
in a designated area. The original solution to the problem, as well as so-
lutions to related problems, exploits the difference between propagation
speeds of radio and sound waves to estimate the position of the prover.
In this paper, we propose a solution that leverages the broadcast nature
of the radio signal emitted by the prover and the distributed topology of
the network. The idea is to separate the functions of the sensors. Some
sensors are placed such that they get the signal from the prover if it is
inside the protected area. The others are positioned so that they can
only get the signal from the prover outside the area. Hence the latter
sensors reject the prover if they hear its signal. Our solution is versatile
and deals with provers using either omni-directional or directional prop-
agation of radio signals without requiring any special hardware besides
a radio transceiver. We estimate the bounds on the number of sensors
required to protect the areas of various shapes and extend our solution
to handle complex radio signal propagation, optimize sensor placement
and operate without precise topology information.

Keywords: location verification, wireless sensor networks, security.

1 Introduction

The problem of secure location verification is stated by Sastry et al [1]. The
problem is to confirm the physical presence of the principal (prover) in a pro-
tection zone. Location verification has a number of uses such as target tracking,
smart inventory, location-based access control, etc. For example, once the pres-
ence of the prover has been confirmed, it can be granted access privileges such
as connection to a private wireless network, starting a car, opening doors to a
restricted area or disabling an alarm.

� This research was supported in part by DARPA contract OSU-RF#F33615-01-C-
1901 and by NSF CAREER Award 0347485.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 369–383, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

370 A. Vora and M. Nesterenko

Related work. The close interaction of computing devices with the physical
environment requires novel approaches to security. Naik et al. [2] adopt security
techniques to the constraints and demands of such systems. Alternatively, in this
paper we exploit the properties of the environment to solve the security task.

A number of researchers commented on the importance of location verifica-
tion in wireless sensor networks [3, 4, 1]. There are many protocols that achieve
location verification by exploiting the difference between radio signal propaga-
tion and ultra-sound, etc. Particularly, Hu et al. use temporal packet leashes [5],
Brands et al. use a time-bounded challenge-response protocol [6]. A limitation of
these schemes is the necessity of highly accurate time measurement capabilities
and possibly non-RF communication hardware on the sensor nodes.

Balfanz et al. [3] use location-limited channels for location verification; how-
ever, the lack of location-limited channels may abridge the suitability of this
method. Moreover, this method does not provide any strong security guarantees
[1]. Corner and Noble [7] use short-range communication to verify proximity.
However, their scheme fails if a malicious user is able to send data from a dis-
tance using a powerful transmitter. Kindber et al. [8] use constrained channels to
limit transmission range of the prover, but their protocol does not provide strong
security guarantees either. Tamper-resistant hardware is used in the industry to
provide location authentication [9].

Our contribution and paper organization. We propose a location verifica-
tion protocol that relies on the broadcast nature of radio communication and
cooperation of the sensor nodes. Intuitively, once the prover issues a radio signal,
sensors in its vicinity will receive the signal, while remote sensors will not. The
sensor nodes can then compare their readings to estimate the reception area, and
thus determine the presence of the prover. Our protocol is resource efficient, and
it does not require extended sensor capabilities needed for time-of-flight location
estimation approaches.

In the presentation of the paper we strive to make the material as accessible
as possible. Thus, we first discuss the solution to the simplest problem with the
strongest assumptions about the environment and security threats (e.g. perfect
signal reception, omni-directional antennas of the attackers). At first we do not
discuss the distributed implementation of our algorithm. We then relax each
assumption and extend our solution to more a realistic specification. To keep our
paper focused we do not present a complete system that is capable of protecting
against a wide spectrum of security threats such as node compromise. However,
in the end of the paper we discuss how our protocol can be incorporated into
such a system.

The specific contributions of this paper are as follows. We restate the location
verification problem [1] in Section 2, in a way that allows its formal treatment
and suggests a range of solutions. Using this as a basis, we present a generic
protocol for location verification. We outline its properties in Section 3.

In Section 4, we demonstrate that an arbitrary polygonal protection zone can
be completely secured with O(n) sensors where n is the number of sides in the
polygon. The basic protocol may leave out certain portions of the protection zone

Secure Location Verification Using Radio Broadcast 371

where the prover may or may not be accepted (ambiguity zone). In the same
section, we also show that an arbitrary (non-polygonal) zone can be secured
with O(S +P) sensors such that the ambiguity zone occupies a band of constant
thickness around the border, where S and P are the zone’s area and perimeter
respectively.

In the basic protocol, the number of verification attempts before the prover
is accepted is proportional to the size of the zone. In Section 6, we show that
this number can be decreased to the logarithm of the zone size by using extra
verifiers. In Section 7, we show how the prover can be accepted in the ambiguity
zone with extra verification attempts, and we also estimate the number of such
attempts to be proportional to the logarithm of the protection zone size.

We provide a few extensions to our basic protocol. In addition to the simple
broadcast model using omni-directional radio signals, which defines a fixed-sized
circular area of perfect reception around the radio source, in Section 8, we extend
the protocol to deal with the complex broadcast model, which introduces a
band of non-deterministic reception around the area of perfect reception. In
Section 5, we provide further modifications to defend against adversaries that
use directional radio signals to defeat the protocol. In this case the adversaries
are capable of generating signals with non-zero gain, which distorts the shape of
the signal propagation area. In Section 9, we provide the protocol for location
verification where arbitrary verifier placement is used instead of a calculated,
deterministic placement. In Section 10 we conclude the paper by discussing how
our protocol can be extended to a complete security system.

2 Preliminaries

Definitions. The location verification problem requires a set of verifiers to ac-
cept a prover if it is located in a designated protection zone. A verifier is a
sensor capable of communicating with the other verifiers as well as the prover.
A prover is a mobile entity requesting access to the resources that are guarded
by the verifiers. The verifiers accept the prover, if it is present in the protection
zone and behaves according to the communication rules. Otherwise, the verifiers
either reject the prover or issue no decision.

There are two kinds of verifiers: an acceptor and a rejector. The plane is
divided into three zones according to the verifier’s ability to locate the prover:
the acceptance zone — a prover in this zone is always accepted if it behaves
according to the communication rules; the ambiguity zone — a prover in this
zone may or may not be accepted (regardless of the prover’s adherence to the
communication rules); and the rejection zone — a prover in this zone is never
accepted.

For a particular protection zone a verification protocol is secure if every point
outside the protection zone is also in the rejection zone. The verifiers secure the
protection zone. Protection gap is the maximum distance between a point in the
rejection zone and the nearest point outside the protection zone. Notice that
this distance is only meaningful for points inside the protection zone. Hence, the

372 A. Vora and M. Nesterenko

protection gap is a measure of how much the rejection zone encroaches upon the
protection zone. Protection is complete if the protection gap is zero.

Assumptions and threat model. The verifiers are able to communicate
securely and reliably amongst themselves. The verifiers are trusted. That is,
a malicious entity cannot either disrupt the communication between verifiers
or impersonate a verifier. We do not focus on communication issues between
verifiers. Throughout the rest of the paper, we assume that the data that one
verifier records is available to the other verifiers as needed.

If the verifiers send a message to the prover, the prover is always able to
receive it. Prover authentication is not required. That is, any entity that com-
municates with the verifiers is considered a prover. The prover is able to con-
figure its radio transmitter so that the radio signal propagates to an arbi-
trary fixed distance. Both the signal transmission and reception are instanta-
neous.

We consider an omni-directional radio propagation model for the prover. In
this model, if a prover sends a signal, every verifier within some fixed distance of
the prover receives it, while no verifier that is further away does. This distance
depends on the signal strength of the prover. We relax the omni-directionality
assumption in Section 5 and the perfect circular reception assumption in Sec-
tion 8.

The prover may be malicious. A malicious prover does not have to com-
ply with the verification protocol. Multiple provers may collude to defeat the
verification protocol. In the case of multiple provers, the provers may be able
to synchronize their signals perfectly and time them with high accuracy. If all
malicious provers are in the rejection zone, none of them is supposed to be
accepted.

Problem statement. We adapt the problem statement from [1].

Problem 1 (Location Verification). Given a closed protection zone, specify a
secure location verification protocol.

Observe that the only requirement on the protection zone is that it be closed,
i.e. the zone does not have to be connected.

3 Location Verification Protocol

Verification protocol. Our verification protocol rules are as follows. The prover
remains stationary during verification. It sends a radio signal so that verifiers
within the distance of the signal increment x can hear it. If the prover does
not receive their decision, it increases its signal strength by x and rebroadcasts
the signal. The procedure repeats until the verifiers respond. When one of the
verifiers hears the prover, the verifiers form a decision. They accept the prover
if none of the rejectors hear it and reject it otherwise.

Secure Location Verification Using Radio Broadcast 373

Basic Protocol Properties.

Lemma 1. A certain point on the plane is in the rejection zone if and only if
the distance from this point to the nearest acceptor is no less than that to the
nearest rejector.

Proof: If: We show that when multiple malicious provers are located as stated
in the lemma, the only decision that the verifiers can make is reject. Note that
the cardinality of the set of malicious provers is not limited. Also, since the signal
transmission is instantaneous, we can consider that there is a stationary prover
at every point from which a mobile prover sends a signal. Hence, we can ignore
the mobility of the provers.

According to the communication rules, the accept decision is reached when
at least one acceptor and no rejectors hear the prover’s signal. For the accep-
tor to hear the signal, the signal strength should be high enough to cover the
distance from the prover to the acceptor. However, every prover is no further
from the nearest rejector than from an acceptor. Due to our signal propagation
assumption, if an acceptor receives the signal from the prover, then at least one
rejector must have also heard it. In this case, according to the communication
rules, the verifiers reject the prover. Thus, each point that is at least as far away
from the nearest acceptor as from the nearest rejector is in the rejection zone.

Only if: We prove the contrapositive. Suppose that for a certain point p on
a plane, the distance to the nearest acceptor is less than that to the nearest
rejector. Let the prover be located at p and broadcast with the minimal signal
strength necessary for the acceptor to receive the signal. In this case, according
to the signal propagation assumptions, the rejector does not hear the prover. By
the communication rules of the protocol, the prover is accepted. By definition,
a prover is never accepted in any point of the rejection zone. Hence, p is not in
the rejection zone. Thus, for every point in the rejection zone it is necessary to
be at least as far from the nearest acceptor as from the nearest rejector. �

To state our results more formally, we define a few terms from computational
geometry. By definition [10–Ch.5], a verifier’s Voronoi cell is the area that is
closer to this verifier than to any other verifier. Thus, any point in a rejector’s
cell (including the boundary) is at least as close to the rejector as to the nearest
acceptor. The following theorem follows from Lemma 1.

Theorem 1. For the location verification protocol to be secure it is necessary
and sufficient that the union of the rejectors’ Voronoi cells covers the area outside
the protection zone.

Recall that the statement of location verification problem requires that the
protection zone be finite. A non-trivial solution to the problem needs at least one
acceptor. From Theorem 1, it follows that the Voronoi cell of each acceptor must
be finite. It can be easily shown that the minimum number of objects (verifiers)
to form a finite Voronoi cell is four. Moreover, these four objects produce only
one finite cell. Hence the following corollary.

374 A. Vora and M. Nesterenko

Corollary 1. A non-trivial solution to the location verification problem requires
at least four verifiers (one acceptor and three rejectors).

Lemma 2. A certain point on the plane is in the acceptance zone if the nearest
acceptor is at least one signal increment (x) closer to this point than the nearest
rejector.

Observe that the statement of this lemma is not symmetric to that of Lemma
1. The “only if” part of Lemma 2 in general does not hold.
Proof: Let the nearest acceptor and the nearest rejector be at the respective
distances a and b > a + x from the point of interest. According to the commu-
nication rules, the acceptor receives the signal from the prover after �a/x� tries.
Hence, the distance of the signal propagation is:

⌈a

x

⌉
x ≤

(a

x
+ 1

)
x = a + x < b

Thus, when the nearest acceptor receives the signal from the prover, the rejectors
are still too far from the prover to have also received the signal. �

Observe that Lemmas 1 and 2 delineate acceptance and rejection zones only.
Yet these two zones do not cover the whole plane. The remaining area is the
ambiguity zone. In this zone, every point is closer to the nearest acceptor than
to a rejector but the difference in the respective distances is less than the signal
increment. The reason for the existence of this zone is the following. The prover
increments its signal by x each time it broadcasts. For a prover in the ambiguity
zone, it is possible that the signal is too weak for the verifiers to receive it.
Yet when the signal is incremented by x and rebroadcast, both an acceptor
and a rejector hear it. According to the protocol, the verifiers reject the prover.
However, the points of the ambiguity zone are closer to an acceptor than to a
rejector. Hence, a prover that does not follow the protocol may tune its signal
strength such that an acceptor hears it even though none of the rejectors do.
Thus, this prover is accepted.

In the solution that Corollary 1 suggests, the protection gap can be arbitrarily
large. Indeed, since the number of verifiers is fixed, the shape of the acceptor’s
Voronoi cell is rather rigid and the boundary of the protection zone can deviate
arbitrarily far from this shape. The following lemma allows complete protection
of a polygonal protection zone.

Lemma 3. Given an n-sided convex polygonal protection zone, it is possible to
secure the protection zone completely using n + 1 verifiers.

Proof: Let us place an acceptor at an arbitrary point in the protection zone.
Also, we place each rejector so that the bisector of the line joining this rejector
and the acceptor contains the side of the protection zone as a segment. Since
the protection zone is convex, the Voronoi cell of the only acceptor matches the
protection zone. Hence, the union of the rejectors’ Voronoi cells covers the area
outside the protection zone. According to Theorem 1, the protocol is secure. By

Secure Location Verification Using Radio Broadcast 375

definition, the protection provided by this placement of verifiers is complete. The
total number of verifiers is n + 1.

Lemma 4. Given an n-sided convex polygonal protection zone containing a cir-
cle of radius r, n + 1 verifiers can completely secure this protection zone such
that the acceptance zone contains an open disk with radius r − x/2.

Proof: To estimate the size of the acceptance zone, refer to Figure 1. The
protection zone contains a circle of radius r. We position the acceptor at the
center of the circle and the rejectors outside the protection zone, as described in
the proof of Lemma 3. Note that Lemma 3 holds regardless of the exact position
of the acceptor inside the polygon. Consider a concentric open disk of radius
r − x/2. The distance between every point in this disk and its nearest rejector
is greater than r + x/2. Hence, for every point of the disk, the distance to the
acceptor is less than that to the nearest rejector by x. According to Lemma 2,
the disk is inside the acceptance zone. �

Fig. 1. Zone delineation in case of
a polygonal protection zone. Illustra-
tion to the proof of Lemma 4

Fig. 2. Covering a zone of arbitrary shape
with a constant ambiguity gap. Illustration
for the proof of Theorem 3

4 Securing Arbitrary Zones

To address the security of arbitrary polygons, we expand our protocol as follows.
A protection zone may be decomposed into a number of smaller sub-zones. The
sub-zones are secured separately. In other words, the verifiers of one sub-zone do
not interact with the verifiers of another. The prover is accepted in the aggregate
zone if it is accepted by the verifiers of at least one of the constituent sub-zones.
Using the expanded protocol, we derive the upper bound on the number of
verifiers needed for protection zones of arbitrary shape. We state our results in
the following two theorems.

Theorem 2. An arbitrary n-sided polygonal protection zone can be completely
secured by O(n) verifiers.

376 A. Vora and M. Nesterenko

Proof: The number of triangles required to triangulate an n-sided polygon is
n−2. According to Lemma 3, it takes 4 verifiers to secure a triangle completely.
Thus, the total number of verifiers required to secure an n-sided protection zone
is 4n − 8. The theorem follows. �

Observe that the solution that the proof of Theorem 2 suggests, may poten-
tially leave the aggregate acceptance zone disconnected. This may complicate
the positioning of the prover for acceptance. The following theorem bounds the
number of verifiers necessary to secure an arbitrary protection zone such that
the acceptance zone is continuous and its boundary is within a constant distance
from the boundary of the protection zone. To state this fact, we define ambigu-
ity gap to be the maximum distance from a point in the ambiguity zone to the
nearest point outside the protection zone.

Theorem 3. The number of verifiers required to secure an arbitrary-shaped pro-
tection zone of area S and perimeter P with a constant ambiguity gap is in
O(S + P).

Proof: Consider a tessellation of squares that covers the protection zone.1

Refer to Figure 2 for the illustration. Let t be the length of a side of each square.
We select t small enough so that in the tessellation there is at least one square
whose center is no less than t + x

√
2 away from the nearest border. It is well-

known that the number of such squares is in O(S + P).
Let us disregard all squares with centers less than t + x

√
2 away from the

border and consider each of the remaining squares individually. By assumption
there is at least one such square. Circumscribe a circle around such a square.
Its radius is t/

√
2. Consider a concentric circle with radius t/

√
2 + x. Circum-

scribe a square over this circle. The distance from the center to the furthest
point in this square is t + x

√
2. By construction, the square is completely inside

the protection zone. According to Lemma 3, it takes 5 verifiers to secure this
square completely. Moreover, from Lemma 4 the internal square will be inside
the acceptance zone. Repeat the process for all the squares of the tessellation.
The combined acceptance zone is continuous, and the ambiguity gap is no more
than t + x

√
2. Since it takes a constant number of verifiers to cover each square,

the total number of verifiers is in O(S + P). �

5 Directional Antennas

In the discussion thus far, we assume that the malicious provers follow the omni-
directional broadcast model. Malicious provers, however, may be equipped with
directional antennas, allowing them to add a non-zero gain in a particular di-
rection, thereby distorting the shape of the reception area. A malicious prover

1 The proof does not depend on the shape of the polygons. The squares are used for
simplicity.

Secure Location Verification Using Radio Broadcast 377

can exploit the directionality of the signal to defeat the verifiers. Such a prover
directs a narrow beam of radio signal such that the signal avoids reception by
the rejectors but targets acceptors. Thus, the prover may violate the security of
the protocol.

Consider a maximal sector inside the propagation area of the emitted di-
rectional signal. A signal is definitely received in every point of this sector.
Beamwidth β is the minimum angle among the sectors that correspond to propa-
gation areas of various signal strengths. We assume that malicious provers cannot
make their beamwidth arbitrarily small, i.e. β is constant.

The following lemma is equivalent to Lemma 1. It is proven similarly.

Lemma 5. Provided that malicious provers are capable of using directional an-
tennas with fixed minimum beamwidth β, a certain point on the plane is in the
rejection zone if every sector of angle β originating in this point and containing
an acceptor also contains a rejector.

Observe that a benign prover uses only omni-directional antennas. Hence,
the acceptance criterion of Lemma 2 applies to it.

Theorem 4. It is possible to secure an arbitrary shaped protection zone against
malicious provers with directional antennas using O(r) verifiers where r is the
size of the circle inscribed in the protection zone.

Proof: Consider a circle of radius r − k > 0 that is concentric with the circle
inscribed in the protection zone where is k is a constant independent of r. Refer
to Figure 3 for illustration. Place a single acceptor in the middle of this circle
and the rejectors on its circumference at a distance of 2k · tan (β/2) from each
other. Observe that conditions of Lemma 5 are satisfied for every point outside
the inscribed circle. Therefore, every point outside the protection zone is in the
rejection zone. According to the specification of the location verification problem
such a placement of the verifiers secures the protection zone.

Fig. 3. Placing rejectors to protect
against malicious provers with direc-
tional antennas. Illustration for the
proof of Theorem 4

Fig. 4. Zone delineation with random ver-
ifier placement

378 A. Vora and M. Nesterenko

The number of required verifiers is:

1 +
⌈

2π(r − k)
2k tan (β/2)

⌉

Since k and β are constant, the number of verifiers are in O(r). �

Observe that the verifier placement discussed in the proof of Theorem 4 can
potentially yield an empty acceptance zone. For a non-trivial solution r − k has
to be large enough so that a circle with this radius contains a polygon satisfying
the conditions of Theorem 4.

6 Logarithmic Verification Time

According to the communication rules of our protocol, the prover repeatedly
broadcasts its signal until it hears from the verifiers. The prover increases its
signal strength by x each time. Let d be the largest distance between any two
points in the acceptance zone. Since the acceptors and the verifiers have to be
inside the protection zone, the maximum number of broadcasts is �d/x�, i.e. it
is proportional to the size of the protection zone. However, with a particular
layout of the sensors and a modification of the protocol, this number can be
made proportional to the logarithm of the size of the zone.

In order to do this, we put the following extra assumption on the placement
of acceptors. For every point in the acceptance zone, there exists an integer i,
(i ≥ 0), such that there are no rejectors closer to this point than x · 2i+1, and at
least one acceptor between x · 2i and x · 2i+1.

We also update the communication rules as follows. The prover sends a radio
signal so that the verifiers within distance x receive the signal. If the prover does
not receive their decision it doubles its signal strength and rebroadcasts the signal.
The procedure repeats until a verifier responds. When an acceptor hears a radio
broadcast from a prover claiming to be in the acceptance zone, it accepts the
prover if none of the rejectors hear the prover.

Observe that the rejection rules are not changed. Hence, the security of the
protocol is not affected. Below is our estimate of the number of broadcasts the
prover needs to be accepted.

Theorem 5. For the modified protocol, the maximum number of broadcasts re-
quired for the prover to get accepted is proportional to the logarithm of the radius
of the circle circumscribed over the protection zone.

Proof: The maximum broadcast distance for a prover is d. The prover is
accepted after at most i+2 broadcasts. The maximum distance the signal of the
prover covers is x · 2i+1. That is x · 2i+1 ≤ d. Taking the logarithm of both sides,
we get i ≤ log(d/x) − 1.

Since x is constant, i is in O(log d). Thus, the number of broadcasts is pro-
portional to the logarithm of the protection zone size. �

Secure Location Verification Using Radio Broadcast 379

7 Shrinking the Ambiguity Zone

The ambiguity zone is the area where every point is closer to an acceptor than
to a rejector but where the difference in the respective distances is less than x.
A prover in the ambiguity zone that behaves according to the basic protocol is
rejected even though it is inside the protection zone. In this section, we extend
the protocol so that a prover in the ambiguity zone is accepted. This, in effect,
shrinks the ambiguity zone. The extension is based on the idea of tuning the
signal of the prover so that the nearest acceptor hears it while no rejectors do.

The prover in the ambiguity zone behaves according to the communication
rules stated in Section 3. If the prover is rejected, it behaves as follows:

If the prover is rejected and the last signal increment is z, the prover decreases
the signal strength by z/2 and rebroadcasts. Alternatively, if the prover does
not hear the decision of the verifiers (the signal does not reach any verifier),
the prover increases the signal strength by z/2 and rebroadcasts. The prover
continues the process until it is accepted.

Recall that no assumptions are placed on the behavior of the malicious
provers. Hence, the security of the protocol is not affected by the above modifi-
cation.

Theorem 6. Let a (respectively b) be the distance between the prover in the
ambiguity zone and the nearest acceptor (rejector). It takes O(log (b − a)) extra
broadcast attempts for the prover to be accepted.

Proof: Observe that the estimate of the number of extra broadcasts does
not change if we only consider the case where the prover increases (and never
decreases) its signal strength. Suppose it takes i + 1 iterations before the prover
is rejected for the first time, and that the acceptor is reached in j additional
iterations. The relation between a and the maximum distance covered by the
prover’s signal is as follows:

a < ix +
x

2
+

x

22
+ · · · + x

2j
= ix + x

(
1 − 1

2j

)

Since the prover is rejected before it tries to shrink the ambiguity zone, the
distance to the prover:

b < (i + 1)x

After subtracting the first inequality from the second, simplifying and taking
logarithms of both sides we get:

j < log
x

b − a

Since x is constant, the number of extra broadcasts is proportional to the loga-
rithm of the difference between b and a. �

380 A. Vora and M. Nesterenko

8 Complex Signal Propagation

The discussion thus far has focused on the simple propagation model where we
assume that a receiver within a fixed distance from the source definitely hears
the broadcast radio signal while any receiver beyond this fixed distance definitely
does not.

In this section, we extend the signal propagation model as follows. If the
prover sends a signal, then (i) it is definitely received by a verifier if the verifier
is no more than some fixed distance r away from the prover; (ii) it may or
may not be received by a verifier whose distance to the prover is between r
and r + y where y is some constant distance; and (iii) it is not received by a
verifier more than r + y away from the prover. As with the original assumption,
r depends on the signal strength of the prover. Distance y, however, is constant
and independent of the signal strength.

The following two lemmas are equivalent to Lemmas 1 and 2. The proofs are
similar.

Lemma 6. For the complex signal propagation, a certain point on the plane is
in the rejection zone if and only if the nearest rejector is at least y closer than
the nearest acceptor.

Lemma 7. For the complex signal propagation, every point in the acceptance
zone is at least x + y closer to the nearest acceptor than to the nearest rejector.

The results similar to the ones stated in the remainder of the Section 3 and
the consequent sections also apply to the complex signal propagation model.

9 Arbitrary Verifier Placement

Consider the following variant of the verification protocol. Rather than being
placed at specific, pre-calculated locations, the verifiers are positioned arbitrarily
on the plane. We assume that the verifiers have no knowledge of their position or
the dimensions of the protection zone. Each verifier is informed as to whether it
is inside or outside the protection zone (see Figure 4). We assume the following
about the verifier placement: if there is a non-empty intersection between the
verifier’s Voronoi cell and the area outside the protection zone, then either the
verifier itself or one of its Voronoi neighbors is outside the protection zone.

The verifiers are classified as follows:

– each verifier outside the protection zone is a rejector;
– each verifier that has a Voronoi neighbor outside the protection zone is also

a rejector;
– the rest of the verifiers are acceptors.

Theorem 7. The verification protocol with random placement of the verifiers
solves the location verification problem.

Secure Location Verification Using Radio Broadcast 381

Proof: According to classification rules, the outside verifiers are rejectors. By
assumption, the verifiers are placed such that a verifier that is inside the protection
zone but whose Voronoi cell breaches the protection zone border has a Voronoi
neighbor outside the protection zone. Again, by the classification rules, such a
verifier is a rejector. Thus, the union of the Voronoi cells of the rejectors covers the
area outside the protection zone. According to Theorem 1, the protocol complies
with the security property of the location verification problem. �

In practice the assumptions about the Voronoi neighbors can be fulfilled by
distributing the verifiers with appropriate density. For example, there are two
sets of verifiers: designated rejectors (labeled “red”) and potential acceptors
(labeled “blue”). The red verifiers are densely positioned along the border of the
protection zone. The blue verifiers are spread throughout the protection zone.
However, the density of the blue verifiers is also higher close to the border.
To learn about the neighbors, each verifier broadcasts a “hello” message that
contains its label. The verifiers approximate the set of Voronoi neighbors by the
set of radio neighbors. Due to the high density of the verifiers at the border, the
blue verifier whose Voronoi cell intersects the border of the protection zone has
a red verifier as a radio neighbor. Hence, this blue verifier becomes a rejector
and the above assumptions are satisfied.

10 Practical Implementation Considerations

In the preceding sections, we presented the location verification protocol under
some simplifying assumptions for the sake of clarity. In this section, we discuss
ways to relax these assumptions so that our protocol can be used in a complete
security system.

Secure communication between verifiers is vital to the proper functioning
of our protocol. If an acceptor cannot trust its neighboring rejectors, it cannot
make an accurate assessment of the veracity of the location claim of a prover. Our
assumption of perfectly secure communication between verifiers can be relaxed
by employing one of the many protocols available for the same. A good scheme to
achieve communication security in wireless sensor networks is described in [11].
TinySec [12] and TinyPK [13] are two practical security systems for wireless
sensors.

The reliability of communication is another major assumption in the protocol.
We assume that the prover receives all messages sent to it by the acceptor
and verifiers receive all messages sent by the prover and among themselves.
In the location verification protocol, there are several instances when messages
could be lost. First, messages sent between verifiers may be lost. These losses
will not affect the security of the protocol because the verifier that expects
a message from another verifier will not act until it eventually receives that
message. Which means that if the message is not received, the verifiers do not
issue a decision, the prover is not accepted and the security of the protocol is
not compromised. To guarantee that the prover is eventually accepted, reliable

382 A. Vora and M. Nesterenko

message delivery component needs to be incorporated in our protocol. Second,
a message broadcast by a prover could be lost before it gets to verifiers. The
only scenario of concern is the case where an acceptor receives the broadcast
successfully but a rejector does not. In this case, the prover may be falsely
accepted. To counteract this, the rejectors have to be placed within their definite
acceptance range as described in Section 8. Another viable solution is to ensure
that multiple rejectors cover the rejection zone. For example, there are several
independent sets of verifiers covering the whole plane and securing the same
protection zone. The prover is rejected when at least one set of verifiers rejects it.

Observe that our protocol does not take into account potential latency in
communication between verifiers. This, however, can be handled by introducing
appropriate wait-times and timeouts before an acceptor makes the decision. To
preserve correctness, if an acceptor does not hear from a rejector, the prover is
not accepted.

Another aspect that is not explicitly addressed in the paper is the distributed
implementation of the protocol. Notice however, that in our protocol, to issue a
decision an acceptor that receives the prover’s signal needs to only communicate
with its Voronoi neighbors: it needs to communicate with the rejectors to make
sure that none of them heard the signal, and with the acceptors to check if they
received the signal and if their rejectors heard it. Hence, the implementation of
our protocol has to facilitate efficient communication between the acceptors and
their Voronoi neighbors. One way to do it is to place the required verifiers in the
communication range of each other.

Observe that we assume that the prover has radio range large enough to cover
potentially the whole protection zone. However, our protocol can be extended
to the case of a limited range prover. For example the acceptors can be placed
such that every point in the acceptance zone is no further away from an acceptor
than the prover’s maximum range.

Acknowledgments

We would like to express our gratitude for helpful discussions to Volodymyr
Andriyevskyy of Kent State University, David Wagner of University of California,
Berkeley and Ting Yu of North Carolina State University.

References

1. Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In:
Proceedings of the ACM workshop on Wireless security, San Diego, CA (2003)
1–10

2. Naik, V., Arora, A., Bapat, S., Gouda, M.: Dependable systems: Whisper: Local
secret maintenance in sensor networks. IEEE Distributed Systems Online 4 (2003)

3. Balfanz, D., Smetters, D.K., Stewart, P., Wong, H.C.: Talking to strangers: Au-
thentication in ad-hoc wireless networks. In: Proceedings of the Symposium on
Network and Distributed Systems Security (NDSS 2002), San Diego, CA, Internet
Society (2002)

Secure Location Verification Using Radio Broadcast 383

4. Denning, D.E., MacDoran, P.F.: Location-based authentication: Grounding cy-
berspace for better security. In Denning, D.E., Denning, P.J., eds.: Internet Be-
sieged: Countering Cyberspace Scofflaws. ACM Press / Addison-Wesley, New York
(1998) 167–174 Reprint from Computer Fraud and Security, Elsevier Science, Ltd,
February 1996.

5. Hu, Y.C., Perrig, A., Johnson, D.B.: Packet leashes: A defense against wormhole
attacks. In: INFOCOM 2003. (2003)

6. Brands, S., Chaum, D.: Distance-bounding protocols (extended abstract). In
Helleseth, T., ed.: Advances in Cryptology—EUROCRYPT 93. Volume 765 of
Lecture Notes in Computer Science., Springer-Verlag, 1994 (1993) 344–359

7. Corner, M.D., Noble, B.D.: Zero-interaction authentication. In: Proceedings of
the eighth Annual International Conference on Mobile Computing and Networking
(MOBICOM-02), New York, ACM Press (2002) 1–11

8. Kindberg, T., Zhang, K.: Context authentication using constrained channels. Tech-
nical Report HPL-2001-84, Hewlett Packard Laboratories (2001)

9. Gabber, E., Wool, A.: How to prove where you are: Tracking the location of
customer equipment. In: Proceedings of the 5th ACM Conference on Computer
and Communications Security, San Francisco, California, ACM Press (1998) 142–
149

10. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer-Verlag, New York (1985)

11. Slijepcevic, S., Potkonjak, M., Tsiatsis, V., Zimbeck, S., Srivastava, M.B.: On
communication security in wireless ad-hoc sensor networks. In: 11th IEEE In-
ternational Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises. (2002) 139–144

12. : Tinysec: Link layer encryption for tiny devices. (http://www.cs.berkeley.edu/
nks/tinysec/)

13. : Tinypk project. (http://www.is.bbn.com/projects/lws-nest/)

Sentries and Sleepers in Sensor Networks

Mohamed G. Gouda1, Young-ri Choi1, and Anish Arora2

1 Department of Computer Sciences,
The University of Texas at Austin,

1 University Station C0500, Austin, Texas 78712-0233, USA
{gouda, yrchoi}@cs.utexas.edu

2 Department of Computer Science and Engineering,
The Ohio State University, 2015 Neil Avenue,

Columbus, Ohio 43210-1277, USA
anish@cse.ohio-state.edu

Abstract. A sensor is a battery-operated small computer with an an-
tenna and a sensing board that can sense magnetism, sound, heat, etc.
Sensors in a network can use their antennas to communicate in a wireless
fashion by broadcasting messages over radio frequency to neighboring
sensors in the same network. In order to lengthen the relatively short
lifetime of sensor batteries, each sensor in a network can be replaced
by a group of n sensors, for some n ≥2. The group of n sensors act as
one sensor, whose lifetime is about n times that of a regular sensor as
follows. For a time period, only one sensor in the group, called sentry,
stays awake and performs all the tasks assigned to the group, while the
remaining sensors, called sleepers, go to sleep to save their batteries. At
the beginning of the next time period, the sleepers wake up, then all the
sensors in the group elect a new sentry for the next time period, and the
cycle repeats. In this paper, we describe a practical protocol that can
be used by a group of sensors to elect a new sentry at the beginning of
each time period. Our protocol, unlike earlier protocols, is based on the
assumption that the sensors in a group are perfectly identical (e.g. they
do not have unique identifiers; rather each of them has the same group
identifier). This feature makes our protocol resilient against any attack
by an adversary sensor in the group that may lie about its own identity
to be elected a sentry over and over, and keep the legitimate sensors in
the group asleep for a long time.

Keywords: Energy management, Sentry election, Self-stabilization, Sen-
sor Networks, Sentry-Sleeper protocol.

1 Introduction

A sensor is a battery-operated small computer with an antenna and a sensing
board that can sense magnetism, sound, heat, etc. Sensors in a network can
use their antennas to communicate in a wireless fashion by broadcasting mes-
sages over radio frequency to neighboring sensors in the same network. Due

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 384–399, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Sentries and Sleepers in Sensor Networks 385

to the limited range of radio transmission, sensor networks are usually multi-
hop. Sensor networks can be used for military, environmental or commercial
applications such as intrusion detection [1], disaster monitoring [2] and habitat
monitoring [3].

One of the challenging problems in designing sensor networks is to lengthen
the lifetime of sensor batteries. One approach to solve this problem is to exploit
the idea that in some densely deployed networks, a fraction of the sensors can go
to sleep for predefined time periods, while the remaining sensors stay awake and
perform the assigned tasks in the network. The sleeping sensors save their energy
and lengthen the lifetime of their batteries, without significantly degrading the
performance of the applications running on the sensor network. Examples of this
approach can be found in [4], [5], [6], [7], [8], [9], [10], [11].

In the current paper, we generalize this idea to be applicable to any, possibly
sparsely populated, sensor network: replace each sensor in the network by a
group of n sensors, for some n ≥ 2. The group of n sensors are deployed in a
location where a single sensor would have been deployed in the sparse network.
This group of n sensors act as one sensor as follows. For a time period, only
one sensor in the group, called sentry, stays awake and performs all the tasks
assigned to the group, while the remaining sensors, called sleepers, go to sleep to
save their batteries. At the beginning of the next time period, the sleepers wake
up, and all the sensors in the group elect a new sentry for the next time period,
and the cycle repeats.

Note that the sensors in a group are identical in every way so that each of
them can behave in exactly the same manner in performing the assigned tasks,
when this sensor is elected a sentry of the group. This implies that no sensor has
an identifier that distinguishes it from other sensors in its group. Rather, every
sensor in a group has the same group identifier.

The identifiers of two sensor groups in the same network, however, are dis-
tinguishable so that when a sensor receives a message, the sensor can determine
whether this message was sent from a sensor in its own group or it was sent
from a sensor in a different nearby group. Note that a sensor in a group needs to
exchange messages with other sensors in its group in order to elect a new sentry
at the beginning of each time period. A sensor also needs to exchange messages
with sensors in adjacent groups in order to perform the assigned tasks, when
this sensor is elected a sentry of its group.

An alternative approach to lengthen the lifetime of sensor batteries in a
sparsely populated network is to provide each sensor with a large battery whose
lifetime is n times the lifetime of a regular battery. However, this alternative
approach is less reliable than our approach (where each sensor in the sparsely
populated network is replaced by a group of n sensors) as follows. If a sensor fails
in a network, then the network can compensate for the failed sensor provided the
network is designed using our approach rather than the alternative approach.

The protocol used by a group of n sensors to elect a new sentry at the
beginning of each time period is called a sentry-sleeper protocol. The goals of a
sentry-sleeper protocol are two-fold:

386 M.G. Gouda, Y.-r. Choi, and A. Arora

i. Ensure that at each instant not all the sensors in a sensor group are
sleeping. Thus, at each instant at least one sensor in the group is
awake and so can perform the tasks assigned to the group.

ii. Reduce the time periods where two or more sensors in a sensor group
are awake in order to reduce the wasteful use of sensor batteries.
(Note that if two or more sensors in a sensor group are awake during
a time period, then each of them performs the same tasks assigned
to the group during that period.)

Other sentry-sleeper protocols are reported in [5], [11], [4], [8], [7]. The main
assumption in these papers is that the sensors in a “sensor group” have distin-
guishable identities; i.e. they have different physical locations, different connec-
tivity, different message traffic, or different identifiers. Thus, the sensors in the
network decide which one stays awake among their neighboring sensors based on
these different identities, so that they can not only save their batteries but also
provide some level of the performance of the applications running on the net-
work. Unlike these protocols, our protocol for electing a sentry at the beginning
of each time period is based on the assumption that the sensors in a group are
perfectly identical; i.e. they have identical locations, connectivity, traffic, and
identifiers. This feature makes our protocol scalable and resilient against any
attack by an adversary sensor in the group that may lie about its own identity
(i.e. lie about their locations, connectivity, ...) to be elected a sentry over and
over, and keep the legitimate sensors asleep for a long time.

2 Sensor States and Transitions

Before we can explain the main features of our sentry-sleeper protocol, we need
to explain, in this section, the different states of a sensor and the transitions
between them.

Every sensor in a sensor group can be in any one of two states: an idling state
or a sleeping state. In the idling state, the sensor does nothing but wait until
either its timeout expires (in which case the sensor executes a timeout action),
or it receives a message (in which case the sensor executes a receiving action).
An action, whether a timeout action or a receiving action, of a sensor consists
of a number of statements that update the local variables of the sensor, send at
most a message, or set the timeout of the sensor to expire at a later time.

Also the sensor can execute the special statement “go-to-sleep” at the end of
an action. If a sensor executes this statement, the sensor changes its state from
idling to sleeping. In the sleeping state, the sensor does nothing but wait until
its timeout expires, then it executes a timeout action and changes its state from
sleeping to idling. Figure 1 shows the two states of a sensor and the different
transitions between them.

There are two main differences between the idling state and the sleeping state
of a sensor. First, in the idling state, the sensor can receive messages that are
sent by other sensors and execute corresponding receiving actions, whereas in

Sentries and Sleepers in Sensor Networks 387

timeout action

go−to−sleep
receiving action

timeout action

idling sleeping

Fig. 1. Two states of a sensor

the sleeping state, the sensor cannot do so since it turns off its radio as well
as its processor and sensing devices to save energy during its sleep. Second, the
consumed energy when the sensor is in the idling state is much larger than the
consumed energy when the sensor is in the sleeping state (as discussed in [12]
and [13]). Therefore, for the sensor to save its energy as much as possible, it
should stay in its sleeping state as long as possible.

3 Sensor Network Execution

In this section, we present a formal model of the execution of a sensor network.
We use this model to specify our sentry-sleeper protocol in the next section. We
also use this model to verify and analyze the protocol in Section 5 and 6, and to
develop our simulation in Section 7.

The topology of a sensor network is a directed graph that satisfies the following
two conditions. First, each node in the topology represents a distinct sensor in
the sensor network. Second, each directed edge (u, v) from node u to node v in
the topology indicates that every message sent by sensor u can be received by
sensor v (provided that neither sensor v nor any “neighboring sensor” of v sends
a message at the same time when sensor u sends its message).

If the topology of a sensor network has a directed edge from a sensor u to a
sensor v, then u is called an in-neighbor of v and v is called an out-neighbor of u.
Note that a sensor can be both an in-neighbor and an out-neighbor of another
sensor in the sensor network.

As an example, Figure 2 shows the topology of a sensor network. This network
has six sensors, and sensor u in this network has three out-neighbors, namely
sensors v, v′, and v′′. Thus, if sensor u sends a message, then this message can be
received simultaneously by the three sensors v, and v′, and v′′. Note that sensor
u is both an in-neighbor and an out-neighbor of sensor v′ in this network.

u

v’’
v’

v

Fig. 2. Topology of a sensor network

388 M.G. Gouda, Y.-r. Choi, and A. Arora

We assume that during the execution of a sensor network, the real-time passes
through discrete instants: instant 1, instant 2, instant 3, and so on. The time
periods between consecutive instants are equal. The different activities that con-
stitute the execution of a sensor network occur only at the time instants, and not
in the time periods between the instants. We refer to the time period between
two consecutive instants t and t + 1 as a time unit (t, t + 1). (The value of a
time unit is not critical to our current presentation of a sensor network model,
but we estimate that the value of the time unit is around 100 milliseconds.)

At a time instant, the time-out of a sensor u may expire causing u to execute
its timeout action. Executing the timeout action of sensor u causes u to update
its own local variables and to send at most one message. It may also cause u
to execute the statement “timeout-after <expression>” which causes the time-
out of u to expire (again) after k time units, where k is the current value of
<expression>. It may also cause u to execute the statement “go-to-sleep” which
causes u to sleep until the time-out of u expires. The timeout action of sensor u
is of the following form:

timeout-expires -> <update local variables of u>;

<send at most one message>;

<may execute timeout-after <expression>>;

<may execute go-to-sleep>

To keep track of its time-out, each sensor u has an implicit variable named
“timer.u”. In each time unit between two consecutive instants, the implicit vari-
able timer.u is either “present” or “not-present”. Moreover, if variable timer.u
is present in a time unit, then it has a positive integer value in that time unit.
Otherwise, it is not-present and has no value in the time unit.

If sensor u executes a statement “timeout-after <expression>” at instant t,
then timer.u becomes present in the time unit (t, t+1) and its value is the value
of <expression> in this time unit.

If timer.u is present and its value is k, where k > 1, in the time unit (t − 1,
t), then timer.u continues to be present and its value is k − 1 in the time unit
(t, t + 1).

If timer.u is present and its value is 1 in the time unit (t − 1, t), then sensor
u executes its timeout action at instant t and timer.u becomes not-present in
the time unit (t, t + 1), unless u executes “timeout-after <expression>” as part
of its timeout action.

If a sensor u executes its timeout action and sends a message at instant t,
then any sensor v, that is an out-neighbor of u, receives a copy of the message
at instant t, provided that the following two conditions hold.

i. Sensor v does not send any message at instant t. (This condition
indicates that either sensor v does not execute its timeout action
at t, or it executes its timeout action at t but this execution of the
timeout action does not include sending a message.)

ii. Sensor v has no in-neighbor, other than sensor u, that sends a mes-
sage at instant t. (If v sends a message at t or if an in-neighbor of

Sentries and Sleepers in Sensor Networks 389

v, other than u, sends a message at t, then this message is said to
collide with the message sent by u at t with the net result that v
receives no message at t.)

If a sensor u receives a message at instant t, then u executes its receiving
action at t. Executing the receiving action of sensor u causes u to update its
own local variables. It may also cause u to execute the statement “timeout-after
<expression>” which causes the time-out of u to expire after k time units, where
k is the value of <expression> in the time unit (t, t + 1). It may also cause u to
execute the statement “go-to-sleep” which causes u to sleep until the time-out
of u expires. The receiving action of sensor u is of the following form:

rcv <msg> -> <update local variables of u>;

<may execute timeout-after <expression>>;

<may execute go-to-sleep>

It follows from the above discussion that at a time instant, a sensor u executes
exactly one of the following:

i. u sends one message, but receives no message.
ii. u receives one message, but sends no message.
iii. u sends no message and receives no message.

In the next section, we specify our sentry-sleeper protocol using the formal
model of sensor protocols in this section.

4 The Sentry-Sleeper Protocol

The goal of our sentry-sleeper protocol is to make a group of n sensors act as
a single sensor whose lifetime is N ∗ F time units, where F is the lifetime of a
regular sensor, and 1 < N < n. The n sensors in the sensor group constitute
a sensor network whose topology is fully-connected, i.e. there are two opposite-
direction edges between every two nodes in the topology.

During a time period, called a turn, (n − 1) sensors of the sensor group are
in their sleeping states and the remaining sensor is in its idling state. In a turn,
each of the sleeping sensors is called a sleeper, and the awake sensor is called a
sentry. At the end of a turn, the sleepers wake up and all sensors in the group
elect a new sentry for the next turn. This cycle of a turn followed by an election
of a new sentry is repeated over and over until the batteries of all sensors in the
group are exhausted.

At the end of a turn, the sleepers wake up, and they along with the sentry
collaborate to elect a new sentry for the next turn as follows. Each sensor in
the group computes a random period, called a resolution period, whose length
is chosen uniformly from the range 1 .. 2*ravg−1, where ravg is the average
length (measured in time units) of the resolution period. Then, each sensor sets
its timeout to expire after its resolution period. The sensor that chooses the
smallest resolution period in the group times-out first, and this sensor elects

390 M.G. Gouda, Y.-r. Choi, and A. Arora

itself as the new sentry and starts the new turn by sending a message of the
form:

sleep(gid, rt)

where gid is the identifier of the sensor group and rt is the remaining time in
the current turn. Initially, the remaining time in the current turn is assigned the
length of a turn, which is tl time units.

When a sensor u in the sensor group receives a sleep(gid, rt) message, sensor
u recognizes that a new sentry is elected for the current turn and decides to
sleep for rt time units. Thus, it sets its timeout to expire after rt time units,
then goes to sleep. The range of rt in the received sleep message is 1 .. tl. Thus,
the shortest sleeping period is 1 time unit, and the longest sleeping period is tl
time units.

After the elected sentry sends the first sleep(gid, rt) message, the sentry
computes a random period whose length rp is chosen uniformly from the range
1 .. 2*ravg−1, and sets its timeout to expire after rp time units. When the
sentry times-out, it sends the next sleep(gid, rt− rp) message. The sentry keeps
on sending sleep messages, until the remaining time in the current turn becomes
zero and all the sleepers wake up to elect a new sentry for the next turn.

Notice that the sentry periodically sends a sleep message even when all other
sensors in the group are supposedly asleep and cannot receive any messages. This
feature is intended to handle the following case. Some sensors in the group may
not receive the first sleep(gid, rt) message sent by the sentry at the beginning of
a turn. These sensors can receive a later sleep(gid, rt′) message, where rt′ < rt
and go to sleep for a period of rt′ time units in this turn.

In this protocol, two (or more) sensors, say u and v, in the group can select
identical resolution periods and so they send their sleep messages at the same
time. The net effect is that none of the sensors in the group can receive any
sleep messages, since the two messages collide with one another. Only sensors u
and v consider themselves as sentries, and the other sensors in the group do not
recognize that a new sentry has been elected for the current turn. However, our
protocol ensures that one, only one, sensor in the group eventually sends a sleep
message at some instant t and makes all other sensors go to sleep at t.

A formal specification for a sensor u in the group is as follows.

sensor u

const gid : integer, {group id of sensor u}

tl : integer, {length of a turn}

ravg : integer {avg length of random period}

var sentry : boolean, {Is u sentry?}

awake : boolean, {Is u awake?}

rp : 1..2*ravg-1, {length of random period}

rt : 0..tl, {remaining time in current turn}

g : integer, {group id in received message}

t : 1..tl {remaining time in received message}

Sentries and Sleepers in Sensor Networks 391

begin

timeout-expires -> if !awake -> awake := true;

sentry := false;

rp := random;

timeout-after rp

[] awake and !sentry -> sentry := true;

rt := tl;

send sleep(gid, rt);

rp := random;

rp := min(rp, rt);

rt := rt-rp;

timeout-after rp

[] awake and sentry ->

if rt>0 -> send sleep(gid, rt);

rp := random;

rp := min(rp, rt);

rt := rt-rp;

timeout-after rp

[] rt=0 -> sentry := false;

rp := random;

timeout-after rp

fi

fi

[] rcv sleep(g, t) -> if gid=g -> sentry := false;

awake := false;

timeout-after t;

go-to-sleep

[] gid!=g -> skip

fi

end

It is important to note that in this protocol, the sensors in a group compete
to become a sentry purely based on randomization without resorting to any
difference in their identities that may give an advantage to some sensors over
others in the group. In a turn, each sensor in the group has the same probability
to become a sentry. Thus, each sensor can expect to become a sentry once every
n turns or so. A sensor u who fails to become a sentry for a relatively long period,
say for 3 ∗ n or 5 ∗ n turns, should suspect that some sensors in the group are
not following the protocol. In this case, sensor u may decide to stay awake (and
perform the assigned tasks to the group) and refuse to go to sleep.

5 Stabilization of the Protocol

In this section, we sketch a proof that our sentry-sleeper protocol is self-stabilizing.
A state of this protocol is defined by a value for each variable and each implicit

392 M.G. Gouda, Y.-r. Choi, and A. Arora

variable timer.u for each sensor u in the protocol. Note that a state of the proto-
col corresponds to a time unit between two consecutive instants, since the values
of all variables and all implicit variables do not change during any time unit
between consecutive instants.

We assume that every state (whether legitimate or illegitimate) of the pro-
tocol satisfies the following three conditions.

1. For every sensor u, the implicit variable timer.u is present and its
value is at most tl time units. (Note that this assumption is main-
tained by the execution of the protocol.)

2. For every sleeping sensor u, the value of its awake variable is false.
(Note that this assumption is maintained by the execution of the
protocol.)

3. For every awake sensor u, the value of its timer.u is distinct from
the value of timer.v for any other awake sensor v. (Note that this as-
sumption is probabilistically maintained by choosing the value ravg
to be large relative to the number of sensors in the group.)

In our sentry-sleeper protocol, a legitimate state is defined as a state that
satisfies the following invariant :

At least one sensor in the group is awake, and
at most one sensor in the group is a sentry.

Therefore, in a legitimate state, the number of sleepers is in the range 0 .. n−1,
and the number of sentries is in the range 0 .. 1.

The protocol is self-stabilizing iff it satisfies the following two conditions [14].

i. Closure: Starting from any legitimate state, the execution of any
action in any sensor in the protocol yields a legitimate state.

ii. Convergence: Starting from any illegitimate state, the protocol is
guaranteed to reach a legitimate state.

First, we show that starting from any legitimate state, the execution of any
action in any sensor in the protocol yields a legitimate state. The protocol has
two cases to consider. In the first case, the executed action is a timeout action
in a sensor u in the group. In this case, there are three possibilities to consider
when the timeout action is executed.

i. The value of awake in u is false: In this case, u concludes that u
wakes up from sleeping (by the assumption 2), and makes the value
of awake true. Thus, u becomes awake, and so the invariant holds.

ii. The value of awake in u is true and the value of sentry in u is false:
In this case, u elects itself as the new sentry and makes other sensors
in the group sleep by sending a sleep message. Note that no other
awake sensor can execute this timeout action that causes the sensor
to send a sleep message at the same time (by the assumption 3).
Thus, u is awake and becomes the only sentry in the group, and so
the invariant holds.

Sentries and Sleepers in Sensor Networks 393

iii. The value of awake in u is true and the value of sentry in u is true: In
this case, there are two cases to consider depending on the remaining
time in the current turn. First, if the remaining time is bigger than
zero, u sends another sleep message. Thus, u is still awake and is
still the only sentry in the group. Second, if the remaining time is
zero, u recognizes that the current turn is finished, and withdraws
from a sentry by making its value of sentry false. Thus, u is still
awake, but is not a sentry any more. In both cases, the invariant
holds.

In the second case, the executed action is a receiving action in a sensor u in
the group. In this case, there are two possibilities to consider when the receiving
action is executed.

i. When u receives a sleep message from another sensor v in the same
group: In this case, u recognizes that sensor v is elected a sentry for
the current turn, so u goes to sleep for the specified sleeping period in
the received message. Thus, sensor v is awake and is the only sentry
in the group, and so the invariant holds.

ii. When u receives a sleep message from a sensor in a different group:
In this case, u ignores the message and does nothing. Thus, the
invariant holds.

Hence, starting from any legitimate state, the execution of a timeout action or
a receiving action in any sensor in the group yields to a legitimate state.

Next, we show that starting from any illegitimate state, our protocol is guar-
anteed to reach a legitimate state within finite executions of actions in the group.
There are two states that violate the invariant as follows:

i. A state where all sensors in the group are sleeping: In this case,
a sensor u in the group is guaranteed to execute its timeout action
within tl time units (by the assumption 1). By executing the timeout
action of u, u becomes awake. Thus, at least one sensor in the group
will wake up within tl time units, and then only one of the awake
sensors will eventually become a sentry.

ii. A state where two or more sentries exist in the group: In this case,
only one sentry whose timer value is the smallest, say sensor u, times-
out first and then executes its timeout action to send a sleep message
at some instant t (by the assumption 3). The other sentries receive
the sleep message from u and go to sleep at t. Thus, all the sentries
except u go to sleep within finite executions of actions.

Therefore, starting from any illegitimate state, the execution of a timeout ac-
tion in some sensor makes the protocol reach a legitimate state within finite
executions of actions in the group.

394 M.G. Gouda, Y.-r. Choi, and A. Arora

6 Protocol Analysis

Our protocol, as described in Section 4, makes a group of n sensors act as one
sensor whose lifetime is N ∗ F time units, where F is the lifetime of a regular
sensor and N is some quantity, called the effective number of the sensors in the
group. Clearly, we have 1 < N < n. In this section, we analyze the protocol and
estimate the value of N .

period
resolution
(Random)

sleep
message

sleep
message

sleep
message

rp rp

period
resolution
(Random)

time

1 turn = tl time units

sleep
message

rp
. . .

Fig. 3. A time period during protocol execution

Figure 3 shows a time period T , consisting of a resolution period followed
by one turn of tl time units. Since the average length of a resolution period is
ravg time units, we have T = tl + ravg time units. During a turn, a sentry
sends a sleep message every random period rp whose average is ravg time units.
Therefore, the average number of sleep messages sent by a sentry per turn is
tl/ravg.

Let Eslp and Eidl be the amount of energy consumed by a sensor in the
sleeping state and in the idling state per time unit respectively, and Esnd and
Ercv be the amount of energy consumed by a sensor to send a message and
to receive a message respectively. There are two possible cases that can occur
during the time period T :

i. Case 1 : The sensors in the group do not execute the protocol, and
remain in their idling states. The amount of energy consumed by n
sensors in this case, Enop is calculated as follows.

Enop = Eidl ∗ (tl + ravg) ∗ n

ii. Case 2 : The sensors in the group execute the protocol. The sentry
stays in the idling state and sends tl/ravg sleep messages for this
time period. Each of the (n− 1) sleepers stays in the idling state for
a resolution period, receives a sleep message, and sleeps for tl time
units. Therefore, the amount of energy consumed by n sensors in this
case, Ep is calculated as follows.

Ep = Eidl ∗ (tl + ravg) + Esnd ∗ (tl/ravg)
+(n − 1) ∗ (Eslp ∗ tl + Eidl ∗ ravg + Ercv)

Sentries and Sleepers in Sensor Networks 395

Table 1. Energy consumption of a sensor (in energy units)

Eslp 0.003 per time unit
Eidl 30 per time unit
Esnd 24.3 per message
Ercv 9 per message

0 200 400 600 800 1000

ravg (time units)

0

1

2

3

4

tl=30*ravg
tl=60*ravg
tl=90*ravg
tl=120*ravg

N

Fig. 4. N vs. ravg when n=4

0 2 4 6 8

n

0

2

4

6

8

tl=3000
tl=6000
tl=9000
tl=12000

N

Fig. 5. N vs. n when ravg=100

From the above analysis, we can estimate the effective number of the sensors
N as follows:

N =
Enop

Ep

We present two figures, Figure 4 and 5, from the above formula for the
four cases tl = 30 ∗ ravg, 60 ∗ ravg, 90 ∗ ravg and 120 ∗ ravg in time units. In
both of the figures, we use the values in Table 1 for Eslp, Eidl, Esnd and Ercv.
These values are computed using the energy consumption model in [12], under
the assumption that a time unit is 100 milliseconds, and a time period taken for
a sensor to send or receive a message is 30 milliseconds.

Figure 4 shows the relationship between the length of ravg and N when n=4
and 5 ≤ ravg ≤ 1000 in time units. If ravg is 100 time units or more, then the
value of N no longer depends on ravg. Similarly, when n=2 and 9, if ravg is 100
time units or more, then the value of N no longer depends on ravg.

Figure 5 shows the relationship between n and N when ravg = 100 time
units. From Fig. 5, one can make two observations. First, tl does not have a
strong effect on the value of N , especially when n is small. Second, N is closer
to n when n is smaller. During a resolution period, all sensors in the group
need to stay awake, and so the total amount of energy consumed by the sensors
during this period is increased as n is increased. Thus, our protocol becomes
more efficient as n is smaller.

In the real execution of the protocol, the current sentry can run out of the
battery and die during its turn. Then there exists a time period where no sensor
in the group is awake to perform the tasks assigned to the group. We call this
time period a gap.

396 M.G. Gouda, Y.-r. Choi, and A. Arora

We can estimate the total length of gaps over the lifetime of a group of n
sensors from a simple formula. When the sentry dies during its turn, the average
time period that no sensor in the group is awake is tl/2 (because the minimum
time period is zero and the maximum time period is tl). Since (n − 1) sensors
can die during their sentry turns, the total length of gaps over the lifetime is
estimated as follows:

tl

2
∗ (n − 1)

The total length of gaps is relatively much smaller than the lifetime of the group.
Note that the total length of gaps is related to the number of sensors in the group,
not the lifetime of a regular sensor.

7 Simulation Results

We have developed a simulator that can simulate the execution of our sentry-
sleeper protocol. This simulator simulates the behavior of a group of n sensors
whose topology is fully connected and also allows us to configure the parameters
of the protocol such as tl and ravg.

For the purpose of simulation, we have adopted the values in Table 1 as well
as the following values:

– tl= 3000 time units
– ravg= 100 time units
– The amount of energy given to each sensor, at the beginning of sim-

ulation, is enough to keep that sensor in its idling state for 100000
time units.

We ran simulations of this protocol for the three cases n = 2, 4 and 9, and
plotted the results in Figure 6 and 7. Figure 6 shows the effective number of
the sensors N . Each circle mark represents the average effective number of the

0 2 4 6 8

n

0

2

4

6

8

simulation
estimation

N

Fig. 6. The effective number of the sen-
sors

0 2 4 6 8

n

0

5000

10000

simulation
estimation

gap length
(time units)

Fig. 7. The total length of gaps

Sentries and Sleepers in Sensor Networks 397

sensors over 100 simulations and each X mark represents the estimated effective
number of the sensors. The effective number of the sensors in simulation is larger
than that in estimation, because in simulation, sensors run out of their batteries
and die over time and so the number of sensors in the group decreases over
time. As discussed in Section 6, the protocol becomes more efficient as n is
smaller.

Figure 7 shows the total length of gaps over the lifetime of a group of n
sensors. Each circle mark represents the average total length of gaps over 100
simulations and each X mark represents the estimated total length of gaps.

From the simulation results, we show that the effective number of the sensors
N is close to the number of sensors n in the group. That is, the group of n
sensors can lengthen its lifetime around n times the lifetime of a regular sensor
by adopting our protocol.

8 Related Work

It is suggested in SBPM[7] to divide the sensors in a network into two sets, sen-
tries and sleepers. Sentries stay awake, and provide basic communication services
and coarse sensing services, while sleepers go to sleep to save their energy. When
the sentries detect events, they can wake up the sleepers for more refined sensing.
However, in SBPM, sentries are pre-selected and fixed. Moreover, a central com-
puter decides when sleepers go to sleep. In GAF[8], all sensors that are equivalent
in routing are identified using geographical location information. Then, only one
sensor in a group of equivalent sensors stays awake and participates in routing,
while the other sensors turn off their radios and go to sleep.

In Span[4] and TMPO[11], each sensor exchanges its neighbor information
to compute which sensor joins a connected backbone in a network. Only sensors
in the backbone participate in routing, while other sensors can go to sleep to
save energy. In ASCENT[5], a sensor in a network keeps track of the number
of its active neighbors and message loss rate, and joins a network topology only
if the sensor becomes helpful. However, once a sensor enters the active state, it
continues to be awake until it dies.

Other approaches to save energy in a sensor network have been proposed in
[15], [16], [13], [10], [6], [9]. In LEACH[15], to reduce communication cost, each
cluster-head collects data messages from the sensors in the cluster, and then
compresses and forwards the messages to a base station. In STEM[10], a sensor
in a monitoring state turns off the radio. If the sensor detects an event, it turns
on the radio and wakes up other sensors if necessary.

Leader election protocols have been studied for single-hop single-channel
radio networks in [17], [18], [19] and [20]. However, in general, these proto-
cols assume that a station sending a message can simultaneously listen [17],
[18], [20]. These protocols may not be useful in a sensor network, since gener-
ally a sensor cannot listen while the sensor is sending a message as in IEEE
802.11.

398 M.G. Gouda, Y.-r. Choi, and A. Arora

9 Concluding Remarks

In this paper, we described a sentry-sleeper protocol that can be used by a
group of sensors to elect a new sentry at the beginning of each time period. Our
protocol is based on the assumption that the sensors in a group have identical
identities, and so the sensors compete to become a sentry purely based on ran-
domization. We also showed that our protocol is self-stabilizing. The simulation
results showed that a group of n sensors can lengthen its lifetime 1.95 ∗ F for
n = 2, 3.87 ∗ F for n = 4 and 8.59 ∗ F for n = 9, where F is the lifetime of a
regular sensor.

Our protocol can be applied to a cluster-head election algorithm that balances
energy load evenly among the nodes in a cluster. By adopting our protocol, the
nodes in the cluster can elect a cluster-head based on randomization without
resorting to any identifiers, so some nodes with the highest identifier or the
lowest identifier do not have an advantage over others.

Acknowledgment

This work was supported in part by the Defense Advanced Research Projects
Agency (DARPA) Contract F33615-01-C-1901, and in part by three IBM Fac-
ulty Partnership Awards for the academic years of 2000-2003, and in part by
the Texas Advanced Research Program, Texas Higher Education Coordinating
Board, under Grant TARP 14-970823.

References

1. Arora, A., Dutta, P., Bapat, S., Kulathumani, V., Zhang, H., Naik, V., Mittal,
V., Cao, H., Demirbas, M., Gouda, M., Choi, Y., et al: A Line in the Sand:
A Wireless Sensor Network for Target Detection, Classification, and Tracking.
Computer Networks (Elsevier), Special Issue on Military Communications Systems
and Technologies 46 (2004) 605–634

2. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor
Networks: A Survey. Computer Networks, Elsevier Science 38 (2002) 393–422

3. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson., J.: Wireless
Sensor Networks for Habitat Monitoring. In: Proceedings of the ACM International
Workshop on Wireless Sensor Networks and Applications (WSNA’02), Atlanta, GA
(2002)

4. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: An Energy-efficient
Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks.
In: Proceedings of the Seventh Annual ACM/IEEE International Conference on
Mobile Computing and Networking (ACM MobiCom), Rome, Italy (2001) 85–96

5. Cerpa, A., Estrin, D.: ASCENT: Adaptive Self-Configuring sEnsor Networks
Topologies. In: Proceedings of the Twenty First Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM 2002), New York, NY
(2002)

Sentries and Sleepers in Sensor Networks 399

6. Xu, Y., Heidemann, J., Estrin, D.: Adaptive Energy-Conserving Routing for Mul-
tihop Ad Hoc Networks. Research Report 527, USC/Information Sciences Institute
(2000)

7. Hui, J., Ren, Z., Krogh, B.: Sentry-Based Power Management in Wireless Sen-
sor Networks. The International Workshop on Information Processing in Sensor
Networks (IPSN’03) (2003)

8. Xu, Y., Heidemann, J., Estrin, D.: Geography-informed Energy Conservation for
Ad-hoc Routing. In: Proceedings of the Seventh Annual ACM/IEEE International
Conference on Mobile Computing and Networking (ACM MobiCom), Rome, Italy
(2001)

9. Younis, M., Youssef, M., Arisha, K.: Energy-aware Management for Cluster-based
Sensor Networks. Computer Networks 43 (2003) 649–668

10. Schurgers, C., Tsiatsis, V., Ganeriwal, S., Srivastava, M.: Topology Management
for Sensor Networks: Exploiting Latency and Density. In: Proceedings of The ACM
Symposium on Mobile Adhoc Networking and Computing (MOBIHOC 2002), Lau-
sanne, Switzerland (2002)

11. Bao, L., Garcia-Luna-Aceves, J.: Topology Management in Ad Hoc Networks.
In: Proceedings of the 4th ACM Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc’03), Annapolis, Maryland (2003)

12. Miller, M.J., Vaidya, N.H.: Minimizing Energy Consumption in Sensor Networks
Using A Wakeup Radio. In: Proceedings of the IEEE Wireless Communications
and Networking Conference (WCNC’04). (2004)

13. Ye, W., Heidemann, J., Estrin, D.: An Energy-Efficient MAC protocol for Wireless
Sensor Networks. In: Proceedings of the Twenty First Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM 2002), (New
York, NY) 1567–1576

14. Arora, A., Gouda, M.: Closure and Convergence: A Foundation of Fault-Tolerant
Computing. IEEE Transactions on Software Engineering 19 (1993) 1015–1027

15. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-Efficient Commu-
nication Protocol for Wireless Microsensor Networks. In: Proceedings of Hawaiian
International Conference on Systems Science. (2000)

16. Singh, S., Woo, M., Raghavendra, C.S.: Power-aware Routing in Mobile Ad Hoc
Networks. In: Proceedings of the 4th Annual ACM/IEEE International Conference
on Mobile Computing and Networking (ACM MobiCom), Dallas, Texas, United
States (1998) 181–190

17. Nakano, K., Olariu, S.: Randomized Leader Election Protocols in Radio Networks
with No Collision Detection. International Symposium on Algorithms and Com-
putation (2000) 362–373

18. Jurdzinski, T., Kutylowsk, M., Zatopianski, J.: Efficient Algorithms for Leader
Election in Radio Networks. In: Proceedings of the twenty-first annual symposium
on Principles of distributed computing, ACM Press (2002) 51–57

19. Jurdzinski, T., Kutylowsk, M., Zatopianski, J.: Weak Communication in Radio
Networks. Euro-Par2002, Lecture Notes in Computer Science 2400, Springer-Verlag
(2002) 965–972

20. Hayashi, T., Nakano, K., Olariu, S.: Randomized Initialization Protocols for
Packet Radio Networks. International Parallel Processing Symposium (IPPS),
IEEE (1999)

Clock Synchronization for Wireless Networks

Rui Fan, Indraneel Chakraborty, and Nancy Lynch

Massachusetts Institute of Technology, Cambridge MA 02139, USA
rfan@theory.csail.mit.edu, indranil@lcs.mit.edu, lynch@theory.csail.mit.edu

Abstract. Time synchronization is a fundamental service in many wire-
less applications. While the synchronization problem is well-studied in
traditional wired networks, physical constraints of the wireless medium
impose a unique set of challenges. We present a novel time synchro-
nization algorithm which is highly energy efficient and failure/recovery-
tolerant. Our algorithm allows nodes to synchronize to sources of real
time such as GPS when such signals are available, but continues to syn-
chronize nodes to each other, even in the absence of GPS. In addition,
the algorithm satisfies a relaxed gradient property, in which the degree
of synchronization between nodes varies as a linear function of their dis-
tance. Thus, nearby nodes are highly synchronized, which is desirable in
many wireless applications.

1 Introduction

Wireless networks are an increasingly important medium for distributed com-
putation. As wireless applications grow more diverse and sophisticated, time
synchronization among wireless nodes has emerged as a common requirement of
many applications. For example, MAC layer protocols such as TDMA [5] require
time synchronization to schedule collision-free broadcast schedules. Time syn-
chronization is essential in sensor networks, which collect data from a physical
environment, then tag the data with the time of its occurrence. Time synchro-
nization is also needed in high-level applications to timestamp and order events
and signals, and for security purposes. While time synchronization in wired net-
works is a well-studied problem, the wireless medium presents a unique set of
challenges. The primary concern of all wireless applications is energy conserva-
tion. A clock synchronization algorithm (CSA for short) must carefully regiment
its frequency of resynchronization, and avoid flooding. In addition, the algo-
rithm cannot typically rely on a power-hungry source of real time such as GPS.
Another characteristic of wireless networks is unexpected and possibly frequent
changes in network topology. Thus, a CSA in a wireless medium must continue
to function in the face of node failures and recoveries. Lastly, many applications
in wireless settings are local in nature. That is, only nearby nodes in the network
need to participate in some activity. Thus, a desirable property for a CSA is that
it closely synchronizes nodes which are nearby, while possibly allowing faraway
nodes to be more loosely synchronized.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 400–414, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Clock Synchronization for Wireless Networks 401

In this work, we present a time synchronization algorithm addressing the
requirements of a wireless network. Our algorithm is energy-efficient: nodes per-
form at most one local (1-hop) broadcast per synchronization round. It tolerates
dynamic network behavior: the algorithm continues to function when there are
arbitrary node failures and joins. A novel feature of our algorithm is that it per-
forms both internal synchronization, i.e. synchronizing nodes with each other,
and external synchronization, i.e. synchronizing nodes with real time. The al-
gorithm allows incorporating a GPS source of real time when such signals are
available, but continues to synchronize nodes with each other even in the ab-
sence of GPS. Thus, for example, a sensor node can use our algorithm both for
timestamping data with real time, and to schedule TDMA broadcasts, which
only requires relative time among the nodes. Our algorithm satisfies a relaxed
gradient property. In particular, the algorithm ensures that the clock skew of two
nodes which are distance d apart in the network is bounded by a linear function of
d, at almost all times. Finally, our algorithm is practical and easy to implement.
It requires little memory and computation, and is suited for resource-bounded
wireless nodes.

The remainder of this paper is organized as follows. In Section 2, we describe
some related work on clock synchronization. In Sections 3 and 4, we describe
our formal model and problem. We present our synchronization algorithm in
Section 5, and show that it satisfies the desired properties in Section 6. Finally,
we conclude and discuss some future work in Section 7.

2 Related Work

NTP [6] is a widely deployed time synchronization service. NTP relies on a hi-
erarchy of time servers, and assumes that root servers have access to a correct
source of real time. In contrast, our algorithm works in a network with no in-
frastructure support. Access to real time via GPS may exist, but is intermittent.
Furthermore, unlike NTP, we tolerate a highly dynamic network, and node fail-
ures and joins are accommodated without disturbing the synchronization in the
rest of the network. Srikanth and Toueg [7] present an optimal clock synchroniza-
tion algorithm. However, their algorithm relies on broadcast, and is not suitable
for a wireless network. Their algorithm performs only internal synchronization,
while we integrate external and internal synchronization. Also, [7] is complicated
by the need to tolerate Byzantine failures. Our algorithm only tolerates stopping
failures, but is much simpler.

RBS [1] is an efficient CSA designed for wireless networks. RBS performs
post-hoc synchronization, in which nodes determine the time of an event some
time after it has occurred. By contrast, our algorithm performs on-the-fly syn-
chronization, so that we can timestamp an event at the moment it occurs. In
addition, RBS performs only internal synchronization.

CesiumSpray [8] is a CSA performing both internal and external synchro-
nization. CesiumSpray achieves high accuracy using the simultaneity of message
reception by all nodes in a satellite/wireless network. However, we cannot guar-

402 R. Fan, I. Chakraborty, and N. Lynch

antee simultaneity in the wireless networks we consider because the networks
are multihop. In addition, CesiumSpray has lower fault tolerance than our al-
gorithm, and does not achieve the gradient property. Fetzer and Cristian [3]
also integrate internal and external synchronization. However, their algorithm
is more complex than ours because it deals with faulty GPS information. In
practice, we think such failures are unlikely to occur.

Fan and Lynch [2] introduced the gradient property for clock synchronization.
They showed that for every CSA, there exist executions in which two nodes
distance d apart have clock skew Ω(d+ log D

log log D), where D is the diameter of the
network. However, their result requires a lower bound on the rate of increase of
every node’s logical clock. Our algorithm permits logical clocks to be constant
for some period of time. Thus, their lower bound does not directly apply.

3 System Model

Our system model consists of three parts: a dynamic set of nodes, a commu-
nication network over which nodes send messages, and a GPS service which
occasionally informs nodes of the real time. Below, we discuss each part sepa-
rately.

3.1 Nodes

We wish to model a dynamic system in which nodes can fail or join the system
at arbitrary times. To do this, we define N to be the set of potential nodes.
Each node in N can be in either a sleeping or awake state, and the state of the
node can change at any time. The set of nodes which participate in the clock
synchronization algorithm at some time consists of the awake nodes at that time.
Failures of nodes are modeled by a node changing from the awake state to the
sleeping state. Joins of nodes are modeled by the opposite transition.

Each node is equipped with a hardware clock, which we think of as a variable
whose value changes as a differentiable function of time. Denote the value of
node i’s hardware clock at time t by Hi(t). We assume that the hardware clock
of every node has bounded drift. More precisely, we assume that there exists
ρ < 11, such that for all nodes i,

∀t : 1 − ρ ≤ dHi(t)
dt

≤ 1 + ρ

Each node uses its hardware clock and messages it receives from other nodes
to compute a logical clock value. Denote the value of node i’s logical clock at
time t by Li(t). The clock synchronization algorithm tries to ensure that the
logical clock values of the nodes are close to each other, and close to real time.

1 In practice, ρ is very small, on the order of 10−5 or 10−6.

Clock Synchronization for Wireless Networks 403

3.2 Communication Network

Nodes communicate with each other over a message passing network. In some
wireless networks, e.g., ad hoc networks, the network changes depending on
the set of awake nodes, because the awake nodes are responsible for routing
messages among themselves. Other problems may arise if the network becomes
disconnected by too many node failures. However, such network problems are
separate from the problem of clock synchronization. Thus, in this paper, we make
a simplifying assumption that there exists a virtual communication link between
every pair of nodes i, j ∈ N . We assume that each link is reliable, FIFO, and
has bounded delay. Regarding the last assumption, we assume that for every
i, j, there exists a constant di,j < ∞, called the distance between i and j, which
upper bounds the amount of time it takes for a message sent by i to be received
by j. For simplicity, we assume di,j = dj,i

2. Finally, we let the diameter of the
network be D = maxi,j di,j .

3.3 GPS Service

We imagine that all nodes are equipped with GPS receivers3, and that occa-
sionally, a GPS service transmits a message informing nodes of the correct real
time. The times when these transmissions occur are not under the control of
the nodes. We model the receipt of a GPS message at a node i by an input
action gps(t)i. This message is intended to inform i that the current real time
is t. However, the message may not be accurate, in the sense that i may receive
the message after real time t. This is because it takes some time for the GPS
message to propagate to the entire network. However, we bound the inaccuracy
of every GPS message, by assuming that all nodes which are awake during the
time interval [t, t + D] receive gps(t) no later than time t + D, where D is the
diameter of the network.

4 The Clock Synchronization Problem

In this section, we define the internal, external and gradient synchronization
properties that the clock synchronization algorithm must satisfy. It is not pos-
sible to satisfy these properties at all times and at all nodes, when the nodes
are allowed to fail and join/recover. Thus, at any time t, the synchronization
properties are only required to hold for nodes which are stable at time t. We say
a node is stable at time t if it has received at least one GPS input before t, and
has not failed since receiving that GPS. Let S(t) ⊆ N denote the set of nodes
which are stable at time t. We say an execution is failure free if S(t) = N for all
t. Otherwise, we say the execution is failure prone.

2 If di,j �= dj,i, we can simply redefine d′
i,j = d′

j,i = max(di,j , dj,i), then use d′
i,j as the

distance between i and j.
3 Actually, it is enough for one node to have a GPS receiver, and for this node to

propagate GPS messages to the rest of the network.

404 R. Fan, I. Chakraborty, and N. Lynch

The precision requirement deals with internal synchronization of the nodes,
i.e., bounding the difference in the logical clock values of any two nodes. Let ε
be a parameter. Formally, we require the algorithm satisfy

Requirement 1 (ε-Precision). ∀t∀i, j ∈ S(t) : |Li(t) − Lj(t)| ≤ ε

The accuracy requirement deals with external synchronization of the nodes,
i.e., bounding the difference between the logical clock value of any node and real
time. Let ε be a parameter. We require the algorithm satisfy

Requirement 2 (ε-Accuracy). ∀t∀i ∈ S(t) : |Li(t) − t| ≤ ε

The gradient property was introduced in [2]. It requires that at all times, the
difference in the logical clock values of any two nodes which are distance d apart
in the communication network (i.e, nodes i, j, such that di,j = d) is bounded
by f(d), where f is a nondecreasing function of d. The gradient property is
desirable in applications where the clocks of nearby nodes must be well synchro-
nized, whereas the clocks of faraway nodes can be more loosely synchronized.
An example of such an application is TDMA. In TDMA, only nearby nodes
can collide when transmitting, and thus only such nodes need well synchronized
clocks for scheduling their transmissions. Please see [2] for additional motivations
and discussion of the gradient property. Our synchronization algorithm satisfies
a weakened form of the gradient property, where the gradient property holds
only some of the time. More precisely, let T ⊆ R

≥0 consisting of the union of
nonzero-length intervals. Then we require that the algorithm satisfy the gradient
property for all times in T . Of course, our goal is to maximize the size of T , i.e.,
maximize m(T)

m(R≥0) , where m(·) denotes the Lebesgue measure on R. Let α, β be
parameters. Formally, we require

Requirement 3 ((T, α, β)-Gradient Precision). ∀t ∈ T ∀i, j ∈ S(t) : |Li(t)−
Lj(t)| ≤ αdi,j + β

5 Algorithm

In this section, we describe our clock synchronization algorithm. The pseudo-
code of the algorithm is written in the TIOA language [4], and is presented in
Figure 1. Below, we give an overview of how the algorithm operates.

Each node in the algorithm maintains two clocks, a local clock and a global
clock. The local clock of node i represents i’s best estimate of the current real
time. i’s global clock represents i’s estimate of the largest local clock of any other
node. Roughly speaking, i’s logical clock is defined to be the maximum of i’s local
and global clocks4. i’s local clock is updated by the occasional GPS inputs which
i receives. i’s global clock is updated by the periodic internal synchronizations

4 This definition is meant to convey intuition, and is not exactly correct; it is amended
in the following paragraphs.

Clock Synchronization for Wireless Networks 405

ClockSynci, i ∈ I

Constants

0 ≤ ρ < 1 0 < τ

State

idle ∈ Boolean, initially true
for all k ∈ N : local[k] ∈ R, initially 0
for all k ∈ N : global[k] ∈ R, initially 0
current ∈ N, initially 0
next sync ∈ N, initially 0

hardware ∈ R

max gps ∈ R, initially 0
do send ∈ Boolean, initially false
send buffer, a queue of elements of type R×
R, initially empty

Derived Variables

mlocal ← maxk local[k]
mglobal ← maxk global[k]

logical ← max(mlocal, mglobal)

Transitions

input wakeupi
Effect:

if idle then
idle ← false
current ← 1

input gps(t)i

Effect:
if ¬idle then

if t > max gps then
max gps ← t
current ← current + 1
local[current] ← t
global[current] ← t
next sync ← � t

τ � + 1

input recv(t, s)j,i

Effect:
if ¬idle then

if s ≥ max gps then
if t > global[current] then

global[current] ← t
enqueue (t, s) in send buffer
do send ← true
if t

τ ≥ next sync then
next sync ← t

τ + 1

input crashi

Effect:
idle ← true
for all k ∈ N do

local[k] ← 0
global[k] ← 0

current ← 0
next sync ← 0
max gps ← 0
do send ← false
empty send buffer

output sync(t, s)i

Precondition:
¬idle
t = local[current]
t
τ = next sync
s = max gps

Effect:
enqueue (t, s) in send buffer
next sync ← next sync + 1
do send ← true

output send(t, s)i

Precondition:
¬idle
send buffer is not empty
(t, s) = head of send buffer

Effect:
remove head of send buffer
do send ← false

Trajectories

Satisfies
unchanged:
idle, current, next sync, max gps, do send,
send buffer
1 − ρ ≤ d(hardware) ≤ 1 + ρ

∀k ∈ N :
if ¬idle ∧ (k = current) then

d(local[k] − hardware) = 0
d(global[k] − 1−ρ

1+ρ hardware) = 0
else

d(local[k]) = 0
d(global[k]) = 0

Stops at
(local[current]

τ = next send) ∨ (do send =
true)

Fig. 1. ClockSynci state and transitions

406 R. Fan, I. Chakraborty, and N. Lynch

which the nodes perform. i’s local clock increases at the same rate as i’s hardware
clock. i’s global clock increases at a rate 1−ρ

1+ρ times i’s hardware clock rate. The
reason for the rate of increase of i’s global clock is so that i does not overestimate
the local clocks of other nodes.

When i receives a GPS signal, it updates its local clock to the value of the
signal. However, to avoid setting i’s logical clock backwards5, i stores its current
local clock value, and allocates a new local clock initialized to the time in the
GPS signal. i’s virtual local clock, mlocal, is set to be the larger of i’s local clock,
and i’s stored local clock value. Moreover, i’s logical clock value is defined as the
larger of i’s mlocal, and i’s mglobal, which will be defined shortly.

The way that the transfer of local clock values after receiving a GPS is actu-
ally implemented in our algorithm is slightly different from what is stated above,
though it amounts to the same idea. In our algorithm, i stores an array local of
local clock values, and there is an index current keeping track of i’s currently
active local clock. i increases local[current] at the same rate as its hardware
clock, but keeps local[k] constant, for all k �= current. When i receives a GPS
input, i increases current. This has the effect of storing i’s previous local clock
and starting a new one. The new local clock is initialized to the value of the GPS
input. mlocal is defined as the maximum value in local[·]. In addition, i stores
an array global of global clock values, and updates the array in a similar way to
how i updates its local clock values after it receives a GPS. mglobal is defined
as the maximum value in global[·].

To maintain internal synchronization, each node executes its sync action ap-
proximately once every τ time, where τ is a constant. More precisely, each node i
stores an index next sync, and when i finds local[current] = τ ·next sync, i per-
forms the synci action. Then, i increments next sync. The sync action sends out
a message of the form (local[current],max gps), where max gps is the largest
GPS value that i has received. max gps acts as a “certificate” of how accurate i’s
local[current] is. That is, the higher i’s value of max gps, the more recently that
i has received a GPS input, and thus the more accurate is i’s value local[current].

Now, consider when i receives a synchronization message (t, s), where t is
the local[current] of some other node, say j, and s is j’s value of max gps. i
checks that j has received at least as recent a GPS value as i, and also that
j’s local[current] is greater than i’s global[current], which is i’s current esti-
mate of the largest local[current] of any other node. If both conditions are true,
then i stores t in global[current], and propagates the message (t, s) to i’s neigh-
bors in the network. Lastly, if t ≥ τ · next sync, then there is no need for i
to do sync when i finds its own local[current] = τ · next sync, since j has al-
ready done a sync with the same timestamp. In this case, i sets next sync to
� t

τ 	 + 1.
Lastly, we describe how the algorithm deals with node failures and joins. If

a node fails, it does not interfere with synchronization among the remaining

5 Many applications require logical clocks to be monotonic, in addition to being accu-
rate and precise.

Clock Synchronization for Wireless Networks 407

nodes. Thus, nothing is needed to deal with node failures. If a node joins, then
it initializes its state to some default values, and waits to receive its first GPS
input. The GPS input initializes the new node’s state to some correct values,
after which the node can participate normally in the algorithm.

6 Analysis

In this section, we show that the algorithm described in Section 5 satisfies the
requirements described in Section 4. We first describe the notation used in the
proofs.

6.1 Notation

Let i be a node, let var be a state variable of i, and let t be a time. Then we
let i.var(t) be the value of var at i at time t, before any discrete actions have
occurred at time t. We let i.var(t+) be the value of var at i at time t, after all
discrete actions have occurred at time t. Thus, for example, if i.current = 1 at
time 5, and i receives a GPS at time 5 which causes i to increment current, then
we have i.current(5) = 1, and i.current(5+) = 2.

As stated in Section 5, nodes perform sync actions approximately every τ
time. We also assume that the GPS service updates the nodes every T time, for
some constant T . That is, suppose gps(t) occurs at some node at time t1. Then
gps(t′) must occur at some node at time t2, where t′ > t, and t1 ≤ t2 ≤ t1 + T .
Given an action ξ = gps(t), we say t is the timestamp of ξ. Given an action
φ = recv(t, s), we say t is the timestamp of φ.

If a node i receives a gps(t)i input, we say the GPS is useful if t > max gps,
so that it causes i to change its state. Similarly, if i receives a recv(t, s)j,i input,
we say the recv is useful if s ≥ max gps and t > global[current], so that it
causes i to change its state.

6.2 Proof of Correctness

We first prove a lemma which states that in a failure free execution, the mglobal
of any node is never much more than the maximum mlocal of all the nodes.
This lemma is used to show that the algorithm satisfies ε-accuracy, even in
failure prone executions.

Lemma 1. Consider a failure free execution α. Then

∀t∀i ∈ N : max
i

i.mglobal(t) ≤ max
j

j.mlocal(t) + (1 − ρ)D

Proof. We begin by proving ∀t : maxi i.global[current](t) ≤ maxj j.mlocal(t)+
(1−ρ)D, then show that this implies the lemma. To prove the former statement,
fix an i and a t, and consider the last useful message φ which i received before
time t. Suppose φ was received at time t2. There are 2 cases. Either φ is a GPS,
or it is a recv.

408 R. Fan, I. Chakraborty, and N. Lynch

In the first case, we have i.global[current](t+2) ≤ i.local[current](t+2). Also,
since i receives no other useful messages during (t2, t], we have

i.local[current](t) ≥ i.local[current](t+2) + (1 − ρ)(t − t2)

i.global[current](t) ≤ i.global[current](t+2) +
1 − ρ

1 + ρ
(1 + ρ)(t − t2)

≤ i.local[current](t)

The second inequality follows because i increases i.global[current] at a rate of
1−ρ
1+ρ times its hardware clock rate, which is at most 1 + ρ.

In the second case, where φ is a recv, let j be the node which sent φ, and
suppose φ was sent at time t1. Then we have

i.global[current](t+2) ≤ j.local[current](t1) (1)

Consider the first useful GPS ξ that j receives after time t1, and suppose j
received ξ at time t3. Let the timestamp of ξ be s1.

Claim. t − t3 ≤ D

Proof. Suppose for contradiction that t− t3 > D. Then since ξ takes at most
D time to reach i, i must have received ξ by time t, say at time t4. Consider two
cases. Either t4 < t2, or t4 ≥ t2.

In the first case, let s2 = j.max gps(t1). Then, since j found ξ useful at time
t3, we have s1 > s2. Since i receives ξ, which has timestamp s1, at time t4 < t2,
then i.max gps(t2) ≥ s1. But i receives φ with timestamp s2 at time t2, and i
found φ useful, and so s2 ≥ i.max gps(t2) ≥ s1, which is a contradiction.

In the second case, we also get a contradiction, because when i receives ξ at
time t4, i must either find ξ useful, or i found some other message it received
in the time interval [t2, t4] useful. In either case, this contradicts the assump-
tion that φ was the last useful message i received before time t. Thus, we have
t − t3 ≤ D. �

Since the first GPS which j received after time t1 occurs at t3 ≥ t − D, then j
did not change j.current until at least time t3, and j.local[current] increased at
a rate which is at least 1 − ρ in the time interval [t1, t3]. Thus, we have

j.local[current](t) ≥ j.local[current](t1) + (1 − ρ)(t3 − t1)

Also, since i did not receive any useful messages during time interval (t2, t], we
have

i.global[current](t) ≤ i.global[current](t+2) +
1 − ρ

1 + ρ
(1 + ρ)(t − t2)

≤ j.local[current](t1) + (1 − ρ)(t − t1)
≤ j.local[current](t) + (1 − ρ)(t − t3)
≤ j.local[current](t) + (1 − ρ)D

Clock Synchronization for Wireless Networks 409

Where the second inequality follows from Eqn. 1. Thus, we have shown that in
all cases, and for all t, we have maxi i.global[current](t) ≤ maxj j.mlocal(t) +
(1−ρ)D. Now, now let t∗k be the k’th time when i incremented i.current. Then,
we have

i.mglobal(t) = max
k

i.global[k](t∗k)

≤ max
k

max
j

j.mlocal(t∗k)

≤ max
j

max
k

j.mlocal(t∗k)

≤ max
j

j.mlocal(t)

Thus, we have shown that ∀t : maxi i.mglobal(t) ≤ maxj j.mlocal(t) + (1− ρ)D.

The next lemma states that in all executions, including failure prone ones,
any node’s logical clock value is not much greater than real time.

Lemma 2. ∀t∀i ∈ N : maxi i.logical(t) − t ≤ ρ(T + D) + (1 − ρ)D

Proof. Fix an i and a t. Since i.logical(t) = max(i.mlocal(t), i.mglobal(t)),
we first show that i.mlocal(t) − t ≤ ρ(T + D). Consider the last useful GPS ξ
that i received before time t. Suppose ξ occurred at time t1, and the timestamp
for ξ was s. We have t − t1 ≤ T + D, because a GPS occurs somewhere in the
network every T time, and the GPS takes at most D time to reach i. Now,
i.local[current](t+1) = s ≤ t1, and because i received no other GPS in the time
interval (t1, t], we have i.local[current](t) ≤ i.local[current](t+1)+(1+ρ)(t− t1).
Thus, we have

i.local[current](t) − t ≤ t1 + (1 + ρ)(t − t1) − t

= ρ(t − t1)
≤ ρ(T + D)

We have shown that for all i and t, i.local[current](t) − t ≤ ρ(T + D). Since
i.mlocal(t) = maxk i.local[k], we have i.mlocal(t)− t ≤ ρ(T +D), for all i and t.

By Lemma 1, we have that in failure free executions, i.mglobal(t) ≤
maxj j.mlocal(t) + (1 − ρ)D ≤ ρ(T + D) + (1 − ρ)D. Now, we observe that if
there are failures in an execution, then the failures cannot cause i.mglobal(t) to
increase. Thus, in failure prone executions, we also have i.mglobal(t) ≤ ρ(T +
D) + (1 − ρ)D. Finally, since i.logical(t) = max(i.mlocal(t), i.mglobal(t)), we
have that i.logical(t) ≤ ρ(T + D) + (1 − ρ)D, for all i and t. �

The next lemma states that any stable node’s logical clock value is not much
less than real time.

Lemma 3. ∀t∀i ∈ S(t) : t − mini i.logical(t) ≤ D + ρ(T + D)

Proof. Fix a t and an i ∈ S(t). Since i is stable at time t, i has received
a GPS before time t, and has not failed since that GPS. Consider the last

410 R. Fan, I. Chakraborty, and N. Lynch

GPS ξ that i received before time t, and suppose that ξ occurred at time
t1, and had timestamp s. Then t1 − i.local[current](t+1) = t1 − s ≤ D. Also,
i.local[current](t) ≥ i.local[current](t+1) + (1− ρ)(t− t1). Since t− t1 ≤ T + D,
we have t − i.logical(t) ≤ t − i.local(t) ≤ D + ρ(T + D), for any i and t. �

Combining Lemmas 2 and 3, we get the following.

Theorem 1 (Accuracy). In all executions, ∀t∀i ∈ S(t) : |i.logical(t) − t| ≤
D + ρ(T + D).

From Theorem 1, we immediately get the following.

Theorem 2 (Precision). In all executions, ∀t∀i, j ∈ S(t) : |i.logical(t) −
j.logical(t)| ≤ 2(D + ρ(T + D)).

To save energy in practice, the GPS service might update the nodes infre-
quently, so that T can be quite large. Yet even in periods without GPS, the nodes
still perform internal synchronization approximately once every τ time. Since τ
may be much smaller than T , we would like a sharper bound on precision, stated
in terms of τ instead of T . Unfortunately, there is no such bound which holds
at all times. The reason for this is that GPS inputs cause “instability” in the
network, as follows. Consider when a node i receives a GPS signal ξ. Since i’s
logical clock may differ from real time by up to O(ρT), and since ξ causes i to
adjust its logical clock to real time, then i.logical may “jump” by O(ρT) after
i receives ξ. However, since other nodes may not receive ξ at the same time as
i, there may be a time period when i’s logical clock has jumped forward, but
other nodes’ logical clocks have not. In this period, the precision is bounded by
O(ρT). On the other hand, we show that if a GPS has not occurred within the
last D time, then the precision is bounded by O(ρτ). To prove this statement,
we first show it holds in failure free executions in which no GPS inputs occur.
Then we show it holds in failure free executions with GPS, and finally, we show
it holds in failure prone executions with GPS.

Lemma 4. Consider a failure free execution in which no GPS inputs occur.
Then ∀t∀i, j ∈ N : |i.logical(t) − j.logical(t)| ≤ 4ρ

(1+ρ)2 τ + (1 + ρ)D.

Proof. Fix an i and j. Let m be the largest integer such that i.logical(t) ≥ τm.
Let t2 be such that i.logical(t2) = τm. Let t1 be the earliest time such that the
mlocal of any node equals τm. That is, t1 = mins ∃k : k.mlocal(s) = τm. Let
t3 be the earliest time such that the mlocal of any node equals τ(m + 1). In the
following analysis, it suffices to assume that t1 ≤ t2 ≤ t3 ≤ t. Let d1 = t2 − t1,
r = t3 − t2, and d2 = t − t3. We have that d1 ≤ D, because the first node to
reach τm sends out a sync message, which i receives no more than D time later.
After i receives the message, we have i.logical ≥ τm. Similarly, d2 ≤ D.

We claim that r ≥ τ
1+ρ − d1. Indeed, since there are no GPS inputs, then

the maximum rate of increase of the mlocal of any node is at most 1 + ρ . Since
maxk k.mlocal(t1) = τm, maxk k.mlocal(t3) = τ(m + 1), and t3 − t1 = r + d1,
we have (1 + ρ)(r + d1) ≥ τ , from which the claim follows.

Clock Synchronization for Wireless Networks 411

Now, again because there are no GPS inputs, the rate of increase of the logical
clock of any node is at most 1 + ρ, and at least 1−ρ

1+ρ (1 − ρ). Thus, we have

j.logical(t) ≤ j.logical(t3) + (1 + ρ)(t − t3)
≤ τ(m + 1) + (1 + ρ)d2

i.logical(t) ≥ i.logical(t2) +
(1 − ρ)2

1 + ρ
(t − t2)

≥ τm +
(1 − ρ)2

1 + ρ
(r + d2)

≥ τm +
(1 − ρ)2

1 + ρ
(

τ

1 + ρ
+ d2 − d1)

Now, since we have d1, d2 ≤ D, then subtracting the two inequalities above, we
get

j.logical(t) − i.logical(t) ≤ 4ρ

(1 + ρ)2
τ +

(
1 + ρ − (1 − ρ)2

1 + ρ
)
)

d2 +
(1 − ρ)2

1 + ρ
d1

≤ 4ρ

(1 + ρ)2
τ + (1 + ρ)D. �

Lemma 5. Consider a failure free execution, and let t be a time such that no
GPS inputs occur in the time period [t − D, t]. Then ∀i, j ∈ N : |i.logical(t) −
j.logical(t)| ≤ 4ρ

(1+ρ)2 τ + (1 + ρ)D.

Proof. Fix an i, j and t. Define t1, t2, t3 as in the proof of Lemma 4. Now,
since no GPS occurs in the time interval [t−D, t], and t− t3 ≤ D, then no GPS
occurs in the time interval [t3, t]. Consider two cases. Either no GPS occurs in
time interval [t1, t3], or some GPS occurs. In the first case, we can prove the
lemma using similar ideas as in the proof of Lemma 4. For the second case, we
consider a simplified version, in which only one GPS occurs in [t1, t3]. The general
case with multiple GPS signals is similar. Let ξ be the GPS input which occurs,
and suppose ξ has timestamp s, and ξ occurs at j at time tj . Following the proof
of Lemma 4, we can show that |i.logical(tj)−j.logical(tj)| ≤ 4ρ

(1+ρ)2 τ +(1+ρ)D.
Also, since t3 − t1 ≤ τ

1+ρ , we have

j.local[current](t) ≤ s +
τ

1 + ρ
(1 + ρ)

i.local[current](t) ≥ s + (
τ

1 + ρ
− D)(1 − ρ)

Now, since there is only one GPS in [t1, t3], we have

j.logical(t) = max(j.logical(tj), j.local[current](t))

and
i.logical(t) = max(i.logical(tj), i.local[current](t))

412 R. Fan, I. Chakraborty, and N. Lynch

Thus, we have

|j.logical(t) − i.logical(t)| ≤ max(|j.logical(tj) − |i.logical(tj)|,
|j.local[current](t) − i.local[current](t)|)

≤ max(
4ρ

(1 + ρ)2
τ + (1 + ρ)D,

2ρ

1 + ρ
τ + (1 − ρ)D)

=
4ρ

(1 + ρ)2
τ + (1 + ρ)D

The last equality follows because ρ < 1. Thus, we have proven the lemma in all
cases. �

Theorem 3 (Strong Precision). Let t be a time such that no GPS inputs oc-
curred in the time interval [t−D, t]. Then ∀i, j ∈ S(t) : |i.logical(t)−j.logical(t)|
≤ 4ρ

(1+ρ)2 τ + (1 + ρ)D.

Proof. To prove this theorem, notice first that failures have no effect on the
precision of synchronization. Second, if i, j ∈ S(t), then they have each received
at least one GPS. Using this fact, the lemma follows from very similar ideas as
in the proof of Lemma 5. We omit the proof for lack of space. �

Lastly, we consider the gradient property requirement. Consider two nodes
i and j which are distance d apart. Just as GPS inputs caused “instability”
which made precision O(ρT) instead of O(ρτ), sync messages cause instability
which makes the logical clock difference between i and j O(ρτ + D), instead of
O(ρτ + d), as required by the gradient property. However, the gradient property
does holds at time t, if there are no GPS and no sync inputs in the time interval
[t − D, t]. More precisely, we have the following.

Theorem 4 (Gradient Precision). Consider any execution, and let t be a
time such that no GPS inputs and no sync inputs occur in the time interval [t−
D, t]. Let i, j ∈ S(t) be two nodes which are distance d apart. Then |i.logical(t)−
j.logical(t)| ≤ 4ρ

(1+ρ)2 τ + (1 + ρ).

Proof. We prove a simpler version of the theorem, when the execution is
failure free, and when there are no GPS inputs, but possibly some sync inputs.
The full theorem can be proved in a similar way, and by following ideas in the
proofs of Lemma 5 and Theorem 3. We omit the full proof due to lack of space.

Fix an i, j and t. Let m be the largest integer such that i.logical(t) ≥ τm, and
let t2 be such that i.logical(t2) = τm. Let t1 be such that j.logical(t1) = τm,
and let t3 be such that j.logical(t3) = τ(m+1). Let d1 = t2− t1, r = t3− t2, and
d2 = t − t3. In the following analysis, it will suffice to consider t1 ≤ t2 ≤ t3 ≤ t.
By the assumptions of the theorem, j does not receive a sync in the time interval
[t − d, t] ⊆ [t − D, t].

We claim that j does not receive any useful sync inputs during [t1, t]. Indeed,
suppose j received a useful sync φ at time t′ < t − d. Then the timestamp for

Clock Synchronization for Wireless Networks 413

φ must be at least τ(m + 1), since otherwise j would not find φ useful. Since
t′ < t − d and di,j = d, then i must receive φ before time t. But then we would
have i.logical(t) ≥ τ(m + 1), which is a contradiction. Thus, since j does not
receive a useful sync during [t1, t], j’s logical clock increases at a rate at most
1 + ρ during [t1, t], and so we have

j.logical(t) ≤ j.logical(t3) + (1 + ρ)(t − t3)
= τ(m + 1) + (1 + ρ)d2

Also, i’s logical clock increases at a rate at least 1−ρ
1+ρ (1 − ρ), so we have

i.logical(t) ≥ i.logical(t2) +
(1 − ρ)2

1 + ρ
(t − t2)

= τm +
(1 − ρ)2

1 + ρ
(r + d2)

Now, since j’s logical clock increased by τ from time t1 to t3, and j’s logical clock
rate was at most 1+ρ during this time, we have (1+ρ)(t3−t1) = (1+ρ)(r+d1) ≥
τ . Thus, r ≥ τ

1+ρ − d1. Also, we have d1, d2 ≤ d, because i.logical must reach
τm (resp., τ(m + 1)) within d time that j.logical reaches τm (resp., τ(m + 1)).
Thus, subtracting the two inequalities from above, we get

j.logical(t) − i.logical(t) ≤ 4ρ

(1 + ρ)2
τ +

(
1 + ρ − (1 − ρ)2

1 + ρ

)
d2 +

(1 − ρ)2

1 + ρ
d1

≤ 4ρ

(1 + ρ)2
τ + (1 + ρ)d

�

Finally, we consider the communication complexity of the algorithm. We
show that each node performs roughly one local (i.e. 1-hop) broadcast per τ
time. By comparison, many clock synchronization algorithms require each node
to broadcast to the entire network during every synchronization period, which
is not feasible for energy-conserving wireless nodes.

Theorem 5 (Communication Complexity). Let i be any node. Then i per-
forms at most 1 local broadcast every τ

1+ρ time.

Proof. By looking at the sync and recv actions in Figure 1, we see that each
node performs only one local broadcast for each value of next sync. The value
of next sync can only increase when the local[current] of some node increases
by τ , and this takes at least τ

1+ρ time. �

7 Conclusions

We have presented an energy-efficient and fault-tolerant clock synchronization
algorithm which integrates internal and external synchronization, and which

414 R. Fan, I. Chakraborty, and N. Lynch

satisfies a relaxed gradient property. Our algorithm is simple, and easily imple-
mentable on resource-bounded wireless nodes.

Our algorithm ensures tight synchronization among nodes when the network
is stable, i.e. in periods when a GPS or synchronization operation has not recently
occurred. However, when the network is unstable, clock skew may be much larger.
Though certain lower bounds exist on the optimal tightness of non-gradient and
gradient synchronization, the lower bounds do not immediately apply in our
setting, because we do not require a lower bound on the rate of increase of
logical clocks. It is an interesting theoretical and practical question whether
tight synchronization can be maintained at all times, by allowing logical clocks
to remain constant during unstable periods. Another interesting direction of
further research is to implement our algorithm on a large scale wireless network,
and to compare its average case behavior with the worst case bounds proven in
this paper.

References

1. Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network time
synchronization using reference broadcasts. SIGOPS Operating Systems Review,
36(SI):147–163, 2002.

2. Rui Fan and Nancy Lynch. Gradient clock syncrhonization, to appear. In Proceed-
ings of the Twenty-third Annual ACM PODC. ACM Press, 2004.

3. C. Fetzer and F. Cristian. Integrating external and internal clock synchronization.
Journal of Real-Time Systems, 12(2):123–172, 1997.

4. Dilsun Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. Timed i/o
automata: A mathematical framework for modeling and analyzing real-time systems.
In Proceedings of the 24th IEEE International Real-Time Systems Symposium, 2003.

5. Errol L. Lloyd. Broadcast scheduling for TDMA in wireless multihop networks. John
Wiley & Sons, Inc., 2002.

6. D. L. Mills. Internet time synchronization: The network time protocol. IEEE
Transactions on Computers, 39(10):1482–1493, 1991.

7. T. K. Srikanth and Sam Toueg. Optimal clock synchronization. J. ACM, 34(3):626–
645, 1987.

8. P. Verissimo, L. Rodrigues, and A. Casimiro. Cesiumspray: a precise and accu-
rate global time service for large-scale systems. Technical Report NAV-TR-97-0001,
Universidade de Lisboa, 1997.

Task Assignment Based on Prioritising Traffic Flows�

James Broberg, Zahir Tari, and Panlop Zeephongsekul

RMIT University, GPO Box 2467V, VIC 3001 Australia
{jbroberg, zahirt}@cs.rmit.edu.au, panlopz@rmit.edu.au

Abstract. We consider the issue of task assignment in a distributed system un-
der heavy-tailed (ie. highly variable) workloads. A new adaptable approach called
TAPTF (Task Assignment based on Prioritising Traffic Flows) is proposed, which
improves performance under heavy-tailed workloads for certain classes of traffic.
TAPTF controls the influx of tasks to each host, enables service differentiation
through the use of dual queues and prevents large tasks from unduly delaying
small tasks via task migration. Analytical results show that TAPTF performs sig-
nificantly better than existing approaches, where task sizes are unknown and tasks
are non-preemptive (run-to-completion). As system load increases, the scope and
the magnitude of the performance gain expands, exhibiting improvements of
more than six times in some cases.

Keywords: scheduling policies, task assignment, heavy-tailed workloads, load
balancing, load sharing, supercomputing.

1 Introduction

The use of a group (or ‘cluster’) of commodity computers in place of individual and
typically expensive servers is becoming more prevalent. Examples include supercom-
puting clusters (such as the Virginia Tech Terascale Cluster) and high profile websites
such as Google and Amazon, among other applications. Such clusters are popular due
to their scalable and cost effective nature.

Figure 1 illustrates one common cluster configuration. Tasks, or “jobs” arrive at the
central dispatcher, and are dispatched to hosts according to a task assignment policy.
When a task arrives at the dispatcher, it is placed in a queue, waiting to be serviced in
first-come-first-served (FCFS) order. In this paper we assume tasks are not preemptible
(that is, they cannot be interrupted), task sizes are not known a priori and no load infor-
mation is available at the dispatcher. This is consistent with many batch and supercom-
puting facilities (such as those described in [1, 2]) where preemption is not supported
due to the enormous memory requirements of tasks.

The choice of task assignment policy used has a significant effect on user perceived
performance and server throughput. A poor policy could assign large tasks to over-
loaded servers, drastically reducing the performance of the distributed system. There-
fore, the aim of a task assignment policy is to distributed tasks such that all avail-

� This project is fully supported by the ARC Discovery Grant no. DP0346545 awarded by the
Australian Research Council (ARC) for 2003-2005 and Sun Microsystems.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 415–430, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

416 J. Broberg, Z. Tari, and P. Zeephongsekul

TASKS

FCFS

FCFS

FCFS

FCFS

HOST 1

HOST 2

HOST 3

HOST 4

DISPATCHER

Fig. 1. Distributed Server Model

able system resources are utilised. Obviously it is undesirable to have one server in a
distributed system overloaded while another server is sitting idle. However, the ques-
tion of which assignment policy is the “best” still remains unanswered for many con-
texts.

Effective load distribution is especially crucial under realistic conditions of ex-
tremely heavy traffic demand and highly variable task sizes (i.e. the workload) that
are commonly experienced in many computing environments [3, 4, 5, 6]. Past research
has shown that a heavy-tailed distribution is suitable for modeling these realistic work-
loads [3, 5].

This paper proposes a new load distribution approach, called TAPTF (Task As-
signment based on Prioritising Traffic Flows) which deals with certain inherent limi-
tations of existing approaches in the same domain. TAPTF can improve performance
under heavy-tailed workloads for certain classes of traffic by controlling the influx of
tasks to each host depending on the variability of the workload. TAPTF also intro-
duces multiple queues with hard processing time limits (‘cutoffs’) at each host. This
enables service differentiation at each host, allowing small tasks to be executed quickly
without being delayed by larger tasks. To achieve this, tasks that exceed the cutoff
on a given host are migrated to the next host’s restart queue (to be restarted from
scratch).

TAPTF assumes no knowledge of the service requirements of incoming tasks. We
are particularly interested in the areas that TAPTF can improve over TAGS, a policy
that performs well when there is no preemption and task sizes are not known a priori.
TAPTF is supported by a rigorous analytical model, based on fundamentals of queuing
theory and priority queues.

The rest of this paper is organised as follows. Section 2 provides some background
needed for the understanding of the concepts introduced in later sections. In Section 3
a survey of existing task assignment policies is presented. A detailed description of
the TAPTF model is presented in Section 4. Section 5 gives an analytic comparison of
TAPTF with existing approaches. Section 6 provides a detailed discussion of the ana-
lytical comparisons performed in Section 5. We conclude this paper with some closing
thoughts on the usefulness of the TAPTF approach in Section 7.

Task Assignment Based on Prioritising Traffic Flows 417

2 Background

Many distributed computing environments exhibit a wide range of task sizes, typically
spanning many orders of magnitude. These ‘heavy-tailed’ workloads have been found
to exist in many computing environments. Crovella et al. observed that a number of
file size distributions found on the World Wide Web exhibit heavy tails, including file
requests by users, files transmitted via the network, transmission durations of files and
files stored on servers [3, 7]. Other examples of heavy-tailed workloads observed in-
clude the size of files stored in Unix file systems [4], and the Unix process CPU re-
quirements measured at UC Berkley [6]. Based on these measurements, workload gen-
erating tools such as SURGE [8] have been developed to more accurately ‘stress-test’
servers by generating realistic heavy-tailed traffic. More recently, traffic measurements
of the 1998 World Cup [9] and the 1998 Winter Olympics [10] have exhibited heavy-
tailed characteristics. The implications of these findings are significant in regards to
task assignment policies, given that much of the existing work in the area was formu-
lated under the assumption of an exponentially distributed workload. These so-called
‘heavy-tailed’ distributions have very high variance, where 10% of tasks can take 80%
of the CPU resources.

For the purpose of analysis, we assume that the task sizes show some maximum
(but large) value. This is a reasonable assumption in many cases, such as a Unix server
which enforces a ‘CPU limit’ ceiling on how long a process can run. A Bounded Pareto
distribution is therefore used, which exhibits the requisite heavy-tailed properties, and
has a lower and upper limit on the task size distribution. The probability density function
for the Bounded Pareto B(k, p, α) is:

f(x) =
αkα

1 − (k/p)α
x−α−1, k ≤ x ≤ p (1)

where α represents the task size variation, k is the smallest possible task, and p is the
largest possible task. By varying the value of α we can observe distributions that exhibit
moderate variability (α ≈ 2) to high variability (α ≈ 1). Typical measured values of
the α parameter are between 0.9 - 1.3 [3, 5, 7], with an empirically measured mean of
α ≈ 1.1.

In order to compare the relative performance of the various task assignment policies
some common metrics are used. We consider the mean waiting time, mean flow time,
and the mean slow down of each task assignment policy. The waiting time refers to the
time a task spent waiting in queues to be processed. The flow time is the sum of the
waiting time and the service time. Slow down refers to the waiting time divided by its
processing time.

Consider for a moment that each host in our basic distributed system (depicted in
Figure 1) is a M/G/1 FCFS queue, where the arrival process has rate λ. X represents the
service time distribution, and ρ represents the utilisation (ρ = λE{X}). W denotes a
task’s expected waiting time in the queue, S its slowdown, and Q is the expected queue
length on arrival. Then it follows that,

E{W} =
λE{X2}
2(1 − ρ)

(Pollaczek − Khinchinformula)

418 J. Broberg, Z. Tari, and P. Zeephongsekul

E{S} = E{W

X
} = E{W} · E{X−1}

E{Q} = λE{W}

3 Related Work

This section focuses on relevant existing approaches to task assignment, focusing on
their strengths, limitations and performance characteristics with respect to dealing with
conditions of heavy traffic demand and high task size variation. A more extensive review
is available in [11].

Traditionally, classical task assignment policies such as Random and Round-Robin
have been used in distributed systems. Under the Random policy, tasks are statically
assigned to each member server with equal probability. Using a Round-Robin policy,
tasks are assigned to member servers in a cyclical fashion. Both policies aim to equalise
the expected number of tasks at each server, and are often used as a base line to com-
pare with other task distribution policies. The performance of both policies are directly
related to the variation of the task size distribution, and deteriorates as the task size vari-
ability increases, as tasks are assigned with no consideration of each host’s load or the
distribution of task sizes. Despite this, Random and Round-Robin are still commonly
used in many scheduling environments (most likely due to ease of implementation).
It has been shown previously [12] that Random and Round-Robin both have similar
performance characteristics.

Dynamic policies aim to improve on classical static policies such as Random and
Round-Robin by intelligently assigning tasks based on the current load at each host. The
LLF (Least-Loaded-First) approach assigns tasks to the server with the least amount
of work remaining, attempting to achieve instantaneous load balance. The work re-
maining can be approximated by the queue length (Shortest-Queue-First), or assum-
ing the tasks service requirement is known a priori, the cumulative work remaining in
the queue (Least-Work-Remaining). By keeping the load balanced, the waiting time in
queue caused by high task size variation can be reduced. It is known that balancing the
load minimises the mean response time [13, 14] in the type of distributed system that
we consider in this paper. Despite this, the best performance is not always obtained by
balancing the load, especially if you are interested in an alternative (and perhaps more
important depending on your views) metric such as mean slowdown. Furthermore, truly
balancing the load is a problem in itself given that the service requirement is often not
known a priori. In such a case you are depending on an approximated measure of load
(Shortest-Queue-First for example) to balance incoming tasks fairly amongst the back-
end hosts. Given the highly variable nature of the task size distribution (where the dif-
ference between ‘small’ and ‘large’ tasks can be enormous) it is easy to imagine how
it is a bad policy to depend only on the number of tasks in the queue at each backend
host, and the effect on performance that can result from using such information to base
task assignment choices on.

A Central-Queue policy (where tasks are held at the dispatcher until a host is idle)
has proved to be equivalent to a Least-Work-Remaining policy, illustrating that equiva-
lent performance can be obtained without any prior knowledge of a task’s size [1, 12].

Task Assignment Based on Prioritising Traffic Flows 419

While exhibiting similarly good performance under an exponential workload, the per-
formance of a Central-Queue policy is equally poor under more realistic conditions of
heavy-tailed workloads. Recently, a variation of the Central-Queue policy was consid-
ered - Cycle Stealing with Central Queue (CS-CQ) [2].CS-CQ holds tasks in a central
queue at the dispatcher until a host is idle. CS-CQ denotes one host to service short tasks
and another to server long tasks, but it can steal cycles from an idle host if available (and
it is prudent to do so). The application of CS-CQ is limited to domains where a priori
knowledge of a tasks size is known. Furthermore, Central-Queue policies require con-
stant feedback between the dispatcher and the backend hosts to notify the dispatcher of
an idle host.

Many size-based policies have been proposed to counteract the negative effects of
heavy-tailed workloads. Approaches such as SITA-E [12], and EQUILOAD [15] parti-
tion the workload into size ranges, which are then mapped to backend hosts. These size
ranges are be chosen to optimise various metrics, such as waiting time and slowdown.
These policies assume that task sizes are known a priori (eg. at the dispatcher), which
is not consistent with the model we are evaluating in this paper.

Task Assignment based on Guessing Size (TAGS) [1] is an approach that does not
assume any prior knowledge of a tasks service requirement. Like SITA-V, TAGS is
slightly counterintuitive in that it unbalances the load, and also considers the notion of
‘fairness’. This refers to the desirable property that “... all jobs, long or short, should
experience the same expected slowdown.” [1]. The TAGS approach works by associat-
ing a processing time limit (‘cutoff’) with each host, so a task is run on a host up until
the designated time limit associated with that host. If the task has not completed by this
point, it is killed and restarted from scratch at the next host. These cutoffs are a function
of of the distribution of task sizes and the outside arrival rate, and can be determined by
observing the system for a period of time.

Under higher loads and less variable conditions, TAGS does not perform so well.
TAGS gains much of its performance by exploiting the heavy-tailed property, by mov-
ing the majority of the load onto host 2, allowing the vast majority of small tasks to be
processed quickly on host 1. TAGS also suffers under high loads due to excess - the ex-
tra work created by restarting many jobs from scratch. As pointed out in [1], “...overall
excess increases with load because excess is proportional to λ (task arrival rate), which
is in turn proportional the [overall system] load, ρ.”

4 The Proposed Model - TAPTF

In this section we propose a new task assignment policy called TAPTF - Task As-
signment based on Prioritising Traffic Flows - to address the limitations of existing
approaches in dealing with certain classes of traffic.

4.1 Motivation

Harchol-Balter’s TAGS approach [1], while seemingly counter-intuitive in many re-
spects, proved to be a very effective task assignment policy for distributed systems. As
such, TAGS provides an excellent point of comparison for any new task assignment

420 J. Broberg, Z. Tari, and P. Zeephongsekul

policy operating under similar constraints. As described in Section 3, the TAGS policy
has a number of desirable properties - the most one important being that it does not
assume any prior knowledge of the service requirement of incoming tasks, while still
maintaining good performance. The TAGS policy performs admirably under realistic
highly variable conditions, exploiting the heavy-tailed nature that is consistent with
many computing workloads. Despite this, TAGS can produce significant excess at the
backend hosts - wasted processing that a task incurs (and the corresponding load placed
on a host) when it has been placed in the incorrect queue and is subsequently restarted
after exceeding the processing limit associated with a host. A task that is assigned in-
correctly is penalized by being stopped, placed at the end of the next host’s queue and
restarted from scratch (upon reaching the front of that queue). These shortcomings are
justified by the fact that, by the very nature of the heavy-tailed workload distribution,
the tasks that are penalised can amortise the additional waiting and processing time
for the greater good. Nonetheless, this is wasteful, but how can the efficiency be im-
proved while still maintaining good performance? In response, TAPTF was formulated
to address two keys areas:

– Reducing the variance of tasks that share the same queue.
– Reducing the penalty of wasted processing (excess) on the backend hosts - caused

by tasks that do not complete their processing in time, and are restarted at another
host (‘handoffs’).

4.2 Techniques

In Section 4.1 a number of shortcomings of the TAGS model were identified that needed
to be addressed. As such, TAPTF was designed in order to improve on these key areas.
The reasoning behind the techniques that TAPTF uses to address the shortcomings of
existing approaches are briefly described in this section.

As illustrated by the Pollaczek-Khinchin formula in Section 2, it can be seen that
all performance metrics are dependent on E{X2}, the second moment of the task size
distribution (ie. the variance) in a queue. We can infer that reducing the variance in
the service requirements of tasks at each host can improve performance, reducing the
chance of a smaller task being stuck behind a significantly longer task. TAPTF reduces
the variance in the sizes of tasks that share the same queue by the use of dual queues (an
Ordinary (O) queue and a Restart (R) queue) and task migration, in an effort to group
like-sized tasks together.

The excess - extra work created by restarting many tasks from scratch - needs to
be minimised. TAPTF attempts to reduce the amount of ‘handoffs’ by placing as many
tasks in the most appropriate queue (that is, their final destination) in the first instance
as possible - reducing the penalty on both hosts and tasks. This is achieved in two
interrelated ways. First, by manipulating the fraction of tasks (qi) that is dispatched to
each host we can increase the number of tasks that are correctly assigned to a suitable
host - that is, where they can run-to-completion. Secondly, the reason that tasks can
enter the system (and potentially finish) at any host is due to the lower boundary cutoff
of each Ordinary (O) queue being k, the smallest possible task size. Under TAGS, a task
that needs to be processed at Host i (e.g. its size is between si−1 and si) must migrate

Task Assignment Based on Prioritising Traffic Flows 421

from Host 1 to Host i. In TAPTF for the same task, there is a probability qi that it will
be directly dispatched to Host i (an ideal choice), and a probability qi + qi+1 + ... + qn

that it be assigned to Host i or higher - where it will not be subjected to any handoffs.
This practice becomes crucial as task size variation decreases.

4.3 Conceptual View of the TAPTF Model

As seen in Figure 2, tasks arrive at a central dispatcher, following a Poisson process
with rate λ. The dispatcher assigns tasks (in a First-In-First-Out manner) to one of the
n hosts (say, Host i, where 1 ≤ i ≤ n) at random with probability qi. Using a well
known property of the Poisson process, we can infer that the arrival stream to host Host
i is also a Poisson process with rate λqi.

Due to the heavy-tailed characteristics of the task size distribution (as discussed in
Section 2), we assume that the distribution of task sizes (that is, the service distribution)
follows a bounded Pareto Distribution B(k, p, α) given by Equation (1). A ‘cutoff’ (si)
is assigned to each host in the distributed system. Specifically, tasks are processed on
hosts with the following conditions:

– Host i’s O queue deals only with tasks whose sizes are in the range [k, si], 1 ≤ i ≤
n

– Host i’s R queue deals only with tasks whose sizes are in the range [si−1, si], , 1 <
i ≤ n

where k = s0 < s1 < s2 < s3 < . . . < sn = p. These cutoffs can be computed
in order to minimise certain measurable quantities such as mean waiting time or mean
slowdown time. Further information on how the cutoffs are chosen is provided in Sec-
tion 4.4.

Each host (excluding Host 1) provides two queues, an ordinary queue and a restart
queue (denoted by O and R respectively). All tasks in the O and R queues are served on
a First-Come-First-Served (FCFS) basis. Tasks sent to a given host from the dispatcher
join that host’s O queue. After a task has moved to the front of the queue it can begin
to be processed. If the processing time of a task on a given host exceeds the assigned
cutoff limit, the task is stopped, and moved to the restart (R) queue belonging to the next
host. This process is repeated until these tasks run to completion at their final (correct)

(R)

2

q
n−1

q
n

Dispatcher

q
1

Host 1O

s
2

s
n−1

s ...
n−2

s ...
n−1

s
n

s ...
1

s
2

s
n−1

s ...
0

s ...
0

s
1

s ...
0

s
n

s ...
0

R

O
Host n

Host 2
R

Oλ

O
Host
n−1

(O)

(R)

(O)

(R)

(O)

(O)

R

q

Fig. 2. Illustration of the TAPTF model

422 J. Broberg, Z. Tari, and P. Zeephongsekul

destination. Tasks waiting in a O queue have priority of service over those in the R
queue at a given host. However, a task which is being served from the R queue will not
be pre-empted from service by the arrival of a task into the O queue at a given host.
This is the default behavior of the TAPTF (and is denoted as TAPTF-O in the figures
in Section 5). It is worth noting that you could also choose to give priority of service to
the R queue over the O queue (which we refer to as TAPTF-R).

One way the TAPTF model differs from TAGS is the fixed lower size boundaries
at each host (k = s0), so that all tasks with sizes less than or equal to a fixed cutoff
point can be potentially be processed on a particular host. This means that a task can be
dispatched to any host initially without being first dispatched to Host 1 (as per the TAGS
approach) while preserving the property that a task’s service demand is not known a
priori. In addition, TAPTF uses dual queues at each host in order to speed up the flow
of shorter tasks, allowing smaller tasks to be processed quickly in the ordinary queue
and migrating larger tasks out of the way, allowing them to group together in the restart
queues at subsequent hosts.

4.4 Choosing the Cutoffs

Like most size-based (or similar) policies, the performance of TAPTF is critically de-
pendent on the choice of cutoffs used. From Section 3 we recall that cutoffs refer to
the size-range associated with each host. The cutoffs can be chosen to optimise for
mean waiting time, or mean slowdown. In order to optimise for mean waiting time,
the load must be balanced more evenly amongst the host. To optimise for mean slow-
down, load unbalancing techniques are employed, especially under conditions of high
task size variation. We have chosen to optimise for both mean waiting time and more
importantly, mean slowdown, as it is desirable for a tasks delay to be proportional to its
service requirement.

The cutoffs for TAPTF are a function of the task size distribution (in our case de-
fined by the Bounded Pareto B(k, p, α)) and the task arrival rate into the distributed
system, λ. These parameters can be determined by observing the distributed system for
a period of time. Using the mathematical results described in [11], we can work towards
obtaining optimal cutoff points (si’s) for each of our hosts in the TAPTF system. Since
our aim is to produce a task assignment policy that minimises the overall expected wait-
ing time or slowdown respectively (depending on our goals), the following optimisation
problems need to be addressed:

Problem I Minimize
n∑

i=1

E(WiO) +
n∑

i=2

E(WiR)

Subject to ρiO + ρiR < 1, 1 ≤ i ≤ n.

Problem II Minimize
n∑

i=1

E(SiO) +
n∑

i=2

E(SiR)

Subject to ρiO + ρiR < 1, 1 ≤ i ≤ n.

We can choose to optimise for mean waiting time (described by Problem I) or mean
slowdown (described in Problem II).

Task Assignment Based on Prioritising Traffic Flows 423

As described above, the choice of cutoffs depend on the task size variability. From
Section 2 we recall that the lower the α parameter, the higher the variability, and the
smaller the percentage of tasks is that makes up 50% of the load. TAPTF (which can
behave like TAGS by setting q1 = 1.0 when prudent) can exploit this property of the
heavy-tailed distribution by running all (or the vast majority) of the (small) tasks on the
first host, leaving them under light to moderate load, while the largest tasks filter down
to be eventually processed by the latter hosts.

As the variability decreases (α increases) we can no longer exploit the heavy-tailed
property so easily. The average size of the tasks we consider ‘small’ slowly gets bigger
as α increases. As such we have to choose our cutoffs accordingly, as well as manip-
ulating the fraction of tasks that are assigned to the latter hosts. We still exploit the
heavy-tailed property by processing larger jobs on the latter hosts, but we are not un-
balancing the load to the extent we could when variability was higher (α ≤ 1). As α
approaches 2.0, the task size variation is lower, and the other hosts have to start pulling
their weight in order to maintain good mean waiting time and slowdown. TAPTF ex-
ploits this knowledge to provide better performance in those areas.

5 Analytical Comparison

In order to gauge the usefulness of the TAPTF approach, an analytical comparison with
TAGS and Random was performed. Random is included as a baseline, whereas TAGS
provides the best point of comparison as it operates under similar constraints (i.e. no
a priori knowledge of a task’s service requirement) to TAPTF. These approaches were
evaluated under a variety of conditions and their performance compared using metrics
discussed in Section 2 - mean waiting time and mean slowdown.

A range of α values were considered, from 0.5 to 2.0, demonstrating a wide range of
task size variation, from extreme task size variation (α ≈ 0.5) to low task size variation
(α ≈ 2.0), and everything in between. Each α value was evaluated for different system
loads (ρ) - 0.3 (low load), 0.5 (moderate load) and 0.7 (high load). For the sake of
brevity the results for moderate load have been omitted and are available in the extended
paper [11]. These comparisons were performed for two and three host systems, after
which we could no longer find optimum si’s with the computational resources available
to us. This is not a big problem in itself as noted in [1], as an n Host distributed system
(where n > 2) with a system load ρ can always be arranged in such a way to provide
performance that is as good or better than the best performance of a two host system
(where n is even). This holds true for any task assignment policy.

The analytical comparison was performed in Mathematica 5.0 [16], using the math-
ematical preliminaries discussed in [11]. The generalised TAPTF mathematical model
is also used to model the behavior of TAGS by setting q1 = 1.0 (and subsequently
q2 ... qn to equal 0) - negating the dual queues and multiple entry points and making
it behave identically to TAGS. For each scenario, optimum cutoffs are found with re-
spect to mean waiting time and mean slowdown for both TAPTF and TAGS using the
NMinimize function in Mathematica to produce the best (and fairest) comparison. This
is achieved by finding the si’s in each instance that produce local minimums for the
expected waiting time, E(W) and the expected mean slowdown, E(S).

424 J. Broberg, Z. Tari, and P. Zeephongsekul

Task assignment policies that assume a priori knowledge of task sizes are not eval-
uated in this section, as we are motivated by a more pessimistic (and less restrictive)
view of the distributed model, where this information is not guaranteed to be available.

In the interests of clear and meaningful results, comparisons of mean waiting time
and mean slowdown are performed using the respective TAPTF and TAGS policies op-
timised for that metric, as described in Section 4.4. The Random policy is included as a
baseline for comparative purposes in each instance. Note that the expected waiting time
and slowdown graphs are presented on a log scale for the y-axis. Results for TAPTF
are only shown where they are better than TAGS, as TAPTF can reduce to TAGS (and
achieve identical performance) as described above.

5.1 Two Hosts

Figures 3(a) and 3(b) show the mean waiting time and slowdown respectively under a
low system load (ρ = 0.3). From our analysis the TAGS policy achieves better mean
waiting time and slowdown under conditions ranging from extreme to high variation
(where α is between 0.5 and 1.2). The areas where the TAPTF policy improves on
TAGS are highlighted on the graphs. It can be observed that in conditions of moderate
to low variation (where α is between 1.3 and 2.0), the TAPTF policy can achieve better
performance with respect to mean waiting time and slowdown. This performance in-
crease can be attributed to the use of dual queues and by assigning tasks to all servers
(or a subset thereof) rather than feeding all tasks into the first host, as per the TAGS
approach. Table 1 gives a breakdown of the fraction of tasks dispatched to Host 1 (de-
noted by q1) or Host 2 (denoted by q2). From the table we can see that as variation
increases (and α decreases) TAPTF approaches TAGS-like behaviors for optimal per-
formance. We can see where α = 1.3, almost all tasks (99%) are dispatched to Host
1. As variation increases further (where α is between 0.5 and 1.2) TAGS-like behavior
produces the best results. Conversely, when variation decreases it pays to assign some
tasks to the second host. As the variation decreases (and α approaches 2.0) we can
afford to assign more tasks to the second host. Figures 3(c) and 3(d) again highlight
the effect of decreasing variance on TAGS - as α decreases, the amount of excess load
generated by the TAGS policy increases significantly, while the TAPTF maintains con-
sistent load. As the fraction assigned to Host 2 (q2) increases, so to does the factor of
improvement over TAGS, both in expected waiting time and slowdown in addition to
system load.

Figures 3(e) and 3(f) show the mean waiting time and slowdown respectively under
a high system load (ρ = 0.7). The TAPTF policy betters TAGS over a larger range
of task variation scenarios than occurred under low load (with TAPTF demonstrating
lower mean waiting time and slowdown where α is between 1.1 and 2.0). It can be
observed that TAGS suffers significantly under a high system load. As highlighted in
Table 1 we are seeing an increased fraction of tasks dispatched to the second host in
order to maintain superior performance to the TAGS policy. From Figures 3(g) and
3(h) we can observe a sharp increase in system load (and subsequently excess) where
α > 1.0. It can be seen that as α approaches 2.0 the factor of improvement over TAGS
increases in all metrics.

Task Assignment Based on Prioritising Traffic Flows 425

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTW

TAPTF-O-OPTW

(a) E(W) - ρ = 0.3

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTS

TAPTF-O-OPTS

(b) E(S) - ρ = 0.3

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTW
TAPTF-O-OPTW

Desired Sum-of-Loads

(c) Sum-of-Loads - ρ = 0.3

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTS
TAPTF-O-OPTS

Desired Sum-of-Loads

(d) Sum-of-Loads - ρ = 0.3

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTW

TAPTF-O-OPTW

(e) E(W) - ρ = 0.7

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTS

TAPTF-O-OPTS

(f) E(S) - ρ = 0.7

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTW
TAPTF-O-OPTW

Desired Sum-of-Loads

(g) Sum-of-Loads

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTS
TAPTF-O-OPTS

Desired Sum-of-Loads

(h) Sum-of-Loads

Fig. 3. Performance of a two host distributed system under low and high load. Expected waiting
time E(W), slowdown E(S) and corresponding system load comparisons (desired versus actual
Sum-Of-Loads) are shown

426 J. Broberg, Z. Tari, and P. Zeephongsekul

Table 1. Distribution of tasks in TAPTF - 2 Hosts

ρ = 0.3 ρ = 0.5 ρ = 0.7

α q1 q2 q1 q2 q1 q2

1.1 1.00 0.00 0.99 0.01 0.99 0.01
1.2 1.00 0.00 0.99 0.01 0.95 0.05
1.3 0.99 0.01 0.95 0.05 0.90 0.10
1.4 0.95 0.05 0.95 0.05 0.80 0.20
1.5 0.95 0.05 0.90 0.10 0.75 0.25
1.6 0.90 0.10 0.80 0.20 0.75 0.25
1.7 0.85 0.15 0.80 0.20 0.70 0.30
1.8 0.80 0.20 0.75 0.25 0.70 0.30
1.9 0.75 0.25 0.70 0.30 0.70 0.30
2.0 0.75 0.25 0.66 0.33 0.60 0.40

5.2 Three Hosts

Figures 4(a) and 4(b) show the mean waiting time and slowdown respectively under
a low system load (ρ = 0.3). It can be observed from the graphs that TAPTF per-
forms better over a large range of α values, showing improved performance with re-
spect to mean waiting time and slowdown where α is between 1.1 and 2.0. Table 2
gives an indication of how TAPTF distributed the load more intelligently as the task
size variation decreases. As the variation decreases a significant amount of tasks are
dispatched to the second host (denoted by q2), and as α approaches 2.0 we can see
more tasks being dispatched to the third and final host (denoted by q3). The final host
in a TAGS system typically processes only the largest tasks - as variation decreases
this practice is shown to be poor, as demonstrated by TAPTF’s superior performance.
Figures 4(c) and 4(d) highlight the benefit of the TAPTF approach under high to low
variation (where α is between 1.1 and 2.0) showing consistent system loads while TAGS
exhibits a sharp increase. As α approaches 2.0, the TAGS policy is producing significant
excess load, which is a worrying sign under such a low arrival rate into the distributed
system.

Under a high system load (ρ = 0.7), the mean waiting time and slowdown are
depicted in Figures 4(e) and 4(f). Similar difficulty to those experienced under a system
load of 0.5 occurred in finding cutoffs for many α values under the three host, ρ = 0.7
scenario for the TAGS policy. That is, it was impossible to find optimum cutoffs that
satisfied the requirement that the load must be below 1.0 at all hosts. This is confirmed
when looking at the corresponding Sum-Of-Loads measurements shown in Figures 4(g)
and 4(h), showing the Sum-Of-Loads approaching 3.0 (indicating that some or all of the
hosts were approaching overload) where α is less than 0.8 or greater than 1.3. Table 2
shows the fraction of tasks (qi) allocated to each backend server. We can see to handle
the increased system load, a larger proportion of tasks are being assigned to the second
and third host on average to cope. Indeed, when α is 2.0, each backend host is allocated a
fairly equal share of the incoming tasks (where q1 = 0.4, q2 = 0.3 and q3 = 0.3). Again
it can be observed that, as the system load has increased, the range of α values where
TAPTF outperforms TAGS is still similarly large - where α is between 0.9 and 2.0.

Task Assignment Based on Prioritising Traffic Flows 427

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTW

TAPTF-O-OPTW

(a) E(W) - ρ = 0.3

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTS

TAPTF-O-OPTS

(b) E(S) - ρ = 0.3

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTW
TAPTF-O-OPTW

Desired Sum-of-Loads

(c) Sum-of-Loads - ρ = 0.3

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTS
TAPTF-O-OPTS

Desired Sum-of-Loads

(d) Sum-of-Loads - ρ = 0.3

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTW

TAPTF-O-OPTW

(e) E(W) - ρ = 0.7

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTS

TAPTF-O-OPTS

(f) E(S) - ρ = 0.7

 2

 2.2

 2.4

 2.6

 2.8

 3

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTW
TAPTF-O-OPTW

Desired Sum-of-Loads

(g) Sum-of-Loads - ρ = 0.7

 2

 2.2

 2.4

 2.6

 2.8

 3

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTS
TAPTF-O-OPTS

Desired Sum-of-Loads

(h) Sum-of-Loads - ρ = 0.7

Fig. 4. Performance of a three host distributed system under low and high load. Expected waiting
time E(W), slowdown E(S) and corresponding system load comparisons (desired versus actual
Sum-Of-Loads) are shown

428 J. Broberg, Z. Tari, and P. Zeephongsekul

Table 2. Distribution of tasks in TAPTF - 3 Hosts

ρ = 0.3 ρ = 0.5 ρ = 0.7

α q1 q2 q3 q1 q2 q3 q1 q2 q3

0.9 1.00 0.00 0.0 0.95 0.05 0.0 0.95 0.05 0.0
1.0 1.00 0.00 0.0 0.90 0.10 0.0 0.90 0.10 0.0
1.1 0.90 0.10 0.0 0.80 0.20 0.0 0.80 0.20 0.0
1.2 0.80 0.20 0.0 0.75 0.25 0.0 0.80 0.20 0.0
1.3 0.75 0.25 0.0 0.70 0.30 0.0 0.70 0.30 0.0
1.4 0.70 0.30 0.0 0.70 0.30 0.0 0.60 0.30 0.1
1.5 0.60 0.40 0.0 0.60 0.40 0.0 0.60 0.30 0.1
1.6 0.60 0.40 0.0 0.60 0.30 0.1 0.50 0.30 0.2
1.7 0.60 0.30 0.1 0.50 0.40 0.1 0.50 0.30 0.2
1.8 0.60 0.30 0.1 0.50 0.40 0.1 0.50 0.30 0.2
1.9 0.50 0.40 0.1 0.50 0.30 0.2 0.50 0.30 0.2
2.0 0.50 0.40 0.1 0.50 0.30 0.2 0.40 0.30 0.3

6 Discussion

An analytical representation of the Random load distribution policy was included as
a baseline for comparison against TAGS and TAPTF. As discussed in previous work
by Mor Harchol-Balter [1] and illustrated by the Pollaczek-Khinchin formula shown in
Section 2, all performance metrics for the Random policy are directly proportional to
the variance of the task size distribution. As such, as the task size variation increases,
and α decreases, the expected mean waiting time and slowdown explode exponentially
in all the scenarios examined.

From the figures presented in Section 5.1 and Section 5.2, it is clear that TAGS
(or at least TAGS-like behavior) is the best policy under conditions of extreme to very
high variation. As mentioned previously, TAPTF is an adaptable task assignment pol-
icy, which can behave identically (and reduces analytically) to TAGS (eg. set q1 to 1.0)
when it is prudent with regards to obtaining the best performance for a given scenario.
In effect, the TAPTF policy encompasses TAGS ability to exploit a highly variable task
size distribution, as well as remaining flexible enough to handle instances of lower vari-
ation and higher system loads by virtue of its many parameters that can be manipulated
where required.

In areas of lower variation (and even low system load) we can see the benefit of
dispatching tasks to hosts other than the first (highlighted by Table 1, Figures 3(a) and
3(b)). It is clear that as variation decreases, it pays to dispatch a growing proportion of
tasks to the second host. This is largely due to the fact that we can no longer exploit the
heavy-tailed property of the task size distribution, as the variation between the sizes of
tasks decreases, and the average size of so-called small tasks increases.

TAGS suffers to a greater extent under higher loads, as an increase in excess (wasted
processing caused by handoffs) and growing average queue lengths combine to have a
detrimental effect on performance under conditions of moderate to low task size varia-
tion. It can be observed that as the system load increases, the task variation range where

Task Assignment Based on Prioritising Traffic Flows 429

the TAPTF policy betters TAGS becomes larger, and the factor of that improvement
(in both mean waiting time and slowdown) increases. For example, consider the two
host case. Consider the results shown in Figures 3(a) and 3(e), depicting the mean wait-
ing time under system loads of 0.3 and 0.7 respectively. TAPTF betters TAGS when
α ≥ 1.3 under a low system load of 0.3. When the system load is high (0.7), TAPTF
exhibits superior performance than TAGS when α > 1.0. Similarly, consider when
α = 2.0 in each of these scenarios. Under a system load of 0.3, TAPTF exhibits an
factor of improvement of approximately 1.5 over TAGS. When the system load is 0.7,
TAPTF shows a substantial improvement over TAGS - by a factor of 6.6.

Section 5.2 presents some interesting results for the 3 host scenario. We find that
in some cases, as variation increases (and α decreases), the mean slowdown for the
TAGS policy actually improves - to a certain point. Consider Figures 4(a) and 4(b),
depicting a two host system under a low system load of 0.3. We observe a fairly flat
and consistent response from the TAGS policy for the expected mean waiting time and
slowdown over the range of α’s shown. Slowdown gradually decreases as α approaches
0.7, then increases slightly as α reaches 0.5. This is because as the variation of tasks
sizes becomes larger, TAGS can increasingly exploit the heavy-tailed property of such
a distribution through choosing effective cutoffs that enable small tasks to be processed
quickly, while ensuring large tasks are moved to latter hosts and do not unduly de-
lay smaller tasks. This ensures good results with regards to overall metrics like mean
waiting time and slowdown under conditions of extreme to highly variable task size
distributions.

Despite the different behavior exhibited for the 3 host scenario, TAGS is still bet-
tered by the TAPTF policy under conditions ranging from high to low task size variation
due to the same factors as under the 2 host scenario. Again we see the benefits achieved
by dispatching a proportion of tasks to all hosts, not just the first. This is especially
true as the system load increases - so to does the factor of improvement of TAPTF over
TAGS. The advantages of the generic and flexible TAPTF model are highlighted in Ta-
ble 2 (and subsequently Figures 4(a) to 4(h)). In several instances (Figures 4(e) to 4(h))
we were unable to find optimum cutoffs for TAGS that satisfied the constraint that the
load must remain below 1 at all hosts.

7 Conclusion

In this paper we have presented a new approach to task assignment in a distributed sys-
tem, TAPTF (Task Assignment based on Prioritising Traffic Flows). TAPTF is a flexible
policy that addresses the shortcomings of existing approaches (outlined earlier in this
paper) to task assignment. TAPTF demonstrated improved performance (both in mean
waiting time and mean slowdown) in key areas where the TAGS and Random policies
suffer. Most significantly, TAPTF exhibited improved performance under low to high
task size variation and high system load by reducing the excess associated with a large
number of restarts and by intelligently controlling the influx of tasks to each back-end
host. We found for two and three host scenarios that as system load increases the range
of α parameters where an improvement was shown, and the magnitude of improve-
ment increased. Given that TAPTF can encompass the best characteristics of existing

430 J. Broberg, Z. Tari, and P. Zeephongsekul

approaches, as well as improving on them in what are considered critical scenarios of
heavy traffic load and highly variable task sizes, we consider TAPTF to be a worthy
policy for load distribution in environments where tasks are not preemptible and task
sizes are not known a priori.

References

1. Harchol-Balter, M.: Task assignment with unknown duration. Journal of the ACM 49 (2002)
260–288

2. Harchol-Balter, M., Li, C., Osogami, T., Scheller-Wolf, A., Squillante, M.S.: Analysis of task
assignment with cycle stealing under central queue. In: Proceedings of 23rd International
Conference on Distributed Computing Systems (ICDCS ’03). (2003) 628–637

3. Crovella, M., Taqqu, M., Bestavros, A.: Heavy-Tailed Probability Distributions in the World
Wide Web. Chapman & Hall (1998)

4. Gordon Irlam: Unix file survey (1993) Available at http://www.base.com/gordoni/
ufs93.html.

5. Harchol-Balter, M.: The effect of heavy-tailed job size distributions on computer system
design. In: Proceedings of ASA-IMS Conference on Applications of Heavy Tailed Distribu-
tions in Economics, Engineering and Statistics. (1999)

6. Harchol-Balter, M., Downey, A.B.: Exploiting process lifetime distributions for dynamic
load balancing. ACM Transactions on Computer Systems 15 (1997) 253–285

7. Crovella, M.E., Bestavros, A.: Self-similarity in World Wide Web traffic: evidence and pos-
sible causes. IEEE/ACM Transactions on Networking 5 (1997) 835–846

8. Barford, P., Crovella, M.: Generating representative web workloads for network and server
performance evaluation. In: Measurement and Modeling of Computer Systems. (1998) 151–
160

9. Arlitt, M., Jin, T.: Workload characterization of the 1998 world cup web site. IEEE Network
14 (2000) 30–37

10. Iyengar, A.K., Squillante, M.S., Zhang, L.: Analysis and characterization of large-scale web
server access patterns and performance. World Wide Web 2 (1999) 85–100

11. James Broberg, Zahir Tari, Panlop Zeephongsekul: Task assignment based on prioritising
traffic flows. Technical Report TR-04-05, Royal Melbourne Institute of Technology (2004)

12. Harchol-Balter, M., Crovella, M.E., Murta, C.D.: On choosing a task assignment policy for a
distributed server system. Journal of Parallel and Distributed Computing 59 (1999) 204–228

13. Crovella, M.E., Harchol-Balter, M., Murta, C.D.: Task assignment in a distributed system:
Improving performance by unbalancing load. In: Proceedings of ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of Computer Systems. (1998) 268–269

14. Schroder, B., Harchol-Balter, M.: Evaluation of task assignment policies for supercomputing
servers: The case for load unbalancing and fairness. In: 9th IEEE Symposium on High
Performance Distributed Computing. (2000) 211–220

15. Ciardo, G., Riska, A., Smirni, E.: EQUILOAD: a load balancing policy for clustered web
servers. Performance Evaluation 46 (2001) 101–124

16. Research, W.: Mathematica version 5.0 (2003)

A Novel Distributed Scheduling Algorithm for
Resource Sharing Under Near-Heavy Load�

D. Carvalho1, Fábio Protti2, Massimo De Gregorio3, and Felipe M.G. França2

1 COPPE – Engenharia de Sistemas e Computação,
UFRJ, Rio de Janeiro, Brazil

d.carvalho@ieee.org, felipe@cos.ufrj.br
2 NCE/Instituto de Matemática, UFRJ, Rio de Janeiro, Brazil

fabiop@nce.ufrj.br
3 Istituto di Cibernetica – CNR, Pozzuoli (NA), Italy

m.degregorio@cib.na.cnr.it

Abstract. This paper introduces SERH – Scheduling by Edge Reversal with
Hibernation, a novel distributed algorithm for the scheduling of atomic shared
resources in the context of dynamic load reconfiguration. The new algorithm
keeps the simplicity and daintiness of the Scheduling by Edge Reversal (SER)
distributed algorithm, originally conceived to support the heavy load condition.
Both SER and SERH distributed algorithms share the same communication
and computational complexities and can also be seen as graph dynamics where
the messages exchanged between a processing node and its neighbors are repre-
sented as “edge reversal” operations upon directed acyclic graphs representing
the target distributed system. Nevertheless, SERH allows such distributed sys-
tem to deal with the situation of having processing nodes leaving the heavy
load behavior and going into a “hibernating” state, and vice versa. It is shown
here that SERH has a communication cost approximately 25% lower than the
traditional Chandy and Misra’s distributed solution, when operating near to
heavy load conditions. In order to illustrate the usefulness of SERH in this
interesting situation, an application in the distributed control of traffic lights
of a road junction is also presented here.

Keywords: dining philosophers problem; distributed algorithms; distributed
traffic light control; graph dynamics; mutual exclusion; resource-sharing.

1 Introduction

Dijkstra’s Dinning Philosophers Problem (DPP) [9] is a simple and remarkable
paradigm where important issues associated to distributed systems (DSs), such
as concurrency, deadlock avoidance, fairness, liveness, mutual exclusion and star-
vation avoidance, are exposed. A number of distributed algorithms have been
devised to ensure mutual exclusion in the access of atomic shared resources,
i.e., resources that cannot be accessed by more than one process at a time. In

� Supported by CNPq, CAPES (Brazil) and CNR (Italy).

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 431–442, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

432 D. Carvalho et al.

particular, Chandy and Misra’s distributed algorithm [8] has been considered as
a paradigmatic solution for the mutual exclusion problem raised by the DPP.
Nevertheless, if in one hand Chandy and Misra’s algorithm covers arbitrarily
loaded DSs, on the other hand the communication cost observed in particularly
interesting situations, such as in the heavy load regime, i.e., when processing
nodes are either operating or in constant demand for operating upon atomic
shared resources, may be far from ideal.

In this sense, Scheduling by Edge Reversal (SER), a simple and powerful dis-
tributed algorithm, was originally conceived to support DSs under the heavy load
condition. SER was firstly applied by Bertsekas and Gafni [10] in the problem of
maintaining loop-free routes in computer networks and then as part of Chandy
and Misra’s DPP solution [8]. Barbosa and Gafni have established important
SER properties and the NP-completeness of the problem of finding optimal con-
currency amounts provided by the SER dynamics over a given distributed system
[4, 5]. SER works as follows: (i) the target distributed system is described by an
undirected graph G = (N,E), where N = {1, ..., n} is the set of processing nodes
and E is defined as follows: if Ri is the set of resources used by node i in order to
operate, an edge (i, j) ∈ E exists whenever Ri ∩ Rj �= Ø, that is, nodes i and j
share at least one atomic resource; (ii) an initial acyclic orientation ω is defined
over E; (iii) all, and only, sink nodes in ω, i.e., nodes having all of its edges ori-
ented to themselves, have the right to operate upon shared resources and then
reverse all associated edges, becoming source nodes in a new acyclic orientation
ω’. This ensures that neighboring nodes in the target DS cannot operate simul-
taneously upon atomic shared resources. SER is the graph dynamics defined by
the endless iteration of (iii) over G. Considering G finite and, consequently, a
finite number of possible acyclic orientations over G, eventually a repetition, i.e.,
a period of length t, will occur. An interesting property of SER lies in the fact
that, inside any given period, each node operates, i.e., becomes a sink, the same
number m of times [4], ensuring “fairness”, in the long run operation, among all
processing elements of G.

Notice that SER imposes a restless participation of every node in G, a nat-
ural requisite of a heavily loaded DS. In the interesting and plausible situation
of a subset of G’s processing nodes reaching, temporarily or not, the state of
having no need for operating over shared resources, such nodes will negatively
interfere in the performance of the remaining SER-driven heavily loaded system.
This paper introduces SERH – Scheduling by Edge Reversal with Hibernation, a
generalization of SER in which processing nodes have the possibility of leaving
the heavy load behavior and going into a “hibernating” state, and vice versa. In
order to illustrate the usefulness of SERH in this interesting situation, an appli-
cation in the distributed control of traffic lights of a road junction is introduced
here.

SERH differs from SER in the use of a second oriented edge between two
neighboring nodes in G (in this case, a multi-digraph is defined). “Edge reversals”
occur exactly as in SER whenever nodes behave as in the heavy load situation;
if a node intends to go into a “hibernating” state, just after operating, only

A Novel Distributed Scheduling Algorithm 433

edges from the original SER mechanism are reversed; sensing a missing (extra)
“edge reversal” by neighboring nodes has the implicit meaning of indicating that
such node has just entered into hibernation. Leaving hibernation happens only
by request from at least one neighboring node, as to be seen ahead in detail,
including a demonstration of the SERH correctness.

1.1 Mutual Exclusion Algorithms

There is a multitude of mutual exclusion algorithms, as presented in [25]. The
taxonomy proposed by Raynal [23] defines three main classes:

Permission-based algorithms – when a process needs access to shared
resources, it asks permission to neighboring nodes. Symmetry can be broken
through the use of temporal priorities, acyclic graphs and/or majorities. See
[1, 2, 7, 11, 13, 18, 20, 24, 22].
Token-based algorithms – the processing node can access shared resources
only when it is the owner of a special atomic object associated to such set
of resources. See [3, 16, 17, 19, 21].
Centralized coordination algorithms – in this case, the two previous
styles may be combined in the final solution. Processing nodes in need for
accessing shared resources send messages to a central coordinator, which
defines the timing for returning an atomic object defining a unique key to
accessing such resources.

Outside this taxonomy, there are distributed mutual exclusion algorithms fo-
cusing resources instead of processes in need of access [27]. Mutual exclusion al-
gorithms are fundamental in many areas of Computer Science, such as operating
systems, micro-architectures, computer graphics, computer networks, databases,
etc., apart from specific multimedia applications such as video conference [14]
and mobile computing [26].

SERH , our contribution, is mainly a permission-based algorithm, in the same
spirit of Chandy and Misra’s approach to the DPP [8] and Barbosa and Gafni’s
SER [4]. Moreover, there are still some alternative approaches based on the
dynamic modification of the precedence graph (used in Chandy and Misra’s
approach), usually by means of a process endowed with global knowledge [12, 15].

1.2 Chandy and Misra’s DPP Solution

Chandy and Misra’s DPP distributed solution uses an undirected graph G =
(N,E) in order to represent the neighborhood-constrained system. Whenever
two neighboring philosophers are “hungry”, the symmetry (the existence of
neighbors trying to use a shared resource simultaneously) is broken with the
help of a precedence graph Ḡ containing the same set of nodes and edges of G,
but with an acyclic orientation defined over its edges. Each edge e in Ḡ represents
a precedence (“turn”), i.e., the right of a node to use the shared resource before
its neighbor. The orientation of the edges is modelled by a function ω : E → N

434 D. Carvalho et al.

such that ω((i, j)) is the node having the turn. When a node i receives a fork
request from j, i promptly returns the fork if ω((i, j)) = j. If i is “hungry”, the
fork return is associated to a fork request by message fork+request. In the op-
posite case, when ω((i, j)) = i, i returns the fork only after operating, satisfying
j’s request.

2 SERH

Scheduling by Edge Reversal with Hibernation – SERH combines the behav-
ior of SER for executions under heavy load with the possibility of precluding a
node from operation, which remains “hibernating” till the moment it is woke up
by a node that is still operating. This new functionality can be achieved with-
out increasing the asymptotic computational and communication complexities
of SER.

An informal description of how SERH works is shown in Figures 1 and 2. The
existence of a communication channel between two nodes means that they share
at least one atomic resource. The functioning of each communication channel is
controlled by a pair of permissions, • and ◦. Initially, the pairs are distributed in
such a way that an acyclic orientation ω is defined in the graph, as in Figure 1(a).

As in SER, sink nodes have the right of operating by using the shared re-
sources. After that, the edges incident to the sink nodes are reversed, as indicated
in Figure 1(b), and the dynamics evolves. Arrows indicate nodes where events

(a) (b)

(c) (d)

Fig. 1. An example of execution of SERH

A Novel Distributed Scheduling Algorithm 435

are occurring. The notion of “sink node” in SERH is different from that in
SER: a sink node has the property of “owning” all the •-permissions (Let us
call it a •-sink node). Moreover, the reversion of a •-permission along some edge
occurs only when the node owns the corresponding ◦-permission for that edge.
This distinct behavior is introduced in order to implement the new hibernating
state. Observe Figure 1(c): node f decides to enter the hibernating state; in this
case, it reverses only the •-permissions towards its neighbors, while keeping the
◦-permissions. Notice that nodes c, d, e, h, k, and l are •-sink nodes; they are
able to operate upon resources. Following the example, nodes d, h and l have
operated and reversed their permissions according to the above convention, as
in Figure 1(d). The remaining •-sink nodes have not reversed their permissions
because they are still operating. Observe now node g: it has just become a •-
sink node, and when it finishes its operation it will reverse its •-permissions and
enter the hibernating state. We should observe that, in this case, it does not
reverse the •-permissions towards f because it does not own the corresponding
◦-permission for that edge. At this moment, recall that f is hibernating, and
thus it is not requiring resources shared with its neighbors. The final situation
is shown in Figure 2(a).

Figure 2(b) shows node c entering the H-state. When some •-sink node de-
cides to wake up a neighbor, it reverses the •-permission towards the hibernating
neighbor as shown in Figure 2(c). This is the action performed by node j when
waking up f and g, which by their turn reverse all the ◦-permissions towards
their neighbors, except j, as in Figure 2(d). Upon owning the ◦-permissions,

(a) (b)

(c) (d)

Fig. 2. An example of execution of SERH (continuation)

436 D. Carvalho et al.

these neighbors must immediately reverse the corresponding •-permissions, as
we shall see when formally describing SERH . Other details will also be dis-
cussed, e.g., the situation represented in Figure 2(d), where the permissions move
in opposite directions along the channel linking f and g.

2.1 Formal Description of SERH

Every node in the system may be in one of three mutually exclusive states:
running (R), waiting for edge reversals (W), or hibernating (H). We denote by
s(i) the current state of node i. Active nodes are either running or waiting;
inactive nodes are hibernating. Also, the following transitions ξ applies:

ξRW – occurs when a node exits the R-state and enters the W -state;
ξRH – occurs when a node enters the H-state after accessing resources;
ξWR – occurs when a node gains the right of accessing all the resources;
ξHW – occurs when a node is woke up by a neighbor.

Figure 3 shows the state transitions in SERH . Observe that a node can enter the
H-state only after having been in the R-state; in addition, when a node leaves
the H-state, it must necessarily enter the W -state. The algorithm assumes that
there always exist at least one node in the R-state, since running nodes are
necessary to wake up neighboring hibernating nodes. We will return to this issue
in Section 3.

SERH uses three types of messages, namely ��, �� and��. As to be ex-
plained later, these messages indicate edge reversals in two distinct digraphs, the
resource graph G+and the reversal graph G−, both having G as subjacent graph.
These message types can be mapped into 2-bit wide communication channels,
corresponding to existing edges in G. An important feature of such communica-
tion channels lies in a special priority scheme: as a result of a message type ��
from i to j and a message type �� in the opposite direction, being simulta-
neously sent through channel (i, j), a message type �� is sent from i to j. As

Fig. 3. State transitions

A Novel Distributed Scheduling Algorithm 437

an example, consider nodes f and g in Figure 2(d): this situation often occurs
when two neighboring nodes are leaving the H-state simultaneously; in this case
a symmetry between these two nodes is created, what could lead to a deadlock.
The priority scheme described above avoids such possibility.

Each participating node within SERH must store two boolean variables
associated to each communication channel, i.e., for each neighbor in G. Denote
by Ni the set of neighbors of node i. The first variable, P j

i (i ∈ N, j ∈ Ni), is
true when such node owns the corresponding •-permission, and false otherwise.
Message types �� and �� are used to inform edge reversals in the resource
graph among neighboring nodes.

Message type �� also indicates edge reversals in the reversal graph G−, in
which an edge orientation has one meaning: if having the same orientation as the
corresponding edge in G+, the right of reversing such edge in G+. The orientation
of G−is kept at each node by the variable M j

i (i ∈ N, j ∈ Ni) and can also be
modified by a message type ��. The pseudo-code of SERH can be accessed
at [6].

2.2 SERH Initialization

The resource graph and the reversal graph can be combined in a single multi-
digraph G = (N, E). Each edge in E is defined as an ordered triple of the form
(i, j, c), where c ∈ {•, ◦}. Edges belonging to the resource graph are labeled •,
and this is indicated in the algorithm by the local variables P j

i . Edges belonging
to the reversal graph are labeled ◦, and this is indicated by the local variables
M j

i . We will employ the expression pair of edges to refer to the two edges labeled
• and ◦ linking two neighboring nodes. Then:

∀(i, j, •) ∈ E ω((i, j, •)) = i ←→ P j
i = true (1)

∀(i, j, ◦) ∈ E ω((i, j, ◦)) = i ←→ M j
i = true (2)

Four rules determine the orientations of the edges and the possible states for
the nodes in the initialization of G.

Rule 1. Every pair of edges in E linking active nodes satisfies ω((i, j, •)) =
ω((i, j, ◦)).

Rule 2. Every pair of edges in E linking an active node to an inactive one
satisfies ω((i, j, •)) = i and ω((i, j, ◦)) = j.

Rule 3. Every pair of edges in E linking inactive nodes satisfies ω((i, j, •)) �=
ω((i, j, ◦)).

Rules 2 and 3 imply that every inactive node never owns both • and ◦ simul-
taneously.

In order to define Rule 4, we first define formally G+and G−. The first one is
the oriented graph G+= (N, E+) satisfying (3). (Recall that this digraph is the
one induced by the edges labeled •.)

438 D. Carvalho et al.

∀(i, j, •), (i, j, ◦) ∈ E ω((i, j, •)) = ω((i, j, ◦)) → (i, j) ∈ E+ (3)

The oriented graph G−= (N, E−) is defined similarly as the spanning sub-
digraph of G induced by the edges labeled ◦:

∀(i, j, •), (i, j, ◦) ∈ E ω((i, j, •)) �= ω((i, j, ◦)) → (i, j) ∈ E− (4)

Rule 4. The orientations of G+ and G− are acyclic.

2.3 SERH Correctness

The lemma below show that SERH preserves Rules 1, 2 and 3. Due to the lack
of space, proofs can be found at [6].

Lemma 1.
a. Edge reversals caused by ξRW , ξRH and ξHW preserve Rules 1 to 3.
b. Transitions ξWR do not cause edge reversals.
c. Transitions ξRW , ξRH , and ξHW do not induce cycles in G+ and G−.

The lemma above implies:

Theorem 1. SERH preserves the acyclicity of G+ and G−.

3 Simulation Results

The DPP model allows a philosopher to change its state from “thinking” to
“hungry” at any point of its execution. In terms of our algorithm, a node can
switch from the H-state to the W -state when it needs access to the shared
resource set. However, SERH works with two restrictions: first, a node must
be woke up by any running neighboring node in order to leave the H-state;
second, a node must decide to stay on the heavy load condition before releasing
access to shared resources. Since SER is not designed to deal with arbitrary
load conditions, in this section we present the simulation results that show the
message costs of SERH compared with Chandy and Misra’s algorithm and
how to overcome those restrictions in real life problems. (Recall that SERH

and SER behave exactly the same way under the heavy load condition.)

3.1 Message Costs

In order to compare message costs of SERH and Chandy and Misra’s algo-
rithm, we implemented a synchronous simulation of a graph containing seven
nodes totally interconnected (a K7). The simulation of Chandy and Misra’s al-
gorithm was regulated by a given probability ph of changing the node state from
“thinking” to “hungry” at the end of each simulation cycle. On the other hand,
the SERH simulation was governed by probabilities pr and pw: pr is the prob-
ability of a node to remain in the heavy load condition after the use of shared

A Novel Distributed Scheduling Algorithm 439

SERH and Chandy−Misra − K7

SERH

Chandy−Misra

0.0
0.2

0.4
0.6

0.8
1.0

pr e ph 0.0

0.2

0.4

0.6

0.8

1.0

pw

0.0

2.0

4.0

6.0

8.0

10.0

12.0

messages per cylce

Fig. 4. Number of messages per cycle in SERH and in Chandy and Misra’s algorithm,
0 < pr, ph ≤ 1 and 0 < pw ≤ 1

resources, and pw is the probability of a running node to decide waking up a
hibernating neighboring node. Besides, a node cannot enter the H-state when
all its neighbors are in the H-state in order to prevent a global termination of
the algorithm.

Figure 4 shows the number of messages per cycle exchanged by the system
vs. the probabilities ph, pr, and pw. Observe that SERH uses less messages than
Chandy and Misra’s algorithm when the system approaches the heavy load.
Moreover, SERH uses half of the messages used by Chandy and Misra’s when
it is operating in heavy load. This is mostly due to the fact that Chandy and
Misra’s algorithm exchanges two messages between neighboring nodes at a time
(request and fork) and SERH sends both implicitly using only one message.

3.2 Distributed Traffic Light Control of a Road Junction

We modeled the traffic road junction presented in Figure 5(a) using SERH

and Chandy and Misra’s algorithm. The model consists of a graph where nodes
are traffic lights represented by circles labeled Pi(i ∈ N), and shared resources
are the conflict regions labeled Rj . Edges are defined according to our previ-
ous conventions and the resulting graph is depicted in Figure 5(b). The vehicle
and pedestrian movement were modeled by distributed asynchronous cellular
automata with a given vehicle/pedestrian arrival probability (an animation of it
can be found at [6]).

In Chandy and Misra’s execution, traffic lights with non-empty lane queues
change their internal state to “hungry” and then wait for their turn to operate.

440 D. Carvalho et al.

(a)

(b)

Fig. 5. Road junction and the graph model

In order to satisfy the first restriction presented earlier, the SERH implementa-
tion has an additional node, linked to each original processing node. This node
works as a “watcher” to wake up the traffic light processing node whose up-
coming queue becomes non-empty; otherwise, the traffic light processing node
enters the H-state when its queue becomes empty. This behavior overcomes the
second restriction presented above. The special priority communication channels
are implemented with a simple 3-way hand shake protocol. The SERH imple-
mentation showed communication costs 17%, 21%, and 28% lower than Chandy
and Misra’s version when the system was operating with a pedestrian arrival

A Novel Distributed Scheduling Algorithm 441

probability of 10%, 50%, and 80%, respectively (vehicle arrival probability of
80% in all cases.)

4 Conclusions

A new distributed scheduling algorithm targeting near-heavily loaded systems
was introduced and its correctness demonstrated. Its application on the dis-
tributed control of traffic lights revealed its usefulness in this interesting situa-
tion. It was shown that a considerably lower communication cost was achieved
under the near-heavy load condition, compared with Chandy and Misra’s algo-
rithm. Further studies focusing on how qualitative modifications on the topology
of active nodes impact the concurrency of the resulting system are of immediate
interest. Moreover, the application of SERH onto problems such as the design
of asynchronous timing schemes for low-power digital circuits and systems seems
quite natural.

References

1. D. Agrawala and A. El Abbadi. An efficient solution to the distributed mutual ex-
clusion problem. In Proceedings of the 8th Annual ACM Symposium on Principles
of Distributed Computing, pages 193–200, August 1989.

2. D. Agrawala and A. El Abbadi. Exploiting logical structures in replicated
databases. Inf. Proc. Letters, 33:255–260, 1990.

3. A. Arnold, M. Naimi, and M. Tréhel. A log n distributed mutual exclusion algo-
rithm based on the path reversal. Journal of Parallel and Distributed Computing,
34:1–13, 1996.

4. Valmir Barbosa and Eli Gafni. Concurrency in heavily loaded neighborhood-
constrained systems. ACM Transactions on Programming Languages and Systems,
11(4):562–584, October 1989.

5. Valmir Carneiro Barbosa. Concurrency in Systems with Neighborhood Constraints.
Ph.D. thesis, UCLA Computer Science Department, Los Angeles, 1986.

6. D. Carvalho, F. M. G. França, and F. Protti. Pseudo-code of Scheduling by Edge
Reversal with Hibernation. http://www.if.ufrj.br/ ∼ carvalho/serh.html, 2004.

7. O. S. F. Carvalho and G. Roucariol. On mutual exclusion in computer networks.
Communications of ACM, 26(2):145–147, 1983.

8. K. M. Chandy and Jayadev Misra. The drinking philosopher’s problem. ACM
Transactions on Programming Languages and Systems, 6(4):632–646, October
1984.

9. E. W. Dijkstra. Hierarchical ordering of sequencial processes. Acta Informatica,
1(2):115–138, 1971.

10. Eli M. Gafni and Dimitri P. Bertsekas. Distributed algorithms for generating loop-
free routes in networks with frequently changing topology. IEEE Transactions on
Communications, 29(1):11–18, 1981.

11. K. D. Gifford. Weighted voting for replicated data. Proceedings of the 7th Annual
ACM Symposium on Principles of Distributed Computing, pages 150–159, 1989.

442 D. Carvalho et al.

12. Kenneth Goldman and Joe Hoffert. A modification to the chandy-misra dining
philosophers algorithm to suport dynamic resource conflict graphs. submetido
para Information Processing Letters.

13. N. Plouzeau J. M. Helary and M. Raynal. A distributed algorithm for mutual
exclusion in an arbritary network. The Computer Journal, 31(4):289–295, 1988.

14. Yuh-Jzer Joung. Asynchronous group mutual exclusion. In Proceedings of the Sev-
enteenth Annual ACM Symposium on Principles of Distributed Computing (PODC
’98), pages 51–60, New York, June 1998. Association for Computing Machinery.

15. J. Kramer and J. Magee. The Evolving Philosophers Problem: Dynamic Change
Management. IEEE Transactions on Software Engineering, 16(11):1293–1306,
November 1990.

16. G. Le Lann. Distributed systems: towards of formal approach. In IFIP Congress,
pages 155–160, North-Holland, 1977.

17. N. A. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed al-
gorithms. Proceedings of 7th ACM Symposium on Operating Systems Principles,
pages 137–151, 1987.

18. M. A. Maekawa. A
√

n algorithm for mutual exclusion in decentralized systems.
ACM Transactions on Computer Systems, 3(2):145–159, 1985.

19. J. A. Martin. Distributed mutual exclusion on a ring of processors. Science of
Computer Programming, 5:256–276, 1985.

20. H. Garcia Molina and D. Barbara. How to assign votes in a distributed system.
Jornal of the ACM, 32(4):150–159, 1985.

21. K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM
Transactions on Computer Systems, 7(1):61–77, 1989.

22. M. Raynal. Prime numbers as a tool to design distributed algorithms. Inf. Process.
Lett., 33(1):53–58, 1989.

23. Michel Raynal. A simple taxonomy for distributed mutual exclusion algorithms.
Operation Systems Review, 25:47–50, 1991.

24. Injong Rhee. A fast distributed modular algorithm for resource allocation. In
Proceedings og the 15th International Conference on distributed Computer Systems
(ICDCS ’95), pages 161–168, 1995.

25. P. C. Saxena and J. Rai. A survey of permission-based distributed mutual exclusion
algorithms. Computer Standards and Interfaces, 25:159–181, 2003.

26. Walter, Welch, and Vaidya. A mutual exclusion algorithm for ad hoc mobile net-
works. Wireless Networks: The Journal of Mobile Communication, Computation
and Information, Kluwer, 7, 2001.

27. J. L. Welch and N. A. Lynch. A modular drinking philosophers algorithm. Dis-
tributed Computing, 6:233–244, 1993.

Internet Computing of Tasks with Dependencies
Using Unreliable Workers�

(Extended Abstract)

Li Gao and Grzegorz Malewicz

University of Alabama, Tuscaloosa, AL 35487, USA
{lgao, greg}@cs.ua.edu

Abstract. This paper studies the problem of improving the effectiveness
of computing dependent tasks over the Internet. The distributed system
is composed of a reliable server that coordinates the computation of a
massive number of unreliable workers. It is known that the server cannot
always ensure that the result of a task is correct without computing the
task itself. This fact has significant impact on computing interdependent
tasks. Since the computational capacity of the server may be restricted
and so may be the time to complete the computation, the server may
be able to compute only selected tasks, without knowing whether the
remaining tasks were computed by workers correctly. But an incorrectly
computed task may render the results of all dependent tasks incorrect.
Thus it may become important for the server to compute judiciously
selected tasks, so as to maximize the number of correct results.
In this work we assume that any worker computes correctly with proba-
bility p < 1. Any incorrectly computed task corrupts all dependent tasks.
The goal is to determine which tasks should be computed by the (reli-
able) server and which by the (unreliable) workers, and when, so as to
maximize the expected number of correct results, under a constraint d on
the computation time. We show that this optimization problem is NP-
hard. Then we study optimal scheduling algorithms for the mesh with the
tightest deadline. We present combinatorial arguments that completely
describe optimal solutions for two ranges of values of worker reliability
p, when p is close to zero and when p is close to one.

1 Introduction

This paper begins developing a scheduling theory for improving the quality of
results of tasks executed unreliably over the Internet. We introduce a combina-
torial optimization problem, show that the problem is NP-hard, and then study
the problem restricted to the mesh where we give optimal polynomial time al-
gorithms.

� Contact author: Grzegorz Malewicz, Department of Computer Science, University of
Alabama, 116 Houser Hall, Tuscaloosa, AL 35487-0290, USA, Phone (205) 348-4038,
Fax (205) 348-0219.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 443–458, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

444 L. Gao and G. Malewicz

There is a large number of underutilized computers connected to the Internet.
Harnessing their power can enable the creation of a distributed supercomputer
that can accomplish sheer volumes of work at a tiny fraction of the cost of
a more traditional, more centralized, supercomputer. Several successful imple-
mentations of Internet Supercomputers exist today [8, 11, 16, 21]. These enable
solving problems composed of a large number of tasks. In these implementa-
tions, a computer, called a server, allows any other computer, called a worker,
to register and download a piece of software. Then the software requests a task
from the server, downloads appropriate data that describe the task, executes
the task, and returns the result to the server. This process repeats. When the
number of workers is large, the Internet Supercomputer achieves high comput-
ing speed. For example, the SETI@home project reported its speed to be 57.29
Teraflops [23]. These Internet Supercomputers are also called Internet or Web
Computing platforms, or High-Throughput Computing Grids [4].

SETI@home stated [9] that half of the resources of the project were spent on
dealing with security problems. One of them is to ensure the quality of results
returned by workers. Some computers, such as the server and perhaps certain
workers, are reliable; they will correctly execute the tasks assigned by the server.
However, workers are commonly unreliable. That is they may return to the server
incorrect results due to unintended failures caused for example by overclocked
processors, or they may deceivingly claim to have performed assigned work so
as to obtain incentives such as getting higher rank on the SETI@home list of
contributed units of work. Several schemes were proposed to improve the quality
of results of tasks. The schemes encompass modeling reliability of workers based
on the history of interaction with workers [10, 24], keeping track of which task
was assigned to which worker [20], sending the same task to multiple workers [11],
and verifying results returned by workers [6, 7, 25, 3].

It appears that in general it is fundamentally difficult to develop a method
that ascertains that a task was executed correctly, without the task being exe-
cuted on a reliable computer (cf. [1]). This difficulty has significant consequences
on performing a computation described by a directed acyclic graph. Individual
tasks of a computation may be quite computationally intensive, and so it may
be unrealistic to execute too many of them on reliable computers that may be
scarce. Consequently, the server may not always know if a given task was exe-
cuted correctly or not. When tasks have dependencies, and the result of a task
is incorrect, then all descendant tasks, even if executed correctly, may produce
incorrect results, simply because their input depends, directly or indirectly, on
the result of the one task that was executed incorrectly. It seems plausible that
in such setting some tasks may have high impact on the total number of correct
results, while other tasks may have low impact. The possible asymmetry means
that it may be important to judiciously select which tasks should be executed re-
liably, and which other tasks can be left to unreliable workers, so as to maximize
the total number of correct results.

This paper begins developing a scheduling theory for increasing the number
of correct results of tasks executed on unreliable workers, when tasks have de-

Internet Computing of Tasks with Dependencies 445

pendencies. Let us discuss some tradeoffs. A naive scheduling approach would
be to execute all tasks on reliable computers only. Of course, then there is no
need for judicious selection at all. However, the number of reliable computers
may be quite small compared to the number of unreliable computers. Therefore,
when work is assigned to reliable computers only, relatively more time would be
needed to complete the entire computation. We could reduce the computation
time by including unreliable computers in the computation, at the cost of reduc-
ing the number of correct results. Thus we expect that the number of correct
results, for a given directed acyclic graph that describes dependencies between
tasks, is related to two parameters: the reliability of computers and the dead-
line to complete the computation. Our ultimate goal is to fully understand this
relationship.

One natural way to model unreliability of computers is to assume a proba-
bilistic setting. Each computer will execute correctly with a certain probability.
This assumption could be justified, for example, by the fact that one source of
computation errors in Internet Supercomputers is overclocked processors [9].

Towards this end we formulate a model of an Internet Supercomputer. Our
model extends the Internet pebble game introduced recently by Rosenberg [19].
The computation is modeled by a finite directed acyclic graph. Each node in
the dag represents a task. There is an unbounded number of computers in the
system. Computer i executes a task correctly with probability pi and incorrectly
with probability 1−pi. This probability is called reliability of the computer. There
are three types of pebbles used to play the game. Initially all sources of the dag
are pebbled with an eligible pebble. At any discrete time t we select a computer,
say i, and a task that has an eligible pebble. Then we replace the eligible pebble
with a pebble executed correctly with probability pi, and with a pebble executed
incorrectly with probability 1 − pi. Any task that does not have any pebble but
all its parents have executed pebbles is pebbled with an eligible pebble. Any task
that is executed incorrectly corrupts the results of all descendant tasks; so their
results will be incorrect even if executed correctly. There is a deadline d by which
all tasks of the dag must be executed. The goal is to determine which computer
should execute which task and when, so as to maximize the expected number of
correct results. Solving this optimization problem is important. One would like
to establish theoretical guidelines for how to effectively and quickly execute a
computation composed of dependent tasks, using unreliable computers.

The focus of this paper is to study a specific version of the scheduling problem.
We consider a dag called a (two dimensional) mesh that is composed of k2 nodes
arranged into k rows and k columns. Each node has an arc to the node in the
next column (if it exists) of the same row, and an arc to the node in the next
row (if it exists) of the same column. Our choice of a mesh is motivated by
the fact that meshes are a convenient way to structure computation and they
arise in practice (cf. [19]). We investigate how to compute the mesh as quickly as
possible i.e., we fix deadline d to 2k−1. We assume that there is a single computer
whose reliability is 1; this computer is called the server. Any other computer has
reliability 0 < p < 1; this computer is called a worker. Our assumption that

446 L. Gao and G. Malewicz

there is a single reliable server and each worker has the same reliability p seems
to be a natural “first approximation” of an Internet Supercomputer composed
of unreliable workers.

We note that even if results of tasks cannot be ascertained to be correct in
general without computing the tasks on trusted computers, one could still com-
pute tasks redundantly on unreliable computers and use majority voting hoping
to improve the quality of results. Such an approach is orthogonal to the aim of
this paper where we want to use as little resources as possible (which is demon-
strated by the fact that each task is computed by a single computer), while still
obtaining as much quality as possible by judiciously assigning computers to tasks.

Contributions. This paper begins developing a scheduling theory for maximiz-
ing the number of correct results of tasks with dependencies executed unreliably
over the Internet. Our specific contributions are as follows:

(a) We introduce a probabilistic pebble game that models internet computing
with unreliable workers, and a new combinatorial optimization problem.

(b) We show that the optimization problem is NP-hard by a chain of reductions
from the Balanced Complete Bipartite Subgraph Problem. In fact the prob-
lem is NP-hard even when restricted to bipartite dags computed by a single
(reliable) server and (unreliable) workers.

(c) We give polynomial time optimal scheduling algorithms for the mesh under
the tightest deadline d = 2k−1, that use a server and workers, where worker
reliability p falls into two ranges of values. We show that expectation is max-
imized when tasks are executed roughly in breadth-first search order, and
the server executes exactly one task per “level” of the mesh. We demonstrate
that there are two scheduling regimes. These regimes depend on the value of
reliability p. The first regime is when reliability is close to 1. We completely
characterize maximal schedules in this regime. The server should execute a
“central” task at any time. Specifically, at any time, there is some number of
“eligible” tasks that can be executed given task precedence constraints and
tasks executed so far. These tasks form a diagonal “level” of the mesh. At
this time, the server should execute a task that has the most descendants
from among these eligible tasks, which turns out to be a central task on the
diagonal level (there may be two such tasks, in which case the choice does not
matter, as we show), and workers should execute all other eligible tasks. In-
tuitively, is appears that when p is close to 1, then optimal schedules are “de-
scendant driven”. The second regime is when reliability is close to 0. We also
completely characterize maximal schedules in this regime. The server should
execute an “edge” task at any time. Specifically, the server should either exe-
cute tasks in the top row and the rightmost column, or it should execute tasks
in the leftmost column and the bottom row. Intuitively, is appears that when
p is close to 0, then optimal schedules are “ancestor driven”. The demon-
stration that there are two distinct regimes is, we believe, an important
contribution of this paper that indicates that the problem has a non-trivial
and interesting structure of optimal solution (that we begin to explore).

Internet Computing of Tasks with Dependencies 447

Paper organization. The rest of the paper is structured as follows. In Section 2,
we present a model of Internet Supercomputing with unreliable workers, and
formulate an optimization problem of maximizing the expected number of correct
results of tasks. In Section 3, we show that the optimization problem is NP-hard.
Then, in Section 4, we give polynomial time optimal scheduling algorithms for
a mesh. Next, in Section 5, we discuss related work. Finally, in Section 6, we
conclude and discuss future work. Due to space limitations most proofs are
omitted from this extended abstract.

2 Definitions and Preliminaries

A directed acyclic graph G = (V,E), or dag for short, on n nodes abstracts
computation composed of tasks and information flow between tasks (all dags are
finite in this paper). We often refer to the nodes as tasks. A path is a sequence
u1, u2, . . . , uk of two or more nodes such that there is an arc from ui to ui+1,
for 1 ≤ i ≤ k − 1. In a dag no such path can have u1 = uk. For a given node u,
P (u) is the set of parents of u i.e., of all nodes v, such that there is an arc from
v to u; C(u) is the set of children of u i.e., of all nodes v, such that there is an
arc from u to v; A(u) is the set of ancestors of u i.e., of all nodes v, such that
there is a path from v to u; and D(u) is the set of descendants of u i.e., of all
nodes v such that there is a path from u to v. Note that u /∈ P (u), u /∈ C(u),
u /∈ D(u), and u /∈ A(u). A task u such that P (u) = ∅ is called a source, and
when C(u) = ∅ then u is called a sink.

A schedule describes when tasks are executed and by whom. A schedule
has two components. The first component is a function x that takes a natural
number t ≥ 1 and returns the subset of tasks x(t) that are executed at time t.
There is a µ ≥ 1 such that each set x(1), . . . , x(µ) is not empty, and the sets
partition the set of all tasks. The number µ is called makespan of the schedule.
Execution of any task takes one unit of time. A task can only be executed when
all its ancestors already have, so for any 1 ≤ t ≤ µ, x(t) must be a subset of
tasks whose ancestors are in x(1) ∪ . . . ∪ x(t − 1). The second component is a
function c that takes a natural number v and returns a number c(v) denoting
the computer that executes task v. We assume that there are m computers in
the system. It must be the case that any computer executes at most one task
per unit of time, so for any 1 ≤ t ≤ µ, and any i, the number

∣∣c−1({i}) ∩ x(t)
∣∣

of tasks executed by computer i at time t is at most one. For any dag there is
at least one schedule (x, c).

Computers are unreliable. When a computer i executes a task, then with
probability pi the computer executes u correctly, independently from the execu-
tion of other tasks. However, with probability 1 − pi the computer executes the
task incorrectly. We call pi the reliability of the computer. Such incorrect execu-
tion affects the results of every task in D(u). Intuitively, an incorrectly executed
task u corrupts the results of any descendant task v, because the result of u is
used, directly or indirectly, when the task v is executed. We say that the result
of a task is correct, if the task and all its ancestors are executed correctly. In

448 L. Gao and G. Malewicz

contrast, the result of a task is incorrect, if either the task or one of its ancestors
is executed incorrectly.

We can compute the expected number of correct results for a given schedule
(x, c). In order for a task u to be computed correctly, every task in A(u) ∪ {u}
must be computed correctly. The function c defines which computer executes
each of these tasks. So by independence, the probability that the result of u
is correct is the product

∏
v∈A(u)∪{u} pc(v) . Let Eu be the indicator random

variable equal to 1 if the result of task u is correct, and 0 otherwise. Then
the total number of correct results is equal to E =

∑
u∈V Eu. By linearity of

expectation

Exp [E] =
∑
u∈V

Exp [Eu] =
∑
u∈V

∏
v∈A(u)∪{u}

pc(v) .

Our goal is to find a schedule (x, c) that maximizes this expectation.

Constrained Computing with Unreliable Workers
Instance: A dag G that represents tasks and information flow between them, a
deadline d, and m computers with reliabilities p1, . . . , pm.
Objective: Find a schedule (x, c) with makespan at most d that maximizes the
expected number of correct results.

This paper focuses on the case where there is a single computer, called the
server, with reliability 1, and any other computer, called worker, has reliability
0 < p < 1. In this case our optimization problem has a simpler formulation.
Suppose that R is the subset of tasks that the server executes. We call this
subset a server subset. Let E(R) be the random variable equal to the number
of correct results for a schedule with the set R of tasks executed by the server.
Then the expected number of correct results is equal to

Exp [E(R)] =
∑
u∈V

p|(A(u)∪{u})\R| .

Note that this expectation depends on the graph G and the set R, but does not
depend on the sequence x in which tasks have been executed, nor if the deadline
constraint has been violated or if the server executed more than one task at a
time. Trivially, the expectation is maximized when all tasks are executed by the
server, R = V . However, then it may happen that either the makespan of the
schedule is large, or there is a time when the server is supposed to execute many
tasks. We are looking for a server subset R that maximizes the expectation,
and a function x, such that at most one task is executed by the server at any
point of time in x and makespan of x is at most d. We refer to this restricted
version of the problem as Internet Supercomputing with Unreliable Workers
(ISUW).

Internet Computing of Tasks with Dependencies 449

3 Complexity of the Problem

We demonstrate that it is NP-hard to solve the problem of Internet Supercom-
puting with Unreliable Workers. The proof is composed of two steps. We first
reduce a known NP-complete problem called Balanced Complete Bipartite Sub-
graph Problem (see [5] problem GT24) to an “intermediate” problem of selecting
subsets whose union is small. Then we show how to give answer to any instance
of the intermediate problem using an algorithm that finds a solution to the prob-
lem of Internet Supercomputing with Unreliable Workers. This will immediately
imply that Constrained Computing with Unreliable Workers is also NP-hard.

Many Subsets with Small Union (MSSU)
Instance: Nonempty subsets S1, . . . , Sn of [n], such that their union is [n], and
numbers a ≤ n and b ≤ n.
Question: Can a of these subsets be selected whose union has cardinality at
most b?

We give a reduction is from the Balanced Complete Bipartite Subgraph Prob-
lem (BCBS) (see [5] problem GT24, and [17] for recent results and references)
to MSSU.

Lemma 1. The Many Subsets with Small Union Problem is NP-complete.

Proof. The reduction is from the Balanced Complete Bipartite Subgraph Prob-
lem (BCBS) (see [5] problem GT24, and [17] for recent results and references).
Recall that in the problem we are given a bipartite graph and a number k and
we want to know if the graph contains an induced complete bipartite subgraph
with k nodes on the left and k on the right.

Let us take any bipartite graph G on n − 1 nodes and a k. Consider an
expanded graph G′ with one extra node n that is isolated. Naturally, G′ is also
a bipartite graph. Observe that there is a balanced complete bipartite subgraph
with k nodes on the left and k on the right in G, if and only if there is such a
subgraph in G′ (the isolated node in G′ cannot belong to the subgraph).

We now define an instance of the Many Subsets with Small Union Problem.
Let M be the complement of the adjacency matrix of the graph G′. Note that
the bottom row n and the right-most column n are filled with ones, because of
the isolated node. We define the set Si, 1 ≤ i ≤ n, so that the characteristic
vector of the set is equal to the column i of M . So each Si is nonempty (because
of the bottom row) and their union S1 ∪ . . . ∪ Sn is exactly [n] (because of the
right-most column). Let b = n − k and a = k.

The graph G′ has a balanced complete bipartite subgraph on 2k nodes, if
and only if we can rearrange rows and columns of M so that the top left k by k
square of the rearranged M has zeros only. But this can be done if and only if
we can select a = k of the subsets, so that the union of the selected subsets has
cardinality at most b = n − k. This completes the proof.

We then give a polynomial time Turing transformation from MSSU to ISUW.
In our transformation we construct a bipartite dag with sets associated with sinks
and elements associated with sources.

450 L. Gao and G. Malewicz

Fig. 1. Reduction

Theorem 1. The Internet Supercomputing with Unreliable Workers Problem is
NP-hard.

Proof. We take any instance of the MSSU Problem and show how to answer the
question posed in the problem, using an algorithm that maximizes expectation
for instances of the ISUW Problem.

Let S1, . . . , Sn be any nonempty subsets such that S1 ∪ . . . ∪ Sn = [n] and a
and b be numbers at most n. We construct an instance of the ISUW Problem.
The dag describes subset membership. It has two “levels”: the “bottom” tasks
correspond to sets, while the “top” tasks correspond to elements of [n]. So each
level has n tasks, and the total number of tasks in the dag is 2n. We place an arc
from a top task i to a bottom task j, if element i is in subset Sj . See Figure 1
for an example of the dag constructed for given subsets. We notice that each
top task is linked to at least one bottom task, because the union of the subsets
is [n]. Moreover, each bottom task is linked to a top task, because each subset
is nonempty. We define the deadline to be d = b + 1 ≤ 2n, and reliability of a
worker to be p = 1/n2. Let R be a server subset that maximizes the expected
number of correct results under the constraints.

We argue that any maximum solution, including R, must have a special
structure. First, |R| = d. Indeed, the cardinality of R cannot be larger, because
then the deadline constraint would be violated, and it cannot be smaller, because
then expectation could be strictly increased by executing one more task on the
server without violating constraints. Second, at least one task of R belongs to
the bottom level. Indeed, if R had d tasks on the top level, then one of them
would be executed at time d or later. But this task has a child, and so this
child could only be executed at time d + 1 or later, thus violating the deadline
constraint. Third, for similar reasons, at least one task from R must be on the
top level. These three observations imply that any server subset that maximizes
expectation has cardinality d and has at least one task on the top and at least
one on the bottom level. Note that for any server subset with these properties,
there is a trivial way to execute the 2n tasks under the constraints. The server
subsets constructed in the remainder of the proof will have these properties, and
so we do not explicitly construct functions x in the remainder of the proof.

Internet Computing of Tasks with Dependencies 451

There must be a server subset R′ with the same expectation as R, such that
exactly d−1 of the tasks from R′ belong to the top level. Indeed, we demonstrate
that as long as there are two tasks in R that belong to the bottom level, we can
remove a bottom task from R and add a new top task to R without decreasing
expectation. Thus we can keep on removing and adding tasks until exactly one
task from R belongs to the bottom level, never reducing expectation. Suppose
that there are two distinct tasks v and w from R that belong to the bottom
level. Since d ≤ n + 1 and two tasks from R are at the bottom level, then there
is a task u at the top level that is not in R. Let R′ be a server subset equal to R
except that v is excluded but u is included instead. Clearly, R′ has cardinality d
and has at least one task at the bottom and at least one task at the top level. It
remains to be seen that R′ has no smaller expectation. In R, u contributed p to
the expectation and v contributed ph, for some h ≥ 0 (when v has parents only
among R then h = 0). In R′, however, u contributes 1 and v contributes at least
ph ·p. In addition, the contribution of any task other than v that has u as a parent
will increase as well. No other task will change its contribution. So the difference
in expectation is at least

(
1 + ph · p) − (

p + ph
)

= (1 − p) − ph (1 − p) ≥ 0. In
fact this difference must be exactly 0, because R is maximal. Thus expectation
for R′ is the same as expectation for R.

Suppose that maximum expectation is z. We shall see that by inspecting z,
we can answer whether there are a subsets in the instance of the MSSU Problem,
such that the union of these subsets has cardinality at most b.

We have seen that there is a server subset R′, such that the expectation for
R′ is the same as for R, and that b = d − 1 of the tasks from R′ are on the
top level and one is on the bottom level. Let us find out how much each task
contributes to z. The remaining n − b top tasks are not executed by the server.
Thus the contribution of the top tasks to the expectation is b+(n−b)/n2. We now
study the contribution of the bottom tasks. Let us assume for a moment that no
bottom task is executed by the server. If all parents of a bottom task are among
the b top tasks executed by the server, then the bottom task will contribute
exactly 1/n2; let k be the number of bottom tasks u such that the parents of u
are among the b tasks, 0 ≤ k ≤ n. Recall that each bottom task has a parent.
So each of the remaining n − k bottom tasks has a parent that is not among
the top b tasks executed by the server. Hence such bottom task will contribute
at most 1/n4 to the expectation. Let us now account for this one bottom task
executed by the server. If k ≥ 1, then the bottom task must be among the
k tasks, because otherwise expectation could be increased by executing at the
server any of k tasks instead. Thus, when k ≥ 1, the expectation z is in the
interval [y, y + 1/n3], where y = b + (n − b)/n2 + 1 + (k − 1)/n2. If k = 0, then
each bottom task has at least one parent that is not executed by the server, and
so expectation z is in the interval [y′, y′ +1/n2+1/n3], where y′ = b+(n−b)/n2.
Consequently, these n + 1 intervals, for k = 0, 1, 2, . . . , n, do not overlap. Thus
there exist k bottom tasks whose parents form a set of at most b tasks. Since b
is known, the value of k can be determined by inspecting z. Observe also that it
is not possible that there are strictly more than k bottom tasks whose parents

452 L. Gao and G. Malewicz

comprise a set of at most b top tasks, because then maximum expectation would
be strictly larger than z.

Corollary 1. The Constrained Computing with Unreliable Workers Problem is
NP-hard.

4 Optimal Algorithms for the Mesh

In this section we present optimal solutions to the scheduling problem of Internet
Supercomputing with Unreliable Workers on a mesh. We fix deadline to the
tightest one possible on the given mesh. Under this constraint, we completely
describe the optimal solutions for two ranges of values of reliability p of workers.
When the reliability is close to zero, then a server subset maximizes expectation
if and only if it contains only a continuous sequence of “edge” tasks. There are
two such subsets in a mesh. When the reliability is close to one, then a server
subset maximizes expectation if and only if it contains only “central” tasks.
There are exponentially many such subsets. The remainder of the section defines
the mesh and demonstrates a basic structure of any optimal server subset. Then
optimal scheduling algorithms are given for the two ranges of worker reliability.
In particular, edge and central server subsets are defined, and combinatorial
arguments that ascertain optimality of the subsets are presented.

4.1 Preliminaries

A mesh Mk, for any given k ≥ 1, is a dag with nodes V = {(i, j) | 1 ≤ i, j ≤ k}.
There is an arc from any node (i, j) to node (i + 1, j), as long as both nodes
belong to the mesh. Similarly, there is an arc from (i, j) to (i, j+1). We introduce
orientation of the mesh. Specifically, the node (1, 1) is the North-West node, and
the node (k, k) is the South-East node. See Figure 2 for an example of a mesh and
its orientation. A formal definition of orientation should be clear to the reader.
We use Figure 2 to refer to “left”, “right” etc. A level � is the set of nodes (i, j)
of mesh Mk such that i+ j = �+1. There are exactly 2k−1 non-empty levels of
Mk. The levels partition the nodes of the mesh. For any node on level �, if the
node has a parent, then the parent is on level �− 1, if the node has a child, then
the child is on level � + 1. Column j is the set of nodes that have the second
coordinate equal to j. Row i is the set of nodes that have the first coordinate
equal to i.

We begin with a lemma that exposes a structure of an optimal solution to
our restricted problem. The subsequent lemma states that any server subset that
maximizes expectation must have exactly one task on each level, no more and
no fewer.

Lemma 2. For any k ≥ 1, and the mesh Mk, let R be a server subset that max-
imizes the expected number of correct results and x the corresponding function
such that x has makespan at most 2k − 1. Then any level �, 1 ≤ � ≤ 2k − 1,
shares exactly one task with R.

Internet Computing of Tasks with Dependencies 453

Fig. 2. Mesh M3

This lemma considerably simplifies scheduling. Since any server subset R that
maximizes expectation has exactly one task per level, we can trivially generate
the function x that dictates when tasks are executed such that the deadline
constraint is met. We simply schedule task execution level by level (breadth-first
search order). Thus we do not explicitly construct any function x for any such
server subset, keeping in mind that an appropriate x can be trivially generated.

The next question that we need to answer is: Which task should be selected
on each level? We note that for any reliability p of worker, 0 < p < 1, it is always
better to execute on the server a parent of a task, instead of the task because
then expectation will be strictly increased. Unfortunately, tasks on any given
level are not comparable (no task is a parent of any other on the same level).
Therefore, this simple observation does not help us decide which task of a given
level should be executed by the server. We need a different decision algorithm
instead. In the remainder of the section we present two optimal algorithms, one
when p is close to 1 and the other when p is close to 0.

4.2 Optimal Algorithm for Workers with High Reliability

This section completely characterizes optimal server subsets when the reliability
of worker p is close to one. We observe that then it is better when the server
executes a task with more descendants. This determines which task of any odd
level the server should execute. For even levels, selection is ambiguous, but we
show that it does not matter, as expectation will be the same no matter how we
choose.

The next lemma explains that as long as p is close enough to 1, it is better that
the server executes a task with strictly more descendants. The proof observes
that a task with more descendant adds strictly more to the expectation than any
task with fewer descendants no matter which the other tasks are in the server
subset.

Lemma 3. Let G be a dag on n nodes, reliability p of worker be (1 − 1/n)1/n
<

p < 1, u and w be two nodes such the set D(w) of descendents of w has at least

454 L. Gao and G. Malewicz

one more node than the set D(u) of descendents of u, |D(w)| ≥ 1 + |D(u)|, and
R be a server subset that contains neither u nor w. Then the expected number of
correct results for the server subset R∪ {w} is strictly larger than for the server
subset R ∪ {u}.

Note that (1 − 1/n)1/n is asymptotically close to 1 − 1/n2.
The lemma almost settles the question for p close to 1. One can see that for

any level of mesh Mk, tasks that occupy a “central” location of the level have
most descendants across tasks on the level. Thus each level will have a single
“central” task in an optimal R. The main issue, however, is that any even level
has two “central” tasks that have the same number of descendants. The existence
of these tasks makes room for ambiguity. Our next goal is to demonstrate that
this ambiguity has no effect on the expected number of correct results.

For a given mesh Mk, we call a server subset R a central server subset if it
is composed of specific tasks. It contains tasks (i, i), for any 1 ≤ i ≤ k, and,
in addition, for any 1 ≤ i < k, either task (i, i + 1) or (i + 1, i), but not both.
Note that for any central server subset, each level of Mk contains exactly one
task from the subset. We prove that expectations for central server subsets are
the same by noticing that if task (i, i + 1) belongs to R, then we can replace the
task with task (i + 1, i) without changing expectation.

Lemma 4. Let R and R′ be any central server subsets. Then the expected num-
ber of correct results for R is the same as it is for R′.

We gather the observations developed so far to prove a theorem on the struc-
ture of optimal solution when p is close to 1.

Theorem 2. Let k ≥ 1, worker reliability
(
1 − 1/k2

)1/k2

< p < 1, and deadline
d = 2k−1. Then a server subset S for mesh Mk maximizes the expected number
of correct results if and only if S is a central server subset.

4.3 Optimal Algorithm for Workers with Low Reliability

This section completely characterizes optimal server subsets when the reliability
of worker p is close to zero. The argument has two parts. We begin by showing
that any server subset that maximizes expectation must contain either all tasks
of the top row or all tasks of the leftmost column. This is shown by observing
that there is a tradeoff: it the first row contributes much to the expectation, then
the rest of the mesh contributes little, and vice versa. A symmetric argument is
applied to the leftmost column.

Lemma 5. Let k ≥ 3 and 0 < p ≤ 1/6. Let S be any server subset of Mk that
has exactly one task per level. If S does not contain all tasks from the top row
nor does it contain all tasks from the leftmost column, then S does not maximize
the expected number of correct results.

The lemma immediately implies that any optimal server subset must contain
either all tasks from the top row or all tasks from the leftmost column, whenever

Internet Computing of Tasks with Dependencies 455

0 < p ≤ 1/6 and k ≥ 3. This settles the question which tasks from levels 1 to k
must belong to an optimal server subset. What about tasks from level k +1 and
higher? The subsequent lemma provides an inductive argument that settles this
question as long as p is small. The key observation that gives rise to the proof
is that the tasks on level b + k − 1 and higher contribute little compared to the
contribution that task (b, k) would make when included in a server subset.

Lemma 6. Let k ≥ 3, 0 < p ≤ 1/(2k) and 2 ≤ b ≤ k − 1. Let S be any server
subset of Mk that has exactly one task per level. If

(i) S contains all tasks of the top row and the b − 1 top tasks of the rightmost
column, but not task (b, k), or

(ii) S contains all tasks of the leftmost column and the b − 1 leftmost tasks of
the bottom row, but not task (k, b)

then S does not maximize the expected number of correct results.

Given a mesh Mk, we call a server subset R an edge server subset if it is
composed of specific tasks. Such subset must either contain only tasks of the
top row and the rightmost column, or only tasks of the leftmost column and
the bottom row. The following theorem completely characterizes the structure
of optimal server subsets S for small enough worker reliability. We can prove the
theorem using observations developed so far.

Theorem 3. Let k ≥ 3, worker reliability 0 < p ≤ 1/(2k), and deadline d =
2k − 1. Then a server subset S for mesh Mk maximizes the expected number of
correct results if and only if S is an edge server subset.

5 Related Work

The combinatorial optimization problem introduced in this paper is related to
two known hard problems. In the Network Reliability Problem (see [5] problem
ND20) we are given a graph where each edge e has a failure probability p(e), a
subset V ′ of vertices, and a number q. The goal is to decide if the probability
is at least q, that for each pair of vertices in V ′ there is a path connecting the
vertices, such that the path has no failed edges. Our problem is similar, because
we check if all ancestors have been executed correctly (which resembles checking
for the existence of paths with no failed edges from the node to all ancestors).
However, our optimization goal is different, as we count the number of nodes for
which all ancestors have not failed. In a different problem, called the Network
Survivability Problem (see [5] problem ND21), we are given a graph where each
edge and each node has a failure probability, and a number q. The goal is to find
out if the probability is at least q that for all edges {u, v}, either the edge or one
of its endpoint nodes u or v has failed. The problem is similar because we also
consider probabilistic failures in the graph, however in our case we consider more
global dependencies, as we look at all ancestors of a node. There are many other

456 L. Gao and G. Malewicz

hard sequencing and scheduling problems [2], but their objective is different as
they typically aim at minimizing makespan and do not model computer failures.

A probabilistic model similar to our model is studied by Sarmenta [22] but
for independent tasks. Tasks are generated in batches. A batch consists of n
tasks. There are p workers. Once a batch is generated, its tasks are assigned to
workers; recomputation is allowed, and redundant assignment is allowed, too.
At most a fraction f of workers is faulty. A faulty worker returns incorrect
results with probability s, independently of other results. The goal is to compute
results of each task so that each result is “credible” enough (several measures
of credibility are proposed). Author considers two basic mechanisms: (1) spot
check a worker by verifying if the result computed is correct—this helps estimate
worker reliability and exclude faulty workers from computation, thus reducing
the fraction of faulty workers over time, (2) redundantly compute a task until a
certain number of results agree—this helps increase confidence in a result despite
possibility of workers being faulty. Author shows that the combination of the two
techniques is advantageous. Results are validated using a simulation.

There are scheduling problems that arise in Internet Supercomputing, other
than the problem studied in this paper. The papers of Rosenberg [19] and Rosen-
berg and Yurkewych [18] introduce a formalism for studying the problem of
scheduling tasks so as to render tasks eligible for allocation to workers (hence
for execution) at the maximum possible rate. This allows one to utilize workers
well, and also lessen the likelihood of the “gridlock” that ensues when a compu-
tation stalls for lack of eligible tasks. The papers identify optimal schedules for
several significant families of structurally uniform dags. The paper of Malewicz
et al. [13] extends this work via a methodology for devising optimal schedules for
a much broader class of complex dags. These dags are obtained via composition
from a prespecified collection of simple building-block dags. The paper intro-
duces a suite of algorithms that decompose a given dag to expose its building-
blocks, and a priority relation on building-blocks. When the building-blocks are
appropriately interrelated, the dag can be scheduled optimally. Motivated by the
demonstration in [13] that certain dags cannot be scheduled optimally, Malewicz
and Rosenberg [14] formulate a scheduling paradigm in which tasks are allo-
cated to workers in batches periodically. Optimality is always possible within
this new framework, but achieving it may entail a prohibitively complex com-
putation. However, restricted versions can be solved optimally in polynomial
time. Malewicz et al. [15] show how to increase the speed of computation in
the presence of network failures, by appropriately sequencing computation of
disconnected workers.

Malewicz [12] introduces a parallel scheduling problem where a directed
acyclic graph modeling t tasks and their dependencies needs to be executed
on n unreliable workers. Worker i executes task j correctly with probability pi,j .
The goal is to find a regimen Σ, that dictates how workers get assigned to tasks
(possibly in parallel and redundantly) throughout execution, so as to minimize
the expected completion time. This fundamental parallel scheduling problem is
shown to be NP-hard when restricted to constant dag width and also NP-hard

Internet Computing of Tasks with Dependencies 457

when restricted to a constant number of workers. These complexity results are
contrasted with a polynomial time algorithm for the problem when both dag
width and the number of workers are at most a constant.

6 Conclusions and Future Work

This paper began developing a scheduling theory for maximizing the expected
number of correct results of tasks executed on unreliable computers, when tasks
have dependencies. We introduced a combinatorial optimization problem, showed
that the problem is NP-hard, and gave optimal polynomial time algorithms for
restricted versions of the problem.

Our study opens several avenues for follow-up research. Which dags admit
polynomial time optimal scheduling algorithms? Is there a constant factor ap-
proximation algorithm for the general problem? How to effectively schedule when
each computer i has its own reliability pi? How does possible asynchrony, or par-
tial synchrony, (when tasks may take various amount of time to compute) affect
scheduling decisions? One could consider a different optimization goal of max-
imizing the expected number of correctly computed sinks (in the case of one
sink, we are then maximizing the likelihood that the sink will be correctly com-
puted). Unreliability of computers could be modeled in a different way than
probabilistically. We could assume that at most a certain number f of tasks will
be incorrectly executed. We decide which tasks should be executed on a reliable
computer, while an adversary decides which other at most f tasks will be exe-
cuted incorrectly. Which tasks should be executed on a reliable computer, so as
to maximize the worst-case (i.e., the lowest) number of correct results of tasks?

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (Im)possibility of Obfuscating Programs. (CRYPTO) (2001) 1–18

2. Crescenzi, P., Kann, V. (eds.): A compendium of NP optimization problems.
http://www.nada.kth.se/∼viggo/wwwcompendium/node173.html

3. Du, W., Jia, J., Mangal, M., Murugesan, M.: Uncheatable Grid Computing. 24th
International Conference on Distributed Computing Systems (ICDCS) (2004)

4. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure,
2nd Edition. Morgan Kaufmann (2004)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York
(1979)

6. Golle, P., Mironov, I.: Uncheatable Distributed Computations. RSA Conference –
topics in Cryptography (2001) 425–440

7. Golle, P., Stubblebine, S.: Secure Distributed Computing in a Commercial Environ-
ment. 5th International Conference Financial Cryptography (FC) (2001) 289–304

8. The Intel Philanthropic Peer-to-Peer program. http://www.intel.com/cure
9. Kahney, L.: Cheaters Bow to Peer Pressure. Wired News, February 15 (2001)

http://www.wired.com/news/technology/0,1282,41838,00.html

458 L. Gao and G. Malewicz

10. Kondo, D., Casanova, H., Wing, E., Berman, F.: Models and Scheduling Mech-
anisms for Global Computing Applications. 16th IEEE International Parallel &
Distributed Processing Symposium (2002)

11. Korpela, E., Werthimer, D., Anderson, D., Cobb, J., Lebofsky, M.: SETI@home -
massively distributed computing for seti. Computing in Science & Enginering, Vol.
3(1) (2001) 78–83

12. Malewicz, G.: Parallel Scheduling of Complex Dags under Uncertainty. (2005) sub-
mitted for publication

13. Malewicz, G., Rosenberg, A.L., Yurkewych, M.: On Scheduling Complex Dags
for Internet-Based Computing. 19th IEEE International Parallel & Distributed
Processing Symposium (IPDPS) (2005) to appear

14. Malewicz, G., Rosenberg, A.L.: On batch-scheduling dags for Internet-based com-
puting. Typescript, University of Massachusetts (2004) submitted for publication

15. Malewicz, G., Russell, A., Shvartsman, A.: Distributed Cooperation During the
Absence of Communication. 14th International Symposium on Distributed Com-
puting (DISC) (2000) 119–133

16. The Olson Laboratory Fight AIDS@Home project. http://www.fightaidsat
home.org

17. Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Applied
Mathematics, Vol. 131(3) (2003) 651–654

18. Rosenberg, A.L., Yurkewych, M.: Optimal Schedules for Some Common
Computation-Dags on the Internet. IEEE Transactions on Computers (2005) to
appear

19. Rosenberg, A.L.: On Scheduling Mesh-Structured Computations on the Internet.
IEEE Transactions on Computers, Vol. 53(9) (2004)

20. Rosenberg, A.L.: Accountable Web-computing. IEEE Transactions on Parallel and
Distributed Systems, Vol. 14(2) (2003) 97–106

21. The RSA Factoring By Web project. http://www.npac.syr.edu/factoring
22. Sarmenta, L.F.G.: Sabotage-tolerance mechanisms for volunteer computing sys-

tems. Future Generation Computer Systems, Vol. 18(4) (2002) 561–572
23. SETI@home: Current Total Statistics. http://setiathome.ssl.berkeley.edu/

totals.html, May 9 (2004)
24. Sun, X.H., Wu, M.: GHS: A performance Prediction and Task Scheduling System

for Grid Computing. 17th IEEE International Parallel & Distributed Processing
Symposium (2003)

25. Szajda, D., Lawson, B., Owen, J.: Hardening Functions for Large Scale Distributed
Computations. IEEE Symposium on Security and Privacy, (2003) 216–224

Author Index

Abraham, Ittai 229
Amit, Yonatan 229
Araújo, Filipe 81
Arora, Anish 299, 384
Azurat, A. 52

Bejan, Alina 140
Bhargavan, Karthikeyan 331
Broberg, James 415

Carvalho, Diego 431
Chakraborty, Indraneel 400
Choi, Young-ri 384
Chun, Brent N. 20
Cournier, Alain 267
Czyzowicz, Jurek 67

De Gregorio, Massimo 431
Demirbas, Murat 299
Devismes, Stéphane 267
Dolev, Danny 229

Fan, Rui 400
Flocchini, Paola 154
França, Felipe M.G. 431
Fukuhara, Masahiko 169

Gao, Li 443
Ghosh, Sukumar 94, 140
Gilbert, Seth 316
Gouda, Mohamed G. 197, 384
Groth, Paul 124
Guillaume, Jean-Loup 186

Ha, Phuong Hoai 213
Hatano, Tomoya 169
Hirose, Fumiaki 169

Ishihara, Susumu 110
Ito, Yosuke 110

Kakugawa, Hirotsugu 256
Kowalski, Dariusz 67
Kranakis, Evangelos 357
Krishna, Nishith 331
Krizanc, Danny 357

Latapy, Matthieu 186
Laurençot, Patrice 37
Lee, David 1
Lillis, Kevin 94
Liu, Alex X. 197
Liu, Christine 1
Luck, Michael 124
Lynch, Nancy 299, 400

Ma, Huibo H. 197
Magnien, Clémence 186
Malewicz, Grzegorz 316, 443
Markou, Euripides 67
Masuzawa, Toshimitsu 283
Meneses, Esteban 346
Mineno, Hiroshi 110
Moreau, Luc 124

Nesterenko, Mikhail 369
Ngu, Anne HH. 197
Nolte, Tina 299

Okada, Ken-ichi 169
Ooshita, Fukuhito 283

Pagli, Linda 154
Pandit, Saurav 94
Papatriantafilou, Marina 213
Pelc, Andrzej 67
Pemmaraju, Sriram 94
Petit, Franck 267
Prasetya, I.S.W.B. 52
Prencipe, Giuseppe 154
Protti, Fábio 431

Rodrigues, Lúıs 81

Sakurai, Yusuke 283
Salva, Sébastien 37
Santoro, Nicola 154
Shapiro, Marc 331
Shigeno, Hiroshi 169
Sifakis, Joseph 184
Sundell, H̊akan 240
Swierstra, S.D. 52

460 Author Index

Tari, Zahir 415

Torres-Rojas, Francisco J. 346

Tsigas, Philippas 213, 240

Villain, Vincent 267

Vora, Adnan 369

Vos, T.E.J. 52

Widmayer, Peter 154
Williams, Eric 357

Yamashita, Masafumi 256
Yannakakis, Mihalis 1

Zeephongsekul, Panlop 415
Zuva, Tranos 154

	Frontmatter
	Invited Session I
	Protocol System Integration, Interface and Interoperability

	Session I (Design of Distributed Systems I)
	DART: Distributed Automated Regression Testing for Large-Scale Network Applications
	Testing Mobile and Distributed Systems: Method and Experimentation
	A UNITY-Based Framework Towards Component Based Systems

	Session II (Ad-Hoc Networks and Mobile Agents)
	Searching for a Black Hole in Tree Networks
	Fast Localized Delaunay Triangulation
	Robust Topology Control Protocols
	A Scheme Encouraging Mobile Nodes to Forward Packets via Multiple Wireless Links Aggregating System Between the Internet and Mobile Ad Hoc Networks

	Session III (Grid and Networks)
	A Protocol for Recording Provenance in Service-Oriented Grids
	Self-optimizing DHTs Using Request Profiling
	Computing All the Best Swap Edges Distributively
	SRF TCP: A TCP-Friendly and Fair Congestion Control Method for High-Speed Networks

	Invited Session II
	Embedded Systems -- Challenges and Work Directions

	Session IV (Security)
	Comparison of Failures and Attacks on Random and Scale-Free Networks
	Firewall Queries

	Session V (Distributed Algorithms)
	Self-tuning Reactive Distributed Trees for Counting and Balancing
	Optimal Resilience Asynchronous Approximate Agreement
	Lock-Free and Practical Doubly Linked List-Based Deques Using Single-Word Compare-and-Swap

	Session VI (Self-stabilization)
	A Dynamic Reconfiguration Tolerant Self-stabilizing Token Circulation Algorithm in Ad-Hoc Networks
	Snap-Stabilizing Depth-First Search on Arbitrary Networks
	A Self-stabilizing Link-Coloring Protocol Resilient to Byzantine Faults in Tree Networks
	A Hierarchy-Based Fault-Local Stabilizing Algorithm for Tracking in Sensor Networks

	Session VII (Design of Distributed Systems II)
	The Quorum Deployment Problem
	A Constraint-Based Formalism for Consistency in Replicated Systems
	Analyzing Convergence in Consistency Models for Distributed Objects

	Session VIII (Sensor Networks)
	Directional Versus Omnidirectional Antennas for Energy Consumption and {\itshape k}-Connectivity of Networks of Sensors
	Secure Location Verification Using Radio Broadcast
	Sentries and Sleepers in Sensor Networks
	Clock Synchronization for Wireless Networks

	Session IX (Task/Resource Allocation)
	Task Assignment Based on Prioritising Traffic Flows
	A Novel Distributed Scheduling Algorithm for Resource Sharing Under Near-Heavy Load
	Internet Computing of Tasks with Dependencies Using Unreliable Workers

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

